
 123

42nd International Conference on Current Trends
in Theory and Practice of Computer Science
Harrachov, Czech Republic, January 23–28, 2016, Proceedings

SOFSEM 2016:
Theory and Practice
of Computer ScienceLN

CS
 9

58
7

AR
Co

SS
Rūsiņš Martiņš Freivalds
Gregor Engels
Barbara Catania (Eds.)

Lecture Notes in Computer Science 9587

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M.Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Rūsiņš Mārtiņš Freivalds • Gregor Engels
Barbara Catania (Eds.)

SOFSEM 2016:
Theory and Practice
of Computer Science
42nd International Conference on Current Trends
in Theory and Practice of Computer Science
Harrachov, Czech Republic, January 23–28, 2016
Proceedings

123

Editors
Rūsiņš Mārtiņš Freivalds
University of Latvia
Riga
Latvia

Gregor Engels
University of Paderborn
Paderborn
Germany

Barbara Catania
University of Genoa
Genoa
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-49191-1 ISBN 978-3-662-49192-8 (eBook)
DOI 10.1007/978-3-662-49192-8

Library of Congress Control Number: 2015958904

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

Preface

This volume contains the invited and contributed papers selected for presentation at the
42nd Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM 2016), which was held January 23–28, 2016, in Harrachov, Czech Republic.

SOFSEM (originally SOFtware SEMinar) is devoted to leading research and fosters
cooperation among researchers and professionals from academia and industry in all
areas of computer science. SOFSEM started in 1974 in the former Czechoslovakia as a
local conference and winter school combination. The renowned invited speakers and
the growing interest of the authors from abroad gradually turned SOFSEM in the
mid-1990s into an international conference with proceedings published in the
Springer LNCS series, in the last two years in their prestigious subline ARCOSS:
Advanced Research in Computing and Software Science. SOFSEM became a
well-established and fully international conference maintaining the best of its original
winter school aspects, such as a higher number of invited talks and an in-depth cov-
erage of novel research results in selected areas of computer science. SOFSEM 2016
was organized around the following three tracks:

– Foundations of Computer Science
(chaired by Rūsiņš Mārtiņš Freivalds)

– Software Engineering: Methods, Tools, Applications
(chaired by Gregor Engels)

– Data, Information, and Knowledge Engineering
(chaired by Barbara Catania)

With its three tracks, SOFSEM 2016 covered the latest advances in research, both
theoretical and applied, in selected areas of computer science. The SOFSEM 2016
Program Committee consisted of 61 international experts from 22 different countries,
representing the track areas with outstanding expertise.

An integral part of SOFSEM 2016 was the traditional SOFSEM Student Research
Forum (chaired by Roman Špánek), organized with the aim of presenting student
projects in both the theory and practice of computer science, and to give the students
feedback on the originality of their results. The papers presented at the Student
Research Forum were published in separate local proceedings (together with the
accepted posters). The copy of these local proceedings is available via CEUR-WS.

In response to the call for papers, SOFSEM 2016 received 150 abstracts and after
withdrawals and removal of double and fake submissions, the final number of sub-
mitted papers totaled 116 from 38 different countries. The submissions were distributed
in the conference three tracks as follows: 62 in the Foundations of Computer Science,
21 in the Software Engineering, and 33 in the Data, Information, and Knowledge
Engineering. From these, 34 submissions fell in the student category.

After a detailed reviewing process (using the EasyChair Conference System for
rewieving and discussions), a careful selection procedure was carried out within each

track. Following strict criteria of quality and originality, 43 papers were selected for
presentation, namely: 27 in the Foundations of Computer Science, six in the Software
Engineering, and 10 in the Data, Information, and Knowledge Engineering.

Based on the recommendation of the chair of the Student Research Forum, 14
student papers were chosen for the SOFSEM 2016 Student Research Forum. Moreover,
five posters were accepted for poster presentation.

As editors of these proceedings, we are grateful to everyone who contributed to the
scientific program of the conference, especially the invited speakers and all the authors
of contributed papers. We also thank the authors for their prompt responses to our
editorial requests.

SOFSEM 2016 was the result of a considerable effort by many people. We would
like to express our special thanks to:

– The members of the SOFSEM 2016 Program Committee and all external reviewers
for their careful reviewing of the submissions

– Roman Špánek for his preparation and handling of the Student Research Forum
– The SOFSEM Steering Committee, chaired by Július Štuller, for guidance and

support throughout the preparation of the conference
– The Organizing Committee, consisting of Martin Řimnáč (Chair), Pavel Tyl, Dana

Kuželová, Július Štuller, and Milena Zeithamlová for the generous support and
preparation of all aspects of the conference

– Springer for its continued support of the SOFSEM conferences
– CEUR-WS for publishing the copy of the second volume of the proceedings

We are greatly indebted to the Action M Agency, in particular Milena Zeithamlová,
for the local arrangements of SOFSEM 2016. We thank the Institute of Computer
Science of the Czech Academy of Sciences for its invaluable support of all aspects of
SOFSEM 2016. Finally, we are very grateful for the financial support of the Czech
Society for Cybernetics and Informatics.

November 2015 Barbara Catania
Gregor Engels

Rūsiņš Mārtiņš Freivalds

VI Preface

Organization

Steering Committee

Barbara Catania University of Genoa, Italy
Ivana Černá Masaryk University, Brno, Czech Republic
Miroslaw Kutylowski Wroclaw University of Technology, Poland
Jan van Leeuwen Utrecht University, The Netherlands
Tiziana Margaria-Steffen University of Limerick, Ireland
Brian Matthews STFC Rutherford Appleton Laboratory, UK
Branislav Rovan Comenius University, Bratislava, Slovakia
Petr Šaloun Technical University of Ostrava, Czech Republic
Július Štuller, Chair Institute of Computer Science, Academy of Sciences,

Czech Republic

Program Committee

Track Chairs

Barbara Catania University of Genoa, Italy
Gregor Engels University of Paderborn, Germany
Rūsiņš Mārtiņš Freivalds University of Latvia, Latvia

Student Research Forum Chair

Roman Špánek Technical University of Liberec, Czech Republic

Program Committee Members

Farid Ablayev Kazan, Russia
Marie-Pierre Béal Paris, France
Steffen Becker Chemnitz, Germany
Zohra Bellahsène Montpellier, France
Petr Berka Prague, Czech Republic
Mária Bieliková Bratislava, Slovakia
Jan Bouda Brno, Czech Republic
Stephane Bressan Singapore, Republic of Singapore
Ruth Breu Innsbruck, Austria
Tomáš Bureš Prague, Czech Republic
Davide Buscaldi Paris, France
Johann Eder Klagenfurt, Austria
Uwe Egly Vienna, Austria
Gregor Engels Paderborn, Germany

Rusins Freivalds Riga, Latvia
Johann Gamper Bolzano, Italy
Giovanna Guerrini Genoa, Italy
Theo Härder Kaiserslautern, Germany
Hannu Jaakkola Pori, Finland
Christos Kapoutsis Carnegie Mellon, Qatar
Jarkko Kari Turku, Finland
Efim Kinber Sacred Heart University, USA
Reinhard Klette Auckland, New Zealand
Georgia Koutrika Palo Alto, USA
Stanislav Krajči Košice, Slovakia
Andrzej Lingas Lund, Sweden
Alexei Lisitsa Liverpool, UK
Laura Mančinska NUS, Singapore
Yannis Manolopoulos Thessaloniki, Greece
Rainer Manthey Bonn, Germany
Bruno Martin Nice, France
Carlo Mereghetti Milan, Italy
Paolo Missier New Castle, UK
Pavol Návrat Bratislava, Slovakia
Jerzy Nawrocki Poznan, Poland
Martin Nečaský Prague, Czech Republic
Boris Novikov St. Petersburg, Russia
Alexander Okhotin Turku, Finland
Claus Pahl Dublin, Ireland
Evaggelia Pitoura Ioannina, Greece
Kārlis Podnieks Riga, Latvia
Jaroslav Pokorný Prague, Czech Republic
Alexander Pretschner Munich, Germany
Paolo Rosso Valencia, Spain
Raymond Rudy IBM Tokyo, Japan
Ismael Sanz Castelló, Spain
Cem Say Istanbul, Turkey
Ina Schäfer Braunschweig, Germany
Alberto Marchetti

Spaccamela
Rome, Italy

Romina Spalazzese Malmö, Sweden
Athena Vakali Thessaloniki, Greece
Madars Virza MIT, USA
Andrzej Wąsowski Copenhagen, Denmark
Jiří Wiedermann Prague, Czech Republic
Abuzer Yakaryilmaz Petropolis, Brazil
Tomoyuki Yamakami Fukui, Japan
Thomas Zeugmann Sapporo, Japan
Uwe Zdun Vienna, Austria

VIII Organization

Additional Reviewers

Mikhail Abramskiy
Ahmad Salim Al-Sibahi
Jesús Alonso
Marcella Anselmo
Pablo Arrighi
Hauke Baller
Kaspars Balodis
Annalisa Barla
Carl Barton
Luca Bernardinello
Krists Boitmanis
Vincenzo Bonifaci
Boban Celebic
Kārlis Čerāns
Aleksandar S. Dimovski
Michael J. Dinneen
Mike Domaratzki
Mayte Giménez Fayos
Peter Floderus
Markus Frank
Bulat Gabbasov
Mohsen Ghaffari
Massimiliano Goldwurm
Alexander Golovnev
Stefan Göller
Martin Haeusler
Florian Häser
Marcus Hilbrich

Hendrik Jan Hoogeboom
Jesper Jansson
Stacey Jeffery
Zbynek Jiracek
Charles Jordan
Kamil Khadiev
Alfred Khayroullin
Dennis Komm
Christian Koncilia
Filip Krijt
Petr Kurka
Giovanna Lavado
Dimitrios Letsios
Christos Levcopoulos
Jiamou Liu
Bruno Loff
Anton Marchenko
Arnaud Malapert
Ladislav Maršík
Lukas Märtin
Vladimir Matena
Abel Molina
Debajyoti Mondal
Viviane Moreira
Michael Nieke
Bengt J. Nilsson
Francesca Odone
Maris Ozols

Peteris Paikens
Mia Persson
Ved Prakash
Julien Provillard
Renato Renner
David Roberson
Lorenzo Rosasco
Stefano Rovetta
Clemens Sauerwein
Shinnosuke Seki
Alexander Shen
Christian Sillaber
Dzmitry Sledneu
Stefan Stanciulescu
Patrick Totzke
Farouk Toumani
Leo Truksans
Bianca Truthe
Robin Kothari
Matthias Kowal
Miroslaw Kowaluk
Sergejs Kozlovics
Maksims Kravcevs
Alexander Vasiliev
Marcos Villagra
Shenggen Zheng
Mansur Ziatdinov
Wieslaw Zielonka

Organization

SOFSEM 2016 was organized by the Institute of Computer Science of the Czech
Academy of Sciences and Action M Agency, Prague.

Organizing Committee

Martin Řimnáč, Chair Institute of Computer Science, Prague, Czech Republic
Pavel Tyl Technical University Liberec, Czech Republic
Dana Kuželová Institute of Computer Science, Prague, Czech Republic
Július Štuller Institute of Computer Science, Prague, Czech Republic
Milena Zeithamlová Action M Agency, Prague, Czech Republic

Organization IX

Supported by

ČSKI – Czech Society for Cybernetics and Informatics

SSCS – Slovak Society for Computer Science

X Organization

Contents

Foundations of Computer Science (Invited Talks)

Cryptography in a Quantum World . 3
Gilles Brassard

Relating Sublinear Space Computability Among Graph Connectivity
and Related Problems . 17

Tatsuya Imai and Osamu Watanabe

Learning Automatic Families of Languages . 29
Sanjay Jain and Frank Stephan

Software Engineering: Methods, Tools, Applications (Invited Talks)

From ESSENCE to Theory Oriented Software Engineering 43
Sebastian Holtappels, Michael Striewe, and Michael Goedicke

Incremental Queries and Transformations: From Concepts to Industrial
Applications . 51

Dániel Varró

Data, Information, and Knowledge Engineering (Invited Talks)

Big Sequence Management: A glimpse of the Past, the Present,
and the Future . 63

Themis Palpanas

Pay-as-you-go Data Integration: Experiences and Recurring Themes 81
Norman W. Paton, Khalid Belhajjame, Suzanne M. Embury,
Alvaro A.A. Fernandes, and Ruhaila Maskat

Foundations of Computer Science (Regular Papers)

Robust Recoverable Path Using Backup Nodes. 95
Marjan van den Akker, Hans L. Bodlaender, Thomas C. van Dijk,
Han Hoogeveen, and Erik van Ommeren

On Contact Graphs with Cubes and Proportional Boxes 107
M. Jawaherul Alam, Michael Kaufmann, and Stephen G. Kobourov

Orthogonal Layout with Optimal Face Complexity 121
M. Jawaherul Alam, Stephen G. Kobourov, and Debajyoti Mondal

http://dx.doi.org/10.1007/978-3-662-49192-8_1
http://dx.doi.org/10.1007/978-3-662-49192-8_2
http://dx.doi.org/10.1007/978-3-662-49192-8_2
http://dx.doi.org/10.1007/978-3-662-49192-8_3
http://dx.doi.org/10.1007/978-3-662-49192-8_4
http://dx.doi.org/10.1007/978-3-662-49192-8_5
http://dx.doi.org/10.1007/978-3-662-49192-8_5
http://dx.doi.org/10.1007/978-3-662-49192-8_6
http://dx.doi.org/10.1007/978-3-662-49192-8_6
http://dx.doi.org/10.1007/978-3-662-49192-8_7
http://dx.doi.org/10.1007/978-3-662-49192-8_8
http://dx.doi.org/10.1007/978-3-662-49192-8_9
http://dx.doi.org/10.1007/978-3-662-49192-8_10

L-Drawings of Directed Graphs . 134
Patrizio Angelini, Giordano Da Lozzo, Marco Di Bartolomeo,
Valentino Di Donato, Maurizio Patrignani, Vincenzo Roselli,
and Ioannis G. Tollis

A Combinatorial Model of Two-Sided Search. 148
Harout Aydinian, Ferdinando Cicalese, Christian Deppe,
and Vladimir Lebedev

On the Power of Laconic Advice in Communication Complexity 161
Kfir Barhum and Juraj Hromkovič

Using Attribute Grammars to Model Nested Workflows with Extra
Constraints . 171

Roman Barták

A Natural Counting of Lambda Terms. 183
Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne,
and Marek Zaionc

Online Minimum Spanning Tree with Advice (Extended Abstract) 195
Maria Paola Bianchi, Hans-Joachim Böckenhauer, Tatjana Brülisauer,
Dennis Komm, and Beatrice Palano

Subsequence Automata with Default Transitions . 208
Philip Bille, Inge Li Gørtz, and Frederik Rye Skjoldjensen

Run-Time Checking Multi-threaded Java Programs 217
Frank S. de Boer and Stijn de Gouw

Online Graph Coloring with Advice and Randomized Adversary
(Extended Abstract) . 229

Elisabet Burjons, Juraj Hromkovič, Xavier Muñoz, and Walter Unger

Pseudoknot-Generating Operation . 241
Da-Jung Cho, Yo-Sub Han, Timothy Ng, and Kai Salomaa

Capabilities of Ultrametric Automata with One, Two, and Three States 253
Maksims Dimitrijevs

The Complexity of Paging Against a Probabilistic Adversary 265
Stefan Dobrev, Juraj Hromkovič, Dennis Komm, Richard Královič,
Rastislav Královič, and Tobias Mömke

On Parity Game Preorders and the Logic of Matching Plays. 277
M.W. Gazda and T.A.C. Willemse

XII Contents

http://dx.doi.org/10.1007/978-3-662-49192-8_11
http://dx.doi.org/10.1007/978-3-662-49192-8_12
http://dx.doi.org/10.1007/978-3-662-49192-8_13
http://dx.doi.org/10.1007/978-3-662-49192-8_14
http://dx.doi.org/10.1007/978-3-662-49192-8_14
http://dx.doi.org/10.1007/978-3-662-49192-8_15
http://dx.doi.org/10.1007/978-3-662-49192-8_16
http://dx.doi.org/10.1007/978-3-662-49192-8_17
http://dx.doi.org/10.1007/978-3-662-49192-8_18
http://dx.doi.org/10.1007/978-3-662-49192-8_19
http://dx.doi.org/10.1007/978-3-662-49192-8_19
http://dx.doi.org/10.1007/978-3-662-49192-8_20
http://dx.doi.org/10.1007/978-3-662-49192-8_21
http://dx.doi.org/10.1007/978-3-662-49192-8_22
http://dx.doi.org/10.1007/978-3-662-49192-8_23

A PTAS for Scheduling Unrelated Machines of Few Different Types 290
Jan Clemens Gehrke, Klaus Jansen, Stefan E.J. Kraft,
and Jakob Schikowski

Compacting a Dynamic Edit Distance Table by RLE Compression 302
Heikki Hyyrö and Shunsuke Inenaga

Walking Automata in Free Inverse Monoids . 314
David Janin

Precedence Scheduling with Unit Execution Time is Equivalent
to Parametrized Biclique . 329

Klaus Jansen, Felix Land, and Maren Kaluza

Grover’s Search with Faults on Some Marked Elements 344
Dmitry Kravchenko, Nikolajs Nahimovs, and Alexander Rivosh

Reachability Problems for PAMs . 356
Oleksiy Kurganskyy and Igor Potapov

On the Effects of Nondeterminism on Ordered Restarting Automata 369
Kent Kwee and Friedrich Otto

Quantum Walks on Two-Dimensional Grids with Multiple Marked
Locations . 381

Nikolajs Nahimovs and Alexander Rivosh

How to Smooth Entropy?. 392
Maciej Skorski

Bounded TSO-to-SC Linearizability Is Decidable . 404
Chao Wang, Yi Lv, and Peng Wu

Probabilistic Autoreductions . 418
Liyu Zhang, Chen Yuan, and Haibin Kan

Software Engineering: Methods, Tools, Applications (Regular Papers)

ABS: A High-Level Modeling Language for Cloud-Aware Programming 433
Nikolaos Bezirgiannis and Frank de Boer

Aspect, Rich, and Anemic Domain Models in Enterprise Information
Systems . 445

Karel Cemus, Tomas Cerny, Lubos Matl, and Michael J. Donahoo

Finding Optimal Compatible Set of Software Components Using Integer
Linear Programming . 457

Jakub Danek and Premek Brada

Contents XIII

http://dx.doi.org/10.1007/978-3-662-49192-8_24
http://dx.doi.org/10.1007/978-3-662-49192-8_25
http://dx.doi.org/10.1007/978-3-662-49192-8_26
http://dx.doi.org/10.1007/978-3-662-49192-8_27
http://dx.doi.org/10.1007/978-3-662-49192-8_27
http://dx.doi.org/10.1007/978-3-662-49192-8_28
http://dx.doi.org/10.1007/978-3-662-49192-8_29
http://dx.doi.org/10.1007/978-3-662-49192-8_30
http://dx.doi.org/10.1007/978-3-662-49192-8_31
http://dx.doi.org/10.1007/978-3-662-49192-8_31
http://dx.doi.org/10.1007/978-3-662-49192-8_32
http://dx.doi.org/10.1007/978-3-662-49192-8_33
http://dx.doi.org/10.1007/978-3-662-49192-8_34
http://dx.doi.org/10.1007/978-3-662-49192-8_35
http://dx.doi.org/10.1007/978-3-662-49192-8_36
http://dx.doi.org/10.1007/978-3-662-49192-8_36
http://dx.doi.org/10.1007/978-3-662-49192-8_37
http://dx.doi.org/10.1007/978-3-662-49192-8_37

Effective Parallel Multicore-Optimized K-mers Counting Algorithm 469
Tomáš Farkaš, Peter Kubán, and Mária Lucká

Meta-Evolution Style for Software Architecture Evolution 478
Adel Hassan and Mourad Oussalah

The Simulation Relation for Formal E-Contracts . 490
Luis Llana, María-Emilia Cambronero, and Gregorio Díaz

Data, Information, and Knowledge Engineering (Regular Papers)

Solving the Problem of Selecting Suitable Objective Measures by
Clustering Association Rules Through the Measures Themselves. 505

Veronica Oliveira de Carvalho, Renan de Padua,
and Solange Oliveira Rezende

Survey on Concern Separation in Service Integration. 518
Tomas Cerny and Michael J. Donahoo

Utilizing Vector Models for Automatic Text Lemmatization 532
Ladislav Gallay and Marián Šimko

Improving Keyword Extraction from Movie Subtitles
by Utilizing Temporal Properties. 544

Matúš Košút and Marián Šimko

Identification of Navigation Lead Candidates Using Citation
and Co-Citation Analysis . 556

Robert Moro, Mate Vangel, and Maria Bielikova

Summarizing Online User Reviews Using Bicliques 569
Azam Sheikh Muhammad, Peter Damaschke, and Olof Mogren

Post-processing Association Rules: A Network Based Label
Propagation Approach . 580

Renan de Padua, Veronica Oliveira de Carvalho,
and Solange Oliveira Rezende

Application of Multiple Sound Representations in Multipitch Estimation
Using Shift-Invariant Probabilistic Latent Component Analysis 592

Krzysztof Rychlicki-Kicior, Bartłomiej Stasiak,
and Mykhaylo Yatsymirskyy

XIV Contents

http://dx.doi.org/10.1007/978-3-662-49192-8_38
http://dx.doi.org/10.1007/978-3-662-49192-8_39
http://dx.doi.org/10.1007/978-3-662-49192-8_40
http://dx.doi.org/10.1007/978-3-662-49192-8_41
http://dx.doi.org/10.1007/978-3-662-49192-8_41
http://dx.doi.org/10.1007/978-3-662-49192-8_42
http://dx.doi.org/10.1007/978-3-662-49192-8_43
http://dx.doi.org/10.1007/978-3-662-49192-8_44
http://dx.doi.org/10.1007/978-3-662-49192-8_44
http://dx.doi.org/10.1007/978-3-662-49192-8_45
http://dx.doi.org/10.1007/978-3-662-49192-8_45
http://dx.doi.org/10.1007/978-3-662-49192-8_46
http://dx.doi.org/10.1007/978-3-662-49192-8_47
http://dx.doi.org/10.1007/978-3-662-49192-8_47
http://dx.doi.org/10.1007/978-3-662-49192-8_48
http://dx.doi.org/10.1007/978-3-662-49192-8_48

Projection for Nested Word Automata Speeds up XPath Evaluation
on XML Streams . 602

Tom Sebastian and Joachim Niehren

Evaluation of Static/Dynamic Cache for Similarity Search Engines 615
R. Solar, V. Gil-Costa, and M. Marín

Author Index . 629

Contents XV

http://dx.doi.org/10.1007/978-3-662-49192-8_49
http://dx.doi.org/10.1007/978-3-662-49192-8_49
http://dx.doi.org/10.1007/978-3-662-49192-8_50

Foundations of Computer Science
(Invited Talks)

Cryptography in a Quantum World

Gilles Brassard1,2(B)

1 Département d’informatique et de recherche opérationnelle,
Université de Montréal, C.P. 6128, Succursale Centre-ville,

Montréal, QC H3C 3J7, Canada
2 Canadian Institute for Advanced Research, Toronto, Canada

brassard@iro.umontreal.ca

http://www.iro.umontreal.ca/~brassard/en/

Abstract. Although practised as an art and science for ages, cryptogra-
phy had to wait until the mid-twentieth century before Claude Shannon
gave it a strong mathematical foundation. However, Shannon’s approach
was rooted is his own information theory, itself inspired by the classical
physics of Newton and Einstein. But our world is ruled by the laws of
quantum mechanics. When quantum-mechanical phenomena are taken
into account, new vistas open up both for codemakers and codebreakers.
Is quantum mechanics a blessing or a curse for the protection of privacy?
As we shall see, the jury is still out!

Keywords: Cryptography · Quantum mechanics · Quantum
computation · Post-quantum cryptography · Quantum communication ·
Quantum key distribution · Edgar Allan Poe

1 Introduction

For thousands of years, cryptography has been an ongoing battle between code-
makers and codebreakers [1,2], who are more formally called cryptographers
and cryptanalysts. Naturally, good and evil are subjective terms to designate
codemakers and codebreakers. As a passionate advocate for the right to pri-
vacy, my allegiance is clearly on the side of codemakers. I admit that I laughed
hysterically when I saw the Zona Vigilada warning that awaits visitors of the
Plaça de George Orwell near City Hall in Barcelona [3]. Nevertheless, I recog-
nize that codebreakers at Bletchley Park during the Second World War were
definitely on the side of good. We all know about the prowess of Alan Turing,
who played a key role at the routine (this word is too strong) decryption of the
German Enigma cipher [4]. But who remembers Marian Rejewski, who actually
used pure (and beautiful) mathematics to break Enigma with two colleagues
before the War even started? [5] Indeed, who remembers except yours truly and
nationalistic Poles such as my friend Artur Ekert? Certainly not filmmakers! [6]
And who remembers William Tutte, who broke the much more difficult Lorenz
cipher (codenamed Tunny by the Allies), which allowed us to probe the mind of
Hitler? [7] Tutte moved on to found the Computer Science department at the
c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 3–16, 2016.
DOI: 10.1007/978-3-662-49192-8 1

4 G. Brassard

University of Waterloo, Canada, now home of IQC, the Institute for Quantum
Computation, but never said a word until the 1990 s about how he won the War
for us [8]. The Canadian Communications Security Establishment pays homage
with its Tutte Institute for Mathematics and Computing. But who else remem-
bers those silent heroes on the codebreaking side? I am getting carried away
by emotions as I type these words while flying from Tōkyō to Calgary, on my
way home after the amazingly successful 5th Annual Conference on Quantum
Cryptography, QCrypt 2015 [9].

Regardless of the side to which good belongs, the obvious question is: Who
will win the battle between codemakers and codebreakers? More specifically, how
do the recent advances in Quantum Information Science (QIS) change this age-
old issue? Until the mid-twentieth century, History has taught us that codemak-
ers, no matter how smart, have been systematically outsmarted by codebreak-
ers, but it ain’t always been easy. For instance, le chiffre indéchiffrable, usually
attributed to Blaise de Vigenère in 1585, but actually invented by Giovan Batista
Belaso 32 years earlier, remained invulnerable until broken by Charles Babbage
in 1854, more than three centuries after its invention. (Baggage is best known
for his invention of the Analytical Engine, which would have been the first pro-
grammable computer had the technology of his days been able to rise up to
the challenge of building it.) The apparent upper hand of codebreakers, despite
the still enduring invulnerability of the chiffre indéchiffrable, prompted Ameri-
can novelist and high-level amateur cryptanalyst Edgar Allan Poe to confidently
declare in 1841 that “It may be roundly asserted that human ingenuity cannot
concoct a cipher which human ingenuity cannot resolve” [10]. Poe, do I need to
mention, was among other things the author of The Gold-Bug [11], published in
June 1843. This extraordinary short story centring on the decryption of a secret
message was instrumental on kindling the career of prominent cryptographers,
such as William Friedman’s, America’s foremost cryptanalyst of a bygone era,
who read it as a child [12, p. 146].

Cryptography was set on a firm scientific basis by Claude Shannon, the father
of information theory [13], as the first half of the twentieth century was coming
to a close [14]. Actually, it’s likely that his groundbreaking work was achieved
several years earlier but kept classified due to the War effort. In any case, Shan-
non’s theory was resolutely set in the context of classical physics. In retrospect,
this is odd since it was clearly established at that time that Nature is ruled
not by the Laws envisioned centuries earlier by Sir Isaac Newton, and not even
by those more modern of Albert Einstein, but by the counterintuitive features
of the emerging quantum mechanics. Shannon was well aware of this revolu-
tion in physics, but he probably did not think it relevant to the foundations of
information theory, which he developed as a purely abstract theory.

In particular, Shannon did not question the “fact” that encrypted informa-
tion transmitted from a sender (codenamed Alice) to a receiver (codenamed
Bob) could be copied by an eavesdropper (codenamed Eve) without causing
any disturbance noticeable by Alice and Bob. From this unfounded assumption,
Shannon proved a famous theorem according to which perfect secrecy requires

Cryptography in a Quantum World 5

the availability of a shared secret key as long as the message that Alice wishes to
transmit securely to Bob, or more precisely as long as the entropy of that mes-
sage, and that this key cannot be reused [14]. This theorem is mathematically
impeccable, but it is nevertheless irrelevant in our quantum-mechanical world
since the assumption on which its proof is based does not hold.

My purpose is to investigate the issue of whether or not Poe was right in
his sweeping mid-nineteenth century statement. Could it be indeed that code-
breakers will continue to have the upper hand over codemakers for the rest of
eternity?

2 The Case of Classical Codemakers Against Classical
Codebreakers

The first electronic computers were designed and built to implement Tutte’s
beautiful mathematical theory on how to break the high-level German code dur-
ing World War II. They were codenamed the Colossus and ten of them were
built in Bletchley Park [15]. As mentioned in the Introduction, they were instru-
mental in allowing us to win the War. However, in order to secure secrecy of the
entire Bletchley Park operation, they were smashed to bits (funny expression
when it concerns computers!) once the War was over. Consequently, I “learned”
as a child that the first electronic computer in history had been the American
Eniac, when in fact it was the eleventh! Little did the pioneers of the Colossus
imagine that, by an ironic twist of fate, they had unleashed the computing power
that was to bring (temporary?) victory to the codemakers. In a sense, codebreak-
ers had been the midwife of the instrument of their own destruction. Perhaps.
Indeed, the rise of public-key cryptography in the 1970 s had led us to believe that
an increase in computing power could only be in favour of codemakers, hence at
the detriment of codebreakers.

But well before all this took place, a cryptographic method that offers perfect
secrecy, which later came to be known as the one-time pad, had already been
invented in the nineteenth century. It is usually attributed to Gilbert Vernam,
who was granted a US Patent in 1919 [16]. However, according to prime historian
David Kahn, Vernam had not realized the crucial importance of never using the
same key twice until Joseph Mauborgne pointed it out [1, p. 398]. But it was
later discovered that the one-time pad had been invented 35 years earlier by
Frank Miller, a Sacramento banker [17]. Its perfect security was demonstrated
subsequently by Shannon [14]. In any case, the one-time pad requires a secret key
as long as the message to be transmitted, which makes it of limited practical use.
It was nevertheless used in real life, for instance on the red telephone between
John Kennedy and Nikita Khrushchev during the Cold War [18], as well as
between Fidel Castro and Che Guevara after the latter had left Cuba for Bolivia
[19]. But in our current information-driven society, we need a process by which
any two citizens can enjoy confidential communication. For this, a method to
establish a shared secret key is required. Could this be achieved through an
authentic public channel, which offers no protection against eavesdropping?

6 G. Brassard

The first breakthrough in the academic world came to Ralph Merkle in 1974,
who designed a scheme capable of providing a quadratic advantage to codemak-
ers over codebreakers. Merkle’s scheme is secure under the sole assumption (still
unproven to this day) that some problems can only be solved by exhaustive
search over their space of potential solutions. At the time, Merkle was a grad-
uate student at the University of California in Berkeley, enrolled in a computer
security class. Unable to make his ideas understood by his professor, Merkle
“dropped the course, but kept working on the idea” [20]. After several years,
he prevailed and his landmark paper was finally published [21]. However, Whit-
field Diffie, a graduate student “next door”, at Stanford University, had similar
ideas independently, albeit shortly after Merkle. But Diffie was lucky enough
to have an advisor, Martin Hellman, who understood the genius of his student.
Together, they made the concepts of public-key cryptography and digital signa-
ture immensely popular [22], two years before Merkle’s publication.

A few years later, Ronald Rivest, Adi Shamir and Leonard Adleman, inspired
by the Diffie-Hellman breakthrough, proposed an implementation of public-key
cryptography and digital signatures that became known to all as the RSA cryp-
tosystem [23]. And thus, history was made. The fact that the RSA cryptosystem
had in fact been invented in 1973 by Clifford Cocks [24], at the British secret
services known as GCHQ, is of little relevance to the practical importance of
the discovery on what was to become the Internet. As long as the factoriza-
tion of large numbers remained infeasible, the codemakers had finally won the
battle, proving Poe wrong. Soon, electronic safety all over the Internet revolved
around this RSA cryptosystem, as well as the earlier invention known as the
Diffie-Hellman key establishment protocol [22]. At about the same time, Robert
McEliece invented another approach, based on error-correction codes [25], which
did not come into practical use because it required much longer keys than either
the RSA or the Diffie-Hellman solution. Later, the same apparent level of security
was obtained with significantly shorter keys by bringing in the number-theoretic
notion of elliptic curves [26,27]. And the Internet was a happy place. Or so it
seemed.

End of story?

3 The Unfair but Realistic Case of Classical Codemakers
Against Quantum Codebreakers

End of story? Not quite! In the early 1980s, Richard Feynman [28,29] and,
independently, David Deutsch [30], invented the theoretic notion of a quantum
computer. This hypothetical device would use the counterintuitive features of
quantum mechanics for computational purposes. At first, it was not clear that
quantum computers, even if they could be built, could speed up calculations.

And then, in 1994, Peter Shor [31], and independently Alexis Kitaev [32],
discovered that quantum computers have the power to factor large numbers
and extract discrete logarithms efficiently, bringing to their knees not only the
RSA cryptosystem but also the Diffie-Hellman key establishment scheme, even

Cryptography in a Quantum World 7

if based on elliptic curves. As a society, we are extremely fortunate that Shor’s
and Kitaev’s discoveries were made before a quantum computer had already been
built for some other purposes (such as computational physics and chemistry).
Quite literally, this saved civilization from catastrophic collapse. But now that
we have known about the looming threat for over two decades, surely we are
active at deploying solutions that have at least a fighting chance to withstand
the onslaught of a quantum computer.

Well, not really. :-(
The general apathy towards the quantum threat to worldwide security on

the Internet and beyond is quite simply appalling. Why react today (or more
appropriately twenty years ago) when we can quietly wait for disaster? After
all, no serious business model looks more than five years in the future, and
it would be expensive to change the current cryptographic infrastructure. And
indeed, a full-scale quantum computer is unlikely to materialize in the next five
years. Except perhaps in an ultra-secret basement somewhere, be it governmen-
tal of industrial. . . But when (not “if ”) this happens, all past communications
will become insecure to whomever was wise enough to have stored the Internet
traffic that was until then undecipherable. The fact that current cryptographic
techniques are susceptible to being broken retroactively is their main concep-
tual weakness. Any secret entrusted to them today, even if it is indeed currently
secure (something that we do not know how to prove), will be exposed as soon
as a sufficiently large quantum computer becomes operational.

So, was Poe right after all? Are codebreakers poised to regain their upper
hand? Not necessarily! Alternative encryption methods have been designed,
which are not (yet) known to be vulnerable to a quantum attack, ironically
including the historical McEliece approach [25], which had been scorned upon
its invention because of the length of its keys. More recent approaches based
on hash functions, short vectors in lattices and multivariate polynomials are
being vigorously investigated. The emerging field of post-quantum cryptogra-
phy is devoted to the study of (hopefully) quantum-resistant encryption [33,34].
Unfortunately, we cannot prove that any of these alternatives is secure, but at
least they are not already known to be compromised by the advent of a quan-
tum computer. Well, in the case of lattice-based cryptography [35], this is not so
clear anymore [36–38]. But one thing is sure: we cannot hope to be protected by
these techniques if we don’t use them! On the other hand, some of these more
recent schemes could in fact be less secure than RSA against a classical attack,
simply because they have not yet stood the test of time. Therefore, a transition
to these new techniques should be carried out with the utmost care. But it must
be carried out.

Michele Mosca likes to tell the following tale. Let x denote the length of time
(in years) that you want your secrets to remain secret. Let y denote the time
it will take to re-tool the current infrastructure with quantum-safe encryption
(assuming that such a thing actually exists). Let z denote the time it will take
before a full-scale quantum computer is operational. Mosca’s “theorem” tells us
that if x + y > z, then it is time to panic! Sadly, it may even be that y > z,

8 G. Brassard

meaning that it’s already too late to avoid a complete meltdown of the Internet.
So, what are we waiting for?

It turns out that the American National Security Agency (NSA) is taking
this threat very seriously indeed. This last August (2015), they issued a directive
called “Cryptography Today” in which they announced that they “will initiate
a transition to quantum resistant algorithms in the not too distant future” [39].
Most significantly, they wrote: “For those partners and vendors that have not
yet made the transition to Suite B elliptic curve algorithms, we recommend not
making a significant expenditure to do so at this point but instead to prepare for
the upcoming quantum resistant algorithm transition”. Said plainly, even though
elliptic-curve cryptography is believed to be more secure than first-generation
public key solutions against classical cryptanalysis, it is no longer considered
to offer sufficient long-term security under the looming threat of a quantum
computer to be worth implementing at this point. It’s nice to see that someone
is paying attention. For once, I’m glad that the NSA is listening! :-)

From a theoretical perspective, despite what I wrote above, it is possible
to have provably quantum-safe encryption under the so-called random oracle
model, which is essentially the model that was used by Merkle in his original
1974 invention of public key establishment [20]. In a classical world, this model
roughly corresponds to the assumption that there are problems that can only
be solved by exhaustive search over their space of potential solutions. In the
quantum setting, exhaustive search can be replaced by a celebrated algorithm
due to Lov Grover, which offers a quadratic speedup [40], but no more [41].

Recall that Merkle’s original idea brought a quadratic advantage to codemak-
ers over codebreakers. But since Grover’s algorithm offers a quadratic speedup
to codebreakers, this completely offsets the codemakers’ advantage. As a result,
codebreakers can find the key established by codemakers in the same time it took
to establish it! [42] The obvious reaction is to let the codemakers use quantum
powers as well, but please remember that in this section, we consider quantum
codebreakers but only classical codemakers. Nevertheless, I have discovered with
PeterHøyer,KassemKalach,MarcKaplan, Sophie Laplante andLouis Salvail that
Merkle’s idea can be modified in a way that if the codemakers are willing to expend
an effort proportional to some parameterN , they can obtain a shared key that can-
not be discovered by a quantum codebreaker who is not willing to expend an effort
proportional to N7/6 [43]. As I said, this is purely theoretical because it is not pos-
sible to argue that such an advantage offers practical security. Indeed, N would
have to be astronomical before a key that is obtained in, say, one second would
require more than one year of codebreaking work. In contrast, Merkle’s quadratic
advantage is significant for reasonably small values of N . Nevertheless, our work
should be seen as a proof of principle. Now that we know that some security is pos-
sible in the unfair case of classical codemakers against quantum codebreakers, it
is worth trying to do better (or prove that it is not possible).

Coming back to the question asked at the end of the Abstract, quantum
mechanics appears to be a curse for the protection of privacy in this unfair context,
which is hardly surprising since only codebreakers were assumed to use it!

Cryptography in a Quantum World 9

4 Allowing Codemakers to Use Quantum Computation

The previous section considered a realistic scenario in which simple citizens want
to protect their information against a much more powerful adversary. Indeed, it is
likely that quantum computers will initially be available only to large governmen-
tal, industrial and criminal organizations. Furthermore, it is safe cryptographic
practice to assume that your adversary is computationally more powerful (and
possibly also more clever) than you are.

Nevertheless, in the more distant future, one can imagine a world in which
quantum computers are as ubiquitous as classical computers are today. When
this happens, codemakers will no longer be limited to classical computing. Can
this restore the balance? Or even better, could the availability of quantum com-
puters turn out to be to the advantage of codemakers, just as had been the
availability of ever increasing classical computational power since the inception of
public-key cryptography in the mid-1970s? Unfortunately, I am not aware of any
encryption technique that would benefit from quantum computation sufficiently
to offset the benefits that quantum computation would bestow on codebreakers.

For instance, it is easy to partially repair Merkle’s approach [42] if the code-
makers are also allowed to use Grover’s algorithm, or more precisely a variant
known as BBHT [44]. Having expended an effort proportional to N in order to
obtain a shared key, they can create a puzzle on which classical codebreakers
would have to expend an effort proportional to N3, a clear improvement over
the quadratic advantage of the original classical Merkle approach. However, a
quantum codebreaker would simply use Grover’s algorithm to obtain the key
after an effort proportional to N3/2. This is not a complete break, but this
quantum scheme is not as secure as Merkle’s original would have been against a
classical adversary. So, we see that quantum-mechanical powers have helped the
codebreakers more than the codemakers. Can codemakers use quantum powers
in a more clever manner? Well, we have developed a less obvious Merkle-like
quantum key establishment scheme against which a quantum codebreaker needs
to spend a time proportional to N7/4 [43]. This is still not quite the quadratic
advantage that was possible in an all-classical world, but it is reasonably close
and possibly secure enough to be used in practice.

Nevertheless, quantum mechanics still appears to be a curse for the protection
of privacy even when codemakers are also allowed to make use of it.

5 Allowing Codemakers to Use Quantum Communication

Until now, we had restricted all communication between codemakers to be clas-
sical. It turns out that quantum communication comes with a great advantage
because of the no-cloning theorem [45], which says that the state of elemen-
tary particles cannot be copied even in principle. This is precisely what causes
the demise of the “famous” theorem by Shannon mentioned at the end of the
Introduction. Quantum information transmitted between codemakers cannot be
copied by an eavesdropper without causing a detectable disturbance.

10 G. Brassard

Inspired by an unpublished manuscript written by Steven Wiesner in April
1968, while he was participating in the Columbia University student protests
[46], Charles Bennett and I realized in 1982 that quantum mechanics provides
us with a channel on which passive eavesdropping is impossible. This led us and
Seth Breidbart to a write down what would become the leitmotif of the nascent
field of quantum cryptography.

When elementary quantum systems, such as polarized photons, are used
to transmit digital information, the uncertainty principle gives rise to novel
cryptographic phenomena unachievable with traditional transmission media,
e.g. a communications channel on which it is impossible in principle to
eavesdrop without a high probability of being detected. [47]

Armed with this idea, we devised a cryptographic protocol in which a one-time
pad could be safely reused indefinitely, as long as no eavesdropping is detected.
This secure reuse of a one-time pad is precisely what Shannon had mathemati-
cally demonstrated to be impossible: all security is lost as soon a “one-time” pad
is used twice. Our advantage, of course, comes from the fact that we could detect
eavesdropping and discontinue the use of a pad as soon as it had been compro-
mised (yet providing perfect secrecy even on the last message that was sent),
whereas he had no fundamental way to detect eavesdropping, and therefore he
was forced to play safe.

In more detail, Shannon proved that the one-time pad is unconditionally
secure provided the shared key is perfectly random, completely unknown of the
eavesdropper, and used once only. However, even though no information leaks
concerning the message in case of interception, information would leak concern-
ing the key itself. This is of no consequence as long as the key is never reused. But
if it is, the key-secrecy condition is no longer fulfilled the second time, which is
why the system becomes insecure. It follows that a “one-time” pad can be reused
safely, Shannon’s theorem notwithstanding, provided the previous communica-
tions have not been subject to eavesdropping, and it remains secure the first
time that it is.

Expounding on these ideas, we wrote our paper on “How to re-use a one-time
pad safely” in 1982 and had it published. . . a few months ago, 25 years later!
[47] The reason it took so long to publish is that as soon as it was about to be
rejected from the Fifteenth Annual ACM Symposium on Theory of Computing,
Bennett and I had a much better idea: we realized that it is more practical to
use the quantum channel to establish a shared secret random key, and then use
this key as a classical one-time pad to encode the actual message, rather than
use the channel to transmit the message directly. The main advantage of this
indirect approach is that even if most of the quantum information is lost in the
channel—indeed, optical fibres are not very transparent to single photons over
several kilometres—a random subset of a random key is still a (shorter) random
key. In contrast, a small random subset of a meaningful message is fairly likely
to be mostly random and totally useless.

Thus was born Quantum Key Distribution, which is now called simply QKD.
We presented QKD for the first time at the 1983 IEEE International Symposium

Cryptography in a Quantum World 11

on Information Theory [48], but each paper was allowed only a one-page abstract.
Consequently, our protocol had to wait another year before it could be published
in the Proceedings of a conference held in Bengalūru, India, where I had been
invited to present any paper of my choice [49]. I suspected that the idea of
QKD was likely to be rejected if submitted to a conference with full published
proceedings, which is why I seized the opportunity provided by a blank-cheque
invitation to sneak it at that conference! This is how our original QKD protocol
came to be known as “BB84”, where the Bs stand for the authors, despite the
fact that we had invented and presented it in 1983. Thirty years later, Natural
Computing (Springer) and Theoretical Computer Science (Elsevier) decided to
join forces and publish special BB84 commemorative issues. This is how the
earlier 1982 paper came to be published [47], whereas the original “BB84 paper”
was published for the first time in a journal [50]. For more information on the
early history of quantum cryptography, please read Ref. [51].

It was fairly easy to show that BB84 is secure against the most obvious
attacks that an eavesdropper might attempt [52]. However, it took ten years after
its invention before a complete formal proof of unconditional security, taking into
account any attack possible according to the laws of quantum mechanics, was
obtained [53]. Well, not exactly. This early proof, as well as the few that followed
for the purpose of simplifying it, contained a major oversight. They proved that
the key established by BB84 (and other similar QKD protocols) was perfectly
secret. . . provided it is never used! Indeed, Renato Renner and Robert König
realized ten years later that a clever adversary could keep the eavesdropped
information at the quantum level (unmeasured). Later, when the key is used,
say as one-time pad, the information that it leaks on the key (which would not
be a problem in classical cryptography since the key would not be reused) could
inform the eavesdropper about the appropriate measurement to make in order
to learn more of the key and, therefore something about the message itself [54].
At first, this was only a theoretical worry, but then it was shown that the danger
is real because one could purposely design a QKD scheme that could be proved
secure under the old definition, but that really leaked information if the “secret”
key is used [55]. Fortunately, the adequate (“composable”) definition was given
and BB84 was correctly proven secure a few months later [56].

Et voilà! Quantum cryptography offers an unbreakable method for codemak-
ers to win the battle once and for all against any possible attack available to
codebreakers, short of violating the widely accepted laws of physics. Despite the
discouraging news brought about by the previous sections, in which quantum
mechanics appeared to be a curse for codemakers, in the end it is a blessing for
the protection of privacy.

As my much missed dear friend Asher Peres once said, “The quantum
taketh away and the quantum giveth back”. Indeed, quantum mechanics can be
exploited to break the cryptography that is currently deployed over the world-
wide Internet, via Shor’s algorithm, but quantum mechanics has also provided
us with the ultimately secure solution. (To be historically exact, the quantum
giveth “back” ten years before it taketh away!)

12 G. Brassard

Poe was wrong. End of story!
Oh well. . . Not so fast. Poe was wrong in theory. Now, one has to build

an apparatus that implements QKD as specified by the theoretical protocol.
Exactly? Not possible! Any real implementation will be at best an approximation
of the ideal protocol. The first prototype was built by Bennett and me, with the
help of three students (two of whom have become highly respected researchers
in the field) as early as 1989, even though the journal paper was published a few
years later [52,57]. This prototype was not intended to be more than a proof
of principle and some of its parts made such loud noises that we could literally
hear the bits fly by. . . and zeroes did not make the same noise as ones. So, this
first implementation was secure provided the eavesdropper is deaf!

Afterwards, serious experimental physicists entered the game and ever
increasingly sophisticated devices have been built, capable of establishing secret
keys over longer and longer distances. This business became so serious that
companies sprung up to market QKD equipment, such as ID Quantique [58]
in Switzerland. China has recently announced that it has almost completed the
installation of a quantum communications network stretching two thousand kilo-
metres from Beijing to Shanghai [59]. Several countries have plans to move the
quantum highway to space, so that distances will no longer be an issue.

In the mean time, a new breed of (typically friendly) pirates has sprung up:
the Quantum Hackers. In 2009, a team lead by Vadim Makarov completed a
“full-field implementation of a complete attack on a running QKD connection;
an installed eavesdropper obtained the entire ‘secret’ key, while none of the
parameters monitored by the legitimate parties indicated a security breach” [60].
Of course, this was not an attack against BB84 or any other provably secure QKD
protocol, which would have been an attack against quantum mechanics itself:
this was an attack against one particular imperfect implementation of a perfect
idea. The specific flaw was eradicated. . . and Makarov found another weakness!

And so, the game of cat and mouse between codemakers and codebreakers
continues. Only the battlefield has shifted from the realm of mathematics and
computer science to the realm of physics and engineering. Nevertheless, even
an imperfect implementation of QKD has a significant advantage over classical
systems: it must be attacked while the key establishment process is taking place.
There is nothing to store for subsequent codebreaking when new technology or
new algorithms become available. If the technology is available today for the
implementation of some imperfect version of QKD but not yet for breaking it,
everlasting security is achievable. Similarly, I have not mentioned the fact that
the deployment of QKD requires the availability of an authenticated classical
channel between the codemakers to avoid a person-in-the-middle attack, much as
was the case for Merkle’s classical approach in 1974. However, if the codemakers
can establish short-lived secure authentication keys by any method, those keys
can give rise to everlasting security through the use of QKD, again an advantage
that has no classical counterpart [61].

Nevertheless, it is legitimate to wonder if there is any hope of one day building
an implementation of QKD so close to the ideal protocol that it will effectively be

Cryptography in a Quantum World 13

secure against all possible attacks, regardless of the codebreaker’s technology and
computing time? It is tempting to say that this would be Mission: Impossible.
Surely, an army of Makarovs will spring up with increasingly clever ideas to
defeat increasingly sophisticated (yet imperfect) implementations of QKD. Said
otherwise, surely Poe was right in the end.

Well. . . Maybe not! A new approach to QKD has sprung up, based on a
brilliant idea put forward by Artur Ekert as early as 1991 [62]. Instead of basing
the security of QKD on the impossibility of cloning quantum information—more
fundamentally the impossibility of obtaining classical information on a quantum
system without disturbing it [63]—Ekert’s idea was to base the security of QKD
on violations of Bell inequalities [64] in entangled nonlocal quantum systems [65].
Even though Ekert’s original 1991 QKD protocol cannot give rise to an apparatus
that would be more secure than one based on BB84 [63], his fundamentally
revolutionary idea opened the door to other theoretical QKD protocols that have
the potential to be secure even if implemented imperfectly. The security of those
so-called “device-independent QKD protocols” would depend only on the belief
that information cannot travel faster than light, that codemakers are capable
of choosing their own independent randomness, and of course that they live in
secure private spaces (since there is no need for codebreakers if the adversary is
capable to physically eavesdrop over the codemakers’ shoulders!). In the extreme
case, highly theoretical device-independent QKD protocols have been designed
whose security does not even depend on the validity of quantum mechanics itself!
A recent survey of this approach is found in Ref. [66].

The catch is that the implementation of fully device-independent QKD proto-
cols represents formidable technological challenges. It is not clear that we shall
ever reach the required sophistication to turn this dream into reality. Never-
theless, a first essential step towards this goal has been achieved very recently
by Ronald Hanson and collaborators in the Netherlands when they performed a
long-awaited experiment in which they closed both the locality and the detection
loopholes in experimental violations of Bell inequalities [67,68].

Shall we ever be able to build such a device? If so, the codemakers will have
the final laugh. But what if not?

Was Poe right in the end? The jury is still out!

Acknowledgments. I am grateful to all those with whom I have had fruitful dis-
cussions on these issues in the past 36 years, starting with my lifelong collaborators
Charles Bennett and Claude Crépeau. I thank Michele Mosca for allowing me to quote
his “theorem”. I am also grateful to Rūsiņš Freivalds for his invitation to present this
paper to this 42nd International Conference on Current Trends in Theory and Prac-
tice of Computer Science (SOFSEM) and for his involvement in my 1998 election as
Foreign Member of the Latvian Academy of Sciences. This work was supported in part
by Canada’s Natural Sciences and Engineering Research Council of Canada (Nserc),
the Institut transdisciplinaire d’informatique quantique (Intriq), the Canada Research
Chair program and the Canadian Institute for Advanced Research (Cifar).

14 G. Brassard

References

1. Kahn, D.: The Codebreakers: the Comprehensive History of Secret Communication
from Ancient Times to the Internet, 2nd revised edn. Scribner, New York (1996)

2. Singh, S.: The Code Book: the Science of Secrecy from Ancient Egypt to Quantum
Cryptography. Anchor Books, New York (2000)

3. http://tumblr.radarq.net/post/16344039232/big-brother-is-watching-you-in-the-
plaza-de-george. Accessed 8 October 2015

4. Hodges, A.: Alan Turing: the Enigma. Random House, London (2012)
5. Rejewski, M.: How Polish mathematicians broke the Enigma cipher. Ann. Hist.

Comput. 3(3), 213–234 (1981)
6. Tyldum, M., Moore, G.: The imitation game (2014)
7. https://en.wikipedia.org/wiki/W. T. Tutte. Accessed 8 October 2015
8. Tutte, W.T.: FISH and I. http://www.usna.edu/Users/math/wdj/ files/

documents/papers/cryptoday/tutte fish.pdf. Transcript of a lecture given at
the University of Waterloo, 19 June 1998

9. QCrypt2015. http://2015.qcrypt.net. Accessed 8 October 2015
10. Poe, E.A.: A few words on secret writing. Graham’s Lady’s Gentleman’s Mag.

XIX(1), 33–38 (1841)
11. Poe, E.A.: The Gold-Bug. Philadelphia Dollar Newspaper, Philadelphia (1843)
12. Rosenheim, S.J.: The Cryptographic Imagination: Secret Writing from Edgar Poe

to the Internet. Johns Hopkins University Press, Baltimore (1997)
13. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),

379–423 (1948)
14. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4),

656–715 (1949)
15. Colossus Computer. https://en.wikipedia.org/wiki/Colossus computer. Accessed 8

October 2015
16. Vernam, G.: Secret signaling system, U.S. Patent 1,310,719 (1919)
17. Bellovin, S.M.: Frank Miller: inventor of the one-time pad. Cryptologia 35(3), 203–

222 (2011)
18. Moscow-Washington Hotline. https://en.wikipedia.org/wiki/Moscow-Washington

hotline. Accessed 8 October 2015
19. James, D.: Ché Guevara: a Biography. Rowman & Littlefield, Lanham (1970)
20. Merkle, R.C.: C.S. 244 project proposal. http://www.merkle.com/1974 (1974).

Accessed 8 October 2015
21. Merkle, R.C.: Secure communications over insecure channels. Commun. ACM

21(4), 294–299 (1978)
22. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-

ory 22(6), 644–654 (1976)
23. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures

and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
24. Wayner, P.: British document outlines early encryption discovery. http://www.

nytimes.com/library/cyber/week/122497encrypt.html (1997). Accessed 8 October
2015

25. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN
Prog. Rep. 42(44), 114–116 (1978)

26. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
27. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)

CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

http://tumblr.radarq.net/post/16344039232/big-brother-is-watching-you-in-the-plaza-de-george
http://tumblr.radarq.net/post/16344039232/big-brother-is-watching-you-in-the-plaza-de-george
https://en.wikipedia.org/wiki/W._T._Tutte
http://www.usna.edu/Users/math/wdj/_files/documents/papers/cryptoday/tutte_fish.pdf
http://www.usna.edu/Users/math/wdj/_files/documents/papers/cryptoday/tutte_fish.pdf
http://2015.qcrypt.net
https://en.wikipedia.org/wiki/Colossus_computer
https://en.wikipedia.org/wiki/Moscow-Washington_hotline
https://en.wikipedia.org/wiki/Moscow-Washington_hotline
http://www.merkle.com/1974
http://www.nytimes.com/library/cyber/week/122497encrypt.html
http://www.nytimes.com/library/cyber/week/122497encrypt.html

Cryptography in a Quantum World 15

28. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7),
467–488 (1982)

29. Feynman, R.P.: Quantum mechanical computers. Opt. News 11(2), 11–20 (1985)
30. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quan-

tum computer. Proc. R. Soc. London A 400, 97–117 (1985)
31. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)
32. Kitaev, A.Y.: Quantum measurements and the Abelian stabilizer problem. arXiv

preprint quant-ph/9511026 (1995)
33. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography.

Springer Science & Business Media, Berlin (2009)
34. Bernstein, D.J., Lange, T.: Post-quantum cryptography. http://pqcrypto.org/.

Accessed 8 October 2015
35. Micciancio, D., Regev, O.: Lattice-based cryptography, pp. 147–191. In: [33] (2009)
36. Wolchover, N.: A tricky path to quantum-safe encryption. Quanta Magazine.

https://www.quantamagazine.org/20150908-quantum-safe-encryption/. Accessed
8 October 2015

37. Campbell, P., Groves, M., Shepherd, D.: Soliloquy: a cautionary tale. https://
docbox.etsi.org/Workshop/2014/201410 CRYPTO/S07 Systems and Attacks/
S07 Groves Annex.pdf. Accessed 8 October 2015

38. Biasse, J.F., Song, F.: A note on the quantum attacks against schemes relying
on the hardness of finding a short generator of an ideal in Q(ζpn). http://cacr.
uwaterloo.ca/techreports/2015/cacr2015-12.pdf. Accessed 8 October 2015

39. National Security Agency: Cryptography Today. https://www.nsa.gov/ia/
programs/suiteb cryptography/. Accessed 8 October 2015

40. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack.
Phys. Rev. Lett. 79(2), 325–328 (1997)

41. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses
of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

42. Brassard, G., Salvail, L.: Quantum Merkle puzzles. In: Second International Con-
ference on Quantum, Nano and Micro Technologies, pp. 76–79 (2008)

43. Brassard, G., Høyer, P., Kalach, K., Kaplan, M., Laplante, S., Salvail, L.: Merkle
puzzles in a quantum world. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 391–410. Springer, Heidelberg (2011)

44. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschr. Phys. 46(4&5), 493–505 (1998)

45. Wootters, W.K., Żurek, W.H.: A single quantum cannot be cloned. Nature
299(5886), 802–803 (1982)

46. Wiesner, S.: Conjugate coding. ACM Sigact News 15(1), 78–88 (1983). Original
manuscript written in 1968

47. Bennett, C.H., Brassard, G., Breidbart, S.: Quantum cryptography II: how to re-
use a one-time pad safely even if P=NP. Nat. Comput. 13(4), 453–458 (2014).
Original manuscript written in 1982

48. Bennett, C.H., Brassard, G.: Quantum cryptography and its application to prov-
ably secure key expansion, public-key distribution, and coin-tossing. In: Proceed-
ings of IEEE International Symposium on Information Theory, p. 91, September
1983

49. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and
coin tossing. In: Proceedings of International Conference on Computers, Systems
and Signal Processing, pp. 175–179, December 1984

http://pqcrypto.org/
https://www.quantamagazine.org/20150908-quantum-safe-encryption/
https://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
https://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
https://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
http://cacr.uwaterloo.ca/techreports/2015/cacr2015-12.pdf
http://cacr.uwaterloo.ca/techreports/2015/cacr2015-12.pdf
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/

16 G. Brassard

50. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and
coin tossing. Theor. Comput. Sci. 560(Part 1), 7–11 (2014)

51. Brassard, G.: Brief history of quantum cryptography: a personal perspec-
tive. In: Proceedings of IEEE Information Theory Workshop on Theory
and Practice in Information Theoretic Security, pp. 19–23, October 2005.
arxiv.org/abs/quant-ph/0604072

52. Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental
quantum cryptography. J. Cryptology 5(1), 3–28 (1992)

53. Mayers, D.: On the security of the quantum oblivious transfer and key distribution
protocols. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 124–135.
Springer, Heidelberg (1995)

54. Renner, R., König, R.: Universally composable privacy amplification against quan-
tum adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–425.
Springer, Heidelberg (2005)

55. König, R., Renner, R., Bariska, A., Maurer, U.: Small accessible quantum infor-
mation does not imply security. Phys. Rev. Lett. 98(14), 140502 (2007)

56. Renner, R., Gisin, N., Kraus, B.: Information-theoretic security proof for quantum-
key-distribution protocols. Phys. Rev. A 72(1), 012332 (2005)

57. Bennett, C.H., Brassard, G., Ekert, A.K.: Quantum cryptography. Sci. Am. 267(4),
50–57 (1992)

58. ID Quantique. http://www.idquantique.com
59. Fadilpašić, S.: China’s quantum communications network almost ready.

http://www.itproportal.com/2015/08/31/chinas-quantum-communications-
network-almost-ready/. Accessed 9 October 2015

60. Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., Makarov, V.:
Full-field implementation of a perfect eavesdropper on a quantum cryptography
system. Nat. Commun. 2, 349 (2011)

61. Unruh, D.: Everlasting multi-party computation. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 380–397. Springer, Heidelberg (2013)

62. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett.
67(6), 661–663 (1991)

63. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s
theorem. Phys. Rev. Lett. 68(5), 557–559 (1992)

64. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1(3), 195–200 (1964)
65. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of

physical reality be considered complete? Phys. Rev. 47(10), 777–780 (1935)
66. Ekert, A., Renner, R.: The ultimate physical limits of privacy. Nature 507(7493),

443–447 (2014)
67. Hensen, B., Bernien, H., Dréau, A.E., Reiserer, A., Kalb, N., Blok, M.S., Ruiten-

berg, J., Vermeulen, R.F.L., Schouten, R.N., Abellán, C., Amaya, W., Pruneri, V.,
Mitchell, M.W., Markham, M., Twitchen, D.J., Elkouss, D., Wehner, S., Taminiau,
T.H., Hanson, R.: Loophole-free Bell inequality violation using electron spins sep-
arated by 1.3 kilometres. Nature 526(7575), 682–686 (2015)

68. Johnston, H.: Physicists claim ‘loophole-free’ Bell-violation experiment.
Physics World (2015). http://physicsworld.com/cws/article/news/2015/sep/
02/physicists-claim-loophole-free-bell-violation-experiment

http://arxiv.org/abs/quant-ph/0604072
http://www.idquantique.com
http://www.itproportal.com/2015/08/31/chinas-quantum-communications-network-almost-ready/
http://www.itproportal.com/2015/08/31/chinas-quantum-communications-network-almost-ready/
http://physicsworld.com/cws/article/news/2015/sep/02/physicists-claim-loophole-free-bell-violation-experiment
http://physicsworld.com/cws/article/news/2015/sep/02/physicists-claim-loophole-free-bell-violation-experiment

Relating Sublinear Space Computability Among
Graph Connectivity and Related Problems

Tatsuya Imai1 and Osamu Watanabe2(B)

1 Heroz, Inc., Tokyo, Japan
2 Department of Mathematical and Computer Science,
Tokyo Institute of Technology, Tokyo 152-8552, Japan

watanabe@is.titech.ac.jp

Abstract. We investigate sublinear-space computability relation among
the directed graph vertex connectivity problem and its related prob-
lems, where by “sublinear-space computability” we mean in this paper
O(n1−ε)-space and polynomial-time computability w.r.t. the number n of
vertices. We demonstrate algorithmic techniques to relate the sublinear-
space computability of directed graph connectivity and undirected graph
length bounded connectivity.

1 Introduction and Preliminaries

Space complexity is one of the important complexity measures. In general algo-
rithms with small complexity are important, but recently, due to the increase
of data size, we face demands for sublinear-space algorithms in various appli-
cations, that is, demands for algorithms using much smaller working memory
than input data size. Sublinear-space computability is also important from a
theoretical view point for understanding the nature of computation. For exam-
ple, the famous L = NL question is about the O(log n)-space computability of
the following directed graph connectivity problem. (Although we formulate in
this paper connectivity problems as a problem of asking the connectivity of a
given pair of vertices, the space complexity is the same even if we consider the
connectivity for all pairs of vertices.)

stConn (Directed Graph Connectivity)
input: Directed graph G = (V,E) and vertices s, t ∈ V .
task: Determine whether there exists a path from s to t.
size parameter: The number of vertices, denoted by n.

In order to understand the O(log n)-space (in)computability of stConn, dif-
ferent versions of this connectivity problem have been investigated, and various
important results have been obtained. For example, the breakthrough result of
Reingold [7] shows that the connectivity is O(log n)-space decidable for undi-
rected graphs. On the other hand, not so much has been studied for a bit more
relaxed o(n)-space computability. In this paper, we consider one of such o(n)-space
bounds, that is, O(n1−ε)-space bound defined by “saving” parameter ε > 0.
c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 17–28, 2016.
DOI: 10.1007/978-3-662-49192-8 2

18 T. Imai and O. Watanabe

The stConn problem may not be solvable in O(log n)-space, but it may still
be solvable in o(n)-space and and polynomial-time. In fact, Barnes et al. [3] gave
an O(n/2

√
log n)-space and polynomial-time algorithm. But we aim for a stronger

o(n)-space bound, that is, O(n1−ε)-space computability as Widgeson asked in
[8]. Here we also require1 the polynomial-time computability, which is crucial
from both theoretical and practical view points. In fact, we have an O((log n)2)-
space (and O(nlog n)-time) algorithm for stConn from Savitch’s theorem. We
do not want to go beyond the polynomial-time bound for reducing working
memory. Thus, in this paper we consider both polynomial-time and O(n1−ε)-
space computability, which we will call sublinear-space computability throughout
this paper.

Recently, sublinear-space computability has been shown for some graph
classes [1,2,4,6]. For example, for the directed planar graph connectivity prob-
lem, we have an O(

√
n)-word-space and polynomial-time algorithm [2]. Unfortu-

nately, however, an essential gap seems to exist to extend it to the general case.
In this paper we would like to identify a requirement/restriction that makes the
problem difficult. Certainly, directedness is a key for the hardness because the
connectivity is decidable in O(log n)-space for undirected graphs. As an alter-
native to directedness, we consider “bounded length” requirement; that is, we
consider the problem that asks, for a given b, whether there is a path from s to
t consisting of at most b edges, in other words, s is connected to t by a path
of “length” at most b. Let us use UstConnlb to denote this version of undi-
rected graph connectivity problem. It has been known that stConn is O(log n)-
reducible to UstConnlb; that is, the difficulty of solving stConn in O(log n)-space
can be transformed to UstConnlb, or more specifically, we have stConn �∈ L ⇒
UstConnlb �∈ L. We ask in this paper whether this type of relation holds for their
sublinear-space computability.

As a main result, we show a way to relate the sublinear-space computability
of UstConnlb to that of stConn with almost same saving. This can be regarded as
an sublinear-space approximately preserving reduction. We also explain the idea
of a similar sublinear-space approximately preserving reduction. Therefore, we
can conclude that directedness and length bound are computationally equivalent
requirements also in the sublinear-space computability context. While we leave
it open to extend this technique to other NL problems, we show similar relation
holds for another graph connectivity problem and its length bounded version,
which we hope to give us a hint to obtain a more general technique relating
sublinear-space computability.

Preliminaries. We use standard notions and notation in graph theory and com-
putational complexity theory. In this paper we consider both directed and undi-
rected graphs, but we may assume that a graph is directed unless it is specified
as undirected. A directed edge is denoted by an order pair of vertices, e.g., (u, v),

1 Any O(log n)-space algorithm is (modified to) a polynomial-time algorithm; thus, it
is not necessary to require the polynomial-time computability when discussing the
log-space computability.

Relating Sublinear Space Computability 19

whereas an undirected edge is denoted by a set of vertices, e.g., {u, v}. In the
directed case, by a “path” we mean the sequence of directed edges having one
direction from its source vertex to destination vertex. For any path, its length
is the number of edges on the path. For any vertices u and v, a shortest path
from u to v is a path from u to v with the smallest length, and by leng(u, v) we
denote the length of the shortest path from u to v.

We basically follow the standard machine based framework for discussing
time and space complexity. We consider that input data is given separately in a
read-only memory area, and space complexity is the amount of working memory
used for computation. Precisely speaking, we should measure the number of
bits; but in our context we may ignore a O(log n) factor and use the number
of working variables to measure space complexity. Throughout this paper we
use n denote the number of vertices of a given graph, which is regarded as the
main size parameter for all problems considered in this paper. We do not use
the number of edges as a size parameter. This is because (i) the number of edges
does not seem to be so relevant for discussing polynomial-time computability
and space complexity, and (ii) we indeed have a polynomial-time and O(n)-size
algorithms for various connectivity problems.

2 Length Bounded Undirected Graph Connectivity

As explained in Introduction, motivated by the O(log n)-space computability of
the undirected connectivity problem, we consider its length bounded version.
That is, the following problem. (In this paper we use [k] to denote {0, 1, . . . , k}
instead of {1, . . . , k}.)

UstConnlb

input: Undirected graph G = (V,E), s, t ∈ V , and integer b ∈ [n − 1].
task: Determine whether there exists a path between s and t of length ≤ b.

Nothing is known for the sublinear-space computability of this problem. Here
we assume the following sublinear-space computability of this problem. That is,
we assume that ε saving holds for this problem. We discuss whether a similar
saving can be implied from this assumption for stConn.

Assumption 1. There is an algorithm Algo UstConnlb that solves UstConnlb

in polynomial-time and O(n1−ε)-space.

It has been well known that UstConnlb is also NL-complete problem. In
particular, there is a standard log-space many-one reduction from stConn to
UstConnlb, and any O(log n)-space algorithm solving UstConnlb can be used to
give an O(log n)-space algorithm for stConn. Let us recall this reduction first.

Consider any instance (G, s, t) of stConn, where G = (V,E) is a directed
graph and s and t are vertices in V . The reduction creates a “layered” undirected
graph nG = (nV, nE) that is defined by

20 T. Imai and O. Watanabe

nV =
{

(i, v) | i ∈ [n − 1] and v ∈ V
}
, and

nE =
{ {(i, u), (i + 1, v)} | i ∈ [n − 2] and (u, v) ∈ E

}

∪ { {(i, u), (i + 1, u)} | i ∈ [n − 2] and u ∈ V
}
.

Then it is easy to see the following property holds. Thus, a mapping (G, s, t) to
(nG, (0, s), (n − 1, t), n − 1) is a reduction from stConn to UstConnlb.

Claim. For any s, t ∈ V , there is a path from s to t in G if and only if there is
a path from (0, s) to (n − 1, t) in nG of length n − 1.

Let Algo red denote the algorithm solving stConn by using this reduction
method and Algo UstConnlb. Note that the instance given to Algo UstConnlb

has n2 vertices. Thus, we have the following complexity bounds.

Lemma 1. Algo red solves stConn in polynomial-time and O((n2)1−ε)-space.

Note that O(n2(1−ε)) = O(n1−(2ε−1)); this space bound is still sublinear if
ε > 0.5. But clearly, the saving got reduced considerably due to the increase of
the graph size, i.e., the number of vertices, by the reduction.

We introduce two algorithmic ideas to suppress this graph size increase of the
standard reduction. For this we consider the length bounded connectivity also
in a directed graph, and we introduce the notion of “bounded length” below.
Consider any directed graph G = (V,E), and let leng(u, v) denote the length
from u to v on this graph. For any u, v ∈ V and for any b ∈ [n − 1], we define
leng bl(u, v, b) by

leng bl(u, v, b) =
{

leng(u, v), if leng(u, v) ≤ b, and
⊥, otherwise.

We call this function bounded length. When necessary, we write leng bl(G: u, v, b)
for explicitly expressing the length is considered on G. Note that deciding
whether leng bl(u, v, b) �= ⊥ is exactly the length bounded connectivity on the
directed graph G. We can generalize the reduction based algorithm Algo red
to determine whether leng bl(u, v, b) �= ⊥ in polynomial-time and O((bn)1−ε)-
space. Let us still use Algo red to denote this algorithm, and let tred(bn) denote
a polynomial time bound for Algo red to determine leng bl(u, v, b) �= ⊥.

Clearly, the graph size increase can be suppressed if stConn can be solved by
using only leng bl(·, ·, b) with small b. One simple idea is to compute bounded
length recursively. For example, consider the following graph G(b) = (V,E(b)),
where

E(b) =
{

(u, v) | leng bl(u, v, b) �= ⊥}
.

Apply Algo red on G(b) to determine leng bl(G(b): u, v, b) �= ⊥. Whenever
Algo red needs to see whether an edge (u, v) exists in G(b), we run Algo red on
G to determine leng bl(G: u, v, b) �= ⊥. Clearly, we have leng bl(G(b): u, v, b) �= ⊥
if and only if leng bl(G: u, v, b2) �= ⊥, and it is easy to see that this depth two
recursion for deciding leng bl(G(b): u, v, b) �= ⊥ can be done in O((tred(bn))2)-
time and O(2(bn)1−ε)-space.

Relating Sublinear Space Computability 21

We can extend this idea and use Algo red on Gr(b) = (V,Er(b)), where Er(b)
is defined inductively by Er(b) =

{
(u, v) | leng bl(Gr−1(b): u, v, b) �= ⊥}

. Let
Algo redr denote the algorithm that determines leng bl(Gr−1(b): u, v, b) �= ⊥
by using Algo red recursively up to depth r. That is, Algo redr determines
leng bl(Gr−1(b): u, v, b) �= ⊥ ⇐⇒ leng bl(G: u, v, br) �= ⊥. Thus, for solving
an stConn instance (G, s, t), it is enough to compute leng bl(Gr−1: s, t, b) with
b = n1/r by Algo redr. This gives the following bounds.

Lemma 2. For any r ≥ 1, Algo redr solves stConn in O((tred(n1+1/r)r)-time
and O(rn(1+1/r)(1−ε))-space.

Remark. Though the parameter r need not be a constant for the algorithm, it
must be a constant in order to bound the running time by polynomial. Then we
can simplify the above space bound by

O
(
n(1+1/r)(1−ε)

)
= O

(
n1−((1+1/r)ε−1/r)

)
.

Hence, the saving of Algo redr is (1 + 1/r)ε − 1/r.

Unfortunately, the above saving is still not so good. In order to have a non-
trivial saving we need to choose r > 1/ε, which makes the time bound very high
(while it is still polynomial). We can overcome this problem by using the idea
in [3]. Barnes et al. [3] gave a weak sublinear-space algorithm. Their algorithm
is a combination of two algorithms B1 and B2; algorithm B2, which is used by
B1 as a subroutine, is in fact computes the bounded length, i.e., leng bl(·, ·, L)
for relatively small L. Here we use the B1 part of their algorithm.

We first show that leng bl(G: u, v, br) is indeed sublinear-space computable
by using decision algorithm Algo redi and its modification. The idea is simple.
Consider any u, v ∈ V . If leng bl(u, v, br) = ⊥, then we are done. (Here and
below by leng bl(·, ·, ·) we mean leng bl(G: ·, ·, ·).) Otherwise, it suffices to test
whether leng bl(u, v, d) �= ⊥ holds for all d ∈ [br − 1]; we have leng bl(u, v, br) =
d with the minimum d such that leng bl(u, v, d) �= ⊥ holds. Note here that
d = a0 + a1b + a2b

2 + · · · + ar−1b
r−1 for some a0, . . . , ar−1 ∈ [b − 1]. Then we

can test whether leng bl(u, v, d) �= ⊥ holds by using a layered graph (rV, rE′)
similar to (rV, rE). Here rE′ is defined as follows: for each i ≥ 0, rE′ has an edge
{(i, u), (i + 1, v)} if and only if leng bl(u, v, aib

i) �= ⊥, which can be tested by
using a slightly modified Algo redi+1. Hence, leng bl(u, v, d) �= ⊥ can be tested
in time O(tred(rn)tred(bn)r) = O(tred(bn)r+1) and in space O((rn)1−ε +(bn)1−ε)
= O((bn)1−ε) (since we may assume that r < b). Therefore, leng bl(u, v, br) is
computable as follows.

Lemma 3. We have an algorithm Algo bl that computes leng bl(G: u, v, br) in
O(brtred(bn)r+1)-time and O((bn)1−ε)-space.

Next we introduce a key tool, namely, a small “separator.” Consider any
instance for stConn, i.e., G = (V,E) and s, t ∈ V , and fix them in the following

22 T. Imai and O. Watanabe

explanation. Let L be an algorithm parameter that is determined later. For any
j ∈ [L − 1], let Vj be a subset of V defined by

Vj =
{

v | leng(s, v)mod L = j
}
.

Family {Vj}j∈[L−1] has several important properties. First, it is a partition
of the set of vertices of V reachable from s; and hence, there should be some j0
such that |Vj0 | ≤ n/L. We use such Vj0 to record the reachability from s, thereby
reducing the space complexity for memorization. Another important property,
though it is trivial, is that each Vj is a separator of all shortest paths of length
≥ j. More specifically, for any j ∈ [L − 1], if leng(s, v) ≥ j, then there should
be some vertex u in Vj that is on one of the shortest paths from s to v and for
which leng(u, v) < L holds; thus, once we have Vj0 , we only need to compute,
for each u ∈ Vj0 , its bounded length to t, i.e., leng bl(u, t, L), to determine the
connectivity from s to t.

These properties justify the following algorithm outline for deciding connec-
tivity from s to t in G: (1) Compute Vj for each j ∈ [L − 1] from j = 0 to
L − 1. If the algorithm finds that |Vj | > n/L, then it stops the computation
of Vj and moves to the computation of Vj+1. On the other hand, move to the
next step as soon as Vj with appropriate size can be computed. (2) Compute
leng bl(u, t, L) for each u ∈ Vj0 . Output “yes” if there is some u ∈ Vj0 such that
leng bl(u, t, L) �= ⊥. Otherwise, output “no.” This is essentially the B1 part of
the algorithm of Barnes et al., and we name the algorithm that solves stConn
following this outline as Algo Betal; note that we assume that the algorithm
Algo bl of Lemma 3 is used here for computing the bounded length.

Now it remains to implement the above step (1). Below we give a procedure
for computing Vj for a given j ∈ [L − 1]; the actual computation of (1) is to use
this procedure to find j0 for which the procedure successfully computes Vj0 . For
this procedure, we can again use the bounded length. In [3] B1 is stated as a
breadth first algorithm, but here for the sake of later explanation, we state it as
a “closest vertex first” algorithm, which can be regarded as a variation of the
Dijkstra’s algorithm. In the following procedure, we use a variable D to denote
the set of vertices in Vj whose length from s has been determined, and for any
v ∈ D, we use d[v] to record this length. For any u ∈ D and v ∈ V \D, we define
a function cost via(u, v) by

cost via(u, v) = d[u] + leng bl(u, v, L).

That is, cost via(u, v) is the length of a path from s to v that has u in Vj . It is
easy to see that u is the vertex in Vj on the path closest to v.

The correctness of the procedure will be explained in the next section for a
more general procedure. Here we analyze the time and space complexity bounds
of Algo Betal. Note that the most time consuming part is the computation
of the bounded length leng bl(·, ·, L), and it is easy to see that the bounded
length is computed at most O(Ln3) times; thus, by using Algo bl of Lemma 3
for computing the bounded length, we can bound the total running time by
O(Ln3L(tred(L1/rn))r+1), which is roughly poly(n)r. On the other hand, we can

Relating Sublinear Space Computability 23

Fig. 1. Procedure for computing Vj in Algo Betal

bound the space complexity of Algo Betal by O(n/L + (L1/rn)1−ε). This space
bound is (approximately) minimized by choosing L to satisfy n/L = (L1/rn)1−ε,
or equivalently, nε = L1+(1−ε)/r. With this choice of L, we can bound the space
complexity by O(nα), where

α = 1 − ε

1 + (1 − ε)/r
= 1 − ε

(
1 − 1 − ε

r + (1 − ε)

)
< 1 − ε

(
1 − 1

r + 1

)
.

Theorem 1. Using the sublinear-space algorithm assumed by Assump-
tion 1, algorithm Algo Betal solves stConn in O((poly(n))r)-time and
O(n1−(1−1/(r+1))ε)-space.

We may regard this result as a reduction from stConn to UstConnlb that
preserve approximate sublinear-space computability, where by “approximate”
we mean that one can get a saving as arbitrarily close to the original saving. Here
let us call intuitively our construction of algorithm Algo Betal as a sublinear-
space approximately preserving reduction without giving any formal definition.
Naturally we may ask whether this sublinear-space approximately preserving
reduction exits also from UstConnlb to stConn. Here again we can use a similar
idea to show such a reduction.

Consider any instance (G, s, t, b) of UstConnlb, where G = (V,E) is an undi-
rected graph, s, t ∈ V , and b ∈ [n − 1]. We consider a layered directed graph
nG = (nV, nE) defined by

24 T. Imai and O. Watanabe

nV =
{

(i, v) | i ∈ [b] and v ∈ V
}
, and

nE =
{

((i, u), (i + 1, v)) | i ∈ [b − 1] and {u, v} ∈ E
}

∪ { {(i, u), (i + 1, u)} | i ∈ [b − 1] and u ∈ V
}
.

Then again it is easy to see that leng bl(s, t, b) �= ⊥ if and only if there is a
directed path from (0, s) to (b, t) in nG. Therefore, using an argument similar
to the above, we can also define a sublinear-space approximately preserving
reduction from UstConnlb to stConn. The detail construction as well as giving
a formal definition to the notion of “sublinear-space approximately preserving
reduction” is left to the interest reader.

3 Another Example: Two Vertex Distance Problem

Although we have close sublinear-space computability relation between stConn
and UstConnlb, it is not so clear whether similar relation holds with the other
NL-problems. While we have not been able to develop a general result, we can
show some example result that would give us a hint for applying our technique
to other problems.

We consider here the problem of computing the “distance” between two ver-
tices in a directed and weighted graph. A weighted graph is a graph whose edge
is given a cost. In this explanation we assume that each cost is a positive inte-
ger; furthermore, in order to avoid introducing another size parameter, we also
assume that each cost can be expressed by poly(log n) bits so that cost compu-
tation can be trivially done in poly(log n)-space. For specifying a cost at each
edge, we use a cost function, a mapping from an edge to its cost. For example, a
weighted directed/undirected graph is given by G = (V,E, c), where c is a map-
ping from E to its cost. Consider any pair of vertices u and v of some weighted
graph. For any path from u to v, its weight is the sum of the cost of edges on the
path. A lightest path from u to v is a path from u to v with the smallest weight,
and the distance from u to v (denoted by dist(s, t)) is the weight of the lightest
path from u to v. We will keep using “length” to mean the number of edges and
“shortest path” to mean a path (connecting a specified pair of vertices) with the
smallest number of edges. In summary we consider the following problem.

stDist (Two Vertex Distance Problem)
input: Directed and weighed graph G = (V,E, c), s, t ∈ V , and d ≥ 0.
task: Determine whether dist(s, t) ≤ d.
Remark. For simplicity we assume in this paper that weights are integers
expressed in poly(log n) bits.

Clearly this problem is in NL. But it is not clear that a similar sublinear-
space (approximately) preserving reduction from this problem to, e.g., stConn.
Yet, we can still consider similar relation to its undirected and length bounded
version. More specifically, consider the following problem.

Relating Sublinear Space Computability 25

UstDistlb
input: Undirected and weighed graph G = (V,E, c), s, t ∈ V , d ≥ 0,

and b ∈ [n − 1].
task: Determine whether dist bl(s, t, b) ≤ d.

Here dist bl(s, t, b) is the length bounded distance from s to t, that is, the weight
of the lightest path from s to t of length ≤ b; we assume that dist bl(s, t, b) = ⊥
if there is no path of length ≤ b from s to t. We use dist bl(s, t, b) also for
directed graphs. Note that even if there is a path from s to t of length ≤ b (i.e.,
dist bl(s, t, b) �= ⊥), we may not have dist bl(s, t, b) = dist(s, t). (Cf. We have
leng bl(s, t, b) = leng(s, t) if leng bl(s, t, b) �= ⊥.)

We again base an assumption that UstDistlb has a polynomial-time and
O(n1−ε)-space algorithm, which we denote as Algo UstDistlb. Using this algo-
rithm, we show a sublinear-space algorithm for stDist with an approximately
same saving. The problems are somewhat complicated compared with stConn
and UstConnlb, which is mainly due to the above mentioned difference between
leng bl and dist bl. Thus, for deriving the sublinear-space computability of stDist
(based on Algo UstDistlb) there are some points where the previous argument
need to be modified appropriately. We explain below such points.

Let us consider one instance for stDist; that is, a directed and weighted
graph G = (V,E, c) and s, t ∈ V . As before, our first step is to develop an
algorithm based on a log-space many-one reduction from stDist to UstDistlb.
More specifically, for any u, v ∈ V and any bound b ≥ 0, we define a layered and
weighted undirected graph bG = (bV, bE, c+) as before, with which we can decide
whether dist bl(G: u, v, b) ≤ d for a given d by using Algo UstDistlb. Then we
can use a binary search to determine the value of dist bl(G: u, v, b). This algo-
rithm is polynomial-time and O((bn)1−ε)-space. The second step is also similar
to the previous argument. We use a recursive way to compute dist bl(u, v, br)
in O(r(bn)1−ε)-space, while the computation time grows to poly(bn)r. Here
again we first define a decision algorithm and uses it to compute the value
of dist bl(u, v, br) by a binary search. Now an interesting point is the last step
where we use the idea of the algorithm of Barnes et al.

We introduce some new notions. Consider any two vertices u, v ∈ V . Note
that a lightest path from u to v may not be unique. A shortest path among such
lightest paths is called a best path. Note that there may be still more than one
best paths, but we do not need to distinguish them in the following discussion.
We introduce a function bpleng that gives the length of a best path; that is,
bpleng(u, v) is the length of a best path from u to v. We also consider its length
bounded version. For any integer b ≥ 0, consider lightest paths from u to v of
length ≤ b; then a length b bounded best path is a shortest one among such
lightest paths, and bpleng bl(u, v, b) is the length of this length bounded best
path. In other words, bpleng bl(u, v, b) is the length of a shortest path with
weight dist bl(u, v, b). In the previous argument, we explained a way to compute
leng(u, v, b), i.e., the length of a shortest path from u to v within length bound
b. Here we can use a similar technique; we only need to modify the algorithm so
that it computes the length of a shortest path within length bound b with weight

26 T. Imai and O. Watanabe

d, for d = dist bl(u, v, b) computed beforehand. In this way, we can compute
bpleng bl(u, v, br) in poly(bn)r-time and O(r(bn)1−ε)-space.

With two functions dist bl and bpleng bl, we now explain how to generalize
the idea of Barnes et al. The key point is to use the length of a best path to
partition V . For a given parameter L, we consider a family {Vj}j∈[L−1], where
for each j ∈ [L − 1], Vj is defined by

Vj =
{
v |bpleng(s, v)mod L = j

}
.

Again {Vj}j∈[L−1] is a partition of all vertices of V connected from s. In
particular, each Vj is a separator of all best paths of length ≥ j. Note again that
there must be some Vj such that |Vj | ≤ n/L. We use one of such Vj ’s, say, Vj0 ,
to record necessary information to search the lightest (in fact, best) path from
s to all vertices in V . The information we need to keep for each v ∈ Vj0 is the
weight (which is in fact distance) and the length of a best path from s to v. It is
easy to see an outline similar to the one explained for Algo Betal works. Here
we only explain the procedure for computing Vj for a given j ∈ [L − 1].

Fig. 2. Procedure for computing Vj for the stDist problem

The outline of the procedure is the same as before. We use a variable D to
denote the set of vertices in Vj whose best path from s has been determined,
and for any v ∈ D, we use d[v] and l[v] to record the weight and length of its
best path. For any u ∈ D and v ∈ V \ D, we define a function cost via(u, v) by

cost via(u, v) = (d[u] + dist bl(u, v, L), l[u] + bpleng bl(u, v, L),).

Relating Sublinear Space Computability 27

That is, “cost” is now a pair of the weight and length of the lightest path from
s to v going through u (in D). Then for comparing a pair of such costs, we use
the lexicographic order; that is, compare weights first (and if they are equal)
compare lengths next. For computing u closest in the procedure, we use this
comparison.

The key point for showing the correctness of this procedure is stated in the
following lemma. Once the lemma is proved, the correctness of the procedure
and the whole algorithm follows easily, which we omit in this paper. The lemma
can be proved by an induction on k, which is also not so difficult and omitted
here.

Lemma 4. Let v1, v2, . . . be the enumeration of elements of Vj under the order
given by our cost comparison. Then for any k ≥ 1, vk is the kth vertex that is
selected as v min and put into D. Furthermore, values d[v min] and l[v min] at
the point v min = vk is put into D are respectively dist(s, vk) and bpleng(s, vk).

Since the other part and the analysis for L is almost the same, we omit the
rest of the argument and state only the result.

Theorem 2. Suppose that there is an algorithm that solves UstDistlb in
polynomial-time and O(n1−ε)-space. Then for any integer r > 0, we have an
algorithm that solves stDist in O((poly(n))r)-time and O(n1−(1−1/(r+1))ε)-space.

Clearly, the sublinear preserving reduction designed for this theorem can be
used as a part of a real algorithm. In fact, as explained in [5], we can mod-
ify the algorithm given in [3] (i.e., the one for B2 explained in the previous
section) to design the one computing both dist bl(·, ·, br) and bpleng bl(·, ·, br)
in polynomial-time and O(n/br + r(b + n/k))-space (ignoring a log n factor) for
relatively small (but not necessarily constant) r, where k is another algorithm
parameter. By using this algorithm and choosing parameters b, k, and r appro-
priately as explained in [3] we can derive the following weakly sublinear-space
algorithm corresponding to the one for stConn of Barnes et al.

Corollary 3. [5] There exits a polynomial-time and O(n/2
√
log n)-space algo-

rithm for stDist.

4 Concluding Remarks

We showed a way to relate the sublinear-space computability of UstConnlb to
that of stConn with almost same saving, which can be regarded as an sublinear-
space approximately preserving reduction. We extend this reduction technique
for relating the sublinear-space computability of stDist and UstDistlb. We then
naturally ask whether similar relation holds for any other NL problems; we
may even need to develop a framework for discussing directedness and length
bound restriction in general. Also it would be interesting if we can give a similar
reduction from, say, stDist to stConn.

In the context of our sublinear-space computability, we do not have to restrict
ourselves to problems in NL. For example, it would be interesting if we can extend
our technique for relating problems in LogCFL, etc.

28 T. Imai and O. Watanabe

Acknowledgements. The authors would like to thank Dr. Kotaro Nakagawa for his
helpful comments on earlier version of this paper. This work is supported in part by
the ELC project (MEXT KAKENHI Grant No. 24106008).

References

1. Asano, T., Doerr, B.: Memory-constrained algorithms for shortest path problem. In:
Proceedings of the 23rd Annual Canadian Conference on Computational Geometry
(CCCG 2011) (2011)

2. Asano, T., Kirkpatrick, D., Nakagawa, K., Watanabe, O.: Õ(
√
n)-space and

polynomial-time algorithm for planar directed graph reachability. In: Csuhaj-Varjú,
E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp.
45–56. Springer, Heidelberg (2014)

3. Barnes, G., Buss, J.F., Ruzzo, W.L., Schieber, B.: A sublinear space, polynomial
time algorithm for directed s-t connectivity. In: Proceedings of Structure in Com-
plexity Theory Conference, pp. 27–33. IEEE Computer Society Press (1992)

4. Chakraborty, D., Pavan, A., Tewari, R., Vinodchandran, V., Yang, L.: New time-
space upper bounds for directed reachability in high-genus and H-minor-free graphs.
In: ECCC TR14-035 (2014)

5. Imai, T.: Polynomial time memory constrained shortest path algorithms for directed
graphs (in Japanese). In Proceedings of 12th Forum for Informatics (FIT 2013),
IEICE Japan, RA-002 (2013)

6. Imai, T., Nakagawa, K., Pavan, A., Vinodchandran, N.V., Watanabe, O.: An

O(n
1
2+ε)-space and polynomial-time algorithm for directed planar reachability. In:

Proceedings of the 28th Conference on Computational Complexity (CCC 2013), pp.
277–286. IEEE (2013)

7. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 1–24 (2008)
8. Wigderson, A.: The complexity of graph connectivity. In: Havel, I.M., Koubek, V.

(eds.) MFCS 1992. LNCS, vol. 629, pp. 112–132. Springer, Heidelberg (1992)

Learning Automatic Families of Languages

Sanjay Jain1(B) and Frank Stephan2

1 School of Computing, National University of Singapore,
Singapore 117417, Singapore
sanjay@comp.nus.edu.sg

2 Department of Mathematics and Department of Computer Science,
National University of Singapore, Singapore 119076, Singapore

fstephan@comp.nus.edu.sg

Abstract. A class of languages is automatic if it is uniformly regular
using some regular index set for the languages. In this survey we report on
work about the learnability in the limit of automatic classes of languages,
with some special emphasis to automatic learners.

1 Introduction

A language is a set of strings over some finite alphabet. Consider the following
model of language learning. A learner receives all elements of the target language,
one elment at a time, repetition allowed, in arbitrary order (this form of infor-
mation provided to the learner is called a text for the language). Note that no
non-elements of the language are provided to the learner. For technical reasons,
we allow a special symbol # as input, which denotes “no datum” (this allows
for a text of empty language as an infinite sequence of #’s). After receiving each
new element the learner outputs its conjecture about what the target language
might be (this is usually expressed in the form of a grammar for the language,
in some hypothesis space). If the sequence of grammars output by the learner
converges to a correct grammar for the target language then the learner is said
to identify the language (from the corresponding text). For learning a language,
the learner is expected to learn it from all texts for the language. Learning of
one language is not useful, as a learner which outputs just a grammar for the
language, whatever the input might be, is similar to a person who predicts earth-
quake everyday, and is right on the day earthquake actually occurs. So what is
more interesting is whether the same learner can learn all languages from a class
of languages. This is essentially the model of learning proposed by Gold [11] and
called TxtEx-learning. In Gold’s original model there is no restriction on the
memory of the learner. Thus, the learner can remember all its past input data
when it comes up with its new hypothesis. In some cases below we will consider
restrictions on the memory of the learner. Thus, we define a learner taking this
into account.

Research for this work is supported in part by NUS grants C252-000-087-001 (S. Jain)
and R146-000-181-112 (S. Jain and F. Stephan).

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 29–40, 2016.
DOI: 10.1007/978-3-662-49192-8 3

30 S. Jain and F. Stephan

Let N denote the set of natural numbers.
A text T is a mapping from N to Σ∗ ∪ {#}. Content of a text T , denoted

content(T) = {T (i) : i ∈ N} − {#}. T [n] denotes the initial sequence
T (0)T (1) . . . T (n − 1) of the text T , of length n.

A finite sequence is an initial segment of a text. SEQ denotes the set of all
finite sequences. For a finite sequence T [n], content(T [n]) = {T (i) : i ∈ N}−{#}.

We use σ�τ to denote the concatenation of two finite sequences σ and τ .
Similarly, σ�T denotes the concatentation of σ and T .

Definition 1 (Based on Gold [11]; see also [5,17]). Suppose Σ is the alpha-
bet set for the languages and L = {Lα : α ∈ I} is a class of languages to be
learnt, where I is an index set. Let H = {Hβ : β ∈ J} be the hypothesis space,
used by the learner, where J is the index set for the hypotheses. We always
assume that H is uniformly r.e.; in some cases below we will put more restric-
tions on the hypothesis space. Let ? be a special symbol not in J which denotes
“no new conjecture at this point”. Suppose Γ is a finite set of alphabet used for
memory by the learner.

(a) A learner is an algorithmic mapping from Γ ∗ ×(Σ∗ ∪{#}) to Γ ∗ ×(J ∪{?}).
A learner has an initial memory mem0 ∈ Γ ∗ and initial conjecture hyp0 ∈
J ∪ {?}.
Intuitively, for a learner M , M(mem, x) = (mem′, hyp), means that based
on old memory mem and current datum x, the new memory of the learner
is mem′ and hyp is its conjecture.

(b) Suppose a learner M with initial memory mem0 and initial hypothesis hyp0
is given. Suppose T is a text for a language L.
(i) Let memT

0 = mem0 and hypT
0 = hyp0.

(ii) For k > 0, let (memT
k , hypT

k) = M(memT
k−1, T (k − 1))

(iii) Define M(T [k]) = (memT
k , hypT

k).
(iv) M on T converges on text T to the hypothesis hyp iff, for all but finitely

many k, hypT
k = hyp.

(c) M TxtEx-learns a language L (using hypothesis space H) if, for all texts T
for L, M on T converges to a hypothesis β such that Hβ = L.

(d) M TxtEx-learns the class L (using hypothesis space H) iff M TxtEx-learns
all the languages in the class L (using hypothesis space H).

(e) TxtEx = {L : some learner M learns L using some automatic family H as
the hypothesis space}.

Intuitively, memT
k and hypT

k in part (b) above denote the memory and conjecture
of the learner M after having seen the data T [k].

We now consider automatic classes of languages. Intuitively, a class of lan-
guages is automatic if the class is uniformly regular. More formally, let Σ be
a finite alphabet, and let @ be a special symbol not in Σ. Given two strings
x = x0x1 . . . xn−1 and y = y0y1 . . . ym−1 over the alphabet Σ, define convolution
of x and y, conv(x, y) as follows. Let r = max({m,n}). For i < n, let x′

i = xi;
for n ≤ i < r, let x′

i = @. For i < m, let y′
i = yi; for m ≤ i < r, let y′

i = @. Now,
convolution of x, y is defined as conv(x, y) = z0z1 . . . zr−1, where zi = (x′

i, y
′
i);

Learning Automatic Families of Languages 31

note that zi is a member of the alphabet Σ ∪ {@} × Σ ∪ {@}. One can extend
the definition of convolution to multiple strings similarly.

A class of languages L is said to be automatic if there is an indexing (Lα)α∈I ,
for some regular index set I such that, L = {Lα : α ∈ I} and {conv(α, x) : x ∈
Lα} is regular [20]. A relation R = {(x1, x2, . . . , xn) : x1, x2, . . . , xn ∈ Σ∗} is
said to be automatic if {conv(x1, x2, . . . , xn) : (x1, x2, . . . , xn) ∈ R} is regular.
Similarly, a function f is said to be automatic if {conv(x, y) : f(x) = y} is
regular.

The following theorem is important and it also enables to derive that the
first-order theory of any given automatic structure is decidable.

Theorem 2 (Blumensath andGrädel [4], Khoussainov andNerode [23]).
Any relation that is first-order definable from existing automatic relations is auto-
matic and there is an algorithm to construct the corresponding automaton from
automata for the relations and functions of the automatic structure and the defin-
ing formula.

Furthermore, one can characterise the automatic functions as functions which
map convoluted tuples to convoluted tuples and which can be computed by a one-
tape Turing machine with the output starting at the same position as originally
the input started and computation time being linear [7]; for this characterization
one can either use deterministic or non-deterministic Turing machines.

When learning automatic classes, we usually require that the hypothesis
space H is also automatic. This paper surveys some of the results in learnabil-
ity of countable automatic classes of languages. For learnability of uncountable
classes we refer the reader to Jain et al. [18].

2 Characterization of Learnability of Autmatic Classes

For the characterization, we first consider the notion of tell-tale sets as introduced
by Angluin. Let x <ll w denote that x is length-lexicographically smaller than
w. That is |x| < |w| or |x| = |w| and x is lexicographically before w (based on
some fixed ordering of the alphabet). Let x ≤ll w denote that x <ll w or x = w.

Definition 3 (Angluin’s Tell Tale condition [2]). Suppose L = {Lα : α ∈ I}
is a class of languages.

(a) D is a tell-tale of L (with respect to L) iff D is finite and for all L′ ∈ L,
D ⊆ L′ ⊆ L implies L = L′.

(b) L satisfies Angluin’s Tell-Tale condition iff every L ∈ L has a tell-tale with
respect to L.

(c) [17] For all L ∈ L, we say that w is a tell-tale cut-off word for L (with respect
to L) iff {x ∈ L : x ≤ll w} is a tell-tale for L (with respect to L).

Essentially, Angluin [2] showed that if a class L does not satisfy Angluin’s tell-
tale condition, then it cannot be TxtEx-learnable. This result applies even for

32 S. Jain and F. Stephan

general classes of r.e. languages, and even for non-recursive learners, though
Angluin’s stated theorem was only for indexed families and recursive learners.

Jain, Luo and Stephan showed that a class satisfying Angluin’s tell-tale con-
dition is enough for TxtEx-learnability of automatic classes. In particular they
showed that such a learner can have several useful additional properties.

Definition 4. Suppose M is a learner. The notation is as in Definition 1 for
memory and hypothesis of M on a text T .

(a) [3] M is said to be consistent on L if, for all texts T for L, for all n,
HhypT

k
⊇ content(T [k]). M is said to be consistent on L if it is consistent on

each L ∈ L.
(b) [2] M is said to be conservative on L if, for all texts T for L, for all k, if

content(T [k+1]) ⊆ HhypT
k
, then hypT

k+1 = hypT
k . M is said to be conservative

on L if it is conservative on each L ∈ L.
(c) [28,31] M is said to be set-driven if, for all σ and τ in SEQ, if content(σ) =

content(τ), then M(σ) = M(τ).

When we say that M consistently (conservatively, set-drivenly, etc.) learns L,
we mean that M TxtEx-learns L, and is consistent (resepctively conservative,
set-driven) on L.

Theorem 5 (Jain et al. [17]). Suppose L is automatic and satisfies Angluin’s
tell-tale condition. Then there exists a learner M which is set-driven, consistent
and conservative on L and which TxtEx-learns L.

Note that if an automatic class L does not satisfy Angluin’s tell-tale condition,
then there is no learner (even non-recursive learner) which TxtEx-learns L. As
the tell-tale condition is first-order definable, we get the following corollary:

Corollary 6 (Jain et al. [17]). It is decidable whether a given family {Lα : α ∈ I}
is TxtEx-learnable (where the decision algorithm gets as input the alphabet Σ and
DFAs for regular set I and the regular set {conv(α, x) : x ∈ Lα}).
A similar characterization for some other learning criteria can also be obtained.
Let us consider Finite learning.

Definition 7 (Gold [11]).

(a) M TxtFin-learns L (using hypothesis space H = (Hβ)β∈J) iff for all texts
T for L, there exists an n and a β such that:
(i) For m < n, M(T [n]) ∈ Γ × {?};
(ii) For m ≥ n, M(T [n]) ∈ Γ × {β};
(iii) Hβ = L.

(b) M TxtFin-learns L (using hypothesis space H) iff it TxtFin-learns each
L ∈ L (using hypothesis space H).

(c) TxtFin = {L : (∃M)[M TxtFin-learns L using some automatic hypothesis
space H]}.

A useful concept for TxtFin-learnability is the concept of characteristic sample.

Learning Automatic Families of Languages 33

Definition 8 (Lange and Zeugmann [26], Mukouchi [27]).

(a) A finite set S is a characteristic sample for L with respect to the class L iff
(i) S ⊆ L.
(ii) For all L′ ∈ L, S ⊆ L′ implies L = L′.

(b) L satisfies the characteristic sample property iff every L ∈ L has a charac-
teristic sample with respect to L.

Theorem 9 (Jain et al. [17]). Suppose L is an automatic class. Then L ∈
TxtFin iff it satisfies the characteristic sample property.

3 Automatic Learners

A learner M is automatic if the function it computes is automatic. That is, the
mapping (old mem, datum)
→ (new mem, hyp) is automatic. When requiring
the learners to be automatic, we add the term Auto in the learning criteria
(for example AutoTxtEx means TxtEx-learnability using automatic learners).
Besides, we often require some restrictions on the memory. These are mentioned
in the following.

Definition 10. Fix a learner M . For a text T , let memT
k and hypT

k be as in
Definition 1.

(a) [33] The learner M is iterative if, for all texts T and k, memT
k = hypT

k .
(b) [17] The learner M is word-size memory limited if there exists a constant c

such that for all T and k, |memT
k | ≤ max({|T (m)| : m < k}) + c.

(c) [17] The learner M is hypothesis-size memory limited if there exists a constant
c such that for all T and k, |memT

k | ≤ |hypT
k | + c.

We denote the above memory restrictions on a learner by using the terms
It, Word and Index in the criteria names. For example, AutoWordTxtEx
denotes TxtEx-learning by an automatic learner with word-size memory limi-
tation. The next theorem shows that requiring learners to be automatic can be
very restrictive. This is not only because automatic learners have limited mem-
ory: automatic learners cannot even learn classes which can be iteratively learnt.

Theorem 11 (Jain et al. [17]). The automatic class

{{0, 1}∗ − {x} : x ∈ {0, 1}∗}

is ItTxtEx-learnable but not AutoTxtEx-learnable.

Theorem 12 (Jain et al. [17]).

(a) AutoItTxtEx ⊆ AutoWordTxtEx ⊆ AutoTxtEx.
(b) AutoItTxtEx ⊆ AutoIndexTxtEx ⊆ AutoTxtEx.
(c) AutoWordTxtEx �⊆ AutoIndexTxtEx.

34 S. Jain and F. Stephan

At the time of writing, it is still open AutoWordTxtEx = AutoTxtEx and
whether AutoIndexTxtEx = AutoItTxtEx. Furthermore, it is open whether
AutoIndexTxtEx ⊆ AutoWordTxtEx.

However, if the alphabet for languages is unary, then AutoIndexTxtEx ⊂
AutoWordTxtEx = AutoTxtEx.

An interesting class which is automatically learnable is unions of regular
patterns languages which have variables only among the last n symbols.

Angluin [1] introduced the pattern languages and Shinohara [32] investigated
learnability of the class of pattern languages generated by regular patterns. Auto-
matic classes of pattern languages are a special case of classes of pattern lan-
guages generated by regular patterns and the n-th automatic class Pn is defined
as follows: For a finite alphabet Σ, Pn contains all pattern languages of the form
αb1b2 . . . bn, where α ∈ Σ∗ and each b1, b2, . . . , bn is either a member of Σ or the
set Σ∗; for example, if Σ = {0, 1, 2}, then 0112101012Σ∗21Σ∗ is an automatic
pattern language in P4.

Theorem 13 (Case et al. [9]). Suppose |Σ| ≥ 3 and n > 0. Then, L =
{L1 ∪ L2 : L1, L2 ∈ Pn} is AutoWordTxtEx-learnable via a learner that,
furthermore, for all texts T for a language L outside L, converges to an index
for a language L′ such that L − L′ is finite.

4 Automatic Learning from Fat Text

A text T is called fat (see [29]) if every member of content(T) appears infinitely
often in the text. That is, for all x ∈ content(T), there exist infinitely many n
such that T (n) = x.

As the automatic learners are very much memory limited, one may expect
to overcome some of these limitations using a fat text. In fact that is indeed the
case as shown by the following result. For learnability of a class from fat texts,
we just require the learnability when the input text is fat, and do not care what
happens when the input text is not fat.

Theorem 14 (Jain et al. [17]). Suppose L is an automatic class which
satisfies Angluin’s tell-tale condition. Then there exists a learner M which
AutoWordTxtEx-learns L from fat texts.

Osherson, Stob and Weinstein [29] considered partial learning in which the
learner need not converge to a correct hypothesis but instead satisfy the fol-
lowing for any text T for the language L being learnt:

(a) Exactly one hypothesis is output infinitely often — that is, there exists
exactly one p such that hypT

k = p for infinitely many k;
(b) The unique p which is output infinitely often is a grammar for the input

language L.

Theorem 15 (Jain et al. [17]). Every automatic class L can be partially learnt
by an automatic learner with word-size limited memory from fat texts.

Learning Automatic Families of Languages 35

5 Negative Counterexamples

The model of learning in which the learners get only positive data, as considered
in most of the literature on inductive inference, is based on the studies by lin-
guists that children mainly get only positive data. However, this is not entirely
true as the children are often told about the errors they make. Thus, there is
some negative data, in the form of counterexamples that is given to the chil-
dren. In this section we consider giving the learner negative counterexamples, if
any, to their conjectures. This is given in the form of a separate text, where the
new datum is either an appropriate negative counterexample (if it exists) to the
previous conjecture or a # (indicating no negative counterexample).

For this, the learner is considered as a mapping from (old mem, new datum,
new counter example) to (new mem, new hypothesis). We can then define
M(T [n], T ′[n]) as the pair of memory and conjecture of the learner after having
seen the text T [n] and corresponding counterexamples given by T ′[n]. As this
definition is a straightforward generalization of Definition 1, we omit the details
of the learner but concentrate on how the counterexample text is defined.

Definition 16 (Jain and Kinber [13]). Suppose M is a learner and H =
(Hβ)β∈j is the hypothesis space used by M .

(a) T ′ is a counterexample text for M on input text T for a language L iff for
all n, where M(T [n], T ′[n]) = (mem, hyp),
if Hhyp ⊆ L, then T ′(n) = #
if Hhyp �⊆ L, then T ′(n) ∈ Hhyp − L.

(b) T ′ is a least-counterexample text for M on input text T for a language L iff
for all n, where M(T [n], T ′[n]) = (mem, hyp),
if Hhyp ⊆ L, then T ′(n) = #
if Hhyp �⊆ L, then T ′(n) = min(Hhyp − L).

(c) M NCEx-learns a language L (using hypothesis space H) iff for all texts
T for L, and all corresponding counterexample texts T ′ for M on the input
text T , M(T, T ′) converges to a hypothesis hyp such that Hhyp = L.

(d) M NCEx-learns a class L of languages (using hypothesis space H) iff it
NCEx-learns each language from L (using hypothesis space H).

(e) NCEx = {L : (∃M)[M NCEx-learns L using some automatic family H as
the hypothesis space}.

One can similarly define ItNCEx, ItLNCEx, LNCEx and other learning cri-
teria (here LNC stands for least counterexample).

Theorem 17 (Jain and Kinber [13]). Suppose L = {Lα : α ∈ I} is an
automatic family.

(a) L ∈ AutoItNCEx via a learner that uses a class preserving hypothesis
space, H = {Hβ : β ∈ J}, where the languages in H are same as that in L,
though indexing may be different (with potentially several copies of the same
language).

36 S. Jain and F. Stephan

(b) L ∈ AutoWordNCEx via a learner that uses the hypothesis space (Hα)α∈I ,
where Hα = Lα.

The learners witnessing the above result are however inconsistent. For consis-
tency, we need least negative counterexamples.

Theorem 18 (Jain et al. [16]).Every automatic family isAutoWordLNCEx-
learnable via a consistent learner.

The learner in the above proof however uses a general automatic hypothesis
space, which may contain lanugages outside the class L. It can be shown that
some automatic class L cannot be AutoLNCEx-learnt using a class preserving
automatic hypothesis space.

6 Parallel Learning of Automatic Classes

In parallel learning, the learner simultaneously gets texts for n distinct languages
from the target class L, and outputs its conjectures for the corresponding texts.
This study was originated for general TxtEx-learning by [24] and then studied
by [14,15] for the case of learning automatic families. These learning criteria
are denoted by (m,n)-TxtEx and (m,n)-TxtFin-learning. Here, note that for
the above learning criteria, when the input texts are for distinct languages in
the class, we require the sequence of conjectures to converge on all the texts,
whether the corresponding texts are actually learnt or not.

Furthermore, one can also distinguish the cases of the learner being required
to specify the m texts which it learns, and the learner only being required to learn
m of the n texts, without any constraint on specifying which texts it learnt. The
requirement of specifying the texts which are learnt is denoted by using Super
in the name of the learning criteria.

Theorem 19 (Jain and Kinber [14,15]).

(a) Suppose 0 < m ≤ n, L is an automatic family and all except at most n − m
langauges L ∈ L have a characteristic sample with respect to L. Then L is
(m,n)-SuperTxtFin-learnable.

(b) Suppose 0 < m ≤ n and L is an automatic class having at least 2n + 1 − m
languages. Then (m,n)-SuperTxtFin-learnability of L implies that there
are at most n−m languages in L which do not have a characteristic sample
with respect to L.

For the case when the learner is not required to specify the languages it learns,
the characterisation is slightly different.

Theorem 20 (Jain and Kinber [14,15]).

(a) Suppose 0 < m ≤ n, L is an automatic family, and there exists a subset
S of L of cardinality at most n − m such that every language in L − S has
a characteristic sample with respect to L − S. Then L is (m,n)-TxtFin-
learnable.

Learning Automatic Families of Languages 37

(b) Suppose 0 < m ≤ n, L is an automatic class having at least 2n + 1 − m
languages. Then (m,n)-TxtFin-learnability of L implies that there exists a
subclass S of L of cardinality at most n − m such that every language in
L − S has a characteristic sample with respect to L − S.

For finite automatic classes the situation becomes a bit more complicated and full
characterization depends on a combinatorial argument. We refer the reader to
[15] for full details. Furthermore, one can show a hierarchy for (m,n)-learnability
as follows.

Theorem 21 (Jain and Kinber [14,15]).

(a) Suppose 0 < m < n. Then, there exists an automatic class L which is
(m,n)-SuperTxtFin-learnable but not (m + 1, n)-TxtFin-learnable.

(b) There exists an automatic class L such that for all n > 1, L is (n − 1, n)-
TxtFin-learnable but not (1, n)-SuperTxtFin-learnable.

For TxtEx-learnability, (m,n)-TxtEx-learnability and (m,n)-SuperTxtEx-
learnability coincide [15]; thus we give the following results only for (m,n)-
TxtEx.

Theorem 22 (Jain and Kinber [14,15]).

(a) Suppose 0 < m ≤ n and L is an automatic class. Then L is (m,n)-TxtEx-
learnable iff at most n−m languages in L do not have a tell-tale with respect
to L.

(b) For n > 0 there exists an automatic (1, n + 1)-TxtEx-learnable class that
is not (1, n)-TxtEx-learnable.

(c) For n > 0, (1, n)-TxtFin ⊆ TxtEx.

Jain and Kinber also explore the above model of parallel learning when the
learners are automtic. However, here the picture becomes more complicated and
full characterization is not yet known.

7 Robust Learning of Automatic Classes

Intuitively, a class of objects is robustly learnable if every computable trans-
formation of the class is learnable. Robust learnability seems a desirable prop-
erty as it indicates that learning of the class is not due to presence of some
artificial coding within the data, but is due to the structure of the class itself
(Bārzdiņš, in the 1970s). Bārzdiņš reasoned that if a class is learnable only due to
some self-referential property then this self-referential part can be “removed” via
computable transformations, and thus the class be transformed into an unlearn-
able class. This line of research has been explored in various papers such as
[6,8,10,12,21,25,30]. However, most of these work were on function learning
and there does not seem to be a good definition for robust learning of classes
of languages. Using automatic classes and related transformations, [19] explored
robust learning of classes of automatic languages. The translations which were
considered valid for this are defined as follows:

38 S. Jain and F. Stephan

Definition 23 (Jain et al. [19]). Let an automatic class (Lα)α∈I be given.
Let Φ be a first order formula, with a distinguished variable x as a unique free
variable, where Φ is allowed to use predicates “y ∈ X” and “y ∈ Lα” along
with the set I. Let Φ(L) be the the language consisting of all strings s such that
Φ[s/x] is true, where X is taken to be L. Φ is an automatic translator (for the
automatic family L) if the following conditions hold:

(a) for all languages L,L′, if L ⊆ L′, then Φ(L) ⊆ Φ(L′);
(b) for all languages L,L′ ∈ L, if L �⊆ L′, then Φ(L) �⊆ Φ(L′).

Let Φ((Lα)α∈I) = (Φ(Lα))α∈I . It is easy to verify that any translation of an
automatic family is automatic. Jain et al. [19] considered various properties
such as consistency, conservativeness, strong monotonicity and confidence and
obtained various charaterizations on when automatic classes are robustly learn-
able and when some translations of automatic classes are learnable under above
constraints. We consider some of these characterizations below.

Theorem 24 (Jain et al. [19]). Given an automatic class L = (Lα)α∈I , the
following are equivalent:

(a) Every translation of L is TxtEx-learnable.
(b) For all α ∈ I, there exists a bα ∈ I such that for all β ∈ I, either Lβ �⊂ Lα

or there exists a γ ≤ll bα such that Lα �⊆ Lγ and Lβ ⊆ Lγ .

Theorem 25 (Jain et al. [19]). Suppose L is an automatic class all of whose
translations are TxtEx-learnable. Then, every translation of L is consistently
and conservatively TxtEx-learnable iff L is well founded under inclusion.

A learner M is said to be strong monotonic [22] if, for all texts T , for all m <
n, if hypT

m �=? and hypT
n �=?, then HhypT

m
⊆ HhypT

n
, where hypT

s denotes the
hypothesis of M after seeing input T [s].

Theorem 26 (Jain et al. [19]). Given an automatic class L = (Lα)α∈I , the
following are equivalent:

(a) Every translation of L is strong monotonically TxtEx-learnable.
(b) For all α ∈ I, there exists a bα ∈ I such that for all β ∈ I, either Lα ⊆ Lβ

or there exists a γ ≤ll bα such that Lα �⊆ Lγ and Lβ ⊆ Lγ .

Furthermore, every automatic class has some translation which is strong
monotonically TxtEx-learnable.

Acknowledgements. This survey consists of work done with several authors: John
Case, Efim Kinber, Trong Dao Le, Qinglong Luo, Eric Martin, Yuh Shin Ong, Shi Pu,
Samuel Seah and Pavel Semukhin.

Learning Automatic Families of Languages 39

References

1. Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci.
21(1), 46–62 (1980)

2. Angluin, D.: Inductive inference of formal languages from positive data. Inf. Con-
trol 45, 117–135 (1980)

3. Bārzdiņš, J.: Inductive inference of automata, functions and programs. In: Pro-
ceedings of the 20th International Congress of Mathematicians, Vancouver, pp.
455–460 (1974). In: Russian. English translation in American Mathematical Soci-
ety Translations: Series 2, vol. 109, pp. 107–112 (1977)

4. Blumensath, A., Grädel, E.: Automatic structures. In: 15th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS), pp. 51–62. IEEE Computer Society
(2000)

5. Case, J., Jain, S., Ong, Y.S., Semukhin, P., Stephan, F.: Automatic learners with
feedback queries. J. Comput. Syst. Sci. 80, 806–820 (2014)

6. Case, J., Jain, S., Ott, M., Sharma, A., Stephan, F.: Robust learning aided by
context. J. Comput. Syst. Sci. 60, 234–257 (2000). (Special Issue for COLT 1998)

7. Case, J., Jain, S., Seah, S., Stephan, F.: Automatic functions, linear time and
learning. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318,
pp. 96–106. Springer, Heidelberg (2012)

8. Case, J., Jain, S., Stephan, F., Wiehagen, R.: Robust learning - rich and poor. J.
Comput. Syst. Sci. 69(2), 123–165 (2004)

9. Case, J., Jain, S., Le, T.D., Ong, Y.S., Semukhin, P., Stephan, F.: Automatic
learning of subclasses of pattern languages. Inf. Comput. 218, 17–35 (2012)

10. Fulk, M.: Robust separations in inductive inference. In: 31st Annual IEEE Sympo-
sium on Foundations of Computer Science, pp. 405–410. IEEE Computer Society
Press (1990)

11. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)
12. Jain, S.: Robust behaviorally correct learning. Inf. Comput. 153(2), 238–248 (1999)
13. Jain, S., Kinber, E.: Automatic learning from positive data and negative coun-

terexamples. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T. (eds.) ALT
2012. LNCS, vol. 7568, pp. 66–80. Springer, Heidelberg (2012)

14. Jain, S., Kinber, E.: Parallel learning of automatic classes of languages. In: Auer,
P., Clark, A., Zeugmann, T., Zilles, S. (eds.) ALT 2014. LNCS, vol. 8776, pp. 70–84.
Springer, Heidelberg (2014)

15. Jain, S., Kinber, E.: Parallel learning of automatic classes of languages. Accepted
for Theoretical Computer Science (2016). Special Issue for ALT 2014

16. Jain, S., Kinber, E., Stephan, F.: Automatic learning from positive data and neg-
ative counterexamples (2014). (Manuscript)

17. Jain, S., Luo, Q., Stephan, F.: Learnability of automatic classes. J. Comput. Syst.
Sci. 78(6), 1910–1927 (2012)

18. Jain, S., Luo, Q., Semukhin, P., Stephan, F.: Uncountable automatic classes and
learning. Theoret. Comput. Sci. 412(19), 1805–1820 (2011). Special Issue for ALT
2009

19. Jain, S., Martin, E., Stephan, F.: Robust learning of automatic classes of langauges.
J. Comput. Syst. Sci. 80, 777–795 (2014)

20. Jain, S., Ong, Pu, Y.S., Stephan, F.: On automatic families. In: Arai, T., Feng,
Q., Kim, B., Wu, G., Yang, Y. (eds.) Proceedings of the 11th Asian Logic Confer-
ence, in Honor of Professor Chong Chitat’s 60th birthday, 2009, pp. 94–113. World
Scientific (2011)

40 S. Jain and F. Stephan

21. Jain, S., Smith, C., Wiehagen, R.: Robust learning is rich. J. Comput. Syst. Sci.
62(1), 178–212 (2001)

22. Jantke, K.: Monotonic and non-monotonic inductive inference of functions and
patterns. In: Dix, J., Jantke, K.P., Schmitt, P.H. (eds.) NIL 2004. LNCS, vol. 543,
pp. 161–177. Springer, Heidelberg (1990)

23. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant,
Daniel (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)

24. Kinber, E., Smith, C., Velauthapillai, M., Wiehagen, R.: On learning multiple
concepts in parallel. J. Comput. Syst. Sci. 50, 41–52 (1995)

25. Kurtz, S., Smith, C.: A refutation of Barzdins’ conjecture. In: Jantke, K.P. (ed.)
AII 1989. LNCS, vol. 397, pp. 171–176. Springer, Heidelberg (1989)

26. Lange, S., Zeugmann, T.: Types of monotonic language learning and their char-
acterization. In: Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, pp. 377–390. ACM Press (1992)

27. Mukouchi, Y.: Characterization of finite identification. In: Jantke, K. (ed.) Ana-
logical and Inductive Inference. Proceedings of the Third International Workshop,
pp. 260–267 (1992)

28. Osherson, D., Stob, M., Weinstein, S.: Learning strategies. Inf. Control 53, 32–51
(1982)

29. Osherson, D., Stob, S.M., Weinstein, S.: Systems that Learn: an Introduction to
Learning Theory for Cognitive and Computer Scientists. MIT Press, Cambridge
(1986)

30. Ott, M., Stephan, F.: Avoiding coding tricks by hyperrobust learning. Theoret.
Comput. Sci. 284(1), 161–180 (2002)

31. Schäfer-Richter, G.: Über Eingabeabhängigkeit und Komplexität von Inferenzs-
trategien. PhD thesis, RWTH Aachen (1984)

32. Shinohara, T.: Polynomial time inference of extended regular pattern languages. In:
Goto, E., Furukawa, K., Nakajima, R., Nakata, I., Yonezawa, A. (eds.) RIMS Sym-
posia on Software Science and Engineering. LNCS, vol. 147, pp. 115–127. Springer,
Berlin (1982). Kyoto, Japan

33. Wiehagen, R.: Limes-Erkennung rekursiver Funktionen durch spezielle Strategien.
J. Inf. Process. Cybern. (EIK) 12(1–2), 93–99 (1976)

Software Engineering: Methods, Tools,
Applications (Invited Talks)

From ESSENCE to Theory Oriented
Software Engineering

Sebastian Holtappels(B), Michael Striewe, and Michael Goedicke

University of Duisburg-Essen, Essen, Germany
{sebastian.holtappels,michael.striewe,michael.goedicke}@uni-due.de

Abstract. The Essence standard combines a kernel and a modelling lan-
guage for software engineering. It defines dynamic semantics of Essence
by a mixture of formal and informal means. This paper presents a uni-
form formalization of the dynamic semantics based on a graph grammar
and discusses various applications of this grammar. It is shown that solid
formal foundation is useful for research towards theory oriented software
engineering.

1 Introduction

The Essence standard [3] is one result of the work of the “Software Engineering
Method and Theory” (SEMAT) Initiative1. It combines a kernel and a modelling
language both aiming to be a part of a general theory for software engineering.

The SEMAT Initiative designed the kernel as a universal foundation for all
existing Software Development Practices thus including only these aspects of
software engineering that are common to all practices. The Essence language is
used to describe the elements of the kernel and the practices and methods used
in a software development process [14].

Besides defining static semantics and graphical notations for a language to
express kernel elements and practices, the standard also defines dynamic seman-
tics. This definition happens in a mixture of informal text, object-based data
models, and formal function definitions in VDM-SL. While this provides a suf-
ficient view on the general aims and possibilities of the dynamic semantics,
it cannot directly be enacted. Hence a uniform formalization of the dynamic
semantics using a graph grammar has been created in [13]. It is fully enactable
via a graph-transformation engine. Thus it can be used as a basis for several
applications which involve formal reasoning about practices, methods, states of
software development endeavours, and much more. It is the goal of the theory
track within the SEMAT Initiative to gather and explore such applications in
order to make software development an engineering discipline which is based on
formally founded theories.

This paper summarizes the formalization in Sect. 2 and sketches several appli-
cations in the context of theory oriented software engineering in Sect. 3. Related
Work is presented in Sect. 4. Section 5 concludes this paper and illustrates pos-
sible future directions of Essence.
1 http://www.semat.org/.

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 43–50, 2016.
DOI: 10.1007/978-3-662-49192-8 4

http://www.semat.org/

44 S. Holtappels et al.

2 Formal Graph-Based Dynamic Semantics for Essence

The Essence language defines a dynamic semantics to support the enactment
of Essence based models. More precisely the dynamic semantics of Essence
describes how the Level 0 Model is populated, how the overall state is determined
and how to generate guidance (guidance function). The Level 0 Model contains
the instances of concrete Essence Elements e.g. an instance of the Requirements
Alpha. The name Level 0 Model originates from the OMG Meta Object Facility
[2]. Level 0 describes the instance level of a model [2,3].

The overall state is determined by determining the Alpha state of each Alpha.
The guidance function is used to create guidance for an Essence user. Therefore
the guidance function compiles a list of activities which will progress an Alpha
from its current state to a targeted state of the same Alpha [3].

In [13] this dynamic semantics is formalized using a graph grammar. This
formal graph-based dynamic semantics of Essence enables additional application
possibilities. As foundation for the graph grammar [13] defines a type graph of
the relevant subset of the Essence language. The type graph is shown in Fig. 1.

Fig. 1. Type graph of the relevant subset of the Essence language [13]

Based on the areas of the dynamic semantics of Essence [13] defines rules for
populating the Level 0 Model, determining the current state of an Alpha and
for generating guidance. The area for populating the Level 0 Model is extended
by rules for deleting unwanted or deprecated elements. In addition to the for-
malization of the dynamic semantics [13] includes graph transformation rules for
creating the Alphas of the Essence Kernel and the Alphas and other elements of
the SCRUM [17] practice [13].

The rules defining the dynamic semantics are designed to be applicable for
each practice modeled in the Essence language. Because of this generic design,

From ESSENCE to Theory Oriented Software Engineering 45

most of the events and operations described by the dynamic semantics had to
be divided into multiple rules. E.g. for the instantiation of one Alpha and the
dependent elements, [13] defines one rule to create the instance of an Alpha,
another one to create the instances of the states of one Alpha and a rule to
create the instances of the checkpoints of this states. Prioritization is used to
control which rule can or must be applied in a given state. The lowest priority
stage 0 describes rules, that the user should apply manually e.g. the instantiation
of an Alpha. Stage 1 includes all rules to be applied automatically e.g. the
determination of the current Alpha state. Stages 2 and 3 include rules to ensure
the consistency of the model. Stage 4 includes rules for the deletion of elements.
This is necessary because multiple rules can be necessary to delete a node, e.g.
an Alpha. The higher priority ensures that the deletion is finished before any
other rule can be applied. This is necassary to ensure the consistency of the
model [13].

Fig. 2. Instantiation of an Alpha [13]

Fig. 3. Instantiation of an Alpha state [13]

Figures 2, 3 and 4 illustrate how the dynamic semantics is defined by graph
transformation rules. Figure 2 defines the creation of an instance of an Alpha. To
be as generic as possible this rule does not include the creation of any state or
association of the instantiated Alpha. Figure 3 defines the creation of an instance
of one Alpha state of the instantiated Alpha. This rule is applied until all states
of the instantiated Alpha are instantiated. Figures 2 and 3 do not include the
conditions under which these rules are applicable [13].

Figure 4 shows the rule for determining the current Alpha state. The state
of the Alpha is determined by the checkpoints of its Alpha states. The current
Alpha state is that state whose checkpoints are checked and whose successor has

46 S. Holtappels et al.

Fig. 4. Determining the current state of an Alpha [13]

at least one checkpoint that is unchecked and whose predecessors do not have
any checkpoints that are unchecked. The first thing to be described by a graph
transformation rule is the transformation caused when the rule is applied. In
this case the transformation is the change of the value of the isActive Attribute
from false to true to mark the state as the currently active state. To ensure
only the right state is changed the graph transformation rule needs additional
conditions under which it is applicable. The first application condition is that
the successor of the watched state must have at least one checkpoint, that is
not checked (PAC1). In addition neither the watched state nor its predecessor
should have a state that is unchecked (isChecked = false) (NAC2 and NAC3).
Finally this Alpha instance should not have any other state where isActive is
true, to ensure that at each single point in time a state has not more than one
state marked as the current state of the referenced Alpha instance [3,13].

From ESSENCE to Theory Oriented Software Engineering 47

In addition to the rule shown in Fig. 4 the determination needs a rule which
is applicable for the last state of an Alpha and a rule to change the value of
isActive from true to false [13].

3 Applications

As the formalization based on graph transformation rules is fully enactable
using some graph transformation engine, it can be applied automatically or
semi-automatically in various contexts [4,5,11,15]. In particular, three key areas
can be named: Validation and analysis of the Essence language and kernel as
such, validation and analysis of some practice or method described using the
Essence language, and (retrospective) analysis of an actual software develop-
ment endeavour. All three areas will be discussed in the following subsections.
The applications discussed here are an extension of the applications discussed
in [13].

3.1 Language and Kernel Analysis

As in many domains, formalization is valuable on its own right also for the
Essence language. This way, it can be shown that the concepts included in the
language are sufficient to describe both software engineering practices and met-
hods, and any state that can occur during a software engineering endeavour. It
can also be shown that the concept of Alphas and Alpha states is enactable.
Moreover, it can be shown that a graph structure is able to describe any state of
any software engineering endeavour in terms of the SEMAT concepts, and that
thus graph transformations are sufficient to formalize any transition between
these states [5,6,19].

3.2 Practice and Method Analysis

For the goal of theory oriented software engineering, the possibility to analyse
practices and methods following some formal rules is probably the most valuable
effect of the formalization of dynamic semantics.

As a simple application, reachability can be computed to find out whether
a particular project state A can be reached using a given practice. In terms
of graph grammars, this question is equal to the question whether a particular
instance graph can be created from the empty start graph by applying general
and practice specific transformation rules [4,7,9].

If reachability is proven for a predefined set of different project states, a
practice can be considered complete with respect to the project states, indicating
that all these states can be reached in the project. This is particularly interesting
for defining minimal methods that should still be able to reach all project targets.
In turn, reasoning about reachability can also be used to get clearness about risks
in a software development endeavour. In particular, it can be analysed whether

48 S. Holtappels et al.

a particular state which is considered harmful is reachable or can be avoided by
selecting a specific practice [4,8,19].

While these applications consider practices and endeavours as a whole, it
can also be interesting to dig deeper into specific project slices. For example,
activities defined in the Essence language can be associated with competencies.
Thus it can be concluded from a static method description which competencies
are needed in a team in general. However, simulation or formal reasoning can
be used to get a more detailed view on which competencies are needed in which
phase of the project or in which situations. In combination with the findings
regarding reachability discussed above, this can be used to detect that a specific
risky situation is more likely to appear if some competency is missing or that
some other competency is (only) required to recover from some bad project state
[5,6,19].

Instead of analysing just one practice or methods, comparisons between dif-
ferent practices or analyses of changes in one practice can also be performed.
Criteria for comparison can be reachability and completeness as above, but also
for example the number of reachable (risky) states or the average number of
applicable transformation rules per state (where a small number indicates a
closely guided process, while a big number implies more flexibility).

3.3 Endeavour Analysis

Besides formal reasoning and simulation as discussed so far, the same graph
grammar can also be applied in project management tools in order to support
an actually running endeavour. In this way it can help to make the tool adaptive
in a way that it can suggest appropriate actions based on the situation at hand.
The key point here is that simulations and formal reasoning must make some
assumptions. In particular, it can either be assumed that all team members stick
to the method all the time, or all possible deviations are computed. However, in
an actual endeavour, both is unlikely, but just a non-empty subset of all possible
deviations will occur [4,5,11,15].

At the same time, a tool can also describe changes in the current situation in
terms of graph transformation rules and thus provide an abstract trace of project
progress for further research. In particular, these traces can be compared between
different projects following the same method to help research on key factors for
success and failure in software development. The knowledge gained this way can
in turn be used again for the adaptive behaviour of tools sketched above in
a way that predictions and suggestions for the next steps in an actual endeavour
are made based on the project history [5,6,19].

4 Related Work

Using Graph Transformation as a means to define static and dynamic aspects
of a language, especially the semantics of a language is a proven concept as
[6,11,15,16,19] show.

From ESSENCE to Theory Oriented Software Engineering 49

In the particular domain of Software Process Modelling, formalization of
enactment is much more rare. For example SPEM 2.0 [18] as an alternative to
Essence has been criticised for its lacking enactment support [10,12]. Other stan-
dards like ISO/IEC 24744 [1] also do not include uniformly formalized dynamic
semantics as we discussed them in this paper.

5 Conclusion

This paper demonstrated a formalization of the dynamic semantics of the Essence
language using graph transformation rules. Several applications were sketched
and discussed in which such a formalization can be used to get more insight
into practices, methods, and software development endeavours. Gaining more
formally founded insight is an important step towards a more theory oriented
software engineering, in which decisions can be taken on the ground of solid
models, previous knowledge, and proven correlations. The theory track of the
SEMAT initiative will continue working in this direction.

References

1. Software Engineering Metamodel for Development Methodologies (ISO/IEC
24744)

2. Omg Meta Object Facility (April 2014)
3. Essence - Kernel and Language for Software Engineering Methods (September

2015)
4. Bardohl, R., Taentzer, G., Minas, M., Schürr, A.: Application of Graph Transfor-

mation to Visual Languages, pp. 105–180. World Scientific, London (1999)
5. Baresi, L., Heckel, R.: Tutorial introduction to graph transformation: A software

engineering perspective. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg,
G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 402–429. Springer, Heidelberg (2002)

6. Blostein, D., Schürr, A.: Computing with graphs and graph transformations.
Softw.-Pract. Experience 29(3), 197–217 (1999)

7. Bottoni, P., Taentzer, G., Schürr, A.: Efficient parsing of visual languages based on
critical pair analysis and contextual layered graph transformation. In: 2000 IEEE
International Symposium on Visual Languages (VL 2000), pp. 59–60 (2000)

8. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
Approaches to Graph Transformation. Part I: Basic Concepts and Double Pushout
Approach, pp. 163–245. World Scientific, London (1997)

9. Ehrig, H., Löwe, M.: Compugraph. Computing by graph transformation. Final
report. Technical report, ESPRIT Basic Research Working Group No. 3299, Berlin
(1992)

10. Elvester, B., Benguria, G., Ilieva, S.: A comparison of the essence 1.0 and SPEM
2.0 specifications for software engineering methods. In: Proceedings of the Third
Workshop on Process-Based Approaches for Model-Driven Engineering (PMDE
2013)

11. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic meta modeling: a
graphical approach to the operational semantics of behavioral diagrams in uml. In:
Evans, A., Caskurlu, B., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 323–337.
Springer, Heidelberg (2000)

50 S. Holtappels et al.

12. Henderson-Sellers, B., Gonzalez-Perez, C.: The rationale of powertype-based meta-
modelling to underpin software development methodologies. In: Proceedings of the
2nd Asia-Pacific Conference on Conceptual Modelling - vol. 43, APCCM 2005, pp.
7–16 (2005)

13. Holtappels, S.: Eine formale Beschreibung der dynamischen Semantik von
ESSENCE. Master’s thesis, Universität Duisburg-Essen (2014)

14. Jacobson, I., Ng, P.-W., McMahon, P.E., Spence, I., Lidman, S.: The Essence of
Software Engineering: Applying the SEMAT Kernel. Addison-Wesley Professional,
Reading (2013)

15. Kuske, S.: A formal semantics of UML state machines based on structured graph
transformation. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185,
pp. 241–256. Springer, Heidelberg (2001)

16. Maggiolo-Schettini, A., Peron, A.: A graph rewriting framework for Statecharts
semantics. In: Cuny, J., Ehrig, H., Engels, G., Rozenberg, G. (eds.) Graph Gram-
mars and Their Application to Computer Science. LNCS, vol. 1073, pp. 107–121.
Springer, Heidelberg (1996)

17. Schwaber, K., Sutherland, J.: The scrum guide. the definitive guide to scrum: the
rules of the game (2013)

18. Software and Systems Process Engineering Metamodel Specification (SPEM) Ver-
sion 2.0, Document formal/2008-04-01 (April 2008). http://www.omg.org/spec/
SPEM/2.0/

19. Toffetti, G., Pezzè, M.: Graph transformations and software engineering: success
stories and lost chances. J. Vis. Lang. Comput. 24(3), 207–217 (2013)

http://www.omg.org/spec/SPEM/2.0/
http://www.omg.org/spec/SPEM/2.0/

Incremental Queries and Transformations:
From Concepts to Industrial Applications

Dániel Varró(B)

Department of Measurement and Information Systems,
Budapest University of Technology and Economics,
Magyar tudósok krt. 2, Budapest 1117, Hungary

varro@mit.bme.hu

Abstract. Model-driven engineering (MDE) is widely used nowadays in
the design of embedded systems, especially in the automotive, avionics
or telecommunication domain. Behind the scenes, design and verifica-
tion tools in these domains frequently exploit advanced model query
and transformation techniques to support various rich tool features.
The rapid increase in the size and complexity of system models has
drawn significant attention to incremental model query and transforma-
tion approaches, which enable fast and incremental reactions to model
changes caused by systems engineers or automated design steps. In this
paper, I overview two open source Eclipse projects, EMF-IncQuery and
Viatra, which have been actively used as a basis for developing various
academic and industrial tools for critical systems.

Keywords: Model queries · Model transformations · Incremental
evaluation · Reactive programming · Software tool qualification

1 Software Tools in Model-Based Systems Engineering

Model-driven engineering plays an increasingly important role in the design of
critical embedded and cyber-physical systems in various application domains
including automotive, avionics or telecommunication. Advanced design and ver-
ification tools aim to simultaneously improve quality and decrease costs by early
validation to highlight conceptual design flaws well before traditional testing
phases in accordance with the correct-by-construction principle. Furthermore,
they improve productivity of engineers by automatically synthesizing different
design artifacts (source code, configuration tables, test cases, fault trees, etc.)
necessitated by certification standards (like DO-178C or ISO 26262).

There are two main trends nowadays in the software tool market of systems
engineering. On the one hand, certain market shares are dominated by very few
industrial tools (e.g. Matlab Simulink, Dymola, MagicDraw, DOORS) each of
which typically supports a specific development stage (requirements engineering,
simulation, allocation, test generation, etc.). In order to protect the important
intellectual property rights, these tools are of closed nature, which implies such
c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 51–59, 2016.
DOI: 10.1007/978-3-662-49192-8 5

52 D. Varró

huge tool integration costs for system integrators (like airframers or car manu-
facturers) that can easily exceed the total licensing costs of individual tools. On
the other hand, recent initiatives (like PolarSys) have started to promote the
development of open language standards and the systematic use of open source
software components in tools for critical systems to reduce licensing costs and
the risks of vendor lock-in.

When software tools are used for developing a critical system, the tools them-
selves need to be validated with the same scrutiny as the system under design
by software tool qualification, especially, when no further human checking is car-
ried out on the outputs of such tools. Software tool qualification distinguishes
between design tools which, by definition, may introduce new errors to the sys-
tem and verification tools which may fail to reveal existing errors of the system.

Unsurprisingly, software tool qualification is extremely costly due to the high
algorithmic complexity, tightly couple architecture and unexpected feature inter-
action of such tools. In fact, most companies rather opt for using tools just as aids
to highlight errors quickly and then they carry out the traditional verification&
validation process with thorough simulation and testing. Anyhow, systematic
software engineering techniques to simultaneously improve quality and reduce
the costs of software tool qualification would be highly beneficial. Existing soft-
ware engineering practices may guarantee the quality of the system itself, but
they frequently fail to ensure the quality of the software tool used in systems
engineering. Furthermore, the rapid increase in the size and complexity of sys-
tems models introduces significant scalability challenges for these tools.

Language engineering aims to provide foundations, techniques and tools for
domain-specific modeling languages to capture the models. Model transformation
engineering aims to systematically develop queries and transformations used in
automated code generators, debuggers to process these models. Of course, a
seamless integration of these techniques is needed when developing real tools.

In this paper, I overview two open source Eclipse projects supporting model
query and transformation techniques integrated into in various industrial tools
for model-based systems engineering. EMF-IncQuery is an incremental model
query framework while Viatra supports reactive, event-based transformations.
Their scientifically well-founded basis enables semantic integration of different
tool features to (i) complement structural integration provided by the component
(plugin) architecture of Eclipse and to (ii) support tool qualification by precise
specification and execution semantics of those features.

2 Incremental Model Queries in EMF-IncQuery

EMF-IncQuery is an open source Eclipse project1 to define declarative graph
queries over EMF models [33] without manual coding and execute them effi-
ciently using incremental graph pattern matching techniques over an imperative
programming language such as Java. The benefits of EMF-IncQuery include:

1 https://www.eclipse.org/incquery.

https://www.eclipse.org/incquery

Incremental Queries and Transformations: From Concepts 53

(i) a high-level and powerful declarative graph query language [8,39];
(ii) a highly efficient incremental query engine capable of evaluating queries

over models with millions of elements [7,39];
(iii) an advanced integrated development environment [39] to construct and val-

idate model queries supported by state-of-the-art Xtext tooling.
(iv) its modular architecture enables easy integration with existing EMF-based

modeling tools [39].

The primary use case for model queries is to support the live validation of
well-formedness constraints and design rules of a domain in order to highlight
and report inconsistencies as soon as they are introduced. Efficient incremental
evaluation is based on adapting Rete networks [13] to change notifications sent
by EMF-based models. Additional main use cases include advanced support for
incremental calculation and maintenance of base model indexers [39], derived
features [26], soft traceability links [14], or incremental view maintenance [12].

Detailed scalability assessment of EMF-IncQuery is carried out in numer-
ous papers for validation of well-formedness constraints [7,39], detection of source
code anti-patterns [40] or maintenance of soft traceability links [14] over mod-
els with 10 million elements. Ongoing development within the MONDO Euro-
pean project2 aims to develop a distributed and incremental query engine [30]
deployed over cloud based storages to further improve scalability.

Example. The definition of a sample well-formedness constraint (taken from
[20]) for checking valid allocations of application instances to host instances (e.g.
in a cloud application or a cyber-physical system) is listed in Fig. 1. The query
notAllocatedButRunning captures an erroneous situation for allocation when an
application app is running, but not allocated to a host instance (using another
graph pattern allocatedApplication by negative composition). When checking this
constraint on the instance model depicted in Fig. 2, app2 is the only Application-

Instance which matches the pattern (thus violates the constraint) since app1 is
allocated to a host instance ht1 while app3 is stopped.

Fig. 1. Sample queries for well-formedness constraints (adapted from [20])

2 http://www.mondo-project.org/.

http://www.mondo-project.org/

54 D. Varró

Fig. 2. Sample instance model

By using a @Constraint annotation, EMF-IncQuery will automatically inte-
grate the query into a model editor using the Eclipse Modeling Framework
(EMF) [33] as underlying model representation. As a result, an error marker
will immediately be placed on the model whenever this consistency constraint is
violated, which is removed automatically once the source of the problem is cor-
rected (e.g. the application instance is stopped or allocated to a host instance).

3 VIATRA: A Reactive Transformation Platform

Viatra is a reactive, event-driven model transformation platform [6] where
transformations are executed continuously as reactions to changes of the under-
lying model. The Viatra project3 provides:

(1) An internal domain-specific language over Xtend [38] to specify both batch
and event-driven, reactive transformations.

(2) A complex event-processing engine [11] over EMF models to specify reactions
upon detecting complex chains of events.

(3) A rule-based design space exploration framework [4,15] to explore design
candidates as models satisfying multiple criteria over states and trajectories.

(4) A model obfuscator to remove sensitive information from a confidential model
(e.g. to create bug reports).

Viatra adopted the principles of reactive programming [5]. The core concept
of reactive programming is event-driven behavior : components are connected to
event sources and their behavior is determined by the event instances observed
on event streams. Compared to sequential programming, the benefits of reactive
programming are remarkable especially in cases when continuous interaction
with the environment has to be maintained by the application based on external
events without a priori knowledge on their sequence.

The specification of a Viatra transformation program contains (1) rule spec-
ifications consisting of model queries, which serve as a precondition to the trans-
formation, and actions, which typically prescribe model manipulations. Further-
more, (2) execution schemas are defined in order to orchestrate the reactive

3 http://www.eclipse.org/viatra/.

http://www.eclipse.org/viatra/

Incremental Queries and Transformations: From Concepts 55

behavior. Viatra uses an internal domain-specific language for specifying trans-
formations, i.e. an advanced API over Java and Xtend [38]. Viatra has proven
to be an efficient execution platform for incremental transformations in [20,24].

Example. A sample event-driven transformation rule (adapted from [20]) is
illustrated in Fig. 3, which removes a stopped ApplicationInstance from the
model if it is no longer allocated to a host instance. The execution of this rule is
triggered by a disappearance of a match of its precondition pattern stoppedAp-

plInstance. If the application instance is still stopped after the observed change,
then we remove appInst from appType.

When executing the rule over the model of Fig. 2, the rule is triggered when
the allocatedTo reference is removed between app3 and host2. Then the rule action
removes app3 together with the incoming instances reference from app (illustrated
by dotted lines in Fig. 2).

Fig. 3. A sample event-driven transformation rule

4 Selected Recent Applications

The EMF-IncQuery and Viatra frameworks have actively been used in dif-
ferent research and industrial projects carried out by various researchers and
practitioners. Below we provide a short overview of selected applications of these
frameworks within our own projects.

– A recent project aimed to define a model-driven approach and tool chain
for the synthesis of complex, integrated Matlab Simulink models capable of
simulating the software and hardware architecture of an airplane [14,16].

– As a bi-product of the project, the Massif (Matlab Simulink Integration
Framework for Eclipse)4 framework [16,19] was developed, which provides
a bidirectional bridge between Matlab Simulink models and their EMF model
counterpart by calling the Matlab API.

4 https://github.com/FTSRG/massif/wiki.

https://github.com/FTSRG/massif/wiki

56 D. Varró

– Formal validation of domain-specific languages is carried out in [29] by using
back-end logic solvers where derived features and well-formedness constraints
are captured by queries.

– Incremental queries and transformations provide foundations for incremental
code generators [18] to avoid complete regeneration in case of small changes.

– Incremental recomputation of graphical views of Sirius [17] can be also be
driven by reactive transformations.

– Live detection of human gestures and movements are carried out in [11] by
using streaming transformations and complex event processing. Similar tech-
nology is used in ongoing work for runtime verification of cyber-physical sys-
tems and detecting critical situations in IoT applications [27].

In addition, EMF-IncQuery and/or Viatra is known to be integrated into
popular open source modeling tools such as Papyrus UML [36], Capella [25],
mbeddr [3], Sirius [37] or Artop [1].

5 Related Work

There are, of course, other open source technologies which support model queries
or transformation used in Eclipse based tooling.

Query Technologies. EMF Model Query 2 [31] provides simple query primi-
tives for selecting model elements that satisfy a set of conditions. The OCL devel-
opment environment of the Eclipse OCL project [34] provides different ways to
edit OCL constraints: an Xtext-based editor for file-based editing, an embedded
editor inside Ecore model editors. The Epsilon Validation Language is dedi-
cated to support the construction of validation rules within the Epsilon family
[22], while the Acceleo Query Language (AQL) is heavily used within the Sirius
project [37] to populate views from underlying models. However, relatively few
academic approaches support incremental evaluation [10,28].

Transformation Technologies. The development environment of EMF-based
model transformation tools provide support for specifying, executing and eval-
uation of transformations including frameworks such as ATL [32], Henshin [9],
QVTo [35] or eMoflon [2]. Many industrial applications rely on Xtend [38] as a
code generation and transformation language based on Java. Epsilon [22] pro-
vides the Epsilon Transformation Language and the low-level Epsilon Object
Language with an advanced execution platform. Recently introduced new fea-
tures of ATL include target incremental computation [21] combined into the
ReactiveATL transformation engine.

6 Conclusions

While a multitude of design are verification tools is used in model-driven systems
engineering of critical systems, the complexity of those tools is frequently com-
parable to the system under design. Certification standards of critical systems

Incremental Queries and Transformations: From Concepts 57

necessitate to qualify those tools, i.e. to justify that the tools themselves do not
introduce new errors to the design. The complexity of the tools makes tool qual-
ification extremely costly, and provides a strong motivation for solid foundations
of integrated tool features. The paper overviews two open source projects, EMF-
IncQuery and Viatra to serve as a precise and efficient basis by incremental
model queries and reactive transformations as illustrated on various industrial
applications.

Our ongoing research and development aims to develop systematic
approaches to the verification and validation of tool features and language specifi-
cations. This primarily includes the automated synthesis of a large, well-formed
and diverse set of instance models to serve as test cases or scalability bench-
marks. Furthermore, as distinction between design-time and run-time models
are being more and more blurred [23] for smart cyber-physical systems, incre-
mental query and transformation techniques will likely be used as part of the
underlying middleware, which triggers further open challenges.

Acknowledgments. The author is indebted for the continuous and deep contribu-
tions of all contributors of the EMF-IncQuery and Viatra project teams. In par-
ticular, I would like to highlight the 8+ year involvement of Gábor Bergmann, Ábel
Hegedüs, Ákos Horváth, István Ráth and Zoltán Ujhelyi (listed in alphabetic order).

This work was partially supported by the MONDO Project (EU ICT-611125) and
the MTA-BME Lendület 2015 Research Group on Cyber-Physical Systems.

References

1. Artop: The AUTOSAR tool platform (2015). https://www.artop.org/
2. eMoflon (2015). http://www.moflon.org/
3. mbeddr (2015). https://mbeddr.com/
4. Abdeen, H., Varró, D., Sahraoui, H., Nagy, A.S., Hegedüs, Á., Horváth, Á.,

Debreceni, C.: Multi-objective optimization in rule-based design space exploration.
In: 29th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2014), pp. 289–300. IEEE, Vasteras (2014)

5. Bainomugisha, E., Carreton, A.L., Cutsem, T.V., Mostinckx, S., Meuter, W.D.: A
survey on reactive programming. In: ACM Computing Surveys (2012)

6. Bergmann, G., Dávid, I., Hegedüs, Á., Horváth, Á., Ráth, I., Ujhelyi, Z., Varró, D.:
VIATRA 3: a reactive model transformation platform. In: Kolovos, D., Wimmer,
M. (eds.) ICMT 2015. LNCS, vol. 9152, pp. 101–110. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-319-21155-8 8

7. Bergmann, G., Horváth, A., Ráth, I., Varró, D., Balogh, A., Balogh, Z., Ökrös, A.:
Incremental evaluation of model queries over EMF models. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp.
76–90. Springer, Heidelberg (2010). http://dx.doi.org/10.1007/978-3-642-16145-2 6

8. Bergmann, G., Ujhelyi, Z., Ráth, I., Varró, D.: A graph query language for EMF
models. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 167–182.
Springer, Heidelberg (2011)

9. Biermann, E., Ermel, C., Taentzer, G.: Precise semantics of EMF model transfor-
mations by graph transformation. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A.,

https://www.artop.org/
http://www.moflon.org/
https://mbeddr.com/
http://dx.doi.org/10.1007/978-3-319-21155-8_8
http://dx.doi.org/10.1007/978-3-642-16145-2_6

58 D. Varró

Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 53–67. Springer, Heidelberg
(2008)

10. Cabot, J., Teniente, E.: Incremental integrity checking of UML/OCL conceptual
schemas. J. Syst. Softw. 82(9), 1459–1478 (2009)

11. Dávid, I., Ráth, I., Varró, D.: Streaming model transformations by complex
event processing. In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E.
(eds.) MODELS 2014. LNCS, vol. 8767, pp. 68–83. Springer, Heidelberg (2014).
http://dx.doi.org/10.1007/978-3-319-11653-2 5

12. Debreceni, C., Horváth, A., Hegedüs, A., Ujhelyi, Z., Ráth, I., Varró, D.: Query-
driven incremental synchronization of view models. In: 2nd Workshop on View-
Based, Aspect-Oriented and Orthographic Software Modelling (VAO 2014), pp.
31:31–31:38. ACM (2014). http://doi.acm.org/10.1145/2631675.2631677

13. Forgy, C.L.: RETE: a fast algorithm for the many pattern/many object pattern
match problem. Artif. Intell. 19(1), 17–37 (1982)

14. Hegedüs, Á., Horváth, Á., Ráth, I., Starr, R.R., Varró, D.: Query-driven soft trace-
ability links for models. Softw. Syst. Model. 1–24 (2014). http://dx.doi.org/10.
1007/s10270-014-0436-y

15. Hegedüs, Á., Horváth, Á., Varró, D.: A model-driven framework for guided design
space exploration. Autom. Softw. Eng. 22(3), 399–436 (2015). http://dx.doi.org/
10.1007/s10515-014-0163-1

16. Horváth, Á., Hegedüs, Á., Búr, M., Varró, D., Starr, R.R., Mirachi, S.: Hardware-
software allocation specification of ima systems for early simulation. In: Digital
Avionics Systems Conference (DASC). IEEE, Colorado Springs (2014)

17. Horváth, A., Ráth, I.: IncQuery gets Sirius: faster and better diagrams.
In: EclipseCon Europe (2015). https://www.eclipsecon.org/europe2015/session/
incquery-gets-sirius-faster-and-better-diagrams

18. Horváth, A., Ráth, I., Hegedüs, A., Balogh, A.: IoT supercharged: complex
event processing for MQTT with eclipse technologies. In: EclipseCon France
(2015). https://www.eclipsecon.org/france2015/session/decreasing-your-coffee-
consumption-incremental-code-regeneration

19. Horváth, A., Ráth, I., Starr, R.R.: Massif - the love child of Matlab Simulink and
Eclipse. In: EclipseCon NA (2015). https://www.eclipsecon.org/na2015/session/
massif-love-child-matlab-simulink-and-eclipse

20. IncQuery Labs Ltd.: CPS Demonstrator: a model transformation benchmark
(2015). https://github.com/IncQueryLabs/incquery-examples-cps/wiki/

21. Jouault, F., Tisi, M.: Towards incremental execution of ATL transformations. In:
Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 123–137. Springer,
Heidelberg (2010)

22. Kolovos, D., Rose, L., Garcia-Domnguez, A., Paige, R.: The Epsilon Book (2015).
http://www.eclipse.org/epsilon/doc/book/

23. Lee, E.A., Hartmann, B., Kubiatowicz, J., Rosing, T.S., Wawrzynek, J.,
Wessel, D., Rabaey, J.M., Pister, K., Sangiovanni-Vincentelli, A.L., Seshia, S.A.,
Blaauw, D., Dutta, P., Fu, K., Guestrin, C., Taskar, B., Jafari, R., Jones, D.L.,
Kumar, V., Mangharam, R., Pappas, G.J., Murray, R.M., Rowe, A.: The swarm at
the edge of the cloud. IEEE Des. Test 31(3), 8–20 (2014). http://dx.doi.org/10.1109/
MDAT.2014.2314600

24. van Pinxten, J., Basten, T.: Motrusca: interactive model transformation use case
repository. In: 7th Doctoral Symposium on Computer Science and Electronics,
p. 57 (2014)

25. Polarsys: Capella (2015). https://www.polarsys.org/capella/

http://dx.doi.org/10.1007/978-3-319-11653-2_5
http://doi.acm.org/10.1145/2631675.2631677
http://dx.doi.org/10.1007/s10270-014-0436-y
http://dx.doi.org/10.1007/s10270-014-0436-y
http://dx.doi.org/10.1007/s10515-014-0163-1
http://dx.doi.org/10.1007/s10515-014-0163-1
https://www.eclipsecon.org/europe2015/session/incquery-gets-sirius-faster-and-better-diagrams
https://www.eclipsecon.org/europe2015/session/incquery-gets-sirius-faster-and-better-diagrams
https://www.eclipsecon.org/france2015/session/decreasing-your-coffee-consumption-incremental-code-regeneration
https://www.eclipsecon.org/france2015/session/decreasing-your-coffee-consumption-incremental-code-regeneration
https://www.eclipsecon.org/na2015/session/massif-love-child-matlab-simulink-and-eclipse
https://www.eclipsecon.org/na2015/session/massif-love-child-matlab-simulink-and-eclipse
https://github.com/IncQueryLabs/incquery-examples-cps/wiki/
http://www.eclipse.org/epsilon/doc/book/
http://dx.doi.org/10.1109/MDAT.2014.2314600
http://dx.doi.org/10.1109/MDAT.2014.2314600
https://www.polarsys.org/capella/

Incremental Queries and Transformations: From Concepts 59

26. Ráth, I., Hegedüs, A., Varró, D.: Derived features for EMF by integrating advanced
model queries. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos,
D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 102–117. Springer, Heidelberg (2012)

27. Ráth, I., Horváth, A.: IoT supercharged: complex event processing for
MQTT with eclipse technologies. In: EclipseCon Europe (2015). https://www.
eclipsecon.org/europe2015/session/iot-supercharged-complex-event-processing-
mqtt-eclipse-technologies

28. Reder, A., Egyed, A.: Incremental consistency checking for complex design rules
and larger model changes. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C.
(eds.) MODELS 2012. LNCS, vol. 7590, pp. 202–218. Springer, Heidelberg (2012)

29. Semeráth, O., Barta, A., Horváth, Á., Szatmári, Z., Varró, D.: Formal validation of
domain-specific languages with derived features and well-formedness constraints.
Softw. Syst. Model. 1–36 (2015). http://dx.doi.org/10.1007/s10270-015-0485-x

30. Szárnyas, G., Izsó, B., Ráth, I., Harmath, D., Bergmann, G., Varró, D.: IncQuery-
D: a distributed incremental model query framework in the cloud. In: Dingel, J.,
Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol.
8767, pp. 653–669. Springer, Heidelberg (2014)

31. The Eclipse Foundation: EMF Model Query 2 (2012). http://wiki.eclipse.org/
EMF/Query2

32. The Eclipse Foundation: ATL (2015). http://www.eclipse.org/atl/
33. The Eclipse Foundation: EMF: The eclipse modeling framework (2015). http://

www.eclipse.org/emf
34. The Eclipse Foundation: MDT OCL (2015). http://www.eclipse.org/modeling/

mdt/?project=ocl
35. The Eclipse Foundation: Model to model project (2015). http://www.eclipse.org/

m2m/
36. The Eclipse Foundation: Papyrus (2015). https://eclipse.org/papyrus/
37. The Eclipse Foundation: Sirius (2015). http://www.eclipse.com/sirius/
38. The Eclipse Foundation: Xtend (2015). http://www.eclipse.org/xtend
39. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I.,

Szatmári, Z., Varró, D.: EMF-IncQuery: an integrated development envi-
ronment for live model queries. Sci. Comput. Program. 98, 80–99 (2015).
http://dx.doi.org/10.1016/j.scico.2014.01.004

40. Ujhelyi, Z., Szoke, G., Horváth, Á., Csiszár, N.I., Vidács, L., Varró, D., Ferenc, R.:
Performance comparison of query-based techniques for anti-pattern detection. Inf.
Softw. Technol. 65, 147–165 (2015). http://dx.doi.org/10.1016/j.infsof.2015.01.003

https://www.eclipsecon.org/europe2015/session/iot-supercharged-complex-event-processing-mqtt-eclipse-technologies
https://www.eclipsecon.org/europe2015/session/iot-supercharged-complex-event-processing-mqtt-eclipse-technologies
https://www.eclipsecon.org/europe2015/session/iot-supercharged-complex-event-processing-mqtt-eclipse-technologies
http://dx.doi.org/10.1007/s10270-015-0485-x
http://wiki.eclipse.org/EMF/Query2
http://wiki.eclipse.org/EMF/Query2
http://www.eclipse.org/atl/
http://www.eclipse.org/emf
http://www.eclipse.org/emf
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/m2m/
http://www.eclipse.org/m2m/
https://eclipse.org/papyrus/
http://www.eclipse.com/sirius/
http://www.eclipse.org/xtend
http://dx.doi.org/10.1016/j.scico.2014.01.004
http://dx.doi.org/10.1016/j.infsof.2015.01.003

Data, Information, and Knowledge
Engineering (Invited Talks)

Big Sequence Management: A glimpse
of the Past, the Present, and the Future

Themis Palpanas(B)

Paris Descartes University, Paris, France
themis@mi.parisdescartes.fr

Abstract. There is an increasingly pressing need, by several applica-
tions in diverse domains, for developing techniques able to index and
mine very large collections of sequences, or data series. Examples of such
applications come from biology, astronomy, entomology, the web, and
other domains. It is not unusual for these applications to involve num-
bers of data series in the order of hundreds of millions to billions, which
are often times not analyzed in their full detail due to their sheer size. In
this work, we describe recent efforts in designing techniques for indexing
and mining truly massive collections of data series that will enable sci-
entists to easily analyze their data. We show that the main bottleneck in
mining such massive datasets is the time taken to build the index, and we
thus introduce solutions to this problem. Furthermore, we discuss novel
techniques that adaptively create data series indexes, allowing users to
correctly answer queries before the indexing task is finished. We also
show how our methods allow mining on datasets that would otherwise
be completely untenable, including the first published experiments using
one billion data series. Finally, we present our vision for the future in big
sequence management research.

Keywords: Data management · Data indexing · Data analytics · Data
series

1 Introduction

[Motivation.] Data series have gathered the attention of the data management
community for almost two decades [12,35,49]. Data series are one of the most
common types of data, and are present in virtually every scientific and social
domain: they appear as audio sequences [26], shape and image data [54], finan-
cial [47], environmental monitoring [42] and scientific data [22], and they have
many diverse applications, such as in health care, astronomy, biology, economics,
and others.

Recent advances in sensing, networking, data processing and storage tech-
nologies have significantly eased the process of generating and collecting tremen-
dous amounts of data series at extremely high rates and volumes. It is not
unusual for applications to involve numbers of sequences in the order of hun-
dreds of millions to billions [1,2].
c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 63–80, 2016.
DOI: 10.1007/978-3-662-49192-8 6

64 T. Palpanas

[Data Series.] A data series, or data sequence, is an ordered sequence of data
points1. Formally, a data series T = (p1, ...pn) is defined as a sequence of points
pi = (vi, ti), where each point is associated with a value vi and a time ti in
which this recording was made, and n is the size (or length) of the series. If the
dimension that imposes the ordering of the sequence is time then we talk about
time series, though, a series can also be defined over other measures (e.g., angle
in radial profiles in astronomy, mass in mass spectroscopy, position in genome
sequences, etc.).

A key observation is that analysts need to process and analyze a sequence (or
subsequence) of values as a single object, rather than the individual points inde-
pendently, which is what makes the management and analysis of data sequences
a hard problem. Note that even though a sequence can be regarded as a point in
n-dimensional space, traditional multi-dimensional approaches fail in this case,
mainly due to the combination of the following two reasons: (a) the dimen-
sionality is typically very high, i.e., in the order of several hundreds to several
thousands, and (b) dimensions are strictly ordered (imposed by the sequence
itself) and neighboring values are correlated.

[Need for Data Series Indexing.] In this context, nearest neighbor queries
are of paramount importance, since they form the basis of virtually every data
mining, or other complex analysis task involving data series. However, nearest
neighbor queries across a large collection of data series are challenging, because
data series collections grow very large in practice, with datasets including bil-
lions, or even trillions of data series [13,40]. Thus, methods for answering nearest
neighbor queries rely on two main techniques: data summarization and indexing.
Data series summarization is used to reduce the dimensionality of the data series
[3,15,27,28,32,34,39], and then indexes are built on top of these summarizations
[5,39,46,49,52].

Nevertheless, as the data series collections grow in size, the operation
of indexing these collections can itself become the bottleneck in the entire
process. As an answer to this problem, we have developed the iSAX2.0 [12]
and iSAX2+ [13], the first data series indexes that inherently support bulk load-
ing, and thus aim to minimize the index building time. Bulk loading refers to
mechanisms that allow us to insert at once a large quantity of data in an index,
and as a result lead to fast index-building times. Furthermore, we describe the
ADS+ index [57,58], which is the first data series index than can start answer-
ing queries correctly before the entire index has been built. This goal is achieved
by building very fast the main-memory part of the index (i.e., only the inner
nodes), and deferring the materialization of the (expensive) leaf nodes to query
time. This novel approach considerably shrinks the data-to-query gap, allowing
users to start answering queries much faster than any previous approach, and
enabling truly exploratory analysis on very large data series collections.

1 For the rest of this paper, we are going to use the terms data series and sequence
interchangeably.

Big Sequence Management 65

[Need for Data Series Management Systems.] There are important reasons
why data Series (or Sequence) Management Systems (SMSs) are on the cusp of
becoming a focal point for research activity in data management. The solutions
that are currently available require custom code and the development of ad hoc
systems for various tasks, requiring huge investments in time and effort, and
duplication of effort across different teams. Even existing approaches based on
DBMSs [7], Column Stores [50], or Array Databases [51]) do not provide a viable
solution, since they have not been designed for managing and processing sequence
data. Therefore, they do not offer a suitable declarative query language, storage
model, auxiliary data structures (such as indexes), and optimization mechanism
that can support a variety of sequence query workloads in an efficient manner.

We argue that a SMS is necessary in order to enable big sequence analytics,
since it will offer the abstractions, tools, and automations needed for achieving
this goal. Just like databases abstracted the relational data management problem
and offered a black box solution that is now omnipresent, the proposed system
will make it feasible for analysts that are not experts in data series management,
as well as common users, to tap in the goldmine of the massive and ever-growing
data series collections they (already) have.

[Contributions.] The contributions of this work can be summarized as follows.

– We briefly review the work relevant to data series summarization, and data
series indexing. We present in more detail the iSAX summarization method,
and discuss how it can be used to construct a data series index. Furthermore,
we give an overview of the first data series indexes that support bulk loading,
namely, iSAX2.0 and iSAX2+, which lead to index-building times consider-
ably faster than previous approaches, allowing us to index datasets with 1
billion data series.

– We describe the first adaptive data series index, ADS+, which reduces by
an additional order of magnitude the time needed by the index before it
is ready to start answering queries. The ADS+ index starts by a minimal
tree structure based on summarizations of the data series. Then, the index
structure is continuously enriched as more queries arrive: each query that is
not covered by the current contents of the index, triggers additional data
to be brought inside the index, thus adaptively and automatically expanding
subtrees in the hot branches of the index. This enables ADS+ to answer several
hundreds of thousands of queries by the time that state-of-the-art techniques
are still in the index creation phase.

– We argue for the need to develop a general-purpose sequence management
system, and discuss the features of such a system: (a) it should be able to
cope with big data sequences, that is, massive collections of sequences, which
can be heterogeneous (i.e., originate from disparate domains and thus exhibit
very different characteristics), and which can have uncertainty in their values
(e.g., due to inherent errors in the measurements); (b) it should efficiently
support a wide range of sequence queries and mining operations at a scalable
fashion, while exploiting the benefits of physical and logical independence; and

66 T. Palpanas

(c) it should support cost-based optimization, which will enable the system
to automatically pick the right storage and execution strategies for answering
different queries.

Paper Organization. The rest of this paper2 is organized as follows. We struc-
ture our discussion in three main sections: we briefly review the main research
directions and results in the literature in Sect. 2; we describe the current state
of the art in data series indexing in Sect. 3; and we present our vision for the
future in Sect. 4. Finally, we conclude in Sect. 5.

Note that the focus of this paper is on the data management problems rele-
vant to massive sequence collections, and not on data mining and analysis, which
we do not discuss here. Nevertheless, we argue that in most cases, the correct
data management techniques can lead to significant time efficiency benefits for
the mining and analysis algorithms.

2 The Past: Summarizations and Indexes

2.1 On Data Series Queries

There are various types of data sequence queries that analysts need to per-
form: (a) simple Selection-Projection-Transformation (SPT) queries, and (b)
more complex Data-Mining (DM) queries. Simple SPT queries are those that
select sequences and project points based on thresholds, point positions, or spe-
cific sequence properties (e.g., above, first 10 points, peaks), or queries that
transform sequences using mathematical formulas (e.g., average). An example
SPT query could be one that returns the first x points of all the sequences that
have at least y points above a threshold. The majority of these queries could
be handled (albeit not optimally) by current database management systems,
which nevertheless, lack a domain specific query language that would support
and facilitate such processing.

DM queries on the other hand are more complex by nature: the processing
has to take into consideration the entire sequence, and treat as a single object,
therefore being much more complex to process. Examples under this category
are: queries by content (range and similarity queries, nearest neighbors), clus-
tering, classification, outlier patterns, frequent sub-sequences, and others. These
queries cannot be supported by current data management systems, since they
require specialized data structures, algorithms and storage methods in order to
be performed efficiently.

Note that the data series datasets and queries may refer to either static, or
streaming data. In the case of streaming data series, we are interested in the sub-
sequences defined by a sliding window. The same is also true for static data series
of very large size (e.g., an electroencephalogram, or a genome sequence), which we

2 A more detailed analysis of the topics discussed in this paper can be found in our
previous studies [12,13,17,18,29,36–38,57–59].

Big Sequence Management 67

divide into sub-sequences using a sliding (or shifting window). The length of these
sub-sequences is chosen so that it can contain the patterns of interest.

One of the most basic data mining tasks is that of finding similar data series
in a database [3]. The query comes in the form of a data series X and it says
“find me the data series in the database which is most similar to X”. Similarity
search is an integral part of most data mining procedures, such as clustering [53],
classification and deviation detection [11,16].

2.2 On Data Series Summarizations

A common approach for answering such queries is to perform a dimensionality
reduction, or summarization technique. Several such summarizations have been
proposed, such as the Discrete Fourier Transform (DFT) [3], the Discrete Wavelet
Transform (DWT) [15], the Piecewise Aggregate Approximation (PAA) [28,56],
the Adaptive Piecewise Constant Approximation (APCA) [14], or the Symbolic
Aggregate approXimation (SAX) [34].

Note that recent studies suggest that on average, there is little to differentiate
between these summarizations in terms of fidelity of approximation [19,37] (even
though it is the case that certain representations favor particular data types, e.g.,
DFT for star-light-curves, APCA for bursty data, etc.).

These summarizations are usually accompanied by distance bounding func-
tions that relate distances in the summarized space to distances in the original
space through either lower or upper-bounding. With such bounding functions,
we can index data series directly in the summarized space [5,39,46,49,52], and
use these indexes to efficiently answer nearest neighbor queries on large data
series collections.

2.3 On Data Series Indexing

Even though recent studies have shown that in certain cases sequential scans
can be performed very efficiently [40], such techniques are only applicable when
the database consists of a single, long data series, and queries are looking for
potential matches in small subsequences of this long data series. Such approaches,
however, do not bring benefit to the general case of querying a mixed database of
several data series. Therefore, indexing is required in order to efficiently support
data exploration tasks, which involve ad-hoc queries, i.e., the query workload is
not known in advance.

A large set of indexing methods have been proposed for the different
data series summarization methods, including traditional multidimensional
[9,21,29,39] and specialized [5,46,49,52] indexes. Moreover, various distance
measures have been presented that work on top of such indexes, e.g., Discrete
Time Warping (DTW) and Euclidean Distance (ED).

Indexing can significantly reduce the time to answer DM queries. Neverthe-
less, recent studies have observed that the mere process of building the index
can be prohibitively expensive in terms of time cost [12,13,57]: e.g., the process

68 T. Palpanas

of creating the index for 1 billion data series takes several days to complete.
This problem can be mitigated by the bulk loading technique. Bulk-loading has
been studied in the context of traditional database indexes, such as B-trees and
R-trees, and other multi-dimensional index structures [4,20,23,24,30,43].

In the following section, we give an overview of iSAX 2.0 [12] and
iSAX2+ [13], two data series indexes that implement a bulk loading strategy.

2.4 On the iSAX Summarization and Family of Indexes

The Piecewise Aggregate Approximation (PAA) [28,56] is a summarization tech-
nique that segments the data series in equal parts and calculates the average
value for each segment. An example of a PAA representation can be seen in
Fig. 1; in this case the original data series is divided into 4 equal parts. Based on
PAA, Lin et al. [34] introduced the Symbolic Aggregate approXimation (SAX)
representation that partitions the value space in segments of sizes that follow
the normal distribution. Each PAA value can then be represented by a character
(i.e., a small number of bits) that corresponds to the segment that it falls into.
This leads to a representation with a very small memory footprint, an important
requirement for managing very large data series collections. A segmentation of
size 3 can be seen in Fig. 1, where the data series is represented with the SAX
word “10 10 11”.

11 0 0

1 0 0

PAA points R3

Intermediate node

Leaf node

d1

00 01

01

00

11

10

0 1

0

1

0
1

d2

d3

ROOT

10 0 0

0 0 0

11 00 0

11 01 0

00

01

10

11
11

N
(0

, 1
)10 10

1 1 1

Fig. 1. An example of iSAX and SAX representations [57]

The SAX representation was later extended to indexable SAX (iSAX) [49],
which allows variable cardinality for each character of a SAX representation. An
iSAX representation is composed of a set of characters that form a word, and
each word represents a data series. In the case of a binary alphabet, with a word
size of 3 characters and a maximum cardinality of 2 bits, we could have a set of
data series (two in the following example) represented with the following words:
002102012, 002112012, where each character has a full cardinality of 2 bits and

Big Sequence Management 69

each word corresponds to one data series. Reducing the cardinality of the second
character in each word, we get for both words the same iSAX representation:
00211012 (11 corresponds to both 10 and 11, since the last bit is trailed when the
cardinality is reduced). By starting with a cardinality of 1 for each character in
the root node and by gradually performing splits by increasing the cardinality
by one character at a time, one can build a tree index [48,49]. Such cardinality
reductions can be efficiently calculated with bit mask operations.

The iSAX 2.0 and iSAX2+ Indexes. Inserting a large collection of time
series into the index iteratively is a very expensive operation, involving a high
number of disk I/O operations [12,13]. This is because for each time series,
we have to store the raw data series on disk, and insert into the index the
corresponding iSAX representation. In order to speedup the process of building
the index, we developed iSAX 2.0 [12] and iSAX2+ [13], the first data series
indexes with a bulk loading strategy.

The key idea is to effectively group the data series that will end up in a
particular subtree of the index, and process them all together. In order to achieve
this goal, we use two main memory buffer layers, namely, the First Buffer Layer
(FBL), and the Leaf Buffer Layer (LBL) [13]. The FBL corresponds to the
children of the root of the index, while the LBL corresponds to the leaf nodes.
The role of the buffers in FBL is to cluster together data series that will end
up in the same subtree of the index, rooted in one of the direct children of the
root. In contrast, the buffers in LBL are used to gather all the data series of leaf
nodes, and flush them to disk.

The algorithm operates in two phases, which alternate until the entire dataset
is processed, as follows (for more details, refer to [13]). During Phase 1, the
algorithm reads data series and inserts them in the corresponding buffer in the
FBL. This phase continues until the main memory is full. Then Phase 2 starts,
where the algorithm proceeds by moving the data series contained in each FBL
buffer to the appropriate LBL buffers. During this phase, the algorithm processes
the buffers in FBL sequentially. For each FBL buffer, the algorithm creates all the
necessary internal and leaf nodes, in order to index these data series. When all
data series of a specific FBL buffer have been moved down to the corresponding
LBL buffers, the algorithm flushes these LBL buffers to disk.

The difference between iSAX 2.0 [12] and iSAX2+ [13] is that the former
treats the data series raw values (i.e., the detailed sequence of all the values
of the data series) and their summarizations (i.e., the iSAX representations)
together, while the latter uses just the summarizations in order to build the
index, and only processes the raw values in order to insert them to the correct
leaf node. In both cases, the goal is to minimize the random disk accesses, by
making sure that the data series that end up in the same leaf node of the index
are (temporarily) stored in the same (or contiguous) disk pages. Indeed, the
experiments demonstrate that iSAX 2.0 and iSAX2+ significantly outperform
previous approaches, reducing the time required to index 1 billion data series by
72 % and 82 %, respectively.

70 T. Palpanas

3 The Present: Adaptive Indexing

The target of indexing techniques is to make query processing efficient, so that
analysts can repeatedly fire several exploratory queries with quick response
times. However, even with a data series index that implements bulk loading,
the amount of time required to build the index can be a significant bottleneck:
for example, it takes more than a full day to build a state-of-the-art index over a
data set of 1 billion data series in a modern server machine [57]. The main cost
components of indexing are: (a) reading the data to be indexed, (b) spilling the
indexed data and structures to disk, and (c) incurring the computation costs of
figuring out where each new data entry belongs to (in the index structure). As
the data size grows, the total indexing cost increases dramatically, to a degree
where it creates a big and disruptive gap between the time when the data is
available and the time when one can actually have access to the data. In fact, as
the data grows, the query processing cost increasingly becomes a smaller fraction
of the total cost (indexing + querying) [57].

As data sizes grow even bigger, waiting for several days before posing the first
queries can be a major show-stopper for many applications both in businesses
and in sciences. In addition, firing exploratory queries, i.e., queries which are not
known a priori, is becoming quickly a common scenario. That is, in many cases,
analysts and scientists need to explore the data before they can figure out what
the next query is, or even which experiment to perform next; the output of one
query inspires the formulation of the next query, and drives the experimental
process.

In this section, we describe the ADS+ index, which enable fast indexing and
a low data to query gap, when dealing with very large collections of data series.

3.1 The ADS+ Index

Even though iSAX 2.0 and iSAX2+ can effectively cope with very large data
series collections, users still have to wait for extended periods of time before
being able to start answering queries. We would instead like to allow users to
answer queries much sooner.

The ADS+ index [57] answers this problem by performing only a few basic
steps, mainly creating the basic skeleton of the index tree, which contains con-
densed information on the input data series. As queries arrive, ADS+ fetches
data series from the raw data and moves only those data series needed to cor-
rectly answer the queries inside the index. Future queries may be completely
covered by the contents of the index, or alternatively ADS+ adaptively and
incrementally fetches any missing data series directly from the raw data set.
When the workload stabilizes, ADS+ can quickly serve fully contained queries
while as the workload shifts, ADS+ may temporarily need to perform some extra
work to adapt before stabilizing again. In addition, ADS+ does not require a
fixed leaf size; it dynamically and adaptively adjusts the leaf size in hot areas of
the index; all leaves start with a reasonably big size to guarantee fast indexing

Big Sequence Management 71

times, but the more a given area is queried, the more the respective leaves are
split into smaller ones to enhance query times.

ProposedAlgorithm. The main intuition (for more details, refer to [57]) is that
one can quickly build the index tree using a large leaf size, saving time from very
expensive split operations, and rely on queries that are then going to force splits in
order to reduce the leaf sizes in the hot areas of the index. ADS+ uses two differ-
ent leaf sizes: a big build-time leaf size for optimal index construction, and a small
query-time leaf size for optimal access costs. This allows us to make future queries
benefit from every split operation performed, finding the relevant data by travers-
ing the tree, and not by scanning larger leaves. Initially, the index tree is built as
in plain ADS, with a constant leaf size, equal to build-time leaf size. In traditional
indexes, this leaf size remains the same across the life-time of the index. In our
case, when a query that needs to search a partial leaf arrives, ADS+ refines its
index structure on-the-fly by recursively splitting the target leaf, until the target
sub-leaf becomes smaller or equal to the query-time leaf size.

Adaptive and on demand leaf splitting allow ADS+ to have both fast index
building and fast query processing. It does not waste time on creating fine-
grained versions of each sub-tree of the index, but rather concentrates on the
parts that are related to the current workload. When queries focus to a subset of
the dataset, ADS+ does not need to exhaustively index and optimize all data;
it rather concentrates on the most related sub-trees of the index.

Another optimization that gives ADS+ a lightweight behavior is that it delays
leaf materialization even further. In particular, when traversing the tree for query
processing, which leads to adaptive leaf splitting, ADS+ does not materialize the
initial big leaf, nor all the leaves it creates on its way to the target small leaf.
For example, when ADS+ needs to split a big leaf X and this results in X being
split recursively into n new nodes until we reach the target leaf Z with a small
leaf size, ADS+ fully materializes only the leaf Z. For the rest of the leaves,
ADS+ uses the partial information contained in the leaves to perform the splits,
i.e., the iSAX representations. This results in (a) less computation as opposed to
having to split based on raw data, (b) less I/O as SAX representations are much
smaller, and (c) it enhances the adaptive behavior of ADS+ as it materializes
only the truly interesting data that the queries are targeting.

An example of this process is shown in Fig. 2. Figure 2(a) depicts the state
of ADS+ after initialization and before any query has arrived, while Fig. 2(b)
shows how a single query results in adaptive splits of the right sub-tree until the
target leaf node is fully materialized; intermediate nodes remain in partial mode
and with a variable leaf size.

Experimental Results. For the purposes of the experimental evaluation, we
implemented from scratch an optimized version of iSAX 2.0 in C and compiled
with GCC 4.6.3 under Ubuntu Linux 12.04.2. We used an Intel Xeon machine
with 64 GB of RAM and 4x 2 TB, SATA, 7.2K RPM Hard Drives in RAID0. All
algorithms are set such as they make maximum use of all available memory.

72 T. Palpanas

Fig. 2. The ADS+ index [57]

Fig. 3. Performance comparison between ADS+ and other indexes [57]

We study the behavior up to 1 billion data series and with 105 random
queries. Regarding leaf sizes, we use the optimal leaf size observed for each index
strategy, i.e., 20K for iSAX 2.0, and for ADS+ 2K build-time and 10 query-time
leaf size. Figure 3(a) shows the total time needed to build the index and answer
all queries. Across all data sizes, ADS+ consistently outperforms iSAX 2.0 by a
big margin. For 1 billion data series, ADS+ answers all 105 queries in less than
5 h, while iSAX 2.0 needs more than 35 h. By adaptively expanding the tree and
adjusting leaf sizes only for the hot workload parts, ADS+ enjoys a 7x gain over
full indexing in iSAX 2.0. Also, the rate at which the cost of ADS+ grows is
significantly smaller than that of iSAX 2.0; For example, going from 500 M to
1 B data series, iSAX 2.0 needs more than twice the time, while ADS+ enjoys a
sub-linear cost increase.

Big Sequence Management 73

One interesting question is how indexes which are tailored for data series
search compare against state-of-the-art spatial indexes. In this experiment, we
compare ADS+ and iSAX 2.0 against KD-Tree [8], R-Tree [21], and X-Tree [9],
which is a state-of-the-art adaptive version of R-Tree. Here, we use a set of 100
million data series. Figure 3(b) depicts the time needed to complete the index
building phase for each index. Overall, both data series tailored indexes, iSAX
2.0 and ADS+, significantly outperform the more generic spatial indexes. For
example, iSAX 2.0 is one order of magnitude faster than R-Tree while ADS+ is
two orders of magnitude faster, and more than an order of magnitude faster than
KD-Tree. The raw benefit comes from the fact iSAX 2.0 and ADS+ are tailored
to perform efficient comparisons of SAX representations (with bitwise opera-
tions). ADS+ being adaptive enjoys further benefits as we discuss in previous
experiments as well. X-Tree is significantly slower as a result of its more expen-
sive index building phase which focuses on minimizing overlap between nodes.
Naturally, this helps query processing times as less overlap allows queries to
focus faster on data of interest. However, as we scale to big data, index building
is the main bottleneck and thus X-Tree is prohibitively expensive.

4 The Future: Sequence Management System

Even though analysts in a variety of domains need to manage and process
increasingly large data series collections, there is currently no general-purpose
solution for the efficient management of sequence datasets. The techniques and
tools that are available are rather fragmented, each one addressing only specific
and narrow needs.

As a result, the few expert analysts need to invest heavily in the development
of customized tools for processing their datasets in order to identify patterns,
gain insights, detect abnormalities, and extract useful knowledge, while the many
analysts that are not experts are simply not able to process their data. Consider
for instance, that for several of their analysis tasks, neuroscientists are currently
reducing each of their 3,000 point long sequences to a single number (the global
average) in order to be able to analyze their huge datasets [1].

We note that current relational DBMSs [7], Column Stores [50], and Array
Databases [51] could eventually be used to store and process sequences. Never-
theless, they cannot efficiently support complex data mining queries, (that is,
queries that treat the entire sequence as a single object, such as sequence simi-
larity queries, clustering, classification, etc.), which require fast distance compu-
tations among the sequences in the collection, since they do not natively support
any mechanisms for pruning the search space.

Consequently, these systems cannot offer optimization functionality for the
execution of DM queries, which is a key requirement for efficient processing and
analysis of very large sequence collections. Therefore, in this section we argue for
the need to design and develop a general-purpose Sequence Management System
(SMS).

A key element of a SMS is the design of a cost-based optimizer for the
execution of sequence queries, with a special focus on complex data mining

74 T. Palpanas

Fig. 4. The architecture of a data series management system

queries. There is currently no optimizer available for sequence queries, even
though it is a necessary component for efficient and scalable processing and
analytics. As we discuss next, traditional approaches fail in our setting, and
therefore, major breakthroughs are needed in this direction.

The optimizer should depend on and be closely related to the storage
and indexing solutions for sequences, two research areas that should also be
addressed. The design of the data model should accommodate various sequence
summarization techniques, including novel techniques for uncertain sequences,
and innovative access methods (i.e., storage and indexing) that will be able to
adapt to the user needs (i.e., the query workload). Moreover, particular attention
should be paid to optimizations specific to data sequence techniques relevant to
modern hardware and distributed environments.

In Fig. 4, we illustrate the general architecture of a SMS. We elaborate on
the individual components of the system in the following sections. We discuss
optimization last, since it touches on the rest of the components, and also include
a discussion on the need for a data sequence benchmark.

4.1 Data Model

As we mentioned earlier, neither the relational model nor the array model can
adequately capture the characteristics of sequences. In the case of relational
data, there are various options available for translating sequences into relations
and each one of them has significant limitations. On the other hand, in Array
Databases we lack the expressive power to define collections of sequences, and
are restricted to defining large multi-dimensional matrices that encode both
sequence and meta-data on an equal basis, which hinders efficiency.

An ideal sequence model should instead be able to effectively describe collec-
tions of sequences and allow us to do operations on them. It should allow us for
example to select sequences based on meta-data or based on their values, project
them as complete sequences, or sub-sequences, and join them in a variety of ways
for computing calculations. At the same time such a model should intuitively

Big Sequence Management 75

allow for both intra-sequence and inter-sequence aggregations, and be compati-
ble with different sequence summarization methods. Finally, the corresponding
query language could be based on previous works [31,44], suitably extended to
deal with data series as single objects, as well as with DM queries.

4.2 Data Structures

A large collection of access methods has been proposed in the literature, able to
evaluate different queries under various settings, including both indexes and
scan-based methods. Recent work in this area is encouraging [13,57], with
iSAX2+ demonstrating scalability to dataset sizes 2–3 orders of magnitude more
than the current state of the art, and ADS+ exhibiting a further 7-fold improve-
ment in the time to prepare an index on 1 billion data series and answer 100,000
approximate queries.

Other promising directions should also be explored, such as methods that rely
on fast scans of the data [27,40]. These directions can provide viable alternatives
to the indexes discussed above, and in several situations can be the access method
of choice. This is especially true given the data management trend on large-scale
parallelization, the usage of compression, multi-cores, SIMD architectures and
the exploitation of available GPUs [41].

We also propose to extend these techniques along two orthogonal dimen-
sions: supporting queries of varying length, and uncertain sequences. We note
that existing techniques only consider collections of data series with the same
length, leading to indexes that can answer queries of a fixed (predefined) length.
As a result, new access methods that also consider varying length queries have
to be developed. Contrary to previous approaches [25], we argue that the infor-
mation already captured by certain data sequence indexes can be exploited, and
is possible to develop new varying-length query answering techniques on top of
this.

In several cases, data sequences can be uncertain, that is, the raw data have
an inherent uncertainty in their values (e.g., because of errors introduced by
the measurement devices), and integrate the solutions to the proposed system.
There exist promising studies on modeling and analyzing uncertain sequences
[6,45,55], but more work is needed in order to improve the quality and time per-
formance [17]. A promising direction in this respect is the modeling of uncertain
sequences with possible world semantics based on full-joint distributions, which
can retain the correlation information among neighboring points [18]. Neverthe-
less, there are still important scalability issues to be overcome in order for such
techniques to be used with large sequence collections.

4.3 Distributed Processing

During the last years there has been a lot of research on MapReduce systems,
where various methods have been proposed to support the indexing of large mul-
tidimensional data [33], where an index is distributed among several compute

76 T. Palpanas

nodes. Nevertheless, up to this point work on sequential data query process-
ing using MapReduce has mainly concentrated on efficiently performing parallel
scans of the complete dataset, while all indexing-related studies only consider
read-only operations. Even though various approaches have been proposed for
speeding up iterative algorithms, none of the proposed models is a suitable match
for the algorithms and techniques we need, where timely communications among
workers play a crucial role in reducing the amount of total work done. Therefore,
there is need for more work in this area, taking into consideration new paradigms
as well [10].

4.4 Cost Based Optimization

As we discussed above, there can be multiple different execution strategies for
answering the same query, including the various choices of serial scans, indexes,
and processing methods (e.g., parallelization, GPU, etc.). The challenge in choos-
ing the right execution strategy is to estimate the amount of data that such a
query will need to access before executing it. For example, a fast parallel SIMD-
enabled scan on compressed data might be a better option than the use of a
non-optimized index when SIMD instructions are available, but not a better
choice when such instructions are not available. All these characteristics have to
be exploited by the cost-based optimization models, and considered in a way that
is transparent to the user. This problem becomes even more challenging when
complex queries involving several operators need to be executed (e.g., consider
an analysis task that combines a series of SPT operators as a pre-processing
step, and then applies a DM operator).

While in traditional relational databases there are simple and efficient ways in
order to estimate query selectivity [7], this is not the case for sequence similarity
queries that lie in the heart of most sequence mining algorithms. The challenges
in this context arise from the combination of the very high dimensional and
sequential nature (i.e., the inherent correlations among neighboring values) of
these data.

Up to this point, no efficient methods have been proposed to solve this prob-
lem, and ground-breaking work needs to be done. We believe that a promising
direction is to carefully study the hardness of a query: being able to control
the effort needed to answer a query can be the right step stone for solving the
inverse problem, that of estimating the effort it will take to answer a query,
before executing it.

4.5 Data Series Benchmarking

Despite the rich literature on methods for indexing and answering similarity
queries on data sequences, we note the absence of any related benchmarks. We
argue for the need of fair benchmarks that can stress-test sequence process-
ing techniques in a controlled way and to pre-defined levels of query hardness.

Big Sequence Management 77

Such benchmarks will be designed to capture differences in the quality of sum-
marization methods, indexes and storage methods, when working in combina-
tion, which is what makes the design of such a benchmark a challenging task.
Our ongoing work constitutes the first solution towards this directions: it hows
that the amount of effort employed by data series indexes can be consistently
captured across different indexing approaches, using implementation-invariant
measures [59].

5 Conclusions

In this work, we discussed the state-of-the-art data series indexing approaches
that can cope with the data deluge. We reviewed the iSAX 2.0 and iSAX2+
indexes, which are the first specifically designed for very large collections of data
series, and use novel algorithms for efficient bulk loading. We also described the
first adaptive indexing approach, ADS+, where the index is built incrementally
and adaptively, resulting in a very fast initialization process. We experimentally
validated the proposed algorithms, including the first published experiments to
consider datasets of size up to one billion data series, showing that we can deliver
orders of magnitude improvements in the time required to build the index, and
to start answering queries.

Furthermore, we observed that even though data series are a very common
data type, there is currently no system that can inherently accommodate, man-
age, and support complex analytics for this type of data. Therefore, in this
paper we argue for the special nature of the sequences data type, and articulate
the necessity for rigorous work on data series management systems. We pro-
pose a sequence management system that will employ a data model specialized
to sequences. The system will be distributed by design, and consider the large
volume of sequences, their heterogeneity (in terms of properties and character-
istics), and possible uncertainty in their values. Finally, the system will support
cost-based optimization, thus, leading to the desired scalability for big sequence
analytics.

Acknowledgements. I would like to thank my collaborators (in alphabetical order):
Alessandro Camerra, Johannes Gehrke, Stratos Idreos, Eamonn Keogh, Michele
Linardi, and Yin Lou. Special thanks go to Kostas Zoumpatianos, who has been the
driving force behind several of the ideas discussed in this paper.

References

1. Adhd-200 (2011). http://fcon 1000.projects.nitrc.org/indi/adhd200/
2. Sloan digital sky survey (2015). https://www.sdss3.org/dr10/data access/volume.

php
3. Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient similarity search in sequence

databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer,
Heidelberg (1993)

https://www.sdss3.org/dr10/data_access/volume.php
https://www.sdss3.org/dr10/data_access/volume.php

78 T. Palpanas

4. An, N., Kanth, R., Kothuri, V., Ravada, S.: Improving performance with bulk-
inserts in oracle r-trees. In: VLDB, pp. 948–951. VLDB Endowment (2003)

5. Assent, L., Krieger, R., Afschari, F., Seidl, T.: The TS-tree: efficient time series
search and retrieval. In EDBT (2008)

6. Aßfalg, J., Kriegel, H.-P., Kröger, P., Renz, M.: Probabilistic similarity search for
uncertain time series. In: Winslett, M. (ed.) SSDBM 2009. LNCS, vol. 5566, pp.
435–443. Springer, Heidelberg (2009)

7. Astrahan, M.M., Blasgen, M.W., Chamberlin, D.D., Eswaran, K.P., Gray, J., Grif-
fiths, P.P., King, W.F., Lorie, R.A., McJones, P.R., Mehl, J.W., Putzolu, G.R.,
Traiger, I.L., Wade, B.W., Watson, V.: System R: relational approach to database
management. TODS 1(2), 97–137 (1976)

8. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975)

9. Berchtold, S., Keim, D.A., Kriegel, H.P.: The X-tree: an index structure for high-
dimensional data. In: VLDB, pp. 28–39 (1996)

10. Bernstein, P., Bykov, S., Geller, A., Kliot, G., Thelin, J.: Orleans: distributed
virtual actors for programmability and scalability. MSR-TR-2014-41 (2014)

11. Bu, Y., wing Leung, T., chee Fu, A.W., Keogh, E., Pei, J., Meshkin, S.: Wat:
finding top-k discords in time series database. In: SDM, pp. 449–454 (2007)

12. Camerra, A., Palpanas, T., Shieh, J., Keogh, E.: iSAX 2.0: indexing and mining
one billion time series. In: ICDM (2010)

13. Camerra, A., Shieh, J., Palpanas, T., Rakthanmanon, T., Keogh, E.J.: Beyond
one billion time series: indexing and mining very large time series collections with
iSAX2+. KAIS 39(1), 123–151 (2014)

14. Chakrabarti, K., Keogh, E., Mehrotra, S., Pazzani, M.: Locally adaptive dimen-
sionality reduction for indexing large time series databases. In: SIGMOD (2002)

15. Chan, K.-P., Fu. A.-C.: Efficient time series matching by wavelets. In: ICDE (1999)
16. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-

put. Surv. 41(3), 1–58 (2009)
17. Dallachiesa, M., Nushi, B., Mirylenka, K., Palpanas, T.: Uncertain time-series sim-

ilarity: return to the basics. PVLDB 5(11), 1662–1673 (2012)
18. Dallachiesa, M., Palpanas, T., Ilyas, I.F.: Top-k nearest neighbor search in uncer-

tain data series. PVLDB 8(1), 13–24 (2014)
19. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and

mining of time series data: experimental comparison of representations and dis-
tance measures. PVLDB 1, 1542–1552 (2008)

20. Soisalon-Soininen, E., Widmayer, P.: Single and bulk updates in stratified trees:
an amortized and worst-case analysis. In: Klein, R., Six, H.-W., Wegner, L. (eds.)
Computer Science in Perspective. LNCS, vol. 2598, pp. 278–292. Springer, Heidel-
berg (2003)

21. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIG-
MOD (1984)

22. Huijse, P., Estévez, P.A., Protopapas, P., Principe, J.C., Zegers, P.: Computa-
tional intelligence challenges and applications on large-scale astronomical time
series databases. IEEE Comp. Int. Mag. 9(3), 27–39 (2014)

23. Van den Bercken, J., Seeger, B.: An evaluation of generic bulk loading techniques.
In: VLDB, pp. 461–470 (2001)

24. Van den Bercken, J., Widmayer, P., Seeger, B.: A generic approach to bulk loading
multidimensional index structures. In: VLDB (1997)

25. Kadiyala, S., Shiri, N.: A compact multi-resolution index for variable length queries
in time series databases. KAIS 15(2), 131–147 (2008)

Big Sequence Management 79

26. Kashino, K., Smith, G., Murase, H.: Time-series active search for quick retrieval
of audio and video. In: ICASSP (1999)

27. Kashyap, S., Karras, P.: Scalable knn search on vertically stored time series. In:
KDD (2011)

28. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction
for fast similarity search in large time series databases. KAIS 3(3), 263–286 (2000)

29. Keogh, E.J., Palpanas, T., Zordan, V.B., Gunopulos, D., Cardle, M.: Indexing large
human-motion databases. In: VLDB, pp. 780–791 (2004)

30. Arge, L., Hinrichs, K.H., Vahrenhold, J., Vitter, J.V.: Efficient bulk operations on
dynamic R-trees. Algorithmica 33(1), 104–128 (2002)

31. Lerner, A., Shasha, D.: Aquery: query language for ordered data, optimization
techniques, and experiments. In: VLDB (2003)

32. Li, C.S., Yu, P., Castelli, V.: Hierarchyscan: a hierarchical similarity search algo-
rithm for databases of long sequences. In: ICDE (1996)

33. Liao, H., Han, J., Fang, J.: Multi-dimensional index on hadoop distributed file
system. In: NAS (2010)

34. Lin, J., Keogh, E., Lonardi, S.: A symbolic representation of time series, with
implications for streaming algorithms. In: DMKD (2003)

35. Lin, J., Khade, R., Li, Y.: Rotation-invariant similarity in time series using bag-
of-patterns representation. J. Intell. Inf. Syst. 39(2), 287–315 (2012)

36. Palpanas, T.: Data series management: the road to big sequence analytics. SIG-
MOD Rec. 44(2), 47–52 (2015)

37. Palpanas, T., Vlachos, M., Keogh, E.J., Gunopulos, D.: Streaming time series
summarization using user-defined amnesic functions. IEEE Trans. Knowl. Data
Eng. 20(7), 992–1006 (2008)

38. Palpanas, T., Vlachos, M., Keogh, E.J., Gunopulos, D., Truppel, W.: Online
amnesic approximation of streaming time series. In: ICDE, pp. 339–349 (2004)

39. Rafiei, D., Mendelzon, A.: Similarity-based queries for time series data. In: SIG-
MOD (1997)

40. Rakthanmanon, T., Campana, B.J.L., Mueen, A., Batista, G., Westover, M.B.,
Zhu, Q., Zakaria, J., Keogh, E.J.: Searching and mining trillions of time series
subsequences under dynamic time warping. In: KDD (2012)

41. Raman, V., Attaluri, G.K., Barber, R., Chainani, N., Kalmuk, D., KulandaiSamy,
V., Leenstra, J., Lightstone, S., S. Liu, S., Lohman, G.M., Malkemus, T., Müller,
R., Pandis, I., Schiefer, B., Sharpe, D., Sidle, R., Storm, A.J., Zhang, L.: DB2
with BLU acceleration: so much more than just a column store. PVLDB 6(11),
1080–1091 (2013)

42. Raza, U., Camerra, A., Murphy, A.L., Palpanas, T., Picco, G.P.: Practical data
prediction for real-world wireless sensor networks. IEEE Trans. Knowl. Data Eng.
27(8), 2231–2244 (2015)

43. Choubey, R., Chen, L., Rundensteiner, E.A.: GBI: a generalized R-tree bulk-
insertion strategy. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD
1999. LNCS, vol. 1651, pp. 91–108. Springer, Heidelberg (1999)

44. Sadri, R., Zaniolo, C., Zarkesh, A.M., Adibi, J.: A sequential pattern query lan-
guage for supporting instant data mining for e-services. In: VLDB (2001)

45. Sarangi, S.R., Murthy, K.: DUST: a generalized notion of similarity between uncer-
tain time series. In: KDD (2010)

46. Schäfer, P., Högqvist, M.: SFA: a symbolic fourier approximation and index for
similarity search in high dimensional datasets. In: EDBT (2012)

47. Shasha, D.: Tuning time series queries in finance: case studies and recommenda-
tions. IEEE Data Eng. Bull. 22(2), 40–46 (1999)

80 T. Palpanas

48. Shieh, J., Keogh, E.: iSAX: disk-aware mining and indexing of massive time series
datasets. DMKD 19(1), 24–57 (2009)

49. Shieh, J., Keogh, E.J.: iSAX: indexing and mining terabyte sized time series. In:
KDD, pp. 623–631 (2008)

50. Stonebraker, M., Abadi, M., Batkin, D.J., Chen, J. X., Cherniack, M., Ferreira,
M., Lau, E., Lin, A., Madden, S., O’Neil, E.J., O’Neil, P.E., Rasin, A., Tran, N.,
Zdonik, S.B.: C-store: a column-oriented DBMS. In: VLDB (2005)

51. Stonebraker, M., Brown, P., Poliakov, A., Raman, S.: The architecture of SciDB.
In: Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol.
6809, pp. 1–16. Springer, Heidelberg (2011)

52. Wang, Y., Wang, P., Pei, J., Wang, W., Huang, S.: A data-adaptive and dynamic
segmentation index for whole matching on time series. PVLDB 6(10), 793–804
(2013)

53. Warren Liao, T.: Clustering of time series data - a survey. Pattern Recogn. 38(11),
1857–1874 (2005)

54. Ye, L., Keogh, E.J.: Time series shapelets: a new primitive for data mining. In:
KDD (2009)

55. Yeh, M., Wu, K., Yu, P.S., Chen, M.: PROUD: a probabilistic approach to process-
ing similarity queries over uncertain data streams. In: EDBT (2009)

56. Yi, B., Faloutsos, C.: Fast time sequence indexing for arbitrary Lp norms. In:
VLDB (2000)

57. Zoumpatianos, K., Idreos, S., Palpanas, T.: Indexing for interactive exploration of
big data series. In: SIGMOD (2014)

58. Zoumpatianos, K., Idreos, S., Palpanas, T.: RINSE: interactive data series explo-
ration with ADS+. PVLDB 8(12), 1912–1923 (2015)

59. Zoumpatianos, K., Lou, Y., Palpanas, T., Gehrke, J.: Query workloads for data
series indexes. In: KDD (2015)

Pay-as-you-go Data Integration:
Experiences and Recurring Themes

Norman W. Paton1(B), Khalid Belhajjame2, Suzanne M. Embury1,
Alvaro A.A. Fernandes1, and Ruhaila Maskat1

1 School of Computer Science, University of Manchester,
Oxford Road, M13 9PL Manchester, UK

{npaton,suzanne.m.embury,alvaro.a.fernandes}@manchester.ac.uk
2 Université Paris Dauphine, Place du Marchal de Lattre de Tassigny,

75775 Paris Cedex 16, France
Khalid.Belhajjame@dauphine.fr

Abstract. Data integration typically seeks to provide the illusion that
data from multiple distributed sources comes from a single, well managed
source. Providing this illusion in practice tends to involve the design of
a global schema that captures the users data requirements, followed by
manual (with tool support) construction of mappings between sources
and the global schema. This overall approach can provide high quality
integrations but at high cost, and tends to be unsuitable for areas with
large numbers of rapidly changing sources, where users may be willing
to cope with a less than perfect integration. Pay-as-you-go data inte-
gration has been proposed to overcome the need for costly manual data
integration. Pay-as-you-go data integration tends to involve two steps.
Initialisation: automatic creation of mappings (generally of poor qual-
ity) between sources. Improvement: the obtaining of feedback on some
aspect of the integration, and the application of this feedback to revise
the integration. There has been considerable research in this area over a
ten year period. This paper reviews some experiences with pay-as-you-go
data integration, providing a framework that can be used to compare or
develop pay-as-you-go data integration techniques.

1 Introduction

Data integration brings together data from multiple sources, in ways that isolate
users from inconsistent representations. Data integration has been seen as an
important area for decades, as commercial organisations often find themselves
with large numbers of databases, whose combined use can be important for data
analysis [5]. More recently, the growing interest in big data has given rise to
the realisation that data wrangling – the process of combining and cleaning the
data sets that are required for analysis – is an important, and expensive, part
of many big data projects [28].

In classical data integration, data integration and domain experts work
together, with tool support, to capture the data requirements of an application,

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 81–92, 2016.
DOI: 10.1007/978-3-662-49192-8 7

82 N.W. Paton et al.

and to identify how data from different sources can be combined to meet these
requirements. This approach, with significant expert input, is at the high-cost,
high-quality end of the spectrum, and is suitable for, and targeted at, reasonably
stable enterprise environments.

The classical approach is less well suited to settings in which: there are enor-
mous numbers of sources; sources come, go or change rapidly; there are diverse
or unstable requirements; or there is no budget for employing data integrators.
Such settings are not uncommon. For example, in many domains there may be
hundreds or thousands of potentially relevant data sets on the web, from which
structured representations can be obtained using data extraction techniques [20].
In such settings, systematic manual data integration that produces a perfect
solution is not a practical proposition. For example, consider an e-commerce
company that is interested in price comparison with competitors; relevant data
sources come and go on a daily basis, and both format and contents change reg-
ularly. A typical online retailer will struggle to manually integrate the relevant
sources in order to support well-informed decisions.

Pay-as-you-go data integration, sometimes referred to as dataspaces [22], has
been proposed as an alternative to the classical approach. A range of proposals
have been made for pay-as-you-go approaches [23], which tend to involve: Ini-
tialisation: automatic creation of integrations that are generally of poor quality;
followed by Improvement: the obtaining of feedback on some aspect of the inte-
gration, and the application of this feedback to revise the integration. Feedback
may be: explicit, e.g. annotations on correct/incorrect result values; or implicit,
e.g. inferring matches or rankings from query logs.

Although there have been a good many proposals for pay-as-you-go data inte-
gration techniques, we know of little work on methodologies to enable their sys-
tematic development. In this paper, we identify some themes that have recurred
across multiple proposals, and describe how these themes can be used to char-
acterise the behaviour of several representative proposals.

The paper is structured as follows. Section 2 outlines the key challenges that
may need to be faced by a data integration process. Section 3 presents the main
contribution of the paper, in the form of a framework that captures recurring
themes that can be used for designing or comparing pay-as-you-go techniques.
This framework is then illustrated in practice to describe a collection of proposals
in Sect. 4. Some conclusions and areas for further investigation are provided in
Sect. 5.

2 Data Integration

The overall task of data integration can be considered to consist of a series of
steps, as illustrated in Fig. 1. For certain integration activities, some of these
steps may not be required, there may be extra steps, or the process may be
iterative. However, these are common components of an integration lifecycle:

Source Selection identifies data sources that may be relevant to a data inte-
gration task (e.g. [17]).

Pay-as-you-go Data Integration: Experiences and Recurring Themes 83

Fig. 1. Abstract data integration lifecycle

Schema Extraction identifies recurring structures (and the data that conform
to them) in the deep web (e.g. [20]) or in sources that do not conform to
formal schemas (e.g. in linked open data [12]).

Matching identifies correspondences between elements in different schemas, for
example suggesting that an attribute in one represents the same notion as
an attribute in another (e.g. [33]).

Mapping Generation produces queries that can be used to translate data
from one schema to another (e.g. [19]).

Mapping Selection chooses between the generated mappings, to identify a
subset that is correct and/or meets the requirements of the application
(e.g. [7]).

Entity Resolution identifies duplicate instances within a data collection
(e.g. [18]).

Data fusion combines information from duplicate instances to create the
instances of a target representation (e.g. [6]).

These steps can be carried out automatically, manually or semi-auto-
matically. In automated approaches, algorithms generate candidate solutions;
for example, for Matching syntactic similarity measures can be used to compare
schema elements, and for Mapping Generation alternative mappings can be gen-
erated that take into account the results from Matching. In manual approaches,
human experts create solutions by exploring the relevant information using
generic tools; this is likely to be inefficient in practice, as human decision-making
can be informed by the results of automated analyses. As a result, classical data
integration is a semi-automatic process, in which, for example, candidate matches
and mappings from automated techniques are reviewed and revised by experts.

84 N.W. Paton et al.

In the classical approach, this integration effort is expended up front, before a
carefully refined integration is presented to users. In the pay-as-you-go approach,
integrations can be refined at any point using human effort, and that effort may
not require experts.

3 Pay-as-you-go Data Integration

As discussed in Sect. 1, pay-as-you-go data integration tends to involve two
phases, Initialisation and Improvement.

The Initialisation phase involves automated techniques generating a best
effort initial integration. The Improvement phase involves feedback of some type,
first on the initial integration, but later on the best version that can be gene-
rated based on the feedback obtained to date. Thus the Improvement phase
is intrinsically incremental, and the payment for the pay-as-you-go approach
can take different forms. For example, consider the e-commerce example from
the introduction. One form of feedback could be from the data scientists of the
e-commerce company, who annotate the different sites from which data has been
retrieved using a relevance score. This form of feedback requires knowledge of the
price comparison task, but not knowledge of data integration, and the payment
is in the form of the time of the data scientist. Another approach to feedback
could crowdsource information on entity resolution (e.g. [35]). This form of feed-
back requires the ability to recognise which products are the same, which might
be considered to involve a common-sense comparison, and the payment is in the
form of money to the crowd workers.

Fig. 2. Steps in the pay-as-you-go data integration process

Pay-as-you-go Data Integration: Experiences and Recurring Themes 85

In this paper we focus on the Improvement phase of pay-as-you-go data
integration, and in particular discuss recurring features in the design of pay-as-
you-go techniques that can be used both to characterise existing proposals and
to design new ones. Recurring features of pay-as-you-go proposals are illustrated
in Fig. 2, and discussed below; examples of each of these features for a series of
case studies are provided in Sect. 4.

Identify problem. Individual proposals tend to relate to a single data integra-
tion step from Fig. 1, and sometimes to a specific feature within a step.

Define objective. There is a need to characterise what constitutes a good
solution to the problem; this may be in the form of a generic measure, such
as precision or recall, or using a metric that is specific to the problem.

Define search space. The Improvement phase of pay-as-you-go data integra-
tion typically refines the automatic technique used for Initialisation. The
automatic technique uses an algorithm to generate candidate solutions. The
search for candidate solutions must in some way be able to take into account
the objective.

Define objective function in terms of feedback. The objective function
is used in the search for effective solutions to assess the effectiveness of the
solutions in terms of the feedback. This in turn involves pinning down the
type of feedback required.

Choose search function. The search function is an algorithm that, given some
feedback, explores alternative solutions to the problem, in a way that seeks
to maximise (or minimise) the objective function in terms of the feedback.

Evaluate result. As the objective function in terms of the feedback always
approximates the objective, it is important to assess empirically how much
feedback is needed to allow the search to identify well behaved solutions.

4 Pay-as-you-go Case Studies

In this section, we revisit several proposals for the improvement stage of pay-as-
you-go data integration proposals in the light of the features from Sect. 3, with
a view to showing how these steps capture their key features.

4.1 Mapping Selection

In this section, we show how the framework can be applied to characterise the
selection of mappings that together meet user-specified quality requirements [3].

Identify problem. Given a set of matches, it is possible to automatically gener-
ate a set of candidate mappings. For example, the following were among the
mappings generated by a commercial schema mapping tool for populating a
table with schema (name, country, province).

M1 = SELECT name, country, province from Mondial.city
M2 = SELECT city, country, province from Mondial.located

86 N.W. Paton et al.

The problem can be defined as follows: given a set of candidate mappings,
and feedback on their results, identify the subset that best meets the users
requirements in terms of precision and recall. Thus in this problem, we
assume that the user may be willing to trade off precision (the fraction
of the returned result that is correct) with recall (the fraction of the correct
results that are returned).

Define objective. Following on from the problem statement, we can identify
several different objectives, here cast as constrained optimization problems.
For a set of candidate mappings M :
Variant 1:

maximise (for some s ⊆ M) precision(s)
such that recall(s) > threshold

Variant 2:

maximise (for some s ⊆ M) recall(s)
such that precision(s) > threshold

Thus we assume that the user can specify the extent to which they can
tolerate a reduction in quality along one dimension, and then the objective
is to do as well as possible on the other. For example, if the user thinks that
they can tolerate one in five of the results being incorrect, then Variant 2
would be used, with a threshold of 0.8.

Define search space. Here the search space is the set of all subsets of the set
of the candidate mappings. A set with n elements has 2n subsets.

Define objective function in terms of feedback. The objective is defined
in terms of the precision and recall of a set of mappings. The precision and
recall depend on the ground truth, but we do not know the ground truth.
Thus the ground truth needs to be estimated based on the feedback. As a
result, here we assume that the feedback takes the form of user annotations
that tuples in mapping results are correct (true positives) or incorrect (false
positives).
For example, the precision of a mapping m in the context of user feedback
UF , can be estimated by counting the true positives (tp) and false positives
(fp) in UF :

precision(m,UF) = |tp(m,UF)|
|tp(m,UF)|+|fp(m,UF)|

where the function tp(m,UF) (resp. fp) returns the set of tuples from the
result of m that are annotated as true positives (resp. false positives) in UF .
The precision of a set of mappings can be estimated in an analogous manner.

Choose search function. Different search functions could be used to explore
the sets of possible mappings; in the original paper a Mesh Adaptive Direct
Search is employed [3].

Evaluate result. In the original paper [3], the results were evaluated to identify
how much feedback was required to enable the search to reliably identify

Pay-as-you-go Data Integration: Experiences and Recurring Themes 87

collections of mappings that meet the objectives. The experiments showed
that results were unreliable until enough feedback has been obtained for each
mapping to enable a dependable estimate of its precision and recall to be
obtained, but that suitably reliable estimates could often be obtained with
feedback on modest numbers of tuples per mapping (in the empirical study,
this was typically around 10).

4.2 Entity Resolution

In this section, we show how the framework can be applied to characterise the
pay-as-you-go configuration of entity resolution.

Identify problem. Entity resolution is the task of identifying different records
that represent the same entity. It is also known as duplicate detection,
instance identification and merge-purge [18]. As pairwise record compari-
son is O(n2) on the number of records, entity resolution tends to involve
both:
1. Blocking: fast but approximate identification of candidate pairs; and
2. Clustering: more careful but costly grouping of candidate pairs into clus-

ters, where each cluster is intended to contain all the records that rep-
resent a single entity.

Both Blocking and Clustering have control parameters such as thresholds,
and clustering has a distance function. The problem can be defined as follows:
given feedback on pairs of records that indicate if they represent the same
entity, identify control parameter settings that lead to the most effective
assignments of records to clusters.

Define objective. The objective is to maximise the correctness of the assign-
ments of records to clusters, taking into account which records should be
clustered together and which should not.

Define search space. The search space is the set of configuration parameters
used by the underlying entity resolution strategy; in our work, we have built
on the proposal of Costa et al. [13]. This particular proposal has 8 control
parameters and a set of weights in a distance function, such that there is one
weight per matching attribute; thus a typical search space contains at least
12 numerical dimensions.

Define objective function in terms of feedback. The objective is defined
in terms of the fraction of the values that have been correctly clustered
together, which depends on the ground truth, which is not available. Thus
the ground truth needs to be estimated based on the feedback; we use the
following measure of correctness, which requires that the feedback takes the
form of match or unmatch annotations on pairs of records. The correctness
of a clustering C in the context of user feedback UF , can be estimated by
counting the extent to which the expectations in the feedback are met in the
clustering, thus:

correctness(C,UF) = |mm(C,UF)|+|uu(C,UF)|
|mm(C,UF)|+|uu(C,UF)|+|mu(C,UF)|+|um(C,UF)|

88 N.W. Paton et al.

where mm(C,UF) returns the matched records in the feedback that appear
together in clusters, uu(C,UF) returns the unmatched records in the feed-
back that do not appear together in clusters, mu(C,UF) returns the
matched records in the feedback that do not appear together in clusters,
and um(C,UF) returns the unmatched records in the feedback that appear
together in clusters.

Choose search function. Different search functions could be used to explore
the space of configuration parameters; in our case we have used an evolu-
tionary search.

Evaluate result. For entity resolution, there are a number of standard test data
sets; we have evaluated our approach using several of them [29]. The results
showed that even with feedback on a few percent of the records, substantial
improvements in correctness can be observed.

4.3 Grouping Users

In pay-as-you-go data integration tasks, the feedback obtained from users may
be subjective. For example, for one user looking for holidays, only beach holidays
would be suitable participants in an answer (and thus for the user true positives
in a mapping result), whereas a beach holiday is likely to be seen as a false
positive if presented as an option to someone who is interested in going skiing.

In this section, we show how the framework can be applied to support a
pay-as-you-go approach to grouping users, with a view to sharing feedback [4].

Identify problem. Given a collection of users with different interests, can we
cluster these users in a way that allows the sharing of feedback, and thus
more cost-effective pay-as-you-go integration?

Define objective. Clusters of users need to be produced that have the property
that a better integration can be obtained by using the feedback of all the
users in the cluster to inform the integration, than when using only the
feedback of the user.
Lets assume that we are interested in sharing feedback for mapping selection,
as described in Sect. 4.1. As mapping selection depends on estimates of
precision and recall that use feedback, the objective is to cluster users based
on their consistency in terms of precision.

Define search space. The search space is the set of possible clusters.
Define objective function in terms of feedback. Clustering depends on

a distance function. In this case, the distance between users is defined as
the average difference in the precision estimates obtained for mappings for
which they have provided feedback:

distance(ui, uj) =
∑n

k=1 precision(mk,UFui
)−precision(mk,UFuj

)

n

where ui, uj are different users, each mk is a candidate mapping, and preci-
sion estimates the precision of a mapping for a given user’s feedback, using
the definition from Sect. 4.1.

Choose search function. A hierarchical clustering algorithm was used.

Pay-as-you-go Data Integration: Experiences and Recurring Themes 89

Evaluate result. Experimental results showed that, when a user was within a
distance of 0.1 of the centroid of a cluster, the feedback of the cluster was
almost as valuable as feedback provided by the user.

5 Conclusions

Pay-as-you-go integration shows promise as a paradigm, at least in part because
there seems to be no alternative in increasingly prominent cases. For data inte-
gration tasks where there are numerous sources, these sources change rapidly, or
there is little budget for manual integration, the pay-as-you-go approach with
its blend of automation and incremental improvement promises to provide cost-
effective, best-effort solutions.

In this paper we have presented a framework for describing and designing the
improvement phase of pay-as-you-go data integration, and have illustrated the
framework using representative data integration tasks. There have been many
proposals for pay-as-you-go data integration (e.g. [3,10,11,25,27,34]), but these
have typically been developed in isolation, and without the benefit of shared
methodologies or design principles. It is hoped that the proposal in this paper
will prove to be helpful in leading to more systematic and efficient design of
pay-as-you-go systems.

In what follows, we elaborate on related areas of ongoing investigation and
future research.

Crowdsourcing. There has been significant interest in the use of crowdsourcing
for obtaining information for different data management tasks (e.g. [2,8,32]), and
as a source of feedback for pay-as-you-go data integration (e.g. [21,31,35]). For
the most part work has focused on paid microtasks for systems such as Amazon
Mechanical Turk1 or CrowdFlower2, but it seems entirely possible that other
approaches, for example that combine domain experts with paid microtasks,
could be effective (e.g. [1]). Here open issues include: identifying what feedback
collection tasks are best suited to what groups of people, and the systematic
design of crowdsourcing tasks.

Efficient Collection of Feedback. As explicit (as opposed to implicit) feedback
involves human effort, it must be considered to be expensive to collect, and thus
there is a need to obtain the most cost-effective feedback. Here there have been a
range of approaches, using active learning or bespoke algorithms for identifying
which feedback to obtain next [14,24,26,36–38], as well as investigations into
which workers should be recruited to carry out a task [9,40]. Although there has
been significant progress in both these areas, it is not always clear which forms
of active learning best suit (or do not suit) different tasks, or how to decide what
feedback to collect: (i) when there are several different tasks to carry out that
may benefit from feedback; or (ii) how to share feedback across different parts
of the data integration lifecycle.
1 https://www.mturk.com.
2 http://www.crowdflower.com.

https://www.mturk.com
http://www.crowdflower.com

90 N.W. Paton et al.

Systematic Integration of Evidence. There is potentially a lot of evidence to
inform pay-as-you-go integration, with the combination of automation that can
make use of any available evidence, and the provision of feedback to refine the
results of automated techniques. Evidence sources include: results of matching,
mapping and quality algorithms; feedback of different sorts from different groups,
of different qualities; logging information on the use of integrations; and results
of analyses on integrated data sets. Thus there is also a need for an integrated
approach to data integration, in which all the available evidence is used together
systematically.

There are a several results on evidence accumulation for data integration
(e.g. [15,39]), but most current work on pay-as-you-go data integration involves
a single type of feedback for a single task. The real breakthrough may come
from greater ambition, in which more sources and more techniques provide an
additional opportunity rather than an additional challenge (e.g. as demonstrated
in the absence of feedback in knowledge base construction [16,30]).

Acknowledgement. Research on data integration at Manchester is supported by
the VADA Programme Grant of the UK Engineering and Physical Sciences Research
Council, whose support we are pleased to acknowledge.

References

1. Acosta, M., Zaveri, A., Simperl, E., Kontokostas, D., Auer, S., Lehmann, J.: Crowd-
sourcing linked data quality assessment. In: Alani, H., Kagal, L., Fokoue, A., Groth,
P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.)
ISWC 2013, Part II. LNCS, vol. 8219, pp. 260–276. Springer, Heidelberg (2013)

2. Amsterdamer, Y., Davidson, S.B., Milo, T., Novgorodov, S., Somech, A.: OASSIS:
query driven crowd mining. In: International Conference on Management of Data,
SIGMOD 2014, Snowbird, 22–27 June 2014, pp. 589–600 (2014)

3. Belhajjame, K., Paton, N.W., Embur, S.M., Fernande, A.A.A., Hedeler, C.: Incre-
mentally improving dataspaces based on user feedback. Inf.Syst. 38(5), 656–687
(2013)

4. Belhajjame, K., Paton, N.W., Hedeler, C., Fernandes, A.A.A.: Enabling
community-driven information integration through clustering. Distrib. Parallel
Databases 33(1), 33–67 (2015)

5. Bernstein, P.A., Haas, L.M.: Information integration in the enterprise. CACM
51(9), 72–79 (2008)

6. Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv., 41(1) (2008)
7. Bonifati, A., Mecca, G., Pappalardo, A., Raunich, S., Summa, G.: Schema map-

ping verification: the spicy way. In: Proceedings EDBT 2008, 11th International
Conference on Extending Database Technology, Nantes, 25–29 March 2008, pp.
85–96 (2008)

8. Bozzon, A., Brambilla, M., Ceri, S.: Answering search queries with crowdsearcher.
In: Proceeding of 21st WWW, pp. 1009–1018 (2012)

9. Cao, C.C., She, J., Tong, Y., Chen, L.: Whom to ask? jury selection for decision
making tasks on micro-blog services. PVLDB 5(11), 1495–1506 (2012)

Pay-as-you-go Data Integration: Experiences and Recurring Themes 91

10. Cao, H., Qi, Y., Candan, K.S., Sapino, M.L.: Feedback-driven result ranking and
query refinement for exploring semi-structured data collections. In: EDBT, pp.
3–14 (2010)

11. Chai, X., Vuong, B.-Q., Doan, A., Naughton, J.F.: Efficiently incorporating user
feedback into information extraction and integration programs. In: SIGMOD Con-
ference, pp. 87–100 (2009)

12. Christodoulou, K., Paton, N.W., Fernandes, A.A.A.: Structure inference for linked
data sources using clustering. Trans. Large-Scale Data- Knowl.-Centered Syst. 19,
1–25 (2015)

13. Costa, G., Manco, G., Ortale, R.: An incremental clustering scheme for data de-
duplication. Data Min. Knowl. Disc. 20(1), 152–187 (2010)

14. Crescenzi, V., Merialdo, P., Qiu, D.: Crowdsourcing large scale wrapper inference.
Distributed and Parallel Databases (October 2014)

15. Demartini, G., Difallah, D.E., Cudré-Mauroux, P.: Large-scale linked data inte-
gration using probabilistic reasoning and crowdsourcing. VLDB J. 22(5), 665–687
(2013)

16. Dong, X.L., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann,
T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic
knowledge fusion. In: KDD, pp. 601–610 (2014)

17. Dong, X.L., Saha, B., Srivastava, D.: Less is more: selecting sources wisely for
integration. PVLDB 6(2), 37–48 (2012)

18. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: a
survey. IEEE TKDE 19(1), 1–16 (2007)

19. Fagin, R., Haas, L.M., Hernández, M., Miller, R.J., Popa, L., Velegrakis, Y.: Clio:
schema mapping creation and data exchange. In: Borgida, A.T., Chaudhri, V.K.,
Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications.
LNCS, vol. 5600, pp. 198–236. Springer, Heidelberg (2009)

20. Furche, T., Gottlob, G., Grasso, G., Guo, X., Orsi, G., Schallhart, C., Wang, C.:
DIADEM: thousands of websites to a single database. PVLDB 7(14), 1845–1856
(2014)

21. Gokhale, C., Das, S., Doan, A., Naughton, J.F., Rampalli, N., Shavlik, J.W., Zhu,
X.: Corleone: hands-off crowdsourcing for entity matching. In: SIGMOD Confer-
ence, pp. 601–612 (2014)

22. Halevy, A.Y., Franklin, M.J., Maie, D.: Principles of dataspace systems. In: PODS,
pp. 1–9 (2006)

23. Hedeler, C., Belhajjame, K., Fernandes, A.A.A., Embury, S.M., Paton, N.W.:
Dimensions of dataspaces. In: Sexton, A.P. (ed.) BNCOD 26. LNCS, vol. 5588,
pp. 55–66. Springer, Heidelberg (2009)

24. Quoc, N., Hung, V., Wijaya, T.K., Miklós, Z., Aberer, K., Levy, E., Shafran, V.,
Gal, A., Weidlich, M.: Minimizing human effort in reconciling match networks. In:
ER, pp. 212–226 (2013)

25. Isele, R., Bize, C.: Learning linkage rules using genetic programming. In: Pro-
ceeding 6th International Workshop on Ontology Matching, vol. 814 of CEUR
Workshop Proceedings (2011)

26. Isele, R., Bizer, C.: Active learning of expressive linkage rules using genetic pro-
gramming. J. Web Sem. 23, 2–15 (2013)

27. Jeffery, S.R., Franklin, M.J., Halevy, A.Y.: Pay-as-you-go user feedback for
dataspace systems. In: SIGMOD, pp. 847–860 (2008)

92 N.W. Paton et al.

28. Kandel, S., Heer, J., Plaisant, C., Kennedy, J., van Ham, F., Riche, N.H., Weaver, C.,
Lee, B., Brodbeck, D., Buono, P.: Research directions in data wrangling: visuati-
zations and transformations for usable and credible data. Inf. Vis. 10(4), 271–288
(2011)

29. Köpcke, H., Thor, A., Rahm, E.: Evaluation of entity resolution approaches on
real-world match problems. PVLDB 3(1), 484–493 (2010)

30. Niu, F., Zhang, C., Ré, C., Shavlik, J.W.: Elementary: large-scale knowledge-base
construction via machine learning and statistical inference. Int. J. Semantic Web
Inf. Syst. 8(3), 42–73 (2012)

31. Osorno-Gutierrez, F., Paton, N.W., Fernandes, A.A.A.: Crowdsourcing feedback
for pay-as-you-go data integration. In: DBCrowd, pp. 32–37 (2013)

32. Parameswaran, A.G., Park, H., Garcia-Molina, H., Polyzotis, N., Widom, J.: Deco:
declarative crowdsourcing. In: Proceeding 21st CIKM, pp. 1203–1212 (2012)

33. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDBJ 10(4), 334–350 (2001)

34. Talukdar, P.P., Jacob, M., Mehmood, M.S., Crammer, K., Ives, Z.G., Pereira, F.,
Guha, S.: Learning to create data-integrating queries. PVLDB 1(1), 785–796 (2008)

35. Wang, J., Kraska, T., Franklin, M.J., Feng, J.: Crowder: crowdsourcing entity
resolution. Proc. VLDB Endow. 5(11), 1483–1494 (2012)

36. Whang, S.E., Lofgren, P., Garcia-Molina, H.: Question selection for crowd entity
resolution. PVLDB 6(6), 349–360 (2013)

37. Yan, Z., Zheng, N., Ives, Z.G., Talukdar, P.P., Yu, C.: Actively soliciting feedback
for query answers in keyword search-based data integration. PVLDB 6(3), 205–216
(2013)

38. Zhang, C.J., Chen, L., Jagadish, H.V., Cao, C.C.: Reducing uncertainty of schema
matching via crowdsourcing. PVLDB 6(9), 757–768 (2013)

39. Zhao, B., Rubinstein, B.I.P., Gemmell, J., Han, J.: A bayesian approach to dis-
covering truth from conflicting sources for data integration. PVLDB 5(6), 550–561
(2012)

40. Zheng, Y., Cheng, R., Maniu, S., Mo, L.: On optimality of jury selection in crowd-
sourcing. In: Proceedings of the 18th International Conference on Extending Data-
base Technology, EDBT 2015, Brussels, 23–27 March 2015, pp. 193–204 (2015)

Foundations of Computer Science
(Regular Papers)

Robust Recoverable Path Using Backup Nodes

Marjan van den Akker1, Hans L. Bodlaender1, Thomas C. van Dijk2(B),
Han Hoogeveen1, and Erik van Ommeren1

1 Universiteit Utrecht, Utrecht, The Netherlands
{J.M.vandenAkker,H.L.Bodlaender,J.A.Hoogeveen}@uu.nl

2 Lehrstuhl Für Informatik I, Universität Würzburg, Würzburg, Germany
thomas.van.dijk@uni-wuerzburg.de

Abstract. We consider routing in networks in the presence of node fail-
ures. The focus is specifically on the single-node failure model, which
captures the resilience of networks in a realistic fault setting. We intro-
duce a model of recoverable routing, where we ask for an s-t-path that
can be repaired easily and locally by assigning ‘backup nodes:’ when a
node on the path fails, it is replaced by its backup node. We resolve
the basic algorithmic and complexity questions for finding paths in this
model, depending on the properties we require of the backup assignment.
For some cases we provide polynomial-time algorithms, and for the oth-
ers we prove NP-completeness and provide exponential-time algorithms.
Lastly, we consider a problem variant where the path is given and ask
for a backup assignment.

1 Introduction

We consider a network modeled by a simple graph G = (V,E) with a source
node s ∈ V and a destination node t ∈ V . We write paths using square brack-
ets, like [p1, p2, . . . , pk]. In order to route a packet through the network, we are
looking for a path P from s to t. This problem is complicated by considering
node failures, for which we want to provide a certain level of robustness. Our
robustness condition—that the path must remain valid in the presence of a single
node failure—would, by itself, make us overly cautious. We therefore include a
recovery model which allows for the easy recovery of a valid path in case a failure
makes our initial solution invalid. In contrast to earlier studies of this fault model
(e.g. [1,8,10]), we focus on the crucial complexity issues of the model. Our usage
of preassigned backup nodes contrasts related work on recoverable paths, which
includes subgraph selection [5], network design [4] and cost uncertainty [6] (as
opposed to node failure). Particularly related to the current work are the online
replacement paths of Adjiashvili et al. [2]; in contrast, our strategy with backups
affects the path only locally. We model the network as a graph, disregarding any
spatial structure that might be present in the network [3].

In our failure model we will concern ourselves with single-node failures: any
single node v /∈ {s, t} can fail. Asking for a path P that is valid in any failure
scenario is then uninteresting. (Only the path [s, t] would be valid, and only
c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 95–106, 2016.
DOI: 10.1007/978-3-662-49192-8 8

96 M. van den Akker et al.

if {s, t} ∈ E). We therefore introduce a recovery procedure. In case a failure
invalidates our initial path P , we want there to be an easy, local way to repair P .
In this way the failure can be dealt with in an online fashion: just travel along
P , and if the path turns out to be blocked by a node failure, take a local detour
and then resume along on P as originally planned. We do this by preassigning
backup nodes. Consider the energy usage implied by a certain path: the nodes
involved expend energy to transmit the packet. Our recovery procedure changes
the path only locally: the recovered path is mostly equal to the input path, even
if the fault occurs early on the path. This means that the recovery procedure
does not force unexpected energy expense onto many unrelated nodes.

A path with backups R assigns to each main node pi a single backup node bi. If
pi fails, then bi will take its place. We say “pi is backed up by bi” and “bi backs up
pi.” We write a path with backups as [p1

b1
, p2
b2

, . . . , pk

bk
]. By path(R) we denote the

path formed by the main nodes of R : path([p1
b1

, p2
b2

, . . . , pk

bk
]) = [p1, p2, . . . , pk].

Definition 1 (Recoverable path). A path with backups R = [p1
b1

, p2
b2

, . . . , pk

bk
]

is called recoverable if and only if the following two properties are satisfied. First,
path(R) is a path in G. Secondly, the following recovery procedure succeeds for
any node v /∈ {s, t}. Take path(R), but wherever pi = v, use bi instead: the
resulting path P must be a path in G − v.

Note that if a failing node v occurs in path(R) more than once, then it may
happen that the recovery procedure substitutes a different backup node for
each occurrence: at this point, we do not require that pi = pj implies bi = bj .
A recoverable path R is called simple if and only if path(R) is simple.

Definition 2 (Recoverable s-t-path). A recoverable path R = [p1
b1

, p2
b2

, . . . , pk

bk
]

is a recoverable s-t-path if and only if p1 = b1 = s and pk = bk = t.

In this paper we consider the combinatorial problem of finding optimal recov-
erable s-t-paths. We look at several variations of this problem and give a
polynomial-time algorithm or hardness result; the results are summarised at
the end of this section. First we make some basic observations. See Fig. 1(a) for
an illustration of the edge sets involved in the following two statements.

Lemma 1. R = [p1
b1

, p2
b2

, . . . , pk

bk
] is a recoverable s-t-path if and only if the fol-

lowing conditions all hold:

(1) p1 = b1 = s,
(2) pk = bk = t,
(3) pi /∈ {s, t} =⇒ pi �= bi,
(4) the fol-

lowing edges are in E, for all 1 < i < k : {pi−1, pi}, {pi, pi+1}, {pi−1, bi}
and {bi, pi+1}.

Proof. The first two conditions come from the definition of recoverable s-t-path.
The third condition is the observation that a node cannot backup itself (except
s and t). Consider the edges mentioned in condition four. The first two edges

Robust Recoverable Path Using Backup Nodes 97

pj

bj

bj+1

pj+1pi

bi

pi−1 pi+1

bi−1 bi+1

(a) Two ways to index the edges involved in a
recoverable path; see Lemma 1 and Proposition 1

s x z

y

t

a
c

b

d

(b) In this graph [s, x
a
, y
b
, z
c
, x
d
, t]

is a recoverable s-t-path.

Fig. 1. Structures involved in recoverable paths

correspond to path(R) being a path in G. The latter two edges correspond to
a valid recovery path in case pi fails. The graph G is simple, so for any i we
have pi �= pi+1. As only a single node can fail, no edge is required from bi to
bi+1. If these edges are present in G, then R is a recoverable s-t-path. If R is a
recoverable s-t-path, then these edges are present in G. ��
Proposition 1. The edge set in condition 4 of the preceding lemma is equiva-
lently defined as follows. For all 1 ≤ i < k : {pi, pi+1}, {pi, bi+1} and {bi, pi+1}.
Note that a recoverable path has bi−1 �= pi, since equality would imply a self-
loop on pi. We will look at four variations of the Recoverable path problem
by considering two questions.

– Is a node allowed to back up multiple main nodes, or does bi = bj imply
pi = pj? That is, is the relation from main nodes to their backup injective? If
we do not enforce this, some nodes may experience high load after recovery.

– Is a node allowed to be backed up by multiple nodes if it occurs as a main
node multiple times, or does pi = pj imply bi = bj? That is, is the relation
from main nodes to their backup a function? If we enforce this, the recovery
procedure is truly local in the sense that it does not need to know where on
the path it is in order to perform its rerouting.

Let B be the relation consisting of all pairs (pi, bi) occurring on a recoverable s-t-
path. By injective backup, we mean the property that B is injective; we similarly
define functional backup. For both or neither property we say one-to-one and
many-to-many respectively. Note that one-to-one backup is both functional and
injective.

Lemma 2. A graph G has a simple recoverable s-t-path if and only if it has a
recoverable s-t-path R with functional backup (that is, pi = pj implies bi = bj).

Proof. A simple s-t-path is trivially functional since pi �= pj for all i and j. In
the other direction, let s-t-path R have functional backup. If R is not simple,
it can be made simple by shortcuts. Let i < j and pi = pj . Since the backup

98 M. van den Akker et al.

relation is function, we have bi = bj . Remove steps pi+1 through pj from R: the
result is still a recoverable path. Repeat until R is simple. ��
It may seem reasonable to restrict our attention only to simple recoverable paths.
However, there exist graphs that have a recoverable s-t-path but do not have a
simple recoverable s-t-path: see Fig. 1(b) for an example. Note that the indicated
path does not have functional backup.

Results. We give a polynomial-time algorithm for Recoverable path with
many-to-many backup, including some weighted versions (Sect. 2). The three
other variants are NP-complete. We give exponential-time algorithms for these
hard variants (Sect. 3). Finally, we look at a related problem: a normal path is
given and we ask whether backups can be assigned to make the path recoverable
(Sect. 4). We show NP-completeness for the injective case and give an expo-
nential time algorithm. For the other three cases we provide polynomial-time
algorithms.

2 Polynomial-Time Algorithm for Many-to-Many Backup

Here we present a polynomial-time algorithm for Recoverable path with
many-to-many backups. We also solve some weighted variations. All of these
problems are solved in O(nm), where n = |V | and m = |E|. This improves to
O(d2n) time on graphs of bounded degree d.

We will find a recoverable s-t-path in G by finding a normal path in a suitably
defined auxiliary graph GA.

Definition 3 (Auxiliary graph GA). The auxiliary graph of G = (V,E) is
the undirected graph GA = (V A, EA), with V A = {(v, w)V | v, w ∈ V, v �=
w∨v ∈ {s, t}}∪{(v, w)E | {v, w} ∈ E}, and EA = {{(v, w)V , (v, x)E} | {w, x} ∈
E} ∪ {{(v, w)E , (w, x)V } | {v, x} ∈ E}.
Lemma 3. There exists a recoverable s-t-path R in G if and only if there exists
a normal (s, s)V -(t, t)V -path P in GA.

Proof. Interpret P ’s nodes alternatingly as (main node, backup node) pairs in
G and as edges in E. Lemma 1 shows that this path in GA is equivalent to a
recoverable path in G.

(1) Starting from (s, s)V ∈ V A guarantees p1 = b1 = s.
(2) Going to (t, t)V ∈ V A guarantees pk = bk = t.
(3) By construction, (v, v)V /∈ V A unless v ∈ {s, t}. (Recall that G is simple.)
(4) By construction, an edge in EA exists if and only if the edges required by

Proposition 1 exist in E. ��
Lemma 4. The auxiliary graph GA has O(n2) nodes, has O(nm) edges, and
can be constructed in O(n2 + nm) time.

Robust Recoverable Path Using Backup Nodes 99

Proof. We build an adjacency matrix of G in O(n2) time. For each node v and
edge {w, x} ∈ E, we check if {v, x} ∈ E, and if so, add the edge {(v, w)V , (v, x)E}
to GA. For each node w and edge {v, x} ∈ E, we check if {v, w} ∈ E, and if so,
add the edge {(v, w)E , (w, x)V } to GA. We can build these adjacency lists with
radix sort.

Theorem 1. Recoverable path with many-to-many backup can be solved in
O(nm) time.

Proof. Assume s �= t. First remove all isolated nodes from G, so n ≤ 2m. Build
GA and use depth first search to check if there is a path from (s, s)V to (t, t)V .
Correctness follows from Lemma 3; runtime from Lemma 4. ��
In case G has bounded maximum degree, a linear-time algorithm exists.

Definition 4 (Type-2 auxiliary graph GA′
). The type-2 auxiliary graph of

G = (V,E) is the directed graph GA′
= (V A′

, EA′
), with V A′

=
⋃

{u,v}∈E

{(u, v), (v, u)}, and EA′
= {((v, w), (w, x)) | ∃y ∈ V : {v, y} ∈ E ∧ {y, x} ∈ E}.

Lemma 5. There is a recoverable s-t-path in G if and only if s = t or there are
v, w ∈ V such that there is a path from {s, v} to {w, t} in GA′

.

Proof. Again, we check the properties required in Lemma 1; this time, the exis-
tence of an arc in GA′

corresponds precisely to the existence of the required
edges in G. ��
Theorem 2. Recoverable path with many-to-many backup can be solved in
O(d2n) time on graphs with maximum degree d.

Proof. The type-2 auxiliary graph GA′
has O(dn) nodes, and O(d2n) arcs. Con-

struct it in O(d2n) time. Use depth first search to find a path from (s, v) to (w, t)
in GA′

, for some v, w ∈ V . ��
We can extend this auxiliary-graph approach to handle several weighted versions
of the problem. In a network context, this can be used to model, for example,
delay times or energy costs. Consider a weight function w : E → Z≥0. We first
ask for a recoverable s-t-path R such that the weight of path(R) is minimised
and call this problem Recoverable shortest path.

Theorem 3. Recoverable shortest path with many-to-many backup and
integer weights can be solved in O(nm) time.

Proof. We use the auxiliary graph GA and introduce a weight function EA →
Z≥0. A recoverable path R uses the edge {v, w} ∈ E for path(R) if and only if the
corresponding path in GA uses the node (v, w)E or (w, v)E . We therefore want to
weight the usage of node (v, w)E by w({v, w}); we achieve this by assigning that
weight to all of its incoming edges. With integer weights, we can use a standard
linear-time algorithm [9] to find the minimum-weight (s, s)-(t, t)-path. Since GA

has O(n2) nodes and O(nm) arcs, this gives an O(nm) time algorithm for
Recoverable shortest path. ��

100 M. van den Akker et al.

The preceding version of the problem only considers the weight of the path in
case nothing goes wrong. If a node failure impacts the path, we are faced with
the recovery procedure, which in general will give a path of different weight. To
take this into account, we look at the expected length of the recovered path:
Expected shortest recoverable path. We will work with a probability
distribution over which node fails, if any. The case of no failure is denoted by ∅.
Let f : {∅} ∪ V − {s, t} → Q be this probability mass function.

Theorem 4. Expected shortest recoverable path with many-to-many
backup can be solved in O(nm) time.

Proof. We introduce a weight function EA → Q≥0. An auxiliary edge in EA

corresponds directly to certain edges E (see Definition 3). We can determine
the expected weight these edges contribute when included in a recoverable path.
Then by linearity of expectation the shortest path in GA is the recoverable path
in G with the lowest expected length. Runtime is again O(nm). ��

3 Exponential-Time Algorithms

In contrast to the many-to-many backup case, Recoverable path is hard when
we require that the backup relation is functional, injective or one-to-one. A proof
based on reduction from 3-cnf-sat is omitted for space.

Theorem 5. Recoverable path with injective backup is NP-complete. The
same holds for functional backup and one-to-one backup.

In this section we provide dynamic-programming algorithms that work, with
minor modification, for each of the three hard variants of Recoverable path.
In the functional and injective cases, it runs in O(2n · n3) time and O(2n · n2)
space. In the one-to-one case, it runs in O(4n · n3) time and O(4n · n2) space.

For notational convenience we define the concept of a friend set.

Definition 5 (Friend set F (x, y, z)). Let x, y, z be nodes in G. The friend
set of (x, y, z) is the set of nodes v that can backup node y on a recoverable
path where y occurs between x and z. That is F (x, y, z) = { v ∈ V | (x, v) ∈
E ∧ (v, z) ∈ E ∧ v �= y }.
Consider functional backup. This means that every occurrence of a node p as
main node on a recoverable path must be backed up by the same node. By
Lemma 2 we know that, in fact, there exists a recoverable s-t-path with func-
tional backup if and only if there exists a simple recoverable s-t-path, so once
we have used a node as main node we can disregard ever using it again.

We solve the problem based on a recurrence relation for a boolean function
pfun in the parameters y, z ∈ V and S ⊆ V . The value of pfun(S, y, z) is the
following: does there exist a simple recoverable path with p1 = b1 = s, ending
with main node y followed by z, and using, besides y and z, exactly the nodes
in S as main nodes.

Robust Recoverable Path Using Backup Nodes 101

As a base case for our recurrence relation, we can observe that pfun(∅, y, z)
is true precisely if y = s and (y, z) ∈ E: the path must start at s and the edge
must exist. For non-empty S, we have that pfun(S, y, z) is true if and only if the
edge (y, z) actually exists, and there exists a predecessor x for y such that
1. a valid backup exists for y, and
2. by recursion, there exists a recoverable path ending in x and y that further

uses precisely the nodes in S − {x} as main nodes.

This gives the following equation, with the base case that pfun(∅, y, z) is true if
and only if y = s ∧ (y, z) ∈ E.

pfun(S, y, z) = (y, z) ∈ E ∧ ∃x ∈ S :
(
∃b ∈ F (x, y, z) : pfun(S−{x}, x, y)

)
(1)

Note that checking for the existence of b ∈ F (x, y, z) corresponds to checking for
the edges required in condition 4 of Lemma 1.
Theorem 6. Recoverable path with functional backup can be solved in
O(2n · n3) time and O(2n · n2) space.

Proof. Check, using dynamic programming, whether pfun(S, y, t) is true for any
S ⊆ V and y ∈ V . Because of the recurrence relation of pfun, this is equivalent to
the existence of a recoverable s-t-path: exactly the edges required by Lemma 1
are present. The parameter S ensures that the path is simple, which ensures
functional backup by Lemma 2.

As for runtime and space, we start out by noting that the dynamic program
has O(2n · n2) states. These can be calculated in O(n) time each as follows.
Checking (y, z) ∈ E is a simple test. Then there are existential quantifiers over
x ∈ S and b ∈ F (x, y, z), both of which might range over Θ(n) items. Note
however that b is not used in the recurrence. We can therefore precompute
(∃b ∈ F (x, y, z)) for all combinations of nodes x, y, z ∈ V . Then this check
runs in constant time by table lookup. ��
Theorem 7. Recoverable path with injective backup can be solved in O(2n ·
n3) time and O(2n · n2) space.

Proof (sketch). The approach is similar to the functional case. The polynomial
term in the runtime can be kept at n3 using mutual recursion relations, alter-
nately considering pairs of subsequent path nodes and pairs of a main node and
its backup node (as in Definition 3). ��
Lastly we consider the one-to-one case. The established machinery unfortunately
leads to a runtime of Θ∗(4n): it seems that we need to know two things for every
node, namely if it is already used as main node and, independently, if it is already
used as a backup node. This is because we allow a node to be both main node
and (elsewhere) backup node on the same path; this is simply something the
definitions permit. (If we were to disallow nodes being both main node and
backup node on the same path, an O∗(2n)-time algorithm like the previous ones
would be possible.)
Theorem 8. Recoverable path with one-to-one backup can be solved in
O(4n · n3) time and O(4n · n2) space.

102 M. van den Akker et al.

4 Backup Assignment

In this section we take a look at a problem related to finding a recoverable path.
This time we are given an s-t-path P in G and the question is: does there exist
a recoverable s-t-path R such that path(R) = P? We call this the Backup
assignment problem.

We can again look at four variations based on what kind of backup relation
we allow. We show that the injective variant of the problem is NP-complete and
give an exponential time algorithm. We give polynomial-time algorithms for the
other three variants.

For the analysis of the problem, we again use friend sets (compare Defini-
tion 5). This time it is convenient to index them differently.

Definition 6 (Friend set F (P, i)). Let P = [p1, . . . , pk] be a path in G and
let pi−1, pi, pi+1 be consecutive nodes on P . The friend set of index i is the
set of nodes v that can backup pi. That is F (P, i) = F (pi−1, pi, pi+1) = { v ∈
V | (pi−1, v) ∈ E ∧ (v, pi+1) ∈ E ∧ v �= pi }.

4.1 Polynomial Cases

We now give polynomial-time algorithms for three problem variants. The algo-
rithm for the many-to-many variant is the simplest.

Theorem 9. Backup assignment with many-to-many backup can be solved
in polynomial time.

Proof. According to Lemma 1, the edges required for a node to be in a friend
set are exactly those that are required to be a legal backup. Because the backup
relation is allowed to be many-to-many, every node can be considered separately.
Therefore, in a solution to Backup assignment with many-to-many backup,
any node can be backed up by any node from its friend set and only by those. If
the algorithm fails—because some F (P, i) is empty—no valid backup assignment
exists. This greedy assignment can clearly be done in polynomial time. ��
The functional variant is not much more complicated.

Theorem 10. Backup assignment with functional backup can be solved in
polynomial time.

Proof. Compared to the many-to-many case, we have the extra condition that
every time a node p occurs on P it must be assigned the same backup. Therefore
we can assign to it a certain backup node b only if that is valid for every occur-
rence of p. This leaves only the nodes that are in the intersection of friend sets
of all occurrences of p. Among those, the choice can again be made arbitrarily.
This too can clearly be done in polynomial time. ��

Robust Recoverable Path Using Backup Nodes 103

We will solve the one-to-one variant of the problem using bipartite matching.
As the name suggests, we will use the matching to assign main nodes to backup
nodes. We will now construct a bipartite graph Gm that models the right con-
straints.

Note that a node may occur on a recoverable path both as a main node and
as a backup node. We therefore construct two sets of nodes, which together form
the node set of Gm.

– A set of nodes VP representing the main nodes of the path, with a node for
every distinct node occurring on P , except s and t.

– A set of nodes Vb representing potential backup nodes, with a node for every
node in V − {s, t}.

We exclude s and t because in a recoverable s-t-path these are necessarily
assigned to backup themselves: by definition p1 = b1 = s and pk = bk = t.
Then with one-to-one backup the nodes s and t are fully occupied and can be
disregarded.

To obtain the edge set of Gm, we insert an edge between a node p ∈ VP and
a node b ∈ Vb if and only if b is a legal backup for p, that is, if and only if b is
in the friend set of all occurrences of p. An example of this construction can be
seen in Fig. 2.

s

a

b

c

t

x y

z

a b c

a b c x y z

VP :

Vb:

G Gm

s

s
,
a

x
,
b

z
,
c

y
,
t

t

Fig. 2. Example of the matching graph Gm for one-to-one Backup assignment

Theorem 11. Backup assignment with one-to-one backup can be solved in
polynomial time.

Proof. By construction, the graph Gm[VP] contains no edges and neither does
Gm[Vb]. Then a matching in Gm has size at most |VP | and any edge in any
matching involves exactly one node from VP and one from Vb. We will interpret
an edge in the matching as assigning a main node to a backup node.

By construction of the edge set, there exists a one-to-one backup assignment
if and only if there exists a matching of size |VP | in Gm. The algorithm constructs
Gm and finds a maximum-cardinality matching. If the matching has size |VP |
then we have a valid backup assignment. If the maximum matching is smaller,

104 M. van den Akker et al.

no valid backup assignment exists. The graph Gm can clearly be constructed in
polynomial time and the matching can also be found in polynomial time (see for
example [7]). ��

4.2 Exponential-Time Algorithm

Now we turn to the remaining case of injective backup, which, as we mentioned
already at the beginning of this section, is NP-complete. An instance of Backup
assignment consists of both a graph G and a prescribed path P . Note that in an
NP-completeness proof this path P will, in general, be nonsimple: an injective
backup assignment for a simple path is necessarily one-to-one and can, by our
preceding results, be found in polynomial time. The following theorem can be
proved using reduction from 3-cnf-sat.

Theorem 12. Backup assignment with injective backup is NP-complete.

Our exponential-time algorithm for Backup assignment with injective backup
is based on dynamic programming. Note that since the backup relation is not
required to be functional, we need to assign backups for the occurrences of nodes
on P , not just one backup node for every distinct node on P .

We start off with an observation about the structure of injective backup
assignments and some notation.

Lemma 6. Consider an injective backup assignment and let pi = pj be distinct
occurrences of a single node. Suppose bi �= bj and bi ∈ F (P, j). Then changing
pj’s backup from bj to bi results in another valid injective backup assignment.

Proof. The backup assignment itself is valid: bi ∈ F (P, j). There is also no
problem with injectivity, since pi = pj . ��
This shows that there is some freedom in injective backup assignments: if mul-
tiple nodes are used to back up the various occurrences of a single node v, these
can be freely changed within the limitation of the above lemma. This is used
to argue the correctness of some arbitrary choices the algorithm makes when
picking backup nodes.

Definition 7 (Index set). The index set I(v) of a node v is the set of indices
where the node v occurs on the path P , that is, I(v) = {i ∈ N | pi = v}.
Definition 8 (Node multiplicity). The multiplicity μ(v) of a node v is the
number of times v occurs on the path P , that is, μ(v) = |I(v)|. Let μmax =
max{ μ(v) | v ∈ V }.
Definition 9 (≺, vmin, vmax, pred(v)). Fix an arbitrary total order ≺ on V .
Let vmin be the minimum node according to ≺, and vmax be the maximum. By
pred(v) we denote the predecessor of v according to ≺.

We will now set up a function for use in the dynamic programming algorithm.
The nodes of the graph are handled one by one, in some order; for each node v,
we consider the occurrences of v in the order that they occur on P .

Robust Recoverable Path Using Backup Nodes 105

Definition 10. The boolean function a(v,O,B) is defined for arguments v ∈
V,O ⊆ I(v), B ⊆ V . It is defined to be true if and only if there is a way to
assign backups that is injective, where exactly the nodes in B are used as backup,
and where exactly the following occurrences have been assigned a backup: all
pi ≺ v, and all pj for j ∈ O. (Thus leaving all other occurrences unassigned.)

Then we can solve Backup assignment with injective backup as follows. Check
whether a(vmax, I(vmax), B) is true for any subset B: by definition this means
assigning backups to all occurrences on P , using any set of backup nodes.

Theorem 13. Backup assignment with injective backup can be solved in
O∗(2n+µmax) time.

Proof. Calculate a(v,O,B) for all combinations of v ∈ V , O ∈ I(v) and B ⊆ V ,
using the following recurrence relation.

If some occurrence of v is already backed up (that is, O �= ∅), we can recurse
on which node b ∈ B is its backup. In view of Lemma 6, we can then immediately
use b to backup as many other occurrences of v as possible: since we are already
deciding to use b as backup for some occurrence of v, it cannot be wrong to use
it for more occurrences. There is still the choice of which occurrence in O to
recurse on, but this choice can be made arbitrarily. Call this node arb(O). Then

a(v, O, B) = ∃b ∈ B ∩ F (P, arb(O)) : a(v, O′(b), B − {b}) (2)

where O′(b) = { i ∈ O | b /∈ F (P, i) }.

Here, O′ is the set of occurrences that cannot be backed up using a particular
choice of b.

The preceding case handled O �= ∅. The case O = ∅ is quite simple, since
directly from the definition of a(·) we have the following equality (for v �= vmin).

a(v, ∅, B) = a(pred(v), I(pred(v)), B) (3)

This leaves setting the base case for our recursion. This is also easily accom-
plished from the definition. We let a(vmin, ∅, ∅) = true: it is indeed possible to
back up no occurrences using no backup nodes.

The algorithm then checks whether a(vmax, I(vmax), B) is true for any
B ⊆ V . Correctness of the algorithm follows from correctness of the recurrence.
Dynamic programming ensures that a(·) is only ever evaluated once for every
value of the parameters; call these the dynamic programming states. Evaluating
a single dynamic programming state can clearly be done in polynomial time. For
the runtime up to polynomial factors, it then remains to bound the number of
different dynamic programming states. The total number of states is

∑

v∈V

(
2|I(v)| · 2|V |

)
def
=

∑

v∈V

(
2µ(v) · 2n

)
≤

∑

v∈V

(
2µmax · 2n

)
= n · 2µmax · 2n.

This gives total running time of O∗(2n+µmax). ��

106 M. van den Akker et al.

5 Conclusion

We have introduced a model of recoverable routing in the single-node failure
model. As with other robust recoverability models, the motivation is as follows.
Choosing a solution that is feasible for any failure scenario is overly cautious—in
our case it would only allow paths of one hop. On the other hand, unrestricted
replanning in case of a failure can be too costly in terms of computational power
or the information available. We therefore plan a route that, in case of failure, can
be fixed easily and locally. For this model, we have resolved the basic algorithmic
and complexity questions.

We have presented several algorithms. For the polynomially-solvable case of
Recoverable path we have given an O(nm)-time algorithm. For the func-
tional and injective cases, the runtime of O∗(2n) that our algorithms achieve
seems reasonable. When generalised to the one-to-one case, however, our algo-
rithm runs in Θ∗(4n) time. It seems to us there should be a better way to handle
the one-to-one case.

References

1. Abbasi, A.A., Younis, M.F., Baroudi, U.A.: Recovering from a node failure in
wireless sensor-actor networks with minimal topology changes. IEEE Trans. Veh.
Technol. 62(1), 256–271 (2013)

2. Adjiashvili, D., Oriolo, G., Senatore, M.: The online replacement path problem.
In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 1–12.
Springer, Heidelberg (2013)

3. Álvarez-Miranda, E., Candia-Véjar, A., Carrizosa, E., Pérez-Galarce, F.: Vulner-
ability assessment of spatial networks: models and solutions. In: Fouilhoux, P.,
Gouveia, L.E.N., Mahjoub, A.R., Paschos, V.T. (eds.) ISCO 2014. LNCS, vol.
8596, pp. 433–444. Springer, Heidelberg (2014)

4. Álvarez-Miranda, E., Ljubić, I., Raghavan, S., Toth, P.: The recoverable robust
two-level network design problem. INFORMS J. Comput. 27(1), 1–19 (2015)

5. Büsing, C.: The exact subgraph recoverable robust shortest path problem. In:
Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-
Scale Optimization. LNCS, vol. 5868, pp. 231–248. Springer, Heidelberg (2009)

6. Büsing, C.: Recoverable robust shortest path problems. Networks 59(1), 181–189
(2012)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

8. Nanda, A., Rath, A.K., Rout, S.K.: Node sensing & dynamic discovering routes for
wireless sensor networks. Computing Research Repository (CoRR), abs/1004.1678
(2010)

9. Thorup, M.: Undirected single-source shortest paths with positive integer weights
in linear time. J. ACM 46(3), 362–394 (1999)

10. Wang, Y.-H., Chao, C.-F.: Dynamic backup routes routing protocol for mobile ad
hoc networks. Inf. Sci. 176(2), 161–185 (2006)

http://arxiv.org/abs/1004.1678

On Contact Graphs with Cubes
and Proportional Boxes

M. Jawaherul Alam1(B), Michael Kaufmann2, and Stephen G. Kobourov1

1 Department of Computer Science, University of Arizona, Tucson, USA
mjalam@email.arizona.edu

2 Wilhelm-Schickhard-Institut Für Informatik,
Universität Tübingen, Tübingen, Germany

Abstract. We study two variants of the problem of contact represen-
tation of planar graphs with axis-aligned boxes. In a cube-contact rep-
resentation we realize each vertex with a cube, while in a proportional
box-contact representation each vertex is an axis-aligned box with a pre-
specified volume. We show how to construct such representations repre-
sentation for some classes of planar graphs.

1 Introduction

We study contact representations of planar graphs in 3D, where vertices are
represented by interior-disjoint axis-aligned boxes and edges are represented by
shared boundaries between the corresponding boxes. A contact representation of
a planar graph G is proper if for each edge (u, v) of G, the boxes for u and v have
a shared boundary with non-zero area. Such a contact between two boxes is also
called a proper contact. Cubes are axis-aligned boxes where all sides have the
same length. A contact representation of a planar graph with boxes is called a
cube-contact representation when all the boxes are cubes. In a weighted variant of
the problem a proportional box-contact representation is one where each vertex v
is represented with a box of volume w(v), for any function w : V → R+, assigning
weights to the vertices V . Note that this “value-by-volume” representation is a
natural generalization of the “value-by-area” cartograms in 2D.

Related Work: Koebe’s 1930 theorem [9] represents planar graphs by touching
disks in 2D. Proper contact representation with rectangles in 2D is the well-known
rectangular dual problem, for which several characterizations exist [10,14]. Repre-
sentations with other axis-aligned and non-axis-aligned polygons [6,15] have been
studied. The weighted variant of the problem has been considered in the context
of rectangular, rectilinear, and unrestricted cartograms [7,11]. Thomassen [13]
shows that any planar graph has a proper contact representation with touching
boxes in 3D, while Felsner and Francis [8] find a (not necessarily proper) contact
representation of any planar graph with touching cubes. Recently, Bremner et al.
[5] asked whether any planar graph can be represented by proper contacts of cubes.
They answered the question positively for the case of partial planar 3-trees and

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 107–120, 2016.
DOI: 10.1007/978-3-662-49192-8 9

108 M.J. Alam et al.

some planar grids, but the problem remains open for general planar graphs. The
weighted variant of the problem in 3D is less studied, although some results are
known for proportional representation of special classes (e.g., outerplanar, planar
bipartite, planar, complete) using 3D L-shapes [2].

Our Contribution: Here we expand the class of planar graph representable
by proper contact of cubes. Specifically, we show how to compute proportional
box-contact representations for plane 3-trees, and both proportional box-contact
representations and a cube-contact representations for nested maximal outerpla-
nar graphs, which are defined as follows. A nested outerplanar graph is either an
outerplanar graph or a planar graph G where each component induced by the
internal vertices is another nested outerplanar graph with exactly three neigh-
bors in the outerface of G. A nested maximal outerplanar graph is a subclass
of nested outerplanar graphs that is either a maximal outerplanar graph or a
maximal planar graph in which the vertices on the outerface induce a maximal
outerplanar graph and each component induced by internal vertices is another
nested maximal outerplanar graph. Some proofs are sketched due to space limi-
tations; for more details see the full paper [1].

2 Preliminaries

A 3-tree is either a 3-cycle or a graph G with a vertex v of degree three in G such
that G− v is a 3-tree and the neighbors of v form a triangle. If G is planar, then
it is called a planar 3-tree. A plane 3-tree is a planar 3-tree along with a fixed
planar embedding. Starting with a 3-cycle, any planar 3-tree can be formed by
recursively inserting a vertex inside a face and adding an edge between the newly
added vertex and each of the three vertices on the face [4,12]. Using this simple
construction, we can create in linear time a representative tree for G [12], which
is an ordered rooted ternary tree TG spanning all the internal vertices of G. The
root of TG is the first vertex we have to insert into the face of the three outer
vertices. Adding a new vertex v in G will introduce three new faces belonging
to v. The first vertex w we add in each of these faces will be a child of v in TG.
The correct order of TG can be obtained by adding new vertices according to
the counterclockwise order of the introduced faces.

An outerplanar graph is one that has a planar embedding with all vertices
on one face (outerface). It is maximal if no edge can be added without violating
outerplanarity (all faces except the outerface are triangles). For k > 1, a k-
outerplanar graph G is an embedded graph such that deleting the outer-vertices
from G yields a graph where each component is at most a (k − 1)-outerplanar
graph; a 1-outerplanar graph is just an outerplanar graph. Note that any planar
graph is a k-outerplanar graph for some k > 0.

Let G be a planar graph. We define the pieces of G as follows. If G is outer-
planar, it has only one piece, the graph itself. Otherwise, let G1, G2, . . . , Gf be
the components of the graph obtained by deleting the outer vertices (and their
incident edges) from G. Then the pieces of G are all the pieces of Gi for each

On Contact Graphs with Cubes and Proportional Boxes 109

i ∈ {1, 2, . . . , f}, as well as the subgraph of G induced by the outer-vertices of G.
Note that each piece of G is an outerplanar graph. Since G is an embedded graph,
for each piece P of G, we can define the interior of P as the region bounded
by the outer cycle of P . Then we can define a rooted tree T where the pieces
of G are the vertices of T and the parent-child relationship in T is determined
as follows: for each piece P of G, its children are all the pieces of G that are in
the interior of P but not in the interior of any other pieces of G. A piece of G
has level l if it is on the l-th level of T . All the vertices of a piece at level l are
also l-level vertices. A planar graph is a nested outerplanar graph if each of its
pieces at level l > 0 has exactly three vertices of level (l − 1) as a neighbor of
some of its vertices. On the other hand a nested maximal outerplanar graph is a
maximal planar graph where all the pieces are maximal outerplanar graphs.

3 Representations for Planar 3-Trees

Here we prove that planar 3-trees have proportional box-representations.

Theorem 1. Let G = (V,E) be a plane 3-tree with a weight function w. Then
a proportional box-contact representation of G can be computed in linear time.

Proof: Let a, b, c be the outer vertices of G. We construct a representation Γ
for G where b is at the bottom side of Γ , a is at the back of Γ − {b} and c is
at the right side of Γ − {a, b}; see Fig. 1. Here for a set of vertices S, Γ − S
denotes the representation obtained from Γ by deleting the boxes representing
the vertices in S. The claim is trivial when G is a triangle, so assume that G has
at least one internal vertex. Let r be the root of the representation tree TG of G.
Then r is adjacent to a, b and c and thus defines three regions G1, G2 and G3

inside the triangles Δ1 = abr, Δ2 = bcr and Δ3 = car (including the vertices of
these triangles). By induction hypothesis Gi, i = 1, 2, 3 has a proportional box-
contact representation Γi where the boxes for the three vertices in Δi occupy the

’

’

’

3

1

G

a

c

a

c
a

Γ

Γ
r

b

c

a

b
r

Γ1
b

1
G3

G2

r
Γ

b
c

r

2

r Γ
Γ3

2

Fig. 1. Illustration for the proof of Theorem 1

110 M.J. Alam et al.

bottom, back and right sides of Γi. Define Γ ′
i = Γi − Δi. We now construct the

desired representation for G. Take a box for r with volume w(r) and place it in
a corner created by the intersection of three pairwise-touching boxes; see Fig. 1.
For each Δi, i = 1, 2, 3, there is a corner pi formed by the intersection of the
three boxes for Δi. We now place Γ ′

i (after possible stretching1) in the corner
pi so that it touches the boxes for the vertices in Δi by three planes. Note that
this is always possible since we can choose the surface areas for a, b and c to be
arbitrarily large and still realize their corresponding weights by appropriately
changing the thickness in the third dimension. This construction requires only
linear time, by keeping the stretching factor for each region in the representative
tree TG at the vertex representing that region. Then the exact coordinates can
be computed with a top-down traversal of TG. ��

4 Cube-Contacts for Nested Maximal Outerplanar
Graphs

Theorem 2. Any nested maximal outerplanar graph has a proper contact rep-
resentation with cubes.

We prove Theorem 2 by construction, starting with a representation for each
piece of G, and combining the pieces to complete the representation for G. Let
G be a nested maximal outerplanar graph. Augment G by adding a bound-
ing triangular face {A,B,C} to G and then triangulating the graph by adding
dummy edges from {A,B,C} to the outer vertices of G; see Fig. 2(a). Call this
the extended graph of G. For consistency, let the three dummy vertices have
level 0. The observation below follows from the definition of nested maximal
outerplanar graphs.

Observation 1. Let G be a nested-maximal outerplanar graph and G′ be the
extended graph of G. Then for each piece P of G at level l, there is a triangle of
(l − 1)-level vertices adjacent to the vertices of P and no other k-level vertices
with k < l are adjacent to any vertex of P .

Given this observation, we use the following strategy to obtain a contact
representation of G with cubes. For each piece P of G at level l, let A, B and C
be the three (l−1)-level vertices adjacent to P ’s vertices. Let P ′ be the subgraph
of G induced by the vertices of P as well as A, B and C; call P ′ the extended
piece of G for P . We obtain a contact representation of P ′ with cubes and delete
the three cubes for A, B and C to obtain the contact representation of P with
cubes. Finally, we combine the representations for the pieces to complete the
desired representation of G.

Before we describe this algorithm in detail, we present a useful lemma. This
lemma is also interesting by itself, since for any outerplanar graph O, where
1 In Sects. 3 and 5, the operation of stretching some representation involves expanding
it in some axial direction and shrinking it in some other, so that the volume remains
unchanged.

On Contact Graphs with Cubes and Proportional Boxes 111

B
(c)

A

A

B

(d)

A
G

B

H

(a)

A

B
(b)

b

a4
a=

3a

a

b1b2

2a1
a0

= b 3
1

2

3

a
4
= a

b

t

a

a

b

a

4
b=

0
1b

b
2

b

4

3

b=b

Γ

Γ

’

’

t =

a

Fig. 2. Illustration for the proof of Lemma 2

each face has at least one outer edge, it provides a contact representation of O
in the plane with squares and with a rectangle as the outer boundary of the
representation.

Lemma 2. Let G be planar graph with outerface ABba and at least one internal
vertex, such that G − {A,B} is a maximal outerplanar graph. If there is no
chord between any two neighbors of A and no chord between any two neighbors
of B, then G has a contact representation Γ in 2D where each inner vertex is
represented by a square, the union of these squares forms a rectangle, and the
four sides of these rectangles represent A, B, b and a, respectively.

Proof: We prove this lemma by induction on the number of vertices in G.
Denote the maximal outerplanar graph H = G − {A,B}; see Fig. 2(a). If G
contains only one internal vertex v, then we compute Γ by representing v by a
square R(v) of arbitrary size and representing A, B, b and a by the left, bottom,
right and top sides of R(v).

We thus assume that G has at least two internal vertices. Let u be the
unique common neighbor of {a, b} in H. If u is a neighbor of A, then H − {a} is
a maximal outerplanar graph. By induction hypothesis, G − {a} has a contact
representation Γ ′ where each internal vertex of G−{a} is represented by a square
and the left, bottom, right and top sides of Γ ′ represent A, B, b and u. Then
we compute Γ from Γ ′ by adding a square R(u) to represent u such that R(u)
spans the entire width of Γ ′ and is placed on top of Γ ′; see Fig. 2(b). A similar
construction can be used if u is a neighbor of B; see Fig. 2(c). We thus compute
a contact representation for G; see Fig. 2(d). ��

4.1 Cube-Contact Representation for Extended Pieces

Lemma 3. Let P be a piece of G at level l and P ′ be the extended piece for P
with (l − 1)-level vertices A, B, C. Then P ′ has a cube-contact representation.

112 M.J. Alam et al.

G

c

r
G G

A B

C

3

a

2

b

t
1

s

C

b

B

c

A a

G
1

2
G

G3

C

s r

G

BA
t

b1
1

2G
bf

2

A

C

G

BG
1

)b()a(

Fig. 3. Illustration for Case A in the proof of Lemma 3

Proof: Let r be a common neighbor of B and C; s a common neighbor of A and
C; t a common neighbor of A and B. It is easy to find a contact representation
of P ′ if r, s and t are the only vertices of P , so let P have at least four vertices.
The outer cycle of P can be partitioned into three paths: Pa is the path from s to
t, Pb is the path from r to t and Pc is the path from r to s. Note that all vertices
on the path Pa (Pb, Pc) are adjacent to A (B, C). A chord (u, v) is a short chord
if it is between two vertices on the same path from the set {Pa, Pb, Pc}. (Note
that a chord between two vertices from the set {r, s, t} is also a short chord.)
We have the following two cases.
Case A: There is no short chord in P . In this case all the chords of P are
between two different paths. We consider the following two subcases.

Case A1: There is no chord with one end-point in {r, s, t}. In this case,
due to maximal-planarity there exist three vertices a, b and c, adjacent to A, B,
and C, respectively such that (i) ab is the chord between vertices of Pa and Pb

farthest away from t, (ii) bc is the chord between vertices of Pb and Pc farthest
away from r, and (iii) ac is the chord between vertices of Pa and Pc farthest
away from s; see Fig. 3(a). We can then find three interior-disjoint subgraphs
of P ′ defined by three cycles of P ′: G1 is the one induced by all vertices on
or inside ABba; G2 is induced by all vertices on or inside BCcb; and G3 is
induced by all vertices on or inside ACca. Each of these subgraphs has the
common property that if we delete two vertices from the outerface (two vertices
from the set {A,B,C} in each subgraph), we get an outerplanar graph. From
the representation with squares from the proof of Lemma 2, we find a contact
representation of Gi, i = 1, 2, 3 where each internal vertex of Gi is represented
by a cube and the union of all these cubes forms a rectangular box whose four
sides realize the outer vertices. We use such a representation to obtain a contact
representation of P ′ with cubes as follows.

We draw pairwise adjacent cubes (of arbitrary size) for A, B, C. We need to
place the cubes for all the vertices of P in the a corner defined by three faces
of the cubes for A, B, C. Then we place three mutually touching cubes for a, b

On Contact Graphs with Cubes and Proportional Boxes 113

and c, which touch the walls for A, B and C, respectively; see Fig. 3(a). We also
compute a contact representation of the internal vertices for each of the three
graphs G1, G2 and G3 with cubes using Lemma 2, so that the outer boundary for
each of these representation forms a rectangular pipe. We adjust the sizes of the
three cubes for a, b and c in such a way that the three highlighted rectangular
pipes precisely fit these three representations (after some possible scaling). Note
that this construction works even if one or more of the subgraphs G1, G2 and
G3 are empty. This completes the analysis of Case A1.

Case A2: There is at least one chord with one end-point in {r, s, t}. Due
to planarity all such chords will have the same end-point in {r, s, t}. Suppose
s is this common end point for these chords; see Fig. 3(b). Let b1 and bf be
the first and last endpoints in the clockwise order of these chords around s.
Then we can find two subgraphs G1 and G2 induced by the vertices on or inside
two separating cycles ABb1s and BCsbf . We find contact representations for the
internal vertices of these two graphs G1 and G2 using Lemma 2 so that the outer-
boundaries of these representation form rectangular pipes. We then obtain the
desired contact representation for P ′, starting with the three mutually touching
walls for A, B and C at right angles from each other, placing the cubes for s
and b1, . . . , bf as illustrated in Fig. 3(b), and fitting the representations for G1

and G2 (after some possible scaling) in the highlighted regions.
Case B: there are some shord chords in P . In this case, we find at most four
subgraphs from P ′ as follows. At each path in {Pa, Pb, Pc}, we find the outermost
chord, i.e., one that is not contained inside any other chords on the same path.
Suppose these chords are a1a2, b1b2 and c1c2, on the three paths Pa, Pb, Pc,
respectively. Then three of these subgraphs Ga, Gb and Gc are induced by the
vertices on or inside the three triangles Aa1a2, Bb1b2 and Cc1c2. The fourth
subgraph P ∗ is obtained from P ′ by deleting all the inner vertices of the three
graphs Ga, Gb and Gc; see Fig. 4.

A cube representation of P ∗ can be found by the algorithm in Case A, as P ∗

fits the condition that there is no chord between any two neighbors of the same
vertex in {A,B,C}. Note that by moving the cubes in the representation by an
arbitrarily small amount, we can make sure that for each triangle xyz in P ∗, the
three cubes for x, y and z form a corner surrounded by three mutually touching
walls at right angles to each other. Now observe that each of the three graphs
Ga, Gb and Gc is a planar 3-tree; thus using the algorithm of either [5] or [8],
we can place the internal vertices of these three graphs in their corresponding
corners, thereby completing the representation. ��

4.2 Cube-Contact Representation for a Nested Maximal
Outerplanar Graph

Proof of Theorem 2: Let G be a nested maximal outerplanar graph. We build
the contact representation of G by a top-down traversal of the rooted tree T
of the pieces of G. We start by creating a corner surrounded by three mutually
touching walls at right angle to each other. Then whenever we traverse any vertex

114 M.J. Alam et al.

1b

2b
1c2

c a1
2

a
1

2
b

2 1
c

a2

a1

A B
1b

2
b

c
2

c
1

C

B

C

C

c

A
b

B
A

a1
a2

Fig. 4. Removing chords with end-vertices in the same neighborhood

of T , we realize the corresponding piece P at level l by obtaining a representation
using Lemma 3 and placing this in the corner created by the three already-placed
cubes for the three (l − 1)-level vertices adjacent to P (after possible scaling). ��

5 Proportional Box-Contacts for Nested Outerplanar
Graphs

In this section we prove the following main theorem.

Theorem 3. Let G = (V,E) be a nested outerplanar graph and let w : V →
R+ be a weight function defining weights for the vertices of G. Then G has a
proportional contact representation with axis-aligned boxes with respect to w.

We construct a proportional representation for G using a similar strategy as
in the previous section: we traverse the construction tree T of G and deal with
each piece of G separately. Each piece P of G is an outerplanar graph and hence
one can easily construct a proportional box-contact representation for P as fol-
lows. Any outerplanar graph P has a contact representation with rectangles in
the plane. In fact in [3], it was shown that P has a contact representation with
rectangles on the plane where the rectangles realize prespecified weights by their
areas. Thus by giving unit heights to all rectangles we can obtain a proportional
box-contact representation of P for any given weight function. However if we
construct proportional box-contact representation for each piece of G in this
way, it is not clear that we can combine them all to find a proportional contact
representation of the whole graph G. Instead, we use this construction idea in
Lemmas 4 and 5 to build two different proportional rectangle-contact represen-
tations for outerplanar graphs and we use them in the proof of Theorem 3.

Suppose O is an outerplanar graph and Γ is a contact representation of O
with rectangles in the plane. We say that a corner of a rectangle in Γ is exposed
if it is on the outer-boundary of Γ and is not shared with any other rectangles.

Lemma 4. Let O be a maximal outerplanar graph with a weight function w.
Let 1, . . . , n be the clockwise order of the vertices around the outer-cycle. Then
a proportional rectangle-contact representation Γ of O for w can be computed

On Contact Graphs with Cubes and Proportional Boxes 115

so that rectangle R1 for 1 is leftmost in Γ , rectangle Rn for n is bottommost in
Γ − R1, and the top-right corner for each rectangle is exposed in Γ .

Proof Sketch: Constructing Γ is easy when G is a single edge (1, n), so let G
contain at least 3 vertices. Let x be the unique vertex adjacent to (1, n). Denote
by G[1, x] the graph induced by all vertices between 1 and x and by G[x, n] the
graph induced by the vertices between x and n. Recursively draw G[1, x] and
G[x, n] and remove the rectangles for 1, x, n to obtain the drawings Γ1 and Γ2.
Draw rectangles R1, Rx and Rn for 1, x, n, with required areas and place Γ1

(possibly stretched) between R1, Rx and Γ2 (possibly stretched) between Rx,
Rn to complete the drawing; see Fig. 5. ��

Note that in these layouts the top right corners of the rectangles for ver-
tices {1, . . . , n} have increasing x-coordinates and decreasing y-coordinates. Thus
we refer to them as Staircase (SC) layouts and to the algorithm as the
SC Algorithm.

Lemma 5. Let O be a maximal outerplanar graph with a weight function w.
Let 1, . . . , n be the clockwise order of the vertices around the outer-cycle. Then
a proportional rectangle-contact representation Γ of O for w can be computed
so that rectangle R1 for 1 is leftmost in Γ , rectangle Rn for n is bottommost in
Γ −R1, and the top-right corners of all rectangles for vertices {1, . . . , i} and the
bottom-right corners of all rectangles for vertices {i, . . . , n} are exposed in Γ .

Proof Sketch: Computing Γ is easy when G is a single edge (1, n), so let G
have at least 3 vertices and x be the unique vertex adjacent to (1, n). Define the
two graphs G[1, x] and G[x, n] as in the proof of Lemma 4; see Fig. 6(a). If x > i,
then recursively draw G[1, x] and remove the rectangles for 1 and x from it; call
the result Γ1. Draw G[x, n] using the SC Algorithm and remove x and n to
find Γ2. Now draw three mutually touching rectangles R1, Rx and Rn for 1, x
and n, with the necessary areas and place Γ1 (after possible stretching) between
R1, Rx and Γ2 (after 90◦ clockwise rotation and possible stretching) between

G

Γ

x , n]1

x

n

1

x

n

x

[

1

Γ
2

Γ
1

Γ
2

x

n

1

G [1 x],

Fig. 5. Illustration for Lemma 4

116 M.J. Alam et al.

Rx, Rn to complete the drawing; see Fig. 6(b). The cases when x = i and x < i
follow similar constructions; see Fig. 6(c)–(d). ��

(c)

(d)

(a)

(b)

x

n

1 x

n

i

1 x=i

n

x

G

1
x > i

x < i

x = i

i

[1 x],

G [x , n]

Γ
1

Γ
2

Γ
2

Γ
1

Γ
1

Γ
2

1

Fig. 6. Illustration for Lemma 5

Note that in the layout obtained above the top-right corners for vertices
{1, . . . , i} and the bottom-right corners for vertices {i+1, . . . , n} form two stair-
cases. Thus we refer to this as a Double-Staircase (DSC) layout, to the algo-
rithm as the DSC Algorithm, and to vertex i as the pivot vertex.

Let O be a maximal outerplanar graph and let Γ be either a SC or a DSC
layout. Then any triangle {p, q, r} in O is represented by three rectangles and the
shared boundaries of these rectangles define a T-shape. The vertex whose two
shared boundaries are collinear in the T-shape is called the pole of the triangle
{p, q, r}.
Proof of Theorem 3. Let T be the construction tree for G. We compute a rep-
resentation for G by a top-down traversal of T , constructing the representation
for each piece as we traverse it. Let P be a piece of G at the l-th level. If P is the
root of T , then we use the SC Algorithm to find a contact representation of P
with rectangles in the plane and then we give necessary heights to these rectan-
gles to obtain a proportional contact representation of P with boxes. Otherwise,
the vertices of P are adjacent to exactly three (l − 1)-level vertices A, B, C that
form a triangle in the parent piece of P . Since A, B, C belong to the parent
piece of P , their boxes have already been drawn when we start to draw P . To
find a correct representation of G, we need that the boxes for the vertices in P
have correct adjacencies with the boxes for A, B, and C; hence we assume a
fixed structure for such a triangle. We maintain the following invariant:

Let {p, q, r} be three vertices in a piece P of G forming a triangle. Then in
the proportional contact representation of P , the boxes for p, q, r are drawn in
such a way that (i) the projection of the mutually shared boundaries for these
boxes in the xy-plane forms a T-shape, (ii) the highest faces (faces with largest

On Contact Graphs with Cubes and Proportional Boxes 117

z-coordinate) of the three rectangles have different z coordinates and the highest
face of the pole-vertex of the triangle has the smallest z-coordinate.

Note that by choosing the areas of the rectangles in the SC layout, we can
maintain this invariant for the parent piece by suitably adjusting the heights of
the boxes (e.g., incrementally increasing heights for the vertices in the recursive
SC Algorithm).

We now describe the construction of a proportional box-contact represen-
tation of P with the correct adjacencies for A, B and C. By the invariant the
projection of the shared boundaries for {A,B,C} forms a T-shape in the xy-
plane. Without loss of generality assume that A is the pole of the triangle and
the highest faces of B, C and A are in this order according to decreasing z-
coordinates. Also assume that P is a maximal outerplanar graph; we later argue
that this assumption is not necessary.

Let ab be a common neighbor of A and B; bc a common neighbor of B and C;
ca a common neighbor of C and A. Then the outer cycle of P can be partitioned
into three paths: Pa is the path from ca to ab, Pb is the path from ab to bc and Pc

is the path from bc to ca. All the vertices on the path Pa (Pb, Pc, respectively)
are adjacent to A (B, C, respectively). We first assume that there is no chord
in P between ca and a vertex on path Pa. We consider the following two cases.
Case 1: No vertex of P is adjacent to all of {A,B,C}. We label the
vertices of P in clockwise order starting from ca = 1 and ending at n, where n
is the number of vertices in P . Let i and j be the indices of vertices bc and ab,
respectively. Let x be the index of the vertex that is the (unique) third vertex
of the inner face of P containing the edge (1, n). Define the two graphs G[1, x]
and G[x, n] as in the proof of Lemma 4. We first find a proportional contact
representation of P for w restricted to the vertices of P using rectangles in the
plane, then we give the needed heights to these rectangles. Draw G[x, n] using
the SC Algorithm and delete the rectangles Rx and Rn, for x and n, to obtain
Γ2. Draw rectangles Rx and Rn so that the bottom side of Rx touches the top
side of Rn, the left sides for both the rectangles have the same x-coordinate
and the right side of Rn extends past Rx. Now place Γ2 (possibly stretching)
touching the right side of Rx and the top side of Rn; this is possible as we can
make the width of Rn suitably long. Place rectangle R1 for 1, touching the left
sides of Rx and Rn, so that its bottom side is aligned with Rn and its top side
is aligned with the top side of the rectangle for j. To complete the rest of the
drawing, we have the following two subcases:

Case 1a: x ≤ i. Use the SC Algorithm to draw G[1, x] and delete from it
rectangles R1 and Rx to obtain Γ1. Place Γ1 (after 90◦ counterclockwise rotation
and possible stretching) touching the top side of R1 and left side of Rx; this is
possible by choosing a suitably large height for Rx.

Case 1b: x > i. Use the DSC Algorithm with pivot vertex i to draw
G[1, x]. Delete rectangles R1 and Rx from this drawing to obtain Γ1. Place Γ1

(after 90◦ counterclockwise rotation and possible stretching) touching the top
side of R1 and left side of Rx, so that the top side of the rectangle for (x − 1)
extends past the top side of Rx.

118 M.J. Alam et al.

So far we used the function w to assign areas for the rectangles and obtained
proportional box-contact representation of P from the rectangles by assigning
unit heights. However, by changing the areas for the rectangles, we can obtain
different heights for the boxes. We will use this property to maintain adjacencies
with {A,B,C}, as well as to maintain the invariant. Specifically, once we get the
box representation of P , we stretch it by increasing the heights for the boxes,
so that when we place it at the corner created by the T-shape for {A,B,C} it
will not intersect the representation for any of its sibling pieces in T . Consider
the point p which is the intersection of the lines containing the right side of the
rectangle for i and the top side of the rectangle for j. We place Γ such that
the point p superimposes on the corner for the T-shape in the projection on the
xy-plane. Since the highest faces of B, C and A are in this order according to
z-coordinate, the adjacencies of the vertices in P with {A,B,C} are correct.
By appropriately choosing the areas for the rectangles, we ensure that all the
boxes for the vertices of P have their highest faces above that of B and that the
invariant is maintained.
Case 2: A vertex of P is adjacent to all of {A,B,C}. In this case at
least one of {A,B,C} has only one neighbor in P . Assume first that a vertex b
(= ab = bc) of P is adjacent to all of {A,B,C} and this is the only neighbor of
B. Then we follow the steps for Case 1a with b = j (and some vertex between x
and b as i). But when we finally place this representation of P in the corner for
the T-shape of {A,B,C} we find the point p to superimpose on this corner as
follows. The point p is on the line containing the top side of the rectangle for b
and has x-coordinate between the right sides of the rectangles for b and (b − 1).

If a vertex c (= bc = ca) is adjacent to all of {A,B,C} and is the only
neighbor of C in P , then we follow the steps of Case 1b with i = 2 and j = ab.
We find the point p to superimpose on the corner for the T-shape of {A,B,C}
as follows. The point p is on the line containing the top side of the rectangle for
j = ab and has x-coordinate between the left sides of the rectangles for 1 and 2.

If a vertex a (= ab = ca) is adjacent to all of {A,B,C} and is the only
neighbor of A in P , then we number the vertices of P in the clockwise order
starting from the clockwise neighbor of a and ending at a = n. We use the SC
Algorithm to find a representation of P with rectangles and give the needed
heights to obtain a representation with boxes. In the corner for the T-shape of
{A,B,C}, we superimpose the intersection point for the lines containing the top
side of the rectangle of n and the right side of the rectangle for bc.

Finally, we consider the case when there is a chord between ca and another
vertex on the path Pa. Take the innermost such chord and let its other end-
vertex be t. Then consider the two subgraphs P1 and P2 induced by all the
vertices outside the chord and inside the chord (along with the two vertices ca
and t). P1 does not contain any chord from ca; thus we use the algorithm above
to obtain a representation of P1; denote this by Γ ′. In this representation ca and
t will play the roles of 1 and n, respectively. Each vertex of P2 is adjacent to A
and we find a proportional contact representation of P2 and attach it with Γ ′ as
follows. We use the SC Algorithm to find a proportional contact representation

On Contact Graphs with Cubes and Proportional Boxes 119

of P2 with rectangles in the plane and delete the rectangles for ca and t from
it to obtain Γ ′′. In Γ ′, we change the height of the rectangle R1 for ca = 1 to
increase its area so that its bottom side extends past the bottom side of the
rectangle Rn for t = n. Then we place Γ ′′ (after reflecting with respect to the
x-axis and possible stretching) touching the right side of R1 and the bottom
side of Rn. Since the SC Algorithm can accommodate any given area for the
layout, we can change the heights of the boxes for the vertices in P2 to maintain
the invariant.

Thus with the top-down traversal of T , we obtain a proportional contact
representation for O. We assumed that each piece of O is maximal outerplanar.
However in the contact representation, for each edge (u, v), either a face of the
box Ru for u is adjacent to the box Rv for v and no other box; or a face of Rv is
adjacent to Ru and no other box. In both cases the adjacency between these two
coxes can be removed without affecting any other adjacency. Thus this algorithm
holds for any nested outerplanar graph O. ��

6 Conclusions and Future Work

We proved that nested maximal outerplanar graphs have cube-contact repre-
sentations and nested outerplanar graphs have proportional box-contact repre-
sentations. These classes are special cases of k-outerplanar graphs, and the set
of k-outerplanar graphs for all k > 0 is equivalent to the class of all planar
graphs. Thus this approach might help show that all planar graphs have proper
cube-contact, or proportional box-contact representations.

Acknowledgments. We thank Therese Biedl, Steve Chaplick, Stefan Felsner, and
Torsten Ueckerdt for discussions about this problem.

References

1. Alam, M.J., Kaufmann, M., Kobourov, S.G.: On contact graphs with cubes and
proportional boxes. CoRR abs/1510.02484 (2015)

2. Alam, M.J., Kobourov, S.G., Liotta, G., Pupyrev, S., Veeramoni, S.: 3D propor-
tional contact representations of graphs. In: Bourbakis, N.G., Tsihrintzis, G.A.,
Virvou, M. (eds.) Information, Intelligence, Systems and Applications. pp. 27–32.
IEEE (2014)

3. Alam, M.J., Biedl, T.C., Felsner, S., Gerasch, A., Kaufmann, M., Kobourov, S.G.:
Lineartime algorithms for hole-free rectilinear proportional contact graph repre-
sentations. Algorithmica 67(1), 3–22 (2013)

4. Biedl, T.C., Velazquez, L.E.R.: Drawing planar 3-trees with given face areas. Com-
put. Geom. Theory Appl. 46(3), 276–285 (2013)

5. Bremner, D., Evans, W., Frati, F., Heyer, L., Kobourov, S.G., Lenhart, W.J.,
Liotta, G., Rappaport, D., Whitesides, S.H.: On representing graphs by touching
cuboids. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp.
187–198. Springer, Heidelberg (2013)

6. Duncan, C.A., Gansner, E.R., Hu, Y.F., Kaufmann, M., Kobourov, S.G.: Optimal
polygonal representation of planar graphs. Algorithmica 63(3), 672–691 (2012)

120 M.J. Alam et al.

7. Evans, W., Felsner, S., Kaufmann, M., Kobourov, S.G., Mondal, D., Nishat, R.I.,
Verbeek, K.: Table cartograms. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA
2013. LNCS, vol. 8125, pp. 421–432. Springer, Heidelberg (2013)

8. Felsner, S., Francis, M.C.: Contact representations of planar graphs with cubes.
In: Hurtado, F., van Kreveld, M.J. (eds.) Symposium on Computational Geometry,
pp. 315–320 (2011)

9. Koebe, P.: Kontaktprobleme der konformen Abbildung. Berichte uber die Verhand-
lungen der Sachsischen Akad. der Wissenschaften zu Leipzig. Math.-Phys. Klasse
88, 141–164 (1936)

10. Kozminski, K., Kinnen, E.: Rectangular duals of planar graphs. Networks 15(2),
145–157 (1985)

11. van Kreveld, M.J., Speckmann, B.: On rectangular cartograms. Comput. Geom.
37(3), 175–187 (2007)

12. Mondal, D., Nishat, R.I., Rahman, M.S., Alam, M.J.: Minimum-area drawings of
plane 3-trees. J. Graph Algorithms Appl. 15(2), 177–204 (2011)

13. Thomassen, C.: Interval representations of planar graphs. J. Comb. Theory Ser. B
40(1), 9–20 (1988)

14. Ungar, P.: On diagrams representing maps. J. Lond. Math. Soc. 28, 336–342 (1953)
15. Yeap, K.H., Sarrafzadeh, M.: Floor-planning by graph dualization: 2-concave rec-

tilinear modules. SIAM J. Comput. 22, 500–526 (1993)

Orthogonal Layout
with Optimal Face Complexity

M. Jawaherul Alam1, Stephen G. Kobourov1, and Debajyoti Mondal2(B)

1 Department of Computer Science, University of Arizona, Tucson, USA
{mjalam,kobourov}@cs.arizona.edu,

2 Department of Computer Science, University of Manitoba, Winnipeg, Canada
jyoti@cs.umanitoba.ca

Abstract. We study a problem motivated by rectilinear schematization
of geographic maps. Given a biconnected plane graph G and an integer
k ≥ 0, does G have a strict-orthogonal drawing with at most k reflex
angles per face? For k = 0 the problem is equivalent to realizing each
face as a rectangle. The problem can be reduced to a max-flow problem
in some linear-size nonplanar network, but the best solutions require
Ω(n1.5 log n log k) time. We describe a graph matching approach that
can decide strict-orthogonal drawability for arbitrary reflex complexity
k in O((nk)1.5) time, which is faster for constant values of k. In contrast,
if the embedding is not fixed, we prove that it is NP-complete to decide
whether a planar graph admits a strict-orthogonal drawing with reflex
face complexity 4.

1 Introduction

Map schematization is a problem of considerable interest in geography, car-
tography, information visualization and computational geometry. Rectangular
(countries are rectangles) and rectilinear (borders are made of orthogonal line
segments) schematizations have been studied for over 80 years; see the com-
prehensive survey by Tobler [19]. While rectangular schematizations sometimes
must distort the topology of the map (e.g., no four mutually neighboring coun-
tries can be represented by contact of rectangles), rectilinear schematizations
can preserve the topology, at the expense of more complicated country shapes.
We consider the problem of rectangular schematization where the “complexity”
of each country (as defined by the number of reflex corners) is minimized. We
also consider the case where different countries are allowed to have different
complexities. We describe efficient algorithms for both of these scenarios.

An orthogonal drawing of a planar graph G = (V,E) in R2 is a planar drawing
of G such that each vertex v ∈ V is drawn as a point and each edge (u, v) ∈ E
is drawn as a rectilinear (axis-aligned) path between the points that correspond
to u and v. A t-bend orthogonal drawing of G is an orthogonal drawing of G,
where each edge is drawn as an orthogonal polyline with at most t bends. An
orthogonal drawing is strict if it does not contain any bend, i.e., it is a 0-bend
orthogonal drawing. In the literature such a drawing is also referred to as bendless
c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 121–133, 2016.
DOI: 10.1007/978-3-662-49192-8 10

122 M. Jawaherul Alam et al.

a

b
c

e

f

g

h
i

j

k l

m

n o

(a) (b) (c) (d)

ab

c e

f

g

hi

j

k
l

m

n o

a
b c e

f

g

hi

j

k l

m

n
o

(e)

Fig. 1. (a) A plane graph G. (b) A strict-orthogonal drawing of G with reflex face
complexity 1. (c) A rectangular drawing of G. (d)–(e) Two strict-orthogonal drawings
(0-bend drawings) of the same graph with different reflex face complexities.

or no-bend orthogonal drawing [17]. If G is a plane graph (i.e., a planar graph
with a fixed planar embedding), then an orthogonal drawing of G is additionally
constrained to respect the given planar embedding. The reflex face complexity of
an orthogonal drawing Γ is the smallest integer k such that each inner face of Γ
contains at most k reflex angles, and the outer face of Γ contains at most k + 4
reflex angles. Thus in an orthogonal drawing of G with reflex face complexity
k, each face of G is drawn as an orthogonal polygon with at most 2k + 4 sides.
Figure 1(a)-(c) show a graph G and two strict-orthogonal drawings of G.

From technical drawings and wiring schematics to transportation network
layouts, orthogonal drawing (or layout) is one of the most common techniques
for visualizing planar graphs [6,11,16] and is also a popular visualization tech-
nique provided by most network layout systems (e.g., yEd [21], graphviz [7],
and OGDF [3]). Early work on orthogonal layouts was done by Valiant [20] and
Leiserson [13] in the context of VLSI design. The input graphs are assumed
to be planar and with maximum-degree four, although models incorporating
higher degree graphs were introduced later by Tamassia [18] and Fößmeier and
Kaufmann [8].

1.1 Optimization Goals and Challenges

The number of reflex corners per face and the number of bends per edge are two
important aesthetic criteria in an orthogonal drawing, and a good drawing usu-
ally minimizes these two parameters. Note that these two optimization criteria
are important not only from the point of view of VLSI complexity and floorplan-
ing, but also due to the readability and aesthetics of the layout. Minimizing the
total number of bends over all possible embeddings of the input planar graph is
NP-hard [9]. However, for maximum-degree-4 plane graphs, Tamassia [18] uses
a maximum-flow based technique to solve the problem in O(n7/4

√
log n)-time.

Later, Cornelsen and Karrenbauer [4] proposed a variation of this maximum-flow
based approach that improves the running time to O(n3/2). Although these algo-
rithms can be adapted to bound the number of bends per edge, there exist more
specialized algorithms for such optimizations. For example, Bläsius et al. [1,2]
gave efficient algorithms to bound the number of bends per edge, which can also

Orthogonal Layout with Optimal Face Complexity 123

optimize any convex cost associated with the edges of the input graph, even in
the variable embedding setting for some specific cost functions.

Note that minimization of the number of total bends, or the number of bends
per edge cannot bound the reflex face complexity, see Fig. 1(d)–(e), but a drawing
with reflex face complexity k ensures that the number of bends per edge is
at most 2k + 4. Given a plane graph G with four prescribed corner vertices,
Miura et al. [15] showed how to decide whether G admits a strict-orthogonal
drawing with reflex face complexity 0 (also known as rectangular drawings, as
shown in Fig. 1(c)), that respects the given corners. They reduced the problem of
rectangular drawing to the problem of finding a perfect matching in some graph,
which leads to an O(n1.5/ log n)-time algorithm. If the four corner vertices are
not given, then a trivial solution is to try all possible options for the corner
vertices. A variant of Tamassia’s [18] flow-based approach can solve this problem
in O(n log2 n) time, even when the corners are not given in the input.

Tamassia’s [18] flow-based approach can be modified to decide strict-
orthogonal drawability for arbitrary reflex complexity k by solving a maximum-
flow problem. One can adapt many other existing variations of Tamassia’s
formulation [1,2,4] to decide strict-orthogonal drawability with a given reflex face
complexity. Unfortunately, all these modifications require solving some maximum-
flow problem in some nonplanar network whose size is linear in the number of
vertices n in the input graph. Based on the known complexities for computing
a maximum flow, the algorithms in this setting require Ω(n1.5 log n log k) run-
ning time for solving strict-orthogonal drawability with reflex face complexity k.
Thus an interesting question is whether the matching-based approach of Miura
et al.’s [15] can be generalized to more efficiently decide orthogonal drawability
with reflex face complexity k.

1.2 Our Contributions

We study the problem of orthogonal drawing of a biconnected planar graph with
a given reflex face complexity k. Note that since every vertex in an orthogonal
drawing has degree ≤ 4, we consider only max-degree-4 graphs in this paper.
In the fixed embedding setting, we give an algorithm based on bipartite graph
matching to compute a strict-orthogonal drawing of a biconnected plane graph G
with any given reflex face complexity k (if such a drawing exists). Furthermore,
given the nonnegative integers k0, k1, . . . , kr for the faces f0, f1, . . . , fr of G, our
algorithm can compute a strict-orthogonal drawing of G, with at most ki reflex
corners in each face fi, i ∈ {0, 1, . . . , r}. For example, one can specify ki = k for
each inner face fi, and k0 = 4 for the outer face f0 to compute a complexity-k
tessellation of a rectangle.

Although perfect matching problems on bipartite graphs can be solved via
maximum flow [14], the matching-based technique we present here does not use
this relationship. Based on the best known time-complexity for computing a max-
imum matching, our matching-based algorithm runs in O((nk)1.5) time, where k
is largest ki, which is asymptotically faster than any previous approaches in the
practical setting where k is a constant. Our algorithm can also be extended to

124 M. Jawaherul Alam et al.

compute general (non-strict) orthogonal drawings as well as orthogonal drawings
with at most ti bends on each edge ei, for some nonnegative integer ti.

Finally, we show that if the embedding of the planar graph G is not given,
deciding whether G has a strict-orthogonal drawing with a given reflex face
complexity k is NP-complete, even when k = 4.

2 Strict-Orthogonal Drawing Algorithms for Plane
Graphs

In this section we give our algorithm for deciding strict-orthogonal drawability of
planar graphs with a given reflex face complexity, and discuss some subsequent
generalizations. We begin with a preliminary result showing that to compute
a strict-orthogonal drawing it suffices to specify the angles between pairs of
consecutive edges around each vertex. We then describe our algorithm based on
a perfect matching in a bipartite graph, proving the following main theorem:

Theorem 1. Let G be an n-vertex biconnected plane graph with the faces
f0, . . . , fr. Given the nonnegative integers k0, . . . , kr with k = maxi{ki}, one
can decide in O((nk)1.5) time whether G has a strict-orthogonal drawing, where
each face fi has at most ki reflex corners, and construct such a drawing if it
exists.

2.1 Orthogonal Drawing Using Angle Assignment

Tamassia [18] showed that an orthogonal drawing Γ of a biconnected plane graph
G can be described by augmenting the embedding of G with the angles at the
bends (bend angles) and the angles between pairs of consecutive edges around
the vertices of G (vertex angles). For strict-orthogonal drawings (no bends), we
only consider vertex angles. Specifically, an angle assignment is a mapping from
the set {π/2, π, 3π/2} to the angles of G, where each angle is assigned exactly
one value. Although an angle assignment of G does not specify edge lengths, it
can precisely describe the shape of Γ . Given an angle assignment Φ, one can test
if Φ corresponds to a strict-orthogonal drawing by Lemma 1, which is implied
from [18]:

Lemma 1. An angle assignment Φ for a plane graph G corresponds to a strict-
orthogonal drawing of G if and only if Φ satisfies the following conditions (P1–
P2):

(P1) The sum of the assigned angles around each vertex v in G is 2π.
(P2) the total assigned angle of every inner (respectively, outer) face f is (γ−2)π

(respectively, (γ + 2)π), where γ is the number of vertices on the boundary
of f .

Given an angle assignment Φ satisfying (P1–P2), one can obtain a strict-
orthogonal drawing of G (i.e., the exact coordinates for the vertices) in linear
time.

Orthogonal Layout with Optimal Face Complexity 125

2.2 Bipartite Graph Matching Formulation

Here we prove Theorem 1 by reducing the drawing problem to the problem of
finding a perfect matching in a bipartite graph. We construct a bipartite graph
B(G) so that one can compute a strict-orthogonal drawing of G with reflex face
complexity k from a perfect matching of B(G), and vice versa. Although our
result generalizes the rectangular drawing algorithm by Miura et al. [15], the
bipartite graph we construct is quite different from the one in [15] and it gives
the option of having reflex corners in a face.

Construction of B(G): Let f0 be the outer face and f1, . . . , fr be the inner
faces of G; see Fig. 2. For each inner face fi, i ∈ {1, . . . , r} of G we have four
vertices x1

i , x
2
i , x

3
i , x

4
i in B(G), as shown with white squares with thin boundaries.

These vertices will correspond to four π/2 angles in fi. We also have ki pairs
of vertices a1

i , b
1
i , . . . , a

ki
i , bki

i associated with fi, as shown with white and gray
squares with bold boundaries. For each j ∈ {1, . . . , ki}, there is an edge (aj

i , b
j
i).

Later, every a-vertex will correspond to a π/2 angle, and every b-vertex will
correspond to a 3π/2 angle in fi. In each internal face fi, there are only ki pairs
of a and b-vertices, which will bound the number of reflex corners of fi in the
final drawing. Observe that by Condition (P2) of Lemma 1, each internal face
of G has exactly four π/2 angles more than its 3π/2 angles, and hence we have
four more white squares than gray squares. Similarly, the outer face f0 must
contain four 3π/2 angles more than its π/2 angles. Thus for the face f0, we have
four vertices y1

0 , y
2
0 , y

3
0 and y4

0 representing 3π/2 angles, and p = k0 − 4 pairs of
vertices a1

0, b
1
0, . . . , a

p
0, b

p
0. Call the x- and the a-vertices the convex face-vertices

and the y- and b-vertices the reflex face-vertices.
In addition to the face-vertices above, B(G) also has boundary-vertices that

correspond to the vertices of G. For each degree-4 vertex v in G, let fi, fj , fk, fl
be the four faces incident to v. For each h ∈ {i, j, k, l}, B(G) has a vertex vh,
which is adjacent to all the convex face-vertices associated with fh; see vertex h
in Fig. 2. We refer to these vertices as convex boundary-vertices. Each of these
convex boundary-vertices will choose a convex face-vertex ensuring four π/2
angles around v. For each degree-3 vertex v incident to the faces fi, fj , fk, B(G)
has three vertices vi, vj , vk, which are adjacent to all the convex face-vertices of
their corresponding faces. We also have an additional vertex v∗ in B(G), which is
a common neighbor for vi, vj , vk; see vertex n∗ in Fig. 2. Again we refer to these
vertices vi, vj , vk as convex boundary-vertices, and the vertex v∗ as the central-
vertex. Intuitively, v∗ will match with one of its incident vertices leaving two
vertices among {vi, vj , vk}, which will choose two π/2 angles around v. Finally,
if v is a degree-2 vertex incident to the faces fi and fj , then we have two vertices
v′ and v′′ in B(G) that are adjacent to each other. We call v′ a convex boundary-
vertex (shown as gray circle), and v′′ a reflex boundary-vertex (shown as white
circle). The vertex v′ is adjacent to all the convex face-vertices associated with
fi and fj , and the vertex v′′ is adjacent to all the reflex vertices associated with
fi and fj ; see vertex m in Fig. 2. Note that degree-3 and degree-4 vertices of G

126 M. Jawaherul Alam et al.

(a) (b)

 3

 1
 1

 1
 1

1
 3

 4
 1

 2
1

 1
 1

2

3

4

0

4

1

0

4

3
1

3

2

0
2

1

1

0

2

3

4
1

 1
 0

 2
 0

 0

 0
 4

y

f p f

p

f

nx

n

y
n

hl

x

l

hl
y

a

h
x

b

h

x
p

d

y

f

d

f

d

a’

a’’

o’’

m’

r’

s’

m

g

m’’

s’’

r’’

i
j

k

h

sc

o

q

m

b

n*

p*

b

p*

r
c’’ c’

b’’

k’

i’
i’’

j’’ j’

o’

a
n*

g

i
j

k

h

sc

o

q

k’’

g’’

g’

q’

q’’

b’

a

r

l*

d*

l*

d*

Fig. 2. (a) A plane graph G (induced by the bold edges), and the construction of B(G)
with k0 = 4, k1 = k2 = k3 = k4 = 1, where only a few edges of B(G) are shown. (b)
The remaining edges in B(G): the edges shown are the ones incident to the convex
boundary vertices for a degree-4 (red), a degree-3 (green), a degree-2 (blue) vertices
and the ones incident to reflex boundary vertices for two degree-2 vertices (black)(Color
figure online).

do not have any associated reflex boundary-vertices in B(G), since they cannot
induce 3π/2 angles in an orthogonal drawing; see Lemma 1, Condition (P1).

This completes the construction of B(G). It is bipartite, as shown in gray
and white in Fig. 2.

Reduction: The following lemma reduces our problem to the problem of finding
a perfect matching in some corresponding graph.

Lemma 2. There is a perfect matching in B(G) if and only if G has a strict-
orthogonal drawing, where each face fi contains at most ki reflex corners.

Proof. Assume that B(G) has a perfect matching M ; see Fig. 3(a)–(b). From this
matching, we compute an angle assignment Φ for G from the set {π/2, π, 3π/2}
so that Φ satisfies Conditions (P1–P2) of Lemma 1.

Consider an arbitrary face fi of G. We assign an angle inside fi (at some ver-
tex v) the value π/2 if the corresponding boundary-vertex in B(G) is matched to
some convex face-vertex of fi. For example, the convex boundary-vertices asso-
ciated with the vertices b and h in Fig. 3(b) are determining π/2 angles around b
and h in Fig. 3(c). Similarly, a 3π/2 angle is assigned to v when its corresponding
boundary-vertex in B(G) is matched with a reflex face-vertex for fi, e.g., see ver-
tex m in Fig. 3(b). Otherwise, the boundary-vertex is either matched with some
central-vertex, or another boundary vertex (e.g., see vertex c). In both cases we
assign the corresponding angle the value π.

Orthogonal Layout with Optimal Face Complexity 127

Note that the above rules may lead to a conflict at some degree-2 vertex,
when it has both convex and reflex boundary-vertices matched to the convex
and reflex face-vertices of the same face. For example, the vertex q in Fig. 3(b)
has its boundary vertices matched with the face-vertices in the same face f3. In
such a case we assign the angle at v a value of π (inside the corresponding face).
Since M is a perfect matching, the construction of B(G) implies that each inner
face has exactly four more π/2 angles than 3π/2 angles. Similarly, the outer face
f0 contains exactly four more 3π/2 angles than π/2 angles. Thus Condition (P2)
of Lemma 1 is satisfied for each face of G.

Consider now the assignment of angles around each vertex v of G. If deg(v) =
4, then all its four convex boundary-vertices are matched to some convex face-
vertices, and hence it has exactly four π/2 angles. If deg(v) = 3, then exactly one
of its three convex boundary-vertices is matched with v∗, and hence it has two
π/2 angles and one π angle. Finally, if deg(v) = 2, then it either has two π angles
(because v′ and v′′ are either matched to each other or to the face-vertices in
the same face); or it receives exactly one π/2 angle and exactly one 3π/2 angle.
Thus the sum of angles around each vertex is 2π, satisfying Condition (P1) of
Lemma 1. By Lemma 1, this angle assignment gives an orthogonal drawing of
G. Since each face fi can have at most ki reflex boundary-vertices matched to
its ki reflex face-vertices, the number of reflex corners in the drawing of fi is at
most ki; see Fig. 3(c).

Conversely, if G has a strict-orthogonal drawing Γ , where each face fi of
G has at most ki reflex corners, then Γ gives a perfect matching M in G, as
follows. For each face fi of G, traverse around its drawing in Γ , and for each
π/2 (respectively, 3π/2) angle, match the corresponding boundary-vertex to a
convex (respectively, reflex) face-vertex of fi. There are always sufficiently many
face-vertices, since each inner face fi is associated with ki pairs of convex and
reflex face-vertices, and the outer face f0 has exactly p = k0 − 4 such pairs.
It is straightforward to match face-vertices with boundary vertices such that
the unmatched face vertices remain in pairs. Hence we can afterwards choose
the edges between the unmatched pairs of face-vertices in M . For each degree-2
vertex with two π angles, we take the edge between its boundary-vertices in M .
Finally, for each degree-3 vertex v, we match the boundary vertex corresponding
to the π angle of v with v∗. ��

Time Complexity: The number of vertices |V | in B(G) is O(nk), where k =
maxi{ki}. Since there are O(n) boundary-vertices and for each of the O(n) faces,
there are O(k) face-vertices, the number of edges |E| in B(G) is again O(nk).
Hence the existence of a perfect matching in B(G) can be tested in O(

√|V ||E|) =
O(

√
nk × nk) = O((nk)1.5) time using the Hopcroft-Karp algorithm [10].

2.3 General Orthogonal Drawing with a Given Face-Complexity

Here we extend our algorithm to general (non-strict) orthogonal drawing. Note
that each bend in an orthogonal drawing can be thought of as a degree-2 vertex

128 M. Jawaherul Alam et al.

(b) (c)(a)

f 1

f 3

f 2

f 4

f 0

r

g

i

h

s

o

q

a

j
k

b

c

m

f 0

f 1

f 2

f 4

f 3

a

b c

r s

gh

ijk

m

o

q

a

r

g

i
j

l

k

h

p

s

b

c

n

o

q

m

d

p*

d*

n*

l*

d

l

n p

Fig. 3. (a) A biconnected plane graph G with maximum degree four, (b) a perfect
matching in B(G), and (c) a strict-orthogonal drawing of G with k0 = 4 and k1 = k2 =
k3 = k4 = 1.

on some edge in the graph (e.g., a subdivision of an edge). We use this observation
to obtain the following lemma.

Lemma 3. Let G be a biconnected plane graph with edges e1, . . . , em and
faces f0, f1, . . . , fr. Consider the set of non-negative integers t1, . . . , tm and
k0, k1, . . . , kr. Let Gt be a graph obtained from G by subdividing each edge ei
exactly ti times. Then G has an orthogonal drawing, where each edge ei has at
most ti bends and each face fi has at most ki reflex corners if and only if Gt

has a strict-orthogonal drawing where each face fi has at most ki reflex corners.

Proof. Assume that G has a desired orthogonal drawing. For each bend point
p, subdivide the corresponding edge at p. In this way each edge ei is subdivided
at most ti times. For each edge ei that has not been subdivided ti times in this
process, further subdivide it so that the total number of subdivisions is exactly
ti. Then this corresponds to a strict-orthogonal drawing of Gt, where each face
fi has at most ki reflex corners.

Conversely, if Γ is a strict-orthogonal drawing of Gt, where each face fi has
at most ki reflex corners, then a desired orthogonal drawing of G can be obtained
from Γ by considering the degree two vertices (with angles π/2 and 3π/2) of Γ
as the bends of the corresponding edges in G. ��

It is straightforward to use Lemma 3 to find a polynomial-time algorithm for
orthogonal drawing that simultaneously bounds the reflex face complexity and
the number of bends per edge. Our goal in this paper is to bound the reflex face
complexity and we leave the task of designing fast algorithms optimizing multiple
objectives as a future work. There exists specialized algorithms for bounding the
number of bends per edge or for optimizing any convex cost associated with
the edges of the input graph, even in the variable embedding setting for some
specific cost functions [1,2].

Orthogonal Layout with Optimal Face Complexity 129

3 NP-Hardness for Planar Graphs

In this section we prove that it is NP-complete to decide whether a planar
biconnected graph admits a strict-orthogonal drawing with a given reflex face
complexity k, even when k = 4. Throughout this section we denote this problem
by Min-Reflex-Draw.

Garg and Tamassia [9] proved that it is NP-hard to decide whether a
maximum-degree-4 planar graph admits a strict-orthogonal drawing. This NP-
hardness proof readily implies the NP-hardness of the problem of computing
strict-orthogonal drawing with reflex face complexity k, but this proof does not
hold if we restrict k to be a constant. On the other hand, our NP-hardness
proof holds when k = 4, even when it is known that the input graph has a
strict-orthogonal drawing.

We prove the NP-completeness with a reduction from the rectilinear
monotone planar 3-SAT problem (RMP3SAT), which is NP-hard [5]. The input
of an RMP3SAT instance I is a collection C of clauses over a set U of variables
such that each clause contains at most three variables, and each clause is either
positive or negative (i.e., all its variables are either positive or negative). More-
over, the corresponding SAT-graph GI (i.e., a bipartite graph with vertex set
C ∪ U and edge set {(x, y)|x ∈ C, y ∈ U, y ∈ x}) admits a planar drawing Γ
satisfying the following properties:

– Each vertex in Γ is drawn as an axis-aligned rectangle. All the vertices rep-
resenting variables lie along a horizontal line h (known as backbone).

– The vertices representing positive (respectively, negative) clauses lie on the
top (respectively, bottom) half-plane of h. Each edge is drawn as a vertical
line segment that is incident to the drawings of its end vertices.

The RMP3SAT problem asks to decide whether there is a satisfying truth assign-
ment for U satisfying all clauses in C. RMP3SAT remains NP-hard even when
each variable appears in at most four clauses [12].

Given an instance I = (U,C) of RMP3SAT, where each variable appears in
at least two and at most 4 clauses, we construct a planar graph H so that H has
a strict-orthogonal drawing with face complexity 4, if and only if the RMP3SAT
instance is satisfiable.

We construct H from the drawing Γ of the SAT-graph GI ; see Fig. 4(a). We
first draw a polygon with holes (shown in gray) that represents each edge of Γ as
a tunnel; see Fig. 4(b). We then place the drawing onto a regular grid H, where
each hole is a collection of grid cells, as shown in Fig. 4(c) using dark regions.
Then for each variable and each clause, we assign a corresponding variable cell
and a corresponding clause cell in H. Figure 4(c) depicts the cells corresponding
to the variable x1 and clauses c1, c2, c4, respectively. In each variable cell, we
create a variable-staircase structure of length three, as shown in the gray region
of Fig. 4(f), such that the base of the staircase is adjacent to the bottom side of
the cell. Note that this staircase contributes to four reflex corners in the variable
cell, which can be transferred to the cell lying below the variable cell by flipping
the staircase vertically. For each edge connecting a variable to a clause, we first

130 M. Jawaherul Alam et al.

find a sequence of cells connecting the variable cell to the clause cell, and then
add a staircase of length two and a 4 × 4 grid structure (see Fig. 4(f)) to each of
these cells, as described below.

The staircase is added at a corner of the cell that cannot be flipped and
contributes to two reflex corners to the cell; we do not show these staircases
in the schematic representations of Figs. 4(c)–(e). The grid is added to one side
of the cell such that it contributes to two reflex corners to this cell, which can
be transferred to the cell adjacent to it by flipping. Since k = 4, none of the
cells on the path from the variable to the clause cell can contain more than one
grid structure. The grid structures are added exploiting this constraint along the
variable to clause path such that

– if the clause is positive, then the placement of the variable-staircase in the
variable cell eventually forces a grid structure to fall into the corresponding
clause cell. On the other hand,

– if the clause is negative, then the placement of the variable-staircase outside
of the variable cell will force a grid structure to fall into the corresponding
clause cell.

Finally, for each clause c, we add a staircase of length (6 − 2|c|) at the corner of
its clause cell, where |c| is the number of variables in c. Such a clause-staircase
ensures that at least one of the grid structures incident to the clause cell must
lie outside of the clause cell; we do not show these staircases in the schematic
representations of Figs. 4(c)–(e).

Let the resulting drawing be Γ ′. It is straightforward to carry out the above
construction in polynomial time, and one can observe that any strict-orthogonal
drawing must respect the axis-alignments of the edges of the underlying graph
(up to rotation or reflection).

Theorem 2. It is NP-complete to decide if a planar graph admits a strict-
orthogonal drawing with reflex face complexity 4.

Proof. Let I = (U,C) be an instance of RMP3SAT, and let H be the correspond-
ing planar graph. We now prove that H admits a strict-orthogonal drawing with
face complexity 4, if and only if the RMP3SAT instance is satisfiable.

Given a drawing of H with reflex face complexity 4, we use the above/ below
(i.e., inside/outside of a variable cell) orientations of a variable staircase to find
the truth value of the corresponding variable; see Fig. 4(e). By construction, no
clause cell can have all its adjacent grid structures inside it, otherwise it would
have at least (6 − 2|c|) + 2|c| > 4 reflex corners. Consequently, every clause cell
must have one of its grid-structures M outside of the clause cell. Recall that any
variable cell that receives a variable staircase obtains at least 4 reflex corners,
and hence cannot have any grid structure inside it. Therefore, the grid structure
M will force the corresponding variable staircase to lie outside or inside of its
variable-cell depending on whether the clause is positive or negative. We assign
the outside and inside configurations the values true and false, respectively, which
implies that each clause must be satisfied.

Orthogonal Layout with Optimal Face Complexity 131

c2=(x1 ∨ x2 ∨ x3)

c3=(x̄2 ∨ x̄3 ∨ x̄4)

c1 = (x1 ∨ x3 ∨ x4)

c4 = (x̄1 ∨ x̄4)

x1 x2 x3 x4

(a)

c1

c4

x1 x2 x3

x4

c2

c3

(d)

(b)

(c)

(e)

c2
c1

c4
x1

c2
c1

c4
x1 x2

c3
x3

x4

c2
c1

c4
x1 x2

c3
x3

x4

F F

F

T

(f)

Fig. 4. (a) GI , (b) Γ ′, (c)–(d) illustration of the reduction, where the variable and
clause cells are shaded, (e) computing truth assignment: x1 = x2 = x4 = false, x3 =
true, (f) insertion of a staircase and a grid.

On the other hand, given a satisfying truth assignment for I, we orient the
variable-staircases above/below depending on whether it is false/true. The place-
ment for the grid structures is then straightforward, which is guided by the
restrictions on the variable to clause paths. Therefore, to verify that the reflex
face complexity is bounded by 4, we only need to examine the clause cells. In the
following we show that for any clause cell with more than 4 reflex corners can be
fixed without introducing any new bad cells. Let c be a clause that contains all
its incident grid-structures inside the cell yielding (6− 2|c|)+2|c| > 4 reflex face
complexity. Without loss of generality assume that the clause is positive. Since
c is satisfied, at least one of its variable-staircase must lie outside of its variable

132 M. Jawaherul Alam et al.

cell. We now can choose this variable to clause path to flip a grid structure out
of the clause cell of c.

By [18], for any orthogonal drawing of H, there is a topologically equivalent
drawing where each vertex and bends are on integer coordinates. Therefore given
a drawing ΓH of H (on integer coordinates), it is straightforward to decide in
polynomial time if Γ is a strict-orthogonal drawing with reflex face complexity
4. Thus Min-Reflex-Draw is also in NP. ��

4 Conclusion

We described an algorithm, based on bipartite graph matching, for deciding
whether a biconnected plane graph G has a strict-orthogonal drawing with a
given reflex face complexity k, for any given nonnegative integer k. Our algorithm
takes O((nk)1.5) time, while the existing network-flow based approaches take
Ω(n1.5 log n) time. Finding a o(n1.5) time algorithm for this problem would be
a natural direction for future research.

We also showed that in the variable-embedding setting the problem of decid-
ing whether a biconnected planar graph admits a strict-orthogonal drawing with
a given reflex face complexity 4 is NP-complete. It would be worthwhile to con-
sider the complexity of the problem for specific values of k, where k < 4.

Acknowledgement. We thank the anonymous reviewers from our previous submis-
sion for pointing out how the network-flow formulations from earlier work can be
modified to compute orthogonal drawings with bounded reflex face complexities, and
for the suggestions on improving the NP-hardness result.

References

1. Bläsius, T., Krug, M., Rutter, I., Wagner, D.: Orthogonal graph drawing with
flexibility constraints. Algorithmica 68(4), 859–885 (2014)

2. Bläsius, T., Rutter, I., Wagner, D.: Optimal orthogonal graph drawing with con-
vex bend costs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013, Part I. LNCS, vol. 7965, pp. 184–195. Springer, Heidelberg (2013)

3. Chimani, M., Gutwenger, C., Jünger, M., Klau, G., Klein, K., Mutzel, P.: The open
graph drawing framework. In: Handbook of Graph Drawing and Visualization, pp.
543–571 (2013)

4. Cornelsen, S., Karrenbauer, A.: Acclerated bend minimization. J. Graph Algo-
rithms Appl. 16(3), 635–650 (2012)

5. de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the
plane. Int. J. Comput. Geom. Appl. 22(3), 187–206 (2012)

6. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs, 3rd edn. The MIT Press, Cambridge (2009)

7. Ellson, J., Gansner, E.R., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz—
open source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD
2001. LNCS, vol. 2265, p. 483. Springer, Heidelberg (2002)

Orthogonal Layout with Optimal Face Complexity 133

8. Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers.
In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer,
Heidelberg (1996)

9. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear
planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)

10. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput. 2(4), 225–231 (1973)

11. Kaufmann, M., Wagner, D.: Drawing Graphs: Methods and Models. LNCS, vol.
2025. Springer, London (2001)

12. Kempe, D.: On the complexity of the “reflections” game (2003). http://www-bcf.
usc.edu/dkempe/publications/reflections.pdf

13. Leiserson, C.E.: Area-efficient graph layouts (for VLSI). In: Symposium on Foun-
dations of Computer Science (FOCS), pp. 270–281 (1980)

14. Leiserson, C.E., Cormen, T.H., Stein, C., Rivest, R.: Introduction to Algorithms.
Prentice Hall, Englewood Cliffs (1999)

15. Miura, K., Haga, H., Nishizeki, T.: Inner rectangular drawings of plane graphs.
Int. J. Comput. Geom. Appl. 16(2–3), 249–270 (2006)

16. Nishizeki, T., Rahman, M.S.: Planar Graph Drawing. World Scientific, Singapore
(2004)

17. Rahman, M.S., Egi, N., Nishizeki, T.: No-bend orthogonal drawings of subdivisions
of planar triconnected cubic graphs. IEICE Trans. 88–D(1), 23–30 (2005)

18. Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput. 16(3), 421–444 (1987)

19. Tobler, W.: Thirty five years of computer cartograms. Ann. Assoc. Am. Geogr. 94,
58–73 (2004)

20. Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Comput.
30(2), 135–140 (1981)

21. Wiese, R., Eiglsperger, M., Kaufmann, M.: yFiles: visualization and automatic
layout of graphs. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS,
vol. 2265, pp. 453–454. Springer, Heidelberg (2002)

http://www-bcf.usc.edu/dkempe/publications/reflections.pdf
http://www-bcf.usc.edu/dkempe/publications/reflections.pdf

L-Drawings of Directed Graphs

Patrizio Angelini1, Giordano Da Lozzo2(B), Marco Di Bartolomeo2,
Valentino Di Donato2, Maurizio Patrignani2,

Vincenzo Roselli2, and Ioannis G. Tollis3

1 Tübingen University, Tübingen, Germany
angelini@informatik.uni-tuebingen.de

2 Roma Tre University, Rome, Italy
{dalozzo,dibartolomeo,didonato,patrigna,roselli}@dia.uniroma3.it

3 University of Crete and Institute of Computer Science-FORTH, Heraklion, Greece
tollis@csd.uoc.gr

Abstract. We introduce L-drawings, a novel paradigm for representing
directed graphs aiming at combining the readability features of orthogo-
nal drawings with the expressive power of matrix representations. In an
L-drawing, vertices have exclusive x- and y-coordinates and edges consist
of two segments, one exiting the source vertically and one entering the
destination horizontally.

We study the problem of computing L-drawings using minimum
ink. We prove its NP-completeness and provide a heuristic based on
a polynomial-time algorithm that adds a vertex to a drawing using the
minimum additional ink. We performed an experimental analysis of the
heuristic which confirms its effectiveness.

1 Introduction

Drawing directed graphs is a challenging goal to which a vast literature has been
dedicated [15,23]. In fact, most of the theoretical and applied tasks concerning
these graphs turned out to be difficult. To give a few examples, even for planar
and acyclic graphs, it is hard to decide whether they admit an upward planar
drawing [9]; if a directed graph contains directed cycles, it is hard to reverse the
minimum number of edges to make it acyclic [13,17], which is the first step of the
renown Sugiyama approach [23]. From a practical perspective, the more directed
cycles it has, the less a hierarchical drawing of it becomes meaningful, strongly
reducing the possibility of obtaining a clear and unambiguous representation.

In this paper we introduce a novel drawing paradigm specifically conceived
for directed graphs, which combines orthogonal drawings with matrix represen-
tations. Namely, we call L-drawing a drawing where each vertex has exclusive
x- and y-coordinates and each directed edge has two orthogonal segments, one

Angelini was partially supported by DFG grant Ka812/17-1. Da Lozzo, Di
Bartolomeo, Di Donato, Patrignani, and Roselli were partially supported by MIUR
project “AMANDA – Algorithmics for MAssive and Networked DAta”, prot.
2012C4E3KT 001.

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 134–147, 2016.
DOI: 10.1007/978-3-662-49192-8 11

L-Drawings of Directed Graphs 135

0

1

7

2

3

6

8

9

4

5 0

1

2

3

4

5

6

7

8

9

)c()b()a(

Fig. 1. (a) A hierarchical drawing with “backloop routing” produced by yEd [24],
(b) an OOD, and a (c) minimum-ink L-drawing of the same connected random directed
graph.

leaving the source vertically and one entering the destination horizontally. Edges
are allowed both to overlap and to intersect. Graphically, the joint between the
horizontal and the vertical segment of an edge is drawn as a small circular arc,
allowing the user to easily identify the edges even in the presence of overlaps
and intersections. We remark that L-drawings are strictly related to the popu-
lar confluent drawing style [7], which also leverages partially collinear edges and
smoothened bends to reduce the visual complexity of the representation.

An example of L-drawing is in Fig. 1(c); further examples can be found in [1].
This paradigm is inspired by the overloaded orthogonal drawings [19,20] of

directed acyclic graphs, in which vertices have exclusive x- and y-coordinates
and the edges consist of two segments, one leaving the source from the top
and one entering the destination from the left. For graphs that are not acyclic,
a minimal set of edges is selected to be drawn backward, leaving the source
from the bottom and entering the destination from the right. Edges are hence
always drawn with a single bend turning clockwise. As long as the graph has
few directed cycles, this model is extremely effective, as also testified by user
studies [8]. L-drawings can in fact be seen as a generalization of this model
to graphs that may contain many directed cycles, so that edges are allowed
both to turn clockwise and counterclockwise. Note that, instead of using small
circular arcs, ambiguities are solved in overloaded orthogonal drawings by placing
a small dot on each overlapped bend (see Fig. 1(b)).

The relationship of L-drawings with orthogonal drawings is immediate and
the benefits are immediate as well, since orthogonal drawings are widely recog-
nized as one of the most readable drawing standards, ensuring a clear readability
even in the presence of crossings [3,18]. We remark that a representation very
similar to L-drawings was used in [2] as an intermediate step to compute orthog-
onal drawings of high-degree graphs in the Kandinsky model. However, the main
purpose of [2] was to balance edges on the four sides of each vertex, so to reduce

136 P. Angelini et al.

the area of the orthogonal drawing obtained once the vertices are expanded into
rectangular boxes.

The relationship with matrix representations, and the benefits deriving from
it, are also somehow evident. User studies suggest that matrix representations
are extremely well suited for many simple tasks, but their performances dramat-
ically decrease when it is requested to follow paths in the graph [8,10]. This is
due to the fact that in this representation each vertex has two labels, one for its
row and one for its column. Traversing a directed edge consists of moving along
the row of the source vertex until the column of the destination vertex is reached.
Traversing a directed path, instead, forces the user to repeatedly jump from the
column of the vertex that is reached to the row of the same vertex when it is left.
L-drawings overcome this limitation by moving the labels inside the matrix. The
matrix itself is symbolically represented by the edges, that identify the portions
of the rows and columns that have to be followed to connect adjacent vertices.
A previous attempt to combine node-link and matrix representations was pre-
sented in [16], which introduced the NodeTrix visualization tool.

L-drawings have several strong points: (i) they always exist and are easy
to compute; in fact any placement of the vertices such that no two vertices
share the same horizontal or vertical grid line yields a valid L-drawing (the
placement of the vertices uniquely determines the routing of the edges); (ii) they
are not ambiguous, even for very dense graphs; (iii) they are particularly suited
for interactive graph drawing, since vertices and edges can be easily added or
removed preserving the user’s mental map.

Since L-drawings always exist, we are interested in producing readable ones.
One of the most desirable features of a graph drawing, especially when the graph
is large, is that of having a small size. The classical notion of size of a drawing,
namely the area of its bounding box, does not make much sense in this case, due
to the requirement of using different x- and y-coordinates. We hence study the
problem of minimizing the ink of the drawing, which is computed as the sum of
the lengths of vertical and horizontal segments, where overlapping portions are
counted only once.

We prove in Sect. 3 that this problem is NP-complete. Motivated by this,
we describe in Sect. 4 an incremental heuristic, based on adding vertices one
at a time using the minimum additional ink. This heuristic is experimentally
evaluated in Sect. 5 against the optimal solution (when it was possible to compute
one), against overloaded orthogonal drawings, and against a random placement
of the vertices. We give definitions in Sect. 2 and conclude in Sect. 6 suggesting
future lines of research. Because of space limitations, omitted proofs are deferred
to the full version of the paper [1].

2 Preliminaries

In this paper we consider graphs G = (V,E) that are directed. An edge (u, v) is
an outgoing edge of u and an incoming edge of v. We allow G to contain both
(u, v) and (v, u), but only a single copy of them; further, we do not allow loops
(u, u).

L-Drawings of Directed Graphs 137

In an L-drawing Γ of G each vertex v ∈ V is assigned an exclusive integer
x-coordinate xv and y-coordinate yv, and each edge (u, v) is drawn as a 1-bend
polyline composed of a vertical segment incident to u and a horizontal segment
incident to v. Note that, edges may cross and partially overlap. We resolve
the ambiguity among crossings and bends by replacing each bend with a small
rounded junction (see Fig. 1(c)).

The ink ink(Γ) of an L-drawing Γ is the sum of the lengths of vertical and
horizontal segments, where overlapping portions are counted only once. Since
rounded junctions have all equal size, they are not taken into account when
measuring ink.

We are interested in producing L-drawings of minimum cost. Both if the cost
is computed in terms of area or in terms of ink, it is immediate that a drawing
of minimum cost uses contiguous values for the coordinates of the vertices. Also,
since area and ink do not change up to a translation of the whole drawing,
in the rest of the paper we assume to use integer x- and y-coordinates in the
range [1 . . . n]. With the above assumptions, given a graph G = (V,E), an L-
drawing can be immediately obtained by choosing any two orderings πx and πy

for the vertices in V , where πx determines x-coordinates and πy determines y-
coordinates. We denote such a drawing by Γ (πx, πy), and its ink by ink(πx, πy).
For any two orderings πx and πy, drawing Γ (πx, πy) has area n × n, where
n = |V |. Hence, we focus on the problem of computing L-drawings with minimum
ink. The corresponding decision problem is formally defined as follows.

Problem: Minimum-Ink-L-Drawing (MILD)
Instance: A directed graph G = (V,E) and an integer k.
Question: Does G admit an L-drawing Γ such that ink(Γ) ≤ k?

Let Γ be an L-drawing of G and let inkx(Γ) (inky(Γ), respectively) be the
amount of ink used for horizontal (vertical, respectively) segments. Obviously,
ink(Γ) = inkx(Γ) + inky(Γ). In the following lemma we prove that inkx(Γ)
(inky(Γ), respectively) only depends on the horizontal (vertical, respectively)
permutation of the vertices in Γ , which makes it possible to search for two
optimal permutations independently.

Lemma 1. Let G be a graph and let πx be any permutation of its vertices. For any
two permutations π′

y and π′′
y we have that inkx(πx, π′

y) = inkx(πx, π′′
y). Symmetri-

cally, inky(π′
x, πy) = inky(π′′

x , πy) for any two permutations π′
x and π′′

x .

Proof. Each edge (u, v) is composed of two segments, one incident to the source
vertex u and one incident to the target vertex v. Hence, if we consider for each
vertex only the segments incident to it, then all the segments of the drawing are
eventually accounted for. Since overlaps are counted only once, ink(Γ) is the
sum, for every vertex, of the longest segments exiting it in the four directions
North, East, South, and West. Thus, inkx(Γ) is the sum, for every vertex, of the
longest segments exiting it in the directions East and West, while inky(Γ) is the
sum of the longest segments exiting it along North and South. Hence, inkx(Γ)
only depends on πx and inky(Γ) only depends on πy. ��

138 P. Angelini et al.

The complete graph Kn is the directed graph G = (V,E), where |V | = n and
for all ordered pairs u, v ∈ V , u �= v, we have (u, v) ∈ E. In the following lemma
we prove that any placement of the vertices of Kn on the n × n grid yields an
L-drawing whose edges use all the segments of such a grid.

Lemma 2. Any L-drawing Γ of Kn on the n × n grid uses 2n(n − 1) ink.

Clearly, Lemma 2 implies that any L-drawing of Kn on the n × n grid is
a minimum-ink drawing, since empty rows or columns never reduce the ink.
However, when a complete graph Kn is a subgraph of a larger graph, it might
make sense to spread its vertices on a larger grid. In Lemma 3 we hence study
the cost, in terms of ink, of this operation.

Lemma 3. Any L-drawing of Kn on the (n+h)× (n+k) grid uses 2n(n−1)+
n(h + k) ink.

Let Γ be an L-drawing of Kn on the (n + h) × (n + k) grid. If h > 0 consider
any horizontal grid line l not intersecting any vertex of Kn and such that at
least one vertex is above l and at least one vertex is below l. For example, Fig. 2
shows a drawing of K7 on the 11 × 10 grid and a possible grid line l in red.

1

2

3

4

5

6

7

Fig. 2. An L-drawing of K7 on the 11 × 10
grid and a removable grid line in red.

Let p be the number of vertices
above l (n − p is the number of ver-
tices below l). Line l is traversed by
p vertical segments of Γ exiting the
p vertices above l and entering the
region below l. Also, l is traversed
by n − p vertical segments exiting
the n − p vertices below l and enter-
ing the region above l. Since vertices
have exclusive x-coordinates, these
p + (n − p) = n vertical segments
use distinct vertical grid lines; thus,
removing line l yields an L-drawing
Γ ′ on the (n + h − 1) × (n + k) grid
that saves n ink. Analogous compres-
sions can be performed starting from
vertical grid lines that do not inter-
sect any vertex. After h + k compressions we produce an L-drawing of Kn of
minimum size which, by Lemma 2, uses 2n(n − 1) ink. It follows that the ink of
the original drawing is 2n(n − 1) + n(h + k), hence the statement.

3 Complexity of the MILD Problem

In order to show the NP-hardness of MILD we reduce the problem Profile,
which is defined as follows.

L-Drawings of Directed Graphs 139

Problem: Profile
Instance: An undirected graph G = (V,E) and an integer k.
Question: Does there exist an ordering π for the vertices of V such that

∑

u∈V

(
π(u) − min

v∈N(u)∪{u}
π(v)

)
≤ k (1)

where N(u) denotes the set of neighbors of u?

It is folklore1 that Profile is equivalent to SumCut (see the definition
in [1]), which is known to be NP-complete [4,11,21].

v2

v1

4

1

5

3

2

Fig. 3. Instance Im of Profile with p =
7 (K1 and K2 are drawn smaller for space
reasons) (Color figure online).

Given an instance Ip = 〈G =
(V,E), k〉 of Profile, we build an
equivalent instance Im = 〈G′ =
(V ′, E′), k′〉 of MILD as follows.
Graph G′ contains two subgraphs K1

and K2, that are complete graphs on
p = 5

2n2 + 9
2n + 1 vertices, where

n = |V |. Consider two arbitrary ver-
tices v1 and v2 of K1 and K2, respec-
tively. For each vertex v ∈ V we
add to V ′ a vertex uv with (directed)
edges (uv, v1), (uv, v2), and (v2, uv).
For each edge e = (v, w) ∈ E we add
to E′ edges (uv, uw) and (uw, uv). We
set k′ = k + 4p(p − 1) + 3

2n2 + 9
2n.

Lemma 4. Instance Ip admits a
solution if and only if instance Im
does.

Proof. Suppose instance Ip = 〈G = (V,E), k〉 of Profile admits a solu-
tion and let π be the ordering of the vertices of V such that

∑
u∈V (π(u) −

minv∈N(u)∪{u} π(v)) ≤ k. We show that the corresponding instance Im = 〈G′ =
(V ′, E′), k′〉 of MILD admits a solution. We draw K1 and K2 in such a way that
each uses contiguous x- and y-coordinates and the bounding box of K1 is above
and on the left of the bounding box of K2. In particular, we place v1 in the bottom
right corner of the bounding box of K1 and v2 in the top left corner of the bound-
ing box of K2. We insert between K1 and K2 the remaining part of the vertices
in V ′ so that their horizontal ordering corresponds to π and their vertical order-
ing is arbitrary. See Fig. 3 for an example. We show that the ink is no more than
k′ = k+4p(p−1)+ 3

2n2+ 9
2n. In fact, the ink can be computed as a sum of: (i) the

ink used inside the complete subgraphs K1 and K2 (black edges of Fig. 3, which by
Lemma 2 is 4p(p−1) in total; (ii) the ink used to connect, for each v ∈ V , vertex uv

to v1 and v2 (drawn in green in Fig. 3, which is 2n+(n+1)n; (iii) the ink of the edges

1 Refer to [6]. A formal proof of the equivalence of the two problems can be found in [12].

140 P. Angelini et al.

(drawn red in Fig. 3 that connect v2 to uv, for each v ∈ V , which is n +
∑n

i=1 i;
(iv) the ink used for the edges among vertices uv, with v ∈ V . The vertical ink
of the latter contribution is already counted in (ii). The horizontal ink is exactly∑

u∈V (π(u) − minv∈N(u)∪{u} π(v)). Summing up the contributions (i)–(iii) we
have 4p(p − 1) + 3

2n2 + 9
2n. Since

∑
u∈V (π(u) − minv∈N(u)∪{u} π(v)) ≤ k the

used ink is at most k′ = k + 4p(p − 1) + 3
2n2 + 9

2n. Conversely, suppose that
instance Im admits an L-drawing using at most k′ ink. By Lemmas 2 and 3, any
L-drawing of K1 or K2 that does not use contiguous x- and y-coordinates uses at
least p = 5

2n2 + 9
2n + 1 ink more than an L-drawing that uses contiguous x- and

y-coordinates. Observe that the value on the left side of equation (1) is bounded
by n2, where n = |V |. Hence, we can assume k ≤ n2 in any non-trivial Profile
instance. It follows that the additional ink that would be needed to insert grid lines
in the drawings of K1 or K2 is at least p = 5

2n2 + 9
2n + 1 > k + 3

2n2 + 9
2n. This

ensures that in any L-drawing that uses at most k′ ink, K1 and K2 use contiguous
x- and y-coordinates, and vertices uv, for each v ∈ V , are inserted between the
bounding boxes of K1 and K2, both in the horizontal and in the vertical order.
Hence, by Lemma 2, the total contribution of these two subgraphs is 4p(p−1). We
can assume that K1 lies to the left and above K2 (up to a vertical or horizontal
flip of the entire drawing). Also, we can assume that v1 lies on the bottom-right
corner of K1 and v2 on the top-left corner of K2, as they are the only vertices of
K1 and K2 that are connected to vertices uv, with v ∈ V . This implies that, for
every horizontal and vertical order of vertices uv ∈ V ′, the cost of the green edges
in Fig. 3 is 2n + (n + 1)n, and the cost of the red edges is n +

∑n
i=1 i. Finally,

for the blue edges, the vertical contribution is already covered by the green edges
and the horizontal contribution is no more than k. Hence, the horizontal order of
vertices uv yields a solution for Profile. This concludes the proof.

Theorem 1. MILD is NP-complete.

Proof. MILD is trivially in NP by non-deterministically trying all permutations
πx and πy of the vertices of the graph and computing the ink of Γ (πx, πy). Given
an instance Ip of Profile, the corresponding instance Im of MILD can be built
in polynomial time, and Lemma 4 ensures that the two instances are equivalent. ��

4 A Polynomial On-Line Algorithm

Motivated by the NP-completeness result in Theorem 1, we seek in this section
an efficient heuristic to construct L-drawings of graphs with reduced ink. In par-
ticular, we study the setting in which the drawing is constructed incrementally
by adding one vertex at a time to a previously computed drawing; the goal is
then to add the new vertex (with all its incident edges) using the minimum
additional ink, where the only operation that is allowed on the previous drawing
is to insert a row and a column (the cost of elongating the edges traversing the
inserted row/column has hence to be taken into account, as well). We prove in
Theorem 2 that there exists a polynomial-time algorithm, called OptAddVertex,

L-Drawings of Directed Graphs 141

to place the given vertex in the given L-drawing while minimizing the additional
ink of the resulting L-drawing with respect to the given one.

We remark that, besides providing a heuristic for the general problem, this
incremental approach fits in the framework of streamed graph drawing, in which
the graph to be drawn is too large to be stored in the memory and hence comes
in the form of a streaming of its elements (vertices, edges, components) that
have to be placed in the drawing without a prior knowledge of the elements that
are yet to come.

Since, by Lemma 1, the horizontal and vertical coordinates of an L-drawing
can be computed independently, we describe Algorithm OptAddVertex by only
focusing on how to compute the optimal x-coordinate of the new vertex, adding
a column.

Let G = (V,E) be an n-vertex directed graph and let Γ be an L-drawing of
it. We assume that the vertices in V have x-coordinates in {1, 2, . . . , n}. Vertex
v has to be added to the drawing, with its (possibly empty) set of outgoing edges
{(v, u1), (v, u2), . . . , (v, uh)} towards vertices of V and its (possibly empty) set
of incoming edges {(w1, v), (w2, v), . . . , (wk, v)} from vertices of V .

Algorithm OptAddVertex computes the additional ink needed to insert a
vertical grid line lv for v in each one of the possible n+1 positions {1, 2, . . . , n+1},
where if lv is inserted in position i, all vertices of V with x-coordinate greater or
equal than i have to be shifted one unit to the right (hence, i = 1 and i = n + 1
correspond to adding a column to the left and to the right of the drawing,
respectively).

We define three integer functions, that we call StretchInkx, IncomingInkx,
and OutgoingInkx, in the domain {1, 2, . . . , n + 1} as follows. StretchInkx(i)
is the cost of inserting lv in position i. This cost is due to the fact that
the length of all horizontal segments traversed by lv is incremented by one.
IncomingInkx(i) is the cost, in terms of horizontal ink, of routing the edges
{(w1, v), (w2, v), . . . , (wk, v)} entering v when v is placed in position i. Observe
that all these edges will enter v on a horizontal grid line lh, which is exclusive
of v. Hence, the value of IncomingInkx(i) is the range of the x-coordinates of
vertices {w1, w2, . . . , wk}∪{v} after the insertion of v in position i. The compu-
tation of function OutgoingInkx is more complex. Each outgoing edge (v, uj),
j = 1, . . . , h, of v has a vertical segment (which does not contribute to function
OutgoingInkx) and a horizontal segment entering uj at its y-coordinate yuj

.
However, uj may have already horizontal segments entering it at y-coordinate
yuj

. Let Wj and Ej be the minimum and the maximum x-coordinate that are
used by some horizontal segments at coordinate y = yuj

(if there is no horizontal
segment with y = yuj

we set Wj = Ej = xuj
). The contribution of edge (v, uj)

to OutgoingInkx(i) is zero if Wj ≤ i ≤ Ej and min(|i−Wj |, |i−Ej |), otherwise.
Finally, we insert v in a position corresponding to a minimum of function

AddInkx defined as AddInkx = StretchInkx +IncomingInkx +OutgoingInkx.
The heuristic IncrementaLDraw for producing L-drawings of directed graphs

works as follows. First, we order the vertices of the graph in such a way that,
for any 1 ≤ j ≤ n, the subgraph induced by the first j vertices is connected.

142 P. Angelini et al.

In particular, we consider the vertices in a BFS order. Second, we assign to the
first vertex coordinates (1, 1) and add a vertex at a time in the given order using
Algorithm OptAddVertex.

We say that a permutation π1 of the first n positive integers extends a per-
mutation π2 of the first n − 1 positive integers if π2 can be obtained from π1 by
removing element n.

Theorem 2. Given a directed graph G, a vertex v ∈ G, and an L-drawing
Γ ′(π′

x, π′
y) of the subgraph G′ = G \ v, algorithm OptAddVertex constructs in

linear time an L-drawing Γ ∗(π∗
x, π∗

y) of minimum ink among all L-drawings
Γ (πx, πy) of G such that πx extends π′

x and πy extends π′
y.

Proof. Suppose by contradiction that there exists an L-drawing Γ ◦(π◦
x, π◦

y) that
uses less ink than Γ ∗(π∗

x, π∗
y) and such that π◦

x extends π′
x and π◦

y extends π′
y. With-

out loss of generality suppose that inkx(Γ ◦) < inkx(Γ ∗). By removing v we obtain
again Γ ′(π′

x, π′
y) and we save AddInkx(x◦

v) ink, where x◦
v is the x-coordinate of v

in Γ ◦. Since inkx(Γ ∗) = inkx(Γ ′) + AddInkx(x∗
v), where x∗

v is the x-coordinate
of v in Γ ∗, we have that AddInkx(x◦

v) < AddInkx(x∗
v), contradicting the hypoth-

esis that Γ ∗ is obtained by inserting v in a minimum of function AddInkx. The
complexity of algorithm OptAddVertex is discussed in [1]. ��

5 Experimental Evaluation

We implemented Algorithm OptAddVertex and the heuristic IncrementaLDraw,
and performed an extensive testing to evaluate the quality of the obtained L-
drawings. We compared the performances of our heuristic with the optimum ink,
the OOD algorithm of DAGView [20], and random placements. Refer to [1] for
details on the time complexity and on running times of IncrementaLDraw.

5.1 An Integer Linear Programming Formulation

In order to compare the heuristic approach with the optimal solution we formu-
lated the problem of finding an L-drawing with minimum ink as an ILP problem.
Given an n-vertex graph G = (V,E), in the following we describe only the part
to compute its x-coordinates (the computation of y-coordinates is analogous).
By definition, the amount inkx of a drawing Γ of G is obtained by summing
up all the horizontal segments of the drawing. Since each y-coordinate is exclu-
sively used for one vertex, there are n (possibly null, if there exists a vertex with
no incoming edges) horizontal segments in Γ . The horizontal segment si that
includes vi, i = 1, . . . , n extends from the leftmost to the rightmost bends of the
edges entering vi. We call Wi and Ei the x-coordinates of the endpoints of si.
Variables:

L-Drawings of Directed Graphs 143

∀i, j = 1, . . . , n : xij =

{
1 if vertex vi has x -coordinate j,

0 otherwise

∀i = 1, . . . , n : Ei,Wi (rightmost and leftmost endpoints of si)

Variables xij are binary, while Ei and Wi are integers. To simplify the descrip-
tion we denote by xi the x-coordinate of vertex vi, that is xi =

∑n
j=1 xij · j.

Constraints:

∀i :
n∑

j=1

xij = 1 (each vertex has a uniquex -coordinate)

∀j :
n∑

i=1

xij ≤ 1 (each column contains at most one vertex)

∀i : Ei ≥ xi (the rightmost endpoint of si does not lie to the left of vi)

∀i : Wi ≤ xi (the leftmost endpoint of si does not lie to the right of vi)

∀(vi, vj) ∈ E, Ej ≥ xi (the rightmost endpoint of sj does not lie to the left of vi)

∀(vi, vj) ∈ E, Wj ≤ xi (the leftmost endpoint of sj does not lie to the right of vi)

The objective function is: min
∑n

i=1(Ei − Wi).
To compute minimum-ink L-drawings we used Gurobi Optimizer ver.

6.0.4 [14] on a Dual Xeon X5460 Quad Core 3.16 GHz 48GB RAM.

5.2 Random Generation of the Graphs Suites

We generated uniformly at random two graph suites of dense, weakly connected,
directed graphs. The first graph suite is meant to compare the performances of
Algorithm IncrementaLDraw with respect to the optimum. For each number of
vertices n in {5, 10, 15} and for each percentage p in {10, 20, 30, 70} we generated
ten graphs whose number of edges m is p % with respect to the maximum possible
number of edges, that is, m =
n(n − 1)p/100�. In particular, we used the
procedure gnm random graph of the NetworkX 1.7 library [22], discarding graphs
that were not connected.

The second graph suite is meant to compare IncrementaLDraw with a random
placement of the vertices and is generated with the same procedure and edge
percentages of the first suite, but vertices range in {100, 200, 300, 400, 500}.

5.3 Results of the Experiments

The results of the experiments are shown in Figs. 4 and 5. Figure 4(a) is devoted
to the ten graphs with 15 vertices and 63 edges (30% of the maximum possible)
of the first graph suite. On the x-axis the ten graphs are reported. The curves
represent: (i) the ink used by the optimal algorithm; (ii) the average and the
standard deviation of the ink used by Algorithm IncrementaLDraw over 100

144 P. Angelini et al.

 0

 50

 100

 150

 200

 250

 300

 350

 0 1 2 3 4 5 6 7 8 9

U
se

d
in

k

Instance ID

optimal
incremental

ood
random

 0

 50

 100

 150

 200

 250

 300

 350

5 10 15

U
se

d
in

k

Number of vertices

optimal
incremental

ood
random

)b()a(

Fig. 4. (a) Ink used for the drawings of the ten graphs of the first graph suite with
15 vertices and 63 edges (corresponding to 30 % of the maximum possible). Optimal,
incremental, ODD, and random placement are compared. For the latter three the aver-
age and the standard deviation over 100 runs is shown. (b) Ink consumption varying
the size of the graphs (fixing at 30% edge density).

runs, each using a different BFS ordering obtained by starting from a random
initial vertex and by shuffling the adjacency lists of the vertices; (iii) the average
and the standard deviation of the ink used by Algorithm OOD over 100 runs, each
obtained from DAGView [20] by shuffling the adjacency lists of the vertices; and
(iv) the average and the standard deviation of the ink used by 100 random
placements of the vertices.

From Fig. 4(a) it is apparent that the performances of IncrementaLDraw are
always largely better than those of OOD and random placements, and not rarely
are close to the optimum. Although this result could be anticipated (OOD was
not conceived to reduce ink), we were surprised to note that, even with very
small graphs and relatively many runs, the worst case for IncrementaLDraw is
always comparable with the best case for OOD and significantly better than the
best case of random placement. We found the same pattern in all plots obtained
by changing densities and sizes.

Figure 4(b) shows how the size impacts on ink, focusing on 30% density
graphs of the first graph suite. All the points are obtained by averaging ten val-
ues (for example, each bar for 15 vertices of Fig. 4(b) is obtained by averaging
the ten corresponding values of Fig. 4(a). Figure 5(b) further deepens this analy-
sis showing how much ink each algorithm saves with respect to the maximum
theoretical upper bound of 2n × (n − 1) for the second graph suite. We observe
that, when increasing the number of vertices, both the number of edges and the
consumption of ink increase quadratically. At the same time, the ink saved by
IncrementaLDraw with respect to OOD and random placement increases linearly.

Figure 5(a) shows how density impacts on ink, focusing on graphs of 15 ver-
tices. Again, each point is the average of ten points obtained for ten different
graphs (e.g., the values for density 30% are obtained by averaging the ten values
of Fig. 4(a). For denser graphs, the difference among the alternative algorithms

L-Drawings of Directed Graphs 145

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

0.1 0.2 0.3 0.7

U
se

d
in

k

Edge density

optimal
incremental

ood
random

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

100
19800

200
79600

300
179400

400
319200

500
499000

S
av

ed
 in

k

Number of vertices / Theoretical maximum ink

incremental
ood

random

)b()a(

Fig. 5. (a) Ink consumption by varying density (the size of the graphs is fixed at 15
vertices). (b) The difference between the theoretical maximum and the actual ink used
by incremental, ODD, and random placement, for the second test-suite (graphs with
30% of maximum possible edges).

seems to reduce. This could be predicted as Lemma 2 ensures that for any vertex
order of a Kn uses the same ink.

Overall, the experiments show that the ink consumption of IncrementaLDraw
are closer to the optimum than to those of alternative algorithms and that the
heuristic offers a good compromise between effectiveness and running times,
even with a näıve implementation of Algorithm OptAddVertex. In [1] we discuss
a more efficient version of the algorithm.

6 Conclusions and Open Problems

We introduced L-drawings, a novel paradigm for representing directed graphs.
We investigated the problem of producing drawings with minimum ink, which
turned out to be NP-complete. Our heuristic, however, proved to produce near-
optimal solutions.

Several problems remain open: (i) How much area and ink could be saved if
vertices were allowed to share horizontal or vertical grid lines, provided that the
drawing is still unambiguous? (ii) Does there exist an ordering of the vertices
such that IncrementaLDraw produces a minimum-ink drawing? (iii) Problem
Profile, which we reduced to show the NP-hardness of MILD, is linear-time
solvable for trees [4] and for square grids [5]; what is the complexity of com-
puting minimum-ink L-drawings for these families of graphs? (iv) What is the
complexity of minimizing crossings in an L-drawing?

Finally, although in [8] it is shown that overloaded orthogonal drawings are
superior to matrix representations under several respects, it would be interest-
ing to contrast both these representations with L-drawings in an extensive user
study.

146 P. Angelini et al.

References

1. Angelini, P., Da Lozzo, G., Di Bartolomeo, M., Di Donato, V., Patrignani, M.,
Roselli, V., Tollis, I.G.: L-drawings of directed graphs. CoRR abs/1509.00684
(2015)

2. Biedl, T.C., Kaufmann, M.: Area-efficient static and incremental graph drawings.
In: Burkard, R., Woeginger, G. (eds.) ESA 1997. LNCS, vol. 1284, pp. 37–52.
Springer, Heidelberg (1997)

3. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice
Hall, Englewood Cliffs (1999)

4. Dı́az, J., Gibbons, A., Paterson, M., Toran, J.: The MINSUMCUT problem. In:
Dehne, F., Sack, J., Santoro, N. (eds.) WADS 1991. LNCS, vol. 519, pp. 65–79.
Springer, Heidelberg (1991)

5. Dı́az, J., Penrose, M., Petit, J., Serna, M.: Convergence theorems for some layout
measures on random lattice and random geometric graphs. Comb. Prob. Comput.
9(6), 489–511 (2000)

6. Dı́az, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput.
Surv. 34(3), 313–356 (2002)

7. Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings:
visualizing non-planar diagrams in a planar way. J. Graph Alg. Appl. 9(1), 31–52
(2005)

8. Didimo, W., Montecchiani, F., Pallas, E., Tollis, I.G.: How to visualize directed
graphs: a user study. In: IISA 2014, pp. 152–157. IEEE

9. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear
planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)

10. Ghoniem, M., Fekete, J., Castagliola, P.: On the readability of graphs using node-
link and matrix-based representations: a controlled experiment and statistical
analysis. Inf. Vis. 4(2), 114–135 (2005)

11. Golovach, P.: The total vertex separation number of a graph. Disk. Mat. 9(4),
86–91 (1997)

12. Golovach, P., Fomin, F.: The total vertex separation number and the profile of
graphs. Disk. Mat. 10(1), 87–94 (1998)

13. Grinberg, E., Dambit, J.: Latviiskii Matematicheskii Ezhegodnik 2, 65–70 (1966).
in Russian

14. Gurobi Optimization: Gurobi Optimizer. http://www.gurobi.com/
15. Healy, P., Nikolov, N.S.: Hierarchical drawing algorithms. In: Tamassia, R. (ed.)

Handbook of Graph Drawing and Visualization. CRC Press, Boca Raton (2013)
16. Henry, N., Fekete, J., McGuffin, M.J.: Nodetrix: a hybrid visualization of social

networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302–1309 (2007)
17. Huang, J., Kang, Z.: A genetic algorithm for the feedback set problems. In: ICPACE

2003 (2003)
18. Huang, W., Hong, S., Eades, P.: Effects of crossing angles. In: PacificVis 2008.

IEEE (2008)
19. Kornaropoulos, E.M., Tollis, I.G.: Overloaded orthogonal drawings. In: Speck-

mann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 242–253. Springer, Heidelberg (2011)
20. Kornaropoulos, E.M., Tollis, I.G.: DAGView: An Approach for Visualizing Large

Graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp.
499–510. Springer, Heidelberg (2013)

21. Lin, Y., Yuan, J.: Profile minimization problem for matrices and graphs. Acta
Mathematicae Applicatae Sinica. English Series. Yingyong. Shuxue Xuebao 10(1),
107–112 (1994)

http://www.gurobi.com/

L-Drawings of Directed Graphs 147

22. Los Alamos Nat. Lab.: NetworkX. http://networkx.lanl.gov/index.html
23. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-

chical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981)
24. yWorks: yEd Graph Editor. http://www.yworks.com/en/products/yfiles/yed/

http://networkx.lanl.gov/index.html
http://www.yworks.com/en/products/yfiles/yed/

A Combinatorial Model of Two-Sided Search

Harout Aydinian1, Ferdinando Cicalese2(B),
Christian Deppe3, and Vladimir Lebedev4

1 Technische Universität München, Munich, Germany
h.aydinyan@tum.de

2 University of Verona, Verona, Italy
ferdinando.cicalese@univr.it

3 University of Bielefeld, Bielefeld, Germany
cdeppe@math.uni-bielefeld.de

4 Russian Academy of Sciences, Moscow, Russia
lebedev37@mail.ru

Abstract. We study a new model of combinatorial group testing in
a network. An object (the target) occupies an unknown node in the
network. At each time instant, we can test (or query) a subset of the
nodes to learn whether the target occupies any of such nodes. Unlike
the case of conventional group testing problems on graphs, the target in
our model can move immediately after each test to any node adjacent to
each present location. The search finishes when we are able to locate the
object with some predefined accuracy s (a parameter fixed beforehand),
i.e., to indicate a set of s nodes that include the location of the object.

In this paper we study two types of problems related to the above
model: (i) what is the minimum value of the accuracy parameter for
which a search strategy in the above sense exists; (ii) given the accuracy,
what is the minimum number of tests that allow to locate the target. We
study these questions on paths, cycles, and trees as underlying graphs
and provide tight answer for the above questions. We also considered
a restricted variant of the problem, where the number of moves of the
target is bounded.

1 Introduction

Problems involving search arise in various areas of human activity. Search theory
deals with the problem faced by a searcher: finding a hidden object, in a given
“search space”, in minimum time. In most of early developments it is assumed
that an object to be searched is stationary and hidden according to a known
distribution or it is moving and its motion is determined, by some known rules.
This model of search is called one-sided search. In case the target can attempt

H. Aydinian—Supported by Gottfried Wilhelm Leibniz-Program BO 1734/20-1 and
the DFG project BO 1734/31-1.
V. Vladimir—Supported by the Russian Foundation for Basic Research, project
No.15-01-08051.

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 148–160, 2016.
DOI: 10.1007/978-3-662-49192-8 12

A Combinatorial Model of Two-Sided Search 149

to contrast the searcher’s activity and react in some intelligent way in order not
to be found, the problem is called two-sided search.

The first developments in search theory were made by Bernard Koopman
and his colleagues in the Anti-Submarine Warfare Operations Research Group
of the U.S. Navy during World War II. Their purpose was to provide efficient
ways to search for enemy submarines. Their work which was only published later
in [15] also mentioned two-sided search (see also [5]).

Here, we consider a combinatorial model of two sided search which was pro-
posed by the late Rudolph Ahlswede during the Workshop “Search Method-
ologies II” (2010). In a combinatorial search problem the object(s) to be found
live in a discrete space and the tests to be asked satisfy certain specified require-
ments. The fundamentals of combinatorial search can be found in primary books
[1,4,14].

We define our search space N = {1, 2, . . . , N} as the vertices of an undirected
graph G = (N , E). The object to be found (the target) occupies some vertex of
N which is unknown to the searcher. The searcher is able to detect the presence
of the target at any subset of N , i.e. for any subset T ⊂ N , called a test set,
or test for short, the searcher can learn whether the target is located at some
node in T or not. The goal is to find the location of the target, with a certain
accuracy, in minimum time (number of tests). Note that in case of stationary
target, the problem is equivalent to a traditional group testing problem [10] with
a single defective item.

In our model, after each test, the target can move to any vertex adjacent
to its current location or stay at the same place. For the ease of description
we assume that each vertex in our graph G has a loop. Thus, we may formally
assume that in each time unit the target moves to an adjacent vertex. For each
j ≥ 1, let dj be the location of the target at time j. Then, for each n ≥ 1, the
sequence of target positions until time n is given by the vector (d1, . . . , dn) ∈ N n

which defines a walk in the graph G, i.e., (di, di+1) ∈ E (i = 1, . . . , n− 1). Recall
that in case of traditional group testing di = dj ; 1 ≤ i, j ≤ n + 1.

For a test T and a node d ∈ N we define the test function

fT (d) =
{

0 (No) , if d �∈ T
1 (Yes) , if d ∈ T .

Then, fT (d) represents the result of test T when the target is in position d.
For j = 1, 2, . . . , let Tj be the test performed at time j. We assume that Tj

depends on the results of all the previous tests1. The sequence (T1, T2, . . . , Tn)
is then called a sequential or adaptive strategy of length n.

We denote by Di the set of possible positions of the target after the result of
the ith test has become available. We have that D0 = N and for each i ≥ 1, it
holds that

Di =
{

Γ (Ti ∩ Di−1) , if fTi
(di) = 1

Γ (Di−1\Ti) , if fTi
(di) = 0,

1 Formally, Tj is a function mapping the result of the first j − 1 tests to a subset of
N , i.e., Tj = Tj(fT1(d1), . . . , fTj−1(dj−1)).

150 H. Aydinian et al.

where Γ (A) := {j ∈ N : ∃i ∈ A with (i, j) ∈ E} is the neighborhood of a subset
A ⊂ N . Note that A ⊂ Γ (A). We say that the test Ti reduces Di−1 to Di.

Clearly, given the sequence of movements of the target (d1, . . . , dn) and the
strategy T1, . . . , Tn, the sequence D1, . . . ,Dn is also determined. With these de
finitions we can now formalize the concept of a successful strategy as follows.

Given a graph G = (N , E), and a positive integer s, a sequential strategy
of length n, T1, . . . Tn (as defined above), is called (G, s)–successful if for any
possible sequence of the target’s movements (d1, . . . , dn), we have that |Di| ≤ s
for some i ≤ n.

We define s∗(G) as the minimum number s∗ such that there exists a (G, s∗)–
successful strategy. Given an integer s ≥ s∗(G), we denote by n(G, s) the mi
nimum number n such that there exists a (G, s)–successful strategy of length n.
We call the corresponding strategy a minimum size or optimal (G, s) strategy.

We also consider a more general problem when the mobility of the target is
limited, that is the target can change its position at most t times. We refer to
this case as the model with restricted movements of the target. In this case we
use the corresponding notation (G, s; t)–successful and n(G, s; t).

Since the concept of a successful strategy is defined in terms of worst case
scenario, in our analyses we will equivalently assume that the goal of the target
is to maximize the length of an (G, s)–successful strategy, or to maximize the
size of any Di, depending on whether our goal is to give a bound on n(G, s) or on
s∗(G) respectively. Therefore, the target’s movements and the sequence of test
results fT1(d1) . . . , fTn

(dn), also called answers, can be viewed as an adversarial
strategy, whose goal is to maximize the above mentioned quantities.

Our Results. We study the above quantities for the cases where the underlying
graph belongs to the classes of undirected cycles, paths, and trees. In Sect. 2
we give an optimal (CN , s) strategy for any s ≥ 5, where CN denotes a cycle
of length N . We also show that s∗(CN) = 5 for N ≥ 5. For a path PN on N
vertices we give an optimal (PN , 4) strategy, which is linear in N . For s ≥ 5
we give an optimal (PN , s) strategy, which is logarithmic in N . In Sect. 3 we
consider the case of trees. For a tree T , we characterize s∗(T) in terms of the
maximum degree and the radius of T . In Sect. 4 we consider the variant of the
problem where the movement of the target are restricted for the cases of the
underlying graph being a cycles or a path. We give optimal (CN , 3, t) strategies
for t = 1, 2 and for t ≥ 3 we give a general strategy. Finally, we give an optimal
(PN , 3, 1) strategy. In Sect. 5 we discuss some directions for future research.

Motivations and Related Work. The model has application to the area
of node selection for target tracking in sensor networks. Sensor networks are
systems of many small and simple devices. In general, the sensors used have
reduced functionalities so that their cost remains low. A sensor may generate
as little as one bit of information. Moreover, for energy saving reasons, sensors
should not be active continuously but it is important to carefully select at each
point in time the set of sensors which should be active to carry on their task.
When the task of the network is the tracking of objects, a major initial task is to

A Combinatorial Model of Two-Sided Search 151

determine an area where the object to be tracked is surely initially located, and
from which the actual tracking procedure can start. This localization together
with the minimization of the area of localization is one of the most critical and
expensive part of the tracking procedure, as it is typically done by an exhaustive
search [12,18]. For the sake of reducing the bandwidth consumption, sensors
networks are also hierarchically organized in graph and more specifically tree
structures [17]. Therefore, our results can be used to support the localization
phase while trying to reduce the area of localization and reducing the number
of activations of sensors.

To the best of our knowledge, the search model we are considering in this
paper and the related problems stated above have not been studied earlier in
the literature. Group testing in graph has been considered both in terms of
searching for an edge and for a vertex, and for different models of the test
allowed [6,8,13,19]. However, in all these works the basic assumption is that the
target is still which makes the problem significantly different.

Another area of research related to the problem studied here is graph search-
ing. Graph searching encompasses a wide variety of combinatorial problems
related to the problem of capturing a fugitive residing in a graph using the mi
nimum number of searchers. Although there are many different models of graph
searching (the interested reader is referred to the very comprehensive annotated
bibliography [11]), none appear to cover the type of two side combinatorial search
we are considering here. Models of search closely related to ours appear to be
the so called cop and robber game [3], the princess and the monster [2], and
domination search games.

For space constraints, some of the proofs are deferred to the extended version.

2 Optimal Strategies for Cycles and Paths

In this section we consider the classes of cycles and path graphs on N vertices,
denoted by CN and PN respectively. We will focus on the dual of the parameters
n(CN , s) and n(PN , s). Given integers n, s ≥ 1, we denote by Nc(n, s) (resp.
Np(n, s)) the maximum N , such that there exists an (CN , s)–successful (resp.
(PN , s)–successful) strategy of length n. Clearly, n(CN , s) = min{i : Nc(i, s) ≥
N} and n(PN , s) = min{i : Np(i, s) ≥ N}.

Cycle Graphs
Let CN = (N , E) be an undirected cycle of length N with a loop in each node.

Thus, N = {1, . . . , N} and E = {{i, i + 1} : 1 ≤ i ≤ N − 1} ∪ {N, 1} ∪ {{i, i} :
i ∈ N}. We start with the following simple observation.

Proposition 1. For N ≥ 5 there does not exist a (CN , s)–successful strategy
with s ≤ 4, that is s∗(CN) ≥ 5.

Proof. Let (T1, . . . , Tn) be a (CN , s)–successful strategy. Since we consider the
adversarial setting of our problem, the test results maximally increase the size
of s. To prove the statement it is sufficient to show that one can choose the test

152 H. Aydinian et al.

results in such a way that |Di| ≥ 5 for i = 1, . . . , N . Since |D0| = N ≥ 5 it is
easy to see that in the worst case |Di| = max{|Γ (Ti ∩ Di−1|), |Γ (Di−1\Ti)|} ≥⌈

|Di−1|
2

⌉
+ 2 ≥ 5.
�

For s ≥ 5, we can characterize the size of optimal (CN , s) strategies.

Theorem 1. For any s ≥ 5 and any n ≥ 0 we have Nc(n, s) = 2n(s − 4) + 4.

Proof. We proceed by induction on n. The case n = 0 is trivial. For the induction
step with n ≥ 1 suppose Nc(n, s) > 2n(s − 4) + 4 with (T1, . . . , Tn) being an
optimal strategy. Skipping the trivial cases: |T1| = 1 or |N − 1|, we notice that
|D1| ≥ |T1|+2 if fT1(d1) = 1 and |D1| ≥ |N\T1|+2 if fT1(d1) = 0, with equality
in both cases if and only if T1 is connected, that is T1 is a path in CN . This
implies that |D1| ≥ �Nc(n, s)/2 + 2 > (2n(s − 4) + 4)/2 + 2 = 2n−1(s − 4) + 4,
a contradiction with the induction hypothesis |D1| ≤ Nc(n − 1, s) = 2n−1(s −
4) + 4. Hence we have Nc(n, s) ≤ 2n(s − 4) + 4. On the other hand, in case
N = 2n(s − 4) + 4 we take as T1 a path on N

2 vertices, which is sufficient (and
necessary) to get an optimal strategy, in view of the induction hypothesis.
�

Path Graphs
Let now PN be a path graph on N vertices, thus E = {{i, i + 1} : 1 ≤ i <

N} ∪ {{i, i} : 1 ≤ i ≤ N}. It turns out that here we have s∗(PN) = 4, as given
by the following proposition.

Proposition 2. For N ≥ 5 there does not exist a (PN , s)-successful strategy
with s ≤ 3, that is s∗(PN) ≥ 4.

Our goal now is to find an optimal (PN , 4) strategy.

Theorem 2. For N ≥ 4 we have n(N, 4) =
⌈

N

2

⌉
− 2.

Proof. The proof consists of two parts. The upper bound is deferred to the
extended version of the paper. Here we show the lower bound

Lemma 1. For N ≥ 4 we have n(N, 4) ≥
⌈

N

2

⌉
− 2.

Proof. For the sake of the presentation, let us assume that N is odd. The case
where N is even can be dealt with analogously. We shall describe an adversary,
that guarantees, for at least �N/2 − 3 rounds, the existence of a set Ai ⊆ Di

of 5 adjacent positions among the candidates to be the target position. Let
A0 = {�N/2−2, . . . , �N/2+2}. It is trivially true that A0 ⊆ D0 = {1, . . . , N}.

The adversary strategy is easily described as follows: for each i = 1, 2, . . . ,
if |Ti ∩ Ai−1| < 3 then the answer will be No, otherwise the answer will be
Yes. Let us denote by ai the central element of Ai, i.e., a0 = �N/2. Let us
analyze the possible cases. It is not hard to see that when |Ti ∩ Ai−1| < 3 (and
the answer is No) or |Ti ∩ Ai−1| > 3 (and the answer is Yes) or Ti ∩ Ai−1 ∈

A Combinatorial Model of Two-Sided Search 153

{{ai−1 − 1, ai−1, ai−1 + 1}, {ai−1 − 2, ai−1, ai−1 + 1}, {ai−1 − 1, ai−1, ai−1 + 2}},
(and the answer is Yes), we have Ai−1 ⊆ Di. Hence Ai = Ai−1 which satisfies
the claim about the existence of a subset of size 5 contiguous positions among
the candidate positions for the target. Finally, we have the two cases given
by Ti ∩ Ai−1 ∈ {{ai−1 − 2, ai−1 − 1, ai−1}, {ai−1, ai−1 + 1, ai−1 + 2}}, where
the answer will be Yes. Then, if Ti ∩ Ai−1 = {ai−1 − 2, ai−1 − 1, ai−1} and
ai−1 > 3, we have Ai = {ai−1 −3, . . . , ai−1 +1} ⊆ Di with 5 candidate positions
as above. In this case we say that we had a shift towards the left of the 5
candidates. If Ti ∩ Ai−1 = {ai−1, ai−1 + 1, ai−1 + 2} and ai−1 < N − 2, we have
Ai = {ai−1−1, . . . , ai−1+3} ⊆ Di again with 5 possible positions for the target.
In this case we say that we had a shift towards the right of the 5 candidates.

By the above arguments it follows that the existence of the set Ai can be
guaranteed until a shift towards right or left is possible, i.e., for at least �N/2−3
times. This bound is given by the case where the test used always induces a shift
in the same direction of the 5 candidates. At this point there are still 5 candidates
so at least another test is needed, which proves the desired bound �N/2 − 2.
�

This completes the proof of Theorem 3.
�
Corollary 1. For n ≥ 0 we have Np(n, 4) = 2n + 4.

The next theorem shows that we need much less tests, if we search for a final
target set of size s ≥ 5.

Theorem 3. For n ≥ 0 and s ≥ 4 we have Np(n, s) = (s − 4)2n + 2n + 4.

Proof. The case s = 4 follows from Corollary 1, thus we consider the case s ≥ 5.
Lower bound: For the case s ≥ 5, we will first prove the lower bound. For this,

we consider two variants of the problem and then reduce the original problem
to them. The first variant (later referred to as variant O for open) arises when
we consider the search space open on both sides. More formally, we assume that
D0 = {a + 1, . . . , a + x}, for some a ∈ Z and x ∈ N and the target can move on
any position in Z, i.e., there is no boundary at a or a+x, in the sense that from
position a + x the target can move to position a + x + 1 too, and from position
a + 1 it can move to position a too. This is different from the problem we fix
at the beginning , since when the target is in 1 (resp. in N), if it moves, it can
only move to 2 (resp. N − 1). Let us denote by NO(n, s) the largest value of x
such that there is an (PN , s)-successful strategy of length n in this open variant
of the problem over any path PN = {a + 1, . . . , a + x}.

Claim 1. NO(s, n) ≥ 2n(s − 4) + 4.
The base case n = 0 is trivially true. For the induction step, let n ≥ 1 and

D0 = {a+1, . . . , a+2n(s−4)+4}. Using the first test T1 = {a+1, a+2, . . . , a+
2n−1(s − 4) + 2} we have that either D1 = {a, a + 1, . . . , a + 2n−1(s − 4) + 3} or
D1 = {a+2n−1(s−4)+2, a+2n−1(s−4)+3, . . . , a+2n(s−4)+5.} In both cases
we have that |D1| = 2n−1(s − 4) + 4 = NO(n − 1, s). Hence, by the induction
hypothesis, n − 1 additional tests are sufficient for a successful strategy starting
from D1. Thus, n tests are sufficient for a successful strategy starting from D0,
i.e., we have shown NO(n, s) ≥ 2n(s − 4) + 4 concluding the proof of Claim 1.

154 H. Aydinian et al.

As a second variant of the problem (later referred to as variant H for half-
open) we consider the case where the search space is half-open. We assume that
D0 = {1, . . . , x}, for some x ∈ N and the target can move on any position in N,
i.e., it can never move to a position to the left of 1 but it can move to a position
to the right of x, i.e., positions x+1, x+2, . . . might become possible candidates
later on. Let us denote by NH(n, s) the largest value of x such that there is an
(PN , s)-successful strategy of length n in this open variant of the problem over
any line PN = {1, . . . , x}. We can prove by induction the following

Claim 2. NH(n, s) ≥ 2n(s − 4) + n + 4.
The base case n = 0 is trivially true. For the induction step, let n ≥ 1 and

D0 = {1, . . . , 2n(s − 4) + n + 4}. Using the first test T1 = {1, 2, . . . , 2n−1(s −
4) + n + 3} we have that either D1 = {1, . . . , 2n−1(s − 4) + n + 4} or D1 =
{2n−1(s − 4) + n + 3, 2n−1(s − 4) + n + 4, . . . , 2n(s − 4) + n + 4}. In the first
case we have that |D1| = 2n−1(s − 4) + (n − 1) + 4 = NH(n − 1, s) hence by
induction n − 1 additional tests are sufficient for a successful strategy starting
from D1. In the other case, we have |D1| = 2n−1(s − 4) + 4 = NO(n − 1, s) and
even allowing the new search space to be half open we can finish the search with
a strategy of size n − 1, by Claim 1. In both cases n tests are sufficient for a
successful strategy starting from D0, hence the induction step is proved and so
is Claim 2.

We are now ready to prove the lower bound N(n, s) ≥ 2n(s−4)+2n+4. Again
we proceed by induction on n. The base case n = 0 is trivially true. For n ≥ 1, let
D0 = {1, . . . , 2n(s−4)+2n+4} and define T1 = {1, . . . , 2n−1(s−4)+(n−1)+3}.
As a result of this test we have either D1 = {1, . . . , 2n−1(s − 4) + (n − 1) + 4} or
D1 = {2n−1(s − 4) + (n − 1) + 3, . . . , 2n(s − 4) + 2n + 4}.

In both cases we have |D1| = NH(n − 1, s) and we can finish in n − 1 tests
by Claim 2, using a strategy for the half-open variant defined above. Notice that
in both cases, the resulting set of candidates positions for the target can extend
only one direction, like in an instance of the half-open variant. This concludes
the proof of the inductive step, hence N(n, s) ≥ 2n(s − 4) + 2n + 4 as desired.

Upper bound: Suppose given n, s there always exists an optimal strategy
achieving N(n, s) such that all the tests are intervals in N . Then the upper
bound N(n, s) ≤ 2n(s−4)+2n+4 immediately follows from the inductive proof
of Theorem 3.

Next, we show that any strategy using also tests which are not intervals can
be transformed into a strategy that only uses intervals and such that the target
space is also an interval. Hence the upper bound extends also to such strategies.
Let A ⊆ Z. We will say that A is an a-set (shorter for a-interval-set) if A is equal
to the union of a intervals and it is not equal to the union of any a− 1 intervals.
If A is an a-set for some a > 1 we will also say that A is a multi-interval set. On
the other hand, if A is a 1-set, we will also say that A is a mono-interval set.

In the following, for an a-set we will abuse notation and identify the a-set A
with the set of a (maximal) intervals whose union is equal to A. More formally,
let A be an a-set, with A = I1∪· · ·∪Ia where I1, . . . , Ia are intervals and for each
1 ≤ i < j ≤ a it holds that Ii ∩ Ij = ∅. Therefore, we will also write I ∈ A to

A Combinatorial Model of Two-Sided Search 155

indicate that I = Ii for some i = 1, . . . , a, i.e., I is one of the a maximal intervals
into which A can be partitioned. Let A(a) denote the family of all a-sets and let
D(k,a) denote the family of all a-sets of cardinality k.

Let us consider a minimum length strategy S. For each test T used by S
with target space being D —since the target can only move after the test has
been performed—we can assume that T \ D = ∅. Moreover, we can also assume
that |Γ (T ∩ D)| ≥ |Γ (D \ T)|. Otherwise, we can replace T with D \ T which
satisfies the requirement and only swaps the two possible outcomes of the test.
We will use the following two claims, which we prove later.
Claim 3. Fix a > 1, b ≥ 1 and k ≥ 1. For each D ∈ D(k,a) and T ∈ A(b) such

that T \ D = ∅, and for each D∗ ∈ D(k,1), there exists T ′ ∈ A(b) such that

|Γ (D ∩ T)| ≥ |Γ (T ∩ D∗)|.
Claim 4. Fix b > 1. For each D,D∗ ∈ D(k,1) and T ∈ A(b) there exists

T ′ ∈ A(1) such that

|Γ (D ∩ T)| ≥ |Γ (T ′ ∩ D∗)| and Γ (D∗ \ T ′) ∈ A(1).

Let us take any sequence of target spaces D0, . . . Dn encountered using the
strategy S and let the corresponding tests be T1, . . . , Tn. We will show that we
can map this into a sequence of target spaces D∗

0 , . . . D∗
n which are always made

of a single interval, and are obtained using tests T ′
1 , . . . T ′

n which are always made
of a single interval, and such that for each i we have |Di| ≥ |D∗

i |.
We show this by induction. For i = 0, we have D0 = D∗

0 = {1, . . . , N} then
the statement holds. Let us assume that for some i ≥ 0, for some k and a > 1
we have |Di| = |D∗

i | = k and Di ∈ D(k,a) and D∗
i ∈ D(k,1). For some b ≥ 1, let

Ti ∈ A(b) be the (possibly multi-interval) test used by the startegy S.
By Claim 3, there is a (possibly multi-interval) test T̃i ∈ A(b) such that

we can use this test on D∗
i and the resulting target space is D′

i+1 satisfying
|Di+1| ≥ |D′

i+1|. Let k′ = |D′
i+1|. Notice that D′

i+1 can be multi-interval, i.e.,
there is some a′ ≥ 1 such that D′

i+1 ∈ Dk′,a′
. Now, by Claim 4, we have that

there exists a test T ′
i ∈ A(1) such that the target space D∗

i+1 resulting from
using T ′

i on D∗
i is not larger than the D′

i+1. In addition, D∗
i+1 is mono-interval,

being the intersection of two intervals, and, by Claim 4, also D∗
i \ T ′

i is also
an interval. This means that both the possible outcomes of the test T ′ are
intervals. Therefore, we have found a (mono-interval) test T ′

i such that using
T ′

i on the target space D∗
i the resulting target space D∗

i+1 is mono-interval and
|D∗

i+1| ≤ |D′
i+1| ≤ |Di+1|. This concludes the induction step. A consequence of

this is that if there exists a strategy of length n using multi-interval tests then
there exists a strategy of length n using only mono-interval tests and such that
all the target sets encountered at intermediate steps are mono-intervals.

Our proof of the lower bound also shows that when all tests are to be mono-
intervals and such that the intermediate target sets are also intervals, then the
lower bound is best possible. It follows that since any multi-interval strategy
could be turned into a mono-interval strategy, the lower bound is best possible
also for strategies where the use of multi-intervals is allowed.
�

156 H. Aydinian et al.

Proof of Claim 3. Fix a one-to-one map f : x ∈ D �→ f(x) ∈ D∗ such that it
preserves the order, i.e., x < x′ → f(x) < f(x′). Let f be canonically extended
to intervals, i.e., for each interval I, we have f(I) = {f(x) | x ∈ I}. Therefore,
f maps intervals to intervals. Moreover, for each x, x′ ∈ D, such that x < x′ we
have that f(x′) − f(x) ≤ x′ − x, since D∗ does not have holes.

Let D = ID
1 ∪ · · · ∪ ID

a and T = TD
1 ∪ · · · ∪ TD

b . W.l.o.g, assume that in the
above expressions, the intervals are taken according to the relative order of their

first element. Then, we have Γ (D ∩ T) =
a⋃

i=1

b⋃

j=1

Γ (ID
i ∩ TD

j).

Let T ′ = ∪b
j=1f(Tj). Then, Γ (D∗ ∩ T ′) =

a⋃

i=1

b⋃

j=1

Γ (f(ID
i) ∩ f(TD

j)). It is not

hard to see that Γ (f(ID
i) ∩ f(TD

j)) is only a translation of Γ (ID
i ∩ TD

j). Thus,

|
a⋃

i=1

b⋃

j=1

Γ (ID
i ∩ TD

j)| ≤ |
a⋃

i=1

b⋃

j=1

Γ (f(ID
i) ∩ f(TD

j))|. Actually, we could have

a strict inequality if some intervals are made adjacent by f .
�

Proof of Claim 4. Let D = {u, u + 1, . . . , v}, D∗ = {w,w + 1, . . . , z} and
T = TD

1 ∪ · · · ∪ TD
b , with the intervals being disjoint and included in D. W.l.o.g,

assume that in the latter expressions, the intervals are taken according to the
relative order of their first element. Fix a one-to-one map g : x ∈ D �→ g(x) ∈ D∗

such that it preserves the order, i.e., x < x′ → g(x) < g(x′) and such that for
each i = 1, . . . , b, it holds that g(yi) = w+

∑i−1
�=0 |TD

� |−1, where yi is the smallest
element in TD

i . In words, g maps the elements of TD
1 to the first elements of D∗,

and for each i = 2, . . . , b it maps the elements in TD
i to the first elements of

D∗, following the elements of g(TD
i−1). Hence, g(∪iT

D
i) = {w,w + 1, . . . , w − 1 +

∑b
j=1 |TD

j |} which is an interval beginning at the first element of D∗.
We set T ′ = g(∪iT

D
i). The above observation immediately implies that

Γ (D∗ \ T ′) is an interval. Morever, arguing like in the case of Claim 3, we
also have that |Γ (D ∩ T)| ≥ |Γ (T ∩ D∗)|.
�

3 Trees

For a tree T , we denote by Δ(T) the maximum degree of T and by r(T) the
radius of T , i.e., r(T) = minv∈T maxu∈T d(u, v) where d(u, v) denote the length
of the unique path between u and v in T . We have the following result.

Theorem 4. Let T be a tree, and let r = r(T) and Δ = Δ(T) ≥ 3. Then we
have

(i) s∗(T) ≤ r(Δ − 1) + 2 for r = 1, 2.

(ii) s∗(T) ≤
(

�Δ − 1
2

 + 1
)

(Δ − 1) + u for r = 3, where u = 3 if Δ = 3

and u = 2 for Δ ≥ 4.

A Combinatorial Model of Two-Sided Search 157

(iii) s∗(T) ≤
(

�Δ

2
 + 1

)
(Δ − 1) + 2 for r ≥ 4.

Moreover, the above bounds are best possible in the sense that for any r = 3, 4
there exists a tree for which a lower bound bound can be shown that differs by 1
and for any r �∈ {3, 4} the lower bound exactly matches the corresponding upper
bound in (i) and (iii).

The above theorem is consequence of the following observations which moti-
vate the study of the problem on complete q-ary trees described below.

Given a tree T of radius r and maximum degree Δ we can first root T in
a vertex x such that any other vertex of T is at distance at most r. In other
words, we choose the root in such a way that the depth of the resulting rooted
tree is equal to the radius. In addition, this way, because of the bound on the
degree, the tree T can be seen as a super tree of a complete (Δ − 1)-ary tree of
depth r and as a subtree of an expanded complete (Δ − 1)-ary tree of depth r,
which we exactly define later. Therefore, for q = Δ − 1, any strategy that works
when the search space is an expanded complete q-ary tree of depth r will also
work on T (with the appropriate mapping of the tests). Therefore the results
(i)-(iv) follow from Theorem 5 below.

For the lower bound, since a complete (Δ− 1)-ary tree of depth r is a tree of
maximum degree Δ and radius r the result also follows from Theorem 5 below.

Complete Trees and Expanded Complete Trees. For the proof of
Theorem 4, we study our problem for complete q-ary trees and for a properly
defined extension of complete q-ary trees. For integers k ≥ 1 and q ≥ 1 we denote
by Bq

k = (N , E) a complete q-ary tree of depth k, where N = {1, 2, . . . , qk+1−1}
and |E| = |N | − 1. Such a tree has one vertex of degree q, called the root,
qk(q − 1) − 2 vertices of degree q + 1, called the inner vertices, and qk vertices
of degree 1, called the leaves. We also define an expanded complete q-ary tree of
depth k as the tree obtained from joining a Bq

k and a Bq
k−1 by making the root

of the Bq
k−1 an additional child of the root of the Bq

k. Such an expanded complete
q-ary tree of depth k is denoted by Bq+

k . In such a tree all the internal nodes
(including the root) have degree q + 1.

Theorem 5. For q ≥ 2 we have

(i) s∗(Bq
1) = q + 1, s∗(Bq+

1) = q + 2
(ii) s∗(Bq

2) = 2q + 1, s∗(Bq+
2) = 2q + 2

(iii) s∗(Bq
3) = � q+1

2 q + q + j, where j = 0 if q = 2 and j = 1 if q ≥ 3; and
s∗(Bq+

3) ≤ � q+1
2 q + q + 2,

(iv) s∗(Bq
4) = � q+1

2 q + q + i, where i = 1 if q is even and i = 2 if q is odd; and
s∗(Bq+

4) ≤ s∗(Bq
4) + 1 if q is even and s∗(Bq+

4) ≤ s∗(Bq
4) if q is odd

(v) s∗(Bq+
k) = s∗(Bq

k) = � q+1
2 q + q + 2 for all k ≥ 5.

158 H. Aydinian et al.

4 Optimal Strategies When the Target Is Restricted

We now consider the case of a target that changes its position at most t times.
Thus, there are at most t distinct elements in a target walk (d1, . . . , dn). The
notations Nc(n, s, t) and Np(n, s, t) have the same meaning as Nc(n, s) and
Np(n, s) but for the restricted version of problem considered here.

Theorem 6. For s ≥ 4 we have

Nc(n, s, t) ≥ (s − 4)2n + 2n−t+2 = Nc(n, s) + 4(2n−t − 1).

Proof. Let N = (s−4)2n+2n−t+2. We take T1 = {1, 2, . . . , (s−4)2n−1+2n−t+1}
and assume w.l.o.g. that the answer is 1. Since the target can move at most t
times, we can assume then that the final position of the target is in some half-
open interval. Thus, we have the half-open case of the problem for the lines,
defined in the proof of Theorem 3. Recall that for k tests we have NH(k, s) =
2k(s−4)+k+4 (keeping the notation introduced earlier). Furthermore, observe
that we can choose the test Tk in such a way that |Dk| ≤ N

2k
+k+1 for 1 ≤ k < t

and |Dk| ≤ N
2k

+ t + 1 for t ≤ k ≤ 2n−t+1. Therefore we have
Nc(n, s, t)

2k
+ t + 1 ≥ NH(n − k, s) = (s − 4)2n−k + n − k + 4,

Nc(n, s, t) ≥ (s − 4)2n + 2k(n − t + 3 − k).
We can maximize this quantity choosing k = n − t + 1. Then we get

Nc(n, s, t) ≥ (s − 4)2n + 4 + 4(2n−t − 1). Furthermore, in view of Theorem 1 we
have Nc(n, s, t) ≥ N(n, s) + 4(2n−t − 1).
�
Remark 1. It is easy to see that for paths we have the following bound
Nl(n, s, t) ≥ Nc(n, s, t) + 2t.

For cases t = 1, 2 and s = 3 we give optimal strategies.

Theorem 7. For n ≥ 2 we have (i) Nc(n, 3, 1) = 2n, (ii) For n ≥ 4 we have
Nc(n, 3, 2) = 2n−2 .

Proof. (i): As a first test T1 we take a path on 2n−1 vertices, say T1 = {1, . . . , N
2 },

and assume, w.l.o.g, that the answer is 1. Then clearly D1 = {N, 1, . . . , N
2 + 1}

and we know that the final position of the target is in D1. Then for each i =
2, . . . , n we take as a test a path Ti ⊂ Di−1 of size |Di−1|

2 , which contains one of
endpoonts of Di−1. Observe then that |Di| = |Di−1|/2 + 1 and |Ti| = |Di−1|/2,
for i = 2, . . . , n. It is easy to see that |Tn| = 2 and |Dn| = 3. This shows that
Nc(n, 3, 1) ≥ 2n. To see that Nc(n, 3, 1) ≤ 2n, suppose that N ≥ 2n and the
target moves only after n-th test. Then the well-known information theoretic
bound (for a stationary target) says that after n − 1 tests there are at least two
vertices with unknown status. Hence, |Dn−1| ≥ 4 for N ≥ 2n and we need at
least one more test to find a Dn of size 3.

(ii): The proof for t = 2 is similar. After n − 2 tests we get |Dn−2| ≥ 4 and
we need at least two more tests to find a proper set Dn.
�

A Combinatorial Model of Two-Sided Search 159

5 Concluding Remarks

We considered a new model of combinatorial two-sided search and studied the
cases where the search space topology belongs to the classes of cycles, paths
and trees. We described optimal search strategies for path graphs and cycles.
Based on an analysis of complete q-ary tree, for arbitrary tree topologies we
characterized the minimum possible size of a target set, in terms of the maximum
degree and the radius of the tree. Due to the connections to the field of sensor
networks, an interesting question which is left open is about the characterization
of strategies of minimum length.

Besides extensions to other network topologies, another direction for future
research is the study of probabilistic models of two-sided search, as well as two-
sided models of search in the case where some of test results are incorrect [7,16],
and the related coding problems.

References

1. Ahlswede, R., Wegener, I.: Suchprobleme. Wiley, New York (1987). Teubner, 1979,
(English translation), Search problems

2. Alpern, A., Fokkink, R., Gal, S., Timmer, M.: On search games that include
ambush. SIAM J. Control Optim. 51, 4544–4556 (2013)

3. Alspach, B.: Searching and sweeping graphs: a brief survey. Matematiche (Catania)
59, 5–37 (2006)

4. Aigner, M.: Combinatorial Search. Wiley, New York (1988)
5. Benkoski, S.J., Monticino, M.G., Weisinger, J.R.: A survey of the search theory

literature. Naval Res. Logistics 38, 469–494 (1991)
6. Cheraghchi, M., Karbasi, A., Mohajer, S., Saligrama, V.: Graph-constrained group

testing. IEEE Trans. Inf. Theor. 58(1), 248–262 (2012)
7. Cicalese, F.: Fault-Tolerant Search Algorithms. Springer, Berlin (2013)
8. Damaschke, P.: A tight upper bound for group testing in graphs. Discrete Appl.

Math. 48, 101–109 (1994)
9. Deppe, C.: Searching with lies and coding with feedback. In: CsiszAr, I., Katona,

G.O.H., Tardos, G., Wiener, G. (eds.) Entropy, Search, Complexity, Bolyai Society
Mathematical Studies, vol. 16, pp. 27–70 (2007)

10. Du, D., Hwang, F.: Combinatorial group testing and its applications. Series on
Applied Mathematics (1993)

11. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph
searching. Theor. Comput. Sci. 399(3), 236–245 (2008)

12. Kaplan, L.: Global node selection for localization in a distributed sensor network.
IEEE Trans. Aerosp. Electron. Syst. 42, 113–135 (2006)

13. Karbasi, A., Zadimoghaddam, M.: Sequential group testing with graph constraints.
In: Proceedings of IEEE Information Theory Workshop (ITW), pp. 292–296 (2012)

14. Knuth, D.E.: The Art of Computer Programming. Combinatorial Algorithms, Part
1, vol. 4A. Addison-Wesley Publishing, Boston (2011)

15. Koopman, B.: Search and Screening. Persimmon Press, New York (1946)
16. Pelc, A.: Searching games with errors - fifty years of coping with liars. Theor.

Comput. Sci. 270, 71–109 (2002)

160 H. Aydinian et al.

17. Ramya, K., Kumar, K.P., Rao, V.S.: A survey on target tracking techniques in
wireless sensor networks. Int. J. Comput. Sci. Eng. Surv. 3, 93–108 (2012)

18. Rowaihy, H., Eswaran, S., Johnson, M., Verma, D., Bar-Noy, A., Brown, T., La
Porta, T.: A survey of sensor selection schemes in wireless sensor networks. In:
Proceedings of SPIE 6562, Unattended Ground, Sea, and Air Sensor Technologies
and Applications IX, 65621A (2007)

19. Triesch, E.: A group testing problem for hypergraphs of bounded rank. Discrete
Appl. Math. 66, 185–188 (1996)

On the Power of Laconic Advice
in Communication Complexity

Kfir Barhum(B) and Juraj Hromkovič

Department of Computer Science, ETH Zurich, Zurich, Switzerland
{kfir.barhum,juraj.hromkovic}@inf.ethz.ch

Abstract. We continue the study of a recently introduced model of com-
munication complexity with advice, focusing on the power of advice in
the context of equality of bitstrings and divisibility of natural numbers.
First, we establish that the equality problem admits a protocol of poly-
logarithmic communication, provided a laconic advice of just one bit. For
the divisibility problem, we design a protocol with sublinear communica-
tion and advice of roughly Õ(

√
n). We complement our result on divisi-

bility with a matching lower bound in a restricted setting using a recent
result of Chattopadhyay et al. and a reduction from set-disjointness to
divisibility.

Keywords: Communication complexity · Communication complexity
with advice · Equality · Divisibility

1 Introduction

The research field of communication complexity concerns with the efficiency of
interaction. The theory of communication complexity quantifies and studies the
amount of communication required for different settings of distributed computing
between two entities that are allowed to communicate over some channel. In
this case, local computations are assumed to be unbounded, i.e., we do not
limit the entities with respect to the time and space complexities of their local
computations, and are solely interested in the amount of information exchanged
during the computation, measured usually by the total number of bits exchanged
by the parties. The communication between the parties is guided by a protocol
which specifies how each message sent depends on the input and the messages
sent previously.

More formally, two computationally unbounded players Bob and Charlie hold
partial inputs x ∈ X and y ∈ Y, respectively, to a function f : X × Y → {0, 1}
known to both of them. The parties interact according to a protocol π, which
is modeled as a finite sequence of functions (M1, . . . , Mr), where Mi : X ×
({0, 1}+)i−1 → {0, 1}+ for an odd i and Mi : Y × ({0, 1}+)i−1 → {0, 1}+ for an
even i, specifying the i’th message of the protocol. The computation proceeds

This work was partially supported by SNF grant 200021-146372.

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 161–170, 2016.
DOI: 10.1007/978-3-662-49192-8 13

162 K. Barhum and J. Hromkovič

as follows: In the first round, the message m1 = M1(x) is sent by Bob, in the
second round m2 = M2(y,M1(x)) is sent by Charlie, and in general, in the i’th
round message Mi(x,m1, . . . , mi−1) (respectively, Mi(y,m1, . . . , mi−1)) for odd
(resp., even) i is sent.

The transcript of a protocol on inputs x and y is π(x, y) def= (m1, . . . , mr). The
length of the transcript |π(x, y)| is defined as the total length of all the messages
exchanged.

A protocol is correct if, for all x ∈ X and y ∈ Y, there exists a referee
function eval, such that eval(π(x, y)) = f(x, y). Put differently, if it is possible
to compute f(x, y) only by looking at the transcript.

Finally, the communication complexity of a protocol π is maxx,y |π(x, y)| and
the deterministic communication complexity of a function f : X × Y → {0, 1} is
defined as CC(f) def= minπ maxx,y |π(x, y)|, where the minimum is taken over all
correct protocols for f .

Observe that for every function there exists a trivial protocol: Bob sends his
entire input to Charlie, who locally computes f(x, y) and announces the output.
The question one is usually interested in, is “What is the minimal amount of
communication between the parties required to compute f?”.

For example, the equality function, Eq : {0, 1}n×{0, 1}n → {0, 1} defined by
Eq(x, y) = 1 iff x = y, can be shown to require a deterministic communication
complexity of at least n + 1 bits.

In the literature many variations of this model are studied, and in particu-
lar various models that involve randomness and non-determinism. For a thor-
ough introduction to communication complexity we refer to the textbooks of
Hromkovič [1] and Kushilevitz and Nisan [2].

1.1 Communication Complexity with Advice

First observe that simply adding an advice, which depends on the inputs, of even
just one bit to the classical model of communication complexity does not seem
to make sense, as the advice bit f(x, y) immediately yields a trivial protocol for
the problem.

However, motivated by the problem of proving polynomial lower-bounds on
the efficiency of dynamical data structures, Pǎtraşcu [3] has recently suggested
the following model, where Bob has input x ∈ X (just as before), but Charlie
is given as input k elements y1, . . . , yk from Y. Then, a third party Alice, the
advisor, receives both inputs and computes an advice string which she sends to
Bob and then remains silent. Finally, Bob and Charlie are presented an index
i and are allowed to interact by exchanging messages, where their goal is to
compute f(x, yi).

More formally, a protocol π with m advice bits for the k-instance problem
is π = (πa,M1, . . . , Mr), where πa : X × Yk → {0, 1}m is the advice function of
the protocol and

Mi : X × [k] × {0, 1}m × ({0, 1}+)i−1 → {0, 1}+

Communication Complexity with Advice 163

for an odd i and

Mi : Yk × [k] × ({0, 1}+)i−1 → {0, 1}+

for an even i.
The computation on inputs x, y1, . . . , yj , i proceeds similarly to before: First,

the advice a = πa(x, y1, . . . , yk) is given to Bob, and then the interaction contin-
ues as follows: Bob sends message m1 = M1(x, i, a) to Charlie, who replies with
message m2 = M2(y1, . . . , yk, i,m1) and so forth.

We stress that it is essential that only Bob receives the advice. Otherwise, for
example, whenever m > log(|X |), the advice could already encode Bob’s input,
and Charlie could locally compute the answer.

Also, note that the problem is only interesting in the case where m < k.
Otherwise, a trivial protocol always exists, where the advice just encodes the
answer vector (f(x, y1), . . . , f(x, yk)).

As before, for y(k) def= (y1, . . . , yk), the transcript π(x, y(k), i) of π for inputs
x, y(k) and i is the list (m1, . . . , mr) of all messages exchanged during its com-
putation on inputs x, y(k). As before, a protocol is correct if it is possible to
compute f(x, yi) only by looking at its transcript. We define the communication
complexity of f for k inputs with m bits of advice as

CCk
m(f) def= min

π
max

x,y(k),i

∣
∣
∣π(x, y(k), i)

∣
∣
∣ ,

where the minimum is over all protocols π that correctly compute f(x, yi) for
every input (x, y(k), i).

As mentioned, Pǎtraşcu offered a plausible approach for lower bounds to
a host of dynamic data structure problems via a series of reduction from the
problem of set-disjointness in the communication complexity with advice model
on which super-polynomial lower bounds are conjectured. In particular, one such
problem is subgraph connectivity, where, after a preprocessing of an undirected
graph, the data structure supports on/off operation for vertices and queries for
pair of vertices u, v asking whether there is a path using only “on” vertices from u
to v. Another problem is Langerman’s problem, where it is required to maintain
updates on an array of length n and support answering the zero-partial-sum
question, namely, does there exist a non-empty subset of indices that sum to
zero. We refer to Sect. 1.1 in [3] for a complete taxonomy.

Thus, the communication complexity with advice model is well-motivated,
whose study offers a promising approach towards polynomial lower bounds on
the aforementioned problems.

1.2 Our Contribution

We study two natural problems in the model of communication complexity with
advice (CCwA): the equality of two bitstrings, where each of the parties hold
a bitstring and the goal is to decide whether they are equal or not, and the

164 K. Barhum and J. Hromkovič

problem of divisibility, where each party has a number, and the goal is to decide
whether one of them divides the other.

Recall that in the CCwA model, for any function f : {0, 1}n × {0, 1}n →
{0, 1}, the problem for k instances with k bits of advice becomes trivial, i.e.,
CCk

k(f) = 1. Pǎtraşcu conjectured that, for all functions f (as before), whenever
the number of advice bits m is significantly smaller than k, i.e., for m ∈ o(k),
the communication complexity of f in the CCwA model is linearly related to
that in the classical model, i.e., that for all f , CCk

m(f) ∈ Ω(CC(f)) for m ∈ o(k).
However, Chattopadhyay et al. [4] refuted his conjecture, and showed that in

the CCwA model log k bits of advice and communication are sufficient to com-
pute equality (recall that CC(Eq) = n + 1) using the following simple protocol:
The advice encodes an index j of a yj such that x = yj , or 0 for the case that
x �= yj for all j. After the parties are presented an index i, Bob forwards the
advice to Charlie, who then answers with the result of the comarison of yi and
yj (or with no if the advice was 0).

An important problem in the CCwA model is set-disjointness, where the
inputs x, y ⊂ {0, 1}n are interpreted as characteristic vectors of a subset of
[n]. The vectors x and y are disjoint, if and only if the sets they describe are
disjoint. That is, Disj : {0, 1}n × {0, 1}n → {0, 1} is given by Disj(x, y) =∧n

i=1(¬((x)i ∧ (y)i)), where for z ∈ {0, 1}n, (z)i denotes its i’th coordinate.
Pǎtraşcu showed that proving a lower bound on set-disjointness in the CCwA
model for some specific parameters would imply a polynomial lower bound on
many problems of dynamic data-structures. Chattopadhyay et al. studied set-
disjointness in the CCwA model, and showed an upper bound of Õ(

√
n) on its

communication complexity, provided the same amount of advice, and a matching
lower bound in a more restricted setting.

We first study the power of laconic advice for equality. Somewhat surpris-
ingly, we show that, in the CCwA model, a short communication of only a poly-
logarithmic number of bits already suffices to deterministically compute equal-
ity, provided a laconic advice of just one bit. Our result can be understood as
a trade-off between the number of advice bits the protocol utilizes and its com-
munication complexity.

Chattopadhyay et al. observed that for every k, n ∈ N+:

CCk
log(k)+1(Eq) ∈ O(log(k)) ,

where we prove that for every k, n ∈ N+:

CCk
1(Eq) ∈ O(log(k)(log(k) + log(n))) .

Our second main result is a protocol for divisibility. We give a protocol that
uses roughly Õ(

√
n) bits of advice and communication, which improves on the

performance of the trivial protocol in the classical model, where it is optimal. To
see that CC(Div) ∈ Ω(n), note that any protocol for divisibility could be used to
compute equality, since x = y if and only if x|y and y|x, and by applying the lower
bound on equality. Our protocol here is inspired by that of Chattopadhyay et al.
for set-disjointness. Next, we explain how to reduce set-disjointness to divisibility,

Communication Complexity with Advice 165

and employ their lower-bound on set-disjointness to obtain a matching lower-
bound for divisibility in a restricted setting.

2 Preliminaries

We denote by P the set of prime numbers. For a natural number n and a prime
number p, we denote by νp(n) the multiplicity of p in n, i.e., the largest exponent
i such that pi|n. For a natural number n =

∏k
i=1 pi

νpi
(n), where the pi’s are the

different prime factors of n, we denote by ‖n‖π
def=

∑k
i=1 νpi

(n) the total number
of its prime factors including repetitions.

We shall use the following fact: Let a1, . . . , a�, b ∈ N. If b|aj for all j ∈
{1, . . . , �} then b| gcd(a1, . . . , a�).

3 Equality with a Laconic Advice

In this section we continue the study of the Equality problem with advice. We
show that, when the advice A(x, y1, . . . , yk) answers the question “Is there an
index j such that x = yj?”, it is possible to compute equality while exchanging
only a polylogarithmic number of bits.

We start with a basic version of our protocol that computes equality
using O(k log(n)) bits of communication, which already improves on the triv-
ial protocol for the case k < n/ log(n).

3.1 A Basic Protocol

After receiving the advice bit, Bob forwards it to Charlie, who maintains a set
S of inputs that are potentially equal to x. At the beginning, S is just the entire
set of inputs. Then, the protocol proceeds in a step-wise manner, where at each
step it asserts for at least one of the yi’s that x �= yi. Eventually, only one yi

remains, and using the advice, it must hold that x = y and the protocol outputs
the index i. More precisely, the protocol proceeds as follows:

1. Bob forwards A(x, y1, . . . , yk) to Charlie. Charlie sets S ← {y1, . . . , yk}.
While |S| > 1, repeat the following two steps:

2. Charlie chooses two strings y and y′ �= y from S, and sends Bob an index
q of a bit on which y and y′ differ, i.e., (y)q �= (y′)q.

3. Bob answers with (x)q, the q’th bit of x, and Charlie updates
S ← {z ∈ S : (z)q = (x)q}.

4. There is only one element y left in S, and Charlie outputs yes if y = yi and
no otherwise.

Correctness follows immediately, since we rule out only elements for which
we are sure that yj �= x, and using the advice, we know that, at step 4, it must
hold that x = y. By the choice of q, the size of S reduces by at least one in
every iteration of steps 2 and 3, and so the protocol terminates after at most
k iterations of steps 2 and 3, and in every round log (n)+1 bits are communicated,
amounting to a total communication complexity of O(k log n) bits.

166 K. Barhum and J. Hromkovič

3.2 A Protocol Using a Polylogarithmic Number
of Communication Bits

As in the basic version of the protocol, the protocol now proceeds iteratively,
where at each step the protocol asserts for a constant fraction of the elements
in S that x �= yj . It follows that after O(log k) rounds, only a constant number
of possible indices remains.

The idea of our protocol is as follows: Think of the messages of Charlie in the
basic version of the protocol as describing a predicate from a set of n predicates
of the form pi : {0, 1}n → {0, 1}, where pi(s) = 1 if and only if the i’th bit of
s is 1. In each round Charlie chose an appropriate predicate pi, and Bob’s answer
was pi(x).

This allowed in turn to rule out the equality of at least one of the remaining
yi’s to x. In contrast, we show next that for every k, there exists a single set
of O(n) predicates that allows to rule out the equality of x to a constant frac-
tion of the remaining yi’s, for any set of y1, . . . , yk. This allows to reduce the
number of rounds of the protocol to O(log(k)), while essentially maintaining the
same number of bits communicated in every round, since describing a particular
predicate would require only log(n)+O(1) bits. The next lemma establishes the
existence of the aformentioned predicate set. We shall make use of the following:

Let S ⊆ {0, 1}n. A predicate p : {0, 1}n → {0, 1} is good for S, if |{s ∈
S | p(s) = 1}| > |S|

4 and |{s ∈ S | p(s) = 0}| > |S|
4 .

Lemma 1. Let k > 17 and n > 0. Then there exists a set P = P (n, k) of 30n
predicates such that, for any pair-wise different y1, . . . , yk ∈ {0, 1}n there exists
a predicate p ∈ P , which is good for {y1, . . . , yk}.

Proof. Consider first a fixed set Y
def= {y1, . . . , yk} and a random subset Z of

{0, 1}n, where each string is chosen independently to Z with probability 1/2.
The expected number of elements in Z ∩{y1, . . . , yk} is k/2. Furthermore, by the
Chernoff bound, with probability at most 2 · e− k

12 (< e− k
24 whenever k > 17),

any of the “bad” events BY,Z
def= {|Z ∩ Y | > 3k

4 or |Z ∩ Y | < k
4} happens.

Consider now � independent copies of Z, that is, the random subsets Z1, . . . , Z�,
and the corresponding events BY,Zi

def= {|Zi ∩ Y | > 3k
4 or |Zi ∩ Y | < k

4}. Now

set BY
def= ∩�

i=1BY,Zi
, i.e., BY is the event that for every i, BY,Zi

happens. Now,
by the independence of the BY,Zi

’s we see that Pr[BY] < e− k�
24 . Finally, applying

the union bound we obtain that Pr[∃Y ⊂ {0, 1}n, |Y | = k : BY] < 2nk · e− k�
24 .

Setting �
def= 30n ensures that this probability is strictly smaller than 1, which

in turn implies the existence of a single choice of 30n subsets of {0, 1}n which
satisfy the condition. By what we have shown, setting the predicate set as the
corresponding indicator functions completes the proof. �

We are now ready to describe the protocol:

1. Bob forwards A(x, y1, . . . , yk) to Charlie. Charlie sets S ← {y1, . . . , yk}.
While |S| > 17, repeat the following two steps:

Communication Complexity with Advice 167

2. Charlie sets k′ = |S|, computes locally a set P (n, k′), chooses a good predicate
for S, and sends its index q to Bob along with k′.

3. Bob computes locally P (n, k′), and answers with pq(x). Charlie updates
S ← {w ∈ S : pq(w) = pq(x)}.

4. Continue with the loop of the basic protocol.

Given Lemma 1, the analysis of the protocol follows easily. The lemma gua-
rantees the existence of a good predicate set, which both parties can explicitly
find (for example, they can agree on the lexicographically first 30n predicates
and locally exhaustive search them).

The communication complexity follows readily: In every round of iterating
steps 2 and 3, at most (log(k)+log(n)+1) bits are communicated, describing |S|
and the index of the predicate. Since the chosen predicate is good, it follows that
the updated set in Step 4 has size of at most 3

4 |S|, and therefore after O(log(k))
rounds we continue with at most 17 rounds of the basic protocol, resulting in
a total communication complexity of O(log(k)(log(k) + log(n)).

Thus we have shown:

Theorem 1. For all k ∈ N+,

CCk
1(Eq) ∈ O(log(k)(log(k) + log(n))) .

4 Divisibility

Here, Bob and Charlie have inputs x and y1, . . . , yk ∈ {0, 1}n, respectively,
interpreted as natural numbers in the inteval [1, 2n], identifying 2n with the
bitstring 0n. After receiving an advice A(x, y1, . . . , yk) they are presented an
index i and required to compute x|yi.

We show a protocol that communicates O(log(n)(log(k) + log(n))
√

n) bits,
provided an advice of similar size. First we shall describe our protocol using the
following simplifying assumption, and later we explain how to remove it. We
assume that the prime factors of all x, y1, . . . , yk are either within the interval
[22

τ

, 22
τ+1

) for some τ ∈ {0, . . . , log(n)/2 − 1} or in the interval [22
τ

, 2n) for
τ = log(n)/2. Observe that this implies that each of the numbers x, y1, . . . , yk

has at most n/2τ distinct factors. Moreover, if τ ∈ {0, . . . , log(n)/2 − 1}, each
factor can be described using at most 2τ+1 bits.

The main idea in our algorithm is to reveal information about x using
y1, . . . , yk. The advice consists in a subset of the inputs of Charlie for which
x|yi, and it is built by iterating over the inputs. The inputs that are added are
those which x divides, and that additionally, given all the indices added so far,
contribute enough additional information about x. Roughly speaking, the index
of an input yi is not added to the advice string for one of two reasons: Either
x does not divide it, or, it would not have contributed enough information about
x, given the previous positive inputs. If later an input not added due to the lat-
ter condition is presented, it could be computed using only Õ(

√
n) bits. In what

follows we set
t
def=

√
n/2τ .

168 K. Barhum and J. Hromkovič

More precisely, the advice sent by Alice is a subset S of the indices {1, . . . , k},
which is constructed as follows:

Start with S = ∅ and add to S the minimum index j0 such that x|yj0 . Then,
loop on the elements yj0+1, . . . , yk: Let j0, . . . , j� be the current indices of S. Add
the index j of the current element yj to S if:

– x|yj and
– ‖gcd(yj0 , . . . , yj�

)‖π − ‖gcd(yj0 , . . . , yj�
, yj)‖π≥ t.

The second condition ensures that the gcd of the elements currently indexed
by S contains at least t more prime factors including repetition than the gcd of
those elements along with the number yj .

We claim that during this process, at most n
2τ t elements are added to S.

Indeed, by our simplifying assumption, yj0 contains at most n
2τ different factors

and the second condition asserts that the number of prime factors remaining in
gcdj′∈S a′

j after adding an element decreases by at least t.
Substituting for t, we have that |S| <

√
n, and therefore the advice sent by

Alice (a description of S) can be encoded using at most
√

n log(k) bits.
After Bob receives S from Alice, the parties are presented an index i and need

to determine whether x|yi. The protocol between Bob and Charlie continues as
follows:

1. If i ∈ S, Bob outputs yes.
2. Otherwise, Bob forwards S to Charlie.
3. Charlie computes the set S′ = {j′ ∈ S | j′ < i}, i.e., the constructed set S as

it was just before index i was processed.
4. If ‖gcdj′∈S′(yj′)‖π − ‖gcd(gcdj′∈S′ yj′), yi)‖π≥ t, he outputs no. Otherwise,

there are at most t − 1 distinct prime factors appearing in yi but not in
gcdj′∈S′(yj′). For each such factor p, Charlie sends (p, νp(yi)) to Bob.

5. Bob outputs yes if, for every received pair (p, νp(yi)), it holds that νp(x) ≤
νp(yi) and otherwise outputs no.

Let us now see that the protocol always outputs a correct answer. If it outputs
yes at step 1, by construction, for all indices in S, it holds that x|yj . If the
protocol outputs no at step 4, it cannot be the case that x|yi, as otherwise both
conditions during the construction of S had been satisfied and i would have
been added to S. Lastly, if no is output at step 5, it is because the protocol
witnesses a factor with higher multiplicity in x than in yi. When this is not
the case, we claim that x|yi. We show that for each prime factor in x, it holds
that νp(x) ≤ νp(yi). Let us distinguish two cases: If p is one of the up to t − 1
factors not appearing in gcd(gcdj′∈S(yj′), yi), then the inequality is asserted by
Bob. For any other such factor p, we have (1) νp(gcdj′∈S′(yj′)) ≤ νp(yi), and
additionally, by construction of S it holds that x|yj′ for all j′ ∈ S and therefore
x| gcdj′∈S(yj′), and, in particular, (2) νp(x) ≤ νp(gcdj′∈S(yj′)). The correctness
in this case follows from (1) and (2).

Next, we analyze the communication complexity of our protocol. At step 1, S
is forwarded and at most

√
n log(k) bits are sent, and at step 4 at most t−1 pairs

Communication Complexity with Advice 169

are sent. This implies that, for the case that τ = log(n)/2, it holds that t = 1
and therefore no pairs are sent. For τ ∈ {0, . . . , log(n)/2 − 1}, using the second
part of the assumption, each prime can be described using at most 2τ+1 bits.
The multiplicity of every prime number is at most n, which can be described
using log(n) bits, and therefore at most t(2τ+1 + log(n)) ∈ O(

√
n log(n)) bits

are communicated at this step. Thus, the total number of bits communicated is
O(

√
n(log(k) + log(n))).

Finally, in order to get rid of the assumption, note that x|yi if and only if,
x(τ)|yi

(τ) for all τ ∈ {0, . . . , log(n)/2}, where for m ∈ N we define
m(τ) def=

∏
p∈[22τ ,22τ+1)∩P

pνp(m) for τ ∈ {0, . . . , log(n)/2 − 1} and m(τ) def=
∏

p∈[22τ ,2n)∩P
pνp(m) for τ = log(n)/2.

Thus, for the final protocol we run the protocol in parallel for each of the
log(n)/2+1 possible values of τ , and output yes in case all runs output yes, and
no otherwise. This results in an overhead of an O(log(n)) factor to the original
protocol. We summarize: Utilizing O(

√
n log(k) log(n)) advice bits our protocol

communicates O(
√

n log(n)(log(k) + log(n)) bits. Thus we have shown:

Theorem 2. For all k ∈ N+,

CCk
log (n) log(k)

√
n(Div) ∈ O(

√
n log(n)(log(k) + log(n))) .

4.1 On the Asymmetry of Divisibility

We note that the communication complexity with advice model is inherently
asymmetric, and therefore a protocol for Div(x, y) = x|y does not yield a proto-
col for Div′(x, y) = y|x, as is the case in the classical model of communication
complexity. In this section, we explain the changes needed in our protocol to
obtain a protocol for Div′. In our protocol from the previous section, we used
the advice to reveal information about x using the yi’s. In particular, the num-
ber encoded by the gcd of the yi’s chosen to the advice could be understood as
a relatively tight upper bound on the prime powers of x. The analogous advice
information for y|x consists in a lower bound on the prime powers of x. Analo-
gously to before, observe that if a|x and b|x then also lcm(a, b)|x. The advice is
generated similarly to before, where the set S first contains the minimal index
j0 such that yj0 |x. Then, looping over the indices j0 + 1, . . . , k, index j is added
if and only if yj |x and ‖lcm(yj0 , . . . , yj�

, yj)‖π − ‖lcm(yj0 , . . . , yj�
)‖π≥ t, where

j0, . . . , j� are the current elements of S. Steps (4) and (5) of the protocol now
become:

4. If ‖lcm(yj0 , . . . , yj�
, yj)‖π − ‖lcm(yj0 , . . . , yj�

)‖π≥ t it outputs no. Otherwise,
there are at most t − 1 distinct prime factors appearing in lcmj′∈S′(yj′) but
not in yi. For each such factor p, Charlie sends (p, νp(yi)) to Bob.

5. Bob outputs yes if, for every received pair (p, νp(yi)), it holds that νp(x) ≥
νp(yi), and outputs no.

The correctness and analysis of the protocol follow analogously to before.

170 K. Barhum and J. Hromkovič

4.2 An Almost Matching Lower Bound in Restricted Settings

The problem of set-disjointness consists in two n-bit inputs x and y, where each
is interpreted as the characteristic vector of a subset of a set of n elements.
Inputs x, y ∈ {0, 1}n are disjoint if (y)i = 0 whenever (x)i = 1. Chattopadhyay
et al. [4] studied the problem of set-disjointness in the CCwA model, and showed
that for k ≥ √

n, any protocol with advice of size m ≤ α
√

n communicates at
least β

√
n bits for some constants 0 < α, β < 1. In what follows, we describe

a reduction from set-disjointness to divisibility, establishing an analogous lower
bound for divisibility.

Given inputs a and b (characteristic vectors of some sets A and B) to set-
disjointness, we first observe that A and B are disjoint if and only if A ⊆ B.
Now, let p1, . . . , pn be the first n prime numbers, and set NA

def=
∏n

j=1 pi
ai and

NB
def=

∏n
j=1 pi

1−bi . It follows that A∩B = ∅ if and only if NA |NB . By the prime
number theorem, it holds that for all large enough n, the first n prime numbers
lie in the interval [1, 3n log(n)], and therefore both NA and NB are described
using at most n · log(3n log(n)) < 2n log(n) bits. Therefore, any protocol in
the CCwA model for k inputs of size 2n log(n) and m bits of advice yields
a protocol (with the same k and m values) for inputs of size n for divisibility;
the parties compute Nx and Ny1 , . . . , Nyk

and run the protocol for divisibility
on these inputs. Setting f(n) = 2n log(n), the lower bound of Chattopadhyay
et al. (Theorem 5.2 in [4]) establishes that a protocol for k ≥ √

f−1(n) inputs of
size n with advice of size at most α

√
f−1(n) communicates at least β

√
f−1(n)

bits. In view of our protocol from Sect. 4, it follows that this is best possible (up
to a logarithmic factor) with advice of size Õ(

√
n).

References

1. Hromkovič, J.: Communication Complexity and Parallel Computing. Springer,
New York (1997)

2. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, New York (1997)

3. Patrascu, M.: Towards polynomial lower bounds for dynamic problems. In:
Schulman, L.J. (ed.) STOC, pp. 603–610. ACM (2010)

4. Chattopadhyay, A., Edmonds, J., Ellen, F., Pitassi, T.: A little advice can be very
helpful. In: Rabani, Y. (ed.) SODA, pp. 615–625. SIAM (2012)

Using Attribute Grammars to Model Nested
Workflows with Extra Constraints

Roman Barták(B)

Faculty of Mathematics and Physics, Charles University in Prague,
Malostranské nám. 25, 118 00 Prague 1, Czech Republic

bartak@ktiml.mff.cuni.cz

Abstract. Workflow is a formal description of a process. Nested work-
flows were proposed to model processes with a hierarchical structure and
they support extra logical and temporal constraints to express relations
beyond the hierarchical structure. This workflow model supports schedul-
ing applications with a known number of activities in the process, but it
cannot be used to model planning problems, where the number of activ-
ities is unknown beforehand. In this paper we propose to model nested
workflows using a modified version of attribute grammars. In particular
we show that nested workflows with extra constraints can be fully trans-
lated to attribute grammars. The major advantage of this novel modeling
framework is a support for recursive tasks that can model planning prob-
lems in the style of hierarchical task networks.

Keywords: Attribute grammars · Workflows · Modelling · Transforma-
tion

1 Introduction

Workflows are used to formally describe processes of various types such as busi-
ness and manufacturing processes. There exist many formal models to describe
workflows [8] that include decision points and conditions for process splitting as
well as loops to describe repetition of activities. Hierarchical structure of work-
flows is in particular interesting for real-life workflows [1] as many workflows
are obtained by decompositions of tasks. The paper [2] proposed a hierarchical
workflow model called Nested Temporal Networks with Alternatives that was
later extended with extra constraints to model a wider range of workflows [3].

An interesting question is whether it would be possible to unify various hie-
rarchical structures of workflows using a single concept. The hierarchical struc-
ture naturally resembles the idea of a derivation tree of context-free grammars,
but to model constraints beyond the hierarchical structure one needs a stronger
concept. In this paper we propose to use attribute grammars [6] as a unifying con-
cept to describe hierarchical workflows. In particular, we will show that nested
workflows with extra constraints can be fully translated to attribute grammars.

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 171–182, 2016.
DOI: 10.1007/978-3-662-49192-8 14

172 R. Barták

2 Background

2.1 Nested Worfkflows

In this work we use nested workflows from the FlowOpt system [3]. The nested
workflows were formally introduced in [4] and for completeness, we will recapit-
ulate the formal definitions here.

The nested workflow is obtained from a root task by applying decomposition
operations that split the task into subtasks until primitive tasks, correspond-
ing to activities, are obtained. Three decomposition operations are supported,
namely parallel, serial, and alternative decompositions. Figure 1 gives an exam-
ple of a nested workflow that shows how the tasks are decomposed. The root task
Chair is decomposed serially to two tasks, where the second task is a primitive
task filled by activity Assembly. The first task Create Parts decomposes fur-
ther to three parallel tasks Legs, Seat, and Back Support. Back Support is the
only example here of alternative decomposition to two primitive tasks with Buy
and Welding activities (Welding is treated as an alternative to Buy). Hence
the workflow describes two alternative processes. Naturally, the nested workflow
can be described as a tree of tasks (Fig. 1 bottom right).

Fig. 1. Example of a nested workflow as it is visualized in the FlowOpt Workflow
Editor (from top to down there are parallel, serial, and alternative decompositions)

In this paper we further simplify the formal model from [4] by omitting the
serial decomposition and modeling it as a parallel decomposition with extra

Using Attribute Grammars to Model Nested Workflows 173

precedence constraints. For example the serially decomposed task Chair can be
decomposed in a parallel way with an extra precedence constraints put between
the tasks Create Parts and Assembly. This removes one modeling concept –
a serial task – while preserving the expressive power fully (the proof is obvious).

Formally, the nested workflow is a set Tasks of tasks that is a union of
three disjoint sets: Parallel, Alternative, and Primitive. For each task T (with
the exception of the root task), function parent(T) denotes the parent task
in the hierarchical structure. Similarly for each task T we can define the set
subtasks(T) of its child nodes (subtasks(T) = {C ∈ Tasks|parent(C) = T}).
The tasks from sets Parallel and Alternative are called compound tasks and they
must decompose to some subtasks:

∀T ∈ (Parallel ∪ Alternative) : subtasks(T) �= ∅, (1)

while the primitive tasks do not decompose:

∀T ∈ Primitive : subtasks(T) = ∅. (2)

The workflow defines one or more processes in the following way. Process selected
from the workflow is defined as a subset P ⊆ Tasks in the workflow satisfying
the following constraints:

∀T ∈ P, T �= root : parent(T) ∈ P (3)
∀T ∈ P ∩ Parallel : subtasks(T) ⊆ P (4)
∀T ∈ P ∩ Alternative : |subtasks(T) ∩ P | = 1 (5)

Formula (3) says that for each task in the process (except the root) its parent
task is also in the process. Formula (4) says that all subtasks of a paralell task
in the process must also be in the process. Finally, formula (5) says that exactly
one subtask is in the process for each alternative task in the process.

In addition to the hierarchical structure of the nested workflow, the nested
structure also defines certain implicit temporal constraints (the arcs in Fig. 1).
These temporal relations must hold for all tasks in a single process. Assume that
Si is the start time and Ei is the end time of task Ti. The primitive tasks Ti are
filled with activities and each activity has certain duration Di. Then for tasks
in the process P the following relations hold:

∀Ti ∈ P ∩ Primitive : Si + Di = Ei (6)
∀Ti ∈ P ∩ (Parallel ∪ Alternative) :

Si = min{Sj |Tj ∈ P ∩ subtasks(Ti)}
Ei = max{Ej |Tj ∈ P ∩ subtasks(Ti)}. (7)

Notice that the duration of a compound task is defined by the time allocation
of its subtasks while the duration of a primitive task is defined by the activity.

A feasible process is a process where the time variables Si and Ei can be
instantiated in such a way that they satisfy the above temporal constraints.

174 R. Barták

It is easy to realize that if there are no additional constraints then any process is
feasible. The process defines a partial order of tasks so their start and end times
can be set in the left-to-right order while satisfying the constraints (6) and (7).

The nested structure may not be flexible enough to describe naturally some
additional relations in real-life processes, for example when an alternative for
one task influences the selection of alternatives in other tasks. The following
constraints can be added to the nested structure to simplify description of these
additional relations between any two tasks Ti and Tj [3]:

precedence constraint (i → j) : Ti, Tj ∈ P ⇒ Ei ≤ Sj (8)
start-start synchronization (i ss j) : Ti, Tj ∈ P ⇒ Si = Sj (9)
start-end synchronization (i se j) : Ti, Tj ∈ P ⇒ Si = Ej (10)
end-start synchronization (i es j) : Ti, Tj ∈ P ⇒ Ei = Sj (11)
end-end synchronization (i ee j) : Ti, Tj ∈ P ⇒ Ei = Ej (12)
mutual exclusion constraint (i mutex j) : Ti /∈ P ∨ Tj /∈ P (13)
equivalence constraint (i ⇔ j) : Ti ∈ P ⇔ Tj ∈ P (14)
implication constraint (i ⇒ j) : Ti ∈ P ⇒ Tj ∈ P (15)

Note that if extra constraints are used then the existence of a feasible process is
no longer guaranteed. For example an equivalence constraint between the tasks
Buy and Welding in Fig. 1 causes no feasible process to exist.

In summary, we can model the nested workflow with extra constraints as
a tuple W = (Parallel, Alternative, Primitive, root, parent,D, C), where the
parent relation defines a tree rooted at the node root with leaves Primitive and
internal nodes Parallel ∪ Alternative. The set C defines the extra constraints
(8) – (15) and D maps the tasks in Primitive to non-negative integers defining
durations of primitive tasks. The process is a subtree of this tree satisfying
constraints (3) – (5) and (13) – (15), where each node Ti has assigned two
integers Si and Ei satisfying the constraints (6) – (12).

2.2 Constraint Satisfaction

Constraint satisfaction technology originated in Artificial Intelligence as a tech-
nique for declarative modeling and solving of combinatorial optimization prob-
lems. A constraint satisfaction problem (CSP) is a triple (X,D,C), where X is
a finite set of decision variables, for each xi ∈ X, Di ∈ D is a finite set of possible
values for the variable xi (the domain), and C is a finite set of constraints [5].
A constraint is a relation over a subset of variables (its scope) that restricts
the possible combinations of values to be assigned to the variables in its scope.
Constraints can be expressed in extension using a set of compatible value tuples
or as a formula. We will be using constraints expressed as arithmetic and logical
formulas, such as S + D = E. A solution to a CSP is a complete instantia-
tion of variables such that the values are taken from respective domains and all
constraints are satisfied. We say that a CSP is consistent if it has a solution.

Using Attribute Grammars to Model Nested Workflows 175

2.3 Attribute Grammars

Attribute grammars were introduced by Knuth [6] to add semantics to context-
free grammars in a syntax-directed fashion. The primary application area was
the design of compilers. Briefly speaking an attribute grammar is a context-free
grammar where symbols are associated with sets of attributes and rewriting
(production) rules are associated with sets of attribute computation (semantic)
rules defining values of certain attributes based on values of other attributes. We
will slightly modify the original definition here by using constraints rather than
the semantic rules with synthesized attributes and inherited attributes.

We define an attribute grammar as a tuple G = (Σ,N,P, S,A, C), where Σ
is an alphabet – a finite set of terminal symbols, N is a finite set of non-terminal
symbols with S as the start symbol, P is a set of rewriting (production) rules (see
below), A associates each grammar symbol X ∈ Σ ∪ N with a set of attributes
(variables in terms of a CSP), and C associates each production R ∈ P with a set
of constraints over the attributes of symbols used in the rule. G = (Σ,N,P, S) is
a classical context-free grammar with the production rules in the form X → w,
where X ∈ N is a non-terminal symbol and w ∈ (Σ ∪ N)∗ is a finite sequence
of terminal and non-terminal symbols. If A are the attributes for symbol X, we
will write X(A) in the production rule. To separate grammar symbols in a string
(a word) we will use the dot (.) notation. We will also include the constraints
associated with the rule directly in the rule inside the brackets [c1, . . .]. This is
an example of a production rule:

Seat(SS , ES) → Cutting(SC , EC).Polishing(SP , EP)
[SS = SC , EC ≤ SP , EP = ES]

Let (w,C) denote a state of the rewriting system, where w is a string of gram-
mar symbols with their attributes and C is a set of constraints over these
attributes. We say that (w,C) directly rewrites to (w′, C ′) using the production
rule X(A) → u[c] if and only if w = u1.X(B).u2, C ′ = C ∪ {A = B} ∪ c,
and C ′ is a consistent CSP over the variables from attributes of w′, where
w′ = u1.u.u2. We denote this rewriting as (w,C) ⇒ (w′, C ′). Briefly speak-
ing, a non-terminal symbol X is substituted by u in the string w and constraints
from the production rule are added to the constraints in the state. Note that
we assume classical standardization apart of the production rules, that is, each
production rule is used with fresh variables/attributes. For a sequence of direct
rewritings (w1, C1) ⇒ (w2, C2) ⇒ · · · ⇒ (wn, Cn) we will use classical nota-
tion (w1, C1) ⇒∗ (wn, Cn). The language generated by an attribute grammar
G = (Σ,N,P, S,A, C) is:

L(G) = {wσ|(S, ∅) ⇒∗ (w,C), w ∈ Σ∗, σis a solution to a CSP C}.

σ is an instantiation of attributes (substitution of values to variables) and wσ
means applying substitution σ to w, i.e., a word w, where the attributes are
substituted by values defined in σ.

176 R. Barták

3 Translating Nested Networks to Attribute Grammars

In this paper we propose to model nested workflows with extra constraints using
attribute grammars. In particular, we will show that any nested workflow with
extra constraints can be translated to an attribute grammar, where the words in
its language correspond to feasible processes. We will proceed as follows. First,
we will show how the core nested structure is translated to an attribute gram-
mar, with two attributes for each symbol denoting start and end times of corre-
sponding tasks. Then we will show how the extra constraints can be translated
by adding some new attributes and constraints between them. Finally, we will
prove that this translation is sound, that is, any feasible process corresponds to
a word in the language of the grammar and vice versa, each word in the language
describes some feasible process.

3.1 Translation of the Nested Structure

Let us assume first a nested workflow without extra constraints as described in
Sect. 2.1. Recall that such a workflow can be represented as a tree with the root
task in its root, with primitive tasks in its leaves, with compound tasks in the
inner nodes, and with two types of branching – parallel and alternative. The
basic idea of translation is modeling all the tasks as grammar symbols – the
compound tasks will be translated to non-terminal symbols with the root task
as the start non-terminal symbol, while the primitive tasks will be translated to
terminal symbols.

Let W = (Parallel, Alternative, Primitive, root, parent,D, ∅) be a nested
workflow without extra constraints. Then we define the attribute grammar as
G = (Primitive, Parallel ∪ Alternative,P, root, A, C), where each grammar
symbol has two attributes S and E. Let Ti ∈ Parallel be a parallel task and
subtasks(Ti) = {Ti1 , . . . , Tik} be all its subtasks. Then in P, we include the
following rewriting rule:

Ti(Si, Ei) → Ti1(Si1 , Ei1) . . . Tik(Sik , Eik)
[Si = min{Si1 , . . . , Sik}, Ei = max{Ei1 , . . . , Eik}] (16)

Notice that the constraints in the production rule correspond to the constraints
(4) and (7) from the definition of a nested workflow. If we want to model a serial
decomposition, we should add constraints Eij ≤ Sij+1 to the rule, but we will
show later how to model precedence constraints in general.

Let Ti ∈ Alternative be an alternative task and subtasks(Ti) = {Ti1 , . . . ,
Tik} be all its subtasks. Then in P, we include the following ik rewriting rules:

Ti(Si, Ei) → Tij (Sij , Eij) [Si = Sij , Ei = Eij] (17)

Now the constraints in the rule describe the workflow constraints (5) and (7).
Notice that due to the nature of nested workflows, each symbol but the

root appears exactly once on the right side of some rule. If that symbol is

Using Attribute Grammars to Model Nested Workflows 177

a terminal symbol, that is, a primitive task Tj ∈ Primitive then we also include
the following constraint among the rule constraints:

Sj + Dj = Ej (18)

to model the workflow constraint (6). Dj is a constant defined by the function
D from the workflow (duration of the primitive task).

Figure 2 shows a complete attribute grammar modeling the nested workflow
from Fig. 1.

Chair(Schair, Echair) Parts(Sparts, Eparts).Assembly(Sassembly, Eassembly)
[Schair = min{Sparts, Sassembly}, Echair = max{Eparts, Eassembly},
Eparts ≤ Sassembly, Sassembly +Dassembly = Eassembly]

Parts(Sparts, Eparts) Legs(Slegs, Elegs).Seat(Sseat, Eseat).Back(Sback, Eback)
[Sparts = min{Slegs, Sseat, Sback}, Eparts = max{Elegs, Eseat, Eback}]

Legs(Slegs, Elegs) Saw1(S1, E1), Saw2(S2, E2), Saw3(S3, E3), Saw4(S4, E4)
[Slegs = min{S1, S2, S3, S4}, Elegs = max{E1, E2, E3, E4},
S1 +D1 = E1, S2 +D2 = E2, S3 +D3 = E3, S4 +D4 = E4]

Seat(Sseat, Eseat) Cutting(Scut, Ecut).Polishing(Spolish, Epolish)
[Sseat = min{Scut, Spolish}, Eseat = max{Ecut, Epolish},
Ecut ≤ Spolish, Scut +Dcut = Ecut, Spolish +Dpolish = Epolish]

Back(Sback, Eback) Buy(Sbuy, Ebuy)
[Sback = Sbuy, Eback = Ebuy, Sbuy +Dbuy = Ebuy]

Back(Sback, Eback) Weld(Sweld, Eweld)
[Sback = Sweld, Eback = Eweld, Sweld +Dweld = Eweld]

Fig. 2. An attribute grammar modeling the nested workflow from Fig. 1

3.2 Translation of Extra Constraints

In the previous section we showed how the nested workflow structure is repre-
sented by an attribute grammar. Now, we will add extra constraints (8) – (15).
All these constraints are binary and they can be categorized into two groups:
temporal constraints (8) – (12) and logical constraints (13) – (15). Recall that
the nested workflow can be represented as a tree and each task appears exactly
once in this tree. So for two tasks Ti and Tj only two situations may occur as
depicted in Fig. 3: either one task is an ancestor of the other one (left part of
Fig. 3) or they both share the same ancestor (task A in the right part of Fig. 3).

To represent an extra constraint in the attribute grammar we suggest to add
a new attribute M to each grammar symbol representing a task on the path
between Ti and Tj in the tree representation of the workflow. Note that this new

178 R. Barták

Fig. 3. Two possible positions of tasks Ti and Tj in a tree representing the workflow

attribute is unique for each extra constraint used so we need to introduce as
many of these attributes as we have extra constraints. To simplify notation, we
allow an attribute to be shared between symbols within a production rule which
would otherwise be modeled by an equality constraint between the two attributes
(instead of A(M) → B(N)[M = N] we will simply write A(M) → B(M)).

Let us first describe the translation when one task is an ancestor of the other
task (left part of Fig. 3). All grammar symbols on the path between the tasks
are extended with a new attribute M . For the temporal constraints (8) – (12)
we add the constraints to the first and to the last rule in the sequence as shown
at Table 1. If Tj is a parent of Ti then we do not need the extra attribute at all
and the rule constraint can be expressed using the time attributes of the tasks.
Notice that if an alternative rule is used on the path and task Ti is not generated
by the grammar then effectively no constraint is imposed on M . However, if both
tasks Ti and Tj are included then the respective temporal constraint must hold,
which is guaranteed by rule constraints.

Table 1. Translation of temporal constraints when Tj is an ancestor of Ti

Production Rule (i → j) (j → i) (i ss j) (i se j) (i es j) (i ee j)

Tj(Sj , Ej) → . . . , A(. . . ,M), . . . M ≤ Sj Ej ≤ M M = Sj M = Ej M = Sj M = Ej

D(. . . ,M) → . . . , Ti(Si, Ei), . . . Ei ≤ M M ≤ Si M = Si M = Si M = Ei M = Ei

We showed translation of all temporal constraints for this situation but obvi-
ously, due to constraints (16) – (17), the precedence constraints and the syn-
chronizations se, es can never hold as it is not possible to satisfy the added
constraints together with the existing rule constraints. This is formally correct
as it implies that tasks Ti and Tj can never be used together if such extra con-
straint is imposed on them [4].

For the logical constraints (13) – (15) we will use a similar principle, but now
we need to assume also the possible alternative rules on the path. In Fig. 3 such a

Using Attribute Grammars to Model Nested Workflows 179

rule is shown as the alternative rule from symbol X. Logical constraints restrict
appearance of tasks in the process. So for example to model the equivalence
constraint we need to force both tasks Ti and Tj to appear together. This means
that no alternative rule on the path between them is allowed, which is modeled
by constraint M = 0 in these rules. Contrarily, for the mutex relation we require
an alternative rule to be used, which is forced by using different values of M in
rules with Tj and Ti. In fact it means that task Ti can never be used. Note
finally, that the constraint i ⇒ j is redundant because if Ti is included then
all its ancestors are included (see constraint (3)) and Tj is among them. Hence
we only show the model for implication j ⇒ i, which is actually identical to
equivalence in this special case. Table 2 shows all these constraints to be added
to the rules. The special case where Tj is a parent of Ti can be modeled by
combing these constraints. For example for the mutex constraint we modify the
rule to Tj → . . . , Ti, . . . [0 = 1], where the constraint can never be satisfied and
hence the rule cannot be applied.

Table 2. Translation of logical constraints when Tj is an ancestor of Ti

Production Rule (i mutex j) (i ⇔ j) (j ⇒ i)

Tj → . . . , A(. . . ,M), . . . M = 0 M = 1 M = 1

D(. . . ,M) → . . . , Ti, . . . M = 1 M = 1 M = 1

X(. . . ,M) → . . . (alternative rules) M = 0 M = 0 M = 0

Assume now the situation from the right part of Fig. 3, where tasks Ti and
Tj have a common ancestor A. Again, we introduce a new attribute M to all
symbols, but A, on the path between Ti and Tj and we add extra rule con-
straints. Let us first describe the model for temporal constraints and for the
mutex constraint. If A is a task with an alternative decomposition then accord-
ing to rules (17), it is never possible that Ti and Tj will be generated together in
a single word. Hence the mutex constraint is satisfied by default and also all the
temporal constraints (8) – (12) are satisfied. Consequently, no extension of the
grammar is necessary to model these constraints. It remains to show the model
when A is a parallel task. In this case we use the extra attribute M and we add
the rule constraints according to Table 3. Note that no constraint is added to
alternative rules so they can be used without any restriction. In fact, the mutex
constraint enforces one of alternatives to be used as it is not possible to generate
both Ti and Tj due to the conflict between constraints M = 1 and M = 0.

For the equivalence and implication constraints both alternative and parallel
decompositions in A need to be handled as well as the alternative rules need
to be assumed. Moreover, for the implication constraint the alternative rules in
the right branch use different constraints than the alternative rules in the left
branch. In Table 4 we summarize all the constraints to be added to rules. Note
that we show there also the constraints where A is a parallel task, then there
is a single rule for it, and where A is an alternative task, then there are more

180 R. Barták

Table 3. Translation of temporal and mutex constraints when Tj and Ti share a
common ancestor

Production Rule (i → j) (i ss j) (i se j) (i es j) (i ee j) (i mutex j)

D(. . . ,M) → . . . , Ti(Si, Ei), . . . Ei ≤ M M = Si M = Si M = Ei M = Ei M = 1

E(. . . ,M) → . . . , Tj(Sj , Ej), . . . M ≤ Sj M = Sj M = Ej M = Sj M = Ej M = 0

rules, but only the rules generating B and C are relevant. Briefly speaking, if A
is alternative then none of the tasks Ti and Tj can be generated if there is an
equivalence constraint between them and only task Tj can be generated if there
is implication (i ⇒ j). If A is parallel then for the equivalence constraint either
the alternative rules are used on both sides or they are not used (then both Ti

and Tj are generated). For the implication constraint, an alternative rule can be
used on the left side together with an alternative on the right side or with Tj ,
but it is not possible to use an alternative rule on the right together with Ti (as
it would mean that Tj is excluded that would violate the implication constraint).

Table 4. Translation of logical constraints when Tj and Ti share a common ancestor.

Production Rule (i ⇔ j) (i ⇒ j)

D(. . . ,M) → . . . , Ti, . . . M = 1 M = 1

E(. . . ,M) → . . . , Tj , . . . M = 1 M = 1

X(. . . ,M) → . . . (left alternative) M = 0 –

Y (. . . ,M) → . . . (right alternative) M = 0 M = 0

A → . . . , B(. . . ,M), . . . , C(. . . ,M), . . . (parallel) – –

A → B(. . . ,M) (alternative) M = 0 M = 0

A → C(. . . ,M) M = 0 –

3.3 Soundness of Translation

In the previous sections we showed how to construct an attribute grammar from
a nested workflow with extra constraints. To prove correctness of this translation,
we need to show that any feasible process corresponds to a word generated by
the grammar and vice versa. Due to space limits we only sketch the proofs.

Theorem 1. A feasible process for a nested workflow corresponds to a word
generated by the corresponding attribute grammar.

Proof. A feasible process defines a subtree of the nested workflow according to
constraints (3) – (5). This subtree is a derivation tree of the grammar thanks to
production rules (16) – (17). These rules are applicable as the process satisfies
the constraints (6) – (7). The only reason, why any rule would not be applicable,
is that some constraint presented in the previous section is violated. Note first
that the feasible process satisfies all extra constraints. By looking at Tables 1, 2,

Using Attribute Grammars to Model Nested Workflows 181

3 and 4 one can easily verify that constraints imposed by used rules are satisfied.
For example, if there is a precedence i → j then constraints Ei ≤ M∧M ≤ Sj are
satisfied as Ei ≤ Sj is satisfied in the process. Note that if the constrained tasks
are not in the process then some rules with attributes M might still be used in
the derivation, but they impose restriction only for the logical constraints and
again it is easy to check that they are satisfied.

Theorem 2. Any word generated by an attribute grammar translated from the
nested workflow describes a feasible process for that workflow.

Proof. Let us take the derivation tree of a given word. Then the processP is defined
by all symbols (tasks) in the tree. This process satisfies constraints (3) – (7) as they
were imposed by production rules used and by the constraints (16) – (18).

One can easily check that if two tasks connectedbyan extra temporal constraint
are in the process then this temporal constraint is satisfied thanks to satisfaction of
rule constraints. For logical constraints one can prove their satisfaction by contra-
diction. Assume for example an extra constraint i ⇔ j, where Ti is in the derivation
tree, Tj is not there, and they have a common ancestor A in the workflow. The rule
generating Ti introduced constraint M = 1. A cannot be an alternative task as
M = 0 would hold according to Table 4 . So A must be parallel but as Tj is not
present then some alternative rule on the path from A to Tj has been used, which
again leads to M = 0. This is a contradiction as there is not way to satisfy the
constraints and having only Ti but not Tj in the derivation tree. Similarly we can
explore all other constraints and cases.

The theorems showed that for each feasible process there is a word and for
each word there is a feasible process. However, it does not mean that there is
a one-to-one mapping between feasible processes and words. For a given process
there could be more words as we introduced the auxiliary variables M and
there might be more feasible assignments to them (for example to satisfy the
constraints Ei ≤ M ∧ M ≤ Sj there could be several feasible values for M).
Nevertheless, if we restrict the attributes in words to variables Si and Ei only
then we get a unique mapping.

4 Conclusions

This paper proposes using attribute grammars to model nested workflows with
extra constraints. We first proposed a small extension of attribute grammars
where, instead of traditional semantic rules, a constraint satisfaction problem is
used to model relations between the attributes. Then we showed how a nested
workflow with extra constraints can be translated to an attribute grammar where
the language of that grammar corresponds to feasible processes defined by the
workflow.

There are two major advantages of the proposed framework. First, the nested
workflows do not support recursion so they cannot be used to model planning
problems. Other workflow models use loops to describe when some sub-process

182 R. Barták

should be repeated (for example, if the product does not pass the exit test then
it goes back to production). This is not possible in nested workflows and due to
extra constraints, it is not clear if and how recursion can be added to nested work-
flows. Attribute grammars provide a natural mechanism to describe recursion
and they seem more appropriate to describe a large range of processes including
planning problems. The open question is how attribute grammars compare in
terms of modeling capabilities and solving efficiency to existing planning domain
modeling frameworks, in particular to hierarchical task networks [7]. The second
reason for introducing attribute grammars to model workflows is the hope of
direct exploitation of existing techniques for attribute grammars also for work-
flows and in general for planning models. For example, the paper [4] proposed
an ad-hoc method to verify nested workflows with extra constraints (ensuring
that a feasible process exists). The open question is whether, for example, the
methods for reduction of context-free grammars can be exploited for the same
purpose. This would be a significant contribution as there are no such verification
methods for planning models.

Acknowledgments. Research is supported by the Czech Science Foundation under
the project P103-15-19877S.

References

1. Bae, J., Bae, H., Kang, S.-H., Kim, Z.: Automatic control of workflow processes
using ECA rules. IEEE Trans. Knowl. Data Eng. 16(8), 1010–1023 (2004)

2. Barták, R., Čepek, O.: Nested precedence networks with alternatives: recognition,
tractability, and models. In: Dochev, D., Pistore, M., Traverso, P. (eds.) AIMSA
2008. LNCS (LNAI), vol. 5253, pp. 235–246. Springer, Heidelberg (2008)

3. Barták, R., Cully, M., Jaška, M., Novák, L., Rovenský, V., Sheahan, C., Skalický, T.,
Thanh-Tung, D.: Workflow optimization with FlowOpt, on modelling, optimizing,
visualizing, and analysing production workflows. In: Proceedings of Conference on
Technologies and Applications of Artificial Intelligence (TAAI 2011), pp. 167–172.
IEEE Conference Publishing Services (2011)

4. Barták, R., Rovenský, V.: On verification of nested workflows with extra constraints:
from theory to practice. Expert Syst. Appl. 41(3), 904–918 (2014)

5. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
6. Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theory 2(2), 127–145

(1968)
7. Nau, D.S., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.:

SHOP2: an HTN planning system. J. Artif. Intell. Res. (JAIR) 20, 379–404 (2003)
8. van der Aalst, W., ter Hofstede, A.H.M.: Yawl: yet another workflow language. Inf.

Syst. 30(4), 245–275 (2005)

A Natural Counting of Lambda Terms

Maciej Bendkowski1(B), Katarzyna Grygiel1,
Pierre Lescanne2, and Marek Zaionc1

1 Faculty of Mathematics and Computer Science,
Theoretical Computer Science Department, Jagiellonian University,

ul. Prof. �Lojasiewicza 6, 30–348 Kraków, Poland
{bendkowski,grygiel,zaionc}@tcs.uj.edu.pl

2 École Normale Supérieure de Lyon,
LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA),

University of Lyon, 46 Allée d’Italie, 69364 Lyon, France
pierre.lescanne@ens-lyon.fr

Abstract. We study the sequence of numbers corresponding to λ-terms
of given size in the model based on de Bruijn indices. It turns out that the
sequence enumerates also two families of binary trees, i.e. black-white and
zigzag-free ones. We provide a constructive proof of this fact by exhibiting
appropriate bijections. Moreover, we investigate the asymptotic density
of λ-terms containing an arbitrary fixed subterm, showing that strongly
normalizing terms are of density 0 among all λ-terms.

Keywords: Lambda calculus · Black-white trees · Zigzag-free trees ·
Asymptotic density · Functional programming

1 Introduction

Counting combinatorial objects representing entities of logical provenance forms
a prominent subject of modern research in computational logic. In recent years, a
growing attention has been given to various models of computation, in particular
to lambda calculus, which forms the core of functional programming languages,
such as Haskell or OCaml.

Different combinatorial models of lambda calculus are known in the liter-
ature. In [13] John Tromp introduced a binary encoding of lambda calculus
and combinatory logic, which allowed him to construct compact and efficient
self-interpreters for both languages. Quantitative aspects of the aforementioned
lambda calculus representation were studied in [9]. The authors of [4] consid-
ered the model in which the size of every variable, application and abstraction
is equal to one. A similar model, in which variables do not contribute to the size
of a term, was introduced in [6], where results concerning semantic properties
of random λ-terms were stated. In particular, it was proven that in this model

This work was partially supported by the grant 2013/11/B/ST6/00975 founded by
the Polish National Science Center.

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 183–194, 2015.
DOI: 10.1007/978-3-662-49192-8 15

184 M. Bendkowski et al.

asymptotically almost all λ-terms are strongly normalizing. The same size model
was considered in [8], where in order to cope with the infinite number of variables
the authors used the de Bruijn notation.

In this paper we consider a natural way of measuring the size of λ-terms rep-
resented using the de Bruijn notation. Let us assume that we are given a count-
able set {0· , S 0· , S2 0· , . . .} of de Bruijn indices. We define λ-terms as follows.
Each de Bruijn index is a λ-term. If t and u are λ-terms, then (λ t) and (t u)
are λ-terms. Henceforth, we follow standard notational conventions for lambda
calculus (see e.g. [9]). In our model we assume the following notion of size:

|Sn 0· | = |n| + 1,

|λ t| = |t| + 1,

|t u| = |t| + |u| + 1.

In other words, each constructor, i.e. 0· , S, λ and application, is of size 1.
In Sect. 2 we count the number of λ-terms of size n. Using methods of analytic

combinatorics, we give the asymptotic growth of the corresponding sequence.
Moreover, we give a holonomic equation associated with this sequence. Next, we
study λ-terms with bounded number of free indices and appropriate generating
functions. In Sects. 3 and 4 we present mutually inverse bijections among λ-
terms, black-white trees, and zigzag-free trees. In addition, each constructed
bijection is supported by a corresponding Haskell implementation. In Sect. 5 we
focus on the family of λ-terms containing a fixed subterm, showing that in the
considered model asymptotically almost all λ-terms are not strongly normalizing.

1.1 Notation

Throughout the paper we use the following notation. We denote combinato-
rial classes, e.g. λ-terms, by capital calligraphic letters. Given a class A, its
corresponding generating function will be denoted as A. By [zn]A we denote
the coefficient standing at zn in the series expansion of A(z). Whenever such
a generating function yields a dominating singularity, we use ρA to denote it.
Sometimes, when we are interested in the approximate value of ρA we write
ρA

.= c, where c is the approximation. We use the underbar notation to denote
de Bruijn indices – n stands for the n’th de Bruijn index, i.e. n = Sn 0· . To denote
addition and subtraction operations on combinatorial classes we use ⊕ and �,
respectively. Given two complex functions f and g of the same asymptotic order,
i.e. satisfying limn→∞ f(n)/g(n) = 1, we write f ∼ g.

2 Lambda Terms

2.1 Counting λ-terms with Natural Size

In this section we are interested in the generating function for the sequence
corresponding to the numbers of λ-terms. Let us start with considering the class
of de Bruijn indices.

A Natural Counting of Lambda Terms 185

Lemma 1. Let D stand for the generating function enumerating de Bruijn
indices. Then

D(z) =
z

1 − z
.

Proof. Let n ∈ N. There exists a unique de Bruijn index n encoding n. Since
application and 0· are both of size 1, the size of n is equal to n + 1 and thus
([zn]D)n∈N

= (0, 1, 1, . . .), which implies D(z) = z
1−z . ��

Lemma 2. Let L∞ stand for the generating function enumerating all λ-terms.
Then

L∞(z) =
(1 − z)3/2 − √

1 − 3z − z2 − z3

2z
√

1 − z
.

Proof. Since λ-terms are either applications, abstractions or de Bruijn indices,
the set L∞ of lambda terms can be expressed as

L∞ = L∞ L∞ ⊕ λ L∞ ⊕ D.

Using this presentation, we immediately obtain a corresponding quadratic
equation defining the generating function L∞:

L∞(z) = zL2
∞(z) + zL∞(z) +

z

1 − z
. (1)

We compute its discriminant ΔL∞ = 1−3z−z2−z3

1−z and finally solve the above
equation:

L∞(z) =
(1 − z) − √

ΔL∞

2z

=
(1 − z)3/2 − √

1 − 3z − z2 − z3

2z
√

1 − z
.

��
Using the generating function L∞ we can now find the asymptotic growth of

the sequence ([zn]L∞)n∈N
.

Theorem 1. The asymptotic approximation of the number of λ-terms of size n
is given by

[zn]L∞ ∼ (3.38298 . . .)n C

n3/2
, where C

.= 0.60676.

Proof. Examining the function L∞ we note that its dominating singularity ρL∞
is equal to the root of smallest modulus of 1 − 3z − z2 − z3. Therefore,

ρL∞ =
1
3

(
3
√

26 + 6
√

33 − 4 22/3

3
√

13 + 3
√

33
− 1

)
.= 0.29559774252208393

186 M. Bendkowski et al.

and hence 1/ρL∞
.= 3.38298. Let us write L∞ as

L∞(z) =
(1 − z) −

√
1−3z−z2−z3

1−z

2z

=
(1 − z) −

√
ρL∞(1 − z

ρL∞
)Q(z)
1−z

2z

where

Q(z) =
R(z)

ρL∞ − z
and R(z) = z3 + z2 + 3z − 1.

Applying Theorem VI.1 of [7] we obtain

[zn]L∞ ∼
(

1
ρL∞

)n

· n−3/2

Γ (− 1
2)

C̃ with C̃ =
−

√
ρL∞

Q(ρL∞)
1−ρL∞

2ρL∞
.

Since Q(ρL∞) = R′(ρL∞) = 3ρ2L∞ + 2ρL∞ + 3, we finally get

C =
C̃

Γ (− 1
2)

.= 0.60676.

��
The sequence ([zn]L∞)n∈N

is known as A105633 in Online Encyclopedia of
Integer Sequences [2]. The first 15 values are as follows:

0, 1, 2, 4, 9, 22, 57, 154, 429, 1223, 3550, 10455, 31160, 93802, 284789.

2.2 Holonomic Presentation of L∞

Using the Maple package gfun [11] we find the following holonomic equation
defining L∞:

z3 + z2 − 2z + (z3 + 3z2 − 3z + 1)L∞ + (z5 + 2z3 − 4z2 + z)L′
∞ = 0.

Such a presentation of L∞ allows us to derive a simpler, compared to the
combinatorial definition, recursive definition of its coefficients. For convenience,
let us denote L∞,n := [zn]L∞. Now, we can express the recursive definition of
L∞,n as:

L∞,0 = 0, L∞,1 = 1, L∞,2 = 2, L∞,3 = 4,

L∞,n =
(4n − 1)L∞,n−1 − (2n − 1)L∞,n−2 − L∞,n−3 − (n − 4)L∞,n−4

n + 1
.

Note that L∞,n depends on the previous four values L∞,n−1, L∞,n−2, L∞,n−3

and L∞,n−4. Exploiting this fact, the above definition allows us to compute the
exact value L∞,n using only linear number of arithmetic operations. Moreover,
this holonomic equation could be used to develop a random generator in the
spirit of [3].

http://oeis.org/A105633

A Natural Counting of Lambda Terms 187

2.3 Counting Terms with Bounded Number of Free Indices

In this section we are interested in counting terms with bounded number of
distinct free de Bruijn indices. We start with giving the generating function
associated with the set of first m indices.

Lemma 3. Let Dm = {0, 1, . . . ,m − 1} where m ∈ N. Then

Dm(z) =
z(1 − zm)

1 − z
.

Proof. Let us notice that

[zn]Dm =

{
1 if 1 ≤ n ≤ m,

0 otherwise.

It follows that we can express Dm(z) as D(z) − zmD(z). Using Lemma 1 we
finally obtain Dm(z) = z

1−z − zm+1

1−z = z(1−zm)
1−z . ��

Let m ∈ N. We denote by Lm the set of λ-terms whose free indices are
elements of Dm. Obviously, for every m we have Lm ⊆ Lm+1.

Lemma 4. The generating function associated with the set Lm is given by

Lm(z) =
1 −

√
1 − 4z2

(
Lm+1(z) + 1−zm

1−z

)

2z
.

Proof. Due to the structure of λ-terms, we can express Lm in the following way:

Lm = Lm Lm ⊕ λ Lm+1 ⊕ Dm,

which immediately implies

Lm(z) = zLm(z)2 − zLm+1(z) +
z(1 − zm)

1 − z
.

Solving in Lm(z), we obtain

Lm(z) =
1 − √

ΔLm

2z
=

1 −
√

1 − 4z2
(
Lm+1(z) + 1−zm

1−z

)

2z
.

��

188 M. Bendkowski et al.

Notice that Lm, and in particular L0 – counting the number of closed λ-terms,
is defined using Lm+1. If this definition is developed, then Lm is expressed by
means of infinitely nested radicals – a known phenomenon already observed in
other models of λ-calculus (see e.g. [4,9]).

2.4 Counting λ-terms with Another Notion of Size

Assume we take another notion of size in which 0· has size 0, applications are of
size 2, whereas abstraction and successor keep their original size 1. Formally,

|0· | = 0,

|Sn0· | = |n| + 1,

|λ t| = |t| + 1,

|t u| = |t| + |u| + 2.

It is easy to verify that the corresponding generating function1 A1 fulfills the
identity A1(z) = z2A2

1(z) − (1 − z)A1(z) + 1
1−z . The reader may check that

L∞ = z A1 and so [zn]A1 = [zn+1]L∞.

It follows that both notions of size yield the sequence A105633.

3 E-free Black-White Binary Trees

A black-white binary tree is a binary tree in which nodes are colored either black •
or white ◦. Let E be a set of edges. An E-free black-white binary tree is a black-
white binary tree in which edges from the set E are forbidden. For instance,
if the set of forbidden edges is , then the only
allowed edges are . The size of a black-white tree
is the total number of its nodes. For E1, like for ,
which is obtained by left-right symmetry, the E-free black-white binary trees are
counted by A105633, see [10].

Henceforth we consider only the set E1 and speak rather in terms of allowed
edge patterns, i.e. A1. For convenience, whenever we use the term black-white
trees, we mean the black-white trees with allowed set of patterns A1. If not stated
otherwise, we assume that black-white trees have black roots.

3.1 Recursive Description

Let BW• and BW◦ denote the set of black-white trees with a black, respectively
white, root. Interpreting the set of allowed edges A1 combinatorially, we can
define both BW• and BW◦ using the following mutually recursive equations:
1 We write this function A1 as a reference to the function A(x, 1) described in
A105632 of the Online Encyclopedia of Integer Sequences [2].

http://oeis.org/A105633
http://oeis.org/A105633
http://oeis.org/A105632

A Natural Counting of Lambda Terms 189

BW• = • ⊕ •
��

BW•
⊕ •

��
BW◦

BW◦ = ◦ ⊕
◦

��
BW◦

⊕
◦ ��

BW•
⊕

◦
�� ��

BW◦ BW•

Such a representation yields the following identities on the corresponding
generating functions BW• and BW◦:

BW•(z) = z + zBW•(z) + zBW◦(z)
BW◦(z) = z + zBW◦(z) + zBW•(z) + zBW◦(z)BW•(z)

Reformulating this system, we obtain

BW◦(z) =
(1 − z)BW•(z) − z

z
,

hence

(1 − z)zBW 2
• (z) − (1 − z)2BW•(z) + z = 0.

Notice that the equation defining BW• is equivalent to the Eq. (1) defining
L∞ up to multiplication by (1 − z). It follows that both ([zn]BW•)n∈N

and
([zn]L∞)n∈N

are equal and therefore there exists a bijection between λ-terms
and black-white trees.

3.2 Bijection Between λ-terms and Black-White Trees

We are now ready to give the translation LtoBw from λ-terms to black-white
trees and the inverse translation BwtoL from black-white trees to λ-terms:

Proposition 1. Both LtoBw and BwtoL are mutually inverse bijections, i.e.

LtoBw ◦ BwtoL = idΛ and BwtoL ◦ LtoBw = idBW• .

In order to translate a given black-white tree t into a corresponding λ-term,
we decompose t depending on the type of its leftmost node. If t is a single black
node •, we translate it into 0· . Otherwise, we have to consider three cases based
on the set A1 of allowed edges and map them into λ-abstraction, successor, or
application, respectively.

190 M. Bendkowski et al.

Example 1. Let us give two black-white trees corresponding to:

• Ω = (λ.xx)(λ.xx) = (λ(0· 0·))λ(0· 0·), and
• Y = λf.(λx.f(xx))(λx.f(xx)) = λ(λ(S 0· (0· 0·))λ(S 0· (0· 0·)))

We provide Haskell implementations of LtoBw and BwtoL which can be found
at [1]. Our implementations were tested using Quickcheck [5].

4 Binary Trees Without Zigzags

In this section we are interested in zigzag-free binary trees, i.e. trees without
a forbidden zigzag subtree:

Let us denote the set of such trees as BZ1. We can define it using the following
combinatorial equations:

Similarly to L∞ and BW•, the generating function BZ1 can be expressed as
a solution of the functional equation:

z(1 − z)BZ2
1 (z) + (1 − z)2BZ1(z) + z = 0.

A Natural Counting of Lambda Terms 191

It follows that the sequence ([zn]BZ1)n∈N
is equal to ([zn]BW•)n∈N

and
also to ([zn]L∞)n∈N

, suggesting that appropriate bijections exist. We note that
Sapounakis et al. [12] consider the same sequence defined in terms of constrained
Dyck paths and give the following explicit formula:

[zn]BZ1 = [zn]L∞ =
(n−1)÷2∑

k=0

(−1)k

n − k

(
n − k

k

)(
2n − 3k

n − 2k − 1

)
.

4.1 Bijection Between Black-White Trees and Zigzag-Free Trees

We start with giving the translation BwtoBz from black-white trees to zigzag-free
ones. For convenience, we use u1 and u2 to denote arbitrary (possibly empty)
black-white trees.

Proposition 2. Let t be a black-white tree. Then trees t and BwtoBz(t) are of
equal size.

Proof. Let us notice that it suffices to consider the case , since it
results in subtracting one black node. Because the root of t is white, the next
translation step is done according to one of the last four rules, which eventually
falls into either the fourth or the sixth equation. Since both of them enforce
adding one additional ×, the total number of nodes is preserved. ��

192 M. Bendkowski et al.

What remains is to give the inverse translation, which we present as two mutually
recursive functions BztoBw• and BztoBw◦:

Proposition 3. Let t be a zigzag-free tree. Then trees t and BztoBw•(t) are of
equal size.

Proof. The fourth and sixth equations defining BztoBw• introduce an additional
white node ◦, but since both the first and the second equations of BztoBw◦
remove one node, the overall tree size is preserved. ��
Proposition 4. Both BztoBw• and BwtoBz are mutually inverse bijections, i.e.

BztoBw• ◦ BwtoBz = idBW• and BwtoBz ◦ BztoBw• = idBZ .

A Natural Counting of Lambda Terms 193

Example 2. Let us present the zigzag-free tree corresponding to the aforemen-
tioned black-white tree associated with Ω:

We provide Haskell implementations of BwtoBz, BztoBw• and BztoBw◦ which
can be found at [1]. Our implementations were tested using Quickcheck [5].

5 Counting λ-terms Containing Fixed Subterms

Let M be an arbitrary λ-term of size p and TM denote the set of λ-terms that
contain M as a subterm. In this section we focus on the asymptotic density of
TM in the set of all λ-terms.

Theorem 2. For a fixed term M, the asymptotic density of TM is equal to 1. In
other words, asymptotically almost all λ-terms contain M as a subterm.

Proof. Consider an arbitrary t ∈ TM. Either t is equal to M, or M is a proper
subterm of t. In the latter case we have four additional cases. Either t is an
abstraction, or t = t1t2 and M is a subterm of t1, t2 or both. Combining, we
obtain the following equation:

TM = M ⊕ λ TM ⊕ TM L∞ ⊕ L∞ TM ⊕ TM TM.

Note that by adding TML∞ and L∞TM together we count each term t = t1t2
containing M in both t1 and t1 twice, therefore we have to subtract TM TM. Such
a presentation yields the following functional quadratic equation involving the
corresponding generating function TM:

TM(z) = zp + z TM(z) + 2z TM(z)L∞(z) − z T 2
M(z).

Since
√

ΔL∞ = 1 − 2z L∞(z) − z (see Lemma 2), we can express its dis-
criminant as ΔTM

= ΔL∞ + 4zp+1. Hence ΔTM
> ΔL∞ . It follows that the root

ρTM
of smallest modulus of ΔTM

is strictly larger than the root ρL∞ of smallest

modulus of ΔL∞ , i.e. ρTM
> ρL∞ . Moreover, TM(z) =

√
ΔTM

−
√

ΔL∞
2z and thus

the generating function counting the number of λ-terms which do not contain
M as a subterm is given by

L∞(z) − TM(z) =
(1 − z) − √

ΔTM

2z
.

Applying Theorem IV.7 of [7] we immediately get that the above set has
asymptotic density 0 and thus TM has asymptotic density equal to 1. ��

194 M. Bendkowski et al.

Corollary 1. Asymptotically almost no λ-term is strongly normalizing.

Proof. Consider the aforementioned Ω. Since it is not normalizing and asymp-
totically almost all λ-terms contain it as a subterm, we immediately get our
claim. ��

Let us notice the striking discrepancy between the density of strongly nor-
malizing terms in the natural model and the corresponding density in the model
considered in [6]. In the latter case, variables tend to be arbitrarily far from their
binders, since they do not contribute to the overall size. In the natural model,
however, increasing an index increases the overall size and thus indices tend to
be rather near their binding lambdas.

References

1. Bendkowski,M.:Natural counting of lambda terms -Haskell implementations (2015).
https://github.com/maciej-bendkowski/natural-counting-of-lambda-terms

2. Online Encyclopedia of Integer Sequences. http://oeis.org/
3. Bacher, A., Bodini, O., Jacquot, A.: Exact-size sampling for Motzkin trees in linear

time via Boltzmann samplers and Holonomic specification. In: Proceedings of the
Meeting on Analytic Algorithmics and Combinatorics, pp. 52–61. SIAM (2013)

4. Bodini, O., Gardy, D., Gittenberger, B.: Lambda terms of bounded unary height.
In: Proceedings of the Eighth Workshop on Analytic Algorithmics and Combi-
natorics, pp. 23–32 (2011). http://www.siam.org/proceedings/analco/2011/anl11
03 bodinio.pdf

5. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of the Fifth ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2000, pp. 268–279. ACM, New York
(2000)

6. David, R., Grygiel, K., Kozik, J., Raffalli, Ch., Theyssier, G., Zaionc, M.: Asymp-
totically almost all λ-terms are strongly normalizing. Logical Methods Comput.
Sci. 9, 1–30 (2013)

7. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,
New York (2009). ISBN:0521898064, 9780521898065

8. Grygiel, K., Lescanne, P.: Counting and generating lambda terms. J. Funct. Pro-
gram. 23(5), 594–628 (2013)

9. Grygiel, K., Lescanne, P.: Counting terms in the binary lambda calculus. In: Pro-
ceedings of the 25th International Conference on Probabilistic, Combinatorial and
Asymptotic Methods for the Analysis of Algorithms (2014). https://hal.inria.fr/
hal-01077251

10. Gu, N.S.S., Li, N.Y., Mansour, T.: 2-Binary trees: bijections and related issues.
Discrete Math. 308(7), 1209–1221 (2008). http://dx.doi.org/10.1016/j.disc.2007.
04.007

11. Salvy, B., Zimmermann, P.: Gfun: a Maple package for the manipulation of gen-
erating and holonomic functions in one variable. ACM Trans. Math. Softw. 2,
163–177 (1994). http://dx.doi.org/10.1145/178365.178368

12. Sapounakis, A., Tasoulas, I., Tsikouras, P.: Ordered trees and the inorder traversal.
Discrete Math. 306(15), 1732–1741 (2006). http://dx.doi.org/10.1016/j.disc.2006.
03.044

13. Tromp, J.: Binary lambda calculus and combinatory logic. In: Kolmogorov Com-
plexity and Applications (2006)

https://github.com/maciej-bendkowski/natural-counting-of-lambda-terms
http://oeis.org/
http://www.siam.org/proceedings/analco/2011/anl11_03_bodinio.pdf
http://www.siam.org/proceedings/analco/2011/anl11_03_bodinio.pdf
https://hal.inria.fr/hal-01077251
https://hal.inria.fr/hal-01077251
http://dx.doi.org/10.1016/j.disc.2007.04.007
http://dx.doi.org/10.1016/j.disc.2007.04.007
http://dx.doi.org/10.1145/178365.178368
http://dx.doi.org/10.1016/j.disc.2006.03.044
http://dx.doi.org/10.1016/j.disc.2006.03.044

Online Minimum Spanning Tree with Advice

(Extended Abstract)

Maria Paola Bianchi1(B), Hans-Joachim Böckenhauer1, Tatjana Brülisauer1,
Dennis Komm1, and Beatrice Palano2

1 Department of Computer Science, ETH Zurich, Zürich, Switzerland
{maria.bianchi,hjb,tatjana.bruelisauer,dennis.komm}@inf.ethz.ch

2 Dipartimento di Informatica, Università Degli Studi di Milano, Milan, Italy
palano@di.unimi.it

Abstract. In the online minimum spanning tree problem, a graph is
revealed vertex by vertex; together with every vertex, all edges to ver-
tices that are already known are given, and an online algorithm must
irrevocably choose a subset of them as a part of its solution. The advice
complexity of an online problem is a means to quantify the information
that needs to be extracted from the input to achieve good results. For
a graph of size n, we show an asymptotically tight bound of Θ(n log n)
on the number of advice bits to produce an optimal solution for any
given graph. For particular graph classes, e.g., with bounded degree or a
restricted edge weight function, we prove that the upper bound can be
drastically reduced; e.g., 5(n − 1) advice bits allow to compute an opti-
mal result if the weight function is the Euclidean distance; if the graph
is complete, even a logarithmic number suffices. Some of these results
make use of the optimality of Kruskal’s algorithm for the offline setting.
We also study the trade-off between the number of advice bits and the
achievable competitive ratio. To this end, we perform a reduction from
another online problem to obtain a linear lower bound on the advice com-
plexity for any near-optimal solution. Using our results from the advice
complexity finally allows us to give a lower bound on the expected com-
petitive ratio of any randomized online algorithm for the problem.

1 Introduction

Computing problems are called online if the input arrives gradually in consec-
utive time steps. An online algorithm has to create parts of the definite output
while only knowing a prefix of the input in the current time step [8]. A broad
subclass are online graph problems, i.e., online problems where the input corre-
sponds to some graph that is revealed in an online fashion. In this paper, the
mainly studied model reveals the vertices of an underlying graph one after the
other; together with every vertex, all edges are shown that connect this ver-
tex to all other vertices that are already known to the online algorithm. Sleator

This work was partially supported by SNF grant 200021–146372 and by MIUR under
the project “PRIN: Automi e Linguaggi Formali: Aspetti Matematici e Applicativi.”

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 195–207, 2016.
DOI: 10.1007/978-3-662-49192-8 16

196 M.P. Bianchi et al.

and Tarjan introduced the concept of competitive analysis to measure the perfor-
mance of an online algorithm [23]. In this worst-case measurement, one compares
the cost or gain of the solution produced by the online algorithm to the optimal
one that could hypothetically be computed if the whole instance were known
from the start. Here, one assumes that the input is produced by a malicious
adversary. The ratio between the two is called the competitive ratio of the online
algorithm; a detailed introduction is given by Borodin and El-Yaniv [8].

While competitive analysis is an extremely powerful and widely-used tool to
assess the performance of online algorithms, it does not address the question
of the essential parts of the input that the online algorithm is missing, i.e., the
information content of the problem [16]. To be able to answer this question, we
study the advice complexity. An online algorithm with advice has an additional
resource available, the so-called advice tape, that may contain any kind of infor-
mation about the instance at hand. The content of this tape is an infinite binary
string called the advice, and it is written onto the tape before the computation
starts by an oracle that sees the whole input in advance. The advice complex-
ity then measures the number of advice bits that allows to achieve a certain
performance.

A first model of online computation with advice was introduced by Dobrev
et al. [12]. This model was then refined simultaneously by Fraigniaud et al. [14]
and Hromkovič et al. [16]. The latter model, which is the one we use in this
paper, was first applied to three different online problems by Böckenhauer et al.
[6]. Here, in every time step, the online algorithm can query the advice tape for
any number of advice bits (analogously to the model of the random tape of a
randomized Turing machine). The advice complexity is the length of a maximum
prefix of the advice tape that is read; this length usually depends on the input
size n of the given instance.

The advice complexity has been widely applied to a large number of online
problems so far including paging [6] and k-server [7,14]. In particular, this model
has recently been studied for quite a number of graph problems such as different
coloring problems [3,4,15,22], the independent set problem [10], the dominating
set problem [9], the Steiner tree problem [2], or graph exploration [11]. More-
over, online computation with advice also has some interesting connections to
randomized online computation [7,18]. This line of research tries to answer the
question of how well any additional information on the input may be exploited.
The crucial part is the generality of the answer that is given: the advice may
encode any information, it is not restricted to a specific problem parameter or
property of the input. This way, a lower bound on the advice complexity to
achieve some given competitive ratio c means that it will never be possible to
obtain c-competitiveness with less information, no matter what the information
will actually be.

To the best of our knowledge, the advice complexity of the minimum spanning
tree problem has not been studied so far. Megow et al. [20] investigated the online
minimum spanning tree problem in a model that allows an online algorithm to
do some recourse actions, meaning that it can perform a certain amount of edge

Online Minimum Spanning Tree with Advice 197

rearrangements. However, in this model, the algorithm has to compute a feasible
spanning tree for the graph that has been presented so far in any time step. For
randomly weighted graphs with edge weights that are uniformly distributed over
the interval between 0 and 1, the problem was studied by Remy et al. [21]. In
their model, both the algorithm and the adversary do not know the edge weights
before they are presented. Tsai and Tsang investigated the competitiveness of
a certain family of randomized algorithms [24]; they restricted the inputs to
graphs in the Euclidean space. The minimum spanning tree problem was also
considered in the setting of min-max regret [17], in which the goal is to minimize
the maximal possible deviation of a given solution from optimum.

This paper is organized as follows. In Sect. 2, we formally introduce the model
of online computation with advice and the online minimum spanning tree prob-
lem. In Sect. 3, we study the advice complexity of optimal online algorithms with
advice for different graph classes. In Subsect. 3.1, we give an asymptotically tight
bound of Θ(n log n) to compute an optimal solution for general graphs. In Sub-
sect. 3.2, we present a linear lower bound for graphs that have three different
edge weights. Here, we also study a different model of online computation where
the structure of the graph is known in advance, but the edge weights appear
online. The interesting point of the proof is that the optimality of this online
algorithm is a consequence of the optimality of Kruskal’s offline algorithm. In
Subsect. 3.4, we first study graphs with bounded degree. Furthermore, we prove
that there is an optimal online algorithm that uses 5(n−1) advice bits to be opti-
mal on graphs with a Euclidean weight function. Section 4 studies the trade-off
between the number of advice bits and the competitive ratio that is achievable.
We prove a linear lower bound to obtain a near-optimal competitive ratio by giv-
ing a reduction from the bit guessing problem. In Sect. 5, we extend this result
to randomized algorithms. Due to space limitations, some proofs are omitted in
this extended abstract.

2 Preliminaries

In this paper, we only consider the objective to minimize a given cost function.

Definition 1 (Online Minimization Problem). An online minimization
problem consists of a set I of inputs and a cost function. Every input I ∈ I
is a sequence I = (x1, x2, . . . , xn) of requests. Furthermore, a set of feasible
outputs (or solutions) is associated with every I; every output is a sequence
O = (y1, y2, . . . , yn) of answers. The cost function assigns a positive real value
cost(I,O) to every input I and any feasible output O. For every input I, we call
any feasible output O for I that has smallest possible cost (i.e., that minimizes
the cost function) an optimal solution for I.

In what follows, we will simply write cost(I) instead of cost(I,O) as O is
always clear from context, and we let [I]k = (x1, . . . , xk), for k ≤ n, be the
sequence of the first k requests in I. In the settings we study, the input always cor-
responds to a weighted undirected graph G with a weight function ω. Throughout

198 M.P. Bianchi et al.

this paper, the set of vertices of G is denoted by V (G), and E(G) denotes its
set of edges; if G is clear from context, we simply write V and E. G is usually
revealed to the online algorithm as follows. Let V = {v1, v2, . . . , vn}; then vi is
presented in time step i together with all edges {vi, vj} ∈ E for which j < i,
i.e., edges that are connected to vertices that have already been revealed in
previous time steps. After every newly revealed vertex, an online algorithm for
the online minimum spanning tree problem (OMST for short) must choose some
of the newly revealed edges that are part of the solution; this decision is final.
Note that we do not require the set of chosen edges to be a spanning tree of
the already revealed vertices in the intermediate steps. To correctly capture the
online environment, the number of vertices is not known to the online algorithm
in advance.

Next, we formally define online algorithms with advice.

Definition 2 (Online Algorithm with Advice). Consider an input I of an
online minimization problem. An online algorithm Alg with advice computes
the output sequence Algφ(I) = (y1, y2, . . . , yn) such that yi is computed from
φ, x1, x2, . . . , xi, where φ is the content of the advice tape, i.e., an infinite binary
sequence. Alg is c-competitive with advice complexity b(n) if there exists a
non-negative constant α such that, for every n and for any input sequence I of
length at most n, there exists some advice string φ such that cost(Algφ(I)) ≤
c · cost(Opt(I)) + α and at most the first b(n) bits of φ have been accessed
during the computation of the solution Algφ(I). If the above inequality holds
with α = 0, we call Alg strictly c-competitive with advice complexity b(n).
Alg is called optimal if it is strictly 1-competitive.

For the sake of an easier notation, we omit φ as it is always clear from context.
Moreover, we denote the binary logarithm of a natural number x simply by log x.

3 Optimality

In this section, we show that any online algorithm with advice that solves the
OMST problem optimally on general graphs needs to read Ω(n log n) advice bits.
We also provide an online algorithm that achieves optimality with O(n log n)
advice bits. We will then discuss the problem for input graphs that are somehow
limited (such as special graph classes, bounded edge weights, or bounded degree).

3.1 General Graphs

First, we provide an online algorithm that gets as advice the parent of every
newly revealed vertex with respect to an optimal spanning tree.

Theorem 1. There exists an online algorithm with advice for the OMST prob-
lem that uses n�log n� + 2�log(�log n� + 1)� advice bits and that is optimal on
every instance of length n.

Online Minimum Spanning Tree with Advice 199

Proof. The oracle computes an optimal offline solution T . At each request v, the
algorithm asks for the index of the parent of v in T (if the requested vertex is the
arbitrarily chosen root of T , then the oracle encodes v itself). This takes n�log n�
bits of advice in total. In order to know how many advice bits it should read
after each request, the algorithm needs to ask first for the number �log n�, which
is encoded using a prefix code (such as Elias’ delta-code [13]) at the beginning
of the advice string with 2�log(�log n� + 1)� bits. ��

Although the above online algorithm uses a straightforward approach, this
upper bound is asymptotically tight; in fact, we can prove the lower bound even
on a very restricted class of graphs.

Theorem 2. Any online algorithm with advice for the OMST problem on bipar-
tite graphs needs to read at least log(((n − 1)/2)!) ∈ Ω(n log n) advice bits to be
optimal on every instance of length n.

Proof. Let n = 2k + 1 be an odd number. We consider a bipartite graph G
having vertices {v1, v2, . . . , vk, u1, u2, . . . , uk, w} such that, for each 1 ≤ i ≤ k,
the vertex ui is connected to w through an edge of weight 1 and, for i ≤ j ≤ k, ui

is connected to vj through an edge of weight k − i+1. Clearly, such a graph has
a unique minimum spanning tree, as shown in Fig. 1. As set of instances I, we
consider all online presentation of G such that first, a permutation of the vertices
v1, v2, . . . , vk is presented, then the vertices u1, u2, . . . , uk, w are presented in this
order. These instances differ only in the order of the first k vertices.

Suppose towards contradiction that there is an algorithm Alg that opti-
mally solves OMST on any instance of I using less than log(((n − 1)/2)!) bits
of advice. This implies that there are two different instances, with two differ-
ent permutations σ1 and σ2 of the vertices v1, v2, . . . , vk, which receive the same
advice string. Let vi be the first vertex that is not at the same position in σ1 and
σ2, say at position s in σ1 and position t in σ2. Up to and including the (k+i)-th
time step, the input looks the same for Alg. However, in time step k + i, Alg

Fig. 1. Graph structure used in the proof of Theorem 2; gray edges denote the (unique)
optimal solution.

200 M.P. Bianchi et al.

has to choose the edge that connects ui to the vertex that was presented in time
step s (t, respectively) in the case of σ1 (σ2, respectively). But since the input
looked exactly the same to the algorithm so far, it cannot distinguish between
these two cases, so it will not output the optimal solution for at least one of
these instances. ��

3.2 Graphs with Bounded Edge Weights

We now consider graphs with a bounded number of different edge weights. The
next theorem shows that, even for only those different weights, still a linear
number of advice bits is needed.

Theorem 3. Any online algorithm with advice that solves the OMST problem
on graphs with 3 or more different edge weights needs to read at least n−2 advice
bits to be optimal on every instance of length n. ��

Next, we prove a result for graphs with two different edge weights, which
will come in handy when considering different graph classes. However, for the
following result, the online setting differs in the following sense. The structure
of the graph is known to the online algorithm in advance, and only the concrete
edge weights are revealed in the respective time steps.

Theorem 4. Let G = (V,E, ω) be a connected graph with two different edge
weights a and b, where 0 ≤ a < b. For the online problem in which the structure
of G is fully known to the algorithm and only the edge weights are presented
online, there exists an optimal online algorithm Alg that uses no advice.

Proof sketch. For each instance I which is an online presentation of the graph
G = (V,E, ω), let m = |E|, let ei be the edge presented to Alg at time step i,
and let wi be the weight of ei. The algorithm works on I as follows: if wi = a,
then Alg includes ei in the partial solution if and only if ei does not create a
cycle; if wi = b, then it includes ei = {u, v} in the partial solution if and only if,
for all the other paths connecting u and v, Alg has already rejected one of the
edges composing that path. The resulting graph TAlg is clearly a spanning tree
whose optimality is easy to show. ��

Theorem 4 implies logarithmic upper bounds on the advice complexity for
optimal online algorithms for complete and complete bipartite graphs. Indeed,
with max{2, �log n�+2�log�log n��} bits, the input size can be encoded in a self-
delimiting way, and an online algorithm can then treat a complete graph instance
as if it were presented in the online model used in the proof of Theorem4.

Corollary 1. For all complete graphs G of size n with edge weights in {a, b}, with
0 ≤ a < b, there exists an optimal online algorithm with advice that solves the
OMST problem for G and uses max{2, �log n� + 2�log�log n��} bits of advice. ��

Next, we show that the bound from Corollary 1 is essentially tight.

Online Minimum Spanning Tree with Advice 201

Fig. 2. An instance of the graph class G22 that is used in the proof of Theorem 6.
Dashed edges have weight 1, solid edges have weight 2. First, the four isolated squares
S1, S2, S3 and S4 are presented, then the remaining vertices v1, v2, . . . , v6 in this order.
To find an optimal minimum spanning tree, Alg has to choose exactly one edge of
weight 2 in square S2, which is oriented horizontally in the ladder, but no edge of
weight 2 in the vertically oriented squares S1, S3 and S4.

Theorem 5. Any online algorithm with advice that solves the OMST problem
optimally for complete graphs with at least two different edge weights needs at
least log(�n/2) bits of advice to be optimal on every input sequence of size at
most n.

Proof sketch. For every even 2 ≤ m ≤ n, we consider the complete graph
instance Ĝm with edge weights {1, 2} defined as follows: Ĝm has m vertices
and, by calling vj the vertex presented at time step j, each vj with j odd (even,
respectively) is connected with all vertices vi, with i < j, by an edge of weight
1 (2, respectively). By using the partition tree technique introduced in [1], we
can show that any algorithm needs a different advice string for each Ĝm to be
optimal. The intuitive idea is that any algorithm needs to know when the end
of the input is reached, as only in the final time step, it has to choose an edge
of weight b. ��

With a similar technique, we can obtain an analogous upper and lower bounds
for the case of complete bipartite graphs.

3.3 Ladders

We now restrict our attention to a special class of bipartite graphs, namely
ladders, which can be defined as the Cartesian product of two path graphs, one
of which has only one edge. Despite of this simple structure, we show that such
graphs still require linear advice, even for only two different edge weights.

Theorem 6. For ladders with two different edge weights, any online algorithm
with advice for the OMST problem needs at least �n+2

6 	 advice bits to be optimal
on every input sequence of length n.

Proof sketch. Let n be an arbitrary natural even number. We now provide a
graph class Gn that contains 2� n+2

6 � graphs of size n and show that, for any two
graphs in Gn, Alg needs different advice strings. We define Gn as follows: For

202 M.P. Bianchi et al.

any graph G ∈ Gn, first �n+2
6 	 isolated squares S1, . . . , S�n+2

6 � are presented.
Then, the squares are connected to a ladder with the remaining n − 4 · �n+2

6 	
vertices. All edges incident to these vertices have weight 1. Any square Si can
either be oriented horizontally or vertically in the ladder (see Fig. 2).

As there are �n+2
6 	 squares in every graph G ∈ Gn and all squares can be

oriented in two ways, there are 2� n+2
6 � graphs in Gn, therefore it suffices to show

that Alg needs different advice strings for any two graphs of Gn. ��
Theorem 7. For ladders with two different edge weights, there exists an online
algorithm with advice for the OMST problem that is optimal on every input
sequence of even length n ≥ 2 and reads at most � 3

4n� + 4�log n� + 2�log�log n��
advice bits.

Proof sketch. The algorithm reads the size of the input, the positions of the four
corner vertices, and, for each vertex, if it lies on the top or the bottom line of
the ladder, if needed. ��

3.4 Further Special Graph Classes

We now analyze our problem on graphs of bounded degree.

Theorem 8. For graphs with degree at most g, there exists an online algorithm
with advice that solves the OMST problem and uses at most (n − 1)�log g� +
max{2, �log n� + 2�log�log n��} advice bits to be optimal on every instance of
length n. ��

For graphs with degree 3 and 4 we obtain asymptotically matching lower
bounds.

We complement our results on special graph classes by showing that also in
a geometric setting, where the vertices are points in the Euclidean plane and
the edge weights are their distance, we can compute an optimal solution using
linear advice.

Theorem 9. For Euclidean graphs, there exists an online algorithm Alg with
advice that solves the OMST problem and uses at most 5(n− 1) advice bits to be
optimal on every instance of length n. ��

4 Competitiveness

In this section, we analyze the trade-off between the advice complexity and the
competitiveness of online algorithms for the OMST problem. We recall that,
as proved in [20], for general graphs no deterministic online algorithm can be
competitive. If we have edge weights bounded by a constant k, then the greedy
algorithm is clearly k-competitive on every input, since any spanning tree on
a graph with n vertices has weight at least n − 1 and at most k(n − 1). If the
degree of the graph is bounded by 3, we can even prove a better competitive
ratio without advice for a bounded number of edge weights.

Online Minimum Spanning Tree with Advice 203

Theorem 10. Let G = (V,E) be a graph with maximum degree 3 where ω : E →
W is a weight function that maps edges into a bounded set W of weight values.
Let a denote the minimum and b the maximum element in W . Then, the greedy
algorithm Greedy has a competitive ratio of at most ((a+b)n

2 −2a+b)/(a(n−1))
for the OMST problem on G. ��

In Subsect. 3.4, we have shown that any online algorithm with advice needs
a linear amount of advice to be optimal for the OMST problem on complete
graphs with three different edge weights. We now show what an algorithm with
logarithmic advice can achieve in this setting. For simplicity, we will only discuss
the case with the three edge weights 1, 2 and 3. Note that similar results can be
obtained using the same proof idea, and any 3 different edge weights.

Theorem 11. There exists an online algorithm Alg with advice for the
OMST problem on complete graphs with edge weights 1, 2 and 3 that reads
max{2, �log n� + 2�log�log n��} + 1 bits of advice on an input of length n and
achieves a strict competitive ratio of (5 − √

5)/2 ≈ 1.382.

Proof sketch. For each instance of size n, the oracle encodes n on the advice tape
with max{2, �log n� + 2�log�log n��}, then uses an additional bit to suggest one
of the following two strategies:

1. in the first n−1 steps, choose greedily all edges of weight 1 which do not close
a cycle, then in the last step choose the cheapest edges needed to connect all
the currently separated components in the partial solution,

2. in the first n − 1 steps choose greedily all edges of weight 1 and 2 without
closing cycles, then connect the components in the last step with the cheapest
possible edges.

Given the solution T obtained with strategy 2, consider the tree T ′ constructed
in the following way: whenever there exists an edge e1 of weight 1 in the input
graph that would create a cycle in T that contains an edge e2 of weight 2, replace
e2 with e1. We call suboptimal all the edges of weight 2 removed in this process.
The oracle suggests the second strategy if and only if the number of suboptimal
edges chosen with this strategy is less than p(n − 1), for a suitable 0 < p < 1. ��

We now provide a linear lower bound that even holds for the case that
the maximum degree is 3. To this end, we use a general technique, namely
reducing the bit guessing problem with known history, which was introduced by
Böckenhauer et al. [5], to the OMST problem.

Definition 3 (Bit Guessing with Known History). The bit guessing prob-
lem with known history (BGKH) is the following online minimization problem.
The input I = (n, d1, d2, . . . , dn) consists of a natural number n and the bits
d1, d2, . . . , dn, that are revealed one by one. The online algorithm Alg computes
the output sequence Alg(I) = y1y2 . . . yn, where yi = f(n, d1, . . . , di−1) ∈ {0, 1},
for some computable function f . The algorithm is not required to respond with
any output in the last time step. The cost of a solution Alg(I) is the num-
ber of wrongly guessed bits, i.e., the Hamming distance Ham(d,Alg(I)) between
d = d1d2 . . . dn and Alg(I).

204 M.P. Bianchi et al.

We start by formally describing the reduction on a specific class of instances
for the OMST problem.

Lemma 1. Let s be any BGKH instance of length n′. Let δ ∈ R with 1/2 ≤ δ ≤
1 be such that any online algorithm with advice for BGKH reading b advice bits
can guess at most δn′ bits of s correctly. Then, no online algorithm Alg with
advice for the corresponding OMST instance Gs reads b advice bits and achieves

cost(Alg(Gs)) < cost(Opt(Gs)) + (1 − δ)n′,

where cost(Opt(Gs)) is the cost of an optimal minimum spanning tree of Gs.

Fig. 3. Graph construction used in the proof of Theorem 1. Edges that depend on s
are dashed.

Proof sketch. For every bit string s = s1s2 . . . sn′ of length n′, which is an
instance of the BGKH problem, we construct a corresponding instance Gs for
the OMST problem as follows: for every bit si of s, we build a component as
illustrated in Fig. 3a, where the edge {b, c} has weight 1 if and only if si has
value 0 and weight 3 otherwise. Then, we complete these n′ components to a
connected graph by adding edges of weight 1 between the vertices di and di+1,
for all 1 ≤ i < n′. As an example, the graph G110 is shown in Fig. 3b. The vertex
presentation order is a1, b1, c1, d1, a2, . . . , cn′ , dn′ . ��

Using Lemma 1, we can now proceed to prove the following lower bound on
the advice complexity for any c-competitive algorithm for OMST.

Theorem 12. There is no online algorithm with advice that is strictly c-com-
petitive, 1 ≤ c ≤ 11/10, for the OMST problem on graphs with maximum degree
3, maximum edge weight 3 and n vertices, n = 4n′ for some n′ ∈ N, that reads
less than (1 + (5c − 5) log(5c − 5) + (6 − 5c) log(6 − 5c))n

4 bits of advice. ��

Online Minimum Spanning Tree with Advice 205

In the case of unbounded edge weights, we can extend the linear lower bound
from Theorem 12 to consider competitive ratios up to 5

4 as follows: Instead of the
edge weights 1, 2, and 3, we choose weights 1, k + 1, and 2k + 1, for arbitrarily
large k. Then, Lemma 1 can be proven analogously and we get that Alg has
to read at least cost(Opt(Gs)) + k · (1 − δ)n′ bits of advice. With the same
calculations as above, we can show that the competitive ratio of Alg is c ≥
1+(1−δ) · k

2+2(k+1)

k→∞−→ 1+(1−δ) 12 . As a result, we get the following corollary.

Corollary 2. In the case where edge weights are unbounded, there is no online
algorithm with advice that is c-competitive, 1 ≤ c ≤ 5

4 , for the OMST problem
on graphs with maximum degree 3 and n vertices, n = 4n′ for some n′ ∈ N, that
reads less than (1 + (2c − 2) log(2c − 2) + (3 − 2c) log(3 − 2c))n

4 bits of advice. ��

5 Randomized Online Algorithms

In this section, we give a lower bound on the competitive ratio achievable by
any randomized online algorithm. Our proof is based on the following result.

Lemma 2. (Böckenhauer et al. [7]). Consider an online minimization prob-
lem U , and let I(n) be the set of all possible inputs of length n and I(n) := |I(n)|.
Furthermore, suppose that there is a randomized online algorithm for U with
worst-case expected competitive ratio at most E. Then, for any fixed ε > 0, it is
possible to construct an online algorithm with advice that uses at most

log n + 2 log log n + log (log I(n)/ log (1 + ε)) + c

advice bits, for a constant c, and achieves a competitive ratio of (1 + ε)E. ��
In Theorem 12, we constructed, for each integer n, a set I(n) of 2

n
4 instances

(depicted in Fig. 3) such there is no 11
10 -competitive online algorithm that uses

o(n) advice bits. This, together with Lemma 2, implies the following result.

Theorem 13. For arbitrarily small δ > 0, every randomized algorithm (using
an arbitrary number of random bits) for the OMST problem on graphs with max-
imum degree 3 and maximum edge weight 3 has a worst-case expected competitive
ratio of at least 11

10 (1 − δ) on sufficiently large instances. ��

Acknowledgments. The authors would like to thank Juraj Hromkovič for enlighten-
ing discussions.

References

1. Barhum, K., Böckenhauer, H.-J., Forǐsek, M., Gebauer, H., Hromkovič, J., Krug,
S., Smula, J., Steffen, B.: On the power of advice and randomization for the disjoint
path allocation problem. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa,
A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 89–101. Springer, Heidelberg
(2014)

206 M.P. Bianchi et al.

2. Barhum, K.: Tight bounds for the advice complexity of the online minimum steiner
tree problem. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.)
SOFSEM 2014. LNCS, vol. 8327, pp. 77–88. Springer, Heidelberg (2014)

3. Bianchi, M.P., Böckenhauer, H.-J., Hromkovič, J., Keller, L.: Online coloring of
bipartite graphs with and without advice. In: Gudmundsson, J., Mestre, J., Viglas,
T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 519–530. Springer, Heidelberg
(2012)

4. Bianchi, M.P., Böckenhauer, H.-J., Hromkovič, J., Krug, S., Steffen, B.: On the
advice complexity of the online L(2,1)-coloring problem on paths and cycles. In:
Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 53–64. Springer,
Heidelberg (2013)

5. Böckenhauer, H.-J., Hromkovič, J., Komm, D., Krug, S., Smula, J., Sprock, A.:
The string guessing problem as a method to prove lower bounds on the advice
complexity. Theoret. Comput. Sci. 554, 95–108 (2014)

6. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the
advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

7. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complex-
ity of the k-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part I. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)

8. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, New York (1998)

9. Boyar, J., Favrholdt, L.M., Kudahl, C., Mikkelsen, J.W.: The advice complexity
of a class of hard online problems. CoRR abs/1408.7033 (2014)

10. Dobrev, S., Královič, R., Královič, R.: Independent set with advice: the impact of
graph knowledge. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS, vol.
7846, pp. 2–15. Springer, Heidelberg (2013)

11. Dobrev, S., Královič, R., Markou, E.: Online graph exploration with advice. In:
Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 267–278.
Springer, Heidelberg (2012)

12. Dobrev, S., Královic, R., Pardubská, D.: Measuring the problem-relevant informa-
tion in input. RAIRO ITA 43(3), 585–613 (2009)

13. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans.
Inf. Theory 21(2), 194–203 (1975)

14. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 427–438. Springer, Heidelberg
(2009)

15. Forǐsek, M., Keller, L., Steinová, M.: Advice complexity of online coloring for paths.
In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 228–239.
Springer, Heidelberg (2012)

16. Hromkovič, J., Královič, R., Královič, R.: Information complexity of online prob-
lems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36.
Springer, Heidelberg (2010)

17. Kasperski, A.: Discrete Optimization with Interval Data: Minmax Regret and
Fuzzy Approach. Springer, Heidelberg (2008)

18. Komm, D., Královič, R.: Advice complexity and barely random algorithms. Theor.
Inf. Appl. (RAIRO) 45(2), 249–267 (2011). IEEE Computer Society

19. Kruskal Jr., J.B.: On the shortest spanning subtree of a graph and the traveling
salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)

Online Minimum Spanning Tree with Advice 207

20. Megow, N., Skutella, M., Verschae, J., Wiese, A.: The power of recourse for online
MST and TSP. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.)
ICALP 2012, Part I. LNCS, vol. 7391, pp. 689–700. Springer, Heidelberg (2012)

21. Remy, J., Souza, A., Steger, A.: On an online spanning tree problem in randomly
weighted graphs. Comb. Probab. Comput. 16(1), 127–144 (2007). Cambridge Uni-
versity Press

22. Seibert, S., Sprock, A., Unger, W.: Advice complexity of the online coloring prob-
lem. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 345–357.
Springer, Heidelberg (2013)

23. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2), 202–208 (1985)

24. Teh Tsai, Y., Yi Tang, C.: The competitiveness of randomized algorithms for on-
line Steiner tree and on-line spanning tree problems. Inf. Process. Lett. 48(4),
177–182 (1993). Elsevier

Subsequence Automata with Default Transitions

Philip Bille, Inge Li Gørtz, and Frederik Rye Skjoldjensen(B)

Technical University of Denmark, Lyngby, Denmark
{phbi,inge,fskj}@dtu.dk

Abstract. Let S be a string of length n with characters from an alpha-
bet of size σ. The subsequence automaton of S (often called the directed
acyclic subsequence graph) is the minimal deterministic finite automaton
accepting all subsequences of S. A straightforward construction shows
that the size (number of states and transitions) of the subsequence
automaton is O(nσ) and that this bound is asymptotically optimal.

In this paper, we consider subsequence automata with default tran-
sitions, that is, special transitions to be taken only if none of the regular
transitions match the current character, and which do not consume the
current character. We show that with default transitions, much smaller
subsequence automata are possible, and provide a full trade-off between
the size of the automaton and the delay, i.e., the maximum number of
consecutive default transitions followed before consuming a character.

Specifically, given any integer parameter k, 1 < k ≤ σ, we present
a subsequence automaton with default transitions of size O(nk logk σ)
and delay O(logk σ). Hence, with k = 2 we obtain an automaton of size
O(n log σ) and delay O(log σ). On the other extreme, with k = σ, we
obtain an automaton of size O(nσ) and delay O(1), thus matching the
bound for the standard subsequence automaton construction. The key
component of our result is a novel hierarchical automata construction of
independent interest.

1 Introduction

Let S be a string of length n with characters from an alphabet of size σ.
A subsequence of S is any string obtained by deleting zero or more characters
from S. The subsequence automaton (often called the directed acyclic subse-
quence graph) is the minimal deterministic finite automaton accepting all subse-
quences of S. Baeza-Yates [1] initiated the study of subsequence automata. He
presented a simple construction using O(nσ) size (size denotes the total number
of states and transitions) and showed that this bound is optimal in the sense
that there are subsequence automata of size at least Ω(nσ). He also considered
variations with encoded input strings and multiple strings. Subsequently, sev-
eral researchers have further studied subsequence automata (and its variants)
[2–9]. See also the surveys by Trońıček [10,11]. The general problem of subse-
quence indexing, not limited to automata based solutions, is investigated by Bille
et al. [12].

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 208–216, 2016.
DOI: 10.1007/978-3-662-49192-8 17

Subsequence Automata with Default Transitions 209

In this paper, we consider subsequence automata in the context of default
transitions, that is, special transitions to be taken only if none of the regular
transitions match the current character, and which do not consume the current
character. Each state has at most one default transition and hence the automaton
remains deterministic. The key point of default transitions is to reduce the size
of standard automata at the cost of introducing a delay, i.e., the maximum
number of consecutive default transition followed before consuming a character.
For instance, given a pattern string of length m the classic Knuth-Morris-Pratt
(KMP) [13] string matching algorithm may be viewed as an automaton with
default transitions (typically referred to as failure transitions). This automaton
has size O(m), whereas the standard automaton with no default transition would
need Θ(mσ) space. The delay of the automaton in the KMP algorithm is either
O(m) or O(log m) depending on the version. Similarly, the Aho-Corasick string
matching algorithm for multiple strings may also be viewed as an automaton
with default transitions [14]. More recently, default transitions have also been
used extensively to significantly reduce sizes of deterministic automata for re-
gular expression [15,16]. The main idea is to effectively enable states with large
overlapping identical sets of outgoing transitions to “share” outgoing transitions
using default transitions.

Surprisingly, no non-trivial bounds for subsequence automata with default
transitions are known. Naively, we can immediately obtain an O(nσ) size solution
with O(1) delay by using the standard subsequence automaton (without default
transitions). At the other extreme, we can build an automaton with n+1 states
(each corresponding to a prefix of S) with a standard and a default transition
from the state corresponding to the ith prefix to the state corresponding to the
i+1st prefix (the standard transition is labeled S[i+1]). It is straightforward to
show that this leads to an O(n) size solution with O(n) delay. Our main result is
a substantially improved trade-off between the size and delay of the subsequence
automaton:

Theorem 1. Let S be a string of n characters from an alphabet of size σ. For
any integer parameter k, 1 < k ≤ σ, we can construct a subsequence automaton
with default transitions of size O(nk logk σ) and delay O(logk σ).

Hence, with k = 2 we obtain an automaton of size O(n log σ) and delay
O(log σ). On the other extreme, with k = σ, we obtain an automaton of size
O(nσ) and delay O(1), thus matching the bound for the standard subsequence
automaton construction.

To obtain our result, we first introduce the level automaton. Intuitively, this
automaton uses the same states as the standard solution, but hierarchically
orders them in a tree-like structure and samples a selection of their original
transitions based on their position in the tree, and adds a default transition to
the next state on a higher level. We show how to do this efficiently leading to
a solution with O(n log n) size and O(log n) delay. To achieve our full trade-
off from Theorem 1 we show how to augment the construction with additional
ideas for small alphabets and generalize the level automaton with parameter k,

210 P. Bille et al.

1 < k ≤ σ, where large k reduces the height of the tree but increases the number
of transitions. In the final section we generalize the result to multiple strings.

2 Preliminaries

A deterministic finite automaton (DFA) is a tuple A) where Q
is a set of nodes called states, δ is a set of labeled directed edges between states,
called transitions, where each label is a character from the alphabet Σ, q0 ∈ Q
is the initial state and F ⊆ Q is a set of accepting states. No two outgoing
transitions from the same state have the same label. The DFA is incomplete in
the sense that every state does not contain transitions for every character in Σ.
The size of A is the sum of the number of states and transitions.

We can think of A as an edge-labeled directed graph. Given a string P and
a path p in A we say that p and P match if the concatenation of the labels on
the transitions in p is P . We say that A accepts a string P if there is a path in
A, from q0 to any state in F , that matches P . Otherwise A rejects P .

A deterministic finite automaton with default transitions is a deterministic
finite automaton AD where each state can have a single unlabeled default tran-
sition. Given a string P and a path p in AD we define a match between P and
p as before, with the exception that for any default transition d in p the corre-
sponding character in P cannot match any standard transition out of the start
state of d. Definition of accepted and rejected strings are as before. The delay
of AD is the maximum length of any path matching a single character, i.e., if
the delay of AD is d then we follow at most d − 1 default transitions for every
character that is matched in P .

A subsequence of S is a string P , obtained by removing zero or more occur-
rences of characters from S. A subsequence automaton constructed from S, is
a deterministic finite automaton that accepts string P iff P is a subsequence of S.
A subsequence automaton construction is presented in [1]. This construction is
often called the directed acyclic subsequence graph or DASG, but here we denote
it SA. The SA has n + 1 states, all accepting, that we identify with the integers
{0, 1, . . . , n}. For each state s, 0 ≤ s ≤ n, we have the following transitions:

– For each unique character α in S[s + 1, n], there is a transition labeled α to
the smallest state s′ > s such that S[s′] = α.

The SA has size O(nσ) since every state can have at most σ transitions. An
example of an SA is given in Fig. 1.

A subsequence automaton with default transitions constructed from S,
denoted SAD, is a deterministic finite automaton with default transitions that
accepts string P iff P is a subsequence of S.

The next section explores different configurations of transitions and default
transitions in SADs.

Subsequence Automata with Default Transitions 211

a b a d c a

a

b

c

d

a

b

c

d

a

c

d a

c

d

a

c a

Fig. 1. An example of an SA constructed from the string abadca

3 New Trade-Offs for Subsequence Automata

We now present a new trade-off for subsequence automata, with default transi-
tions. We will gradually refine our construction until we obtain an automaton
that gives the result presented in Theorem 1. In each construction we have n+1
states that we identify with the integers {0, 1, . . . , n}. Each of these states rep-
resents a prefix of the string S and are all accepting states. We first present
the level automaton that gives the first non-trivial trade-off that exploits default
transitions. The general idea is to construct a hierarchy of states, such that every
path that only uses default transitions is guaranteed to go through states where
the outdegree increases at least exponentially. The level automaton is a SAD
of size O(n log n) and delay O(log n). By arguing that any path going through
a state with outdegree σ will do so by taking a regular transition, we are able
to improve both the size and delay of the level automaton. This results in the
alphabet-aware level automaton which is a SAD of size O(n log σ) and delay
O(log σ). Finally we present a generalized construction that gives a trade-off
between size and delay by letting parameter k, 1 < k ≤ σ, be the base of the
exponential increase in outdegree on paths with only default transitions. This
SAD has size O(nk logk σ) and delay O(logk σ). With k = 2 we get an automaton
of size O(n log σ) and delay O(log σ). In the other extreme, for k = σ we get an
automaton of size O(nσ) and delay O(1).

3.1 Level Automaton

The level automaton is a SAD with n+1 states that we identify with the integers
{0, 1, . . . , n}. All states are accepting. For each state i > 0, we associate a level,
level(i), given by:

level(i) = max({x | i mod 2x = 0})

Hence, level(i) is the exponent of the largest power of two that divides i.
The level function is in the literature known as the ruler function. We do not
associate any level with state 0. Note that the maximum level of any state is
log2 n. For a nonnegative integer s, we define s to be the smallest integer s > s
such that level(s) ≥ level(s) + 1.

212 P. Bille et al.

The transitions in the level automaton are as follows: From state 0 we have
a default transition to state 1 and a regular transition to state 1 with label S[1].
For every other state s, 1 ≤ s ≤ n, we have the following transitions:

– A default transition to state s. If no such state exist, the state s does not have
a default transition.

– For each unique character α in S[s+1,min(s, n)], there is a transition labeled
α to the smallest state s′ > s such that S[s′] = α.

An example of the level automaton constructed from the string
and alphabet is given in Fig. 2. The dashed arrows denote default
transitions and the vertical position of the states denotes their level.

a b a c b a b c a b a d

a

b a

c

c b

a

c

a
b

c

c a

b

d

b
a

d

d

Fig. 2. The level automaton constructed from the string abacbabcabad

We first show that the level automaton is a SAD for S, i.e., the level automa-
ton accepts a string iff the string is a subsequence of S. To do so suppose that P
is a string of length m accepted by the level automaton and let m be
the sequence of states visited with regular transitions on the path that accepts P .
From the definition of the transition function, we know that if a transition with
label α leads to state s′, then S[s′] = α. This means that S[s1]S[s2] . . . S[sm]
spells out a subsequence of S if the sequence m is strictly increasing.
From the definition of the transitions, a state s only have transitions to states
s′ if s′ > s. Hence, the sequence is strictly increasing.

For the other direction, we show that the level automaton simulates the SA.
At each state s, trying to match character α, we find the smallest state s′ > s
such that s′ has an incoming transition with label α: By the construction, either
s has an outgoing transition leading directly to s′ or we follow default transitions
until reaching the first state with a transition to s′. This means that the states
visited with standard transitions in the level automaton are the same states that
are visited in the SA. Since the SA accepts all subsequences of S this must also
hold for the level automaton.

Analysis. The following shows that the number of outgoing transitions increase
with a factor two when the level increase by one. For all 0, we have the
following property of s and level(s):

Subsequence Automata with Default Transitions 213

s − s = 2level(s) (1)

By definition, 2level(s) divides s. This means that we can write s as c · 2level(s),
where c is a uneven positive integer. We know that c is uneven because 2level(s)

is the largest power of two that divides s. The next integer, larger than s, that
2level(s) divides is s′ = s + 2level(s). This means that s ≥ s′. We can rewrite s′ as
follows: s′ = s+2level(s) = c·2level(s)+2level(s) = (c+1)·2level(s). Since c is uneven
we know that c + 1 is even so we can rewrite s′ further: s′ = (c+1)

2 · 2level(s+1).
This shows that 2level(s+1) divides s′ which means that s′ = s and we conclude
that s − s = 2level(s).

Since the maximal level of any state is log2 n and the level increase every
time we follow a default transition, the delay of the level automaton is O(log n).

At each level l we have O(n/2l+1) states, since every 2lth state is divided by
2l, and 2l is the largest divisor in every second of these cases. Since s−s = 2level(s)

each state at level l has at most 2l +1 outgoing transitions. Therefore, each level
contribute with size at most n/2l+1 · (2l + 1) = O(n). Since we have at most
O(log n) levels, the total size becomes O(n log n).

In summary, we have shown the following result.

Lemma 1. Let S be a string of n characters. We can construct a subsequence
automaton with default transitions of size O(n log n) and delay O(log n).

3.2 Alphabet-Aware Level Automaton

We introduce the Alphabet-aware level automaton. When the level automaton
reaches a state s where s − s ≥ σ, then s can have up to σ outgoing transi-
tions without violating the space analysis above. The level automaton only has
a transition for each unique character in S[s + 1,min(s, n)]. Hence, for all states
s in the alphabet-aware level automaton where s− s ≥ σ, we let s have a transi-
tion for each symbol α in Σ, to the smallest state s′ > s such that S[s′] = α. No
matching path can take a default transition from a state with σ outgoing transi-
tions. Hence, states with σ outgoing transitions do not need default transitions.

We change the level function to reflect this. For each state 1 ≤ i ≤ n we have
that:

level(i) = min(�log2 σ�,max({x | i mod 2x = 0})) (2)

The transitions in the alphabet-aware level automaton is as follows: From
state 0 we have a default transition to state 1 and a regular transition to state
1 with label S[1]. For every other state s, 1 ≤ s ≤ n, we have the following
transitions:

– A default transition to state s. If no such state exist, the state s does not have
a default transition.

– If s − s < σ then for each unique character α in S[s + 1,min(s, n)], there is a
transition labeled α to the smallest state s′ > s such that S[s′] = α.

– If s−s ≥ σ then for each unique character α in S[s+1, n], there is a transition
labeled α to the smallest state s′ > s such that S[s′] = α.

214 P. Bille et al.

An example of the alphabet-aware level automaton constructed from the
string and alphabet } is given in Fig. 3. The level automa-
ton in Fig. 2 is constructed from the same string and the same alphabet. For
comparison, state 4 in Fig. 3 now has outdegree σ and has transitions to the first
succeeding occurrence of any unique character and state 8 has been constrained
to level �log2 σ�.

a b a c b a b c a b a d

a

b a

c

c b

a

c

d

a
b

c

c a

b

d

b
a

d

d

Fig. 3. The alphabet level automaton constructed from the string abacbabcabad

The alphabet-aware level automaton is a SAD by the same arguments that
led to Lemma 1.

The delay is now bounded by O(log σ) since no state is assigned a level higher
than �log2 σ�. The size of each level is still O(n). Hence, the total size becomes
O(n log σ)

In summary, we have shown the following result.

Lemma 2. Let S be a string of n characters. We can construct a SAD of S
with size O(n log σ) and delay O(log σ).

3.3 Full Trade-Off

We can generalize the construction above by introducing parameter k, 1 < k ≤ σ,
which is the base of the exponential increase in outdegree of states on every path
that only uses default transitions. Now, when we follow a default transition from
s to s, the number of outgoing transitions increase with a factor k instead of
a factor 2. This gives a trade-off between size and delay in the SAD determined
by k. Increasing k gives a shorter delay of the SAD but increases the size and
vice versa.

Each state, except state 0, is still associated with a level, but we need to
generalize the level function to account for the parameter k. For every k and i
we have that:

level(i, k) = min(�logk σ�,max({x | i mod kx = 0})) (3)

Now, the level function gives the largest power of k that divides i.

Subsequence Automata with Default Transitions 215

The transitions in the generalized alphabet-aware level automaton is as fol-
lows: From state 0 we have a default transition to state 1 and a regular transition
to state 1 with label S[1]. For every other state s, 1 ≤ s ≤ n, we have the fol-
lowing transitions:

– A default transition to state s. If no such state exist, the state s does not have
a default transition.

– If s − s < σ then for each unique character α in S[s + 1,min(s, n)], there is a
transition labeled α to the smallest state s′ > s such that S[s′] = α.

– If s−s ≥ σ then for each unique character α in S[s+1, n], there is a transition
labeled α to the smallest state s′ > s such that S[s′] = α.

We can show that the generalized alphabet-aware level automaton is a SAD
by the same arguments that led to Lemma 2.

Analysis. The delay is bounded by O(logk σ) because no state is assigned a
level higher than �logk σ�.

With the new definition of the level function we have that

s − s ≤ klevel(s,k)+1 (4)

for all s > 0. This expression bounds the number of outgoing transitions from
state s.

At level l we have O(n(k−1)/(kl+1)) states each with O(kl+1) outgoing tran-
sitions such that each level has size O(nk). The size of the automaton becomes
O(nk logk σ) because we have O(logk σ) levels.

In summary, we have shown Theorem 1.

4 Subsequence Automata for Multiple Strings

Trońıček et al. [3] generalizes the simple subsequence automaton to multiple
strings: Given a set of strings S = {S1, S2,SN}, automata are presented to
accept a pattern P iff P is a subsequence of every string in S or accept P iff P is
a subsequence of some string in S. For S = {S1, S2} the size, of both automata,
is O(|S1| · |S2| · σ).

It is possible to generalize the alphabet-aware level automaton to multiple
strings and for S = {S1, S2} we obtain the following result:

Theorem 2. Let S1 and S2 be two strings with characters from an alphabet of
size σ. We can construct subsequence automata with default transitions accepting
either

– string P iff P is a subsequence of at least one of S1 and S2.
– or string P iff P is a subsequence of both S1 and S2.

For both automata, the size is O(|S1| · |S2| · log σ) and the delay is O(log σ).

We present the details in the full version.

216 P. Bille et al.

References

1. Baeza-Yates, R.A.: Searching subsequences. Theor. Comput. Sci. 78(2), 363–376
(1991)

2. Trońıček, Z., Shinohara, A.: The size of subsequence automaton. Theor. Comput.
Sci. 341(1), 379–384 (2005)

3. Crochemore, M., Melichar, B., Trońıček, Z.: Directed acyclic subsequence graph:
overview. J. Disc. Algorithms 1(3–4), 255–280 (2003)

4. Crochemore, M., Trońıček, Z.: Directed acyclic subsequence graph for multiple
texts. Technical repport, Institut Gaspard-Monge, pp. 99–118. Citeseer (1999)

5. Crochemore, M., Tronicek, Z.: Directed acyclic subsequence graph for multiple
texts. Technical Report IGM-99-13, Institut Gaspard-Monge (1999)

6. Hoshino, H., Shinohara, A., Takeda, M., Arikawa, S.: Online construction of subse-
quence automata for multiple texts. In: Proceedings of the 7th SPIRE, pp. 146–152
(2000)

7. Farhana, E., Ferdous, J., Moosa, T., Rahman, M.S.: Finite automata based algo-
rithms for the generalized constrained longest common subsequence problems. In:
Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 243–249. Springer,
Heidelberg (2010)

8. Bannai, H., Inenaga, S., Shinohara, A., Takeda, M.: Inferring strings from graphs
and arrays. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp.
208–217. Springer, Heidelberg (2003)

9. Trońıček, Z.: Operations on DASG. In: Proceedings of the 4th WIA, pp. 82–91
(1999)

10. Trońıček, Z.: Searching subsequences. Department of Computer Science and Engi-
neering, FEE CTU in Prague, Ph.D. thesis (2001)

11. Trońıček, Z.: Common subsequence automaton. In: Champarnaud, J.-M., Maurel,
D. (eds.) CIAA 2002. LNCS, vol. 2608, pp. 270–275. Springer, Heidelberg (2003)

12. Bille, P., Farach-Colton, M.: Fast and compact regular expression matching. The-
oret. Comput. Sci. 409, 486–496 (2008)

13. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

14. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975)

15. Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., Turner, J.: Algorithms to
accelerate multiple regular expressions matching for deep packet inspection. In:
Proceedings of the 12th SIGCOMM, pp. 339–350 (2006)

16. Hayes, Ch.L., Luo, Y.: DPICO: a high speed deep packet inspection engine using
compact finite automata. In: Proceedings of the 3rd ANCS, pp. 195–203 (2007)

Run-Time Checking Multi-threaded
Java Programs

Frank S. de Boer1,3(B) and Stijn de Gouw1,2

1 CWI, Amsterdam, The Netherlands
2 SDL, Amsterdam, The Netherlands

3 Leiden University, Leiden, The Netherlands
f.s.de.boer@cwi.nl

Abstract. Assertion checking traditionally focused on state-based prop-
erties. In a multi-threaded environment, approaches based on shared-
state require complex locking mechanisms to ensure that specifications
are checked atomically (in the same state). In addition to this increased
complexity, locks also negatively affect performance.

In this paper, we extend both the underlying theory and the prac-
tical implementation of SAGA, a run-time checker for single-threaded
Java programs, to multi-threading, while avoiding locks.

1 Introduction

Runtime assertion checking is an important practical method for finding bugs.
However, the scope of run-time assertion checking is restricted mainly to sequen-
tial programs. The main problem of run-time assertion checking of parallel
shared-variable programs in general is because of interference. Take for example
the very simple statement assert x==x;, where x is a field of an object. If after
retrieving the value of the first occurrence of x another thread modifies x then
the assertion may evaluate to false! To prevent this whenever an assertion is
checked, the entire parallel execution has in principle to be “frozen”. This thus
requires control of the underlying execution platform and will in most cases give
rise to severe loss in performance.

In [5] we enhance run-time assertion checking with attribute grammars [9]
for describing properties of histories, e.g., sequences of method calls and returns.
This supports strict programming to interfaces because it allows for interface
specifications abstracting from the state as represented by the program variables.

The main contribution of this paper is an extension to multi-threaded Java
programs which avoids in a natural manner interference problems. As an example
of the expressivity and generality of our approach, we show how to detect at
runtime deadlocks in multithreaded Java programs.

Related Work. To the best of our knowledge, our extension of run-time assertion
checking to multi-threaded programs is the first solution which supports interface
specs and does not require fine-grained control of the JVM execution platform to

This research is partly funded by the EU project FP7-610582 Envisage.

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 217–228, 2016.
DOI: 10.1007/978-3-662-49192-8 18

218 F.S. de Boer and S. de Gouw

prevent interference in assertion checking as in the purely state-based approaches
of [1,7]. Other state-based approaches like [2,15] require complex atomicity spec-
ifications and locking mechanisms. These latter two approaches further require
substantial extensions both of the specification language and corresponding tool
support for run-time verification.

Besides run-time assertion checking, there are many other tools for run-time
verification of multi-threaded programs. In [16] also an automated code instru-
mentation technique is introduced for the generation of counter-examples of a
given property. These counter-examples are given in terms of partial orders of
events which record particular modes of access to the state. This state-based
approach consequently does not support a design by contract methodology. The
run-time verification of multi-threaded programs as described in [10] affects the
running system by blocking those threads which would violate the property.
Other approaches focus on specific classes of properties, like data-races [3], dead-
lock [13] and restricted protocol-properties [6].

In [12] a process algebraic approach based on an extension of CSP is intro-
duced which supports a strictly separate run-time verification of properties of
data and protocols. In contrast, our approach builts on well-established parser
technology and integrates the run-time verification of both data- and protocol-
oriented properties of multi-threaded programs.

2 Extending the Framework

Our approach to multi-threading is based on the following perspectives:

Thread view : here we specify the behavior of each thread in isolation.
Object view : here we specify the behavior of objects individually.
Global view : here we specify global properties of a program.

All of the above views can be supported by a single formalism: attribute gram-
mars extended with assertions, but the interpretation of the grammars differs
between the various perspectives. We first discuss the required extensions to
communication views and grammars. We then illustrate each of the above views
with a running ‘dining philosophers’ example. The behavior of the philosophers
is specified by a corresponding thread class. The interfaces of the classes defining
the resources, i.e., the forks and the pasta are defined in Fig. 1.

interface Fork {

void get();

void release();

}

interface Pasta {

void eat();

}

Fig. 1. Interfaces forks and pasta

Run-Time Checking Multi-threaded Java Programs 219

2.1 Multi-threaded Events

A communication view (as defined in [5]) is a partial mapping which associates a
name to each event, e.g., method calls and returns. In multi-threaded programs,
due to scheduling and locking, there can be a delay between when a method is
called, and when its body starts executing. For synchronized methods, a method
call indicates that a lock was requested, whereas the start of the execution of a
method body indicates that the lock was acquired successfully. To distinguish
these two events, we introduce an ‘exec’ event, that indicates the start of execu-
tion of a method body (and thus, implies acquisition of the lock). See Fig. 4 for a
communication view that uses an ‘exec’ event. Returns of synchronized methods
indicate the release of the lock.

In general, our framework incorporates built-in attributes of an event which
store the objects involved, e.g., the actual parameters. Here we introduce a new
built-in attribute Long threadId which stores the identity of the thread in which
the event occurred. Thread id’s are used in both the object and the global view.

The final addition to our framework are reset-actions. Suppose a user desires
to check the history only when a specific event occurs, and subsequently reset
the history to start a new session. We support this by labeling an event with
a reset(b) action, where b is a boolean expression in which both grammar
attributes of the previous session (the attributes of the grammar start symbol)
and the objects involved in the event can be used. Grammar attributes are
prefixed by the keyword ‘session’. If the condition b is true, the history is parsed
and subsequently reset, with the caveat that attributes values of the previous
session are retained. Figures 2 and 4 both depict views with reset-actions.

2.2 Grammars and Interference Freedom

The context-free grammar underlying an attribute grammar generates in our
approach the valid histories, i.e., traces of events. Event names form the terminal
symbols of the grammar, whereas the non-terminal symbols specify the structure
of valid sequences of events. In our approach, a communication history is valid if
and only if it and all its prefixes are generated by the grammar. The attributes
are used in assertions to specify the data-flow of the valid histories.

State-based specifications for multi-threaded programs introduce race condi-
tions. During evaluation of an assertion in one thread, another thread can change
the state. This implies that different parts of the same assertion are evaluated
in different states. For example, assert o.x==o.x; is not necessarily true any-
more, if o.x is changed by another thread. To solve this problem, we must ensure
exclusive access to all objects occurring in the assertion. This requires complex
locking mechanisms and a fine-grained control over the underlying execution
platform. Furthermore, such a complete ‘lock-down’ of the system can have a
severe negative impact on performance. Our history-based approach avoids these
problems, provided that a grammar is well-formed in the following sense.

Definition 1. A grammar is well-formed if and only if no built-in attributes (of
terminals) are dereferenced.

220 F.S. de Boer and S. de Gouw

This condition is easily checked, and is natural from a conceptual point of view:
whenever an event occurs, only the actual parameters and return value are com-
municated between the caller and the callee. Dereferencing an attribute accesses
the underlying state of the program, and would mean that the grammar does
not only depend on the current history, but potentially on the entire heap! The
above condition ensures that the grammar depends only on the history. Well-
formed grammars allow an elegant solution to the interference problems men-
tioned above. See Sect. 4.2 for more details.

3 Multi-threaded Perspectives

Thread View. In the thread perspective, we specify the behavior of each thread
in isolation by a corresponding communication view and grammar. We associate
a history to each thread, and the grammar generates the set of valid histories of
the thread. Semantically, such thread-local histories can be obtained from the
global history by projection on the value of the threadId attribute1.

The thread perspective is tailored for the specification of properties that each
thread must obey, independently from that of any other threads. Consider for
example a client-server scenario. To avoid blocking access to the Server while
handling the requests of a Client, the server creates a new thread for each client
after accepting an incoming connection, and each client must follow a protocol.

We illustrate the thread view using the running dining philosophers
example. Figure 2 presents the communication view for the Phil thread class.
It introduces the grammar terminals “start”, “get”, “release”, and “eat” for the
corresponding events. Only events from implementations of the Fork interface
with synchronized versions of get and release are selected.

thread view Phil grammar Phil.g {

return Phil.Phil(Fork left, Fork right) start reset(true),

call synchronized void Fork.get() get,

call synchronized void Fork.release() release

reset(callee==session.right),

call void Pasta.eat() eat

}

Fig. 2. Communication view philosophers

Note that we have included the constructor method of the class Phil in the
communication view, which allows us to use its parameters in the attribute

1 There is one subtle technicality: thread id’s can be reused in Java. Hence, two events
that occur in different threads can share the same thread id. This can be detected by
monitoring the void run() method of a Thread class in the communication view.
A call to run signals the creation of the thread, and a return indicates termination.

Run-Time Checking Multi-threaded Java Programs 221

S ::= start
(S.left=start.left; S.right=start.right;)

| gf1=get gf2=get eat rf1=release rf2=release
(S.left=start.left; S.right=start.right;)
{ assert gf1.callee == S.left && gf2.callee == S.right; }
{ assert rf1.callee == S.left && rf2.callee == S.right; }

Fig. 3. Attribute grammar for philosopher session

grammar to specify the behavior of the thread instances of class Phil. This
communication view marks each start event, and each release event for which
its callee equals the attribute of the previous session, as a reset.

The grammar in Fig. 3 defines the behavior and the attributes of a session2.
The grammar introduces the aliases gf1, gf2, rf1 and rf2 to distinguish differ-
ent occurences of the same terminal.

Object View. In the object view of a Java program, we specify the interaction of
a single object by means of a corresponding communication view and grammar.
The grammar generates the set of all valid traces of events that the object may
engage in. In a multi-threaded environment, several threads can be active (exe-
cuting) in a single object. Intuitively, the local object histories can be obtained
from the global history by projection on the values of the built-in attributes
caller and callee.

The object view is convenient for specifying a resource that is shared between
different threads. We illustrate this by a specification of the forks in the dining
philosophers example. Figure 4 presents the communication view.

local view ForkView grammar Fork.g specifies Fork {

exec synchronized void get() get,

return synchronized void release() release reset(true)

}

Fig. 4. Communication view of a fork

As explained above, the keyword “exec” indicates events which are triggered
by the start of the execution of the specified method. The grammar in Fig. 5 then
defines the behavior of a session of a Fork object. Note that mutual exclusion
here is simply expressed by the identity between the thread id’s corresponding
to the events which indicate the execution of the get and release methods.

2 Terminals have built-in attributes, which refer to the objects involved. Non-terminals
have user-defined attributes defining properties of sequences of terminals.

222 F.S. de Boer and S. de Gouw

S ::= get release { assert get.threadid==release.threadid; }

Fig. 5. Attribute grammar for fork session

Global View. In the global view, we treat the Java program as a single entity
that we wish to specify. Traditional approaches based on global invariants [4,11]
are supported in this perspective. The grammar generates the set of all valid
global traces of the entire program. In particular, the user can specify the desired
interleavings between events from different threads.

We illustrate the global view by means of a general method for dynamic detec-
tion of deadlocks. We focus on deadlocks that arise from synchronized methods.
Given a multi-threaded program we first introduce the communication view in
Fig. 6, which includes all events of the synchronized methods.

global view DeadlockMyProgram grammar deadlock.g {

call synchronized T C.m() C_m,

return synchronized T C.m() ret_C_m,

exec synchronized T C.m() exec_C_m,

...

}

Fig. 6. Global communication view

Since unsynchronized methods cannot cause a deadlock, the communication
view filters those out. A thread blocks if it calls a synchronized method on an
object that is already locked by another thread. The general idea is to build a
directed “wait-for” graph to capture such dependencies between threads. A dead-
lock corresponds to a cycle in the wait-for graph.

In more detail, the nodes of the graph are thread id’s, and there is an edge
from t1 to t2 if t1 calls a method on some object that is locked by t2. To build
the graph we define three inherited attributes:

– An attribute reqLock of type Map<Long, Object> that maps a thread id (a
Long) to the object for which it requested, but has not yet acquired the lock.

– An attribute hasLock of type Map<Long, Map<Object, Integer> >. Given
a thread id and an object, this map returns the number of times the lock on
that object has been acquired but not released by the thread3. If for a given
thread id, the count becomes 0 for an object, the entry is removed.

– An attribute g storing a directed graph. Any graph library can be used as
long as it has a method void addEdge(Object node1, Object node2) for
adding an edge between node1 and node2 to the graph, and a (pure) method

3 Due to reentrance, locks in Java can be acquired more than once by the same thread.

Run-Time Checking Multi-threaded Java Programs 223

boolean noCycle() for cycle detection. For example, DirectedGraph from
the JGraphT library suffices for our purposes.

The two maps and the graph are initialized to empty. Figure 7 shows how the
attributes are updated whenever an event occurs. The graph is built in the last
ε-production using the reqLock and hasLock maps. The assertion formalizes the
no deadlock requirement.

S ::= C m
(
S.reqLock.put(C_m.threadId, C_m.callee);

)
S

| ret C m
(
Map<Object, Integer> m = S.hasLock.get(ret_C_m.threadId);
Integer cnt = m.get(ret_C_m.caller);
if(cnt == 1)m.remove(ret_C_m.caller);
else m.put(ret_C_m.caller, cnt-1);

)
S

| exec C m
(
S.reqLock.remove(exec_C_m.threadId);
Map<Object, Integer> m = S.hasLock.get(exec_C_m.threadId);
int newCnt = 1;
if(m == null){
m = new HashMap<Object, Integer>;
S.hasLock.put(exec_C_m.threadId, m);

} else if(m.get(exec_C_m.callee)!= null)
newCnt = m.get(exec_C_m.callee)+1;

}
m.put(exec_C_m.caller, newCnt);

)
S

| ε
(
for(Long rl : S.reqLock.keySet())
for(Long hl : S.hasLock.keySet())
if(hl.get(rl).containsKey(reqLock.get(rl)))
g.addEdge(rl, hl);

)
{ assert g.noCycle(); }

Fig. 7. Attribute grammar specifying deadlock

224 F.S. de Boer and S. de Gouw

3.1 Combining the Views

Above, we described three different perspectives on a multi-threaded Java pro-
gram: the thread view, the object view and a global view. Thus, to properly
support a separation of concerns, multiple attribute grammars can be present,
each grammar focusing on a specific behavioral property of the program. We
check all grammars independently. If each grammar is considered to be a formal
language (generating the valid histories), this has the same effect as taking the
intersection, or conjunction of the formal languages involved. Note that this also
provides a simple way to specify the intersection of two context-free languages.
Although the intersection of two context-free languages is in general not context-
free, we can specify them separately by two different context-free grammars.

Combining the above views on the dining philosophers ensures that

– All philosophers use their (shared) resources correctly (thread view).
– The resources themselves behave properly (object view).
– No deadlock arises during execution (global view).

4 Tool Architecture

In this section we describe the tool architecture of SAGA (Fig. 8). SAGA inte-
grates four different components: a state-based assertion checker, a parser gen-
erator, a monitor to intercept events and a general tool for meta-programming.
How and when these components are used is explained below by means of a work-
flow. The tool architecture in a single-threaded setting was previously described
in [5], and successfully applied to a large industrial case4 with 150,000 lines of
code and 44 classes, specified by 5 different attribute grammars of 28, 65, 115,
25 en 37 lines, respectively. It is important to note that this application thus
involves storage, updates and parsing of different histories. The main difference
with respect to multi-threaded programs resides in the additional event “exec”
and the different views (i.e., thread, object and global view). Below we describe
how the extensions at the implementation level needed for multi-threading can
be easily incorporated without affecting the overall tool architecture, which has
proven its use in practice, as shown above. Further, we discuss how these exten-
sions avoid the interference problem as explained in the introduction.

4.1 Meta-Program

Suppose that during execution of a multi-threaded Java program, an event listed
in a communication view occurs. The corresponding history should be updated
to reflect the addition of the new event. Hence, the first question is: how to
represent the history? A meta-program written in Rascal [8] generates for each
event in the communication view a ‘token class’ with fields for storing: the caller

4 This case study has successfully been carried out in the EU HATS project (http://
www.hats-project.eu).

http://www.hats-project.eu
http://www.hats-project.eu

Run-Time Checking Multi-threaded Java Programs 225

Fig. 8. SAGA tool architecture

and callee, the thread identity, the actual parameters and (for return events only)
the return value. We can then represent a history as a Java List of instances of
token classes.

4.2 Monitoring and Interference

The monitoring component updates the history whenever a relevant event occurs,
and (possibly) triggers the parser.

AspectJ is tailored for monitoring. It can intercept method calls, executions
and returns conveniently with pointcuts, and weave in user-defined code (advice)
that is executed before or after the intercepted event. Each pointcut corresponds
to an event listed in the communication view. The advice is the code that updates
the history.

The code for the aspect is generated from the communication view auto-
matically by the Rascal meta-program. Advice is woven into Java source code,
byte code or at class load-time fully automatically by AspectJ. We store thread-
local histories in a Map<Long, History>, which assigns to each thread id (of
type Long) its history, and use the inter-type declarations of AspectJ to store
the local history of an object in the object itself in a new field named h. This
ensures that whenever the object goes out of scope, so does its history and
consequently reduces memory usage. Furthermore, compared to storing a single
global history, this method avoids the calculation (by projection upon the global
history) of the local object and thread histories. Since in thread-local histories,
the threadId is the same for every event, we reduce memory usage by avoiding
storing it altogether. We store global histories inside a separate Aspect class.

226 F.S. de Boer and S. de Gouw

Figure 9 shows a generated aspect. The first five lines together form a point-
cut, the sixth and seventh line is the advice. The third line identifies the
method name. The fourth line binds the variables ‘clr’ and ‘cle’ to the appro-
priate objects, and together with the first line, determines the full method
signature (thereby distinguishing overloaded methods). The fifth line ensures
that the advice is executed only when assertions are enabled. Assertions can
be enabled for each communication view (and associated grammar) individ-
ually. The sixth line retrieves the thread id, and the seventh line calls a
void synchronous update(Token t) method that appends the new event to
the history. Here, exec_get is the token class (generated by the Rascal meta pro-
gram) corresponding to the event. Since the event was defined in a local object
view, the history is saved in a field cle.h of the callee and will not persist in
the program indefinitely. It will be garbage collected as soon as the callee object
itself is destroyed.

/* exec synchronized void get(); */

before(Object clr, Fork cle):

(execution(synchronized void *.get())

&& this(clr) && target(cle)

&& if(ForkViewAspect.class.desiredAssertionStatus())) {

long threadId = Thread.currentThread().getId();

cle.h.update(new exec_get(clr, cle, threadId));

}

Fig. 9. Aspect for the event ‘exec synchronized void get()’ from Fig. 4

Our approach avoids interference, as a consequence of which concurrently
running threads of the program need not be locked, because of the following
three main characteristics:

– Whenever the history should be updated with a new event, we create a new
instance of the appropriate token class to store the objects involved in the
event. This new token class object is not changed (or even visible) in the
program under test.

– Assertions in well-formed grammars do not refer to the actual state of the pro-
gram: they are completely determined by the values of the built-in attributes
stored in these newly created objects.

– Event updates that arise from different threads can cause an update to the
same history variable: global histories and local object histories are shared
between threads. We provide exclusive access to the history with update meth-
ods.

4.3 Parser Generator and Assertion Checker

After a history update, SAGA must decide whether it still satisfies the specifi-
cation given by the grammar. A history can be seen as a sequence of tokens (in

Run-Time Checking Multi-threaded Java Programs 227

our setting: events). Since the grammar together with the assertions generate
the set of all valid histories, checking whether a history satisfies the specification
reduces to deciding whether the history can be parsed by a parser for the gram-
mar, where moreover during parsing the assertions must evaluate to true. For
events labelled with a reset action, if the associated condition is true, the parser
is triggered and the history subsequently reset (see below for more information
on parsing).

We use ANTLR [14] to create a parser for the given attribute grammar.
During parsing, ANTLR calls a state-based assertion checker to evaluate the

assertions in the grammar. We used standard Java assertions in our grammars.
This ensures compatibility with all Java compilers. The result of the parsing
process is either a parse or assertion error, which indicates that the history vio-
lates the specification given by the attribute grammar, or a parse tree decorated
with new attribute values.

5 Conclusion

The new version of SAGA can be obtained from https://github.com/cwi-swat/
saga. Although we illustrated our framework using synchronized methods, gen-
eral locks as provided in the package java.util.concurrent.locks can be han-
dled just as easily by tracking the methods lock, tryLock and unlock in the
communication view. In [5] we have already reported on a successful application
of our tool to an industrial case study. This led to the integration of SAGA into
the software lifecycle at SDL. Currently, in the context of the European Envis-
age project, we are extending this case to the specification, run-time verification
and monitoring of a distributed cloud application.

References

1. Aftandilian, E., Guyer, S.Z., Vechev, M.T., Yahav, E.: Asynchronous assertions. In:
Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2011, Part of
SPLASH 2011, Portland, OR, USA, pp. 275–288 (2011)

2. Araujo, W., Briand, L.C., Labiche, Y.: Enabling the runtime assertion checking of
concurrent contracts for the java modeling language. In: Proceedings of the 33rd
International Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu,
HI, USA, pp. 786–795 (2011)

3. Bodden, E., Havelund, K.: Racer: effective race detection using AspectJ. In: Pro-
ceedings of the ACM/SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2008, Seattle, WA, USA, pp. 155–166 (2008)

4. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: Local verification of global invari-
ants in concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 480–494. Springer, Heidelberg (2010)

5. de Boer, F.S., de Gouw, S., Johnsen, E.B., Kohn, A., Wong, P.Y.H.: Run-time
assertion checking of data- and protocol-oriented properties of java programs: an
industrial case study. In: Chiba, S., Tanter, É., Bodden, E., Maoz, S., Kienzle, J.
(eds.) Transactions on AOSD XI. LNCS, vol. 8400, pp. 1–26. Springer, Heidelberg
(2014)

https://github.com/cwi-swat/saga
https://github.com/cwi-swat/saga

228 F.S. de Boer and S. de Gouw

6. Hurlin, C.: Specifying and checking protocols of multithreaded classes. In: ACM
Symposium on Applied Computing (SAC 2009), pp. 587–592. ACM Press (2009)

7. Kandziora, J., Huisman, M., Bockisch, Ch., Zaharieva-Stojanovski, M.: Run-time
assertion checking of JML annotations in multithreaded applications with e-
OpenJML. In: Proceedings of the 17th Workshop on Formal Techniques for Java-
Like Programs, FTfJP 2015, Prague, Czech Republic, pp. 8:1–8:6. ACM, New York
(2015)

8. Klint, P., van der Storm, T., Vinju, J.: Rascal: a domain specific language for
source code analysis and manipulation. In: Walenstein, A., Schupp, S. (eds.) Pro-
ceedings of the IEEE International Working Conference on Source Code Analysis
and Manipulation (SCAM 2009), pp. 168–177 (2009)

9. Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theory 2(2), 127–
145 (1968)

10. Luo, Q., Rosu, G.: EnforceMOP: a runtime property enforcement system for multi-
threaded programs. In: International Symposium on Software Testing and Analysis,
ISSTA 2013, Lugano, Switzerland, pp. 156–166 (2013)

11. Mizuno, M.: A structured approach for developing concurrent programs in Java.
Inf. Process. Lett. 69(5), 233–238 (1999)

12. Möller, M., Olderog, E.-R., Rasch, H., Wehrheim, H.: Integrating a formal method
into a software engineering process with UML and Java. Formal Asp. Comput.
20(2), 161–204 (2008)

13. Nonaka, Y., Ushijima, K., Serizawa, H., Murata, S., Cheng, J.: A run-time deadlock
detector for concurrent Java programs. In: 8th Asia-Pacific Software Engineering
Conference (APSEC 2001), Macau, China, pp. 45–52 (2001)

14. Parr, T.: The Definitive ANTLR Reference. Pragmatic Bookshelf, Lewisville (2007)
15. Rodŕıguez, E., Dwyer, M.B., Flanagan, C., Hatcliff, J., Leavens, G.T., Robby:

Extending JML for modular specification and verification of multi-threaded pro-
grams. In: Gao, X.-X. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 551–576. Springer,
Heidelberg (2005)

16. Rosu, G., Sen, K.: An instrumentation technique for online analysis of mul-
tithreaded programs. Concurrency Comput. Pract. Experience 19(3), 311–325
(2007)

Online Graph Coloring with Advice
and Randomized Adversary

(Extended Abstract)

Elisabet Burjons1(B), Juraj Hromkovič2, Xavier Muñoz1, and Walter Unger3

1 Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, Barcelona, Spain
elisabet.burjons@gmail.com, xml@ma4.upc.edu

2 Department of Computer Science, ETH Zürich, Zürich, Switzerland
juraj.hromkovic@inf.ethz.ch

3 Lehrstuhl für Informatik I, RWTH Aachen University, Aachen, Germany
quax@cs.rwth-aachen.de

Abstract. We generalize the model of online computation with three
players (algorithm, adversary and an oracle called advisor) by strength-
ening the power of the adversary by randomization. In our generalized
model, the advisor knows everything about the adversary except the ran-
dom bits the adversary may use.

We examine the expected competitive ratio of online algorithms
within this model in order to measure the hardness of online problems
in a new way. We start our investigation by proving upper and lower
bounds on the competitive ratio for the online graph coloring problem.

Keywords: Online computation · Information · Randomization ·
Graph coloring

1 Introduction

Advice complexity was introduced in [8] and revised in [5,11] in order to measure
the information content of online problems. The question is how many bits about
the future are necessary and sufficient for an online algorithm in order to be able
to solve a given problem in an optimal way or to guarantee a concrete competitive
ratio. Studying online problems from this point of view by getting tradeoffs
between the solution quality and the size of advice provided, one obtained a
new instrument for measuring the hardness of online problems. Other important
conceptual contributions are the development of a powerful method for proving
lower bounds on the achievable expected competitive ratios of randomized online
algorithms and new insights on the potential power of information.

The investigations in a series of papers (see, e.g.,[1–4,6,7,9,10,13–15]) show
very different behaviors of the tradeoff between the solution quality measured

This work has been partially supported by the SNF grant 200021-146372 and the
Spanish government under project MTM2011-28800-C02-01.

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 229–240, 2016.
DOI: 10.1007/978-3-662-49192-8 19

230 E. Burjons et al.

by the competitive ratio and the amount of information of the unknown future.
Sometimes this behavior looks really surprising. The typical patterns occurring
for different problems are the following ones.

1. The achievable competitive ratio improves continuously with the number of
advice bits provided. Sometimes very quickly, sometimes very slowly.

2. The number of advice bits provided does not help at all until a special thresh-
old value is reached. After crossing this threshold, the quality of solutions may
jump to a significantly better competitive ratio.

3. The pattern can be a mix of 1. and 2. depending on the interval of the number
of advice bits offered.

Additionally to understanding the very different roles and the power of addi-
tional information in different situations, we have learned a lot about the possible
relations between advice bits and random bits. There are situations in which ran-
dom bits are as powerful as advice bits and situations in which advice bits are
incomparably more powerful than random bits. A byproduct of this research is
the fact that, for most “reasonable” online problems, if some competitive ratio
is not achievable by a logarithmic number of advice bits, then it is not achiev-
able by any randomized online algorithm with an unrestricted number of random
bits. The resulting technique for proving lower bounds on achievable competitive
ratios of randomized online algorithms has been quite successful in investigating
the limits of randomized online algorithms for concrete online problems.

In our model there are three players, namely an online algorithm, the adver-
sary and the advisor (oracle). As usual in the classical model, the adversary
knows everything about a given online algorithm and constructs the hardest
problem instance for it with respect to the achievable competitive ratio. The
advisor in the extended game is very powerful, it knows everything about the
future, i.e., it knows the whole input instance that will be presented request by
request. The advisor writes its advice on the oracle tape and the number of bits
read by the online algorithm from the oracle tape is the advice complexity on
this problem instance. The advice complexity of an online algorithm is in general
a function of the input size defined in the worst-case manner as the maximum
over all inputs of the same size.

In this paper, we introduce a more general model in which we allow the
adversary to use random bits. In spite of the fact that randomization can be
very helpful for the design of online algorithms in the classical model of online
computations, in the classical model random bits are not helpful for the adversary
at all. Since the competitive ratio is defined in a worst-case manner, it is sufficient
to produce deterministically one hard input for each online algorithm. In our new
model of advice complexity, however, randomization can increase the power of
the adversary. If the adversary constructs a set of problem instances from which
it can choose one randomly, and the advisor does not know the random bits for
this choice in advance, then the advisor can only tell the set of possible problem
instances or a probability distribution over the set of problem instances if it is
not uniform, but not the exact problem instance that will be presented to the
algorithm. In this scenario, we measure the expected competitive ratio over the

Online Graph Coloring with Advice and Randomized Adversary 231

hardest set of problem instances. A new parameter in the game is the number
of random bits of the adversary with respect to the achievable competitive ratio
if the advisor is allowed to give an unbounded number of advice bits. A more
advanced study may investigate the tradeoff of the number of advice bits, the
number of random bits of the adversary, and the achievable competitive ratio.

There is also another interesting view on the scenario. In the classical model
without any advisor, the adversary is not allowed to construct one of the hardest
problem instances for a given online algorithm. The power of the adversary will
be reduced by asking him, for a given positive integer s, to generate a set of 2s

problem instances S. The competitive ratio of a S is the minimum of expected
ratios over all online algorithms solving S. Then, the competitive ratio of the
problem with respect to s is the maximum of the expected competitive ratios
over all sets. This measure for the quality of online algorithms is reasonable,
because in the classical model an online algorithm is bad if there exists one hard
problem instance for it. Here, investigating the achievable competitive ratio with
respect to s (or the size of the set of problem instances) can provide more insight
into the hardness of concrete online problems. For instance, if the competitive
ratio improves essentially with growing s, then the online problem can look easier
than at the first glance in the classical worst-case model.

A formal definition of this scenario can be given as follows. Let, for an s ∈
N, S be a set of 2s instances of a considered online problem P. Let A be an
online algorithm solving P. The competitive ratio of A on S, compA(S), is the
expected competitive ratio of A on all instances in S with respect to the uniform
probability distribution. For any S of 2s instances we define

comp(S) = min{compB(S) | B solves the instances in S}
as the competitive ratio of the “best” online algorithm for S. Finally,

compS(P) = max{comp(S) | S consists of 2s instances in S}
is the expected competitive ratio for the problem P for an adversary with s random
bits. For an online algorithm A solving P and any s ∈ N, we define the expected
competitive ratio of A with respect to s as

compA(s) = max{compA(S) | S consists of 2s instances of P}
If the corresponding maxima do not exist, one can still prove lower and upper
bounds on compS(P) and compA(s).

In this paper, we apply this concept to the classical online coloring prob-
lem, where vertices are presented one after the other with edges leading to the
previously revealed vertices only. In the classical model, the competitive ratio
is unbounded, i.e., it is a function growing with the number of vertices n. This
holds even for trees where this function is in O(log2 n) [12]. In contrast to this,
we show that, within this new model, for all k-colorable graphs for k ≥ 2, the
expected competitive ratio for sets of 2s problem instances is at most (s + 2)/2.

Note that here the sets of problem instances are known to the online algo-
rithm that can choose the appropriate working strategy with respect to the given

232 E. Burjons et al.

set of 2s inputs. If this set is unknown, we have the same unbounded competitive
ratio as for the classical online problem since, for each online algorithm, one can
take the hardest problem instance and add a few dummy vertices in order to get
2s problem instances.

For this upper bound of (s + 2)/2, we will reach a tight lower bound when
restricting to online algorithms using new colors only if necessary.

2 Upper Bound on the Competitive Ratio of the Online
Coloring Problem

The competitive ratio of the algorithms in this setting is linear with respect
to the number of random bits available to the adversary. A practical way of
computing competitive ratios in this setting is to look for the expected number
of colors used by the algorithm in order to satisfy a problem instance. Knowing
the chromatic number of the problem instance and the expected number of colors
used, we obtain the competitive ratio by computing their ratio.

Theorem 1. Given an adversary that uses s random bits to generate inputs
such that all of its 2s inputs are k-colorable, there exists an online algorithm with
unbounded advice that colors the input using (s + 2)k/2 colors in expectation.

Proof. Given the set S of 2s possible problem instances (defined by their request
sequence of vertices) we can construct a rooted tree TS where a node divides itself
into two or more child nodes whenever a next request in the sequence enables to
distinguish between two or more groups of different problem instances. The root
represents the whole set of 2s problem instances. For example, the first node
never gives any information about a concrete problem instance because it is the
same for all 2s instances. However, the second node may or may not be adjacent
to the first node presented. So, looking at the first two nodes of all the request
sequences, two groups of problem instances can be derived from that piece of
information.

Once constructed, the tree of the set of problem instances (instance tree)
will have at most 2s leaves. The algorithm colors the request sequence given as
follows.

First of all, choose one leaf � in the instance tree TS according to the following
criterion. For each node v in the path from the leaf � to the root of the tree, the
subtree Tv rooted in the node v has a greater or equal number of leaves than
any of its sibling subtrees Tw. Observe that, in a balanced tree, any leaf chosen
is good according to the criterion. Thus, there may be more than one possible
choice for the leaf. This leaf corresponds to a possible problem instance I�.

Start coloring the incoming vertices (requests) as if the graph given as a
problem instance is the instance I� corresponding to the selected leaf �. This
means that the online coloring strategy used is optimal for I�.

As long as the actual problem instance I coincides with the problem instance
I�, we use this strategy following the path from the root to �. If a request R comes
up that does not coincide with the chosen path, this means that the unknown

Online Graph Coloring with Advice and Randomized Adversary 233

R

l

TR

Fig. 1. Subtree TR

actual problem instance does not correspond to I�. In this case the problem
instance is one that corresponds to a leaf in a subtree TR of problem instances
that coincide with I up to the request R (see Fig. 1). A leaf �̂ in TR is selected
according to the same criterion as l was chosen in TS . Now, k new colors are
used to color the new incoming requests according to an optimal coloring of
the graph corresponding to I�̂. In this context, we speak about a switch from �

(I�) to �̂ (I�̂) during the execution of our online algorithm. Our online algorithm
continues recursively in TR in the same way as in TS and makes further switches
if necessary.

Coloring in this way, (t+1)k colors are used at most to color the graph where
t is the number of switches of leaves until the correct leaf is reached. We have
to prove that using this method not more than s/2 switches are performed on
average. In fact, we will prove in the following lemma that all together not more
than s2s

2 switches are required in all 2s online computations over all 2s problem
sequences considered.

Knowing that, in order to color all 2s graphs, not more than s2s/2 switches
are required, we can easily conclude that on average no more than s/2 switches
are made, so in expectation no more than sk

2 + k = (s+2)k
2 colors are used. ��

Lemma 1. Let S be any set of L problem instances, and let TS be the corre-
sponding tree with L leaves. Let #(TS) be the sum of the number of switches
over all L online computations on the L input instances performed by the online
algorithm described above. Then, #(TS) ≤ L log L

2 for L ≥ 2.

Proof. By induction on the number of leaves of the instance tree L. For L = 2
the only possible rooted tree is the root v and two leaves v1, v2. Either choice
that is possible for � is equally valid. Therefore, choosing v1, there will be no
switches for the first problem instance and one switch for the second, making a
total number of one switch as expected.

Suppose the lemma is valid for any tree with less than L leaves. For a tree
with L leaves, the root will have two or more child vertices, pick the one which
has the smallest subtree and name it T2 and name the rest of the tree with

234 E. Burjons et al.

Fig. 2. Tree configuration

the original root T1 (see Fig. 2). The selected leaf will always be in T1 (as T2

is the smallest subtree with a child root of TS). The total number of switches
is #(TS) = #(T1) + �2 + #(T2). This corresponds to the switches inside T1,
the switches inside T2 and the �2 first switches in the online computations with
problem instances in T2. Using the induction hypothesis, we have

#(TS) = #(T1) + �2 + #(T2)

≤ �1
2

log �1 +
�2
2

+
�2
2

log �2 +
�2
2

=
�1
2

(
log �1 +

�2
�1

)
+

�2
2

(log �2 + 1)

=
�1
2

log
(
2

�2
�1 �1

)
+

�2
2

log(2�2) .

We have rewritten the terms in order to have them as a sum of two logarithms.
Now we use the facts that �2 ≤ �1 and 2�2 ≤ L, and the inequality 2x ≤ 1 + x
for 0 ≤ x ≤ 1 for x = �2

�1
≤ 1 in the first term and we conclude

#(TS) ≤ �1
2

log
(
2

�2
�1 �1

)
+

�2
2

log(2�2)

≤ �1
2

log
((

1 +
�2
�1

)
�1

)
+

�2
2

log L

=
�1
2

log L +
�2
2

log L

=
L

2
log L.

Observe that, if all of the child subtrees of the root are equal in number
of leaves, we can still choose the selected leaf amongst T1 or in the other way
around, select a subtree T2 where the chosen leaf is not included. ��

Following Lemma 1 the expected number of switches is at most

L log L
2

L
=

log L

2
.

Online Graph Coloring with Advice and Randomized Adversary 235

For L = 2s, the expected number of switches is at most s/2, and so the expected
number of colors used over all 2s input instances is k+ sk

2 . If the optimal coloring
of the instances uses k colors, then the expected competitive ratio is 1 + s

2 .

3 Lower Bound

We were not able to prove matching lower bounds to the upper bounds proved
above. So we present lower bounds only for the subclass of so-called minimalistic
online algorithms having the following property: They never use a new color if
the presented vertex can be colored with one of the colors used up to now.

3.1 Idea of the Proof

We start by proving the lower bound (s+2)/2 on the expected competitive ratio
for bipartite graphs, i.e., for 2-colorable graphs, if the adversary has s random
bits. The idea is to construct a concrete graph Gs = (Vs, Es) for each integer
s ≥ 1 by a recursion with respect to s. Then, for each s, the 2s problem instances
of the adversary are generated by presenting Gs vertex by vertex in 2s different
orders. Hence, at the very end the graph Gs is colored in all 2s cases and the
difficulty is in recognizing which one of the vertices is the currently presented
vertex.

To get some first intuition about our proof strategy consider the graph G1

in Fig. 3.
At the beginning, the four vertices labeled by strings of length 2, namely 00,

01, 10, and 11, are presented. An online algorithm sees only two pairs of vertices,
but does not know their labels. The algorithm has to use two colors c1 and c2
in order to color them. If it uses the same color c1 (or c2) for 00 and 10 and the
color c2 (or c1) for 01 and 11, then after presenting vertices 0 and 1 the online
algorithm can use c2 for 0 and c1 for 1 and G1 is colored in an optimal way. If the
online algorithm chooses the same color c1 (or c2) for 00 and 11 and the other
color for 01 and 10, then one needs two more colors to color 0 and 1 because
c1 and c2 are forbidden for both, and 0 and 1 are adjacent. The corresponding
problem instances are the following sequences of vertices

00, 01, 10, 11, 0, 1 and 00, 01, 11, 10, 0, 1.

Fig. 3. Graph G1

236 E. Burjons et al.

After getting the first four vertices, no online algorithm can distinguish between
these two problem instances and so both will be colored in the same way with
respect to the order of the vertices. In this way, G1 will be colored optimally with
2 colors for one instance and suboptimally with 4 colors for the other instance.
The expected number of colors is 3 and the expected competitive ratio is 1.5.

One immediately observes that one random bit is sufficient to randomly
choose one of these two problem instances. Note, that we denoted the vertices
00, 01, 10, and 11 in such a way that, for an optimal coloring, the vertices with
the same last bit have to be colored by the same color.

Fig. 4. Graph G2

Now, we need to exploit this idea for an arbitrary number s of random bits.
To get G2, one adds a new layer of 23 = 8 vertices labeled by strings of length 3
as depicted in Fig. 4. The edges connecting these new vertices of the third layer
with the vertices in the first layer and in the second layer are chosen in such
a way that G2 can be colored optimally only if all vertices ending with the bit
0 have the same color. The 4 instances are presented in three phases: First the
vertices labeled by strings of length 3, then the vertices labeled by strings of
length 2, and finally the vertices 0 and 1 are presented. The 4 instances are not
distinguishable when presenting the 4 pairs of vertices of the first layer. If they
are not colored in an optimal way, then the first two colors cannot be used either
for coloring any of the vertices in the third layer and not for coloring at least
one pair of vertices in the second layer. The basic problem instance is

000, 001, 010, 011, 100, 101, 110, 101, 111, 00, 01, 10, 11, 0, 1.

One random bit b1 can be used to exchange the order of 010 ↔ 011 and 110 ↔
111. The second random bit b2 can be used to exchange the order of 10 ↔ 11
and correspondingly resume or reorder the four vertices 100, 101, 110, 111.

Online Graph Coloring with Advice and Randomized Adversary 237

3.2 Construction of Gs and the Corresponding 2s Problem
Instances

In general, one can define Gs recursively from Gs−1 as follows. Let G0
s−1 (G1

s−1)
be the same graph as Gs−1 except for the labeling of the vertices. In G0

s−1 (G1
s−1)

each label is prolonged by one additional first bit 0 (1), i.e., a vertex labeled by
x1x2 . . . xs−1 is now labeled by 0x1x2 . . . xs−1. First, we take G0

s−1 and G1
s−1 as

two components. Then a pair of connected vertices 0 and 1 is added and the
vertex 0 is connected to all vertices in G0

s−1 and G1
s−1 where the last bit of

the label is 1 and the vertex 1 is connected to all vertices where the last bit is
0. If, for i = 0, 1, one denotes by Gi

s−1(0) and Gi
s−1(1) the subgraphs of Gi

s−1

induced by the vertices whose labeling ends with 0 and 1, respectively, then one
can realize our recursive construction as depicted in Fig. 5.

Explicitly, Gs = (Vs, Es) can be described as follows.

Vs = {x0x1 . . . xm | xi ∈ {0, 1} for i ∈ {1, . . . , m}, 1 ≤ m ≤ s}
Es = {{x0x1 . . . xr, y0y1 . . . yt} | if (r < t and xr = ȳt) or (r = t and

x0x1 . . . xr−1 = y0y1 . . . yt−1 and xr = ȳt)}
We say that the vertex x0x1 . . . xm is in the (s − m + 1)-th layer of Gs.

Now, we have to describe the 2s problem instances corresponding to Gs. We
consider 2s bit strings b1b2 . . . bs for bi ∈ {0, 1}, for i = 1, . . . , s and assign one
order of vertices to each string. For the string consisting of zeros only, one can
consider the order of vertices starting with the lowest labels of length s + 1 and
finishing with labels 0 and 1. Inside of the same length, the vertices are ordered
lexicographically (see Fig. 4 for G2 when reading the labels from left to right in
each layer). The last bit bs is responsible for the order of 10 and 11. If bs = 1,
then one exchanges the order of 10 and 11 to 11, 10. If bs = 1, it immediately
means that in the layer s − 2 the order 100, 101, 110, 111 has to be changed to
110, 111, 100, 101 to still have the same structure of Gs (see Fig. 5). If b1 = 1

Fig. 5. Explicit construction of the graph Gs

238 E. Burjons et al.

and b2 = 0, then this is already the corresponding instance. If b1 = b2 = 1, then
one has still to exchange the order 010, 011 for 011, 010 and the order 100, 101
for 101, 100 in order to get the corresponding problem instance. The last case is
that b1 = 0 and b2 = 1. In this case, the layers 2 and 3 remain unchanged and
the order 110, 111 is exchanged for 111, 110.

If one wants to describe these changes for each Gs in general, it is sufficient
to say, for each binary string b1 . . . bs, which position in the same layer is taken
by a vertex labeled by x0x1 . . . xm for 0 ≤ m ≤ s. This position can be described
by the function Zb1b2...bs

:

Zb1b2...bs
(x0x1 . . . xm) = z0z1 . . . zm with zi ≡ xi +

i−1∑

j=0

xjbs−j mod 2

for all x0x1 . . . xm and 0 ≤ m ≤ s.
Let Set(Gs) be the set of 2s problem instances specified by the 2s binary

strings b1 . . . bs.

3.3 Lower Bounds

The following fact can be proved easily by induction on the number of layers.
Let G′

m(a) be the union of graphs G1
m−1(a) and G0

m−1(a) (see Fig. 5).

Observation 1. Let 1 ≤ m ≤ s and let Gm be any subgraph of Gs induced by
presenting the vertices of the first m + 1 layers of Gs. Let A be a coloring of Gs

obtained by an arbitrary minimalistic online algorithm, and let ColA(H) denote
the set of the colors used to color a subgraph H of Gm. Then

ColA(G′
m(0)) = ColA(G′

m(1))

or
|ColA(G′

m(0)) − ColA(G′
m(1))| = 1.

Note that the situation ColA(Gm(0)) = ColA(Gm(1)) forces to take two new
colors when coloring the vertices 0 and 1 in Gm. The graphs Gs are constructed
in such a way that until the very end it is not clear which vertices have labels
finishing with 0 (1). If one takes a wrong guess in some subgraph, then one uses
the colors from ColA(Gm−1(a)) to color vertices in G1

m−1(a) in one subgraph
and to color vertices in G1

m−1(ā) in the second subgraph.
We call an online algorithm on Set(Gs) symmetric if it uses the same strategy

to color different copies (G0
m or G1

m) of the same subgraph with respect to the
order in which the vertices are presented.

Lemma 2. For each s ∈ N, any minimalistic symmetric online algorithm work-
ing on Set(Gs) uses at least s + 2 colors on average.

Online Graph Coloring with Advice and Randomized Adversary 239

Proof (Sketch). Let us prove this fact by induction. Let A be a minimalistic
online algorithm for coloring bipartite graphs.

Let s = 0. To color G0 = K2 one needs 2 colors for the single input instance
in Set(G0), and so we are done.

In general, consider the two subgraphs G0
s−1 and G1

s−1. Following the induc-
tion hypothesis, each one of them uses at least (s − 1) + 2 = s + 1 colors on
average over its 2s−1 problem instances when colored by A. We have to prove
that A uses s + 2 colors on average over Set(Gs) when coloring Gs.

When the vertices of the (s−1)-th layer labeled by 00, 01, 10, 11 are presented,
A cannot distinguish between 10 and 11. If A makes the right decision, no new
color is required for 0 and 1. If A makes a wrong decision, one can show that
ColA(G′

s(0)) = ColA(G′
s(1)), and so none of the colors used for Gs−1 can be

used to color 0 and 1. Thus, two new colors are necessary.
This means that for 2s−1 problem instances A does not need a new color and

for 2s−1 problem instances A needs two new colors. On average A needs at least
one new color which concludes the proof. ��

We are not completely happy with forcing the online algorithms to be sym-
metric because this looks like a strong restriction. We can remove this require-
ment by using the full power of the adversary. For a given minimalistic online
algorithm A, the adversary renames the vertices in Gs (i.e., reorders the sequence
of vertices) in such a way that A behaves on this concrete problem instance αA
as if it were a symmetric algorithm. Then this instance αA is used to generate
the set of 2s instances Set(Gs(αA)) in the same way as Set(Gs) was constructed
with respect to 2s binary strings. This finally offers the following result.

Theorem 2. For each s ∈ N and each minimalistic online algorithm A there
exists a set of instances, namely Set(Gs(αA)), such that the expected competitive
ratio of A is at least (s + 2)/2.

Making more copies of Gs and connecting them by taking edges from each
vertex of one copy to all vertices of all other copies one gets a structure that is
a starting point for proving the following theorem.

Theorem 3. For any k, s ∈ N, and any minimalistic online coloring algo-
rithm A, there exists an adversary using s random bits to construct 2s problem
instances that are k-colorable such that the competitive ratio of A is at least
(s + 2)/2.

References

1. Barhum, K., Böckenhauer, H.-J., Forǐsek, M., Gebauer, H., Hromkovič, J., Krug,
S., Smula, J., Steffen, B.: On the power of advice and randomization for the disjoint
path allocation problem. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa,
A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 89–101. Springer, Heidelberg
(2014)

2. Bianchi, M.P., Böckenhauer, H.-J., Hromkovič, J., Keller, L.: Online coloring of
bipartite graphs with and without advice. Algorithmica 70(1), 92–111 (2014)

240 E. Burjons et al.

3. Böckenhauer, H.-J., Hromkovič, J., Komm, D., Krug, S., Smula, J., Sprock, A.:
The string guessing problem as a method to prove lower bounds on the advice
complexity. Theor. Comput. Sci. 554, 95–108 (2014)

4. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complex-
ity of the k-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part I. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)

5. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the
advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

6. Böckenhauer, H.-J., Komm, D., Královič, R., Rossmanith, P.: The online knapsack
problem: advice and randomization. Theor. Comput. Sci. 527, 61–72 (2014)

7. Dobrev, S., Královič, R., Markou, E.: Online graph exploration with advice. In:
Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 267–278.
Springer, Heidelberg (2012)

8. Dobrev, S., Královič, R., Pardubská, D.: Measuring the problem-relevant informa-
tion in input. RAIRO Theor. Inform. Appl. 43(3), 585–613 (2009)

9. Forǐsek, M., Keller, L., Steinová, M.: Advice complexity of online coloring for paths.
In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 228–239.
Springer, Heidelberg (2012)

10. Gebauer, H., Komm, D., Královič, R., Královič, R., Smula, J.: Disjoint path allo-
cation with sublinear advice. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015.
LNCS, vol. 9198, pp. 417–429. Springer, Heidelberg (2015)

11. Hromkovič, J., Královič, R., Královič, R.: Information complexity of online prob-
lems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36.
Springer, Heidelberg (2010)

12. Keller, L.: Complexity of optimization problems: advice and approximation. Ph.D.
thesis, ETH Zürich (2014)

13. Komm, D., Královič, R.: Advice complexity and barely random algorithms. In:
Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M.,
Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 332–343. Springer, Heidelberg
(2011)

14. Komm, D., Královič, R., Mömke, T.: On the advice complexity of the set cover
problem. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR
2012. LNCS, vol. 7353, pp. 241–252. Springer, Heidelberg (2012)

15. Wehner, D.: Advice complexity of fine-grained job shop scheduling. In: Paschos,
V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 416–428. Springer,
Heidelberg (2015)

Pseudoknot-Generating Operation

Da-Jung Cho1, Yo-Sub Han1(B), Timothy Ng2, and Kai Salomaa2

1 Department of Computer Science, Yonsei University,
50, Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea

{dajung,emmous}@cs.yonsei.ac.kr
2 School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada

{ng,ksalomaa}@cs.queensu.ca

Abstract. A pseudoknot is an intra-molecular structure formed primar-
ily in RNA strands and much research has been done to predict efficiently
pseudoknot structures in RNA. We define an operation that generates
all pseudoknots from a given sequence and consider algorithmic and lan-
guage theoretic properties of the operation. We give an efficient algorithm
to decide whether a given string is a pseudoknot of a regular language
L—the runtime is linear if L is given by a deterministic finite automaton.
We consider closure and decision properties of the pseudoknot-generating
operation. For DNA encoding applications, pseudoknot structures are
undesirable. We give polynomial-time algorithms to decide whether a
regular language L contains a pseudoknot or a pseudoknot generated by
some string of L. Furthermore, we show that the corresponding questions
for context-free languages are undecidable.

Keywords: Pseudoknots · Pseudoknot-generating operation · Closure
and decision properties · Formal languages

1 Introduction

A ribonucleic acid (RNA) often forms secondary structures according to the
base-pairing with Adenine (A), Uracil (U), Guanine (G) and Cytosine (C) [5].
These bases A,G,C and U complementarily bind and form a double helix called
stem, and double helix with unpaired loop known as stem-loop. A RNA structure
generally has stems and various kinds of loops as a structural motif, which then
gives rise to well-known structures such as hairpin or pseudoknot. RNA struc-
tures play an important role in cells and give insights to molecular evolution and
function of RNA molecule [19]. Therefore, in bioinformatics, it is one of the most
important and fundamental problems to predict RNA structures made up of a
set of stems with optimal thermodynamic energy. Note that stabilized optimal
foldings of a RNA sequence are closely related to the minimum free energy of
RNA secondary structures based on the theory of thermodynamics.

A pseudoknot structure contains at least two stem-loops that occur in
RNA with intramolecular base-pairing: Second half of one stem is embedded

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 241–252, 2016.
DOI: 10.1007/978-3-662-49192-8 20

242 D.-J. Cho et al.

5′ A G C

T C G
C

T

A G
3′

(b) folding pseudoknot structure

A G C T C G C T G A

second half
of stem

(a) a sequence for pseudoknot structure

5′ 3′

stem loop

Fig. 1. A pseudoknot structure example: (a) A sequence contains a pseudoknot struc-
ture in which the second half of stem (blue box) exists between the two halves of another
stem (green boxes) (b) A sequence folds into a pseudoknot (Color figure online).

in between the two halves of another stem. (See Fig. 1 for an example of pseudo-
knot structure.) Pseudoknot structures appear in many natural RNA molecules
and are closely related with the ribosomal frameshifting that allows viruses to
create many protein structures from a relatively small genome [9]. Since the
ribosomal frameshifting affects on encoding protein and the pseudoknot struc-
ture gives a tertiary structure of molecule, it is a major topic of biomolecu-
lar computing to predict pseudoknot structures [3,9]. This led researchers to
study efficient methods that predict pseudoknot structures [2,4]. From a formal
language viewpoint, several researchers [8,15,17,18] characterized the pseudo-
knot structure and suggested pseudoknot predicting algorithms. Given an input,
the problem of predicting or aligning arbitrary pseudoknot structures is NP-
hard [2,11]. Möhl et al. [17] presented an algorithm that computes the edit-
distance of two RNA structures with arbitrary pseudoknots and showed that
the algorithm is applicable in practice. Kari and Seki [15] formalized particular
case of pseudoknot structures under formal language theory and investigated its
properties. Evans [8] proposed the first polynomial-time algorithm for finding
maximum common substructures that include pseudoknots. Rinaudo et al. [18]
generalized several RNA structures and presented an alignment algorithm based
on tree decomposition approach.

While most researchers considered a problem of predicting pseudoknot struc-
tures from a (long) sequence, we consider pseudoknot structures from a different
angle: A sequence may be expanded (namely, append a new sequence itself) to
form a pseudoknot structure. We consider this process and define a new oper-
ation pseudoknot-generating operation that generates all pseudoknot structures
(from now we just call pseudoknots in short) from a given sequence. Then the
resulting sequences fold itself into pseudoknots. Thus the input string becomes
a seed string to generate pseudoknots. We establish the closure properties of
the pseudoknot-generating operation on a string and present an algorithm that
determines whether or not a string is a pseudoknot. Since pseudoknot struc-
tures are related to some biological mutations, they are crucial for detecting
mutational patterns of a DNA sequence. We also study the closure properties
of pseudoknot-generating operation on languages and examine several questions
related to pseudoknots with respect to languages. From a biological view point,
we can think of the pseudoknot-generating operation on a language as a pro-

Pseudoknot-Generating Operation 243

cedure to generate all possible pseudoknots that may cause a mutation from a
set of subsequences. In particular, we theoretically demonstrate that one can
check whether or not two sets of DNA sequences contain common mutational
seed sequences. Furthermore, we define the pseudoknot-freeness and investigate
the decidability problem for pseudoknot-freeness for regular and context-free
languages.

In Sect. 2, we recall some notation and define the pseudoknot-generating oper-
ation. We consider the pseudoknot-generating operation and design several algo-
rithms for recognizing generated pseudoknots from strings and finite automata
in Sect. 3. Then, we study closure and decision properties of the pseudoknot-
generating operation, and, investigate the pseudoknot-free languages in Sect. 4.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. The size |Σ| of Σ is the number of characters in Σ. A language over Σ
is a subset of Σ∗. The symbol ∅ denotes the empty language and the symbol λ
denotes the null string. Given a string x = x1 · · · xn, |x| is the number of charac-
ters in x, x(i) denotes the ith character xi of x and x(i, j) = xixi+1 · · · xj is the
substring of x from position i to position j, where i ≤ j. Given two strings x
and y in Σ∗, x is a prefix of y if there exists z ∈ Σ∗ such that xz = y and x is a
suffix of y if there exists z ∈ Σ∗ such that zx = y. Furthermore, x is said to be
a substring or an infix of y if there are two strings u and v such that uxv = y.

An FA A is specified by a tuple (Q,Σ, δ, s, F), where Q is a finite set of
states, Σ is an input alphabet, δ : Q × Σ → 2Q is a transition function, s ∈ Q is
the start state and F ⊆ Q is a set of final states. If F consists of a single state f ,
then we use f instead of {f} for simplicity. Let |Q| be the number of states in Q
and |δ| be the number of transitions in δ. Then, the size of A is |A| = |Q| + |δ|.
For a transition δ(p, a) = q in A, we say that p has an out-transition and q has
an in-transition. If δ(q, a) has a single element q′, then we denote δ(q, a) = q′

instead of δ(q, a) = {q′} for simplicity.
A string x over Σ is accepted by A if there is a labeled path from s to a final

state such that this path spells out x. We call this path an accepting path. Then,
the language L(A) of A is the set of all strings spelled out by accepting paths
in A. We say that a state of A is useful if it appears in an accepting path in A;
otherwise, it is useless. Unless otherwise mentioned, in the following we assume
that all states of A are useful.

Given a string x, we say that x has a pseudoknot if there exists a substring w
of x such that w = w1w2w3w4w

R
1 w5w

R
3 for some strings w1, w2, w3, w5 ∈ Σ+ and

w4 ∈ Σ∗. We call the string w pseudoknot string (or pseudoknot in short). We
consider a restricted pseudoknot in which w4 = λ, which means that half of one
stem is adjacent to half of another stem. (See Fig. 2 for an example of restricted
pseudoknot.)

Given a string x, we define the restricted pseudoknot-generating operation

PKR(x) = {x1x2x3x
R
1 x4x

R
3 | x = x1x2x3 and x1, x2, x3, x4 ∈ Σ+}.

244 D.-J. Cho et al.

i ji′ j′ i i′ j j′

(a) simple pseudoknot (b) restricted pseudoknot

Fig. 2. An example of two types of pseudoknot on a sequence of length n: (a) a simple
pseudoknot with two base-pairings (i, j) and (i′, j′) (b) a restrict version of pseudoknot
with two base-pairings (i, j) and (i′, j′) such that the first half of (i′, j′) is immediately
followed by the second half of (i, j), where 0 ≤ i < i′ < j < j′ ≤ n.

For a language L,
PKR(L) =

⋃

x∈L

PKR(w).

We define the iterated operation of PKR to be, for i ≥ 0,

PKR
(0)(L) = L, PKR

(i+1)(L) = PKR(PKR
i(L)), PKR

∗(L) =
∞⋃

i=0

PKR
i(L).

In the following, we only consider restricted pseudoknots and call them simply
pseudoknots unless we need to distinguish restricted pseudoknots from general
pseudoknots.

3 Algorithms for Recognizing Generated Pseudoknots

We first study the problem for checking whether or not a string w = w1w2 · · · wn

is a pseudoknot; namely, is w = x1x2x3x
R
1 x4x

R
3 for some x1, x2, x3, x4 ∈ Σ+.

The main idea of our approach is to check if there exists a substring x3x
R
1 of w

such that x1 is a prefix and xR
3 is a suffix of w. A naive approach is to consider

all possible substrings and check this condition. We design a better algorithm
that checks the required condition more efficiently based on the Aho-Corasick
algorithm [1].

w
x3 xR1

x1

xR3i j

Fig. 3. A naive approach for checking whether or not w is a pseudoknot. For each
substring w(i, j), we check whether or not w(i, j) is a catenation of x3 and xR

1 for a
prefix x1 and a suffix x3 of w—w(i, j) = x3x

R
1 —by comparing characters from both

directions.

Pseudoknot-Generating Operation 245

Before we describe the whole algorithm, we first present an algorithm that
finds the shortest length of the matching prefix of the input pattern string with
respect to the input for each index of the input. This algorithm is crucial for
checking whether or not w is a pseudoknot.

Procedure. ShortestMatchingLength(w, T)
/* w is a length m pattern and T is a length n text */

Construct a DFA A = (Q, Σ, δ, 0, Q \ {0}) for w, where Q = {0, 1, . . . , m}

/* construct the goto function G */

G(0, a �= w1 ∈ Σ) ← 0
for i ← 0 to m − 1 do

G(i, wi+1) ← i + 1

/* construct the failure function F and the output function O */

F(1) ← 0
for i ← 1 to m do

if G(i, a) = i + 1 then
v ← F(i)
while G(v, a) �= ∅ do

v ← F(v)

F(i + 1) ← G(v, a)
O(i + 1) ← min(O(i + 1),O(F(i + 1)))

/* read T using G,F,O */

q ← 0
for i ← 1 to n do

while G(q, T (i)) �= ∅ do
q ← F(q)

q = G(q, T (i))
if O(q) �= ∅ then

SML[q] ← O(q)

return SML

Given an input pattern string w and a text T , Proc. ShortestMatchin-
gLength is a modified Aho-Corasick algorithm that finds the shortest length
of the matching prefix of w at each index of T ; if u the shortest matching prefix
of w, then the reversal uR of u appears as an infix of T . The two main differences
from the original Aho-Corasick algorithm are

1. it receives only one string w as an input pattern and regards all prefixes of
w as matching patterns

246 D.-J. Cho et al.

2. the output function O returns the shortest length of the match-
ing pattern instead of reporting all matching patterns: O(i+i) ←
min(O(i+1),O(F(i+i))).

It is easy to verify that Proc. ShortestMatchingLength runs in O(m + n)
time, where m = |w| and n = |T |.

Now we design the whole algorithm that determines whether or not w is a
pseudoknot using Proc. ShortestMatchingLength. First, we consider all prefixes
of w up-to length n

2—candidates for being w1 in the pseudoknot—and compute
the set wp[i] of the shortest length of the matching prefix of each index using
Proc. ShortestMatchingLength with w = w1w2 · · · wn

2
and T = wR. Next, we

similarly consider all suffixes of w up-to length n
2—candidates for being wR

3

in the pseudoknot—and compute the set ws[i] of the shortest length of the
matching suffix for each index 1 ≤ i ≤ n using Proc. ShortestMatchingLength
with w = wn

2 +1 · · · wn−1wn and T = w.

wp[n] 6 4 3 2 3 2

3 2 3 4 6ws[n]

1 2 3 4 5 6 7 8 9 10 11 12w

Fig. 4. An example of running Proc. ShortestMatchingLength for checking whether
or not w is a pseudoknot.

Figure 4 is an example of running Proc. ShortestMatchingLength for a
string w and obtain wp[n] and ws[n]. In this example, because of ws[9] and
wp[10], we know that w is a pseudoknot. However, a pair of ws[5] and wp[6] is
invalid since, at index 6, w cannot have a prefix of size 6 (=wp[6]). Similarly, a
pair of ws[11] and wp[12] is invalid for checking the pseudoknot structure for w
since, after index 11, w cannot have a wR

1 w4w
R
3 , where |wR

3 | = 6.

Lemma 1. Given a string w of length n, we can determine whether or not w
is a pseudoknot in O(n) time.

Note that if w is a pseudoknot, then we can find all indices i of w such that
w(1, i) = x1x2x3 and w(i + 1, n) = xR

1 x4x
R
3 from the algorithm. Let Ipk(w) be

the set of such indices.

Corollary 1. Given two pseudoknot strings x and y, we can determine whether
or not both x, y ∈ PKR(w) for a string w in linear-time in the size of x and y.
We can also identify such w using Ipk(x) and Ipk(y) within the same runtime.

We next consider a problem of determining whether or not w is in PKR(L(A))
of a given FA A. Our approach is simple: we read w character by character with
A and find all indices j of w when we enter a final state of A while reading w.
Namely, w(1, j) ∈ L(A). Let Ip(w,A) be the set of such indices.

Pseudoknot-Generating Operation 247

Lemma 2. Given a string w and an FA A,

w ∈ PKR(L(A)) iff Ipk(w) ∩ Ip(w,A)
= ∅.

Note that a pseudoknot string may have several different pseudoknots. There-
fore, even if w(1, i) = x1x2x3 and w(i + 1, n) = xR

1 x4x
R
3 for an index i of w,

w(1, i) may not be accepted by A. This is why we have considered all possible
indices in Ipk(w). We now establish the following result based on pseudoknot
checking algorithm and Lemma 2.

Theorem 1. Given a string w of size n and an FA A of size m = |A|, we can
determine whether or not w ∈ PKR(L(A)) in O(mn) time. If A is a DFA, then
the runtime becomes O(n).

Proof. It takes O(n) time to compute Ipk(w) and O(mn) time to compute
Ip(w,A). If A is a DFA, then we can compute Ip(w,A) in O(n) time. ��

Note that pseudoknots of RNA are closely related with the frameshifting muta-
tion of protein expressions and commonly found in viral genomes, in particular
influenza virus [7]. This leads researchers to consider the structural comparison
among several sequences to find the common mutational pattern, in particular,
pseudoknots [6]. Here, we investigate a necessary condition of PKR(x)∩PKR(y)
=
∅ for two strings x and y and show that it is decidable to check whether or not two
strings have a common pseudoknot in PKR(x) and PKR(y).

y

u

uR

y1

x1

y2 y3

x3x2

t v z u tR
xR1

zR
xR3x4

yR1 yR3y4

uR

x
y

u

uR

y1

x1

y2 y3

x3x2

t

v z u

tR

xR1

zR
xR3x4

yR1 yR3y4

uR

x

(b)

(a)

Fig. 5. An example of two strings x and y such that PKR(x) ∩ PKR(y) �= ∅. First, x is
a prefix of y. Second, the longer part u (slanted line box in the figure) of y appears as
(a) a prefix of x or (b) an infix (but not prefix) of x in the reversed form uR, where
t, v, z ∈ Σ+.

Let x and y be two strings, where |x| < |y|. Figure 5 shows that PKR(x) ∩
PKR(y)
= ∅ if and only if x is a prefix of y, and y(|x| + 1, |y|) (= u in the
figure) appears as an infix of x(1, |x| − 2)—we consider x(1, |x| − 2) to ensure
t, v, z ∈ Σ+, if exists. There are two possible cases for being an infix as follows:

248 D.-J. Cho et al.

(a) Since uR appears as a prefix of x(1, |x|−2), we can select an arbitrary prefix t
of x(1, |x| − 2) for y1 as depicted in Fig. 5(a).

(b) Since uR appears an infix (but not a prefix) of x(1, |x| − 2), we can select
the prefix t of x1 such that x1 = tuR for y1 as depicted in Fig. 5(b).

We can check this in O(|x|) time using the KMP algorithm [16] and, therefore,
obtain the following result.

Lemma 3. Given two strings x and y such that |x| < |y|, we can determine
whether or not PKR(x) ∩ PKR(y)
= ∅ in O(|x|) time.

Proof. The proof is immediate from Fig. 5. ��
We know if two strings have a common pseudoknot in PKR(x) and PKR(y).

We next investigate the inclusion between PKR(x) and PKR(x) when |x| < |y|.
Lemma 4. Given two strings x and y, if |x| < |y|, then it is impossible that
PKR(x) ⊂ PKR(y).

Given a string z, it is straightforward to verify that PKR(z) is regular and
PKR(z) is infinite from the definition of the operation. We consider the case of
applying the PKR operation on the resulting language several times, and prove
that the iterated PKR does not preserve the regularity.

Theorem 2. There exists a string z such that PKR
2(z) and PKR

∗(z) are not
regular.

Proof. By choosing Σ = {a, ¢, $} and z = ¢a$, it can be verified that PKR
2(z)

and PKR
∗(z) are not regular. ��

4 Pseudoknot-Generating Operation on Languages

We investigate the properties of pseudoknot on a set of strings. The pseudoknot
operation on a string implies that we generate a pseudoknot family related by
a common structural motif for pseudoknot. Note that a given string expands
and becomes a pseudoknot string by the pseudoknot operation on a string. We
extend this view point into languages in which a set of strings represents a set
of all subsequences of a long RNA sequence. This implies that the pseudoknot
operation on a language generates all possible pseudoknots that may partially
occur as a mutation.

4.1 Closure and Decision Properties of the Pseudoknot-Generating
Operation

We first consider the closure property of the pseudoknot operation and determine
whether or not two sets of pseudoknots on languages contain a common string.

Theorem 3. Regular and context-free languages are not closed under PKR.

Pseudoknot-Generating Operation 249

Next, given regular languages L and R we consider the problem of checking
whether or not there is a pseudoknot generated both by a string of L and a string
of R. Note that, by Theorem3, we know that PKR(L) need not be even context-
free in general. This means that we cannot simply first produce a representation
of the languages PKR(L) and PKR(R), respectively, and then check whether or
not they have a non-empty intersection. Instead, our algorithm is based directly
on finite automata for the original language L and R.

Let A = (QA, Σ, δA, sA, FA) and B = (QB , Σ, δB , sB , FB) be two FAs for L
and R. Then, we first construct an FA C = (QA ×QB , Σ, δC , sA × sB , FA ×FB)
for L(A) ∩ L(B) by the standard Cartesian product, where

δC((p, q), a) = {(p′, q′) | p′ ∈ δA(p, a) and q′ ∈ δB(q, a)}.

Our algorithm is similar to the idea illustrated in Fig. 5: We check if there
exists a pair of strings—say x ∈ L(A), y ∈ L(B) and |x| < |y| (the other case
is symmetric)—such that PKR(x) ∩ PKR(y)
= ∅. Since x is a prefix of y, there
exists a path from sB to a nonfinal state q that spells out x in B. We search for
such paths in C. For each state (f, q) of C, where f ∈ FA, q ∈ QB , we define two
FAs as follows:

–
←−−
Cf,q = (QA × QB , Σ, δC , sA × sB , {(f, q)}); in other words, (f, q) is the only
final state of C.

–
−→
Bq = (QB , Σ, δB , q, FB); in other words, q is the new start state of B.

x

y u

L(A) L(B)

u

uR

L(
←−−
Cf,q)

x qf
x

L(C)
x (f, q)

Fig. 6. An example of two FAs A and B such that PKR(L(A)) ∩PKR(L(B)) �= ∅. Note
that uR is an infix of the string x(2, |x| − 2).

Lemma 5. There exists a state (f, q) of C such that

L(
←−−
Cf,q) ∩ Σ∗ · (L(

−→
Bq)R · Σ2) · Σ∗
= ∅

or a state (p, f ′) of C such that

L(
←−−−
Cp,f ′) ∩ Σ∗ · (L(

−→
Ap)R · Σ2) · Σ∗
= ∅

if and only if PKR(L(A)) ∩ PKR(L(B))
= ∅.

250 D.-J. Cho et al.

Once we have an intersection FA C, there are at most |QA||QB | states in
the form of (f, q) or (p, f ′). Then, for each state, say (f, q), we need to check
whether or not L(

←−−
Cf,q) ∩ Σ∗ · (L(

−→
Bq)R · Σ2) · Σ∗ is empty. Since the size of Cf,q

is at most |A||B| and the size of
−→
Bq is at most |B|, it takes O(|A||B|2) time.

Therefore, in the worst-case, the total runtime is

O(n2) (the number of states) × O(n6) (intersection test) = O(n8),

where n is the maximum number of states between A and B.

Theorem 4. Given two FAs A and B, we can determine whether or not

PKR(L(A)) ∩ PKR(L(B))
= ∅

in polynomial-time.

Often we need to verify if there exists a pseudoknot in the input set—a set
of strings. In biology, a RNA sequence might first fold into non-pseudoknot, and
then form a more complex structure including pseudoknots. According to this
phenomenon, Jabbari and Condon [10] considered non-pseudoknots for predict-
ing pseudoknots capturing all possible pre-structures of pseudoknots.

When an input set has a finite number of elements, we may check them one by
one. However, if the set is infinite, then we need a better algorithm. We consider
this problem when the set is a regular language. Before we present an algorithm,
we define the inverse restricted pseudoknot-generating operation PKR

−1 to be

PKR
−1(w) = {x1x2x3 | w ∈ x1x2x3x

R
1 x4x

R
3 , x1, x2, x3, x4 ∈ Σ+}.

Lemma 6. Let A be an NFA. Then there exists an NFA A′ such that

L(A′) = PKR
−1(L(A)).

Corollary 2. Given an NFA A, we can determine if A accepts a pseudoknot.

Note that it is decidable to determine whether or not a given regular lan-
guage contains a pseudoknot. Here, we contrast the result of Corollary 2 by
showing that it is undecidable whether or not a context-free language con-
tains a pseudoknot. We use a reduction from the Post Correspondence Prob-
lem (PCP) [20]. Recall that an instance of PCP consists of two lists of strings
((u1, . . . , un), (v1, . . . , vn)), ui, vi ∈ Σ∗, 1 ≤ i ≤ n, and a solution of this instance
is a sequence of integers i1, . . . , ik ∈ {1, . . . , n} such that ui1 · · · uik = vi1 · · · vik .
It is well known that PCP is unsolvable [20].

Proposition 1. For a given context-free language L, it is undecidable whether
or not L contains a pseudoknot.

Pseudoknot-Generating Operation 251

4.2 Pseudoknot-Free Languages

Analogously with the definition of restricted code classes, such as prefix- or suffix-
codes [12], we define that a language L is PKR-free (informally just pseudoknot-
free) if no string of L is a pseudoknot generated by another string of L.

Definition 1. We say that a language L is PKR-free if L ∩ PKR(L) = ∅.
In DNA coding applications, pseudoknots are in general undesirable because

they can result in undesired bonds in DNA sequences [13,14]. This means that if
we can efficiently check the property of PKR-freeness, it might be worthwhile to
add a preprocessing stage for predicting pseudoknot-structures. Note that some
approaches for prediction pseudoknots consider also “non-pseudoknots” because
an RNA sequence can fold a non-pseudoknot to form a pseudoknot.

We consider the case when L is regular and show that we can decide whether
or not L is PKR-free. We use a similar construction for constructing an FA
for PKR

−1.

Lemma 7. Let A be an FA. Then there exists an NFA A′ that accepts a set of
strings u = u1u2u3 such that uR

1 u4u
R
3 u1u2u3 ∈ L(A).

Theorem 5. Given an FA A, we can determine whether or not L(A) is PKR-
free in polynomial-time.

Here, we observe that deciding PKR-freeness of a context-free language is
undecidable based on Proposition 1.

Theorem 6. For a given context-free language L it is undecidable whether or
not L is PKR-free.

5 Conclusions

We have considered one of RNA structures called pseudoknot and specific
phenomenon in which a sequence expands itself and forms a pseudoknot. We
have defined the restrict version of the pseudoknot-generating operation: For a
string x, PKR(x), roughly speaking, consists of all possible continuations of x
that can fold back onto x to form a pseudoknot.

We have investigated (closure-)properties of pseudoknot-generating operation
on a string and designed linear-time algorithm for determining whether or not
given string is a pseudoknot. We have shown that for two strings x and y, it is
decidable whether or not PKR(x) ∩ PKR(y)
= ∅. Moreover, we have examined
the pseudoknot-generating operation on languages, and showed that regular and
context-free languages are not closed under pseudoknot-generating. On the other
hand, we have established that given two FAs A and B, it is decidable whether
or not PKR(L(A)) ∩ PKR(L(B))
= ∅ in polynomial-time in the size of A and B.
Furthermore, we have shown that it is decidable whether or not a given regular
language is PKR-free in polynomial-time. However, it is undecidable to determine
whether or not a given context-free language is PKR-free.

252 D.-J. Cho et al.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975)

2. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure pre-
diction with pseudoknots. Discrete Appl. Math. 104(1), 45–62 (2000)

3. Brierley, I., Digard, P., Inglis, S.C.: Characterization of an efficient coronavirus
ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57(4),
537–547 (1989)

4. Condon, A., Davy, B., Rastegari, B., Zhao, S., Tarrant, F.: Classifying RNA
pseudoknotted structures. Theor. Comput. Sci. 320(1), 35–50 (2004)

5. Dirks, R.M., Lin, M., Winfree, E., Pierce, N.A.: Paradigms for computational
nucleic acid design. Nucleic Acids Res. 32(4), 1392–1403 (2004)

6. Doose, G., Metzler, D.: Bayesian sampling of evolutionarily conserved RNA sec-
ondary structures with pseudoknots. Bioinformatics 28(17), 2242–2248 (2012)

7. Du, Z., Hoffman, D.W.: An NMR and mutational study of the pseudoknot within
the gene 32 mRNA of bacteriophage T2: insights into a family of structurally
related RNA pseudoknots. Nucleic Acids Res. 25(6), 1130–1135 (1997)

8. Evans, P.A.: Finding common RNA pseudoknot structures in polynomial time. J.
Discrete Algorithms 9(4), 335–343 (2011)

9. Giedroc, D.P., Theimer, C.A., Nixon, P.L.: Structure, stability and function of
RNA pseudoknots involved in stimulating ribosomal frameshifting. J. Mol. Biol.
298(2), 167–185 (2000)

10. Jabbari, H., Condon, A.: A fast and robust iterative algorithm for prediction of
RNA pseudoknotted secondary structures. BMC Bioinform. 15(1), 147 (2014)

11. Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between RNA struc-
tures. J. Comput. Biol. 9(2), 371–388 (2002)

12. Jürgensen, H., Konstantinidis, S.: Codes. In: Word, Language, Grammar. Hand-
book of Formal Languages, vol. 1, pp. 511–607 (1997)

13. Kari, L., Konstantinidis, S., Kopecki, S.: Transducer Descriptions of DNA Code
Properties and Undecidability of Antimorphic Problems. arXiv:1503.00035 (2015)

14. Kari, L., Mahalingam, K.: Watson-Crick palindromes in DNA computing. Nat.
Comput. 9(2), 297–316 (2010)

15. Kari, L., Seki, S.: On pseudoknot-bordered words and their properties. J. Comput.
Syst. Sci. 75(2), 113–121 (2009)

16. Knuth, D.E., Morris Jr, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

17. Möhl, M., Will, S., Backofen, R.: Fixed parameter tractable alignment of RNA
structures including arbitrary pseudoknots. In: Ferragina, P., Landau, G.M. (eds.)
CPM 2008. LNCS, vol. 5029, pp. 69–81. Springer, Heidelberg (2008)

18. Rinaudo, P., Ponty, Y., Barth, D., Denise, A.: Tree decomposition and parameter-
ized algorithms for RNA structure-sequence alignment including tertiary interac-
tions and pseudoknots. In: Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol.
7534, pp. 149–164. Springer, Heidelberg (2012)

19. Saraiya, A.A., Lamichhane, T.N., Chow, C.S., SantaLucia Jr, J., Cunningham,
P.R.: Identification and role of functionally important motifs in the 970 loop of
Escherichia coli 16S ribosomal RNA. J. Mol. Biol. 376(3), 645–657 (2008)

20. Shallit, J.: A Second Course in Formal Languages and Automata Theory, vol. 179.
Cambridge University Press, Cambridge (2009)

http://arxiv.org/abs/1503.00035

Capabilities of Ultrametric Automata
with One, Two, and Three States

Maksims Dimitrijevs(B)

Faculty of Computing, University of Latvia, Raiņa bulvāris 19, Riga LV-1586, Latvia
mvdmaks@inbox.lv

Abstract. Ultrametric automata use p-adic numbers to describe the
random branching of the process of computation. Previous research has
shown that ultrametric automata can have a significant decrease in com-
puting complexity. In this paper we consider the languages that can be
recognized by one-way ultrametric automata with one, two, and three
states. We also show an example of a promise problem that can be solved
by ultrametric integral automaton with three states.

1 Introduction

Rūsiņš Freivalds has recently introduced the idea of using p-adic numbers in
Turing machines and finite automata to describe the random branching of the
process of computation [1]. He proved that the use of p-adic numbers exposes
new possibilities which do not inhere in deterministic or probabilistic approaches.
Moreover, in 1916 Alexander Ostrowski proved that any non-trivial absolute
value of the rational numbers Q is equivalent to either the usual real absolute
value or a p-adic absolute value. So using p-adic numbers was the only remaining
possibility not yet explored [1].

Ultrametric automata are similar to probabilistic automata but research has
shown that the capabilities of these types of automata can differ very much.
Ultrametric automata are able to recognize nonrecursive languages [1] and can
have significant state complexity advantages over other types of automata [2,3].
Ultrametric automata can also solve the tasks of Turing machines with various
requirements for computing complexity [4,5].

In this paper we look at ultrametric automata with one, two and three states
to explore the capabilities of ultrametric automata with a small number of states.
We work with general ultrametric automata and ultrametric automata with
restricted definitions, which has the effect of reducing the power of ultrametric
automata. We will see that, even with restrictions, ultrametric automata with a
small number of states have great language recognition power.

2 p-adic Numbers

p-adic numbers are used in different sciences, including chemistry and physics
[6,7], and are also used in ultrametric automata and Turing machines [1].
c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 253–264, 2016.
DOI: 10.1007/978-3-662-49192-8 21

254 M. Dimitrijevs

A p-adic digit is a natural number between 0 and p − 1 where p is an arbi-
trary prime number. A p-adic integer (ai)i∈N is an infinite sequence of p-adic
digits written from right to left. A p-adic integer can be written like a decimal
number ...ai...a2a1a0.

For each natural number, there exists its p-adic representation and only a
finite number of p-adic digits are not zeroes. Negative integers have a different
representation in p-adic numbers, namely, they have an infinite sequence of digits
p− 1 to the left. If all digits of a p-adic integer are p− 1 then we have the p-adic
number -1. We can add, subtract and multiply p-adic integers in the same way
as natural numbers in base p. The only division that is not possible in p-adic
integers is division by p. For example, if we want to have p-adic integer 1/p,
equation p ∗ x = 1 should have a solution, but multiplication by p-adic integer
p gives zero in the right-most p-adic digit. That being said, p-adic integers can
represent any integer and most of the rational numbers, except for those having
a positive integral power of p in the divisor.

p-adic float numbers can have a decimal point and are infinite to the left side
but finite to the right side. For example, p-adic number 1/p can be written as
...0000.1. The field of p-adic numbers is denoted as Qp. For the curious reader,
David A. Madore has written extensively about p-adic numbers and further
information on the subject can be found in [8].

To measure p-adic number we require the absolute value of a p-adic number.
If p is a prime number, then the p-adic ordinal of the rational number a, denoted
by ordpa, is the largest m such that pm divides a.

Definition 1. For any rational number x its p-norm (p-adic absolute value) is

‖x‖p =

{
1/pordpx, if x �= 0
0, if x = 0.

For example, if p = 5, ‖50‖5 = ‖2 ∗ 52‖5 = ‖52‖5 = 1/52 = 1/25, if p = 2,
‖50‖2 = ‖2‖2 = 1/2, but for any other prime number p, ‖50‖p = 1.

3 Definitions of Ultrametric Automata

Ultrametric automata are similar to probabilistic automata. Probabilistic finite
automata were introduced by Michael O. Rabin, and the reader can refer to [9]
for more details about probabilistic automata.

Definition 2. A one-way p-ultrametric finite automaton is a tuple
(Q,S, δ, q0, F,Λ) where

– Q is the finite set of states,
– S is the input alphabet,
– δ : Q × S × Q → Qp is the transition function,
– q0 : Q → Qp is the initial amplitude distribution,
– F ⊆ Q is the set of accepting states,

Capabilities of Ultrametric Automata with One, Two, and Three States 255

– Λ = (λ,♦) is the acceptance condition where λ ∈ R is the acceptance threshold
and ♦ ∈ {≥,≤}.
A probabilistic automaton has transition probabilities that are real numbers.

In the case of p-ultrametric automaton the transitions have amplitudes, which are
p-adic numbers. Therefore, we can assume that, for a p-ultrametric automaton,
prime number p is also a parameter. Probabilistic automata have their beginning
distribution of probabilities among the states and transitions are performed with
probabilities. In ultrametric automata every state has a beginning amplitude,
and by reading input word, transitions are done with amplitudes. This means
that final amplitudes of the states are calculated the same way as probabilities
in probabilistic automata. To get the result after reading the input word, the
amplitude of every accepting state is transformed into p-norm and the word is
accepted if and only if p-norm sum of accepting states satisfies the acceptance
condition.

We allow usage of all possible p-adic numbers in p-ultrametric automata.
We allow this in the first definition of ultrametric automata because Paavo
Turakainen defined probabilistic finite automata where the “probabilities” can
be arbitrary real numbers and he has proven that languages recognizable by
these probabilistic finite automata are the same as for ordinary probabilistic
finite automata. Ultrametric automata defined in this way have great capabil-
ities, for example, they are able to recognize nonrecursive languages [1]. This
is also the reason why more restricted versions of ultrametric automata were
introduced.

Definition 3. Finite p-ultrametric automaton is called integral if all the p-adic
numbers in its initial distribution and transition function are p-adic integers.

There are no examples of ultrametric integral automata recognizing nonre-
cursive languages. The next definition is even more restrictive.

Definition 4. A state of a p-ultrametric automaton is called regulated if there
exist constants λ, c such that for every input word the p-norm of amplitude γ of
this state is bounded by λ − c < ‖γ‖p < λ + c. A finite p-ultrametric automaton
is called regulated if all of its states are regulated.

Ultrametric regulated automata can recognize only regular languages [1]. In
this paper we don’t research capabilities of ultrametric regulated automata with
a small number of states because their capabilities are limited to the recognition
of regular languages. However, ultrametric regulated automata can have many
fewer states than deterministic and even probabilistic automata [1,2].

4 Ultrametric Automata with One State

In this section we will show that the capabilities of ultrametric automata with
one state can be described with the limitations of known types of automata.
Mentioned capabilities are not so small.

256 M. Dimitrijevs

Theorem 1. For every prime number p there exists a p-ultrametric automaton
with one state that can recognize a non-regular language.

Proof. We will take the following non-regular language: L1 = {x|x ∈
{0, 1}∗ and |x|0 ≥ |x|1}, where |x|a denotes the number of symbols a in x. So L1

contains all binary words in which the number of zeroes is not less than the num-
ber of ones. L1 can be easily shown nonregular based on the argument that the
difference between the number of zeroes and the number of ones can increase infi-
nitely. A deterministic finite automaton cannot recognize this language because
it is nonregular.

We can construct a p-ultrametric automaton with one accepting state with
initial amplitude 1. When the automaton reads symbol one, it will multiply the
amplitude by p. When the symbol zero is read the amplitude is then multiplied
by p−1. After reading the input word the amplitude of the state will be p|x|1−|x|0 .
The p-norm of this number is equal to 1/p|x|1−|x|0 = p|x|0−|x|1 . The automaton
will accept the input word x if and only if the p-norm of the amplitude is at
least 1, and this is possible only when |x|0 ≥ |x|1.
�
Theorem 2. For every prime number p, the languages recognizable by p-
ultrametric automaton with one state form the proper subset of languages recog-
nizable by one-way deterministic pushdown automata.

Proof. If an ultrametric automaton has one state, it has an initial amplitude and
ability to multiply this amplitude by some number. The p-norm of the state’s
amplitude determines the acceptance’s condition. In [3] it is shown that after
receiving any input symbol the p-norm of one state’s amplitude monotonically
increases, decreases or does not change. That being said, we can see that in this
case one state works like a counter and the value of this counter is determined
by p-norm.

Now we can replace the ultrametric automaton with one state with a deter-
ministic pushdown automaton. This automaton has two symbols in the stack’s
alphabet, denoted by α and β. The number of symbols α in the stack will repre-
sent the p-norm p|α| , where |α| denotes the number of symbols α in the stack.
The number of symbols β in the stack will represent the p-norm p−|β|. The
empty stack will represent the p-norm 1. At the beginning of work we will put
the required number of α or β in the stack of deterministic pushdown automa-
ton to represent the beginning p-norm. By reading input symbols the stack will
change its symbols to keep up with the changes of p-norm of ultrametric automa-
ton. It is possible to do this deterministically because it is known which symbols
to put into the stack or to take from it. After reading the input word we have
to check if p-norm satisfies the accepting condition. Therefore we have to check
that the stack contains the required number of symbols α or β. This can also
be done deterministically. After that, we can easily decide whether to go to the
accepting or rejecting state.

The remaining situation is when the amplitude equals zero. If the amplitude
of the only state of the ultrametric automaton is zero, it cannot be changed

Capabilities of Ultrametric Automata with One, Two, and Three States 257

because multiplying by zero always gives zero. By knowing the acceptance con-
dition for p-norm, we can deterministically go to accepting or rejecting state and
not leave it.

The described method allows us to replace an ultrametric automaton with
one state with a one-way deterministic pushdown automaton. This method works
equally for all prime numbers p. This means that all languages recognizable by
ultrametric automaton with one state are recognizable by one-way deterministic
pushdown automata. There exist regular languages that are not recognized by
ultrametric automaton with one state. For example, we can take the one-letter
alphabet language containing only one word with a length greater than zero.
This language requires at least two states [3].
�

We can improve this result by looking at a model that is weaker than one-way
deterministic pushdown automata.

Theorem 3. For every prime number p, the languages recognizable by a p-
ultrametric automaton with one state form the proper subset of languages recog-
nizable by one-way deterministic counter automata.

Proof. We can improve the proof of Theorem2 by replacing the deterministic
pushdown automaton with a deterministic counter automaton. We will use the
value of a counter instead of the number of symbols in stack memory. The
classic definition of counter automata allow the counter to have only nonnegative
integral values [10]. In our case, the counter automaton will have two sets of
states: if the automaton is in the first set of states, then the value of counter c
represents the p-norm pc; if the automaton is in the second set of states, then the
value of counter c represents the p-norm p−c. By doing so we solve the problem
of representing p-norm being negative powers of p. Other principles remain like
in the proof of Theorem2. Multiplication of p-norm by p will be represented
by increasing the value of counter by 1 if the automaton is in the first set of
states and decreasing the value of counter by 1 if the automaton is in the second
set of states. Multiplication of p-norm by p−1 will be represented by doing the
opposite operations. If p-norm becomes greater than 1, the automaton will go
to the first set of states. The automaton will go to the second set of states if
p-norm becomes less than 1.

Like in the proof of Theorem2, this method will work equally for all prime
numbers p and situations with amplitude zero will be handled in the same way.
To finish the proof we can again use one-letter alphabet language containing only
one word with the length greater than zero to show that the sets of recognizable
languages are not equal.
�

The aforementioned three theorems are valid for all ultrametric automata
with one state. Now we will show that the capabilities of ultrametric integral
automata with one state are even smaller.

Theorem 4. For every prime number p, a p-ultrametric integral automata with
one state can recognize only regular languages.

258 M. Dimitrijevs

Proof. In the case of ultrametric integral automata multiplication by negative
degrees of p is not allowed because these numbers are not p-adic integers. This
means that p-norm of one single state of the ultrametric integral automaton can
only decrease or remain the same. If the ultrametric automaton has an accepting
threshold and accepting condition ≤ λ, then the input word will become accept-
able after a finite number of input symbols that increase the amplitude. If the
ultrametric automaton has an accepting threshold and accepting condition ≥ λ
we can see the opposite situation - the input word will become rejectable after
a finite number of input symbols that increase the amplitude. That being said,
we can see that the only thing that an ultrametric integral automaton with one
state can do is count specific input symbols to a finite value to decide whether
the input word is acceptable or not. The same task is also solvable by determin-
istic finite automata, which means that languages recognizable by ultrametric
integral automaton with one state can only be regular.
�

To conclude the results of Theorem 4 we should also mention that some reg-
ular languages are not recognizable by ultrametric integral automata with one
state, because one-letter alphabet languages containing only one word with a
length greater than zero require at least two states [3].

5 Ultrametric Automata with Two States

In this section, we will see that a second state significantly increases the capa-
bilities of ultrametric automata.

Theorem 5. For every prime number p there exists a p-ultrametric automaton
with two states that can recognize non-context-free language.

Proof. In this proof, we will use the following language, which is not context-
free: L2 = {x|x ∈ {0, 1, 2}∗ and |x|0 < |x|1 and |x|1 < |x|2}. We will construct an
ultrametric automaton with two states to recognize the language L2 (see Fig. 1).

Fig. 1. Ultrametric automaton recognizing L2

The following illustrations of ultrametric automata have some details that
we need to describe, so it will be easier for the reader to understand the depicted
automata. The big arrows with numbers denote the beginning amplitudes of the
states. The transitions are shown as lines with arrows that connect two states

Capabilities of Ultrametric Automata with One, Two, and Three States 259

(note they can also connect a state with itself). The symbols before the vertical
line are input symbols and the symbol after the vertical line is the amplitude of
transition.

Both states of the automaton in Fig. 1 act like independent counters. After
reading the input word x, the amplitude of the left state becomes equal to
p|x|1−|x|0 and the amplitude of the right state becomes equal to p|x|2−|x|1 . That
gives a p-norm of the left state’s amplitude equal to p|x|0−|x|1 and a p-norm
of the right state’s amplitude equal to p|x|1−|x|2 . If the input word belongs to
L2, both p-norms will not exceed 1/p. The smallest prime number is 2, so the
largest possible p-norm sum of the word that belongs to L2 does not exceed
1/2 + 1/2 = 1. Otherwise at least one state will have p-norm of at least 1, and
this gives us a p-norm sum greater than 1. Therefore constructed p-ultrametric
automaton will recognize L2 for all prime numbers p.
�

This result shows us the power of the ability of ultrametric automata to
have independent amplitudes making independent counters. This example will
be followed by better results about ultrametric automata with two states, and
these results will show that we do not require different states to have multiple
counters - they can be “hidden” in one common state.

Theorem 6. For every prime number p there exists a p-ultrametric integral
automaton with two states that has only one accepting state and can recognize
non-context-free language.

Proof. We will use the following language, which is not context-free: L3 = {x|x =
{a, b, c, d}∗ and |x|a = |x|b = |x|c before the first symbol d}. This time letter d
will be like an end-marker after the part of the word that we are interested in.
We will construct an ultrametric integral automaton with two states to recognize
the language L3 (see Fig. 2).

Fig. 2. Ultrametric automaton recognizing L3

The accepting state has beginning amplitude 1. Now we take two distinct
prime numbers q and r, with conditions q �= p and r �= p. This allows us to
divide by q and r in p-adic integers. After reading an input word x before the
first symbol d, accepting state will have amplitude q|x|a−|x|b ∗ r|x|a−|x|c . This
number will be equal to 1 if and only if |x|a = |x|b = |x|c. Then with the help

260 M. Dimitrijevs

of the second state, we subtract 1 from the amplitude of the accepting state
after reading the first symbol d. After that, the amplitude of the non-accepting
state will be zero, so the amplitude of the second state will remain zero if it
was so after reading the first symbol d, or it will remain as a positive number
otherwise. The automaton will accept the input word if and only if the p-norm
of the accepting state does not exceed zero. The automaton will work similarly
for any chosen prime number p.
�

We can see that for ultrametric automata it is enough to have two states, only
one being accepting and having a restriction of ultrametric integral automata
to recognize a language that cannot be recognized by one-way nondeterministic
pushdown automata.

6 Ultrametric Automata with Three States

Ultrametric automata with two states have shown great capabilities and it is
interesting to consider what we might get if we add one more state. Rūsiņš
Freivalds has shown that for every prime number p ≥ 3 it is possible to construct
an ultrametric automaton with three states which will recognize nonrecursive
languages. This ultrametric automaton used p-adic numbers that are not p-
adic integers. By having three states the ultrametric automaton surpassed the
capabilities of Turing machines. We will demonstrate the theorem with the proof
from [1]. After that, we will improve these results.

Theorem 7. There is a continuum of languages recognizable by finite ultramet-
ric automata [1].

Proof. Let β = ...2a32a22a12a02 be an arbitrary p-adic number (not a p-adic
integer), where p ≥ 3 and all ai = {0, 1}. Denote by B the set of all possible
such β. Consider an automaton Aβ with 3 states, the initial amplitudes of the
states being (β,−1,−1). The automaton is constructed to have the following
property: if the input word is 2a02a12a22a32...2an2 then the amplitude of the
first state becomes ...2an+42an+32an+22an+12. To achieve this, the automaton
adds -2, multiplies by p, adds −an and again multiplies by p.

Now let β1 and β2 be two different p-adic numbers. Assume that they have
the same first symbols am...2a32a22a12a02 but different symbols am+1 and
bm+1. Then the automaton accepts one of the words am+12am...2a32a22a12a02
and rejects the other one bm+12am...2a32a22a12a02. Hence the languages are
distinct [1].
�

After this proof we can make two conclusions. First, ultrametric automata
can recognize nonrecursive languages. Second, this is possible for ultrametric
automata with three states for every prime number p ≥ 3. The natural next
step to improve this result would be to prove that ultrametric automata with
three states can recognize nonrecursive languages when p = 2. Although we had
expected to achieve the latter result, in the process we also found that we were
able to reduce the state complexity.

Capabilities of Ultrametric Automata with One, Two, and Three States 261

Theorem 8. For every prime number p there exists a p-ultrametric automaton
with two states that can recognize nonrecursive languages.

Proof. Let β = ...a3a2a1a0 be an arbitrary p-adic number, which is not a p-
adic integer, p be an arbitrary prime number and all ai = {0, 1}. We define a
language Lβ in the following way: a binary sequence belongs to Lβ if and only if
it is equal to the last digits of β. p-adic numbers can only be finite to the right
side from a decimal point. Assume that number β has k p-adic digits after the
decimal point. Now we can construct an ultrametric automaton to recognize Lβ

(see Fig. 3).

Fig. 3. Ultrametric automaton recognizing Lβ

The accepting state q1 has a beginning amplitude β ∗ pk, where k is the
number of p-adic digits after the decimal point in β. This gives us a p-adic
number with the p-adic digits after the decimal point being zeroes. State q2
has a beginning amplitude p−1. Assume that the input word is c0c1c2c3...cn. If
ci = 1, p−1 will be subtracted from the amplitude of state q1, otherwise nothing
will be subtracted (0 ∗ p−1). If i-th p-adic digit from the right in β was equal to
ci (ai = ci), the remaining amplitude of q1 will have i-th p-adic digit equal to
zero, and it will remain zero for all the time of the work of an automaton. If i-th
p-adic digit from the right in β was not equal to ci, q1 will have i-th p-adic digit
different from zero (it will be 1 if β had ai = 1 and the input word had the digit
ci = 0, or it will be p − 1 if β had the digit ai = 0 and the input word had the
digit ci = 1).

When the whole input word c0c1c2c3...cn is read, the accepting state q1 will
have an amplitude followed by bnbn−1...b0 after the decimal point, where all the
digits in bnbn−1...b0 will be zeroes if and only if the input word belongs to Lβ .
If the input word does not belong to Lβ , the amplitude of the state q1 will have
at least one digit after the decimal point which is not zero. The p-norm of this
number will be at least p. If the p-adic number does not have nonzero digits
after the decimal point, its p-norm will not be greater than 1. An ultrametric
automaton will accept the input word if the p-norm is less than or equal to 1.
Otherwise, the input word will be rejected.

A constructed ultrametric automaton will accept the word a0a1a2a3...
amam+1 and reject the word a0a1a2a3...ambm+1 if all symbols a0a1a2a3...am

are equal and am+1 and bm+1 are different. Hence, all possible languages Lβ are

262 M. Dimitrijevs

distinct. The automaton will work in the same manner for all prime numbers p
and is capable of recognizing nonrecursive languages Lβ .
�

The results of the proven theorem show that ultrametric automata do not
need even three states to recognize nonrecursive languages; it is enough to have
two states. Moreover, we do not require both of them to be accepting. Recog-
nizable nonrecursive language can also be depicted like a search on an infinite
binary tree. We choose one infinite branch on the binary tree. Then we get as
an input one particular path on the tree, which goes from the root to the depth
of this binary tree. The automaton will accept the input path if and only if it
belongs to the chosen path, in other words, if the path is equal to the prefix of
the chosen branch.

In this section, we have shown that three states are not even necessary for
ultrametric automata to recognize nonrecursive languages. We can provide other
results about the capabilities of ultrametric automata with three states.

A promise problem is a pair P = (Pyes, Pno), where Pyes, Pno ⊆ Σ∗ and Pyes∩
Pno = ∅ [11]. We do not need to handle situations when the input word is outside
of the set Pyes∪Pno. Now let’s take a look at the promise problem PromiseEQ =
(PromiseEQyes, P romiseEQno), where PromiseEQyes = {ambamban|m �= n}
and PromiseEQno = {ambanbam|m �= n}. To distinguish PromiseEQyes from
PromiseEQno it is enough to check whether the length of the first block of
symbols a is equal to the length of the second block of symbols a.

Theorem 9. There exists a promise problem that cannot be solved by any
bounded-error o(loglogn)-space probabilistic Turing machines in sub-exponential
expected time, but for every prime number p this problem can be solved by a
one-way p-ultrametric integral automaton with three states [12].

Proof. Promise problem PromiseEQ cannot be solved by any bounded-error
o(loglogn)-space probabilistic Turing machines in sub-exponential expected

Fig. 4. Integral ultrametric automaton solving the problem PromiseEQ

Capabilities of Ultrametric Automata with One, Two, and Three States 263

time [13]. We can construct a p-ultrametric integral automaton to solve the
problem PromiseEQ by comparing the lengths of the first two blocks of sym-
bols a (see Fig. 4).

The illustrated automaton just adds 1 to the amplitude of state q3 after
reading each symbol a in the first fragment and subtracts 1 from the amplitude
of state q3 after reading each symbol a in the second fragment. The amplitude
will be zero if and only if both fragments have an equal number of symbols a.
All amplitudes are p-adic integers and the automaton works identically for all
prime numbers p [12].
�

7 Summary

Previous research has found many examples of ultrametric automata having
state complexity advantages over other types of automata. In this paper we
have shown the capabilities of ultrametric automata with a small number of
states. Ultrametric automata with one state are able to recognize non-regular
languages, but cannot recognize languages that are not recognizable by one-
way deterministic pushdown or counter automata. Ultrametric integral automata
with one state cannot recognize non-regular languages.

Ultrametric automata with two states can recognize languages that are not
context-free. This is also true for ultrametric integral automata with two states
with just one state being accepting. Ultrametric automata with two states are
also able to recognize nonrecursive languages and a third state is not necessary.
Furthermore, ultrametric integral automata with three states can solve a prob-
lem that cannot be solved by any bounded-error o(loglogn)-space probabilistic
Turing machines in sub-exponential expected time. All the proven results are
true for p-ultrametric automata for every prime number p.

References

1. Freivalds, R.: Ultrametric finite automata and turing machines. In: Béal, M.-P.,
Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 1–11. Springer, Heidelberg (2013)

2. Balodis, K., Berina, A., C̄ıpola, K., Dimitrijevs, M., Iraids, J., et al.: On the State
Complexity of Ultrametric Finite Automata. In: SOFSEM 2013, Proceedings, vol.
2, pp. 1–9, Špindler̊uv Mlỳn (2013)

3. Balodis, K.: Counting with probabilistic and ultrametric finite automata. In:
Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Gruska Festschrift. LNCS, vol. 8808,
pp. 3–16. Springer, Heidelberg (2014)

4. Dimitrijevs, M., Ščeguļnaja, I., Freivalds, R.: Complexity Advantages of Ultramet-
ric Machines. In: SOFSEM 2014, Proceedings, vol. 2, pp. 21–29, Nový Smokovec
(2014)

5. Krǐslauks, R., Rukšāne, I., Balodis, K., Kucevalovs, I., Freivalds, R., Nāgele, I.:
Ultrametric Turing Machines with Limited Reversal Complexity. In: SOFSEM
2013. Proceedings, vol. 2, pp. 87–94, Špindler̊uv Mlỳn (2013)

6. Kozyrev, S.V.: Ultrametric analysis and interbasin kinetics. In: 2nd International
Conference on p-Adic Mathematical Physics, American Institute of Physics, pp.
121–128 (2006)

264 M. Dimitrijevs

7. Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: P-Adic Analysis and Mathematical
Physics. World Scientific (1995)

8. Madore, D.A.: A first introduction to p-adic numbers. http://www.madore.org/
david/math/padics.pdf

9. Rabin, M.O.: Probabilistic Automata. Inf. Control 6(3), 230–245 (1963)
10. Kravtsev, M.: Quantum finite one-counter automata. In: Bartosek, M., Tel,

G., Pavelka, J. (eds.) SOFSEM 1999. LNCS, vol. 1725, pp. 431–440. Springer,
Heidelberg (1999)

11. Watrous, J.: Quantum computational complexity. In: Meyers, R.A. (ed.) Ency-
clopedia of Complexity and Systems Science, pp. 7174–7201. Springer, New York
(2009)

12. Dimitrijevs, M.: Ultrametric Finite Automata for Turing Machine Tasks of Various
Complexity. Submitted (2015)

13. Rashid, J., Yakaryılmaz, A.: Implications of quantum automata for contextual-
ity. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 318–331.
Springer, Heidelberg (2014)

http://www.madore.org/david/math/padics.pdf
http://www.madore.org/david/math/padics.pdf

The Complexity of Paging Against
a Probabilistic Adversary

Stefan Dobrev1, Juraj Hromkovič2, Dennis Komm2(B), Richard Královič3,
Rastislav Královič4, and Tobias Mömke5

1 Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovakia
stefan.dobrev@savba.sk

2 Department of Computer Science, ETH Zürich, Zurich, Switzerland
{juraj.hromkovic,dennis.komm}@inf.ethz.ch

3 Google Inc., Zurich, Switzerland
richard.kralovic@dcs.fmph.uniba.sk

4 Department of Computer Science, Comenius University, Bratislava, Slovakia
kralovic@dcs.fmph.uniba.sk

5 Saarland University, Saarbrücken, Germany
moemke@cs.uni-saarland.de

Abstract. We consider deterministic online algorithms for paging. The
offline version of the paging problem, in which the whole input is given
in advance, is known to be easily solvable. If the input is random,
chosen according to some known probability distribution, an O(log k)-
competitive algorithm exists. Moreover, there are distributions, where
no algorithm can be better than Ω(log k)-competitive.

In this paper, we ask the question of what happens if it is known
that the input is one from a set of � potential candidates, chosen accord-
ing to some probability distribution. We present an O(log �)-competitive
algorithm, and show a matching lower bound.

1 Introduction

In algorithmics, that is, the “study of algorithms” [12], one is concerned with
constructing and analyzing algorithms for given computing problems that per-
form well with respect to some given constraints, for instance, being efficient or
obtaining some specific solution quality. In a classical setup, an input is given
to an algorithm, and some particular information needs to be extracted. This
is usually done while having full knowledge about the input. For instance, the
information that needs to be extracted may be a cheapest Hamiltonian cycle
that is “hidden” in an instance that corresponds to a complete weighted graph.
Many computing problems, however, are what is called “intrinsically online”
which means that the whole input is not known in advance, but arrives gradu-
ally in consecutive time steps while a part of the definite output already needs

The research is partially funded by SNF grant 200021–146372, VEGA grant
1/0979/12, and Deutsche Forschungsgemeinschaft grant BL511/10-1.

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 265–276, 2016.
DOI: 10.1007/978-3-662-49192-8 22

266 S. Dobrev et al.

to be created. Typical members of this class are scheduling or packing problems,
and various kinds of resource management problems.

Such problems are called “online problems” [1,6,15,22], and they are found
in many real-world situations. One of the most prominent and well-understood
online problems is the paging (caching) problem. Here, an online algorithm
maintains a cache containing up to k logical pages out of m possible ones.
The input is a sequence of n requests for logical pages, and the algorithm has to
process each request: if the requested page is in the cache (this is called a cache
hit), nothing happens; if not (which is called a cache miss, or page fault), the
algorithm has to evict one page from the cache, and replace it with the requested
one. The goal of the algorithm is to process the input while minimizing the num-
ber of page faults. Let us give a formal definition; for the ease of presentation,
we identify pages with their indices.

Definition 1 (Paging Problem). An instance of the paging problem is a
sequence of integers representing requests to logical pages I = (x1, x2, . . . , xn),
xi > 0. An online algorithm Alg maintains a buffer (content of the physi-
cal memory) B = {b1, b2, . . . , bk} of k integers, where k is a fixed constant
known to Alg. Before processing the first request, the buffer gets initialized as
B = {1, 2, . . . , k}. Upon receiving a request xi, if xi ∈ B, then Alg creates the
partial output yi = 0. If xi �∈ B, then a page fault occurs, and Alg has to find
some victim bj, that is, B := B\{bj}∪{xi}, and yi = bj. The cost of the solution
Alg(I) is the number of page faults, that is, cost(Alg(I)) = |{i | yi > 0}|.

In this paper, we consider deterministic online algorithms for the paging
problem. The performance of an algorithm is measured by the competitive ratio
(which basically is the online counterpart of the approximation ratio1 for offline
problems) where the cost of the algorithm on a particular input I is compared
to an optimal solution for I. In a very general setting, one may consider the
inputs to come from a probability distribution ρ over all possible inputs. The
quality of a solution depends on the data model that specifies two orthogonal
aspects of the setting. First, the data model specifies the class of possible input
distributions P; an algorithm Alg is called c-competitive if there is a constant
α, such that

∀ρ ∈ P : Eρ

[
cost(Alg(I)) − α

cost(Opt(I))

]
≤ c (1)

where the instance I is taken according to the distribution ρ. Second, the data
model specifies what information about the distribution ρ is known to the algo-
rithm.

When P is the class of all point mass distributions (that is, distributions where
one particular input has probability 1), the impact of the algorithm’s knowledge
has been widely studied. One extreme case is when the whole point mass dis-
tribution (that is, the input) is known to the algorithm; this corresponds to the

1 Note that unlike offline algorithms, in an online setting we usually ignore the running
time of the algorithm.

The Complexity of Paging Against a Probabilistic Adversary 267

offline deterministic case, which is easily solvable by a greedy algorithm (LFD,
longest forward distance, called Min by Bélády [2] who first proved its opti-
mality). The other extreme case, when the point mass distribution is unknown,
corresponds to the online deterministic worst-case scenario, and it is known
[21] that no deterministic online algorithm can be better than k-competitive.
The spectrum between these two extremes has been studied by means of advice
complexity [4,5,11,14], which was first studied for paging by Dobrev et al. [10].

Orthogonally, in what is known as distributional approach [6] to the analysis
of online algorithms, it is supposed that the inputs come from a fixed distribution
(that is, P is a singleton, in our setting), which usually is a uniform distribution.
Franaszek and Wagner [13] studied the particular input distribution where each
request is selected independently from a given distribution. Note that this was
done before competitive analysis was introduced by Sleator and Tarjan [21]. In
the Markov paging model by Shedler and Tung [20], the inputs are generated by
a Markov chain. Pandurangan and Upfal [18] studied a setting where the page
requests come from a stochastic process with given entropy.

There are also approaches where the worst case from several distributions is
analyzed. Notably, in the access graph model by Borodin et al. [7], P is the set
of point mass distributions corresponding to walks in a (known) graph G and
the particular distribution ρ is, of course, unknown. The statistical adversary
introduced by Raghavan [19] considers (in the role of P in our notation) the
class of all point mass distributions that fulfill certain statistical properties, for
instance, each page is requested the same number of times. This model was later
sucessfully applied to two-way currency trading by Chou et al. [9].

Our setting follows the general notion of the diffuse adversary introduced by
Koutsoupias and Papadimitriou [17] with the only distinction that in the diffuse
adversary model, the particular distribution is always unknown. The diffuse
adversary is a generalization of the statistical adversary (and other models that
have been introduced in the past). In 1998, Young further studied the diffuse
adversary [25]; he gave both tight bounds (up to a factor of 2) for deterministic
and randomized online algorithms in this setting.

As pointed out before [1,3,8,15,17,23], we argue that both extreme cases,
that is, either knowing nothing about the input, or knowing everything about it,
are unrealistic. As the requested pages depend on the user’s actions, it is clearly
impossible for any operating system to completely foresee which pages will be
accessed in the future. On the other hand, it seems equally unrealistic to assume
that every input sequence is possible.

In Sect. 2, we briefly state our contribution, and put it into context. We
formally state and prove our results in Sect. 3; we conclude in Sect. 4. Throughout
this paper, log denotes the logarithm with base 2.

2 Our Contribution

On one hand, a known point mass distribution corresponds to the offline case,
and it is easily solvable as already mentioned [6]. Also, it follows from Yao’s

268 S. Dobrev et al.

principle [24] and the results on randomized paging, that, for any known point
mass distribution, there is an O(log k)-competitive algorithm, and there are such
distributions where any algorithm is at least Ω(log k)-competitive. Moreover, as
shown by Komm and Královič [16], it follows that, for any point mass dis-
tribution, there is an O(log k)-bit long binary string from which the O(log k)-
competitive algorithm can be efficiently decoded.

Motivated by this, we analyze known distributions that are somewhat “close”
to being point mass: instead of the probability mass being concentrated in one
input, it can be distributed arbitrarily among � inputs.

Definition 2 (Class P� of Distributions). By P� we denote the class of
�-point distributions, that is, probability distributions over inputs such that at
most � inputs have non-zero probability.

An online algorithm for paging that only evicts pages in case of a page fault
is called a “demand paging” (for k-server, a generalization of paging, the term
“lazy” is more common) algorithm. The laziness requirement comes with no loss
of generality [6], hence we shall consider only lazy algorithms to obtain easier
arguments. Note that we incorporated this already in our formal definition of
paging that only allows an algorithm to evict a page if a page fault occurs.

We analyze the expected competitive ratio of deterministic paging algorithms
over a known �-point distribution. We show that, if � is constant, there is an
“almost optimal” (that is, 1-competitive) algorithm. Basically, we prove that,
since � is fixed, the overhead the algorithm pays until it realizes which input it
is working on, can be hidden in the additive constant α from the definition of
the competitive ratio. For the strict competitive ratio (that is, when demanding
that α = 0) we show an O(log �)-competitive algorithm for � < k (for � ≥ k,
one can use the O(log k)-competitive algorithm). We complement the result by
a matching lower bound stating that no online algorithm can be better than
(log �)/2-competitive.

3 Results

We start with the non-strict case, that is, the case where the additive constant
α from the definition of the competitive ratio may be strictly positive. From the
order of the quantifiers in (1), it follows that α may depend on the cache size
k, and the class of possible distributions (in our case parametrized by �). In this
case, we can prove the following theorem.

Theorem 1. There is a 1-competitive paging algorithm for any known distrib-
ution from the class P�, for any constant �.

Before presenting an online algorithm that obtains this bound, let us make
the following observation.

Lemma 1. Consider two inputs I1 and I2. Let Opt1 and Opt2 be the optimal
(LFD) algorithms for I1 and I2, respectively. Then Opt1 and Opt2 make the
same number of page faults on the common prefix of I1 and I2.

The Complexity of Paging Against a Probabilistic Adversary 269

Fig. 1. I1, I2, and the branching point

Proof. Let j be the first position where I1, and I2 differ (see Fig. 1). To prove
the claim by contradiction, suppose that there is a page requested in the prefix
x1, x2, . . . , xj−1 such that it causes a page fault for Opt1 but not for Opt2; let
xi be the first page with this property. Opt1 evicted this page in some preceding
time step as it was requested farthest in the future, namely in time step i. But
since this happened on the common prefix of I1 and I2 (that is, i ≤ j −1), Opt2

would have taken the same action. �	
We now prove Theorem 1 using Lemma 1.

Proof (of Theorem 1). Let ρ ∈ P� be the input distribution, and let I1, I2, . . . , I�

denote the inputs that are chosen with non-zero probability sorted in non-
increasing order ρ(I1) ≥ ρ(I2) ≥ · · · ≥ ρ(I�). Let Opti be the optimum (LFD)
solution for Ii, 1 ≤ i ≤ �.

The algorithm Alg starts by simulating Opt1. If the actual input is I1,
Alg is optimal. If, at some point, Alg realizes that the instance is not I1, Alg
switches to Opt2: it replaces the cache by the pages that would have been in
the cache of Opt2 at this moment, and continues as Opt2 (actually, since we
are considering lazy algorithms exclusively, Alg only remembers the state, and
replaces the pages as needed). Let j be the time step where I1 and I2 differ for
the first time; and thus, if Alg is not optimal on I2, the actions of Opt1 and
Opt2 differ in some time step i < j.

From Lemma 1 it follows that, after Alg switched from Opt1 to Opt2, the
number of page faults so far was the same as in Opt2 plus the at most k faults
needed to change the cache content to be consistent with Opt2.

This process can be iterated: Alg simulates Opt2 until it sees a difference
in the input, switches to Opt3, and so on. After any switch to Optd, the cost of
Alg so far is bounded by the cost of Optd plus at most kd page faults needed to
replace the cache after each switch. Overall, since there are at most � switches,
we have

cost(Alg) ≤ cost(Opt) + k�.

Since this inequality holds for any execution, (1) holds for α = k�, which finishes
the proof. �	

The previous theorem asserts that the price of each switch of the algorithm
Alg is at most k. If we consider the strict competitive ratio, in which α = 0 in
(1), this price is too high, since for any known distribution there is a O(log k)-
competitive algorithm. In the following theorem, we present a more detailed
accounting of the expected price of switching. In the proof, we again make use
of Lemma 1.

270 S. Dobrev et al.

Theorem 2. For any constant �, there is an online paging algorithm for any
known distribution from the class P� with an expected strict competitive ratio of
at most ln � + 1.

Proof. Let ρ ∈ P�, and let I := {I1, I2, . . . , I�} be the instances that are chosen
with non-zero probability. Alg computes the prefix tree T of I with root r. Note
that in T there is exactly one node for each distinct prefix in any of the request
strings in I, and any instance is represented by a path from r to a distinct leaf
of T . Each node of T that is not a leaf is labeled by its requested page, that is,
the page that distinguishes its prefix from its predecessor’s prefix. The root and
the leaves obtain an empty label. We define N+(v) to be the out-neighborhood
of a node v, that is, the children of v.

For each node v of T , we define a probability p(v) inductively. If v is a leaf,
then there is a exactly one instance Iv ∈ I that corresponds to a path from r to
v and we set p(v) = ρ(Iv). If v is no leaf but all vertices in N+(v) already have
been assigned probabilities, we set

p(v) =
∑

w∈N+(v)

p(w).

Clearly, eventually all nodes are labeled and p(r) = 1.
We now identify a subgraph T of T as follows. Initially, T has all nodes of

T but no arcs. Then for each node v, we introduce exactly one arc (v, w), where

w = arg max
w′∈N+(v)

p(w′),

breaking ties arbitrarily. Note that T is a collection of directed paths (possibly
of length 0) that end in leaves of T . For each node v, denote by Pv the suffix
of the path in T that contains v where v is the start vertex of Pv. Then the
strategy of Alg is to move within T according to the requests and to follow the
LFD strategy of the instance defined by the labels of Pv, where v is the cur-
rently visited node. Note that after requests the strategy may change. For a leaf
w, Optw is the optimal LFD solution for the instance defined by the path from
r to w. To estimate the impact of strategy changes, we use the following claim
that follows by applying Lemma 1 to all pairs of vertices that are reachable from
a given vertex.

Claim. Let v be a node of T , and let S be the set of leaves reachable from
v. Then the number of page faults on the prefix of instances defined by the path
from r to v are identical for all solutions Optw with w ∈ S.

The claim allows us to estimate the cost of changing strategies. For each
pair of leaves w,w′, there is a vertex v such that the paths from r to w and
from r to w′ fork at v. There is a critical phase from where Optw and Optw′

differ first until v, and there is some number κ of differences between the two
solutions within the critical phase. Therefore, changing the strategy from Optw

to Optw′ causes at most κ page faults and κ ≤ cost(Optw′). As a consequence,

The Complexity of Paging Against a Probabilistic Adversary 271

the number of different strategies is an upper bound on the attained competitive
ratio. In the remaining analysis, we give an upper bound on the expected number
of strategy changes.

Let us fix an internal node v with s := |N+(v)| > 0, that is, v is not a leaf.
Furthermore, let w be the subsequent node in Pv. For each w′ ∈ N+(v) we define

p′(w′) =
p(w′)

∑
w′′∈N+(v) p(w′′)

.

In other words, p′(w′) is the probability that the given path continues with w′,
provided that it contains v. Then the probability to change the strategy after v
is 1−p′(w). We now give an upper bound on the fraction of reachable leaves left
after leaving v.

For any node w′, let leaves(w′) be the set of leaves reachable from w′. Then,
for each w′ ∈ N+(v), we define the fraction of leaves reachable from v via w′ by

γ(v, w′) :=
|leaves(w′)|

∑
w′′∈N+(v) |leaves(w′′)| .

Then the expected fraction of leaves left after leaving v is
∑

w′∈N+(v)

p′(w′)γ(v, w′).

This number is maximized if γ(v, w) = 1 and γ(v, w′) = 0 for all w′ �= w. We
obtain the upper bound γ(v, w) ≤ p′(w).

Therefore, we obtain an upper bound on the total number of strategy changes
if we consider an integer t and a sequence (pi)t

i=1 of probabilities such that

t∑

i=1

(1 − pi)

is maximized subject to ∏

i

pi ≥ 1/�.

The meaning of the objective is that there are t nodes with probabilistic
decisions. The probability of the selected strategy at the i-th node is pi and thus
there is a strategy change with probability 1 − pi. Intuitively, the maximum is
attained when both the length t of the sequence is long and the probabilities to
change strategies are large. However, for increasing values of t, the constraints
enforce that most of the 1 − pi are small. The constraints stem from the fact
that there is no leaf left if the fraction of remaining leaves is smaller than 1/�.

We claim that the maximum can be attained with pi = pi′ for all pairs of
indices i, i′. Suppose towards contradiction that there is no maximal solution
with this property. Let p1, p2, . . . , pt be a solution attaining the maximum such
that

μ := max
i,i′

|pi − pi′ |

272 S. Dobrev et al.

is minimal and among these solutions one where

|{(i, i′) | |pi − pi′ | = μ}|

is minimal. Let us fix two indices ı̂, ı̂′ such that |pı̂ −pı̂′ | = μ. Now let us consider
the solution p′

1, p
′
2, . . . , p

′
t where p′

i = pi for all indices except ı̂ and ı̂′ and where

p′
ı̂ = p′

ı̂′ =
pı̂ + pı̂′

2
.

Clearly, still maxi,i′ |p′
i − p′

i′ | ≤ μ. Also, the value of the objective function did
not change since pı̂ + pı̂′ = p′

ı̂ + p′
ı̂′ . To show that the constraints are satisfied,

we claim that
pı̂pı̂′ ≤ p′

ı̂p
′
ı̂′ .

By renaming the indices, we assume without loss of generality that pı̂ ≤ pı̂′ .
Then we have

p′
ı̂p

′
ı̂′ =

(
pı̂ + pı̂′

2

)2

=
p2ı̂ + 2pı̂pı̂′ + p2ı̂′

4

= pı̂pı̂′ +
p2ı̂
4

− pı̂(pı̂ + δ)
2

+
(pı̂ + δ)2

4

= pı̂pı̂′ +
δ2

4

where δ = pı̂′ − pı̂. Therefore, unless δ = 0,

|{(i, i′) | |p′
i − p′

i′ | = μ}| < |{(i, i′) | |pi − pi′ | = μ}|,

which is a contradiction to the minimality of |{(i, i′) | |pi − pi′ | = μ}|. Hence,
from now on we may assume that pi = p for some probability p and all indices
i. We obtain

t = logp pt = logp(1/�) =
ln �

ln(1/p)
.

As a consequence, we have to find

max
p

(1 − p) ln �

ln(1/p)
.

We have
∂

∂p

(1 − p) ln �

ln(1/p)
= ln �

ln p − 1 + 1/p

ln2 p
.

For p ∈ (0, 1), the derivative is always positive since 1/p > 1. Thus,

(1 − p) ln �

ln(1/p)

The Complexity of Paging Against a Probabilistic Adversary 273

is monotonously increasing in p and the maximum is attained for p → 1. On
a high level this means that t is large whereas the probability of strategy changes,
1 − p, is small. Now the number of strategy changes is bounded from above by

lim
p→1

(1 − p) ln �

ln(1/p)
= lim

p→1

− ln �

−1/p
= ln �

where we used l’Hôspital’s rule. With our previous discussion, the statement of
the theorem follows. �	

Finally, we argue that the algorithm from Theorem 2 is in a sense best
possible by proving the following lower bound.

Theorem 3. Any online algorithm Alg on the class P� with � ≤ k has an
expected strict competitive ratio of at least (log �)/2.

Proof. First, assume that � is a power of 2; without loss of generality, let Alg
be a demand paging (that is, lazy) algorithm. We assume that the cache is
always organized such that the page indices of all pages residing in the cache
at any given point in time are in increasing order in every time step; we do
this without loss of generality and to keep our arguments simple and not being
forced to argue about permutations of the cache cells. We describe a class I of �
instances, and the probability distribution ρ will be a uniform distribution over
I. Let us assume that initially the cache contains pages 1, 2, . . . , k.

All instances in I start by introducing a page k +1, and particular instances
can be described by a number i, such that in Ii, the optimal algorithm evicts
page i from the cache in the first time step. For all Ii, the optimal cost will be
one, so this is the only page fault the optimal algorithm incurs. In each instance,
the first request is followed by log � rounds, and we show that any algorithm
causes a page fault in every round with probability at least 1/2. Together with
the one page fault in the first time step, this gives the expected number of faults,
and also the expected competitive ratio.

Consider any algorithm Alg running on an instance Ii. Every round starts
and ends by a sequence requesting pages �+1, �+2, . . . , k; if these pages are not
in the cache of Alg at the beginning of the round, Alg makes a page fault with
probability 1, and we are done. Hence, we can assume that Alg never evicts
pages from the range � + 1, � + 2, . . . , k from the cache. Let us call the pages
1, 2, . . . , � active.

For round 2, the active pages are partitioned into two halves, and all pages of
that half that does not contain i are requested consecutively (see Fig. 2). Clearly,
Alg makes another page fault with probability at least 1/2. This procedure is
applied recursively to the half that contains i until, in round log � + 1, there
are only two halves that contain single pages (out of which one is the page i).
Moreover, in every round, all pages that were requested in the previous round
are requested again.

274 S. Dobrev et al.

Fig. 2. Example for k = � = 16; the optimal solution removes page 5 in time step one,
when page 17 is requested; after that, there are 4 rounds that each consist of requests
that were in the cache of Opt at the beginning

It follows that, in each round r, 2 ≤ r ≤ log �+1, Alg makes a page fault with
probability at least 1/2 (note that the corresponding events are all independent)
and an additional page fault in round 1 with probability 1. At the same time,
Opt makes exactly 1 page fault in total. Summing up, the ratio of the costs is
(log �)/2 + 1.

Finally, assume that � is not a power of 2. Let �′ denote the largest power
of 2 that is smaller than �. We follow the exact same strategy as above with
�′ instead of �; in particular, we request all pages �′ + 1, �′ + 2, . . . , k in every
round. By definition, we have �′ > �/2, thus there is at most one less round, and
consequently the lower bound decreases by at most 1. �	

4 Conclusion

We studied the case of paging against a known distribution. On one hand, there
are distributions where no algorithm can perform better than being Ω(log k)-
competitive; on the other hand, for a point mass distribution, an easy optimal
algorithm exists. We addressed the general question of characterizing the distri-
butions in terms of the complexity of paging algorithms for them. We showed
that if the distribution has at most � inputs that are chosen with non-zero prob-
ability each, there is an (ln �+1)-competitive online algorithm. Complementing,
by constructing a class of hard instances, we showed that this bound is tight
up to a small factor when � ≤ k. In the case that the additive constant α from
the competitive ratio is allowed to be positive, there is a simple 1-competitive
online algorithm where α = k�.

Acknowledgement. The authors would like to thank Hans-Joachim Böckenhauer for
very valuable discussions.

The Complexity of Paging Against a Probabilistic Adversary 275

References

1. Albers, S.: Online algorithms: a survey. Math. Program. 97(1), 3–26 (2003)
2. Bélády, L.A.: A study of replacement algorithms for virtual-storage computer. IBM

Syst. J. 5(2), 78–101 (1966)
3. Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms.

Algorithmica 11(1), 73–91 (1994)
4. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the

advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

5. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complex-
ity of the k-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) Automata,
Languages and Programming. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg
(2011)

6. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, New York (1998)

7. Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality
of reference. J. Comput. Syst. Sci. 50(2), 244–258 (1995)

8. Boyar, J., Larsen, K.S., Nielsen, M.N.: The accommodating function: a generaliza-
tion of the competitive ratio. SIAM J. Comput. 31(1), 233–258 (2001)

9. Chou, A., Cooperstock, J., El-Yaniv, R., Klugerman, M., Leighton, T.: The statis-
tical adversary allows optimal money-making trading strategies. In: Proceeding of
SODA 1995, pp. 467–476. Society for Industrial and Applied Mathematics (1995)

10. Dobrev, S., Královič, R., Pardubská, D.: How much information about the future
is needed? In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P.,
Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 247–258. Springer,
Heidelberg (2008)

11. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
Theor. Comput. Sci. 412(24), 2642–2656 (2011)

12. Harel, D., Feldman, Y.: Algorithmics: The Spirit of Computing. Addison-Wesley,
3rd edn (2004)

13. Franaszek, P.A., Wagner, T.J.: Some distribution-free aspects of paging algorithm
performance. J. ACM 21(1), 31–39 (1974)

14. Hromkovič, J., Královič, R., Královič, R.: Information complexity of online prob-
lems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36.
Springer, Heidelberg (2010)

15. Irani, S., Karlin, A.R.: On online computation. In: Hochbaum, D.S. (ed.) Approxi-
mation Algorithms for NP-hard Problems, pp. 521–564. PWS Publishing Company
(1997)

16. Komm, D., Královič, R.: Advice complexity and barely random algorithms. Theor.
Inf. Appl. (RAIRO) 45(2), 249–267 (2011)

17. Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis. SIAM J. Com-
put. 30(1), 300–317 (2000)

18. Pandurangan, G., Upfal, E.: Entropy-based bounds for online algorithms. ACM
Trans. Algorithms 3(1), 1–19 (2007)

19. Raghavan, P.: A statistical adversary for on-line algorithms. DIMACS 7, 79–83
(1991)

20. Shedler, G.S., Tung, C.: Locality in page reference strings. SIAM J. Comput. 1,
218–241 (1972)

276 S. Dobrev et al.

21. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)

22. Fiat, A. (ed.): Online Algorithms 1996. LNCS, vol. 1442. Springer, Heidelberg
(1998)

23. Fiat, A., Woeginger, G.J.: Competitive odds and ends. In: Fiat, A., Woeginger, G.J.
(eds.) Online Algorithms 1996. LNCS, vol. 1442, pp. 385–394. Springer, Heidelberg
(1998)

24. Yao, A.C.-C.: Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In: Proceeding of FOCS 1977, pp. 222–227. IEEE Computer
Society (1977)

25. Young, N.E.: Bounding the diffuse adversary. In: Proceeding of SODA 1998, pp.
420–425. Society for Industrial and Applied Mathematics (1998)

On Parity Game Preorders
and the Logic of Matching Plays

M.W. Gazda and T.A.C. Willemse(B)

Eindhoven University of Technology, Eindhoven, The Netherlands
t.a.c.willemse@tue.nl

Abstract. Parity games can be used to solve satisfiability, verification
and controller synthesis problems. As part of an effort to better under-
stand their nature, or the nature of the problems they solve, preorders on
parity games have been studied. Defining these relations, and in partic-
ular proving their transitivity, has proven quite difficult on occasion. We
propose a uniform way of lifting certain preorders on Kripke structures
to parity games and study the resulting preorders. We explore their rela-
tion with parity game preorders from the literature and we study new
relations. Finally, we investigate whether these preorders can also be
obtained via modal characterisations of the preorders.

1 Introduction

Parity games [6,15] are two player games played on a directed graph. These
games are interesting as they underpin, e.g. solutions to verification, satisfiabil-
ity and synthesis problems, see [2,7] and they appear as solution to fundamen-
tal problems such as complementing tree automata [6]. The problem of solving
a parity game (computing the set of vertices won by each player) is one of those
rare problems that are in NP∩coNP, and for which no polynomial time algorithm
has yet been found.

In an effort to increase the general understanding of the parity game solv-
ing problem or of those problems mapped to parity game solving, preorders on
parity games have been studied on various occasions and for different purposes.
For instance, in [13], Namjoshi investigated simulation in the context of abstrac-
tion using a variant of parity games called model checking games, leading to
a framework that was complete (in the sense of having finite abstract objects)
for the μ-calculus; in [8], Fritz and Wilke [8] defined and studied delayed sim-
ulation, an adaptation of simulation; Cranen et al. [3,4] studied variations of
stuttering bisimulation for parity games; Kissig and Venema [12] defined basic
game bisimulation for studying complementation. Dawar and Grädel [5] defined
yet two other forms of bisimulation on parity games by viewing these as rela-
tional structures; their purpose is to analyse the descriptive complexity of parity
games.

For the most part, the preorders on parity games are inspired by similar rela-
tions on computational models such as Kripke structures or Labelled Transition

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 277–289, 2016.
DOI: 10.1007/978-3-662-49192-8 23

278 M.W. Gazda and T.A.C. Willemse

Systems. However, there seems to be no systematic method by which the afore-
mentioned parity game relation have been obtained from a relation on a compu-
tational model, as testified by the existence of several variations of bisimulation
on parity games. Moreover, defining new relations on parity games, showing
transitivity and proving that they approximate the winning set of some player
can be quite cumbersome; for instance, proving transitivity of delayed simulation
required analysing 24 different cases, see [8], and in [4], the proof that governed
stuttering bisimilarity is an equivalence relation is technically involved, requiring
a step-wise rephrasing of the definition and intricate arguments.

The contributions of this paper are as follows. We propose a novel, more
generic method for obtaining a parity game relation from a relation on a com-
putational model. It is based on the notion of matching paths, which we lift
naturally to matching plays. In this approach, we can lift any preorder on
a computational model that can be specified using the matching paths to a cor-
responding preorder in the parity game setting. Moreover, we identify conditions
that guarantee that the resulting relation is a preorder and that it approximates
the winning set of a particular player.

We exemplify our approach using a number of well-known and some less-
known relations on Kripke structures and show that some of the thus obtained
relations coincide with existing parity game relations. Finally, for all the relations
we study in detail, we provide logical characterisations, by identifying sound
and complete fragments of an alternating-time temporal logic for the respective
relations. The logical characterisations reveal interesting differences between the
behavioural relations and the induced parity game relations.

Structure. In Sect. 2, we recall the basics of parity games. Then, in Sect. 3, we
introduce our generic scheme for obtaining parity game relations. In Sect. 4, we
show how this theory can be applied to recover existing and define new parity
game preorders; in Sect. 5, we provide modal characterisations of these relations.
We finish with conclusions in Sect. 6. Proofs for all results can be found in [10].

2 Preliminaries

A parity game is an infinite duration game, played by players odd, denoted by
� and even, denoted by �, on a directed, finite graph.

Definition 1. A parity game is a tuple 〈V,E,Ω, (V�, V�)〉, where

– V is a set of vertices, partitioned in a set V� of vertices owned by player �,
and a set of vertices V� owned by player �,

– E ⊆ V × V is a total edge relation, i.e. for all v, (v, w) ∈ E for some w,
– Ω:V → N is a priority function that assigns priorities to vertices.

We depict parity games as graphs in which diamond-shaped vertices represent
vertices owned by player �, box-shaped vertices represent vertices owned by
player � and priorities, associated with vertices, are written inside vertices; see
Fig. 1(a) and (b) for examples.

On Parity Game Preorders and the Logic of Matching Plays 279

0v1

0

v2

1

v3

1

v4

0

v5

0

v6

2

v7

0u1

2 3 2

0 u2

4

Fig. 1. (a) Left: A parity game with three different priorities. (b) Right: A parity game
with four different priorities.

We use the following notational conventions: we write v → w instead of
(v, w) ∈ E, and we write v• for the set {w ∈ V | v → w}. Henceforth, � denotes
an arbitrary player. We write �̄ for �’s opponent; i.e. �̄ = � and �̄ = �.
Finally, given the set of vertices V , the subset of vertices of V with priority n is
denoted Vn: we have Vn = {v ∈ V | Ω(v) = n}.

A play starts by placing a token on some vertex v ∈ V . Players � and �
move the token indefinitely according to a single simple rule: if the token is on
some vertex that belongs to player �, that player gets to move the token to an
adjacent vertex. The parity of the highest priority that occurs infinitely often on
a play defines the winner of the play: player � wins if, and only if this priority
is even. This is known as the parity condition.

A strategy for player � is a partial function σ:V ∗ → V satisfying that for
all sequences of vertices u1 · · · un ∈ V ∗ on which σ is defined, both un ∈ V� and
σ(u1 · · · un) ∈ u•

n. The set of all strategies for player � is denoted S∗�.
Let π = v1 v2 v3 · · · , with v1 = v be a play starting in v. We denote the

i-th vertex on π by πi; that is, πi = vi. Play π is consistent with a strategy
σ ∈ S∗� if all prefixes v1 · · · vn of π for which σ(v1 · · · vn) is defined, we have
vn+1 = σ(v1 · · · vn). The set of plays consistent with strategy σ, starting in
v is denoted Plays(σ, v); we sometimes refer to this set as the set of σ-plays.
A strategy σ is winning for player � from vertex v iff all plays consistent with σ
are won by �. Vertex v is won by player � whenever she has a winning strategy
for vertex v.

Example 1. In the parity game depicted in Fig. 1(a), v1, v2, v5 are won by player�, and player � wins the remaining vertices.

Let C,D ⊆ V be sets of vertices. We generalise the one-step reachability relation
E to (forced) reachability, where reachability is confined to a set of vertices. Let
v ∈ V .

v �→ D =
{

v• ∩ D �= ∅ if v ∈ V�
v• ⊆ D otherwise

v �
→C D = ∃σ ∈ S∗� : ∀π ∈ Plays(σ, v) : ∃k : πk ∈ D ∧ ∀j < k : πj ∈ C

v �
→C = ∃σ ∈ S∗� : ∀π ∈ Plays(σ, v) : ∀k : πk ∈ C

Finally, let R ⊆ V ×V be a relation on V . The set of vertices below some vertex
v, denoted Rv, is the set {w ∈ V | w R v}; the set of vertices above v, denoted

280 M.W. Gazda and T.A.C. Willemse

vR, is defined as {w ∈ V | v R w}. Note that in the special case that R is an
equivalence relation, we have Rv = vR. For a set U ⊆ V , we write UR for the
set

⋃
v∈U vR; likewise for RU , and if R is an equivalence relation, we write V/R

for the set of equivalence classes (quotient set) of R.

3 Inducing Parity Game Preorders and Equivalences

In the past, behavioural relations for transition systems, such as the simulation
preorder and bisimulation, have been ported to parity games, see [3–5,8,9,12].
These efforts, however, did not appear to have followed a general guiding princi-
ple. In this section, we propose a scheme for lifting particular types of behavioural
preorders for Kripke structures to parity game preorders. More specifically, the
Kripke structure preorders and equivalences we consider are those that can be
phrased in terms of matching paths.

Let K = 〈S, T,AP,L〉 be an arbitrary Kripke structure, where S is a (possibly
infinite) set of states, T ⊆ S×S is a total transition relation, AP is a set of atomic
propositions and L:S → P(AP) is a state labelling function. A path through K,
starting in some state s1 ∈ S, is an infinite sequence of states s1 s2 s3 . . . for
which (si, si+1) ∈ T for all i, and Paths(s) denotes the set of paths starting in s.

Let, within the context of some Kripke structure K, Rel(R) denote a predicate
on relations R ⊆ S × S on K’s states. Think, for instance, of the predicate that
a relation R is a simulation relation. For given predicate Rel and relation R, a
matching predicate is a predicate Rel−matchL

R(πt, πs) on paths πt and πs in K,
and K’s labelling L and the relation R on K’s states satisfying:

Rel(R) iff ∀(s, t) ∈ R : ∀πs ∈ Paths(s) : ∃πt ∈ Paths(t) : Rel−matchL
R(πt, πs)

Note that matching predicates do not use K’s transition relation T .

Example 2. A typical instance of Rel is the simulation predicate Sim: for R ⊆
S × S, Sim(R) holds iff for all (s, t) ∈ R we have L(s) = L(t) and for any
s′ ∈ S with (s, s′) ∈ T , there is a t′ ∈ S for which (t, t′) ∈ T and (s′, t′) ∈ R. An
associated matching predicate Sim−matchL

R(π, π′) is ∀i : L(π′
i) = L(πi)∧π′

i R πi.

In case a matching predicate is to be interpreted on a parity game, we use
the priority function Ω as the state labelling function, writing Rel−matchΩ

R .
A matching predicate Rel−matchL is monotonic if Rel−matchL

R(πt, πs) implies
Rel−matchL

R′(πt, πs) for all R ⊆ R′.

Definition 2. Let G = 〈V,E,Ω, (V�, V�)〉 be a parity game and let Rel−matchL
R

be a matching predicate for a predicate Rel on Kripke structure relations. A rela-
tion R ⊆ V × V is a parity game Rel-relation whenever v R w implies that for
all strategies σv ∈ S∗�, there is a strategy σw ∈ S∗� such that

∀πw ∈ Plays(σw, w) : ∃πv ∈ Plays(σv, v) : Rel−matchΩ
R(πw, πv)

We write v �Rel w iff for some parity game Rel-relation R we have v R w.

On Parity Game Preorders and the Logic of Matching Plays 281

Example 3. A relation R ⊆ V ×V is a parity game Sim-relation whenever v R w
implies that for all strategies σv ∈ S∗�, there is a strategy σw ∈ S∗� such that

∀πw ∈ Plays(σw, w) : ∃πv ∈ Plays(σv, v) : ∀i : Ω(πv,i) = Ω(πw,i) ∧ πv,i R πw,i

In Sects. 4.1 and 4.2, we study further instances of Definition 2, showing that
the theory of this section can be used to recover existing parity game relations
(Sect. 4.1) and how it can be used to obtain new parity game relations (Sect. 4.2).
For the remainder of this section, we focus on establishing under which conditions
one can prove the resulting parity game relations are preorders and when they
can be used to approximate the winning partition for player �. The theorem
below shows that an induced parity game Rel-relation is a preorder whenever a
simple monotonicity criterion for the matching predicate holds.

Theorem 1. Assume that for all preorders R for which Rel holds, Rel−matchL
R

is a preorder, too. If Rel−matchL is monotonic, then �Rel is a preorder.

Under similar conditions, one can prove that �Rel is an equivalence relation.
The next theorem states that we can conclude that the parity game relations
under-approximate the winning partition for player � from a simple condition
on the matching predicate.

Theorem 2. Let R be a parity game Rel-relation. Assume v R w and suppose
that for all πv, πw, if Rel−matchΩ

R(πw, πv) and πv is won by � then so is πw. If
v is won by �, then w is won by �.

4 Applications

We first illustrate how the theory we developed in the previous section can be
put to use to recover preorders and equivalences already present in the literature.
More specifically, we show that governed simulation [11], also known as direct
simulation [8,9], governed bisimulation [11] and governed stuttering bisimula-
tion [4] are all instances of our general theory. We then proceed to show that we
can also obtain relations that did not appear in the literature.

4.1 Existing Parity Game Relations

Consider the Kripke structure Rel predicates for simulation, bisimulation and
stuttering bisimulation (aka stuttering equivalence), listed in Table 1. For lack of
space, we refrain from giving the standard definition of these predicates, given
that these can be found in most standard textbooks, and since these predicates
are essentially also defined via their matching predicates next to them. Note that
also the latter can be found in the literature (although less commonly).

Using the Rel-predicates of Table 1 and Definition 2, we immediately obtain
parity game simulation, parity game bisimulation and parity game stuttering
bisimulation. One can check with little effort that the matching predicates for
simulation, bisimulation and stuttering bisimulation meet the conditions of The-
orems 1 and 2. As a result, we can claim the following:

282 M.W. Gazda and T.A.C. Willemse

Table 1. Matching predicates for well-known behavioural relations; R is a relation on
states, L is a state labelling function, and π, π′ are infinite sequences of states

Rel Rel−matchL
R(π, π′)

Simulation For all i, L(π′
i) = L(πi) and π′

i R πi.

Bisimulation For all i, L(π′
i) = L(πi), π

′
i R πi and πi R π′

i .

Stuttering bisimulation There is a non-decreasing, unbounded function f : ω → ω
with f(1) = 1 such that for all i and all
j ∈ [f(i), f(i + 1)), L(π′

i) = L(πj), π
′
i R πj and πj R π′

i.

Proposition 1. Relation �simulation is a preorder and relations �bisimulation

and �stuttering bisimulation are equivalences. Moreover, all three relations under-
approximate the winning set for player �.

Definition 3. A relation R is a governed simulation iff for all v R w:

1. Ω(v) = Ω(w),
2. if v ∈ V�, then for each v → v′ we have w �→ v′R,
3. if v ∈ V�, then w �→ v•R.

We write v ≤ w iff there is a governed simulation R such that v R w. A rela-
tion R ⊆ V × V is a governed bisimulation if both R and R−1 are governed
simulations. We write v ↔ w iff for some governed bisimulation R, v R w.

The example below illustrates governed simulation and governed bisimulation.

Example 4. Consider the parity game of Fig. 1(a). We have v3 ↔ v4, because,
even though both vertices belong to different players, neither player can force
play to vertices of different priorities. On the other hand, v1 ↔ v2 does not hold.

The theorem below confirms that governed similarity and governed bisimilarity
coincide with the preorder and equivalence induced by Definition 2 using the
simulation and bisimulation matching predicates of Table 1.

Theorem 3. We have ≤= �simulation and ↔ = �bisimulation.

Next, we focus on the notion of governed stuttering bisimulation [4].

Definition 4. An equivalence relation R ⊆ V ×V is a governed stuttering bisim-
ulation iff v R w then

1. Ω(v) = Ω(w),
2. for any v → C with C ∈ V/R \ {vR} and v ∈ V�, then w �
→vR C,
3. for any player �, we have v �
→vR iff w �
→vR.

We write v ↔ s w iff there is a governed stuttering bisimulation R such that
v R w.

On Parity Game Preorders and the Logic of Matching Plays 283

Example 5. Reconsider the parity game from Fig. 1(a). Observe that we did not
have v1 ↔ v2. However, we do have v1 ↔ s v2: player � is capable of enforcing
divergent plays (plays that only pass through vertices with the same priority),
and it is capable of enforcing plays to reach vertices with priority 1. ��
Governed stuttering bisimulation coincides with parity game stuttering bisimu-
lation; this confirms that governed stuttering bisimulation naturally generalises
Kripke structure stuttering bisimulation to the parity game setting.

Theorem 4. We have ↔ s= �stuttering bisimulation.

4.2 Two New Parity Game Relations

So far, we have illustrated that Definition 2 can be used to recover parity game
relations from the literature, and that Theorems 1 and 2 are instrumental in
establishing that the resulting parity game relations are preorders and that they
approximate the winning set for player �. In this section, we show that Def-
inition 2 immediately gives us definitions for parity game trace inclusion and
parity game stuttering simulation; these relations have so far not appeared in
the literature. Consider the matching predicates listed in Table 2.

Table 2. Matching predicates for behavioural relations; R is a relation on states, L is
a state labelling function, and π, π′ are infinite sequences of states

Rel Rel−matchL
R(π, π′)

Trace inclusion For all i, L(π′
i) = L(πi).

Stuttering simulation There is a non-decreasing, unbounded function f : ω → ω with
f(1) = 1 such that for all i and all j ∈ [f(i), f(i + 1)),
L(π′

i) = L(πj) and π′
i R πj

Stuttering simulation for Kripke structures is coarser than simulation: it
allows for abstracting from finite computations through states with the same
information and computational branching structure. Trace inclusion is even
coarser than stuttering simulation. Both stuttering similarity and trace inclu-
sion for Kripke structures are known to be preorders. Theorem1 allows us to
establish that the parity game relations they induce are preorders too. Theo-
rem 2 again allows us to conclude that both preorders under-approximate the
winning partition for player �.

Proposition 2. Relations �stuttering simulation and �trace inclusion are preorders.
Both preorders under-approximate the winning partition for player �.

We next focus on giving a coinductive definition for parity game stuttering simu-
lation. Apart from providing a deeper understanding of this relation, and under-
standing how it compares to the ones from the previous section, the coinductive
definition gives rise to a polynomial time algorithm for deciding this relations.

Definition 5. A preorder R ⊆ V × V is a governed stuttering simulation iff
v R w implies:

284 M.W. Gazda and T.A.C. Willemse

1. Ω(v) = Ω(w),
2. left-to-right even transfer:

(a) if v ∈ V�, then for all v → vs we have w �
→vR vsR,
(b) if v ∈ V�, then w �
→vR v•R,

3. right-to-left odd transfer:
(a) if w ∈ V�, then v �
→Rw Rw•

(b) if w ∈ V�, then for all w → ws, we have v �
→Rw Rws

We write v ↔ s w iff there is a governed stuttering bisimulation R such that
v R w.

For the above coinductive definition of our parity game stuttering simulation
relation one can deduce that a symmetric relation that meets its properties is a
governed stuttering bisimulation relation—a basic sanity check for the correct-
ness of the definition. The link with governed stuttering bisimulation is, however,
not obvious. We have the following theorem relating governed stuttering simu-
lation to parity game stuttering simulation.

Theorem 5. We have ≤s= �stuttering simulation.

Governed stuttering simulation can be computed in polynomial time; we sketch
a naive algorithm based on fixpoint iteration. We start with a trivial relation
R that relates all states with the same priorities. Upon every iteration, every
pair (s, t) ∈ R is checked as to whether the conditions of Definition 5 hold; if it
is not the case, the pair is removed from R; thus every iteration a monotonic
transformer is applied that after at most a quadratic number of steps will reach
a fixpoint. As for checking that s, t and R meet the conditions of Definition 5,
the main source of the complexity is in computing the �
→ relation. The latter
can be done in O(|V |+ |E|) time using a modified attractor computation [4] and
such a computation is performed for O(|V |) successors. This means that deciding
governed stuttering simulation can be done in at most O(|V |5 · (|V | + |E|)).

We remark that we did not strive to have optimal running times for decid-
ing the preorders in this section. We leave it for future research to tighten our
bounds. For deciding governed stuttering simulation, it may be fruitful to incor-
porate ideas from [14], which describes, as far as we could trace, the first algo-
rithm for stuttering simulation in the Kripke structure setting.

5 Logical Characterisations of Parity Game Relations

An alternative approach to defining a behavioural preorder is by identifying
an appropriate fragment of a modal logic. A natural question is thus whether,
given a fragment of a modal logic for Kripke structures that coincides with
a given preorder, there is a uniform way of obtaining a fragment of a modal
logic for parity games that coincides with the parity game relation. While a
logical characterisation of a behavioural relation offers an alternative angle for
understanding it, and, as such, is interesting to study in its own right, our results
in this section suggest it is unlikely such a uniform method exists.

On Parity Game Preorders and the Logic of Matching Plays 285

5.1 A Modal Logic for Parity Games

The logic we consider is called the Alternating-time Hennessy-Milner logic with
Until. It is essentially based on the alternating-time temporal logic of [1], but its
syntax is inspired by Hennessy-Milner logic for Labelled Transition Systems. Our
syntax facilitates characterising all relations we study in this paper by imposing
restrictions on our base grammar.

Definition 6. The Alternating-time Hennessy-Milner logic with Until, hence-
forth referred to as the logic AHML, is defined as follows:

φ, ψ: := ⊥ | � | ¬φ | 〈n〉� φ | φ ∧ ψ | φ ∨ ψ | φ 〈〈n〉〉� ψ | φ 〈〈n〉〉∞� ψ

where n ∈ N and � ∈ {�,�}. The semantics of AHML formulae is defined
inductively in the context of a parity game G = 〈V,E,Ω, (V�, V�)〉:

�⊥� = ∅
��� = V
�¬φ� = V \ �φ�
�〈n〉�φ� = 〈·n·〉��φ�
�φ ∧ ψ� = �φ� ∩ �ψ�
�φ ∨ ψ� = �φ� ∪ �ψ�
�φ 〈〈n〉〉� ψ� = (Vn ∩ �ψ�) ∪ μV ′ ⊆ V.(�φ� ∩ (〈·n·〉��ψ� ∪ 〈·n·〉�V ′))
�φ 〈〈n〉〉∞� ψ� = (Vn ∩ �ψ�) ∪ νV ′ ⊆ V.(�φ� ∩ (〈·n·〉��ψ� ∪ 〈·n·〉�V ′))

where, for W ⊆ V and n ∈ N, operator 〈·n·〉�W yields the set {v ∈ Vn | v �→ W}.
We write v |= φ iff v ∈ �φ�.

Intuitively, 〈n〉� φ holds in vertices with priority n (i.e. those from the set Vn)
for which � can force play to vertices satisfying φ. The strong until operator
φ 〈〈n〉〉� ψ holds in vertices with priority n for which � can govern the plays
through φ vertices, ultimately reaching ψ vertices. The weak until operator
φ 〈〈n〉〉∞� ψ is more or less the same but also holds whenever � governs plays
through φ-invariant vertices. Observe that our use of fixpoints in the semantics
is permitted as the associated predicate transformers to which they are applied
are monotonic and the set (2V ,⊆) is a complete lattice. The example below
illustrates typical properties one can express using AHML.

Example 6. Reconsider the parity game depicted in Fig. 1(a). Observe that v1 |=
〈0〉�� and v1 |= 〈0〉��. We have v3 |= �〈〈1〉〉∞� ⊥ and v3 |= �〈〈1〉〉∞� ⊥; we also
have v2 |= �〈〈0〉〉∞� ⊥ but v2 �|= �〈〈0〉〉∞� ⊥. Moreover, we have v7 |= (〈1〉��) 〈〈2〉〉�
¬(〈0〉��) because v7 has (1) priority 2 as demanded by the until operator and
(2) satisfies the goal formula ¬(〈0〉��). ��
In general, we are interested in comparing the “observations” that we can make
in different vertices in a parity game; that is, we wish to compare the set of modal
formulae satisfied by different vertices. We formalise observations as follows.

Definition 7. Let L be a fragment of AHML. We write OL(v) to denote the set
of formulae φ ∈ L for which v |= φ.

286 M.W. Gazda and T.A.C. Willemse

5.2 Characterising Preorders Using AHML

Throughout this section, we assume that G = 〈V,E,Ω, (V�, V�)〉 is an arbitrary
parity game. In Table 3, we list the sound and complete fragments of the modal
logic of Sect. 5.1 and the relations of Sects. 4.1 and 4.2.

Table 3. Parity game preorders and equivalences and their corresponding sound and
complete fragments of AHML with their grammars. In these grammars, n ∈ N

Relation Fragment Grammar

≤ AHML≤ φ, ψ: := � | 〈n〉� φ | φ ∧ ψ | φ ∨ ψ

↔ AHML↔ φ, ψ: := � | ¬φ | 〈n〉� φ | φ ∧ ψ | φ ∨ ψ

≤s AHML≤s φ, ψ: := � | φ ∧ ψ | φ ∨ ψ | φ 〈〈n〉〉� ψ | φ 〈〈n〉〉∞� ψ

↔ s AHML↔ s φ, ψ: := � | ¬φ | φ ∧ ψ | φ ∨ ψ | φ 〈〈n〉〉� ψ | φ 〈〈n〉〉∞� ψ

≤t AHML≤t φ: := � | ∨
n∈N

〈n〉�φn (∅ �= N ⊂ N is a finite set of priorities)

Before we address the soundness and completeness of the fragments of the
modal logic listed in Table 3, we first point out that there are interesting and
fundamental differences with the modal characterisations for the preorders on
computational models such as Kripke structures. For instance, disjunction is a
necessary part of the logic for the simulation relations in the parity game setting:
without it, one cannot show that w ≤ v does not hold in the following game:

1v 2

2

2

4

3

2

2

2 1 w

While disjunction can be part of the characteristic logic for the corresponding
Kripke structure preorders, there, it is redundant: it does not add to the distin-
guishing power of the modal logic. This can be explained by the phenomenon
that in the Kripke structure setting, it suffices to describe one fixed behaviour. In
the parity game setting, one must be able to express that a player can guarantee
(i.e. regardless of the strategies of her opponent) a certain set of behaviours; this
requires disjunctions. As we will show in Example 9, it is also not the case that
disjunction can be added harmlessly to the characteristic logic for a parity game
preorder. This suggests there is no easy way to obtain a modal characterisation
for a parity game preorder from a modal characterisation of a Kripke structure
preorder.

We next state the relation between the fragments identified in Table 3 and the
studied preorders, and we illustrate these correspondences using small examples.

Theorem 6. Let v, w be arbitrary vertices in G. Then:

1. v ≤ w iff OAHML≤
(v) ⊆ OAHML≤

(w);

On Parity Game Preorders and the Logic of Matching Plays 287

2. v ↔ w iff OAHML ↔
(v) = OAHML ↔

(w);

Example 7. Consider the parity game of Fig. 1(a). Recall that v1 ≤ v2, see
Example 4. We thus have OAHML≤

(v1) ⊆ OAHML≤
(v2). For instance, both v1 and

v2 satisfy 〈0〉�〈0〉��. However, we do not have v2 ≤ v1. This follows from the fact
that 〈0〉�〈1〉�� is a distinguishing formula that holds in v2, but fails for v1. ��
Theorem 7. Let v, w be arbitrary vertices in G. Then

1. v ≤s w iff OAHML≤s (v) ⊆ OAHML≤s (w).
2. v ↔ s w iff OAHML ↔ s (v) = OAHML ↔ s (w).

Example 8. One can check that in the parity game of Fig. 1(a), we do not have
v5 ≤s v2. This is confirmed by the formula (�〈〈0〉〉� �) 〈〈0〉〉�(�〈〈2〉〉� �) that
expresses that through vertices with priority 0, a vertex with priority 2 can be
reached. It holds in v5, but not in v2. ��

The relation between parity game trace inclusion and AHML≤t is given below.

Theorem 8. For all v, w ∈ V , we have v�trace inclusionw iff OAHML≤t (v) ⊆
OAHML≤t (w).

The fragment of AHML needed to characterise the parity game trace inclusion
preorder is non-obvious. In particular, the restriction on AHML≤t to at all depths
of the formulae only allow for 〈n〉� for which the priorities are distinct is needed
to reduce player �’s powers. Omitting this constraint and allowing for arbitrary
disjunctions will lead to a finer relation, as shown by the example below.

Example 9. Consider the parity game depicted below.

1v 1

1

0 1

1 1 w

Clearly, we have v ≤t w. By Theorem 8 we have OAHML≤t (v) ⊆ OAHML≤t (w).
Note that we also have w ≤t v. However, we have w |= 〈1〉�(〈1〉�〈1〉�� ∨
〈1〉�〈0〉��) but v �|= 〈1〉�(〈1〉�〈1〉�� ∨ 〈1〉�〈0〉��). Omitting the constraint on
the disjunctions would therefore lead to incorrect distinguishing formulae. ��

6 Conclusions

We proposed a scheme for lifting preorders on Kripke structures that can be
defined through matching paths to preorders on parity games. We showed that
our scheme can be used to recover preorders for parity games that have already
been defined in the literature. Moreover, we demonstrated that we can easily

288 M.W. Gazda and T.A.C. Willemse

construct new ones, such as parity game trace inclusion and parity game stut-
tering simulation, and prove such new relations are preorders (or equivalences)
and that they approximate the winning partition of player �.

Our scheme for obtaining parity game relations from existing behavioural
relations also extends to other relations by choosing different parameters for
the matching predicate. For instance, the bisimulation of [5] on parity games
with a finite number of priorities can be recovered using the matching predicate
bisimulation−matchL

R, where L(v) = {Ω(v),� | v ∈ V�}; that is, the vertex
labelling is extended with information which player owns the vertex. Observe
that the resulting relation is finer than the ones studied in this paper.

Lastly, we provided modal characterisations of all parity game relations stud-
ied. Given the fundamental differences between these modal characterisations
and their Kripke structure counterparts, we deem it highly unlikely that a logi-
cal approach to a systematic way of obtaining parity game relations from Kripke
structure relations will be successful.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

2. Arnold, A., Vincent, A., Walukiewicz, I.: Games for synthesis of controllers with
partial observation. TCS 303(1), 7–34 (2003)

3. Cranen, S., Keiren, J.J.A., Willemse, T.A.C.: Stuttering mostly speeds up solving
parity games. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM
2011. LNCS, vol. 6617, pp. 207–221. Springer, Heidelberg (2011)

4. Cranen, S., Keiren, J.J.A., Willemse, T.A.C.: A cure for stuttering parity games.
In: Roychoudhury, A., D’Souza, M. (eds.) ICTAC 2012. LNCS, vol. 7521, pp. 198–
212. Springer, Heidelberg (2012)

5. Dawar, A., Grädel, E.: The descriptive complexity of parity games. In:
Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 354–368. Springer,
Heidelberg (2008)

6. Emerson, E.A., Jutla, C.S.: Tree automata, Mu-Calculus and determinacy. In:
FOCS 1991, pp. 368–377. IEEE Computer Society (1991)

7. Friedmann, O., Lange, M.: The modal μ-calculus caught off guard. In: Brünnler,
K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS, vol. 6793, pp. 149–163. Springer,
Heidelberg (2011)

8. Fritz, C., Wilke, T.: Simulation relations for alternating parity automata and parity
games. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 59–70.
Springer, Heidelberg (2006)

9. Gazda, M.W., Willemse, T.A.C.: Consistent consequence for boolean equation sys-
tems. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G.
(eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 277–288. Springer, Heidelberg (2012)

10. Gazda, M.W.: Parity Games, Fixpoint Logic and Relations of Consequence.
Eindhoven University of Technology, Forthcoming (2016)

11. Keiren, J.J.A.: Advanced Reduction Techniques for Model Checking. Eindhoven
University of Technology (2013)

12. Kissig, C., Venema, Y.: Complementation of coalgebra automata. In: Kurz, A.,
Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 81–96. Springer,
Heidelberg (2009)

On Parity Game Preorders and the Logic of Matching Plays 289

13. Namjoshi, K.S.: Abstraction for branching time properties. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 288–300. Springer, Heidelberg
(2003)

14. Ranzato, F., Tapparo, F.: Computing stuttering simulations. In: Bravetti, M.,
Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 542–556. Springer,
Heidelberg (2009)

15. Zielonka, W.: Infinite games on finitely coloured graphs with applications to
automata on infinite trees. TCS 200(1–2), 135–183 (1998)

A PTAS for Scheduling Unrelated Machines
of Few Different Types

Jan Clemens Gehrke, Klaus Jansen, Stefan E.J. Kraft(B),
and Jakob Schikowski

Department of Computer Science, Kiel University, 24098 Kiel, Germany
{jcg,kj,stkr,schi}@informatik.uni-kiel.de

Abstract. Scheduling on Unrelated Machines is a classical optimization
problem where n jobs have to be distributed to m machines. Each of
the jobs j ∈ {1, . . . , n} has on machine i ∈ {1, . . . , m} a processing
time pij ≥ 0. The goal is to minimize the makespan, i.e. the maximum
completion time of the longest-running machine. Unless P = NP, this
problem does not allow for a polynomial-time approximation algorithm
with a ratio better than 3

2
. A natural scenario is however that many

machines are of the same type, like a CPU and GPU cluster: for each
of the K machine types, the machines i �= i′ of the same type k satisfy
pij = pi′j for all jobs j. For the case where the number K of machine
types is constant, this paper presents an approximation scheme, i.e. an
algorithm of approximation ratio 1 + ε for ε > 0, with an improved
running time only single exponential in 1

ε
.

1 Introduction

Scheduling is a classical optimization problem. Jobs—e.g. computing tasks—
have to be distributed to machines such that one objective is minimized, normally
the maximum completion time of the jobs. One example is a cluster of processors
that has to perform a large amount of computing tasks. In general, the machines
may be heterogeneous: a processor may have been designed to perform a certain
type of calculations very fast, but may not be suited for other ones. However,
the number of different machine types may indeed be limited, as can be the case
for e.g. a cluster of CPUs and GPUs.

Formally, an instance I consists of a set J = J (I) of n jobs and a set
M = M(I) of m machines. Every job j has a processing time on machine i
of pij ≥ 0 for i ∈ {1, . . . , m} and j ∈ {1, . . . , n}. A non-preemptive schedule is
a distribution of the jobs to the machines such that every job is processed by
exactly one machine. Formally, it is a mapping σ : J → M of each job j to a
machine i. The objective is to find a schedule σ that minimizes the makespan
maxi∈M

∑
j:σ(j)=i pij , i.e. the maximum completion time of all jobs. Thus, even

Research supported by DFG project JA612/14-2, “Entwicklung und Analyse von
effizienten polynomiellen Approximationsschemata für Scheduling- und verwandte
Optimierungsprobleme”.

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 290–301, 2016.
DOI: 10.1007/978-3-662-49192-8 24

A PTAS for Scheduling Unrelated Machines of Few Different Types 291

the longest-running machine shall finish the processing as soon as possible. This
classical problem is called Scheduling on Unrelated Machines and is denoted by
R | |Cmax in the 3-field notation [11].

As suggested above, we consider a variant where the machines are only of K
different types, where K is seen as constant: for two different machines i and i′

(with i �= i′) of the same type, we have pij = pi′j for all jobs j ∈ {1, . . . , n}. The
machines of type k are denoted by Mk such that the sets M1, . . . ,MK are a
disjoint partition of M. The number of machines of one type is mk := |Mk| for
k ∈ {1, . . . , K}. Hence, m1 + · · · + mK = m holds. The problem is denoted by
(Pm1, . . . ,PmK)| |Cmax. We can assume without loss of generality that mk ≤ n
for all k ∈ {1, . . . , K} and therefore m = m1 + · · · + mK ≤ n · K. In fact, a
solution cannot use more than n machines of type k because there are only n
jobs. For one type, machines whose number exceeds n can therefore be discarded.

1.1 Known Results

Even Scheduling on Identical Machines P | |Cmax (where, as the name suggests,
all machines are of the same type) is NP-complete [9]. Thus, finding the opti-
mum objective value OPT(I) and a corresponding schedule efficiently (i.e. in
polynomial time in the input length |I|) seems unlikely for the general case. We
are therefore looking for efficient approximation algorithms. The approximation
ratio of an algorithm A is supI

A(I)
OPT(I) , where A(I) is the objective value of the

solution found by A. List Scheduling is a well-known heuristic with the approx-
imation ratio 2 − 1

m for P | |Cmax. Hochbaum and Shmoys [12] presented the
first polynomial time approximation scheme (PTAS) for P | |Cmax, a family of
algorithms (Aε)ε>0 where Aε has an approximation ratio of 1 + ε for ε > 0. The
running time is polynomial in |I|, but the degree of the polynomial may depend
exponentially (or worse) on 1

ε .
Unfortunately, R | |Cmax does not allow for a PTAS unless P = NP: a poly-

nomial algorithm cannot in general have an approximation ratio c < 3
2 as shown

by Lenstra et al. [19]. Approximation algorithms with a ratio of 2 were presented
by Lenstra et al. [19], by Shmoys and Tardos [22], and by Gairing, Monien,
and Woclaw [8]. A 2 − 1

m approximation algorithm was found by Shchepin and
Vakhania [21]. These algorithms are based on solving a linear program (LP)
and rounding the solution to an integer one, with the exception of the purely
combinatorial algorithm in [8]. Recently, Arad et al. [1] have presented a new
algorithm that decides that a schedule σ with a makespan of at most T and
an average machine load L =

∑
i∈M

∑
j:σ(j)=i pij/m does not exist, or it finds one

with a makespan of at most min{T + L
h , 2T}, where h = h(T) is the so-called

feasibility factor.
No algorithm is known for the general problem with a ratio better than 2.

For a long time, this was even true for the Restricted Assignment Problem, a
special case where pij ∈ {pj ,∞}. A breakthrough was the estimation algorithm
by Svensson [23]. The algorithm does not return an actual solution, but it can
estimate the optimal makespan within 33

17 +ε ≈ 1.9412+ε, i.e. with a ratio better

292 J.C. Gehrke et al.

than 2. Chakrabarty et al. [5] have presented for a constant δ∗ > 0 a (2 − δ∗)-
approximation algorithm (that also returns a solution) for the (1, ε̄)-Restricted
Assignment Problem. In this case of Restricted Assignment, the finite processing
times are additionally either pj = 1 or pj = ε̄ for constant ε̄ > 0.

Bhaskara et al. [2] studied the matrix P = (pij)m×n of the processing times,
more precisely the influence of its rank on the non-approximability of R | |Cmax.
Rank 1 is the case of identical or uniform machines (where the processing times
are of the form pij = pj

si
), which allows for PTAS (see above for identical and

e.g. [13,17] for uniform machines). Unless P = NP, rank 4 is already APX-hard
(i.e. a PTAS cannot exist), and rank 7 cannot be better approximated than 3

2 ,
as in the general case (see above). This was improved by Chen et al. [6]: rank
4 does already not allow for a polynomial-time approximation algorithm better
than 3

2 unless P = NP.
If the number m of machines is constant (i.e. Rm | |Cmax is considered), the

problem has a PTAS [19] and a fully polynomial time approximation scheme
(FPTAS) [14]. An FPTAS is a PTAS where the running time is polynomial in
|I| and also 1

ε . Faster FPTAS were successively found [7,16], and the fastest
known has a running time in O(n) + (m

ε)O(m) ≤ O(n) + (log m
ε)O(m log m) [18].

It should be noted that the algorithm by Lenstra et al. [19], while “only” being
a PTAS, has a space complexity only polynomial in m, log 1

ε , and the input
length. Interestingly, the special case of Scheduling on a constant number of
m identical machines (Pm | |Cmax) has a lower bound of nO(1) + (1ε)O(m) on
the running time unless the Exponential Time Hypothesis fails [6]. For ε small
enough, e.g. ε ≤ 1

m , the running time of the algorithm in [18] can be bounded
by O(n) + (1ε)O(m) and therefore attains this lower bound.

Finally, Imreh [15] considered the Scheduling problem on K = 2 types. He
presented heuristic algorithms with ratios 2 + m−1

k and 4 − 2
m , where m is the

number of processors of the first and k the number of processors of the second
type. Bleuse et al. [3] described an algorithm with the approximation ratio 4

3 +
1
3k + ε for scheduling on m cores (CPUs) and k GPUs. If all jobs are accelerated
when executed on a GPU, the algorithm has the ratio 3

2 + ε. Wiese et al. [24]
presented a PTAS for (Pm1, . . . ,PmK)| |Cmax (where K = O(1)). It has to solve
mO(K·((1/ε)1/ε log 1/ε)) linear programs, which is therefore a lower bound on the
overall running time. It is double exponential in 1

ε . (An earlier paper [4] with
a more sophisticated rounding explained an algorithm for Δ-dimensional jobs.)
Raravi and Nélis [20] presented for K = 2 a PTAS single exponential in 1

ε .

1.2 Our Result

Theorem 1. For generalK = O(1), there is a PTAS for (Pm1, . . . ,PmK)| |Cmax

whose running time is bounded by O(K · n) + mO(K/ε2) · (log m
ε)O(K2): it is only

single exponential in 1
ε .

A PTAS for Scheduling Unrelated Machines of Few Different Types 293

1.3 Techniques

Our algorithm first preprocesses the instance I with a method presented in
[7,18] to get a new instance Imerge whose set of jobs J (Imerge) has a bounded
cardinality. Then, the well-known dual approximation approach [12,13,19] is
employed: it uses an oracle that either returns for the makespan T a solution of
value at most (1 + Θ(ε))T or does not return a solution if T is too small. The
dual approach then finds a solution close the optimal makespan of Imerge (and
therefore an approximate solution to I) by a binary search.

For a given makespan T , our oracle first partitions the jobs into large and
small jobs for every machine type k. The processing times of the jobs are then
rounded so that they have discrete values. Our main contribution in this paper
is the dynamic program of the oracle: every feasible schedule has a profile, and
one profile represents several (real) schedules. As the job processing times are
discrete, so are the profiles.

After the rounding, the dynamic program of the oracle constructs all possible
profiles. A simple condition is checked for every constructed profile to see whether
the small jobs can be greedily assigned to the machines. If yes, a real schedule for
the large jobs is found by backtracking, and the small jobs are greedily scheduled,
which yields a solution of makespan at most (1 + Θ(ε))T . If no profile has been
generated by the dynamic program or no profile allows for a distribution of the
small jobs, the value T is too small. The binary search adapts T according to
the output of the oracle until the optimum has been approximated.

Note that the principle of our algorithm is similar to [7,20], but it was found
independently of [20]. We think that the algorithm presented here can be con-
sidered to be less complicated and to have an easier analysis than the algorithm
in [20].

1.4 General Remarks and Notation

The processing time of a job j on the machine type k ∈ {1, . . . , K} is denoted
by pkj . The value k(i) is the type of a machine i ∈ M. We suppose that K is
constant, that 0 < ε ≤ 1

2 and that computing the logarithm needs time in O(1).
Note that all results and proofs are also valid for non-integral pkj etc., especially
if they are rounded to non-integral values. The complete paper (with the missing
proofs and additional explanations) has been published as a technical report [10].

2 Preprocessing of the Instance

As a first step, we preprocess the items with a technique from [7,18] to get an
instance Imerge with a smaller number of jobs.

Let 0 < ε′ ≤ 1
3 with ε′ = Θ(ε). The actual value of ε′ will be determined

later. First, let dj := mink∈{1,...,K} pkj be the smallest processing time of a job
j, and let D :=

∑
j∈J dj . It is easy to see that D

m ≤ OPT(I) ≤ D.
Hence, we can divide all processing times pkj by D

m such that we get the
following:

294 J.C. Gehrke et al.

Assumption 1. Without loss of generality, the jobs are scaled such that 1 ≤
OPT(I) ≤ m and D =

∑
j∈J dj = m.

The jobs are now partitioned into fast and slow ones for each type k. A job is
slow on type k if pkj ≥ m

ε′ dj , otherwise it is fast on type k. Should j be slow on
type k, we set proundkj := ∞ (or to a sufficiently large value like 2m) such that a
reasonable algorithm will not schedule j on such a machine. If j is fast on type
k, we round it down to the nearest lower value proundkj := dj(1 + ε′)h for h ∈ IN
(where in fact h = 	log1+ε′

pkj

dj

). The new instance of scaled and rounded jobs

J round together with the (unchanged) machines is called Iround.

Remark 2. We will sometimes directly refer to “fast jobs” and “slow jobs” if we
mean e.g. “jobs scheduled on machines where they are fast.”

Jobs will later on also be called “large” and “small” such that similar expres-
sions will be used.

Lemma 3 [18]. We have OPT(Iround) ≤ (1 + ε′) OPT(I).

Lemma 4 [18]. If there is an approximation algorithm Ar for Iround such that
Ar(Iround) ≤ αOPT(I)+β, then there is also an approximation algorithm A for
I with A(I) ≤ α (1 + ε′)2 OPT(I)+β(1+ε′) ≤ (

α(1 + ε′)2 + β(1 + ε′)
)
OPT(I).

(The proof of this lemma is constructive.)

A rounded job j ∈ J round has the profile (Π1,j , . . . , Πk,j), where Πk,j ∈ IN is
the exponent such that proundkj = dj (1 + ε′)Πk,j . We set Πk,j = ∞ if proundkj = ∞.

Lemma 5 [7]. The jobs in Iround have l ≤ (2 + log1+ε′(m
ε′))K profiles.

We derive from Iround the modified instance Imerge. Let ν := 1
�m/ε′� . The jobs

are partitioned into large jobs L := {j | dj > ν} and small jobs S := {j | dj ≤ ν}.
Take an enumeration of the l profiles such that we can denote a profile directly
by its number ς ∈ {1, . . . , l}. The set S is then further partitioned into the sub-
sets Sς = {j ∈ J | j has the profile ς} for ς ∈ {1, . . . , l}. Two jobs ja and jb with
the same profile ς and for which dja

, djb
≤ ν

2 holds are now grouped together
to a new composed job jc with pkjc

:= pkja
+ pkjb

for every k. The composing
is repeated until there is at most one job j ∈ Sς with dj ≤ ν

2 for every profile
ς. The other jobs (including the jobs in L) now have all a processing time of
at least ν

2 . The set of all jobs is called J merge, which yields together with the
(unchanged) machines the instance Imerge.

Lemma 6. If two jobs ja and jb are grouped together to jc, then jc has the same
profile as ja and jb.

Lemma 7. After composing the items, we still have 1 ≤ OPT(Imerge) ≤ m.

Theorem 8. We have reduced the number of jobs: the cardinality of J merge (i.e.
of jobs in Imerge) is bounded by min{n, 2D

ν + l} = min{n,O(m2

ε′) + (log m
ε′)O(K)}.

Theorem 9 [18]. We have OPT(Iround) ≤ OPT(Imerge) ≤ OPT(Iround) + ε′.

Theorem 10. Imerge can be constructed from I in time O(n · K).

A PTAS for Scheduling Unrelated Machines of Few Different Types 295

3 The Main Algorithm

Let 0 < δ ≤ ε′ ≤ 1
3 with δ = Θ(ε′). We present our algorithm for an instance

I with n′ items and 1 ≤ OPT(I) ≤ m: it finds a solution of value at most
(1 + δ)OPT(I). As I is in fact Imerge, we make the following assumption:

Assumption 2. I has n′ ≤ O(m2

ε′)+ (log m
ε′)O(K) = O(m2

δ)+ (log m
δ)O(K) items.

3.1 Approximating the Optimum by Binary Search

We introduce δ′ = Θ(δ) with 0 < δ′ ≤ δ ≤ ε′ ≤ 1
3 . Suppose that we have an

oracle Oracle(I, T) that returns for a given makespan T and a constant C > 0
either a solution of value at most (1 + Cδ′)T or ⊥ (false). The answer ⊥ implies
that there is not a solution of value at most T , i.e. T < OPT(I). We use the
famous dual approximation approach [12,13,19]: we start with the lower bound
LB = 1 and the upper bound UB = m. Then, a binary search with the oracle
approximates the optimum OPT(I) up to the desired approximation ratio.

Lemma 11. Suppose that the Oracle function has the properties above. Then,
the dual approximation approach, i.e. the binary search, finds a schedule with
a makespan of at most

(
1 + (C + 1)δ′ + C(δ′)2

)
OPT(I) and needs O(log(m

δ′))
calls of the oracle.

3.2 The Oracle

We now describe the principle of the oracle. As a first step, the processing times of
the jobs in I are divided by T . We get a new instance Iscale with OPT(Iscale) ≤
1 (if OPT(I) ≤ T). Then, the jobs are rounded to get the instance Ir with
OPT(Ir) ≤ (1+δ′). A dynamic program DynProg is used to iteratively construct
the sets TS0, . . . , TSn′ of profiles, where each profile represents several (real)
schedules. The profiles in TSj consider the first j jobs {1, . . . , j}. At the end, a
function CreateSchedule tries to construct a discrete schedule σ for the instance
Ip (which is similar to Ir) from each profile t ∈ TSn′ , where the profiles in TSn′

consider all n′ jobs. If there is a solution to I with a makespan of at most T , one
discrete schedule σ for I with a makespan of at most (1 + Cδ′)T will be found
by CreateSchedule. We first have the following obvious lemma:

Lemma 12. The set Iscale can be constructed in O(n′ · K).
In a slight abuse of notation, we still denote the scaled processing times by pkj .

Definition 13. A (scaled) job j is large on a machine type k if pkj ≥ δ′. Oth-
erwise, it is small.

Take one job j. If its processing time is large on a machine type k, it is
rounded up to the next γ · (δ′)2 for γ ∈ IN. If the processing time is small, i.e.
pkj < δ′, the processing time is rounded down to the next multiple of mk·δ′

n′ .
This new instance with processing times prkj is denoted by Ir. Note that jobs are
large (or small) on a machine type in Ir if they are large (or small) in Iscale, and
vice versa.

296 J.C. Gehrke et al.

Lemma 14. If Iscale has a schedule with a makespan of at most 1, then Ir has
a schedule with a makespan of at most 1+ δ′. Ir can be constructed in O(n′ ·K).

Take one schedule with a makespan of at most 1 + δ′. If only large jobs of Ir

are scheduled on a machine i, its total processing time is a multiple of (δ′)2. In
fact, it must be one of the values {0}∪{γ ·(δ′)2 | γ ∈ IN and δ′ ≤ γ ·(δ′)2 ≤ 1+δ′}.
These processing times can be numbered with γ = 0 (for the total processing
time 0) and γ ∈ {γ0 := 1

δ′ �, γ0 + 1, . . . , γ1 − 1, γ1 := 	 1+δ′
(δ′)2
}. If j is large, the

value γ(k, j) is the factor such that prkj = γ(k, j) · (δ′)2.

Lemma 15. For Ir, there are O(1
(δ′)2) processing times of the form γ · (δ′)2 of

large jobs on a machine.

Similarly, take all small jobs assigned to a machine type k. Their total processing
time is at most mk · (1 + δ′) because we consider a schedule with a makespan
of at most 1 + δ′. Moreover, the total processing time is also a multiple of mk·δ′

n′

because of the rounding, i.e. it is one of the values in Σk := {τ · mk·δ′
n′ | τ ∈

IN and 0 ≤ τ · mk·δ′
n′ ≤ mk · (1 + δ′)}.

Lemma 16. For one machine type k of Ir, there are O((1+δ′)·mk/mk·δ′
n′) =

O(n′
δ′ (1 + δ′)) = O(n′

δ′) possible total processing times of small jobs in Σk.

Based on the observations above, we introduce several useful definitions.

Definition 17. Let I ′ be a sub-instance of Ir, i.e. an instance whose jobs J ′

are a subset of the jobs in Ir, and which has the same machines as Ir. Let
σ : J ′ → M be a feasible schedule with a makespan of at most 1 + δ′. Let bi

be the total processing time of the large jobs assigned to machine i, i.e. bi =
bi(σ) :=

∑
j:σ(j)=i,pr

k(i)j≥δ′ prk(i)j. The remaining processing time (or remaining

machine capacity) of every machine type k for the makespan 1 + δ′ is rk =
rk(σ) :=

∑
i∈Mk

(1 + δ′ − bi) = mk · (1 + δ′) − ∑
i∈Mk

bi. Moreover, the value
abk(σ, γ) denotes the number of machines of type k where bi = γ · (δ′)2, i.e.
abk(σ, γ) := |{i ∈ Mk | bi = γ · (δ′)2}| for γ ∈ {0, γ0, . . . , γ1}. Furthermore,
ask(σ) is the total processing time of all small jobs assigned to machine type k,
i.e. ask(σ) :=

∑
j:σ(j)∈Mk,pr

kj<δ′ prkj. As seen above, we have ask(σ) ∈ Σk. Since
the small jobs have to fit into the remaining processing time, ask(σ) ≤ rk(σ)
holds for all k ∈ {1, . . . , K}. The values abk(σ) := (abk(σ, γ))γ=0,γ0,...,γ1 and
ask(σ) for k ∈ {1, . . . , K} form the profile of σ.

3.3 Dynamic Programming

The dynamic program DynProg determines all possible profiles for Ir. It is
together with the definitions above the main contribution of this paper. One
profile t for a sub-instance I ′ is represented like above: it is a tuple of K tuples,
one for each machine type: t = ((AB1, AS1), . . . , (ABk, ASk), . . . , (ABK , ASK)).
For each k ∈ {1, . . . , K}, the entry ASk denotes the total processing time of

A PTAS for Scheduling Unrelated Machines of Few Different Types 297

all small jobs that are assigned to the machines of type k. One ABk is again
a tuple ABk = (q0, qγ0 , . . . , qγ , . . . , qγ1). Each entry qγ denotes the number of
machines of type k where the large jobs have the total processing time γ · (δ′)2.
Obviously, q0+

∑γ1
γ=γ0

qγ = mk holds. For convenience, ASk(t) denotes the entry
ASk of a profile t, and ABk(t) stands for the tuple ABk of profile t. Additionally,
(ABk(t))γ is the entry qγ in the tuple ABk(t).

Lemma 18. One profile t has O(K
(δ′)2) entries.

The dynamic program DynProg starts with the profile set that represents the
empty schedule: TS0 = {(((m1, 0, . . . , 0), 0), . . . , ((mK , 0, . . . , 0), 0))}. For every
machine type k, small jobs have not been assigned (ASk = 0), and mk machines
(i.e. all machines of type k) have a total processing time of large jobs equal to 0.

Suppose that the set TSj−1 has been determined: it contains all profiles that
can be obtained for the first j − 1 jobs {1, . . . , j − 1}. The profiles for {1, . . . , j}
are constructed by considering for each t ∈ TSj−1 all possibilities to add j to
t. Fix one t ∈ TSj−1. We go over all k. If j is small on type k, then ASk(t) is
simply increased by prkj : we have a new profile t′ ∈ TSj where additionally j is
assigned to the machine type k. If j is large on type k, all qγ = (ABk(t))γ > 0
are taken into account: there are qγ machines of type k in t where each has the
total processing time γ · (δ′)2. If we add j to one of these machines, there is one
machine less with the processing time γ · (δ′)2 and one machine more with the
processing time γ · (δ′)2 + prkj = γ · (δ′)2 + γ(k, j) · (δ′)2. Hence, qγ decreases and
qγ+γ(k,j) increases by one. Thus, each qγ > 0 generates a new profile t′ ∈ TSj .

If t′ is new, we save t′ together with the corresponding backtracking informa-
tion to later construct a schedule. Otherwise, t′ has been derived in another way
(e.g. from another t ∈ TSj−1), and we only keep the old backtracking informa-
tion. The check whether t′ is new can be done in the size of the profile O(K

(δ′)2):
all profiles t′′ ∈ TSj can be saved in one array with the position of t′′ given by
its values (ABk(t′′))γ and ASk(t′′). Note that the dynamic program only adds a
large item if γ · (δ′)2 + prkj ≤ (1 + δ′), i.e. γ + γ(k, j) ≤ γ1: we only want to find
the profiles representing schedules with makespans of at most 1 + δ′. Similarly,
the bound ASk(t′)+prkj ≤ mk ·(1+δ′) for ASk is checked. It is therefore possible
that there is not any profile t ∈ TSj−1 such that j can be assigned: the value T
is too small. Then, DynProg returns the empty set, and Oracle will return ⊥. It
is obvious that a schedule for Ir with a makespan of at most (1+δ′) corresponds
to at least one profile.

Lemma 19. Let σ be a schedule for Ir with a makespan of at most 1+ δ′. Then
DynProg generates a profile t for Ir where (ABk(t))γ = abk(σ, γ) for all γ ∈
{0, γ0, . . . , γ1} and k ∈ {1, . . . , K}, and ASk(t) = ask(σ) for all k ∈ {1, . . . , K}.
Lemma 20. One TSj has at most κ ≤ (mO(1/(δ′)2) · O(n′

δ′))K ≤ mO(K/(δ′)2) ·
(log m

δ′)O(K2) profiles.

Lemma 21. The dynamic program needs O(K
(δ′)2 · m · κ · n′) = mO(K/(δ′)2) ·

(log m
δ′)O(K2) for the construction of all profiles TS0, . . . , TSn′ .

298 J.C. Gehrke et al.

Remark 22. Profiles can of course be stored in a more compact form by only
saving the strictly positive abk(σ, γ) and (ABk(t))γ . However, it can be shown
that the number of profiles κ and the asymptotic running time do not change.

3.4 Construction of a Schedule

The goal of this section is the construction of a schedule from a suitable profile.

Definition 23. For a given profile t′, the remaining total processing time for
every machine type k is defined by Rk = Rk(t′) := mk · (1+ δ′)−∑

γ (ABk(t))γ ·
γ · (δ′)2. The definition corresponds to the one of rk in Definition 17.

Definition 24. Let Ip be an instance where the processing time is ppkj := prkj if
j is large on type k and ppkj := pkj if j is small on k.

After DynProg, Oracle calls the function CreateSchedule for every t′ ∈ TSn′ .
First, CreateSchedule (t′) checks whether enough processing time is left for the
small jobs by controlling whether Rk(t′) ≤ ASk(t′) holds for all k. If yes, the
Function Backtracking is called to construct a schedule for the large jobs and to
find for every k the set of small jobs Jk assigned to Mk. First, it finds with the
backtracking information the tuples t′0 ∈ TS0, t

′
1 ∈ TS1, . . . , t

′
n′−1 ∈ TSn′−1, t

′ =
t′n′ ∈ TSn′ from which t′ has been constructed. Starting from t′0 (which is the
profile for the empty schedule), we have two cases. Either t′j has been constructed
from t′j−1 by adding j to a machine type k where it is large, and in Mk to a
machine with the current processing time γ · (δ′)2. Then Backtracking assigns
j to one machine in Mk with a current processing time of γ · (δ′)2. Otherwise,
j is small on k, and j is added to Jk. When all t′j have been processed by
Backtracking, the small jobs Jk are greedily added by CreateSchedule: a
machine in Mk gets assigned jobs in Jk until the total processing time of the
machine exceeds 1+2δ′. Then, the next machine in Mk is processed in the same
way. Oracle returns ⊥ if it cannot construct a schedule (because TSn′ = ∅ or
no t′ satisfies Rk(t′) ≤ ASk(t′) for all k).

Lemma 25. Let t ∈ TSn′ be a profile for which ASk(t) ≤ Rk(t) holds for all
k. Then, CreateSchedule and Backtracking return a schedule σ for Ip with a
makespan of at most 1 + 3δ′, i.e. a schedule for I of value at most (1 + 3δ′)T .

Proof (Sketch). The proof is an indirect one. It can be shown that the con-
structed schedule σ for Ip satisfies abk(σ, γ) = (ABk(t))γ for all k and γ. This
yields rk(σ) = Rk(t) for all k. Moreover, ppkj ≤ prkj + mk·δ′

n′ holds for small jobs.
Since we have ASk(t) ≤ Rk(t) by assumption,

∑
j∈Jk

ppkj ≤ Rk(t) + mk · δ′

holds: the small jobs in Jk with their processing times ppkj only slightly exceed
the remaining capacity of the machines of type k. This would be contradicted if
there were a machine type k on which the greedy assignment yielded a processing
time larger than 1+2δ′ for every machine of this type and some small jobs were
still left. All small jobs can therefore be greedily scheduled. As we have ppkj < δ′

for small jobs on type k, the makespan of σ is bounded by 1 + 3δ′ because at

A PTAS for Scheduling Unrelated Machines of Few Different Types 299

most one small job is assigned to a machine i such that the processing time of i
exceeds 1+2δ′. The schedule σ for Ip yields one for I of value at most (1+3δ′)T .
��
Lemma 26. One call of Backtracking needs time in O(K +n′ ·m). Therefore,
the total running time for all calls of CreateSchedule is in O(κ · K

(δ′)2 +n′ ·m) =

mO(K/(δ′)2) · (log m
δ′)O(K2).

Theorem 27. Let I be an instance with 1 ≤ OPT(I) ≤ m. The dual approxi-
mation approach with the Oracle function is a PTAS: it finds for given δ > 0
and δ′ := δ

5 a solution of value at most (1 + δ)OPT(I). The running time is in
mO(K/δ2) · (log m

δ)O(K2).

Proof. Lemma 11 states that the binary search returns a solution of value at most
(1 + (C + 1)δ′ + C(δ′)2)OPT(I) if Oracle has the stated properties. Suppose
first that Oracle returns a solution σ for T and input I. This is only the case if
there is a profile t ∈ TSn′ for which ASk(t) ≤ Rk(t) holds. Hence, the returned
schedule σ has a makespan of at most 1 + 3δ′ for Ip as seen in Lemma 25, and
it is also a schedule for I with a makespan of at most (1 + 3δ′)T .

It remains to prove that there is not a solution to I of value (at most)
T if Oracle (I, T) returns ⊥. We show this by demonstrating that the oracle
will always return a solution if there is a solution of value (at most) T : the
instance I satisfies OPT(I) ≤ T , which implies that the instance Iscale has an
optimum OPT(Iscale) ≤ 1, which again implies that the instance Ir satisfies
OPT(Ir) ≤ 1 + δ′ (see Lemma 14). Let σ be an optimal schedule for Ir. Then,
DynProg, CreateSchedule and Backtracking will find a schedule: Lemma 19
states that there is a profile tσ for which we have abk(σ, γ) = (ABk(tσ))γ and
ask(σ) = ASk(tσ) for all k and γ. As in the proof of Lemma 25, the identity
abk(σ, γ) = (ABk(tσ))γ implies rk(σ) = Rk(tσ). Since the small jobs assigned by
σ to the machine type k have to fit into the remaining machine capacity rk(σ),
we have ASk(tσ) = ask(σ) ≤ rk(σ) = Rk(tσ). By Lemma 25, CreateSchedule
(tσ) will therefore construct a schedule σ′ for I with a makespan of at most
(1 + 3δ′)T . Hence, the oracle has the desired properties with C = 3. We now
want that (1 + (C + 1)δ′ + C(δ′)2)OPT(I) ≤ (1 + δ)OPT(I). Set δ′ := δ

5 such
that we have (C + 1)δ′ + C(δ′)2 = 4δ′ + 3(δ′)2 ≤ δ because δ ≤ 1

3 .
The overall running time follows from Lemmas 11, 12, 14, 21, and 26. ��

4 The General PTAS

We set ε′ := ε
5 and δ := ε′. The PTAS first constructs the instance Imerge from

I (see Sect. 2). Then, it calls the binary search (with Oracle) for Imerge with
δ′ = δ

5 = ε
25 . When it has found a solution, the combination of the items in

Imerge and then the rounding of Iround are undone to get a schedule σ for I. The
following two lemmas show Theorem 1.

Lemma 28. For the values of ε′ = ε
5 , δ = ε′ and δ′ = ε

25 , the algorithm returns
a solution of value Aε(I) ≤ (1 + ε) OPT(I).

300 J.C. Gehrke et al.

Proof. Let Am(Imerge) be the makespan of the solution returned by the binary
search. Transforming Iround into Imerge, using the binary search and then undo-
ing the combination of items is an algorithm Ar for Iround with Ar

(
Iround

)
=

Am(Imerge) ≤ (1+δ)OPT(Imerge) = (1+ε′)OPT(Imerge) (see Theorem 27). Since
OPT(Iround) ≤ OPT(Imerge) ≤ OPT(Iround) + ε′ (see Theorem 9), we have an
algorithm with Ar(Iround) ≤ (1+ε′)OPT(Imerge) ≤ (1+ε′)(OPT(Iround)+ε′) =
(1 + ε′)OPT(Iround) + ε′(1 + ε′). By Lemma 4, this implies an algorithm for I
with Aε(I) ≤ ((1 + ε′)3 + ε′ · (1 + ε′)2)OPT(I) ≤ (1 + ε)OPT(I). This upper
bound holds because of ε′ = ε

5 . (Main parts of the proof are taken from [18].) ��

Lemma 29. The PTAS has a running time in O(K ·n)+mO(K/ε2) ·(log m
ε)O(K2).

5 Concluding Remarks

We have described a PTAS for (Pm1, . . . ,PmK)| |Cmax that is single exponential
in 1

ε . Natural questions are improvements of the running time and the existence
of an efficient PTAS (a PTAS with a running time of the form f(1ε) · |I|O(1),
i.e. where the degree of the polynomial is independent of 1

ε). Another interesting
task is the generalization of this algorithm to jobs with Δ dimensions, the general
case considered by Bonifaci and Wiese [4].

We mention in closing the question whether the FPTAS for a constant num-
ber of machines m presented by Jansen and Mastrolilli [18] can also be adapted to
(Pm1, . . . ,PmK)| |Cmax and yield an FPTAS for a constant number of machine
types K.

Acknowledgements. We would like to thank the anonymous reviewers for their com-
ments, especially for the reference to the algorithm by Raravi and Nélis [20]. The bibli-
ography contains information from the DBLP database (www.dblp.org), which is made
available under the ODC Attribution License.

References

1. Arad, D., Mordechai, Y., Shachnai, H.: Tighter Bounds for Makespan Minimization
on Unrelated Machines (2014). arXiv:1405.2530

2. Bhaskara, A., Krishnaswamy, R., Talwar, K., Wieder, U.: Minimum makespan
scheduling with low rank processing times. In: Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms, SODA 2013, pp. 937–947. SIAM (2013)

3. Bleuse, R., Kedad-Sidhoum, S., Monna, F., Mounié, G., Trystram, D.: Scheduling
independent tasks on multi-cores with GPU accelerators. Concurr. Comput. 27(6),
1625–1638 (2015)

4. Bonifaci, V., Wiese, A.: Scheduling Unrelated Machines of Few Different Types
(2012). arXiv:1205.0974

5. Chakrabarty, D., Khanna, S., Li, S.: On (1, ε)-restricted assignment makespan min-
imization. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, pp. 1087–1101. SIAM (2015)

www.dblp.org
http://arxiv.org/abs/1405.2530
http://arxiv.org/abs/1205.0974

A PTAS for Scheduling Unrelated Machines of Few Different Types 301

6. Chen, L., Ye, D., Zhang, G.: An improved lower bound for rank four scheduling.
Oper. Res. Lett. 42(5), 348–350 (2014)

7. Fishkin, A.V., Jansen, K., Mastrolilli, M.: Grouping techniques for scheduling prob-
lems: simpler and faster. Algorithmica 51(2), 183–199 (2008)

8. Gairing, M., Monien, B., Woclaw, A.: A faster combinatorial approximation algo-
rithm for scheduling unrelated parallel machines. Theor. Comput. Sci. 380(1–2),
87–99 (2007)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

10. Gehrke, J.C., Jansen, K., Kraft, S.E.J., Schikowski, J.: A PTAS for Scheduling
Unrelated Machines of Few Different Types. Technical report, No. 1506, Christian-
Albrechts-Universität zu Kiel (2015). ISSN 2192-6247

11. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization
and approximation in deterministic sequencing and scheduling: a survey. In: Ham-
mer, P.L., Johnson, E.L., Korte, B.H. (eds.) Discrete Optimization II: Proceedings
of the Advanced Research Institute on Discrete Optimization and Systems Appli-
cations of the Systems Science Panel of NATO and of the Discrete Optimization
Symposium. Annals of Discrete Mathematics, vol. 5, pp. 287–326. Elsevier (1979)

12. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems: theoretical and practical results. J. ACM 34(1), 144–162 (1987)

13. Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for schedul-
ing on uniform processors: using the dual approximation approach. SIAM J. Com-
put. 17(3), 539–551 (1988)

14. Horowitz, E., Sahni, S.: Exact and approximate algorithms for scheduling noniden-
tical processors. J. ACM 23(2), 317–327 (1976)

15. Imreh, C.: Scheduling problems on two sets of identical machines. Computing
70(4), 277–294 (2003)

16. Jansen, K., Porkolab, L.: Improved approximation schemes for scheduling unrelated
parallel machines. Math. Oper. Res. 26(2), 324–338 (2001)

17. Jansen, K., Robenek, C.: Scheduling jobs on identical and uniform processors revis-
ited. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164, pp.
109–122. Springer, Heidelberg (2012)

18. Jansen, K., Mastrolilli, M.: Scheduling unrelated parallel machines: linear rogram-
ming strikes back. Christian-Albrechts-Universität zu Kiel (2010). ISSN: 2192-
6247, No. 1004

19. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling
unrelated parallel machines. Math. Program. 46, 259–271 (1990)

20. Raravi, G., Nélis, V.: A PTAS for assigning sporadic tasks on two-type hetero-
geneous multiprocessors. In: Proceedings of the 33rd IEEE Real-Time Systems
Symposium, RTSS 2012, pp. 117–126. IEEE Computer Society (2012)

21. Shchepin, E.V., Vakhania, N.: An optimal rounding gives a better approximation
for scheduling unrelated machines. Oper. Res. Lett. 33(2), 127–133 (2005)

22. Shmoys, D.B., Tardos, E.: An approximation algorithm for the generalized assign-
ment problem. Math. Program. 62, 461–474 (1993)

23. Svensson, O.: Santa claus schedules jobs on unrelated machines. SIAM J. Comput.
41(5), 1318–1341 (2012)

24. Wiese, A., Bonifaci, V., Baruah, S.K.: Partitioned EDF scheduling on a few types
of unrelated multiprocessors. Real-Time Syst. 49(2), 219–238 (2013)

Compacting a Dynamic Edit Distance Table
by RLE Compression

Heikki Hyyrö1(B) and Shunsuke Inenaga2

1 Department of Computer Sciences, University of Tampere, Tampere, Finland
heikki.hyyro@uta.fi

2 Department of Informatics, Kyushu University, Fukuoka, Japan
inenaga@inf.kyushu-u.ac.jp

Abstract. Kim and Park [A dynamic edit distance table, J. Disc. Algo.,
2:302–312, 2004] proposed a method (KP) based on a “dynamic edit dis-
tance table” that allows one to efficiently maintain edit distance infor-
mation between two strings A of length m and B of length n when the
strings can be modified by single-character edits to their left or right
ends. This type of computation is useful e.g. in cyclic string comparison.
KP uses linear time, O(m + n), to update the distance representation
after each single edit. As noted in a recent extension of KP by Hyyrö
et al. [Incremental string comparison, J. Disc. Algo., 34:2-17, 2015], a
practical bottleneck is that the method needs Θ(mn) space to store a
representation of a complete m× n edit distance table. In this paper we
take the first steps towards reducing the space usage by RLE compress-
ing A and B. Let M and N be the lengths of RLE compressed versions
of A and B, respectively. We propose how to store the edit distance table
using Θ(mN + Mn) space while maintaining the same time complexity
as the original method that does not use compression.

1 Introduction

Edit distance is a classic and widely used similarity measure between two strings
A and B. In this paper we concentrate on Levenshtein distance that is defined
as the minimum number of single-character insertions, deletions, and/or substi-
tutions needed in order to transform A into B (or vice versa).

Let m and n denote the lengths of A and B, respectively, and let ed(A,B)
denote the Levenshtein distance between A and B. The fundamental Θ(mn)
time dynamic programming edit distance algorithm computes information in a
“directional” manner. Without loss of generality we assume the typical left-to-
right direction that allows one to efficiently cope with changes to the right ends
of A or B: the solution to ed(A,B) can for example be updated into a solution
to ed(Ac,B) or ed(A,Bc), where c is a character appended to the right end of
A or B, in Θ(n) or Θ(m) additional time, respectively.1 Changes to the left end

1 The case of right-to-left direction is symmetric and would within the context of this
paper only result in interchanging the notions of “left” and “right” ends of a string.

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 302–313, 2016.
DOI: 10.1007/978-3-662-49192-8 25

Compacting a Dynamic Edit Distance Table by RLE Compression 303

are much more costly: e.g. updating a standard dynamic programming solution
to ed(A,B) into a solution to ed(cA,B) or ed(A, cB), where c is prepended to
the left end of A or B, takes Θ(mn) worst-case time.

There are several solutions (mainly [4,6]) that can handle left-end modifi-
cations in linear O(m + n) time. Efficient support for left-end modifications is
important in many applications, such as e.g. cyclic string comparison and com-
puting approximate periods (see [2,3,5–7] for more details). The key to overcome
the Θ(mn) limit of the basic dynamic programming algorithm is to use some
kind of an indirect representation of the edit distance information. In this paper
we concentrate on the difference-representation used by the “dynamic edit dis-
tance table” that was first introduced by Kim and Park [5] for Levenshtein edit
distance and recently extended by Hyyrö et al. [4] to weighted edit distance.

It was noted in [4] that the main practical limitation of the dynamic edit
distance table is its Θ(mn) space requirement. In this paper we take the first
steps towards reducing the space usage by compressing A and B with run-length
encoding (RLE). Let M and N be the lengths of RLE compressed versions
of A and B, respectively. We propose how to store the dynamic edit distance
table only partially using Θ(mN + Mn) space while still supporting left-end
modifications in linear O(m+n) time. Our method builds on Arbell et al.’s edit
distance computation algorithm for RLE compressed strings [1].

2 Preliminaries

We use the following notation with strings. Let A be a string consisting of m
characters. For 1 ≤ i ≤ m, A[i] denotes the ith character of A, and for 1 ≤ i ≤
j ≤ m, A[i : j] denotes the substring of A that starts at its ith character and
ends at its jth character. If i > j, we define A[i : j] = ε, where ε means an empty
string. For any two characters x and y, we also define a character (mis)match
function δ(x, y) whose value is 0 iff x = y and 1 otherwise.

Run length encoding (RLE) is a string compression method that compresses a
string A by replacing each maximally long substring A[i : j], where A[i] = A[k]
for all k ∈ [i . . j], by the pair (a, j − i + 1), where a = A[i]. That is, each
maximally long run of equal characters is replaced by a value-pair that describes
the character and the length of the run. It is usual to express such pairs (a, x)
in the form ax. For example if A = aaaabbacccbbaabbb, the RLE compressed
representation of A may be written as a4b2 a1c3b2a2 b3. We define the length
of an RLE compressed string (or the RLE length of a string) as the number of
maximal runs in it. E.g. the length of the preceding example string A is 17 and
its RLE length is 7. RLE compression is effective if the strings contain long runs
of equal characters.

The edit distance between two strings A and B is denoted by ed(A,B) and
is defined as the minimum number of edit operations that are required in order
to transform A into B or vice versa. We concentrate on the classic Levenshtein
edit distance, which permits the following three edit operations for a string A:

1. Insert a character c after position i of A. If i = 0, insert it to the left end.

304 H. Hyyrö and S. Inenaga

2. Delete the character ai from position i of A.
3. Substitute the character ai at position i of A by a character c.

For example ed(apple, carpe) = 3 and an optimal three-operation way to trans-
form A = apple into B = carpe is to delete A[4]= l, substitute A[2] = p by r
and insert the character c to the front.

Throughout the paper we will let m denote the length of A and n denote
the length of B. The fundamental Θ(mn) time solution for computing ed(A,B)
fills an (m + 1) × (n + 1) dynamic programming table D with values D [i, j] =
ed(A[1 : i], B[1 : j]) for 0 ≤ i ≤ m and 0 ≤ j ≤ n. Note that D [m,n] will tell
the desired result ed(A,B). Each value D [i, j] is computed using the following
well-known recurrence (1).

D [i, 0] = i for 0 ≤ i ≤ m,D [0, j] = j for 0 ≤ j ≤ n, and
D [i, j] = min{D [i, j−1] + 1,D [i−1, j] + 1,D [i−1, j−1] + δ(A[i], B[j])} ,
for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

(1)

Let us recall a well-known observation about neighboring cell values in D .

Observation 1. The following properties hold for D:

1. D[i, j] − D[i − 1, j − 1] is 0 or 1, for i ∈ [1 . . m] and j ∈ [1 . . n].
2. D[i, j] − D[i − 1, j] is −1, 0 or 1, for i ∈ [1 . . m] and j ∈ [0 . . n].
3. D[i, j] − D[i, j − 1] is −1, 0 or 1, for i ∈ [0 . . m] and j ∈ [1 . . n].

For the rest of the paper we assume that we are given edit distance information,
for example the table D , that corresponds to computing ed(A,B), and that the
string B will then be subjected to an edit operation at its left or right end.2

Let B ′ denote B after the operation. The goal is to update the edit distance
information, for example D , so that it corresponds to ed(A,B ′).

Let D ′ denote D after it has been updated to correspond to ed(A,B ′). If the
operation to B is done at its right end, in which case either B ′ = Bc (insertion),
B ′ = B[1 : n − 1] (deletion) or B ′ = B[1 : n − 1]c (substitution), D may be
updated into D ′ in O(m) time by computing a single column at index j = n or
j = n + 1 using recurrence (1). It is well-known (see e.g. [5]) that any of the
analogous left end modifications, corresponding to either B ′ = cB (insertion),
B ′ = B[2 : n] (deletion) or B ′ = cB[2 : n] (substitution), may lead to up to
Θ(mn) differences between D and D ′. This gives a worst-case bound of Θ(mn)
for updating D into D ′.

3 The Dynamic Edit Distance Table

The “dynamic edit distance table” proposed by Kim and Park [5] avoids the
Θ(mn) bound of updating D into D ′ by maintaining a difference representation
DR of D (instead of the original D). Each cell DR[i, j] of the difference table

2 Without loss of generality; the case of editing A is symmetric.

Compacting a Dynamic Edit Distance Table by RLE Compression 305

has two fields: a vertical (upper) difference DR[i, j].U and a horizontal (left)
difference DR[i, j].L. These difference values are defined as

DR[i, j].U = D [i, j] − D [i − 1, j] and
DR[i, j].L = D [i, j] − D [i, j − 1], for i = 1, . . . , m and j = 1, . . . , n.

That is, DR[i, j].U tells the difference between D[i, j] and its upper neighbor
D[i−1, j] and DR[i, j].L tells the difference between D[i, j] and its left neighbor
D[i, j − 1]. Figure 1 shows an example of D and the corresponding U - and L-
values in DR. Note that if we have only DR available, computing an arbitrary
D[i, j] value requires O(min{m,n}) time since we need to backtrack min{i, j}
cells from DR[i, j]. However, the computation of DR can be set to keep track
of a constant number of specific values of interest, such as D [m,n] = ed(A,B),
without causing asymptotic (or practically significant) overhead. This makes DR
sufficient for many applications.

Fig. 1. The tables D and DR for A = apple and B = carpe

Let DR′ denote DR after it has been updated to correspond to ed(A,B ′).
Modifying the left end of B may shift column indices within B and DR. E.g. if
a character is deleted from the left end of B, then for j = 2, . . . , n the equality
B[j − 1] = B ′[j] holds and column j − 1 in DR corresponds to column j in DR′.
We define � as a correcting offset: � = −1 if a character was deleted from the left
end, � = 1 if a character was inserted to the left end of B, and � = 0 otherwise.
Now B[j − �] = B′[j] and column j − � in DR corresponds to column j in DR′.

The important benefit from using DR instead of D is that DR′ can differ from
DR in at most O(m+n) positions. The following Theorem1 can be derived from
the proof of Theorem 8 in [4].

Theorem 1 [4]. Any single row i ∈ [1 . . m] of DR′ contains at most O(1)
columns j where DR′[i, j].L �= DR[i, j − �].L. Any single column j ∈ [1 . . n − �]
of DR′ contains at most O(1) rows i where DR′[i, j].U �= DR[i, j − �].U . Overall
the table DR′ contains at most O(m+n) positions where DR′[i, j] �= DR[i, j−�].

Kim and Park [5] presented the first algorithm that updates DR into DR′ in
O(m + n) time. Later Hyyrö et al. [4] gave a more general and simple algorithm
that achieves the same result.

Theorem 2 [5]. DR can be updated to DR′ in O(m + n) time.

306 H. Hyyrö and S. Inenaga

4 Edit Distance of RLE Compressed Strings

For the rest of the paper we assume that A and B have been RLE compressed
and denote their RLE lengths by M and N , respectively. In this section we review
the algorithm of Arbell et al. [1] that computes ed(A,B) in Θ(mN +Mn) time.
Note that the time complexity holds even if A and B are given in uncompressed
form: in that case A and B can first be RLE compressed in O(m + n) time.

Fig. 2. Matching (black) and non-
matching (white) blocks at inter-
secting RLE runs

The key idea is to divide the dynamic
programming table D into “boxes” that are
defined by intersections of maximal runs of
A and B (see Fig. 2). D contains M × N
such boxes. Let M I denote the length of
the Ith run in A, NJ the length of the Jth
run in B, and BI,J the box that corresponds
to the Ith run of A and the Jth run of
B. The box BI,J consists of the two dimen-
sional index interval that spans the rows i =
iIT . . . iIB and the columns j = jJL . . . jJR, where
the index bounds are iIT = 1 + ΣI−1

k=1M
k,

jJL = 1 + ΣJ−1
k=1Nk, iIB = iIT + M I − 1 and

jJR = jJL + NJ − 1.
For convenience we also define boxes for

row and/or column 0: BI,0 spans the rows
i = iIT . . . iIB in column 0 and B0,J the columns j = jJL . . . jJR in row 0. Since the
box BI,J is an index interval instead of a concrete sub-table of D , we may refer
to a box BI,J also in alternative representations of D , such as DR.

As depicted in Fig. 2, each box may be classified as a matching (black) or
a non-matching (white) box, depending on whether the runs of A and B that
define BI,J are runs of the same character or not.

The table D is processed one box at a time, and in each box BI,J only
the cells on its right/bottom boundary (in rightmost column jJR and/or bottom
row iIB) are filled. It is convenient to define the left/up boundary to consist of
those cells that are immediate left/up neighbours of BI,J (on column jJL − 1
and/or row iIT − 1). The boxes are processed in such a manner that the left/up
neighboring boxes BI−1,J−1, BI,J−1 and BI−1,J are processed before the box
BI,J . This guarantees that the cells in the left/up boundary have been computed
before BI,J . The values in the right/bottom boundary can be computed from
the values in the left/up boundary.

The diagonal d of D consists of those cells D [i, j] where d = j − i. A first
observation, based on the fact that D [i, j] = D [i− 1, j − 1] if A[i] = B[j], is that
black boxes are very easy to handle. Consider a cell D [i, j] on the right/bottom
boundary of a black box and let h = 1 + min{i − iIT, j − jJL}. The value h tells
the (minimum) distance between D [i, j] and the left/up boundary. Then the
cell D [i − h, j − h] is on the up/left boundary, resides on the same diagonal
as D [i, j] and the equality A[i − h + k] = B[j − h + k] holds for k = 1, . . . , h.

Compacting a Dynamic Edit Distance Table by RLE Compression 307

Fig. 3. Processing a white box. The filled cells on the right/bottom boundary are
highlighted with a grid-pattern. The cells of zone I and zone II are shown in dark grey.
The dashed diagonal lines go from D [i − h, jJR − h] to D [i, jJR].

The above-mentioned fact then tells that we can set D [i, j] = D [i − 1, j − 1] =
· · · = D [i − h, j − h].

Now we consider the more complex case of updating white boxes. Figure 3
depicts the processing of a white box BI,J . We discuss only the computation of
values in column jJR, as row iIB is processed in a symmetric manner. If (i, j) is
a position inside a white box, then A[i] �= B[j] and recurrence (1) reduces into
D [i, j] = 1 + min{D [i − 1, j − 1],D [i, j − 1],D [i − 1, j]}. This can be interpreted
as increasing the distance by 1 for each diagonal, horizontal or vertical step
that a single use of the recurrence “moves” inside the white box. Now if a cell
D [i, jJR] along the right boundary of BI,J inherits its value (via repeated uses
of the previous rule) from a cell D [i∗, j∗] on the left/up boundary, the equality
D [i, jJR] = D [i∗, j∗] + max{i − i∗, jJR − j∗} holds. Here the term max{i − i∗, jJR −
j∗} gives the minimum number of repeated uses of recurrence (1) we need in
order to reach cell D [i, jJR] from the cell D [i∗, j∗]. The remaining problem is
how to determine which cell D [i∗, j∗] on the left/up boundary gives the optimal
(minimal) value for D [i, jJR]. Let h = 1 + min{i − iIT, jJR − jJL} again be the
distance to the left/up boundary. Arbell et al. showed that the optimal source
cell D [i∗, j∗] must reside in either “zone I” or “zone II”, where zone I consists of
the cells D [iIT −1, j∗] for j∗ = jJR −h, . . . , jJR and zone II of the cells D [i∗, jJL −1]
for i∗ = i−h, . . . , i (see Fig. 3). Note that both zones have length h+1. A crucial
observation for computing D [i, jJR] is that the term max{i − i∗, jJR − j∗} has the
fixed value i − iIT + 1 for any cell in zone I and the fixed value jJR − jJL + 1 for
any cell in zone II. Now D [i, jJR] = min{i− iIT + 1 +Z1, j

J
R − jJL + 1 +Z2}, where

Z1 = min{D [iIT − 1, j∗] | j∗ ∈ [jJR − h . . jJR]} and Z2 = min{D [i∗, jJL − 1] | i∗ ∈
[i − h . . . i]}. Computing D [i, jJR] is then reduced to finding Z1 and Z2, which
are simply the minimum values in zone I and zone II, respectively. Each of them
can be found in O(1) additional time per each row i while processing the rows
of column jJR in the order i = iIT, . . . , iIB.

First consider Z1. At the first row i = iIT we have h = 1 + min{i − iIT, jJR −
jJL} = 1 and Z1 = min{D [iIT − 1, jJR − 1],D [iIT − 1, jJR]}. Then whenever i is
incremented, h either grows by one or has reached the limit jJR − jJL . Using the

308 H. Hyyrö and S. Inenaga

Fig. 4. The Figs. (1–4) depict how DS changes when the string B evolves through the
strings baaa, bbaaa, bbaac and bbaaacc by modifications to its left or right end. Cells
stored in DS are shaded with a pattern: vertical pattern shows cells with U -fields,
horizontal pattern cells with L-fields and grid-pattern cells with both U - and L-fields.

update rule Z1 := min{Z1,D [iIT − 1, jJR − h], we can maintain the correct value
Z1 = min{D [iIT − 1, j∗] | j∗ ∈ [jJR − h . . jJR]} for the new row i.

Now consider Z2. This case is slightly more complicated due to how the top
row of zone II starts moving down when h < i − iIT + 1 (e.g. on the right side
of Fig. 3 the top row of zone II has moved two steps down to row iIT + 1). As
long as h = i − iIT + 1, zone II can be handled in similar manner to zone I.
We have h = 1 and Z2 = min{D [iIT − 1, jJL − 1],D [iIT, jJL − 1]} at the first row
i = iIT, and the update rule in the following rows is Z2 := min{Z2,D [i, jJL − 1]}.
If zone II starts moving, the update also needs to reflect that the previous top
row cell D [i − h − 1, jJL − 1] leaves zone II. Let C be a counter array such that
for 0 ≤ x ≤ max{m,n + �}, C[x] tells how many times the value x appears in
the cells of zone II. C can be maintained by always setting C[D [i, jJL − 1]] :=
C[D [i, jJL − 1]] + 1 when updating Z2, and then also setting C[D [i − h − 1, jJL −
1]] := C[D [i − h − 1, jJL − 1]] − 1 if zone II moves one step down. If currently
Z2 = D [i−h−1, jJL −1] and the latter update results in C[D [i−h−1, jJL −1]] = 0,
the new minimum in zone II is > Z2. The correct new minimum is Z2 := Z2 +1,
because Observation 1 guarantees that the new top row value D [i − h, jJL − 1] ≤
D [i − h − 1, jJL − 1] + 1 = Z2 + 1.

Since filling a single cell in a right/bottom boundary of a box can be done
in O(1) time and D has altogether Θ(mN + Mn) such cells, the overall time for
computing ed(A,B) is Θ(mN + Mn).

5 Dynamic Edit Distance Table for RLE Strings

Let us now turn to the main topic (and contribution) of this paper: handling
left (and right) end modifications efficiently when the strings A and B are
RLE compressed. Instead of the full difference table DR, we will maintain a
“sparse” table DS that contains only those columns and rows that coincide with
the right/bottom boundaries of the boxes BI,J . To be more precise, DS stores
the values {DR.U [i, jJR] | i ∈ [1 · · · m], J ∈ [1 · · · N]} and {DR.L[iIB, j] | I ∈
[1 · · · M], j ∈ [1 . . n]}. Note that the stored columns contain only the U -fields
and the stored rows only the L-fields. The cells at intersections of these columns

Compacting a Dynamic Edit Distance Table by RLE Compression 309

and rows contain both fields. See Fig. 4 for an example. Assume that DS corre-
sponds to ed(A,B) and that B has been changed into B ′ by a modification to
its left or right end. Let DS ′ denote DS after it has been updated to correspond
to ed(A,B ′). Our goal is to find an efficient way to update DS into DS ′.

First we note that even though we discuss only the case of editing B, the
goal is to also allow left or right end edits to A. This means, among other things,
that we should be able to efficiently add/remove rows or columns to/from DS
when updating it to correspond to the DS ′. A suitable solution (like in [5]) is to
store DS as a linked structure where each cell DS [i, j] has a pointer to its four
neighbours (left, up, right and down). Here we define a “neighbour” to be the
nearest cell that actually exists in DS , effectively hopping over those cells of the
boxes BI,J that do not reside on the right/bottom boundary of any BI,J . Such
a linked sparse table DS can be stored using Θ(mN +Mn) space and adding or
removing a column or row can be done in Θ(n) or Θ(m) time, respectively.

Figure 4 shows examples of how the form of DS (which cells are stored in
it) may change when the left or right end of B is modified. For example if a
character is inserted, it either expands the current boxes (step 1 → 2 in Fig. 4)
or adds completely new boxes (imagine the situation of step 3 without the last
character c in B). Performing this kind of changes to DS is straight-forward
in O(m) time. We assume that when we start to update DS into DS ′, the
preprocessing step of changing the form of DS , if necessary, has already been
done. For convenience, we will already refer to this preprocessed (but not yet
fully updated) table as DS ′ (or DR′, as the two tables differ only in that the
former is a partial representation of the latter).

We will concentrate on the case where the left end of B has been modified.
The case of right end modifications is relatively simple to handle in O(m) time by
essentially (re)computing right boundaries of the boxes in at most two rightmost
box columns. The procedure is a straight-forward modification of Arbell et al.’s
method for computing distances on right boundaries. We omit further details
due to lack of space

Our method for updating DS processes DS as if it contained all values of
DR. The modified algorithm will process (roughly) the same set of values of DR
as the previous dynamic edit distance table algorithms of Kim and Park [5] or
Hyyrö et al. [4], but since we are now working with DS instead of DR, needed
values of DR that are not in DS will be computed on the fly and forgotten once
they are no longer needed.

Let us first briefly review how the algorithm of Hyyrö et al. [4] (we will from
now on call it HNI) works. It is based on using Lemma 1 which states those cells
in DR′ (and DS ′) that need to be recomputed. Recall that the value � referred
to in Lemma 1 is a correcting offset that keeps the indices aligned correctly when
comparing values in DR and DR′. This same � is valid also for DS and DS ′.

Lemma 1 [4]. Assume that the values DR′[i∗, j∗] are correct for all cells where
i∗ < i or j∗ < j. The entry DR′[i, j] needs to be recomputed if and only if
DR′[i − 1, j].L �= DR[i − 1, j − �].L or DR′[i, j − 1].U �= DR[i, j − 1 − �].U .

310 H. Hyyrö and S. Inenaga

Assume that HNI is currently processing column j. The basic principle of the algo-
rithm is to maintain a list prevΔ, in ascending row order, of those rows i that
should be recomputed in column j. That is, prevΔ will hold those indices i for
which the inequality DR′[i, j − 1].U �= DR[i, j − 1 − �].U was true while process-
ing the previous column j − 1.3 This enforces the second condition in Lemma 1.
HNI processes the column j rows listed in prevΔ in increasing row order. Each
such cell DR′[i, j] is recomputed, and the U - and L-fields of the new value are
compared with the old ones (which corresponded to DR[i, j − �]). If the U -fields
do not match, the row i of the next column j + 1 is added to a second list, currΔ,
that will later become prevΔ for column j + 1. If the L-fields do not match, the
first rule of Lemma 1 is enforced: also the row i + 1 in column j will be computed
(regardless of whether row i+1 is present in prevΔ or not). The computation can
be stopped if currΔ remains empty or j was the last column of DR.

In the case of RLE strings and DS ′, we will process DS ′ one box at a time.
As we are concentrating on the case where the left end of B is modified, the first
column affected by the modification is j = 1. This is the column where the left
boundaries j0L = 1 of the boxes BI,1 reside.

The boxes will be processed in a column-wise manner: first the boxes B1,J ′
,

. . ., BM,J ′
, then the boxes B1,J ′+1, . . . ,BM,J ′+1 (if the algorithm did not decide to

stop already), and so on. During the computation we maintain two lists for each
box: ΔB

I,J and ΔR
I,J . The list ΔB

I,J records the position-value pairs (j,D ′[i, j])
for all cells DR′[iIB, j] on the bottom boundary of BI,J where the inequality
DR′[iIB, j].L �= DR[iIB, j − �].L holds. In similar manner, each list ΔR

I,J records
the position-value pairs (i,D ′[i, j]) for all cells DR′[i, jJR] on the right boundary
of BI,J where the inequality DR′[i, jJR].U �= DR[i, jJR − �].U holds. The positions
may be accompanied by pointers to allow direct reference in a linked DS . We
will also keep the bottom-left values D ′[iIB, jJL − 1] and D [iIB, jJL − 1− �] together
with the list ΔB

I,J and the top-right values D ′[iIT − 1, jJR] and D [iIT − 1, jJR − �]
together with the list ΔR

I,J . The reason for keeping such concrete distance values
from D ′ and D will become clear later. It is important to note that Theorem 1
guarantees that the lists ΔB

I,J and ΔR
I,J contain at most O(1) positions.

The lists ΔB
I,J and ΔR

I,J serve a similar purpose as prevΔ in HNI: ΔB
I−1,J

lists the cells on the top row iIT of BI,J and ΔR
I,J−1 lists the cells on the left

column jJL of BI,J that need to be recomputed due to Lemma 1. In the beginning,
the positions and values in column 1 where the condition DR′[i, 1].U �= DR[i, 1−
�].U holds are recorded in the corresponding lists. This can be done in O(m)
time e.g. by temporarily computing the whole column 1 of DR and the whole
column 1 − � of DR′. Each such ΔR

I,0 is also supplied with the top-right value
D ′[iT − 1, 0] = iT − 1, using the fact that D ′[i, 0] = i for i ∈ [0 . . m].

Processing a box BI,J means to recompute and record the position-value
pairs at all changed difference values on the right/bottom boundary, compose
the lists ΔR

I,J and ΔB
I,J , and provide the bottom-left and/or top-right values

for them. Note that a box BI,J is processed only if the list ΔB
I−1,J or the list

ΔR
I,J−1 is not empty.

3 In case of using a linked representation of DR or DS , the list should also contain
pointers to the corresponding entries in column j.

Compacting a Dynamic Edit Distance Table by RLE Compression 311

5.1 Processing Black Boxes

Fig. 5. Updating differences in
a black box

The matching black boxes are fairly simple to
update. The differences between cells in the
left/up boundary are transferred as such diag-
onally to the right/bottom boundary. The lists
ΔB

I−1,J and ΔR
I,J−1 tell in which positions along

the left/up boundary the inequality DR′[i, j] �=
DR[i, j − �] was true, that is, the difference rep-
resentation changed. Figure 5 shows an exam-
ple. The grey cells mark difference changes and
the black cells are positions on the right/bottom

boundary where the changes need to be reflected. Let DR′[i, j] be a changed
left/up cell, DR′[i ′, j ′] be the affected right/bottom cell, and set k = min{i ′ −
i, j ′ − j}. As the values propagate diagonally, there are three cases (also shown
in Fig. 5): the cell DR′[i ′, j ′] is DR′[i ′ + k, j ′ + k], its right, or down neighbour.
We can traverse from DR′[i ′, j ′] to DR′[i ′ +k, j ′ +k] in the linked DS ′ structure
in Θ(k) steps and then update DR′[i ′, j ′] in O(1) time. If both cells are inside
vertical or horizontal boundaries (the middle case in Fig. 5), then we can first
follow a single link that hops from row iIT − 1 to row iIB and then directly walk
the remaining k steps. If one cell is on a vertical side and the other on a horizon-
tal side (left or right case in Fig. 5), then walking from one to the other via the
nearest top right or low left corner takes 2k = Θ(k) steps. Updating DR′[i ′, j ′]
is a simple matter of copying the source difference from DR′[i, j] in appropriate
manner. It is also simple to construct the lists ΔB

I,J and ΔR
I,J . The distance

value D ′[i ′, j ′] may be computed in O(1) time from the already known values
D ′[i, j] = D ′[i + k, j + k].

Let #I,J be the number of cells in box BI,J of DR′ that differ from DR.
The preceding procedure for updating a black box requires O(#I,J) work. Each
top/left change DR′[i, j] is propagated to each cell along the Θ(k) long diagonal
path to DR′[i + k, j + k], so there are at least Θ(k) distinct changed differ-
ences in BI,J for each Θ(k)-work phase done by the algorithm. The bottom-left
and/or top-right values that are required by the lists ΔB

I,J and/or ΔR
I,J may

be updated within this time limit in similar manner as with white boxes (see
below). We omit further details due to lack of space.

5.2 Processing White Boxes

Now consider updating a white box. The initial situation is shown in Fig. 6.
The grey cells again mark positions on the left/up boundary, given by lists
ΔB

I−1,J and ΔR
I,J−1, where the difference has changed. Our strategy for a

white box is to traverse difference changes by depth-first-search (DFS). This
partially resembles how the KP algorithm [5] traces changes in DR. We start
a separate DFS from each of the O(1) positions listed in ΔB

I−1,J or ΔR
I,J−1.

Each search traces neighboring cells with difference changes as long as possible
while still remaining inside the current box. If the search is currently in cell

312 H. Hyyrö and S. Inenaga

DR[i, j], it may proceed one step right to the cell DR[i, j + 1] if the condition
DR′[i, j].U �= DR[i, j − �].U (from Lemma 1) holds, and/or one step down to the
cell DR[i + 1, j] if the condition DR′[i, j].L �= DR[i, j − �].L holds (unless the
step would leave the current box). Figure 6 shows examples of the first step from
the left column or top row.

Fig. 6. Updating differences in
a white box

Let DR′[i, j] be the cell that the DFS has just
moved to. Consider first the case where the step
was to the right. We assume (in inductive manner)
that the previous column values D ′[i − 1, j − 1],
D ′[i, j − 1], D [i − 1, j − 1 − �] and D [i, j − 1 − �]
are available in O(1) time. The assumption holds
in the first step from the left boundary, and
the further steps always maintain this property.
We will then compute the current column values
D ′[i − 1, j], D ′[i, j], D [i − 1, j − �], and D [i, j − �].

Once all these are known, it is trivial to determine both DR′[i, j] and DR[i, j−�].
If the step was down, we assume (again in inductive manner) that the above row
values D ′[i − 1, j − 1], D ′[i − 1, j], D [i − 1, j − 1 − �] and D [i − 1, j − �] are
available, compute the current row values D ′[i, j −1], D ′[i, j], D [i, j −1− �], and
D [i, j−�] and then derive the differences DR′[i, j] and DR[i, j−�]. Once DR′[i, j]
and DR[i, j − �] are known, the DFS compares them to decide if it should next
go right and/or down or backtrack.

Fig. 7. An example of how the zones change upon a down or right step

Due to lack of space, we sketch only briefly how to compute a certain D ′[i, j].
The other values of D ′ and D are computed in similar manner. The method is
similar to Arbell et al.’s algorithm. Figure 7 depicts the cell D ′[i, j] (in black)
and the corresponding zones, illustrating how now also zone I may move when
the DFS makes a step right. Now both zones have their own counter array C
that is used for maintaining the minimum value. The only delicacy is that we
need to know the actual D ′- or D-values inside the zones. We note that when a
DFS makes its first step, both zones have two cells, and both of them touch the
top-left cell D ′[iIT − 1, jL − 1] and/or the start cell of the DFS. The list ΔB

I−1,J

and/or ΔR
I,J−1 provides the values D ′[iIT − 1, jL − 1] and D [iIT − 1, jL − 1 − �],

Compacting a Dynamic Edit Distance Table by RLE Compression 313

and the values of D ′ and D at the starting cell of the DFS are available in
O(1) time. Therefore both zones have a known base value from which the rest
of the values in the zone can be computed incrementally using the difference
information stored by DS ′ along the left/up boundary. This poses no problems
as the zones always move/change only one step/cell at a time.

The main remaining question is how to build the lists ΔB
I,J and ΔR

I,J .
If a DFS reaches a cell in the right/bottom boundary, the position and the
distance (maintained by the DFS) is recorded in the respective list. Since there
can be only O(1) such positions along the right/bottom boundary and there are
only O(1) different DFS searches, the lists are easy to combine in O(1) time.
Recall that we also need to compute the bottom-left values D ′[iIB, jJL − 1] and
D [iIB, jJR−1−�], if ΔB

I,J is not empty, and the top-right values D ′[iIT−1, jJR] and
D [iIT − 1, jJR − �], if ΔR

I,J−1 is not empty. We only describe the first case, as the
second case is symmetric. If ΔB

I,J is not empty, then a DFS has traversed from
some source cell on the left/up boundary to the bottom row iIB. Let i be the row
of the DFS source cell. That DFS made at least iIB − i steps. If the source cell
resides on the left boundary, we compute D ′[iIB, jJL − 1] and D [iIB, jJR − 1 − �] in
Θ(iIB−i) time by starting with the values D ′[i, jJL −1] and D [i, jJR−1−�] that the
source cell has available, and then traverse the difference values stored on the left
boundary. If the source cell is on the top boundary, then the process is otherwise
the same but now we start from the known top-left values D ′[iIT − 1, jL − 1] and
D [iIT −1, jL −1− �]. In both cases the Θ(iIB − i) time can be charged to the work
of a DFS that walked at least iB − i steps.

The number of cells visited by each DFS is at most O(#I,J), and each step
takes O(1) time. Since there are O(1) different DFS-searches per box, the overall
work for a white box is O(#I,J).

Theorem 3. DS can be updated to DS ′ in O(m + n) time.

Proof. It follows from Theorem 1 and the fact that both black and white boxes
can be processed in O(#I,J) time. ��

References

1. Arbell, O., Landau, G.M., Mitchell, J.S.: Edit distance of run-length encoded strings.
Inf. Process. Lett. 83(6), 307–314 (2002)

2. Barton, C., Iliopoulos, C.S., Pissis, S.P.: Average-case optimal approximate circular
string matching. In: Dediu, A.-H., Formenti, E., Mart́ın-Vide, C., Truthe, B. (eds.)
LATA 2015. LNCS, vol. 8977, pp. 85–96. Springer, Heidelberg (2015)

3. Hsu, P., Chen, K., Chao, K.: Finding all approximate gapped palindromes. Int. J.
Found. Comput. Sci. 21(6), 925–939 (2010)

4. Hyyrö, H., Narisawa, K., Inenaga, S.: Dynamic edit distance table under a general
weighted cost function. J. Disc. Algorithms 34, 2–17 (2015)

5. Kim, S.R., Park, K.: A dynamic edit distance table. J. Disc. Algorithms 2, 302–312
(2004)

6. Landau, G.M., Myers, E.W., Schmidt, J.P.: Incremental string comparison. SIAM
J. Comp. 27(2), 557–582 (1998)

7. Schmidt, J.P.: All highest scoring paths in weighted grid graphs and their application
in finding all approximate repeats in strings. SIAM J. Comp. 27(4), 972–992 (1998)

Walking Automata in Free Inverse Monoids

David Janin(B)

UMR CNRS LaBRI, Inria Bordeaux, Bordeaux INP,
University of Bordeaux, 33405 Bordeaux, Talence, France

janin@labri.fr

Abstract. Walking automata, be they running over words, trees or even
graphs, possibly extended with pebbles that can be dropped and lifted on
vertices, have long been defined and studied in Computer Science. How-
ever, questions concerning walking automata are surprisingly complex to
solve. In this paper, we study a generic notion of walking automata over
graphs whose semantics naturally lays within inverse semigroup theory.
Then, from the simplest notion of walking automata on birooted trees,
that is, elements of free inverse monoids, to the more general cases of
walking automata on birooted finite subgraphs of Cayley’s graphs of
groups, that is, elements of free E-unitary inverse monoids, we provide
a robust algebraic framework in which various classes of recognizable
or regular languages of birooted graphs can uniformly be defined and
related one with the other.

1 Introduction

General Context. Walking automata, be they running over words, trees or
even graphs, possibly extended with pebbles, have long been defined and studied
in Computer Science [7,8]. For instance, tree walking automata with pebbles
have been an important subject of study the last decades since they are natural
abstract models of machine for XML query languages such as XPATH, or XML
transformation languages such as XSL [6].

Although based on well studied computation models: finite state machines or
pushdown automata, questions about walking automata are often surprisingly
complex to solve and, to a lesser extent, quite dependent on such or such details
in automata’s definition.

For instance, in the case of tree languages, bounding the number of pebbles
an automaton leads to defining classes of recognizable languages. Various logical
characterizations of these classes have been obtained [8] and difficult separation
results have also been proved [1–3]. However, for separation results, proof argu-
ments apply to the case of pebbles that are marked and visible [2,3], leaving
open the cases of unmarked and/or invisible pebbles.

Even though walking automata are sequential machines much like string
automata, the classical algebraic tools that have been developed to study word
automata are not easily applicable to tree walking automata. Despite numerous
results, little is known about the underlying mathematical framework, say in
algebra, that walking automata may induce.
c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 314–328, 2016.
DOI: 10.1007/978-3-662-49192-8 26

Walking Automata in Free Inverse Monoids 315

Contribution of the Paper. In this paper, we initiate the development of an
algebraic framework, within inverse semigroup theory, for walking automata. We
provide a generic notion of automata walking on edge-labeled graphs. They act as
some kind of observers of their input graphs much in the same way observational
semantics has been defined in concurrency theory by Hennessy and Milner [17].

Unlike most classical definitions, we do not require walking automata to start
and end in the same vertex, neither do we require the complete traversal of input
structures. Moreover, the capacity given to a walking automaton to check or not
the absence of an (incoming or outgoing) edge labeled by a given letter induces
two possible semantics for walking automata, much in the same way there are
various observational semantics in [17], with or without observable failures.

The languages recognized by our walking automata are languages of birooted
graphs, that is, graphs extended with an input root: the vertex where the run
starts, and an output root: the vertex where the run ends. These languages
are shown to be closed under root preserving graph morphisms (Lemma 12).
Moreover, the sequential composition of partial runs of walking automata is
shown to induce a composition of the traversed birooted graphs, yielding an
inverse monoid structure (see Remark 3 and Theorem 22).

Then we prove (Theorem 16) that, in many cases, the stronger semantics
(with observable reading failures) can be uniformly encoded in the weaker seman-
tics (with unobservable reading failures).

As particular cases, walking automata in Cayley’s graphs of finitely gener-
ated groups are considered in Sect. 4. The recognized languages are subsets of
monoids known as freest E-unitary inverse monoids [15,16]. Then, based on
the underlying monoid structure, an extension of regular expressions is defined
and shown (Theorem 25) to characterize the classes of recognizable languages
induced by limiting numbers of allowed pebbles.

2 Graphs

It is very likely that most concepts and properties detailed here have already
appeared in the literature. However, for the sake of completeness we provide our
own presentation.

Graphs and Morphisms. Let A = {a, b, c, · · · } be a finite alphabet. A (rela-
tional) graph on the edge alphabet A is a pair G = 〈V,E〉 with a set of vertex V
and sets of a-labeled (directed) edges E(a) ⊆ V × V for all a ∈ A. A graph mor-
phism, or simply morphism, from G1 = 〈V1, E1〉 to G2 = 〈V2, E2〉 is a mapping
f : V1 → V2 such that f(E1(a)) ⊆ E2(a), for every a ∈ A. Such a morphism is
denoted by f : G1 → G2.

Walking Paths. Let Ā = {ā, b̄, c̄, · · · } be a copy of the alphabet A. Let (A+Ā)∗

be the free monoid generated by A + Ā with the unit (empty word) denoted by
1 and the concatenation of two words u, v ∈ (A + Ā)∗ simply denoted by uv.

A (back and forth) walking path on the graph G from a vertex x to a vertex
y is an alternating sequence of vertices of V and letters of A + Ā of the form

π = x0z1x1z2x2 · · · xn−1znxn

316 D. Janin

such that x = x0, y = xn and, for every 1 ≤ i ≤ n, we have (xi−1, xi) ∈ E(zi)
where, for every a ∈ A, the relation E(ā) denotes the inverse relation E−1(a) =
{(x, y) ∈ V × V : (y, x) ∈ E(a)}. The vertex x is the source of such a path. It
is denoted by sr(π). The vertex y is the target of such a path. It is denoted by
tg(π).

In such path, a letter a ∈ A models a forward traversal of an a-labeled edge
and a letter ā ∈ Ā models a backward traversal of an a-labeled edge. The inverse
path π−1 of the path π is defined by

π−1 = xnz−1
n−1xn−1 · · · x2z

−1
1 x1z

−1
0 x0

with (a)−1 = ā and (ā)−1 = a for every a ∈ A. We easily observe that π−1 is
indeed a walking path in the graph G from xn to x0.

As a particular case, the graph G is bideterministic when for every z ∈ A+Ā,
for every (p, q), (p′, q′) ∈ E(z), if p = p′ then q = q′. In this case, every path π as
above, emanating from a given vertex x, is completely determined by its source
x and the path label λ(π) = z1z2 · · · zn ∈ (A + Ā)∗ obtained from π by deleting
all vertices.

Path-induced Birooted Subgraph. Let π = x0z1x1z2x2 · · · xn−1znxn be a
path on the graph G. The subgraph G|π of graph G induced by the path π is
defined by G|π = 〈V |π,E|π〉 with the set of vertices V |π = {x0, x1, · · · , xn} and,
for every a ∈ A, the set of a-labeled edges (E|π)(a) defined as the set of pairs
(x, y) ∈ V ′ ×V ′ such that either xay or yāx occurs as a subsequence in the path
π. Then, the following lemma is immediate.

Lemma 1. The graph G|π induced by the path π is finite and the inclusion
mapping ι : V |π → V that maps every vertex to itself is a one-to-one morphism,
i.e. graph G|π is a finite subgraph of graph G.

Definition 2 (Birooted induced subgraphs). Let π be a path of G. The
triple θG(π) = (G|π, sr(π), tg(π)) defined by distinguishing the source and the
target of the path π in the subgraph G|π, is called the birooted subgraph of G
induced by the path π.

Remark 3. It is an easy observation that the trivial birooted subgraph product
θG(π1) ·θG(π2) defined to be the graph (G|π1∪G|π2, sr(π1), tg(π2)) (with union
defined over subsets of vertices and edges) when tg(π1) = sr(π2) and 0 otherwise
(with 0 an additional zero element) yields an inverse semigroup: for every element
x there is a unique element x−1 such that xx−1x = x and x−1xx−1 = x−1.
Indeed, we have 0−1 = 0 and θG(π)−1 = θG(π−1), and, additionally, it can be
shown that the non zero idempotent elements exactly correspond to the birooted
graphs induced by cyclic paths.

The much more interesting case when the birooted subgraphs are invariant
under translation (in Cayley’s graphs) is detailed in Sect. 4.

Vertex-Labeled Graphs. So far, the graphs we consider have no vertex label.
The following definition and lemma shows that this fact does not reduce the
generality of our language theoretical study.

Walking Automata in Free Inverse Monoids 317

Definition 4 (Induced vertex label). The vertex label of a vertex x ∈ V in
a graph G = 〈V,E〉 is defined to be the set λV (x) = {a ∈ A : (x, x) ∈ E(a)}.

The following lemma, whose proof is immediate, emphasizes the relevance of this
notion.

Lemma 5. Let G = 〈V,E〉 be a graph on the edge alphabet A. Let g : V → P(B)
be a vertex labeling function with some new alphabet B disjoint from A. Let
〈G, g〉 be the resulting vertex-labeled graph and let ϕ(〈G, g〉) = 〈V ′, E′〉 be the
edge-labeled graph defined by V ′ = V , by E′(a) = E(a) for every a ∈ A, and
E′(b) = {(x, x) ∈ V ′ × V ′ : b ∈ g(v)} for every b ∈ B.

Then, the vertex identity mapping from V into V ′ is a one-to-one and onto
graph morphism from G into ϕ(〈G, g〉). Moreover, ϕ is a one-to-one mapping
from the class of graphs with A-labeled edge and P(B)-labeled vertices into
the class of (A ∪ B)-labeled edges such that, given the vertex labeling
λ′

V : V ′ → P(A + B) as defined above, then, for every v ∈ V ′ = V , we have
g(v) = λ′

V (v) ∩ B.

In other words, graphs with vertex labels are easily encoded into graphs without
vertex labels. Moreover, in the case both A and B are finite, such a mapping
induces a fairly simple MSO-transduction (see [4] Chap. 7). It follows that every
MSO-definable language of graphs with A-labeled edges and P(B)-labeled ver-
tices can be encoded into an MSO-definable language of graphs with A ∪ B-
labeled edges. Since graphs with unlabeled vertices are particular case of graphs
with labeled vertices this really says that, up to MSO definable languages, study-
ing languages of edge-labeled graphs or languages of edge-and-vertex-labeled
graphs is essentially the same.

3 Walking on Graphs

In this paper, a walking automata is sort of a graph observer that traverses the
input graph possibly dropping and lifting (in the reverse order) some pebbles.
Since walking automata cannot jump between disconnected graphs, all graphs
considered from this point are assumed to be connected via walking paths.

Definition 6 (Walking automata with pebbles). A walking automata with
pebbles on the alphabet A is a tuple A = 〈Q, I, T, δ,Δ〉 with set of states Q,
initial states I ⊆ Q, terminal states T ⊆ Q, edge transitions δ(z) ⊆ Q × Q for
every z ∈ A+Ā, and pebble transitions Δ((r, s)) ⊆ Q×Q for every (r, s) ∈ Q×Q.

Informally, from a given vertex, the automaton can traverse forward any
outgoing a-labeled edge (reading a) or it can traverse backward any incoming a-
labeled edge (reading ā). In both cases, the automaton state is updated according
to the first-order transition function δ applied to the traversed edge label a or
ā. Additionally, the automaton may drop a pebble on that vertex, interrupting
the current run and starting a new subrun. It may also lift a pebble, ending
the current subrun and resuming the former run. When ending a subrun, the

318 D. Janin

automaton state is updated according to the second-order transition function Δ
applied to the pair of states resulting from the start state and the stop state of
the subrun.

Definition 7 (Automaton configuration). Let A = 〈Q, I, T, δ,Δ〉 be a walk-
ing automaton. Let G = 〈V,E〉 be a graph on the alphabet A. An automaton
configuration Γ ∈ (Q × Q × V)+ is a non-empty stack of (dot separated) triples
over Q × Q × V .

In a stack of the form Γ.(p, q, x) with p, q ∈ Q and x ∈ V , the triple (p, q, x)
describes the current run configuration: from state p, the automaton A walked
to the current vertex x reaching current state q. The additional stack Γ , possibly
empty, contains the configurations of formerly interrupted runs.

As formalized in the next definition, when dropping a pebble on a vertex x,
the automaton interrupts the current run, pushes its configuration (p1, q1, x) on
the stack, and starts a subrun in a configuration (p2, p2, x).

On the contrary, when lifting a pebble from a vertex x, the automaton ter-
minates a subrun in a configuration (p1, q1, x), pops the saved configuration
(p2, s, x), and resumes the former run in an updated configuration (p2, q2, x),
chosen according to the (second-order) transition condition (s, q2) ∈ Δ((p1, q1)).

Definition 8 (Automaton transition and run). On a graph G = 〈V,E〉, a
transition step from a configuration Γ1.(p1, q1, x) to a configuration Γ2.(p2, q2, y)
reading z ∈ {1} ∪ A ∪ Ā is defined according to one of the following three cases:

(1) edge traversal: z ∈ A∪Ā, Γ1 = Γ2, p1 = p2, (q1, q2) ∈ δ(z) and (x, y) ∈ E(z),
(2) pebble drop: z = 1, y = x, Γ2 = Γ1 · (p1, q1, x) and q2 = p2,
(3) pebble lift: z = 1, y = x, Γ1 = Γ2 · (p2, s, x) and (s, q2) ∈ Δ((p1, q1)).

Such a transition step is denoted by Γ1.(p1, q1, x)
z Γ2.(p2, q2, y).
An run of the automaton A on the graph G from a vertex x to a vertex y is

then defined as a sequence of transition steps

ρ = Γ0.(p0, q0, x0)
z1 Γ1.(p1, q1, x1) · · ·
zn
Γn · (pn, qn, xn)

with x0 = x and xn = y, also denoted by ρ = Γ0 · (p0, q0, x0)
∗
u Γn · (pn, qn, xn)

with u = z1z2 · · · zn. The path π(ρ) induced by run ρ is defined by

π(ρ) = x0z1x1z2x2 · · · xn−1znxn

Such a run ρ is an accepting run from x to y when Γ0 is the empty stack with
p0 = q0 ∈ I (the first configuration is initial), and Γn is the empty stack with
pn ∈ I and qn ∈ T (the last configuration is terminal).

Given an integer k ≥ 0, the run ρ is k-accepting run when it is accepting and
|Γi| ≤ k for every 0 ≤ i ≤ n, where |Γi| is the length of the sequence Γi. For
notational purpose, an accepting run with no bound on the number of allowed
pebbles is also called an ∞-accepting run.

Walking Automata in Free Inverse Monoids 319

Fig. 1. A run Γ0 �∗
u1 Γ1 �∗

u2 Γ2 �∗
u3 Γ3

Example 9. An example of run is depicted Fig. 1 where configuration stacks
are depicted vertically. In this run, when no other pebble but the one depicted
above is used, then first order transition conditions imply that (p0, p1) ∈ δ(u1),
(q0, q1) ∈ δ(u2) and (p′

1, p2) ∈ δ(u3), with an obvious extension of δ to (A+ Ā)∗,
and second order transition conditions imply that (p1, p′

1) ∈ Δ((q0, q1)).

Definition 10 (Recognized languages). Given a class of graphs G (possi-
bly omitted when clear from the context), the language recognized (resp. k-
recognized) by the automaton A in the class of graph G is the set L∞

G (A) (resp.
Lk

G(A)) of birooted graphs (G, x, y) with G ∈ G and x, y two vertices of G, such
that there is an accepting run (resp. a k-accepting run) of the automaton A over
G from x to y.

Remark 11. The walking automata defined here are walking automata with
unmarked and invisible pebbles in the sense of [6]. However, generalizing
Pécuchet’s study of two-way automata on strings [18] (see also [5,11]), we do not
require that accepting runs starts and ends in the same vertex of the input struc-
tures. Moreover, our definition also differs from the definition proposed in [1,6] in
the sense that, a priori, the absence of edges cannot be detected by the automata
and the walking automaton is not required to traverse the entire structure. The
consequences of these facts are discussed below.

Lemma 12. Let A be a walking automaton on the alphabet A. Let G1 = 〈V1, E1〉
and G2 = 〈V2, E2〉 be two graphs on the same alphabet. Assume that there is a
graph morphism f : G1 → G2. Then, for every 0 ≤ k ≤ ∞ and x, y ∈ V1

if (G1, x, y) ∈ Lk(A) then (G2, f(x), f(y)) ∈ Lk(A).

For every environment Γ (run ρ) of the automaton A on G1, let f(Γ1) (resp.
f(ρ)) be the environment (resp. the run) of the automaton A on G2 obtained
from Γ (from ρ) by replacing all vertices x ∈ V1 by their images f(x) ∈ V2.
Then, a simple induction shows that for every run ρ = Γ1
∗

u Γ2 of A from x to
y in graph G1, f(ρ) = (Γ1)
∗

u f(Γ2) is a well defined run of A from f(x) to f(y)
in graph G2. The rest of the proof is the routine. In general, the converse does
not hold. However, as detailed below, the converse holds in the case the graph
G1 is the subgraph of G2 induced by an accepting run.

Definition 13 (Graphs induced by a run). Let ρ : Γ1
 Γ2 be a run in a
graph G from x to y. The graph induced by a run ρ is defined to be the subgraph
Gρ = G|π(ρ) induced by the path π(ρ) traversed by A in G.

320 D. Janin

Then we have:

Lemma 14. Let G be a graph such that (G, x, y) ∈ Lk(A) via an accepting run
ρ. Let Gρ be the graph induced by the run ρ. Then (Gρ, x, y) ∈ Lk(A).

Let ρ be a run of A from x to y in G. Then a simple induction on the length of
the run ρ shows that ρ is also a run of A from x to y in G|π(ρ) which concludes
the proof. The more classical notion of accepting runs defined by complete
traversals of the input structure can be related with ours as follows.

Definition 15 (Strict recognizability). A birooted graph (G, x, y) is strictly
recognized (resp. strictly k-recognized) by an automaton A when there is an
accepting (resp. k-accepting) run ρ of A over G from x to y such that (Gρ, x, y)
and (G, x, y) are isomorphic.

As an immediate corollary of Lemmas 1, 12 and 14, we thus have:

Theorem 16. Let A be a walking automaton. For every k ≥ 0, let Lk
S(A) be

the class of birooted graphs strictly k-recognized by A and let Lk(A) the class
of birooted graphs k-recognized by A. Then Lk(A) is the morphism closure of
the language Lk

S(A), that is, (G, x, y) ∈ Lk(A) if, and only if, there exists
(G′, x′, y′) ∈ Lk

S(A) and a graph morphism f : G′ → G such that f(x′) = x
and f(y′) = y.

In particular, when the birooted structures cannot be related by morphisms (as
with end markers in two-way word automata [5]), studying strict recognizability
just amounts to study recognizability.

4 Walking in Cayley’s Graphs of Groups

So far, we have not much used the fact that walking automata recognize sets
of birooted graphs. When the underlying graph G is the Cayley’s graph of a
(presented) group, then the (isomorphic classes of) finite birooted subgraphs
induced by paths form a inverse monoid (see [15] for more details and also [16]
for a general presentation). Based on the underlying monoid structure, various
classes of languages can then be defined and characterized by means of certain
restriction of walking automata.

Definition 17 (The Cayley graph of a presented group). Let G be a
group generated by A ⊆ G and let ϕ : (A + Ā)∗ → G be the corresponding
inverse-preserving monoid morphism1. Then, the Cayley graph of the presented
group G is defined to be the graph CG = 〈V,E〉 with vertex set defined by V = G
and, for every a ∈ A, edge set defined by E(a) = {(x, y) ∈ V ×V : x ·ϕ(a) = y}.

For convenience, we extend the edge relation function E to (A + Ā)∗ by
taking E(u) = {(x, y) ∈ G × G : x · ϕ(u) = y}. As a particular case, since ϕ
is inverse-preserving and G is a group, we indeed have E(ā) = E(a)−1 which is
consistent with our previous extension of the edge relations.
1 The group G is presented by the morphism ϕ.

Walking Automata in Free Inverse Monoids 321

Remark 18. Clearly, the Cayley graph CG of the group G is a (possibly infinite)
bideterministic graph as well as its (finite) birooted subgraphs. Depending on
the chosen group, various interesting examples can be defined (see [16]).

For instance, taking the free group FG(A) we have birooted trees. Taking the
group defined from A = {a, b, c, d} by cc = 1, dd = 1 and cd = 0, we obtain
vertex-labeled birooted trees with edges labeled by a or b and, following Lemma 5,
vertices labeled over P({c, d}). Thanks to the axiom cd = 0, only the birooted
graph encoding zero has a vertex labeled by both c and d. The language theory
of these vertex-labeled birooted graphs has been studied in [10,14].

Another example, taking the group defined from A = {a, b, c, d} by ab = ba,
cc = 1 and dd = 1 and cd = 0, we obtain vertex-labeled birooted grids with (say)
horizontal edges labeled by a, vertical edges labeled by b, and, similarly, vertices
labeled over P({c, d}).

In other words, this group-theoretic based approach to graphs leads to a vast
variety of classes of birooted graphs.

Definition 19 (Induced graphs revisited). Let G be a group presented by
a morphism ϕ, and let CG be its Cayley graph. For every u ∈ (A + Ā)∗, let
CG|u be the graph induced by u defined by CG|u = 〈V,E〉 with set of vertices
V = ϕ(Pref (u)) where Pref (u) = {v ∈ (A + Ā)∗ : ∃w ∈ (A + Ā)∗, u = vw}
is the set of word prefixes of u, and sets of edges E(a) defined as the union of
{(ϕ(v1), ϕ(v2)) ∈ V × V : v1a = v2} and {(ϕ(v2), ϕ(v1)) ∈ V × V : v1a

−1 = v2}.

The next lemma, whose proof is immediate, relates our two definitions of induced
subgraphs.

Lemma 20. Let π be a path in CG. Let λ(π) ∈ (A + Ā)∗ be the word of
(A + Ā)∗ obtained from π by deleting all vertices. The birooted subgraph θCG

(π)
induced by the path π isn the graph CG is isomorphic to the birooted graph
(CG|λ(π), 1, ϕ(u)).

This leads us to the following definition:

Definition 21 (Birooted subgraphs and their product). A birooted finite
subgraph of the Cayley graph CG of the presented group G is a quadruple
B = (V,E, 1, x) where V ⊆ G is a finite subset of G such that 1, x ∈ V ,
E(a) ⊆ {(x, y) ∈ V × V : x · ϕ(a) = y} for every a ∈ A, and such that, the
resulting subgraph 〈V,E〉 is connected. The set of such finite birooted subgraphs
of CG is denoted by BSG(G). Then, the product of two birooted finite subgraphs
B1 = (V1, E1, 1, x1) and B2 = (V2, E2, 1, x2) is defined by

B1 · B2 = (V1 ∪ x1 · V2, E, 1, x1 · x2) with E(a) = E1(a) ∪ x1 · E2(a)

with the notation x1 · E2(a) = {(x, y) ∈ (x1 · V2, x1 · V2) : (x, y) ∈ E2(a)} for
every a ∈ A.

Theorem 22 (Margolis, Meakin [15]). The set BSG(G) with birooted graph
product is an inverse monoid. The mapping θG : (A+ Ā)∗ → BSG(G) is an onto
monoid morphism, and, for every u ∈ (A + Ā)∗, we have θG(u)−1 = θG(u−1)
and θG(u) is idempotent if and only if ϕ(u) = 1.

322 D. Janin

Remark 23. In [15], it is proved that BSG(G) is the freest inverse monoid
generated by A whose group image is the group G. This result is much stronger
than Theorem 22.

A subset X ⊆ BSG(CG) of the monoid BSG(G) is called a G-language.
Following our previous definitions, given 0 ≤ k ≤ ∞, the G-language X
is k-recognized (resp. strictly k-recognized) by a walking automaton A when
X = Lk(A)∩BSG(CG) (resp. X = Lk

S(A)∩BSG(CG)). Then, let k-PWA (resp.
k-PWAS) be the class of G-languages k-recognized (resp. strictly k-recognized)
by a finite state walking automaton.

We aim at providing a Kleene-like characterization of these classes of lan-
guages by means of regular expressions. For such a purpose, the following oper-
ations are defined over G-languages:

(1) sum : X1 + X2 = X1 ∪ X2,
(2) product: X1 · X2 = {x1 · x1 ∈ BSG(G) : x1 ∈ X,x2 ∈ X},
(3) star: X∗ =

⋃
Xn,

(4) inverse: X−1 = {x−1 ∈ BSG(G) : x ∈ X},
(5) idempotent projection: XE = {x ∈ X : xx = x},

for all languages X,X1,X2 ⊆ BSG(G).
A k-regular expression is defined to be any finite expression built over the

alphabet A∪ Ā∪{1}, combined with sum, product, star and idempotent restric-
tion operators such that the nesting depth of idempotent projection is at most
k. A language X ⊆ BSG(G) is a k-regular language when it can be defined by
a k-regular expressions, mapping 1 to θG(1) and every letter z ∈ A + Ā to its
birooted image θG(z) ∈ BSG(G).

The class of k-regular languages is denoted by k-REG. The class of lan-
guages recognizable by finite monoids M and morphisms from BSG(G) onto M
is denoted by REC. Observe that, by definition, the usual class REG of lan-
guages definable by finite Kleene regular expressions equals 0-REG. Last, for
every class of languages X, let X↓ be the class of closure of the languages of X
under root-preserving graph morphisms within BSG(G).

Remark 24. Observe that the notion of k-recognizability is not necessarily pre-
served under (inverse) monoid morphisms. Indeed, given an inverse monoid mor-
phism ϕ : M → N , we certainly have ϕ(XE) ⊆ ϕ(X)E for every X ⊆ M . How-
ever, the reverse inclusion may be false as illustrated by the expression abāb̄.
Indeed, it induces a non-idempotent birooted tree in the free inverse semigroup
but a cycle in any E-unitary inverse semigroup induced by a group in over which
the equation ab = ba is satisfied.

Theorem 25 (Hierarchy). For every presented group G generated by A, the
following equalities and inequalities holds. In this figure, strict inequalities ⊂ are
only known to hold in the free inverse monoid, that is, when G = FG(A): the
free group generated by A. They have to be read non-strict in all other cases.

Walking Automata in Free Inverse Monoids 323

Proof. Each horizontal inclusion follows from the definition. The separation
result REC ⊂ 0-REG is known over languages of birooted trees [19]. The sep-
aration 0-PWAS ⊂ 1-PWAS follows from the language example of idempotent
birooted trees that cannot, by a simple pumping argument, be recognized by
an automaton without pebble but that can easily be recognized with a single
pebble (see below).

The first row of (vertical) equalities follows from Lemma 26, proven below.
Over birooted trees, that is, in the case G = FG(A), these equalities imply the
separation result 0-REG ⊂ 1-REG. Indeed, over birooted trees the language
of idempotent trees is recognizable by a one-pebble automaton while a simple
argument shows that is cannot be recognized without pebble.

The second row of (vertical) inclusions follows from the known fact [20] (see
also [13]) that, for all birooted graphs x, y ∈ BSG(G), there is a root-preserving
graph morphism f : y → x if and only if x ≤ y in the natural order defined by
x ≤ y when x = e · y for some idempotent element e.

It follows that, we have X↓ = E(BSG(G)) ·X for all language X ⊆ BSG(G),
and the language (BSG(G))E of all idempotent elements of BSG(G) belongs to
1-REG as shown by the one-state automaton A = 〈{p, q}, {p}, {q}, δ,Δ〉 with
δ(z) = {(p, p)} for every z ∈ A + Ā and Δ((r, s)) = {(p, q)} when r = s = p and
Δ((r, s)) = ∅ otherwise. The fact these inclusions are strict follows, for language
of birooted trees, from the fact that the language {θG(a)} is not closed under
morphisms since it is not closed under natural order.

The last row of (vertical) equalities follows from the first row of vertical
equalities and Theorem 16. ��
Lemma 26. For every ≥ 0, we have k-PWAS = k-REG.

Proof (sketch of). Direct inclusion (⊆). Let A = 〈Q, I, F, δ,Δ〉 be a finite-state
walking automaton. For every pair of states p, q ∈ Q, let Lk

S(p, q) ⊆ BSG(G)
be the class of languages strictly k-recognized by the automaton A from an
initial configuration of the form (p, p, x) to a terminal configuration of the form
(p, q, y) for some vertices x, y. Let Ek

S(p, q) be restriction of that language to
the case x = y, or, equivalently, Ek

S(p, q) = (Lk
S(p, q))E . Then, much like in

the proof of Kleene’s theorem for regular languages of strings, by mimicking
walking automata transition rules, we can define a system of equations relating
the languages Lk

S(p, q) and Ek
S(p, q) which resolution yields the expected regular

expressions.

324 D. Janin

Reverse inclusion (⊇). This can be proved by induction on the syntactic com-
plexity of regular expressions. More precisely, we first prove that the singleton
languages {θG(1)} and {θG(z)} for every z ∈ A + Ā, are strictly 0-recognizable
by finite automata. Then, it suffices to show that the class of languages strictly
k-recognized by finite walking automata is closed under sum, product and star,
and that, if X is strictly k-recognized by a finite walking automaton, then XE

is (k + 1)-recognized by a finite walking automaton.
It must be noticed that the existence of second order transitions makes these

constructions slightly more complex than in the case of string languages. In
particular, building an automaton A∗ such that Lk

S(A∗) = (Lk
S(A))∗ is done

from k + 1 copies of the automaton A. Indeed, this allows to count in any state
the number of pebbles that have been dropped and to ensure, between two runs
of the automaton A simulated in the automaton A∗, that all pebbles have been
lifted. ��
We first prove the direct inclusion (⊆). Let A = 〈Q, I, F, δ,Δ〉 be a finite state
walking automaton. For every pair of state p, q ∈ Q, let Lk

S(p, q) ⊆ BSG(G) be
the class of language strictly k-recognized by the automaton A from an initial
configuration of the form (p, p, x) to a terminal configuration of the form (p, q, y)
for some vertices x, y. Let Ek

S(p, q) be restriction of that language to the case
x = y, or, equivalently, Ek

S(p, q) = (Lk
S(p, q))E .

In the case k = 0, for every p, q ∈ Q, we have,

L0
S(p, q) = δp,q +

∑

z ∈ A + Ā
(p, r) ∈ δ(z)

θG(z) · L0
S(r, q)

with δp,q = θG(1) if p = q and ∅ otherwise. By applying standard argument, this
proves that L0

S(p, q) is 0-REG fo revery p, q ∈ Q hence L0
S(A) as well.

Assume that the claim is true for every k′ < k + 1. From the definition of
runs, we easily check that

Lk+1
S (p, q) = δp,q +

∑

z ∈ A + Ā
(p, r) ∈ δ(z)

θG(z) · Lk+1
S (r, q)

+
∑

(p′, q′) ∈ Q × Q
(p, r) ∈ Δ(p′, q′)

Ek
S(p′, q′) · Lk+1

S (r, q)

since we just enumerate the two cases in which the run may start: either it reads
an edge, or it drops a pebble. Then, by induction hypothesis, for every p′, q′ ∈ Q,
the language Ek

S(p′, q′) is (k+1)-regular hence, by application standard reduction
techniques, for every p, q ∈ Q, the language Lk+1

S (p, q) is also (k+1)-regular and
thus so is Lk+1

S (A).
We prove now the reverse inclusion case (⊇). This is proved by induction on

the syntactic complexity of k-regular expressions.

Walking Automata in Free Inverse Monoids 325

For the basic cases, let A1 the automaton a single state, both initial and
terminal, and with empty transition functions. Clearly, L0

S(A1) = {θG(1)}.
Similarly for every a ∈ A. Let Aa = 〈D, I, T, δ,Δ〉 be the automaton defined

by Q = {1, ϕ(a)}, I = {1}, T = {ϕ(a)}, δ(a) = {(1, ϕ(a))}, δ(a−1) = {(ϕ(a), 1)},
and δ(z′) = ∅ for every z′ /∈ {a, a−1}, and Δ((t, s)) = ∅ for every r, s ∈ Q. Clearly,
we have L0

S(Aa) = {θG(a)}.
Then, it suffices to show that the class of languages strictly k-recognized

by finite walking automata is closed under sum, product and star, that, if X
is strictly k-recognized by a finite walking automaton, then XE is (k + 1)-
recognized by a finite walking automaton. Let then X1,X2 ⊆ BSG(G) be two
languages strictly k-recognizable by the automaton A1 = 〈Q1, I1, T1, δ1,Δ1〉 and
the automaton A2 = 〈Q2, I2, T2, δ2,Δ2〉.

Clearly, the sum X1 + X2 is strictly k-recognizable by the disjoint sum
automaton A1 � A2.

For the product, possibly splitting both languages into a disjoint sum with
{θG(1)} and applying classical identities, we may assume, without loss of gen-
erality, that none of these languages contains θG(1) henceforth I1 ∩ T1 = ∅ and
I2 ∩ T2 = ∅. Let then A1 · A2 = 〈Q, I, F, δ,Δ〉 be the automaton defined by
Q = Q1 � Q2, I = I1, T = T2, for every z ∈ A + Ā,

δ(z) = δ1(z) ∪ δ2(z) ∪ {(p, q) ∈ Q × Q : ∃q′ ∈ T1, (p, q′) ∈ δ1(z), q ∈ I2}
and, for every r, s ∈ Q, the second order transitions Δ((r, s)) defined by

Δ((r, s)) = Δ1((r, s)) ∪ {(p, q) : q ∈ I2,∃q′ ∈ T1, (p, q′) ∈ Δ1((r, s))}
when r, s ∈ Q1, Δ((r, s)) = Δ2((r, s)) when r, s ∈ Q2, and Δ((r, s)) = ∅ other-
wise. Then, we can check by induction on the length of runs, that Lk

S(A · A2) =
X1 · X2. The sensitive point, the direct inclusion, is handled by the fact that no
runs can goes back and forth between the copy of A1 and the copy of A2, and,
in an accepting run, moving from a state of A1 to a state of A2 is necessarily
done with all pebble lifted.

The case of the star is slightly more complex because we must make sure
that, at each iteration, no pebble is left on the input.

Still, this can be done by first normalizing the automaton A (with disjoint
set of initial and terminal states) into A′ = 〈Q′, I ′, T ′, δ′,Δ′〉 built out of k + 1
disjoint copy of the automaton A by taking Q′ = Q×{0, 1, · · · , k}, I ′ = I ×{0},
T ′ = T × {0}, for every z ∈ A + Ā, δ′(z) = {(p, i), (q, i)) ∈ Q′ × Q′ : (p, q) ∈
δ(z), 0 ≤ i ≤ k}, and for every r, s ∈ Q and 0 ≤ i1, i2 ≤ k, taking

Δ((r, i1), (s, k2)) = {((p, i), (q, i)) ∈ Q′ × Q′ : (p, q) ∈ δ((r, s))}
in the case i1 = i2 = i + 1 for i ≥ 0, and Δ((r, i1), (s, k2)) = ∅ otherwise.

Then, given the automaton A′ as above, we build an automaton A+, by
adding a new initial state q0, and by duplicating any first order transition from
(q1, 0) to (q2, 0) to a transition from q0 to (q2, 0) in the case q1 ∈ I, and a
transition from (q1, 0) to q0 in the case q2 ∈ T . Then, it is routine to check that
A+ strictly k-recognized X+. Adding θG(1) poses no difficulty.

326 D. Janin

The case of the idempotent projection is done as follows. Let A =
〈Q, I, F, δ,Δ〈 that strictly k-recognized X ⊆ BSG(G) with θG(1) /∈ X. Then
we define AE = 〈Q � {qi, qf}, {qi}, {qf}, δ′,Δ′〉 by defining for every z ∈ A + Ā,
the first order transitions

δ′(z) = δ(z) ∪ {(qi, q) : ∃p ∈ I, (p, q) ∈ δ(z)} ∪ {(p, qf) : ∃q ∈ T, (p, q) ∈ δ(z)}
and, for every r, s ∈ Q � {qi, qf} we put

Δ′((r, s)) = {(qi, qf)} ∪ Δ((r, s))

in the case r ∈ I and s ∈ T ,

Δ′((r, s)) = Δ((r, s))

in the case r, s ∈ Q with r /∈ I or s /∈ T , and Δ′(r, s) = ∅ otherwise.
An accepting run with k + 1-pebble of the automaton AE , necessarily starts

in the state qi and ends in the state qf . By construction, from the state initial
qi, a pebble must be dropped. Then an accepting run with at most k-pebble is
ran in A and that initial pebble can be lifted, reaching the terminal state qf .
This proves that Lk+1

S (AE) ⊆ XE . Since the converse inclusion is immediate
from the definition, this concludes the idempotent projection case and the proof
of the lemma.

5 Conclusion

We have defined walking automata on graphs. By allowing automata to start
and stop in arbitrary graph vertices, we have defined the language recognized by
a walking automaton in terms of birooted graphs that form inverse semigroups.

Although we do not require walking automata to perform complete traversal
of their input structures, thanks to the preorder relation induced by root pre-
serving graph homomorphisms, we eventually provide a correspondence between
our notion of recognizability and the more classical one.

In the particular case of Cayley’s graphs of groups, we obtain a rather rich
array of classes of recognizable languages of birooted graphs, and a notion of k-
regular expressions that characterizes the number of allowed pebbles in accepting
runs (Theorem 25). How these induced hierarchies of languages of trees or graphs
may be related is left as an intriguing open problem.

We conjecture that the hierarchy induced by the number of pebbles is strict
for languages of birooted trees. The strictness of the hierarchies for languages
of birooted graphs induced by other groups than the free group is also an open
problem. Ideally, the algebraic framework proposed here may provide simpler
arguments than in [3] for solving these questions.

It has already been observed that an adequate algebraic theory for inverse
monoid morphisms can be developed by means of certain kind of premorphisms
instead of morphisms [9,10,12,14]. As a matter of fact, transition monoids of
walking automata induce a different type of premorphisms that could also be
investigated as new language recognizers.

Walking Automata in Free Inverse Monoids 327

References

1. Bojańczyk, M.: Tree-walking automata. In: Mart́ın-Vide, C., Otto, F., Fernau, H.
(eds.) LATA 2008. LNCS, vol. 5196, pp. 1–2. Springer, Heidelberg (2008)

2. Bojańczyk, M., Colcombet, T.: Tree-walking automata do not recognize all regular
languages. In: STOC, ACM (2005)

3. Bojańczyk, M., Samuelides, M., Schwentick, T., Segoufin, L.: Expressive power
of pebble automata. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4051, pp. 157–168. Springer, Heidelberg (2006)

4. Courcelle, B., Engelfriet, J.: Graph structure and monadic second-order logic, a
language theoretic approach, vol. 138 of Encyclopedia of mathematics and its appli-
cations. Cambridge University Press (2012)

5. Dicky, A., Janin, D.: Two-way automata and regular languages of overlapping tiles.
Fundamenta Informaticae 142, 1–33f (2015)

6. Engelfriet, J., Hoogeboom, H.J., Samwel, B.: XML transformation by tree-walking
transducers with invisible pebbles. In: Principles of Database System (PODS).
ACM (2007)

7. Engelfriet, J., Hoogeboom, H.J.: Tree-walking pebble automata. In: Karhumäki,
J., Maurer, H., Paun, G., Rozenberg, G. (eds.) Jewels are Forever: Contributions
to Theoretical Computer Science in Honor of Arto Salomaa, pp. 72–83. Springer,
Heidelberg (1999)

8. Engelfriet, J., Hoogeboom, H.J.: Nested pebbles and transitive closure. In: Durand,
B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 477–488. Springer, Hei-
delberg (2006)

9. Janin, D.: Quasi-recognizable vs MSO definable languages of one-dimensional over-
lapping tiles. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS,
vol. 7464, pp. 516–528. Springer, Heidelberg (2012)

10. Janin, D.: Algebras, automata and logic for languages of labeled birooted trees. In:
Kwiatkowska, M., Peleg, D., Fomin, F.V., Freivalds, R. (eds.) ICALP 2013, Part
II. LNCS, vol. 7966, pp. 312–323. Springer, Heidelberg (2013)

11. Janin, D.: On languages of one-dimensional overlapping tiles. In: van Emde Boas,
P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013.
LNCS, vol. 7741, pp. 244–256. Springer, Heidelberg (2013)

12. Janin, D.: Towards a higher-dimensional string theory for the modeling of com-
puterized systems. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M.
(eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 7–20. Springer, Heidelberg (2014)

13. Janin, D.: Inverse monoids of higher-dimensional strings. In: Leucker, M., et al.
(eds.) ICTAC 2015. LNCS, vol. 9399, pp. 126–143. Springer, Heidelberg (2015)

14. Janin, D.: On labeled birooted trees languages: Algebras, automata and logic. Inf.
Comput. 243, 222–248 (2015)

15. Margolis, S.W., Meakin, J.C.: E-unitary inverse monoids and the Cayley graph of
a group presentation. J. Pure and Appl. Algebra 58, 46–76 (1989)

16. Meakin, J.: Groups and semigroups: connections and contrasts. In: Groups St
Andrews 2005, vol. 2. London Mathematical Society, Lecture Note Series 340.
Cambridge University Press (2007)

17. Milner, R.: Communication and concurrency. Prentice-Hall, Upper Saddle River
(1989)

328 D. Janin

18. Pécuchet, J.-P.: Automates boustrophedon, semi-groupe de Birget et monoide
inversif libre. ITA 19(1), 71–100 (1985)

19. Silva, P.V.: On free inverse monoid languages. ITA 30(4), 349–378 (1996)
20. Stephen, J.B.: Presentations of inverse monoids. J. Pure Appl. Algebra 63, 81–112

(1990)

Precedence Scheduling with Unit Execution
Time is Equivalent to Parametrized Biclique

Klaus Jansen, Felix Land, and Maren Kaluza(B)

Department of Computer Science, University to Kiel, Kiel, Germany
{kj,fku,mkal}@informatik.uni-kiel.de

https://www.algo.informatik.uni-kiel.de

Abstract. We consider the following scheduling problem. Given m
machines and n jobs with unit execution times and a precedence relation
between the jobs, the problem is to assign each job to one of the machines.
The objective is to find a schedule that minimizes the makespan (i.e. the
length of the schedule).

We reduce 3-CNF-SAT to this problem and obtain a new lower bound
for the running time of 2o(

√
n logn) assuming the Expontential Time

Hypothesis (ETH). This improves the previous lower bound of 2o(
√
n)

also due to the ETH and a reduction by Ullman [13] or, alternatively, a
reduction from the k-Clique problem by Lenstra and Rinnooy Kan [10].

For the corresponding decision problem of whether there is a sched-
ule with target makespan T = 3 or not, we further show the equivalence
to a classical graph problem, the parametrized Biclique problem. The
equivalence also holds for the same scheduling problem with the addi-
tional restriction that no job has both a predecessor and a successor. By
this we show that an improved lower bound for the running time for the
Biclique problem will lead to an improved lower bound for the running
time for our scheduling problem and vice versa. Moreover a transfered
lower bound for the running time from the Biclique problem would also
hold for the running time of approximation algorithms with ratio bet-
ter than 4

3
OPT. That is, if for example there was no algorithm solving

Biclique in 2o(n) and U was the set of vertices in the Biclique problem,
then there would be no approximation algorithm finding a solution for
the introduced scheduling problem with Θ(|U |) jobs, that finds a solution
with a target makespan smaller than 4

3
times the optimal makespan in

time 2o(n).

1 Introduction

Complexity theory mainly deals with the question if there exists a polynomial
time algorithm for a problem or not. The Exponential Time Hypothesis (ETH),
first disposed by Impagliazzo and Paturi, addresses the more explicit question
whether NP-hard problems can have algorithms that run in “subexponential
time” [3] or not. More precisely, the hypothesis asserts that a truth assignment
for a 3-CNF-SAT formular with nsat variables and msat clauses cannot be com-
puted in time 2o(nsat). An important result used in plenty of reductions is implied
c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 329–343, 2016.
DOI: 10.1007/978-3-662-49192-8 27

330 K. Jansen et al.

by the Sparsification Lemma due to Impagliazzo et al. [6]: under assumption of
the ETH there is no algorithm that decides 3-CNF-SAT in time 2o(msat). This
enables parametrization by the number of clauses. Our paper mainly focuses on
reductions to and from our scheduling problem and the consequences the ETH
has on its solvability.

Notation. The scheduling problem with precedence constraints will be referred
to as P |prec |Cmax. If we further add unit execution time as a condition to the
problem we will write P |prec, pj = 1 |Cmax. If the target makespan is T = 3 we
call the problem P |prec, pj = 1 |Cmax = 3 and if moreover no job has both a
successor and a predecessor it is P |prec, pj = 1, cl ≤ 2|Cmax = 3.
If the number of machines is 1 and the target is to minimize

∑
pjCj , where Cj

is the time the job j is finished, we call the problem P1 |prec |∑ pjCj .

Known Results. The problem P |prec |Cmax asks for the best possible schedule
with respect to the total running time on a fixed number of identical machines.
The instance consists of a number of machines, a set of jobs of different length
and of precedence constraints.

This problem arises as an intuitive approach to handle parallel computing,
and it is actually already NP-hard for the special case of precedence constraints
where only chains are allowed and there exist just two machines [5]. According
to Chen et al. [4], P |prec |Cmax on m machines cannot be decided in time
f(m) · |I|o(m) where |I| is the size of the scheduling instance and f is an arbitrary
function.

In 2011 Svensson gave a reduction from P1 |prec |∑ pjCj to the scheduling
problem P |prec |Cmax. This result provides the possibility to transfer bounds
for the running times from one scheduling problem to another. For instance this
implies that if for any ε > 0 there is no approximation algorithm with ratio
(2 − ε) for P1 |prec |∑ pjCj , then for any ε > 0 there is no (2 − ε) approxi-
mation algorithm for P |prec |Cmax [12]. Assuming a strong version of the Unit
Game Conjecture (UGC [9]), Bansal and Khot showed the scheduling problem
P |prec |Cmax to be NP-hard to approximate within a factor of (2− ε) [1]. With
Svenssons result this bound on the running time assuming the UGC can be
transferred to P1 |prec |∑ pjCj .

For precedence scheduling with unit execution times (P |prec, pj = 1 |Cmax)
the best known lower bound with the ETH is 2o(

√
n) and can be achieved both

with a reduction from 3-CNF-SAT due to Ullman [13] and a reduction from
Clique due to Lenstra and Rinnooy Kan [10]. These results are described in
detail in Sect. 2. Dynamic programming over subsets and time slots provides the
asymptotically best known running time of 2O(n) for P |prec, pj = 1 |Cmax.

The k1 ×k2-Biclique problem is closely related to the k-Clique problem. The
instance consists of a bipartite graph which is a graph G = (V ∪̇W,E) with
{v, w} �∈ E if v ∈ V and w ∈ W , and two parameters k1 and k2. The goal is to
find a subset V ′ ⊆ V of size k1 and a subset W ′ ⊆ W of size k2 and for each
v ∈ V ′ and each w ∈ W ′ the edge {v, w} is in E.

Precedence Scheduling with Unit Execution Time 331

There is no exact algorithm that decides if there is a k1 × k2-Biclique in a
bipartite graph in time 2o(

√
|V ∪̇W |), unless the ETH fails, which was already

known via a reduction by Johnson [7]. In fact, this reduction transforms a k-
Clique instance into a balanced k × k-Biclique problem which is a special case
of our problem. On the other hand, no algorithm has been found that solves the
k1 × k2-Biclique problem faster than 2o(|V ∪̇W |) and it is unknown if there is a
better reduction which confirms a tighter bound.

Recently, it has been shown that the parametrized k × k-Biclique problem
with parameter k is not fixed parameter tractable by Bingkai Lin [11] via a
reduction from k-Clique to k × k-Biclique. That is, if G is the instance, then
there is no algorithm deciding wether there is a k × k-Biclique in G or not in
running time f(k) · |G|O(1) for an arbitrary function f depending only on k.
Nevertheless the Biclique problem remains one of the simpliest graph problems
without exact matching upper and lower bounds for the running time of exact
algorithms assuming the ETH [2].

New Results and Organization. In Sect. 2 we will improve the result developed
by Ullman in a way it only needs O(m2

sat

log(msat)
) jobs and show that this leads to a

new bound for the running time of 2o(
√
n logn):

Theorem. Assuming ETH there is no algorithm for P |prec, pj = 1 | Cmax in

time 2o(
√

n log(n)).

In Sect. 3 we will further show the equivalence between the precedence scheduling
with unit execution time and target makespan 3 and the k1×k2-Biclique problem
via a linear reduction forth and back:

Theorem. P |prec, pj = 1 |Cmax = 3 is equivalent to the k1 ×k2-Biclique prob-
lem.

Our reduction from the Biclique Problem to the P |prec, pj = 1 |Cmax = 3 prob-
lem produces a scheduling instance for each Biclique instance with the additional
property that there is no chain length greater than two, i.e. no job has a predeces-
sor and a sucessor at the same time. By this the equivalence of the k1×k2-Biclique
problem to the scheduling instance also holds with this additional restriction on
the chain length.

Theorem. P |prec, pj = 1, cl ≤ 2|Cmax = 3 is equivalent to the k1×k2-Biclique
problem.

Our reduction shows a new connection between the Biclique Problem and the
P |prec, pj = 1 |Cmax and provides the possibility of improving the lower bound
for the scheduling problem as soon as there will be an improvement for the
parametrized Biclique Problem. In our reduction the number of jobs is linear
in the number of only the vertices in V and W and the target makespan is
T = 3. By this a new reduction improving the bound for Biclique parametrized
by the number of vertices would lead to a new lower bound for an approximation

332 K. Jansen et al.

algorithm with ratio better than 4
3 . Our reduction already generalizes the reduc-

tion by Lenstra and Rinnooy Kan regarding the extra condition of restricting
the chain length to two. Concluding our result presents a new viewpoint to the
parametrized Biclique problem and an improvement of the lower bound of the
scheduling problem would also improve a lower bound for algorithms solving the
parametrized Biclique problem.

2 Lower Bounds for Precedence Constrained Scheduling

First we will introduce a slightly modified version of the reduction by Ullman [13]
and derive the lower bound 2o(

√
n) from it. Then we will improve the reduction

to obtain the new lower bound of 2o(
√
n logn). Both lower bounds are based on

the assumption that the ETH holds.
The instance of a 3-CNF-SAT problem is given by a formula ϕ in CNF with

nsat variables xi, i ∈ [nsat] and msat clauses. The goal is to decide whether there
is a truth assignment that satisfies ϕ.

Let ϕ be a 3-CNF-SAT instance with nsat variables and msat clauses. The
main idea is to create two equal gadgets for each variable xi. The instance is
constructed in a way that there are two possible starting times for the two
gadgets in a schedule not exceeding a target makespan T. Exactly one can be
started in the first time slot and one in the second. Thus either the one meaning
“xi is true” starts and finishes first and then the one meaning “xi is false” or
vice versa.

For each clause there are 7 jobs representing all possible assignments of its
three literals that make the clause true. Each of the jobs is dependent on the last
job of the gadgets with the corresponding assignment. For example if there is a
clause (xi ∨ xj ∨ ¬xk) and we choose the corresponding clause job that stands
for xi being false and xj and xk being true then it is allowed to be scheduled
earlier than all other clause jobs for this clause if all the jobs of the gadget
meaning “xi is false”, “xj is true”, and “xk is true” are scheduled before. That
is, if all the corresponding gadgets were started in the first time slot, a clause
job representing a partial assignment without contradiction to the assignment
represented by the gadgets can be started earlier. This leads to the insight that
the formula has a satisfying truth assignment if and only if for each clause there
is one job that can be scheduled earlier than the other jobs of the clause. This
is the main idea of both reductions.

More precisely let m = max{2nsat + 2, 6msat + 1, nsat + msat + 1} be the
number of machines and let the target makespan T = 2nsat + 3. Let there be
sets of dummy jobs Jdummy

i for i ∈ [T]. For each pair j ∈ Jdummy
i , j′ ∈ Jdummy

i′

let j ≺ j′ iff i < i′, for all i, i′ ∈ [T]. Let

|Jdummy
i | =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m − nsat , if i = 1 or i = 2,

m − (2nsat + 1) , if 3 ≤ i ≤ 2nsat + 1
m − (nsat + msat) , if i = 2nsat + 2,

m − 6msat , if i = 2nsat + 3.

Precedence Scheduling with Unit Execution Time 333

There is only one possible assignment with target makespan T of the dummy
jobs to the time slots, because the number of machines is chosen in such a way
that there is at least one dummy job in each time slot. This leads to a schedule
where there is space left for nsat jobs in the first time slot, in the second up to
the (2nsat + 1)st there is space left for 2nsat + 1 jobs, and so on.

2i = 6

nose

2nsat + 1

Fig. 1. A gadget for the
variable xi, where i = 3
and nsat = 4. The arrows
represent the precedences
between the jobs.

For each variable xi we create two equal gadgets
gxi=b, for b ∈ {0, 1}, consisting of 2nsat + 1 chain
jobs and one job we will call nose job: jchainxi=b,0 ≺
· · · ≺ jchainxi=b,2nsat

and jnosexi=b, jchainxi=b,2(i−1) ≺ jnosexi=b ≺
jchainxi=b,2i. The idea is that the chain jobs must be
scheduled in consecutive time slots and the nose job
has to be scheduled in the time slot before the job
jchainxi=b,2i and is some kind of extension of the chain,
see Fig. 1 for an illustration.

Next, for each clause cj let aj,1, . . . , aj,7 repre-
sent the seven different truth assignments for the
three literals in cj that make cj true. Let jclausej,d be a
job for each cj and each aj,d. Let jchainxi=b,2nsat

≺ jclausej,d

if and only if xi = b is included in aj,d. The total
number of jobs is n = m · T = m(2nsat + 3) ∈
O(max{msat, nsat}2).

So far, this is a slight modification of the reduc-
tion by Ullman, and we will now see how to prove the correctness of the reduction
to help the understanding of our own reduction. First of all, each gadget contains
a chain of 2nsat + 1 jobs and there is at least one other clause job dependent on
the last job of each gadget. The clause jobs are not dependent on each other, so
each job of each gadget must have been scheduled until the second to last time
slot. It is T = 2nsat + 3, so the gadgets must start in the first or in the second
time slot and not any later. The clause jobs can then only be scheduled in the
last and in the second to last time slot and not earlier. The space left by the
dummy jobs in the last time slot allows only 6msat clause jobs to be scheduled.
Therefore the other msat clause jobs must be scheduled in the second to last
time slot because each clause job is dependent on a gadget. And so there is only
space for nsat gadget jobs left in the second to last time slot.

We say a gadget ends (or starts) in time slot t if the last job or the last jobs
of the gadgets are scheduled in time slot t (or the first job or the first jobs are
scheduled in time slot t, respectively). So only nsat gadgets end in the second to
last time slot while the other nsat gadgets end in the third to last time slot and
therefore start in the first. Also, only nsat gadgets can start in the first, so the
other nsat start in the second time slot.

In the second time slot up to the (2nsat+1)-st there is space left for one nose
job per time slot. This means, no two gadgets associated to the same variable
can be started in the same time slot. Again this means for each variable xi either
jchainxi=1,2nsat

is scheduled in time slot 2nsat + 1 and jchainxi=0,2nsat
is scheduled in time

334 K. Jansen et al.

slot 2nsat+2 or vice versa, and so the gadgets ending in time slot 2nsat represent
an assignment for the variables.

If we have a satisfying truth assignment for ϕ, we can schedule the gadgets
corresponding to the true literals (according to the assignment) first. Then, for
each clause, one of the possible assignments of the three variables is without
contradiction to the truth assignment and the corresponding clause job can be
scheduled in time slot 2nsat + 2. So there is a feasible schedule.

If we have a feasible schedule then there are msat clause jobs scheduled in
time slot 2nsat+2. For each clause there must be exactly one of the corresponding
clause jobs, because two different assignments for the three variables of one clause
contradict each other. The truth assignment given by the gadgets ending in time
slot 2msat +1 therefore satisfies ϕ. An example of the construction can be found
in AppendixA.

To prove the lower bound on the running time, assume for the sake of
contradiction that there is an algorithm solving P |prec, pj = 1 | Cmax with
n jobs in time 2o(

√
n). Then we can transform each formula ϕ with msat

clauses and nsat ≤ 3msat variables into a P |prec, pj = 1 | Cmax instance with
O(max{msat, nsat}2) = O(m2

sat) jobs and solve it in 2o(
√
n) = 2o(msat). Using the

Sparsification Lemma, this contradicts the ETH. So there is no algorithm that
solves P |prec, pj = 1 | Cmax with n jobs in time 2o(

√
n), unless the ETH fails.

Alternatively, Lenstra and Rinnooy Kan gave a reduction from the k-Clique
problem to precedence scheduling where each node and each edge is represented
by a job. The standard reduction from 3-SAT to the k-Clique problem [8] pro-
duces three nodes per clause and the parameter k matches the number msat

of clauses. In a clique each node is connected with each other node, so there
are at least msat(msat−1)

2 edges in a k-clique instance reduced from a 3-CNF-SAT
instance with msat clauses. The schedule length of an optimal schedule in the
reduction is 3. So the reduction also leads to the same bound on the running
time for approximation algorithms with ratio better than 4

3 . To our knowledge,
no reduction from 3-CNF-SAT to Clique is known where the number of edges in
the constructed instance is o(max{nsat,msat}2).

nose

nose size 3

Fig. 2. A gadget for a vari-
able with nose size 3

The main idea of our improvement is to cre-
ate gadgets with differently sized noses on the same
nose height for different variables. The space avail-
able for the noses obviously must be increased—that
increases the number of machines—but the total
height of the schedule is shorter. Differently sized
noses are a group of jobs per gadget that only can
be scheduled next to one particular job in the chain
(see Fig. 2). The size of a nose is defined by the
number of jobs in such a group.

We will again create two equal gadgets for each
variable xi, one meaning “xi is true” and one mean-
ing “xi is false”. According to which gadget starts
earlier we decide how the truth assignment is cho-
sen. Everything else is very much the same as before.

Precedence Scheduling with Unit Execution Time 335

Assume we have 2k gadgets for k variables x1, . . . , xk with its noses on the
same height. Let us say fk : N≤k −→ N is the function, that assigns the nose
sizes to the gadgets corresponding to the k variables. The number of machines
must then be at least 2nsat+

∑k
i=1 fk(i). The function f must have the following

property:

Property 1. For all A,B ⊆ fk(N≤k) where |A| = |B| and A ∩ B = ∅, it is∑
a∈A a �= ∑

b∈B b.

This implies fk to be injective, because otherwise, if there were two gadgets for
xi and two for xj , that had the same nose size on the same height, we could
start both gadgets for xi first instead of one of the two assigned to xi and one
of the two assigned to xj and we had no feasable truth assignment any more.

The identity does not fulfill Property 1. If k = 4 then 1 + 4 = 2 + 3. The
quality of such an fk with Property 1 is measured by how minimal the sum∑

a∈fk(N≤k)
a is compared to all other injective function with this property. One

possibility of successfully constructing a function with Property 1 is to recursively
define the function independently from k: f(1) = 1 and f(a) = 1 +

∑a−1
i=1 a. If

A,B ⊆ f(N≤k), A ∩ B = ∅, then either A or B contains the largest element of
A∪B, and this element is greater than the sum of all elements smaller than the
element in f(N≤k), so in particular Property 1 holds for f . This is actually an
iterative way to express f(a) = 2a−1.

One question we do not yet have an answer for is whether f is a function
with best possible quality. An asymptotically improved value of

∑
a∈fk(N≤k)

a

would improve the result of our following reduction.
The exponential function with basis 2 will be the base for the construction

in the proof of the next Theorem. Note that
∑k

i=1 2i−1 = 2k − 1. So next to the
2nsat chain jobs must be space left for 2k − 1 nose jobs.

Theorem 1. Assuming ETH there is no algorithm for P |prec, pj = 1 | Cmax in

time 2o(
√

n log(n)).

Proof. Let again ϕ be a formula with nsat variables and msat clauses. We start
with an arbitrary factor k ∈ {a ∈ N | a|nsat}, by which we want to decrease T.
Let

m = max{2nsat + (2k − 1) + 1, nsat + msat + 1, 6msat + 1}
and T = 2nsat

k +3. The dummy jobs now build a similar structure as before with
updated heights. Let Jdummy

i for i ∈ [T] be sets of dummy jobs and again for
each pair j ∈ Jdummy

i , j′ ∈ Jdummy
i′ let j ≺ j′ iff i < i′ for all i, i′ ∈ [T]. Let

|Jdummy
i | =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m − nsat , if i = 0,

m − (2nsat + 2k − 1) , if i = 1,

m − (2nsat + 2k − 1) , if i ∈ {
2, . . . , 2nsat

k

}

m − (nsat + msat) , if i = 2nsat

k + 1, and
m − 6msat , if i = 2nsat

k + 2.

336 K. Jansen et al.

Next to the chain jobs we have space left for 2k − 1 nose jobs in the second time
slot up to the 2nsat

k -st time slot, which is the new length of the gadgets, and
space for the clause jobs in the last two time slots as before.

The variables will be partitioned into n
k groups of size k, where each job

from the same group has its nose on the same height: For each xi we create two
identical gadgets, one with b = 0 and one with b = 1:

jchainxi=b,0 ≺ · · · ≺ jchain
xi=b, 2nsat

k

and jnosexi=b,1, . . . , j
nose
xi=b,2(i−1)modk ,

with jchainxi=b,2� i
k 	−1 ≺ jnosexi=b,j ≺ jchainxi=b,2� i

k 	 for all j ∈ {1, . . . , 2(i−1)modk}.

The term i
k � achieved the partitioning of the gadgets into groups and the term

2(i−1)modk is the nose size of the gadget corresponding to the variable xi.
We can again argue that nsat gadgets end in the second to last time slot and

the other nsat end in the third to last time slot. So at least nsat gadgets must
start in the bottom time slot to be able to end in the third to last, the other
nsat must start the first time slot.

Then k noses of the gadgets of the first group of variables x1, . . . , xk with
a total size of 2k − 1 must be scheduled in the first time slot as well as in the
second. Since 2k − 1 can only be represented by nose sizes of gadgets associated
with k pairwise different variables of the same group, in the bottom time slot
can not start two gadgets associated to the same variable of the first group.
This holds for each pair of gadgets associated with the same variables in every
group. Again we can conclude: In the bottom layer only gadgets corresponding
to pairwise different variables start.

For each clause cj and the seven different truth assignments aj,1, . . . , aj,7 let
jclausej,d again be a job for each cj and each aj,d. Let jchain

xi=b, 2nsat
k

≺ jclausej,d if and
only if xi = b is included in aj,d. The argument that msat clause jobs can to be
scheduled in the second to last time slot if and only if there is a satisfying truth
assignment for ϕ is completely the same as before (Fig. 3).

If max{2nsat +(2k − 1)+1, nsat +msat +1, 6msat +1} = 2nsat +(2k − 1)+1
(which is the interesting case, because otherwise the number of jobs would be
linear in msat and nsat) the total number of jobs is m · T = (2nsat + 2k −
1)

(
2nsat

k + 3
)

= 4n2
sat+2knsat−nsat

k + 6nsat + 3 · 2k − 3.
Choosing k = log(nsat) seems to be a good choice. Then the number of jobs

is O(n2
sat

log(nsat)
). If there was an algorithm solving P |prec, pj = 1 |Cmax with n

jobs in time 2o(
√
n logn), then we could transform each 3-SAT formula ϕ with

nsat variables into an instances of P |prec, pj = 1 |Cmax with O(n2
sat

log nsat
) jobs

and solve it in time

2
o
(√

n log(n)
)

= 2
o

(√
n2
sat

log(nsat)
log

(
n2
sat

log(nsat)

))

= 2
o

(√
n2
sat

log(nsat)
(2 log(nsat)−log(log(nsat)))

)

= 2
o

(√

2n2
sat− n2

sat log(log(nsat))
log(nsat)

)

≤ 2o(nsat),

a contradiction to the ETH.

Precedence Scheduling with Unit Execution Time 337

J0 J0

J1

J2

J3

J4

J5J5 J5

J6

x1 = 1x2 = 0x3 = 0x4 = 1

x1 = 0x2 = 1x3 = 1x4 = 0

jclause5,1 jclause7,2

jclause
1,1 jclause

2,1 jclause
3,1 jclause4,1 jclause6,1 jclause7,1 jclause1,2 jclause2,2 jclause

3,2 jclause
4,2 jclause

5,2 jclause
6,2

Fig. 3. Example 1 for the new reduction. The formular is again ϕ = (x1 ∨ x2 ∨ ¬x3) ∧
(x1 ∨ ¬x2 ∨ x4). For reasons of clarity only a few precendences are presented. Jobs
of the same color are corresponding to the same variable. Jobs of the same color and
pattern are assigned to the same gadget. The dottet gadgets represent the negative
assignments and the gadgets without pattern represent the positive assignments.

3 Precedence Constrained Scheduling and Biclique

This Section concentrates on a reduction from the k1 × k2-Biclique problem to
P |prec, pj = 1 |Cmax with target makespan T = 3 and back. The same result
also holds with the additional constraint to the chain length in the scheduling
problem not to be greater than two, due to the properties of our reduction.
In particular this means for all instances G = (V ∪̇W,E) of k1 × k2-Biclique
there is a P |prec, pj = 1 |Cmax instance with O(|V ∪̇W |) jobs and the Biclique
instance has a Biclique of size k1×k2 if and only if there is a schedule with target
makespan T = 3 for the corresponding P |prec, pj = 1 |Cmax instance. Also for
each P |prec, pj = 1 |Cmax instance with n ∈ O(m) jobs there is a k1 × k2-
Biclique instance G = (V ∪̇W,E) with O(n) vertices and there is a schedule for
the scheduling instance with target makespan T = 3 if and only if the Biclique
instance has a Biclique of size k1 × k2.

We will start with the reduction from the parametrized Biclique problem to
the P |prec, pj = 1 |Cmax = 3 (Fig. 4).

Theorem 2. There is a linear reduction from the k1 × k2-Biclique problem to
the P |prec, pj = 1 |Cmax = 3 and maximum chain length of at most two, that
is, for all Jobs j there are no two jobs j1, j2 in a way that j ≺ j1 ≺ j2.

Proof. We start our reduction from a k1 × k2-Biclique instance G = (V ∪̇W,E)
where |V | − k1 = k1 + k2 = |W | − k2 and there is a vertex vd ∈ V and a
vertex wd ∈ W which have no edges to any other node. This is no loss of
generality because otherwise we could modify our instance in an easy way it
suits our conditions by adding jobs and edges and increasing the parameters.
The modification in detail can be viewed in the AppendixB.

Let m = k1 + k2. For each node v ∈ V we create a job j−
v and for each

w ∈ W we create a job j+w . Let j−
v ≺ j+w iff {v, w} �∈ E. Let us further define

J−
A = {j−

v | v ∈ A} and J+
B = {j+w | w ∈ B} for all A ⊆ V , B ⊆ W .

338 K. Jansen et al.

We already can conclude that all jobs from J−
V will run in the bottom or in

the middle time slot because j−
v ≺ j+wd

for all v ∈ V , since {v, wd} �∈ E. Equally
we can conclude for all jobs from J+

W to run in the middle or the top time slot
because j−

vd
≺ j+w for all w ∈ W , since {vd, w} �∈ E. We also can say if there is a

schedule with target makespan T = 3 then all three time slots are filled because
3m = (|V | − k1) + k1 + k2 + (|W | − k2) = |V | + |W | = |V ∪̇W |.

J−
V \V

J−
V ′ J+

W ′

J+
W\W ′

k1

k2

Fig. 4. Visualization of a reduced
schedule from the Biclique Instance.
The arrows denote that there possi-
bly are precedences between the jobs
in the particular sets.

Now we show that there is a k1 × k2-
Biclique instance in G if and only if there is
a schedule with target makespan T = 3 for
the scheduling instance. If there is a sched-
ule of target makespan T = 3, then there are
|V | − k1 jobs from J−

V in the bottom time
slot and k1 from J−

V in the middle time slot.
There also are |W | − k2 jobs from J+

W in the
top time slot and k2 from J+

W in the middle
time slot. The jobs from J−

V and J+
W that

run in the middle time slot together there-
fore have no precedences. Let us call the cor-
responding vertex sets V ′ and W ′. We can

conclude, that each node from V ′ has edges to all vertices in W ′ and vice versa,
because otherwise there would be precendeces between the jobs from J−

V ′ and
J+
W ′ . So V ′ and W ′ form a Biclique of the desired size.

If on the other hand we start knowing that there is a Biclique of size k1 × k2
in the Biclique instance, we schedule the jobs J−

V \V ′ in the bottom time slot, the
jobs from J+

W\W ′ in the top time slot and those from J−
V ′ and from J+

W ′ together
in the middle time slot, which have no precedences because the corresponding
vertices form a Biclique.

Theorem 3. There is a linear reduction from P |prec, pj = 1 |Cmax = 3 to the
k1 ×k2-Biclique problem. In particular the same reduction works for the restricted
version of P |prec, pj = 1, cl ≤ 2|Cmax = 3, where the chain length is limited by 2.

Proof. Let us now assume a P |prec, pj = 1 |Cmax instance. We suggest the
number of jobs to be smaller or equal to 3m, because if it would be larger, there
would be no schedule.

We know there are no precedence chains of length larger than 3, otherwise
T > 3. If there is a precedence chain of length 3 we already can conclude which
of the jobs in that chain has to be scheduled in which of the three time slots.
So, we part our instance in the sets

Precedence Scheduling with Unit Execution Time 339

Jbottom = {j ∈ J | ∃j1, j2 ∈ J : j ≺ j1 ≺ j2},

Jmiddle = {j ∈ J | ∃j1, j2 ∈ J : j1 ≺ j ≺ j2},

Jtop = {j ∈ J | ∃j1, j2 ∈ J : j1 ≺ j2 ≺ j},

J−
V = {j ∈ J | ∃j′ ∈ J : j ≺ j′} \ (Jbottom ∪ Jmiddle),

J+
W = {j ∈ J | ∃j′ ∈ J : j′ ≺ j} \ (Jmiddle ∪ Jtop) and
J
≺ = {j ∈ J | � ∃j′ ∈ J : j′ ≺ j or j ≺ j′}.

First of all, all these sets are disjoint because T = 3 as argued before. Further
all jobs from Jbottom are already determined to run in the bottom time slot, the
jobs from Jmiddle in the middle time slot and those from Jtop in the top time slot.
The jobs from J
≺ are allowed to run anywhere. The difficulty of the problem
lies in choosing jobs from J−

V and from J+
W that can be scheduled in the middle

time slot together. The more jobs from J−
V can be started in the bottom time

slot and the more jobs of J+
W can be startet in the top time slot the easier the

problem becomes. If the middle time slot can be filled with Jobs from J
≺ the
problem is solved. So, we schedule all jobs from J
≺ in time slot 2 without loss
of generality.

Let k1 = |J−
V | − (m − |Jbottom|) and k2 = |J+

W | − (m − |Jtop|). These are
the numbers of jobs from J−

V and J+
W respectively that has to run in the middle

time slot together. Let V = {vj | j ∈ J−
V } and W = {wj | j ∈ J+

W } be the set of
vertices of the k1 × k2-Biclique instance. Let {vj− , wj+} ∈ E iff j− �≺ j+ for all
vj− ∈ V , wj+ ∈ W . Then we claim that there is a k1 × k2-Biclique if and only if
the precedence scheduling instance with unit execution time has a schedule with
makespan 3. The proof is simular to the end of the proof of Theorem2.

Both reductions lead to the two main Theorems:

Theorem 4. P |prec, pj = 1 |Cmax = 3 is equivalent to the k1 × k2-Biclique
problem.

Theorem 5. P |prec, pj = 1, cl ≤ 2|Cmax = 3 is equivalent to the k1 × k2-
Biclique problem.

Acknowledgements. We want to thank Matthias Schulte-Althoff and Eike Lurz for
helpful discussions.

A Example for the Modified Ullman Reduction

Example 1. Figure 5 visualizes the reduction using an example where ϕ = (x1 ∨
x2∨¬x3)∧(x1∨¬x2∨x4). This leads to gadgets of length 9, m = 13 and T = 11.
We choose x1 = 1, x2 = 0, x3 = 0 and x4 = 1 as the truth assignment that
makes ϕ true.
The truth assignments for the clauses, aj,d, are numbered in order to the binary
output of the clauses: a1,1 makes x1, x2 and x3 false so the output of the first
clause would be 0 ∨ 0 ∨ 1. a1,2 makes x1 false but x2 and x3 true and so on.

340 K. Jansen et al.

J1J1

J2

J3

J4

J5

J6

J7

J8

J9

J10J10 J10

J11

x1 = 1x2 = 0x3 = 0x4 = 1

x1 = 0x2 = 1x3 = 1x4 = 0

jclause
5,1 jclause7,2

jclause1,1 jclause
2,1 jclause

3,1 jclause4,1 jclause6,1 jclause7,1 jclause1,2 jclause2,2 jclause
3,2 jclause

4,2 jclause
5,2 jclause

6,2

Fig. 5. An example for the modified Ulman reduction. In this example the formula is
ϕ = (x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x4). For reasons of clarity only a few precedences
are presented. Jobs of the same color are corresponding to the same variable. Jobs of
the same color and pattern are assigned to the same gadget. The dottet gadgets repre-
sent the negative assignments and the gadgets without pattern represent the positive
assignments.

B Modifiing the Biclique Instance to One with
the Needed Property

Given a k1×k2-Biclique instance G = (V ∪̇W,E) we want to obtain an equivalent
k̂1 × k̂2-Biclique instance Ĝ = (̂(V)∪̇Ŵ , Ê) with the property, that there is a
vd ∈ V̂ and a wd ∈ Ŵ without any edges and |V̂ | − k̂1 = k̂1 + k̂2 = |Ŵ | − k̂2:
First we add a dummy node vd to V and a dummy node wd to W without any
edges. Then we take the maximum of k1+k2, |V ∪{vd}|−k1 and |W ∪{wd}|−k2
and take this number as number of machines m. We modify each instance in a
way that k̂1 + k̂2 = |V̂ | − k̂1 = |Ŵ − k̂2| = m:
We obtain a set V by adding vd and other nodes without any edges to V until
|V | − k1 = m and we do the same with W until |W | − k2 = m.
Then we add vertices to V with edges to every node in W and at the same time
increase k1 by one for every vertex we add, until we get a set V̂ and a parameter
k̂1 where now k̂1 + k2 = m and |V̂ − |k̂1 = m still holds and define k̂2 = k2 and
Ŵ = W .
In this modification we find a k̂1 × k̂2-Biclique if and only if we found a k1 × k2-
Biclique in the old version: The added nodes without any edges do not touch
Bicliques in the instance and those with edges to every node increase all Bicliques
by the number of added nodes of that kind.
So without loss of generality we can assume a k1 × k2-Biclique instances G =
(V ∪̇W) where |V |−k1 = k1 +k2 = |W |−k2 and dummy nodes vd ∈ V , wd ∈ W
with no edges.

Precedence Scheduling with Unit Execution Time 341

C Alternative Reduction from Biclique to the Scheduling
Problem Without Chains

There is an alternative for a reduction from k1 × k2-Biclique to P |prec, pj =
1 |Cmax with target makespan T = 3, where the Biclique instance is not manip-
ulated in the beginning. Further this reduction provides a possibility to reduce
the instance without being important from which set, V or W , the k1 nodes come
from and from which the k2 come from. This could also be done with the old
reduction from the Biclique problem to P |prec, pj = 1 cl ≤ 2|Cmax by testing
both. This reduction however may reveal some new ideas for techniques.

Lemma 1. P |prec, pj = 1 |Cmax with target makespan T = 3 can be reduced
from the k1 × k2-Biclique Problem.

Proof. Let us assume a k1 × k2-Biclique instance G = (V ∪̇W). Let U = V ∪̇W .
For each node v ∈ U we create two jobs j−

v and j+v . For each v, w ∈ U let j−
v ≺ j+w

iff {v, w} �∈ E. Let m = max{|U |−k1+1, k1+k2+1, |U |−k2+1} and let there be
sets of dummy jobs Jbottom, Jmiddle and Jtop, where |Jbottom| = m − (|U | − k1),
|Jtop| = m− (|U |−k2) and |Jmiddle| = m− (k1 +k2). Let jbottom ≺ jmiddle ≺ jtop
for all jbottom ∈ Jbottom, jmiddle ∈ Jmiddle, jtop ∈ Jtop.
Let further j−

v ≺ jtop and jbottom ≺ j+v for all v ∈ U , and at least one
jbottom ∈ Jbottom, jtop ∈ Jtop.
The dummy job structure is to assure if the schedule has length 3, then all jobs
from Jbottom are scheduled in the first (bottom) time slot, all jobs Jmiddle in the
second (middle) and all jobs from Jtop in the third (top) time slot. Further all
j−
v are scheduled in the first two time slots, |U | − k1 of them in the first one, k1

in the second. Likewise all j+v jobs are scheduled in the second and third time
slot, k2 of them in the second and |U | − k2 of them in the third.
Let us denote J−

A = {j−
v | v ∈ A} and J+

A = {j+v | v ∈ A} for all A ⊆ U .
Note that there are no precedences between two jobs j−

v and j−
w aswell as no

precedences between j+v and j+w for any v, w ∈ U .
If it is part of the instance, that the k1 vertices are supposed to come from V
and the k2 vertices from W , we add the condition j−

v ≺ jtop for all v ∈ V , and
at least one jtop ∈ Jtop.
If there is a solution of this instance with target makespan T = 3, then there
are subsets U−, U+ ⊆ U , |U−| = k1 and |U+| = k2 and the corresponding jobs
j−
v , j+w , v ∈ U−, w ∈ U+ are scheduled in the middle time slot together while

all other jobs j−
v , j+w , v, w ∈ U \ (U− ∪ U+) are in the bottom or top time slot.

So for all v ∈ U− and w ∈ U+ it is j−
v �≺ j+w , that means {v, w} ∈ E.

First we know by this, v and w are not both in V or both in W , because
otherwise {v, w} �∈ E. So we know U− ⊆ V and U+ ⊆ W or vice versa.
With the extra condition we would know U− ⊆ V , which induces U+ ⊆ W .
Second we know that for each v ∈ U− and each w ∈ U+ it is {v, w} ∈ E and so
U− and U+ form a k1 × k2-Biclique (Fig. 6).

342 K. Jansen et al.

J−
U \ J−

U−

J−
U− J+

U+

J+
U \ J+

U+

Jbottom

Jmiddle

Jtop

Fig. 6. Visualization of a reduced schedule from the Biclique Instance. The arrows
denote that there possibly are precedences between the jobs in the particular sets. All
dark gray areas represent the jobs from the set J− and the light gray area represent
the jobs from J+.

Now assume there is a k1 ×k2-Biclique. Let again U−, U+ ⊆ U be the sets of
nodes, that form the biclique, where |U−| = k1 and |U+| = k2 and U− ⊆ V and
U+ ⊆ W or vice versa. For all v ∈ U we now schedule all corresponding jobs
j−
v in the bottom time slot exept the j−

v with v ∈ U−, which we schedule in the
middle time slot. For all v ∈ U we schedule all corresponding jobs j+v in the top
time slot except the j+v where v ∈ U+, which we also schedule in the middle time
slot. The schedule is feasable, because there are no precedences in between the
jobs corresponding to U− or in between those of U+ and there are none between
the jobs j−

v and j+w in the middle time slot, because their corresponding vertices
form a biclique by assumption.

References

1. Bansal, N., Khot, S.: Optimal long code test with one free bit. In: 50th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2009), pp. 453–462.
IEEE Computer Society (2009)

2. Bulatov, A.A., Marx, D.: Constraint satisfaction parameterized by solution size.
SIAM J. Comput. 43(2), 573–616 (2014)

3. Calabro, C., Impagliazzo, R., Kabanets, V., Paturi, R.: The complexity of unique
k-SAT: An isolation lemma for k-CNFs. J. Comput. Syst. Sci. 74(3), 386–393
(2008)

4. Chen, J., Huang, X., Kanj, I.A., Xia, G.: On the computational hardness based on
linear fpt-reductions. J. Comb. Optim. 11(2), 231–247 (2006)

5. Du, J., Leung, J.Y., Young, G.H.: Scheduling chain-structured tasks to minimize
makespan and mean flow time. Inf. Comput. 92(2), 219–236 (1991)

6. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

7. Johnson, D.S.: The NP-completeness column: an ongoing guide. J. Algorithms 8,
438–448 (1987)

8. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Proceedings of a Symposium on the Complexity of Com-
puter Computations. The IBM Research Symposia Series, pp. 85–103. Plenum
Press, New York (1972)

Precedence Scheduling with Unit Execution Time 343

9. Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of
the 17th Annual IEEE Conference on Computational Complexity, p. 25. IEEE
Computer Society (2002)

10. Lenstra, J.K., Kan, A.H.G.R.: Complexity of scheduling under precedence con-
straints. Oper. Res. 26(1), 22–35 (1978)

11. Lin, B.: The parameterized complexity of k-biclique. In: Indyk, P. (ed.) Proceed-
ings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, pp. 605–615. SIAM (2015)

12. Svensson, O.: Conditional hardness of precedence constrained scheduling on iden-
tical machines. In: Schulman, L.J. (ed.) Proceedings of the 42nd ACM Symposium
on Theory of Computing, STOC 2010, pp. 745–754. ACM (2010)

13. Ullman, J.D.: Np-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–
393 (1975)

Grover’s Search with Faults on Some
Marked Elements

Dmitry Kravchenko, Nikolajs Nahimovs(B), and Alexander Rivosh

Faculty of Computing, University of Latvia, Riga, Latvia
nikolajs.nahimovs@lu.lv

Abstract. Grover’s algorithm is a quantum query algorithm solving the
unstructured search problem of size N using O(

√
N) queries. It provides

a significant speed-up over any classical algorithm [2].
The running time of the algorithm, however, is very sensitive to errors

in queries. Multiple authors have analysed the algorithm using different
models of query errors and showed the loss of quantum speed-up [1,4].

We study the behavior of Grover’s algorithm in the model where
the search space contains both faulty and non-faulty marked elements.
We show that in this setting it is indeed possible to find one of marked
elements in O(

√
N) queries.

1 Introduction

Grover’s algorithm is a quantum query algorithm solving the unstructured search
problem of size N using O(

√
N) queries. It is known that any deterministic

or randomized algorithm needs linear time (number of queries) to solve the
above problem. Thus, Grover’s algorithm provides a significant speed-up over
any classical algorithm.

The running time of the algorithm (number of queries), however, is very
sensitive to errors in queries. Regev and Schiff [4] have shown that if query has
a small probability of failing (reporting that none of the elements are marked),
then quantum speed-up disappears: no quantum algorithm can be faster than a
classical exhaustive search by more than a constant factor. Ambainis et al. [1]
have studied Grover’s algorithm in the model where each marked element has
its own probability to be reported as unmarked, independent of probabilities of
other marked elements. Similarly to the result of [4], they have shown that if
all marked elements are faulty (have non-zero probability of failure) then the
algorithm needs Ω(N) queries to find a marked element.

Although, technically the model of [1] allows one non-faulty marked element
(element with zero probability of failure) this case was not included into the
analysis1.

This research was supported by EU FP7 project QALGO (Dmitry Kravchenko,
Nikolajs Nahimovs) and ERC project MQC (Alexander Rivosh).

1 The limitation of at most one non-faulty marked element comes from the probability
independence assumption – two or more marked elements with zero error probability
of failure would not be independent.

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 344–355, 2016.
DOI: 10.1007/978-3-662-49192-8 28

Grover’s Search with Faults on Some Marked Elements 345

We study the behavior of the algorithm in the model where the search space
contains both faulty and non-faulty marked items. Specifically, we focus on the
case where the search space contains multiple non-faulty and one faulty marked
element. We analyze the effect of a fault on the state of the algorithm and show
that in this setting it is indeed possible to find one of non-faulty marked elements
in O(

√
N) queries.

Up to the best our knowledge, this is the first demonstration of query fault
modes which can be tolerated by the Grover’s algorithm.

2 Technical Preliminaries

In this paper we use standard notions of quantum states, density matrices etc.,
as described in [3]. Description of Grover’s algorithm can be found in [2].

Spherical Trigonometry

Spherical trigonometry is a branch of geometry which deals with the relationships
between trigonometric functions of the sides and angles of the spherical polygons.
Trigonometry on a sphere differs from the traditional planar trigonometry. For
example, all distances are measured as angular distances (Fig. 1).

In the context of this paper we need only a few basic formula for right spher-
ical triangles. Let ABC be a right spherical triangle with a right angle C. Then
the following set of rules (known as Napier’s rules) applies:

cos c = cos a cos b (R1) tan b = cos A tan c (R6)
sin a = sin A sin c (R2) tan a = cos B tan c (R7)
sin b = sin B sin c (R3) cos A = sinB cos a (R8)
tan a = tan A sin b (R4) cos B = sinA cos b (R9)
tan b = tan B sin a (R5) cos c = cot A cot B (R10)

Fig. 1. Spherical trigonometry basic triangle

For more detailed introduction into spherical trigonometry see [5].

346 D. Kravchenko et al.

3 Model and Results

Error Model

Suppose we have a search space of size N containing k marked elements i1, i2, . . . ,
ik. First k−1 marked elements are non-faulty – the query always returns them as
marked. Last marked element is faulty – the query might return it as unmarked.

More formally, on each step, instead of the correct query Q, we apply a faulty
query Q′ defined as follows:

◦ Q′|ik〉 = |ik〉 with probability p;
◦ Q′|ik〉 = −|ik〉 with probability 1 − p;
◦ Q′|j〉 = Q|j〉 if j �= ik.

Summary of Results

We show that if there is at least one non-faulty marked element, then it is
still possible to find a non-faulty marked element in O(

√
N) queries with Θ(1)

probability.

Theorem 1. Let k ≥ 3, then we can choose t = O(
√

N/k) so that, if we run
Grover’s algorithm for t steps and measure the final state, the probability of
finding a marked element is at least cos2 π

8 = 0.85
For k = 2, the probability of finding a marked element is at least cos2 π

8 =
0.85 . . . under a promise that at most one fault occurs and at least 0.74 . . . in the
general case.

We conjecture that, for k = 2, the probability is at least 0.85 . . . even in the
general case.

4 Analysis of the Algorithm

In this section we analyze the evolution of the state of Grover’s algorithm in
presence of multiple non-faulty and one faulty marked item. First we review the
original Grover’s algorithm, then we describe the effect of faults on the state
of the algorithm. We derive upper bounds on the effect of faults and provide a
modification of the original Grover’s search algorithm which finds one of non-
faulty marked items with Θ(1) probability in O(

√
N) queries.

4.1 No Faulty Marked Items

Let us first consider the very basic search problem of Grover’s algorithm. Namely,
we have N items among which k are marked2.
2 It is usually considered that k � N , as for k

N
≥ λ with sufficiently large λ the search

problem can be trivially solved by a probabilistic algorithm in time O
(
λ−1
)
.

Grover’s Search with Faults on Some Marked Elements 347

Operator D is symmetric w.r.t. permutations of amplitudes of all items, and
operator Q is symmetric w.r.t. permutations of amplitudes of marked items,
as well as permutations of amplitudes of non-marked items. So, on any step t
amplitudes of all marked items are equal to each other and amplitudes of all
non-marked items are equal to each other. Thus, we can represent |ψt〉 as:

|ψt〉 =
∑

i∈U

αt|i〉 +
∑

j∈M

βt|j〉,

where U stands for the set of indexes of non-marked items and M stands for the
set of indexes of k marked items. αt and βt denote the amplitudes of respectively
a non-marked item and a marked item on step t. At each step of the algorithm
we shall take care of two numbers only:

αt

√
N − k and βt

√
k. (1)

Since |ψt〉 is a unit vector, we have
∑

i∈U

α2
t +

∑

j∈M

β2
t = 1.

Thus, values (1) meet the equality
(
αt

√
N − k

)2

+
(
βt

√
k
)2

= 1 and corre-
spond to a point on the unit circle.

Initially all amplitudes are equal, so α = β = 1√
N

, and the numbers (1) are

α0

√
N − k =

√
N − k√

N
and β0

√
k =

√
k√
N

. (2)

During the first step of the algorithm operator D does not change amplitudes
of the state |ψ0〉, and operator Q negates amplitudes of all marked items: β1 =
−β0 = − 1√

N
. So the numbers (1) are

α1

√
N − k =

√
N − k√

N
and β1

√
k = −

√
k√
N

. (3)

According to (2) and (3), transformation |ψ0〉 DQ−−→ |ψ1〉 can be represented
on the unit circle as shown on Fig. 2. As before, we assume k � N , so that√

k � √
N − k, and the angle between |ψ0〉 and |ψ1〉 is

2 arcsin

(√
k√
N

)

≈ 2

√
k√
N

(4)

(this approximation holds for small-valued
√

k√
N

).
Similarly, all further applications of operator DQ are nothing but clockwise

rotations by angle ∼ 2
√

k√
N

. After ∼ π/2

2
√

k/
√

N
= 0.785...

√
N√

k
such rotations the

resulting state |ψ�0.785...
√

N/k�〉 reaches the neighborhood of the point (0,−1).

Measuring |ψ�0.785...
√

N/k�〉 results in getting index of a marked item, with prob-
ability almost 1.

348 D. Kravchenko et al.

Fig. 2. The first step of Grover’s algorithm

4.2 One Faulty Marked Item

Let us now consider the case with

• N − k non-marked items,
• k − 1 marked items, and
• 1 faulty marked item.

To simplify the analysis we shall interpret the step of the algorithm as consequent
application of three operators: ordinary diffusion D and ordinary query Q, and
– with probability ε – error E, which negates back the amplitude of the faulty
marked item.

As the operation E is probabilistic one must deal not with a pure state |ψt〉,
but with a mixed state ρt (probabilistic mixture of pure states). We shall denote
components of the mixture after t steps as |ψw

t 〉, where w ∈ {0, 1}t stands for
the sequence of t events: 0 – the query has negated the amplitude of the faulty
marked item (DQ), and 1 – the query has left that amplitude of the faulty
marked item unchanged (DQE). So the mixture ρt looks as follows:

ρt =
∑

w∈{0,1}t

ε|w| (1 − ε)t−|w||ψw
t 〉〈ψw

t |.

Transformations D, Q and E are symmetric w.r.t. permutations of ampli-
tudes of non-faulty marked items, as well as permutation of amplitudes of non-
marked items. So, in any state |ψw

t 〉 of the mixture |ψ∗
t 〉, amplitudes of all non-

faulty marked items are equal to each other and amplitudes of all non-marked
items are equal to each other. Thus, we can represent |ψw

t 〉 as:

|ψw
t 〉 =

∑

i∈U

αw
t |i〉 +

∑

j∈M,
j 	=ik

βw
t |j〉 + γw

t |ik〉, (5)

where U stands for the set of indexes of non-marked items and M stands for
the set of indexes of k marked items. αw

t , βw
t and γw

t denote the amplitudes of

Grover’s Search with Faults on Some Marked Elements 349

respectively a non-marked item, a non-faulty marked item and the faulty marked
item.

At each step of the algorithm for each of 2t scenarios w we shall take care of
three numbers:

αw
t

√
N − k, βw

t

√
k − 1 and γw

t . (6)

Since |ψw
t 〉 are unit vectors we have

∑

i∈U

(αw
t)2 +

∑

j∈M,
j 	=f

(βw
t)2 + (γw

t)2 = 1.

Thus, values (6) meet the equality
(
αw

t

√
N − k

)2
+

(
βw

t

√
k − 1

)2
+ (γw

t)2 = 1
and correspond to a points on the unit sphere.

Initially the mixture consists of state |ψ0〉 with amplitudes of all items being
equal, so α = β = γ = 1√

N
, and the numbers (6) for t = 0 are

α0

√
N − k =

√
N − k√

N
, β0

√
k =

√
k − 1√

N
and γ0 =

1√
N

. (7)

During the first step of the algorithm

• D does not change amplitudes of the state |ψ0〉;
• Q negates the amplitudes of all marked items: βw

1 = γ0
1 = − 1√

N
;

• E negates back the amplitude of the faulty marked item: γ1
1 = −γ0

1 = 1√
N

.

So the numbers (6) for t = 1 are as follows:

α0
1

√
N − k =

√
N−k√

N
, β0

1

√
k − 1 = −

√
k−1√
N

, γ0
1 = − 1√

N
for w = 0;

α1
1

√
N − k =

√
N−k√

N
, β1

1

√
k − 1 = −

√
k−1√
N

, γ1
1 = 1√

N
for w = 1.

(8)

According to (7) and (8), transformation |ψ0〉〈ψ0| DQ(E)−−−−→ (1 − ε) |ψ0
1〉〈ψ0

1 | +
ε|ψ1

1〉〈ψ1
1 | can be represented on the unit sphere as shown on Fig. 3.

Note that if ε = 0 the state of the algorithm travels clockwise along the
slanted orthodrome3 which contains points |ψ0〉 and (1, 0, 0). The travel lasts
until the state reaches the neighborhood of the vertical orthodrome (hereafter
we call it meridian) where α = 0 after t ≈ 0.785 . . .

√
N/k steps.

If k � N the rotation angle (4) is sufficiently small. The run of the algo-
rithm can be viewed as clockwise rotation of a state in parallel to the slanted
orthodrome (DQ-movement) with occasional (ε-probable) up-and-down jumps
around the horizontal orthodrome (hereafter we call it equator), which corre-
spond to operator E, as shown on Fig. 4. During the first 0.785 . . .

√
N/k steps,

the state cannot go out of the area which is covered with arrows on the figure.
3 Orthodrome, also known as a great circle, of a sphere is the intersection of the sphere

with a plane which passes through the center point of the sphere.

350 D. Kravchenko et al.

Fig. 3. The first step of Grover’s algorithm with a faulty marked item. Size of a
ball corresponds to a probability of the state in the mixture. |ψ∗

0〉〈ψ∗
0 | = 1|ψ0〉 and

|ψ∗
1〉〈ψ∗

1 | = (1 − ε) |ψ0
1〉〈ψ0

1 | + ε|ψ1
1〉〈ψ1

1 |

|ψ0〉

Fig. 4. Probable routes of the initial state |ψ0〉 in the run of Grover’s algorithm with
a faulty marked item

As we already mentioned, 0.785 . . .
√

N/k steps are necessary to reach the
desired plane where α = 0, given that no fault occurs on the way (in our notation:
in expression (5), α00...0

�0.785...
√

N/k� ≈ 0).

But what could the length of the route be if some faults occur on the state’s
way to the desired plane? In the two following subsections we will derive upper
bounds for the effect of these faults.

Grover’s Search with Faults on Some Marked Elements 351

At Most One Fault. First, let us assume that the total number of faults is
at most one. Although this assumption seems to be rather implausible, we have
some arguments for it:

◦ for sufficiently small ε, we have . . . � ε3 � ε2 � ε, so that probability of more
than one fault

∑t
f=2

(
t
f

)
εf (1 − ε)t−f

< t2ε2 could be neglected for number
of steps t ∈ o

(
1
ε

)
;

◦ as we shall see later, the second and all subsequent faults have smaller effect
and even have great chances to drive the state closer to the desired meridian.

|ψ...0
t 〉

|ψ...1
t 〉

a

cerr

A

Fig. 5. Metrics for a fault

Let us calculate the effect of a fault in the sense of its projection onto the
“no-faults” route. On the Fig. 5 we illustrate ε-probable transformation |ψ...0

t 〉 E−→
|ψ...1

t 〉, which happened on some step t. The fault increases the angular distance
to the desired meridian (α = 0) by cerr. Using rules of spherical trigonometry
((R8) and (R7)) we have:

cerr = arctan
(

tan 2a cos arcsin
cos A

cos a

)
= arctan

(

tan 2a

√

1 − cos2 A

cos2 a

)

, (9)

where A = arctan 1√
k−1

is angle between the two equators, and a is the distance
between |ψ...0

t 〉 and the horizontal equator. Note that a is at most A (a = A only
when |ψw

t 〉 reaches the desired meridian), so 1 − cos2 A
cos2 a ≥ 0.

In equation (9) we assumed that |ψ...0
t 〉 is located on the bottom-margin of the

arrow-filled area of the Fig. 4 (which always holds for one fault case). For |ψ...0
t 〉

located above the bottom margin, we should calculate (9) for a smaller value of A,
which will result in smaller value of cerr. For |ψ...0

t 〉 located above the horizontal
equator, the fault-effect cerr is negative, i.e. the resulting state |ψ...1

t 〉 is closer to
the desired meridian w.r.t. the direction in parallel to the slanted orthodrome.

352 D. Kravchenko et al.

Relaxing the above-mentioned assumption, we can conclude the following rough
bound:

cerr ≤ arctan

(

tan 2a

√

1 − cos2 A

cos2 a

)

. (10)

Now, based on the inequality (10) we shall derive more precise bounds.
If the number of non-faulty marked items k − 1 ≥ 1, then the angle A =

arctan 1√
k−1

∈ (
arctan 1

∞ ; arctan 1
1

]
=

(
0; π

4

]
. So we have 0 ≤ a ≤ A ≤ π

4 .
Now let us consider different values of a. If 0 ≤ a ≤ π

6 , then (9) is bounded
by

cerr ≤ max
0≤a≤A,

a≤ π
6

arctan

(

tan 2a

√

1 − cos2 A

cos2 a

)

≤ π

4
, (11)

where the inequalities become equalities for A = π
4 and a = π

6 .
If π

6 < a ≤ π
4 , then we can follow that the state |ψ...0

t 〉 is gone far away from
the point “α

√
N − k = 1” of the unit sphere. This distance between the point

(1, 0, 0) and the state |ψ...0
t 〉 can be derived from the rule (R2):

c = arcsin
sin a

sin A
≥ arcsin

sin π/6
sin π/4

=
π

4
(12)

Since the total distance between the point “α
√

N − k = 1” and any point of
the meridian “α

√
N − k = 0” is exactly π

2 , we follow that the state |ψ...0
t 〉 is at

most π
2 − π

4 = π
4 far from the desired meridian.

From (11) and (12) we formulate the following joint conclusion:

Corollary 1. At least one of the following claims holds for any state |ψ...0
t 〉 with

0 ≤ a ≤ A ≤ π
4 :

◦ either the fault-effect cerr ≤ π
4 ,

◦ or the state |ψ...0
t 〉 is already at most π

4 far from the desired meridian “α = 0”.

Any Number of Faults. Now let us use another approach to study the evo-
lution of a state in the considered settings. Transformation |ψw

t 〉 DQ−−→ |ψw,0
t+1〉

drives the state |ψw
t 〉 clockwise in parallel to the slanted orthodrome by a dis-

tance, which depends on the position of this state on the unit sphere.

On Fig. 6 we show a “speed” for each possible position of the state |ψw
t 〉.

On the “no-faults” route (i.e. the slanted orthodrome) the speed coincides with

that of the original Grover’s algorithm: v
G

= 2arcsin
√

k√
N

≈ 2
√

k
N . After

a state jumps up, its speed decreases depending on its distance to the slanted
orthodrome: e.g. on the parallel circle which contains point “β

√
k − 1 = 1” of

the units sphere, its speed is v
G

cos A.
We can also calculate the speed of a state w.r.t. the direction in parallel to the

horizontal equator, i.e. the speed of its projection onto the horizontal equator vΠ .

Grover’s Search with Faults on Some Marked Elements 353

Fig. 6. “Speed” of a state located on some meridian b

Obviously, among all states on some meridian b, the uppermost state |ψ↑
b 〉 has the

least speed. Distance between |ψ↑
b 〉 and the point “α

√
N = 1” of the unit sphere,

can be derived from angle A, distance b and rule (R6): c = arctan tan b
cosA . Distance

between |ψ↑
b 〉 and the slanted orthodrome can be derived from distance c, angle

2A and rule (R2): a′ = arcsin (sin 2A sin c) = arcsin
(
sin 2A sin arctan tan b

cosA

)
.

And the speed of |ψ↑
b 〉

v↑ (b) = v
G

cos (a′) = v
G

√

1 − sin2 2A tan2 b

cos2 A + tan2 b

serves as a natural lower bound for the speed of any state located on the same
meridian b:

v (b) ≥ v↑ (b) = v
G

√

1 − sin2 2A tan2 b

cos2 A + tan2 b
.

Projection of the speed v (b) onto the horizontal equator might be slightly less:

vΠ (b) ≥ v (b) cos A ≥ v
G

√

1 − sin2 2A tan2 b

cos2 A + tan2 b
cos A. (13)

Vertical jumps leave states on the same meridians, so faults does not affect
value b. Moving at least at speed (13), a state will pass distance π

2 in at most
∫ π

2
0

1
vΠ (b) db steps. From (13) we obtain an upper bound for the number of steps

until some meridian b∗ (for arbitrary number of faults, i.e. for any ε):

tb∗ ≤
∫ b∗

0

1
vΠ (b)

db ≤
∫ b∗

0

1

v
G

√
1 − sin2 2A tan2 b

cos2 A+tan2 b cos A
db. (14)

354 D. Kravchenko et al.

We note that on the fastest “no-fault” route a state will travel exactly at
speed v

G
, so that in the same many tb∗ steps it can reach at most (v

G
tb∗)th

meridian.
From (14) we can derive the upper bound for the distance between the two

meridians b∗ and v
G
tb∗ :

v
G
tb∗ − b∗ ≤ ����vG

∫ b∗

0

1

����vG

√
1 − sin2 2A tan2 b

cos2 A+tan2 b cos A
db − b∗ (15)

For example, if we fix b∗ = 3
8π, then for any 0 ≤ A ≤ 0.1953 . . . π, value

(15) does not exceed π
4 . That is, when the fastest state of a quantum ensemble

reaches meridian b∗ + π
4 = 5

8π, the slowest state of the ensemble with certainty
reaches at least meridian b∗ = 3

8π.

4.3 Proof of Theorem1

We run standard Grover’s algorithm 5
4 times longer than usually, and then per-

form a measurement.

• If at most one fault is promised, and A ≤ 0.25π,4 then we use Corollary 1 and
follow that any component of the resulting mixture |ψ∗〉 is at most π

8 far from
the meridian “α = 0”.

• If A ≤ 0.1953 . . . π,5 then we substitute b∗ = 3
8π in (15) and follow exactly

the same.

Measurement of such |ψ∗〉 results in finding a marked item (the faulty or a
non-faulty one) with probability at least cos2 π

8 = 0.853553 . . .

• Otherwise, if 0.1953 . . . π < A ≤ 0.25π and there is no promise on the number
of faults, it means that there is exactly 1 non-faulty marked element (so A =
0.25π).

In this specific case we run standard Grover’s algorithm ≈ 1.34 times longer than
usually, and then perform a measurement. We substitute A = 0.25π, b∗ ≈ 0.33π
in (15) and follow that value (15) does not exceed ≈ 0.34π. That is, when the
fastest state of a quantum ensemble reaches meridian b∗ + 0.34π = 0.67π(=
0.5 × 1.34π), the slowest state of the ensemble with certainty reaches at least
meridian b∗ = 0.33π. Measurement of such |ψ∗〉 results in finding a marked item
(the faulty or a non-faulty one) with probability at least cos2 0.17π = 0.74... ��
4 A ≤ 0.25π means that there is at least as many non-faulty marked items as faulty

marked items. Since we limit our considerations with only one faulty marked item,
it suffices with only one non-faulty marked item.

5 For one faulty marked item, it means existence of at least �arccot 0.1953 . . . π	 =
�1.02047	 = 2 non-faulty marked items.

Grover’s Search with Faults on Some Marked Elements 355

5 Summary and Open Problems

In this paper we focus on the case where search space contains multiple non-
faulty and one faulty marked element. We show that if there are at least two
non-faulty marked elements or it there is at most one fault, then it is still possible
to find a marked element in O(

√
N) queries with Θ(1) probability.

It is an open question to generalize the Theorem 1 to more than one faulty
marked element. This, however, might be tricky as one needs to deal with hyper-
spherical geometry.

References

1. Ambainis, A., Bačkurs, A., Nahimovs, N., Rivosh, A.: Grover’s algorithm with
errors. In: Kučera, A., Henzinger, T.A., Nešetřil, J., Vojnar, T., Antoš, D. (eds.)
MEMICS 2012. LNCS, vol. 7721, pp. 180–189. Springer, Heidelberg (2013)

2. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceed-
ings of the 28th ACM STOC, pp. 212–219 (1996)

3. Kaye, P., Laflamme, R.: An Introduction to Quantum Computing. Cambridge Uni-
versity Press, Cambridge (2007)

4. Regev, O., Schiff, L.: Impossibility of a quantum speed-up with a faulty oracle.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 773–781. Springer,
Heidelberg (2008)

5. Todhunter, I.: Spherical Trigonometry, 5th edn. MacMillan, London (1886)

Reachability Problems for PAMs

Oleksiy Kurganskyy1 and Igor Potapov2(B)

1 Institute of Applied Mathematics and Mechanics,
NAS of Ukraine, Donetsk, Ukraine

2 Department of Computer Science, University of Liverpool, Liverpool, UK
potapov@liverpool.ac.uk

Abstract. Piecewise affine maps (PAMs) are frequently used as a ref-
erence model to show the openness of the reachability questions in other
systems. The reachability problem for one-dimensional PAM is still open
even if we define it with only two intervals. As the main contribution of
this paper we introduce new techniques for solving reachability problems
based on p-adic norms and weights as well as showing decidability for
two classes of maps. Then we show the connections between topological
properties for PAM’s orbits, reachability problems and representation of
numbers in a rational base system. Finally we show a particular instance
where the uniform distribution of the original orbit may not remain uni-
form or even dense after making regular shifts and taking a fractional
part in that sequence.

1 Introduction

The simplification of real programs shows that there is a number of quite basic
models/fragments for which we have fundamental difficulties in the design of
verification tools. One of them is the model of iterative map that appears in
many different contexts, including discrete-event/discrete-time/hybrid systems,
qualitative biological models, chaos-based cryptography, etc. [4,9,12,19].

The one-dimensional affine piecewise iterative map is a very rich mathemati-
cal object and at the same time one of the simplest dynamical system producing
very complex and sensitive effects. A function f : Q → Q is a one-dimensional
piecewise-affine map (PAM) if f is of the form f(x) = aix + bi for x ∈ Xi where
all coefficients ai, bi and the extremities of a finite number of bounded intervals
Xi are rational numbers. Let us consider the sequence of iterations starting from
a rational point x : x, f(x), f2(x) = f(f(x)), and so on. The reachability in PAM
is a problem to decide for a given f and two rational points x and y whether y
is reachable from x. In other words, is there an n ∈ N such that fn(x) = y?

The decidability of the reachability problem for one dimensional piecewise-
affine map is still an open problem, which is related to other challenging ques-
tions in the theory of computation, number theory and linear algebra [8,15,16].
This model plays a crucial role in the recent research about verification of hybrid

This research is supported by EPSRC grant “Reachability problems for words, matri-
ces and maps” (EP/M00077X/1).

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 356–368, 2016.
DOI: 10.1007/978-3-662-49192-8 29

Reachability Problems for PAMs 357

systems [2,3], timed automata [2] control systems [10,11], representation of num-
bers in a rational base (β-expansions) [21,23], discounted sum automata [13]. In
particular PAM is often used as a reference model to show the openness of the
reachability questions in other systems. It also has a very natural geometrical
interpretation as pseudo-billiard system [17] and Hierarchical Piecewise Constant
Derivative (HPCD) system [3]. The reachability problem for one-dimensional
PAM is still open even if we define it with only two intervals [2,3,5,6].

The primary goal of this paper is to demonstrate new approaches for solving
reachability problem in PAMs, connecting reachability questions with topological
properties of maps and widening connections with other important theoretical
computer science problems. First, we show new techniques for decidability of the
reachability problem in PAMs based on p-adic norms and weights. We illustrate
these techniques showing decidability of two classes of PAMs. The algorithm in
Theorem 1 solves point to point reachability problem for two-interval injective
PAM under the assumption that a PAM has bounded invariant densities. While
our numerical experiments shows that the sequence of invariant densities con-
verge to smooth functions it is not yet clear whether it holds for all PAMs or if
not whether this property can be algorithmically checked.

Following the proposed approach based on p-adic weights in Theorem 2 we
define another fragment of PAMs for which the reachability problem is decid-
able. In particularly we remove the condition on bounded invariant densities and
injectivity of piecewise-affine map and consider a PAM f with a constraint on
linear coefficients in affine maps. This class of PAMs is also related to encoding
of rational numbers in the rational base (β-expansions). The decidability of the
point-to-point problem for this class is shown in Theorem 2 and decidability of
point-to-set problem for the same class can give someone an answer to the open
problem related to β-expansions.

Then we establish the connections of topological properties for PAM’s orbits
with reachability problems and representation of numbers in a rational base sys-
tem. We show that the reachability problems for above objects tightly connected
to questions about distribution of the fractional parts in the generated sequences
and moreover about distribution of the fractional part after regular shifts.

2 Preliminaries and Notations

In what follows we use traditional denotations N,Z,Z+ = {0, 1, 2, . . .},P,Q and
R for sets of natural, integers, positive integers, primes, rational and real num-
bers, respectively. Let us denote by S1 = Q/Z the unit circle which consists
only rational numbers. By {x}, �x� and �x� we denote the fractional part1 of a
number, floor and ceiling functions.

Let Y be a set of numbers and x is a single number, then we define their
addition and multiplication as follows: Y + x = x + Y = {x + y|y ∈ Y } and
xY = Y x = {xy|y ∈ Y }. The application of a function f : X → Y to a set
1 It will be clear from the context if brackets are used in other conventional ways, for

example, to indicate a set of numbers.

358 O. Kurganskyy and I. Potapov

X ′ ⊆ X is defined as f(X ′) = {f(x)|x ∈ X ′}. If f ⊆ X ×Y is a nondeterministic
map, i.e. f : X → 2Y and x ∈ X, X ′ ⊆ X, we define f(x) = {y|(x, y) ∈ f} and
f(X ′) =

⋃
x∈X′ f(x).

p-adic norms and weights: Let us consider an arbitrary finite set of prime
numbers F = {p1, p2, . . . , pk} ⊂ P in ascending order and define the product of
prime numbers from F by m = p1p2 . . . pk. Let x be a positive rational number
that can be represented by primes from a set F. Then its prime factorization is
x =

∏
p∈F

pαp , where αp ∈ Z, p ∈ F.
Any nonzero rational number x can be represented by x = (pαpr)/s, where

p is a prime number, r and s are integers not divisible by p, and αp is a unique
integer. The p-adic norm of x is then defined by |x|p = p(−αp). The p-adic weight
of x is defined as ‖x‖p = logp(|x|p), i.e. ‖x‖p = −αp. The following properties
of p-adic weights are directly follows from the properties of p-adic norm:

‖x‖p = ‖y‖p ⇒ ‖x + y‖p ≤ ‖x‖p. (1)

‖x‖p < ‖y‖p ⇒ ‖x + y‖p = ‖y‖p, (2)

‖x · y‖p = ‖x‖p + ‖y‖p, (3)

‖xr‖p = r‖x‖p, (4)

If there is a prime p /∈ F such that ‖x‖p > 0, then we define ‖x‖m = +∞,
otherwise ‖x‖m = max

p∈F
‖x‖p.

By m-weight and m-vector-weight of x in respect to a set F we denote ‖x‖m

and (‖x‖)m = (‖x‖p1
, ‖x‖p2

, . . . , ‖x‖pk
)T respectively. Informally speaking the

m-weight of a number x (if ‖x‖m > 0) is the number of digits after the decimal
point in the representation of x in base m, i.e. x can be written as x = y ·m−‖x‖m ,
where y is an integer which the last digit in the m-ary representation is non zero.
If ‖x‖m ≤ 0, then x is an integer number.

Without loss of generality let us consider from now on only such x ∈ X for
which ‖x‖m < +∞. Alternatively if ‖x‖m = +∞, it is enough to change the set
F = {p1, . . . , pk} in order to fulfill the requirements of ‖x‖m < +∞.

Lemma 1. For all rational x ∈ [0, 1] with an upper bound a ∈ Z+ on ‖x‖m, i.e.
‖x‖m < a, there is a lower bound b ∈ Z based on a and F such that ‖x‖p ≥ b for
all p ∈ P.

Proof. Let us denote two sums of weights: α = −∑
p∈P,‖x‖p≤0 ‖x‖p and β =∑

p∈F,‖x‖p≥1 ‖x‖p. Assuming that 2 is the smallest possible prime number and
pk is the largest number in F, we have the following inequality: 2α

pka
k

≤ 2α

pβ
k

≤ x ≤ 1.

Then −α ≥ −kalog2 pk and if b = −α we have ‖x‖p ≥ b for all p ∈ P. ��
Corollary 1. For any a ∈ Z there is only a finite number of rational x ∈ [0, 1]
for which ‖x‖m < a.

Reachability Problems for PAMs 359

Reachability problem for PAMs: We say that f : S1 → S1 is a one-
dimensional piecewise affine map (PAM) whenever f is of the form f (x) =
aix + bi, where ai, bi ∈ Q ⇔ x ∈ Xi, S1 = X1 ∪ X2 ∪ . . . ∪ Xl and where
{X1, . . . , Xl} is a finite family of disjoint (rational) intervals. If the intervals are
not disjoint we call it non-deterministic piecewise affine map and by default a
piecewise-affine mapping is understood to be deterministic. The derivative f ′ of
a PAM f we define as f ′(x) = ai for x ∈ Xi, 1 ≤ i ≤ l.

If f is deterministic PAM, an orbit (trajectory) of a point x is denoted by
Of (x) and will be understood either as a set Of (x) = {f i(x)|i ∈ Z+} or as a
sequence, i.e. Of (x) : Z+ → S1, Of (x)(i) = f i(x). We also define that a point y
is reachable from x if y ∈ Of (x).

In general the reachability problem for PAM can be defined as follows. Given
a PAM f , x ∈ S1 and Y ⊆ S1, decide whether the intersection Y ∩ Of (x) is
empty. If Y is a finite union of intervals, we name the reachability problem as
point-to-set (interval) problem. If Y is a one element set (i.e. a single point), the
reachability problem is known as point-to-point reachability.2

In this paper we only consider one-dimensional PAMs and by the reachability
problem for PAM we understand point-to-point reachability and explicitly state
the type of the problem when we need to refer to other reachability questions.
Note that the point-to-interval reachability can be reduced to point-to-point
reachability problem by extending a map with a few intervals in which the cur-
rent value is just sequentially deleted. It works for all PAMs but may not preserve
the properties and the form of the original map.

Generally speaking the piecewise-affine mapping does not need to be defined
as f : X → X, where X = S1 = [0, 1). However if the set X is a union of any
finite number of bounded intervals we always can scale it to S1. If f : X → X is
such that X �= [0, 1), and X ⊆ [a, b), then by applying conjugation h(x) = x−a

b−a
the original reachability problem for f is reduced to the reachability problem for
the mapping g = h ◦ f ◦ h−1 from [0, 1) to [0, 1). Moreover the interest to PAMs
as f : S1 → S1 is also motivated by their use in the research of chaotic systems.

3 Decidability Using p-Adic Norms

It is well know in dynamical systems research that due to complexity of orbits in
iterative maps it is less useful, and perhaps misleading, to compute the orbit of a
single point and it is more reasonable to approximate the statistics of the under-
lying dynamics [14,22]. This information is encoded in the so-called invariant
measures, which specify the probability to observe a typical trajectory within a
certain region of state space and their corresponding invariant densities.

Let us consider a density as an ensemble of initial starting points (i.e. initial
conditions). The action of the dynamical system on this ensemble is described by
the Perron-Frobenius operator. The ensembles which are fixed under the linear
2 Also in a similar way it is possible to define set-to-point and set-to-set reachability

problems.

360 O. Kurganskyy and I. Potapov

Perron-Frobenius operator is known as invariant densities or in other words, they
are eigenfunctions with eigenvalue 1 [14].

Formally under an ensemble A we understand an enumerated set (sequence)
of points in phase space. With ensemble we can associate the distribution
function and the density function. Let I be a set of points. We denote by
FA

I (n) = |{i ∈ Z+|i ≤ n,A(i) ∈ I}| the number of elements in the sequence A
which belong to the set I and which indexes are less or equal n. The distribution

function of the ensemble A is defined as ΦA(x) = limn→∞
F A

(−∞,x)(n)

n , if the limits
exist. The density function φA of the ensemble A is defined as φA(x) = Φ′

A(x).
Suppose given an ensemble A0 with density φ0. If we apply PAM f to each

point of the ensemble, we get a new ensemble A1 with some density distribution
φ1. We say that the function φ1 is obtained from φ0 using the Frobenius-Perron
or transfer operator, which we denote by Lf . It is known that

φ1(x) = Lf (φ0)(x) =
∑

y∈f−1(x)

φ0(y)
|f ′(y)| .

If φ1 = φ0 we say that φ0 is a f -invariant density function or an eigenfunction
of the transfer operator Lf .

We prove that if for an injective PAM f there exists an invariant bounded
density function then the reachability problem for f is decidable.

Lemma 2. Let f be an injective PAM, and φ be a f-invariant density function.
If there are Kmin > 0 and Kmax < +∞ such that for any x from the domain
of f the following inequality holds: Kmin < φ(x) < Kmax, then for an arbitrary
segment of the orbit x1, x2, . . . , xn+1, where xi+1 = f(xi), we have Kmin

Kmax
≤

|c1 · c2 · . . . · cn| ≤ Kmax

Kmin
, where ci = aj if xi ∈ Xj.

Proof. Let φ be an eigenfunction of the Perron-Frobenius operator for an injec-
tive PAM f . Then injectivity of f and the fact that y = f(x) implies that
φ(y) = φ(x)

|f ′(x)| . We denote f ′(xi) by ci. Then φ(xn+1) = φ(x1)
|c1·c2·...·cn| and

|c1 · c2 · . . . · cn| = φ(x1)
φ(xn+1)

. Now we can bound |c1 · c2 · . . . · cn| by Kmin

Kmax
and

Kmax

Kmin
.

Theorem 1. Given an injective PAM f with two intervals and the existence of
a f-invariant density function φ such that there are Kmin > 0 and Kmax < +∞
and the following inequality holds Kmin < φ(x) < Kmax for all x from the
domain of f . Then the reachability problem for f is decidable.

A complete proof of the theorem is available at http://arxiv.org/abs/1510.
04121

The theorem can be applied for a larger class of PAMs if more information
would be known about the convergence of density functions under the action of
the Perron-Frobenius operator. Let us call an ensemble A to be statistically fixed
with respect to f , if φA = Lf (φA). E.g. if someone can show that in injective

http://arxiv.org/abs/1510.04121
http://arxiv.org/abs/1510.04121

Reachability Problems for PAMs 361

PAM all statistically fixed ensembles have identical distribution functions then
Theorem 1 can be applied to show decidability in injective PAMs.

Following the proposed approach based on p-adic weights we define another
fragment of PAMs for which the reachability problem is decidable. In particularly
we remove the condition on eigenfunction of the transfer operator and injectivity
of piecewise-affine map and consider a PAM f with only constraints on linear
coefficients in affine maps. More specifically we require that the powers of prime
numbers from prime factorizations of linear coefficients should have the same
signs (i.e. two sets of prime numbers used in nominator and denominator are
disjoint). Let us denote for a PAM f a matrix Af with values (aji), where
aji = ‖ai‖pj

, 1 ≤ i ≤ l, 1 ≤ j ≤ k. The rank of Af is denoted by rank(Af).

Theorem 2. The reachability problem for a PAM f is decidable if every row of
a matrix Af contains values of the same sign, (i.e. aji · aj′i ≥ 0, for all i, j such
that 1 ≤ i ≤ l, 1 ≤ j, j′ ≤ k).

Proof. Let us consider a PAM f of the form f(x) = aix + bi for x ∈ Xi where
all coefficients ai,bi and the extremities of a finite number of bounded intervals
Xi are rational numbers. Let us define h = max{‖b1‖m, ‖b2‖m, . . . , ‖bl‖m}. The
condition of the theorem means that for any prime p ∈ F all linear coefficients
of the map f have non-zero p-adic weights of the same sign.

In this case, if p-adic weights of linear coefficients of f are non-negative,
then for any x ∈ X from ‖x‖p > h follows that ‖f(x)‖p ≥ ‖x‖p and therefore
‖f(x)‖m ≥ ‖x‖m (i.e. m-adic weight does not decrease). If p-adic weight of
linear coefficients of the mapping are negative, then for any x ∈ X we have
‖f(x)‖p ≤ max{‖x‖p, h}.

Thus, in the sequence of reachable points for an orbit of a map f either all
points of the orbit have m-adic weights bounded from above by h, then we have
a cyclic orbit, or from some moment when m-adic weight of a reachable point
exceeds h it does not decrease and again, either orbit loops or m-adic weight
increases indefinitely.

Thus, in order to decide whether y is reachable, i.e. y ∈ Of (x), it is sufficient
to start generating a sequence of reachable points in the orbit Of (x) and wait
for one of the events, where either (1) a point in the orbit is equal to y (y is
reachable), or (2) the orbit will loop and y /∈ Of (x) (y is not reachable), or (3)
a point x′ is reachable, such that ‖x′‖m > max{h, ‖y‖m}, and then y /∈ Of (x)
(y is not reachable). ��
Definition 1. A piecewise affine mapping f : S1 → S1 is complete if for a set
of disjoint intervals S1 = X1 ∪ X2 ∪ . . . ∪ Xn, f(Xi) = S1 for any i = 1..n.

Definition 2. Let be F : R → R is the lifting of a continuous map f : S1 → S1

on R, i.e. f({x}) = {F (x)}. Then by the degree deg(f) of a map f we denote
the number F (x + 1) − F (x), which is independent from the choice of the point
x and the lifting F .

362 O. Kurganskyy and I. Potapov

Corollary 2. The reachability problem for complete piecewise affine mappings
with two intervals3 is decidable.

Proof. The condition of a piecewise affine map with two intervals f : S1 → S1

to be complete means that S1 = X1 ∪ X2 and f(X1) = f(X2) = S1. Thus,
if X1 =

[
0, m

n

]
and X2 =

[
m
n , 1

)
, then f (x) = a1x + b1, where a1 = ± n

m ,
when x ∈ X1, and f (x) = a2x + b2, where a2 = ± n

n−m at x ∈ X2, m,n ∈ N,
gcd(m,n) = 1. It is clear that n, m, n−m are relatively prime. So the conditions
of Theorem 2 are satisfied. ��

4 PAM Representation of β-Expansions

Given a rational non-integer β > 1 and the number x ∈ [0, 1]. The target
discounted-sum 0-1 problem [13,20] is defined as follows: Is there a sequence
w : N → {0, 1} of zeros and ones such that x =

∑∞
i=1 w(i) 1

βi .
For any x ∈ S1, there exists β-expansion w : N → {0, 1, . . . , �β� − 1}

such that x =
∑∞

i=1 w(i) 1
βi . If w(i) ∈ {0, 1} we call it (0, 1) − β-expansion.

Therefore, when β ≤ 2 the answer to the target discounted-sum problem
is always positive. Therefore, the only interesting case is when β > 2. We
denote D = {0, 1, . . . , �β� − 1}. Then the minimal and maximal numbers,
which are representable in the basis β with digits from the alphabet D, are
min =

∑∞
i=1 0 1

βi = 0 and max =
∑∞

i=1 (�β� − 1) 1
βi =
β�−1

β−1 . When β > 2 then
max is always less then two. Let us denote by Xd the interval [min+d

β , max+d
β)

for each d ∈ D. If β is not an integer number then two intervals Xd and Xd+1

intersect. Also taking into account that max < 2, then the intervals Xd and
Xd+2 have no common points. Finally from the above construction we get the
next lemma:

Lemma 3. If β > 2 and β is rational/non-integer number: Xd ∩ Xd+1 �= ∅,
d < �β� − 1; Xd ∩ Xd+2 = ∅, d < �β� − 2; [min,max) = ∪d∈AXd.

Proposition 1. For any β-expansion there is a non-deterministic PAM where a
symbolic dynamic of visited intervals (i.e. a sequence of symbols associated with
intervals) from an initial point x0 corresponds to its representation in base β.

Proof. Let us define the piecewise affine mapping f ⊆ [min,max) × [min,max)
as follows f = {(x, βx−d)|x ∈ Xd, d ∈ D}. It directly follows from this definition
that f(Xd) = [min,max).

Let us consider an orbit f i(x) = x(i), i ∈ Z+. We say that di ∈ D such that
x(i) ∈ Xdi

. Then for any n ∈ N min <
∣
∣βnx − d1β

n−1 − d2β
n−2 − . . . − dnβ0

∣
∣ <

max, and in other form min
βn <

∣
∣
∣x − ∑n

i=1(di
1
βi)

∣
∣
∣ < max

βn . So
∣
∣
∣x − ∑n

i=1(di
1
βi)

∣
∣
∣ →

0, n → ∞, and therefore x =
∑∞

i=1(di
1
βi). Let us consider it in other direction.

Let x =
∑∞

i=1(di
1
βi), then the sequence x(i), where x(0) = x, x(i+1) = βx(i)−

di, is the orbit of x in PAM f . Let us name the constructed map as the β-
expansion PAM. ��
3 In particularly the continuous piecewise affine mapping of degree two.

Reachability Problems for PAMs 363

Fig. 1. A non-deterministic PAM for 5
2
-expansion

The nondeterministic β-expansion can be translated into deterministic maps
corresponding to greedy and lazy expansions as follows:

Definition 3. A function f : [min,max) → [min,max) is the greedy β-
expansion PAM if the domain [min,max) is divided on intervals X ′

d, d ∈
{0, 1, . . . , �β� − 1} such that X ′

β�−1 = X
β�−1, X ′
d−1 = Xd−1 − Xd, d ∈

{1, 2, . . . , �β� − 1} and f(x) = βx − d iff x ∈ X ′
d.

Since Xd = [min+d
β , max+d

β) then X ′
d = [min+d

β , min+d+1
β) = [d

β , d+1
β), d ∈

{0, 1, . . . , �β� − 2} and the length of the interval X ′
d is equal to 1

β , d < �β� − 1.

Fig. 2. Deterministic greedy (on the left) and lazy (on the right) 5
2
-expansion PAM

Definition 4. A function f : [min,max) → [min,max) is the lazy β-expansion
PAM, if the domain [min,max) is divided into intervals X ′′

d , d ∈ {0, 1, . . . , �β�−
1}, such that X ′′

0 = X0, X ′′
d = Xd − Xd−1, d ∈ {1, 2, . . . , �β� − 1}, and f(x) =

βx − d iff x ∈ X ′′
d .

Proposition 2. Let f and g are greedy and lazy β-expansion PAM’s respec-
tively. f and g are (topologically) conjugate by the homeomorphism h : h(x) =
h−1(x) = max − x, i.e. f = h ◦ g ◦ h.

Proof. The statement holds since X ′
d = max−X ′′

β�−1−d, d ∈ {0, 1, . . . , �β�− 1}
We would like to highlight that the questions about reachability as well as

representation of numbers in rational bases are tightly connected with questions

364 O. Kurganskyy and I. Potapov

about the density of orbits in PAMs. Moreover if the density of orbits are the
same for all non-periodic points then it may be possible to have a wider applica-
tion of p-adic techniques provided in the beginning of the paper. Let us formulate
a hypothesis that goes along with our experimental simulations in PAMs:

Hypothesis 1. The orbit of any rational point in any expanding deterministic
PAM is either finite or dense on the whole domain.

Lemma 4. Any (0, 1) − β-expansion is greedy.

Proof. Let f be a β-expansion PAM. Assume that there is a point x and the orbit
x(i), where x(0) = x, x(i + 1) = βx(i) − di in the map f such that di ∈ {0, 1}
for all i ∈ N and the orbit does not correspond to the β greedy expansion of x.

The intersection of intervals X0 and X1 is an interval X01 = [min +1
β , max

β).
Applying a map y = βx to X01 we see that X01 is scaled into [min +1,max) =
[1,
β�−1

β−1). The interval [1,
β�−1
β−1) does not have any common points with X0

as the point 1 lies on the right side of the left border of the interval X2 =
[min +2

β , max +2
β) and by Lemma 3 Xi ∩ Xi+2 = ∅.

Note that when x > 1
β−1 we have βx − 1 > x. Let us assume that for some i

x(i) ∈ X01 and x(i + 1) = βx(i) − 0, i.e. we did not followed a greedy expansion
and therefore x(i + 1) ∈ [1,
β�−1

β−1). Then x(i + 2) = βx(i + 1) − 1 > x(i + 1)
and x(i+2) /∈ X0, etc. In this case starting from x(i+1) there is monotonically
increasing sequence of orbital points in the interval X1. So points in such orbit
should eventually leave the interval X1 and reach Xd, where d > 1. This gives
us a contradiction with the original assumption. ��
Corollary 3. Since the greedy expansion can be expressed by a deterministic
map then (0, 1) − β-expansion is unique and greedy.

Theorem 3. If Hypothesis 1 holds then a non-periodic (0, 1)−β-expansion does
not exist.

Proof. Any (0, 1)−β-expansion can be constructed by expanding4 deterministic
greedy β-expansion PAM. If the orbit of a rational point in greedy β-expansion
PAM is non-periodic, then by Hypothesis 1 it should be dense and therefore
should intersect all intervals and cannot provide (0, 1) − β-expansion. ��
Theorem 4. If Hypothesis 1 holds then for any rational number its determin-
istic β-expansion is either eventually periodic or it contains all possible patterns
(finite subsequences of digits) from {0, 1, . . . , �β� − 1}.
Proof. The statement is obvious as Hypothesis 1 implies that the orbit is either
periodic or it is dense and the dense orbit is visiting all intervals. ��
4 I.e. with linear coefficients that are greater than 1.

Reachability Problems for PAMs 365

It looks that the point-to-interval problem is harder than the point-to-point
reachability problem for the expanding PAMs, as for example Theorem 2 gives an
algorithm for the point-to-point reachability problem in the β-expansion PAMs,
but not for the point-to-interval reachability that is equivalent to the β-expansion
problem.

Note that in the β-expansion PAMs all linear coefficients are the same, so
the density of the orbit correspond to the density of the following sequence
x(n) = fn(x0), where f(x) = {βx}. For example when β = 5

2 and x0 = 1 we get
the sequence:

{5
2
}, {5

2
{5
2
}}, {5

2
{5
2
{5
2
}}}, . . .

The question about the distribution of a similar sequence { 3
2}, { 32

22 }, { 33

23 }, . . . ,
where the integer part is removed once after taking a power of a fraction (for
example 3/2) is known as Mahler’s 3/2 problem, that is a long standing open
problem in analytic number theory.

5 Density of Orbits and its Geometric Interpretation

It is well known that x(n) = {αn}, where α is an irrational number, has an uni-
form distribution. Let us give some geometric interpretation of the orbit density.
Consider the Cartesian plane with the y-axis x and the x-axis y (just swapping
their places). Now let us divide the set of lines x = n, n ∈ N, by integer points on
the segments of the unit length. The set of points (y, x), where m ≤ y < m + 1,
x = n, i.e. the interval [m,m+1)×n on the line x = n, will be denoted by Sm,n,
m ∈ Z+, n ∈ N. In other words, Sm,n = (m + [0, 1)) × n. Let I be an interval
such that I ⊆ [0, 1) and by Im,n let us denote the set (m + I) × n.

Fig. 3. Left: An example for two sets Sm,n and Im,n; Right: A dynamic interval I(n)

Two points of the plane are defined to be equivalent if they belong to a
same line passing through the origin. We call α as homogeneous coordinate of a

366 O. Kurganskyy and I. Potapov

point (y, x) if y = αx. By H(I) we denote the set of homogeneous coordinates
of all points from

⋃

m∈Z+,n∈N

Im,n. The sequence x(n) = {αn} is dense in [0, 1)

if and only if for any interval I ⊆ [0, 1) there are m and n, such that the line
y = αx intersects the set Im,n. It is known that [0, 1) − H(I) ⊆ Q for any
interval I ⊆ [0, 1), i.e. for any irrational α > 0 the line y = αx intersect the set⋃

m∈Z+,n∈N

Im,n. Moreover in the case of irrational factors it is known that the

frequency of occurrence of x(n) = {αn} in the interval I is equal to its length.
In some sense the interval I, in the above example, can be named as static

because it does not change in time n. However in order to study and describe
previously mentioned problems such as the target discounted-sum problem,
PAMs reachability problems, the Mahler’s 3/2 problem we require the notion
of “dynamic intervals”.

Let x be a sequence of numbers from [0, 1). What is the distribution of a
sequence x′(n) =

{
pk(n)x(n)

}
, where k : Z+ → Z+ is a non-decreasing sequence?

For example, if k(n) = n−1 and the number x(n) has in the base p the following
form x(n) = 0.an1an2 . . . annan,n+1 . . ., then x′(n) = 0.annan,n+1

Let us assume that I ⊆ S1 and k : Z+ → Z+ is a non-decreasing sequence,
p ∈ N. Now we define “dynamical intervals” as an evolving infinite sequence
I(1), I(2), I(3), . . .:

I(1) = I, I(n) =
pk(n)−1⋃

j=0

I + j

pk(n)
.

By Fx
I (n) = |{i ∈ Z+|i ≤ n,x(i) ∈ I(i)}| we denote a function representing

a frequency of hitting dynamical interval I by the sequence x. In contrast to
Fx

I (n) which only counts the number of hittings to a fixed interval I, our new
function Fx

I counts the number of hittings when both points and intervals are
changing in time.

Proposition 3. The following equation holds: Fx′
I (n) = Fx

I (n).

The phenomenon that significant digit distribution in real data are not accru-
ing randomly known as Benford’s Law. For example the sequence p1, p2, p3,..
satisfies Benford’s Law, under the condition that log10 p is an irrational num-
ber, which is a consequence of the Equidistribution theorem (proved separately
by Weyl, Sierpinski and Bohl). The Equidistribution theorem states that the
sequence {α}, {2α}, {3α}, . . . is uniformly distributed on the circle R/Z, when a
is an irrational number. It gives us the fact that each significant digit of num-
bers in (pn) sequence will correspond to the interval R/Z and the length of the
interval related to the frequency for each appearing digit.

However the question about the distribution of the sequence {(3/2)n} is
different in the way that it is not about the distribution of the first digits of 3n

in base 2, i.e. not about the distribution of the sequence 3n

2�n log2 3� , but related
to the sequence of digits after some shift of the number 3n

2�n log2 3� corresponding
to the multiplication by a power of 2.

Reachability Problems for PAMs 367

So in the above notations the distribution of numbers in the sequence
x′(n) = {(3/2)n} corresponds to the Fx′

I (n) for the logarithmic (Benford’s law)
distributed sequence x(n) = 3n

2�n log2 3� , p = 2 and k(n) = �n log2 3� − n.
Now we will show that even if the sequence {α}, {2α}, {3α}, . . . is uniformly

distributed on the circle R/Z, the irrationality of α is not enough to guarantee
uniform distribution or even density of the sequence x′(n) on the circle corre-
sponding to the linear shifts k(n) = n.

Theorem 5. Let us define α =
∑∞

i=1
1

2Δi
where Δ1 = 1, Δi+1 = 2Δi + Δi,

i ≥ 1 (http:// oeis.org/A034797). Then for all n ∈ N∪{0} the sequence {2nnα}
is not dense in the interval [0, 1] and {2nnα} < 1

2 .

While the question about the distributions for PAM orbits remains open we
have unexpectedly shown that in a very similar system, operating with irrational
numbers, the uniform distribution of original orbits in maps may not remain
uniform or even dense when taking the fractional part after regular shifts. This
makes the questions about PAMs even more “mysterious” as it is not clear
whether such property may hold for a sequence of points generated by PAMs,
β-expansion and Mahler’s problem.

References

1. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems hav-
ing piecewise-constant derivatives. Theor. Comput. Sci. 138, 35–66 (1995)

2. Asarin, E., Mysore, V., Pnueli, A., Schneider, G.: Low dimensional hybrid systems
- decidable, undecidable, don’t know. Inf. Comput. 211, 138–159 (2012)

3. Asarin, E., Schneider, G.: Widening the boundary between decidable and unde-
cidable hybrid systems. In: Brim, L., Jančar, P., Křet́ınský, M., Kučera, A. (eds.)
CONCUR 2002. LNCS, vol. 2421, pp. 193–208. Springer, Heidelberg (2002)

4. Aswani, A., Tomlin, C.J.: Reachability algorithm for biological piecewise-affine
hybrid systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007.
LNCS, vol. 4416, pp. 633–636. Springer, Heidelberg (2007)

5. Bazille, H., Bournez, O., Gomaa, W., Pouly, A.: On the complexity of bounded
time reachability for piecewise affine systems. In: RP 2014, pp. 20–31 (2014)

6. Bell, P.C., Chen, S., Jackson, L.: Reachability and mortality problems for restricted
hierarchical piecewise constant derivatives. In: RP 2014, pp. 32–44 (2014)

7. Bell, P., Potapov, I.: On undecidability bounds for matrix decision problems.
Theor. Comput. Sci. 391(1), 3–13 (2008)

8. Ben-Amram, A.M.: Mortality of iterated piecewise affine functions over the inte-
gers: decidability and complexity. Computability 4(1), 19–56 (2015)

9. Blank, M., Bunimovich, L.: Switched flow systems: pseudo billiard dynamics. Dyn.
Syst. 19(4), 359–370 (2004)

10. Blondel, V., Bournez, O., Koiran, P., Papadimitriou, C., Tsitsiklis, J.: Deciding
stability and mortality of piecewise affine dynamical systems. Theor. Comput. Sci.
255(1–2), 687–696 (2001)

11. Blondel, V., Bournez, O., Koiran, P., Tsitsiklis, J.: The stability of saturated linear
dynamical systems is undecidable. J. Comput. Syst. Sci. 62(3), 442–462 (2001)

http://oeis.org/A034797

368 O. Kurganskyy and I. Potapov

12. Blondel, V., Tsitsiklis, J.: A survey of computational complexity results in systems
and control. Automatica 36, 1249–1274 (2004)

13. Boker, U., Henzinger, T.A., Otop, J.: The target discounted-sum problem. In: LICS
2015, pp. 750–761 (2015)

14. Dellnitz, M., Froyland, G., Sertl, S.: On the isolated spectrum of the Perron-
Frobenius operator. Nonlinearity 13(4), 1171–1188 (2000)

15. Koiran, P., Cosnard, M., Garzon, M.: Computability with low-dimensional dynam-
ical systems. Theor. Comput. Sci. 132, 113–128 (1994)

16. Koiran, P.: The topological entropy of iterated piecewise affine maps is uncom-
putable. Discrete Math. Theor. Comput. Sci. 4(2), 351–356 (2001)

17. Kurganskyy, O., Potapov, I., Sancho-Caparrini, F.: Reachability problems in low-
dimensional iterative maps. Int. J. Found. Comput. Sci. 19(4), 935–951 (2008)

18. Kurganskyy, O., Potapov, I.: Computation in one-dimensional piecewise maps and
planar pseudo-billiard systems. In: Calude, C.S., Dinneen, M.J., Păun, G., Jesús
Pérez-J́ımenez, M., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 169–175.
Springer, Heidelberg (2005)

19. Ouaknine, J., Sousa Pinto, J., Worrell, J.: On termination of integer linear loops.
In: SODA 2015, pp. 957–969 (2015)

20. Randour, M., Raskin, J.-F., Sankur, O.: Percentile queries in multi-dimensional
Markov decision processes. In: Dagstuhl Seminar “Non-zero-sum Games and Con-
trol” (2015)

21. Renyi, A.: Representations for real numbers and their ergodic properties. Acta
Mathematica Academiae Scientiarum Hungarica 8(3–4), 477–493 (1957)

22. Setti, G., Mazzini, G., Rovatti, R., Callegari, S.: Statistical modeling of discrete-
time chaotic processes: basic finite dimensional tools and applications. Proc. IEEE
90(5), 662–690 (2002)

23. Sidorov, N.: Almost every number has a continuum of β-expansions. Am. Math.
Mon. 110(9), 838–842 (2003)

On the Effects of Nondeterminism
on Ordered Restarting Automata

Kent Kwee and Friedrich Otto(B)

Fachbereich Elektrotechnik/Informatik, Universität Kassel, 34109 Kassel, Germany
{kwee,otto}@theory.informatik.uni-kassel.de

Abstract. While (stateless) deterministic ordered restarting automata
accept exactly the regular languages, it is known that nondeterministic
ordered restarting automata accept some languages that are not context-
free. Here we show that, in fact, the class of languages accepted by these
automata is an abstract family of languages that is incomparable to the
linear languages, the context-free languages, and the growing context-
sensitive languages with respect to inclusion, and that the emptiness
problem is decidable for these languages. In addition, it is shown that
stateless ordered restarting automata just accept regular languages, and
we present an infinite family of regular languages Cn such that Cn is
accepted by a stateless ordered restarting automaton with an alphabet of
size O(n), but each stateless deterministic ordered restarting automaton
for Cn needs 2O(n) letters.

Keywords: Restarting automaton · Ordered rewriting · Abstract
family of languages · Descriptional complexity

1 Introduction

The ordered restarting automaton (ORWW-automaton1 for short) was intro-
duced in [9], where it was extended into a device for recognizing picture lan-
guages. An ORWW-automaton (for strings) has a finite-state control, a tape with
end markers that initially contains the input, and a window of size three. Based
on its state and the content of its window, the automaton can either perform a
move-right step, a rewrite/restart step, or an accept step. While the determinis-
tic variant of the ORWW-automaton characterizes the regular languages, it has
been observed that the nondeterministic variant accepts some languages that
are not context-free. However, the nondeterministic ORWW-automaton and the
languages it accepts have not yet been studied in detail.

Here we present such a study. First we prove that the class of languages
accepted by the ORWW-automaton forms an abstract family of languages, that
is, it is closed under union, intersection (with regular sets), product, Kleene
star, inverse morphisms, and non-erasing morphisms (see, e.g., [5]). However,
1 Following the notation that is used for restarting automata in general (see, e.g., [10]),

the suffix -WW says that this automaton can rewrite using non-input symbols.

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 369–380, 2016.
DOI: 10.1007/978-3-662-49192-8 30

370 K. Kwee and F. Otto

it is neither closed under complementation nor under reversal. Further, it is
incomparable to the linear, the context-free, and the growing context-sensitive
languages [3,5] with respect to inclusion, as it contains a language that is not even
growing context-sensitive, while on the other hand, it does not even include all
linear languages. In addition, we show that the emptiness problem is decidable
for ORWW-automata. Several of these proofs are based on a Cut-and-Paste
Lemma for ORWW-automata that is derived from Higman’s Theorem [4].

In [11] an investigation of the descriptional complexity of the deterministic
ORWW-automaton was initiated. Each deterministic ORWW-automaton can
be simulated by an automaton of the same type that has only a single state,
which means that for these automata, states are actually not needed. Accor-
dingly, such an automaton is called a stateless det-ORWW-automaton. For these
automata, the size of their working alphabets can be taken as a measure for
their descriptional complexity. For n ≥ 1, there exists a regular language that
is accepted by a stateless det-ORWW-automaton of size O(n) such that each
nondeterministic finite-state acceptor (NFA) for this language has at least 2n

states. On the other hand, each stateless det-ORWW-automaton of size n can
be simulated by an unambiguous NFA with 2O(n) states [7]. Thus, the stateless
det-ORWW-automaton is exponentially more succinct than NFAs.

Here we are also interested in the computational capacity of stateless
ORWW-automata and in their descriptional complexity. We prove that state-
less ORWW-automata only accept regular languages, which shows that states
are actually useful for nondeterministic ORWW-automata. Finally, we present a
family of example languages (Cn)n≥1 such that the language Cn is accepted by a
stateless ORWW-automaton with an alphabet of size O(n), while each stateless
deterministic ORWW-automaton for Cn needs an alphabet of size 2n.

This paper is structured as follows. In Sect. 2, we introduce the ORWW-
automaton, we present an example of a language that is not even growing
context-sensitive, but that is accepted by an ORWW-automaton, and we derive
the Cut-and-Paste Lemma. In Sect. 3 we study the closure properties of the
class of languages that are accepted by ORWW-automata. Then, in Sect. 4,
we show that stateless ORWW-automata only accept regular languages, and
we present the announced result on the descriptional complexity of stateless
ORWW-automata. The paper closes with Sect. 5, which summarizes our results
in short and states a number of open problems for future work.

2 Ordered Restarting Automata

An ORWW-automaton is a one-tape machine that is described by an 8-tuple
M = (Q,Σ,Γ,�,�, q0, δ, >), where Q is a finite set of states containing the
initial state q0, Σ is a finite input alphabet, Γ is a finite tape alphabet such that
Σ ⊆ Γ, the symbols �,� �∈ Γ serve as markers for the left and right border of
the work space, respectively,

δ : (Q × ((Γ ∪ {�}) · Γ · (Γ ∪ {�}) ∪ {��})) → 2(Q×{MVR})∪Γ∪{Accept}

On the Effects of Nondeterminism on Ordered Restarting Automata 371

is the transition relation, and > is a partial ordering on Γ. The transition relation
describes three different types of transition steps:

(1) A move-right step has the form (q′,MVR) ∈ δ(q, a1a2a3), where q, q′ ∈ Q,
a1 ∈ Γ∪{�}, and a2, a3 ∈ Γ. It causes M to shift the window one position to
the right and to change from state q into state q′. Observe that no move-right
step is possible, if the window contains the symbol �.

(2) A rewrite/restart step has the form b ∈ δ(q, a1a2a3), where q ∈ Q, a1 ∈
Γ ∪ {�}, a2, b ∈ Γ, and a3 ∈ Γ ∪ {�} such that a2 > b holds. It causes M to
replace the symbol a2 in the middle of its window by the symbol b and to
restart, that is, the window is moved back to the left end of the tape, and
M reenters its initial state q0.

(3) An accept step has the form Accept ∈ δ(q, a1a2a3), where q ∈ Q, a1 ∈ Γ∪{�},
a2 ∈ Γ, and a3 ∈ Γ ∪ {�}. It causes M to halt and accept. In addition, we
allow an accept step of the form δ(q0,��) = {Accept}.

If δ(q, u) = ∅ for some state q and a word u, then M necessarily halts, when
it is in state q seeing u in its window, and we say that M rejects in this situation.
Further, the letters in Γ � Σ are called auxiliary symbols.

If |δ(q, u)| ≤ 1 for all q and u, then M is a deterministic ORWW-automaton
(det-ORWW-automaton), and if Q = {q0}, that is, if the initial state is the
only state of M , then we call M a stateless ORWW-automaton (stl-ORWW-
automaton) or a stateless deterministic ORWW-automaton (stl-det-ORWW-
automaton), as in this case the state is actually not needed. Accordingly, for
stateless ORWW-automata, we will drop the components that refer to states to
simplify the notation.

A configuration of an ORWW-automaton M is a word αqβ, where q ∈ Q is
the current state, |β| ≥ 3, and either α = λ (the empty word) and β ∈ {�} ·Γ+ ·
{�} or α ∈ {�} · Γ∗ and β ∈ Γ · Γ+ · {�}; here αβ is the current content of the
tape, and it is understood that the window contains the first three symbols of β.
In addition, we admit the configuration q0 � �. A restarting configuration has
the form q0 �w �; if w ∈ Σ∗, then q0 �w � is also called an initial configuration.
Further, we use Accept to denote the accepting configurations, which are those
configurations that M reaches by an accept step.

Any computation of an ORWW-automaton M consists of certain phases. A
phase, called a cycle, starts in a restarting configuration, the head is moved along
the tape by MVR steps until a rewrite/restart step is performed and thus, a new
restarting configuration is reached. If no further rewrite operation is performed,
any computation necessarily finishes in a halting configuration – such a phase is
called a tail. By
c

M we denote the execution of a complete cycle, and
c∗
M is the

reflexive transitive closure of this relation. It can be seen as the rewrite relation
that is realized by M on the set of restarting configurations.

An input w ∈ Σ∗ is accepted by M , if there is a computation of M which
starts with the initial configuration q0 � w � and ends with an accept step. The
language consisting of all words that are accepted by M is denoted by L(M).

As each cycle ends with a rewrite operation, which replaces a symbol a by a
symbol b that is strictly smaller than a with respect to the given ordering >, each

372 K. Kwee and F. Otto

computation of M on an input of length n consists of at most (|Γ|−1) ·n cycles.
Thus, M can be simulated by a nondeterministic single-tape Turing machine in
time O(n2). While nondeterministic ORWW-automata are quite expressive as
we will see below, the deterministic variants are fairly weak.

Theorem 1. [7,11]

(a) For each det-ORWW-automaton M = (Q,Σ,Γ,�,�, q0, δ, >), there exists
a stateless det-ORWW-automaton M ′ = (Σ,Γ′,�,�, δ′, >′) such that
L(M ′) = L(M) and |Γ′| = |Q| · |Γ|2 + 2 · |Γ|.

(b) For each DFA A = (Q,Σ, q0, F, ϕ), there is a stl-det-ORWW-automaton
M = (Σ,Γ,�,�, δ, >) such that L(M) = L(A) and |Γ| = |Q| + |Σ|.

(c) For each stl-det-ORWW-automaton M with an alphabet of size n, there exists
an NFA A of size 2O(n) such that L(A) = L(M) holds.

(d) For each n ≥ 1, there exists a regular language Bn ⊆ {0, 1,#, $}∗ such that
Bn is accepted by a stl-det-ORWW-automaton over an alphabet of size O(n),
but each NFA for accepting Bn has at least 2n states.

Let Σ = {a, b, $}, and let

L′
copy = {w$u | w, u ∈ {a, b}∗, |w|, |u| ≥ 2, u is a scattered subword of w }.

Lemma 2. The language L′
copy is not growing context-sensitive, but there exists

an ORWW-automaton M such that L(M) = L′
copy.

Proof. Let M be the ORWW-automaton on Σ = {a, b, $} and Γ = {a, a1, a2,
b, b1, b2, $} that is given by the following meta-instructions2 using the ordering
$ > a > b > a1 > b1 > a2 > b2, where c, d, e ∈ {a, b}:

(1) (λ,�cd → �c1d),
(2) (λ,�c1d → �c2d),
(3) (� · {a2, b2}∗, c2de → c2d1e),
(4) (� · {a2, b2}∗, c2d1e → c2d2e),
(5) (� · {a2, b2}∗, c2d$ → c2d1$),
(6) (� · {a2, b2}∗, c2d1$ → c2d2$),
(7) (� · {a2, b2}∗ · c1 · {a, b}+, $cd → $c1d),
(8) (� · {a2, b2}∗ · c2 · {a, b}+, $c1d → $c2d),
(9) (� · {a2, b2}∗ · c1 · {a, b}+ · $ · {a2, b2}∗, d2ce → d2c1e),

(10) (� · {a2, b2}∗ · c2 · {a, b}+ · $ · {a2, b2}∗, d2c1e → d2c2e),
(11) (� · {a2, b2}∗ · c1 · {a, b}+ · $ · {a2, b2}∗, d2c� → d2c1�),
(12) (� · {a2, b2}∗ · c2 · {a, b}+ · $ · {a2, b2}∗, d2c1� → d2c2�),
(13) (� · {a2, b2}+ · c1 · $ · {a2, b2}∗, d2c� → d2c1�),
(14) (� · {a2, b2}+ · c2 · $ · {a2, b2}∗, d2c1� → d2c2�),
(15) (� · {a2, b2}+ · $ · {a2, b2}+ · �,Accept).

2 A meta-instruction (E, u → v) is applicable to a restarting configuration q0 � w�,
if w can be factored as w = w1uw2 such that �w1 ∈ E, which would give the cycle
q0 � w� �c

M q0 � w1vw2�, and a meta-instruction (E,Accept) allows M to accept
from any restarting configuration q0 � w� such that �w� ∈ E (see, e.g., [10]).

On the Effects of Nondeterminism on Ordered Restarting Automata 373

Given an input of the form w$u, where w, u ∈ {a, b}∗, it is easily seen from
rules (15), (1), and (7) that |w|, |u| ≥ 2. By rules (1) to (6), the prefix w is
rewritten from left to right, where each symbol is first replaced by its copy with
index 1, and then this is replaced by the corresponding letter with index 2. Also
the suffix u is rewritten in this way by rules (7) to (14); however, here the first
letter from {a, b} from the left, say c, can only be rewritten to c1, if at that
moment the rightmost already rewritten letter in w happens to be the letter c1,
and analogously, c1 can further be rewritten to c2 only if at that moment the
rightmost already rewritten letter in w happens to be the letter c2. Thus, it
follows that u is a scattered subword of w, that is, L(M) = L′

copy.

In [2] it is shown that each growing context-sensitive language is accepted
by a one-way auxiliary pushdown automaton with a logarithmic space bound,
that is, the class GCSL of growing context-sensitive languages is contained in
L(OW-auxPDA(log)). On the other hand, Lautemann has shown in [8] that the
language Lcopy = {ww | w ∈ {a, b}∗ } is not accepted by any OW-auxPDA
with a logarithmic space bound, and his argument immediately extends to the
language L$

copy = {w$w | w ∈ {a, b}∗ }.
Now assume that the language L′

copy is growing context-sensitive. Then there
is a OW-auxPDA A that accepts this language with a logarithmic space bound.
By using an extra track of the auxiliary tape to implement a binary counter, we
can extend A into a OW-auxPDA B for the language L$

copy, which contradicts
the statement above. Hence, L′

copy is not growing context-sensitive. ��
Thus, we see that the ORWW-automata are quite expressive in contrast

to their deterministic variants. We conclude this section with a Cut-and-Paste
Lemma that will be of importance later.

Lemma 3 (Cut-and-Paste Lemma).
For each ORWW-automaton M , there exists a constant N(M) > 0 such that
each word w ∈ L(M), |w| ≥ N(M), has a factorization w = xyz satisfying all
of the following conditions:

(a) |yz| ≤ N(M), (b) |y| > 0, and (c) xz ∈ L(M).

Proof. Let M = (Q,Σ,Γ,�,�, q0, δ, >) be an ORWW-automaton, where Q =
{q0, q1, . . . , qk} and Γ = {s1, s2, . . . , sn}. Without loss of generality we may
assume that M accepts at the left end of its tape, that is, it accepts in state
q0 with its window containing the left sentinel � and the first two symbols of
the proper tape inscription. The transition relation δ of M can be represented
by a finite set of five-tuples of the form (q, a, b, c, r), where q ∈ Q, a ∈ Γ ∪ {�},
b ∈ Γ, c ∈ Γ∪{�}, and r ∈ Q∪Γ∪{Accept}. Here a five-tuple (q, a, b, c, q′) with
q′ ∈ Q represents the move-right operation (q′,MVR) ∈ δ(q, abc), and a five-tuple
(q, a, b, c, d) with d ∈ Γ represents the rewrite/restart operation d ∈ δ(q, abc), and
analogously, for (q, a, b, c,Accept). As |Q| = k + 1 and |Γ| = n, we see that this
set consists of K ≤ (k+1) ·n ·(n+1)2 ·(k+n+2) five-tuples. We introduce a new
alphabet Ω = {t1, t2, . . . , tK} the symbols of which are in 1-to-1 correspondence
to these five-tuples.

374 K. Kwee and F. Otto

We now consider a shortest accepting computation C of M on an input
wm ∈ Σm, where m is sufficiently large. To each number j = 1, 2, . . . , m − 1, we
associate a word xj ∈ Ω∗ such that xj describes the sequence of operations that
are performed within the computation C at position m + 1 − j. Thus, we obtain
a sequence of words XC = (x1, x2, . . . , xm−1) over Ω.

Claim. |x1| ≤ n − 1, and for all j = 2, . . . , m − 1, |xj−1| ≤ |xj | ≤ j · (n − 1).

Proof. We proceed by induction on j. For j = 1, xj is the sequence of operations
that are performed within C at the right-most position. Hence, x1 only consists
of rewrite/restart operations, and as |Γ| = n, it follows that |x1| ≤ (n − 1).

Now assume that |xj−1| ≤ (j − 1) · (n − 1) has been established for some
j ≥ 2. We consider the sequence of operations that is described by the word xj .
This word describes all the rewrite/restart operations and all the move-right
operations that are performed within C at position m + 1 − j. Each move-
right operation executed at this position leads to an operation that is performed
at its right neighbour, that is, at position m + 2 − j. Hence, the number of
these move-right operations is exactly |xj−1|, which implies that |xj−1| ≤ |xj | ≤
|xj−1| + (n − 1) ≤ j · (n − 1).

Finally, we extend each word xj into ajxjsj , where aj is the input letter at
position m + 1 − j and sj is the letter from Γ into which the input symbol aj is
being rewritten by the sequence of operations xj . Now we consider the sequence
(a1x1s1, a2x2s2, . . . , am−1xm−1sm−1) over Ω ∪ Γ.

To determine the constant N(M) we use Higman’s theorem [4] and the cor-
responding Length function H from [6] (see also [13]). Let H(2, n + 1,Ω ∪ Γ) be
the maximal positive integer N such that there exists a sequence σ1, σ2, . . . , σN

of words over Ω ∪ Γ such that |σj | ≤ j · (n + 1) for all j ≥ 1 and σj1 is not a
scattered subsequence of σj2 for any indices 1 ≤ j1 < j2 ≤ N . It is shown in [6]
that H is a total recursive function.

Now we choose N(M) = H(2, n + 1,Ω ∪ Γ) + 2. We see from Claim 1 that
|ajxjsj | = |xj |+2 ≤ j · (n− 1)+2 ≤ j · (n+1) for all j ≥ 1. If m ≥ N(M), then
we see from the definition of the function H that there are indices 1 ≤ j1 < j2 ≤
m−1 such that aj1xj1sj1 is a scattered subsequence of aj2xj2sj2 . Thus, aj1 = aj2 ,
sj1 = sj2 , and if xj1 = t1t2 . . . tr for some r ≥ 1 and t1, t2, . . . , tr ∈ Ω, then xj2

can be written as xj2 = y0t1y1t2y2 . . . yr−1tryr for some y0, y1, y2, . . . , yr ∈ Ω∗.
The subsequence of rewrite operations of xj1 rewrites the input letter aj1

into the letter sj1 , and the subsequence of rewrite operations of xj2 rewrites the
input letter aj2 = aj1 into the letter sj2 = sj1 . Hence, as the former is a scattered
subsequence of the latter, it follows that actually the same rewrite operations
occur in xj2 and in xj1 , and they occur in the same order. In particular, this
means that the factors y0, y1, y2, . . . , yr only consist of move-right operations.

Finally we take x to be the prefix of wm up to position m+1−j2, y to be the
factor of wm from positions m + 2 − j2 to m + 1 − j1, and z to be the remaining
suffix of wm. Then wm = xyz, |yz| ≤ N(M) and |y| = j2 − j1 > 0. Finally, let
w′ = xz. We will show that M has an accepting computation C ′ for input w′.
This computation is obtained from the computation C as follows.

On the Effects of Nondeterminism on Ordered Restarting Automata 375

Let (C1, C2, . . . , Cµ) be the sequence of cycles of the computation C. For
j = 1, 2, . . . , μ, let Cj be the cycle currently considered.

1. If the rewrite step in Cj is performed on the prefix of length m + 1 − j2 of
the current tape, then we append Cj to C ′. This includes in particular all
those cycles that include a rewrite operation at position m + 1 − j2, that is,
the rewrite operations encoded within the word xj2 .

2. If Cj includes a move-right step at position m + 1 − j2 that contributes a
letter to one of the factors y0, y1, . . . , yr of xj2 , then Cj is not appended to C ′.

3. Finally, if Cj includes a move-right operation at position m + 1 − j2 that
corresponds to a letter tl of the word xj2 for some 1 ≤ l ≤ r, then we
combine the initial part of this cycle, up to the point where the operation
tl is executed at position m + 1 − j2, with the final part of the cycle which
starts with this very operation at position m + 1 − j1. The resulting cycle C ′

j

is appended to C ′. As xj1 = t1t2 . . . tr is a subsequence of xj2 , C ′
j is indeed a

valid cycle of M .

The computation C ′ is completed by appending the accepting tail of C to it.
Then it is easily checked that C ′ is indeed an accepting computation of M on
input w′. This completes the proof of the Cut-and-Paste Lemma. ��

3 Closure Properties

Here we first show that L(ORWW) is an abstract family of languages.

Theorem 4. L(ORWW) is closed under union, intersection, product, Kleene
star, inverse morphisms, and non-erasing morphisms.

Proof. In [11] it is shown that L(stl-det-ORWW) is closed under union and inter-
section. The same proof idea can be used here.

Closure under product: Let M1 = (Q1,Σ,Γ1,�,�, q(1), δ1, >1) and M2 =
(Q2,Σ,Γ2,�,�, q(2), δ2, >2) be two ORWW-automata. Without loss of gene-
rality we may assume that both these automata accept at the right end of their
tapes. We present an ORWW-automaton M for the language L(M1) · L(M2). It
proceeds as follows:

1. Given a word w ∈ Σ∗ as input, M rewrites w from right to left, letter by
letter, such that each letter of a suffix v of w is marked by an index 2, and
then each letter of the corresponding prefix u is marked by an index 1. In
this way w ∈ Σ∗ is (nondeterministically) split into w = uv with the idea
that u ∈ L(M1) and v ∈ L(M2) are to be checked.

2. Then M simulates M1 on the prefix u. During this process, the leftmost
occurrence of a letter with index 2 is interpreted as the right delimiter �.

3. When the simulated computation of M1 on u accepts, then M realizes this
with either the right delimeter � or with the leftmost letter with index 2 in
its window. In the former case, it accepts iff λ ∈ L(M2), while in the latter
case it rewrites all the letters from the prefix u, from right to left, by the
special symbol �.

376 K. Kwee and F. Otto

4. When the first letter of w has been rewritten by the letter �, then M simulates
M2. During this process it simply ignores the prefix of �-symbols on the tape,
simulating M2 on the suffix v. Now M accepts iff this computation of M2

accepts.
5. If in step 1, all letters are marked with an index 2, that is, v = w and

u = λ are chosen, then M simply simulates M2 on v, provided λ ∈ L(M1);
otherwise, it simply halts without acceptance.

Closure under Kleene star: Here the idea is essentially the same as for the oper-
ation of product. Given a word w ∈ Σ∗ as input, M rewrites the word from right
to left, letter by letter, attaching indices 1 or 2 to these letters. In this way a
factorization w = u1u2 . . . um is chosen nondeterministically, and it remains to
check that u1, u2, . . . , um ∈ L(M1) hold. This can be done as above, using two
copies of the automaton M1.

Closure under inverse morphisms: Let M be an ORWW-automaton on Σ and
let f : Σ′∗ → Σ∗ be a morphism. We present an ORWW-automaton M ′ such
that L(M ′) = f−1(L(M)).

Basically M ′ proceeds as follows. Given an input w = a1a2 . . . an ∈ Σ′∗, it
rewrites each letter ai ∈ Σ′, from right to left, by its image f(ai) ∈ Σ∗, and then it
simulates the computation of M on input f(w). However, there are two problems
that we need to overcome. First, the length of a word |f(ai)| may be larger than
one. Accordingly, the tape alphabet of M ′ will contain block symbols of the form
[u] that represent a word from u ∈ Σ∗ of length up to μ = max{ |f(a)| | a ∈ Σ′ }.
Secondly, it may happen that f(a) = λ for some letters a ∈ Σ∗. In this situation,
a will be rewritten into a symbol [u]c that represents a copy of its right-hand
neighbour [u]. Of course, there can be several of these copy symbols in a row. In
the course of the computation they will always be updated from right to left. As
these copy symbols may separate the block symbols on the tape from each other,
M ′ must carry information on the last block symbol it has seen when moving to
the right.

Closure under non-erasing morphisms: Let M be an ORWW-automaton on Σ,
and let f : Σ∗ → Ω∗ be a non-erasing morphism. We present an ORWW-
automaton M ′ such that L(M ′) = f(L(M)), where M ′ proceeds as follows.

Given a word w ∈ Ω∗ as input, M ′ first guesses a factorization u1u2 . . . um

of w such that, for all i = 1, 2, . . . ,m, |ui| ≤ μ = max{ |f(a)| | a ∈ Σ }. This
is done by marking the letters of w, one by one, from right to left, by indices 1
and 2 (see the proof for the closure under Kleene star above). Each factor ui is a
candidate for an image of a letter under the morphism f . Then, processing the
factors ui from right to left, M ′ checks whether ui = f(a) for some letter a ∈ Σ.
In the negative, it halts immediately without accepting, while in the affirmative
it nondeterministically chooses a letter ai ∈ Σ satisfying f(ai) = ui and rewrites
ui into the word [ai]c . . . [ai]c[ai], that is, the last letter of ui is rewritten into a
block symbol that encodes the letter ai ∈ Σ, and all the other letters of ui (if
any) are rewritten into corresponding copy symbols. Thereafter, M ′ simulates a
computation of M on the input a1a2 . . . am using the technique from the above

On the Effects of Nondeterminism on Ordered Restarting Automata 377

proof of closure under inverse morphisms. It follows that M ′ accepts on input
w ∈ Ω∗ iff there exists a word u ∈ Σ∗ such that f(u) = w and u ∈ L(M). ��

In order to establish some non-closure properties we consider the example
language L≤ = { ambn | 1 ≤ m ≤ n }. Clearly, L≤ is a linear language [5].

Theorem 5. L≤ �∈ L(ORWW).

Proof. Assume to the contrary that there exists an ORWW-automaton M =
(Q,Σ,Γ,�,�, q0, δ, >) such that L(M) = L≤, and let N(M) be the correspond-
ing constant from the Cut-and-Paste Lemma (Lemma 3). We consider the word
w = aN(M)bN(M) ∈ L≤. Then w = xyz such that |yz| ≤ N(M), |y| > 0, and
w′ = xz ∈ L≤. From the two factorizations of w we see that y = bi for some
i > 0, which implies that w′ = aN(M)bN(M)−i �∈ L≤, a contradiction. Thus, it
follows that the language L≤ is not accepted by any ORWW-automaton. ��

From Lemma 2 and Theorem 5 we obtain the following result.

Corollary 6. The language class L(ORWW) is incomparable to the language
classes LIN, CFL, and GCSL with respect to inclusion.

Finally, Theorem 5 allows us to derive the following non-closure properties.

Theorem 7. The language class L(ORWW) is neither closed under the opera-
tion of reversal nor under complementation.

Proof. Using the technique from the proof of Lemma 2 it can be shown that L≥ =
{ bman | m ≥ n ≥ 1 } is accepted by some ORWW-automaton. As L≤ = LR

≥,
Theorem 5 implies that L(ORWW) is not closed under the operation of reversal.

Obviously, also the language L′
≥ = { ambn | m ≥ n ≥ 1 } is accepted by some

ORWW-automaton. Assume that its complement (L′
≥)c is accepted by some

ORWW-automaton. Then also the language (L′
≥)c∩(a+ ·b+) is acceped by some

ORWW-automaton, since all regular languages are accepted by these automata
and L(ORWW) is closed under intersection. However, (L′

≥)c∩(a+ ·b+) = { ambn |
1 ≤ m < n }, and in analogy to the proof of Theorem 5 it can be shown that
this language is not accepted by any ORWW-automaton, either. Thus, it follows
that L(ORWW) is not closed under complementation. ��

Although L(ORWW) is an abstract family of languages that is incomparable
to LIN, CFL, and GCSL, we have the following decidability result.

Theorem 8. The emptiness problem for ORWW-automata is decidable.

Proof. Let M = (Q,Σ,Γ,�,�, q0, δ, >) be an ORWW-automaton, and let N(M)
be the corresponding constant from the Cut-and-Paste Lemma (Lemma 3). As
shown in the proof of that lemma, N(M) = H(2, n + 1,Ω ∪ Γ) + 2, where H
is the Length function corresponding to Higman’s theorem, which is a recursive
function [6]. It now follows that L(M) �= ∅ iff L(M) contains a word of length
at most N(M). ��

Notice that the Length function H grows very fast, which means that the
algorithm for the emptiness problem described above is by no means practical.

378 K. Kwee and F. Otto

4 Stateless ORWW-Automata

In [7] it is shown that each stateless det-ORWW-automaton can be turned into
an unambiguous NFA that accepts the same language. This construction can
easily be carried over to stateless ORWW-automata.

Theorem 9. Let M = (Σ,Γ,�,�, δM , >) be a stl-ORWW-automaton. Then an
NFA A = (Q,Σ,ΔA, q0, F) can be constructed from M such that L(A) = L(M)
and |Q| ∈ 2O(|Γ|).

For all n ≥ 3, the language Un = {a2n} can be shown to be accepted by a
stl-det-ORWW-automaton with an alphabet of 3n − 1 letters, while each NFA
for Un needs at least 2n+1 states. Hence, the bound given in Theorem 9 is sharp
up to the O-notation. In addition, we have the following consequence.

Corollary 10. L(stl-ORWW) = REG.

Finally, we show that stateless ORWW-automata can describe some (regular)
languages much more succinctly than stateless det-ORWW-automata.

Let Σ = {a, b,#}, and let, for n ≥ 1, Cn denote the following language
over Σ:

Cn = {u1#u2# . . . #um | m ≥ 2, u1, u2, . . . , um ∈ {a, b}n,∃i < j : ui = uj }.

Lemma 11. The language Cn is accepted by a stl-ORWW-automaton Mn with
a tape alphabet of size 70n − 21.

Proof. In [12] a stl-det-ORWW-automaton An with 68n−22 letters is given that
accepts the language

Bn = { v1#v2# . . . #vm$u | m ≥ 1, v1, v2, . . . , vm, u ∈ {a, b}n,∃i : vi = u }.

The stl-ORWW-automaton Mn is obtained from An by adding the 2n+1 letters
a′
1, a

′
2, . . . , a

′
n, b′

1, b
′
2, . . . , b

′
n, and #′. It proceeds as follows.

It first marks the letters from right to left. In a syllable v = v(1)v(2) . . . v(n),
the last letter is replaced by v

(n)
n

′
, v(n−1) is replaced by v

(n−1)
n−1

′
, and so forth

until finally v(1) is replaced by v
(1)
1

′
, and then the preceding letter # is replaced

by #′. In this way it is ensured that all {a, b}-syllables have length n. This
continues until Mn nondeterministically chooses to replace a symbol # by the
symbol $. In this way the input of the form u1#u2# . . . #uk#uk+1# . . . #um is
transformed into a word of the form u1#u2# . . . #uk$ûk+1#′ . . . #′ûm, where
ûi (k + 1 ≤ i ≤ m) denotes the word that is obtained from ui ∈ {a, b}n by the
above marking process. Now on the prefix u1#u2# . . . #uk$ûk+1, Mn simulates
the stl-det-ORWW-automaton An, and it accepts if the computation of An being
simulated accepts. It is obvious now that L(Mn) = Cn. ��

Now we claim that every stl-det-ORWW-automaton for Cn needs at least
2O(n) letters, that is, the above presentation by a stl-ORWW-automaton is expo-
nentially more succinct than any presentation by a stl-det-ORWW-automaton.

On the Effects of Nondeterminism on Ordered Restarting Automata 379

Proposition 12. Let s : N → N be a function such that, for each n ≥ 1, there
exists a stl-det-ORWW-automaton Dn = (Σ,Γn,�,�, δn, >) such that L(Dn) =
Cn and |Γn| ≤ s(n). Then s(n) �∈ o(2n).

Proof. Let n ≥ 1, and let Dn = (Σ,Γn,�,�, δn, >) be a stl-det-ORWW-
automaton such that L(Dn) = Cn and |Γn| ≤ s(n). As Dn is determinis-
tic, we obtain a stl-det-ORWW-automaton En = (Σ,Γn,�,�, ηn, >) such that
L(En) = Cc

n = Σ∗
� Dn simply by interchanging accept steps with undefined

steps (see [11] Theorem 10). From En we can construct an NFA Fn of size 2r·s(n)

for Cc
n [7], where r ∈ N+ is a constant.

We now present a large fooling set for Cc
n. Let A be a subset of {a, b}n of

size 2n−1. Then also the set Ā = {a, b}n � A has size 2n−1. With these sets we
associate the following languages:

PA = {u1#u2# . . . #u2n−1 | A = {u1, u2, . . . , u2n−1} } and
QA = {#v1#v2# . . . #v2n−1 | Ā = {v1, v2, . . . , v2n−1} }.

Then uv ∈ Cc
n for all u ∈ PA and all v ∈ QA. On the other hand, if B is a subset

of {a, b}n of size 2n−1 such that A �= B, then uv ∈ Cn for all u ∈ PA and all
v ∈ QB , because there is a word x ∈ {a, b}n such that x ∈ A and x ∈ B̄. Hence,
by choosing a pair (uA, vA) ∈ PA×QA for all subsets A of {a, b}n of size 2n−1, we
obtain a fooling set for Fn of size

(
2n

2n−1

)
= (2n)!

(2n−1)!·(2n−1)! > 22n−1
. This implies

by [1] that the number 2r·s(n) of states of the NFA Fn satisfies the inequality
2r·s(n) ≥ 22n−1

, that is, r · s(n) ≥ 2n−1. Hence, s(n)
2n ≥ 1

2r , which clearly shows
that lim infn→∞

s(n)
2n ≥ 1

2r > 0, that is, s(n) �∈ o(2n). ��
From the proof above we can also derive the following complexity result.

Corollary 13. Let s : N → N be a function such that, for each n ≥ 1, there
exists a stl-ORWW-automaton En = (Σ,Γn,�,�, δn, >) such that L(En) = Cc

n

and |Γn| ≤ s(n). Then s(n) �∈ o(2n).

Proof. By Theorem 9 we can construct an NFA Fn of size 2r·s(n) for Cc
n from En.

Now the proof of Proposition 12 shows that s(n) �∈ o(2n). ��
As by Lemma 11 the language Cn is accepted by a stl-ORWW-automaton

Mn with a tape alphabet of size 70n − 21, Corollary 13 shows that the conver-
sion of a stl-ORWW-automaton of size n into a stl-ORWW-automaton for the
complement of L(M) can actually increase the alphabet size exponentially.

5 Concluding Remarks

We have seen that the class of languages accepted by nondeterministic ORWW-
automata forms an abstract class of languages that is incomparable to the linear,
the context-free, and the growing context-sensitive languages with respect to
inclusion. However, we don’t know yet whether this class is closed under arbitrary

380 K. Kwee and F. Otto

morphisms. In addition, we have shown that the emptiness problem is decidable
for these languages, but it remains to find an algorithm for this problem that is
more efficient. Also it is still open whether finiteness, inclusion, and equivalence
are decidable. Further, we have seen that stateless ORWW-automata provide
another characterization for the regular languages, which provides exponentially
more succinct representations than stateless deterministic ORWW-automata.
However, we are still missing an algorithm for turning a stl-ORWW-automaton
into an equivalent stl-det-ORWW-automaton without constructing an equivalent
NFA as an intermediate step.

References

1. Birget, J.-C.: Intersection and union of regular languages and state complexity.
Inform. Proc. Lett. 43, 185–190 (1992)

2. Buntrock, G., Otto, F.: Growing context-sensitive languages and Church-Rosser
languages. Inform. Comp. 141, 1–36 (1998)

3. Dahlhaus, E., Warmuth, M.: Membership for growing context-sensitive grammars
is polynomial. J. Comput. Syst. Sci. 33, 456–472 (1986)

4. Higman, G.: Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc.
2, 326–336 (1952)

5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

6. Karandikar, P., Schnoebelen, Ph.: Generalized Post embedding problems. Theory
Comput. Syst. 56, 697–716 (2015)

7. Kwee, K., Otto, F.: On some decision problems for stateless deterministic ordered
restarting automata. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol.
9118, pp. 165–176. Springer, Heidelberg (2015)

8. Lautemann, C.: One pushdown and a small tape. In: Wagner, K.W. (ed.) Dirk
Siefkes zum 50. Geburtstag, pp. 42–47. Technische Universität Berlin and Univer-
sität Augsburg (1988)

9. Mráz, F., Otto, F.: Ordered restarting automata for picture languages. In: Geffert,
V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS,
vol. 8327, pp. 431–442. Springer, Heidelberg (2014)

10. Otto, F.: Restarting automata. In: Ésik, Z., Mart́ın-Vide, C., Mitrana, V. (eds.)
Recent Advances in Formal Languages and Applications. SCI, vol. 25, pp. 269–303.
Springer, Heidelberg (2006)

11. Otto, F.: On the descriptional complexity of deterministic ordered restarting
automata. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS,
vol. 8614, pp. 318–329. Springer, Heidelberg (2014)

12. Otto, F., Wendlandt, M., Kwee, K.: Reversible ordered restarting automata. In:
Krevine, J., Stefani, J.-B. (eds.) RC 2015. LNCS, vol. 9138, pp. 60–75. Springer,
Heidelberg (2015)

13. Schmitz, S., Schnoebelen, Ph.: Multiply-recursive upper bounds with Higman’s
lemma. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 441–452. Springer, Heidelberg (2011)

Quantum Walks on Two-Dimensional Grids
with Multiple Marked Locations

Nikolajs Nahimovs(B) and Alexander Rivosh

Faculty of Computing, University of Latvia, Raina bulv. 19, Riga 1586, Latvia
nikolajs.nahimovs@lu.lv

Abstract. The running time of a quantum walk search algorithm
depends on both the structure of the search space (graph) and the config-
uration of marked locations. While the first dependence has been studied
in a number of papers, the second dependence remains mostly unstudied.
We study search by quantum walks on the two-dimensional grid using
the algorithm of Ambainis, Kempe and Rivosh [AKR05]. The original
paper analyses one and two marked locations only. We move beyond two
marked locations and study the behaviour of the algorithm for an arbi-
trary configuration of marked locations.

In this paper, we prove two results showing the importance of how
the marked locations are arranged. First, we present two placements of k
marked locations for which the number of steps of the algorithm differs
by a factor of Ω(

√
k). Second, we present two configurations of k and√

k marked locations having the same number of steps and probability
to find a marked location.

1 Introduction

Quantum walks are quantum counterparts of classical random walks [11]. They
have been useful to design quantum algorithms for a variety of problems [2,3,5,
10]. In many of those applications, quantum walks are used as a tool for search.

To solve a search problem using quantum walks, we introduce the notion of
marked locations. Marked locations correspond to elements of the search space
that we want to find. We then perform a quantum walk on the search space
with one transition rule at unmarked locations and another transition rule at
marked locations. If this process is set up properly, it leads to a quantum state
in which marked locations have higher probability than the unmarked ones. This
state can then be measured, finding a marked location with a sufficiently high
probability. This method of search using quantum walks was first introduced in
[12] and has been used many times since then.

The running time of a quantum walk search algorithm depends on both the
structure of the search space and the configuration — the number and the place-
ment — of marked locations. There have been a number of papers studying the

NN is supported by EU FP7 project QALGO, AR is supported by ERC project
MQC.

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 381–391, 2016.
DOI: 10.1007/978-3-662-49192-8 31

382 N. Nahimovs and A. Rivosh

dependence of the running time on the structure of the graph. Krovi [7] has stud-
ied symmetries of a graph and explained fast hitting times using the concept of
symmetry. Janmark et al. [8] show that global symmetry of the graph is not nec-
essary for fast quantum search. They demonstrate graphs with automorphism
group consisting of an identity mapping only that still achieve the Θ(

√
N) quan-

tum speed-up. Meyer and Wong [9] have studied connectivity of the graph and
have shown that it is also a poor indicator of fast quantum search: there exists
graphs with low connectivity but fast search, and graphs with high connectivity
but slow search. So, despite of significant progress in the field the overall picture
is still far from being complete.

On the other hand, the dependence on the number and the placement of
marked locations remains mostly unstudied. Up to our best knowledge, the only
such paper is [14], which studies the continuous-time quantum walk on the “sim-
plex of complete graphs” and shows that rearranging the marked elements can
cause the parameters of the walk and running time to vary significantly. Most
of papers on quantum walk algorithms [3,4] prove their results for one or two
marked locations only.

We study search by quantum walks on a finite two-dimensional grid using
the algorithm of Ambainis, Kempe and Rivosh (AKR). The original [3] paper
analyses the behaviour of the algorithm for one or two marked locations. We
move beyond two marked locations and study the behaviour of the algorithm
for an arbitrary configuration of marked locations. We show that the placement
of marked locations has at least the same effect on the number of steps of the
algorithm as the number of marked locations.

First, we present two placements of k marked locations for which the number
of steps of the algorithm differs by Ω(

√
k) factor. Here the first configuration is a

block of
√

k × √
k marked locations and the second configuration is k uniformly

distributed marked locations (placed at
√

N/k distance from each other). We
prove that the number of steps of the algorithm for the grouped placement is
Ω̃(

√
N − √

k), while for the distributed placement is Õ(
√

N/k).
Second, we present two configurations of k and

√
k marked locations, respec-

tively, having the same number of steps and probability to find a marked location.
Here, the first configuration is a block of

√
k×√

k marked locations and the sec-
ond configuration is the perimeter of a

√
k ×√

k block (all internal locations are
not marked).

The dependence of the number of steps on the placement of marked locations
makes quantum walks different from Grover’s search algorithm, where the num-
ber of steps have exact dependence on the number of marked locations. In the
case of quantum walks on non-complete graphs, even if the number of marked
locations is known, the number of steps can vary depending on a placement
of marked locations. On the other hand, for all configurations studied in this
paper, if the number of marked locations is in [1, k] then the number of steps
of the algorithm is still in [Õ(

√
N/k), Õ(

√
N)] — the same as it is for Grover’s

algorithm.

Quantum Walks on Two-Dimensional Grids with Multiple Marked Locations 383

2 Quantum Walks in Two Dimensions

Suppose we have N items arranged on a two dimensional grid of size
√

N ×√
N .

We denote n =
√

N . The locations on the grid are labelled by their x and y
coordinate as (x, y) for x, y ∈ {0, . . . , n−1}. We assume that the grid has periodic
boundary conditions. For example, going right from a location (n − 1, y) on the
right edge of the grid leads to the location (0, y) on the left edge of the grid.

To introduce a quantum version of a random walk, we define a location
register with basis states |i, j〉 for i, j ∈ {0, . . . , n − 1}. Additionally, to allow
non-trivial walks, we define a direction or coin register with four basis states,
one for each direction: | ⇑〉, | ⇓〉, | ⇐〉 and | ⇒〉. Thus, the basis states of quan-
tum walk are |i, j, d〉 for i, j ∈ {0, . . . , n − 1} and d ∈ {⇑,⇓,⇐,⇒}. The state of
the quantum walk is given by:

|ψ(t)〉 =
∑

i,j

(αi,j,⇑|i, j,⇑〉 + αi,j,⇓|i, j,⇓〉 + αi,j,⇐|i, j,⇐〉 + αi,j,⇒|i, j,⇒〉).

A step of the quantum walk is performed by first applying I ⊗C, where C is
unitary transform on the coin register. The most often used transformation on
the coin register is the Grover’s diffusion transformation D:

D =
1
2

⎛

⎜
⎜
⎝

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎞

⎟
⎟
⎠ .

Then, we apply the shift transformation S:

|i, j,⇑〉 → |i, j − 1,⇓〉
|i, j,⇓〉 → |i, j + 1,⇑〉
|i, j,⇐〉 → |i − 1, j,⇒〉
|i, j,⇒〉 → |i + 1, j,⇐〉

Notice that after moving to an adjacent location we change the value of the direc-
tion register to the opposite. This is necessary for the quantum walk algorithm
of [3] to work.

We start quantum walk in the state

|ψ0〉 =
1√
4N

∑

i,j

(|i, j,⇑〉 + |i, j,⇓〉 + |i, j,⇐〉 + |i, j,⇒〉).

It can be easily verified that the state of the walk stays unchanged, regard-
less of the number of steps. To use the quantum walk as a tool for search,
we“mark” some locations. For unmarked locations, we apply the same transfor-
mations as above. For marked locations, we apply −I instead of D as the coin
flip transformation. The shift transformation remains the same in both marked
and unmarked locations.

384 N. Nahimovs and A. Rivosh

Another way to look at a step of the algorithm is that we first perform a
query Q transformation, which flips signs of amplitudes of marked locations, then
conditionally perform the coin transformation (I or D depending on whether the
location is marked or not) and then perform the shift transformation S.

If there are marked locations, the state of the algorithm starts to deviate from
|ψ(0)〉. It has been shown [3] that after O(

√
N log N) steps the inner product

〈ψ(t)|ψ(0)〉 becomes close to 0.
In case of one or two marked locations AKR algorithm finds a marked location

with O(1/ log N) probability. The probability is small, thus, the algorithm uses
amplitude amplification to get Θ(1) probability. The amplitude amplification
adds an additional O(

√
log N) factor to the number of steps. Thus, the total

running time of the algorithm is O(
√

N log N).

3 Results

3.1 Grouped and Distributed Placements of Marked Locations

In this subsection we show that the number of steps of the algorithm for two
placements of k marked locations can differ by Ω(

√
k) factor.

Consider two configurations (placements) of k marked locations. The first
configuration is a block of

√
k × √

k marked locations. The second configuration
is k uniformly distributed marked locations (placed at

√
N/k distance from each

other) (see Fig. 1). We will refer them as grouped and distributed placements
respectively.

Fig. 1. Grouped and distributed placements of k marked locations

Lemma 1 (Grouped placement). Let k be a full square and let k marked
locations be placed as a

√
k×√

k square on
√

N ×√
N grid. Then AKR algorithm

needs Ω(
√

N − √
k) steps.

Quantum Walks on Two-Dimensional Grids with Multiple Marked Locations 385

Proof. This follows from the fact that the average distance from a location on
the grid to a marked location is Ω(

√
N − √

k). Thus, the algorithm needs at
least this number of steps to achieve a constant probability of finding a marked
location. �
Lemma 2 (Distributed placement). Let k be a full square and let k marked
locations be uniformly distributed on

√
N × √

N grid (placed at
√

N/k distance
from each other). Then AKR algorithm needs O(

√
N/k · log (N/k)) steps and

finds a marked location with O(1/ log (N/k)) probability.

Proof. By symmetry each of
√

N/k×√
N/k regions of the grid is experiencing

the same evolution (here by region we mean a part of the grid with a marked
location in its top-left corner).

More formally, consider basis states corresponding to locations with
√

N/k
distance from each other pointing to the same direction. Initially amplitudes of
all such pairs of basis states are equal. For each pair of basis states the step of
the algorithm applies the same transformations to the same amplitudes. Thus,
after a step of the algorithm amplitudes of a pair of basis states are also equal.
Therefore, the evolution of each of the

√
N/k × √

N/k regions of the grid is
essentially the same.

We have k copies of quantum walk on
√

N/k × √
N/k grid with a single

marked location. Therefore, after O(
√

N/k · log (N/k)) steps — the number of
steps for the

√
N/k×√

N/k grid with a single marked location — overlap of the
current and the initial states of the algorithm becomes close to 0. If we measure
the state at this point the probability to get one of basis states corresponding
to a marked location is O(1/ log (N/k)). �

We have shown that the number of steps for the grouped and the distributed
placements differ by an Ω(

√
k) factor. The grouped and the distributed place-

ments are two extreme cases, therefore, we believe that O(
√

k) is the maximal
possible gap for any two placements of k marked locations. We conjecture

Conjecture 1. Let P1 and P2 be two placements of k marked locations on the√
N × √

N grid. Then the number of steps of AKR algorithm for P1 and P2 can
differ by at most a O(

√
k) factor.

3.2 Evolution of Amplitudes of Near-By Marked Locations

In the previous subsection we showed that AKR algorithm is inefficient for
grouped marked locations. The reason for this is the coin transformation, which
does not rearrange amplitudes within a marked location. Therefore, marked
locations inside the group have almost no effect on the number of steps and the
probability to find a marked location of the algorithm.

In this subsection, we explore grouped marked locations in more details.
We analyse the evolution of amplitudes of two near-by marked locations. We
show, that a step of AKR algorithm does not change absolute values of adjoint
amplitudes of near-by marked locations.

386 N. Nahimovs and A. Rivosh

Theorem 1. Let |ψ(t)〉 be a state of AKR algorithm after t steps and let loca-
tions (i, j) and (i, j + 1) be marked. Then for any t we have

〈ψ(t)|i, j,⇒〉 = 〈ψ(t)|i, j + 1,⇐〉 = (−1)t/
√

4N.

Fig. 2. Amplitudes of near-by marked locations.

Proof. Consider the effect of the step of the algorithm on amplitudes of |i, j,⇒〉
and |i, j + 1,⇐〉 (see Fig. 2). The query changes signs of both amplitudes (both
locations are marked); the coin flip does nothing (both locations are marked);
and the shift swaps the amplitudes. More formally,

Q|i, j,⇒〉 = −|i, j,⇒〉 Q|i, j + 1,⇐〉 = −|i, j + 1,⇐〉
C|i, j,⇒〉 = |i, j,⇒〉 C|i, j + 1,⇐〉 = |i, j + 1,⇐〉
S|i, j,⇒〉 = |i, j + 1,⇐〉 S|i, j + 1,⇐〉 = |i, j,⇒〉.

Therefore, the step of the algorithm changes signs of the amplitudes and swaps
their values.

Initially all amplitudes are equal to 1/
√

4N . Thus, the values of the ampli-
tudes will be 1/

√
4N after an even number steps and −1/

√
4N after an odd

number steps. �

3.3 Filled and Perimeter Configurations of Marked Locations

In this subsection we present two configurations of k and
√

k marked locations,
respectively, having the same number of steps and probability to find a marked
location.

Consider two configurations of marked locations: k marked locations placed
as a

√
k×√

k square and 4(
√

k−1) marked locations placed as the perimeter of a√
k×√

k square (Fig. 3). We will refer them as filled and perimeter configuration
respectively.

Let |ψ(t)〉 be the state of AKR algorithm after t steps for the filled configu-
ration and |φ(t)〉 be the state of AKR algorithm after t steps for the perimeter
configuration. For further analysis, we split |ψ(t)〉 into three parts (Fig. 4):

– |ψout(t)〉 consisting of basis states of the outer part of the square as well as
basis states of the perimeter pointing to the outer part

Quantum Walks on Two-Dimensional Grids with Multiple Marked Locations 387

Fig. 3. Filled and perimeter configurations of marked locations

– |ψin(t)〉 consisting of basis states of the inner part of the square as well as
basis states of the square pointing to the inner part

– |ψper(t)〉 consisting of basis states of the perimeter pointing to other locations
on the perimeter.

Similarly we define |φout(t)〉, |φin(t)〉 and |φper(t)〉.
Lemma 3. ∀t ≥ 0 : |ψper(t)〉 = |φper(t)〉.
Proof. According to Theorem 1, all amplitudes of basis states of |ψper(t)〉 and
|φper(t)〉 are equal to (−1)t/

√
4N . �

Fig. 4. Group of 3 × 3 marked locations (in the green dashed box). Basis states of
|ψout(t)〉 are coloured with light gray, basis states of |ψper(t)〉 are coloured with dark
gray, basis states of |ψin(t)〉 are coloured with black (Color figure online).

388 N. Nahimovs and A. Rivosh

Lemma 4. ∀t ≥ 0 : |ψout(t)〉 = |φout(t)〉.
Proof. Consider the effect of a step of the algorithm on |ψ(t)〉. First, consider
the coin transformation. For the outer (the inner) part of the square it acts on the
basis states belonging |ψout(t)〉 (|ψin(t)〉) only. For the perimeter of the square
it acts on all three parts. However, as the locations on the perimeter are marked
and coin transformation for marked locations is equal to −I, amplitudes of basis
states belonging to different parts do not interact with each other. Next, consider
shift transformation. For each part of the state, the shift swaps amplitudes within
the part. Therefore, each step of the algorithm acts on each part of the state
independently of other parts. In other words, evolution of each part of |ψ(t)〉 is
independent on evolutions of other parts. The above argument holds for |φ(t)〉
without any changes.

Initially |ψout(0)〉 = |φout(0)〉. There are no marked locations in the outer
part of the square. Thus, the transformation applied to |ψout(t)〉 and |φout(t)〉
are the same. Therefore, |ψout(t)〉 = |φout(t)〉 will hold for all t. �

The next theorem estimates the overlap between the state of the algorithm
after t steps for the filled and the perimeter configurations.

Theorem 2. ∀t ≥ 0 : 〈ψ(t)|φ(t)〉 ≥ 1 − Θ(k/N).

Proof.

〈ψ(t)|φ(t)〉 = 〈ψout(t)|φout(t)〉 + 〈ψin(t)|φin(t)〉 + 〈ψper(t)|φper(t)〉.

It follows from the previously proved lemmas that the only parts of |ψ(t)〉 and
|φ(t)〉 which may differ are |ψin(t)〉 and |φin(t)〉. Thus,

〈ψ(t)|φ(t)〉 = 1 − 〈ψin(t)|ψin(t)〉 + 〈ψin(t)|φin(t)〉.

Amplitudes of basis states of |ψin(t)〉 are equal to (−1)t/
√

4N . There are (
√

k −
2)2 inner locations with four amplitudes each and 4(

√
k − 2) amplitudes of the

perimeter pointing to inner locations. The total number of basis states in |ψin〉
is

c(k) = 4(
√

k − 2)2 + 4(
√

k − 2) = 4(k − 3
√

k + 2)

and, thus, we have

〈ψ(t)|φ(t)〉 = 1 − c(k)
4N

+ 〈ψin(t)|φin(t)〉.

〈ψin(t)|φin(t)〉 can take values from [− c(k)
4N , c(k)

4N]. Therefore,

〈ψ(t)|φ(t)〉 ≥ 1 − 2 · c(k)
4N

= 1 − Θ

(
k

N

)
.

�

Quantum Walks on Two-Dimensional Grids with Multiple Marked Locations 389

Now we give a corollary of the above theorem which bounds the maximal
difference in the number of steps of the algorithm for the configurations. Note
that we are interested in the case k = o(N). Otherwise, if k is of the same
order as N , then the trivial “measure on the first step” approach finds a marked
location with constant probability.

Corollary 1. Let k = o(N). Then the number of steps of AKR algorithm for
the filled and the perimeter placements can differ by at most one.

Proof. It follows from [13] that the number of steps of AKR algorithm can not
increase if we mark a previously unmarked location. Therefore, the total number
of steps for k marked locations is at most O(

√
N log N) — the number of steps

of the algorithm for a single marked location. The angle between the state for
the filled and the perimeter configurations is less than the angle to which the
state is rotated by the step of the algorithm. Thus, the number of steps of the
algorithm for the configurations can differ by at most one. �

The next theorem estimates the maximal difference in the probability to find
a marked location after t steps for the filled and the perimeter configurations.

Theorem 3. ∀t ≥ 0: the probability of finding a marked location for |ψ(t)〉 and
|φ(t)〉 differs by at most Θ(k/N).

Proof. It follows from the previously proved lemmas that the only parts of
|ψ(t)〉 and |φ(t)〉 which may differ are |ψin(t)〉 and |φin(t)〉. For the filled con-
figuration all amplitudes of |ψin(t)〉 are equal to (−1)t/

√
4N . For the perimeter

configuration inner part is not marked. Additionally, amplitudes of the perime-
ter pointing to the inner part might become zero. Thus, the maximal possible
difference in probability to measure a marked location is 1

4N · c(k) = Θ
(

k
N

)
. �

A typical probability of finding a marked location for AKR algorithm is
Ω(1/ log N). Thus, the probability of finding a marked location for the configu-
rations differs by an insignificant factor.

We have shown that for the filled and the perimeter configurations of marked
locations AKR algorithm has the same number of steps and probability to find
a marked location. However, the filled configuration has a quadratically larger
number of marked locations than the perimeter configuration.

4 Conclusions and Discussion

In this paper we analysed AKR quantum walk search algorithm for the two-
dimensional grid with multiple marked locations. First, we showed that the
placement of k marked locations can change the number of steps of the algo-
rithm by an Ω(

√
k) factor. Namely, we showed that the number of steps of the

algorithm for the grouped placement (k marked locations are placed as
√

k×√
k

group) is Ω̃(
√

N − √
k), while for the distributed placement (marked locations

are placed at
√

N/k distance from each other) it is Õ(
√

N/k).

390 N. Nahimovs and A. Rivosh

The proved result shows that the number of steps for k marked locations
can be in range [Õ(

√
N/k), Ω̃(

√
N)]. We conjecture that this is the maximal

possible gap and the number of steps of the AKR algorithm for two placements
of k marked locations can differ by at most O(

√
k).

It would be interesting to extend the analysis to three and more-dimensional
grids. While our argument for the distributed placement still holds for higher
dimensions, the argument for the grouped placement is bound to the two-
dimensional case.

Second, we presented two configurations of k and
√

k marked locations,
respectively, having the same number of steps and probability to find a marked
location. Here, the first configuration is a block of

√
k×√

k marked locations and
the second configuration is the perimeter of a

√
k × √

k block (all internal loca-
tions are not marked). We showed that marked locations inside the block have
almost no effect on the number of steps of the algorithm or the probability to
find a marked location. More formally, we showed that internal locations of the
block do not contribute to the growth of probability to find a marked location
as well as do not affect the number of steps of the algorithm. Thus, the proved
result holds not just for square blocks, but for any block of marked locations.
Our analysis includes a number of supporting theorems and observations that
might be of independent interest.

References

1. Ambainis, A., Bačkurs, A., Nahimovs, N., Ozols, R., Rivosh, A.: Search by quantum
walks on two-dimensional grid without amplitude amplification. In: Kawano, Y.
(ed.) TQC 2012. LNCS, vol. 7582, pp. 87–97. Springer, Heidelberg (2012)

2. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput.
37, 210–239 (2007)

3. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Pro-
ceedings of SODA 2005, pp. 1099–1108 (2005)

4. Ambainis, A., Portugal, R., Nahimov, N.: Spatial search on grids with minimum
memory (2014). arXiv:1312.0172

5. Buhrman, H., Spalek, R.: Quantum verification of matrix products. In: Proceedings
SODA 2006, pp. 880–889 (2006)

6. Krovi, H., Magniez, F., Ozols, M., Roland, J.: Finding is as easy as detecting for
quantum walks. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide,
F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 540–551. Springer,
Heidelberg (2010)

7. Krov, H.: Symmetry in quantum walks (Ph.D thesis) (2007). arXiv:0711.1694
8. Janmark, J., Meyer, D.A., Wong, T.G.: Global symmetry is unnecessary for fast

quantum search. Phys. Rev. Lett. 112, 210502 (2014). arXiv:1403.2228
9. Meyer, D.A., Wong, T.G.: Connectivity is a poor indicator of fast quantum search.

Phys. Rev. Lett. 114, 110503 (2015). arXiv:1409.5876
10. Magniez, F., Santha, M., Szegedy, M.: An O(n1.3) quantum algorithm for the

triangle problem. In: Proceedings of SODA 2005, pp. 413–424 (2005)
11. Portugal, R.: Quantum Walks and Search Algorithms. Springer, New York (2013)
12. Shenvi, N., Kempe, J., Whaley, K.B.: A quantum random walk search algorithm.

Phys. Rev. A 67(5), 052307 (2003)

http://arxiv.org/abs/1312.0172
http://arxiv.org/abs/0711.1694
http://arxiv.org/abs/1403.2228
http://arxiv.org/abs/1409.5876

Quantum Walks on Two-Dimensional Grids with Multiple Marked Locations 391

13. Szegedy, M: Quantum speed-up of markov chain based algorithms. In: Proceedings
of FOCS 2004, pp. 32–41 (2004)

14. Wong, T.G.: On the Breakdown of Quantum Search with Spatially Distributed
Marked Vertices vol. 1501, p. 07071 (2015)

How to Smooth Entropy?

Maciej Skorski(B)

Cryptology and Data Security Group, University of Warsaw, Warsaw, Poland
maciej.skorski@mimuw.edu.pl

Abstract. Smooth entropy of X is defined as possibly biggest entropy
of a distribution Y close to X. It has found many applications including
privacy amplification, information reconciliation, quantum information
theory and even constructing random number generators. However the
basic question about the optimal shape for the distribution Y has not
been answered yet. In this paper we solve this problem for Renyi entropies
in non-quantum settings, giving a formal treatment to an approach sug-
gested at TCC’05 and ASIACRYPT’05. The main difference is that we
use a threshold cut instead of a quantile cut to rearrange probability
masses of X. As an example of application, we derive tight lower bounds
on the number of bits extractable from Shannon memoryless sources.

Keywords: Smooth Renyi entropy · Randomness extractors · Asymp-
totic equipartition property

1 Introduction

1.1 Entropy Smoothing

Security Based on Statistical Closeness. In most of cryptographic applications,
probability distributions which are close enough in the variational (statistical)
distance are considered indistinguishable. More informally, they have similar
cryptographic “quality”, when used as randomness sources (randomness extract-
ing) [15] or secure keys (in the context of key derivation [1,6]).

Entropy Notions do not See Statistical Closeness. Unfortunately, standard
entropy notions (including important min-entropy and collision entropy which
are widely used as randomness measures in cryptography), are not robust with
respect to small probability perturbations. Consider the AES cipher with a 256-
bit key which is ε = 2−80-close to uniform. While such a key is considered secure
nowadays, it may happen that it has no more than 81 bits of min-entropy (more
precisely, fix x ∈ {0, 1}256 and consider the key X which is x0 with probability
2−256 + 2−80 and uniform for x ∈ {0, 1}256 \ {x0}). This is a mismatch with
respect to our intuitive understanding of min-entropy as a measure of how many
almost random bits can be extracted.

M. Skorski—This work was partly supported by the WELCOME/2010-4/2 grant
founded within the framework of the EU Innovative Economy Operational Pro-
gramme.

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 392–403, 2016.
DOI: 10.1007/978-3-662-49192-8 32

How to Smooth Entropy? 393

Smooth Entropy takes Probability Perturbations into Account. To fix the issue
described above, the concept of smooth min-entropy has been proposed [4,15].
Smooth entropy is defined as the maximal possible entropy within a certain
distance to a given distribution. More precisely, for a given entropy notion H(·)
(which is usually Renyi entropy, see Sect. 2 for its formal definition) we define
the ε-smooth entropy of X as the value of the following optimization program

maximize H(Y)
s.t. SD(X;Y) � ε

(1)

where SD() stands for statistical (variational) distance (see Sect. 2) for a for-
mal definition). This definition is now well-suited for cryptographic applications,
because does not depend anymore on negligible variations of the probability dis-
tribution. In particular, setting ε = 2−80 for our AES example we obtain the
“correct” result of 256 bits of (smooth) entropy.

Importance of Smooth Entropy. Smooth Renyi entropy, formally introduced by
Renner and Wolf in [15], found many applications including privacy amplifica-
tion [13,15,19], information reconciliation [15] and quantum information the-
ory [17,18]. The technique of perturbing a distribution to get more-entropy was
actually known before. For example, entropy smoothing is implicitly used to
prove the Asymptotic Equipartition Property [10] or more concretely in the con-
struction of a pseudorandom generator from one-way functions [7–9]. However
the simple question

Question 1. How does the shape of optimal Y depend on X?

has not been fully understood so far. In this paper we answer Question 1 by
explicitly characterizing the shape of Y depending on X, and give some appli-
cations of the derived characterization.

1.2 Related Works and Our Contribution

Related Works. The problem of finding the optimal shape for Y has been
addressed in [13,15]. The authors argued intuitively that for min-entropy (which
is a special case of Renyi entropy, particularly useful in randomness extraction)
the optimal solution cuts down the biggest probabilities of X.

Our Contribution. We show that this characterization is not true, and the prob-
lem is more subtle: the optimal solution uses a threshold not a quantile cut (see
Fig. 1).

The precise answer to Question 1 is given in Theorem 1. We provide an intu-
itive explanation, as a three-step algorithm, in Fig. 2.

Theorem 1 (Optimal Renyi entropy smoothing). Let α > 1 be fixed, X
be an arbitrary distribution over a finite set and ε ∈ (0, 1). Let t ∈ (0, 1) be such
that

∑

x

max (PX(x) − t, 0) = ε, (2)

394 M. Skorski

t

ε

1 − ε

ε

y = PX(x)

(a) Quantile Cut - a folklore so-
lution (TCC’05,ASIACRYPT’05), far
from optimal.

t

ε

1 − ε

ε

y = PX(x)

(b) Threshold Cut - our idea, nearly
optimal.

Fig. 1. Our result - the optimal shape for entropy smoothing

and Y be distributed according to

PY (x) =
min (t,PX(x))

1 − ε
. (3)

Then Y is nearly optimal, that is we have

SD(X;Y) � ε (4)

and

Hα(Y) � Hε
α(X) � Hα(Y) +

α

α − 1
log

(
1

1 − ε

)
(5)

Corollary 1 (Tightness of Theorem 1). Note that for fixed α > 1 we have
α

α−1 log
(

1
1−ε

)
= O(ε). Thus, our solution differs from the ideal one by only

a negligible additive constant in the entropy amount, which is good enough for
almost all applications.

1.3 Tight No-Go Results for Extracting from Stateless Shannon
Sources

A stateless source (called also memoryless) is a source which produces conse-
cutive samples independently. While this is a restriction, it is often assumed by
practitioners working on random number generators (cf. [2,3,5,11]) and argued
to be reasonable under some circumstances (so called restart mode which enforces
fresh samples, see [3,5]). An important result is obtained from a more general fact
called Asymptotic Equipartition Property (AEP). Namely, for a stateless source
the min-entropy rate (min-entropy per sample) is close to its Shannon entropy
per bit. The convergence holds in probability, for large number of samples.

How to Smooth Entropy? 395

t
ε

1 − ε

ε

y = PX(x)

(a) Find the treshold

t
ε

1 − ε

ε

y = PX(x)

(b) Cut the mass above

t

ε

1 − ε

ε

y = PX(x)

(c) Rescale

Fig. 2. Our result - details of optimal entropy smoothing

A variant of the AEP: The min entropy per bit in a sequence X1, . . . , Xn

of i.id. samples from X converges, when n → ∞, to the Shannon entropy
of X. More precisely

− logPX1,...,Xn
(·)

n

in probability−→ H(X), (6)

where the probability is taken over X1, . . . , Xn.

Thus, the AEP is a bridge connecting the heuristic use of Shannon entropy
as a measure of extractable randomness (practice) and the provable security
(randomness extractors theory). The best known quantitative form of Eq. (6)
appears in [9].

Lemma 1 (Asymptotic Equipartition Property [9]). Let X1, . . . , Xn be
i.i.d. samples from a distribution X of Shannon entropy k. Then the sequence
(X1, . . . , Xn) is ε-close to a distribution of min entropy kn−O

(√
kn log(1/ε)

)
.

Corollary 2. In particular, one can extract kn−O
(√

kn log(1/ε)
)

−2 log(1/ε)
bits which are ε-close to uniform (e.g. using independent hash functions [8] as
an extractor).

Based on Theorem 1 we reprove the following result which matches the bound in
[9]. Our result can be understood as the lower bound on the convergence speed
in the Asymptotic Equipartition Property given in Lemma1.

Theorem 2 (An upper bound on the extraction rate [16]). Let X1,X2, . . .
be of i.i.d. random variables, each of Shannon entropy k. Then from the sequence
(X1,X2, . . . , Xn) no extractor can get more than

N = kn − Θ(
√

kn log(1/ε)) (7)

bits which are ε-close (in the variation distance) to uniform (the constant under
Θ(·) depends on the source).

396 M. Skorski

Remark 1 (The bound is tight for most settings). Since from N bits of min-
entropy we can extract at least N − 2 log(1/ε) bits ε-close to uniform, and since
in most cases log(1/ε) = o(kn)

From Theorem 2 we conclude that the error in Eq. (6) is significant and has
to be taken into account no matter what the extractor is. It is worth of noting
that our separation between Shannon entropy and extractable entropy holds in
the most favorable case, when the bits are independent.

Corollary 3 (A significant error in the heuristic estimate). In the above
setting, the gap between the Shannon entropy and the number of extractable
bits ε-close to uniform equals at least Θ(kn − √

log(1/ε)). In particular, for the
recommended security level (ε = 2−80) we obtain the loss of kn − N ≈ √

80kn
bits, no matter what an extractor we use.

1.4 Organization

Notions we use, as well as some auxiliary technical facts, are explained in Sect. 2.
We prove our main result, that is Theorem 1, in Sect. 3. The proof of Theorem 2
appears in Sect. 4.

2 Preliminaries

2.1 Basic Definitions

The most popular way of measuring how two distributions are close is the sta-
tistical distance.

Definition 1 (Statistical Distance). The statistical (or total variation) dis-
tance of two distributions X,Y over the same finite set is defined as

SD (X;Y) =
∑

x

|Pr[X = x] − Pr[Y = x]| (8)

We also say that X and Y are ε-close.

Below we recall the definition of Renyi entropy of order α. The logarithms are
taken at base 2.

Definition 2 (Renyi Entropy). The Renyi entropy of order α of a distribution
X equals Hα(X) = 1

1−α log (
∑

x Pr[X = x]α).

Choosing α → 1 and α → ∞ we recover two important notions: Shannon entropy
and min entropy.

Definition 3 (Shannon Entropy). The Shannon Entropy of a distribution X
equals H(X) = −∑

x Pr[X = x] log Pr[X = x].

How to Smooth Entropy? 397

Definition 4 (Min Entropy). The min entropy of a distribution X equals
H∞(X) = −maxx log Pr[X = x].

Smooth Renyi Entropy is defined as the value of the program (1).

Definition 5 (Smooth Renyi Entropy, [4]). The ε-smooth Renyi entropy of
order α of a distribution X equals Hε

α(X) = maxY Hα(Y) where the maximum
is taken over Y satisfying the constraint SD(X;Y) � ε.

Definition 6 (Extractable Entropy, [14]). We say that X has k extractable
bits within distance ε, denoted Hε

ext(X) � k, if for some randomized function
Ext we have SD (Ext(X,S);Uk, S) � ε, where Uk is a uniform k-bit string and
S is an independent uniform string.

2.2 Technical Facts

We will need the following simple fact on convex functions

Proposition 1. Let f be a strictly convex differentiable real-valued function and
x < y. Then for any δ > 0 we have

f(x) − f(x − δ) � f(y) − f(y − δ).

Our proof uses the following characterization of “extractable” distributions.

Theorem 3 (AnUpperBoundonExtractableEntropy, [14]). IfHε
ext(X) �

k then X is ε-close to Y such that H∞(Y) � k.

Another important fact we use is the sharp bound on binomial tails.

Theorem 4 (Tight Binomial Tails [12]). Let B(n, p) be a sum of independent
Bernoulli trials with success probability p. Then for γ � 3

4q we have

Pr [B(n, p) � pn + γn] = Q

(√
nγ2

pq

)

· ψ (p, q, n, γ) (9)

with the error term satisfies

ψ (p, q, n, γ) =

exp
(

nγ2

2pq
− nKL (p + γ ‖ p) +

1
2

log
(

p + γ

p
· q

q − γ

)
+ Op,q

(
n− 1

2

))
(10)

where KL (a ‖ b) = a log(a/b)+ (1−a) log((1−a)/(1− b) is the Kullback-Leibler
divergence, and Q is the complement of the cumulative distribution function of
the standard normal distribution.

398 M. Skorski

3 Proof of Theorem 1

We start by rewriting Eq. (1) in the following way

minimize

(
∑

x

(μ(x) + ε(x))α

) 1
α−1

s.t.

⎧
⎨

⎩

∑
x ε(x) = 0∑
x |ε(x)| = 2ε

∀x 0 � μ(x) + ε(x) � 1

(11)

where for the sake of clarity we replace PX by μX .

Claim. Let ε(x) be optimal for Eq. (11). Define S+ = {x : ε(x) < 0}. Then
μ(x) + ε(x) = μ(y) + ε(y) for all x, y ∈ S+. We will show the optimality by a
mass-shifting argument.

Proof (of Claim). Suppose that

ε(x1), ε(x2) < 0 and μ(x1) + ε(x1) > μ(x2) + ε(x2) > 0 (12)

for two different points x1, x2 (the statement is trivially true when there is only
one point). Take a number δ such that

0 < δ < min
(

−ε(x2),
(μ(x1) + ε(x1)) − (μ(x2) + ε(x2))

2

)
(13)

and modify μ by shifting the mass from x2 to x1 in the following way

ε′(x) =

⎧
⎨

⎩

ε(x), x 	∈ {x1, x2}
ε(x) − δ, x = x1

ε(x) + δ, x = x2

that is shifting the mass from the biggest point to the smallest point. Note that
from Eqs. (11) and (13) it follows that the constraints in (11) are satisfied with
ε(x) replaced by ε′(x). Let Y be a random variable distributed according to
PY (x) = μ(x) + ε(x) and let Y ′ be distributed as PY ′(x) = μ(x) + ε′(x). Note
that we have

∑
x

(μ(x) + ε′(x))α −
∑

x

(μ(x) + ε(x))α =

((PY (x2) + δ)α − (PY (x2))
α) − ((PY (x1))

α − (PY (x1) − δ)α)

Note that we have

PY (x2) < PY (x2) + δ < PY (x1) − δ < PY (x1)

How to Smooth Entropy? 399

by Eqs. (12) and (13). Now from Proposition 1 applied to f(u) = uα, x =
PY (x2) + δ, y = PY (x2) and δ (here we also use the assumption α > 1), it
follows that

∑

x

(μ(x) + ε′(x))α −
∑

x

(μ(x) + ε(x))α < 0

which means Hα(Y ′) > Hα(Y). In other words, Y is not optimal.
�
By the last claim it is clear that there is a number t ∈ (0, 1) such that the set

S+ = {x : PY ∗(x) < μ(x)} is contained in {x : μ(x) � t} and that PY ∗(x) � t
for x ∈ S+. Therefore

∑

x

(PY ∗(x))α � # {x : μ(x) � t} · tα +
∑

x: μ(x)<t

(μ(x))α

=
∑

x

min (μ(x), t)α

� (1 − ε)α
∑

x

(PY (x))α (14)

which, since Hε
α(X) = Hα(Y ∗), proves the second inequality in Eq. (5). To prove

the first inequality in Eq. (5) note that

SD(X;Y) =
∑

x: PX(x)>PY (x)

(PX(x) − PY (x)) =
∑

x: μ(x)>t/(1−ε)

(
μ(x) − t

1 − ε

)
.

Since t
1−ε > t we have

SD(X;Y) =
∑

x: μ(x)>t/(1−ε)

(
μ(x) − t

1 − ε

)
�

∑

x: μ(x)>t

(μ(x) − t)

and therefore by Eq. (2) we obtain

SD(X;Y) <
∑

x: μ(x)>t

(μ(x) − t) = ε.

which finishes the proof.

4 Proof of Theorem 2

4.1 Characterizing Extractable Entropy

We state the following fact with an explanation in Fig. 3.

Lemma 2 (Lower bound on the extractable entropy). Let X be a distri-
bution. Then for every distribution Y which is ε-close to X, we have H∞(Y) �
− log t where t satisfies

∑

x

max(PX(x) − t, 0) = ε. (15)

The proof follows by Theorem1.

400 M. Skorski

t =?
ε

1 − ε

ε

y = PDF(x)

Fig. 3. Entropy Smoothing Problem. For a given probability density function, we want
to cut a total mass of up to ε above a possibly highest threshold (in dotted red) and
rearrange it (in green), to keep the upper bound smallest possible (Color figure online)

Without losing generality, we assume from now that X ∈ {0, 1} where
Pr[X = 1] = p, q = 1 − p. Define Xn = (X1, . . . , Xn). For any x ∈ {0, 1}n

we have

Pr[Xn = x] = p‖x‖qn−‖x‖. (16)

According to the last lemma and Theorem 3, we have

Hε
ext (Xn) � − log t (17)

where
∑

x

max (PXn(x) − t, 0) = ε. (18)

From now we assume that

t = ppn+γnqqn−γn. (19)

4.2 Determining the Threshold t

The next key observation is that t is actually small and can be omitted. That
is, we can simply cut the (1 − ε)-quantile. This is stated in the lemma below.

Lemma 3 (Replacing the threshold by the quantile). Let x0 ∈ {0, 1}n be
a point such that ‖x0‖ = pn + γn. Then we have

∑

x: ‖x‖�‖x0‖
max (PXn(x) − PXn(x0)) � 1

2

∑

x: ‖x‖�‖x0‖
PXn(x) (20)

How to Smooth Entropy? 401

To prove the lemma, note that from Theorem 4 it follows that setting

γ′ = γ + n−1 log
(

p

q

)
(21)

we obtain

∑

j�pn+γ′n

(
n

j

)
� 3

4
·

∑

j�pn+γn

(
n

j

)
(22)

when γ is sufficiently small comparing to p and q (formally this is justified by
calculating the derivative with respect to γ and noticing that it is bigger by at
most a factor of 1 + γ√

npq). But we also have

pjqn−j � 2 · p(p+γ)nq(q−γ)n for j � γ′n (23)

Therefore,

∑

j�pn+γn

(
n

j

)
pjqn−j �

∑

j�pn+γ′n

(
n

j

)
pjqn−j

� 2 · p(p+γ)nq(q−γ)n ·
∑

j�pn+γ′n

(
n

j

)

� 2 · 3
4

· p(p+γ)nq(q−γ)n ·
∑

j�pn+γn

(
n

j

)
(24)

which finishes the proof.

4.3 Putting This All Together

Now, by combining Lemmas 2 and 3 and the estimate Q(x) ≈ x−1 exp(−x2/2)
for x � 0 we obtain

ε � exp
(

−nKL (p + γ ‖ p) − log
(

nγ2

2pq

)
+ Op,q(1)

)
(25)

which, because of the Taylor expansion KL (p + γ ‖ p) = γ2

2pq + Op,q(γ3), gives
us

γ � Ω

(√
log(1/ε)

pqn

)

(26)

Setting γ = c ·
√

log(1/ε)
pqn , with sufficiently big c, we obtain the claimed result.

402 M. Skorski

References

1. Barak, B., Dodis, Y., Krawczyk, H., Pereira, O., Pietrzak, K., Standaert, F.-X.,
Yu, Y.: Leftover hash lemma, revisited. Cryptology ePrint Archive, Report
2011/088 (2011). http://eprint.iacr.org/

2. Bouda, J., Krhovjak, J., Matyas, V., Svenda, P.: Towards true random number
generation in mobile environments. In: Jøsang, A., Maseng, T., Knapskog, S.J.
(eds.) NordSec 2009. LNCS, vol. 5838, pp. 179–189. Springer, Heidelberg (2009).
http://dx.doi.org/10.1007/978-3-642-04766-4 13

3. Bucci, M., Luzzi, R.: Design of testable random bit generators. In: Rao, J.R.,
Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 147–156. Springer, Heidelberg
(2005)

4. Cachin, C.: Smooth entropy and Rényi entropy. In: Fumy, W. (ed.) EUROCRYPT
1997. LNCS, vol. 1233, pp. 193–208. Springer, Heidelberg (1997)

5. Dichtl, M., Golić, J.D.: High-speed true random number generation with logic
gates only. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727,
pp. 45–62. Springer, Heidelberg (2007)

6. Dodis, Y., Pietrzak, K., Wichs, D.: Key derivation without entropy waste.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 93–110. Springer, Heidelberg (2014)

7. Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation
from one-way functions. In: Proceedings of the 20th STOC, pp. 12–24 (1988)

8. Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gener-
ator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999).
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.3930

9. Holenstein, T.: Pseudorandom generators from one-way functions: a simple con-
struction for any hardness. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol.
3876, pp. 443–461. Springer, Heidelberg (2006)

10. Holenstein, T., Renner, R.: On the randomness of independent experiments. IEEE
Trans. Inf. Theory 57(4), 1865–1871 (2011)

11. Lacharme, P., Röck, A., Strubel, V., Videau, M.: The linux pseudorandom number
generator revisited. Cryptology ePrint Archive, Report 2012/251 (2012). http://
eprint.iacr.org/

12. McKay, B.D.: On Littlewood’s estimate for the binomial distribution. Adv. Appl.
Probab. 21(2), 475–478 (1989)

13. Renner, R.S., König, R.: Universally composable privacy amplification against
quantum adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–
425. Springer, Heidelberg (2005). http://dx.doi.org/10.1007/978-3-540-30576-7 22

14. Renner, R., Wolf, S.: Smooth Renyi entropy and applications. In: ISIT 2004,
Chicago, Illinois, USA, p. 232 (2004)

15. Renner, R.S., Wolf, S.: Simple and tight bounds for information reconciliation
and privacy amplification. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788,
pp. 199–216. Springer, Heidelberg (2005)

16. Skorski, M.: How much randomness can be extracted from memoryless shannon
entropy sources. In: WISA 2015 (2015)

17. Schoenmakers, B., Tjoelker, J., Tuyls, P., Verbitskiy, E.: Smooth Renyi entropy of
ergodic quantum information sources. In: 2007 IEEE International Symposium on
Information Theory. ISIT 2007, pp. 256–260 (2007)

http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-04766-4_13
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.3930
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-540-30576-7_22

How to Smooth Entropy? 403

18. Tomamichel, M.: A framework for non-asymptotic quantum information theory.
Ph.D. thesis, ETH Zurich (2012)

19. Watanabe, S., Hayashi, M.: Non-asymptotic analysis of privacy amplification via
Renyi entropy and inf-spectral entropy. In: 2013 IEEE International Symposium
on Information Theory Proceedings (ISIT), pp. 2715–2719 (2013)

Bounded TSO-to-SC Linearizability Is Decidable

Chao Wang1,2(B), Yi Lv1, and Peng Wu1

1 State Key Laboratory of Computer Science, Institute of Software,
CAS, Beijing, China
wangch@ios.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China

Abstract. TSO-to-SC linearizability is a variant of linearizability for
concurrent libraries on the Total Store Order (TSO) memory model. In
this paper we propose the notion of k-bounded TSO-to-SC linearizabil-
ity, a subclass of TSO-to-SC linearizability that concerns only bounded
histories. This subclass is non-trivial in that it does not restrict the num-
ber of write, flush and cas (compare-and-swap) actions, nor the size of
a store buffer, to be bounded. We prove that the decision problem of
k-bounded TSO-to-SC linearizability is decidable for a bounded number
of processes. We first reduce this decision problem to a marked viola-
tion problem of k-bounded TSO-to-SC linearizability, where specific cas
actions are introduced to mark call and return actions. Then, we fur-
ther reduce the marked violation problem to a control state reachability
problem of a lossy channel machine, which is already known to be decid-
able. Moreover, we can show that the decision problem of k-bounded
TSO-to-SC linearizability has non-primitive recursive complexity.

1 Introduction

Linearizability [9] has been accepted as a de facto correctness condition for a
concurrent library with respect to its sequential specification on the sequential
consistency (SC) memory model [10]. However, modern multiprocessors (e.g., x86
[12], POWER [13]) and programming languages (e.g., Java [11], C11/C++11 [3])
do not comply with the SC memory model. Instead, they provide relaxed memory
models that allow non-SC behaviors due to hardware or compiler optimization.
For instance, in a multiprocessor system implementing the TSO memory model
[12], each processor is equipped with a FIFO store buffer. Any written action
performed by a processor will append an item into its store buffer before the
item is eventually flushed into the memory. The TSO memory model requires
that all processes in a concurrent system observe the same order of write and
cas actions, which is referred to as a total store order.

Accordingly, linearizability has been extended for relaxed memory models,
e.g., TSO-to-TSO linearizability [7] and TSO-to-SC linearizability [8] for the

This work is partially supported by the National Natural Science Foundation of
China under Grants No. 60721061, No. 60833001, No. 61272135, No. 61572478, No.
61700073, No. 61100069, No. 61472405, and No. 61161130530.

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 404–417, 2016.
DOI: 10.1007/978-3-662-49192-8 33

Bounded TSO-to-SC Linearizability Is Decidable 405

TSO memory model and two variants of linearizability [3] for the C++ memory
model. TSO-to-SC linearizability has been proposed for reasoning about the
correctness of a concurrent library, which is native to the TSO memory model
but is used with a concurrent program that needs to be protected from the
relaxed semantics [8].

It is well known that the linearizability of a concurrent library on the SC
memory model is decidable for a bounded number of processes [1], but unde-
cidable for an unbounded number of processes [4]. However, to our knowledge,
there are only a few decidability results about linearizability on relaxed mem-
ory models. We have recently proved that the decision problem of TSO-to-TSO
linearizability is undecidable for a bounded number of processes [16]. But the
decision problem of TSO-to-SC linearizability still remains open for a bounded
number of processes.

We propose a decidable subclass of TSO-to-SC linearizability for a bounded
number of processes, which is referred to as k-bounded TSO-to-SC linearizabil-
ity. It concerns only k-traces, which are traces with at most k call and return
actions, and hence it defined over k-bounded histories of TSO libraries. Note
that k-traces may still contain arbitrarily many write, flush and cas actions, and
store buffers may still contain arbitrarily many items along k-traces. Hence, the
k-boundedness on the number of call and return actions does not necessarily
restrict the behaviors of a concurrent program to be finite-state. As we prove
in this paper, the decision problem of this non-trivial subclass of TSO-to-SC
linearizability is decidable for a bounded number of processes.

As in [6,16], we first show that history inclusion is an equivalent charac-
terization of k-bounded TSO-to-SC linearizability. Then, as inspired by [2], we
consider to reduce the history inclusion problem to a control state reachabil-
ity problem of a lossy channel machine. Thus, the decidability of k-bounded
TSO-to-SC linearizability follows from the fact that a control state reachabil-
ity problem of a lossy channel machine is decidable [2]. However, the reduction
method in [2] does not directly apply to linearizability of concurrent libraries.
This is because that the call and return actions concerned by linearizability are
beyond the scope of the TSO memory model, while the reduction method in [2]
ensures only the total store orders among write/cas actions.

We extend the reduction method in [2] to effectively handle call and return
actions. Suppose a concurrent system that contains n client processes running
independently and interacting with a shared library. We introduce a new process
that keeps launching the specific cas actions nondeterministically. These specific
cas actions are used to mark the possible occurrences of the call and return
actions along a trace of the concurrent system. Then, a correctly marked trace
of this new process replicates the history of the trace of the concurrent sys-
tem with only specific cas actions. Correspondingly, a counterexample trace of
TSO-to-SC linearizability in the original concurrent system (of n processes) can
be witnessed by a marked trace of the extended concurrent system (of n+1
processes) with the call and return actions bypassed. This marked trace is called
a marked violation of TSO-to-SC linearizability. In this way, the complement

406 C. Wang et al.

problem of TSO-to-SC linearizability on the original concurrent system can be
characterized by the marked violation problem of the extended concurrent sys-
tem, to which the reduction method in [2] can be applied.

A lossy channel machine Mk
i (1 ≤ i ≤ n+1) is then constructed such that

its traces contain at most k call and return actions and can simulate the k-
bounded behaviors of the extended concurrent system from the perspective
of each process Pi. Each Mk

i contains only one channel to store the pending
written items according to the total store orders under the original concurrent
system. Thus, the marked violation problem of k-bounded TSO-to-SC lineariz-
ability can be reduced to a control state reachability problem of the product
of Mk-w

1 , . . . , Mk-w
n+1. Each Mk-w

i is resulted from Mk
i by replacing its all but

write and cas transitions with internal transitions. The reduction is achieved by
requiring that each written item in a channel contains a run-time snapshot of the
memory, while always keeping bounded the amount of information that needs to
be stored as in a perfect channel. With these specialized lossy channels, missing
some intermediate channel contents would not break the reachability between
control states under perfect channels.

Furthermore, we can show that the decision problem of k-bounded TSO-
to-SC linearizability has non-primitive recursive complexity. This is proved in
the technical report version of this paper [15] by a reduction from a reachability
problem of a lossy single-channel machine, which is known to have non-primitive
recursive complexity [14]. Besides, the decision problem of TSO-to-SC lineariz-
ability can be reduced to a control state reachability problem of a perfect channel
machine in a similar way. This opens a potential way towards determining the
decidability of TSO-to-SC linearizability itself.

Related Work. Efforts have been devoted on verification of linearizability on
the SC memory model [1,4–6]. A similar reduction method was applied to ver-
ify the linearizablility of certain concurrent data structures for an unbounded
number of processes on the SC memory model [5]. However, relaxed memory
models remain a great challenge for linearizability verification. Our previous
work [16] revealed the first undecidability result on TSO-to-TSO linearizabil-
ity for a bounded number of processes. In [16], the trace inclusion problem of a
classic-lossy single-channel system, which has been known to be undecidable, was
reduced to the TSO-to-TSO linearizability problem. The closest work to ours is
[2] by Atig et al., where a state reachability problem of a concurrent system is
reduced to a control state reachability problem of a lossy channel machine.

2 Concurrent Systems

In this section, we first present the notations of libraries, client programs, most
general clients and concurrent systems. We then introduce their operational
semantics on the TSO and SC memory models.

Bounded TSO-to-SC Linearizability Is Decidable 407

2.1 Notations

In general, a finite sequence on an alphabet Σ is denoted l = α1 · α2 · . . . · αk,
where · is the concatenation symbol and αi ∈ Σ for each 1 ≤ i ≤ k. Let |l| and
l(i) denote the length and the i-th element of l, respectively, i.e., |l| = k and
l(i) = αi for 1≤ i≤k. Let l ↑Σ denote the projection of l to Σ. Given a function
f , let f [x : y] be the function that is the same as f everywhere, except for x,
where it has the value y. Let denote an item, of which the value is irrelevant,
and ε the empty word.

A labelled transition system (LTS) is a tuple A = (Q,Σ,→, q0), where Q
is a set of states (a.k.a. configurations), Σ is an alphabet of transition labels,
→⊆ Q × Σ × Q is a transition relation and q0 is the initial state. A path of
A is a finite transition sequence q0

β1−→ q1
β2−→ . . .

βk−→ qk with k ≥ 0. A trace
of A is a finite sequence t = β1 · β2 · . . . · βk with k ≥ 0 if there exists a path
q0

β1−→ q1
β2−→ . . .

βk−→ qk of A.

2.2 Libraries and Client Programs

A library implementing a concurrent data structure provides a number of meth-
ods for accessing the data structure. A client program is a program that interacts
with libraries. Libraries and client programs may contain private memory loca-
tions for their own uses. For simplicity of notations, we assume that a method
has just one argument and one return value (if it returns).

Given a finite set X of memory locations, a finite set M of method names
and a finite data domain D, the set PCom of primitive commands has the forms
below:

PCom ::= τ | read(x, a) | write(x, a) | cas suc(x, a, b) | cas fail(x, a, b) | call(m,a)

where a, b ∈ D, x ∈ X and m ∈ M. Herein, τ is the internal command. A cas
(compare-and-swap) command compresses a read and a write commands into a
single one, which is meant to be executed atomically. A successful cas command
cas suc(x, a, b) changes the value of x from a to b, while a failed cas command
cas fail(x, a, b) does nothing and happens only when the value of x is not a.

A library L can then be defined as a tuple L = (XL,ML,DL, QL,→L), where
XL, ML and DL are a finite memory location set, a finite method name set and
a finite data domain of L respectively; QL =

⋃
m∈ML Qm is the union of disjoint

finite sets Qm of program positions of each method m ∈ ML; →L=
⋃

m∈ML →m

is the union of disjoint transition relations of each method m ∈ ML. Let PComL
be the set of primitive commands (except call commands) upon XL, ML and
DL. Then, for each m ∈ ML, →m⊆ Qm ×PComL × Qm; while for each a ∈ DL
there exists an initial state is(m,a) and a final state fs(m,a) in Qm such that
there are neither incoming transitions to is(m,a) nor outgoing transitions from
fs(m,a) in →m. Similarly, a client program C can then be defined as a tuple C =
(XC ,MC ,DC , QC , →C) where XC , MC , DC and QC are a finite memory location
set, a finite method name set and a final data domain of C and a finite program

408 C. Wang et al.

position set, respectively. Let PComC be the set of primitive commands upon
XC , MC and DC . Then, →C⊆ QC × PComC × QC is a transition relation of C.

A most general client is a special client program that is designed to exhibit all
the possible behaviors of a library. A most general client MGC can be formally
defined as a client (XC ,MC ,DC , {qc},→mgc), where qc is a program position
and →mgc= {(qc, call(m,a), qc)|m ∈ MC , a ∈ DC} is a transition relation. Intu-
itively, a most general client simply repeatedly calls an arbitrary method with an
arbitrary argument for arbitrarily many times. It does not access any memory
location in XC , so XC does not influence the behavior of a most general client.

2.3 TSO Operational Semantics

Suppose a concurrent system C(L) that consists of n processes, each of which
runs a client program Ci = (XC ,M,DC , QCi

,→Ci
) on a separate processor for

1 ≤ i ≤ n, and all the client programs interact with the same library L =
(XL,M,DL, QL,→L). The library and client programs have disjoint memory
locations, i.e., XL ∩ XC = ∅. The operational semantics of the concurrent
system C(L) on the TSO memory model is defined as an LTS [[C(L), n]]tso
= (Conftso, Σtso, →tso, InitConftso), where Conftso, Σtso,→tso, InitConftso are
defined as follows.

Each configuration of Conftso is a tuple (p, d, u), where p represents current
control states of each process, d is the current valuation of the memory locations
and u represents the contents of the store buffers for each process. Σtso is a set
of actions in the following forms:

Σtso ::= τ(i) | read(i, x, a) | write(i, x, a) | cas(i, x, a, b) |
flush(i, x, a) | call(i,m, a) | return(i,m, a)

where 1 ≤ i ≤ n,m ∈ M and either x ∈ XL and a, b ∈ DL, or x ∈ XC and
a, b ∈ DC . Informally, →tso is a minimum transition relation such that for process
Pi (1≤ i≤n), a write action write(i, x, a) appends an item (x, a) to u(i); a read
action read(i, x, a) obtains the current value a of x, either from the latest pending
item (x, a) in u(i) (if exists), or from the current valuation in the memory; a flush
action flush(i, x, a) flushes the item (x, a) at the head of u(i) into the memory;
a cas(i, x, a, b) action clears u(i) and intends to replace the current value a of x
with b in the memory directly; while an call action call(i,m, a) starts to execute
a method m with an argument a, and a return action return(i,m, a) returns
from the method m with a return value a.

The initial configuration InitConftso ∈ Conftso is a tuple (pinit, dinit, εn),
where εn initializes each process with an empty buffer. If each client program Ci

is a most general client, [[C(L), n]]tso can be abbreviated as [[L, n]]tso.
According to [8], the operational semantics of the concurrent system on the

SC memory model can be defined as an LTS [[C(L), n]]sc = (Confsc, Σsc,→sc,
InitConfsc) similar to [[C(L), n]]tso, except that each configuration of Confsc has
only the empty store buffer for each process and all write actions are flushed into
the memory immediately. The detailed definition of [[C(L), n]]tso and [[C(L), n]]sc
can be found in [15].

Bounded TSO-to-SC Linearizability Is Decidable 409

3 Correctness Conditions and Equivalent
Characterization

The behavior of a library is typically represented by histories of interactions
between the library and the client programs calling it (through call and return
actions). Let Σcal and Σret represent the sets of all call and return actions,
respectively. A finite sequence h ∈(Σcal∪Σret)∗ is a history of an LTS A if there
exists a trace t of A such that t ↑(Σcal∪Σret)= h. Let history(t) be the history along
trace t, i.e., history(t) = t ↑(Σcal∪Σret), and history(A) the set of all histories of A.
Moreover, let h|i denote the projection of history h to the call and return actions
of process Pi.

TSO-to-SC linearizability is a variant of linearizability on the TSO memory
model. It is used to reason about the interoperability between a high-level data
race free client and a low-level library native to the TSO memory model. Hence,
it concerns only call and return actions.

Definition 1 (TSO-to-SC linearizability [8]). For histories h1, h2 ∈ (Σcal ∪
Σret)∗, h1 is linearizable to h2, if

– for each process Pi, h1|i = h2|i.
– there is a bijection π : {1, . . . , |h1|} → {1, . . . , |h2|} such that for any 1≤ i≤

|h1|, h1(i) = h2(π(i)) and for any 1≤ i<j ≤|h1|, if h1(i) ∈ Σret∧h1(j) ∈ Σcal,
then π(i)<π(j).

For two libraries L and L′, L′ TSO-to-SC linearizes L for n processes, if for
any history h1 ∈ history([[L, n]]tso), there exists history h2 ∈ history([[L′, n]]sc),
such that h1 is linearizable to h2.

The following lemma shows that history inclusion is an equivalent character-
ization of TSO-to-SC linearizability.

Lemma 1. Library L′ TSO-to-SC linearizes library L for n processes if and
only if history([[L, n]]tso) ⊆ history([[L′, n]]sc).

For an LTS A, a k-trace t ∈ trace(A) is a trace that contains at most k call
and return actions. Let k-trace(A) denote all the k-traces of A.

Definition 2 (k-bounded TSO-to-SC linearizability). Library L′ k-boun-
ded TSO-to-SC linearizes library L for n processes, if for each k-trace t ∈ k-trace
([[L, n]]tso), there exists a history h ∈ history([[L′, n]]sc), such that history(t) is
linearizable to h.

For two libraries L, L′ and n, k ≥ 0, the decision problem of (k-bounded)
TSO-to-SC linearizability is to determine whether L′ (k-bounded) TSO-to-SC
linearizes L for n processes.

410 C. Wang et al.

4 Perfect/Lossy Channel Machines

A classical channel machine is a finite control machine equipped with channels
of unbounded sizes. It can perform send and receive operations on its channels.
A lossy channel machine is a channel machine where arbitrary many items in its
channels may be lost nondeterministically at any time without any notification.
In this section we sketch our definition of (S,K)-channel machines, which slightly
differs from the definition of channel machines in [2].

The channel machines defined in [2] extend classical channel machines in the
following aspects:

– Each transition is guarded by a condition about whether the content of a
channel is in a regular language.

– A substitution to the content of a channel may be performed before a send
operation on the channel.

– A set of specific symbols, called “strong symbols”, are introduced that are not
allowed to be lost, but the number of strong symbols in a channel is always
bounded.

In this paper, we extend the channel machines defined in [2] with multiple
sets of strong symbols, while the number of strong symbols in a channel from
the same strong symbol set is separately bounded.

A channel machine is formally defined as a tuple M = (Q, CH, ΣCH, Λ,Δ),
where (1) Q is a finite set of states, (2) CH is a finite set of channel names, (3)
ΣCH is an alphabet for channel contents, (4) Λ is a finite set of transition labels,
and (5) Δ ⊆ Q×(Λ∪{ε})×Guard(CH)×Op(CH)×Q is a finite set of transitions
with Guard(CH) and Op(CH) being the sets of guards and operations over CH,
respectively.

Let S = 〈s1, . . . , sm〉 be a vector of sets with si ⊆ ΣCH for 1 ≤ i ≤ m,
and K = 〈k1, . . . , km〉 be a vector of nature numbers or ∞. A (S,K)-channel
machine, abbreviated as (S,K)-CM, is a channel machine M with the strong
symbol restriction (S,K), i.e., each of M ’s configuration is a tuple (q, u), where
q is a control state and u maps contents to each channel such that for each
1 ≤ j ≤ m and channel c, |u(c) ↑ sj |≤kj . As in [2], a (S,K)-channel machine M
with lossy channels is referred to as a (S,K)-lossy channel machine, abbreviated
as (S,K)-LCM. This is achieved by interpreting a (S,K)-channel machine with
a lossy transition relation, instead of a usual (perfect) one. A formal definition
of a (S,K)-(L)CM can be found in [15].

For states q, q′ ∈ Q, let TS,K
q,q′ (M) (respectively, LTS,K

q,q′ (M)) denote the sets of
traces of (S,K)-CM (respectively (S,K)-LCM) M from the configuration (q, εn)
to the configuration (q′, εn). For channel machines M1 = (Q1, CH1, ΣCH, Λ,Δ1)
and M2 = (Q2, CH2, ΣCH, Λ,Δ2) such that CH1 ∩ CH2 = ∅, the product of M1

and M2 is also a channel machine M1⊗M2 = (Q1×Q2, CH1∪CH2, ΣCH, Λ,Δ12),
where Δ12 is defined by synchronizing transitions sharing the same label in Λ
under the conjunction of their guards, and letting other transitions asynchronous.
The following lemma holds as in [2].

Bounded TSO-to-SC Linearizability Is Decidable 411

Lemma 2. For (S,K)-CM M1 = (Q1, CH1, ΣCH, Λ,Δ1) and M2 = (Q2, CH2,
ΣCH, Λ,Δ2), q1, q

′
1 ∈ Q1 and q2, q

′
2 ∈ Q2, let q = (q1, q2), q′ = (q′

1, q
′
2), then

LTS,K
q,q′ (M1⊗M2) = LTS,K

q1,q′
1
(M1)∩LTS,K

q2,q′
2
(M2) and TS,K

q,q′ (M1⊗M2)= TS,K
q1,q′

1
(M1)∩

TS,K
q2,q′

2
(M2).

Given a (S,K)-CM (respectively, (S,K)-LCM) M and two states q, q′ ∈ Q,
a control state reachability problem of M is to determine whether TS,K

q,q′ (M) �= ∅
(respectively, LTS,K

q,q′ (M) �= ∅). As in [2], it can be shown that the control state
reachability problem is decidable for (S,K)-LCM.

5 Verification of k-Bounded TSO-to-SC Linearizability

In this section we show the proof idea about the decidability of k-bounded TSO-
to-SC linearizability for a bounded number of processes. The main theme is
to reduce its complement problem to a control state reachability problem of
a (S,K)-lossy channel machine. In the same way, we can reduce the decision
problem of TSO-to-SC linearizability to a control state reachability problem of
a (S,K)-channel machine. Due to lack of space, the detailed proofs of the lemmas
and theorems presented in this section can be founded in [15].

5.1 Marked Violation of (k-Bounded) TSO-to-SC Linearizability

Recall that call and return actions cannot be handled directly by the reduction
method in [2]. We introduce a fresh new process to captures the call and return
actions, which occur along the traces (or k-traces) of [[L, n]]tso by the specific cas
actions. In this way, the behaviors of a concurrent system [[L, n]]tso can be char-
acterized exactly by the extended concurrent system [[Clt(L),n+1]]tso (defined
below), with the benefit that the call and return actions need not be involved
for reduction later.

Let markedVal(M,DL, n) = {call(i,m,a), return(i,m,a)|1≤ i≤n,m ∈ M, a ∈
DL} denote the set of values that are used by the specific cas actions to mark
the call and return actions in [[L, n]]tso. Then, the concurrent system Clt(L) con-
sists of n+1 processes Pi (1 ≤ i ≤ n+1). For each 1 ≤ i ≤ n, process Pi runs the
most general client program ({xwit},M,DL, {qc},→mgc). The process Pn+1 runs
the client program Cmarked = ({xwit},M,markedVal(M,DL, n), {qwit},→wit),
where xwit /∈ XL is the memory location used by the specific cas actions;
→wit= {(qwit, cas suc(xwit, , a), qwit)| a ∈ markedVal(M,DL, n)} is the tran-
sition relation of Cmarked.

A marked violation is a trace of [[Clt(L),n+1]]tso that can witness the viola-
tion of TSO-to-SC linearizability. It correctly captures the corresponding call and
return actions, stops immediately when a non-linearizable action takes place and
flushes all the stored items so far. Formally, a trace t ∈ trace([[Clt(L),n+1]]tso) is
a marked violation of TSO-to-SC linearizability between libraries L and L′ for n
processes, if

412 C. Wang et al.

– The specific cas actions mark correctly the call and return actions, i.e., for
each 1≤ i≤|t|−1, m ∈ M and a ∈ DL, the following conditions hold:
1. t(i) = cas(n+1, xwit, call(i,m, a)) if and only if t(i+1) = call(i,m, a).
2. t(i) = cas(n+1, xwit, return(i,m, a)) if and only if t(i+1) = return(i,m, a).

– history(t) /∈ history([[L′, n]]sc), and for each prefix t′ of t such that history(t) �=
history(t′), history(t′) ∈ history([[L′, n]]sc).

– t = t1 · t2 such that t1 ends with a call or return action, and t2 is a sequence
of flush actions. Moreover, all the write actions in t have been flushed.

Furthermore, the trace t is a marked violation of k-bounded TSO-to-SC lin-
earizability between libraries L and L′ for n processes, if t is a k-trace. For two
libraries L, L′, and n, k≥0, a (k-bounded) TSO-to-SC marked violation problem
is to determine whether there is a marked violation of (k-bounded) TSO-to-SC
linearizability between libraries L and L′ for n processes. The following lemma
relates a (k-bounded) TSO-to-SC marked violation problem with the comple-
ment problem of (k-bounded) TSO-to-SC linearizability.

Lemma 3. L′ does not (k-bounded) TSO-to-SC linearizes L for n processes, if
and only if there is a marked violation of (k-bounded) TSO-to-SC linearizability
between libraries L and L′ for n processes.

The specific cas actions are launched nondeterministically in [[Clt(L),n+1]]tso
and hence may result in many incorrectly guessed traces that do not occur in
[[L, n]]tso. However, the channel machines Mk

i we constructed can guarantee that
the incorrectly guessed traces will be safely excluded during the verification
procedure.

5.2 Simulating [[Clt(L),n+1]]tso with A Channel Machine

In the rest of this section, we show that for libraries L and L′, how the k-
bounded behaviors of the concurrent system [[Clt(L),n+1]]tso can be further
characterized by a (S,K)-channel machine. As in [2], this amounts to construct
a channel machines Mk

i corresponding to each process Pi in [[Clt(L),n+1]]tso.
Each Mk

i (1 ≤ i ≤ n+1) launches actions of process Pi according to the
control state of this process, and nondeterministically guesses the write, call or
return actions of the other processes. It contains only one channel ci that is
used to store the pending written items according to the total store orders in
[[Clt(L),n+1]]tso. Each item sent to each channel ci contains the current valuation
of all the memory locations, i.e., the current snapshot of the memory.

We first use the example shown in Fig. 1 to illustrate the main idea of our
construction method. Figure 1(a) presents a k-trace t of a concurrent system
[[Clt(L), 3]]tso with k = 4, while Fig. 1(b), (c) and (d) present the corresponding
traces of Mk

1 , Mk
2 , Mk

3 , respectively. Each pair of a call and its accompanying
return action is associated with a (dashed) line interval. In Fig. 1, r(x)0 is an
action that reads 0 from x; w(x)1 is an action that writes 1 to x; f(x)1 is a flush
action that changes the value of x to 1; c(y)1 is a cas action that changes the

Bounded TSO-to-SC Linearizability Is Decidable 413

value of y to 1 successfully; c1, . . . , c4 are the specific cas actions for marking
the corresponding call and return actions; g(x)1 and f(x)1 are the guessed write
action and its accompanying flush action for w(x)1; g(y)1 and f(y)1 are the
guessed write action and its accompanying flush actions for c(y)1; gi and fi are
the guessed write action and its accompanying flush actions for the action ci

(1 ≤ i ≤ 4); Noted that the actions in Fig. 1(a) contain only values, while the
actions in Fig. 1(b), (c) and (d) contain the snapshots of the memory.

In this example, Mk
1 first guesses a marked write action g1, performs the

accompanying flush action f1 and the call action of process P1 and then reads 0
from x. Before Mk

1 performs the w(x)1 action, it need to guess the write and cas
actions of processes P2 and P3. These actions need to occur later than w(x)1 but
their accompanying flush actions need to occur earlier than f(x)1 in t. Therefore,
it guesses g2, g3 and g(y)1 accordingly. Then, Mk

1 flushes g2 (with f2), guesses
the call action of process P2, flushes g3 (with f3), performs the return action of
process P1, and flushes g(y)1 (with f(y)1). At last, Mk

1 flushes w(x)1 (with f(x)1),
guesses the marked write action g4, performs the accompanying flush action f4
and guesses the return action of process P2.

P1:

P2:

P3:
c1

(a) a trace t of �Clt(L), 3�t

c4c2

w(x)1

f2g1 f1 g2 g3

g(y)1

g4 f4

(c) trace t2 of Mk
2 for t

g1 f1 g2 f2 g3 f3

c3

w(x)1

f3

f(y)1

f(x)1

c(y)1

f(x)1

c(y)1

g(x)1 f(x)1

g4 f4

(d) trace t3 of Mk
3 for t

(b) trace t1 of Mk
1 for t

c1 c2 c3

g(y)1 f(y)1

g(x)1 f(x)1

c4

r(x)0 r(x)0

P1:

P2:

P3:

P1:

P2:

P3:

P1:

P2:

P3:

Fig. 1. Traces of Mk
1 , Mk

2 and Mk
3 for a trace t of [[Clt(L), 3]]tso

We now present the formal definition of the channel machine Mk
1 . The

channel machines Mk
2 and Mk

3 can be defined in a similar way. Note that
history([[L′, 2]]sc) is a regular language, because the LTS [[L′, 2]]sc contains a finite
number of states. Let ASpec = (Qs, Σs,→s, qis) be a deterministic finite state
automaton that accepts history([[L′, 2]]sc), where Qs is a set of states, Σs is a
set of transition labels, →s⊆ Qs × Σs × Qs is a transition relation and qis is
the initial state. It can be seen that each state in Qs can be assumed as a final
state because history([[L′, 2]]sc) is prefix-closed. Let qerror /∈ Qs be a trap state. A
new transition relation →s′ can be derived from →s such that q1

α−→s′q2 if either
q1

α−→sq2, or q1 ∈ Qs, q2 = qerror and there is no outgoing transitions from q1 in
α−→s.

Let Val be the set of valuation functions that map a memory location in XL
to a value in DL and xr to a value in markedVal(M,DL, 2). Then, the channel
machine Mk

1 is defined as a tuple (Q1, {c1}, Σ, Λ,Δ1), where

414 C. Wang et al.

– Q1 = ({qc}∪(QL×{qc}))×Val×Val×(Qs∪{qerror})×(markedVal(M,DL, 2)∪
{ε}) × {0, . . . , k} is the state set. A configuration (q, dc, dg, qs,mak, cnt) ∈ Q1

consists of a control state q, a valuation dc of the memory, a valuation dg of the
memory with all the stored items in c1 applied, a state qs for monitoring the
violation of the linearizability condition, a marker mak indicating that each
marked cas action is immediately followed by a corresponding call or return
action, and the number cnt of the call and return actions already occurred in
the whole trace.

– Σ = Σ1 ∪ Σ2 ∪ Σ3 is the alphabet of channel contents with Σ1 = {(3, xwit,
d)|d ∈ Val}, Σ2 = {((i, x, d),
)|1≤ i≤2, x ∈ XL, d ∈ Val} and Σ3 = {a|(a,
) ∈
Σ2}. Σ1 contains the items appended by guessing the marked cas actions.
Σ2 are the newest item in c1 or the newest one for a memory location. Σ3 is
similar to Σ2 except the symbols
 are removed. In case that Mk

1 is interpreted
with a lossy channel, Σ1 and Σ2 are the sets of strong symbols of Mk

1 .
– Λ is the set of transition labels. It contains write, cas, flush, call and return

actions, but not read or τ actions (seen as ε transition).
– Δ1 ⊆ Q1×(Λ∪{ε})×Guard({c1})×Op({c1})×Q1 is the minimum transition

relation. we report below the read and call transition rules in Δ1, and other
transition rules in Δ1 can be found in [15]. For any q1, q2 ∈ QL, dc, dg ∈ Val,
qs ∈ Qs and cnt < k,

– For the read(x, a) action of process P1: if q1
read(x,a)−−−−−−→Lq2, then for each

d ∈ Val with d(x) = a,

((q1, qc), dc, dg, qs, ε, cnt)
ε,c1∈Σ∗·(β,�)·Σ∗,nop−−−−−−−−−−−−−−→Δ1((q2, qc), dc, dg, qs, ε, cnt)

((q1, qc), d, dg, qs, ε, cnt)
ε,c1∈Θ∗,nop−−−−−−−−→Δ1((q2, qc), d, dg, qs, ε, cnt)

where β = (1, x, d), Θ = Σ\{((1, x, d′),
)|d′ ∈ Val} and nop means no
operation on c1.

– For the call(m,a) action of process P1, if qs
call(1,m,a)−−−−−−−→s′q′

s, then

(qc, dc, dg , qs, call(1,m,a), cnt)
call(1,m,a),c1∈Σ∗,nop−−−−−−−−−−−−−−−→Δ1 ((is(m,a), qc), dc, dg , q′

s, ε, cnt+1)

– For the guessed call(m,a) of process P2, if qs
call(2,m,a)−−−−−−−→s′q′

s, then

(q, dc, dg, qs, call(2,m,a), cnt)
call(2,m,a),c1∈Σ∗,nop−−−−−−−−−−−−−−−−→Δ1(q, dc, dg, q′

s, ε, cnt+1)

5.3 Reducing to a Control State Reachability Problem

Let Mk-w
i be a channel machine that is resulted from Mk

i by replacing its all but
write and cas transitions with internal transitions. The remaining cas actions can
be regarded as write actions. Since a k-trace contains at most k call and return
actions, and the first marked item can be guessed and flushed as in t1 of Fig. 1(b)

Bounded TSO-to-SC Linearizability Is Decidable 415

without influence subsequent executions, the number of marked items in a k-
trace can be always less than k at any time. Let S = 〈Σ1, Σ2〉, K1 = 〈k-1, |XL|+1〉,
the following lemma states that a control state reachability problem of a (S,K1)-
channel machine is enough to capture the complement problem of k-bounded
TSO-to-SC linearizability.

Lemma 4. There exists a marked violation t of k-bounded TSO-to-SC lineariz-
ability between libraries L and L′ for n processes from (pinit, dinit, εn) to (pw, dw,

εn) in [[Clt(L),n+1]]tso, if and only if
⋂n+1

i=1 T
(S,K1)
(qi,q′

i)
Mk-w

i �= ∅, where for each
1 ≤ i ≤ n+1, qi = (pinit(i), dinit, dinit, qis, ε, 0), q′

i = (pw(i), dw, dw, qerror, ε,
|t ↑(Σcal∪Σret) |).

Since the number of the specific configurations of [[Clt(L),n+1]]tso is finite,
the complement problem of k-bounded TSO-to-SC linearizability can be further
reduced to a finite number of control state reachability problems of the same
(S,K1)-channel machine but interpreted with lossy channels. Then, by Lemma3
and the fact that a control state reachability problem of a (S,K)-lossy channel
machine is decidable, we obtain the decidability result of k-bounded TSO-to-SC
linearizability.

Theorem 1. The decision problem of k-bounded TSO-to-SC linearizability is
decidable.

We reduce the reachability problem of a single-channel channel machine,
which is known to have non-primitive recursive complexity [14], to a 3-bounded
TSO-to-SC linearizability problem. Therefore, the k-bounded TSO-to-SC lin-
earizability problem also has non-primitive recursive complexity.

Let K2 = 〈∞, |XL|+1〉. Similar to Lemma 4, the complement problem of
TSO-to-SC linearizability can be reduced to the control state reachability prob-
lems of a channel machine where the amount of marked items in a channel is
unbounded, or specifically, a (S,K2)-channel machine that is the product of
M ts-w

1 , . . . , M ts-w
n+1 . Each M ts-w

i (1≤ i≤n+1) is the same as Mk-w
i except discard-

ing counting the call and return actions.

Theorem 2. The decision problem of TSO-to-SC linearizability can be reduced
to a control state reachability problem of a (S,K2)-channel machine.

6 Conclusion and Future Work

We have shown in this paper that the decision problem of k-bounded TSO-to-
SC linearizability is decidable for a concurrent system with n≥1 processes. The
proof method is essentially by a reduction to a control state reachability problem
of a lossy channel machine, which is already known to be decidable. To facilitate
the reduction, a new process is introduced to use the specific cas actions to cap-
ture the call and return actions of the original concurrent system. In this way,
the complement problem of TSO-to-SC linearizability on the n processes can be

416 C. Wang et al.

transformed to a marked violation problem on the n+1 processes. Then, a chan-
nel machine Mk

i (1≤ i≤ n+1) is constructed to simulate the k-bounded behaviors
of the extended concurrent system from the perspective of each process Pi. We
then demonstrate that the product of Mk-w

1 , . . . , Mk-w
n+1, when interpreted with

lossy channels, can characterize the TSO behaviors of the original concurrent
system. Furthermore, we show that the k-bounded TSO-to-SC linearizability
problem has non-primitive recursive complexity.

Since the notion of k-bounded TSO-to-SC linearizability does not require
the size of a store buffer or the length of a trace of a concurrent system to be
bounded, it still allows infinite-state behaviors. Hence, our decidability result is
non-trivial. It sheds light on developing algorithms for automatically verifying
concurrent libraries on relaxed memory models.

We have successfully reduced the decision problem of TSO-to-SC lineariz-
ability to a control state reachability problem of a lossy-channel machine with
unbounded number of strong symbols. However, the decidability of this problem
still remains open. As future work, we would like to pursue this problem further
with other possible heuristics. Also we would like to continue investigating the
decidability of other correctness conditions of concurrent libraries and programs.

References

1. Alur, R., McMillan, K., Peled, D.: Model-checking of correctness conditions for
concurrent objects. In: LICS 1996, pp. 219–228. IEEE Computer Society (1996)

2. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification
problem for weak memory models. In: Hermenegildo, M., et al. (eds.) POPL 2010,
pp. 7–18. ACM (2010)

3. Batty, M., Dodds, M., Gotsman, A.: Library abstraction for C/C++ concurrency.
In: Giacobazzi, R., Cousot, R. (eds.) POPL 2013, pp. 235–248. ACM (2013)

4. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Verifying concurrent programs
against sequential specifications. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013.
LNCS, vol. 7792, pp. 290–309. Springer, Heidelberg (2013)

5. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: On reducing linearizability to state
reachability. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B.
(eds.) ICALP 2015. LNCS, vol. 9135, pp. 95–107. Springer, Heidelberg (2015)

6. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Tractable refinement checking for
concurrent objects. In: Rajamani, S.K., et al. (eds.) POPL 2015, pp. 651–662. ACM
(2015)

7. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent library cor-
rectness on the TSO memory model. In: Seidl, H. (ed.) Programming Languages
and Systems. LNCS, vol. 7211, pp. 87–107. Springer, Heidelberg (2012)

8. Gotsman, A., Musuvathi, M., Yang, H.: Show no weakness: sequentially consistent
specifications of TSO libraries. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol.
7611, pp. 31–45. Springer, Heidelberg (2012)

9. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

10. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess program. IEEE Trans. Comput. 28(9), 690–691 (1979)

Bounded TSO-to-SC Linearizability Is Decidable 417

11. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: Palsberg, J.,
Abadi, M. (eds.) POPL 2005, pp. 378–391. ACM (2005)

12. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 391–407. Springer, Heidelberg (2009)

13. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. In: Hall, M.W., Padua, D.A. (eds.) PLDI 2011, pp. 175–
186. ACM (2011)

14. Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive com-
plexity. Inf. Process. Lett. 83(5), 251–261 (2002)

15. Wang, C., Lv, Y., Wu, P.: Bounded TSO-to-SC linearizability is decidable. Tech-
nical report ISCAS-SKLCS-15-11, State Key Laboratory of Computer Science,
ISCAS, CAS (2015). http://lcs.ios.ac.cn/∼lvyi/files/ISCAS-SKLCS-15-11.pdf

16. Wang, C., Lv, Y., Wu, P.: TSO-to-TSO Linearizability Is Undecidable. In:
Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 309–325.
Springer, Heidelberg (2015)

http://lcs.ios.ac.cn/~lvyi/files/ISCAS-SKLCS-15-11.pdf

Probabilistic Autoreductions

Liyu Zhang1(B), Chen Yuan3, and Haibin Kan2

1 Department of Computer Science,
University of Texas Rio Grande Valley, Brownsville, TX 78520, USA

liyu.zhang@utrgv.edu
2 School of Physical Mathematical Sciences,

Nanyang Technological University, Singapore, Singapore
hbkan@fudan.edu.cn

3 Shanghai Key Lab of Intelligent Information Processing,
School of Computer Science, Fudan University, Shanghai 200433, China

yuan0064@e.ntu.edu.sg

Abstract. We consider autoreducibility of complete sets for the two
common types of probabilistic polynomial-time reductions: RP reduc-
tions containing one-sided errors on positive input instances only, and
BPP reductions containing two-sided errors. Specifically, we focus on
the probabilistic counterparts of the deterministic many-one and truth-
table autoreductions. We prove that non-trivial complete sets of NP are
autoreducible for the RP many-one reduction. This extends the result
by Glaßer et al. [9] that complete sets of NP are autoreducible for the
deterministic many-one reduction. We also prove that complete sets of
classes in the truth-table Polynomial Hierarchy, which is the polynomial
hierarchy defined using the truth-table reduction instead of the general
Turing reduction, are autoreducible with respect to the BPP truth-table
reductions. This generalizes the result by Buhrman et al. [3] that truth-
table-complete sets for NP are probabilistically truth-table autoreducible
to multiple classes of higher complexity although for a weaker reduction.

Keywords: Computational complexity · Complete sets · Probabilis-
tic polynomial-time autoreductions · Probabilistic many-one and truth-
table reductions

1 Introduction

Let r be a reduction between two languages as defined in computational com-
plexity such as the common many-one and Turing reductions. We say that a
language L is r-autoreducible if L is reducible to itself via the reduction r where
the reduction does not query on the same string as the input. In case that r is the
many-one reduction, we require that r outputs a string different from the input
in order to be an autoreduction. Researchers started investigating on autore-
ducibility as early as 1970’s [18] although much of the work done then was in

L. Zhang—Research supported in part by NSF grant CCF-1218093.

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 418–429, 2016.
DOI: 10.1007/978-3-662-49192-8 34

Probabilistic Autoreductions 419

the recursive setting. Ambos-Spies [1] translated the notion of autoreducibility
to the polynomial-time setting, and Yao [21] considered autoreducibility in the
probabilistic polynomial-time setting, which he called coherence.

More recently polynomial-time autoreducibilities, which correspond to poly-
nomial-time reductions, gained attention due to its candidacy as a structural
property that can be used in the “Post’s program for complexity theory” [5] that
aims at finding a structural/computational property that complete sets of two
complexity classes don’t share, hereby separating the two complexity classes.
Autoreducibility is believed to be possibly one of such properties that will lead
to new separation results in the future [3]. Autoreducibility certainly is also an
interesting topic in its own right as knowing whether a language is autoreducible
or not helps us better understand its computational complexity/structure. This
is especially valuable when the language is a complete set for a complexity class
for then autoreducibility of that language informs about the intrinsic computa-
tional properties that all languages in that class might have since they are all
reduced to the complete set [4].

During the past two decades or so many exciting results have been obtained
regarding autoreducibility of complete sets of common complexity classes. In
particular we know now that many-one/Turing complete sets for most natural
complexity classes including P, NP, Polynomial Hierarchy, PSPACE and EXP,
are many-one/Turing autoreducible [2,3,9]. We refer the reader to Glaßer et al.
[8] for a survey. There were also several more recent papers that investigate (non-)
autoreducibility of complete sets for high-complexity classes such as NEXP [16]
or more restricted reductions such as log-space reductions [11]. Most of those
results, however, concern only autoreducibilities under deterministic reductions.

In this paper we consider autoreducibilities under probabilistic reductions
and attempt to see whether and how the probabilistic counterparts of deter-
ministic autoreductions might exhibit different or similar behaviors. Towards
that goal we examined two common types of probabilistic reductions, the RP-
type reductions, which have one-sided errors on positive input instances only,
and BPP-type reductions, which have two-sided errors. We were able to prove
that complete sets for NP are autoreducible for the RP many-one reduction, the
RP-type probabilistic version of the common many-one reduction. This extends
the result by Glaßer et al. [9] that complete sets of NP are autoreducible for
the (deterministic) polynomial-time many-one reduction, to its RP-type prob-
abilistic counterpart. We also proved that all complete sets of classes in the
truth-table Polynomial Hierarchy, which is the polynomial hierarchy defined in
terms of the polynomial-time truth-table reductions instead of the general Tur-
ing reduction, are autoreducible for the BPP truth-table reduction, the BPP-type
probabilistic version of the common polynomial-time truth-table reduction. This
generalizes the result by Buhrman et. al. [3] that truth-table-complete sets for
NP are RP truth-table autoreducible to multiple classes of higher complexity
but for a weaker reduction (BPP reduction instead of RP reduction). Wagner
[20] introduced ΘP-levels to the standard Polynomial Hierarchy, which coincides
with the ΔP-levels in the truth-table Polynomial Hierarchy. Hence, our result

420 L. Zhang et al.

also indicates that all truth-table complete sets in the ΘP-levels are truth-table
autoreducible.

We give necessary definitions and notations in Sect. 2 and present our results
in Sects. 3 and 4.

2 Definitions and Notations

We assume familiarity with basic notions in complexity theory and particularly,
common complexity classes such as P, RP, NP, PH and BPP, and polynomial-
time reductions including many-one (≤p

m), truth-table (≤p
tt) and Turing reduc-

tions (≤p
T) [13,14]. Without loss of generality, we use the alphabet Σ = {0, 1}

and all sets we referred to are languages over Σ. We also use Turing machines and
algorithms interchangeably. Following Glaßer et al. [10], we define a non-trivial
set to be a set L where both L and L contain at least two distinct elements.
This allows us present our results in a simple and concise way. All reductions
used in this paper are polynomial-time computable unless otherwise specified.
A language L is complete for a complexity class C for a reduction r if every lan-
guage in C is reducible to L via r. For any algorithm A, we use A(x) to denote
both the execution and output of A on input x, i.e., “A(x) accepts” has the
same meaning as “A(x) = accept”. We use AB(x) for the similar meaning if the
algorithm/Turing machine A has oracle access to a set B.

We consider two types of probabilistic reductions, those with one-sided errors
on positive input instances only (RP-type) and those with two-sided errors
(BPP-type), that correspond to the common deterministic many-one and truth-
table reductions. The truth-table reduction is often also called non-adaptive Tur-
ing reduction in the literature.

Definition 1 [19]. Define a language A to be RP (randomized polynomial-
time) many-one reducible (≤rp

m) to a language B, if there exists a probabilistic
polynomial-time algorithm A and a polynomial q such that the following hold for
every x ∈ Σ∗:

– If x ∈ A, then Pr[A(x) ∈ B] ≥ 1
q(|x|) .

– If x �∈ A, then Pr[A(x) ∈ B] = 0.

Note that we cannot use a fixed polynomial or constant in the definition of
RP many-one reductions for otherwise the reduction will not be transitive.

Definition 2. Define a language A to be BPP (bounded-error probabilistic and
polynomial-time) truth-table reducible (≤bpp

tt) to a language B, if there exists a
probabilistic polynomial-time algorithm A with oracle access to B and a (deter-
ministically) polynomial-time computable function g such that the following hold
for every x ∈ Σ∗:

– On input x, g(x) outputs all queries A will make to B.
– If x ∈ A, then Pr[AB accepts x] ≥ 2

3 .
– If x �∈ A, then Pr[AB accepts x] ≤ 1

3 .

Probabilistic Autoreductions 421

Note that in the above definition Algorithm A is a Monte-Carlo algorithm
[6,15], i.e., always runs in polynomial time on all inputs regardless of the proba-
bilistic execution. In addition, Algorithm A on any fixed input makes the same
set of queries to B that can be computed from the input deterministically in
polynomial time by the function g. For the latter, we also say that algorithm A
has truth-table oracle access to the language B.

Using the standard probability amplification technique we immediately
obtain the following:

Corollary 1. A language A is BPP truth-table reducible to a language B if and
only if there exists a probabilistic polynomial-time algorithm A with truth-table
oracle access to B such that the following hold for every x ∈ Σ∗:

– If x ∈ A, then Pr[AB accepts x] ≥ 1 − 1
2|x| .

– If x �∈ A, then Pr[AB accepts x] < 1
2|x| .

With the above definition of the BPP truth-table reduction, the notion of
BPP truth-table hard sets can be defined accordingly, which will be used for the
proof of our results in Sect. 4.

Definition 3. A language A is BPP truth-table hard for a complexity class C
if every language B ∈ C is BPP truth-table reducible to A.

Again using the standard probability amplification technique we immediately
have the following:

Corollary 2. A language A is BPP truth-table hard for a complexity class C
if and only if for every language B ∈ C, there exists a probabilistic polynomial-
time algorithm A with truth-table oracle access to A that decides B with error
probability 2−n, where n is the input size.

Now that we have defined RP many-one reductions and BPP truth-table
reductions, the definition of the corresponding autoreductions follow straightfor-
wardly.

3 RP Many-One Autoreductions

In this section we extend the result by Glaßer et al. [9] that many-one complete
sets for NP are many-one autoreducible to the RP many-one reduction. Although
the overall proof strategy is similar to that of the previous result, the additional
part that argues why the adapted autoreduction output a correct value with the
desired probability is not trivial at all.

Theorem 1. If L is a non-trivial ≤rp
m -complete set for NP, then L is ≤rp

m -
autoreducible.

422 L. Zhang et al.

Proof. Let L be a nontrivial ≤rp
m -complete set for NP. Then there exist strings

a1 and a2 that belong to L, and b1 and b2 that belong to L. Let N be a non-
deterministic polynomial-time Turing machine that accepts L in time p(n) for
some polynomial p. Without loss of generality, we assume that all computation
paths of N are of length m = p(n) on inputs of length n. Define the following
“left-set” [17] for L:

left(L) = {〈x, u〉|x ∈ L, and there is an accepting path v of N on x where u ≤ v.}

Here ≤ represents the common dictionary order among strings. Clearly
left(L) ∈ NP. Hence, there is a RP many-one reduction f from left(L) to
L such that a polynomial q exists, where

– for every 〈x, y〉 ∈ left(L), Pr[f(〈x, y〉) ∈ L] ≥ 1
q(|x|) , and

– for every 〈x, y〉 �∈ left(L), Pr[f(〈x, y〉) ∈ L] = 0.

Now define a probabilistic polynomial-time computable function f ′ as follows:
On input 〈x, y〉, where |x| = n and |y| = p(n), run f on 〈x, y〉 for 2q(n) ln p(n)
times and output x if at least one of the 2q(n) ln p(n) runs of f outputs x, and
output z if otherwise, where z �= x is one of the outputs by the 2q(n) ln p(n) runs
of f .

Consider the following function g:

1 Input x
2 Let m ← p(|x|) and z ← f ′(〈x, 0m〉)
3 If z �= x then output z
4 If f ′(〈x, 1m〉) = x then
5 If N(x) accepts along the path 1m then
6 Output a string in {a1, a2} − {x}
7 Else
8 Output a string in {b1, b2} − {x}
9 Determine w of length m such that

f ′(〈x,w〉) = x �= f ′(〈x,w + 1〉) = y
10 If N(x) accepts along w then

output a string in {a1, a2} − {x}
11 Else
12 Run f ′ on 〈x,w + 1〉 again and yield output y′

13 Output y′ if y′ �= x, or {b1, b2} − {x} otherwise

Line 9 of the above function g can be executed in polynomial time since
f ′ is a polynomial-time computable function and a standard binary search can
be used to determine w as specified. Hence, the function g is polynomial-time
computable. It is also clear that g(x) always outputs a string s �= x. Now it
remains to show that L≤rp

m L via g.
Assume x �∈ L. Then for every w ∈ Σm, 〈x,w〉 �∈ left(L) and hence,

f(〈x,w〉) �∈ L. Therefore, the function g on input x outputs z = f ′(〈x,w〉) �∈ L
in line 3, or output a string not in L in either line 8 or line 13.

Probabilistic Autoreductions 423

Now assume x ∈ L. Let us define a computation path u (of length m) to be
good if Pr[f(〈x, u〉) = x] ≤ 1/2q(n), and bad otherwise. We immediately observe
the following claim:

Claim 1. For every u ∈ Σm and s = f ′(〈x, u〉),
i. if u is good, then

(a) Pr[s �= x] ≥ 1
2p(n) , and

(b) 〈x, u〉 ∈ left(L) ⇒ Pr[s ∈ L | s �= x] ≥ 1
r(n) for some polynomial r(n).

ii. if u is bad, then Pr[s = x] > 1 − 2
p(n) .

Due to space limit, we omit the proof of Claim 1. Now we consider the
following cases:

Case 1: 0m is good. Let z = f ′(〈x, 0m〉). By i(a) of Claim 1, we have Pr[z �=
x] ≥ 1

2p(n) . Hence, with probability at least 1
2p(n) the function g outputs z =

f ′(〈x, 0m〉) �= x in line 3. Furthermore, the probability that z ∈ L in this case is
Pr[z ∈ L | z �= x] ≥ 1/r(n) for some polynomial r, by i(b) of Claim 1. Therefore,
the function g outputs a string z ∈ L where z �= x with probability at least

1
2p(n) · 1

r(n) in case 1.

Case 2: Both 0m and 1m are bad. By ii of Claim 1,

Pr[f ′(〈x, 0m〉) = x] > 1 − 2
p(n)

, and

Pr[f ′(〈x, 1m〉) = x] > 1 − 2
p(n)

.

Hence, with probability at least (1− 2
p(n))

2 > 1− 4
p(n) the function g reaches

line 5. Since x ∈ L, it follows that 〈x, 1m〉 ∈ left(L) and so 1m is an accepting
path of N on x. Consequently g outputs in line 6 a string in {a1, a2} − {x}.
Therefore, the function g outputs a string in L that does not equal to x with
probability at least 1 − 4

p(n) in case 2.

Case 3: 0m is bad and 1m is good. By Claim 1 again, we have

Pr[f ′(〈x, 0m〉) = x] > 1 − 2
p(n)

, and

Pr[f ′(〈x, 1m〉) �= x] ≥ 1
2p(n)

.

Hence, with probability at least (1 − 2
p(n))

1
2p(n) function g reaches line 9.

Note that using a standard binary search to determine a string w ∈ Σm, where
f ′(〈x,w〉) = x and f ′(〈x,w + 1〉) �= x, requires computing f ′(〈x, u〉) for m − 1
strings u in Σm in addition to 0m and 1m. We denote those strings by u1, . . . ,
um−1 and also let u0 = 0m and um = 1m. Now consider the following statement
Si for each i ∈ {0, 1, . . . ,m}:

Si : ui is bad ⇒ f ′(〈x, ui〉) = x.

424 L. Zhang et al.

Assume that the execution of g has reached line 9. Then f ′(〈x, u0〉) = x
and f ′(〈x, um〉) �= x as computed in line 2 and 4 of function g, respectively.
Hence, both S0 and Sm hold since u0 is bad and um is good. Now for each
i ∈ {1, . . . , m−1}, let zi = f ′(〈x, ui〉). Then Statement Si fails with the following
probability:

Pr[Si] = Pr[zi �= x and ui is bad] ≤ Pr[zi �= x | ui is bad] <
2

p(n)
.

Therefore, all Si’s hold with probability at least (1−2/p(n))p(n)−1 ≥ 1/(2e2).
Now assume that all Si’s hold. Let w be the string determined in line 9 of
function g. If w is an accepting path of N on x, then function g output a
string in L − {x} in line 10. Otherwise, it holds that 〈x,w〉 ∈ left(L) since
f ′(〈x,w〉) = x ∈ L, and hence it must be the case that 〈x,w + 1〉 ∈ left(L).
Also, w+1 must be good since f ′(〈x,w+1〉) �= x. Thus, for the string y′ produced
in line 12, Pr[y′ ∈ L | y′ �= x] ≥ 1

r(n) for some polynomial r by i(b) of Claim 1.
It follows in this case that the function g outputs a string in L that does not
equal x with probability at least that all the following events occur:

– The function g reaches line 9,
– All statements Si hold for i ∈ {0, 1, 2, . . . ,m}, and
– The function g outputs a correct string in line 10 or line 13 given that the

string w + 1 determined in line 9 is good.

By our previous discussion, the probability referred to above is at least

((1 − 2
p(n)

)
1

2p(n)
) · 1

2e2
· ((1 − 1

2q(n)
)

1
r(n)

) ≥ 1
16e2p(n)r(n)

.

We have shown in all cases that the function g on an input x ∈ L produces
a string y �= x where y ∈ L with probability no less than 1

q′(n) for some polyno-
mial q′(n). This finishes the proof of Theorem1.
�

We believe that similar results to Theorem 1 would hold for RP versions of
those reductions such as 1-tt and dtt, as well as for RP many-one complete sets
of all the complexity classes as listed in Glaßer et al. [9] for which determinis-
tic autoreducibilities of complete sets have been proved. However, we have not
considered all the proof details for those sets yet.

4 BPP Truth-Table Autoreductions

In this section we consider BPP truth-table reductions. We prove that complete
sets of classes in the truth-table Polynomial Hierarchy (PHtt), which is defined
below, are autoreducible for the BPP truth-table reductions. This generalizes
the result by Buhrman et. al. [3] that truth-table complete sets for NP are prob-
abilistically (in fact, RP) truth-table autoreducible.

Given a complexity class C, we use Ptt[C] (NPtt[C]) to denote the class of
languages decidable by a (nondeterministic) polynomial-time Turing machine
with truth-table oracle access to a language in C.

Probabilistic Autoreductions 425

Definition 4.
ΣP,tt

0 = ΠP,tt
0 = ΔP,tt

0 = P

For k ≥ 1,
ΣP,tt

k = NPtt[ΣP,tt
k−1],

ΠP,tt
k = coΣP,tt

k = {L | L ∈ ΣP,tt
k }, and

ΔP,tt
k = Ptt[ΣP,tt

k−1]

PHtt =
⋃

k≥0

ΣP,tt
k =

⋃

k≥0

ΠP,tt
k

Clearly, PHtt as defined above is the same as the standard PH except thats
truth-table reductions are used instead of the general Turing reductions.

Towards of the goal of proving the main result of this section, we first observe
that Valiant and Vazirani’s result [19] can be extended to relativized CNF for-
mulas in a straightforward manner.

Definition 5 [7]. For any language A, a CNF formula relative to A, φA, is a
CNF formula with each clause of the following form

xi1 ∨ xi2 · · · ∨ xiu ∨ yi1 ∨ yi2 ∨ · · · ∨ yiv ,

where xij ’s are literals, and each yij is a predicate of the form A(w) or A(w)
for some string w consisting of literals, 0’s, 1’s and other predicates of the form
A(w′) or A(w′).

Definition 6. A relativized formula is a formula truth-table relative to a lan-
guage A, φtt[A], if the following conditions hold:

1. φtt[A] is of the form xi1 ∧ xi2 ∧ · · · ∧ xik ∧ TRUE ∧ F , where xi1 , xi2 , . . . , xik

are literals and F is a formula relative to A.
2. Every variable appearing inside the predicate A in F does not appear outside

predicate A unless it is one of those xij ’s (1 ≤ j ≤ k) or its negation as stated
in 1.

If a CNF formula φ is one relative to some language A, we also say that φ is
a relativized (CNF) formula. In case φ is truth-table relative to to A, φ is also
called a truth-table relativized (CNF) formula, or simply truth-table formula.

Note that in order to satisfy a truth-table formula xi1 ∧ xi2 ∧ · · · ∧ xik ∧
TRUE ∧ F , all xij ’s must be true. This induces a polynomial-time algorithm
that on a truth-table relativized formula φtt[A], outputs all queries to A that are
needed for evaluating φtt[A] under a satisfying assignment and do not depend on
any particular assignment of φtt[A].

With the above definitions, we say that a relativized formula φA is satisfiable
if φA(a) evaluates to true for some assignment a, where for each occurrence of a
predicate A(w), A(w) = 1 if and only if w ∈ A with the value of w determined by
a and values of other predicates of the form A(u) that appears in w. In addition,

426 L. Zhang et al.

we say that φA has a unique satisfying assignment a if φA(a) evaluates to true
and for every other a′ where φA(a′) is true, a and a′ coincides on variables
appearing outside of the predicate A.

Definition 7. We define the following languages.

– SAT is the set of satisfiable CNF formulas.
– SATA (SATtt[A]) is the set of satisfiable CNF formulas (truth-table) relative

to A.
– USATA (USATtt[A]) is the set of CNF formula (truth-table) relative to A that

have unique satisfying assignments.

Let NPA (NPtt[A]) denote the class of languages decidable by nondetermin-
istic polynomial-time Turing machines with (truth-table) oracle A. Goldsmith
and Joseph [12] proved that for every language A, SATA is complete for NPA via
a many-one reduction that does not use any oracle. A straightforward adaption
of their proof yields a similar result for SATtt[A].

Lemma 1. For any language A, SATtt[A] is complete for NPtt[A] via a many-
one reduction that does not use any oracle.

Theorem 2 [19]. SAT is reducible to USAT via a RP many-one reduction r
such that r(φ) �∈ SAT with probability 1 if φ �∈ SAT, and r(φ) ∈ USAT with
probability at least 1/(4|φ|) otherwise.

Note that the proof of Theorem 2 is relativizable and hence we observe the
following corollary immediately.

Corollary 3. For any language A, SATtt[A] is reducible to USATtt[A] via a
RP many-one reduction r such that r(φ) ∈ SATtt[A] with probability 1 if φ ∈
SATtt[A], and r(φ) ∈ USATtt[A] with probability at least 1/(4|φ|) if φ ∈ SATtt[A].
In addition, the reduction r does not use any oracle or change w for each occur-
rence of A(w) or A(w) in φ.

Buhrman et al. [3] proved that truth-table complete sets for NP are autore-
ducible for the RP truth-table reductions. The key element of the proof is
a probabilistic algorithm that utilizes Theorem2 and decides the satisfiability of
a CNF formula with oracle access to a truth-table complete set for NP where
a particular query is avoided. With Corollary 3, we are able to prove a result
similar to Buhrman et al.’s for all complete sets in PHtt.

Our proof uses the following languages consisting of relativizable proposi-
tional formulas.

Definition 8.

– SAT(1),tt = SAT. For every k ≥ 2, SAT(k),tt = SATtt[SAT(k−1),tt] .
– USAT(1),tt = USAT. For every k ≥ 2, USAT(k),tt = USATtt[SAT(k−1),tt].
– F(1) = F(1),tt is the set of CNF propositional formulas. For every k ≥ 2.

Probabilistic Autoreductions 427

– F(k) (F(k),tt) is the set of CNF propositional formulas (truth-table) relative to
SAT(k−1),tt.

Theorem 3. For every k ≥ 1 and every BPP truth-table hard set Lk for ΣP,tt
k ,

there is a probabilistic algorithm Ak that on input 〈φ, y, 0n〉 runs in polynomial
time in |φ| and n, where φ ∈ F(k),tt, and decides the satisfiability of φ with error
probability at most 2− max(n,|φ|). In addition, Ak makes only truth-table queries
to Lk and does not query on y.

Proof. We prove the theorem by induction. Theorem 4.10 in Buhrman et al. [3]
essentially established the proof for the base case k = 1.

Now we prove the induction step. Let L be a BPP truth-table hard set
for ΣP,tt

k where k > 1. Clearly, L is also BPP truth-table hard for ΣP,tt
i for

1 ≤ i ≤ k − 1. Let A1,A1, · · · ,Ak−1 be the probabilistic algorithms that satisfy
the properties as stated in the lemma for 1 ≤ i ≤ k − 1 and use L as the oracle.

Define

T =
{

〈φ, 0i〉
∣
∣
∣

φ ∈ SAT(k),tt has a satisfying assignment
where the i-th variable is true.

}

Since T ∈ ΣP,tt
k , there is a BPP truth-table reduction g from T to L. Now

let r be the RP many-one reduction of SAT(k),tt to USAT(k),tt as stated in
Corollary 3. Hence, if φ ∈ SAT(k),tt, then r(φ) ∈ USAT(k),tt with probability at
least 1/4|φ|. Also, r(φ) ∈ SAT(k),tt with probability 1 if φ ∈ SAT(k),tt.

Consider the following algorithm B:

1 Input 〈φ, y, 0n〉
2 If φ �∈ F(k),tt, REJECT
3 ψ := r(φ)
4 Use g to determine the memberships of 〈ψ, 0i〉 in T for

1 ≤ i ≤ m, where m is the number of variables in ψ,
with oracles L − {y} and L ∪ {y}, respectively.

5 Let a0 and a1 be the two assignments induced by the two
sets of memberships of 〈ψ, 0i〉 in T, respectively,
as determined in Line 4.

6 Evaluating ψ(a0) and ψ(a1) by calling Ak−1 on

〈q, y, 0max(|φ|,n)〉 for each membership query SAT(k−1),tt(q).
7 If the above ψ(a0) or ψ(a1) evaluate to true, ACCEPT.
8 REJECT.

We again omit some part of the proof here due to space limit, but just state
that one can show that the algorithm B has the following properties on input
〈φ, y, 0n〉:

– runs in polynomial time in |φ| and n,
– makes nonadaptive queries only to L, none of which is y,
– accepts φ with probability at most ε1 if φ �∈ SAT(k),tt, and

428 L. Zhang et al.

– accepts φ with probability at least ε2 if φ ∈ SAT(k),tt,
– where ε1 = o(1/max(|φ|, n)) and ε2 = Ω(1/max(|φ|, n)) for sufficiently large

φ and n.

Then we use the standard amplification technique to obtain an algorithm Ak

that consists of multiple runs of B′ and has the error probability as stated in the
lemma.
�
Corollary 4. Every BPP truth-table-complete set of every class in PHtt is BPP
truth-table autoreducible.

Proof. The corollary is trivially true for ΣP,tt
0 = ΠP,tt

0 = ΔP,tt
0 = P since every

language in P can be decided by a deterministic polynomial-time Turing machine
without any oracle access.

Now let La be a BPP truth-table-complete set for ΣP,tt
k for k ≥ 1. Then

La reduces to SAT(k),tt via a many-one reduction f that does not use any ora-
cle. Now let Ak be the probabilistic polynomial-time algorithm as stated in
Theorem 3 that makes nonadaptive queries to La. Consider the following algo-
rithm Aa: On input x, compute φ = f(x). Then run Ak on 〈φ, x, 0|x|〉 and
accept if and only if Ak accepts. It is not hard to show that Aa is a BPP
truth-table autoreduction for La. It also follows immediately that a BPP truth-
table-complete set Lb for ΠP,tt

k is BPP truth-table autoreducible since Lb is a
BPP truth-table-complete set for ΣP,tt

k and a set is autoreducible if and only if
the complement of the set is autoreducible for the same reduction.

Now consider a BPP Truth-table-complete set Lc for ΔP,tt
k for k ≥ 1. Then

there exists a deterministic polynomial-time Turing machine M that decides
Lc with truth-table oracle access to SAT(k−1),tt. Let Ak−1 be the probabilis-
tic polynomial-time algorithm as stated in Theorem 3 that makes nonadaptive
queries to Lc. Now consider the following algorithm Ac: On input x, run M on x
and resolve each query on q by running Ak−1 on 〈q, x, 0|x|〉; accept x if and only
if M accepts x. Using the properties that Ak−1 has according to Theorem 3 we
can show that Ac is a BPP truth-table autoreduction for Lc.
�

Wagner [20] defined the ΘP-levels by ΘP
0 = P and ΘP

k+1 = LΣP
k , where L

denotes a log-space oracle Turing machine, and recommended including ΘP-
levels in the standard PH. He also proved for every k ≥ 1 that ΘP

k = Ptt[ΣP
k−1] =

ΔP,tt
k . Hence, we immediately have the following corollary.

Corollary 5. For every k ≥ 0, every truth-table complete set for each class in
ΘP

k is probabilistically truth-table autoreducible.

References

1. Ambos-Spies, K.: On the structure of the polynomial time degrees of recursive sets.
Habilitationsschrift, Zur Erlangung der Venia Legendi Für das Fach Informatik an
der Abteilung Informatik der Universität Dortmund, September 1984

Probabilistic Autoreductions 429

2. Beigel, R., Feigenbaum, J.: On being incoherent without being hard. Comput.
Complex. 2(1), 1–17 (1992)

3. Buhrman, H., Fortnow, L., van Melkebeek, D., Torenvliet, L.: Using autoreducibil-
ity to separate complexity classes. SIAM J. Comput. 29(5), 1497–1520 (2000)

4. Buhrman, H., Torenvliet, L.: On the structure of complete sets. In: Proceedings
9th Structure in Complexity Theory, pp. 118–133 (1994)

5. Buhrman, H., Torenvliet, L.: A post’s program for complexity theory. Bull. EATCS
85, 41–51 (2005)

6. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 3rd
edn. The MIT Press, Cambridge (2009)

7. Fortnow, L.: The role of relativization in complexity theory. Bull. Eur. Assoc.
Theor. Comput. Sci. 52, 52–229 (1994)

8. Glaßer, C., Ogihara, M., Pavan, A., Selman, A., Zhang, L.: Autoreducibility and
mitoticity. ACM SIGACT News 40(3), 60–76 (2009)

9. Glaßer, C., Ogihara, M., Pavan, A., Selman, A.L., Zhang, L.: Autoreducibility,
mitoticity, and immunity. J. Comput. Syst. Sci. 73, 735–754 (2007)

10. Glaßer, C., Pavan, A., Selman, A., Zhang, L.: Splitting NP-complete sets. SIAM
J. Comput. 37(5), 1517–1535 (2008)

11. Glaßer, C., Witek, M.: Autoreducibility and mitoticity of logspace-complete sets for
NP and other classes. In: Proceedings 39th International Symposium on Mathemat-
ical Foundations of Computer Science, part II, pp. 311–323. Budapest, Hungary,
August 2014

12. Goldsmith, J., Joseph, D.: Three results on the polynomial isomorphism of com-
plete sets. In: Proceedings of the 27th IEEE Symposium on Foundations of Com-
puter Science, pp. 390–397. IEEE, New York (1986)

13. Hemaspaandra, L., Ogihara, M.: The Complexity Theory Companion. Springer,
Berlin (2002)

14. Homer, S., Selman, A.: Computability and Complexity Theory. Texts in Computer
Science, 2nd edn. Springer, New York (2011)

15. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

16. Nguyen, D., Selman, A.: Non-autoreducible sets for NEXP. In: Proceedings 31st
Symposium on Theoretical Aspects of Computer Science, pp. 590–601. LIPICS,
Lyon, France, March 2014

17. Ogiwara, M., Watanabe, O.: On polynomial-time bounded truth-table reducibility
of NP sets to sparse sets. SIAM J. Comput. 20(3), 471–483 (1991)

18. Trakhtenbrot, B.: On autoreducibility. Dokl. Akad. Nauk SSSR 192(6), 1224–1227
(1970). (translation in Soviet Math. Dokl. 11(3), 814C817 (1790))

19. Valiant, L., Vazirani, V.: NP is as easy as detecting unique solutions. Theoret.
Comput. Sci. 47, 85–93 (1986)

20. Wagner, K.: Bounded query classes. SIAM J. Comput. 19(5), 833–846 (1990)
21. Yao, A.: Coherent functions and program checkers. In: Proceedings of the 22nd

Annual Symposium on Theory of Computing, pp. 89–94 (1990)

Software Engineering: Methods, Tools,
Applications (Regular Papers)

ABS: A High-Level Modeling Language
for Cloud-Aware Programming

Nikolaos Bezirgiannis(B) and Frank de Boer

Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
{n.bezirgiannis,f.s.de.boer}@cwi.nl

Abstract. Cloud technology has become an invaluable tool to the IT
business, because of its attractive economic model. Yet, from the pro-
grammers’ perspective, the development of cloud applications remains a
major challenge. In this paper we introduce a programming language that
allows Cloud applications to monitor and control their own
deployment. Our language originates from the Abstract Behavioral Spec-
ification (ABS) language: a high-level object-oriented language for
modeling concurrent systems. We extend the ABS language with Deploy-
ment Components which abstract over Virtual Machines of the Cloud
and which enable any ABS application to distribute itself among mul-
tiple Cloud-machines. ABS models are executed by transforming them
to distributed-object Haskell code. As a result, we obtain a Cloud-aware
programming language which supports a full development cycle including
modeling, resource analysis and code generation.

1 Introduction

The IT industry, always looking for cutting operational costs, has been increas-
ingly relying on virtualized resources offered by the “Cloud”. Besides being more
economically attractive, the Cloud can allow certain software to benefit in secu-
rity and execution speed. For these reasons, software applications are steadily
being migrated to run on virtualized hardware, essentially turning cloud com-
puting into a hot topic among the software community.

Recent research has led to numerous methodologies, tools, and technologies
being proposed to help the migration and execution of software in the cloud,
ranging from (static) configuration management tools to (live) orchestration
middleware, and from simple resource monitoring services to the dynamic (elas-
tic) provisioning of resources. Unfortunately, the (so-called) DevOps engineers
are now burdened with developing and maintaining an extra logic for such cloud
tools, besides the usual application logic. These cloud tools may be best described
as semi-automatic and it is often the case that an engineer has to manually inter-
vene to apply the desired configuration & deployment of a cloud application.

These cloud applications are migrated unchanged: monolithic boxes of code
which are transferred from a non-cloud setting to the new cloud environment

Partly funded by the EU project FP7-610582 Envisage. This work was carried out
on the Dutch national e-infrastructure with the support of SURF Foundation.

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 433–444, 2016.
DOI: 10.1007/978-3-662-49192-8 35

http://www.envisage-project.eu
http://www.surf.nl

434 N. Bezirgiannis and F. de Boer

by the DevOps engineers. Such separation of the application from its execu-
tion is traditionally believed to be an advantage, long before Cloud came to
existence. However, one would expect that with the introduction of the virtu-
alized (dynamic) hardware of the Cloud, and since software logic is inherently
dynamic, an application could “become aware” and leverage its own execution
for managing its cloud resources & deployment in an optimal way, and without
the constant administering of an engineer.

In this paper, we aim to address the challenges of engineering cloud appli-
cations by introducing a “cloud-aware” programming language that provides
certain high-level abstractions for unifying the application logic together with
its deployment logic in a single integrated environment, while in the same-time,
hiding any lower-level hardware and cloud-provider considerations. The language
is intended for DevOps engineers and (potentially) computational scientists who
are responsible for both the development and execution of software residing in
the Cloud but would rather focus more on the application’s logic than manage
continuously its deployment. Applications written in the proposed language are
christened “cloud-aware” in the sense that they can actively monitor and control
their own deployment.

The proposed language is based on the Abstract Behavioral Specification lan-
guage (ABS), a formally-specified, object-oriented modeling language that has
been used for both analyzing [1], verifying ([8]), and simulating [5] software
programs, as well as running them in production through the various backends
developed (currently targeting Java, Erlang, and Haskell). We extend ABS with
Deployment Components that serve as a suitable abstraction over Cloud Virtual
Machines and which allow the application to distribute itself among multiple
(provider-agnostic) computing systems. The ABS developer writes code that
can dynamically create, monitor and shutdown such Deployment Components
(Virtual Machines) and most importantly bring up new objects inside them.
To this end, an ABS cloud-application forms a cloud-aware distributed-object
system, which consists of a number of inter-VM objects that communicate asyn-
chronously, while recording any failures that may happen in the cloud.

An implementation of this extension must be efficient and safe so that it can
be put in production code. For this, the Haskell backend of ABS is chosen for
translating ABS code to Haskell intermediate code, which is again typechecked
and transformed to an executable by an external Haskell compiler. We augment
this backend with support for Cloud-Haskell, a framework for type-safe, fault-
tolerant distributed programming in the Haskell ecosystem. The implementation,
although in its infancy, is already being tested in a real cloud environment,
exhibiting promising results which are also presented.

2 ABS Language and its Cloud Extension

The ABS (for “Abstract Behavioral Specification language”) [5] is a statically-
typed, executable modeling language with formal operational semantics. The
language consists of a purely-functional programming core and an imperative,

ABS: A High-Level Modeling Language 435

object-oriented layer. The syntax and behaviour resembles that of Java with
two clear differences: side-effectful code cannot be mixed with pure expressions,
and class inheritance is abolished in favour of code reuse via delta models [3].
ABS adds, next to the Java-like (passive) objects, builtin support for active
(concurrent) objects coupled with cooperative scheduling.

The functional core provides a declarative way to describe computation
which abstracts from possible imperative implementations of data structures.
The primitive types (Int and Rational) can be extended with (possibly recursive)
algebraic data types (ADTs) (e.g. data Bool = True | False) that can exhibit
parametric polymorphism (List < A >) and Hindley-Milner type inference. Pure
expressions are formed by successive λ-let abstractions and applications over
values of the defined datatypes (let x = 3 in x > 2 || True). Function definitions
associate a name to a pure expression which is evaluated in the scope where the
the expression’s free variables are bound to the function’s arguments. The func-
tional core supports pattern matching with a case-expression which matches a
given expression against a list of branches.

The imperative layer specifies the interlaced control flow of the concurrent
objects in terms of communication, synchronization, and internal computation.
This layer extends the functional core (datatype and function definitions) with
interface definitions, class definitions, and a main block. Interfaces declare a set
of method names to their type-signatures. An interface extends other inter-
faces, in this case inheriting the methods of of its super-interfaces. A class defin-
ition declares its (private-only) attributes and a set of interfaces it implements.
Method implementation bodies are comprised of statements of standard sequen-
tial composition s; s, assignment x = rhs, conditionals, while-loops, and return.
Statements can mutate private attributes of the current class, locally-defined
variables, and the method’s formal parameters. The read-only variable this eva-
luates to the object in which computation occurs. A program’s main block is a
special method body with no this associated object. Classes are not types and
used only to create object instances that instead are typed-by-interface. Note
that interfaces support subtype polymorphism while ensuring strong encapsula-
tion of implementation details.

Methods calls are either synchronous (v = obj.method(args);) where the
statement is blocked until the method has finished with result v, or asynchro-
nous (f = obj!method(args);) where the statement returns immediately with
a future f (with type Fut < A >), without waiting for the method’s completion.
Each asynchronous method call creates a new process which will eventually store
the result of the method call into the future reference. The caller can use this
future reference to retrieve the result by calling the blocking statement v =
f.get;. Objects may form a so-called Concurrent Object Group (COG), where
objects (and their processes) share the same thread of control: at each point
in time, only one process of the COG is executing. This process may decide to
willfully pass control to another same-group process, by waiting until a future is
ready (await f?;) or a boolean expression is met (await exp;). ABS does not
specify any concrete policy for this cooperative scheduling of processes; it is left
to the particular implementation (backend) to decide.

436 N. Bezirgiannis and F. de Boer

2.1 Extending to the Cloud

We extend the ABS language with syntactic and library support for Deploy-
ment Components. A Deployment Component (DC), first described in [7], is “an
abstraction from the number and speed of the physical processors available to
the underlying ABS program by a notion of concurrent resource”. Simply put, a
DC corresponds to a single (properly-quantified) Virtual Machine which executes
ABS code. We restrict the definition of DC to correspond only to a Platform
Virtual Machine (VM) residing inside the boundaries of a Cloud infrastructure.
Multiple inter-communicating VMs effectively form an ABS cloud application.

To be able to programmatically (at will) create and delete VMs in any lan-
guage, would require modeling them as first-class citizens of that language. As
such, we introduce DCs as first-class citizens to the already-existing language of
ABS in the least-intrusive way: by modeling them as objects. All created DC
objects are typed by the interface DC. Minimal implementation for the methods
of the DC interface are shutdown for shutting down and releasing the cloud
resources of a virtual machine, and load for probing its average system load,
i.e. a metric for how busy the underlying computing-power stays in a period of
time. We use the Unix-style convention of returning 3 average values of 1, 5 and
15 min. The DC interface resides in the augmented standard library:

module StandardLibrary.CloudAPI;

interface DC {

Unit shutdown();

Triple <Rat ,Rat ,Rat > load();

}

By having a common DC interface the different cloud backends can agree
on a basic service, while still being able to provide additional functionality
through sub-interfaces and distinct DC-interfaced classes. Each DC-interfaced
class implements the connection to a distinct cloud provider (e.g. Amazon,
OpenStack). A code skeleton of such a class follows, where the DC (VM) is
parameterized by the number of CPU cores and main RAM memory:

module StandardLibrary.SomeProvider;

data CpuSpec = Micro | Small | Large;

data MemSpec = GB(Int) | MB(Int);

class SomeProvider (CpuSpec c,MemSpec m) implements DC {

Unit shutdown() { /* omitted */ }

Triple <Rat ,Rat ,Rat > load() { /* omitted */ }

}

The implementor can expose other properties to DCs, such as, network, num-
ber of IO operations, VM region location. A concrete implementation, which is
omitted for brevity, usually involves some high-level ABS logic coupled with
low-level code written in a foreign language (in our case Haskell). The average
ABS user will not have to provide such connections to the cloud, since we (the

ABS: A High-Level Modeling Language 437

implementors) intend to provide class implementations for most major cloud
providers/technologies, in an accompanying ABS library. With this approach,
we lift the low-level API of the cloud provider (usually XML-RPC) to a typed
high-level API (e.g. CpuSpec and MemSpec datatypes).

Moving on, we create an object of the SomeProvider class by passing the num-
ber of cores and memory measured in GBs as class’ formal parameters. The call
to “new SomeProvider” contacts the specific cloud provider in the background
for bringing up a new VM instance. The provider responds with a unique identi-
fier (commonly the public IP address of the created VM) which is stored in the
DC object. Finally, the machine is released by calling shutdown(), making the
DC object point to null.

DC dc1 = new SomeProvider(Large , GB(8));

_ future_l1 = dc1 ! load();// underscore infers the type

_ l1 = future_l1.get;

dc1 ! shutdown ();

The creation of a DC object reference is usually fast, since it involves a single
network communication between the current ABS node and the cloud provider.
Still, the underlying VM requires considerably more time to boot up and be
responsive, depending on factors such as provider’s availability, congestion and
hardware. To address this, we allow the creation of new dc objects to continue,
but we require the program to potentially block when executing the first opera-
tion of the newly-created DC, as shown in the example:

DC mail_server = new Amazon (..);

DC web_server = new Azure (..);

DC db_server = new Rackspace (..);

mail_server!load(); // will block if DC is not up yet

Similar to this identifier, a method context contains the thisDC read-only
variable (with type DC) that points to the VM host of the current executing
object. A running ABS node can thus control itself (or any other nodes), by
getting its system load or shutting down its own machine. However, after its
creation, a running ABS node will remain idle until some objects are creat-
ed/assigned to it. The spawns keyword is added to create objects that “live”
and execute in a remote DC:

Interf1 o1 = dc1 spawns Cls1(args ..);

o1 ! method1(args ..);

this.method2(o1);

The spawns behaves similar to the new keyword: it creates a new object
(inside a new COG), initializes it, and optionally calls its run method. Indeed, the
expression new Cls1(params) is equivalent to thisDC spawns Cls1(params).
The keyword spawns returns a remote object reference, (also called a proxy
object; o1 in the above example) that can be called asynchronously for its meth-
ods and passed around as a parameter. Every remote object reference is a single
“address” uniquely identified across the whole network of nodes. Calls to spawns
will also (besides shutdown, load) block a until the VM is up and running. From

438 N. Bezirgiannis and F. de Boer

a theoretical standpoint, a remotely-spawned object must point to the same code
(attributes and methods) as in a local object; a remark that is reinforced in the
Subsect. 3.1.

Whereas the development of ABS code is by-definition provider-dependent
— the user has to explicitly specify the class of the cloud provider —, the com-
munication and interaction between the spawned remote objects is (in principle)
provider-agnostic. To this extent, an ABS user could write an ABS cloud appli-
cation that spans over multiple cloud providers and, most importantly, different
cloud technologies.

Cloud Failures. In cloud computing, and in any distributed system in gen-
eral, failures are more frequent, mostly because of unreliable networks. Based
on this fact, we further extend ABS with proper support for extensible, asyn-
chronous exceptions. At the language level, exceptions are pure expressions
modeled as single-constructor values of the ADT Exception. To define new
exceptions the user writes a declaration similar to an ADT declaration, e.g.
exception MyException(Int, List < String >);. Our cloud extension prede-
fines certain common “local” exceptions (e.g. NullPointerException, Division-
ByZeroException) and cloud-related exceptions (e.g. NetworkErrorException,
DCAllocationException, DecodingException).

Exception values are either implicitly raised by a primitive operation (e.g.
DivisionByZeroException) or explicitly signaled using the throw keyword. To
recover from exceptions the user writes a try/catch/finally block as in Java,
the only difference being that the user can pattern-match on each catch-clause
for the exception-constructor arguments. Normally, if an exception reaches the
outermost caller without being handled, its process will stop. We introduce a
special built-in keyword named die that changes this behaviour and causes an
object to be nullified and all of its processes to stop. With this in hand, a
distributed application can easily model objects that can be remotely killed:

interface Killable { Unit kill(); }

class K implements Killable { Unit kill() { die; } }

Killable obj = dc1 spawns K();

obj ! kill();

Exceptions originating from asynchronous method calls are recorded in the
future values and propagated to their callers. When a user calls “future.get;”,
an exception matching the exception of the callee-process will be raised. If on
the other hand, the user does not call “future.get;”, the exception will not be
raised to the caller node. This design choice was a pragmatic one, to allow for
fire-and-forget method calls versus method calls requiring confirmation. In our
extension, we name this behaviour “lazy remote exceptions”, analogous to lazy
evaluation strategy.

3 Implementation

For the implementation, we rely on our abs2haskell backend/transcompiler.
Haskell is a statically-typed, purely-functional language and, as such, it becomes

ABS: A High-Level Modeling Language 439

straightforward to translate the ABS’ functional core to Haskell. In the impera-
tive layer, we model interfaces as Haskell’s typeclasses, objects as references to
mutable data (IORef in the Haskell world), and futures as synchronizing vari-
ables (MVar in Haskell). Nominal subtyping is achieved through an upcasting
typeclass. An alternative would be to encode OO using extensible records [6],
although this method widens the spectrum to structural subtyping.

At runtime, each COG becomes a Haskell lightweight thread (with SMP
parallelism). The COG-thread holds a process-enabled queue, a process-disabled
table, and a local mailbox. Upon an asynchronous method call, a new process is
created and put in the end of the process-enabled queue; note that processes are
not threads, they are coroutines (first-class continuations) and thus can be stored
as data. The COG resumes the next process from the queue until it reaches an
await (on a future or a condition), where the process is suspended and moved to
the process-disabled table. Later, another process informs the COG (by writing
to its mailbox) that the await-condition is met; the COG will move back the
process to the enabled queue. This strategy avoids busy-wait polling the await
conditions of processes.

Moving on to distributed programming, we extend our backend with layered
support for Cloud-Haskell [4], a framework for Haskell that replicates Erlang’s
concurrency & distribution model (message passing) but in a type-safe manner.
We reuse the network transports and serialization protocols defined in Cloud
Haskell for the ABS transmitted data between Virtual Machines. Each COG-
thread is accompanied with a separate Cloud-Haskell thread (also lightweight)
that listens for messages in public mailbox and forwards them to the local mail-
box of its associate COG-thread. This approach was chosen to firstly, avoid need-
less network-serialization between local communication and secondly, treat our
distributed extension as optional to our (previously SMP-only) haskell backend.

Serialization. ABS data have to be serialized to a standard format before trans-
mitting them between DCs. The serialization of values of primitives and algebraic
datatypes are automatically done by Haskell. We serialize object/future refer-
ences to proxy references by serializing their Cloud-Haskell thread ID (network-
unique) together with a COG-unique ID, and leaving out their actual attribut-
es/future results. Each asynchronous method call is serialized to a static closure,
i.e. a static code-pointer to the method (known at compile-time and platform-
independent) and a serialized environment of its free variables (method argu-
ments and local variables). No kind of code (source-, byte- or machine-code)
corresponding to the method body is transferred. All described-above serializa-
tions are type-safe and version-safe, in the sense that we include next to the
payload of an ABS datum, its serialized type signature and the library-versions
of any types involved; thus, we avoid decoding bugs because of type and library-
version mismatches.

Garbage Collection. In a local-only setting, all ABS-based values, i.e. ADTs,
futures, objects are automatically garbage-collected by the underlying Haskell
GC. However, in our distributed setting some object/future references may have

440 N. Bezirgiannis and F. de Boer

to be transmitted outside as proxy references, which results to the local ABS
system garbage-collecting “too-early”. An obvious solution would be to abolish
automatic GC altogether, but that would hinder the development of software
applications, especially those supposed to be long-running (as is the norm in
cloud applications). On the other hand, introducing distributed garbage collection
to ABS would allow both local and remote objects to be automatically GC’ed.
The downside is that the user can no longer reason about the GC-incurred per-
formance penalty which may be considerable. We chose a middleground where
objects are by default GC-enabled and only become disabled when they are
remotely communicated over (to another DC). The implementation has been
straight-forward: a process appends the local object reference(s) that are trans-
mitted remotely to a locally-held list of GC-disabled objects. This global list is
held during the lifetime of the node, effectively surpassing the Haskell’s garbage
collector underneath. Our design choice was based on best practice; we believe
that a distributed cloud ABS application of many DCs would contain a combi-
nation of a lot of local ephemeral objects, yet a few long-lived remote objects.

DCs, being special objects, are treated differently: when falling out of context
they are automatically GC’ed. That does not mean that the attached VM is
shut down. The user that wants to shutdown a DC but holds no reference to
it anymore, has to contact a remote object residing there to return a reference
to the DC (with thisDC), or to shut it down on user’s behalf. If the executing
program holds (now and in the future) no reference to a DC and its objects, we
consider its VM unreachable and fallen out of scope of the ABS application.

Futures are garbage-collected in a publish-subscribe pattern: the caller of an
asynchronous method is a subscriber, while the callee is the publisher. When
the callee has finished computing the future, it “pushes” the resulted value to its
caller (the direct subscriber) and may now locally garbage-collect that value. A
subscriber that “passes over” a remote future reference to other nodes becomes
an intermediate broker with the responsibility to later also “push” that future
value to all others before it is allowed to locally garbage-collect it. This forwarding
strategy avoids unnecessary tracking and network communication between the
initial node and all (directly and indirectly) subscribed nodes.

Cloud Architecture. When creating a new DC, a cloud provider is on the back-
ground contacted (usually via an XML-RPC API) and asked to bring up a new
VM with the given characteristics. After the machine has booted, the caller repli-
cates itself (the current ABS application) by transmitting its machine code to
the newly-created machine. In case the cloud provider offers heterogeneous plat-
forms (different OS or CPU architecture), we instead transmit the ABS source
code and compile it in-place with our compiler toolset (that prior reside in the
VM’s image). The new machine runs the transmitted ABS application and sends
an acknowledgment signal to its creator, which can now start computations to
the new DC by spawning new objects in it.

When it comes to network communication between machines, Cloud-Haskell
does not enforce any particular network transport; even different transports can
be composed together. Some existing implementations are TCP, AMQP, CCI,

ABS: A High-Level Modeling Language 441

in-memory, etc. In ABS, the particular transport used depends on the implemen-
tation of the DC-interfaced class: we currently have DC-class implementations
for OpenNebula (TCP), Azure (TCP) and Local (in-memory).

4 Experimental Results

We tested two instances of a real-world load-balancer: one with a static deploy-
ment of workers, and an adaptive (dynamic) load-balancer with worker VMs
created on-demand based on how “well” the workers can keep up with incoming
requests. Clients were submitting job requests (of approximately of equal size)
to the balancer in a steady rate; workers were distinct Cloud VMs that were
continuously computing the results for their incoming job requests.

The static load-balancer case is a fairly straight-forward cloud ABS appli-
cation, consisting of 3 classes of LoadBalancer, Worker, and Client, exchanging
asynchronous method calls of job requests/results. The LoadBalancer runs the
main block and initially creates N number of Worker DCs (VMs) before starting
accepting requests and forwarding to workers in round-robin. We ran this static
deployment against varying size (N=1..16) of worker VMs. The results of the
runs are shown in Fig. 1(a) stripped from the initial boot time of VMs. What
we can draw from these results is that the completed jobs (per minute) nearly
doubles when we double the number of worker VMs until we reach 5 workers.
After that, we still increase the completed jobs but with a slower pace. This
observation can be attributed to the fact that a point is reached where there is
not a significant benefit from adding more worker VMs; the rate of job requests
is always steady, thus worker VMs are “slacking”.

We modified the static load-balancer to an adaptive version, that takes full
advantage of the expressivivity of the cloud extension. The LoadBalancer creates
now only 1 initial VM. We accommodate the LoadBalancer with a HeartBeater
object which periodically retrieves the load of each worker in the VM “farm”. The
HeartBeater computes the average load of all VMs and if this average exceeds
80%, it creates a new DC (VM), adds it to the current farm, and remotely spawns
a Worker in the new DC. We illustrate a particular run of this configuration in
Fig. 1(b) (NB: VM boot times are not subtracted from the result). Each asterisk
∗ in (b) is a point where the HeartBeater decides to create a new DC. This
run stabilizes on 6 workers, which is a good approximation of maximum speed
(according to Fig. 1(a)), and possibly a good choice if we took into account any
VM costs. As an extra, the HeartBeater could potentially shutdown machines if
their load remained small (under a threshold) for a certain time.

The tests were conducted on the SURF cloud-provider with OpenNebula
IaaS, modern 8-cores, each with 8GB RAM and 20Gbps Ethernet. Interesting to
mention is that each worker can benefit from ABS multicore (SMP) parallelism.
A snippet of the HeartBeater follows with the full ABS code at our repository1:

1 Upstream abs2haskell repository at http://github.com/bezirg/abs2haskell.

http://www.surf.nl
http://github.com/bezirg/abs2haskell

442 N. Bezirgiannis and F. de Boer

class HeartBeater(List <Worker > farm , Balancer b) {

Unit beat() {

Rat avg = this.

if (avg > 80/100) {

DC dc = new NebulaDC (8 ,8192); // 8-core , 8GB RAM

Worker w = dc spawns Worker ();

farm = Cons(w,farm);

b ! updateFarm(farm); } } }

0 5 10 15

10

20

30

worker virtual machines

co
m

p
le

te
d
-j
o
b
s/

m
in

0 20 40

10

20

timeminutes

co
m

p
le

te
d
-j
o
b
s/

m
in

(a) Static deployment of VMs (b) Adaptive Deployment over time

Fig. 1. (a) Static deployment of VMs. (b) Adaptive Deployment over time

5 Related Work

With the introduction of the Cloud, a plethora of cloud technologies & tools have
appeared in the software community. We distinguish two categories of technolo-
gies related to our work: distributed-prog. languages and cloud middleware.

Distributed languages. Erlang is one of the first distributed-oriented languages
that next to the canonical message-passing communication, offers distinct fea-
tures, such as hot-code loading and serialization of arbitrary closures. This comes
with a cost in safety since the serialized Erlang data are untyped and usually
unversioned. Erlang’s builtin processes are lightweight threads whereas ABS
processes are coroutines (even more lightweight). The Akka framework brings
(typed) actors to the Scala language. Although Akka provides a rich library and
toolkit, it currently lacks a cloud-aware API. At runtime Akka is constrained by
a threadpool (since JVM threads are expensive) and actors are not able to use
cooperative scheduling and instead resort to a form of message routing. The Java
RMI (Remote Method Invocation) is a library bundled in the Java platform for
communication between remote objects. The product pioneered in areas such
as bytecode downloading and distributed-GC. The method invocation is strictly

http://akka.io

ABS: A High-Level Modeling Language 443

synchronous (the caller has to wait for the remote method to finish) and thread-
unsafe. JADE [2] is an active distributed multiagent system also built in Java;
agents are more expressive than actors at the expense of program complexity
and, possibly, performance.

Cloud middleware. Ubuntu JuJu is a tool primarily for scaling and orchestrating
a system’s deployment on the cloud. Juju also comes with a GUI for modeling
and visualizing a cloud deployment and saving it to a “recipe” for later reuse.
It is usually accompanied by a configuration-management tool (such as Puppet)
for the provisioning of cloud machines. CoreOS is a container-based OS that
provides service and configuration discovery. It can be thought as a low-level
infrastructure, primarily targeted to system administrators, for managing system
services across a cluster of cloud machines, The Aeolus research project has
built various tools that can derive an optimized deployment from the constraint-
based model of a desired deployment, and automatically deploy that derivation.
Finally, general SaaS supported by cloud providers eases the migration of existing
software to the cloud and its automatic scaling of deployment. Albeit dynamic, a
SaaS deployment can only vary on the CPU consumption, whereas our proposal
would allow a much more expressive deployment that can depend on arbitrary
application logic.

6 Conclusion and Future Work

We presented an extension to the ABS language that permits the management of
an application’s own cloud-deployment inside the language itself. We discussed
the realization of such extension (by a Haskell transcompiler) and the execution
of an ABS cloud application (based on Cloud-Haskell). Results showed that
ABS can benefit from the extra performance that the Cloud offers. Moreover, the
extension gives to ABS the expression power it needs to fuse the application logic
with the application’s own (dynamic) deployment logic. A positive side-effect of
the proposed extension is that, ABS being primarily a modeling language, could
now be used to model also an application’s deployment. Indeed, such cloud-aware
software models could be simulated against different and dynamically-varying
cloud deployment scenarios.

For future work we are considering additions both at the language and run-
time level. At the language level, it would be beneficial to include, besides the
system load, other metrics such as memory, disk usage, object count, process
count, exceptions raised. In this way, an ABS application would enhance its
monitor and cloud-control logic. In a different direction, we plan to work on
adding a basic service discovery mechanism to the standard library of ABS.
This can be simply realized by extending the DC interface with two extra me-
thods: an acquire(Interface obj) method that returns a reference to a remote
object implementing the provided Interface; an expose(Interface obj) that
subscribes the passed object together with its current interface-view to the ser-
vice registry of the DC.

http://jujucharms.com
http://coreos.com
http://www.aeolus-project.org/

444 N. Bezirgiannis and F. de Boer

At the system level, we are first interested in expanding our library support
for other common cloud providers (such as Amazon EC2, OpenStack). Besides
the current open (peer-to-peer) topology of DCs we want to add support for
other cloud topologies, such as provider-specific, slave-master, or supervision
topologies – a crude solution to topologies would be to introduce to the DC
interface a method List < DC > neighbours() that lists all ABS nodes residing
in the same private cloud network. A second consideration is to extend our vir-
tualization technology support. With the introduction of micro-kernels (see the
Xen hypervisor and unikernels), the cloud user no longer needs an OS under-
neath the application/service. By packaging the application into the kernel itself,
the startup time of the VM is greatly improved, as is its management & distri-
bution. The Haskell Lightweight Virtual Machine (HaLVM) is a promising such
technology that allows the user to: “run Haskell programs without a host operat-
ing system”. Likewise, containers (e.g. Docker), with its OS-level virtualization,
would allow us to offer a more fine-grained control of deployment.

We believe that the cloud extension of ABS leads to new opportunities for
furthering the application of formal methods to cloud computing, for example:
specifying, verifying, and monitoring Service Level Agreements (SLA) of software
systems — with that being the overall goal of ENVISAGE, our current research
project. Indeed, we like to envisage software that is aware of its deployment and
thus can control it, while its users merely monitor its behaviour via SLAs signed
between the interested parties.

References

1. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: Costabs: a
cost and termination analyzer for ABS. In: PEPM, pp. 151–154 (2012)

2. Bellifemine, F., Poggi, A., Rimassa, G.: Jade-a fipa-compliant agent framework.
In: Proceedings of PAAM, vol. 99, pp. 33, London (1999)

3. Clarke, D., Helvensteijn, M., Schaefer, I.: Abstract delta modeling. ACM Sigplan
Not. 46(2), 13–22 (2011)

4. Epstein, J., Black, A.P., Peyton-Jones, S.: Towards haskell in the cloud. In: ACM
SIGPLAN Notices, vol. 46, ACM (2011)

5. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) Formal Methods for Components and Objects. LNCS,
vol. 6957, pp. 142–164. Springer, Heidelberg (2011)

6. Kiselyov, O., Lmmel, R., Schupke, K.: Strongly typed heterogeneous collections. In:
Proceedings of the 2004 ACM SIGPLAN workshop on Haskell, pp. 96–107 (2004)

7. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: generalizing active objects to concurrent
components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299.
Springer, Heidelberg (2010)

8. Wong, P.Y.H., Albert, E., Muschevici, R., Proença, J., Schäfer, J., Schlatte, R.:
The abs tool suite: modelling, executing and analysing distributed adaptable objec-
toriented systems. STTT 14(5), 567–588 (2012)

http://www.xenproject.org/
http://corp.galois.com/halvm
https://www.docker.io/

Aspect, Rich, and Anemic Domain Models
in Enterprise Information Systems

Karel Cemus1(B), Tomas Cerny1, Lubos Matl1, and Michael J. Donahoo2

1 Department of Computer Science, Czech Technical University,
Technická 2, 166 27 Praha, Czech Republic

{cemuskar,tomas.cerny,matllubo}@fel.cvut.cz
2 Department of Computer Science, Baylor University,

One Bear Place #97356, Waco, TX, USA
jeff donahoo@baylor.edu

Abstract. The research shows that maintenance of enterprise informa-
tion systems consumes about 65–75 % of the software development time
and about 40–60% of maintenance efforts are devoted to software under-
standing. This paper compares the Anemic Domain Model used by the
three-layered architecture followed by Java EE and .NET platforms and
the Rich Domain Model often deployed into many conventional MVC-
like web frameworks to a novel Aspect Domain Model followed by the
Aspect-driven design. While all these models strive to avoid information
restatement, they greatly differ in the underlying idea and resulting effi-
ciency. This research compares considered models based on development
efficacy, maintainability and their impact on the rest of the system. We
evaluate qualities such as information cohesion, coupling and restate-
ment, and discuss related maintenance efforts of the novel approach in
the context of existing approaches.

Keywords: Model-view-controller · Three-layered architecture · Enter-
prise information systems · Design approach comparison · Aspect-
oriented programming · Rich domain model · Anemic domain model

1 Introduction

Enterprise Information Systems (EISs) reflect various information to fulfill rapidly
growing requirements, e.g., a domain model, selected business rules, validation
rules, and presentation widgets. A design approach significantly impacts devel-
opment and maintenance, because the resulting architecture influences informa-
tion cohesion, coupling, and encapsulation [13]. Specifically, it determines read-
ability, system’s learning curve and affects the difficulty in making changes. In an
early phase of a project, architects make critical design decisions to determine sys-
tem architecture. This decision impacts project’s future success as consequence of
development and maintenance efforts.

Despite the existence of many approaches suggesting division of high-level
responsibilities into layers or dedicated components, cross-cutting concerns are
c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 445–456, 2016.
DOI: 10.1007/978-3-662-49192-8 36

446 K. Cemus et al.

usually hard to separate from others. They tend to negatively impact component
maintenance and reuse because standard object-oriented approaches fail to selec-
tively address them [12]. In consequence, this results in emerging information
restatement, low reuse, high duplication [7,10], and manual concern distribu-
tion throughout the whole system. Such design leads to difficult, tedious, and
error-prone maintenance [2]. Therefore, an efficient design approach must pro-
vide mechanisms to separate all sorts of concerns, avoid cross-cuts, and provide
the ability to centralize concerns to a single location.

Contemporary systems usually follow either the three-layered architecture
with a Anemic Domain Model (ADM) or the MVC-like architecture with a Rich
Domain Model (RDM) [3] with their primary system design. While the former
is well-known1, by the other we mean any primary system architecture derived
from the Model-View-Controller (MVC) architectural pattern with RDM. For
illustration, many conventional web frameworks belong to this category, such as
Nette for PHP, Django for Python, Rails for Ruby, and Play for Java/Scala2.

Unfortunately, the three-layered architecture with ADM often fails to address
cross-cutting concerns. However, there exists its aspect-oriented extension, i.e.,
Aspect-driven design approach [6] with Aspect Domain Model (AsDM), tailored
to deal with cross-cutting concerns. In this paper, we evaluate qualities and
the impact of AsDM by its comparison to ADM and RDM used by common
approaches. In Sect. 2, we discuss challenges in EIS design; while in Sect. 3, we
elaborate the models and their underlying concepts. For better illustration of the
differences, Sect. 4 shows a small case study highlighting qualities of all models
and discusses the results. Section 5 provides an overview of related work, and we
conclude the paper in Sect. 6.

2 Cross-Cutting Concerns

An EIS optimizes business processes and maintains large amounts of data with a
respect to a given business domain [3,13]. The data management in an EIS often
involves a User Interface (UI) and/or a web service component [7,10]. To satisfy
all given requirements, a system covers various types of information, such as a
domain model, presentation widgets, page layouts, business (domain) rules, and
text localization. Unfortunately, most of these concerns apply to multiple loca-
tions throughout the both horizontal and vertical dimensions of the system [7].

Typical representatives of cross-cutting concerns in terms of Aspect-Oriented
Programming (AOP) [12] are business rules. For example, we consider them in
all layers of the three-layered architecture:

– input validation in the presentation layer
– business operations in the application layer
– constraint verification in the persistence layer
1 Java EE and Microsoft .NET platforms build on it.
2 http://nette.org, http://djangoproject.com, http://rubyonrails.org, http://

playframework.com.

http://nette.org
http://djangoproject.com
http://rubyonrails.org
http://playframework.com
http://playframework.com

Aspect, Rich, and Anemic Domain Models in EISs 447

Furthermore, the three-layered architecture supports component fragmentation
inside of each layer, i.e., a system can have three presentation layer components:
a UI, a Web Service and a Console. The business rules tangle throughout all
components as they determine validation and access restrictions.

Besides business rules, there are other cross-cutting concerns [10]. The chal-
lenge lies in their addressing and reuse as they are considered in various places
throughout the system. Furthermore, when we consider different technologies
and possibly programming languages used for the implementation of different
parts of a system [7], concern reuse becomes even more difficult. There are
some attempts to overcome this gap [1,7], although there are no architectures,
design approaches, or frameworks providing a generic mechanism. Consequently,
in most cases, developers are unable to capture a concern in a single focal point
and then reuse it anywhere it is needed [10]; thus it usually results in high infor-
mation restatement and code duplication [7,12]. Unaddressed, tangled concerns
are responsible for low cohesion of components [10], which deteriorates readabil-
ity. The maintenance of such code is highly error-prone and inefficient [2].

3 Design Approaches and Domain Models

Despite the absence of a standard solution, there are approaches addressing
the challenge and minimizing information restatement. This section summarizes
their fundamental ideas and discusses their benefits and limitations in the con-
text of cross-cutting concern encapsulation, cohesion, coupling, and reuse.

3.1 Anemic Domain Model in the Three-Layered Architecture

The three-layered architecture [3] splits up the application into three different
layers: persistence, application and presentation. System functionality is thereby
distributed with each layer owning a subset of the responsibilities. The key con-
cepts of the three-layered architecture involve ADM [4,9] and the Transaction
Script [3] design patterns. They both determine the structure and qualities of
a system as they directly define responsibilities and information distribution.
ADM captures only data in a domain model with neither additional function-
ality nor dependencies. It is pushed into upper layers such as application and
presentation, including business rules and logic.

Migration of business rules from ADM to the upper layers causes inconsisten-
cies in the rules because they must be restated in all operations (transactions)
performed over the model [8]. Furthermore, there are other cross-cutting con-
cerns, which apply to more than one location, e.g., security policy, presentation
widgets, or localization, but with this model, there is no single location to cap-
ture them. The approach strictly limits capabilities of the model as it does not
capture anything but data. In consequence, all these additions have to be mixed
in upper layers, which tangles them through code at the cost of low information
encapsulation and high restatement [10].

448 K. Cemus et al.

3.2 Aspect Domain Model

The motivation for use of the transaction script pattern within the three-layered
architecture lies in business operations (transactions), which reflect user’s inten-
tions. Each operation defines its own assumptions (preconditions) about the
application state and a user’s context. In this paper, we refer these precondi-
tions as business rules and the operation-specific set of preconditions as a busi-
ness context. For each business context, we are able to put down assumptions
and attach them to an operation (e.g., in a use case scenario); however there
is no easy way to reuse a context among multiple operations [8]. Similar issues
apply also to UI development and maintenance as it also strongly depends on
business rules [11].

The Aspect-oriented extension [6] of the three-layered architecture resolves
its inability to deal with the cross-cutting concerns. This approach decomposes
cross-cutting concerns into their isolated descriptions (aspects) expressed in con-
venient, e.g., domain-specific, languages (DSL) and aggregates them in a single
place, the Aspect Domain Model (AsDM). It provides a single focal point and a
single place to update. For example, it decomposes business rules into indepen-
dent business contexts. Then it integrates (weaves) those descriptions into the
system at runtime. Depending on transformation rules, a weaver produces multi-
ple, distinct output components, such as a modified persistent layer or a modified
application layer. Figure 1 illustrates an example of a decomposed system.

Fig. 1. Aspect-driven decomposition of a system

(a) AsDM: aspect interception (b) RDM: model validators

Fig. 2. Input validation execution in different models

Aspect, Rich, and Anemic Domain Models in EISs 449

In consequence, we design and develop a system without any cross-cutting
concerns involvement. For example, imagine input validation in the application
layer. The conventional three-layered architecture tangles business rules into
operations, but the Aspect-driven approach designs operations themselves and
business rules captures in the AsDM. Then, it addresses the considered rules
from operations through a business context. Figure 2a shows an example of such
a method invocation with an aspect interception.

3.3 Rich Domain Model

RDM [4,9], contrary to ADM, suggests capturing all concerns in a model or
in its dependencies through highly-decorated classes and fields; e.g., domain
logic, database access, or field presentation widgets. Basically, each class carries
information on how to persist, validate, and render itself.

Many fields and classes share a lot of configuration and mechanisms. The
model uses inheritance and complex field data types to avoid code duplication
and information restatement. This means that for class validation, persistence, or
presentation, there usually exist super-classes already doing that; for fields, there
are predefined complex data types. For example, there is an EmailAttribute, a
StringAttribute or a NumberAttribute. Each class carries its own default vali-
dation rules, database constraints, presentation renderer, etc.

In consequence, RDM deals with cross-cutting concerns through rich data
types. It captures them already in model fields, validators, and renderers, and
tries to avoid their entangling into the rest of the application. However, there are
some context-specific concerns and concerns cross-cutting multiple operations at
once. As this model does not provide any mechanism to efficiently express and
reuse them, it falls back to their repetition and object-oriented improvements
described in [8]. For example, consider business operation-specific preconditions,
which apply to multiple but not all operations of the class. As such, including
those preconditions into the class validator is not an option and we are forced to
duplicate rules in the operations themselves. Invocation and validation of such
a business operation is shown in Fig. 2b. It shows regular invocation of standard
object-specific validators at first followed by the invocation of operation-specific
rules defined in the body of the operation.

4 Case Study

In order to evaluate the models, we conduct a case study demonstrating the
efficacy of all three types. There are significant differences between them in
design so the study focuses on system modeling rather than implementation as
implementation differences are consequences of design. We use platform-specific
models [13] because there are differences the most visible.

450 K. Cemus et al.

4.1 Assumptions

We model an issue tracker with multiple projects composed of issues. Each issue
has a set of work logs and comments. The system maintains a catalog of users,
where each user might have a different role in each project. The behavior is
as usual, system implements following use cases: Users browse, report, edit,
and resolve issues, make comments and work logs depending on their project
role. Administrators also maintain catalogs of users and projects. There are
no other roles or use cases. In overall, we identify 92 business rules, i.e., 63
model constraints, and 29 operation preconditions. Considering nonfunctional
requirements, the application has three different layouts (desktops, tablets, cell
phones), supports two languages (English and French), and provides two different
sets of UI widgets; one for touch devices and one for the rest.

We consider the Java EE 7 platform with JDK 7 for future implementation
of the plain three-layered architecture with ADM and AsDM. The model of the
latter assumes JBoss Drools Expert 5.53 for business rules definition, and the
Aspect Faces 1.44 framework implementing the concept proposed in [7] for the UI
implementation. We will use our own implementation of the aspect weaving core
based on AspectJ5 as there is no other public implementation. Figure 3a shows an
ADM of the application. The schema is identical for both these designs as their
overall system architectures follow the same concept, because all the enhance-
ments (business rules, localization, layouts, widgets) are described separately as
standalone aspects, and they are weaved in at runtime.

(a) Anemic domain model (b) Rich domain model of Comment class

Fig. 3. Application domain model

MVC-like web framework Django 1.8 built on the Python language deploys
RDM and we use it as a target platform in our case study. While the basic domain
model structure remains same, i.e., classes are identical, there are differences
3 http://www.drools.org/.
4 http://www.aspectfaces.com/.
5 http://www.eclipse.org/aspectj/.

http://www.drools.org/
http://www.aspectfaces.com/
http://www.eclipse.org/aspectj/

Aspect, Rich, and Anemic Domain Models in EISs 451

reflecting the RDM character of the design. The detailed model diagram is very
complex because fields of classes are complex data types and each of them has a
relation to its own widgets and validators. We publish there only a small part in
Fig. 3b. It shows the UML object diagram of the simplest class, the Comment.
The rest of the diagram follows the structure from Fig. 3a with objects from
Fig. 3b.

4.2 Model Efficiency

Our case study consists of 8 model classes restricted by 63 constraints, and 29
operation preconditions. We design this application three times, always for a
different model. Table 1 shows ADM has no support for concerns separation and
reuse, so we end up with manual repetition of the 29 constraints. The total 63
constraints located in 96 places throughout the application layer transactions
and the presentation layer views. JSR 303: Bean Validation [1] enables partial
business rules reuse, which improves the results. Without this the total number
of constraints locations would be much greater. We repeat business rules as well
as UI widgets and layouts to deliver all combinations of required UI. While we
want to provide 3 layouts and 2 different widget sets for 10 views, we have
to implement 3 times 2 times 10 views, i.e., 60 views in total. As we see, this
architecture is unable to efficiently address cross-cutting concerns and usually
ends up with highly tangled code with plenty duplications.

Table 1. The overall design efficiency

Criterion/approach Anemic DM Aspect DM Rich DM

Restated rules 29 0 20A,B

Rules locations 96 1 38A

Business services 5 5 Unsupported

Validators 0 0 11

UI widgets Unsupported 12 12

UI layouts Unsupported 3 3

UI views 60 10 10

Client-side valid Limited Supported SupportedC

AOnly in the domain model.
B Restated only references to validators.
C Requires mapping of validators to client-side technology.

The results in Table 1 confirm that AsDM describes all business rules in a
single place and ensures their automatic runtime transformation as there are no
restated rules and their are located in a single focal point. Our implementation
of the aspect weaver combines rules, UI widgets and layout templates together
with the annotated behavior classes to produce the application.

452 K. Cemus et al.

Finally, RDM uses complex data types and reusable field and class-specific
validators, which is captured in the results as 20 restated validator references
in a model. We model business operations as methods over the model, which
allows us to reuse model validators and combine them with operation-specific
conditions. Customized renderers produce the UI as we discuss earlier.

Table 1 summarizes overall efficiency of considered models. We see ADM
delivers the worst result, as there is major business rules and UI views repeti-
tion. Maintenance of such a system is error-prone and requires many efforts. It
results from its inability to reuse cross-cutting concerns. The table also shows
significant improvement of the design by deploying AsDM. While it preserves
the system’s model structure and architecture, it removes all sorts of repetitions
and establishes maximal concerns reuse. For example, contemporary implemen-
tations of the approach allow business rules reuse in all layers of the system
including the client-side UI. The overall results in Table 1 suggest, the approach
delivers even better design than the other contemporary approach. Although
RDM delivers much better results than ADM, there is still some repetition. The
most significant disadvantage is absence of the single focal point, which is shown
in the results as 38 rules places.

4.3 Concerns Representation

Coupling, cohesion and encapsulation are crucial qualities [13] strongly influenc-
ing development efficiency. While high encapsulation is needed when adding new
features, low coupling and high cohesion strongly simplify system modification.
Otherwise these operations are highly tedious and error-prone.

Unfortunately, ADM does not provide any mechanism to represent and reuse
cross-cutts such as business rules, widgets, and layouts. The results show, it
results in high information restatement (96 locations, 29 restated rules) and
concerns tangling. Although there is a standardized technique JSR 303 to reuse
some of the model constraints, it does not cover operation preconditions. This
concern tangling preserves information encapsulation inside transactions but all
concerns are highly coupled, which significantly reduces code cohesion.

This limitation is resolved by AsDM, which deploys DLSs to efficiently
describe these concerns. It aggregates all concerns and provides a single focal
point, single place to maintain, which results confirm. This model significantly
increases cohesion and reduces coupling. However, it deploys multiple DLSs and
distributes concerns into multiple aspects, which significantly reduces their encap-
sulation. In consequence, although there is a single place to update, it might be a
bit difficult to track relations among model and all aspects. Especially when the
weaving is context-aware and performed at runtime.

RDM keeps everything tangled in the model as is suggested in notes to the
measured repetitions in Table 1. This approach ensures very good encapsula-
tion in the object-oriented manner, but as every class maintains all sorts of
concerns and does not have direct support of the runtime context, the con-
cerns are tangled. Coupling is high and cohesion low. The benefit is, that these
worsen qualities apply only inside of a class. Inter-class coupling is low. Also the

Aspect, Rich, and Anemic Domain Models in EISs 453

strong encapsulation significantly simplifies views and controllers. Unfortunately,
concerns representation in the domain model includes use of the programming
language for their expression, which makes them difficult to transform. In con-
sequence, this design leads to server-centric system, where all logic and rules are
in the model in the server we are unable to automatically transform it into the
other technology or to propagate it in the client’s side.

These qualities apply also in UI. While neither ADM nor standard technolo-
gies support automated UI generation (60 resulting views), AsDM enables us to
generate the UI from collected aspects. It weaves them together on every request
to deliver the context-aware UI. RDM uses widget and layout renderers bound to
a class and its fields. The build process triggers UI generation methods invoking
all particular renderers composing the resulting UI in the class interface. This
method enables partially self-maintainable UI, but as the model is unable to
automatically transform other concerns, the resulting UI lacks the functionality.
In consequence, we must manually customize renderers to mix it in.

4.4 Usage Efforts

The three-layered architecture with ADM is very straightforward to deploy. It
uses only one programming language and usually one mark-up for the UI descrip-
tion. On the other hand, in order to use AsDM, it is necessary to apply multiple
supportive tools and frameworks. As the key idea relies on multiple DLSs, it
needs compilers/interprets, and complex aspect weaver to describe and integrate
all captured concerns together. Furthermore, there are various transformation
rules producing the whole application. Such overhead and technological depen-
dency indicate a significant barrier impeding the smooth concept adaptation.
Another issue is the steep learning curve for development. The more languages
in use, the more complicated the development becomes. The strong advantage of
DSLs lies in the possibility to delegate the work to domain experts with limited
programming knowledge [14].

Contrary, RDM is the central source of information for most of systems
concerns. Such a model does not require complex tools or frameworks since it uses
a single (programming) language. Also the learning curve is much less. However,
every change in the system must be done in the domain model, which must be
done only by developers. Then it requires recompilation and new deployment of
the application.

4.5 Threats to Validity

We identify several internal and external threats possibly affecting the results.
Among internal threats we consider validity of compared designs following the
considered model types. A Java expert proposes ADM and AsDM designs as we
design for Java EE platform. A Python expert with long professional experience
proposes RDM design. All designs are peer reviewed. Two peers conduct manual
measurement of the results independently, the results are double-checked.

454 K. Cemus et al.

We recognize validity of the overall case study as an external threat. Our
case study is a small representative of a real enterprise system. All use cases,
scenarios, and model classes create a core of production-size issue trackers, we
just reduce the scope of the system. In consequence, the measured results are
scalable to the production-size system including system out of the issue tracking
domain as we do not use anything specific to this domain.

5 Related Work

We inspect the models from their ability to encapsulate the information and pre-
serve high cohesion and low coupling to deliver the easiest possible maintenance.
These challenges are well known, and authors discuss them e.g., in [15] where
state that about 65–75 % of total project lifetime is consumed by maintenance.

The difficulty of business logic description and maintenance is discussed in
[8]. It states that efficient isolation and application of business logic is very
complicated using pure object-oriented techniques, even when we restrict our
focus only to the application layer. It proposes a new concept to transform
business logic into a presentation layer in [7]. The method relies on a domain
model decorated by additional information, such as simple business rules as is
introduced in [1]. It transforms a decorated model according to a given dynamic
user’s context into a user interface at runtime. It shows significant source code
reduction in the UI (up to 32 %) and easy information/template maintenance.
Later, the concept has been generalized into one of the compared approaches
and introduced in [6].

The focus on maintainable, object-oriented software belongs among best
practices, which are covered by architectural and design patterns explained in
[3,5]. The premise is correct for many kinds of use cases, but there are cases
where it fails. Furthermore, design patterns are meant for lower level of abstrac-
tion as they represent a component rather than system architecture.

Cross-cutting concerns impact design and code because they represent func-
tionality and features, which affect multiple classes, components, and layers at
once. Common object-oriented techniques fail here because they are unable to
clearly assign the responsibility to a single object [12]. Aspect-Oriented Pro-
gramming is an alternative concept, whose the fundamental idea lies in isolated
description of all cross-cutting concerns and then their automated integration
into the rest of an application. This technique lies in the core of the Aspect-driven
approach to deal with cross-cutting concerns. The value of AOP in the three-
layered architecture is also shown by the Java EE Spring framework6, which
enhances the Java EE platform to support requirements as mentioned above.

Seemingly, the Model-driven development (MDD) [16] is another major app-
roach to consider. This concept uses application modeling in an independent,
possibly graphical, language and semi-automated transformations into source
code in a target platform. The approach name indicates that this concept is on
6 http://projects.spring.io/spring-framework/.

http://projects.spring.io/spring-framework/

Aspect, Rich, and Anemic Domain Models in EISs 455

a different layer of abstraction. While this paper focuses on types of domain
models, the MDD is aimed to simplify the development process with respect to
design approach and target architecture. Thus it can be used with all considered
models as long as we are able to transform the abstract model into the chosen
platform.

6 Conclusion

EISs development faces the pressure of fast-growing complexity and scope. Selec-
tion of an approach significantly impacts system development and maintenance
efforts. In this paper, we evaluate three types of domain models and discuss their
efficiency to deal with the cross-cutting concerns.

Our case study shows that the Anemic Domain Model usually used within
the three-layered architecture fails to address cross-cutting concerns such as
business rules. It has no mechanism to represent and reuse them, which leads to
high information repetition, low cohesion and high coupling. Maintenance of such
a system is very expensive and error-prone. Bright side of this model is its very
straightforward use. This standardized design relies on a single programming
language and is vastly supported by many tools and frameworks.

The Rich Domain Model used by many MVC-like web frameworks shows
to be much more efficient with cross-cuts. It relies on rich classes and fields
containing all possible information. Every field carries its own validators, ren-
derers, labels, etc., which is the way to represent cross-cutting concerns. Finally,
although the RDM has some boundaries and tends to high coupling and low
cohesion, the supportive tools and frameworks aims to remain as simple as pos-
sible which flattens learning curve and makes its use very efficient in most cases.

Finally, the Aspect Domain Model implemented by Aspect-driven design app-
roach extends the Anemic Domain Model within the three-layered architecture.
It decomposes cross-cuts in the system and describes them individually in mul-
tiple DSLs in the model itself. Such design delivers a single focal point, a single
place to update. Concerns are automatically weaved into the rest of the system at
runtime. Furthermore, it transforms them into various components and technolo-
gies. Such isolation efficiently avoid information repetition and coupling. Easy
maintenance, low development efforts, low coupling and high cohesion are direct
consequences of the model. Unfortunately, there are significant initial costs; steep
learning curve and complex tools and frameworks are required. Furthermore,
contemporary implementations limit us in concerns transformation.

The results presented in this paper are solid input for more extensive, industry-
related, case study. In future work, we conduct a case study measuring efficiency
of AsDM in the real production-size application.

Acknowledgements. We would like to thank the Baylor University in Waco, Texas
for the support during the research. This research was supported by the Grant Agency
of the Czech Technical University in Prague, grant No. SGS14/198/OHK3/3T/13.

456 K. Cemus et al.

References

1. Bernard, E.: JSR 303: Bean validation. http://jcp.org/en/jsr/detail?id=303,
November 2009

2. Fowler, M., Beck, K.: Refactoring: Improving the Design of Existing Code. Object
Technology Series. Addison-Wesley, Boston (1999)

3. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Long-
man Publishing Co., Inc., Boston (2002)

4. Fowler, M.: Anemic domain model. http://martinfowler.com/bliki/
AnemicDomainModel.html, November 2003

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co.,
Inc., Boston (1995)

6. Cemus, K., Cerny, T.: Aspect-driven design of information systems. In: Geffert,
V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS,
vol. 8327, pp. 174–186. Springer, Heidelberg (2014)

7. Cerny, T., Cemus, K., Donahoo, M.J., Song, E.: Aspect-driven, Data-reflective and
Context-aware User Interfaces Design. Appl. Comput. Rev. 13(4), 53–66 (2013)

8. Cerny, T., Donahoo, M.J.: How to reduce costs of business logic maintenance.
In: 2011 IEEE International Conference on Computer Science and Automation
Engineering (CSAE), June 2011

9. Iglesias, C.A., Fernández-Villamor, J.I., Del Pozo, D., Garulli, L., Garćıa, B.: Com-
bining Domain-Driven Design and Mashups for Service Development. Springer,
Vienna (2011)

10. Kennard, R., Edmonds, E., Leaney, J.: Separation anxiety: stresses of developing
a modern day separable user interface. In: 2nd Conference on Human System
Interactions, HSI 2009, pp. 228–235. IEEE (2009)

11. Kennard, R., Edmonds, E., Leaney, J.: Separation anxiety: stresses of developing
a modern day separable user interface. In: Proceedings of the 2nd Conference on
Human System Interactions, HSI 2009, pp. 225–232. IEEE Press, Piscataway, NJ,
USA (2009). http://portal.acm.org/citation.cfm?id=1689359.1689399

12. Kiczales, G., Irwin, J., Lamping, J., Loingtier, J.M., Lopes, C.V., Maeda, C.,
Mendhekar, A.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.)
ECOOP 1997. Lecture Notes in Computer Science, vol. 1241, pp. 220–242.
Springer, Berlin (1997)

13. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process, 2nd edn. Prentice Hall PTR, Upper
Saddle River (2001)

14. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005). http://doi.acm.org/10.
1145/1118890.1118892

15. Muthanna, S., Ponnambalam, K., Kontogiannis, K., Stacey, B.: A maintainability
model for industrial software systems using design level metrics. In: Proceedings
of the Seventh Working Conference on Reverse Engineering (WCRE 2000), pp.
248-256. IEEE Computer Society, Washington, DC, USA (2000). http://dl.acm.
org/citation.cfm?id=832307.837117

16. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-
driven software development. IEEE Softw. 20(5), 42–45 (2003)

http://jcp.org/en/jsr/detail?id=303
http://martinfowler.com/bliki/AnemicDomainModel.html
http://martinfowler.com/bliki/AnemicDomainModel.html
http://portal.acm.org/citation.cfm?id=1689359.1689399
http://doi.acm.org/10.1145/1118890.1118892
http://doi.acm.org/10.1145/1118890.1118892
http://dl.acm.org/citation.cfm?id=832307.837117
http://dl.acm.org/citation.cfm?id=832307.837117

Finding Optimal Compatible Set of Software
Components Using Integer Linear Programming

Jakub Danek(B) and Premek Brada

NTIS – New Technologies for the Information Society, Faculty of Applied Sciences,
University of West Bohemia, Univerzitńı 8, 306 14 Plzeň, Czech Republic

{danekja,brada}@kiv.zcu.cz

Abstract. Reusable components and libraries reduce costs in software
development but also bring challenges like ensuring that application’s
components form a consistent and working set. While dependency ma-
nagement and build tools provide assistance in creating the set, they
can’t guarantee its correctness in terms of interoperability. On the other
hand, the methods which detect component interoperability issues do
not provide guidance in finding the proper set of components to fix any
uncovered inconsistencies. In this work we present a method for finding
such set of components which provides the required functionality, is free
from type-level inconsistencies, and at the same time is optimal according
to a given criterion. The method is based on pre-computed compatibility
data and integer linear programming and allows to optimize the found
solution set with respect to an arbitrary cost function.

Keywords: Component · Library · Compatibility · Composition ·
Integer linear programming · Verification

1 Introduction

Most of the currently developed software systems are a combination of the appli-
cation code and (third-party) libraries or components. While these parts – collec-
tively called “components” in this paper – considerably reduce the effort required
for development of the desired functionality thanks to their re-usability, they also
bring several new challenges.

As applications may consist of tens or hundreds of components, it is impor-
tant to ensure they form a consistent set. However, finding a compatible set of
components is not a trivial task. The term “compatibility” is rather wide and
its meaning depends on the particular level of contract. For basic interoperabil-
ity, the compatibility on syntactic level is required. To meet user’s requirements
fully, the components also need to behave as expected and have a desired qual-
ity level. Both integration testing and static verification techniques are used to
check interoperability at various contract levels.

This publication was supported by the project LO1506 of the Czech Ministry of
Education, Youth and Sports.

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 457–468, 2016.
DOI: 10.1007/978-3-662-49192-8 37

458 J. Danek and P. Brada

Easier management of components and their dependencies is supported by
tools available for many common environments, e.g. Maven or Gradle for the
JVM ecosystem, RubyGems for Ruby packages, etc. These tools employ decla-
rative meta-data to ease the retrieval of the components and their transitive
dependencies used in a project, but they don’t ensure the resulting set is consis-
tent. The issues involved are, among other ones, that

1. Correctness of the declared dependencies heavily depends on the component
developers and thoroughness of the (library) integration tests.

2. The transitive dependencies may result in multiple (potentially incompatible)
versions of the same component being fetched into the application. This may
cause unexpected runtime errors in environments where only a single version
may be linked at a given time (such as Java).

In our previous work [9] we have designed a method (and its implementation
for Java bytecode) for the detection of interface-level incompatibilities between
libraries used as components in an application as well as a means of storing
related results of matching in a meta-data repository called CRCE [5]. However,
solving the detected incompatibility issues requires the developers to make deci-
sions for which they do not have enough information. In particular, trying to
manually find the proper combination of component versions results in a series
of trial and error attempts, which is slow, costly and doesn’t ensure positive
outcome.

In this work we present a method for finding a set of components which are
mutually compatible and fit user requirements, while optimizing a selected metric
value (e.g. the number of components used or total size of their binaries). The
optimization in respect to a metric is useful e.g. when the resulting application
is meant for devices with limited resources (operating memory size, disc size).

Importantly, we aim for creating an approach which can be used by devel-
opers without requiring them to modify their existing code, models or making
major changes to their development process.

The text is structured as follows: after a motivation example and an overview
of related work, Sect. 3.1 specifies the terms and relationships used by the pro-
posed method. The following two sections provide a logical model of the prob-
lem (Sect. 3.2) and its implementation as an integer linear programming model
(Sect. 3.3). Section 4 provides a validation of the method’s performance require-
ments using simulation. In the Conclusion we summarise the paper and discuss
future work.

1.1 Motivation

As mentioned, we address the situation when an unresolved dependency is
detected in an application – i.e. it is known what its components require but
the providers of the functionality are missing – and a suitable set of providing
components needs to be supplied.

Finding Optimal Compatible Set of Software Components 459

Our method should help achieve the following goals, in an automated way:

1. Finding an set of additional or upgraded application components such that
the compatibility with the rest of the system is maintained.

2. Removing incompatible component duplicates, leaving only a single (version
of) providing component in cases where the system contains dependencies on
its multiple versions neither of which can satisfy all the requirements.

3. Optimizing the set of used components in respect to a given metric depending
on the particular use-case.

Example 1. The following code demonstrates problem of missing dependencies
in Java. All the examples throughout this paper are based on the presented piece
of code.

//Library-A version 1 //client
class Foo { class Main {

public Collection foo() public static void
{ ... } main(String[] args) {

} Foo f = new Foo();
class Bar { Bar b = new Bar();

public void bar() { ... } f.foo(); b.bar();
} } }

In this example we want to upgrade Library-A to a newer version due to a
e.g. better performance of the updated version. However, the developers of the
library have decided to split it into two units:

//Library-A version 2 //Library-B version 1
class Foo { class Bar { // moved here

public Collection foo() public void bar()
{ ... } { ... }

} }

As a result, simple replacement of the Library-A old version with the new one
would lead to runtime errors (MethodNotFound exception in the Java system).

While the problem can be detected by re-compilation (which is a possibility
for own code, but not the 3rd-party components) and by static analysis for
binary components [9], finding a solution is not a trivial task. Unless the change
is well documented, developers don’t have a simple way to reliably determine
the proper set of components which can replace the Library-A version 1 in the
system even if they have access to a large component repository.

2 Related Work

The areas of research most relevant to the presented work are software build and
integration order methods, component and module compatibility or interoper-
ability checking approaches, and use of repositories and component meta-data
in these approaches.

460 J. Danek and P. Brada

Concerning build and integration issues, Jezek [10] analyses transitive depen-
dencies of libraries and highlights problems occurring during dependency reso-
lution, noting that selecting the set of mutually compatible libraries is a difficult
task on which both automated tools and human developers fail. The proposed
solution is to use static analysis to verify compatibility within the dependency
graph obtained by a given dependency resolution mechanism; however, no rem-
edy is proposed when an incompatibility is found. Steindl et al. [13] describe a
method to optimize the integration order of components so that some criteria
(e.g. development effort) is minimized, using simulated annealing.

The survey of search-based techniques by Harman et al. [8] notes that many
tasks in software engineering are essentially optimization problems. They list
several cases of search-based optimisation techniques used in software model
checking (for state space reduction), modularization (finding clusters of software
elements) and reuse (selecting components best matching given requirements).

Within the last group, which is interesting from our point of view, Desnos et
al. [6] propose a model-based approach to (incrementally) build a complete con-
sistent assembly of components from a universe available in a repository, using a
branch-and-bound algorithm with constraints representing functional and com-
patibility objectives. They optimize the solution only in respect to the number
of dependencies and connections among them within the resulting assembly, not
in respect to an arbitrary cost function (which is our goal).

In an interesting study, Olaechea et al. [11] evaluated exact and approximate
algorithms for multi-objective optimization in the context of product line confi-
gurations, finding that it is possible to quickly find a Pareto-optimal solution for
systems with low tens of features. However, when the size of the problem grows
in the number of features and/or objectives, both types of algorithms lead to
execution times of (tens of) hours to produce good accuracy results. This would
make them unusable for our case of a part of normal development process.

In the area of component compatibility, Flores [7] addresses the replace-
ment substituability verification by semi-automated creation and use of black-
box tests. Matching of interface syntactical structure is used as a compatibility
sentry to the testing process, allowing for non-strict matches to be accepted (and
resolved manually, e.g. by writing adaptors). The method uses ranking of the
interface matching results and heuristics for adaptor generation to reduce the
test suite set.

In our previous work [5] we described an approach for storing compatibility
data in an efficient manner using an enhanced component repository, so as to
enable their fast evaluation. The presented method is meant to directly utilise
this approach for finding the optimal consistent set of interoperable components
using static analysis.

3 The Search-Optimization Approach

This section introduces our method used to find an optimal set of mutually com-
patible components required for the application assembly. While we primarily

Finding Optimal Compatible Set of Software Components 461

aim for the syntax/binary-level compatibility, the method itself is usable at other
contract levels as long as we are able to use the data model provided further to
describe the dependencies between components and our requirements.

3.1 Component Representation

For this work, we use the same library and component representation model as
presented by Jezek in [9]. It is based on notation by Brada [4] where component
type C = (P,R) with P and R representing the sets of provided and required
parts of the component’s interface. A software system can be described as S =
{Ci = (Pi, Ri)}i∈I . Dependencies between the components are described as pairs
of appropriate provided-required parts not belonging to the same component:
D = {(p, r)|p ∈ Pi ∧ r ∈ Rj ∧ i �= j ∧ p ≈ r)} where p ≈ r denotes that the pair
connects matching provided-required parts.

There is no restriction on what the model represents – the C can be a plain
library, a component (independently of the component model) or a web service
endpoint; the actual (p, r) pairs then represent library API usage, system spe-
cific means such as OSGi Import/Export package wiring [1], or general service
invocation [2].

Fig. 1. CRCE meta-data model

For practical purposes, this formal model has been transformed into a meta-
data scheme (Fig. 1) which describes a component as a resource with sets of
capabilities i.e. the provided features (public classes of a library, etc.), require-
ments (e.g.imported package names or desired extra-functional properties of a
matching provider) and other properties (e.g. values of selected metrics). Capa-
bilities and requirements form a hierarchical structure, which allows to represent
several levels of detail about the given feature – for example, a provided package
(a top-level capability of an OSGi component), its contained public classes, and
their non-private methods and attributes.

Using the described model we can represent the provided parts of existing
components and prepare search queries based on the required parts.

462 J. Danek and P. Brada

Obtaining the Component Representation. In this work, we do not discuss
the means of obtaining component interface representation. However, the rele-
vant techniques mostly employ analysis of component implementation (source or
binary form) [4,12] which is resource and time consuming and therefore unsuit-
able for potentially infinite searchable spaces like large software repositories.

We therefore persist the obtained representations as meta-data in CRCE, a
Component Repository for Compatibility Evaluation [5], using the above sche-
me. Since the repository can perform arbitrary functions on the meta-data, it
can be used to support advanced search methods like the one presented in this
paper.

3.2 Search Model

The component interface representation model allows us to represent the query
when searching for a solution (compatible components) from the set (repository)
as described in Sect. 1.1. As already mentioned, the space of all available com-
ponents Γ is theoretically infinite. From this space, candidate components must
be selected that can contribute to the solution.

Given a set of requirements R, any component which provides at least a
single item p which satisfies a requirement r ∈ R is a candidate. The actual
search space SP ⊆ Γ must therefore satisfy the following conditions:

∀C ∈ SP : ∃p ∈ C, r ∈ R : p ≈ r (1)

∀r ∈ R : ∃C ∈ SP : p ≈ r ∧ p ∈ C (2)

The condition (1) selects all components from Γ which can provide part of the
solution, and the condition (2) ensures the set SP contains at least one feasible
solution. Subsequently, if the set SP is empty, the component space Γ does not
contain components capable of fulfilling the requirements R.

The set SP is a superset of components satisfying the requirements R. Our
goal is to find the optimal subset Res in respect to a chosen quality function.
Given the definition of the quality function for a single component

cost(C) → R (3)

the subset Res is defined using the following conditions:

Res ⊆ SP (4)
∀r ∈ R : ∃C ∈ Res : p ∈ C ∧ p ≈ r (5)

cRes is minimal/maximal, where cRes =
∑

Ci∈Res cost(Ci) (6)

The condition (5) has the same purpose as the condition (2) for the set SP .
It ensures the resulting subset still contains a feasible solution.

The condition (6) ensures the given quality value of the set is optimal depend-
ing on the nature of the cost function. Its definition remains abstract here, as it
is bound to the specific use case. For example, for devices with limited resources

Finding Optimal Compatible Set of Software Components 463

the search might focus on minimal binary size or memory footprint. The cost
function can also be used to minimize the number of selected components (sim-
ilarly to [6]), in which case its value is the same for all components.

Depending on the use case, it may also be desirable to ensure a given require-
ment is satisfied only by a single component in the set Res, hence:

∀(Ci, Cj) ∈ Res : pk ∈ Ci ∧ pl ∈ Cj ∧ pk ≈ r ∧ pl ≈ r ⇒ i = j (7)

This restriction is optional, since it need not be necessary at all times. For
example while duplicate providers on Java classpath may result in linkage errors,
duplicate web service endpoints do not interfere with each other (therefore the
restriction is not necessary).

Example 2. To create the model corresponding to Example 1, the set Γ can
in practice be represented by a repository (Maven repository or a meta-data
providing repository such as CRCE). The remaining sets then are defined as:

R = {Foo, Bar} SP = {Library-A-v1, Library-A-v2, Library-B-v1}

P[Library-A-v1] = {Foo, Bar} P[Library-B-v1] = {Bar}
P[Library-A-v2] = {Foo}

cost(c) = {100, 300, 10} //values are in the same order as in SP
optimization function: max //cost marks performance score

// Library-A-v1 satisfies all requirements, but combination of the
// remaining two has better score (300 + 10 > 100)
Res = {Library-A-v2, Library-B-v1}

3.3 Building an Integer Linear Programming Model

The presented task of finding the optimal set of components in the search space
can be described using integer linear programming (ILP) model [3]. Linear pro-
grams consist of variables (also called decisions), constraints and an objective
function. The variables take numeric values. Constraints define a feasible region
for the values. The objective function specifies which of the feasible solutions is
the optimal one. In integer programming, there is an additional constraint that
some or all of the variables must take integer values.

The model can be written in its canonical form as

min cTx or max cTx

Ax ≥ b (8)
x ∈ Zn

where A is a matrix and c, x, b are vectors.

464 J. Danek and P. Brada

In our case, the variables vector x represents components from the SP set
and the following applies:

|x| = |SP |
∀i : xi ∈ {0, 1} (9)
xi = 1 ⇔ Ci ∈ Res

When the solution is found, those components whose value is 1 in vector x
constitute the Res set.

Constraints Ax ≥ b of the model are derived from the set of requirements R.
The matrix A describes which requirements are satisfied by which components
of the set SP . It has dimensions |R| × |SP | and is defined as

– aij = 1 when the requirement ri is satisfied by the component Cj .
– aij = 0 otherwise

The vector b ensures that every requirement is satisfied in the resulting compo-
nent set. For that to hold, every requirement must be provided by the compo-
nents in the resulting set at least once, therefore b = {1}|R|.

If the condition (7) is in place, the constraints change from Ax ≥ b to Ax = b.
The objective function equals to the cost function described earlier. Elements

of the vector c represent the cost value for each component C in the set SP
(vector x):

|c| = |x|
∀i : ci = cost(Ci) (10)

Table 1. Example ILP model

Library-A-v1 Library-A-v2 Library-B-v1

Foo 1 1 0

Bar 1 0 1

Cost 100 300 10

Example 3. Using the definitions above, we can construct the integer linear pro-
gramming search model for the case previously used in Examples 1 and 2. The
matrix A and the cost vector c are shown in Table 1. The final solution vector x
is to be computed. For this example it is x = [0, 1, 1] which corresponds to the
components Library-A-v2 and Library-B-v1.

The resulting model representation as an ILP problem allows the use of
existing solvers such as Gurobi1 or CPLEX2 to retrieve set of components which
satisfies given requirements and is optimal in respect to given quality function.
1 Gurobi - http://www.gurobi.com/.
2 IBM CPLEX - http://www-01.ibm.com/software/commerce/optimization/

cplex-optimizer/.

http://www.gurobi.com/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

Finding Optimal Compatible Set of Software Components 465

4 Evaluation of the Approach

While the basic task of obtaining the set of components that can satisfy the
missing dependencies is achievable by current technology, the practical uses of
the full method as described in the preceding section depend on the ability to
provide the optimised result set “fast enough”. To examine the general time
frame needed to find optimal solutions, we have performed a simulation using
an artificially created data set representing an application and its dependencies.

To provide a solid foundation for the data set, its parameters were based
on the data gained during experiments performed in our previous research [9]
with the Qualitas Corpus set of applications [14]. Its evaluation had shown that
the number of relationships between the corpus components vary from units to
tens of connections and that for each component there are up to tens of versions
available.

The data set used for the simulation consists of the search engine library
lucene and its dependency on libraries ant, ant-junit and junit. Table 2 shows
the exact count of references to these components from lucene as well as the
number of different library versions used during the simulation. Library size in
kB was chosen as the cost function, with values publicly available from the
Maven Central repository3, and the goal was to find the solution with minimal
size.

Table 2. Test data parameters

References from lucene Versions in repository

Ant 5 21

Ant-junit 3 15

Junit 26 20

4.1 Simulation Scenarios

Since the goal of the simulation was to provide data on the performance of the
method, real interoperability of concrete library versions was not tested – in
a full implementation of the method, this information would be available from
the CRCE repository using a single query. The speed of the query against the
repository will depend on repository contents and particular implementation of
the search algorithm, used indexing, etc., and is out of scope of this paper.

Two variants of the simulation were performed to cover the typical cases: (1)
There are many possible solutions in the searched space – this was reduced to
the case that all the versions of a particular library were considered as feasible
(interoperable) solutions; (2) There is only a small number of possible solutions
– a single version was considered feasible in the simulation.
3 Maven Central - http://mvnrepository.com/.

http://mvnrepository.com/

466 J. Danek and P. Brada

The simulation was run for each subset of the dependency list – i.e. the goal
was to find a solution for each library on its own, for each pair and for all three at
once. This design was used to show the difference between scenarios in which a
single library can provide all the required functionality and those in which a set
of libraries must be used to satisfy all requirements (similarly to the many-to-one
substitution in [6]).

To test method behaviour when working with larger data sets, the simulation
was run multiple times with 1, 10, 100 and 1000 magnifier arguments applied
to both the number of available library versions and their reference count from
lucene. This represented (with some loss of faithfulness) progressively more com-
plex applications and larger search spaces.

4.2 Results and Discussion

The simulation was run 100-times for each set-up, and mean value and standard
deviation of computation time were calculated. The simulation machine had the
following specifications: CPU Intel Core i7 3612QM, 4 cores / 8 threads, 2.1
GHz; RAM 8 GB; OS Gentoo Linux, 64bit, kernel 4.0.5; Solver Gurobi 6.0.4
(used via Python 2.7 interface).

The Tables 3 and 4 display the values obtained for the junit library, junit–
ant-junit pair and the whole triple4. The results show that for up to hundreds
of candidate components and required constraints the computation of the model
takes less than 1 second. Even for thousands of components (which is presumably
an unlikely scenario) the computation takes several seconds, but less than 10.

Table 3. Simulation results for multiple data-size magnifiers - multiple feasible solu-
tions. Values in [s]

Magnifier 1 10 100 1000

Junit 0.008 ± 0.0001 0.053 ± 0.0006 0.513 ± 0.0227 5.402 ± 0.2421

Junit, ant-junit 0.011 ± 0.0015 0.063 ± 0.0033 0.587 ± 0.0132 6.192 ± 0.2482

Junit, ant-junit, ant 0.019 ± 0.0040 0.077 ± 0.0061 0.730 ± 0.0416 7.664 ± 0.3757

Table 3 displays results for the scenario in which all candidate components
were part of a feasible solution. Table 4 displays results for the scenario in which
only a single instance of the candidate components was part of a feasible solu-
tion. It can be seen that the second scenario was solved more quickly for larger
amounts of data. This is caused by lower optimization needs of the second sce-
nario due to a limited number of feasible solutions.

The results of the simulation are promising in respect to practical use of
the method: they show that the optimization does not introduce a performance
4 Full results are available at http://relisa-dev.kiv.zcu.cz/data/experiments/

optimal-set-ilp-2015-07/.

http://relisa-dev.kiv.zcu.cz/data/experiments/optimal-set-ilp-2015-07/
http://relisa-dev.kiv.zcu.cz/data/experiments/optimal-set-ilp-2015-07/

Finding Optimal Compatible Set of Software Components 467

Table 4. Simulation results for multiple data-size magnifiers - single feasible solution.
Values in [s].

Magnifier 1 10 100 1000

Junit 0.008 ± 0.0001 0.050 ± 0.0078 0.444 ± 0.0037 4.630 ± 0.1173

Junit, ant-junit 0.011 ± 0.0003 0.055 ± 0.0033 0.536 ± 0.0614 5.319 ± 0.1485

Junit, ant-junit, ant 0.014 ± 0.0014 0.071 ± 0.0091 0.640 ± 0.0476 6.639 ± 0.2775

bottleneck in the approach. The method should be usable in developer assistance
tools where it is important to provide results in time the users are willing to wait.

On the other hand, the current design of the method solves the initial problem
only for the direct dependencies of the client code (represented by the R set in the
search model) – the SP set does not include the dependencies of the candidate
components themselves. To obtain a complete, consistent assembly the current
method may need to be applied multiple times.

5 Conclusion

This paper has discussed the issues created by using libraries and components
to assemble applications, with focus on choosing a compatible set of components
optimized in respect to a chosen metrics. Even if developers are provided with
enough information about the components, choosing an optimal and compatible
set tends to be a difficult task.

As a solution, we have proposed an integer linear programming model which
can be used to select a set of components providing required functionality while
optimizing the set against an arbitrary function. Although the method has been
demonstrated on Java examples, it is generic under the condition the component
representation and interoperability (compatibility) data can be provided in the
described data model; this condition can be satisfied using an advanced meta-
data repository such as the CRCE tool we have designed previously.

Our simulation has shown that solving the optimisation task itself – and
therefore the problem faced by the developers in case of repairing broken com-
ponent or library dependencies – should be possible in a tolerable time frame. In
particular, even in the (rather unrealistic) case of thousands of candidate compo-
nents and broken component dependencies the time to find an optimal solution
set was less than ten seconds; solutions for normal situations can be computed in
less than a second. However, because the simulation was done using artificially
created data, as a next step we need to perform more thorough evaluation based
on real-world data to gain more detailed view on the method’s performance. At
the same time we would like to compare with the methods presented by Olaechea
et al. [11] to validate the usefulness of our approach.

In the future, we would like to combine the method with our static analy-
sis tools for linkage error detection and use it to find suitable solutions to the
detected issues. Also, the current method does not take transitive dependencies

468 J. Danek and P. Brada

into account and therefore may require multiple walk-throughs to result in a
complete consistent set. We would like to address this problem in our future
research by finding a suitable extension to the model so that the dependencies
of the components are considered during the selection step as well.

References

1. OSGi Service Platform - Core Specification. Release 4, version 4.3, The OSGi
Alliance, June 2011

2. Belguidoum, M., Dagnat, F.: Dependency management in software component
deployment. In: Formal Aspects of Component Software (FACS 2006), Prague,
Czech Republic, September 2006

3. Bosch, R., Trick, M.: Integer programming. In: Burke, E., Kendall, G. (eds.) Search
Methodologies, pp. 69–95. Springer, New York (2005)

4. Brada, P.: Enhanced type-based component compatibility using deployment con-
text information. Electron. Notes Theoret. Comput. Sci. 279(2), 17–31 (2011)

5. Brada, P., Jezek, K.: Repository and meta-data design for efficient component
consistency verification. Sci. Comput. Program. 97, Part 3, 349–365 (2015)

6. Desnos, N., Huchard, M., Tremblay, G., Urtado, C., Vauttier, S.: Search-based
many-to-one component substitution. J. Softw. Maintenance Evol. Res. Pract.
20(5), 321–344 (2008)

7. Flores, A., Polo, M.: Testing-based process for component substitutability. Softw.
Test. Verification Reliab. 22(8), 529–561 (2012)

8. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering. ACM
Comput. Surv. 45(1), 1–61 (2012)

9. Jezek, K., Ambroz, J.: Detecting incompatibilities concealed in duplicated software
libraries. In: Proceedings of 41st Euromicro SEAA Conference (August 2015, to
appear)

10. Jezek, K., Dietrich, J.: On the use of static analysis to safeguard recursive depen-
dency resolution. In: 40th Euromicro SEAA Conference, pp. 166–173. IEEE,
August 2014

11. Olaechea, R., Rayside, D., Guo, J., Czarnecki, K.: Comparison of exact and approx-
imate multi-objective optimization for software product lines. In: Proceedings of
the 18th International Software Product Line Conference, vol. 1, pp. 92–101. ACM
(2014)

12. Parsons, T., Mos, A., Trofin, M., Gschwind, T., Murphy, J.: Extracting interactions
in component-based systems. IEEE Trans. Software Eng. 34(6), 783–799 (2008)

13. Steindl, M., Niemetz, M., Mottok, J., Racek, S.: Optimizing software integration
in component-based embedded systems by using simulated annealing. In: Eurocon
2013, pp. 446–451. IEEE, July 2013

14. Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H.,
Noble, J.: The qualitas corpus: a curated collection of Java code for empirical
studies. In: 2010 Asia Pacific Software Engineering Conference, pp. 336–345. IEEE,
November 2010

Effective Parallel Multicore-Optimized K-mers
Counting Algorithm

Tomáš Farkaš, Peter Kubán(B), and Mária Lucká

Faculty of Informatics and Information Technologies,
Slovak University of Technology in Bratislava, Ilkovičova 2,

842 16 Bratislava, Slovakia
{xfarkast,peter kuban,maria.lucka}@stuba.sk

Abstract. For many bioinformatics applications it is crucial to know
frequencies of all subsequences of length k (k-mers) constructed from
reads (short-reads) that are obtained in process of DNA sequencing.
We present an effective parallel algorithm for k-mers counting that is
based on nested bucket sort algorithm, whereby sizes of partitions and
number of buckets per partition are precomputed. The proposed algo-
rithm is designed for multicore architecture and properly combines MPI
framework (OpenMPI) with POSIX threads achieving very good perfor-
mance. According to our experiments it overcomes existing solutions in
running time when compared on the genome of Drosophila melanogaster
(SRX040485).

Keywords: Sorting · Bucket sort · K-mers counting · Parallel compu-
tation · Genome assembly

1 Introduction

Modern sequencing technologies are able to decode a genome (DNA) of an organ-
ism as a large number of small fragments, called reads. These reads are repre-
sented as strings over the alphabet {A, C, G, T} and their count can easily
reach millions. Counting frequencies of k-mers (substrings of length k) in a long
string, or in a set of strings (reads), is an ubiquitous task and it is important
step in many applications. There are many bioinformatics tasks that are based
on the knowledge of k-mers frequencies, such as data preprocessing for the de
novo genome assembly, error correction of reads, repeat sequences detection,
finding mutations in sequencing data, multiple sequence alignment. Determin-
ing the k-mers count is widely used with the currently most popular methods for
large genome assembly using de Bruijn graphs [4] or Overlap Layout Consensus
method [14] as well.

The paper is organized as follows: in Sect. 2 we formulate the problem and
present the simplest method of k-mers counting and related work. In Sect. 3 we
describe the proposed method and in Sects. 4 and 5 we present the achieved
results and outline the future work.
c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 469–477, 2016.
DOI: 10.1007/978-3-662-49192-8 38

470 T. Farkaš et al.

2 Problem Formulation and Related Work

In bioinformatics a read (short-read) is a finite string over the alphabet
∑

=
{A, C, G, T}. A k-mer is a short string over the alphabet

∑
taken from a read

whose length is k. A short-read s of the length n can be broken into (n− k + 1)
k-mers.

The concept of counting k-mers is straightforward and it is solvable for exam-
ple with brute force algorithms using a hash table, with k-mers as keys and
counts as values. However, brute force algorithms are often slow and unusable
for large amounts of data. The most of k-mer counting algorithms are very simi-
lar to each other. In the beginning of the process of k-mer counting they process
each read and extract all possible k-mers one by one. They differ mostly in the
following steps: preprocessing and the k-mers counting itself. Several methods
for k-mer counting rely on hashing or/and on suffix arrays (e.g. Jellyfish [11])
or/and on using Bloom filters [2] (e.g. BFCounter [13], Khmer [18]). Some meth-
ods use sorting (e.g. KAnalyze [1], Turtle [16]) and other methods are disk based
with focus on low memory usage (e.g. KMC [6], KMC 2 [7], DSK [15]).

The Whole Genome Sequencing [17] and the Next-Generation Sequencing [17]
technologies are currently more available, much cheaper and faster than old tech-
nologies and they produce enormous amount of sequencing reads on daily basis.
For speeding up the processing of data used in bioinformatics, researchers are
looking for new effective algorithms using parallelization techniques. They search
for efficient and scalable parallel algorithms that take advantages of huge compu-
tational power offered by current high performance computers. They are focusing
on massively parallel approaches and methods including multicore computers,
clusters with multiple nodes or other types of high performance computing archi-
tectures.

The goal of this paper is to propose and design an efficient and scalable k-mers
counting algorithm with focus on massively parallel computing and processing.

3 Proposal of the Algorithm

We propose a new parallel multithreaded algorithm for k-mers counting that is
executed in three steps: (1) preprocessing (k-mers generation, partitions iden-
tification and k-mers distribution), (2) sorting, (3) counting. This algorithm is
suitable for multicore architecture and it is based on and relies on fast bucket
sort algorithm [5].

Bucket sort algorithm stands on basic idea of sorting the incoming data into
mutual exclusive groups according to their values and then ordering each group
separately.1 Therefore we can identify two stages - data distribution phase and
group processing phase.

1 In this case by sorting we mean classification by some criteria, ordering means
arranging the data into non-increasing or non-decreasing order.

Effective Parallel Multicore-Optimized K-mers Counting Algorithm 471

3.1 Data Distribution Phase

As noted above, the bucket sort algorithm requires splitting the data into smaller
groups. For achieving efficiency it is also important to uniformly distribute data
over processes. Therefore, it is important (I): To split input data (reads) into
multiple partitions of approximately same size and (II): To perform bucket sort
splitting phase simultaneously. Ideally, for P partitions and datasets of size S
each partition should have size S/P. After all k-mers are generated they are
distributed into P different partitions in such a way that each partition gets
k-mers that are unique for that partition. It means that k-mers in all parts are
mutually exclusive and can be processed independently.

To achieve the goal, all processes in the communicator’s rank (MPI comm
rank) are divided into 2 groups of the same size - the group of masters and the
group of workers. At the beginning input file(s) is read and processed into k-mers
by the masters. After all k-mers are generated they are transformed into 64-bit
numbers. Therefore, the size of k-mers is limited to 32 (one base/letter of DNA
is encoded using 2 bits). As the workers are now inactive, every master reads and
processes input file using two CPU cores. For to determine the partition where
each k-mer must be sent, we have to look to the highest N bits (e.g. N=8) of
each generated k-mer. Depending on the value of these bits (i.e. values from 0
to 255 for N=8 bits) the k-mers are distributed mutually exclusive to proces-
sive nodes satisfying (II). However, the distribution based only on the highest
N-bits of a k-mer is proven to provide non-uniform sizes of data groups, varying
about 20 %. For instance, on a random 17 GB large fraction of human genome
reads, sequences starting with ‘CGA’ occur about 6-times less frequent than
those starting with ‘TTT’. To solve this, we have used a load-balanced version
of the algorithm. In this version, the data are still split according to the highest
N bits, however N is set to produce approximately 16 times more groups than
is the worker (processing node) count and those are then distributed to work-
ers not in a fixed way according to the prefix, but according to the cumulative
in-group count. For instance, using 16 CPUs, we do not set N = 4 as 24 = 16,
but N = 8. In this case it is possible for some workers to process for example
20 smaller groups in comparison with the others that process 10 larger ones and
the amount of work is equal.

3.2 Group Processing Phase

Parallel sorting of each partition starts individually after all k-mers are distrib-
uted to the desired partitions. The process of sorting starts after all workers have
got their data and every master process has finished. After then we have sepa-
rate mutually exclusive groups of k-mers - represented as numbers, that can be
processed independently. During this phase the masters are idle so every worker
can perform ordering of the groups using two cores.

To sort the groups, every sorting algorithm can be used, however some of
them perform better and in our case bucket sort is proved to be the most pow-
erful one.

472 T. Farkaš et al.

Fig. 1. Bucket sort: wall-clock-time to number of buckets comparison. 5 runs average
data. Number in parentheses on axis x shows number of nested buckets. Graph shows
improvements in wall-clock-time for higher number of buckets.

Nested Bucket Sort. The graph (Fig. 1) shows running times required for
performing all three steps. First pass (1st pass) is the time required for counting
the elements in groups to be created. Cumulative counts form group starting
indices. Second pass (2nd pass) represents time needed for actual shifting the
elements into groups, sorting indicates the time required for sorting the newly
created groups. It is apparent that the time required for the first pass completion
is constant, the time needed for sorting the buckets is linearly decreasing, what
is correct due to the logarithmic axis x scale.2 However, the time required for
the second pass tends to grow rapidly to the end of measured interval and when
reaching the border of 8192 buckets, its growth cancels the benefit of decreasing
logarithmic factor of complexity and overall time starts to rise.

The number and corresponding size of buckets cannot be set to be optimal.
It is apparent that Sorting performs well in millions of buckets, but Second pass
limits it to a few thousands. However, there is a possibility to use the bucket sort
algorithm once again and use it for sorting buckets themselves if needed. This
version we will call nested bucket sort and it does not only allow to use much
more buckets effectively, but it also reduces the total memory overhead coupled
with using huge amount of buckets in the non-nested version. The basic idea

2 Decreasing time effect is produced by comparative O(n.log(n)) final sorting algo-
rithm that uses less time to sort k groups of l elements than 1 group of k∗ l elements.
This implies overall time complexity to be O(n + n.log(n

b
)), b to be the number of

buckets. For reasonable high b values the complexity tends to be O(n). Please keep
in mind that time complexity is much less accurate than actual real performance
measuring.

Effective Parallel Multicore-Optimized K-mers Counting Algorithm 473

of this algorithm, is a mixture of bucket, radix [10] and american flag sort [12]
algorithms. The algorithm may look similar to the MSD (Most Significant Digit)
radix sort algorithm, however the idea is slightly different. Our algorithm does
not rejoin the split partitions before the next distribution step and uses indices
to produce approximately b∗b buckets, where b is the original number of buckets.
It is 40 % faster than both - the original bucket sort and the radix sort algorithms
[9].

3.3 Frequencies Counting

For our algorithm it is critical to sort the k-mers before we start to count their
abundances. The fact that they are sorted makes the counting very easy. In the
following text we will assume that we have an sorted array of k-mers.

The simplest and the most straightforward algorithm could work like this:
to start at the first element of the sorted array, to remember the k-mer at this
element, to set the counter to one and to move to the next element. If the next
element is same as previous one, the counter of this k-mer is increased, otherwise
this new k-mer is remembered and the process is repeated until the last element
is reached.

Another possibility is to use a step-based algorithm, which proceeds similarly
as the binary search. It starts with pointing to first element, marking it as start-
ing index, and remembering its first (current) value. Then it proceeds similarly
as in binary search, except that the pointer does not move to the half of the
array, but to the selected position in the array. The current value is compared
with the value selected by the moved pointer. If these values are the same, the
previous steps are repeated and the pointer is moved further, otherwise it returns
back, dividing the step by two and moving the pointer again by this changed
value and repeating the previous steps. However, the pointer is firstly checked,
if the value of the next element (element at the position index +1) is different
from current value. If it is true, the difference between the starting and current
indeces is calculated, providing so the count of k-mers.

The second approach is not suitable for small datasets, where the number
of unique k-mers is too large in comparison with the total number of k-mers.
Efficiency of this algorithm depends on the ratio of the number of unique k-
mers to the total number of k-mers. The lower this ratio is, the better. But in
general, this algorithm does not bring great improvements. Considerably better
improvements are expected on massive datasets, therefore the best algorithm for
our experiments was the first straightforward algorithm.

4 Experiments and Results

Testing and time measuring was performed on the IBM iDataPlex cluster con-
sisting of 52 computing nodes connected on the high-speed network: 2×10 Gb/s
Ethernet (RoCE) with CPU 2x 6 cores Intel Xeon X5670 2.93 GHz and main
memory of 48 GB (24 GB per processor/socket, NUMA architecture) per node.

474 T. Farkaš et al.

The disks are 1x 2TB 7200 rpm SATA per node. Operation system is Scientific
Linux 6.4 (kernel 2.6.32-358.el6) and the OpenMPI [8] version 1.6.5 was used.

The main limitation of our solution is that the current implementation runs
only on datasets that do fit into available main memory. As a testing case we
have selected the genome of Drosophila melanogaster (SRX040485), where the
size of input dataset is suitable. Sequencing reads were taken from the European
Nucleotide Archive (ENA, https://www.ebi.ac.uk/ena). Reads of length 76 were
produced by Illumina Genome Analyzer II. The total size of processed reads was
≈9.8 GB (48 432 878 reads), from the genome containing 139.5 millions base
pairs. Sequences were split into subsets of 10 millions, 20 millions, 30 millions,
40 millions and over 48 millions reads. For each tool we ran experiments several
times and took average values as results.

Table 1. Benchmark Drosophila melanogaster datasets used for counting k-mers

D
a
ta

se
t

si
ze

o
f
fa

st
q

fi
le

(G
B

)

n
u
m

b
er

o
f
re

a
d
s

n
u
m

b
er

o
f
u
n
iq

u
e

k
-m

er
s

n
u
m

b
er

o
f
d
is

ti
n
ct

k
-m

er
s

to
ta

l
n
u
m

b
er

o
f
k
-m

er
s

subset 1 2.1 10 000 000 140 948 976 199 840 105 458 926 804

subset 2 4.1 20 000 000 187 804 272 272 601 565 906 605 778

subset 3 6.1 30 000 000 223 636 699 321 865 881 1 364 337 258

subset 4 8.1 40 000 000 259 588 501 365 877 941 1 821 845 026

whole dataset 9,8 48 432 878 289 202 942 394 953 130 2 207 175 063

We have measured the time required for calculation of the k-mers frequencies
in five read data subsets using Jellyfish 2.2.0 [11], KMC 2 [7], BFCounter [13]
and the proposed algorithm. We have chosen to benchmark frequencies, because
this functionality is common to the most of tools, and it is a common analysis
approach for determining assembly parameters [3]. We selected k = 31, as it
is commonly used value. Then we tried to tweak parameters for each tested
program to get the best results of them and applied each one to progressively
increasing subsets of a ≈50 million reads genome dataset (Table 1).

In our experiments we have restricted the computational resources to one
node with 12 cores, because we wanted to compare our solution with other
existing software packages that do not run on multiple nodes. As Table 2 shows,
the time usage of our approach is comparable to KMC 2 and Jellyfish. BFCounter
is the slowest of the four tools compared in this tests, while KMC 2, Jellyfish and
our solution are the fastest. Jellyfish is a winner in preprocessing time over all
other tested programs. However, it is not possible to do more precise comparisons
because the tested programs vary in used algorithms and methods. Our solution

https://www.ebi.ac.uk/ena

Effective Parallel Multicore-Optimized K-mers Counting Algorithm 475

Table 2. K-mers counting comparison of Drosophila melanogaster data subsets, run-
ning on one node with 12 cores

Number of reads Time [s]

- Jellyfish KMC 2 BFCounter Our algorithm

10 000 000 17.1 7.4 257 8.1

20 000 000 32.4 14.3 443 12.4

30 000 000 48.9 21.4 688 17.2

40 000 000 54.5 28.9 887 22.3

48 432 878 61.2 36.8 980 26.5

Fig. 2. K-mers counting comparison of Drosophila melanogaster data subsets (exclud-
ing BFCounter) running on one node with 12 cores.

outperformed all other tested algorithms in running time for the selected dataset
on used hardware (Fig. 2).

Table 3 shows time required for the separate parts of algorithms. The mea-
surements were done on the whole genome sequencing data of Drosophila mela-
nogaster3. We could not measure all parts of every tested software, only those
that had time measurements available directly in them as well as overall run-
ning time. As we have mentioned before, doing comparisons of tools based on
different approaches, algorithms and methods is difficult and the results might
be hardware dependent.

3 Drosophila melanogaster (SRX040485) http://www.ebi.ac.uk/ena/data/view/
SRX040485.

http://www.ebi.ac.uk/ena/data/view/SRX040485
http://www.ebi.ac.uk/ena/data/view/SRX040485

476 T. Farkaš et al.

Table 3. Comparison of running wall-clock-times of k-mer frequency counting algo-
rithms, running on one node with 12 cores

A
lg

o
ri

th
m

In
it

ia
li
za

ti
o
n

a
n
d

d
a
ta

lo
a
d
in

g
ti

m
e

d
t

[s
]

P
re

p
ro

ce
ss

in
g

ti
m

e
[s

]

D
a
ta

d
is

tr
ib

u
ti

o
n

ti
m

e
[s

]

D
a
ta

so
rt

in
g

ti
m

e
[s

]

F
re

q
u
en

cy
co

u
n
ti

n
g

ti
m

e
[s

]

R
es

u
lt

sa
v
in

g
ti

m
e

[s
]

T
o
ta

l
ti

m
e

[s
]

BFCounter 978.0 978.0

Jellyfish 0.2 - - 47.3 13.7 61.2

KMC 2 14.8 - 22.0 36.8

Proposed 4.2 1.1 6.4 13.5 1.0 0.3 26.5

5 Conclusions and Future Work

We have designed a method for k-mer counting that takes advantage from the
fast nested bucket sort algorithm and intelligent partitioning using multithreaded
parallelism and OpenMPI. As is apparent from Tables 2 and 3 our algorithm out-
performs tested software (in running time) mainly thanks to fast nested bucket
sort algorithm.

In the future we plan to improve our method to address its drawbacks. For
example, to be able to use our method with lower memory requirements, so it
can be used also for larger datasets that do not fit into available main mem-
ory. Therefore, we plan to extend our method for bigger genomes (e.g. human
genome) and to run and test it on multiple nodes in parallel.

Acknowledgements. This work was partially supported by the Institute of Informat-
ics and Software Engineering, FIIT STU, Intelligent analysis of big data by semantic-
oriented and bio-inspired methods in parallel environment, the scientific Grant Agency
of the Slovak Republic, grant No. VG 1/0752/14, project DNApuzzleDNA, FIIT STU
that allowed us to use high performance computing on cluster of STU (project number
26230120002) and by the Research and Development Operational Programme as part
of the project “International Centre of Excellence for Research of Intelligent and Secure
Information-Communication Technologies and Systems”, ITMS 26240120039.

Effective Parallel Multicore-Optimized K-mers Counting Algorithm 477

References

1. Audano, P., Vannberg, F.: Kanalyze: a fast versatile pipelined k-mer toolkit. Bioin-
formatics (2014). doi:10.1093/bioinformatics/btu152. Accessed 18 March 2014

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970). doi:10.1145/362686.362692

3. Chikhi, R., Medvedev, P.: Informed and automated k-mer size selection for genome
assembly. Bioinformatics 30(1), 31–37 (2014)

4. Compeau, P.E., Pevzner, P.A., Tesler, G.: How to apply de Bruijn graphs to genome
assembly. Nat. Biotechnol. 29(11), 987–991 (2011). doi:10.1038/nbt.2023

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn., pp. 174–177. MIT Press and McGraw-Hill, Cambridge, New York (2001).
ISBN: 0-262-03293-7. Section 8.4: Bucket sort

6. Deorowicz, S., Debudaj-Grabysz, A., Grabowski, S.: Disk-based k-mer counting on
a PC. BMC Bioinf. 14, 160 (2013)

7. Deorowicz, S., Kokot, M., Grabowski, S., Debudaj, A.: KMC 2: fast and resource-
frugal k-mer counting. abs/1407.1507 (2014)

8. Edgar, G., Fagg, G.E., Bosilca, G.: Open MPI: goals, concept, and design of a
next generation mpi implementation. In: Proceedings: 11th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary (2004)

9. Farkaš, T.: Parallel Bucket sort algorithm for ordering short DNA sequences. In:
IIT.SRC 2015: Student Research Conference, Bratislava, pp. 77–82 (2015). ISBN:
978-80-227-4342-6

10. Hollerith, H.: US. pat. Nr. 395781, 395782, 395783
11. Marais, G., Kingsford, C.: A fast, lock-free approach for efficient parallel counting

of occurrences of k-mers. Bioinformatics 27(6), 764–770 (2011)
12. McIlroy, P.M., et al.: Engineering radix sort. Comput. Syst. 6(1), 5–27 (1993)
13. Melsted, P., Pritchard, J.K.: Efficient counting of k-mers in DNA sequences using

a bloom filter. BMC Bioinform. 12, 333 (2011)
14. Pevzner, P.A., Tang, H., Waterman, M.S.: An eulerian path approach to DNA

fragment assembly. Proc. Nat. Acad. Sci. U.S.A. 98(17), 9748–9753 (2001)
15. Rizk, G., Lavenier, D., Chikhi, R.: DSK: k-mer counting with very low memory

usage. Bioinformatics 29(5), 652–653 (2013)
16. Roy, R.S., Bhattacharya, D., Schliep, A.: Turtle: identifying frequent k-mers

with cache-efficient algorithms. Bioinformatics (2014). doi:10.1093/bioinformatics/
btu132

17. Shendure, J., Ji, H.: Next-generation DNS sequencing. Nat. Biotechnol. 26(10),
1135–1145 (2008)

18. Zhang, Q., Pell, J., Canino-Koning, R., Howe, A.C., Brown, C.T.: These are not
the k-mers you are looking for: efficient online k-mer counting using a probabilistic
data structure. PLoS ONE 9(7), e101271 (2014). doi:10.1371/journal.pone.0101271

http://dx.doi.org/10.1093/bioinformatics/btu152
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1038/nbt.2023
http://dx.doi.org/10.1093/bioinformatics/btu132
http://dx.doi.org/10.1093/bioinformatics/btu132
http://dx.doi.org/10.1371/journal.pone.0101271

Meta-Evolution Style for Software
Architecture Evolution

Adel Hassan(B) and Mourad Oussalah

Faculty of Science, Nantes University, LINA-FRE CNRS, 2729, Nantes, France
{adel.hassan,Mourad.Oussalah}@univ-nantes.fr

Abstract. Changes over time are commonplace and inevitable for any
software system if it is to remain effective. Since the system changes
fairly frequently, it is essential that its architecture is restructured to
keep abreast of these changes. Recently the term ’evolution style’ has
emerged in some studies as a technique for modeling potential architec-
ture evolution scenarios in a particular domain that can provide reusable
knowledge that encapsulates the best practices in this domain. Analy-
sis and comparison of these alternatives assists architects in planning
and thinking about architecture evolution. Our approach endeavors to
unify the solutions and standardize the modeling concepts in order to
develop evolution styles library that exploits the best methods and ele-
ments in the existing approaches. To this end, the main contribution
of this paper is a Meta-Evolution Style (MES) for software architecture
evolution, which promotes mapping and comparing of evolution styles,
as well as it will help in approaching issues like reuse and interchange
elements among evolution styles.

Keywords: Software architecture · Architecture evolution · Evolution
styles

1 Introduction

Software evolution is a process whereby a software product requires continual
updating, maintenance, and improvement over time in order for it to remain
a viable product (law of software evolution) [12]. This phenomenon has led to
an increase in the importance of and research into software evolution. A number
of studies have been carried out to improve in the means, processes, activities,
methods, and tools whereby evolution is implemented.

Since software systems change fairly frequently, it is essential that their archi-
tecture is restructured to keep abreast of these changes. Software architecture
evolution has emerged as an important precursor phase in the evolution cycles,
because it can permit planning and system restructuring at a high level of model-
ing where business requirements and quality goals can be ensured and alternative
solutions can be explored. Therefore, equipping the architect with the necessary
techniques, methods and tools that will assist him to carry out this process has
become an important focus of research.
c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 478–489, 2016.
DOI: 10.1007/978-3-662-49192-8 39

Meta-Evolution Style for Software Architecture Evolution 479

Recently, some researcher have introduced the term “evolution style” [1–4]:
an evolution style tries to capture the main characteristics of the set of activities
performed in evolving software architecture, and to provide the vocabulary of
concepts necessary to model the potential scenarios in evolving a domain-specific
software architecture. These modeled scenarios can be grouped together in an
evolution style as a reusable body of knowledge. The analysis and the trade-off
between these alternatives will assist architects in planning and reasoning about
the future evolution of the software architecture.

The ultimate goal of the evolution style approaches, as we mentioned, is
to equip the architect with a library comprising a variety of evolution styles
in different domains that model the best practices and knowledge in software
architecture evolution related to these domains. To get the optimal practices
and methods to build this library, we need to exploit, transfer and share the best
results that have been achieved by different approaches; therefore, we should be
working towards unifying the concepts of this process to allow us to efficiently
exploit these practices and knowledge.

To this end, this paper presents an attempt to explore a different but comple-
mentary approach: rather than focus on a specific architecture evolution style, it
considers the more general problem of bringing together all the work in software
architecture evolution modeling. Thus, we will exploit the metamodeling tech-
nique to devise a meta-evolution style (MES) that works as a unified solution for
software architecture evolution that will permit the standardization of concepts
this will broaden our horizons and allow us to exploit the best practices and
knowledge in the software architecture evolution.

The contribution of this paper is twofold. Firstly, it aims to devise a meta-
evolution style which can define the core conceptual elements for software archi-
tecture evolution regardless of the approaches to implementation. Secondly, it
endeavors to explain how MES could promote in enacting the mapping rules that
manage the transformations among different evolution styles, as well as between
the disciplines of software architecture evolution and the object modeling.

This paper describes our approach to devising a meta-evolution style for
software architecture evolution. It is organized as follows. Section 2 reviews some
related work. Section 3 describes the basic concepts underlying our approach.
Section 4 describes mapping and comarison strategies and how it can be applied
among evolution styles. Finally Sect. 5 presents the conclusion.

2 Related Work

In this paper, we are concerned with software architecture evolution, and par-
ticularly with evolution styles. In recent years, a number of software architec-
ture researchers have turned their attention to evolution, and some evolution
styles have been developed, in this section we are going to review some of the
approaches according to the classification by Pahl et al. [5].

480 A. Hassan and M. Oussalah

2.1 The Garlan et al. Evolution Style [2]

This approach provides a model for software architecture evolution activities to
support architects in planning and reasoning about domain-specific architecture
evolution. The main idea of the evolution style is to model potential scenarios
of software architecture evolution from the current style to the target style, pos-
sibly through sequence of transitional architectural states (evolutionary steps)
known as evolution path (perhaps several ones), along with evolution operators
that characterize the transitions among these states; constraints are imposed on
evolution paths which allow these paths to be in the evolution style. Finally, an
evaluation function is developed to allow comparisons among these paths.

2.2 The Cuesta et al. Evolution Style [3]

Unlike the previous approach, this combines the novel concept of evolution style
with the basis provided by Architecture Knowledge (AK) to simplify the reuse
of practices; by capturing the information and decisions related to architectural
design. Therefore, topological information and architecture knowledge are both
constraints and triggers for evolution in software architecture. Moreover, this
approach emphasizes that architecture knowledge is an equally critical driver
in the decision-making process in architecture evolution. The evolution style
is applied as part of a semi-automatic process, in which an evolution style is
a set of conceptually related evolution patterns. An evolution pattern describes
the answer to a specific evolution condition, which triggers an evolution decision
process where a particular configuration is chosen among several alternatives.
Once the configuration has been selected which means that evolution decision
is taken. Thus, the system executes an evolutionary step, modifying the AK
structure in the process. Thereafter, if the evolution condition has been satisfied,
the process finishes; otherwise, the evolution may continue, until the termination
condition is met.

2.3 The Oussalah et al. Evolution Style [1]

The main idea of this approach is to model software architecture evolution
tasks to provide a classification scheme to describe evolution styles libraries.
And enable the libraries to acquire, update and retrieve evolution knowledge
matching domain-specific evolution. Their approach considers that architecture
evolution consists of these operations; addition, remove, and modification as first
class entities in the context of component-based architectures in which compo-
nent, connector, interface, and configuration are first class elements of the design.
These elements provide the main concepts for describing domain-specific archi-
tecture evolution. They define a meta-model represented in a context of object-
oriented, in which a set of architecture element types and constraints provide a
domain-specific design vocabulary, and a particular type of configuration repre-
sents an evolution style.

Meta-Evolution Style for Software Architecture Evolution 481

3 Software Architecture Evolution: Modeling and Style

Evolution style is a modeling approach for software architecture evolution. In
more detail, we can say that an evolution style is a modeling language for soft-
ware architecture evolution, and each style is defined in a way that reflects the
perspectives of the modeler with his own conceptual vocabulary. In essence,
each style possesses specific mechanism, vocabulary and set of interrelations for
modeling software architecture evolution. In the modeling methodology we can
consider evolution style as a metamodel that specifies a modeling language to
define a particular model of evolution. Therefore, we have to find a way to app-
roach these concepts, and one of the best adopted techniques which provides
many benefits in different modeling engineering fields is a metamodeling.

3.1 Meta-Evolution Style for Software Architecture Evolution

Software architecture evolution process modelling aims to capture the main char-
acteristics of the set of activities that are performed to evolve software archi-
tecture. For better process modeling which expands the reuse of experience and
knowledge, a variety of styles have been created. To reason about and unify
the modeling concepts that formulate these styles and represent the modeler’s
perspectives, a meta-modeling language (meta-evolution style) comprise the nec-
essary vocabularies is needed.

Fig. 1. Meta-evolution style MES

Metamodeling as we mentioned, is ascending techniques that are used to
define a higher level where is a minimum concepts in order to define and rea-
son about models in the level below. Meta-evolution style (meta-metamodel) is

482 A. Hassan and M. Oussalah

an intended layer which has the essential concepts to specify a meta-evolution
modeling language. To remain compatible with the four modeling levels of the
OMG (Object Management Group), each evolution model is an instance of the
model in the level above (its meta), including the meta-evolution style, which is
an instance of itself. The meta-evolution style introduces the essential elements
and their interrelationships that represent the concepts required for modeling
architecture evolution process. These concepts are: operations, roles, architec-
ture elements, interfaces, and interactions. These essential concepts are com-
prised in the meta-evolution style called MES, illustrated in Fig. 1. MES is a
component-oriented concept for modeling the software architecture evolution
process. Indeed, it is a reflective concept whereby the concept of the component
reflects the modeling of the process that evolves it. In the sense that everything
is a component, like Class in object oriented modeling where everything is sub-
class of the abstract class “modelElement”. Thus, the component is the basic
evolution entity of the MES model.

Role: the stakeholders, tools and techniques that participate in performing the archi-
tecture evolution operation.

Operation: one of the units of process that consumes or produces an architecture
element. The operation are associated with roles and architecture element through the
interaction element.

Architecture Element: the inputs and the outputs of an architecture evolution oper-
ation. An architecture element produced by an operation can be used later as raw
material for the same or another operation to produce other architecture elements.

Interaction: an entity that governs the relationships between these elements and their
behavior. Generally, it determines what roles participate in an operation and what kind
of inputs and outputs there should be.

Interface: a place in which elements interact and which determines rules that should
be followed by elements to intercommunicate compatibly.

Normally, an architecture evolution can be implemented in different ways. In
this context, the route from the current architecture to the target architecture
might take different trajectories, depending on both the initial and target styles,
and on stakeholders’ needs, constraints, and perspectives. Therefore, different
models of implementation could be established; a meta-evolution MES provides
the core element for defining any metamodel (style) and managing the mapping
between them.

4 Meta-Modeling and Transformation

Metamodeling, as we mentioned, is a powerful technique which enables us to
understand and reason about the mapping between models. One of the impor-
tant reasons for defining a meta-evolution style is to manage the transformations
among evolution styles; therefore, our approach attempts to provides solid prin-
ciples for evolution style transformation with two methods of mappings. One

Meta-Evolution Style for Software Architecture Evolution 483

is mapping among software architecture evolution styles [1–4], while the other
transfers these styles to MDA’s environment (e.g. Software & Systems Process
Engineering Metamodel SPEM, Eclipse Process Framework Composer EPFC),
to improve the efficiency of the process, and to exploit the best practices and
knowledge in the domain of object modeling.

4.1 Vertical Mapping

The basic assumption in using modeling levels is the possibility of serializing the
view of the model at different levels and utilizing the reflection of elements at
a higher level to determine their counterparts in the succeeding level. The vertical
mapping among MES and evolution styles provides two benefits: firstly, it can be
used to evaluate the ability of MES to define an evolution style; secondly it can
facilitate the matching of corresponding elements between two evolution styles,
where every counterpart should have the same meta-element in MES. Moreover,
it can also be exploited in mapping an evolution style with one MOF-compatible
models (SPEM, Eclipse process framework).

Mapping Between the MES and Garlan et al. Evolution Style [2]. One
of the vital reasons for defining MES is to set up the rules to govern the transfer
of evolution styles; thus, to investigate the efficiency of MES in defining and
transforming an evolution style model, vertical mapping between MES and one
evolution style (Garlan) is reported in this section.

Garlan et al. defined an evolution style as explained above (Sect. 2.1). An
architectural concept for Garlan et al. style has been derived to facilitate the
mapping, as it is shown in Fig. 2.

Mapping Between the MES and Cuesta et al. Evolution Style [3].
Cuesta et al. have defined an evolution style, as mentioned before (Sect. 2.2).
MES can be mapped to Cuesta’s evolution style as following: the Evolution Pat-
tern and Evolution Step can be defined by the Operation element in MES, the
Evolution Decision, Evolution Condition and AK can be defined by the Role ele-
ment in MES, and the Architectural Element can be defined by the Architecture
Element in MES. Figure 3 illustrate this mapping.

Mapping Between the MES and SAEM Metamodel [1]. The SAEM
(Style-based Architectural Evolution Model) was developed by Oussalah et al.
and has also been explained above (Sect. 2.3). They defined a metamodel for their
evolution style. Conforming MES by the SAEM evolution style can be done in
this way: the Competence and Header can be defined by Operation, Constraint
can be defined by the Role, and Architectural Element Type can be defined by
the Architecture Element in the MES. Figure 4 illustrates this mapping.

4.2 Horizontal Mapping

Horizontal mapping is mapping among models at the same modeling level and
which might be defined by the same metamodel or by different metamodel; this
mapping could be at any level.

484 A. Hassan and M. Oussalah

Fig. 2. Mapping the Garlan style with
MES

Fig. 3. Mapping the Cuesta style with
MES

Fig. 4. Mapping SAEM with MAS

Meta-Evolution Style for Software Architecture Evolution 485

Fig. 5. Mapping MES with MOF

Table 1. Mapping MES with MOF

MES MOF

Meta-style Stereotype package

Style Package

Model Namespace

Component Model element

Operation Class

Role Class

Architecture element Class

Interaction Association

Interface Feature

In general, mapping is a complex task. To be precise, mapping is a particular
directional or bidirectional translation solution defined for two specific models,
so it cannot be reused for other models. Indeed, metamodeling provide a many
opportunities for facilitating this process, whereas in the upper level there are
always fewer conceptual elements to be translated.

Mapping MES Concepts to MOF Concepts. MOF (MetaObject Facility)
is the foundation of OMG’s industry-standard environment; and it is a meta-
language for many modeling languages (UML, SPEM, CWM, etc.), and supports
translation from one to another (for example, the set of rules used to transform
a MOF model into a UML model has been derived from the OMG UML Profile
for MOF specification) [9].

It can be stated that mapping rules between MDA/MOF and software Archi-
tecture Evolution/MES have more benefits at meta-metamodel level than in the
levels below.

– At this level there are fewer elements to be translated.
– These mapping rules can be reused by every metamodel (style) in the domain

of software architecture evolution that is compatible with MES.
– The translations from MOF to its metamodels (e.g. UML, SPEM) already

exist and are well defined (Fig. 5).

Table 1 represents the corresponding elements in MES and MOF, which are
useful for translating a model of evolution style to model-driven development
MDD area to be implemented by one of its modeling environments.

Mapping the Garlan et al. Evolution Style to the SPEM Metamodel.
SPEM is a standard metamodel based on MOF and developed by Object Man-

486 A. Hassan and M. Oussalah

Table 2. MOF instantiation by SPEM

MOF SPEM

Class Activity, Work
product, Role,
Guidance

Association Work product
relationship,
Work
sequence,
Process
responsibility
assignment

Feature Process
parameter

Package Package

Table 3. Matching elements between
MES and SPEM

MES SPEM

Style Package

Model Process model

Operation Activity

Role Role, Guidance

Architecture element Work product

Interaction Responsibility
assignment,
Work product
relationship

Interface Parameter

agement Group. SPEM is a process engineering metamodel as well as a concep-
tual framework, which can provide the necessary concepts for modeling, docu-
menting, presenting, managing, interchanging, and enacting development meth-
ods and processes [10].

Our aim is to bring the evolution style concept closer to the MOF-compatible
model, in order to exploit that their achievements, methods and tools. To this
end, we are going to carry out mapping between the Garlan evolution style and
SPEM.

The first mapping step must be independently defined for each evolution
style, while the other steps are defined once and can then be used by any style
compatible with MES. The second step has already been defined as the map-
ping between MES and MOF. The third step is the instantiation of the MOF
by SPEM; this operation is specified by the OMG [OMG Document Number:
formal/2008-04-01]. Furthermore, SPEM is defined as a UML profile, and each
element (stereotype) of a SPEM is defined by a corresponding UML element.
Table 3 shows the possible SPEM instances for each element of MOF that we
used in the mapping with MES.

The Class is the fundamental element of MOF, and is the meta-element for
Activity, Work Product, Role, and Guidance in SPEM. In the mapping between
MES and MOF: the Class is also the equivalent element that fits the four core
elements in MES. Consequently, from Tables 1 and 2 we notice that:
Operation, Role, Architecture Element, and Interface → Class →
Activity, Work Product, Role, and Guidance

We have mapped between MES and MOF those elements belonging to the
same modeling level (meta-metamodel), to minimize the elements and reason the
matching. Therefore, to make the transformation more specific we could match
the MES and SPEM, considering both the mapping of super-classes (meta-

Meta-Evolution Style for Software Architecture Evolution 487

element) and the ontology of the elements in the two approaches. Thus, Table 3
illustrates the matching between their elements that could provide a more accu-
rate translation.

Table 4. Garlan style and SPEM: corresponding elements

Garlan et al. style SPEM metamodel

Operator, Transition Activity

Architect Role

Evaluation function Guidance

Constraint Responsibility, Relationship, Guidance

Evolution state Work product

Table 5. Evolution styles quantitative comparison

MES concepts Garlan et al. Cuesta et al. Oussalah et al.

Operation Operator,
Transition

Evolution step Header,
Competence

Role Architect,
Evaluation
function

Architect,
Decision,
Architec-
ture
knowledge

Architect

Architecture element Evolution
state

Architectural
element

Architecture
element type

Interaction Constraint Condition Constraint

Interface Does not have
explicit
element

Does not have
explicit
element

Parameter

Finally, we reach the last step in this mapping with the selection of the final
concepts. At the end of the matching of MES elements with SPEM elements
that were instantiated by MOF, we reach a reduced number of choices for each
conceptual element in the evolution style. This step is specific for each evolution
style, while all evolution styles that are compatible with MES reuse the three
previous steps in this mapping strategy. To this end, the end user can define and
apply some criteria that will assist and guide him in his choices (the last step),
to transfer his style to a target environment according to these rules.

For instance, the final step could be transforming the Garlan style to SPEM:
selecting corresponding concepts for the Garlan style that are the most represen-
tative and semantically closest, with consideration of the rules that were enacted
in previous steps. Table 4 illustrates this step.

488 A. Hassan and M. Oussalah

4.3 MES and Evolution Styles Comparison

The purpose of this section is to present our methodology for evolution style
comparison. Indeed our approach attempts to support the qualitative and quan-
titative comparison between styles. These comparisons can offer enough infor-
mation for architect to explore their strengths and weaknesses (Table 5).

The Quantitative Comparison: Our approach presumes that MES has all
the meta-conceopts needed to model an evolution style. Therefore, quantitatively
compare an evolution style with MES allow us to know whether an evolution
style covers all these necessary concepts to model this process. Quantitative
comparison also identifies the similarity and the difference in the concepts among
evolution styles and it helps in matching concepts for model transformation
between them.

The Qualitative Comparison: The qualitative comparison requires us to
firstly determine attributes of the quality and clarify how they could be mea-
sured. The quality can often be difficult to measure due to ambiguity and overlap
many of these attributes in its calculation. However, the quality measurement
is the foundation of software development (and evaluation) and gives a better
insight into the factors that influence software quality by defining a consistent
terminology for software quality and by clarifying the mechanism to measure
it. To this end, a variety of general quality models have been built, such as
McCall’s model, Dromey’s model, Boehm’s model, and the ISO 9126 model.
However, in order to use one of these quality models in a specific domain, it has
to be extended to include the particularities of that domain or project.

Our future work will include developing a quality model to assess and mea-
sure evolution style basis on the ISO/ICE 25010 model, and its characteristics
and sub-characteristics will be customized to fit the need of evolution style. We
assume that instead of using the quality model to assess the final product (evo-
lution style model), we will integrate the quality model with the three main
aspects of evolution styles: specification, modeling and application.

5 Conclusions

Software architecture is considered as a blueprint to predict and guide the process
of software production and evolution. Recently, a number of evolution styles have
been developed to model software architecture evolution in a specific domains
in order to support architects in planning and reasoning software architecture
evolution. Notwithstanding all these considerable achievements, some important
concepts related to standardization, comparison, and mapping among evolution
styles are still absent, and need more exploration.

Actually, metamodeling techniques are widely used in engineering design, and
are concerned with documenting, reasoning, comparing, reusing, and unifying
models. Accordingly, this study has exploited the metamodeling techniques in
the field of evolution style, ascending to the meta-metamodel level, to devise

Meta-Evolution Style for Software Architecture Evolution 489

a meta-evolution style called MES which works as a unified solution for software
architecture evolution modeling.

This study also aimed to explore the ability of MES to specify the metamod-
eling language that has the necessary vocabulary to define an evolution style,
in other words, that has the meta-concepts that could instantiate any concep-
tual style element. Therefore, mappings and comparison between MES and an
evolution style were carried out. Furthermore, our future work will be devoted
to develop a framework based on MES that could model a variety of evolution
styles.

References

1. LeGoaer, O., Tamzalit, D., Oussalah, M.C., Seriai, A.-D.: Evolution styles to the
rescue of architectural evolution knowledge. In: Proceedings of the 3rd Interna-
tional Workshop on Sharing and Reusing Architecture Knowledge (SHARK 2008),
pp. 31–36 (2008)

2. Barnes, J.M., Garlan, D., Schmerl, B.: Evolution styles: foundations and models
for software architecture evolution. Softw. Syst. Model. 13(2), 649–678 (2013)

3. Cuesta, C.E., Navarro, E., Perry, D.E., Roda, C.: Evolution styles: using archi-
tectural knowledge as an evolution driver. J. Softw.: Evol. Process 25(9), 957–980
(2013)

4. Oussalah, M., Sadou, N., Tamzalit, D.: SAEV: a model to face evolution problem in
software architecture. In: Proceedings of ERCIM Workshop on Software Evolution,
Lille, France, pp. 137–146 (2006)

5. Aakash, A., Jamshidi, P., Pahl, C.: Classification and comparison of architecture
evolution reuse knowledge - a systematic review. J. Softw.: Evol. Process 26(7),
654–691 (2014)

6. Barais, O., et al.: Software architecture evolution. In: Mens, T., Demeyer, S. (eds.)
Software Evolution, pp. 233–262. Springer, Heidelberg (2008)

7. Nguyen, T.N.: Managing software architectural evolution at multiple levels of
abstraction. J. Softw. 3(3), 60–70 (2008)

8. Oussalah, M. (ed.): Software Architecture. Wiley, Hoboken (2014)
9. META-OBJECT FACILITY-MOF, version 1.4., Object Management Group, Doc-

ument Formal/2002-04-03 (2002)
10. OMG: software and systems process engineering meta-model specification, ver-

sion 2.0. Object Management Group (OMG), Document formal/2008-04-01 (2008).
http://www.omg.org/spec/SPEM/2.0/PDF/

11. Jeusfeld, M.A., Jarke, M., Mylopoulos, J.: Metamodeling for Method Engineering.
The MIT Press, Cambridge (2009)

12. Lehman, M.M.: Laws of software evolution revisited. In: Montangero, C. (ed.)
EWSPT 1996. LNCS, vol. 1149, pp. 108–124. Springer, Heidelberg (1996)

http://www.omg.org/spec/SPEM/2.0/PDF/

The Simulation Relation for Formal E-Contracts

Luis Llana1(B), Maŕıa-Emilia Cambronero2, and Gregorio Dı́az2

1 Computer Science Department, Complutensis University of Madrid, Madrid, Spain
llana@dfi.uclm.es

2 Computer Science Department, University of Castilla-La Mancha,
Ciudad Real, Spain

{memilia.cambronero,gregorio.diaz}@uclm.es

Abstract. Relationships between entities in today’s increasingly inter-
connected context have grown in complexity and evolved from simple
communication processes to more complicated distributed systems. Elec-
tronics contracts (e-contracts) are of general purpose and aimed to spec-
ify relationships in a wide variety of scenario, including web and cloud
services, inter and intra organization, electronic banking, etc. It is in
this context that we aim to develop a consistent definition for these rela-
tionships together with a set of techniques to check their proper use. In
this paper we present a process algebra to describe these contract rela-
tionships and a set of formal machinery to determine whether an imple-
mentation follows the rules established by these contracts. The main
formal technique used is a simulation relation where an implementation
is checked step by step against a given contract. Several toy examples
are provided to facilitate understanding of the formal definitions.

1 Introduction

A well-known formalism to specify contracts, deontic logic [20], is concerned
(among other things) with the formalization of contracts, specifically with moral
and legal obligations, permissions, and prohibitions, their interrelation and prop-
erties, as well as events/consequences resulting from violations of obligations and
prohibitions. In this context, it is important to take the time to analyze whether
these contracts, in the form of permissions, obligations and prohibitions, are ful-
filled by the different parties involved in the contract. In this paper, we present a
formalism to analyze e-contracts based on timed process algebras [10,18]. In our
case, the underlying semantics is that of timed simulation [19]. Simulation is an
important in many areas of computer science (e.g., model checking, concurrency
theory, and formal verification). It is both a theoretical (e.g. [1,13]) and practi-
cal (e.g. [17]) area of research. The use of practical implementation applications
for e-contracts is particularly interesting in model checking minimization [3,11]

Research partially supported by the Spanish MEC projects ESTuDIo (TIN2012-
36812-C02-01, TIN2012-36812-C02-02), DArDOS (TIN2015-65845-C3-01, TIN2015-
65845-C3-02), the Comunidad de Madrid project SICOMORo-CM (S2013/
ICE-3006) and the UCM-Santander program to fund research groups (group 910606).

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 490–502, 2016.
DOI: 10.1007/978-3-662-49192-8 40

The Simulation Relation for Formal E-Contracts 491

as a technique to overcome the state explosion problem. Then, one of the main
motivations of this paper is to use the simulation relation to model and analyze
e-contracts taking advantage of this model checking minimization.

This paper defines a process algebra to describe e-contracts relationships
and a set of formal techniques to determine whether an implementation follows
the rules established by these e-contracts. In particular we present a formal
semantics for e-contracts in order to capture the deontic normative concepts,
as well as the penalties in cases of certain violations. In our formal framework
each party involved in a contract is represented by a contract agent. We have
defined a simulation preorder between agents. This preorder can be used as an
implementation preorder: if the contract agent P simulates the contract agent
Q, then Q can be replaced by P in any contract.

Deontic logic was first proposed in [20], since then several works have pro-
posed its use for reasoning about contracts. Prisacariu and Schneider in [15]
present a formal language for e-contract, which is based on deontic notions.

But their contract language lacks the possibility to express time constraints
and they propose adding real-time as an extension to express and reason about
contracts with deadlines. Governatory et al. [7] present a formalism for the rep-
resentation of contracts also using deontic logic, by including the representation
and reasoning about violations of obligations in contracts. In [12] C. Prisacariu
et al. shows how to obtain a run-time monitor for contracts written in Contract
Language (CL [16]), which is an action-based formal language tailored for writ-
ing e-contracts and which allows to write conditional obligations, permissions,
and prohibitions to be written over actions.

A generic construction for obtaining a contract framework based on assume-
guarantee (AG) pairs from a component-based specification theory is presented
by Bauer et al. [2].

None of the previous works consider real-time restrictions and their focus is
on verification or monitoring. Our approach is based on the simulation relation,
since previous works [8,9] show that simulation can be a useful technique to
reduce the number of states of a model. They utilize a variant of simulation
that can be used as a conformance relation, with the aim of extracting tests
from a specification. We propose to translate these results to our framework,
but considering timed restrictions in the system.

In this paper we have chosen a visual model for the design of contracts [5]
since it implements many of the desirable properties of a good formal language
for normative texts, as presented in [14]. This model is composed of Contract-
Oriented Diagrams (C-O Diagrams), which allow the representation of complex
clauses describing the obligations, permissions, and prohibitions of different sig-
natories, as well as reparations. Also, C-O Diagrams permit users to define real-
time constraints. We use these diagrams only for representation issues, since
a graphical representation helps to more easily understand complex contracts,
which can be composed of many clauses.

The paper is structured as follows: Sect. 2 presents an overview of the visual
model for e-contracts. Next, in Sect. 3, we present the formal language: its

492 L. Llana et al.

syntax and its operational semantics. Section 4 develops the formal semantics
of language. Section 5 presents a case study of a Coffee Machine. Finally, the
conclusions and future work are described in Sect. 6. Due to lack of space, we
have removed the proofs of the results in this paper, they can be found in the
following link: http://antares.sip.ucm.es/∼luis/sofsem16.pdf

2 The Visual Model for E-Contracts: C-O Diagrams

C-O diagrams presented in [5] are a simplified visual model to represent e-
contracts. We will use this model to facilitate the task of specifying contracts.
The diagram type used here differs slightly from the one presented in [5] to
adapt it to the specific goals of this work. Figure 1 depicts a typical example of
a coffee machine, which consists of two agents (the machine and a customer).
This example is explained in detail in the case study section, but first we will
present the elements these diagrams consists of, so readers can start to familiar-
ize themselves with them. The main difference is the use of variables, which are
not considered in this first stage of this proposal.

Fig. 1. C-O diagram for coffee machine specification

The diagram depicts a set of boxes and arrows to interconnect boxes. A box,
known as “clause”, can be divided in four different cells. The central cell,
the “proposition”, specifies the obligations, prohibitions, permissions, actions
and refinements. The left-hand cells define the upper (top) and lower (bottom)
bounds defining the interval in which the clause must be enacted. In some cases,
it might not be necessary to declare bounds and [0,∞] is taken as default inter-
val. The last cell on the right-hand side of the clause is the recuperation cell,
which is only declared for obligations and prohibitions1, which is activated when-
ever the behaviour declared in the central cell, the proposition, is violated. An
extra element is added to the clauses at the top when actions are used at the
proposition. This element specifies two agents, from left to right: the performer
1 For these two types of propositions when the main proposition fails and no reparation

is defined the contract is violated.

http://antares.sip.ucm.es/~luis/sofsem16.pdf

The Simulation Relation for Formal E-Contracts 493

and the receiver of the action. An Arrow connecting clauses specifies a sequence,
but if it targets a predecessor clause it defines a recursion refinement. If an arrow
targets a clause with either OR or AND, then this targeted clause must connect
with two other clauses behaving as the disjunctive or conjunctive refinements.

As in process algebra, any communication involves two agents: one that emits
the communication and another one that receives. This is similar in our case.
For instance in the case of an obligation there is one or more agents that have
the obligation to perform an action and another agent receives. The agent that
is supposed to receive an action can detect that the contract is not valid if the
action is not received. For instance let us suppose that we have a simple contract
where agent P has the obligation to perform an action received by agent Q within
the time interval 2 and 8. This can be specified in our formalism by:

Example 1. 2
8

O(a?)
P --> Q

P = a![2, 8], Q = Ob(a?)[2, 8]

Permissions allow agents to receive actions from other agents in a specific
time interval. For instance, Example 2 shows an agent P allowing other agent Q
to perform the action a in the interval [3, 5]. An implementation of Q1 where the
action is performed during this implementation will be valid. On the contrary,
if an implementation specifies a longer or shorter interval for instance [4, 7] or
[1, 4], respectively, then it might lead to the contract violation and, therefore to
an invalid implementation. In this case, Pr(a?)[3, 5] in P grants the other process
the permission of execute the input a!.

Example 2. 3
5

P(a?)
P --> Q

P = Pr(a?)[3, 5] Q = a![3, 5]

Prohibitions are the most complex deontic operator since they combine the
idea of not allowing a certain set of actions during a given interval of time.
Example 3 specifies a e-contract where action a is forbidden during the interval
[3, 5] in the behavior of an AND refinement where the left clause permits action
a during [1, 5] while on the right part action b must be performed in [1, 4].
Action a is only permitted in the interval [1, 2] by agent Q as a result of the
interaction between the prohibition and the permission as it can be observed
in the specification of process Q. An implementation performing a outside this
interval leads to a violation of this contract.

Example 3.

3
5

F(a?)
Q --> P

1
4 O(b?)

Q --> P
1
5 P(a?)

Q --> P
AND

P = Fb({a?})[3, 5] in (Pr(a?)[1, 5]
Ob(b?)[1, 4])
Q = a![1, 2] b![1, 4]

494 L. Llana et al.

3 The Language

In this section we first establish the e-contract model, which captures the main
deontic aspects of e-contracts that have been briefly described in the previous
section, after which we define an operational semantics for it. For our purposes,
a specification is described by Definition 1. In this definition we are considering
a set of inputs I (a?, b?, . . . will denote individual inputs), a set of outputs O
(a!, b! . . . will denote outputs). Each input and output has a counterpart in the
other set: a? ∈ I iff a! ∈ O. For any a ∈ I ∪ O, we define its counter part as a.
We need two special actions vc, ic �∈ I ∪ O to signal the correct finalization of a
contract and an invalid contract, the set of actions Act = I ∪O∪{ic, vc} (a, b, . . .
denote individual actions), a silent action τ �∈ Act, the set Actτ = Act∪{τ}, and a
set of agent variables Var (x, y, z will denote individual agent variables). We will
also need a discrete time domain T (t, t1, t2 . . . will denote time units), we will
assume that there is a minimum time unit δ and all the time units are multiple
of that minimum time unit, we need a variation of the subtraction operation:
t1

.− t2 = max(0, t1 − t2). We will need the infinity, ∞ �∈ T , to represent a
behavior that is always available; ∞ .− t = ∞.

Definition 1. The set of contract agent terms is defined by the following BNF:

P :: =Pr(a?)[t1, t2] | Ob(a?)[t1, t2] � R | Fb(A)[t1, t2] in P � R | a![t1, t2] |
ic | vc | rec x.P | x | P1;P2 | P1 � P2 | P1 � P2 | P1 � P2

Where Pr, Ob and Fb are the deontic operators for the permissions, obligations
and prohibitions, respectively. a? ∈ I, a! ∈ O, t1 ∈ T , t2 ∈ T ∪ {∞}, A ⊆ I,
P,R, P1, P2 are agent terms, and x ∈ Var. We will consider the set of contract
agents (or simply agents), written AG, as the set of closed contract agents terms.

We define the language of P ∈ AG, written L(P), as the set of inputs and
outputs appearing in P . ��

Therefore, Pr(a?)[t1, t2] models the permission to perform action a in a time
interval [t1, t2]. Ob(a?)[t1, t2] � R represents the obligation to perform action a
in a time interval [t1, t2]; if the obligation is not fulfilled it is necessary to follow
the behavior specified by the reparation R. Fb(A)[t1, t2] in P � R depicts the
prohibition of performing an input action subset (A) in a time interval [t1, t2], in
case this prohibition is violated a reparation specified by R must be performed.
a![t1, t2] can execute the output action at any time in the time interval [t1, t2];
this operator represents an agent that can perform the input at any time in
the interval, so the choice of the time is an internal choice of the agent. vc
defines a valid contract, while ic defines an invalid contract. x ∈ Var, where Var
defines a set of agent variables, is used to define the recursion operator rec x.P .
This operator models the recursion of P , that is, the contract repetition. P1;P2

represents the concatenation in sequence. P1 � P2 defines a deterministic choice
(or external choice), where the environment has the possibility to make the

The Simulation Relation for Formal E-Contracts 495

choice between P1 and P2. P1 �P2 defines a nondeterministic choice (also called
internal choice), where the system is taking the decision and the environment
has no control over it. P1 � P2 models the parallel execution of two agents, P1

and P2.
In our examples in the paper we will use some shortcuts: If the time interval

is omitted (for instance Pr(a?)), the time interval is [0,∞] (Pr(a?)[0,∞]). If the
reparation is omitted (for instance Ob(a?)), we assume that is ic (Ob(a?) � ic).

3.1 Operational Semantics

Figure 2 shows the operational semantics. There are two kinds of transitions:
timed transitions and action transitions. Timed transitions expresses the time
delay while action transitions expresses the execution of an action. The base
operator vc can delay time (rule vc2) and signals the correct termination of
a contract (rule vc1). Similarly, the operator ic can signal an incorrect contract
(rule ic1) and delay time (rule ic2). Rule rec1 indicates the unfolding of the recur-
sion operator. This unfolding is urgent, so must be done immediately (rule rec2).

The input action, the permission operator and the obligation operator can
only delay time until the lower bound of the interval is reached (rules act1, perm1,
obl1). When an output action is enabled, the operator chooses internally the time
t′ when the action will be executed (rule act2), then, due to rule act1, the time
passes until t′. When this time is reached (the time interval of the operator is
[0,0]) and the action is executed the computation proceeds normally (rule act3),
otherwise if the action cannot be executed (because there are no other agents
willing to synchronized) the invalid contract signal is raised (rule act4).

The permission and obligation operator behaves in the same way until the
upper bound of the interval is reached: while the input action is enabled, both
operators can execute the action (rules perm3 and obl3) and both operators can
delay time until the upper bound of the interval (rules perm2 and obl2). The
main difference between perm2 and rule obl2 comes from their behaviors when
time overtakes the upper bound of the interval. In the case of the permission the
computation evolves normally, while in the case of the obligation the part of the
recuperation is enabled.

The forbidden operator behaves normally as long as the time interval is not
enabled (rules forb1 and forb4). When time reaches the upper bound of the
interval, the operator is disabled (rule forb2). While the time interval is enabled
only actions not belonging to the set of forbidden actions can be performed
(rule forb5) and if a forbidden action is performed, the part of the recuperation
is enabled (rule forb3).

Next we have the rules dealing with the compound operators. They are the
typical rules of a timed process algebra [18]. The internal choice operator can
only make the internal decision to behave as one of its components (rules icho1
and icho2), rule icho3 is necessary for Proposition 2. The external choice can let
time pass if both components can (rule cho1); when one of the components of
the choice is able to execute an action then the other component is disabled

496 L. Llana et al.

Fig. 2. Operational semantics

The Simulation Relation for Formal E-Contracts 497

(rules cho2 and cho3), while the execution of internal actions does not disable
the choice (rules cho4 and cho5).

The timed rule of the parallel operator is the most complex of the timed rules
(rule par1). There are two obvious conditions for the parallel composition being
able to let time pass: both components can let time pass. But if at some inter-
mediate point a synchronization or termination is available, it must be executed
before letting time pass. The synchronization of two components is translated
by a silent move (rule par4). In order to terminate, both components of the
operator must terminate (rule par5). Finally any of the components can evolve
autonomously (rules par2 and par3).

The sequence operator behaves as follows: First it executes all actions that
the first component can execute (rule seq1). When the first component finishes
successfully, the control passes to the second component (rule seq3). The operator
can let time pass as so the first component can. But termination is urgent, so
the operator cannot let time pass if the first component finishes successfully.

First we will prove some basic properties of the operational semantics. It is
important to note that some rules have negative premises that could lead to an
inconsistent semantic (for instance P a−−→ Q iff P

a−−�→ Q).

Proposition 1. The operational semantics is consistent. ��
Other propositions that the semantic of the timed transitions verifies are the

following basic properties:

Proposition 2. Let P, P ′, P ′′ ∈ AG, t, t′ ∈ T , then the following properties:

– P
0

��� P .
– If P

t
��� P ′ and P

t
��� P ′′, then P ′ = P ′′.

– If P
t

��� P ′. Then for any 0 < t′ < t there exists P ′′ such that P
t′

��� P ′′.

– If P
t

��� P ′ t′
��� P ′′, then P

t+t′
���� P ′′. ��

The associative and commutative properties of the binary operators help to
avoid writing excessive parenthesis in the terms.

Proposition 3. The operators �, �, and � are commutative and associative. ��
Next we can define the notion of contract, valid contract and valid implemen-

tation. First we have the notion of contract, which is the parallel composition of
several agents. Since the parallel operator is associative and commutative, the
order among the agents is not relevant and the parenthesis are not necessary.

Definition 2. Let n ∈ N be a natural number and let Pi be a contract agent
for 1 ≤ i ≤ n. A contract is specified by the parallel composition of the agents:
C = P1 � P2 � · · · � Pn. ��

In order to define the notion of valid contract we need the following notation
to simplify the definition.

498 L. Llana et al.

Definition 3. Let P, P ′ be contract agents, a ∈ Actτ and t ∈ T , we write
P t a−−→ P ′ iff there is a contract agent P ′′ such that P

t
��� P ′′ a−−→ P ′. ��

So a valid contract is one that when executed never yields the signal ic of
invalid contract.

Definition 4. Let C be a contract, an interaction of the contract is a sequence
of contracts C0 = C,C1 . . . Cn such that there are transitions

C0
t0 τ−−−−→ C1

t1 τ−−−−→ . . .
tn−2 τ−−−−−→ Cn−1

tn
��� Cn

A contract is invalid if there is a interaction of the contract C0 = C,C1 . . . Cn

such that Cn
ic−−→ . A contract is valid if it is not invalid. ��

Definition 5. Let C = A1�A2�· · ·�Ak�· · ·�An, we say that an implementation
I is correct for agent Ak iff the contract C ′ obtained by substituting the agent Ak

by the implementation I, (C ′ = A1 � A2 � · · · � I � · · · � An), is valid. ��

4 Simulation Semantics

In this section we are going to provide and discuss the simulation relation for the
agents of a contract. The semantics defined in the previous section (Definition 5)
is difficult to check. We believe that the simulation relation is a good alternative.
It can be computed efficiently [6] and can be used to reduce the number of states
as a previous step in other formal techniques such as model checking.

Before the definition of the simulation relation we need some notation.

Definition 6. Let P ∈ AG, t ∈ T and a ∈ I ∪ O, we define the transitions:

– P
t ε==⇒ P ′ iff there are Pi ∈ AG (0 ≤ i ≤ n + 1) and ti ∈ T (0 ≤ i ≤ n) such

that: P = P0
t0 τ−−−−→ P1 · · · tn−1 τ−−−−−→ Pn

tn
��� Pn+1 = P ′ where t =

∑n
i=0 ti.

– P
t a==⇒ P ′ iff there are Pi ∈ AG (0 ≤ i ≤ n + 1) and ti ∈ T (0 ≤ i ≤ n) such

that: P = P0
t0 τ−−−−→ P1 · · · tn−2 τ−−−−−→ Pn−1

tn−1 a−−−−−→ Pn
tn

��� Pn+1 = P ′ where
t =

∑n
i=0 ti.

– Actε(P) = {(a, t) | ∃P ′ ∈ AG, a ∈ I ∪ O ∪ {ε} : P
t a==⇒ P ′}

��
Next we define our concept of simulation. It is a timed simulation semantics

and follows the classical co-inductive schema. The only particularity is that we
want to restrict the simulation to the set of actions specified in the contract; since
the implementation could perform actions not specified in the contract2. Let us
recall that L(C) is the set of inputs and outputs appearing in C (Definition 1).

2 There are not restrictions for the execution of those actions.

The Simulation Relation for Formal E-Contracts 499

Definition 7. Let S be a relation of agents (S ⊆ AG × AG). S is a simulation
relation for a contract C iff whenever (P,Q) ∈ S the following conditions hold:

– Act(Q) ∩ L(C) × T = Act(P) ∩ L(C) × T .
– For any (a, t) ∈ Actε(Q), and t ∈ T , if P

t a==⇒ P ′, then there exists Q′ such
that Q

t a==⇒ Q′ and (P ′, Q′) ∈ S.

��
Definition 8. Let i, s ∈ AG two agents for a contract C, we say that P simulates
Q, written P � Q, iff there exists a simulation S for the contract C such that
(P,Q) ∈ S. ��

The simulation we have defined is a preorder so it can be used as an imple-
mentation relation.

Proposition 4. The relation � for a contract C is a reflexive and transitive
relation. ��

Next we present the main result in this section. The simulation relation can
be used to obtain a valid implementation of an agent.

Theorem 1. Let C = AG1 � AG2 � · · · � AGk � · · · � AGn a valid contract. If
P � AGK , then P is a valid implementation of AGk. ��
Example 4. The reciprocal of Theorem 1 is not true: there are valid implemen-
tations that not simulate the corresponding agent. To prove it is enough to con-
sider a valid contract where the agents never yields the invalid contract signal,
for instance let us consider the contract agents P1 = Pr(a?)[0, 10], P2 = a![0, 10],
and P3 = P (b?[0, 10]). Then, i = vc is a valid implementation of P3. It is also
clear that i does not simulate P3.

5 Complete Example

The example presented in Fig. 1 is inspired by the one described in [4,5]. It
consists of “A Coffee Machine” involving the interaction between two different
agents: a customer and a coffee machine. The coffee machine system starts when
a customer orders a drink by inserting money and selecting a beverage. Coffee
can be chosen either with or without milk. The machine proceeds to pour the
selected drink, provided the money paid covers its exact price and the correct
coins are used. If not, the machine refunds the inserted coins. After payment
customers have 30 s to choose between either a coffee or a latte. The money is
refunded if no option is selected in this interval. The order can be cancelled and
the customer refunded in an interval of 10 s or the selected drink is poured. Note
that a machine only accepts 10, 20 or 50 cent coins. Following the syntax given
above, a specification of this example is given next:

500 L. Llana et al.

Example 5. Coffee machine contract specification

Machine := rec x.Fb{C1c?, C2c?, C1e?, C2e?}) in
In Coins50 ;((

Pr(B abort?)[0, 10]; refund ![0, 30];x)�(
Ob(B coffee?)[0, 30] � (refund ![0, 30];x); (P coffee![10, 30]) � refund ![30δ , 60])

)�(
Ob(B latte?)[0, 30] � (refund ![0, 30];x); (P latte![10, 30]) � refund ![30δ , 60])

))
;x

� (refund ![0, 30]; x)

where the number 30δ represents the number 30 + δ and the In Coins50 agent
is defined as follows:

In Coins50 := P (C50c?) � (P (C20c?); In Coins30) � (P (C10c?); In Coins40) �
(P (C5c?); In Coins45) � (P (C2c?); In Coins48) � (P (C1c?); In Coins49)

where the other agents In Coinsx are defined similarly. The customer is specified
as follows:

Client := rec x. Out Coins50 ;
(

(
B abort ![0, 10];Ob(refund?[0, 30])

)�(
B coffe![0, 30];Ob(P coffe?[10, 30]) � Ob(refund?[0, 30])

)�(
B latte![0, 30];Ob(P latte?[10, 30]) � Ob(refund?[0, 30])

))
;x

The agent Out Coins50 is similar to In Coinsx:

Out Coins50 := C50c! � (C20c!;Out Coins30) � (C10c!;Out Coins40) �
(C5c!;Out Coins45) � (C2c!;Out Coins48) � (C1c!;Out Coins49)

where the other agents Out Coinsx are defined similarly.

This Example 5 is a simple transcription from the C-O diagram. This e-
contract model consists of the two agents described in the diagram the coffee
machine and the customer. The next step in analyzing this contract is to compare
a set of implementations. We check whether these implementations can play the
role of one of the specified agents.

Example 6 consists of three implementations for the customer agent. In the
first implementation the customer inserts a 50 cent coin, pushes the coffee but-
ton in the interval [10, 20] and waits for the coffee in the interval [10, 30]. This
specification coincides with the one given for the customer, however the interval
in which the customer pushes the coffee button is smaller than the one given by
the specification. An implementation is correct either when outputs are produced
in an interval that fully coincides with the specification or when this interval is
included into the contract specified interval. The second implementation also
varies with the customer specification in the interval given for the obligation of
pouring coffee [10, 20] instead of [10, 30]. Here as in the first implementation a
smaller interval is defined. However now the contract behaviour is not guaran-
teed since, as specified in the contract, the machine might produce the coffee
during the last ten time units. In the third implementation, it is clear that the
contract is not fulfilled by this implementation since the latte button might be
pushed after the upper bound specified in the contract.

The Simulation Relation for Formal E-Contracts 501

Example 6. Client implementations.

Imp1Client = rec x.C50c!;B coffee![10 , 20];Ob(P coffee?)[10, 30] � refund [0, 30]; x

Imp2Client = rec x.C50c!;B coffee![0, 30];Ob(P coffee?)[10, 20] � refund [0, 30];x

Imp3Client = rec x.C50c!;B latte![20 , 40];Ob(P latte?)[10, 30] � refund [0, 30];x

6 Conclusion and Future Work

In this paper we have presented a formalism based on process algebra to express
e-contracts. We have defined an operational semantic, a notion of valid contract
and the notion of implementation. Furthermore, we have defined a notion of
simulation that is correct with regard to the notion of implementation. How-
ever, the simulation relation is not complete: not all valid implementation of an
agent simulates the agent. One of our future work lines is to find a relation that
reduces the gap between the notion of correct implementation and the notion of
simulation. The implementation issues have not been discussed in detail in this
proposal. We expect to implement the features defined in this paper by using
the mCRL2 tool set. The mCRL2 tool set is based in a process algebra. It has
the possibility to check the simulation relation.

References

1. Aceto, L., de Frutos Escrig, D., Gregorio-Rodŕıguez, C., Ingolfsdottir, A.: Axioma-
tizing weak ready simulation semantics over BCCSP. In: Cerone, A., Pihlajasaari,
P. (eds.) ICTAC 2011. LNCS, vol. 6916, pp. 7–24. Springer, Heidelberg (2011)

2. Bauer, S.S., David, A., Hennicker, R., Guldstrand Larsen, K., Legay, A., Nyman,
U., W ↪asowski, A.: Moving from specifications to contracts in component-based
design. In: de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software
Engineering. LNCS, vol. 7212, pp. 43–58. Springer, Heidelberg (2012)

3. Bustan, D., Grumberg, O.: Simulation-based minimization. ACM Trans. Comput.
Logic 4(2), 181–206 (2003). ACM, New York. http://doi.acm.org/10.1145/635499.
635502

4. Camilleri, J.J., Paganelli, G., Schneider, G.: A CNL for contract-oriented diagrams.
In: Davis, B., Kaljurand, K., Kuhn, T. (eds.) CNL 2014. LNCS, vol. 8625, pp. 135–
146. Springer, Heidelberg (2014)

5. Dı́az, G., Cambronero, M.E., Mart́ınez, E., Schneider, G.: Specification and ver-
ification of normativetexts using C-O diagrams. IEEE Trans. Softw. Eng. 40(8),
795–817 (2014). http://doi.ieeecomputersociety.org/10.1109/TSE.2013.54

6. Gentilini, R., Piazza, C., Policriti, A.: From bisimulation to simulation: coarsest
partition problems. J. Autom. Reasoning 31(1), 73–103 (2003)

7. Governatori, G., Milosevic, Z.: A formal analysis of a business con-
tract language. Int. J. Coop. Inf. Syst. 15(4), 659–685 (2006).
http://dx.doi.org/10.1142/S0218843006001529

8. Gregorio-Rodŕıguez, C., Llana, L., Mart́ınez-Torres, R.: Extending mCRL2 with
ready simulation and iocos input-output conformance simulation. In: The 30th
ACM/SIGAPP Symposium on Applied Computing, April 2015, to appear

http://doi.acm.org/10.1145/635499.635502
http://doi.acm.org/10.1145/635499.635502
http://doi.ieeecomputersociety.org/10.1109/TSE.2013.54
http://dx.doi.org/10.1142/S0218843006001529

502 L. Llana et al.

9. Gregorio-Rodŕıguez, C., Llana, L., Mart́ınez-Torres, R.: Effectiveness for inputout-
put conformance simulation iocos. In: Ábrahám, E., Palamidessi, C. (eds.)
FORTE 2014. LNCS, vol. 8461, pp. 100–116. Springer, Heidelberg (2014).
http://dx.doi.org/10.1007/978-3-662-43613-4 7

10. Hennessy, M., Regan, T.: A process algebra for timed systems. Inf. Comput.
117(2), 221–239 (1995). http://dx.doi.org/10.1006/inco.1995.1041

11. Katoen, J.-P., Kemna, T., Zapreev, I., Jansen, D.N.: Bisimulation minimisation
mostly speeds up probabilistic model checking. In: Grumberg, O., Huth, M.
(eds.) TACAS 2007. LNCS, vol. 4424, pp. 87–101. Springer, Heidelberg (2007).
http://dx.doi.org/10.1007/978-3-540-71209-1 9

12. Kyas, M., Prisacariu, C., Schneider, G.: Run-time monitoring of electronic con-
tracts. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA
2008. LNCS, vol. 5311, pp. 397–407. Springer, Heidelberg (2008)

13. Lüttgen, G., Vogler, W.: Ready simulation for concurrency: It’s logical!. Inf. Com-
put. 208(7), 845–867 (2010)

14. Pace, G.J., Schneider, G.: Challenges in the specification of full contracts. In:
Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 292–306.
Springer, Heidelberg (2009)

15. Prisacariu, C., Schneider, G.: A formal language for electronic contracts. In: Bon-
sangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 174–189.
Springer, Heidelberg (2007)

16. Prisacariu, C., Schneider, G.: CL: A Logic for Reasoning about Legal Contracts
Semantics. Technical report, University of Oslo (2008)

17. Ranzato, F.: A more efficient simulation algorithm on kripke structures. In: Chat-
terjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 753–764. Springer,
Heidelberg (2013)

18. Schneider, S.: An operational semantics for timed CSP. Inf. Comput. 116(2), 193–
213 (1995). http://dx.doi.org/10.1006/inco.1995.1014

19. TaŞiran, S., Alur, R., Kurshan, R.P., Brayton, R.K.: Verifying abstractions of timed
systems. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp.
546–562. Springer, Heidelberg (1996). http://dx.doi.org/10.1007/3-540-61604-7 75

20. von Wright, G.H.: Deontic logic. Mind 60, 1–15 (1951)

http://dx.doi.org/10.1007/978-3-662-43613-4_7
http://dx.doi.org/10.1006/inco.1995.1041
http://dx.doi.org/10.1007/978-3-540-71209-1_9
http://dx.doi.org/10.1006/inco.1995.1014
http://dx.doi.org/10.1007/3-540-61604-7_75

Data, Information, and Knowledge
Engineering (Regular Papers)

Solving the Problem of Selecting Suitable
Objective Measures by Clustering Association

Rules Through the Measures Themselves

Veronica Oliveira de Carvalho1(B), Renan de Padua2,
and Solange Oliveira Rezende2

1 Instituto de Geociências e Ciências Exatas, UNESP - Univ Estadual Paulista,
Rio Claro, Brazil

veronica@rc.unesp.br
2 Instituto de Ciências Matemáticas e de Computação,
USP - Universidade de São Paulo, São Carlos, Brazil

{padua,solange}@icmc.usp.br

Abstract. Many objective measures (OMs) were proposed since they
are frequently used to discover interesting association rules. Therefore,
an important challenge is to decide which OM to use. For that, one can:
(a) reduce the number of OMs to be chosen; (b) aggregate OMs’ values
in only one importance value as a mean of not selecting a suitable OM.
The problem with (a) is that many OMs can remain. Regarding (b), the
problem is that the obtained values cannot be well understandable. This
work proposes a process to solve the problem related to the identification
of a suitable OM to direct the users towards the interesting patterns. The
goal is to find the same interesting patterns, as if the most suitable OM
had been used, also trying to reduce the exploration space to minimize
the user’s effort.

Keywords: Association rules · Post-processing · Objective evaluation
measures · Clustering

1 Introduction

Among the data mining tasks association rules mining is one of the most widely
used due to its easy comprehensibility even for non-data miners. An association
rule expresses a relation between items that occur in a given data set. The
relations are of the type A ⇒ B, A representing the antecedent and B the
consequent of the rule. However, due to the nature of the task, a major problem
related with it is the amount of association rules that are usually generated. Even
with a small data set, many rules can be extracted. Therefore, many works have
been done in the area of post-processing. The idea of these works is to aid the
user to discover, among all the extracted patterns, the ones that are interesting
for him. To do so, many approaches exist. One of the most used technique relies
on objective evaluation measures.
c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 505–517, 2016.
DOI: 10.1007/978-3-662-49192-8 41

506 V.O. de Carvalho et al.

Objective evaluation measures, or simply objective measures (OMs), compute
the importance of a rule A ⇒ B based on the information available in the data
set. Based on this importance value, a ranking is built, ordering the rules from
the most to the least important ones, and the n top rules of the ranking are
considered to be the most relevant to the user. Therefore, the user is directed
towards the interesting patterns. Due to their frequent use, many OMs have been
proposed (above 50), like support, defined as P (AB), and confidence, defined as
P (B|A) (many of these OMs are defined and described in [1]). Therefore, an
important challenge in a post-processing process is to decide which OM to use.
To overcome this problem, some solutions have been proposed: (a) some of them
aim at filtering the OMs to reduce the number of measures to be chosen, as in [1–
4]; (b) some others aim at aggregating many OMs’ values in only one importance
value as a mean of not selecting a suitable OM to rank the rules, as in [5,6]. One
way of solving (a) is to cluster the OMs to split them in groups. The problem
is that even splitting the measures, many of them can remain (at least one of
each group). The problem related with (b) is that the obtained values cannot be
well understandable. However, some works, as discussed in [7], state that better
results can be obtained through the combined use of OMs compared to their
individual use. Finally, it is important to mention that the selection of a good
association rule through a suitable OM is an important issue in many areas, as
in recommender systems [8].

Based on what stated above, this work proposes a process to solve the prob-
lem related to the identification of a suitable OM to direct the users towards the
interesting patterns. The goal is to find the same interesting patterns, as if the
most suitable OM had been used, also trying to reduce the exploration space to
minimize the user’s effort. Therefore, with this process (i) it is not necessary to
select a set of suitable OMs, regarding (a), nor explicit aggregate many OMs,
regarding (b), to rank the rules to find the interesting ones; (ii) the exploration
space might be reduced since we assume that there is a subset of groups that
contains all the interesting rules, so that a small number of groups have to be
explored. The proposed solution is based on a clustering of association rules con-
sidering the existing similarity among the rankings obtained by a set of OMs.
To the best of our knowledge, this is the first work that discusses the current
problem as presented here. It is important to mention that many works that
clusters association rules exist, as in [9,10]. However, the aim, in these cases, is
to organize the rules in order to provide the user with a better understanding of
the domain, helping him to find which are, in fact, the interesting patterns.

The paper is structured as follows: Sect. 2 presents some related works; Sect. 3
shows the proposed process; Sect. 4 analyzes the configurations used in experi-
ments to apply the proposed process; Sect. 5 presents the results and discussion;
Sect. 6 draws the conclusions and signals future works.

2 Related Works

Since many OMs exist, some solutions have been proposed to aid the user to
decide which OM has to be used. These solutions basically aim at: (a) filtering

Solving the Problem of Selecting Suitable Objective Measures 507

the OMs to reduce the number of measures to be chosen; (b) aggregating many
OMs’ values in only one importance value as a mean of not selecting a suitable
OM to rank the rules. A review discussing these ideas is presented in [7]. It is
important to mention that other approaches can be found in [7], regarding the
proposed problem, and for this reason and due to the lack of space, only some
recent works are discussed here.

As stated before, one way of solving (a) is to cluster the OMs to split them
in groups. In this case, each cluster represents a group of OMs that present
similar behavior, i.e., that chooses the same rules as the interesting ones (it can
be viewed as a form to reduce the redundancy that can occur among the OMs).
Therefore, after selecting the OMs, from the clusters, the rules are ranked. Based
on these ideas, [4] present a tool, named ARQAT, that implements an approach
that clusters the OMs, from a Rl x M matrix (Rules by M easures), to aid the
user to select a set of suitable OMs and, consequently, the most interesting rules
within a specific rule set (the approach must be executed for each rule set). Since
the user can select one OM from each cluster, some operators are available, as
union and intersection, to support the identification of the most interesting rules.
To do the clustering, the Pearson’s correlation coefficient is used to compute the
similarity among the OMs, considering that each cell [r][m] of the matrix stores
an OM’s value. On the other hand, [1] aim to group similar OMs in one cluster,
focusing on “excluding” the redundant ones. In other words, the work reduces
the selection space, i.e., it tries to present fewer OMs to the user. However, as in
the previous work, the user can select one OM from each cluster and, so, many
OMs can remain. To do the clustering, a Rl x M matrix is used, in which each cell
[r][m] stores the ranking of the rule associated with the OM, and the Spearman’s
correlation coefficient computes the similarity among the OMs. Similar to the
work of [1,2] present the same ideas, but the difference is that the clusters are
not crisp, i.e., one OM can belong to more than one cluster. They state that an
OM may belong to a cluster because it shares some kinds of properties and to
another because it shares some other properties. To do the clustering, boolean
factor analysis is used based on a M x P matrix (M easures by Properties), in
which each cell [m][p] stores 0 or 1 (the OM presents (1) or not (0) the property).
Another work that uses a M x P matrix, maintaining the same goal, is [3], using
as similarity the Euclidean distance.

The solutions regarding (b) can be seen as the proposal of a “new” OM that
generates a unique value for each rule. In this case, the problem is converted
to an optimization one, and, generally, an optimal equation is obtained to com-
bine many values in a single value. Based on this single value the ranking is
constructed. Considering the exposed, [5] aim to find the most interesting asso-
ciation rules considering, at the same time, many OMs. For that, the skyline
operator, used to resolve mathematical and economics problems, is used. Based
on this operator, a set of undominated rules, considered as the interesting ones
by all the OMs in use, is found. In the end, all of these undominated rules are
ranked according to the existing similarity among them and a fictitious rule,
the most interesting one considering all the OMs. On the other hand, [6] use

508 V.O. de Carvalho et al.

Fig. 1.
Exemplifying
the matrices and
the vectors of the
proposed process.

Algorithm1. The proposed process.

Input: Rl: an association rule set, M : a set of OMs
Output: Clusters of association rules ordered by their degree of

interestingness
1: Compute Mat: Rl x M
2: for OM := 1 to |M | do
3: Sort Mat[][OM] in descending order
4: Assign Mat[][OM] a ranking value ranging from 1 to rvn
5: Normalize Mat[][OM] by min-max: rv = rv−rvmin

rvmax−rvmin

6: end for
7: for i := 1 to |Rl| do � Compute the dissimilarity matrix D
8: for j := 1 to (i-1) do

9: D[i][j] =
|M|∑

OM=1

|r[i][OM] − r[j][OM]| � Manhattan

distance
10: D[i][j]/|M |
11: end for
12: end for
13: Cluster the rules using D
14: for i := 1 to |Rl| do
15: MR[i] =

|M|∑
OM=1

r[i][OM]

16: MR[i]/|M |
17: end for
18: for i := 1 to |C| do
19: R[i] =

|NRi|∑
NR=1

MR[i]

20: R[i]/|NRi|
21: end for
22: Output Sort(R) � Sort in ascending order

Choquet integral to combine the values of different OMs into a single interest-
ingness value to rank the rules.

3 The Proposed Process

As it can be seen through the previous sections, the problem related with the
works regarding (a), i.e., filtering the OMs to reduce the number of measures to
be chosen, is that even clustering the measures, many of them can remain (at
least one of each group); with the works of (b), i.e., aggregating the OMs values
in only one importance value, that the obtained values cannot be well under-
standable. Based on what stated above, this work proposes a process to solve the
problem related to the identification of a suitable OM to direct the users towards
the interesting patterns. The goal is to find the same interesting patterns, as if
the most suitable OM had been used, also trying to reduce the exploration space
to minimize the user’s effort. Therefore, (i) it is not necessary to select a set of

Solving the Problem of Selecting Suitable Objective Measures 509

suitable OMs, regarding (a), nor explicit aggregate many OMs, regarding (b).
The solution is based on a clustering of association rules considering the existing
similarity among the rankings obtained by a set of OMs.

The proposed process, seen in Algorithm 1, receives as input an association
rule set Rl and a set M of OMs. The rules in Rl are obtained by applying an
association rule extraction algorithm. The OMs in M are a group of OMs the
user has interest to use. Not to bias the process regarding any OM, it is important
to extract the rules only using the support measure (see Sect. 4). The output of
the process is a group of clusters ordered by their degree of interestingness, in a
manner that only a small number of groups have to be explored, trying to reduce
the exploration space – it is expected that the first clusters be the ones that will
contain the interesting patterns. For better understanding the clustering process,
described below, Fig. 1 presents the output of some matrices and vectors that
are stored in Algorithm 1. Besides, the following notation is used: |M | stands for
the number of OMs in M ; |Rl| stands for the number of rules in Rl; |C| stands
for the number of clusters obtained after the clustering process; NRi stands for
the number of rules contained in a cluster i.

First of all, as seen in Algorithm 1, it is computed, in line 1, the matrix
Mat: Rl x M , in which each line represents a rule r ∈ Rl and each column an
OM ∈ M . The value of each cell, [r][OM], stores the value of OM in r. An
example of such matrix is presented in Fig. 1 as Mat. After that, from lines 2 to
6, a normalization is done, since not all OMs have a pre-defined range, i.e., some
of them range, for example, from [0..1], as support, and others from [0..∞], as
collective strength. Thus, if the ranges were transformed to [0..1], for example,
a value of 0.5 in one measure could be much more important than a value of
0.5 in another. For that, in lines 3 and 4, each column’s values are replaced with
their ranking’s values as in [1]. As stated by them [1], we also agree that “...what
matters most to the practitioner is how an interesting measure ranks rules so she
can get the most interesting rules out of her data.”. Therefore, each r receives a
value that is proportional to its importance. It is important to remember, from
OMs context, that the higher the value the more interesting the rule (as occurs
in support). That way, in Algorithm1, rvn represents the highest ranking in
a given OM . Finally, in line 5, the rankings are normalized, in range [0..1], in
order to provide equal weighting for the OMs, since each one can have different
values of rvn. It is important to mention that this block of code (lines 2 to 6)
processes the data, i.e., Mat, as presented in [11] regarding how to handle ordinal
variables. An example of the results obtained from lines 3 to 4 and line 5 are
presented in Fig. 1, respectively, as Mat(R) and Mat(N).

To cluster the rules, the dissimilarity matrix D is computed, from lines 7
to 12, based on the existing similarity among the rules’ rankings. For that, the
Manhattan distance is used (line 9). Note that since the matrix is symmetric,
only part of it is stored in memory. Other measures of group cohesiveness, as
Kendall’s Coefficient of Concordance W [12], could be used. However, we pre-
ferred to use the absolute differences, among all the rankings, than the mean
square differences, since we think this is more intuitive to the presented prob-

510 V.O. de Carvalho et al.

lem. To keep the range between [0..1], each distance’s value is divided by the
number of OMs used in the computation (line 10). The idea is to find the exist-
ing agreement among the rules. Therefore, it is possible to obtain groups of rules
that agree with their classifications considering different semantics (one of each
OM). An example of such matrix is presented in Fig. 1 as D. In line 13 the rules
are clustered based on D.

To finish the process, the clusters are ranked (lines 14 to 21). This work
considers that there is a subset of groups that contains all the interesting rules,
so that a small number of them have to be explored. That way, trying to minimize
the user’s effort by reducing the exploration space, without knowing the most
suitable OM to be used, the user can discover the relevant patterns. Therefore,
after clustering the rules, these groups must be ordered, since the aim is to
explore only the first ones. The ranking is built as follows: for each rule r, all
of its rankings, in all of the OMs, are summed and the mean taken (lines 15
and 16). These values are stored in the vector MR. Based on these means, the
interestingness of each cluster is computed by taking the mean of the values
obtained for each rule (lines 19 and 20). These values are stored in the vector R.
Both MR and R are presented in Fig. 1 as MR and R. At the end, in line 22, the
clusters are sorted and output to the user. The idea is to compute the average
ranking of each cluster, in which the lower the value the better the cluster, since
all the rules inside the cluster present similar agreements regarding different
OMs.

4 Experiments

Some experiments were carried out to demonstrate the feasibility of the proposed
process. Algorithm 1 shows that, first of all, a rule set Rl and an OM set M are
needed. Thus, to evaluate the process, a real data set, provided by the Civil
Defense of Rio Claro city, São Paulo state, was used. The data set contains the
occurrences attended by them from 2008 to 2012. The kinds of attendance are
classified in “investigation”, “no criminal”, “infraction act”, “criminal”, “traffic
accident” and “others”. The aim was to discover interesting patterns regarding
the behavior of population in the attendances “others”. The data set contained
2323 transactions and 16 features. After pre-processing, with the domain expert
aid, 1043 transactions remained along with 9 features. Due to the privacy of the
data, details about the features and other particularities will not be provided.
The association rules were extracted with an Apriori implementation1 from the
pre-processed data set, using 5 % of minimum support, 0 % of minimum confi-
dence (not to bias the results when using this OM to cluster the rules), rules
with a minimum of 2 and a maximum of 5 items considering only one item in
the consequent. Before extracting the rules, the data set was converted to a
transactional format, where each transaction was composed by pairs of the form
“attribute=value”. A total of 2215 rules were obtained.
1 Developed by Christian Borgelt: http://www.borgelt.net/apriori.html.

http://www.borgelt.net/apriori.html

Solving the Problem of Selecting Suitable Objective Measures 511

In order to construct a “gold standard” rule set (named here as G set),
to enable the analysis of the experiments, the expert analyzed all of the 2215
extracted rules to identify, among them, the ones considered as interesting, com-
ing up with a total of 181 (|G|=181). However, to analyze if the size of the rules
affects the results, the original rule set was used to generate 4 different rule sets:
the first one, R2, containing only the extracted rules with 2 items; the second
one, R3, containing the extracted rules with a minimum of 2 and a maximum of
3 items; the third one, R4, containing the extracted rules with a minimum of 2
and a maximum of 4 items; the last one, R5, containing all the extracted rules.
That way, each rule set Rx has its own Gx set: G2 containing the gold rules with
only 2 items, G3 containing the gold rules with a minimum of 2 and a maximum
of 3 items, G4 containing the gold rules with a minimum of 2 and a maximum
of 4 items and G5 containing all the gold rules. The number of rules contained
in each set is presented in Table 1.

Regarding the OM set M , 20 OMs were used, the ones presented in Table 1.
All of these OMs are described in [1]. In their work, the authors analyzed 61
OMs and clustered them in 20 groups, demonstrating that they are a good
representative for the OMs. Based on that analysis, we selected one OM from
each group. The choice was made considering the computational cost to compute
the OM; therefore, the simplest ones were selected.

To do the clustering, we used the complete linkage algorithm and cut the den-
drograms in 0.25 and 0.502, as presented in Table 1. It is important to remember
that the result of a hierarchical clustering can be expressed by a tree named den-
drogram. This representation allows cutting the tree in a given height to obtain
a set of clusters as in the partitional case. The height represents the distance
between clusters. Therefore, we decided to use a hierarchical algorithm since we
do not have to specify the number of k, finding this number through the cut. The
values of 0.25 and 0.50 were chosen since they indicate a similarity inside each
group above 0.75 (1–0.25) and 0.50 (1–0.50), respectively. The complete linkage
was chosen, as in [1], among the others of the family, as it has a tendency to
create more compact clusters. To execute the proposed process, we used, among
others, the daisy function in the cluster package (metric =“gower”) and the
hclust function in the stats package, both available in R3.

Based on what stated above, the proposed process was executed for each rule
set Rx. To evaluate the results, four values were computed (see Table 1): Recall
in Clustering (Rc.Cl) (Eq. 1), Reduction in Clustering (Rd.Cl) (Eq. 2), Recall
in OM (Rc.OM) (Eq. 3) and Reduction in OM (Rd.OM) (Eq. 4). In all of them,
|x| stands for the number of elements in x. Rc.Cl stores, for a given rule set Rx,
the number of Gx rules that were found, from the total that should be found, for
all of its clusters. The order the clusters are processed is related to their degree
2 In fact, the cuts 0.25, 0.30, 0.35, 0.40, 0.45 and 0.50 were tested to see the impact of

them in the results. As all of them behaved similarly, being the analysis described in
Sect. 5 basically the same to all of them, we decided to present here only the results
obtained in the first and in the last cut.

3 http://www.r-project.org/.

http://www.r-project.org/

512 V.O. de Carvalho et al.

Table 1. Configurations used in the experiments.

Rule sets |R2|=408, |R3|=1317, |R4|=1985, |R5|=2215

Gold sets |G2|=45, |G3|=116, |G4|=160, |G5|=181

OMs Support, Prevalence, K-measure, Least Contradiction,
Confidence, TIC, EII1, Leverage, Directed Information
Ratio, Loevinger, Odds Ratio, Dilated Chi-square, Added
Value, Cosine, Lift, J-measure, Recall, Specificity,
Conditional Entropy, Coverage

Algorithm Complete linkage (cuts of 0.25, 0.50)

Evaluation measures Rc.Cl, Rd.Cl, Rc.OM , Rd.OM

of interestingness (see Sect. 3). Therefore, t, in Eq. 1, is related to the order of the
clusters, being t = 1 related to the best classified cluster. Rd.Cl stores, for all the
clusters of a given rule set Rx, the exploration space reduction, i.e., the number
of rules the user does not have to explore to find the knowledge he considers
as interesting. As in Rc.Cl, the order the clusters are processed is related to
their interestingness. A Rc.Cl of 10 %, for a given cluster Ct of Rx, indicates
that from all the Gx rules related with Rx only 10 % of them were found. On
the other hand, a Rd.Cl of 70 % indicates that the user only needed to explore
(explicit evaluate) 30 % of the rules (100 %–70 %) to find the relevant patterns.
Thus, in both cases, the higher the values the better the results. Note, in Eqs. 1
and 2, that the values are cumulative as the clusters are explored. For better
understanding, consider that three clusters were obtained and ranked in the
following order: c3 with 50 rules, being 10 of them interesting; c1 with 20 rules,
being 20 of them interesting; c2 with 30 rules, being 20 of them interesting (total
of 100 rules, being 50 of them interesting). Therefore, the following values would
be computed: Rc.Cl = {20 %, 60 %, 100 %} (20 %=(10/50), 60 %=((20+10)/50),
100 %=((20+10+20)/50)) and Rd.Cl = {50 %, 30 %, 0 %} (50 %=(1-(50/100)),
30 %=(1-((20+50)/100)), 0 %=(1-((30+50+20)/100))).

Rc.Cl(Rx) =
|C|⋃

t=1

Rc.ClCt
(Rx),

Rc.ClCt
(Rx) =

|Gold Rules in Ct| +
t−1∑

i=1

|Gold Rules in Ci|
|Gx| (1)

Rd.Cl(Rx) =
|C|⋃

t=1

Rd.ClCt
(Rx),

Rd.ClCt
(Rx) = 1 −

|Rules in Ct| +
t−1∑

i=1

|Rules in Ci|
|Rx| (2)

Solving the Problem of Selecting Suitable Objective Measures 513

Rc.OM(Rx) = Rc.OM(Rx)OM = Rc.Cl(Rx) (3)

Rd.OM(Rx) = Rd.OM(Rx)OM = Rd.Cl(Rx) (4)

To compare the results of the proposed process with the results that would
be obtained by the traditional OM post-processing approach, Rc.OM (Eq. 3)
and Rd.OM (Eq. 4) were computed. Both are based on the previous equations
and have, therefore, the same meaning. The difference here is that, as many OMs
exist, it is necessary to compute the values for each one of the 20 OMs used to
cluster the rules. The aim is to discover the best OM, i.e., the one that reaches
a Rc.OM of 100 % with less effort, i.e., with a high Rd.OM . The results related
with the best OM are stored to be used as the baseline to compare the results.
For that, to compute the values, for a given OM, the rules are ranked, and
each position of the ranking is considered as a cluster containing one rule. For
better understanding the procedure, consider the three rules and their rankings
presented in Fig. 1. Besides, that r3 is the only interesting rule in the set (|G|=1).
In this case, three rankings would be obtained: r1, r2, r3 for m1; r3, r1, r2 for
m2; r1, r2, r3 for m3. Therefore, the following values would be computed for
each measure: m1: Rc.OM = {0 %, 0 %, 100 %} and Rd.OM = {67 %, 33 %,
0 %}; m2: Rc.OM = {100 %, 100 %, 100 %} and Rd.OM = {67 %, 33 %, 0 %};
m3: Rc.OM = {0 %, 0 %, 100 %} and Rd.OM = {67 %, 33 %, 0 %}. Therefore,
in the end, the results of m2 would be stored, since it is the measure in which
the user reaches a Rc.OM of 100 % with less effort (Rd.OM = 67%).

As it can be observed, what is being analyzed is the user’s effort to achieve
a good recall. Therefore, it is possible to compare the results of the proposed
process considering the best OM results, i.e., when the user knows which is the
most suitable OM that would recover the relevant patterns. However, it is impor-
tant to remember that this information is not known during real applications.
Thus, it is expected that the proposed process behaves in a similar or better way
than the traditional one.

5 Results and Discussion

The results obtained from the experiments are presented in Fig. 2. Figure 2(a),
for example, presents the results of R2 considering a cut of 0.25 (R2:0.25).
All graphics present the four information described before: Rd.Cl, Rd.OM and
R = Rc.Cl = Rc.OM . In fact, the values of Rc.Cl and Rc.OM are represented
by R, since it is presented, for the same recalls’ values, the exploration space
reductions in the proposed process and in the traditional OM post-processing
approach. Therefore, it is possible to evaluate, in each graphic, if the user can,
with the proposed process, recover the same interesting patterns as if the best
OM had been used, also considering if it would be possible to minimize the
user’s effort by reducing the exploration space. Remember that the information
regarding the best OM to be used is not known during real applications and,
so, it is expected that the proposed process behaves in a similar or better way

514 V.O. de Carvalho et al.

Fig. 2. (a), (c), (e) and (g): results, for each rule set Rx, considering a cut of 0.25 in
the dendrogram; (b), (d), (f) and (h): results, for each rule set Rx, considering a cut
of 0.50 in the dendrogram.

Solving the Problem of Selecting Suitable Objective Measures 515

than the traditional one. In all graphics, R ranges from 0 % to 100 %, expressing
the increasing of the value along the clusters. On the other hand, in all of them,
Rd.Cl and Rd.OM range from 100 % to 0 %, expressing the decreasing of the
values along the clusters. Therefore, the R line is always in the inverse direction
of Rd.Cl and Rd.OM . The y-axis expresses the percentage of each presented
information. The x-axis represents the obtained clusters, ordered by interesting-
ness (from best to worst, 1 meaning the results of the best cluster), and, so, it
is possible to see how many clusters were obtained in each case (in Fig. 2(a), for
example, 27). Considering Fig. 2(b), for example, it can be observed that explor-
ing only the first interesting cluster, a Rd.Cl value of 82.11 % is obtained with
a R (Rc.Cl) of 35.56 %. If the best OM measure had been used, considering the
same R (Rc.OM), a Rd.OM value of 75 % would be obtained. In other words,
to achieve the same R more effort would be necessary. Observe that when all
the clusters have been explored, a Rd.Cl value of 0 % is obtained with a R of
100 %. Evaluating the results, it can be noticed that:

– the results of the proposed process substantially overlap with the ones that
would be obtained with the best OM. This means that the user’s effort to
achieve a good recall is almost the same in both the procedures, although
the proposed process can achieve a good recall with less effort, i.e., with a
better exploration space reduction value (see next discussion). In other words,
the user can find the same interesting patterns, as if the most suitable OM
had been used, also minimizing the user’s effort. Therefore, good results were
obtained, since, in real applications, the user does not know which OM to use
to achieve reasonable results.

– in real applications, the user may not reach a R of 100 %, since only the first
n rules are explored to obtain a good exploration space reduction. There-
fore, considering the recalls’ values close to 50 % (solid line), the following
exploration space reductions are obtained:

R2 : 0.25: Rd.Cl ≈ 77% > Rd.OM ≈ 68%; R2 : 0.50: Rd.Cl ≈ 73% >
Rd.OM ≈ 67%;
R3 : 0.25: Rd.Cl ≈ 57% > Rd.OM ≈ 54%; R3 : 0.50: Rd.Cl ≈ 65% >
Rd.OM ≈ 62%;
R4 : 0.25: Rd.Cl ≈ 59% > Rd.OM ≈ 51%; R4 : 0.50: Rd.Cl ≈ 59% >
Rd.OM ≈ 50%;
R5 : 0.25: Rd.Cl ≈ 57% > Rd.OM ≈ 51%; R5 : 0.50: Rd.Cl ≈ 68% >
Rd.OM ≈ 58%.

Thus, in all of these cases, the proposed process can provide the user with
the same relevant information (i.e., the same R) with little less effort, since
the exploration space reductions are higher than the ones obtained through
the best OM. In fact, for recalls below 50 %, the proposed process generally
presents better exploration space reductions in relation to the ones obtained
by the best OM. Besides, to achieve recalls close to 50 %, in general, only half
or less of all the clusters have to be explored: 25.93 % in R2:0.25 (7/27), 40 %
in R2:0.50 (2/5), 56.25 % in R3:0.25 (18/32), 50 % in R2:0.50 (3/6), 48.57 % in
R4:0.25 (17/35), 50 % in R4:0.50 (3/6), 51.28 % in R5:0.25 (20/39) and 33.33 %

516 V.O. de Carvalho et al.

in R5:0.50 (2/6). Finally, for recalls above 50 %, the results of the best OM
are, in general, a little better than the ones obtained by the proposed process.
However, for higher recalls, none of them are interesting, since only the first
n rules are explored, hardly achieving a R of 100 %.

– regarding the rule size effect on the results, it can be seen that the above
discussions are true for all of the Rx sets. Therefore, the rule size does not seem
to have a high effect on results, as well as the cut on the dendrogram. However,
in general, the lower the rule size the higher the recall for the same exploration
space reduction. Looking at reductions close to 70 % in the proposed process
(dotted line), for example, it can be seen that RR2(≈ 51%;≈ 49%) ≥ RR3(≈
40%;≈ 33%) ≥ RR4(≈ 39%;≈ 31%) (exception to RR5(≈ 40%;≈ 36%)).

As it can be seen, the proposed process contribution, in automating the
exploration process, is highlighted by the reduction that is achieved in relation
to the user’s effort and by the achieved results that are closer or better than the
ones that could be obtained regarding the best OM. That way, without knowing
the best OM to apply, in order to reduce the user’s effort in finding the relevant
patterns, the proposed process provides a reasonable way to achieve this goal.
Thus, through experimentation and real case study, the importance of the work
can be visualized.

6 Conclusion

This work proposed a process to solve the problem related to the identification
of a suitable OM to direct the users towards the interesting patterns. The goal
is to find the same interesting patterns, as if the most suitable OM had been
used, also trying to reduce the exploration space to minimize the user’s effort.
That way, (i) it is not necessary to select a set of suitable OMs nor explicitly
aggregate many OMs; (ii) the exploration space might be reduced.

Some future works can be done to improve the described process: (a) check if
other clustering algorithms can lead to better results; (b) explore ways to rank
the rules inside the clusters to try to obtain better exploration space reductions;
(c) check if the use of redundant OMs (the ones that lead to the same rankings)
affects the results of the proposed process, since only non-redundant OMs were
used in the experiments (only the set extracted from the clustering process pro-
posed by [1]). Besides, ways to improve the efficiency of the process, considering
the space complexity aspect (due to the matrices and vectors that need to be
computed), will be explored.

Acknowledgments. We wish to thank FAPESP and CAPES for the financial sup-
port.

References

1. Tew, C., Giraud-Carrier, C., Tanner, K., Burton, S.: Behavior-based clustering and
analysis of interestingness measures for association rule mining. Data Min. Knowl.
Disc. 28(4), 1004–1045 (2014)

Solving the Problem of Selecting Suitable Objective Measures 517

2. Belohlavek, R., Grissa, D., Guillaume, S., Nguifo, E.M., Outrata, J.: Boolean fac-
tors as a means of clustering of interestingness measures of association rules. ann.
math. artif. intell. 70(1–2), 151–184 (2014)

3. Guillaume, S., Grissa, D., Mephu Nguifo, E.: Categorization of Interesting-
ness Measures for Knowledge Extraction. CoRR, vol. ArXiv e-prints (2012).
abs/1206.6741

4. Huynh, X.-H., Guillet, F., Blanchard, J., Kuntz, P., Briand, H., Gras, R.: A graph-
based clustering approach to evaluate interestingness measures: a tool and a com-
parative study. Qual. Measures Data Min. Stud. Comput. Intell. 43, 25–50 (2007)

5. Bouker, S., Saidi, R., Yahia, S.B., Nguifo, E.M.: Mining undominated association
rules through interestingness measures. Int. J. Artif. Intell. Tools 23(4), 22 (2014)

6. Nguyen Le, T.T., Huynh, H.X., Guillet, F.: Finding the most interesting association
rules by aggregating objective interestingness measures. In: Richards, D., Kang,
B.-H. (eds.) PKAW 2008. LNCS, vol. 5465, pp. 40–49. Springer, Heidelberg (2009)

7. Bong, K.K., Joest, M., Quix, C., Anwar, T., Manickam, S.: Selection and aggre-
gation of interestingnes measures: a review. J. Theor. Appl. Inf. technol. 59(1),
146–166 (2014)

8. Bong, K.K., Joest, M., Quix, C., Anwar, T.: Automated interestingness measure
selection for exhibition recommender systems. In: Nguyen, N.T., Attachoo, B.,
Trawiński, B., Somboonviwat, K. (eds.) ACIIDS 2014, Part I. LNCS, vol. 8397,
pp. 221–231. Springer, Heidelberg (2014)

9. Djenouri, Y., Drias, H., Habbas, Z., Chemchem, A.: Organizing association rules
with meta-rules using knowledge clustering. In: Proceedings of the 11th Interna-
tional Symposium on Programming and Systems, pp. 109–115 (2013)

10. de Carvalho, V.O., dos Santos, F.F., Rezende, S.O., de Padua, R.: PAR-COM: a
new methodology for post-processing association rules. In: Zhang, R., Zhang, J.,
Zhang, Z., Filipe, J., Cordeiro, J. (eds.) ICEIS 2011. LNBIP, vol. 102, pp. 66–80.
Springer, Heidelberg (2012)

11. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: an Introduction to Cluster
Analysis. John Wiley and Sons, Hoboken (2005)

12. Siegel, S., Castellan Jr, N.J.: Nonparametric Statistics for the Behavioral Sciences.
McGraw-Hill, New York (1988)

Survey on Concern Separation
in Service Integration

Tomas Cerny1(B) and Michael J. Donahoo2

1 Department of Computer Science, Czech Technical University,
Charles square 13, Prague, Czech Republic

tomas.cerny@fel.cvut.cz
2 Department of Computer Science, Baylor University, Waco, TX, USA

jeff donahoo@baylor.edu

Abstract. Ever-changing business processes in large software systems,
integration of heterogeneous data sources as well as the desire for legacy
service integration drive software design towards reusable, platform-
independent, web-accessible microservices. Such independently deploy-
able services provide an interface for retrieval and data manipulation
in machine-readable formats. While this approach brings many advan-
tages from the perspective of service integration aiming to separate
data manipulation from business processing, the standard approaches
provide only limited structural semantics and constraints provided
through the interface. This leads to considerable information restate-
ment and repeated decisions in integrating components, which consider-
ably impacts development and maintenance efforts. Integration compo-
nent operability becomes highly sensitive to interaction with underlying
services, which are possibly composed of other services. The sensitiv-
ity is especially apparent in the structural semantics of produced and
consumed information that must correlate on both sides of the inter-
action. This paper surveys service integration from the perspective of
separation of concerns. In order to reduce the coupling and information
restatement on the integration component side, it suggests introducing
multiple communication channels with additional information that apply
in the service interaction, extending the integration component’s ability
to derive service expected information structural semantics, constraints
or business rules. Finally, we consider the impact of this new approach
from the development and maintenance perspectives.

Keywords: Web services · Service integration · Aspect-Oriented pro-
gramming

1 Introduction

Software design of large systems, which integrate functionality from different het-
erogeneous data sources and provide decentralize governance, utilize reusable,
independently-replaceable, scalable and deployable microservices [13]. Such

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 518–531, 2016.
DOI: 10.1007/978-3-662-49192-8 42

Survey on Concern Separation in Service Integration 519

services provide composable functionality addressing the disadvantages of mono-
lithic design. [13]. They provide platform independence, support interoperable
[1] interaction among different components using standard machine-readable for-
mats. These services emphasize well-defined interfaces and availability on net-
work, with location transparency.

The emphasis on service interface enables easy exchange of service providers
and thus reduces coupling between the integration components (or generally
peers) and services. An independent self-deployable component that integrates
services is in the text referred as an Integration Component (IC). The IC-service
interaction can be further mediated to multiple providers to support service
availability, scalability, and performance. Services can recursively integrate other
services, making such service composition transparent to ICs. Market changes,
innovation, and/or evolution in business requirements make it easy for the ICs to
use novel services or apply a new business processes on top of an existing service
infrastructure. At the same time, such design, especially in the early development
stage, may demand higher investments than code-centric monolithic design [1],
while opening the services for broader future reuse. Thus from the long-term per-
spective, the overall costs are expected to reduce. ICs are fragile with respect to
failure, flaws, or performance bottlenecks in any of its underlying services. Fur-
thermore, the standard format of communication brings additional performance
demands related to serialization and deserialization of information between the
machine-readable format and the internal platform-specific format.

Services built on existing technologies provide information formatted in a
specific structure, which the ICs must strictly follow. Current standards-based
approaches provide data values and some semantics of the internal structure,
although it is insufficient to automatically derive the internal structure at the
IC side. For example, property data types are limited and their constraints or
validation rules are missing. Furthermore, it is not possible to automatically
determine the expected structural semantics of information a service consumes.
From the design perspective, ICs must implement appropriate internal structural
representation for service-provided information. These are usually Data Transfer
Objects (DTO) [10], or map structures. These components define structure for
the native platform, although this is a restatement since the structure exists
and is co-defined at the web service side. This gives a commitment to the IC.
Any time service information defining structure changes, its ICs must reflect the
change, creating a difficulty in maintenance, as there is no mechanism preventing
such inconsistencies.

The situation becomes worse when considering multiple communicating ICs
or middlewares that all process the same information representation, considering
the same constraints, validation rules, etc. The maintenance becomes complex
and correlation fragility grows. Different individuals might manage particular
services or ICs at heterogeneous locations and follow different evolution and
changes. Service is usually unaware of its ICs, and thus its internal change may
lead to catastrophic consequences. Due to such difficulties, it is now common

520 T. Cerny and M.J. Donahoo

practice1 to leave the existing service as it is when structural changes in data
take place. Instead of extending the particular service, its copy with changes is
made. Consequently, the two services run simultaneously. Such an approach does
not naturally scale2 since multiple such services must be monitored for operation
and backups, driving up operation costs.

This paper considers service integration from the perspective of separation
of concerns. The motivation is to decrease maintenance effort and mitigate the
impact on ICs related to changes in service structural representation, constraints,
and validation or business rules. The ICs become adaptable to changes in the
above service concerns.

The conventional approaches use a single channel for communicating the
information to ICs. As mentioned earlier, only a limited amount of structural
information can be derived. For instance, consider a web service producing infor-
mation in XML or JSON. These formats carry data values and partially describe
the data structure with property names, leaving a gap for types, constraints, etc.
Thus internal IC representation must exist to provide the missing pieces of infor-
mation, introducing restatements.

A concern-separating approach suggests a different form of communication.
It provides novel meta information that can be used to derive the internal IC
structural representations at runtime. This meta information relate to different
concerns. Besides the complete data structure information, the channels may
consider input validation rules, user context, and business rules. Providing these
concerns in a single communication channel, would lead to inefficiencies, as some
concerns tend to change more often than others. Instead, we propose the use of
multiple communication channels to avoid repetition and support separation of
concerns at the communication-level. This extends concern reuse at the IC side
and improves caching capabilities [6]. All the novel concerns are provided in a
machine-readable format. The ICs become capable to derive internal structural
representation, constraints, validation and business rules at runtime based on
the service provided information. Later service changes are adopted by ICs and
all their communication successors, which help to avoid consistency errors.

The rest of the paper is organized as follows. Section 2 provides background.
Details on concern separation analysis in service integration are provided in
Sect. 3. Section 4 details the concern separating design. Related work is men-
tioned throughout Sects. 2 till 4. Section 5 concludes the paper.

2 Background

Web services produce and consume data. A web service is the only component
with access to the data source, and the only component that can persist or pro-
vide data. Usually, such a service persists data to a relational database, although
1 Based on experience, while technically consulting with software architects of Czech

banks.
2 The highest number of simultaneously running service copied versions was reported3

22.

Survey on Concern Separation in Service Integration 521

its design most likely uses object-oriented programming (OOP). Even legacy ser-
vices designed in non-conventional style can be extended to provide a web service
interface [1]. Such services communicate in machine-readable formats, such as
XML or JSON.

Contemporary trends in OOP design are apparent from the Java Enter-
prise Edition (Java EE) platform [9]. The platform has a standard for deal-
ing with Object-Relational Mapping (ORM) for persistence called Java Persis-
tence API (JPA), input validation (Bean Validation), and even for serializa-
tion/deserialization of data represented by objects to JSON or XML formats3

and backwards.
A service in the Java EE platform represents its data model with classes called

entities that are associated with each other and extended with JPA descriptors
for ORM as well as with Bean Validation descriptors to enforce input validation.
A service can enforce business rules on the top of the data model by referenc-
ing particular entities and their properties. As mentioned in [3,10], a standard-
ization or generally accepted approach for defining business rules is missing.
One possibility is to define such rules using OOP [2]; unfortunately this leads
to significant restatements of rules across various system modules or layers [3],
extending maintenance efforts. Alternative approaches suggest using frameworks
describing the rules in Domain-Specific Languages (DSLs), such as Drools [16] or
MPS [17]. These approaches isolate rule definitions and enforce their application
throughout the system.

A web-service hides its internals from other ICs, even though the informa-
tion structure it provides or consumes is influenced by its entities and their data
structure. Sometimes services aggregate entities or filter their properties using
DTOs indirection [10]. The entities or DTOs then determine the desired format
(XML/JSON). When considering the produced format, it consists of informa-
tion relevant to a particular data instance, as well as to the data structure since
each data value is provided together with its property. The product thus con-
tains limited structural information; however, it does not provide the expected
property data type, constraints, etc.

The IC must follow the service-expected data structure. The IC internal
data representation, similarly to the service, uses either DTOs designed and
compiled for this purpose, or map data structure, derived from the service pro-
vided information. The map structure may seem more flexible, but it provides no
type safety or assurance on correct data structure, property types, constraints,
etc. when submitting data to the service. From the perspective of service data
consumption the map structure may seem impractical as the internal structure
accepts any input, but the service may reject the information due to typological
errors.

Both DTO and map structure properties must correlate with the runtime
service representation to avoid inconsistency errors and rejected service submis-
sions. The issue is that service and IC are independent components with different
evolution time spans. Thus any time the service-side data representation changes,
3 Java Architecture for XML Binding, Java API for {RESTful/XML} Web Services.

522 T. Cerny and M.J. Donahoo

the IC representation must change accordingly. The ICs’ DTO property restate-
ment suffers from tight coupling and the inability to adapt to service changes,
its structure is determined at compile time. A mechanism is missing to indicate
or prevent inconsistency errors due to changed service internal structure.

Restatement problems are not limited to data representation only; a similar
issue arises with input validation. For performance and usability reasons, we
apply input validation on the IC before incurring the cost of communication and
service-side processing, although to do so, we need to manually apply the input
validation at the IC. This negatively impacts development and maintenance
efforts since the same validation rules are restated on all tiers. Furthermore,
when the IC integrates multiple services together, it might be intended to apply
service business rules already at the IC level. This again leads to their replication
across tiers.

The situation is exacerbated by context-awareness [4]. For instance, consider
various user roles that are authorized to access different data properties. From
the service autonomy perspective [1], this should apply at the service, but it
cannot be omitted at the IC side, due to usability perspective [14]. The context-
awareness is more complex [4] than just security. User may come from different
geo locations, at different times, with various devices that all may impact the
provided data, data representation, its structure, validation rules or business
rules. A considerable number of decisions might be repeated at different tiers,
tangling through other application concerns [6].

Current web service system design allows service reuse, composition, distrib-
ution, replication, and cross-platform compatibility. On the other hand, it does
not effectively handle integration component development or service evolution.
As we have shown, many concerns are considered at different tiers, although
a mechanism that shares concerns across tiers is missing. This paper proposes
a concern separation approach applied to the communication among ICs. The
advantage is that concerns considered at the service level can be reused by other
ICs, which simplifies service evolution and brings ICs’ better adaptability to
service changes. The context-awareness causes concern tangling in conventional
approaches, deteriorating the complexity, development and maintenance efforts.
The proposed approach provides concern distribution through multiple channels
and handles context-awareness more effectively than a single channel communi-
cation. The multi-channel concern distribution extends reuse [6] and supports
caching abilities.

3 Analysis and Discussion on Concern Separation in
Services

We identify several problems with conventional service integration design. No
matter the internal service design, the interaction with other ICs only provides
limited information about service concerns. It focuses primarily on data value
interaction. Data representation must structurally correlate among ICs and ser-
vices. The validation rules and constraints must be replicated on the IC side.

Survey on Concern Separation in Service Integration 523

When a service does not expose its source code, IC design can only consider ser-
vice documentation to apply service business rules in its design to improve usabil-
ity. Even when code is provided, rule derivation might be very difficult, since one
service can capture business rules tangled in the OOP design [3], another may
use Drools and another MPS. All later changes must again correlate with ICs,
which makes global business rule maintenance hard. Runtime context, such as
security, time, IC location, etc., may influence the produced or consumed data.
From the concern perspective, we consider the following elements:

Each IC that uses a service and wants to process its data values , restates
the data structure representation and most likely its validation rules .
The IC may need to restate business rules or even integrate context .
Besides the data values , this presents significant responsibility and burden
for development, service evolution, and maintenance. Even a small change to
the above service elements may cause inconsistency in multiple ICs that
integrate the service, thus requiring manual change propagation. The issue with
change propagation is that a service rarely knows its consumers or has only
limited capability to control them.

Naturally, the question is whether there exists a way to loosen the coupling
between ICs and service with respect to data structure representation or
even other concerns . In order to do so, the data structure representa-
tion at the IC side cannot be determined statically at compile/deploy time.
Instead the structural representation should be provided in a separate channel
of communication and determined at runtime.

Let us assume a form of communication where an IC requests the data struc-
ture representation and then maps the data values to it. What is the
consequence? First the IC must compose the representation at runtime, which
either requires metaprogramming [7] or the use of map data structure. Since
the structure is not determined at compile time, field references may loose type
safety [4] within the scope of IC. This may negatively impact the programming
style. On the other hand, since a service may change at any time after the IC
deploys, the type safety only helps the initial IC design. Second, the runtime,
on-demand representation derivation enforces consistency with the service. Thus
the IC reflects later changes to the service structures, which improves mainte-
nance and evolution. Third, there might be performance degradation due to the
communication overhead and metaprogramming. On the other hand, the data
structure representation request can be issued concurrently with the data
value request [6]. At the same time, the data structure representation deriva-
tion could consider caching scheme similar to HTTP [6], where IC requests a

524 T. Cerny and M.J. Donahoo

particular representation version and reuses the derived structure until it changes
on the service side.

With the proposed design, the data structure representation is provided
by service in a separate channel of communication. The same approach can apply
to data input validation . The properties of this concern has although lot of
similarities with the previous and when we consider the Beans Validation
standard from Java EE, it is even part of the data model (its extension) [6].
This suggests the possibility to integrate the concern within the channel for the
data structure representation .

The service business rules might be unknown to the ICs throughout their
execution. Such rules can be documented, although ICs cannot use the business
rules separately from the service, unless restating the rules. If the rules were
known or there was a way to provide them to IC in machine-readable format,
the IC could take advantage of such knowledge for usability or performance
improvements. For instance, consider a situation restricting an airplane selec-
tion for particular flight based on the current passenger occupancy. If IC has
the knowledge of such restriction, it may avoid additional requests to the ser-
vice or rejected submission attempts. Alternatively, consider a service business
rule being interpreted at the client-side, resulting in a web browser JavaScript
execution that verifies constraints before the submission takes place. In order to
provide ICs the business rules in a special channel of communication, the service
must capture them in a format that allows not only their evaluation but also
their transformation onto format suitable for transmission. For instance, a DSL
solution that exposes separated parser, internal representation and execution
would fit such purpose. From the ICs’ perspective, a business rule definition usu-
ally references data structure representations and their attributes by name.
This introduces a coupling and limits the versatility of IC adaptation to service
changes. The proposed IC runtime derivation of data structure representations
may hinder the definitions of business rules at the IC side.

Context-awareness might be the next evolutionary step in software system
abilities [5]. Nowadays production systems only rarely deal with context-aware
features [4] and if so, then only in limited scope [6], such as interactive con-
soles, due to the increased costs of development and maintenance efforts [4]. For
instance, Human-Computer Interaction shows existing context-aware prototypes
[14] and sleek features; however these prototypes are missing production experi-
ence either due to performance requirements [5] or large development efforts [4].
Survey in [4] suggests that the complexity behind context-awareness is related
to poor separation of concerns. Concerns that cannot be cleanly decomposed
from the rest of the system are called cross-cutting concerns [12]. Conventional
programming languages cannot effectively address cross-cutting concerns, and
cause code tangling. The state of the art suggests addressing these concerns
through Generative Programming (GP) [8] or Aspect-Oriented Programming
[12]. Unfortunately, the program structure and the over all design must change.

Survey on Concern Separation in Service Integration 525

GP suggests designing applications from conventional components and inte-
grate models, DSLs descriptions, or alternative problem description formats. It
takes all the above as input and then, based on a configuration script and tem-
plates, produces various combinations from the inputs. The result may produce a
large amount of combinations that are later compiled. The difficulty comes when
certain inputs present exponential dependency on its composition [4]. In such
case, the produced result becomes impractical. Another deficiency is that the
approach targets compile time product derivation. Furthermore, the execution
uses generated code, which complicates debugging.

AOP proposes to design application from two building blocks. The base
functionality is captured through conventional components and their extensions
that are separable concerns, or even cross-cutting concerns that are captured by
another building block called aspect. Aspects can use DSL or the same program-
ming language. The aspect brings a mechanism to separate a particular concern
from the base program. The way components and aspects connect together is the
main AOP instrument. The base component program is transformed onto a join
point representation [12]. A join point might be a name of a method, method
call, location in the program or a method extended with annotation. It indicates
a location in the program where an aspect may extend the program execution.
Such a join point representation is a simplified skeleton of the program or a
particular subsystem. An aspect has a condition formed from join points that
indicates when and under what context it becomes active. The condition may
use any logical or arithmetical operators to generalize the condition. The aspect
integration can be compile time or runtime [4], and thus only aspects activated
by given context are applied to the program execution. The component and
aspect integration performs an aspect weaver, an instrument similar to a com-
piler [12] or renderer [4]. Since it is possible to apply the approach at runtime,
the produced result is not affected by exponential concern dependency, since
only context-selected concerns apply for given request, although the complexity
related to debugging remains.

Thus extending the service with context-awareness while aiming for efficient
design, the service should consider separating out the basic functionality from
the contextual extension through aspects. Although different from other service
concerns , the context might not be something we aim to provide to ICs
as a separate channel of communication. Instead we might expect that context is
something related to or provided by the IC requesting the service (e.g., request
parameters, location, access rights) or something derived at runtime at the ser-
vice side (resource usage, time). Thus context may influence the provided result

of .
To demonstrate, consider that the service is requested by a IC with a low

level of authorization. The service should only consume or produce a subset of
data values or to expose the IC limited scope of data representation .
Alternatively, consider ICs requesting personal information sensitive to the geo-
location. One IC may receive information including country, state and custom
date formatting, while another only receives country and general date formatting.

526 T. Cerny and M.J. Donahoo

4 Design and References to Concern-Separating
Approaches

In order to separate concerns mentioned in previous section and stream them in
separate communication channels, we must be able to interpret concern descrip-
tion at the service side. However, we should avoid reinventing existing solutions
and not expect the industry to make big changes in conventional development
or programmer attitudes. For these reasons, we may tend to avoid Model-Driven
Development (MDD) [4]. Next option is to design custom DSL for the service
description on higher level of abstraction [15], but this approach is not much
different from MDD since developer must learn a new language and change the
design abstraction. Instead, a minimal impact on developer should be expected
for easy adoption and transition to production development.

One possibility is to use a code-inspection mechanism that uses metapro-
gramming. These approaches allow reusing existing code for the purpose of
transformation, which is in our case the data structure representation. For
example, [11] uses this approach in MetaWidget framework that derives User
Interfaces (UIs) from the data model. Similarly [4] uses metaprogramming to
derive join point representation [12] for later use in AOP-based transformation.
Applying code-inspection does not considerably affect the service development
perspective, as its use is transparent.

Similarly, when considering the existing validation or ORM standards, code-
inspection can derive the validation rules and constraints and thus further
extend the join point representation. Additional data structure representation
extensions can be considered in the same way (access, presentation extension [6],
etc.).

At this point, the development impact does not involve significant changes,
even though the service provides communication channels for the concerns

. The AspectFaces framework [4] provides an example code-inspection
tool. [6] shows its use for the separated concern delivery for UI derivation. In
order to apply it at the service level, the frameworks’ aspect weaver is pointed
to application data model from which it derives the join point representation
that can be bidirectionally transformed to XML/JSON formats. An IC derives
the service internal, platform-specific data structure representation from the
received join point model and feeds it with the provided data values . [5,6]
show the usage for UI derivation for mobile, standalone and web clients (Google
Web Toolkit, AngularJS, HTML5) and demonstrate platform-independence for
the concern delivery. Changes to the service data structure representation are
adopted by all the derived UIs across various platforms. Furthermore, [6] gives
details on caching options and performance, which can be applied. For instance,
as mentioned earlier, the requests to various channels (data values and join
point representation) can be done concurrently. The join point representation
can be cached and reused with invalidation mechanism using versioning similar
to HTTP.

Survey on Concern Separation in Service Integration 527

Usage at an IC impacts the development perspective. The IC usually aims
to integrate multiple services and works with multiple data structure rep-
resentations. The internal IC structure representation is a proxy with defined
name. Its properties, such as fields are received at runtime, which deteriorates
the type-safety at the development time. This is the trade-off for the ability to
adapt to service structural changes. The benefit is that validation and constraint
enforcement on data values is part of the proxy and can be performed at the
IC side. When the IC applies business rules and processes, explicit references
bind to the proxy by property names. This limits IC adaptivity to changes in
data structures, since service changes to property name do not update the ICs’
named binding. Usage of DSLs for business rule definition and enforcement at
the IC side is not impacted by the approach, since such DSL has already limited
type safety. The IC may apply business processing and forward the proxy to
another ICs (e.g., client providing presentation and UI). A proxy propagation is
not different from the above description. The data consumption is equivalent to
the conventional approach at the service side, with the difference that IC knows
what the service expects, what properties it has, which types, constraints and
validations are considered, etc.

Common use cases [4] for service maintenance consider changes in structure
naming, property naming, property constraint/validation modification, property
removal and mostly addition of a novel property. How does the service using ICs
react to them?

The conventional approach using DTOs is impacted by any service structural
change that is promoted to the machine-readable format and thus causes incon-
sistency at the IC side. The constraint/validation change is not known and thus
may occur at production environment as an inconsistency.

The proposed concern-separating approach cannot deal with changed naming
of the given structure since the IC’s proxy is determined by the name, although
a key-based indirection would address adaptability. The proxy reflects all service
changes of property names, constraints and validation rules. It further reflects
property additions or removals. Although it has the ability to deal with the
changes, the IC application may explicitly reference given properties to apply
business processing or enforce business rules, which limits the adaptivity. [5,6]
show that this is rarely the case for UIs, even though local coupling may exist.
In UIs, it usually uses generic approach to access all provided fields rather than
to make explicit references. In the UI, the structural representation can be seen
as a logical unit.

When assuming that local reference to given structure exists, then the adap-
tivity degrades. The IC application no longer adapts to change of property names
or property removals. Although the proxy still adapts, the reference to changed
property may fail, similarly to conventional design. On the other hand, the adap-
tivity to changes in constraints and validation rules promote all changes to ICs.
Thus when the service maintenance follows the policy that only allows incre-
ments in properties and allows constraint/validation changes, then the integrity

528 T. Cerny and M.J. Donahoo

is preserved and reflected by all ICs. This avoids consistency errors and preserves
functionality.

From the above it is apparent that, for the maintainability purposes, the
most suitable approach would embed business rules to services rather than to
ICs, which [13] suggests for microservices. Then the IC adaptivity promotes to
most of the structural changes. However, not all situations allow promoting busi-
ness rules to services. Furthermore, it might be the target design to use business
process and rule indirection to promote flexibility in business changes and evo-
lution. Naturally, structural changes must promote to referencing business rules
no matter the origin of the business rule, and thus next we consider the ability
to reuse single business rule definition across multiple tiers.

The service ability to provide its business rules to other ICs requires design
changes in the way the rules are captured. [2,3] show possible approach that
captures the rules in DSL and binds rule to data through annotations. The app-
roach brings the ability to perform business rules inspection and transformation.
This can use transformation to machine-readable format and thus be used by
a separate distribution channel. An IC can interpret the provided rules locally
and avoid rejected submission or improve usability. In service composition, this
brings the advantage of combining business rules from various services as well as
a centralized view on variety of rules from heterogeneous service environment.
The ability of sharing business rules across services can be utilized in business
process modeling and execution, although this is left for future work.

The most challenging perspective is the service context-awareness. [4] sug-
gests that many contemporary systems follow the “one for all” approach in the
UI design due to its development and maintenance demands. Context can influ-
ence the production as well as the consumption of data. We may hardly imagine
significant changes in data values or structure representations , beyond
property access restriction or conditional rendering. The input validation
and constraints or business rules may differ more significantly basing on the
context. For instance, company vendor agent may submit orders with a given
delivery date only until a certain time before the distribution stage starts. The
accepted order time may differ based on the geo-location of the order destination
as the shipment time from a central warehouse differs in the delivery time. As
a bonus for customers with high turnover, the agent is able to submit the order
after the deadline. When agent updates customers profile he/she must provide
all personal information and follow the validation rules on provided formats. An
administrator can update customers with a subset of information, while skipping
all the validation rules.

Context can more or less impact any of the other considered concerns ,
and this impacts the service design. [4] suggests an AOP-based approach, which
is not significantly different from conventional design from the development per-
spective. The data model together with its extensions referencing validation,
business rules, etc. is transformed to the join point representation. This rep-
resentation is produced (once) and utilized by the aspect weaver that mediates
service requests. On each request, the weaver clones the join point representation

Survey on Concern Separation in Service Integration 529

and considers separately-defined aspects that may modify the join point repre-
sentation. Aspects trigger based on supplied context and join points found in the
particular processed representation section. As a consequence, this may modify
given constraints, hide properties, etc. The result of the weaving, as shown in
[5,6,14], is transformed to a machine-readable format. The corresponding data

values follow the same cycle in order to determine which data properties are
authorized for the delivery.

Context-awareness is mostly notable in UIs where the UI adjusts to par-
ticular user, browsing device abilities, location, etc. Earlier we mentioned that
[5,6] show multiple prototypes for mobiles, standalone and web clients that can

process the communication channels for the concerns . When service con-
siders context-awareness, these prototypes adjust to the provided output and
become context-aware. The impact is on caching abilities, which applies more
strict invalidation [6]. The usage across different platforms demonstrates the
approach versatility. Furthermore, [6] shows that, for web delivery, the approach
untangles UI concerns and supports their reuse at the IC side, which positively
impacts service performance. [6] provides evaluation that show the impact in
production environment where concern separating approach outperforms the
conventional single channel delivery regarding to UI responsiveness as well as
reduces service side resources.

5 Conclusion

This survey discusses service integration from the perspective of separation of
concerns. Conventional approaches for web service design bring many advan-
tages over the code-centric, monolithic approaches. Unfortunately, service inte-
gration posses multiple deficiencies. Data structures considered by services must
be understood and followed by all ICs that become tightly coupled to the data
structures. This disallows service evolution and usually results in new, slightly
modified service introduction to avoid correlation errors with legacy. Moreover,
ICs are unaware of service internal constraints, validation or even business rules.
Service knowledge distribution would improve performance, consistency, and
usability as well as provide a centralized view on combined services.

Separation of concerns and concern distribution addresses the above defi-
ciencies. Services can provide additional information to ICs in multiple distri-
bution channels that are utilized, providing data structure semantics to derive
the service data structure representation at runtime. This overwhelms the tight
coupling regarding of data properties. This has two sides. Runtime derivation
allows the IC to adapt service-side structural changes and thus open the ability
for the service to evolve. On the contrary, the IC uses structure proxies unaware
of its properties at compile time, unless referencing the service. IC reference to
particular properties introduce coupling and limit its adaptivity to structural
services changes, although as [5,6] show generic referencing can be applied as
demonstrates the usage in UIs. The benefit is that the proxy representation
comes with all constraints and validation rules that can be applied at the IC

530 T. Cerny and M.J. Donahoo

side, avoiding restatement. Using a suitable form of business rule definition at
the service side brings the ability to inspect rule definitions and provide them
in a separate distribution channel in machine-readable format for the IC. Such
rules can be applied earlier in the request processing or even combined with other
service rules. Novel business rule definitions at the ICs level might be affected
by the weak type safety introduced by the approach. Another solution is to
promote business rules to a particular service supporting their reuse, although
deteriorating the flexibility of their modification and evolution.

Context-awareness pushes the service design towards the direction of AOP,
since it fosters efficient design that avoids tangled code and replication. The
context influences both production and consumption of service data values, as
well as impacts the resulting data structure representation, validation rules, and
business rules.

The main advantages of our approach are its ability to adapt ICs to service
changes in data structure, although the extent of the adaptation is influenced
by IC references to data structure properties. The approach opens meta infor-
mation and thus shares its constraints, validation rules, and business rules with
other ICs, which provides them with extended abilities that impact performance,
composability, and usability. Context-awareness security involvement enforces
authorization to all distribution channels.

Future work will address the business rule involvement in business processes
definitions in distributed environment. The limited type safety in IC develop-
ment could use verification mechanism with respect to the service provided meta
information. For instance, the IC could use a DSL language, such as MPS [17],
as a verification instrument. It could use metaprogramming and suitable con-
structs to resolve valid references. Alternatively, in case of Java, we can even
avoid the impact on the IC design and apply bytecode manipulation framework
such as Apache BCEL or ASM [18] to enforce the property correlation at the
development/compile time. Our research will also consider the AOP approach to
the service backwards compatibility. Each time a service changes, novel aspect is
introduced, responsible for backwards compatibility transformation. ICs may use
given services and indicate compatibility version. The version triggers a chain of
aspects that apply transformation rules to the latest service version and mediate
the communication with the IC acting as the older service version.

Acknowledgments. This work was supported by the Grant Agency of the Czech
Technical University in Prague, grant No. SGS14/198/OHK3/3T/13.

References

1. Buelow, H., Deb, M., Kasi, J., LHer, D., Palvankar, P.: Getting Started with Oracle
SOA Suite 11G R1 a Hands-On Tutorial. Packt Publishing, Birmingham (2009)

2. Cemus, K., Cerny, T.: Aspect-driven design of information systems. In: Geffert,
V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS,
vol. 8327, pp. 174–186. Springer, heidelberg (2014)

Survey on Concern Separation in Service Integration 531

3. Cemus, K., Cerny, T., Donahoo, M.J.: Automated business rules transformation
into a persistence layer. Procedia Comput. Sci. J. 62, 312–318. Elsevier (2015)

4. Cerny, T., Cemus, K., Donahoo, M.J., Song, E.: Aspect-driven, data-reflective and
context-aware user interfaces design. In: Applied Computing Review, vol. 13, no.
4, pp. 53–65. ACM (2013)

5. Cerny, T., Donahoo, M.J.: On separation of platform-independent particles in user
interfaces. Cluster Comput. 18(3), 1215–1228. Springer, USA (2015). http://dx.
doi.org/10.1007/s10586-015-0471-7

6. Cerny, T., Macik, M., Donahoo, J., Janousek, J.: On distributed concern delivery in
user interface design. Comput. Sci. Inf. Syst. 12(2), 655–681. ComSIS Consortium
(2015)

7. Chiba, S.: Proceedings of the ACM OOPSLA 1998 workshop on reflective program-
ming in C++ and java. In: Javassist - A Reflection-Based Programming Wizard
for Java (1998). http://www.csg.is.titech.ac.jp/∼chiba/oopsla98/proc/chiba.pdf

8. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. ACM Press/Addison-Wesley Publishing Co., New York (2000)

9. DeMichiel, L., Shannon, B.: JSR 342: JavaTM Platform, Enterprise Edn. 7 Spec
(2013). https://jcp.org/en/jsr/detail?id=342

10. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Long-
man Publishing Co. Inc., Boston (2002)

11. Kennard, R., Leaney, J.: Towards a general purpose architec-
ture for UI generation. J. Syst. Softw. 83(10), 1896–1906 (2010).
http://www.sciencedirect.com/science/article/pii/S0164121210001597

12. Kiczales, G., Irwin, J., Lamping, J., Loingtier, J.-M., Lopes, C.V., Maeda, C.,
Mendhekar, A.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241. Springer, Heidelberg (1997)

13. Lewis, J., Fowler, M.: Microservices (2014). http://martinfowler.com/articles/
microservices.html

14. Macik, M., Cerny, T., Slavik, P.: Context-sensitive, cross-platform user interface
generation. J. Multimodal User Interfaces, 8(2), 217–229. Springer, Heidelberg
(2014). http://dx.doi.org/10.1007/s12193-013-0141-0

15. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344. ACM, New York (2005). http://
doi.acm.org/10.1145/1118890.1118892

16. Proctor, M.: Drools: a rule engine for complex event processing. In: Schürr, A.,
Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 2–2. Springer,
Heidelberg (2012). http://dx.doi.org/10.1007/978-3-642-34176-2 2

17. Voelter, M., Kolb, B., Warmer, J.: Projecting a modular future. IEEE Softw. 99,
1. IEEE Computer Society, Los Alamitos, CA, USA (2014)

18. Wu, J., Huang, L., Wang, D.: ASM-based model of dynamic service update in
OSGi. SIGSOFT Softw. Eng. Notes 33(2), 8:1–8:8. ACM, New York (2008). http://
doi.acm.org/10.1145/1350802.1350815

http://dx.doi.org/10.1007/s10586-015-0471-7
http://dx.doi.org/10.1007/s10586-015-0471-7
http://www.csg.is.titech.ac.jp/~chiba/oopsla98/proc/chiba.pdf
https://jcp.org/en/jsr/detail?id=342
http://www.sciencedirect.com/science/article/pii/S0164121210001597
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://dx.doi.org/10.1007/s12193-013-0141-0
http://doi.acm.org/10.1145/1118890.1118892
http://doi.acm.org/10.1145/1118890.1118892
http://dx.doi.org/10.1007/978-3-642-34176-2_2
http://doi.acm.org/10.1145/1350802.1350815
http://doi.acm.org/10.1145/1350802.1350815

Utilizing Vector Models for Automatic Text
Lemmatization

Ladislav Gallay and Marián Šimko(B)

Faculty of Informatics and Information Technologies, Slovak University of Technology
in Bratislava, Ilkovičova 2, 842 16 Bratislava, Slovakia
ladislav.gallay@lentil.sk, marian.simko@stuba.sk

Abstract. In this paper we tackle the problem of lemmatization of
inflectional languages. We introduce a new algorithm which utilizes vec-
tor models of words. Current approaches in this area are limited to know-
ing either full grammar rules or the translation matrix between the word
and its basic form. However, this information is encoded in natural text.
Our solution uses text corpora to build vector models of words and a
small amount of user input to infer lemmas. We have evaluated our
approach on the Slovak language and present interesting findings on its
feasibility for real-world utilization.

Keywords: Lemmatization · Vector space model · word2vec · Natural
language processing · Slovak language · Word embedding

1 Introduction

Lemmatization, similarly to stemming, is a crucial step in text preprocessing for
a variety of core NLP and text processing tasks. Keyword extraction, ontology
construction, word sense disambiguation, machine translation, user modeling,
web search – all these tasks are connected with lemmatization.

The complexity of lemmatization differs among languages. The task is par-
ticularly difficult for inflectional languages such as Slovak. They can be even
harder to understand by the computer. The same piece of information can have
various forms. The words can have different order and the format of each word is
dependent on the position and grammar connection with surrounding words. For
inflectional languages that usually include inflectional rules with many excep-
tions (such as Slovak), the lemmatization rules are not always viable. There is
often no other option than using a dictionary approach – exploiting a dictionary
of word form-lemma mappings.

The problem is that such a dictionary cannot be easily created automati-
cally. Hence dictionaries are created manually or at best semi-automatically by
utilizing large corpora annotations [2]. Since a human author (or supervisor) is
required, the task of dictionary creation and maintenance is very demanding.
Moreover, due to the volume of the dictionary, it is very difficult to involve spe-
cial types of words such as neologisms or domain specific terms. This makes
c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 532–543, 2016.
DOI: 10.1007/978-3-662-49192-8 43

Utilizing Vector Models for Automatic Text Lemmatization 533

creation and maintenance of a universally usable lemmatization dictionary even
harder. For many small yet rich languages, efforts to create such a dictionary
are due to the various reasons not feasible.

We seek after alternatives to a dictionary approach that will address the
aforementioned issues. Recently, there has been an emergence of vector space
word models (also known as word embeddings) induced i.a. by advances in com-
putational performance of neural networks [3,6]. It has already been shown that
vector space word representations are useful in syntactic and semantic analy-
sis [1,4] and other tasks related with language processing [11]. In this paper, we
explore the possibilities of the vector space model for automatic word lemmatiza-
tion. We propose a method for automatic word lemmatization by utilizing vector
space models trained on Slovak national corpus [5]. We evaluate our method by
conducting a series of experiments and show that with a well trained model, it
is possible to attain 80 % correctness.

2 Related Work

There are two basic approaches to finding a basic form of words in text processing
applications: lemmatization and stemming. The Porter algorithm is the most
common algorithm for stemming in English and has been repeatedly shown
empirically to be very effective [7]. It is based on the several rules that fit the
English language. However, inflectional languages such as the Slovak language
are often complex enough to make this algorithm unusable because of the variety
of different suffixes and their mapping to the root word.

For the Slovak language a morphological dictionary has been created [2] which
covers more than 98,000 lemmas and all of their word forms. Despite the input
costs for creation, this is the best solution for the Slovak so far. The disadvantage
is that the dictionary needs to be built manually and it cannot work with the
word context. There are some words that can have the same form but different
lemmas because of the context they are used in. This cannot be determined with
the dictionary only and requires a more advanced algorithm.

Other techniques include some heuristic functions and guessing the similarity
between two words based on the letter frequency or affix similarity [10]. If these
words pass the condition they are considered to have the same meaning. This
technique is accurate only for specific domains.

High precision stemmer was built for other Slavic languages including Czech
or Polish [8]. It shows reasonable results but it is still only a stemmer which can
unify some non-related words with common prefix.

The problem is that current approaches are very hard to employ due to the
language variety or the massive human input which is required. Yet they are not
100 % accurate – the manually created dictionaries cannot cover all words. Our
aim is to create a lemmatizer that will not demand such a human power. This
would be accomplished by utilizing a vector space model created automatically
from large corpora of texts, while keeping a reasonably high accuracy.

534 L. Gallay and M. Šimko

3 Utilizing Vector Model for Lemmatization

It has been shown that the vector word model is powerful enough to hold syn-
tactic and semantic information [4]. They can be automatically trained on large
texts without a supervisor and allow us to perform easy mathematical opera-
tions. As an example of the model created by Mikolov with the word2vec tool
[3] the following math operation is presented:

vector(king) − vector(man) + vector(woman) = vector(queen) (1)

We can interpret this equation as: The word man is related to woman like
king is related to queen, which encodes a relationship between male and female
nouns.

Our approach is based on an assumption that vector space word representa-
tions encode not only syntactic and semantic regularities, but also morphological
ones. In other words, we expect that the words happiness and happy have the
same connection as the words illness and ill.

The main idea behind our algorithm is depicted in Fig. 1. It is based on finding
the correct vector shift of word to lemma reference in order to get the correct
lemma for the input word. The vector shift can be obtained from word pairs
that have similar relationships (encoded in vector representation). For exam-
ple, let us have an input word rybńıkom (instrumental case, meaning ”(with)
pond”). Potentially similar word vodńıkom (instrumental case, meaning ”(with)
vodyanoy”) matches the form of the input word rybńıkom. If the shift from
vodńıkom to vodńık (lemma) is known, we can apply it to the word rybńıkom
to get rybńık (lemma). The two words from which the vector shift is calculated,
we refer to as a reference pair.

Our method consists of the following steps (considering an input word w):

1. Relevant reference pairs selection.
2. Lemma candidates retrieval based on reference pairs.
3. Lemma candidate weight computation.
4. The most suitable lemma selection.

First, we choose reference word-lemma pairs from reference lexicon suitable
for lemmatizing input word w. We experiment with various methods for auto-
matic reference pair selection based on morphological, grammatical and other
properties.

Secondly, we apply reference pair vector shift to the input word and we
retrieve lemma candidates for each reference pair. The vector model may contain
mistakes (as a result of large real-world corpora processing) or it still may not
be precise enough for words occurring infrequently in the corpus. As a result,
vector shift would not necessarily lead into the one correct lemma word. Hence
we investigate the neighborhood (surrounding words) of resulting vector shift
(dotted circle in Fig. 1), obtaining more lemma candidates, which potentially
include the correct lemma.

Utilizing Vector Models for Automatic Text Lemmatization 535

Thirdly, we need to select the correct lemma from all candidates. Each can-
didate is given a weight based on its similarity with the input word. The idea
behind this is that there should be some connection between the input word and
correct lemma. We propose several different methods for calculating this weight.

Finally, the weights for the same candidate are summed together and the
candidate with the highest total weight is selected to be the correct lemma.

Fig. 1. Relationship between words vodńıkom (vodyanoy, instrumental case) and vodńık
(vodyanoy, nominative case) is similiar to words rybńıkom (fish pond, instrumental
case) and rybńık (fish pond, nominative case). However the expected lemma may be
somewhere around the centroid vector, therefore we need to explore surrounding words
which we call lemma candidates.

3.1 Relevant Reference Pairs Selection

Our algorithm expects reference lexicon R containing (r, rL) pairs, where r is
reference word and rL is reference word’s lemma. The reference lexicon should
cover all morphological variations utilizable for lemmatization. For example, for
Slovak nouns it would be all combinations of grammatical genders and cases.
More than one reference pair for each combination is expected as the algorithm
matches the input word to the same grammatical category. We experiment with
various methods for choosing the suitable pairs Rw ⊆ R with regards to the
input word w.

– R1: Suffix length. We select pairs from R based on length of common suf-
fix. In many fusional languages such as Slovak, the grammatical category is
determined by the suffix. The words with different lemma but the same suffix
may belong to the same category and have the same vector shift. The word
is selected based on the longest common suffix. We normalized the length of
longest suffix by the words’ average length.
Examples of (r,rL) for w = autom: (mestom, mesto), (vlakom, vlak).

536 L. Gallay and M. Šimko

– R2: Cosine similarity. We have empirically discovered that the closest
words in the model usually match the grammatical categories of w. In this
variant, we select pairs from R based on the cosine distance from w. The closer
the word is, the stronger latent relationship is formed.
Examples of (r, rL) for w = autom: (autobusom, autobus), (svetlom, svetlo).

– R3: Grammatical categories. The reference pairs are divided into groups
by the grammatical categories such as the grammatical case. We expect in this
variant that each input word w comes with the same information so that we
know from which group the pairs should be selected from. This variant requires
quite more manual input (big R) and therefore is less suitable for strictly
automatic lemmatization. We consider as grammatical categories grammatical
case, number and gender.
Examples of (r, rL) for w = autom: (mestom, mesto), (hniezdom, hniezdo).

The result of this step is a set of automatically selected reference pairs Rw

for the input word w. The reference pairs are ordered. To order reference pairs
in R3, we apply naive ordering by common suffix length.

3.2 Lemma Candidates Retrieval

For each reference pair (r, rL) ∈ Rw obtained in the previous step we compute
lemma candidate centroid vector cc as vector shift: vector(w) + vector(rL) −
vector(r). Then we retrieve lemma candidates – the closest words according
to cosine distance from lemma candidate centroid in vector space. The cosine
distance is obtained from the word2vec tool. The result of this step is set C
containing lemma candidates and their distance from lemma candidate centroid
(c, dc) ∈ C, where c is lemma candidate and dc = cossim(c, cc) is cosine distance
between c and cc.

3.3 Lemma Candidate Weight Computation

We compute lemma candidate weights by combining cosine distance from lemma
candidate centroid vector and considering morphological attributes of the input
word w. We compute weight of lemma candidate c as:

df (c, cc, w) = dc ∗ dm(c, cc, w) (2)

where df is the final weight of lemma candidate c, dc is the cosine distance
between c and cc from the previous step and dm is the morphological weight of
lemma candidate c with regards to w.

We experiment with various alternatives on how to compute morphological
weight of lemma candidate c:

– DM0: Ignored. As a baseline, we ignore morphological attributes of lemma
candidate and consider only cosine distance, i.e., dm = 1.

Utilizing Vector Models for Automatic Text Lemmatization 537

– DM1: Levenshtein distance. The normalized Levenshtein distance is cal-
culated for each c. The number of common letters is divided by the maximum
length of c or w. The problem is with anagrams as they are evaluated as
identical.

– DM2: Jaro-Winkler distance. The candidates are given the weight based
on the Jaro-Winkler distance. It is similar to Levenshtein distance with some
improvements. The theory behind this is that the root word wL and w have
many letters in common. Jaro-Winkler algorithm prefers the words that have
a common prefix which is similar to the DM3 method.

– DM3: Relative prefix length. Various morphological forms are created by
changing the suffix while the prefix remains the same, e.g. auto, autami. The
relative prefix is calculated as the prefix divided by the average length of input
word w and lemma candidate c.

dm(c, cc, w) =
lcp(w, c)

(strlen(w) + strlen(c))/2
(3)

where lcp(w, c) is the longest common prefix of w and c.

The result of this step is a set of weighted lemma candidates for each reference
pair (r, rL).

3.4 Lemma Selection

In this step we examine lemma candidate weights and select the most suitable
lemma. Each reference pair is mapped with a unique list of lemma candidates.
The correct lemma candidate is expected to appear in connection with different
reference pairs. Therefore the weights of the same lemma candidates are summed
up. The lemma candidates’ final weights df are also normalized by the number
of reference pairs in Rw.

The word with the highest normalized final weight is selected to be a correct
lemma wL.

4 Evaluation

To evaluate the proposed method, we have performed several experiments. First
we describe data used, method configuration and measures employed, then we
describe experiments and discuss the results.

4.1 Experimental Setup

Data. We trained vector model on prim-6.0-public-all corpus from Slovak
National Corpus [5]. The corpus contains 829,771,945 tokens and 655,572,511
words. The standard vector size used in word2vec is around 100. However, we
selected the size of 300 to get more precise results. We utilized continuous bag-
of-words as a learning algorithm to train the model, because it shows to be more

538 L. Gallay and M. Šimko

Table 1. Description of the default test configuration

Reference lexicon Extended Slovak grammatical paradigms

Reference pairs selection variant R1: Suffix length

Lemma candidate weighting DM3: Relative prefix length

Reference lexicon size 112 word pairs

Number of selected reference pairs (|Rw|) 3

Number of candidates for each pair (|C|) 40

accurate for less frequent words. Currently we do not provide any method to add
new words to the model, however, the original training text can be extended and
a new vector model can be trained and used in our algorithm.

The input words to be used in experiments were extracted from the annotated
lexicon by Ľudov́ıt Štúr Institute of Linguistics, Slovak Academy of Sciences. The
lexicon contains 1.1 million tokens followed by their root form and 98,782 unique
lemmas. As these tokens were annotated with grammatical categories, we were
able to perform further evaluation based on these categories. We selected only
non-nominative words, as our algorithm is not able to determine whether the
input is already a lemma. It always tries to find the lemma which is expected to
have a different form from the input word. We have focused on nouns only.

Default Configuration. We conducted experiments by using the default
method configuration (Table 1). We gradually experimented with changing one
parameter at a time, while preserving all others.

Evaluation Measures. We measure the method’s performance as correctness
of lemma selection (i.e., the ratio of correctly returned lemmas). Our algorithm
is supposed to return the correct lemma on the first position – with the heighest
weight df . We measure correctness considering the position of the correct lemma
– if it appeared within top 1, top 5 or top 10 (referred to as correctness@k,
where k is the number of positions to check) results – to get a better insight into
method’s performance. In addition, we used the mean reciprocal rank (MRR) to
measure the average rank of returned lemmas [9].

4.2 Assessing Relevant Reference Pair Selection Variant

In the first experiment, we evaluated method’s performance with regards to the
relevant reference pair selection method.

We applied our method as described in default configuration and compared
the reference pairs selection variants. The results are shown in Fig. 2. We were
able to automatically lemmatize 59.9 % of the input words (R2) where the correct
lemma had the highest weight (correctness@1) and 84.3 % where the lemma was
among 5 results. Having a better selection method could lead to the correctness

Utilizing Vector Models for Automatic Text Lemmatization 539

of 92.7 % (correctness@5) as it was in the R3-all. The results show that there is
a significant difference between variants R1/R2, which are fully automated, and
variant R3, which need some additional information. The method employing
variant R3 with all 3 input word attributes (case, number, gender) has the
highest correctness, as expected. In this case, the most relevant words were
selected from the reference lexicon in comparison with R1/R2.

We observe that the correct lemma was in many cases among the candi-
dates but not always in the first position (compare correctness@1 vs. correct-
ness@5). This means that the correct lemma did not have the highest weight.
This can be improved by changing the weighting function or training the model
on larger/better corpus. However, there is little difference between correctness@5
and correctness@10. As seen in Fig. 2, MRR measure correlates with the correct-
ness and supports aforementioned observations.

0.00

0.25

0.50

0.75

1.00

R1 R2 R3 - case R3 - number R3 - gender R3 - all

Relevant reference pairs selection variant

C
or

re
ct

ne
ss

@
k

/ M
R

R

k = 1

k = 5

k = 10

MRR

Fig. 2. Comparing various automatic selection methods of reference pairs for most
frequent words in corpus, based on: relative suffix length (R1), cosine similarity (R2),
grammatical categories (R3) considering the case, number, gender or all.

As a part of this experiment, we also evaluated our method by using 1 000
random input words to assess the method for real-world input. The results (see
Fig. 3) are worse and suggest that overall performance in a real-world setting is
lower than expected.

4.3 Assessing Weight Computation Algorithms

In the next experiment, we compared performance of different weight computa-
tion algorithms. In Fig. 4 the weighting variants DM0-DM3 are compared. The
results confirm that the simple cosine distance (DM0) performs the worst and
that more complex weighting methods are relevant here. The best performance
was yielded by the relative prefix length variant (D3), confirming that mor-
phological attributes should be considered when weighting lemma candidates.

540 L. Gallay and M. Šimko

0.00

0.25

0.50

0.75

1.00

R1 R2 R3 - case R3 - number R3 - gender R3 - all

Relevant reference pairs selection variant

C
or

re
ct

ne
ss

@
k

/ M
R

R

k = 1

k = 5

k = 10

MRR

Fig. 3. Comparing various variants of automatic reference pairs selection for random
input set, based on: relative suffix length (R1), cosine similarity (R2), grammatical
categories (R3) considering the case, number, gender or all grammatical categories.

There are, however, some cases in Slovak, where the lemma does not start with
the same letter as the input word form (e.g. for the word cti, its correct lemma,
čest, would never be matched). Hence, more complex weighting measures should
be further devised.

0.00

0.25

0.50

0.75

1.00

DM0 DM1 DM2 DM3

Lemma candidate weight computation method

C
or

re
ct

ne
ss

@
k

/ M
R

R

k = 1

k = 5

k = 10

MRR

Fig. 4. Comparing various automatic weighting methods: ignored (DM0), Levenshtein
distance (DM1), Jaro-Winkler distance (DM2), and relative prefix length (DM3).

4.4 Assessing Number of Reference Pairs Involved

In the next experiment, we examined the number of reference pairs to be included
in lemmatization. As our algorithm selects the reference pairs from the reference
lexicon, we can change the number of pairs being selected that match the input
word, i.e., the size of the set Rw. Having the ideal vector model, we would be

Utilizing Vector Models for Automatic Text Lemmatization 541

able to lemmatize with only one reference pair. The size of Rw depends on the
examples for each grammatical category that we want to cover. If we have the
word in Genitive case, plural and male gender, we should have at least three ref-
erence pairs in the reference lexicon, having Rw size 3. If less reference pairs are
available the wrong pair could be selected, which will produce incorrect vector
shift. Having more reference pairs (even with the same grammatical categories),
we should more likely get the correct lemma. We experimented with the number
of reference pairs to be selected with an aim to examine more lemma candi-
dates obtained by performing more vector shifts. Figure 5 shows that bigger Rw

improves the correctness up to a certain point and then the correctness decreases.

Fig. 5. Correctness of lemmatization with respect to the number of reference pairs
selected for lemmatization. The more reference pairs are selected, the better the cor-
rectness is – this is valid only to a certain point.

4.5 Assessing Lemmatization Candidate Weight Impact

In the previous experiments, we evaluated all the results as relevant and expected
to always find the correct lemma for each input. However, we can set a threshold
during the weighting and consider only highly-weighted lemma candidates to be
correct lemmas. This would drop the coverage as some input words would not
be lemmatized, but the correctness for those we are able to lemmatize would
increase.

We have ordered the results based on the weight df . We can then set the
final weight threshold df = D so that everything above the D will be treated
as correct and everything under D will be treated as not found. Then, we can
calculate the correctness only for the correct outputs and we can see the ratio
of correct to all outputs which we call coverage.

Figure 6 illustrates how correctness of lemmatized words and coverage of
lemmatizable words are related. The vertical lines show some interesting thresh-
old points D. We can see that the total correctness for 100 % coverage is 52.3 %.

542 L. Gallay and M. Šimko

D = 0.3 D = 0.2 D = 0.1

0.00

0.25

0.50

0.75

1.00

25 50 75 100

Coverage (%)

C
or

re
ct

ne
ss

@
k

k = 1

k = 5

Fig. 6. The relationship between coverage and correctness of the proposed method.
The vertical lines show the threshold to get the certain correctness and coverage.

Setting the threshold to D = 0.2 would increase the correctness to 68.4 % (k=5),
but the coverage would go down to 51.0 %.

5 Conclusions

In this paper we aimed at automatic lemmatization by utilizing a vector word
model created from large unannotated corpora of textual resources. Inspired by
works focusing on syntactical regularities in vector space, we proposed a method
which utilizes small reference lexicon (e.g., declension paradigms) to traverse
vector space when seeking for correct lemmas of input words. We evaluated the
method on the Slovak language, however, the algorithm is applicable to various
languages (from language families where the inflectional word forms are created
by changing the suffix while the prefix remains the same). We examined various
parameters showing reasonable accuracy for several configurations.

The main advantage of the proposed method resides in the small human
input that is required to build the reference lexicon. In contrast with algorith-
mic lemmatization, dictionary-based lemmatizers need each word to be man-
ually annotated and verified. When compared to dictionary-based lemmatiza-
tion, automated lemmatization returns potentially correct lemma for each input,
including neologisms or domain specific terms. The experiments showed that the
bigger the initial reference lexicon, the better results. Though this means more
human input is needed, it is a much better option than a static dictionary created
and maintained manually.

There is still much space to further explore and improve automatic lemmati-
zation based on vector word models. We tested the algorithm only on nouns as
the lemmatization is a huge topic and this is only the first stage of our research.
Additional variants for reference pair selection and lemma candidates weighting
should be devised to better utilize morphological or language-specific regulari-
ties in word to lemma relationships. The perspective research direction may be

Utilizing Vector Models for Automatic Text Lemmatization 543

the combination of dictionary-based and automatic methods to create universal
automatic lemmatizer handling language exceptions and irregularities.

The proposed method is not language-dependent and may be beneficial for
languages where only little work on automatic lemmatization has been done and
only limited (unannotated) language resources are available.

Acknowledgments. This work was partially supported by the Scientific Grant
Agency of Slovak Republic, grant No. VG 1/0646/15 and the Cultural and Educa-
tional Grant Agency of the Slovak Republic, grant No. KEGA 009STU-4/2014.

References

1. Bansal, M., Gimpel, K., Livescu, K.: Tailoring continuous word representations for
dependency parsing. In: Proceedings of the Annual Meeting of the Association for
Computational Linguistics (2014)

2. Garab́ık, R.: Slovak morphology analyzer based on Levenshtein edit operations. In:
Proceedings of 1st Workshop on Intelligent and Knowledge-Oriented Technologies,
pp. 2–5 (2006)

3. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space (2013). arXiv preprint arXiv:1301.3781

4. Mikolov, T., Yih, W.t., Zweig, G.: Linguistic regularities in continuous space word
representations. In: Proceedings of Conference of the North American Chapter of
the ACL: Human Language Technologies, HLT-NAACL 2013, pp. 746–751 (2013)

5. JÚĽŠ: Slovak national corpus - prim-6.0-public-all. Bratislava: Ľ. Štúr Institute of
Linguistics SAS (2013). http://korpus.juls.savba.sk

6. Cortes, C., Vapnik, V.: Support-vector networks. In: Machine learning, p. 99 (1995)
7. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
8. Brychćın, T., Konoṕık, M.: Hps: high precision stemmer. Inf. Process. Manage.

51(1), 68–91 (2015)
9. Chapelle, O., Metlzer, D., Zhang, Y., Grinspan, P.: Expected reciprocal rank for

graded relevance. In: Proceedings of the 18th ACM Conference on Information and
Knowledge Management, pp. 621–630. ACM (2009)

10. Krajči, S., Novotný, R.: Hľadanie základného tvaru slovenského slova na základe
spoločného konca slov (In Slovak). In: 1st Workshop on Intelligent and Knowledge
Oriented Technologies, pp. 99–101 (2006)

11. Šajgaĺık, M., Barla, M., Bieliková, M.: Exploring multidimensional continuous fea-
ture space to extract relevant words. In: Besacier, L., Dediu, A.-H., Mart́ın-Vide,
C. (eds.) SLSP 2014. LNCS, vol. 8791, pp. 159–170. Springer, Heidelberg (2014)

http://arxiv.org/abs/1301.3781
http://korpus.juls.savba.sk

Improving Keyword Extraction from Movie
Subtitles by Utilizing Temporal Properties

Matúš Košút and Marián Šimko(B)

Faculty of Informatics and Information Technologies, Slovak University of Technology
in Bratislava, Ilkovičova 2, 842 16 Bratislava, Slovakia
matuskosut@gmail.com, marian.simko@stuba.sk

Abstract. In our work we aim at keyword extraction from movie sub-
titles. Keywords and key phrases although missing the context can be
found very helpful in finding, understanding, organizing and recommend-
ing the media content. Generally, they are used by search engines to
help find the relevant information. Movies and video content are becom-
ing massively available and widespread. The ability to automatically
describe and classify videos has a vast domain of application. In our work
we select movie subtitles as a source of information to process. We pro-
posed a method for keyword extraction from movie subtitles by analysing
their temporal properties and detecting conversations. We evaluated our
method by conducting two experiments (a priori synthetic experiment
and a posteriori user experiment) involving 200 movies and show that
conversation analysis can improve traditional approaches based on auto-
matic term extraction algorithms.

Keywords: Keyword extraction · Subtitles analysis ·Movie metadata ·
ATR algorithm

1 Introduction

The importance of having video data annotated and ordered grows exponentially
with rising amounts of data created every day. In order to enable efficient access
to media content (filtering, search, recommendation), it has to be annotated with
at least basic semantic descriptions – keywords. It became almost impossible to
assign necessary keywords to the entire movie data manually, as it is a demanding
and time-consuming task. Although a research about video and audio analysis
advanced recently [12], yet it is computationally intensive to process such data
and the results are not always as expected [13]. It may be beneficial to consider
alternative sources of information such as subtitles. Original subtitles are usually
provided with movies on the media (e.g., DVD, Blu-ray, etc.) and also a lot of
educational video content available online is available with subtitles provided
either by authors or communities.

To the best of our knowledge, there still is lack of research focused on utiliz-
ing alternative sources of information for keyword extraction in movies. Several

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 544–555, 2016.
DOI: 10.1007/978-3-662-49192-8 44

Improving Keyword Extraction from Movie Subtitles 545

works use keyword extraction algorithms designed to work with pure text, which
they obtain from subtitles treated as ordinary documents [1,2,11]. We are not
aware of works that consider other than textual information from movie subtitles;
no processing of subtitle-specific attributes is reported in the field of information
extraction.

The contribution of our work is a method for keyword extraction from movie
subtitles by utilizing temporal properties encoded in subtitles: we perform con-
versation analysis to identify words with potentially higher importance for the
movie and boost results of traditional keyword extraction algorithms. Our aim
was to show to what extent the processing of subtitle-specific characteristics can
improve traditional text-based approaches to keyword extraction from movie
subtitles. We performed several experiments that confirm our expectation and
show that our method can improve traditional automatic term extraction algo-
rithms by far more than tenths or hundredths of percent.

Note that approaches utilising audio and video analysis is beyond the scope of
this paper. Our primary aim is to evaluate the potential of subtitles as “cheap”,
community-created form of information to enrich movie descriptive metadata
which can be further utilized for tasks such as recommendation of movies, TV
shows or other video content with subtitles.

The rest of the paper is structured as follows. In Sect. 2, we discuss related
work. We describe our method for movie keywords extraction in Sect. 3. We
evaluate our method by conducting two experiments: a priori and a posteriori,
which we describe in Sect. 4. In Sect. 5, we discuss the implications of our research
and conclude the paper.

2 Related Work

Only a few works deal with subtitle analysis to extract semantic information.
Langlois et al. utilize subtitles to support video information retrieval [1]. Within
the VIRUS project (Video Information Retrieval Using Subtitles), users may
look up for movie scenes featuring specific characteristics (e.g., love scenes, vio-
lent scenes, funny situations). The authors of the paper perform simultaneous
analysis of video, audio and subtitles to allow indexing and retrieval of such
video scenes.

Katsiouli et al. tackle semantic video classification based on subtitles [2]. The
authors introduce a service that assigns a category label to a movie. The pro-
posed method involves keywords extraction from subtitles as one of the method’s
steps. It uses TextRank algorithm with its default settings to extract keywords
[3]. After that, the method assigns a category to keywords extracted in the
previous step by using Word-Net domains and mappings of video categories to
WordNet domains.

Similarly, Demirtas et al. proposed automatic categorization and summa-
rization of documentaries using subtitles of videos [11]. Both categorization and
summarization are based on text processing. The first one utilizes the existing
video categorization algorithm [2]. But in addition to the source method, the

546 M. Košút and M. Šimko

authors also use the title of the documentary to get important clues about the
video. The second method is using learning module to perform categorization.
The authors use TextRank to extract a summary of video subtitles and then they
make a video summary by matching it with the corresponding parts of video.

Besides external subtitle processing, several works deal with in-video text
extraction and processing. For example, Mai and Hoang present a system for
automatic caption text- and keyframe-based retrieval as a solution to acquire a
caption from video content [9].

When acquiring semantics from vast text document corpora, traditional auto-
matic term recognition (ATR) algorithms such as TF-IDF, HighScore, RAKE
[6], TextRank [3] and ExpandRank [10] and others [5] are very popular. They are
being constantly improved and adopted for specific domains [4,8,14]. However,
we are not aware of research works exploring performance of ATR algorithms
on movie subtitles, nor examination of subtitles specifics such as timings and
closed captioning to improve the original keyword extraction methods or their
enhancements. In comparison with general text documents, subtitle text is not as
fluent or smooth – speech (encoded in subtitles) is supplemented with video and
audio “language” and these are missing in traditional subtitle processing. Hence,
keyword extraction from subtitles should take advantage of other information
present in subtitles. Timings are one of them.

With growing amounts of movie and TV show subtitles produced by com-
munities (in different languages), the potential of subtitle databases such as
OpenSubtitles, Addic7ed, SubtitleSeeker and SubScene1 for information extrac-
tion increases. In our work, we aim to examine the potential of subtitles for
movie keywords extraction. We propose a method utilizing temporal properties
contained within movie subtitles to improve performance of the state-of-the-art
automatic term extraction algorithms.

In our method we analyze and process specifics of subtitles to split them
into conversations, to rate them and to evaluate their impact on the keyword
extraction.

3 Method for Keywords Extraction from Movie Subtitles

Subtitles consist of pure text apportioned to individual movie scenes with the
timings of when and how long to display. Our idea behind keywords extraction
from subtitles is to recognise individual segments of movie. We refer them to
as conversations. We suppose that we could divide dialogues in subtitles into
conversations and get the scenes separately, approaching the natural distribution
of scenes as it is seen by viewers. In the sense that when there are different
characters talking in dialogues or scene is changed, we assume a new conversation
occurred.

1 available at www.opensubtitles.org, www.addic7ed.com, www.subtitleseeker.com,
subscene.com, respectively.

www.opensubtitles.org
www.addic7ed.com
www.subtitleseeker.com

Improving Keyword Extraction from Movie Subtitles 547

We explore possibilities for rating conversations according to the relevance
for the movie. The higher the relevance is, the higher the ratings of keywords
extracted from the conversations become.

These conversations could also possibly help us by joining subtitles created
by different authors in case we need to get more information about the scene.
That would result into more keywords, assuming different authors use different
sentences and on condition that they are not an exact transcript.

To split the subtitles into conversations, we use timings included in subtitles.
We detect the gaps between individual subtitles, supposing that if there is a gap
bigger than the gaps in the surrounding titles, the conversation has changed. We
also experiment with the speech rate (words per minute) in individual titles and
conversations as way to differentiate between individual conversations.

Our method to keyword extraction from movie subtitles consists of the fol-
lowing steps (see Fig. 1):

1. Subtitles pre-processing
2. Named entity recognition
3. Conversations identification
4. Keyword extraction
5. Keyword weight adjustment

Fig. 1. Scheme of our method for keywords extraction

Subtitles Pre-processing. Pre-processing consists of processing information
about timings of individual titles, computing the speech rate and counting gaps
between them. Irrelevant symbols and subtitle-specific content, such as music
symbols and colour tags, are filtered out. Text inside hearing impaired tags
and HTML tags is labelled. Then all the text in titles is segmented, tokenized
and POS tagged. We use Rake Text Smart List [6] of stop words to filter out
unnecessary and irrelevant words from the text of subtitles.

548 M. Košút and M. Šimko

Named Entity Recognition. Some named entities such as places and loca-
tions from movies often appear as keywords we want to extract. We identify
named entities in the pre-processed content. First, we select named entity candi-
dates - all unique words in which the first letter is uppercase. We count for every
word the frequency of the word’s appearance in lowercase. We use POS tagger
and WordNet to get more information about these words. Out of these words, we
select only proper nouns that never appeared in lowercase to be named entities.
For our needs all of these entities were added to banned words list for keywords
except those that belong to a certain lexical domain (location, object, group,
communication, etc.). These we consider acceptable as keyword candidates. On
the other hand, the banned words are mostly person names or unknown entities
that are not usually used as keywords. Acceptable candidates stay within the
text and they are treated by ATR algorithms in the same way as the rest of the
text.

Conversations Identification. We experiment with subtitles splitting into
conversation using gaps between individual titles and conversation rate. We sup-
pose that the gaps between the titles of different conversations are wider than
those of the same conversation. We also suppose that speech rate of titles differ
between conversations according to characters, intensity and tense of conversa-
tion. We experiment on ratings using the location, length and speech rate of
conversation and filtering out unimportant ones. We count speech rate as how
many words (at least 2 characters long) appeared in the title per minute (defined
by the difference of starting and ending time of the title). The importance of
conversation is rated according to how much time of the conversation showing
the text spends and how long text appears on the screen. Text appearance time
is normalised according to the speech rate.

Keyword Extraction. We apply standard ATR algorithms to extract and
weight relevant words. These words are usually ordered and the top n of them
is chosen as keywords.

Keyword Weight Adjustment. We also experiment with the individual con-
versations utilised for word extraction, which results in more sets of keywords
for one subtitles to be processed. Ratings of conversations are used to calculate
the final weights of words. We experiment with combination of these ratings and
joining the conversation results from the previous steps.

4 Evaluation

The major aim in evaluation was to assess whether or not our method improves
accuracy of keyword extraction. We have implemented web services and a

Improving Keyword Extraction from Movie Subtitles 549

research environment for experimentation with our keyword extraction meth-
ods, which we have made public2. It was implemented using web framework
Sinatra based on Ruby language. Our service implements REST API to allow
users upload their own subtitles. For the purpose of extraction we utilised exist-
ing implementations of ATR algorithms (as gems) according to the description
of our method. To evaluate our method, we performed several experiments.

First, we compared the results of our method with the gold standard (a
priori evaluation). Secondly, we performed a small user experiment to examine
real users’ perception of keywords for given movies (a posteriori evaluation). In
the both experiments, we compared the performance of original ATR algorithms
(using only text to extract keywords) with the results of the method we proposed
(i.e., improved ATR algorithms).

4.1 Comparison with the Gold Standard

In the first experiment, we have randomly chosen 200 movies from the IMDb
popular movies list3. For each movie, we downloaded subtitles from OpenSubti-
tles.

The gold standard in this experiment consists of keywords from the Moviecus
movie search engine4 (see Table 1 for examples of keywords). Since movie key-
words were created prior to applying our method, this experiment is a priori
evaluation of our method. Since the gold standard was created independently
on our method, from the methodological point of view, this is a more significant
form of evaluation.

Table 1. Examples of keywords in the gold standard

Movie Keywords

Whiplash
(2014)

School, Band, Whiplash, Jazz, Student, Drama, Drummer,
Instructor, New Jersey, Abuse, Drum, Class, Relationship,
New York, Caravan, Talent, Buddy, Rich, Car, Ambition,
Competition, Lawyer, Music, High-school, Humiliation,
Parents

Jane Eyre
(2011)

Romantic drama, Romantic, British, Drama, Love, Aunt,
Running, Running away, Alone, Master, Uncle, Sister,
Marriage, Horse, River, Sisters, School, Home, Rain, Strange,
Dark, Doctor, Flashback, Fire, Secret, Happiness

The Matrix
(1999)

Hacker, Computer, Programming, Australia, Action, Reality,
Simulation, Machine, Science-Fiction, Truth, Rebel, Police,
Security, Future, Pills, Agent, Ship, Dystopia, Animated,
Ambush, War, Energy, Computer hacker, Zion, Attack,
Rescue

2 http://text.fiit.stuba.sk/subkex.
3 http://www.imdb.com/search/title?at=0\&sort=moviemeter.
4 http://moviecus.com.

http://text.fiit.stuba.sk/subkex
http://www.imdb.com/search/title?at=0&sort=moviemeter
http://moviecus.com

550 M. Košút and M. Šimko

To compare the extracted keywords with gold standard keywords, we mea-
sured standard information retrieval metrics Precision (P), Recall (R) and F-
score (F). In addition, we measured ’extractable’ Recall (R’) to consider only
keywords present in subtitles to be relevant (by omitting the keywords in the
gold standards that are not extractable from subtitles; to reveal the actual lim-
its of the method). ’Extractable’ F-score (denoted F’) is weighted average of P
and R’.

We employed three traditional ATR algorithms in our experiments: well-
known TF-IDF, TextRank [3] and HighScore5. For every used method we con-
sidered three setups:

– Basic (ATR) – application of the basic ATR algorithm as proposed by original
authors (steps 1 and 4 of our method).

– Advanced (ATR+NER) – application of the basic algorithm enriched with
named entities recognition (steps 1, 2 and 4 of our method).

– Full (ATR+NER+C) – application of the full method as described in previous
section, i.e., basic ATR algorithm + named entity recognition + conversation
analysis (i.e., all steps of our method).

ATR in the list represents one of the aforementioned ATR algorithms. The
reason for considering the advanced setup of the method (ATR+NER only) was
to evaluate the improved performance of ATR algorithm approaching to the form
as it would be applied in a real world setting for the task of keyword extraction.

We applied our method with each ATR algorithm to extract keywords. We have
selected the number of extracted keywords to evaluate the method’s performance
to be 10. The results showing P, R, F, R’ and F’ metrics are presented in Table 2.

We can see that both named entity recognition and conversation rating
improve performance of each ATR algorithm in a basic setup. This result is
very promising.

Table 2. The results of comparison with the gold standard (%). Each evaluation
measure is computed as Measure@10.

Method setup P R F R’ F’

TF-IDF 9.75 3.78 5.45 6.05 7.41

TF-IDF+NER 20.65 8.05 11.58 14.02 16.57

TF-IDF+NER+C 24.92 9.70 13.96 18.23 20.34

TextRank 19.10 7.41 10.68 12.65 14.80

TextRank+NER 24.47 9.53 13.72 17.20 19.74

TextRank+NER+C 30.30 11.80 16.99 21.82 24.60

HighScore 18.04 7.02 10.11 12.99 14.68

HighScore+NER 21.46 8.36 12.03 15.71 17.68

HighScore+NER+C 28.64 11.14 16.04 23.24 24.87

5 https://github.com/domnikl/highscore.

https://github.com/domnikl/highscore

Improving Keyword Extraction from Movie Subtitles 551

The best results in this experiment were achieved using the TextRank
together with named entity recognition and conversations rating. We achieved
the increase of precision by 11.20 % and F-score by 6.31 %. Although the results
of TF-IDF algorithm are lowest in comparison to other algorithms, TF-IDF
achieved the best increase of precision by 15.17 % and F-score increase by 8.51 %
in combination with named entity recognition and conversations rating. Our
method utilizing HighScore algorithm achieved best performance when consid-
ering R’ and F’ metrics. The results also confirm that named entities are very
important to describe movie content as keywords since they improved each basic
ATR algorithm on their own.

Overall, the results confirm that conversation processing improves ATR algo-
rithms (in both basic and advanced setups). Splitting all movies into conversa-
tion, selecting the most relevant keywords for conversations and adjusting overall
keywords weights turned out to be very useful.

However, the overall results are lower than expected. F-score and F’-score did
not exceed 17 % and 25 %, respectively. The results reveal that the baseline per-
formance of ATR algorithms is much worse than reported in other domains. This
confirms our expectation that traditional ATR algorithms may not perform well
on not “fully-fledged” texts such as subtitles. The obtained performance shows
that conversation analysis offers a reasonable option how to improve performance
of ATR algorithms. The results support our assumptions that named entities are
particularly important as movie descriptors and that timing of subtitles affects
the relevance of words contained within subtitles.

The results also indicate that keyword extraction from subtitles may be not
sufficient when using subtitles as the only source of information. Nevertheless,
it can be very useful to combine our method with different forms of movie data
(video, audio) processing. The potential also lies in processing multiple subtitles
for a movie created by different authors, either of the same or other languages.
We expect that this would lead to improved recall.

It is also important to realize that final performance of both the basic
ATR algorithms and our method might have been affected by the choice of
the gold standard keywords. Although the Moviecus keywords have been used
for advanced search in the movie database since 2011, they still may be – though
relevant for movie description assessment (with most quality data so far) – not
perfect baseline for other information processing tasks such as movie exploration
or recommendation (the keywords may be too general or too specific). In order
to assess the method’s performance from user’s perspective, we conducted a live
user experiment.

4.2 User Experiment

The results of the first experiment were strongly dependent on keywords provided
in the gold standard hence those might not really match keywords we extracted,
supposing keywords extracted by our method may be more precise.

552 M. Košút and M. Šimko

We conducted an experiment involving real users. We were interested how
people perceive extracted words and how those words describe the movie accord-
ing to them. 17 respondents participated in the experiment during the 17th
Spring Workshop on Personalized Web [15]. They were asked to assess how rel-
evant to the movie they find the presented keywords on condition that they
have seen the movie. Since the participants assessed the results obtained by our
method, this experiment constitutes an a posteriori evaluation.

To get the most proper results we have chosen the newest movies from the list
of the most favourite movies in the IMDb database6 (as of March 2015). For every
movie we extracted the set of the keywords using 1) basic ATR algorithm and
2) our method (full). There were 20 movies selected in the experiment. For each
movie we provided approximately 20 keywords to cover all the ATR algorithms.
We created them by merging the extracted keyword sets (union) from all ATR
algorithms – top 5 keywords per method – together, hiding information about
their origin from the participants. Keywords always appeared in random order
to the participants.

The participants were presented movies sequentially. For each movie, they
were presented the movie title and short description extracted from the IMDb.
They were asked to answer the questions about how they had liked the movie and
when they had seen it so we could weigh their answers. Then they were asked to
assess the extracted keywords. For every provided keyword, they answered how
it describes the movie using the four point Likert scale.

Precision of the keywords was calculated as the weighted average of the
participants’ ratings obtained for every movie by normalizing the scale to [0;1]
interval. Keywords were mapped back to the methods (ATR algorithms) and
precision of every method was calculated as the average of all the precisions of
keywords.

Since it is not possible to employ recall measure in such setup, we employed
P@n measure (Precision at n first results) to observe how the performance of
our method changes with the increasing number of extracted keywords. The
experiment’s results are shown in Table 3.

The best results were achieved by employing our full method utilizing Text-
Rank algorithm. The average precision (computed from P@n) achieved was
71.40 %. Although the TextRank results were the best, the highest increase was
attained by our full method utilizing TF-IDF algorithm.

We can conclude that our method has improved the performance of the
method with regard to precision of extracted keywords. The improvement was
achieved for all the ATR algorithms when including the conversation detec-
tion as account of subtitles specifics processing. We can see the most significant
improvement for small n. This suggests that our method succeeds in “boosting”
the relevance of true keywords.

Overall, the results reveal that in the case of user-based assessment, precision
of keywords yielded by our method is much higher. This observation supports
the potential of our method for extraction of relevant keywords describing the

6 http://www.imdb.com/search/title?title type=feature.

http://www.imdb.com/search/title?title_type=feature

Improving Keyword Extraction from Movie Subtitles 553

Table 3. Results of user experiment showing precision of keyword extraction P@n (%)

Number of keywords (n) TF-IDF TextRank HighScore

Basic Full Basic Full Basic Full

1 6.90 69.06 20.69 78.00 10.34 75.06

2 6.90 67.31 17.24 79.00 17.24 68.08

3 6.20 66.13 21.84 76.00 22.99 64.19

4 9.48 64.76 21.55 73.00 20.69 63.21

5 10.34 63.33 19.31 72.00 17.93 62.99

6 13.79 62.22 20.69 69.00 20.11 65.12

7 13.79 61.40 22.17 68.00 20.69 62.52

8 13.36 60.53 21.55 66.00 21.12 61.63

9 13.41 60.22 20.69 67.00 21.46 59.78

10 14.83 58.63 21.38 66.00 21.03 57.99

movie from movie subtitles. In this type of evaluation, we were however not
able to assess recall, i.e., we were not able to evaluate what the method did not
produce.

5 Conclusions

In this paper we tackled the issues of keyword extraction from movie subtitles.
Keywords as a form of metadata are useful for providing intelligent services such
as advanced search or recommendation of movies. However, not much research
is done in this field; we are aware of only a limited number of works exploring
the potential of subtitles for movie-related information processing.

The contribution of this paper is our subtitles-based keyword extraction
method that enriches standard ATR algorithms with processing of temporal
properties in movie subtitles. We proposed the detection and rating of so called
conversations to adjust keyword weights produced by original ATR algorithms.

The evaluation showed that traditional ATR algorithms designed to text doc-
uments yield poor results and has to be further adopted for subtitle processing.
Both named entity recognition (particularly important for movie description)
and conversation analysis succeeded in improving performance of the original
ATR algorithms.

We suppose that our method could be used with advantage in combina-
tion with methods for text/keyword extraction based on audio and video analy-
sis, which were proposed and described in numerous related works. Results of
audio and video analysis keyword extraction could be combined with keywords
extracted by our method by employing a variety of weighting algorithms to get
even more accurate results.

The presented work is a part of a research project aimed to provide missing
movie and TV show metadata for purposes of recommendation. The information

554 M. Košút and M. Šimko

available in open linked data repositories is often not sufficient. Enrichment of
movie and TV show descriptive metadata is important for efficient employment
of traditional content-based recommendation methods [7] or their combination
with other types of recommendation [16].

More research has to be carried out to further improve results of keyword
extraction, e.g., by examining impact of processing multiple subtitles per movie
or combining subtitles processing with video and audio processing. Our future
work will cover improvement of baseline ATR algorithms and further improve-
ment of subtitle specifics utilisation. It will be also important to assess the
extracted keywords with regards to a particular information-processing task they
are used for: movie/TV show recommendation (in vivo evaluation).

Acknowledgments. This work was partially supported by the Scientific Grant
Agency of Slovak Republic, grant No. VG 1/0646/15 and the Cultural and Educa-
tional Grant Agency of the Slovak Republic, grant No. KEGA 009STU-4/2014.

References

1. Langlois, T., Chambel, T., Oliveira, E., Carvalho, P. et al.: VIRUS: video infor-
mation retrieval using subtitles. In: Proceedings of the 14th International Acad-
emic Mind Trek Conference: Envisioning Future Media Environments, pp. 197–200,
Tampere, Finland. ACM (2010)

2. Katsiouli, P., Tsetsos, V., Hadjifethymiades, S.: Semantic video classification based
on subtitles and domain terminologies. In: Proceedings of the KAMC. http://
ceur-ws.org/Vol-253/paper05.pdf (2007)

3. Mihalcea, R., Tarau, P.: TextRank: bringing order into texts. In: Proceedings
of EMNLP, Association for Computational Linguistics, pp. 404–411, Barcelona,
Spain. ACL (2004)

4. Harinek, J., Šimko, M.: Improving term extraction by utilizing user annotations.
In: Proceedings of 13th ACM Symposium on Document Engineering, pp. 185–188.
ACM (2013)

5. Hasan, K.S., Ng, V.: Conundrums in unsupervised keyphrase extraction: making
sense of the state-of-the-art. In: Proceedings of the 23rd International Conference
on Computational Linguistics, 365–373, Beijing, China (2010)

6. Dagan, I., Church, K.: Termight: identifying and translating technical terminology.
In: Proceedings of the Fourth Conference on Applied Natural Language Processing,
pp. 34–40, Stuttgart, Germany (1994)

7. Kompan, M., Bieliková, M.: Content-based news recommendation. In: Buccafurri,
F., Semeraro, G. (eds.) EC-Web 2010. LNBIP, vol. 61, pp. 61–72. Springer, Berlin
(2010)

8. Lučanský, M., Šimko, M.: Improving relevance of keyword extraction from the web
utilizing visual style information. In: SOFSEM Emde Boas, P., Groen, F.C.A.,
Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp.
445–456. Springer, Heidelberg (2013)

9. Mai, D., Hoang, K.: Caption text and keyframe based video retrieval system. In:
Proceedings of the 4th International Conference, ICCCI, pp. 244–252, Ho Chi Minh
City, Vietnam (2012)

http://ceur-ws.org/Vol-253/paper05.pdf
http://ceur-ws.org/Vol-253/paper05.pdf

Improving Keyword Extraction from Movie Subtitles 555

10. Wan, X., Xiao, J.: Exploiting neighbourhood knowledge for single document sum-
marization and keyphrase extraction. ACM Trans. Inf. Syst. 28(2), 244–252 (2010)

11. Demirtas, K., Cicekli, N.K., Cicekli, I.: Automatic categorization and summariza-
tion of documentaries. J. Inf. Sci. 36(6), 671–689 (2010)

12. Hu, W., Xie, N., Li, L., Zeng, X., Maybank, S.: A survey on visual content-based
video indexing and retrieval. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev.
41(6), 797–819 (2011)

13. Nguyen, P.X., Wang, K., Belongie, S.: Video text detection and recognition: dataset
and benchmark. In: Proceedings of 2014 IEEE Winter Conference on Applications
of Computer Vision (WACV), pp. 776–778 (2014)

14. Uherč́ık, T., Šimko, M., Bieliková, M.: Utilizing microblogs for web page rel-
evant term acquisition. In: SOFSEM Emde Boas, P., Groen, F.C.A., Italiano,
G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 457–468.
Springer, Heidelberg (2013)

15. Bieliková, M.: Proceedings in Informatics and Information Technologies 17th
Spring 2015 PeWe Workshop Gabč́ıkovo, Nakladatělstvo STU, Vazovova 5.
Bratislava, Slovakia, 11 April 2015. ISBN 978-80-227-4340-2

16. Kompan, M., Bieliková, M.: Group recommendation: survey and perspectives.
Comput. Inform. 33(2), 446–476 (2014)

Identification of Navigation Lead Candidates
Using Citation and Co-Citation Analysis

Robert Moro(B), Mate Vangel, and Maria Bielikova

Faculty of Informatics and Information Technologies,
Slovak University of Technology in Bratislava,

Ilkovičova 2, 842 16 Bratislava, Slovakia
{robert.moro,xvangel,maria.bielikova}@stuba.sk

Abstract. Query refinement is an integral part of search, especially for
the exploratory search scenarios, which assume that the users start with
ill-defined information needs that change over time. In order to support
exploratory search and navigation, we have proposed an approach of
exploratory navigation in digital libraries using navigation leads. In this
paper, we focus specifically on the identification of the navigation lead
candidates using keyword extraction. For this purpose, we utilize the
citation sentences as well as the co-citations. We hypothesize that they
can improve the quality of the extracted keywords in terms of finding
new keywords (that would not be otherwise discovered) as well as pro-
moting the important keywords by increasing their relevance. We have
quantitatively evaluated our method in the domain of digital libraries
using experts’ judgement on the relevance of the extracted keywords.
Based on our results, we can conclude that using the citations and the
co-citations improves the results of extraction of the most relevant terms
over the TF-IDF baseline.

Keywords: Navigation leads · Keyword extraction · Domain modeling ·
Citation analysis · Co-citations · Digital libraries

1 Introduction

There are various needs that motivate users to search vast information spaces,
such as the Web or digital libraries. A classical taxonomy of Web search by
Broder [2] differentiates three types of needs, namely (i) navigational, the goal
of which is to locate a specific web page whose existence is known to the user,
(ii) informational, the goal of which is to acquire certain information the where-
abouts of which are unknown to the user, and (iii) transactional, the goal of
which is to locate a web page where further transaction will occur, e.g., online
shopping. Out of these, the informational need is the most general, but we always
assume that users know exactly what kind of information they need (e.g., the
title of an article written by an author).

However, the information need of users is often ill-defined at the beginning
and it tends to change in the light of new information that they gather during
c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 556–568, 2016.
DOI: 10.1007/978-3-662-49192-8 45

Identification of Navigation Lead Candidates 557

the search. Thus, their search tasks tend to be open-ended and more exploratory
in their essence; the term exploratory search was coined by Marchionini [10] for
this type of searches.

An integral part of exploratory search is sense-making [16], i.e., making sense
of a problem at hand or a new domain, learning the basic concepts and rela-
tionships between them, etc. A typical example of this behavior is researching a
new domain, a task that researcher novices (e.g., doctoral students) often have
to face. Their goal is not to find the specific facts, but to learn about the given
domain and investigate the topics, the existing approaches as well as the gaps
in the current state of knowledge.

In order to support exploratory search and navigation, we have proposed a
method of exploratory navigation using the navigation leads, i.e., the automat-
ically extracted keywords, which help the users to filter the information space
[11]. The conceptual overview of the method can be seen in Fig. 1. It is a modi-
fication of the classical model of web information retrieval (IR) as defined in [2].
The users do not have to refine their query manually, but we augment the search
results with the navigation leads. When the users choose a specific lead visual-
ized in a summary of a search result or underneath it, their query gets modified
with the lead so that only documents containing the selected lead are retrieved.
The idea is similar to the probabilistic (or blind) relevance feedback [15], but
in contrast our approach does not expand the query automatically, but lets the
users to decide which terms to use. Also, lacking the relevance judgements, we
rely on the topical relevance of the extracted terms [11].
The process of augmentation of the search results with the navigation leads
consists of three main steps (see Fig. 1):

1. Identification of the navigation lead candidates – it includes automatic key-
word extraction from the documents as well as assessment of their document
relevance; it results into a set of the navigation lead candidates.

2. Selection of the navigation leads – in this step, the document relevance of
the individual keywords is combined with their navigational value, i.e., how
relevant the lead candidates are for the whole information (sub)space. The
result of this step is a set of the selected navigation leads.

3. Visualization of the leads with the search results – the selected navigation
leads need to be placed into the search results list, preferably within the
summaries (abstracts) of the search results or underneath them. The result
of this step is a list of search results augmented with the navigation leads.

While in [11] we have introduced the concept of navigation leads and provided
the preliminary results on the step two, i.e., selection of leads, in this paper,
we focus mainly on the first step, i.e., the identification of the lead candidates.
For this purpose, the document metadata can be utilized alongside the actual
contents of the documents. We are interested in the researcher novice scenario
in the digital libraries (or more precisely digital library systems that provide
access to scientific publications). Therefore, we consider also the metadata that
are specific for this domain (see next section). The most prominent of these

558 R. Moro et al.

Task

Information
Need

Query
Refinement

Search EngineQueryVerbal Form

Corpus

Results

Selected
Navigation

Leads

Set of Navigation
Lead Candidates

Results Augmented
with Navigation

Leads

Fig. 1. A model of web IR augmented with the navigation leads to support exploratory
search.

are citations, i.e., citing sentences that provide a unique source of information;
they highlight different aspects of the articles (documents) that were deemed
important or interesting by other researchers.

We propose a method of keyword extraction using citation analysis that
serves as a means of navigation lead candidates identification. Besides the direct
citations that have been to some extent examined in the related works, e.g.,
[1,4,9], we consider also the co-citations (two articles are co-cited, if there is a
third article that cites them both) that to the best of our knowledge have not
yet been utilized for this purpose.

In this paper, we examine the following research questions:

1. Does the use of citations and co-citations in the process of keyword extraction
for the purpose of navigation lead identification helps to improve the overall
quality of the extracted keyword set? Are they capable of finding new words,
or promoting the important words by boosting their relevance in comparison
with the content-based (TF-IDF) baseline?

2. What are the limitations of using the citation and co-citation analysis with
respect to the number of citations of an individual article?

We provide a quantitative evaluation of our method in the domain of digital
libraries using experts’ judgement on the relevance of the extracted keywords.

Identification of Navigation Lead Candidates 559

2 Identification of Keywords in Digital Libraries

Although our proposed approach of exploratory navigation using navigation
leads can be in general applied to an information space in any domain, the
knowledge of domain specifics allows us to tailor the method to them and thus,
to improve the overall navigation process. Our focus is on the domain of digi-
tal libraries, or more specifically (as we have already mentioned) on the digital
library systems of journal (or in general research) articles.

2.1 Specifics and Similarities Between Digital Libraries and the
Web

When designing a method of keyword extraction, we need to consider several
specifics of the domain of digital libraries, which make it distinct from the wild
Web:

– Size and structure of information space – the size of information space of
digital libraries is much smaller in comparison with the whole Web, also the
rate with which there is a new content is lower. Because the content is in
most cases protected by copyrights, we can observe a separation of metadata,
which are publicly available and easily processed, from the actual content of
the documents.

– Structure of documents – in contrast to the wild Web, the documents in digital
libraries tend to follow a predefined structure. This structure can differentiate
among different publishers and journals, but it is always possible to identify
the basic building blocks of the documents, such as title, authors, abstract,
etc. There are approaches to automatically extract a table of contents of an
article, as well as the actual contents of its sections [7], which can be utilized
to reweigh the extracted keywords based on the section of the article in which
they occur.

– Unique set of metadata – the articles in digital libraries have various metadata
associated, which differ from the other sources on the Web in general, such as
authors, publishers, where it was published and more interestingly, keywords
that are identified by the authors themselves. This all can help to identify the
most important aspects of the articles by taking into consideration not only
the actual content of an article, but, e.g., also other similar articles from the
same authors, etc.

There are also several aspects of this domain that are analogous to those of the
Web:

– User-added tags – they represent a special type of metadata, because they are
added by the users that use them in order to organize the articles for their
later retrieval. It is a unique source of metadata, because users tend to use
their own vocabulary and can highlight different aspects of the articles than
their authors.

560 R. Moro et al.

– Links between documents – the articles are linked by the use of citations. In
contrast to the hyperlinks, their mining often requires advanced text min-
ing techniques, because the reference can occur in the text after it has been
explained.

The focus of this work is on the latter, i.e., on the citations, or more specifi-
cally, on the citation sentences and on their use for extraction of keywords from
research articles for the purpose of the navigation lead candidates identification.
They provide a unique view of the article content from a point of view of other
researchers; citations cover different aspects of an article, but the amount of
unique information converges as the number of citations increases [4]. There is
an overlap between the topics (and the keywords) that we can extract from the
abstract of an article (which has a special place in the domain of digital libraries,
because the abstracts are usually freely accessible, unlike the article contents),
but the topics of the abstract tend to be more general than those present in the
citation sentences [9].

In our work, we examine also the co-citations assuming that there is a stronger
relationships between frequently co-cited documents; however, there are other
aspects in play, such as proximity of the co-cited articles in the document [8].

2.2 Domain Modeling in Annota

The specifics of digital libraries discussed in the previous section are reflected in
the domain model of a bookmarking service Annota (http://annota.fiit.stuba.
sk), which we have developed. The users can bookmark and annotate research
articles in the digital libraries, such as ACM DL, IEEE Xplore, Springer Links,
etc. The metadata of these articles are automatically extracted and processed
into our domain model.

The model is two-layered; the domain model at the first layer is overlaid
by the user model at the second [6]. It is a graph: the vertices consist of the
normalized extracted terms and of the research articles; the weighed edges model
the associations between the terms and the articles as well as between the terms
themselves. Figure 2 shows a conceptual model of the domain representation
used in Annota.

The main relation is between an Article and a Term entity; it is modelled as a
combination of partial relations coming from various sources, e.g. the user-added
tags, the folder names into which the users organize their articles, author-added
keywords, etc. Additionally, we automatically extract keywords from articles
(Keyword entity) that are used as the navigation lead candidates. The model
allows various keyword extraction services to be used and combined into new
types of KeywordRelation. It is also possible to configure which partial relations
(and with which weights) should be used in a combination of ArticleHasTermRe-
lation. This makes the model flexible and enables us to test various settings of the
model as well as to quantitatively compare various keyword extraction services
by using Annota as an A/B testing platform.

http://annota.fiit.stuba.sk
http://annota.fiit.stuba.sk

Identification of Navigation Lead Candidates 561

Article Term

Folder

Tag

Author

Keyword
Keyword
Relation

First Keyword
Relation

Second Keyword
Relation

Article Has Term Relation

Fig. 2. A conceptual model of the domain representation in Annota. A relation between
an article and a term consists of a combination of various relations that can be config-
ured.

3 Method of Keyword Extraction Using (Co-)Citation
Analysis

We have proposed a method of keyword extraction using citation and co-citation
analysis that we employ for the purpose of identification of a set of potential
navigation lead candidates as an extension of the existing domain model. A
conceptual model of this extension can be seen in Fig. 3.

Keyword
Relation

Content Keyword
Relation

Citation Keyword
Relation

Co Citation Keyword
Relation

Combined Keyword
Relation

Fig. 3. An extension of the KeywordRelation that combines keywords extracted from
a document content, its citations, and the co-cited documents.

562 R. Moro et al.

The method combines keywords extracted from three sources: (i) the content
of a document itself, (ii) the citations of a document, and (iii) the co-cited
documents.

In order to extract the keywords from a document content, we first preprocess
the document—we tokenize the text and lemmatize it (transform the terms into
their dictionary form)—and then assess the relevance of the terms using a TF-
IDF metric.

During the citation analysis, we identify all the citation contexts from the
articles that cite a given document (that are present in our domain model). We
define a citation context as 100 words before and 100 words after the occurrence
of a reference to a given article in a citing document. This value is based on the
results in [14]. We use ParsCit [3] in order to extract the citation contexts from
the citing articles. The extracted citation contexts are preprocessed the same as
the document content; TF-IDF is used to assess the relevance of the terms as
well.

Lastly, during the co-citation analysis, we identify all the documents which
are cited alongside the document that is being analyzed. We assume that the fact
that two documents (articles) are co-cited increases their chance of being similar;
therefore, we can use the keywords extracted from the co-cited documents and
extend with them a set of the keywords extracted from a document content and
its citations. We compute two measures for each co-cited article:

– Co-citation weight (CW) – it represents a frequency with which two articles
are co-cited. If, e.g., the articles A and B are both cited by the articles C, D,
and E, then the value of CW of B w.r.t to A (and vice versa) equals to 3. It
is a global (or aggregated) measure of the co-citation relevance.

– Co-citation proximity index (CPI) – it is based on [5]; if the articles A and B
are referenced in the same sentence of the article C, than CPI equals to 1, if
in the same paragraph, it equals to 1/2, if in the same section, it equals to 1/4
and if they occur in the same article, CPI equals to 1/8, which is the smallest
possible value for any co-citation. In other words, the closer the references to
the articles occur in the text, the stronger the relationship we assume to be.
As it characterizes the individual co-cited articles, it is a local measure of the
co-citation relevance.

We have defined a set of rules for deciding, which co-citations to consider for
the keyword extraction, to maximize the chance of two co-cited articles being
similar:

1. In case of a maximal co-citation weight CWmax for a given document being
larger than or equal to N , we ignore all co-citations with CW lower than N .

2. If CWmax lies within interval < 2, N -1 >, we use only co-cited documents,
the weight of which equals to CWmax.

3. If CWmax equals to 1, we consider only co-citations that are the closest to a
given document for each citing document separately based on their CPI. In
other words, if there were, e.g., five citing documents, we would consider for
each document only co-citations with the maximal CPI.

Identification of Navigation Lead Candidates 563

The specific values of a threshold value N can differ based on the domain and
dataset used. We have empirically chosen N to be 5 based on the standard
dataset that we used during the evaluation (see next section). It should be fine-
tuned if a distribution of citations and co-citations differs significantly from the
one in our dataset.

As the last step, we combine the keywords extracted from the content of the
document with those extracted from the citation contexts as well as from the
selected subset of co-cited articles (applying the same treatment during the text
processing). We use a linear combination of weights which we normalize using
the min-max normalization prior to the combination itself:

w = αwD + βwC + γwCC (1)

where wD is a weight of a keyword extracted from the document content, wC is
a weight of a keyword extracted from the citation contexts and wCC is a weight
of a keyword extracted from the co-cited documents. The weight is for all three
sources determined using a TF-IDF metric. The coefficients α, β, and γ are real
numbers from the interval < 0, 1 > ; we used a value of 1 in all our experiments.

The result is a set of extracted keywords, which serve as navigation lead
candidates, but can be used also for other purposes, as they are a part of the
domain model.

4 Evaluation

We have evaluated our proposed method of keyword extraction using the citation
and the co-citation analysis on a standard dataset of articles in ACL Anthol-
ogy Network [13] that we imported into Annota. Overall, the dataset consists
of 18,290 articles with 84,237 citations. We have conducted a quantitative eval-
uation using the experts’ judgements; therefore, we have limited a number of
articles from the original dataset to those which have already been known by
the experts, i.e., which they had bookmarked in their Annota personal libraries.
This way, we could use a subset of dataset consisting of 250 articles.

The goal of the experiment was to assess the relevance of the extracted key-
words based on the experts’ judgements. We have extracted three keyword sets
for each document:

– M1 : Keywords extracted from a content of a document using TF-IDF; this
served us as a baseline.

– M2 : Keywords from M1 enriched with the keywords extracted from the cita-
tion contexts of a given article.

– M3 : Keywords from M2 enriched with the keywords extracted from the co-
cited articles; this represents our proposed method discussed in the previous
section.

We have hypothesized that adding the keywords extracted from the citation
contexts and from the co-cited articles will improve the overall precision P , i.e.,
formally:

P (M1) < P (M2) ≤ P (M3) (2)

564 R. Moro et al.

Fig. 4. An evaluation interface in Annota. The experts could have read the title and the
abstract of an article (1), or navigate to its fulltext (2). They assessed the relevance of
the presented keywords by choosing one of the possible values – relevant, less relevant,
or irrelevant (3).

We have prepared an evaluation interface in Annota for the experts to be
able to easily assess the relevance of the presented keywords (see Fig. 4). The
experts could have chosen one of the possible assessments of a keyword relevance:
relevant, less relevant (meaning somewhat relevant), or irrelevant.

Under each article, we have presented top ten scoring keywords extracted by
each compared variant (M1, M2, M3), i.e., together up to 30 keywords for each
document merged into a single list. All the keywords were presented only once in
the list even if there was an overlap between the sets of extracted keywords. The
keywords in the list were sorted alphabetically so that the experiment partici-
pants could not have found out which keywords were extracted by which method
(and with which relevance).

There were 8 domain experts who participated in the experiment. Together,
they assessed 844 unique extracted keywords from 45 different articles; 7 articles
were assessed by more than one expert. We have evaluated each variant (M1,
M2, M3) when considering only relevant or also less relevant keywords using a
standard information retrieval metric P@N (precision at N); results are shown
in Table 1. The metric computes a ratio of relevant keywords among the top N
scoring ones. We can see that the variant M2 and M3 outperformed the TF-IDF
baseline (M1) in all P@N measures for N = 1, 2, 5, and 10, thus confirming
our hypothesis. As to the comparison of M2 and M3 variant, considering just
citations provided in general a slightly better precision, except of P@5, where co-
citations significantly improved the results (there was an improvement also for
P@10, although marginal). A closer analysis of the extracted keywords revealed

Identification of Navigation Lead Candidates 565

that using M3 variant in some cases promoted names of the authors or acronyms
of the method names which were deemed irrelevant by the judges, as they were
too specific and not really describing the content of the articles.

Table 1. The results of precision for each variant when considering only the keywords
assessed by the experts as relevant (R), or when considering also those assessed as less
relevant (R + L).

We have analyzed also the limitations of our proposed method concerning the
second research question. For this purpose, we have compared values of the P@10
measure (when considering the relevant as well as the less relevant keywords)
for each variant (M1, M2, M3) with respect to the number of citations of an
article (see Fig. 5). Because the number of the evaluated keywords in the selected
citation groups was not the same, we have reported also the confidence intervals.

We can see that though the overall scores of the P@10 measure are almost
identical for all the variants (see Table 1), there are differences based on the
number of citations. The TF-IDF baseline (M1) slightly outperforms the other
two (M2, M3) if the number of citations is lower than 20, although the measured
differences are not significant. The situation changes with the increasing number
of citations in favor of variants M2 and M3 with M3 (employing co-citations)
being better. Again, the differences are in the most cases not significant (with the
exception of articles with at least 20 and less than 100 citations), but the trend
is clear. This is in agreement with the previous finding in [4] that 20 citations
can in general cover all the important aspects of an article. Novelty lies in the
comparison with the co-citations that seem even better suited for the keyword
extraction in this case.

Lastly, we have found out that out of 844 extracted keywords that have been
assessed by the experts, 119 were identified by the M3 variant, meaning that
they did not occur at all among the keywords extracted by M1 and M2 or they
were deemed irrelevant be them. Out of these 119 keywords, 54.6% were assessed
as relevant or less relevant by the experts. This suggests that considering the co-
citations is capable of finding new important words, although there is still some
noise which could be reduced by making the rules for deciding, which co-cited
articles to consider, more strict.

566 R. Moro et al.

Fig. 5. A comparison of P@10 for each variant w.r.t. the number of citations of an
article. The error bars around the mean values represent the confidence intervals.

5 Related Work

As we have already established throughout this article, citations reflect value,
impact, and importance of research works, which makes them interesting in areas
such as scientometrics. They also represent a judgement of other researchers on
the actual content of a research work, which is a reason, why they are researched
also in the field of natural language processing (e.g., for keyword extraction and
summarization).

It has been found out that as much as 20 citations is enough to cover all
the important aspects of an article [4]. The topics extracted from the citations
differ significantly from those that can be extracted from the abstracts [9] and
using at least one citation sentence for keyword extraction renders better results
in comparison with the keywords extracted solely from the document content,
while the optimal citation context is 100 words before and after a reference in a
citing article [14].

The keywords (or keyphrases) extracted from the citation contexts are also
capable of producing better summaries of researcher articles as shown in [12] on
25 manually annotated articles from ACL Anthology Network.

There is still much work to be done on the categorization and characterization
of citations and their role within an article; Bertin and Atanassova [1] analyzed
verbs used in the citations in different sections of articles and found out that
there are significant differences which can be attributed to their different roles.
This remains a challenge, because the most of the works do not differentiate
between these roles when using citations for keyword extraction or other natural
language processing related tasks. Also, the exact role and potential contribution
of the co-citations for these tasks remains an open problem, which we have tried
to tackle also in this work.

Identification of Navigation Lead Candidates 567

6 Discussion and Conclusions

In this work, we have presented a general model of Web search that we have
augmented for exploratory search and navigation in an information space using
navigation leads. In order to select navigation leads, we first identify a set of
potential lead candidates using automatic keyword extraction.

For this purpose, we have proposed a method of keyword extraction in dig-
ital libraries domain employing citation and co-citation analysis and tried to
answer two research questions, namely whether the citations and the co-citations
improve keyword extraction and what are their limitations. Our main contribu-
tions are as follows:

1. We have extended a domain model of a digital library system with keywords
extracted from the co-cited articles and proposed a set of rules for deciding
which co-citations to consider, and which not.

2. We have evaluated usefulness of citation and co-citation analysis on a stan-
dard dataset and examined their limitations. Based on the results of our
quantitative experiment, we can conclude that using citations and co-citations
significantly outperforms the TF-IDF baseline; in addition, the co-citations
are capable of finding new keywords that would not have been otherwise
extracted. As to the limitations of our proposed method, its precision depends
on the number of citations of an article with the ideal number being above
20.

Although co-citation analysis is capable of finding new keywords, there is still
some noise in the form of irrelevant keywords that should be addressed in the
future (e.g. by filtering out the names of authors or method acronyms by setting
a higher threshold for minimal number of occurrences of a term in the documents
when using TF-IDF). Open question remains, how to automatically adapt the
rules of co-citation selection so that they would take into consideration citation
specifics of different domains.

In addition, our method depends on a number of citations of an article, i.e., it
performs well when there is enough information in the form of citations and co-
citations and is outperformed by the TF-IDF baseline, if there is not. This could
be reduced by modifying the method to automatically adapt the weights based
on the number of citations, thus promoting content keywords for articles with
only a few citations and gradually increasing the weight of the citation and the
co-citation keywords with the increasing number of citations. Other promising
direction is to analyze the citation intention and its role within an article.

Acknowledgement. This work was partially supported by the Cultural and Educa-
tional Grant Agency of the Slovak Republic, grant No. KEGA 009STU-4/2014, the
Scientific Grant Agency of the Slovak Republic, grant No. VG 1/0646/15, and by the
Slovak Research and Development Agency under the contract No. APVV-0208-10.

568 R. Moro et al.

References

1. Bertin, M., Atanassova, I.: A Study of Lexical Distribution in Citation Con-
texts through the IMRaD Standarda. In: Proceedings of the 1st Workshop on
Bibliometric-Enhanced Information Retrieval Co-located with 36th European Con-
ference on Information Retrieval (ECIR 2014), pp. 5–12. CEUR-WS (2014)

2. Broder, A.: A taxonomy of web search. ACM SIGIR Forum. 36, 3–10 (2002)
3. Councill, I.G., Giles, C.L., Kan, M.: ParsCit: an open-source CRF reference string

parsing package. In: LREC 2008: Proceedings of the 6th International Conference
on Language Resources and Evaluation, pp. 661–667. ELRA (2008)

4. Elkiss, A., Shen, S., Fader, A., Erkan, G., States, D., Radev, D.R.: Blind men and
elephants: what do citation summaries tell us about a research article? J. Am. Soc.
Inf. Sci. Technol. 59, 51–62 (2008)

5. Gipp, B., Beel, J.: Citation proximity analysis (CPA) - a new approach for identi-
fying related work based on co-citation analysis. In: ISSI 2009: Proceedings of the
12th International Conference on Scientometrics and Informetrics, pp. 571–575.
ISSI (2009)

6. Holub, M., Moro, R., Sevcech, J., Liptak, M., Bielikova, M.: Annota: towards
enriching scientific publications with semantics and user annotations. D-Lib Mag.
20 (2014). http://www.dlib.org/dlib/november14/holub/11holub.html

7. Klampfl, S., Kern, R.: An unsupervised machine learning approach to body text
and table of contents extraction from digital scientific articles. In: Aalberg, T.,
Papatheodorou, C., Dobreva, M., Tsakonas, G., Farrugia, C.J. (eds.) TPDL 2013.
LNCS, vol. 8092, pp. 144–155. Springer, Heidelberg (2013)

8. Liu, S., Chen, C.: The effects of co-citation proximity on co-citation analysis. In:
ISSI 2011: Proceedings of the 13th International Conference of the International
Society for Scientometrics and Informetrics, pp. 474–484 (2011)

9. Liu, S., Chen, C.: The differences between latent topics in abstracts and citation
contexts of citing papers. J. Am. Soc. Inf. Sci. Technol. 64, 627–639 (2013)

10. Marchionini, G.: Exploratory search: from finding to understanding. Commun.
ACM. 49, 41–46 (2006)

11. Moro, R., Bielikova, M.: Navigation leads selection considering navigational value
of keywords. In: WWW 2015 Companion: Proceedings of the 24th International
Conference on World Wide Web Companion, pp. 79–80. IW3C2, Geneva (2015)

12. Qazvinian, V., Radev, D.R., Özgür, A.: Citation summarization through keyphrase
extraction. In: COLING 2010: Proceedings of the 23rd International Conference on
Computational Linguistics, pp. 895–903. Association for Computational Linguistics
(2010)

13. Radev, D.R., Muthukrishnan, P., Qazvinian, V., Abu-Jbara, A.: The ACL anthol-
ogy network corpus. Lang. Resour. Eval. 47, 919–944 (2013)

14. Ritchie, A., Robertson, S., Teufel, S.: Comparing citation contexts for information
retrieval. In: CIKM 2008: Proceedings of the 17th ACM Conference on Information
and Knowledge Mining, pp. 213–222. ACM Press, New York (2008)

15. Robertson, S., Zaragoza, H.: The probabilistic relevance framework: BM25 and
beyond. Found. Trendsin Inf. Retrieval 3(4), 333–389 (2009)

16. White, R.W., Roth, R.A.: Exploratory Search: Beyond the Query-Response Para-
digm. Morgan & Claypool, San Rafael (2009)

http://www.dlib.org/dlib/november14/holub/11holub.html

Summarizing Online User Reviews Using
Bicliques

Azam Sheikh Muhammad1, Peter Damaschke2(B), and Olof Mogren2

1 College of Computing and Informatics, Saudi Electronic University (SEU),
Riyadh 13316, Kingdom of Saudi Arabia

m.sheikh@seu.edu.sa
2 Department of Computer Science and Engineering,

Chalmers University, 41296 Göteborg, Sweden
{ptr,mogren}@chalmers.se

Abstract. With vast amounts of text being available in electronic for-
mat, such as news and social media, automatic multi-document summa-
rization can help extract the most important information. We present
and evaluate a novel method for automatic extractive multi-document
summarization. The method is purely combinatorial, based on bicliques
in the bipartite word-sentence occurrence graph. It is particularly suited
for collections of very short, independently written texts (often single
sentences) with many repeated phrases, such as customer reviews of
products. The method can run in subquadratic time in the number of
documents, which is relevant for the application to large collections of
documents.

1 Introduction

Extractive summarization, i.e., selection of a representative subset of sentences
from input documents, is an important component of modern information
retrieval systems. Existing methods usually first derive some intermediate repre-
sentation, then score the input sentences according to some formula and finally
select sentences for the summary [13,16].

The field of automatic summarization was founded in 1958 by Luhn [14],
who related the importance of words to their frequency of occurring in the text.
This importance scoring was then used to extract sentences containing impor-
tant words. With the advent of the World Wide Web, large amounts of public
text became available and research on multi-document summarization took off.
Luhn’s idea of a frequency threshold measure for selecting topic words in a do-
cument has lived on. It was later superseded by tf × idf , which measures the
specificity of a word to a document and has been used extensively in document
summarization efforts.

Radev et al. pioneered the use of cluster centroids in summarization in their
work [18], with an algorithm called MEAD that generates a number of clusters
of similar sentences. To measure the similarity between a pair of sentences, the
authors use the cosine similarity measure where sentences are represented as
c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 569–579, 2016.
DOI: 10.1007/978-3-662-49192-8 46

570 A.S. Muhammad et al.

a weighted vector of tf × idf terms. Once sentences are clustered, a subset
from each cluster is selected. MEAD is among the state-of-the-art extractive
summarization techniques and frequently used as baseline method for comparing
new algorithms.

Summarization is abstractive when new content is generated while summa-
rizing the input text. Ganesan et al. [8], considered online user reviews, which
are typically short (one or two sentences) and opinionated. They presented an
abstractive approach that used parts of the input sentences to generate the
output. For evaluations they provided the Opinosis dataset, consisting of user
reviews on 51 different topics. Their system performed well evaluating generated
summaries against those written by human experts. They also compare their
results with the aforementioned MEAD [18] method.

Bonzanini et al. [4] introduced an iterative sentence removal procedure that
proved good in summarizing the same short online user reviews from the Opinosis
dataset. Usually, an extractive summarization method is focused on deciding
which sentences are important in a document and considered for inclusion in
the summary. The sentence removal algorithm by Bonzanini et al. [4] would
instead iteratively choose sentences that are unimportant and remove them,
starting with the set of all sentences in the input. The process continues until
the required summary length is reached.

SumView [19] is also specialized on collections of short texts and uses feature
extraction and a matrix factorization approach to decide on the most informative
sentences. Besides the aforementioned work we refer to an extensive survey [16]
discussing different approaches to sentence representation, scoring, and summary
selection, and their effects on the performance of a summarization system.

Our Contribution: We propose a novel, purely combinatorial approach aimed
at extractive summarization of collections of sentences. Since we will con-
sider online user reviews as input, that typically are single sentences from
independent authors, we speak of sentences rather than documents from now
on. The idea is simply to find the key combinations of words appearing
in several sentences. We work with a bipartite graph where the two ver-
tex sets correspond to sentences and words, respectively, and edges exist
between words and the sentences where they appear. Then, finding sets of
sentences that share the same combination of words is equivalent to find-
ing the bicliques in this graph. (Formal definitions follow in Sect. 2.) Finally
we select bicliques for the summary according to further criteria. Leve-
raging recent advances in fast algorithms for determining the most similar sets,
the approach is also computationally fast. Altogether this enables us to present
a method for extractive summarization of short independent texts that should
be attractive due to its conceptual simplicity and direct interpretability of the
output. We show that it performs well on the benchmark Opinosis dataset [8].
It also outperforms state-of-the-art systems achieving the best precision, F1 and
F2 measures. (See definitions and results in Sect. 6.2.)

Summarizing Online User Reviews Using Bicliques 571

As a delimitation, due to its very idea the method cannot be expected to
extract good summaries of single complex texts, but this type of application is
beyond the scope of this work.

2 Preliminaries

The following notation will be used throughout this paper. We consider any
sentence as a bag of words, that is, as the set of distinct words, disregarding
order and multiplicity of words. The ith sentence is denoted si. and |si| is the
number of distinct words, after removal of multiple occurrences and stopwords.
The given set of sentences is T , and a summary is denoted S ⊂ T . Note that
an extractive summary is merely a selection of the most informative sentences;
no new text is generated. The length of a summary in terms of the number of
sentences is denoted by �.

Symbol Msi;sj
stands for a sentence similarity measure. Several measures

for sentence similarity have been explored for extractive summarization. The
simplest ones are called the surface matching sentence similarity measures [15],
because they do not require any sophisticated linguistic processing, and the
similarity value is merely based on the number of words that occur in both of
the sentences. In the present paper we are considering two of them:

– the match measure Msi;sj
= |si ∩ sj |,

– the cosine measure Msi;sj
= |si ∩ sj |/

√|si| × |sj |.
Note that the cosine measure can be viewed as the match measure normalized

by the sentence size.
Given a collection of sentences, we consider the word-sentence occurrence

graph, that is, the bipartite graph B = (T,W ;E) with T and W being the set of
sentences and words, respectively, where sw ∈ E is an edge if and only if word
w occurs in sentence s. Here the number of occurrences is disregarded, that is,
edges are not weighted.

We use the standard notation N(v) for the set of neighbored vertices of
a vertex v in a graph. It naturally extends to vertex sets V , by defining N(V) :=⋃

v∈V N(v). A bipartite clique, biclique for short, is a pair (X,Y) of sets X ⊆ T
and Y ⊆ W that induces a complete bipartite subgraph of B, that is, N(X) ⊇ Y
and N(Y) ⊇ X. A maximal biclique (not to confuse with a biclique of maximum
size) is a biclique not contained in other bicliques. We call a subset Y of W of
the form Y = N(si) ∩ N(sj), with si, sj ∈ T , a 2-intersection. It corresponds to
a biclique (X,Y) with |X| = 2.

3 Overall Idea

Customer reviews and similar text collections consist of sentences written inde-
pendently by many authors. Intuitively, combinations of words appearing in sev-
eral sentences should be important for a summary. Obviously they are bicliques
in the word-sentence occurrence graph.

572 A.S. Muhammad et al.

The problem of enumerating the maximal bicliques (and hence, implicitly, all
bicliques) in a graph is well investigated, in particular, several output-sensitive
algorithms with different running times are known [1,6,9,11]. However, in general
a graph has very many bicliques, and we need to select those which appear most
relevant for a small extractive summary. We found that the large 2-intersections
(see definitions above) are good candidates, by the following reasoning.

The word set Y of a biclique (X,Y) with |X| = 2 has been used by at
least two independent authors, hence it has not only occurred by chance, in
one sporadic statement. Moreover, Y is a maximal word set with this property.
More repetitions of less specific word sets, that is, bicliques with |X| > 2 but
smaller Y , do not seem to add much to a summary. The restriction to |X| = 2
also allows the use of standard pairwise similarity measures in the heuristic rules
that afterwards select the sentences to be put in the summary.

bipartit

graph

small

s1

s2

s3

bipartit

graph

small

s1 ∩ s2

s1 ∩ s3

s2 ∩ s3

Fig. 1. Biclique Summarization. Example sentences s1: “This is a bipartite graph”, s2:
“Look how small it is”, s3: “This bipartite graph is very small”. After stemming and
stopwords removal: s1: “bipartit graph”, s2: “small”, s3: “bipartit graph small”

An example of the concept is visualized in Fig. 1. The bipartite graph is shown
on the left while all possible 2-intersections are on the right. Since s3 is present
in both of the nonempty 2-intersections, it may be regarded as representative of
the other two and thus selected for the summary.

4 Implementation Details

The given set of sentences T undergoes a preprocessing before passing it to the
main algorithm. This involves stopwords removal and stemming. Words such
as “am”, “are”, “by”, “is”, are called stopwords. They are common to many
sentences and usually do not carry meaningful information when comparing texts
in the context of summarization. Stemming reduces a word to its stem, base or
root form. Stemming prevents mismatch between two words which apparently
differ but are actually grammatical variations of the same word, such as singular
and plural. In many cases stemming is achieved by chopping off the ends of
words. Details about the stopwords list and stemming technique used in our
implementation (which, however, do not affect the core ideas of the method) are
described in Sect. 6.2.

In Algorithm 1 we give a pseudocode description of the method. As said in
Sect. 3, in a biclique (X,Y), the Y part is the word set and X with the restriction

Summarizing Online User Reviews Using Bicliques 573

|X| = 2 (because we need 2-intersections only), is the set containing i, j corre-
sponding to a pair of sentences (si,sj), i �= j, in T . Our implementation using the
subroutine FindBiclique(si, sj , sim) collects bicliques (X,Y) with |Y | ≥ 2, that
is, there are at least two words common in the corresponding pair of sentences
(si,sj). For every such pair we also compute the value of the similarity mea-
sure specified by the parameter sim which is either equal to match or cosine;
see Sect. 2. We find all such bicliques and this concludes the first part of the
algorithm. There are two more major parts in our algorithm.

Algorithm 1. Biclique Summarization
Input: sim, top, �, T
Output: S
1: Part-1: Find Bicliques:
2: nBicliques ← 0
3: repeat
4: Choose a new pair (si, sj), i �= j, in T
5: [X, Y, simV alue] ← FindBiclique(si, sj , sim)
6: Bicliques.add(X, Y, simV alue)
7: nBicliques ← nBicliques + 1
8: until NoMoreBicliques
9: Part-2: Filter Important Bicliques:

10: Bicliques ← SortBySimV alue(Bicliques)
11: max ← �nBicliques×top

100
�

12: impBicliques ← Select(Bicliques[1...max])
13: Part-3: Summary Selection:
14: SentenceIDs ← UniqueSortedByFreq(impBicliques.X)
15: S ← GetSentences(T, SentenceIDs[1...�])
16: return S

In the second part we filter out important bicliques, making use of the para-
meter top which defines percentage of the bicliques that should be kept. Typical
values used are 10, 30 and 50.

First, the bicliques are sorted with respect to their decreasing similarity value
and then we select best top% of the entire bicliques collection. In this way, the
most informative bicliques are kept while the rest are discarded. For example
when top=10, we select top 10 percent of the bicliques from the sorted list.

Finally, to select a summary, we need a ranking of the sentences appearing
in the filtered important bicliques. In our implementation we simply count the
occurrences of sentences in the filtered bicliques and take the � most frequent
sentences.

5 Processing Time

The time complexity is dominated by the time needed to determine the sentence
pairs (2-intersections) with top similarity scores. This subproblem is known as

574 A.S. Muhammad et al.

top-k set similarity joins (more precisely: self-joins), where our k is the number
of bicliques to keep. A basic implementation as displayed in Algorithm1 loops
through all pairs of sentences and therefore costs quadratic time in the number
of sentences. However, the top-k set similarity joins problem is well studied for
different standard similarity measures, and fairly simple heuristic algorithms as
proposed in [2,7,20] and related work have experimental running times far below
the naive quadratic time bound. They can replace Part 1 and 2 of Algorithm1.
These heuristics rely on the very different word frequencies in texts, which essen-
tially follow power laws [10]. Some further theoretical analysis of time bounds is
given in [5].

For the sake of completeness we briefly outline these techniques. The first
main idea is to process the words by increasing frequencies f and collect the pairs
of sentences where any common words have been detected. A word appearing
in f sentences trivially appears in fewer than f2/2 of the 2-intersections. Since
most words have low frequencies, the total number of such sentence pairs does
not grow much in the beginning. The second main idea is called prefix filtering,
which is actually a branch-and-bound heuristic. It bounds for every considered
sentence pair the maximum possible value of the similarity measure, in terms of
the number of (frequent) words not yet considered. This allows early exclusion of
many pairs of sentences that cannot be among the top k pairs any more. Building
on these principles, the “segment bounding algorithm” for the overlap measure
[3] divides the set of words into segments according to their frequencies. Then
the largest 2-intersections within the segments are computed by subset hashing,
and finally the partial results are combined following some simple priority rules,
until the top k pairs are established for a prescribed k. The authors of [3] report
that their algorithm runs faster than those from [20] especially on large datasets.
Finally, for the largest 2-intersections found, one can also filter those where other
similarity measures are maximized.

Thanks to these techniques, our method can be implemented to run in sub-
quadratic time. By way of contrast, this is apparently not possible for other
summarization approaches like sentence removal [4] which is intrinsically more
than quadratic.

6 Experimental Results

In this section, we present an empirical evaluation of the proposed method.

6.1 Dataset

Considering large amounts of highly redundant short text opinions expressed
on the web, our experimental study focuses on assessing the performance of the
proposed method on such a dataset which includes users stating their single line
opinions about products or services, or commenting on some hot topics or issues
on certain discussion forums and social media sites.

Summarizing Online User Reviews Using Bicliques 575

The Opinosis dataset [8] is particularly relevant to our purpose because it
contains short user reviews in 51 different topics. Each of these topics consists of
between 50 and 575 one-sentence user reviews made by different authors about
a certain characteristic of a hotel, a car or a product (e.g. “Location of Holiday
Inn, London” and “Fonts, Amazon Kindle”). The dataset includes 4 to 5 gold-
standard summaries created by human authors for each topic. The length of the
gold-standard summaries is around 2 sentences.

6.2 Evaluation Method and Baseline Selection

Following standard procedure, we use ROUGE [12] for evaluation. ROUGE com-
pares the system-generated summary with the corresponding gold-standard sum-
maries for a topic and reports the assessment in terms of quantitative measures:
recall, precision and F-measure. Recall is the number of words in the intersection
of system-generated and the gold-standard summaries divided by the number of
words in the gold-standard summary. Precision is the number of words in the
intersection divided by the number of words in the system-generated summary.

F-measure, also called F1 score, is a composite measure defined as the har-
monic average of precision and recall. Sometimes, in order to emphasize the
importance of recall over precision, another F-measure called F2 score is also
computed. On our benchmark dataset, Opinosis, F2 scores are also reported in
state-of-the-art results.

The general definition of F-measure for positive real β is:

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

ROUGE works by counting n-gram overlaps between generated summaries
and the gold standard. Our results show ROUGE-1, ROUGE-2 and ROUGE-
SU4 scores, representing matches in unigrams, bigrams and skip-bigrams respec-
tively. The skip-bigrams allow four words in between.

The experiments are aligned (in terms of ROUGE settings etc.,) with those
of Bonzanini et al. [4], which provide state-of-the-art results on extractive sum-
marization on the Opinosis dataset. As mentioned in Sect. 1, they use a sen-
tence removal (SR) algorithm. They used ROUGE to evaluate their methods,
and MEAD [18], an extractive multi-document summarizer (see Sect. 1, too), as
a baseline.

There are two different versions of the SR algorithm in [4], one based on
similarity (SRSIM) and the other one based on diversity (SRDIV). We compare
our method to both of them.

Summary length � was fixed at 2 sentences. This matches the supplied gold-
standard summaries and is also necessary to align our results to [4].

In addition to MEAD [18], they [4] use a brute-force method as a base-
line which, for any given topic, enumerates all combinations of 2 sentences and
chooses the pair that optimizes on the same scoring functions as used in their
sentence removal algorithm.

576 A.S. Muhammad et al.

Our implementation maximizes ROUGE scores: We consider all possible pairs
of sentences within each topic, compute ROUGE-1, ROUGE-2 and ROUGE-SU4
scores (of recall, precision, F1, and F2) and choose the sentence pair with highest
value. Choosing such pairs for all topics in the dataset gives us the maximum
scores, denoted with OPTIMAL, in our evaluations. These are the ideal scores
attainable by an extractive summarization algorithm on this dataset.

We evaluate an implementation of the Biclique algorithm with sentence sim-
ilarity measures match and cosine. For the cosine measure we let top vary
between 10 and 30. For match we evaluate with top fixed at 50, which gave us
the highest scores. Accordingly, the methods are abbreviated BicliqueCosine1,
BicliqueCosine3, and BicliqueMatch5, respectively.

The systems are evaluated with ROUGE version 1.5.5 using the following
options: -a - m -s -x -n 2 -2 4 -u. For F2, alongside the previous option,
we also add: -p 0.2.

For preprocessing we make use of a Porter stemmer [17]. Stopwords were
removed using the stopword list distributed as part of the ROUGE evaluation
system [12].

6.3 Results

In Table 1 we show results for the experiments. R-1, R-2 and R-SU4 represent
scores of ROUGE-1, ROUGE-2 and ROUGE-SU4 respectively. The best results
(with the exception of the brute-force optimal scores) are shown in bold. The best
scores among biclique alternatives are shown in italic. The brute-force optimal
scores with respect to the evaluated measure in Table 1, marked in gray in the
first row in each sub-table, are the maximum attainable scores. Baselines are
shown at the bottom of each sub-table.

Recall: With respect to recall, BicliqueMatch5 has attained a ROUGE-1 value
of 43.54 and ROUGE-SU4 of 16.36. This is better than the corresponding values
(37.46 and 13.80) of the baseline method SRSIM making an improvement of
16.23 % and 18.55 %, respectively. Similarly, with respect to ROUGE-2 value,
BicliqueMatch5 has attained 8.91 compared to the value 8.67 of the baseline
method SRDIV . Comparing ROUGE-1 and ROUGE-SU4, SRDIV has attained
better scores, and MEAD has overall higher recall scores. However, it should
be kept in mind that both of the latter are biased towards recall and do not
perform well on precision compared to our method BicliqueMatch5 in all three
ROUGE settings.

Precision: BicliqueCosine1 is the best system for precision in all three settings
of ROUGE, increasing the best scores among the baseline methods by over 85 %
for the ROUGE-1, over 90 % for ROUGE-2, and over 223 % for ROUGE-SU4.

F1: The performance of BicliqueCosine1 is consistent when we consider the mea-
sures F1 and F2, showing that the high precision is also combined with a high
recall. For example, using BicliqueCosine1, the best F1-scores of the best per-
forming baseline methods are improved by at least 34 %, 35 %, and 120 % for
ROUGE-1, ROUGE-2, and ROUGE-SU4, respectively.

Summarizing Online User Reviews Using Bicliques 577

F2: Here the best results are achieved by our method BicliqueCosine3. We con-
sistently improve on the best scoring method among the baselines by at least
6 %, 8 % and 64 % for ROUGE-1, ROUGE-2, and ROUGE-SU4, respectively.

Table 1. ROUGE scores for BicliqueDice, BicliqueCosine - Biclique (with Match and
Cosine sentence similarity, respectively) obtains the highest Precision, as well as F1 and
F2 scores. OPTIMAL scores (gray) contain the corresponding score for an optimal
summary for each cell. SRSIM , SRDIV - Bonzanini et al. (2013)

Recall Precision

R-1 R-2 R-SU4 R-1 R-2 R-SU4

OPTIMAL 57.86 22.96 29.73 OPTIMAL 57.35 22.07 36.07

BicliqueCosine1 30.48 7.62 12.40 BicliqueCosine1 36.85 9.88 17.58

BicliqueCosine3 31.94 8.13 13.40 BicliqueCosine3 33.29 9.07 15.03

BicliqueMatch5 43.54 8.91 16.36 BicliqueMatch5 11.70 2.26 3.36

MEAD 49.32 10.58 23.16 MEAD 9.16 1.84 1.02

SRDIV 46.05 8.67 20.10 SRDIV 9.64 1.77 1.10

SRSIM 37.46 9.29 13.80 SRSIM 19.87 5.18 5.44

F1 F2

R-1 R-2 R-SU4 R-1 R-2 R-SU4

OPTIMAL 46.57 19.49 23.76 OPTIMAL 48.41 20.45 24.72

BicliqueCosine1 32.67 8.41 13.93 BicliqueCosine1 31.16 7.88 12.86

BicliqueCosine3 31.85 8.35 13.46 BicliqueCosine3 31.73 8.17 13.28

BicliqueMatch5 17.93 3.50 5.40 BicliqueMatch5 26.91 5.36 8.66

MEAD 15.15 3.08 1.89 MEAD 26.27 5.43 4.34

SRDIV 15.64 2.88 2.03 SRDIV 25.39 4.70 4.16

SRSIM 24.38 6.23 6.31 SRSIM 29.92 7.54 8.08

6.4 Discussion

Empirical evaluation of the method proposed in this paper suggests that we have
a clear improvement over state-of-the-art extractive summarization results on the
Opinosis dataset. Our method has shown substantial improvement compared to
the existing results, especially for precision, F1, and F2 on all ROUGE settings.
The only result we cannot beat is the recall scores of the baseline methods
MEAD and SRDIV , which achieve the high recall at the expense of a sharp
drop in precision (explained by the fact that these methods tend to choose larger
sentences which results in high recall only).

Generally our method provides a balance between the two metrics, recall and
precision, which is clear from the F1-scores (Table 1). Still the biclique method
has the flexibility of optimizing a certain metric, e.g., BicliqueMatch5 is obtained
using a parameter setting favoring the recall.

578 A.S. Muhammad et al.

To conclude, supported by the best scores for all ROUGE settings for preci-
sion, F1, and F2 on the Opinosis dataset, our biclique method should be a good
addition to the existing multi-document summarization systems, and it is par-
ticularly well suited to summarizing short independent texts like user reviews.
With all its strengths, the method should also be appealing because of its sim-
plicity and good time complexity. However, it is not expected to perform equally
well on datasets of more complex texts which are not in the focus of our study.

7 Conclusions

We have proposed a novel method for extractive multi-document summarization,
and showed with empirical results that it outperforms state-of-the-art summa-
rization systems. Our method is based on the detection of bicliques in a bipar-
tite graph of sentences and their words. To keep it simple and to highlight the
strength of the main idea, we have evaluated only a basic version of the method
which is already better than existing top-performing systems. The technique is
also flexible as it can be easily adapted for a higher recall, a higher precision,
or a balance between the two metrics. Considering the time efficiency, our pro-
posed biclique algorithm offers, for standard similarity measures, the possibility
of subquadratic running time, as opposed to the at least quadratic running time
of the baseline sentence removal method.

We believe that more elaborate versions making use of deep similarity mea-
sures and combining with ideas from other methods, such as MEAD, can further
enhance the performance. A natural extension of the preprocessing would be to
cluster semantically related words (synonyms, etc.) and to replace the words from
each cluster with one representative. As mentioned in Sect. 6.2 we use stopwords
from ROUGE that also include negations. As the method does not rely on the
meaning of words this is not an issue, still one could study the effect of different
stopword lists.

Acknowledgments. This work has been supported by Grant IIS11-0089 from the
Swedish Foundation for Strategic Research (SSF), for the project “Data-driven secure
business intelligence”. We thank our former master’s students Emma Bogren and Johan
Toft for drawing our attention to similarity joins, and the members of our Algorithms
group and collaborators at the companies Recorded Future and Findwise for many
discussions.

References

1. Alexe, G., Alexe, S., Crama, Y., Foldes, S., Hammer, P.L., Simeone, B.: Consensus
algorithms for the generation of all maximal bicliques. Discr. Appl. Math. 145,
11–21 (2004)

2. Arasu, A., Ganti, V., Kaushik, R.: Efficient exact set-similarity joins. In: Dayal,
U. et al. (eds.) VLDB 2006, pp. 918–929, ACM (2006)

Summarizing Online User Reviews Using Bicliques 579

3. Bogren, E., Toft, J.: Finding top-k similar document pairs - speeding up a multi-
document summarization approach. Master’s thesis, Department of Computer Sci-
ence and Engineering, Chalmers, Göteborg (2014)

4. Bonzanini, M., Martinez-Alvarez, M., Roelleke, T.: Extractive summarisation via
sentence removal: condensing relevant sentences into a short summary. In: Jones,
G.J.F. et al. (eds.) SIGIR 2013, pp. 893–896, ACM (2013)

5. Damaschke, P.: Finding and enumerating large intersections. Theor. Comp. Sci.
580, 75–82 (2015)

6. Dias, V.M.F., de Figueiredo, C.M.H., Szwarcfiter, J.L.: On the generation of
bicliques of a graph. Discr. Appl. Math. 155, 1826–1832 (2007)

7. Elsayed, T., Lin, J., Oard, D.W.: Pairwise document similarity in large collections
with MapReduce. In: ACL 2008: HLT, Short Papers (Companion Volume), pp.
265–268, Association for Computational Linguistics (2008)

8. Ganesan, K., Zhai, C., Han, J.: Opinosis: a graph based approach to abstractive
summarization of highly redundant opinions. In: Huang, C.R., Jurafsky, D. (eds.)
COLING 2010, pp. 340–348, Tsinghua University Press (2010)

9. Gely, A., Nourine, L., Sadi, B.: Enumeration aspects of maximal cliques and
bicliques. Discr. Appl. Math. 157, 1447–1459 (2009)

10. Li, W.: Random texts exhibit Zipf’s-law-like word frequency distribution. IEEE
Trans. Inf. Theor. 38, 1842–1845 (1992)

11. Li, J., Liu, G., Li, H., Wong, L.: Maximal biclique subgraphs and closed pattern
pairs of the adjacency matrix: a one-to-one correspondence and mining algorithms.
IEEE Trans. Knowl. Data Eng. 19, 1625–1637 (2007)

12. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Moens,
M.F., Szpakowicz (eds.) ACL Workshop “Text Summarization Branches Out”, pp.
74–81 (2004)

13. Lin, H., Bilmes, J.A.: A class of submodular functions for document summarization.
In: Lin, D., Matsumoto, Y., Mihalcea, R. (eds.) ACL 2011, pp. 510–520, Association
for Computational Linguistics (2011)

14. Luhn, H.P.: The automatic creation of literature abstracts. IBM J. 2, 159–165
(1958)

15. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-
ing. MIT Press, Cambridge (1999)

16. Nenkova, A., McKeown, K.: A survey of text summarization techniques. In: Aggar-
wal, C.C., Zhai, C. (eds.) Mining Text Data, pp. 43–76. Springer, Berlin (2012)

17. Porter, M.F.: An algorithm for suffix stripping. Program 14, 130–137 (1980)
18. Radev, D.R., Allison, T., Blair-Goldensohn, S., Blitzer, J., Celebi, A., Dimitrov,

S., Drábek, E., Hakim, A., Lam, W., Liu, D., Otterbacher, J., Qi, H., Saggion, H.,
Teufel, S., Topper, M., Winkel, A., Zhang, Z.: MEAD - a platform for multidocu-
ment multilingual text summarization. In: LREC(2004)

19. Wang, D., Zhu, S., Li, T.: SumView: a web-based engine for summarizing product
reviews and customer opinions. Expert Syst. Appl. 40, 27–33 (2013)

20. Xiao, C., Wang, W., Lin, X. Haichuan Shang, H.: Top-k set similarity joins. In:
Ioannidis, Y.E., Lee, D.L., Ng, R.T. (eds.) ICDE 2009, pp. 916–927, IEEE (2009)

Post-processing Association Rules: A Network
Based Label Propagation Approach

Renan de Padua1(B), Veronica Oliveira de Carvalho2,
and Solange Oliveira Rezende1

1 Instituto de Ciências Matemáticas e de Computação,
USP - Universidade de São Paulo, São Carlos, Brazil

{padua,solange}@icmc.usp.br
2 Instituto de Geociências e Ciências Exatas,

UNESP - Univerdidade Estadual Paulista, Rio Claro, Brazil
veronica@rc.unesp.br

Abstract. Association rules are widely used to find relations among
items in a given database. However, the amount of generated rules is too
large to be manually explored. Traditionally, this task is done by post-
processing approaches that explore and direct the user to the interesting
rules. Recently, the user’s knowledge has been considered to post-process
the rules, directing the exploration to the knowledge he considers inter-
esting. However, sometimes the user wants to explore the rule set with-
out adding his prior knowledge BIAS, exploring the rule set according
to its features. Aiming to solve this problem, this paper presents an app-
roach, named PARLP (Post-processing Association Rules using Label
Propagation), that explores the entire rule set, suggesting rules to be
classified by the user as “Interesting” or “Non-Interesting”. In this way,
the user is directed to analyze the rules that have some importance on
the rule set, so the user does not need to explore the entire rule set.
Moreover, the user’s classification is propagated to all the rules using
label propagation approaches, so the most similar rules will likely be on
the same class. The results show that the PARLP succeeds to direct the
exploration to a set of rules considered interesting, reducing the amount
of association rules to be explored.

1 Introduction

Association is widely used in data mining due its simplicity and comprehensibil-
ity. This task aims to extract the correlations among items in a given database
[1]. However, a large number of rules can be generated even on small data sets.
Therefore, the manual exploration of the rules to find interesting patterns is
unfeasible. Generally, the number of interesting rules is very small compared to
the total number of patterns and, in most of the times, the user must search
many rules to find the rules that are considered interesting to him/her.

Some research has been done to direct the users on the exploration and help
them finding the interesting rules. Some authors propose the use of networks to

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 580–591, 2016.
DOI: 10.1007/978-3-662-49192-8 47

Post-processing Association Rules 581

direct the user’s exploration, as [6,10]. Networks are well known on the literature
by its capability to model data, preserving the connection among the items on the
data set. The networks are used as a mean to facilitate the rules’ exploration,
modeling it and pruning the rules that are not interesting to the user. The
problem of these approaches is that the user must inform, beforehand, what he
considers interesting, forcing him to have the knowledge apriori.

Based on the exposed, this paper presents a subjective post-processing app-
roach, named PARLP , that interacts with the user to extract his knowledge
according to the importance of the association rules on the rule set. This inter-
action is iterative made during the exploration, suggesting rules that are con-
sidered most relevant according to some network measures. The approach can
be divided into 4 steps: (1) the most important rules, according to a network
measure, are discovered; (2) user assigns labels to the extracted rules; (3) label
propagation is performed to obtain the interesting rules according to the user
classification; (4) the user decides if the approach needs to execute again or finish
the processing. The approach is based on the idea of using classification algo-
rithms to post-processes association rules, as proposed by [2,7], learning with
the prior interactions.

On the second iteration, the user interaction is made considering only the
rules that are classified as “Interesting” by the approach. Networks are well
known to model relationships among data set objects, extract properties about
the importance of the objects and patterns of the data set [5]. This peculiarity
allows extracting important rules for labeling and also allows propagating the
labels to classify other rules. After the user interaction classifying rules, the
current labels are propagated to all the other rules using a label propagation
algorithm. The classification algorithm, used in this work, takes as input a data
set containing a huge amount of unlabeled data and a small amount of labeled
data and propagates the labels to all the data, classifying the entire data set.
The PARLP uses these characteristics to propagate the user’s knowledge to the
entire rule set.

In summary, the main contribution of this paper is a new post-processing
approach that helps the user to find the most relevant rules according to his
knowledge and the rule’s importance in the rule set. The user interaction is
made in a way that he does not need to have a prior knowledge on the data
set, suggesting a few rules to be classified by him based on the rule’s relevance
in the network. By doing so, the approach excludes the necessity to have all
the knowledge beforehand, making the classification process easier based on
only a few rules, not considering the entire rule set. Besides, this paper also
shows that post-processing association rules using label propagation is effective
to find the interesting rules according to user’s knowledge. This paper presents
an experimental evaluation to demonstrate that PARLP is capable of finding
the rules that the user considers as interesting. The experiments also show that
the proposed approach can reduce the amount of rules to be explored by the
user to find those interesting rules.

582 R. de Padua et al.

This paper is organized as follows. Section 2 describes related research and
basic concepts. Section 3 presents the PARLP and its motivation. Section 4
describes the experiments that were carried out to analyze the approach.
Section 5 discusses the results obtained in the experiments. Finally, conclusion
and future works are given in Sect. 6.

2 Background and Related Works

The transductive post-processing approach, proposed in [7] and extended in this
paper, comes up with a different way to explore the rules. The approach, named
PARLP , models the association rules into networks. This modeling allows the
approach to explore the rules according to their importance on the network,
selecting the rules to be classified by the user, directing the user’s effort. The
approach uses label propagation to find the interesting rules based on the users’
classification. The label propagation was chosen considering that if a rule is
interesting, the rules similar to it are also interesting.

A network can be characterized by a set of elements and the relations among
them. Formally, a network can be represented by N = (V,E,W) where V is the
set of vertices (elements), E the set of links between the vertices and W the
weight of the links [5]. When all the vertices represent the same kind of object,
only web sites, for example, the network is called homogeneous network. On the
other hand, when the representation of different kinds of objects is considered,
like persons and communities in a social network, the network is called hetero-
geneous network. Besides, there is a variation of the conventional network called
bipartite network. The bipartite networks have two different kinds of vertices:
groupers (G) and items (H). The groupers can only connect to items vertices and
the items can only connect to groupers vertices. The groupers vertices allow the
propagation of information among the items vertices. Those different represen-
tations allow a large variety of exploration. One example of a bipartite network
is the connection among documents (groupers) and terms (items).

One way to classify all vertices of a network considering user’s knowledge
is through label propagation. Label propagation algorithms classify a data set
based on few classified examples (the training set is composed of labeled and
unlabeled instances). The classification is made based on a similarity measure.
The elements that are considered similar are classified on the same class whereas
the elements that are not considered similar are classified on different classes [13].

In this paper, we use two network types to apply label propagation: homoge-
neous and heterogeneous. The homogeneous networks are building using similar-
ity measures to connect the rules. The bipartite network considers an objective
measure to connect the items to the groupers vertices. To propagate the labels
two algorithms were used per network type: Learning with Local and Global Con-
sistency (LLGC) and Gaussian Fields and Harmonic Function (GFHF) for the
homogeneous networks and Label Propagation using Bipartite Heterogeneous
Network (LPBHN) and GNetMine for the bipartite networks. The propagation
is made in a way to minimize a regularization function.

Post-processing Association Rules 583

The LLGC and GFHF algorithms used to classify the homogeneous networks,
were selected because of their great results obtained on the literature. The GFHF
algorithm [12] considers the labeled elements as unchanging truth and propagates
the class without the need of a parameter. The LLGC algorithm [11] considers
that a labeled element can change its labels based on its neighbors. The LLGC
algorithm needs the definition of a learning rate parameter α.

The GNetMine and LPBHN used to classify the bipartite heterogeneous net-
works, were also selected of their results obtained on the literature. The LPBHN
algorithm [9] works in the same way the GFHF does. It considers the element’s
labels as unchanging truth and propagates these labels without the need of a
parameter. The GNetMine [4] works in the same the LLGC does. It can change
the original label based on its neighbors and need the definition of a learning
rate parameter alpha. The algorithms’ functions can be seen on their respective
papers.

[6] proposed an approach that uses networks as a mean to post-process asso-
ciation rules. In their work, the authors force the user to select an item (let’s
call it objective item) to be the main objective of the exploration. After the
selection, a directed hypergraph is constructed considering the objective item as
the consequent of the rules and the antecedents are modeled, constructing the
level 1. The level 2 considers the antecedents of all the rules modeled on the level
1 as consequent and repeat the process. The hypergraph is constructed until all
the items are modeled or the maximum level is reached (informed by the user).
Using that hypergraph, all the rules modeled according to an objective item and
the user can see how the items interact with the selected item. This approach
forces the user to explore only one item per time and, yet, the user must know
beforehand which item he/she wants to study.

3 PARLP : Post-processing Association Rules Using
Label Propagation

The main concept behind the PARLP is that if the user considers a rule Rx as
interesting, then the rules similar to it will also be interesting to be explored. The
same goes to the case that the user finds a rule Ry not interesting, considering
the similar rules also as not interesting. Figure 1 shows how the exploration is
made. Consider “1” and “2” as the rules to be found. On (a) user selects “2”
as interesting and “5” as not interesting. This classification is made aided by
the proposed approach. On (b) the label propagation is done, considering the
squares as not interesting and circles as interesting. Note that, after applying the
classification algorithm, the interesting rules (“1” and “2”, plus “3”) are classified
as interesting and will be presented to the user. In this case, the reduction of
the exploration space is 50 % (the user only needs to explore 50 % of the existing
rules).

The PARLP works as shown in Fig. 2. The input of the approach is a rule
set, containing the rules to be explored. The approach starts on step 1, mod-
eling the association rules in a network. To do so, it’s necessary to define the

584 R. de Padua et al.

Fig. 1. The PARLP concept

network type [NT] and the similarity measure [S] to be used. The network type
defines the network structure, i.e., homogeneous or heterogeneous networks. In
case of homogeneous networks, the user also needs to define a way to link the
rules considering their similarity, such as connecting a rule with their K-Nearest
Neighbors or connect all rules through an RBF kernel [3]. The similarity mea-
sure [S], like hoJaccard (Eq. 2) and hoConfidence (Eq. 3), is used to calculate
the similarity between two rules, setting the weight of their connections. In the
beginning, the modeled association rules have no defined class, containing only
the rules and the connections among them.

Fig. 2. The PARLP approach

In step 2, the PARLP interacts with the user, aiming to classify a few rules
that will be used on the label propagation process to discover other interesting
and non-interesting rules. This interaction aims to capture the user’s knowledge
and direct the exploration to the rules he considers “Interesting”. To do so, a
ranking is created to select the best rules according to a centrality measure [NM].
On the bipartite networks, a projection on a homogeneous network was created
to apply the [NM]. This project was based on the bibliographic coupling concept
[5]. The approach selects the N best rules and the N worst rules to be classified
by the user; that way, the selected rules are not in the same dense point in the
network. The number of selected rules is defined by the parameter rules/iteration
[NR], where NR = N + N (N-best rules and N worst rules). In this experiment,
the [NR] was set to 10 to all the configurations. This number was selected so
the user can evaluate just a small amount of rules and the classifiers still have
a satisfactory amount of classified elements. The selected rules are shown to the

Post-processing Association Rules 585

user to be classified in 2 different classes: “Interesting” and “Non-Interesting”.
The “Interesting” class contains the rules considered as interesting and will be
explored by the user when the approach finishes. On the first iteration, the entire
rule set will be explored to make the ranking. From the second iteration, only
the rules classified as “Interesting” are considered to make the ranking. Since the
ranking is created to suggest rules to be classified by the user, the rules already
classified by the user are not considered on the ranking.

In step 3, the unlabeled association rules are classified using a network based
label propagation algorithm. It is important to distinguish the classifications
made by the user from the ones made by the classifier: the user’s classifications
can not be changed, i.e., over the iterations these classifications will be main-
tained by the approach and used in the training set over all the iterations; on
the other hand, the classifier’s classifications can change over the iterations. The
change on the rules classified by the label propagation algorithm is made so the
approach can refine the results, adapting to the new knowledge informed by the
user.

On the last step, a stopping criterion is checked to decide if the approach
will finish or will execute again. If it’s decided to continue, the rules classified by
the label propagation algorithm will be explored again from Step 2, considering
only the ones classified as “Interesting” to create the ranking. However, all the
rules are considered on the label propagation phase. The process continues until
the stopping criterion is met. In the end, the rules considered as “Interesting”,
either by the classification algorithm and by the user, are outputted to the user.

4 Experiments

The experiments were carried out with 2 different objectives: validate the app-
roach and find the best configurations. The evaluation measure is the exploration
space reduction, i.e., the percentage of rules that doesnt need to be explored in
order to find all the interesting rules. High values of exploration space reduction
means that the user needs to explore fewer rules to find the ones he is looking for;
if the reduction space is 60 % for example, the user needs to explore only 40 %
of the entire rule set. Both the approach validation and the analysis of the best
configurations were performed on the exploration space reduction. The analysis
is made considering a small set of rules, called “objective set”. This objective set
contains the rules to be found on the exploration, simulating the user’s interests.

The approach was analyzed on 8 data sets (balance-scale, breast-cancer, car,
ecoli, habermann, iris, tic-tac-toe and zoo), all of them available on UCI1. These
data sets were processed and converted to transactions. The transactions with
missing values were removed. The support and confidence values were empirically
defined to generate an amount of rules between 1.000 and 2.000. This number
of rules was selected to obtain a good trade-off between exploration space (the
higher the better) and the number of rules on the objective set (explained below).

1 http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/

586 R. de Padua et al.

Two different kinds of networks were selected to carry out the experiments:
homogeneous and bipartite heterogeneous. The homogeneous network allows an
exploration based on the similarity among the rules. The bipartite network allows
an exploration based on the items shared by the rules and based on the rules
shared by the items. Therefore, the homogeneous network have three different
network types [NT]: kNN, in which a rule is linked to its K most similar rules;
Gaussian, that changes the weight among the connections by applying the weight
to a gaussian function; Conventional, that makes no change on the generated
network, maintaining all the original connections and weights. No modifiers were
used on the bipartite heterogeneous network.

The number of rules per iteration [NR] on both networks were set to 10 (5
best + 5 worst rules per iteration) aiming to reduce the number of rules to
be classified by the user without losing performance on the label propagation
algorithms. The centralities measures [NM], used to create rankings on both
homogeneous and bipartite heterogeneous, and were: degree, which analyses the
rule’s importance based on its connections to its neighbor; PageRank [8] that
measures the rule’s importance based on the entire network connections.

To generate the homogeneous networks, the similarities [S] were used: hoJac-
card (Eq. 2, that uses as base Eq. 1) that calculates the similarity between two
rules based on the items they share, considering the rule’s antecedent and con-
sequent separately; hoConfidence (Eq. 3) that calculates the similarity between
two rules based on the transactions they share. The confidence was adapted here
to work as a similarity measure because of it can calculate how the occurrence
of a rule items can contribute to the occurrence of the items on the other rules.
In Eqs. 1, 2 and 3, RLx represents the x-est rule on the rule set, LHS(RLx)
and RHS(RLx) represent the RLx antecedent and consequent, respectively,
#(T (RLx)) represents the number of transaction that contains the rule RLx.
To classify the homogeneous networks the GFHF and LLGC classification algo-
rithms were used. These algorithms were selected due to their great results
obtained on the literature.

Jacc(RL1, RL2) =
RL1 ∩ RL2

RL1 ∪ RL2
(1)

hoJaccard(RL1, RL2) =
Jacc(LHS(RL1), LHS(RL2)) + Jacc(RHS(RL1), RHS(RL2))

2
(2)

hoConfidence(RL1, RL2) =
#(T (RL1) ∪ T (RL2))

#T (RL1)
(3)

The bipartite heterogeneous network was modeled so the weight among the
connections between items and their respective rules was an objective measure.
Two similarity measures [S] were selected: bipartiteJaccard (Eq. 4) that calcu-
lates the amount of transactions shared by the rule’s LHS and RHS and the tra-
ditional confidence measure. The bipartiteJaccard uses the transactions, instead
of the items, so it can get the similarity among the items that are on the LHS

Post-processing Association Rules 587

and the item on the RHS of the rule. The connection among two different rules
was made by the items they share, where the item is a connection point that con-
nects two rules with two different weights. In equation, LHS(RL1) returns the
rule’s left-hand side, RHS(RL1) return the rule’s right-hand side and #T (RLX)
returns the number of transactions that contains the items on RLX . To classify
the bipartite heterogeneous networks the LPBHN and GNetMine algorithms
were used. The GNetMine have the same classification bias as LLGC. Also, the
LPBHN have the same bias as GFHF. This allows us to make a fair comparison
and analysis to which network type provides a better space reduction.

bipartiteJaccard(RL1) =
#T (LHS(RL1)) ∩ #T (RHS(RL1))
#T (LHS(RL1)) ∪ #T (RHS(RL1))

(4)

In this paper, the user’s classification, Step 2 in Fig. 2, was simulated using
a set of rules as an objective set. These objective sets are the set of rules to
be found on the rule set, simulating the user’s interests. Two different groups of
objective sets were generated to simulate different types of users. The first group
is the random objective set. This set is generated by randomly selecting a total
of 1 % of the rule set size. The other group consisted on randomly selecting one
rule in the rule set and creating a similarity ranking among the selected rule and
the entire rule set. The ranking is used to select 1 % of the most similar rules to
be added into the objective set. The similarity used to calculate the objective set
was Jaccard (Eq. 1), that calculates the number of items the rules share divided
by the number of distinct items. It is important to emphasize that this measure
was not directly used to generate the networks. Because the objective sets were
randomly generated, 30 sets were created using each approach. So, for each rule
set and each PARLP configuration, the experiments were executed considering
the two groups of user’s interests simulation. The random objective set (first
group) simulates the users that have a more widely interest on the rule set,
with the interesting rules spread across the network. The similarity objective set
(second group) simulates the users that have a more specific interest on the rule
set.

Based on the objective sets, the user’s classification is simulated considering
a threshold to be calculated on the first iteration. This threshold is the mean
similarity among the rules to be classified by the user and the rules on the
objective set, based on the closest similarity of each rule, i.e., for each rule to
be classified by the user, the highest similarity is considered to all rules on the
objective set. The threshold can be seen in Eq. 5, where ruleObj is the set of
rules on the objective set, ruleCl is the set of rules to be classified by the user on
the current iteration and nCl is the number of rules to be classified by the user
(equals N + N as previously explained). Therefore, in each iteration, the mean
similarity among the rules to be classified and the objective set is calculated
and compared to the threshold, labeling the rule as “Interesting” if the mean
similarity is greater than or equal to the threshold or “Non-Interesting” if the
similarity is smaller.

588 R. de Padua et al.

Threshold =
1

nCl

nCl∑

i=1

max(similarity(ruleCli, ruleObj)) (5)

Finally, regarding the stopping criteria, the approach was executed until all
the rules on an objective set were classified as “Interesting” either by the user
or by the classifier. The experiments were carried out and an analysis was made,
aiming to find all the rules on each objective set and looking for the reduction
on the exploration space, remembering that the greater the reduction the better
the result. In the end, a mean reduction was calculated to each PARLP config-
uration (Table 1) and each objective set configuration (random and similarity).
Therefore, the results shown in the next section are the mean of 30 executions
considering each kind of objective set individually, for each PARLP configura-
tion.

Table 1. PARLP configurations

Network Network type [NT] Network Similarity [S] Classifier
measure
[NM]

Homogeneous Knn (K = 10, 20, 30,

40, 50); Gaussian (σ

= 0.25, 0.50, 0.75);

conventional

Output

degree;

PageRank

hoJaccard;

hoConfidence

LLGC (α = 0.1,

0.3, 0.5, 0.7,

0.9); GFHF

Bipartite hetero-

geneous

Conventional Output

degree;

PageRank

bipartideJaccard;

confidence

GNetMine (α =

0.1, 0.3, 0.5,

0.7, 0.9);

LPBHN

5 Results and Discussion

The experiments were carried out on each data set using all the described
PARLP configurations (Table 1). For each configuration, the PARLP approach
was applied over all the 60 objective sets to test two different strategies of simu-
lating the user’s interests: one containing scattered rules, for users that want to
explore the rule set without looking for a specific “theme”, and one containing
more similar rules, for users that have a specific area of interest. The results
were analyzed considering the mean of the 30 executions on each PARLP con-
figuration and each group of objective sets, which means that each PARLP

configuration has 2 different results: one for the randomly generated objective
sets and one for the objective sets generated based on the similarity.

Table 2 shows the best and the worst results obtained on each data set. The
first column presents the data set used to generate the rules. The second column
shows the best result obtained using the random objective sets. The third column
shows the worst result obtained using the random objective sets. The fourth
and fifth columns show, respectively, the best and worst results obtained using
the similarity objective sets. Remember that the experiments were analyzed

Post-processing Association Rules 589

based on the exploration space reduction, which means that the values on these
columns represent the percentage of rules that the user doesn’t need to explore.
For example, a 60 % exploration space reduction means that the user needs to
explore only 40 % of the rules to find all the interesting ones.

The results show that the objective sets generated by the similarity strategy
obtained better results in comparison to the random objective sets. These results
can show that an exploration guided by some “theme” or by some related topics
will result in a higher reduction than an exploration where the user explores by
selecting dissimilar rules as “Interesting”. These better results occurred because
of the label propagation algorithms, used to classify the rules, since these algo-
rithms put similar knowledge on the same class and dissimilar knowledge on
different classes. By simulating the user’s classification and selecting dissimilar
rules as “Interesting” the label propagation algorithms classify different parts of
the network as “Interesting”, increasing the number of rules that are considered
“Interesting” in comparison to the objective sets that classify only one point on
the network. Also, the best reduction was 66.49 %, which means that the user
will only have to explore about 1

3 of the entire rule set. The table also shows a
variation among the data sets, which means that the domain can contribute to
the exploration. The best data set (iris) reduced almost 50 % more in comparison
to the worst data set (breast-cancer).

As seen, Table 2 doesn’t link the results to the PARLP configurations, since
the analysis performed were based on the overall quality of the results. There-
fore, a second analysis was performed aiming to find the best PARLP configu-
rations on the rule sets. Initially, all the results (considering all the 8 data sets,
PARLP configurations and both objectives sets strategies) were divided into
20 groups considering network, network type [NT] and classifier. From these
20 groups, the 2 best results of each group were selected through a statistical
test, coming up with 40 PARLP configurations. After that, another statisti-
cal test was done, based on these 40 PARLP configurations, through Friedman
N ×N with Nemenyi as post-test, selecting the 20 best configurations. Figure 3
shows the results of the final statistical analysis. The horizontal lines show that
the PARLP configurations have no statistical difference. The configurations are
described using the following pattern: network type [NT] - network parameter

Table 2. Best and worst exploration space reductions obtained on each data set

Data set # Gen. Rules Best Rd Worst Rd Best Sim Worst Sim

balance-scale 1746 40.66% 4.81% 63.69% 29.50%

breast-cancer 1602 19.98% 5.37% 42.45% 4.56%

car 1326 15.91% 4.68% 52.64% 22.17%

ecoli 1685 28.66% 4.87% 51.57% 21.01%

habermann 1006 46.12% 9.15% 58.45% 29.72%

iris 967 51.71% 10.13% 66.49% 39.50%

tic-tac-toe 1317 37.05% 4.02% 61.88% 16.02%

zoo 1658 30.88% 4.40% 46.38% 17.13%

590 R. de Padua et al.

(when applied) - classifier - classifier parameter (when applied) - similarity mea-
sure [S] - rank measure [NM]. The first configuration, for example, is kNN, with
k = 50, using the GFHF classifier, hoJaccard as a similarity measure and PageR-
ank as the ranking measure. It is possible to see that the kNN network, together
with the GFHF classifier, obtained the overall best results, being on 9 out of 10
best results.

Fig. 3. The statistical analysis results

6 Conclusion

This paper proposed the PARLP , an iterative and interactive post-processing
association rules approach that uses networks and label propagation algorithms
to extract interesting and non-interesting rules according to user’s knowledge.
The paper presented the PARLP structure and carried out some experiments
using a set of configurations and a user classification simulation. The obtained
results were shown and discussed according to the total reduction on the explo-
ration space, i.e., the number of rules not to be exploited by the user.

The results show that the PARLP is capable of finding a set of rules accord-
ing to the interactions made during the process, meaning that the PARLP can
be used successfully to direct the exploration of the rules according to the inter-
actions made with the algorithm, reducing the amount of rules to be explored
and directing the exploration to the rules chosen by the user interaction. This
reduction can be increased when the rules to be found by the user are more
similar, or share the same “theme”. Even on the random objective sets, that
contain more widespread rules, the obtained reductions were satisfactory. Also,
the analysis on the 20 best configurations shows that the kNN network, together
with GFHF classifier, are the most promising configuration.

As future works a further analysis on the way the rules sets are modeled
will be done aiming to find the characteristics that result on greater exploration
space reduction. This analysis will be carried out aiming to discover beforehand
which similarity measure to be used according to the rule set features. Also, the
algorithms complexity will be reduced. The actual configuration is expensive e
can not be used on larger rule sets. To solve the “theme” guided exploration,
the proposed approach will be extended to consider different user’s interests.

Post-processing Association Rules 591

Acknowledgments. We would like to thank CAPES (PROEX-8434242/D) and
FAPESP: Grant 2014/08996-0, São Paulo Research Foundation (FAPESP) for the
financial aid.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of
items in large databases. In: ACM SIGMOD (1993)

2. de Carvalho, V.O., de Padua, R., Rezende, S.O.: Semi-supervised learning to sup-
port the exploration of association rules. In: Bellatreche, L., Mohania, M.K. (eds.)
DaWaK 2014. LNCS, vol. 8646, pp. 452–464. Springer, Heidelberg (2014)

3. de Sousa, C.A.R., Rezende, S.O., Batista, G.E.A.P.A.: Influence of graph con-
struction on semi-supervised learning. In: Blockeel, H., Kersting, K., Nijssen, S.,
Železný, F. (eds.) ECML PKDD 2013, Part III. LNCS, vol. 8190, pp. 160–175.
Springer, Heidelberg (2013)

4. Ji, M., Sun, Y., Danilevsky, M., Han, J., Gao, J.: Graph regularized transductive
classification on heterogeneous information networks. In: Balcázar, J.L., Bonchi,
F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part I. LNCS, vol. 6321, pp.
570–586. Springer, Heidelberg (2010)

5. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford
(2010)

6. Pandey, G., Chawla, S., Poon, S., Arunasalam, B., Davis, J.G.: Association rules
network: definition and applications. Stat. Anal. Data Min. 1, 260–279 (2009)

7. Padua, R., Carvalho, V.O., Rezende, S.O.: Post-processing association rules using
networks and transductive learning. In: 13th ICMLA, pp. 318–323 (2014)

8. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
bringing order to the web. Techical report, Stanford InfoLab (1999)

9. Rossi, R.G., Lopes, A.A., Rezende, S.O.: A prameter-free label propagation algo-
rithm using bipartite heterogeneous networks for text classification. In: ACM SAC,
pp. 79–84 (2009)

10. Yang, G., Shimada, K., Maby, S., Hirasawa, K., Hu, J.: A genetic network program-
ming based method to mine generalized association rules with ontology. JACIII
12, 63–76 (2007)

11. Zhou, D., Bousquet, O., Navin Lal, T., Weston, J., Schölkopf, B.: Learning with
local and global consistency. NIPS 16, 321–328 (2004)

12. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian
fields and harmonic functions. In: ICML, pp. 912–919 (2003)

13. Zhu, X., Goldberg, A.B.: Introduction to Semi-Supervised Learning, vol. 6. Morgan
& Claypool Publishers, San Rafael (2009)

Application of Multiple Sound Representations
in Multipitch Estimation Using Shift-Invariant

Probabilistic Latent Component Analysis

Krzysztof Rychlicki-Kicior(B), Bart�lomiej Stasiak, and Mykhaylo Yatsymirskyy

Institute of Information Technology, Technical University of �Lódź,
Ul. Wólczańska 215, 90-924 �Lódź, Poland

krzysztof.rychlicki-kicior@dokt.p.lodz.pl,

{bartlomiej.stasiak,mykhaylo.yatsymirskyy}@p.lodz.pl
http://it.p.lodz.pl

Abstract. Probabilistic analysis has become one of the most impor-
tant directions for development of new methods in Music Information
Retrieval (MIR) field. Its ability to correctly find necessary informa-
tion in the music audio recordings is especially useful in multipitch esti-
mation, a vital task belonging to the MIR field. Since the multipitch
estimation is still far from being resolved, it is important to enhance
the existing state-of-the-art methods. Usually, a spectrogram, generated
from the Constant-Q transform (CQT) is used as a basis for the SI-
PLCA method. The new approach involves application of more than one
method (cepstrum and CQT) in association of the shift-invariant proba-
bilistic latent component analysis approach and additional processing of
all the sound representations, in order to achieve better results.

Keywords: MIR · Fundamental frequency estimation · Multi F0 ·
Multipitch · Polyphony · PLCA

1 Introduction

Multiple fundamental frequency (multi-F0) estimation is a low-level task defined
within the Music Information Retrieval (MIR) field. It forms a foundation for
more complex and high-level problems, such as Audio Chord Estimation, Audio
Melody Extraction or Real-time Audio to Score Alignment [1]. This task should
not be confused with simpler problem of recognizing only one fundamental fre-
quency, which also has numerous practical applications, i.a. in pitch tracking
for query-by-humming search interface [2] or in speech emotion recognition [4].
More similar, yet distinct task is melody extraction from polyphonic music sig-
nal. Although many different pitches can be detected there, mostly the main,
the strongest pitches constituting a melody are carefully analysed [5].

It is very important to note the distinction between a fundamental frequency
and a pitch. The F0 of a signal is its physical property, independent on the
observer. If we treat a signal as a sum of sinusoidals (and this is valid for most of
c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 592–601, 2016.
DOI: 10.1007/978-3-662-49192-8 48

Application of Multiple Sound Representations in Multipitch Estimation 593

musical sounds), then F0 is the lowest frequency that appears in this sum. The
pitch of a sound, on the other hand, is a quality perceived by the observer. It
is often described as a frequency of a sinusoidal that a group of human listeners
would match with a given sound.

The main goal of the multipitch estimation is to detect correct pitches in a
signal generated by several independent, concurrent sound sources. The number
of the sources can be known (the algorithm usually assumes that it should find
a constant number of sources) or not. The latter problem is more complex and
involves an additional step called polyphony inference. This process is not con-
sidered in this work, because we assume the constant number of the sources [6].

One of the most important sources of information for multipitch estimation
algorithms is the frequency spectrum of a sound. Although the first idea could
be that the multipitch estimation should be simplified in order to find only the
biggest peaks in the spectrum, unfortunately, this is mostly untrue. This stems
from the fact that spectra of sounds generated by musical instruments are usually
very complex.

Complexity of such spectra is associated with the existence of harmonics –
the partials of a sound, which have frequencies defined by the following formula:

fi = (i + 1)f0 (1)

where fi represents the consecutive harmonics, i is the i-th partial number and
f0 is the fundamental frequency.
In this work we assume that the first harmonic is the fundamental frequency
(f0), the second harmonic is f1, and so on.

2 Known Approaches

Many approaches have been proposed to address the multipitch estimation prob-
lem. Basically, two aspects of solution should be considered: how should the
sound be represented in order to get the most valuable information and how to
analyse this information to achieve the best results.

The most popular representation of sound is its spectrum. Discrete Fourier
Transform (DFT) has been used since the beginning of the research on the
problem of the multipitch estimation [8], however, recently other spectral forms
are getting more and more popular, such as Multiresolution FFT (MRFFT) [9],
wavelets [1,3] and Constant-Q Transform, which is used in this work.

A very interesting extension to the concept of the spectrum is the salience,
which describes the power of each frequency component in the sound spectrum:

s(τ) =
M∑

m=1

g(τ,m)|Y (fτ,m)| (2)

where Y is a sound spectrum, fτ,m represents a certain frequency corresponding
to the given τ . g(τ,m) is a weight function that decreases meaning of further
partials. The exact form of this function depends on parameter values, which are

594 K. Rychlicki-Kicior et al.

a subject of optimization. M defines number of partials to be summed and τ in
the above equation represents lag and is directly related to frequency component:

τ =
fs

f
(3)

where fs represents a sample rate of the input signal and f is a given frequency.
Salience is much better representation of frequencies power, because it rep-

resents weighted sum of powers of all partials of given frequency. Unfortunately,
this approach often yields poor results, especially when one sound is louder than
others. It results in yielding not only the fundamental frequency of the louder
sound, but also its partial, whereas fundamental frequencies of other sounds are
often omitted [6].

Application of a certain sound transformation, in order to achieve appropriate
representation of the sound, is just the first part of the process. What happens
with the representation is even more important, because no matter what sound
representation is chosen, there are certain problems that might arise during their
analysis.

2.1 Methods of Sound Representation Analysis

Having chosen a sound representation(s), the analysis method must be chosen
in order to transform this representation into a set of fundamental frequencies.
Initially, two major algorithms for this task have been used: iterative cancellation
and joint estimation [6].

Iterative cancellation is a method, in which the strongest component in the
spectrum is found. After finding the strongest component, it is removed from the
spectrum, along with the components representing its harmonics. The procedure
is repeated until the assumed number of sound sources is found or until the
residue of the spectrum is smaller than a certain threshold. This is quite fast
approach; unfortunately, overlapping of the partials worsens results achieved
with this method. Overlapping happens when two independent sounds have one
or more common harmonics (for example 200 Hz sound and 300 Hz have common
harmonic 600 Hz). In the iterative approach, overlapping partials are usually
assigned only to one of the sounds and that makes it difficult to find others.

Joint estimation approach resolves this problem, since all possible combina-
tions of frequency candidates are analysed jointly – not sequentially. Each set of
candidates is removed from the original spectrum, and the winner set is the one
having the smallest residue after performing the removal. The computional com-
plexity is higher, especially when more complicated chords are analysed, but the
overall precision of this approach is better than the iterative cancellation [10].
This approach is analysed more in the following sections.

In the last few years, however, different methods have been chosen for the
sound analysis. Since the spectrogram (showing the changes of a spectrum in
time) contains only non-negative values, it can be analysed using non-negative
spectogram factorisation techniques, such as NMF (Non-negative Matrix Fac-
torization) [1] or SI-PLCA (Shift-invariant Probabilistic Latent Component

Application of Multiple Sound Representations in Multipitch Estimation 595

Analysis) [11]. The latter method has been used often lately, since its ability
to decompose spectrogram, treated as a bivariate probability distribution, to a
number of marginal distributions. Each marginal distribution may be treated as
a separate sound; moreover, the SI-PLCA method is able to show the presence
of the particular sound within the whole time, without additional operations
to be done. The SI-PLCA method is described more carefully in the following
sections.

3 Research Database

The database used in this research has been constructed using state-of-the-art
RWC Music Database: Musical Instrument Sound [7]. The RWC database con-
tains high quality recordings of many instruments. In this work, these recordings
have been preprocessed, in order to obtain single sounds and to associate fre-
quencies to them on the basis of the metadata attached to the RWC database.

Next, these sounds have been mixed with each other, in order to obtain
intervals. In this work, the database of around 1750 intervals and more compli-
cated chords has been established. Various instruments have been chosen, such
as piano, electric piano, flute, alto sax, viola, violin, trumpet. Large number of
intervals made it possible to check almost all possible combinations of instru-
ments.

The frequency range of the database is from 100 Hz to 1500 Hz. Therefore,
intervals from almost four octaves have been covered. It is very important to note
that often databases of simpler structure are proposed, e.g. where only intervals
of the same instruments are checked or where a smaller range of frequencies is
checked. Vast frequency range makes it difficult to recognize sounds, because one
of the biggest problem of multipitch estimation – octave errors – can happen a
lot more often. The octave error is a situation, in which a sound is recognized
as having a pitch n times bigger than it really has, that is, is mistaken for its
harmonic (partial). The difference between a sound and its following harmonic
(twice bigger frequency) is called an octave in music, hence the name.

4 Proposed Solution

The approach presented in this work consists of a few fundamental steps. At
first, the signal is divided into separate frames using the Hanning window func-
tion. Next, the constant-Q transform and cepstrum of each frame are calculated,
creating a spectrogram and a cepstrogram. Furthermore, both representations
are analysed using the shift-invariant probabilistic latent component analysis.
Each representations yields a set of frequency candidates, from which the spe-
cial algorithm, called the judge, selects the final result of the algorithm.

4.1 Constant-Q Transform

After a windowed frame of sound signal has been retrieved, it is transformed to
the frequency domain. Instead of the popular DFT, the Constant-Q Transform

596 K. Rychlicki-Kicior et al.

(CQT) has been applied. The CQT differs from the regular DFT, in that it
results in the spectrum in the logarithmic scale, i.e. frequency bins, which are
distributed linearly within the DFT, become distributed logarithmically within
the CQT. The frequency of the k-th CQT frequency bin is defined as:

Fk = Fmin2
k
n (4)

where Fmin is the lower bound of the frequency range, Fk is the frequency
centre of the k-th bin and n is the number of bins per octave. For any given
frequency, n is the number of bins that will cover the range in a spectrum
between frequencies f and 2f . This range (interval) in the musical terminology
is called an octave.

The Q from the CQT name is the Quality factor. It describes how accurately
the spectrum is described using the particular instance of the transform. It is
defined as a ratio of a center frequency of any bin to its width:

Q =
Fk

δFk
(5)

Of course the higher the Q is, the better the quality of the transform becomes.
In order to calculate the Constant-Q transform, certain parameters must be

defined. The frequency range has been set to (50, 4000) Hz, in order to be able
to find at least two harmonics of high frequency pitches. Classic piano keyboard
contains 12 keys within a one octave and often this is the default number of bins
per octave. However, in this work the number of bins per octave has been set to
48. This lengthens calculations, but gives much bigger precision. The sampling
frequency has been set to 44,100 Hz, because this was the sampling frequency of
the database sound files.

The importance of the CQT transform stems from the fact that, when com-
pared to the DFT, it gives much more information about the lower frequency
band of the analysed frequency range. This is associated with the bins in the
lower band being distributed much more tightly than in the upper band. Bet-
ter low-frequency resolution gives a possibility to detect spectral peaks more
precisely, which leads to obtaining better results of the multipitch estimation.
Therefore, this method is known to yields much better results than the regular
Discrete Fourier Transform (DFT).

4.2 Cepstrum

Cepstrum has been used for a long time in sound processing, however, it has
been mostly used for speech processing. For instance, Mel-Frequency Cepstral
Coefficients have become the state-of-the-art tool used for human voice pitch
recognition [4]. They are also useful in speaker identification.

Application of cepstrum in multipitch estimation may seem controversial at
first, however, as results show, it helps to achieve much better accuracy, than
in case of using just the Constant-Q Transform. This stems from the fact that
the regular Constant-Q Transform (and other purely spectral representation,

Application of Multiple Sound Representations in Multipitch Estimation 597

such as regular Discrete Fourier Transform or Multi-Resolution Fast Fourier
Transform) might be problematic when the frequency, which is a true pitch, is
not the strongest one. Cepstrum, which intuitively shows the rate of changes in
the spectrum (and is therefore called a spectrum of a spectrum) concentrates
on the existence of components with harmonics and relationship between them
rather than on certain, particular components.

Cepstrum usually yields little worse results than CQT in case of high-
frequency harmonics, due to less accuracy in those areas, therefore using both
methods and taking their advantages is important aspect of this research.

4.3 SI-PLCA

Each sound representation – a spectrogram and a cepstrogram – is processed
using the shift-invariant probabilistic latent component analysis method. It
has become one of the most important approaches in the Music Information
Retrieval, especially in multipitch estimation [11,12]. It might be used both
with preexisting knowledge (in this particular situation this means previously
obtained spectral templates of single musical notes) and without it. The general
idea, however, stays very similar, and in this research one of the unsupervised
approaches have been used [13].

The general idea behind the Shift-invariant Probabilistic Latent Component
Analysis is to decompose a distribution P (x) (x being the N -dimensional random
variable) to a certain number of N -dimensional latent distributions, defined by
their marginal distributions [12]:

P (x) =
∑

z

P (z)
N∏

j=1

P (xj | z) (6)

Marginals in this model are calculated using the Expectation-Maximization algo-
rithm. It is a simple model, however, it does not react well with shifted patterns,
therefore usually its modified version is used, which includes the shift invariance
assumption:

P (x) =
∑

z

(
P (z)

∫
P (w, τ | z)P (h − τ | z)dτ

)
(7)

This way the kernel distributions (P (w, τ | z)) and impulse distributions
(P (h − τ | z)) are obtained, where w and h are mutually exclusive subsets of
components and τ is a random variable [12]. In this research, kernel distributions
represent spectral templates of single notes (i.e. one kernel distribution should
contain all harmonics of a single sound), whereas impulse distribusions present
where these templates show up in the original spectrogram (or cepstrogram).

After obtaining marginal distributions from a single sound representation,
maximum values are retrieved and the frequency of these maxima are calculated.
Each marginal distribution contributes two candidate frequencies and since the
original representation is decomposed to two marginal distributions, each sound
representations contributes four candidate frequencies.

598 K. Rychlicki-Kicior et al.

Table 1. Percentage of correctly detected intervals by the type of interval (intervals
higher than an octave have been reduced to their equivalents within an octave)

Interval (semitones) Accuracy (%)

0 88.83

1 87.82

2 85.77

3 87.62

4 89.11

5 88.24

6 84.62

7 83.00

8 85.11

9 89.67

10 90.85

11 83.75

For each candidate frequency, its normalized power is calculated as a ratio of
candidate frequency (quefrency in case of cepstrum) magnitude to the maximum
magnitude in the marginal distribution where this particular candidate frequency
appeared.

4.4 The Judge

Having the eight frequencies with their calculated power, a decision must be made
which frequencies should be chosen as the final result of the algorithm. The part
of the whole approach responsible for merging all the input received from the SI-
PLCA method performed for both cepstrum and CQT is called the judge.

First of all, all similar candidates (i.e. those which differ by less than 6 %
from each other, 6 % being a distance of one semitone) are grouped as one
candidate. Their power is summed and their count is included (by default each
candidate frequency has count equal to one). Then, candidate frequencies are
sorted using the following criteria: multiplication of the count of candidates and
their summed power. The first candidates are chosen as a result of the algorithm
and are compared to the ground truth.

5 Results

Results have been obtained for polyphony from two up to four simultaneous
voices. Intervals (two sounds played at the same time) have been checked the
most carefully (with 1245 different intervals checked), since it is possible to
check different interesting dependencies, showing accuracy for different kinds of
intervals (Table 1) and for particular pairs of instruments (Table 2).

Application of Multiple Sound Representations in Multipitch Estimation 599

Table 2. Percentages of correctly detected intervals by pairs of instruments (examples)

Instrument #1 Instrument #2 Accuracy (%)

Violin Classic guitar 100.0

Horn Trumpet 80.56

Alto sax Horn 95.0

Trumpet Alto sax 95.45

Oboe Alto sax 83.33

Classic guitar Alto sax 96.15

Cello Horn 83.33

Oboe Oboe 54.54

Violin Electric piano 90.00

Electric piano Alto sax 100.00

Classic guitar Cello 96.67

Violin Violin 68.42

Horn Oboe 70.00

Cello Flute 100.00

Alto sax Flute 97.36

Flute Trumpet 88.64

Trumpet Cello 88.89

Violin Horn 92.10

Violin Piano 96.88

Horn Flute 71.88

Oboe Horn 88.89

Alto Sax Electric piano 93.75

Electric piano Trumpet 100.0

Flute Flute 86.84

Trumpet Horn 87.50

Oboe Cello 76.47

Flute Oboe 85.00

Electric piano Cello 100.00

Classic guitar Oboe 82.14

Trumpet Classic guitar 94.74

Flute Electric piano 92.86

Alto sax Oboe 88.10

Horn Cello 86.36

Alto sax Trumpet 92.86

Violin Alto sax 86.36

Electric piano Oboe 87.50

Classic guitar Trumpet 96.15

Violin Cello 83.33

Cello Trumpet 88.89

Trumpet Violin 83.33

Cello Oboe 100.00

Trumpet Piano 80.09

Oboe Piano 89.29

Flute Piano 100.00

Flute Violin 83.33

Classic guitar Electric piano 64.29

Oboe Classic guitar 86.36

Violin Oboe 79.55

600 K. Rychlicki-Kicior et al.

The accuracy is defined as the ratio of correctly recognized frequencies to
the total number of frequencies in all analysed sound samples. Since the algo-
rithm always returns chosen number of frequency candidates and there is always
assumed ground truth number of frequencies (two for intervals, three, and so
on), such as simple aforementioned ratio is enough to determine the quality of
the algorithm.

The accuracy for intervals has achieved 87 %, for three-sound chords – 81,5 %
(251 chords) and for four-sound chords – 75,2 % (255 chords). As the number of
sound sources rises, the multipitch estimation becomes more and more difficult,
therefore the decrease in the accuracy is absolutely expected. It is noticeable
that the difference in the accuracy in both cases achieves about 6–7 %.

It should be also noted that when all frequency candidates were checked with
the ground truth (i.e. all possible frequency candidates before the work of the
judge), the accuracy in case of intervals achieved 95,2 %. A significant increase
was noticed also in case of higher polyphonies (93,6 % in three-sound polyphony
and 88,9 % in four-sound polyphony). Therefore, it clearly show that there is a
lot of possibility to further improve presented approach in the future.

Both tables show interesting information about the accuracy of this approach.
There are noticeable differences between particular kinds of intervals. The fifth
(a seven-semitone interval) achieved the poorest accuracy, mostly due to the fact
that fifths tend to have more common harmonics. Relatively good result of the 0
interval (which represents all the octaves in the database) might be explained due
to the existence of intervals with the distance of two or more octaves. Therefore,
the number of common harmonics might be lower in this case and the obtained
results are better.

It is certainly interesting to notice the relationship betweens pairs of instru-
ments and the results in the Table 2. The results are usually better, when the
instruments from different groups are checked (e.g. Eletric Piano and Cello, Cello
and Oboe, Violin and Horn), whereas instruments from the same group tend to
yield a little worse results (e.g. Horn and Flute, Violin and Cello, etc.). It might
be a result of the fact that instruments from the same group have similar spec-
tral properties. Therefore, it might be a little more difficult to recognize them,
compared to instruments from different groups.

6 Conclusions

As shown in the previous section, application of two sound representations, even
with the same analysis method, allowed to achieve high accuracy of the whole
approach, even in case of higher polyphonies. Usually, only one sound repre-
sentation is used, therefore it is advisable to check different possible multipitch
estimation solutions in terms of application of multiple sound representations.
It must be noted that, although there have been conducted experiments with
polyphonies with even higher number of simultaneous sounds used [6,10], the
vast range of frequencies and a high number of sounds chosen with frequencies
from both ends of this range greatly increased the difficulty of performed task

Application of Multiple Sound Representations in Multipitch Estimation 601

and prove that the proposed method is worth to be analysed and developed in
the future. This method will be also tested more with specific databases, such as
instrument-specific databases (e.g. only for piano), because such databases are
also used in various researches [1].

References

1. Benetos, E., Dixon, S., Giannoulis, D., Kirchoff, H., Klapuri, A.: Automatic music
transcription: challenges and future directions. J. Intell. Inf. Syst. 41(3), 407–434
(2013)

2. Stasiak, B.: Follow that tune - dynamic time warping refinement for query by
Humming. In: Proceeding of Joint conference NTAV/SPA 2012. New Trends in
Audio and Video Signal Processing: Algorithms, Architectures, Arrangements, and
Applications, pp. 109–114 (2012)

3. Stolarek, J., Lipiński, P.: Improving digital watermarking fidelity using fast neural
network for adaptive wavelet synthesis. J. Appl. Comput. Sci. 18(1), 61–74 (2010)

4. Stasiak, B., Rychlicki-Kicior, K.: Fundamental frequency extraction in speech emo-
tion recognition. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2012. CCIS, vol. 287,
pp. 292–303. Springer, Heidelberg (2012)

5. Salomon, J., Gomez, E., Ellis, D.P.W., Richard, G.: Melody extraction from poly-
phonic music signals. IEEE Signal Process. Mag. 31(2), 118–134 (2014)

6. Davy, M., Klapuri, A.: Signal Processing Methods for Music Transcription.
Springer-Verlag, Heidelberg (2006)

7. Goto, M., Hashiguchi, H., Nishimura, T., Oka, R.: RWC Music Database: music
genre database and musical instrument sound database. In: Proceedings of the
4th International Conference on Music Information Retrieval (ISMIR 2003), pp.
229–230 (2003)

8. Argenti, F., Nesi, P., Pantaleo, G.: Automatic music transcription: from mono-
phonic to polyphonic. In: Solis, J., Ng, K. (eds.) Musical Robots and Interactive
Multimodal Systems. STAR, vol. 74, pp. 27–46. Springer, Heidelberg (2011)

9. Dressler, K.: Multiple fundamental frequency extraction for MIREX 2012. In: The
13th International Conference on Music Information Retrieval (2012)

10. Klapuri, A.: Multiple fundamental frequency estimation by summing harmonic
amplitudes. In: Proceedings of 7th International Conference on Music Information
Retrieval, pp. 216–221 (2006)

11. Benetos, E., Dixon, S.: Multiple-F0 estimation and note tracking for MIREX 2012
using a shift-invariant latent variable model. In: Music Information Retrieval Eval-
uation Exchange (2015). http://www.music-ir.org/mirex/abstracts/2012/BD1.pdf

12. Smaragdis, P., Bhiksha, R.: Shift-invariant probabilistic latent component analysis.
Technical report (2007)

13. Weiss, R.J., Bello., J.P.: Identifying repeated patterns in music using sparse con-
volutive non-negative matrix factorization. In: Proceedings of International Con-
ference on Music Information Retrieval (ISMIR) (2010)

http://www.music-ir.org/mirex/abstracts/2012/BD1.pdf

Projection for Nested Word Automata Speeds
up XPath Evaluation on XML Streams

Tom Sebastian1(B) and Joachim Niehren2

1 Innovimax and Links Team of Inria Lille and Cristal Lab, Lille, France
tom.sebastian@inria.fr

2 Inria and Links Team of Inria Lille and Cristal Lab, Lille, France

Abstract. We present an evaluator for navigational XPath on Xml
streams with projection. The idea is to project away those parts of an
Xml stream that are irrelevant for evaluating a given XPath query. This
task is relevant for processing Xml streams in general since all Xml
standard languages are based on XPath. The best existing streaming
algorithm for navigational XPath queries runs nested word automata.
Therefore, we develop a projection algorithm for nested word automata,
for the first time to the best of our knowledge. It turns out that projec-
tion can speed up the evaluation of navigational XPath queries on Xml
streams by a factor of 4 in average on the usual XPath benchmarks.

1 Introduction

Projection is most relevant for efficient Xml processing algorithms, as shown for
in-memory evaluators for XQuery in [11] and for a fragment of in XPath [10].
The projection algorithm for XQuery runs in Saxon [7], today’s most used Xml
processing tool. Projection algorithms for the in-memory evaluation of Xslt are
missing though.

The objective of the present paper is to initiate the development of projection
algorithms for processing Xml streams. Given that a single program written in
one of the Xml standards XQuery, Xslt, or XProc contains a collection of
XPath queries, we are interested in the evaluation of a collection of XPath
queries on a single input stream. The parsing time can be shared between many
XPath queries, and thus be should counted seperately. Therefore, we are mainly
interested in the parsing-free time for query evaluation. Note however, that the
parsing-free time for a single query is often dominated by the parsing time.

We will restrict ourselves to projection for navigational XPath queries, since
these are fundamental to all others. For instance, in order to check whether the
root of a tree has at least 5 a-children, all other children of the root can be
projected. The computation of the projection still requires to read the entire
input tree, but the time for this can be shared similarly to the parsing time.

The most efficient evaluation algorithm for navigational XPath queries on
Xml streams so far was presented in [2]. Similarly to many recent evaluation
algorithms for XPath on Xml streams [6,9,12], it is based on the compilation

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 602–614, 2016.
DOI: 10.1007/978-3-662-49192-8 49

Projection for Nested Word Automata Speeds up XPath Evaluation 603

of navigational XPath queries to nested word automata (Nwas) [1]. Given that
Xml streams are nested words, Nwas provide a canonical formalism for defining
algorithms on Xml streams. This leads to highly efficient algorithms based on
first principles as argued in [2]: In particular, one can rely on the nondeterminism
of Nwas to express XPath queries with recursive axes, such as “descendant”
or “following”, and then use on-the-fly determinization for their evaluation. The
evaluation of an XPath query can then be reduced to running an Nwa on all
possible answer candidates. Furthermore, the runs of multiple answer candidates
in the same state can be shared.

Projection for finite automata is well known [5,10]. It amounts to project
away all letters of the input word that do not change the state. Projection for
Nwas is more tedious, since such automata have a stack by which they can pass
information from opening tags to corresponding closing tags. Therefore, one can-
not simply project an opening tag away without taking care of the corresponding
closing tag. Our idea is that a projected nested word should contain jump sym-
bols i. . . for projected factors, where the integer i stands for the excess of the
factor, i.e., the difference between the number of opening and closing tags. We
present projection nested word automata (PNwas), a kind of mixed pushdown
and counting automata, that input projected nested words which beside others
contain integers as letters. These integers allow the automaton to compute the
depth of the current node of the tree at any time, and also the excess of the last
jump. Conversely, a projection of a nested word with respect to a given Nwa can
be computed by any corresponding PNwa. It may be surprising, but it turns out
there may exist different PNwas with maximal projection for the same Nwa.
Therefore, our projection algorithm has to make its choices.

We then lift Nwa projection to the evaluation of navigational XPath queries
on Xml streams. It turns out that the parsing-free time for query answering
is reduced by a factor of 4 on average on the usual XPathMark benchmark
compared to the previously existing algorithm [2].

Outline. In Sect. 2, we recall Nwas and their usage for XPath evaluation on
Xml streams. In Sect. 3, we introduce PNwas. In Sect. 4, we introduce notions
of irrelevant labels and prefixes of nested words for states of Nwas. In Sect. 5, we
use them to project Nwas to PNwas. In Sect. 6, we present our experimental
results for XPath evaluation on Xml streams. The appendix of the present
paper at hal.inria.fr/hal-01182529 contains additional examples of PNwas, an
extension of Nwa projection for node selection, and the collection of queries
used in our experiments.

2 Nested Word Automata

We recall the definition of Nwas, while pointing out the close relationship
between nested words and Xml streams.

Let Σ be a finite alphabet. Let PΣ be the set of parenthesis with labels in Σ,
that is the set of opening tags 〈a〉 and closing tags 〈/a〉 where a ∈ Σ. A nested
word over Σ is a word over PΣ which is well-balanced, so that any opening tag

hal.inria.fr/hal-01182529
https://hal.inria.fr/hal-01182529

604 T. Sebastian and J. Niehren

c

a

a

a

c

c

b a

b

Fig. 1. An unranked tree

〈c〉 〈a〉 〈a〉 〈a〉 〈c〉 〈/c〉 〈/a〉 〈/a〉
〈c〉 〈b〉 〈/b〉

〈a〉 〈/a〉 〈/c〉
〈b〉 〈/b〉 〈/a〉 〈/c〉

Fig. 2. The corresponding nested word
is an Xml stream

〈a〉 can be assigned to a unique corresponding closing tag 〈/a〉, and vice versa,
and such that the initial opening tag of the word corresponds to the closing tag
at its end. Our nested words are more restricted than in the general case [1], in
that internal symbols are omitted, corresponding opening and closing tags must
have the same label, and initial opening tags cannot be closed before the end.

An Xml stream is a nested word that is obtained by linearizing an unranked
tree in document order. This is a strong simplification of the Xml data model,
in that we ignore data values (internal symbols) and the different types of nodes
(text, element, attribute, etc.). An example of an unranked tree is given in Fig. 1.
The Xml stream obtained by linearizing this unranked tree into a nested word
is given in Fig. 2. It should be mentioned that we cannot assume any a priori
knowledge on the set of tags of an Xml document in practice (where no Xml
schemas are available). Instead, the finite alphabet Σ is determined by the tags
appearing in the XPath query of interest [2].

An Nwa is a pushdown automaton on nested words [1], whose stack is “vis-
ible” in the sense that only a single symbol is pushed at opening events and
popped at closing events. Here we assume that Nwas are early [2], so that
whenever a final state is reached, any continuation completing the nested word
will be accepted. More formally, an (early) Nwa is a tuple A = (Σ,Q, I, F, Γ,R)
where Σ is a finite alphabet, Q a finite set of states with subsets I, F ⊆ Q of
initial and final states, Γ a finite set of stack symbols, and R is a set of transition
rules of the following two types, where q, q′ ∈ Q, a ∈ Σ, and γ ∈ Γ :

Open: q
〈a〉↓γ−−−→ q′. When processing an opening tag 〈a〉, γ is pushed onto the

stack, and the state is changed from q to q′.

Close: q
〈/a〉↑γ−−−−→ q′. When processing a closing tag 〈/a〉, γ is popped from the

stack and the state is changed from q to q′.

A configuration of an Nwa is a word in QΓ ∗ consisting of a state q ∈ Q and a
stack S ∈ Γ ∗. A run of an Nwa on a nested word w ∈ P ∗

Σ is a function r that
maps prefixes w′ of w to configurations. The initial configuration must contain
an initial state and the empty stack, i.e. r(ε) ∈ I. The Nwa then rewrites this
configuration: for any prefix w′p of w, r(w′p) is produced from r(w′) by applying
some rules consuming tag p ∈ PΣ . A run on w is successful if r(w) ∈ F , i.e. if
it reaches at the end a final state and the empty stack. Since we assume early

Projection for Nested Word Automata Speeds up XPath Evaluation 605

Nwas, any run reaching a configuration with a final state on some prefix of a
nested word can always be continued into a successful run. The language L(A)
of an Nwa A is the set of all nested words that permit a successful run by A.

An Nwa is called deterministic if it is deterministic as a pushdown automa-
ton. Note that Nwas can always be determinized [1] in contrast to more gen-
eral pushdown automata. Our streaming algorithms will determinize Nwas con-
structed from XPath expressions on the fly (as explained in [2]), so that we will
only have to project deterministic Nwas but this while creating them on the fly.

An example for a deterministic Nwas is given in Fig. 3. It defines the XPath
filter [//a/b] which accepts all Xml trees that contain some a-descendant with
a b-child. Rules containing label sets represent sets of rules, one for each label.
Node selection XPath queries can be compiled to deterministic Nwas in a sim-
ilar manner [2] by adding variables to the alphabet. This requires some minor
extensions for Nwa projection which are out of the scope of the present paper.

Fig. 3. A deterministic Nwa over Σ = {a, b, c} for XPath filter [//a/b]

3 Projection NWAs

We next introduce projected nested words. Let N be the set of natural numbers,
N0 = N�{0}, and Z the set of integers. For any unranked tree, we are interested
in the binary node relations child ch, descendant ch+, n-th grand parents ch−n

where n ∈ N, descendants of n-th grand parents ch−n/ch+, children of n-th
grand parents ch−n/ch, and stay at self. So let:

Rels = {ch, ch+, ch−n, ch−n/ch+, ch−n/ch, self | n ∈ N}.

A projected nested word is a word whose letters are jump symbols i. . . where
i ∈ Z and jump targets p@r where p ∈ PΣ and r ∈ Rels. We write P ...

Σ for the
set of all these letters. We assume that any jump target is proceeded by a jump
symbol that indicates the excess of the jump, that is the depth difference in the
tree or equivalently, the difference of the numbers of opening and closing tags
in the nested word. We also assume that projected nested words are well-nested
up to jumping.

Two examples for projected nested words are given in Fig. 4. Both are valid
descriptions of the nested word in Fig. 2: pw1 projects to the letters drawn
in blue, while pw2 projects to the letters drawn in green. As we will see, both

606 T. Sebastian and J. Niehren

pw1: for all a-nodes without an a-parent and all non-a-children of a-nodes keep the
opening and closing tags, until the opening tag of the first match of //a/b:

〈c〉 0. . . 〈a〉@ch+ 2. . . 〈c〉@ch+ 0. . . 〈/c〉@self −2. . . 〈c〉@ch−3/ch+

0. . . 〈a〉@ch+ 0. . . 〈/a〉@self 0. . . 〈/c〉@ch−1 0. . . 〈b〉@ch−1/ch+

pw2: for all a-nodes and all b-children of a-nodes keep the opening and closing tags,
until the opening tag of the first match of //a/b:

〈c〉 0. . . 〈a〉@ch+ 0. . . 〈a〉@ch+ 0. . . 〈a〉@ch+ 0. . . 〈/a〉@self
0. . . 〈/a〉@ch−1 1. . . 〈a〉@ch−1/ch+ 0. . . 〈/a〉@self −1. . . 〈b〉@ch−2/ch

Fig. 4. Two projected nested words describing the nested word in Fig. 2

projections can be obtained from the Nwa in Fig. 3. Note that the initial opening
tag is always kept for technical reasons. Except of this, both projections are
maximal, in that no further tags can be projected away: they just preserve
enough information for deciding whether the original nested word satisfies the
filter [//a/b]. Nevertheless, none of these two projections is more general than
the other. The green projection pw2 has the advantage to keep only tags with
letters occurring in the XPath filter [//a/b]. The blue projection pw1, has the
advantage to keep fewer of these tags, but therefore, it also keeps some others.

The blue projection pw1 starts with 〈c〉, meaning that any matching nested
word must start with 〈c〉. The next factor 0. . . 〈a〉@ch+ describes a nested word
with excess 0 that is followed by 〈a〉 in descendant position, i.e., by the opening
tag of an a-child of the root. The next factor 2. . . 〈c〉@ch+ describes a nested
word with excess 2 followed by 〈c〉 opening a descendant. Then 0. . . 〈/c〉@self
requires to jump with excess 0 to the closing tag 〈/c〉 of the same node. Next,
−2. . . 〈c〉@ch−3/ch+ asks to jump with excess −2 to an opening tag 〈c〉 of a
descendant of a grand-grand-grand-parent, etc.

We next introduce PNwas as a mixture of a pushdown and a counting
automaton, that receive projected nested words as input. The counting serves
for updating the depths of nodes when jumping, so that the depth of the current
node can always be deduced from the current stack. Whenever jumping over a
projected factor, the excess of this factor is pushed. This is an integer that is
popped when trying to close the jump.

Definition 1. A PNwa is a tuple A = (Σ,Q, I, F, Γ,R) like an Nwa but with
different kinds of transition rules: given a ∈ Σ, γ ∈ Γ , and q, q′ ∈ Q, there are
rules of the following types in R, for changing the state from q to q′.

Open: q
〈a〉↓γ−−−−→ q′ Like for Nwas.

Close: q
〈/a〉↑γ−−−−→ q′. Like for Nwas.

Jump to a child or a descendant: q
z...〈a〉@r ↓z↓γ−−−−−−−−→

∀z≥0
q′, where r ∈ {ch, ch+}.

When r = ch then z must be 0, and we jump to the opening tag of an a-child

Projection for Nested Word Automata Speeds up XPath Evaluation 607

and push first 0 and then γ onto the stack. When r = ch+ then we jump over
z descendants to the opening tag of an a-descendant, and push first z and

then γ onto the stack. For short we denote this transition as q
ju(〈a〉,r,γ)−−−−−−−→ q′.

Rejump to another child or descendant: q
z...〈a〉@ch−(z′+1)/r ↑z′↓z+z′↓γ−−−−−−−−−−−−−−−−−−−→

∀z,z′. z′≥0,z+z′≥0
q′,

where r ∈ {ch, ch+}.
While trying to close a jump from some grand parent to some node one can
rejump to another opening a-tag of a child or a descendant of the same grand
parent. The excess of the jump to the first node z′ on the stack is updated to
the excess of the second node z + z′. Furthermore, γ is pushed. For short, we

write this transition as q
reju(〈a〉,r,γ)−−−−−−−−→ q′.

Jump to the closing tag of the self node: q
0...〈/a〉@self↑γ−−−−−−−−−→ q′. Jump to the

closing tag of the self a-node. In this case, γ is popped from the stack.

Jump back to the jump’s origin: q
−z...〈/a〉@ch−(z+1) ↑z↑γ−−−−−−−−−−−−−−→

∀z≥0
q′. When trying to

close a jump, one may jump back to the closing tag of the a-node where the
current jump started. The excess of −z is popped from the stack together with
the symbol γ which was pushed for the non-jumped a-node. For short we write

q
ju-back(〈/a〉,γ)−−−−−−−−−−→ q′.

Close last jump step: q
〈/a〉↑z↓z−1−−−−−−−−→

∀z>0
q′. When trying to close a jump, one may

read a closing a-tag for which the corresponding opening a-tag was jumped,
so that no stack symbol was pushed. In this case the excess of the jump on
the stack must be updated from z to z − 1.

A configuration of a PNwa is a word in Q(Γ � N0)∗ consisting of a state in
Q and a stack in (Γ � N0)∗. A run r of a PNwa A on a projected nested word
over Σ is a function that maps any prefix of the projected nested word to a
configuration. The run must start in some configuration with some initial state
and the empty stack, i.e., r(ε) ∈ I. Furthermore, for any prefix wl where l ∈ P ...

Σ ,
the configuration r(w) must be transformed into r(wl) by applying some rule
consuming letter l. A run on a projected nested word w is called successful if it
eventually reaches a configuration with a final state, i.e., if r(w′) ∈ F (Γ �N0)∗ for
some prefix w′ of w. The language L(A) of a PNwa A is the set of all projected
nested words that permit a successful run on A (Fig. 6).

In Fig. 5 we present PNwa A1 that is a projection of the Nwa in Fig. 3 for
the XPath filter [//a/b]. This automaton accepts the blue projection pw1 in
Fig. 4 of the nested word in Fig. 2. Automaton A1 visits the opening and closing
tags of all a-nodes with no a-parent, and of all non-a-children of these a-nodes,
and jumps over all other nodes. Automaton A1 accepts when the first match
of [//a/b] arrives. In Fig. 10, we illustrate a successful run of A1 on pw1. The
states of configurations are placed below the tags, while the stack consists of the
labels on the subedges above the state. Edges between tags indicate their corre-
spondence. Furthermore there are edges for jumps to children and descendants,
where the excess is pushed, while jumps to the jump origin close the jump, and

608 T. Sebastian and J. Niehren

Fig. 5. PNwa A1 for the XPath filter [//a/b]

Fig. 6. A successful run of the PNwa A1 of Fig. 5 on pw1

rejumps update the excess on the stack. The only exceptions are jumps to the
closing tag of self nodes, where no excess is pushed. In general PNwa A1 works
as follows. It starts in the initial state q1, it opens the root and goes into q2,
where either the root can be closed to qrej or where it can jump over b and c
nodes to the opening tag of an a-descendant and go to q3. There are 3 possibili-
ties depending on what happens first: (1) close the a-node, and go to q2[q2], (2)
jump down over a sequence of a-nodes to the opening tag of a c-descendant and
go to q2, or (3) jump down over a sequence of a-nodes to the opening tag of a
b-descendant and accept in q4. In state q2 a c-node with a sequence of a-grand
parents can be closed to q3[q3]. The sequence of a-grand parents consists of a
sequence of jumped a-nodes and one not jumped a-node π at the top. Continuing
depending on what comes first, the following can happen in q3[q3]: (1) jump back
to the closing tag of the a-grand parent π and go to q2[q2], (2) rejump over a
sequence of a-nodes, while staying below π, to the opening tag of a c-descendant
and go to q2, or (3) rejump over a sequence of a-nodes, while staying below π,
to the opening tag of a b-descendant, and accept in state q4. In state q2[q2] there

Projection for Nested Word Automata Speeds up XPath Evaluation 609

Fig. 7. q ∈ i-labelL Fig. 8. q ∈ i-treeL\L′

are 3 possibilities depending on what happens first: (1) rejump over a sequence
of b and c nodes to the opening tag of an a-descendant and goto q3, while stay-
ing below a not-jumped c-grand parent with a sequence of a-grand parents if
exists, (2) jump back to the closing tag of a not-jumped c-grand parent with the
a-grand parents sequence if exists, or else (3) close the root to qrej .

Next we are interested to evaluate a collection of PNwas obtained from
deterministic Nwas on a single nested word. For this, we need to project the
nested word with respect to the PNwas, and run the PNwas on the respective
projected nested word. Therefore, we have to define how to project a nested word
w with respect to a deterministic PNwa. More generally, we define a projection
πq(w) for any suffix w of some nested word in P ∗

Σ and state q of a PNwa A:

πq(w) = i. . . p@rπq′(w′′)

such that w = w′pw′′ for some p ∈ PΣ and w′, w′′ ∈ P ∗
Σ , where w′ is the shortest

prefix, so that there exists a rule of A from q to q′ consuming letter p@r for
some r ∈ Rels, and i is the excess of w′.

4 Irrelevant Labels and Prefixes of Nested Words

In this section, we define properties of Nwa states which allow to skip parenthesis
with irrelevant labels and irrelevant prefixes of nested words, that is prefixes of
linearizations of subtrees.

Definition 2. An Nwa E can jump over parenthesis with labels in L and incom-
ing state q – in formulas q ∈ i -labelL – if there exists a stack symbol γ, such
that E has all transitions shown in Fig. 7, no other opening transition pushing
γ, no other a-opening transition in q, and no other a-closing transition with γ.

If q ∈ i -labelL then any sequence of letters in PL is irrelevant in state q, so
that it can be removed from the nested word and replaced by a jump symbol.
Consider a run of E on a nested word w and assume q ∈ i -labelL. We next
argue, that we can replace all letters in PL of w with ingoing state q by jump
symbols, while “repairing” the run. The first point is that the state is not changed
when reading such letters, so that their removal keeps the states correct. But we
must also take care of the stack. If an opening tag 〈a〉 is removed but not the
corresponding closing tag, then we have to repair the run, in order to be able
to reproduce the missing stack symbol when needed. The idea is to memoize
the state before jumping. Since this state does not change while jumping, one

610 T. Sebastian and J. Niehren

can then recompute the stack symbol that was pushed for any letter that was
jumped over. Conversely, it is not possible that a closing tag 〈/a〉 was removed
but not the corresponding opening tag, since the symbol pushed at 〈a〉 must be
γ, and by definition of q ∈ i -labelL there is no other opening transition pushing
γ than that started in q.

Definition 3. An Nwa E in state q can jump over prefixes of nested words
(subtrees) that start in 〈L〉, do not contain letters in PL′ , and either end with
the closing tag of the subtree’s root or with a letter in L′, if there exist three
different stack symbols γ, γ′, γ′′ and a state q′ such that the transitions shown
in Fig. 8 exist, but no further opening transitions with γ, no further transitions
with γ′, and no further opening transitions in q′ for L′, and no further closing
transition in q for L popping γ. In this case, we write q ∈ i -treeL\L′ and call q
a state of irrelevant subtrees.

In the easiest case where q ∈ i -treeL\∅ one can jump over nested words
linearizing subtrees, with incoming state q and labels in L only. When opening
the root of the subtree, the state changes to q′ and stays there until closing the
root and going back to q. So the removal of the subtree does not change the
state globally. In this case, the full nested word of the subtree is read, so the
stack difference is zero. In the case where L′ �= ∅ it is more tricky to repair the
run, in order to deal with missing stack symbols. But it remains possible, since
the state used within the subtree does not change, so that it can be memoized
and so that missing stack symbols can be recomputed at closing time.

For illustration, we have annotated the state of the Nwa in Fig. 3 with the
properties that they satisfy. It turns out that state q3 satisfies both properties
i -label{a} and i -tree{c}\{a}, but that we cannot perform the two corresponding
projections at the same time. When choosing projection with i -label{a} then we
obtain the PNwa A1 from Fig. 5.

5 Projection from Nwas to PNwas

We show how to project deterministic Nwas E to a PNwa A. For any state q of
E, we chose a projection property choice(p), which is either i -labelL or i -treeL\L′

for some sets L,L′ ⊆ Σ. Note that i -label∅ can always be assigned, so that this
assumption can always be satisfied, but not always in a unique manner.

Any state of A is either a state of q of E or a pair of states of E that we write
as q[q′]. Such a pair means that one is in state q and that on the top of the stack
is a jump symbol i that was pushed from a jump over i descendants that started
in state q′. Any stack symbol of A is either a stack symbol γ of E or a pair
written as γ[q] of a stack symbol and a state of E. γ serves as the stack symbol
that was pushed before at opening tags, while q is the state where a previous
jump started. Whenever such a pair γ[q] is on the stack then the symbol below
is always a jump symbol i that was pushed by a jump over i descendants that
started in state q. The sets of initial and final states remain unchanged.

Projection for Nested Word Automata Speeds up XPath Evaluation 611

Fig. 9. Rewriting system for rules of a deterministic Nwa to rules of the PNwa

Every transition rule of E gives rise to a possible empty set of transition
rules of A, according to rules I–VII in Fig. 9. In PNwa A1 from Fig. 5 we
annotated transitions accordingly. Transitions from an initial state are trans-
lated to non-jumping transitions that open the root. If choice(q) = i -labelL,
then all looping transitions required by i -labelL are removed. The other open-
ing transitions starting from q are translated to jumping and rejumping transi-
tions to descendants and descendants of grand parents. If choice(q) = i -treeL\∅
then the opening and closing L transitions, and looping transitions required by
i -treeL\∅ are removed. The other opening transitions starting from q are trans-
lated to jumping and rejumping rules to children and children of grand parents.
If choice(q) = i -treeL→L′ then the opening and closing L transitions, and loop-
ing transitions required by i -treeL→L′ are removed. All other transitions with
opening tag a ∈ L′ departing q are translated to jumping and rejumping rules
for descendants. Closing transitions are translated to six rules: Two rules to close
self nodes, two rules to jump back to jump’s origins, and two last rules that close
parents in a state q[q′′] for q �= q′′. Those states do not allow to rejump, since the
previous jump started in a different state q′′ than the current state q, and there-
fore they also do not allow to jump back to the jump’s origin. For these states

612 T. Sebastian and J. Niehren

opening and closing transitions are translated as indicated, while recomputing
stack symbols, that have not been pushed for jumped grand parents.

Proposition 1 (Soundness). Let E be a deterministic Nwa E with initial
state q0 and A be a PNwa obtained from E by our projection algorithm. It then
holds for any nested word w that w ∈ L(E) if and only if πq0(w) ∈ L(A).

6 Experiments

We implemented Nwa projection within the QuiXPath system [3] and tested it
on the (revised) XPathMark query set [4] for navigational queries. As argued
in the introduction, it is most natural to measure the efficiency in parsing-free
time which can be measured as described in [2].

In a first experiment, we start from the best existing XPath evaluator on
Xml streams so far which is based on Nwas [2] (see there for comparisons to
alternative tools by [7,12] and others), and enhance it with projection. The
results are presented in Fig. 11 for a 559 MB XPathMark document. It turns
out that projection reduces the parsing-free running time for this query set by a
factor of 4.3, which is a major improvement, in particular when evaluating many
XPath queries in parallel as needed for streaming Xslt or XQuery programs.

In our second experiment, we compare the overall running time of our PNwa
evaluator of XPath queries on Xml streams with Saxon’s in-memory
evaluator [7]. For each of our queries, we compare the full running times includ-
ing parsing, when evaluating the query n-times. The results are given in Fig. 11. It
turns out thatQuiXPathwith projection forNwas can answer on average a query
up to 12 times in parallel, in no more time than needed by Saxon for the same task.

One observes that running less than 12 queries in parallel with PNwas is a lot
quicker than running them with Saxon, mostly due to the expensive in-memory
tree creation. But when running more than 12 queries on small documents,
the advantage of in-memory evaluation takes over. Indeed, without the time
for parsing and in-memory tree construction, Saxon in-memory evaluation is
still faster by a factor 20 in average than streaming with PNwas. With the
improvements of the present paper, it now seems possible that stream processing
can become more efficient than in-memory evaluation in practice in the future.

Fig. 10. A successful run of the PNwa A1 of Fig. 5 on pw1

Projection for Nested Word Automata Speeds up XPath Evaluation 613

Fig. 11. Improvement by Nwa projection of XPath query evaluation

Conclusion and Future Work

We have developed a projection algorithm for evaluation navigational XPath
queries on Xml streams. The next step will be to lift this algorithm to all of
XPath 3.0. We believe that this can be done by decomposing general XPath
queries into a network of navigational XPath queries. Such a decomposition
underlies the implementation of XPath 3.0 in our QuiXPath tool [3], which is
unpublished so far. Once this is done, one can hope to lift our XPath projection
to Xslt and XQuery, by using X-Fun as an intermediate language [8].

References

1. Alu, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), 1–43
(2009)

2. Debarbieux, D., Gauwin, O., Niehren, J., Sebastian, T., Zergaoui, M.: Early nested
word automata for XPath query answering on XML streams. TCS 578, 100–125
(2015)

3. Debarbieux, D., Sebastian, T., Zergaoui, M., Niehren, J.: Quix-tool suite (2014).
https://project.inria.fr/quix-tool-suite/

4. Franceschet, M.: XPathMark: an XPath benchmark for the XMark generated data.
In: Bressan, S., Ceri, S., Hunt, E., Ives, Z.G., Bellahsène, Z., Rys, M., Unland, R.
(eds.) XSym 2005. LNCS, vol. 3671, pp. 129–143. Springer, Heidelberg (2005)

5. Frisch, A.: Regular tree language recognition with static information. In: Levy,
J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS2004. IFIP, vol. 155, pp. 661–674.
Springer, Heidelberg (2004)

6. Gauwin, O., Niehren, J.: Streamable fragments of forward XPath. In: Bouchou-
Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2011.
LNCS, vol. 6807, pp. 3–15. Springer, Heidelberg (2011)

7. Kay, M.: The saxon XSLT and XQuery processor. https://www.saxonica.com
8. Labath, P., Niehren, J.: A uniform programmning language for implementing XML

standards. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J.,
Wattenhofer, R. (eds.) SOFSEM 2015-Testing. LNCS, vol. 8939, pp. 543–554.
Springer, Heidelberg (2015)

https://project.inria.fr/quix-tool-suite/
https://www.saxonica.com

614 T. Sebastian and J. Niehren

9. Madhusudan, P., Viswanathan, M.: Query automata for nested words. In: Královič,
R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 561–573. Springer, Hei-
delberg (2009)

10. Maneth, S., Nguyen, K.: XPath whole query optimization. VLPB J. 3(1), 882–893
(2010)

11. Marian, A., Simeon, J.: Projecting XML documents. In: VLDB, pp. 213–224 (2003)
12. Mozafari, B., Zeng, K., Zaniolo, C.: High-performance complex event processing

over XML streams. In: SIGMOD Conference, pp. 253–264. ACM (2012)

Evaluation of Static/Dynamic Cache
for Similarity Search Engines

R. Solar1, V. Gil-Costa2(B), and M. Maŕın3,4

1 CITIAPS, Universidad de Santiago de Chile, Santiago, Chile
roberto.solar@usach.cl

2 Yahoo! Research Latin America, UNSL-CONICET, San Luis, Argentina
gvcosta@unsl.edu.ar

3 DIINF, University of Santiago, Santiago, Chile
4 Center for Biotechnology and Bioengineering, University of Chile, Santiago, Chile

mauricio.marin@usach.cl

Abstract. In large scale search systems, where it is important to achieve
a high query throughput, cache strategies are a feasible tool to achieve
this goal. A number of efficient cache strategies devised for exact query
search in different application domains have been proposed so far. In sim-
ilarity query search on metric spaces it is necessary to consider additional
design requirements devised to produce good quality approximate results
from the cache content. In this paper, we propose a Static/Dynamic cache
strategy for metric spaces which takes advantage of results of static cache
miss operations and their associated distance evaluations for increasing
the overall performance of the cache. We present an experimental evalu-
ation of the performance obtained with our strategy for different query
selection/replacement strategies.

Keywords: Approximate similarity search · Metric cache

1 Introduction

Nowadays, large scale similarity search engines are deployed into clusters of dis-
tributed memory processors connected by a high-speed communication infrastruc-
ture. One critical factor involved in the development of large-scale metric-space
similarity search engines is how to handle with sudden peaks in query traffic. We
have to take into account that the users behavior is highly unpredictable, com-
plex, dynamic and often influenced by other users. Therefore, we have to be able
to incorporate robust resource management mechanisms in order to prevent from
system saturation and maintain the quality of service within certain acceptable
ranges.

In this context, caching is a mechanism devised to improve the performance
of search systems which have to access large-scale metric-space indices (typically
stored in disk) to retrieve the query results. The main idea of caching is to keep
frequent data in a small storage device that can be accessed faster than retrieving
data from the index. There are different works [7,11,13] which consider using
c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 615–627, 2016.
DOI: 10.1007/978-3-662-49192-8 50

616 R. Solar et al.

result cache or a distance cache. However, none of these works take advantage
of the cooperative interaction between different hierarchical levels of cache.

In particular, in this paper we work with a metric-space index called List of
Clusters (LC) [4] as the index data structure. The LC has been shown to be more
efficient than other alternatives in high dimensional spaces. Moreover, we focus
on approximate search by applying the algorithm of [9] originally presented for
distributed metric spaces search engines.

The contribution of this paper is a Static/Dynamic Cache (SDCache) app-
roach for approximate similarity search engines. In the static cache, we store
queries that remain popular over time. Dynamic cache keeps queries that are
popular for a short period of time. In both cases, we analyze the effect of com-
bining the popularity priority of queries with their covering area on the metric
space. Our SDCache approach takes advantage of the hierarchical level of caches
and its contribution are two-fold: (1) re-use of results of static cache miss oper-
ations (direct cooperation), and (2) re-use of distance evaluations involved in a
static cache miss operation (indirect cooperation). Direct cooperation helps to
increase the number of dynamic cache hits and their accuracy. On the other
hand, indirect cooperation helps to reduce the computation costs when travers-
ing the dynamic cache. Furthermore, we propose a simple metric to determine
whether a new query reports a hit cache and we evaluate the performance of our
proposal with different query selection/replacement strategies.

The remaining of this paper is organized as follows. Section 2 reviews related
work on approximate similarity search and cache strategies. In Sect. 3 we present
the SDCache approach. Section 4 presents the results and Sect. 5 summarizes the
main conclusions from our work.

2 Preliminaries and Related Work

A metric space (U , d) is composed of a universe of objects U and a distance
function d : U ×U → R+ which fulfills the following properties: strictly positive-
ness (d(x, y) > 0 and if d(x, y) = 0 then x = y), symmetry (d(x, y) = d(y, x)),
and the triangle inequality (d(x, z) ≤ d(x, y) + d(y, z)). The distance function
determines the similarity between two given objects. There are two main types
of queries. Given a database X ∈ U a range search query (RX (q, r)) retrieves all
the objects x ∈ X within a radius r of the query q; and a k-nearest neighbors
query retrieves the k most similar objects to q.

Many metric index structures have been proposed and studied. This work is
based on the List of Clusters (LC) [4], which partitions the set of objects into a
set of disjoint clusters as follows. We first choose a cluster center c ∈ X and a
radius rc. The cluster ball (c, rc) contains the subset of elements of X at distance
at most rc from c. From the remaining set of objects we select the next center as
the one that maximize the sum of distance to the previous centers. This process
is recursively repeated until all objects in the database are indexed.

During the processing of a range query R(q, rq), q is sequentially compared
with the cluster centers of the LC. If d(c, q) − rq ≤ rc (the query ball intersects

Evaluation of Static/Dynamic Cache for Similarity Search Engines 617

the cluster) we compare the query with the objects inside the cluster c and the
search process continues. If d(q, c) + rq ≤ rc (the query is completely contained
by the cluster) we compare the query with the objects inside the cluster c and
the search stops.

2.1 Metric Cache

In [5] is introduced the similarity cache problem as a generalization of the clas-
sical cache approach. Authors focused on buffer management for approximate
nearest-neighbor (ANN) applications, such as multimedia systems and contex-
tual advertising. In the past years, many research work have been presented to
address approximate and cache-based algorithms [1,7,8,10,12]. However, They
do not combine the benefits of keeping queries along its results which are per-
sistent over time, and queries that are relevant just for a brief period of time.

A metric space cache C consists of a collection of past queries along their
results. Given a metric space (U , d) and a database X ∈ U , a cached query
qi ∈ C with its results kNNX (qi, k) and a query q, the safe radius of the query q
with respect to qi is defined as sq(qi) = rqi −d(q, qi), where rqi is the radius of the
query qi and d(q, qi) is the distance between q and qi. If sq(qi) is a positive value,
then all objects within the sphere RX (q, sq(qi)) can be used to solve q. Also, the
k′ ≤ k objects within the sphere RX (q, sq(qi)) are the nearest neighbors of q [7].

The authors in [7,8] evaluated two algorithms for a cache system. Results
Cache (RCache) and Query Cache (QCache). Both algorithms use a hash table
H for storing query objects and their respective results. The RCache builds
a metric index M with the kNN object results of the queries stored in H. If
a query q is not found in H, an approximate similarity search kANNC(q, k)
over the metric index M is performed to find the k closest objects in M. The
QCache algorithm builds M by indexing query objects. The QCache algorithm
solves a kNN query q in an approximate way by merging the results of the
closest queries to q found in M. In [11] different similarity cache policies for
contextual advertising systems are evaluated. The cache is implemented on the
basis of a locality sensitive hashing (LSH) using a LRU replacement policy.
The authors in [13] presented the D-cache (distance cache), which stores pre-
computed distances between objects.

The work in [3] re-uses distance evaluations involved in cache miss operations
in order to produce good approximate results. If a cache miss occurs, the distance
evaluations performed by the cache lookup procedure are used for traversing the
index as fast as possible.

2.2 Approximate Nearest Neighbors Algorithms

An approximate answer consists of all those objects that are close to the current
query, but not all of them are the k closest objects. The approach presented
in [1] use the inverted files under the hypothesis that if two objects o1 and o2 are
very similar then their view of the surrounding space is also similar. To this end,
authors select a set of reference objects called permutants (representations of the

618 R. Solar et al.

surrounding space). Distances between objects are computed in an approximate
way by comparing the order of each component of the permutants vectors.

The work in [10] proposed indexing and searching algorithms using suffix
array (MSA) and a permutation-based index. In [6] a permutation-based index
called PP-Index is presented. The PP-index uses permutation prefixes to quickly
select a small set of candidate objects that can be close to the query.

In [12] the LSH approach is extended to general metric spaces. An object x
is inserted into L hash tables Hi. Each hash table Hi is accessed by means of
a hash function hci(x), such that x is stored in the position Hi[hci(x)] of each
hash table Hi. Each hash function h is associated with a Voronoi seed (ci). A
query search for q consists of applying L hash functions hci to q. Each object
from Hi[hci(q)] is stored as a candidate. Finally, only the k-NN objects from the
candidate set are returned as result.

Te work in [9] uses the LC index and it is devised for distributed search
engines. The approximate algorithm works as follows: (1) It determines the main
cluster ci, i.e. the cluster in which the query q lies, (2) It computes the safe radius
sf (rci − d(q, ci)), and search for similar objects within the query ball (q, sf)
by traversing the clusters of the LC that intersect (q, sf), and (3) The sf is
iteratively incremented by means of a parameter α given by the system engineer.
The algorithm stops when the M closest objects to q are founded. The remaining
k − M objects are approximate results. The algorithm is compared against the
QCache and the RCache. Results show that the proposal outperforms both state
of the art algorithms by 60 %.

3 Proposed SDCache Approach

The SDCache approach consists of two lists, one for static queries and another
for dynamic queries. Both lists are stored within a single LC index. Figure 1(b)
shows the general scheme, where red queries belong to the static cache and green
queries belong to the dynamic cache. Notice that the static cache can be built
and updated off-line when most frequent queries changes, without affecting the
performance of the current index.

Both static and dynamic cache lists cooperate directly and indirectly to
resolve a query. Direct cooperation happens when the object results of a cache
miss on the static cache are re-used for complementing the results obtained
with the dynamic cache (see Fig. 1(a)). Results obtained with the static and the
dynamic caches are merged to improve the quality of results. An indirect coop-
eration occurs when previously processed distance evaluations involved in a hit
miss on the static cache are re-used during the search process on the DCache.

To this end a LC index is kept in secondary memory. This index is built with
objects from the metric space database X . In main memory, a second smaller LC
index called M is used as a cache. The cache keeps the centers of the LC and their
covering radius (c, cr). Static and dynamic cached queries are inserted into M
and marked as read-only and read-write respectively (there are not duplicated
cached queries/objects in M). The approximate algorithm presented in [9] is
used to process incoming queries.

Evaluation of Static/Dynamic Cache for Similarity Search Engines 619

Algorithm 1 shows the main steps executed at running time. An auxiliary
data structure A is used to share the information (distance evaluations, can-
didate objects, etc.) between the static and the dynamic cache. In line 3, the
SCache is used to search for the query q. All possible results are stored in R.
Then, the topk results are build using the information stored in A and R. If
the quality of the results is good enough, the algorithm reports a HIT cache.
Otherwise, the search continues in the DCache re-using the information stored
in A. Finally, if the query is not found in the SDCache (the algorithm returns
a MISS cache), it is processed in the LC index. Afterwards, the query along its
top-k results are inserted into the DCache as follows. A query object is inserted
into the first cluster containing it, namely the first cluster which covering radius
covers the query object (d(q, c) < rc). In Fig. 1(b), q1 is inserted into (c0, rc0)
no matter its results are contained by others clusters of the LC. Queries in
the dynamic cache are removed/promoted depending on the replacement policy.
Results objects are efficiently managed with a hash table Hr. Empty clusters of
the cache are not explored during the search.

Fig. 1. Proposed SDCache lists scheme

In contrast to classical cache approaches, in a metric cache approach defining
a criteria to determine whether a cache hit occurs is not a trivial task. In this
work we propose a metric to measure the quality of a set of object results R(q),
based on the information of past queries that are currently stored in cache. The
proposed metric is R(q)r ≤ τ . The threshold τ is defined as τ = μr(C) + σr(C),
where μr(C) and σr(C) are the mean and the standard deviation of the radius of
the k-nearest neighbors to queries q ∈ C, that is kNNC(q, k). Then, if the covering
radius of the k results selected for an incoming query q, namely R(q)r ≤ τ we
report a hit for the query q. Notice that this metric prevents to retrieval results
which covers a large area of the metric space. On the contrary, it tends to report
cache hits for compact queries results.

Figure 1(c) shows an example of the proposed metric. The covering radius
of the incoming query qI1 is R(qI1)r = 2, 7 lower than τ = 4, 0 thus report-
ing a cache hit. However the incoming query qI2 reports a cache miss because
R(qI2)r > τ . In a static cache the value of τ is computed off-line. In a dynamic
cache the value of τ is updated at running time.

620 R. Solar et al.

Algorithm 1. SDCache Algorithm (q,K,M)
A ← Initialize(q, K) � A has its own distance table
topk ← ∅ � create an empty TopKResults
R ← Static.Index.Search(A, M) � static index search
topk ← SDCache.BuildTopK(A, R, topk)
if SDCache.SufficientQuality(topk) then

SDCache.Return(topk,HIT) � Static Cache Hit
else

R ← Dynamic.Index.Search(A, M) � dynamic index search (reusing A)
topk ← SDCache.BuildTopK(q, R, topk) � reusing topk

if SDCache.SufficientQuality(topk) then
SDCache.Return(topk,HIT) � Static Dynamic Cache Hit

end if
end if
SDCache.Return(topk,MISS) � Static Dynamic Cache Miss

4 Experimental Results

We performed experiments with cluster sizes {2500, 5000, 7500}. We also run
experiments with query logs Qlog of 250.000, 500.000 and 750.000 queries. The
algorithms presented the same tendency in each configuration. However, for lack
of space we show results for cluster size of 5000 and 750.000 queries. The LC index
is composed of 5.000.000 images obtained from [2]. We use the Euclidian distance
because it has intuitive meaning and the computation scales. It has reported
low performance only a few times with an underlying (cartesian) coordinate
system [14] which is not the case of our dataset. We used the following metrics:
the relative error on the maximal distance REM = maxx∈Rhit

d(q,x)

rq
− 1.0, the

relative error on the sum of distances RES =
∑

x∈Rhit
d(q,x)

∑
y∈kNN d(q,y) − 1.0, where Rhit

is the approximate result obtained from a cache hit, rq is the query radius and
k − NN are the k nearest neighbor objects retrieve from the index. We also
evaluated the traditional F-measure or balanced F-score (F1 score) computed
as F1 = 2 × precision×recall

precision+recall . It can be interpreted as a weighted average of the
precision and recall, where an F1 score reaches its best value at 1 and worst
score at 0. To better illustrate the results we show normalized results (we divide
each value by the maximum reported in the experiment). First we evaluate the
performance of the SCache and the DCache individually, then we present results
for the hierarchical cooperation.

Query log analysis is a crucial factor for improving the effectiveness of static
cache. In this work, we propose several strategies used to select a suitable set
of queries to be stored in the static cache, which take advantage of past queries
typically saved along its k nearest objects results in a query log Qlog:

simulated cache (simcache): an index M for the SDCache is built with a
sub-set of queries in Qlog. Next, a search is performed in M for all q in
Qlog (we explicitly avoid retrieving q as exact result). If a cache hit occurs

Evaluation of Static/Dynamic Cache for Similarity Search Engines 621

(namely R(q)r ≤ τ), all queries involved in a cache result R(q) are stored in
a priority queue PQ. The most frequent queries in PQ are used to build the
static cache. This approach tends to keep popular queries in the SCache.

k-means: we use the k-means algorithm in a recursive fashion by partitioning
Qlog into two clusters until obtaining Nq queries as candidates for caching.
Query candidates are stored in a priority queue which will be used to build
the static LC cache.

lc-centers: this approach consists of using the center selection heuristic of the
LC, which maximize the sum of distances to previously selected center, to
determine which queries must be cached. The center selection heuristic is
recursively applied by partitioning Qlog into equal-sized clusters until obtain-
ing Nq queries for caching.

wse query log (wseqlog): each object of the query log Qlog is matched with a
text query of a real web search engine query log Wlog. Most frequent queries
are selected to be part of the static LC cache. The main idea of this approach
is to imitate the behavior of real users.

Replacement policies are used for determining which query along its k results
must be evicted from the dynamic cache. In this work, we evaluate the following
replacement policies for dynamic cache: (a) maxsf: promotes the query qc ∈ M
which maximizes the safe radius to the new query q; and (b) promall: promotes
all queries qc ∈ M which k nearest results are part of the result for the new
query being processed.

4.1 Evaluation of the Static Cache

In this section we present experimental results for the static cache (SCache)
using the query selection strategies described above. In addition, we compare
our proposal with a LSH implementation of a static cache.

Table 1. Number of LC clusters with cached queries.

Strategy Clusters μq(LC) σq(LC)

1GB 2 GB 1 GB 2 GB 1GB 2 GB

simcache 796 1109 13.47 27.56 14.28 31.06

wseqlog 1594 1660 3.23 6.85 1.66 2.55

lc-centers 1461 1651 3.96 7.57 3.55 5.45

k-means 1491 1637 4.31 9.23 3.85 7.94

Figure 2(a) shows the normalized number of distance evaluations reported
with the SCache. We observe that strategies based on k-means, wseqlog and
lc-centers perform similar number of distance evaluations. These strategies tend
to cover a larger area of the metric space. Each cluster of the LC allocates few

622 R. Solar et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1GB 2GB 1GB 2GB 1GB 2GB 1GB 2GB

di
st

an
ce

 e
va

lu
at

io
ns

simcache
k-means
wseqlog

lc-centers

(a)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1GB 2GB 1GB 2GB 1GB 2GB 1GB 2GB 1GB 2GB

F
1

sc
or

e

simcache
k-means
wseqlog

lc-centers
lsh forest

(b)

Fig. 2. (a) Distance evaluations and (b) F1 score

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

1GB 2GB 1GB 2GB 1GB 2GB 1GB 2GB 1GB 2GB

re
m

simcache
k-means
wseqlog

lc-centers
lsh forest

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

1GB 2GB 1GB 2GB 1GB 2GB 1GB 2GB 1GB 2GB

re
s

simcache
k-means
wseqlog

lc-centers
lsh forest

(b)

Fig. 3. Relative errors reported by the SCache: (a) REM and (b) RES

queries as shown in Table 1. In other words, cached queries are distributed among
a large number of clusters. Thus a more aggressive prune is performed, due to
incoming queries are compared with a few number of cached queries when the
cluster satisfying d(q, c) < rc is visited.

The simcache-based strategy selects popular queries to be cached, and those
queries tend to be allocated in a few number of LC clusters. Thus, on the con-
trary to other strategies, incoming queries are compared with a large number of
cached queries when the cluster satisfying d(q, c) < rc is visited, according to
the approximate search algorithm presented in [9].

Figure 2(b) shows the F1 score reported by the SCache. As expected, the sim-
cache selection strategy presents high F1 score and very low REM and RES val-
ues (in Fig. 3) because queries stored in the cache are very popular, which allows
more accurate cache hits. The k-means strategy also reports a good F1 score
and low REM and RES errors. That is because the metric space is partitioned
with hyperplanes recursively, thus cached queries tend to be evenly spread in the
space. Table 1 shows that the k-means strategy is the second strategy with larger
μq(LC) values. Regarding the wseqlog-based and the lc-centers-based strategies,

Evaluation of Static/Dynamic Cache for Similarity Search Engines 623

REM values are close to 10% with a cache of 1 GB and 6% with a cache of 2 GB.
RES values are close to 14% and 9% respectively.

On the other hand, the state of the art LSH approximate search strategy
reports a low F1 score and the highest REM and RES errors. Notice that the
LSH does not report distance evaluations, because a hash function is computed
for each incoming query to determine the bucket with objects reporting the same
value for the hash function. According to the hash function, that bucket contains
objects that can be similar to the query.

4.2 Evaluation of the Dynamic Cache

In this section we present experimental results obtained for the DCache. We
compare the results achieved by our proposal with the results reported by the
LSH strategy implemented for a dynamic cache.

Figure 4(a) shows that both replacement strategies reports similar number
of distance evaluations. Figure 4(b) shows that the promall strategy slightly
improves the maxsf by 3 %. The LSH reports the lowest F1 score values around
0.06.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1GB 2GB 1GB 2GB

di
st

an
ce

 e
va

lu
at

io
ns

promall
maxsf

(a)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1GB 2GB 1GB 2GB 1GB 2GB

F
1

sc
or

e

promall
maxsf

lsh forest

(b)

Fig. 4. (a) Normalized number of distance evaluations and (b) F1 score

Figure 5 shows the values obtained for REM and RES errors. There are no
major differences between results achieved by the promall and the maxsf replace-
ment strategies. However, the LSH strategy has very high errors as it depends
on a hash function to gather queries that are going to be selected as similar for a
given query. The other strategies select similar results objects for queries based
on distance evaluations. Thus, there is a trade-off between LSH and strategies
based on distance evaluations. Reducing the computation cost, with the LSH,
has the disadvantage of reducing the quality of results.

4.3 Evaluation of the Hierarchical SDCache

In this section we present experimental results of the cooperation achieved by
our SDCache strategy and we compare them with results obtained from isolated

624 R. Solar et al.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1GB 2GB 1GB 2GB 1GB 2GB

re
m

promall
maxsf

lsh forest

(a)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1GB 2GB 1GB 2GB 1GB 2GB

re
s

promall
maxsf

lsh forest

(b)

Fig. 5. Relative errors reported by the DCache: (a) REM and (b) RES

executions of the SCache and DCache strategies (Baseline). In both cases, the
SCache was implemented with the k-means selection strategy, because it reports
a low number of distance evaluations, presents a good F1 score (85 %), and
low REM and RES values. The DCache was implemented with the promall
replacement mechanism because results, in previous sections, showed that it
tends to improve the performance of the DCache.

Figure 6(a) shows the normalized number of distance evaluations reported by
the SDCache and the Baseline strategies. The bars corresponding to the Baseline
are composed by the sum of distance evaluated in the SCache plus the distance
evaluated in the DCache. The SDCache strategy decreases by 13.05% the total
number of distance evaluations performed in the Baseline using a cache of 1 GB
and by 14.96% when using a cache of 2 GB.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1GB 2GB 1GB 2GB

di
st

an
ce

 e
va

lu
at

io
ns

SDCache

SCache
DCache

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1GB 2GB 1GB 2GB

hi
t r

at
io

SDCache

only SCache
Intersection between SCache and DCache

only DCache

(b)

Fig. 6. (a) Distance evaluations and (b) cache hits ratio reported by the SDCache and
the baseline strategies

Figure 6(b) shows cache hits rates. The bars corresponding to the Baseline
are composed by three sections: query hits obtained with the SCache (bottom);
intersection of the query hits reported by the SCache and the DCache (middle);

Evaluation of Static/Dynamic Cache for Similarity Search Engines 625

query hits reported by the DCache. This experiment shows the effect of re-using
the distance evaluations and the results of static cache miss operations. In other
words, the number of SDCache hits is greater than the sum of hits reported by
the SCache and the DCache working independently. The benefit of the SDCache
is about 41.27% with a cache of size 1 GB and 36.79% with a cache size of 2 GB.

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

1GB 2GB 1GB 2GB

re
m

SDCache

Baseline

(a)

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

1GB 2GB 1GB 2GB

re
s

SDCache

Baseline

(b)

Fig. 7. Relative errors reported by the SDCache and the baseline strategies (a) REM
and (b) RES

Figure 7 shows the REM and RES errors reported by the SDCache and the
Baseline strategies. For the Baseline, errors are computed as the average of the
error reported by the SCache and the DCache treated independently. As shown
in Fig. 7(a), the SDCache reduces the value of REM by 18 % in average. On the
other hand, Fig. 7(b) shows that the SDCache reduces by 10 % in average the
value of RES. From Fig. 7 we conclude that SDCache results are good enough
in terms of the query results quality.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1GB 2GB 1GB 2GB

F
1

sc
or

e

SDCache

Baseline

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

1GB 2GB 1GB 2GB

di
sc

ou
nt

ed
 c

um
m

ul
at

iv
e

ga
in SDCache

Baseline

(b)

Fig. 8. (a) F1 score and (b) DCG reported by the SDCache and the baseline strategies

Figure 8(a) shows the F1 score achieved by both metric cache schemes. The
Baseline F1 score is computed as the average of the F1 scores reported by the

626 R. Solar et al.

SCache and the DCache. Results are very similar for both schemes. There is a
slightly disadvantage for the SDCache of 1.25% with a cache of 1 GB and of
0.97% with a cache of 2 GB. Nevertheless, this small loss in terms of F1 score is
negligible in comparison with the benefits obtained in terms of cache hits (see
Fig. 6(b)) and number of distance evaluations (see Fig. 6(a)). Finally, Fig. 8(b)
shows the Discounted cumulative gain (DCG) which measures the usefulness
(gain) of an object based on its relevance and position in the result list. It reaches
its best value at 1. In this case, both evaluated strategies present similar results.
However, the Baseline slightly improves the proposal by 1.12% in average.

5 Conclusions

A cache mechanism is a fundamental component of modern search engines which
aims to reduce query response times in high-query traffic scenarios. Top-down
cooperation between components of hierarchical cache levels is a suitable scheme
when it comes to similarity search. In this work we presented a Static/Dynamic
cache based on the List of Cluster which takes advantage of the hit miss achieved
by queries in the higher level of the cache scheme. We also proposed a simple
but effective hit metric based on the mean value of the radius of cached queries.

Our proposal was evaluated with different strategies for selecting queries to
be allocated in the static and dynamic caches. Results show that our coopera-
tive hierarchical scheme can be easily adapted to different selection/replacement
strategies reporting a higher effectiveness than the state of the art LSH. Fur-
thermore, our scheme drastically reduces the number of distance evaluation per-
formed by cache structures working independently.

Acknowledgment. Powered@NLHPC: This research was partially supported by the
supercomputing infrastructure of the NLHPC (ECM-02). The authors would also like
to thank to Basal funds FB0001, Conicyt, Chile; and Veronica Gil-Costa also thanks
to PICT-2014-1146.

References

1. Amato, G., Gennaro, C., Savino, P.: MI-File: using inverted files for scalable
approximate similarity search. Multimedia Tools Appl. 71(3), 1333–1362 (2014)

2. Bolettieri, P., Esuli, A., Falchi, F., Lucchese, C., Perego, R., Piccioli, T.,
Rabitti, F.: CoPhIR: a Test Collection for Content-Based Image Retrieval. CoRR,
abs/0905.4627v2 (2009). http://cophir.isti.cnr.it

3. Brisaboa, N.R., Cerdeira-Pena, A., Gil-Costa, V., Marin, M., Pedreira, O.: Effi-
cient similarity search by combining indexing and caching strategies. In: Italiano,
G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.)
SOFSEM 2015. LNCS, vol. 8939, pp. 486–497. Springer, Heidelberg (2015)

4. Chavez, E., Navarro, G.: An effective clustering algorithm to index high dimen-
sional metric spaces. In: SPIRE, p. 75 (2000)

5. Chierichetti, F., Kumar, R., Vassilvitskii, S.: similarity caching. In: PODS, pp.
127–136 (2009)

http://cophir.isti.cnr.it

Evaluation of Static/Dynamic Cache for Similarity Search Engines 627

6. Esuli, A.: Use of permutation prefixes for efficient and scalable approximate simi-
larity search. IPM J. 48, 889–902 (2012)

7. Falchi, F., Lucchese, C., Orlando, S., Perego, R., Rabitti, F.: A metric cache for
similarity search. In: LSDS-IR, pp. 43–50 (2008)

8. Falchi, F., Lucchese, C., Orlando, S., Perego, R., Rabitti, F.: Similarity caching in
large-scale image retrieval. IPM J. 48, 803–818 (2012)

9. Gil-Costa, V., Marin, M.: Approximate distributed metric-space search. In: LSDS-
IR, pp. 15–20 (2011)

10. Mohamed, H., Marchand-Maillet, S.: Permutation-based pruning for approximate
K-NN search. In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds.)
DEXA 2013, Part I. LNCS, vol. 8055, pp. 40–47. Springer, Heidelberg (2013)

11. Pandey, S., Broder, A., Chierichetti, F., Josifovski, V., Kumar, R., Vassilvitskii, S.:
Nearest-neighbor caching for content-match applications. In: WWW, pp. 441–450
(2009)

12. Silva, E., Teixeira, T., Teodoro, G., Valle, E.: Large-scale distributed locality-
sensitive hashing for general metric data. In: Traina, A.J.M., Traina, Jr., C.,
Cordeiro, R.L.F. (eds.) SISAP 2014. LNCS, vol. 8821, pp. 82–93. Springer, Heidel-
berg (2014)

13. Skopal, T., Lokoc, J., Bustos, B.: D-Cache: universal distance cache for metric
access methods. TKDE 24, 868–881 (2012)

14. Walters-Williams, J., Li, Y.: Comparative study of distance functions for nearest
neighbors. In: Advanced Techniques in Computing Sciences and Software Engi-
neering, pp. 79–84 (2010)

Author Index

Angelini, Patrizio 134
Aydinian, Harout 148

Barhum, Kfir 161
Barták, Roman 171
Belhajjame, Khalid 81
Bendkowski, Maciej 183
Bezirgiannis, Nikolaos 433
Bianchi, Maria Paola 195
Bielikova, Maria 556
Bille, Philip 208
Böckenhauer, Hans-Joachim 195
Bodlaender, Hans L. 95
Brada, Premek 457
Brassard, Gilles 3
Brülisauer, Tatjana 195
Burjons, Elisabet 229

Cambronero, María-Emilia 490
Cemus, Karel 445
Cerny, Tomas 445, 518
Cho, Da-Jung 241
Cicalese, Ferdinando 148

Da Lozzo, Giordano 134
Damaschke, Peter 569
Danek, Jakub 457
de Boer, Frank S. 217, 433
de Carvalho, Veronica Oliveira 505, 580
de Gouw, Stijn 217
de Padua, Renan 505, 580
Deppe, Christian 148
Di Bartolomeo, Marco 134
Di Donato, Valentino 134
Díaz, Gregorio 490
Dimitrijevs, Maksims 253
Dobrev, Stefan 265
Donahoo, Michael J. 445, 518

Embury, Suzanne M. 81

Farkaš, Tomáš 469
Fernandes, Alvaro A.A. 81

Gallay, Ladislav 532
Gazda, M.W. 277
Gehrke, Jan Clemens 290
Gil-Costa, V. 615
Goedicke, Michael 43
Gørtz, Inge Li 208
Grygiel, Katarzyna 183

Han, Yo-Sub 241
Hassan, Adel 478
Holtappels, Sebastian 43
Hoogeveen, Han 95
Hromkovič, Juraj 161, 229, 265
Hyyrö, Heikki 302

Imai, Tatsuya 17
Inenaga, Shunsuke 302

Jain, Sanjay 29
Janin, David 314
Jansen, Klaus 290, 329
Jawaherul Alam, M. 107, 121

Kaluza, Maren 329
Kan, Haibin 418
Kaufmann, Michael 107
Kobourov, Stephen G. 107, 121
Komm, Dennis 195, 265
Košút, Matúš 544
Kraft, Stefan E.J. 290
Královič, Rastislav 265
Královič, Richard 265
Kravchenko, Dmitry 344
Kubán, Peter 469
Kurganskyy, Oleksiy 356
Kwee, Kent 369

Land, Felix 329
Lebedev, Vladimir 148
Lescanne, Pierre 183
Llana, Luis 490
Lucká, Mária 469
Lv, Yi 404

Marín, M. 615
Maskat, Ruhaila 81
Matl, Lubos 445
Mogren, Olof 569
Mömke, Tobias 265
Mondal, Debajyoti 121
Moro, Robert 556
Muhammad, Azam Sheikh 569
Muñoz, Xavier 229

Nahimovs, Nikolajs 344, 381
Ng, Timothy 241
Niehren, Joachim 602

Otto, Friedrich 369
Oussalah, Mourad 478

Palano, Beatrice 195
Palpanas, Themis 63
Paton, Norman W. 81
Patrignani, Maurizio 134
Potapov, Igor 356

Rezende, Solange Oliveira 505, 580
Rivosh, Alexander 344, 381
Roselli, Vincenzo 134
Rychlicki-Kicior, Krzysztof 592

Salomaa, Kai 241
Schikowski, Jakob 290

Sebastian, Tom 602
Šimko, Marián 532, 544
Skjoldjensen, Frederik Rye 208
Skorski, Maciej 392
Solar, R. 615
Stasiak, Bartłomiej 592
Stephan, Frank 29
Striewe, Michael 43

Tollis, Ioannis G. 134

Unger, Walter 229

van den Akker, Marjan 95
van Dijk, Thomas C. 95
van Ommeren, Erik 95
Vangel, Mate 556
Varró, Dániel 51

Wang, Chao 404
Watanabe, Osamu 17
Willemse, T.A.C. 277
Wu, Peng 404

Yatsymirskyy, Mykhaylo 592
Yuan, Chen 418

Zaionc, Marek 183
Zhang, Liyu 418

630 Author Index

	Preface
	Organization
	Contents
	Foundations of Computer Science (Invited Talks)
	Cryptography in a Quantum World
	1 Introduction
	2 The Case of Classical Codemakers Against Classical Codebreakers
	3 The Unfair but Realistic Case of Classical Codemakers Against Quantum Codebreakers
	4 Allowing Codemakers to Use Quantum Computation
	5 Allowing Codemakers to Use Quantum Communication
	References

	Relating Sublinear Space Computability Among Graph Connectivity and Related Problems
	1 Introduction and Preliminaries
	2 Length Bounded Undirected Graph Connectivity
	3 Another Example: Two Vertex Distance Problem
	4 Concluding Remarks
	References

	Learning Automatic Families of Languages
	1 Introduction
	2 Characterization of Learnability of Autmatic Classes
	3 Automatic Learners
	4 Automatic Learning from Fat Text
	5 Negative Counterexamples
	6 Parallel Learning of Automatic Classes
	7 Robust Learning of Automatic Classes
	References

	Software Engineering: Methods, Tools, Applications (Invited Talks)
	From ESSENCE to Theory Oriented Software Engineering
	1 Introduction
	2 Formal Graph-Based Dynamic Semantics for Essence
	3 Applications
	3.1 Language and Kernel Analysis
	3.2 Practice and Method Analysis
	3.3 Endeavour Analysis

	4 Related Work
	5 Conclusion
	References

	Incremental Queries and Transformations: From Concepts to Industrial Applications
	1 Software Tools in Model-Based Systems Engineering
	2 Incremental Model Queries in EMF-IncQuery
	3 VIATRA: A Reactive Transformation Platform
	4 Selected Recent Applications
	5 Related Work
	6 Conclusions
	References

	Data, Information, and Knowledge Engineering (Invited Talks)
	Big Sequence Management: A glimpse of the Past, the Present, and the Future
	1 Introduction
	2 The Past: Summarizations and Indexes
	2.1 On Data Series Queries
	2.2 On Data Series Summarizations
	2.3 On Data Series Indexing
	2.4 On the iSAX Summarization and Family of Indexes

	3 The Present: Adaptive Indexing
	3.1 The ADS+ Index

	4 The Future: Sequence Management System
	4.1 Data Model
	4.2 Data Structures
	4.3 Distributed Processing
	4.4 Cost Based Optimization
	4.5 Data Series Benchmarking

	5 Conclusions
	References

	Pay-as-you-go Data Integration: Experiences and Recurring Themes
	1 Introduction
	2 Data Integration
	3 Pay-as-you-go Data Integration
	4 Pay-as-you-go Case Studies
	4.1 Mapping Selection
	4.2 Entity Resolution
	4.3 Grouping Users

	5 Conclusions
	References

	Foundations of Computer Science (Regular Papers)
	Robust Recoverable Path Using Backup Nodes
	1 Introduction
	2 Polynomial-Time Algorithm for Many-to-Many Backup
	3 Exponential-Time Algorithms
	4 Backup Assignment
	4.1 Polynomial Cases
	4.2 Exponential-Time Algorithm

	5 Conclusion
	References

	On Contact Graphs with Cubes and Proportional Boxes
	1 Introduction
	2 Preliminaries
	3 Representations for Planar 3-Trees
	4 Cube-Contacts for Nested Maximal Outerplanar Graphs
	4.1 Cube-Contact Representation for Extended Pieces
	4.2 Cube-Contact Representation for a Nested Maximal Outerplanar Graph

	5 Proportional Box-Contacts for Nested Outerplanar Graphs
	6 Conclusions and Future Work
	References

	Orthogonal Layout with Optimal Face Complexity
	1 Introduction
	1.1 Optimization Goals and Challenges
	1.2 Our Contributions

	2 Strict-Orthogonal Drawing Algorithms for Plane Graphs
	2.1 Orthogonal Drawing Using Angle Assignment
	2.2 Bipartite Graph Matching Formulation
	2.3 General Orthogonal Drawing with a Given Face-Complexity

	3 NP-Hardness for Planar Graphs
	4 Conclusion
	References

	L-Drawings of Directed Graphs
	1 Introduction
	2 Preliminaries
	3 Complexity of the MILD Problem
	4 A Polynomial On-Line Algorithm
	5 Experimental Evaluation
	5.1 An Integer Linear Programming Formulation
	5.2 Random Generation of the Graphs Suites
	5.3 Results of the Experiments

	6 Conclusions and Open Problems
	References

	A Combinatorial Model of Two-Sided Search
	1 Introduction
	2 Optimal Strategies for Cycles and Paths
	3 Trees
	4 Optimal Strategies When the Target Is Restricted
	5 Concluding Remarks
	References

	On the Power of Laconic Advice in Communication Complexity
	1 Introduction
	1.1 Communication Complexity with Advice
	1.2 Our Contribution

	2 Preliminaries
	3 Equality with a Laconic Advice
	3.1 A Basic Protocol
	3.2 A Protocol Using a Polylogarithmic Number of Communication Bits

	4 Divisibility
	4.1 On the Asymmetry of Divisibility
	4.2 An Almost Matching Lower Bound in Restricted Settings

	References

	Using Attribute Grammars to Model Nested Workflows with Extra Constraints
	1 Introduction
	2 Background
	2.1 Nested Worfkflows
	2.2 Constraint Satisfaction
	2.3 Attribute Grammars

	3 Translating Nested Networks to Attribute Grammars
	3.1 Translation of the Nested Structure
	3.2 Translation of Extra Constraints
	3.3 Soundness of Translation

	4 Conclusions
	References

	A Natural Counting of Lambda Terms
	1 Introduction
	1.1 Notation

	2 Lambda Terms
	2.1 Counting -terms with Natural Size
	2.2 Holonomic Presentation of L
	2.3 Counting Terms with Bounded Number of Free Indices
	2.4 Counting -terms with Another Notion of Size

	3 E-free Black-White Binary Trees
	3.1 Recursive Description
	3.2 Bijection Between -terms and Black-White Trees

	4 Binary Trees Without Zigzags
	4.1 Bijection Between Black-White Trees and Zigzag-Free Trees

	5 Counting -terms Containing Fixed Subterms
	References

	Online Minimum Spanning Tree with Advice
	1 Introduction
	2 Preliminaries
	3 Optimality
	3.1 General Graphs
	3.2 Graphs with Bounded Edge Weights
	3.3 Ladders
	3.4 Further Special Graph Classes

	4 Competitiveness
	5 Randomized Online Algorithms
	References

	Subsequence Automata with Default Transitions
	1 Introduction
	2 Preliminaries
	3 New Trade-Offs for Subsequence Automata
	3.1 Level Automaton
	3.2 Alphabet-Aware Level Automaton
	3.3 Full Trade-Off

	4 Subsequence Automata for Multiple Strings
	References

	Run-Time Checking Multi-threaded Java Programs
	1 Introduction
	2 Extending the Framework
	2.1 Multi-threaded Events
	2.2 Grammars and Interference Freedom

	3 Multi-threaded Perspectives
	3.1 Combining the Views

	4 Tool Architecture
	4.1 Meta-Program
	4.2 Monitoring and Interference
	4.3 Parser Generator and Assertion Checker

	5 Conclusion
	References

	Online Graph Coloring with Advice and Randomized Adversary
	1 Introduction
	2 Upper Bound on the Competitive Ratio of the Online Coloring Problem
	3 Lower Bound
	3.1 Idea of the Proof
	3.2 Construction of Gs and the Corresponding 2s Problem Instances
	3.3 Lower Bounds

	References

	Pseudoknot-Generating Operation
	1 Introduction
	2 Preliminaries
	3 Algorithms for Recognizing Generated Pseudoknots
	4 Pseudoknot-Generating Operation on Languages
	4.1 Closure and Decision Properties of the Pseudoknot-Generating Operation
	4.2 Pseudoknot-Free Languages

	5 Conclusions
	References

	Capabilities of Ultrametric Automata with One, Two, and Three States
	1 Introduction
	2 p-adic Numbers
	3 Definitions of Ultrametric Automata
	4 Ultrametric Automata with One State
	5 Ultrametric Automata with Two States
	6 Ultrametric Automata with Three States
	7 Summary
	References

	The Complexity of Paging Against a Probabilistic Adversary
	1 Introduction
	2 Our Contribution
	3 Results
	4 Conclusion
	References

	On Parity Game Preorders and the Logic of Matching Plays
	1 Introduction
	2 Preliminaries
	3 Inducing Parity Game Preorders and Equivalences
	4 Applications
	4.1 Existing Parity Game Relations
	4.2 Two New Parity Game Relations

	5 Logical Characterisations of Parity Game Relations
	5.1 A Modal Logic for Parity Games
	5.2 Characterising Preorders Using AHML

	6 Conclusions
	References

	A PTAS for Scheduling Unrelated Machines of Few Different Types
	1 Introduction
	1.1 Known Results
	1.2 Our Result
	1.3 Techniques
	1.4 General Remarks and Notation

	2 Preprocessing of the Instance
	3 The Main Algorithm
	3.1 Approximating the Optimum by Binary Search
	3.2 The Oracle
	3.3 Dynamic Programming
	3.4 Construction of a Schedule

	4 The General PTAS
	5 Concluding Remarks
	References

	Compacting a Dynamic Edit Distance Table by RLE Compression
	1 Introduction
	2 Preliminaries
	3 The Dynamic Edit Distance Table
	4 Edit Distance of RLE Compressed Strings
	5 Dynamic Edit Distance Table for RLE Strings
	5.1 Processing Black Boxes
	5.2 Processing White Boxes

	References

	Walking Automata in Free Inverse Monoids
	1 Introduction
	2 Graphs
	3 Walking on Graphs
	4 Walking in Cayley's Graphs of Groups
	5 Conclusion
	References

	Precedence Scheduling with Unit Execution Time is Equivalent to Parametrized Biclique
	1 Introduction
	2 Lower Bounds for Precedence Constrained Scheduling
	3 Precedence Constrained Scheduling and Biclique
	A Example for the Modified Ullman Reduction
	B Modifiing the Biclique Instance to One with the Needed Property
	C Alternative Reduction from Biclique to the Scheduling Problem Without Chains
	References

	Grover's Search with Faults on Some Marked Elements
	1 Introduction
	2 Technical Preliminaries
	3 Model and Results
	4 Analysis of the Algorithm
	4.1 No Faulty Marked Items
	4.2 One Faulty Marked Item
	4.3 Proof of Theorem1

	5 Summary and Open Problems
	References

	Reachability Problems for PAMs
	1 Introduction
	2 Preliminaries and Notations
	3 Decidability Using p-Adic Norms
	4 PAM Representation of -Expansions
	5 Density of Orbits and its Geometric Interpretation
	References

	On the Effects of Nondeterminism on Ordered Restarting Automata
	1 Introduction
	2 Ordered Restarting Automata
	3 Closure Properties
	4 Stateless ORWW-Automata
	5 Concluding Remarks
	References

	Quantum Walks on Two-Dimensional Grids with Multiple Marked Locations
	1 Introduction
	2 Quantum Walks in Two Dimensions
	3 Results
	3.1 Grouped and Distributed Placements of Marked Locations
	3.2 Evolution of Amplitudes of Near-By Marked Locations
	3.3 Filled and Perimeter Configurations of Marked Locations

	4 Conclusions and Discussion
	References

	How to Smooth Entropy?
	1 Introduction
	1.1 Entropy Smoothing
	1.2 Related Works and Our Contribution
	1.3 Tight No-Go Results for Extracting from Stateless Shannon Sources
	1.4 Organization

	2 Preliminaries
	2.1 Basic Definitions
	2.2 Technical Facts

	3 Proof of Theorem 1
	4 Proof of Theorem 2
	4.1 Characterizing Extractable Entropy
	4.2 Determining the Threshold t
	4.3 Putting This All Together

	References

	Bounded TSO-to-SC Linearizability Is Decidable
	1 Introduction
	2 Concurrent Systems
	2.1 Notations
	2.2 Libraries and Client Programs
	2.3 TSO Operational Semantics

	3 Correctness Conditions and Equivalent Characterization
	4 Perfect/Lossy Channel Machines
	5 Verification of k-Bounded TSO-to-SC Linearizability
	5.1 Marked Violation of (k-Bounded) TSO-to-SC Linearizability
	5.2 Simulating [[Clt (L), n+1]]tso with A Channel Machine
	5.3 Reducing to a Control State Reachability Problem

	6 Conclusion and Future Work
	References

	Probabilistic Autoreductions
	1 Introduction
	2 Definitions and Notations
	3 RP Many-One Autoreductions
	4 BPP Truth-Table Autoreductions
	References

	Software Engineering: Methods, Tools, Applications (Regular Papers)
	ABS: A High-Level Modeling Language for Cloud-Aware Programming
	1 Introduction
	2 ABS Language and its Cloud Extension
	2.1 Extending to the Cloud

	3 Implementation
	4 Experimental Results
	5 Related Work
	6 Conclusion and Future Work
	References

	Aspect, Rich, and Anemic Domain Models in Enterprise Information Systems
	1 Introduction
	2 Cross-Cutting Concerns
	3 Design Approaches and Domain Models
	3.1 Anemic Domain Model in the Three-Layered Architecture
	3.2 Aspect Domain Model
	3.3 Rich Domain Model

	4 Case Study
	4.1 Assumptions
	4.2 Model Efficiency
	4.3 Concerns Representation
	4.4 Usage Efforts
	4.5 Threats to Validity

	5 Related Work
	6 Conclusion
	References

	Finding Optimal Compatible Set of Software Components Using Integer Linear Programming
	1 Introduction
	1.1 Motivation

	2 Related Work
	3 The Search-Optimization Approach
	3.1 Component Representation
	3.2 Search Model
	3.3 Building an Integer Linear Programming Model

	4 Evaluation of the Approach
	4.1 Simulation Scenarios
	4.2 Results and Discussion

	5 Conclusion
	References

	Effective Parallel Multicore-Optimized K-mers Counting Algorithm
	1 Introduction
	2 Problem Formulation and Related Work
	3 Proposal of the Algorithm
	3.1 Data Distribution Phase
	3.2 Group Processing Phase
	3.3 Frequencies Counting

	4 Experiments and Results
	5 Conclusions and Future Work
	References

	Meta-Evolution Style for Software Architecture Evolution
	1 Introduction
	2 Related Work
	2.1 The Garlan et al. Evolution Style
	2.2 The Cuesta et al. Evolution Style
	2.3 The Oussalah et al. Evolution Style

	3 Software Architecture Evolution: Modeling and Style
	3.1 Meta-Evolution Style for Software Architecture Evolution

	4 Meta-Modeling and Transformation
	4.1 Vertical Mapping
	4.2 Horizontal Mapping
	4.3 MES and Evolution Styles Comparison

	5 Conclusions
	References

	The Simulation Relation for Formal E-Contracts
	1 Introduction
	2 The Visual Model for E-Contracts: C-O Diagrams
	3 The Language
	3.1 Operational Semantics

	4 Simulation Semantics
	5 Complete Example
	6 Conclusion and Future Work
	References

	Data, Information, and Knowledge Engineering (Regular Papers)
	Solving the Problem of Selecting Suitable Objective Measures by Clustering Association Rules Through the Measures Themselves
	1 Introduction
	2 Related Works
	3 The Proposed Process
	4 Experiments
	5 Results and Discussion
	6 Conclusion
	References

	Survey on Concern Separation in Service Integration
	1 Introduction
	2 Background
	3 Analysis and Discussion on Concern Separation in Services
	4 Design and References to Concern-Separating Approaches
	5 Conclusion
	References

	Utilizing Vector Models for Automatic Text Lemmatization
	1 Introduction
	2 Related Work
	3 Utilizing Vector Model for Lemmatization
	3.1 Relevant Reference Pairs Selection
	3.2 Lemma Candidates Retrieval
	3.3 Lemma Candidate Weight Computation
	3.4 Lemma Selection

	4 Evaluation
	4.1 Experimental Setup
	4.2 Assessing Relevant Reference Pair Selection Variant
	4.3 Assessing Weight Computation Algorithms
	4.4 Assessing Number of Reference Pairs Involved
	4.5 Assessing Lemmatization Candidate Weight Impact

	5 Conclusions
	References

	Improving Keyword Extraction from Movie Subtitles by Utilizing Temporal Properties
	1 Introduction
	2 Related Work
	3 Method for Keywords Extraction from Movie Subtitles
	4 Evaluation
	4.1 Comparison with the Gold Standard
	4.2 User Experiment

	5 Conclusions
	References

	Identification of Navigation Lead Candidates Using Citation and Co-Citation Analysis
	1 Introduction
	2 Identification of Keywords in Digital Libraries
	2.1 Specifics and Similarities Between Digital Libraries and the Web
	2.2 Domain Modeling in Annota

	3 Method of Keyword Extraction Using (Co-)Citation Analysis
	4 Evaluation
	5 Related Work
	6 Discussion and Conclusions
	References

	Summarizing Online User Reviews Using Bicliques
	1 Introduction
	2 Preliminaries
	3 Overall Idea
	4 Implementation Details
	5 Processing Time
	6 Experimental Results
	6.1 Dataset
	6.2 Evaluation Method and Baseline Selection
	6.3 Results
	6.4 Discussion

	7 Conclusions
	References

	Post-processing Association Rules: A Network Based Label Propagation Approach
	1 Introduction
	2 Background and Related Works
	3 PARLP: Post-processing Association Rules Using Label Propagation
	4 Experiments
	5 Results and Discussion
	6 Conclusion
	References

	Application of Multiple Sound Representations in Multipitch Estimation Using Shift-Invariant Probabilistic Latent Component Analysis
	1 Introduction
	2 Known Approaches
	2.1 Methods of Sound Representation Analysis

	3 Research Database
	4 Proposed Solution
	4.1 Constant-Q Transform
	4.2 Cepstrum
	4.3 SI-PLCA
	4.4 The Judge

	5 Results
	6 Conclusions
	References

	Projection for Nested Word Automata Speeds up XPath Evaluation on XML Streams
	1 Introduction
	2 Nested Word Automata
	3 Projection NWAs
	4 Irrelevant Labels and Prefixes of Nested Words
	5 Projection from Nwas to PNwas
	6 Experiments
	References

	Evaluation of Static/Dynamic Cache for Similarity Search Engines
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Metric Cache
	2.2 Approximate Nearest Neighbors Algorithms

	3 Proposed SDCache Approach
	4 Experimental Results
	4.1 Evaluation of the Static Cache
	4.2 Evaluation of the Dynamic Cache
	4.3 Evaluation of the Hierarchical SDCache

	5 Conclusions
	References

	Author Index

