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Abstract. This paper applied an integrated spatial regression model to explore
the associations between ten environmental variables and the highly pathogenic
avian influenza (HPAI). A subtype H5N1 cases in wild birds and poultry in
China, and to predict the spatial distribution of HPAI H5N1 relative risk. Here a
generalized linear mixed model (GLMM) incorporated with a variogram model
through its random effects item, used as the spatial regression model. Four
environmental variables were found to have significant effects, including annual
mean temperature, poultry density, distance to lakes and wetlands, and distance
to bird migration routes. The Root Mean Square Error of arbitrary 15 sample
data was 11.56. Further, the high predicted relative risk areas of HPAI H5N1
were mainly in the Northwest, Middle, Southwest and Southeast part of China.
With its simple structure and good prediction ability, this spatial regression
model was very promising for predicting the risk of other disease.
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1 Introduction

Since late 2003, highly pathogenic avian influenza (HPAI) outbreaks caused by
infection with the H5N1 virus have led to the death of millions of poultry and tens of
thousands of wild birds. As of February 8, 2012, 42 laboratory-confirmed human
infections have occurred in China [1]. Although HPAI H5N1 has taken place in a
limited number of provinces in China, spreading might occur at any time due to
movement of domestic birds, migration of wild birds, and interaction of both. This
ongoing H5N1 avian influenza epidemic in China poses risks to animals as well as
human health, and will be elevated by the potential cross-species transmission to
humans and subsequent re-assortment of avian and human influenza viruses in
co-infected individuals [2]. Thus, it is urgent and important to model the risk of the
H5N1 infection in China. Modeling may help to detect areas of unusually high and low
risks so that actions may be taken in advance to allow better resource allocation for
prevention and control.
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So far, studies aiming to identify HPAI H5N1 risk factors and predict risk have
been undertaken in many countries where the disease was introduced, such as Thailand
[3–5], Vietnam [6], Indonesia [7], Bangladesh [8], the U.S. [9], the Netherlands [10],
Romania [11] and Southern Africa [12]. Only three studies tried to model the risk of
HPAI H5N1 in China [13–15]. Despite this research effort, a central goal still exists: to
understand the factors favoring the continuing reoccurrence of the virus [16]. Specif-
ically, little is known about the agro-ecological conditions associated with highly
pathogenic avian influenza H5N1 virus spread and persistence [4, 13].

In this research, risk refers to the likelihood distribution for the number of cases of
avian influenza in a particular area. The goal of modeling the risk of avian influenza is
to examine spatial variation in risk in terms of number of cases for a given country or
region. There are few examples applying spatial modeling methods to predict avian
influenza risks [17]. Logistic regression models have been used widely [11, 13, 15, 16,
18]. One may implement logistic regression to characterize the statistical association
between avian influenza cases or outbreaks and environmental covariates. However,
considering risk modeling in a spatial context, particularly in the case that the areas are
small, one would expect “residual” dependence between counts in areas that are
geographically close, due to unmeasured risk factors or errors in the data that have
spatial structure [19]. In such cases, simple logistic regression modeling is insufficient.

To account for spatial dependence in the residuals, a model involving spatial
autocorrelation may be fitted [20], such as a spatial regression model [9, 21, 22], and
Bayesian geostatistical logistic regression model [23]. Ignoring autocorrelation may
lead to the erroneous conclusion that a variable is significant in explaining avian
influenza cases when the variable is in fact insignificant [9]. Such spatial regression
models have the advantage that both environmental covariates and spatial autocorre-
lation can be estimated and full posterior distributions can be produced to quantify
uncertainties in the parameters of interest [23]. It is only in recent years that researchers
have begun to apply spatial regression models to avian influenza risk [9]. However,
they have not yet been applied to avian influenza risk in China.

Compared with previous studies, this research brings two improvements. First, we
modeled the risk of H5N1 in poultry and wild birds, while others studies examine the
risk in poultry only [15]. Surveillance for HPAI in wild birds will help to predict the
spread of the avian influenza virus, and is an important component of a comprehensive
surveillance program [24]. Therefore, it is included here. As the first attempt to model
the distribution of HPAI H5N1 risk in China, Fang et al. [13] predicted areas at high
risk in ecological areas that would not support the maintenance and transmission of the
virus (e.g., the extremely large desert regions of Inner Mongolia, Tibet and Xinjiang
autonomous regions) [15]. Moreover, the research conducted by Cao et al. [14] was
mainly for risk analysis, rather than for risk modeling. Secondly, a generalized linear
mixed model combined with variogram modeling was used for risk modeling here to
account for spatial dependence. These two new aspects shed light on the risk of HPAI
H5N1 in wild birds and poultry in China.
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2 Methods

2.1 Data and Test for Spatial Dependence

Data on the number of cases of the HPAI H5N1 in wild birds and poultry in China
reported from January 2004 to March 2011 were provided by OIE, a world organi-
zation for animal health [25]. Basic geographic data were provided by the Data Sharing
Infrastructure of Earth System Science [26]. During the period January 2004 to March
2011, three main epidemic waves occurred in the number of HPAI H5N1 cases in
China (Fig. 1). Some periodicity is evident. The H5N1 outbreaks in poultry during
wave I were mainly distributed in central and South China, while outbreaks in wild
birds only appeared in south (Fig. 2a). During wave II, the outbreaks in wild birds
expanded from Southern to Western and North-Eastern China; and outbreaks in poultry
moved to the North-Western and Northern part of China, while outbreaks in central
China decreased significantly (Fig. 2b). During wave III, the HPAI H5N1 outbreaks in
both poultry and wild birds decreased further. Outbreaks among wild birds were dis-
tributed in the West and South of China only, and those among poultry were mainly
distributed in Xinjiang, Tibet and Guangdong Province (Fig. 2c). The HPAI H5N1
outbreaks in wild birds were distributed along the bird migration flyways, especially
along the eastern one (Western Pacific Route) and the western one (Middle-Asia India
Route) (Fig. 2).

Spatial dependence is the propensity for nearby locations to influence each other
and to possess similar attributes [27, 28]. It is necessary to test for spatial dependence in
the model residuals. If spatial dependence exists in the model residuals then it needs to
be considered in the model for predicting HPAI H5N1 cases in different geographical
areas. To test for spatial dependence in the model of HPAI H5N1 cases in wild birds
and poultry in China, Ripley’s K function and Moran’s I statistic as the statistical
measures of spatial dependence for point locations were used here [29].

Fig. 1. Temporal distribution of monthly HPAI H5N1 cases numbers reported in China
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Fig. 2. Spatial distribution of HPAI H5N1 outbreaks reported during the three main epidemic
waves in China. (a) Wave I: 01 January of 2004–30 December of 2004; (b) Wave II: 01 January
of 2005–30 December of 2006; (c) Wave III: 01 January of 2007–31 March of 2011
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Usually, L-function LðdÞ is used instead of the K-function to test for autocorrelation
in a spatial point distribution [29]. Figure 3 shows that the observed value of LðdÞ for
the HPAI H5N1 cases in wild birds and poultry of China between 2004 and 2011 was
outside of the two envelope bounds (min and max), which is the confidence interval of
Monte Carlo test. The value of LðdÞ increases with the increase in distance of sepa-
ration from 10 km to 1200 km. It shows that the spatial distribution of the HPAI H5N1
cases in wild birds and poultry of China 2004–2011 was clustered. The value of LðdÞ
increases rapidly at the distance between 11 km and 24 km and then it reaches its
plateau slowly (Fig. 3). This might be related to the poultry activity radius of 11–24 km
and the wild bird activity radius of greater than 24 km in China.

In addition, spatial autocorrelation analysis has also been performed on the incidence
rate of HPAI H5N1 in poultry by Moran’s I statistic (Table 1). It shows that the Moran’s
I statistics on the incidence rate of HPAI H5N1 in poultry for the year of 2004, 2005 and
2011 are significantly greater than zero. It means that the HPAI H5N1 incidence in
poultry is positively spatially autocorrelated (Table 1). Complete wild bird population
data at county level in China are unavailable. Therefore, spatial autocorrelation analysis
was not performed on the incidence rate of HPAI H5N1 inwild birds. From the above test

Fig. 3. Ripley’s K function for the HPAI H5N1 cases in wild birds and poultry

Table 1. Global spatial autocorrelation by Moran’s I statistic on the incidence rate of HPAI
H5N1 in poultry of China

Study period Moran’s I statistic P-value Pattern

January 2004–December 2004 0.03 0.02 Clustered
January 2005–December 2005 0.05 0.01 Clustered
January 2011–March 2011 0.43 0 Clustered
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results, it can be found that spatial dependence does exist on theHPAIH5N1 cases inwild
birds and poultry in China from 2004 to 2011. Therefore, it is important to include spatial
component in the model to predict the HPAI H5N1 cases in various geographic areas.
And it is suitable to apply spatial regression model in this research.

2.2 Environmental Covariates

Ten environmental covariates were considered as risk factors for HPAI H5N1 cases in
wild birds and poultry in China. The covariates include human population density,
annual mean temperature, annual precipitation, poultry density, mean elevation,
Euclidean distance to lakes and wetland, minimum distance to the nearest bird
migration route, minimum distance to the nearest road, minimum distance to the
nearest city and road density (Table 2).

Table 2. Environmental variables associated with the HPAI H5N1 cases in wild birds and
poultry of China

Environmental
variable

Source Manipulation

Human population
density

http://www.
ornl.gov/sci/
landscan/

30-second resolution; resample cell size (10 km × 10 km)

Annual mean
temperature (˚C)

http://www.
worldclim.
org/

30-second resolution; resample cell size (10 km × 10 km)

Annual
precipitation
(mm)

http://www.
worldclim.
org/

30-second resolution; resample cell size (10 km × 10 km)

Poultry density http://www.fao.
org/
geonetwork

180-second resolution; resample cell size (10 km × 10 km)

Mean elevation (m) http://eros.usgs.
gov/

30-second resolution; resample cell size (10 km × 10 km)

Euclidean distance
to lakes and
wetland

http://www.
wwfus.org/

30-second resolution; resample cell size (10 km × 10 km)

Distance to bird
migration routes

Fang et al.
(2008)

Minimum distance to the nearest bird migration route

Distance to roads http://www.
geodata.cn/

Minimum distance to the nearest road

Distance to the
cities

http://www.
geodata.cn/

Minimum distance to the nearest city

Road density http://www.
geodata.cn/

712 P. Zhang and P.M. Atkinson

http://www.ornl.gov/sci/landscan/
http://www.ornl.gov/sci/landscan/
http://www.ornl.gov/sci/landscan/
http://www.worldclim.org/
http://www.worldclim.org/
http://www.worldclim.org/
http://www.worldclim.org/
http://www.worldclim.org/
http://www.worldclim.org/
http://www.fao.org/geonetwork
http://www.fao.org/geonetwork
http://www.fao.org/geonetwork
http://eros.usgs.gov/
http://eros.usgs.gov/
http://www.wwfus.org/
http://www.wwfus.org/
http://www.geodata.cn/
http://www.geodata.cn/
http://www.geodata.cn/
http://www.geodata.cn/
http://www.geodata.cn/
http://www.geodata.cn/


Human population density was chosen as one of the risk factors because it was
found to be associated with HPAI H5N1 in several studies conducted in countries with
different agro-ecological conditions such as Thailand, Bangladesh, Vietnam, Romania
and China [6, 8, 15, 16, 30, 31]. Human population density may indicate higher levels
of trading activity [18]. Disclosure of the HPAI H5N1 cases in Thailand poultry
markets in 2006 and 2007 suggested that the HPAI virus had continued to spread
among poultry through trade activities despite the presence of control measures [32].

Annual mean temperature and annual precipitation were chosen as climatic factors
here. Some researchers found that a sudden drop in temperature occurred shortly before
HPAI H5N1 outbreaks among birds in the Eurasian regions in 2005 and 2006 [33].
Climate change and subsequent immune-suppression may have allowed the H5N1
virus to proliferate more efficiently in birds which have already been carrying the virus,
thereby, hastening the inter-species spread of the virus and the deaths of wild birds
[33]. HPAI H5N1 virus transmitted by migratory birds could be spread during the
migration period, and the speed of such a spread may be elevated in particularly cold
winter [34]. Lower levels of moisture and precipitation may affect the availability of
food resources and, thereby, influence the distribution of wild birds [18].

Previous research has shown an association between poultry density and HPAI
H5N1 outbreaks [3, 15, 16, 30]. In China, the HPAI H5N1 cases were not always
positively related to poultry density [13, 15]. Chickens in areas with high population
densities are usually bred in industrialized farms with good animal husbandry practices
and proper vaccination [35]. Mean elevation was chosen as an environmental factor
here because some research has reported an increased HPAI H5N1 risk in lowland and
river delta areas [6, 16, 36]. Also it has been demonstrated HPAI H5N1 outbreaks in
South Asia and China to be significantly associated with elevation [15, 16]. Normally
suitable habitats are concentrated in the lowland, and then elevation influences the
availability of food resources and shelter for waterfowl, which are natural hosts for the
HPAI H5N1 virus [18]. Water bodies and wetlands have been found to be significantly
associated with HPAI H5N1 outbreaks in China, India and Bangladesh [13, 37, 38].
Lakes and wetlands are important for migratory (and local) waterfowl and provide
potential, suitable habitats [18].

Some researchers have found that infected wild birds can carry the avian influenza
virus for long distances during migration [39]. Wild bird migration is important for
avian influenza virus transmission [13]. Usually migratory birds cannot fly the full
distance to their annual migratory destination at once. Instead, they usually interrupt
their migration to rest and refuel [40]. Avian influenza virus may be spread between
wild and domestic birds when migratory birds search for food, water and shelter [13].
Proximity to cities and proximity to roads were included as risk factors here since they
relate to poultry trade and movement which may facilitate the mechanical spread of the
HPAI H5N1 virus [13]. During long distance transportation, a variety of birds and
animals from various origins are caged on top of each other, possibly providing an easy
cross-infection route for avian influenza. Moreover, many open live poultry markets are
established along or near roads, which may further increase the chance of avian
influenza virus transmission [13].
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2.3 Spatial Regression Model

The statistical model represents the number of avian influenza cases per geographical
unit as a Poisson-distributed random variable, which is appropriate for analyzing dis-
ease cases in which some geographic units have many cases but most units have few or
no cases [9, 21]. Since not accounting for spatial autocorrelation when predicting the
number of HPAI H5N1 cases may lead to the erroneous conclusion that an environ-
mental variable is significant when it is in fact non-significant [9] a spatial regression
model was used here to predict the number of HPAI H5N1 cases per geographical area.

Spatial regression models are regression models with a term to account for spatial
dependence, which is assumed to arise from some unobservable latent variable(s) that are
spatially correlated [41]. There are a lot of forms for spatial regression models. Here a
generalized linear mixed model (GLMM) incorporating a variogram model was used to
explore the statistical association between HPAI H5N1 cases in wild birds and poultry
and environmental factors, to quantify the relative importance of the main environmental
factors, and to predict the number of HPAI H5N1 cases in geographical areas [9, 21].

The key elements of a classical linear model are (i) the observations are indepen-
dent, (ii) the mean of the observation is a linear function of some covariates, and
(iii) the variance of the observation is a constant [42]. The extension to generalized
linear models (GLM) consists of modification of (ii) and (iii) above; by (ii)’ the mean
of the observation is associated with a linear function of some covariates through a link
function; and (iii)’ the variance of the observation is a function of the mean [42].
Generalized linear mixed models (GLMM) are natural extensions of GLM and linear
mixed models that allow for additional components of variability due to latent random
effects [43].

The Poisson log-linear mixed model was used in this research. The Poisson dis-
tribution is often used to model responses that are counts [42]. Suppose that, given the
random effects a, the counts y1. . .yn are conditionally independent such that

yija�PoissonðkiÞ ð1Þ

logðkiÞ ¼ x0ibþ z0ja ð2Þ

where x0i and z0j are known vectors, b is a vector of unknown parameters (the fixed
effects), and ki is the expected number of occurrences during the given interval [42].

Here, glmmPQL() in the MASS package of R was used to run a GLMM [44, 45].
The Poisson log-linear model with a random intercept estimated through the PQL
method can be written as:

lnðkiÞ ¼ b0 þ xibi þ bi ð3Þ

where ki is the number of avian influenza cases, b0 and bi are the unknown parameters
for the fixed effects, xi are the environmental covariates, bi are the random effects with
distribution assumption:
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bi �Nð0; r2Þ ð4Þ

Formula (4) means that the random effects of bi are normally distributed with a
mean of 0 and a variance of r2.

A GLMM was chosen here because it is not only one of the fundamental tools in
the analysis of longitudinal data in epidemiology [44, 45], but also it allowed for a
spatial correlation structure through its random effects term [9]. The random effects
term of bi is similar to the residual (error) term in classical linear models. Thus, the
GLMM incorporates spatial autocorrelation in the residuals through its random effects
term. Here, variogram modeling of the spatial autocorrelation in the residuals ri was
used, where:

ri �Nðl;r2Þ ð5Þ

r2 ¼ Ir21 þFr22 ð6Þ

F ¼ expð�dij=qÞ ð7Þ

where, the residuals ri of the GLMM (formula (3))are distributed normally with mean l
and variance r2, r21 is the nugget of the residuals’ semi-variance, r22 is the sill, q is the
range, dij is the lag distance, I is the adjusted coefficient.

The final model used to predict the number of HPAI H5N1 cases per geographical
area can be written as:

lnðkiÞ ¼ b0 þ xibi þ ri ð8Þ

where ki, b0, xi, bi and ri are as in formulas (1)–(7).

3 Results

From Table 3, four environmental covariates are significant in predicting the HPAI
H5N1 risks in wild birds and poultry in China between 2004 and 2011. The significant
covariates are annual mean temperature, poultry density, distance to lakes and wetlands
and distance to bird migration routes. In particular, the estimated coefficient for poultry
density is 0.00. This means that HPAI H5N1 cases in wild birds and poultry is neg-
atively correlated with poultry density. It might be partially contributed by the fact that

Table 3. Effects of environmental variables on the HPAI H5N1 cases in wild birds and poultry
in China 2004–2011

Variable (Xi) Estimated coefficient (bi) Std. error DF T-value P-value

(Intercept) 6.88 0.34 78 19.98 0
Annual mean temperature 0.01 0 12 2.18 0.05
Poultry density 0 0 12 −2.38 0.03
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poultry are normally fed in industrialized farms where poultry density is high, and
where poultry have been vaccinated and well managed. On the contrary, poultry
density is low in rural villages where poultry usually are fed in open backyards without
having been vaccinated. This would imply a rural-urban divide such that poultry fed in
backyards in rural areas are more likely to become infected.

There were 111 sample data altogether in this research, 96 of which were chosen
randomly and used in the GLMM, while the remaining 15 data were used for validation.
After doing regression, the 96 points’ residuals have been done variogram modeling to
test their spatial autocorrelation. It clearly shows that the curve of semi-variance rising up
steadily with lag distance increasing from 0 up to about 100 km, and then it keeps level
when lag distance is greater than 100 km (Fig. 4). It indicates that residuals have spatial
autocorrelation when lag distance between 0 and 100 km, and spatial autocorrelation
doesn’t exist when lag distance greater than 100 km.

Root Mean Square Error (RMSE) has been used here to do the validation.
The RMSE of the left 15 sample data is 11.56 cases per 10 km × 10 km pixel when the
adjusted coefficient of I in formula (6) is 3.5. This means that its prediction results are
desirable to utilize the spatial regression model which is GLMM incorporating with
variogram modeling in this research. Model validation statistics revealed that the final
spatial regression model has good predictive ability for HPAI H5N1 cases in geo-
graphical areas.

Moreover, relative risks of the HPAI H5N1 in wild birds and poultry in China were
divided according to the predicted number of HPAI H5N1 cases in geographical areas
(Fig. 5). Risk maps generated from the model shows a heterogeneous distribution and
importantly risk of HPAI H5N1 in wild birds and poultry in China was found to highly
varied across all regions. The highest predicted relative risk of HPAI H5N1 in wild
birds and poultry mainly occurs in Northwest, Central and Southwest China, which are
very near the Middle-Asia India bird migration route (Fig. 5). Another high predicted
relative risk area occurs in Southeast China which is near the Western Pacific bird
migration route (Fig. 5). It implies that wild birds and bird migration may play an
important role in HPAI H5N1 virus spreading in the wild birds and poultry in China.

Fig. 4. Isotropic variogram of fitted spherical model for the 96 sample data’s residuals
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4 Discussion

Risk modeling treats the entire transmission cycle as a black box, and focuses on the
spatial position and environmental characteristics of sites where humans or poultry
contract the disease [46]. As such, independent testing and repeated challenging of
models to be predictive and general are central to this application of risk modeling [17].
In this research, GLMM incorporating variogram modeling was used to predict the
number of HPAI H5N1 cases in geographical areas. The model was limited by the data
available, which were themselves limited to those events that have occurred in the last
decade. Given more data, it is possible that a greater number of environmental
covariates may be seen to affect the number of HPAI H5N1 cases in wild birds and
poultry in China, and more sample data would be available to use in validation.
A traditional problem with risk distribution maps predicted by statistical models, based
on linking the presence/absence of a disease or species to a series of predictors, is that
they often lose much of their predictive power when extrapolated outside of the spatial
range of the training data, which makes external validation difficult [16]. This problem
exists in the present research also and, therefore, caution is warranted when extrapo-
lating the results beyond the present spatial and temporal domains.

Another problem that cannot be avoided is how to choose environmental covariates
and how to represent their effects on the number of HPAI H5N1 cases in wild birds and
poultry, because the processes including environmental factors influencing the spread
of HPAI H5N1 virus are not clearly understood [13]. Here, we have chosen ten well
defined environmental covariates, but the analysis may benefit from addition of other
covariates and other representations (e.g., the role of live bird markets, cropping

Fig. 5. Predicted relative risk of the HPAI H5N1 in wild birds and poultry in China 2004–2011
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intensity etc.). Moreover, environmental covariates have temporal variability and this
could lead to temporal variability in HPAI H5N1 virus cases. Thus, more effective
environmental covariates and their interactions, as well as temporal variability could be
taken into account in future research.

5 Conclusion

This research has adopted an integrated spatial regression model to explore the asso-
ciations between the number of HPAI H5N1 cases in wild birds and poultry in China
and ten environmental covariates such as to predict HPAI H5N1 risk in different
geographical areas. This spatial regression model comprises a GLMM including a
variogram model term allowing a quantitative analysis of the effects of environmental
covariates and spatial dependence in the HPAI H5N1 incidence residuals. This spatial
regression model is promising because it has a simple structure and good predictive
capability. Thus, it can be applied to risk modeling of other subtypes of avian influenza
and other diseases where spatial autocorrelation persists in model residuals.

The spatial regression model applied to risk modeling of HPAI H5N1 in wild birds
and poultry in China has produced some interesting results. Four environmental
covariates were significantly associated with the number of HPAI H5N1 cases in wild
birds and poultry. These four covariates were annual mean temperature, poultry den-
sity, distance to lakes and wetlands, and distance to bird migration routes. Predicted
high risk areas were identified in Northwest, Central, Southwest and Southeast China.
These high risk areas fall within two bird migration routes: the Middle-Asia India
Route and the Western Pacific Route. This implies that wild birds and bird migration
may play an important role in outbreaks of HPAI H5N1 in China. Further research
should be undertaken to explore further these findings, with the possible goal of tar-
geting these geographical regions for future surveillance and control.

References

1. World Health Organization, WHO (2012). http://www.who.int/en/
2. Ferguson, N.M., Fraser, C., Donnelly, C.A., Ghani, A.C., Anderson, R.M.: Public health risk

from the avian H5N1 influenza epidemic. Science 304, 968–969 (2004)
3. Gilbert,M.,Chaitaweesub,P., Parakamawongsa,T., Premashtira,S., Tiensin,T.,Kalpravidh,W.,

Wagner, H., Slingenbergh, J.: Free-grazing ducks and highly pathogenic avian influenza.
Thailand Emerg. Infect. Dis. 12, 227–234 (2006)

4. Gilbert, M., Xiao, X., Chaitaweesub, P., Kalpravidh, W., Premashthira, S., Boles, S.,
Slingenbergh, J.: Avian influenza, domestic ducks and rice agriculture in Thailand. Agric.
Ecosyst. Environ. 119, 409–415 (2007)

5. Paul, M., Wongnarkpet, S., Gasqui, P., Poolkhet, C., Thongratsakul, S., Ducrot, C., Roger,
F.: Risk factors for highly pathogenic avian influenza (HPAI) H5N1 infection in backyard
chicken farms. Thailand Acta. Trop. 118, 209–216 (2011)

718 P. Zhang and P.M. Atkinson

http://www.who.int/en/


6. Pfeiffer, D.U., Minh, P.Q., Martin, V., Epprecht, M., Otte, M.J.: An analysis of the spatial
and temporal patterns of highly pathogenic avian influenza occurrence in Vietnam using
national surveillance data. Vet. J. 174, 302–309 (2007)

7. Yupiana, Y., de Vlas, S.J., Adnan, N.M., Richardus, J.H.: Risk factors of poultry outbreaks
and human cases of H5N1 avian influenza virus infection in West Java Province. Indonesia
Int. J. Infect. Dis. 14, e800–e805 (2010)

8. Loth, L., Gilbert, M., Osmani, M.G., Kalam, A.M., Xiao, X.: Risk factors and clusters of
highly pathogenic avian influenza H5N1 outbreaks in Bangladesh. Prev. Vet. Med. 96, 104–
113 (2010)

9. Fuller, T.L., Saatchi, S.S., Curd, E.E., Toffelmier, E., Thomassen, H.A., Buermann, W.,
DeSante, D.F., Nott, M.P., Saracco, J.F., Ralph, C.J., Alexander, J.D., Pollinger, J.P., Smith,
T.B.: Mapping the risk of avian influenza in wild birds in the US. BMC Infect. Dis. 10, 187
(2010)

10. Boender, G.J., Hagenaars, T.J., Bouma, A., Nodelijk, G., Elbers, A.R.W., de Jong, M.C.M.,
Boven, M.V.: Risk maps for the spread of highly pathogenic avian influenza in poultry.
PLoS Comput. Biol. 3(4), e71 (2007)

11. Ward, M.P., Maftei, D., Apostu, C., Suru, A.: Environmental and anthropogenic risk factors
for highly pathogenic avian influenza subtype H5N1 outbreaks in Rominia, 2005–2006. Vet.
Res. Commun. 32(8), 627–634 (2008)

12. Cumming, G.S., Hockey, P.A.R., Bruinzeel, L.W., Plessis, M.A.D.: Wild bird movements
and avian influenza risk mapping in Southern Africa. Ecol. Soc. 13(2), 26 (2008)

13. Fang, L., Vlas, S.J., Liang, S., Looman, C.W.N., Gong, P., Xu, B., Yan, L., Yang, H.,
Richardus, J.H., Cao, W.: Environmental factors contributing to the spread of H5N1 avian
influenza in mainland China. PLoS ONE 3(5), e2268 (2008)

14. Cao, C., Xu, M., Chang, C., Xue, Y., Zhong, S., Fang, L., Cao, W., Zhang, H., Gao, M., He,
Q., Zhao, J., Chen, W., Zheng, S., Li, X.: Risk analysis for the highly pathogenic avian
influenza in mainland China using meta-modeling. Chinese Sci. Bull. 55(36), 4168–4178
(2010)

15. Martin, V., Pfeiffer, D.U., Zhou, X., Xiao, X., Prosser, D.J., Guo, F., Gilbert, M.: Spatial
distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China.
PLoS Pathog. 7(3), e1001308 (2011)

16. Gilbert, M., Xiao, X., Pfeiffer, D.U., Epprecht, M., Boles, S., Czarnecki, C., Chaitaweesub,
P., Kalpravidh, W., Minh, P.Q., Otte, M.J., Martin, V., Slingenbergh, J.: Mapping H5N1
highly pathogenic avian influenza risk in Southeast Asia. PNAS 105(12), 4769–4774 (2008)

17. Peterson, A.T., Williams, R.A.J.: Risk mapping of highly pathogenic avian influenza
distribution and spread. Ecol. Soc. 13(2), 15 (2008)

18. Si, Y., Wang, T., Skidmore, A.K., de Boer, W.F., Li, L., Prins, H.H.T.: Environmental
factors influencing the spread of the highly pathogenic avian influenza H5N1 virus in wild
birds in Europe. Ecol. Soc. 15(3), 26 (2010)

19. Wakefield, J.: Disease mapping and spatial regression with count data. BioStat. 8(2), 158–
183 (2007)

20. Rezaeian, M., Dunn, G., Leger, S.S., Appleby, L.: Geographical epidemiology, spatial
analysis and geographical information systems; a multidisciplinary glossary. J. Epidemiol.
Commun. H 61, 98–102 (2007)

21. Kleinschmidt, I., Sharp, B.L., Clarke, G.P.Y., Curtis, B., Fraser, C.: Use of generalized
linear mixed models in the spatial analysis of small-area malaria incidence rates in KwaZulu
Natal. South Africa Am. J. Epidemiol. 153(12), 1213–1221 (2001)

22. Kazembe, L.N.: Spatial modelling and risk factors of malaria incidence in Northern Malawi.
Acta Trop. 102, 126–137 (2007)

Modelling the Risk of Highly Pathogenic Avian Influenza H5N1 719



23. Reid, H., Haque, U., Clements, A.C.A., Tatem, A.J., Vallely, A., Ahmed, S.M., Islam, A.,
Haque, R.: Mapping malaria risk in Bangladesh using Bayesian geostatistical model. Am.
J. Trop. Med. Hyg. 83(4), 861–867 (2010)

24. Zepeda, C.: Highly pathogenic avian influenza in domestic poultry and wild birds: a risk
analysis framework. J. Wildl. Dis. 43(3), S51–S54 (2007)

25. World Organization for Animal Health, OIE (2012). http://www.oie.int/
26. Data Sharing Infrastructure of Earth System Science (2012). http://www.geodata.cn/
27. Anselin, L.: What is special about spatial data? Alternative perspectives on spatial data

analysis. Technical report 89-4, National Center for Geographic Information and Analysis,
Santa Barbara, CA (1989)

28. Goodchild, M.F.: Geographical information science. Int. J. Geogr. Inf. Sci. 6(1), 31–45
(1992)

29. Ripley, B.D.: Chapter 8 Mapped point patterns. Spatial Statistics, pp. 144–190. Wiley,
Chichester (1981)

30. Tiensin, T., Ahmed, S.S.U., Rojanasthien, S., Songerm, T., Ratanakorn, P., Chaichoun, K.,
Kalpravidh, W., Wongkasemjit, S., Patchimasiri, T., Chanachai, K., Thanapongtham, W.,
Chotinan, S., Stegeman, A., Nielen, M.: Ecologic risk factor investigation of clusters of
avian influenza A (H5N1) virus infection in Thailand. J. Infect. Dis. 199, 1735–1743 (2009)

31. Paul, M., Tavornpanich, S., Abrial, D., Gasqui, P., Charras-Garrido, M., Thanapongtharm,
W., Xiao, X., Gilbert, M., Roger, F., Ducrot, C.: Anthropogenic factors and the risk of
highly pathogenic avian influenza H5N1: prospects from a spatial-based model. Vet. Res.
41, 28 (2010)

32. Amonsin, A., Choatrakol, C., Lapkuntod, J., Tantilertcharoen, R., Thanawongnuwech, R.,
Suradhat, S., Suwannakarn, K., Theamboonlers, A., Poovorawan, Y.: Influenza virus (H5N1)
in live bird markets and food markets. Thailand. Emerg. Infect. Dis. 14(11), 1739–1742
(2008)

33. Liu, C., Lin, S., Chen, Y., Lin, K.C.M., Wu, T.S.J., King, C.C.: Temperature drops and the
onset of severe avian influenza A H5N1 virus outbreaks. PLoS ONE 2, e191 (2007)

34. Keller, I., Korner, F., Jenni, N.L.: Within-winter movements: a common phenomenon in the
Common Pochard Aythya farina. J. Ornithol. 150, 483–494 (2009)

35. World Health Organization: Direct and indirect factors facilitating the spread of the avian
influenza virus (2006). http://www.searo.who.int/LinkFiles/PublicationsandDocuments
factors

36. Williams, R.A.J., Peterson, A.T.: Ecology and geography of avian influenza (HPAI H5N1)
transmission in the Middle East and Northeastern Africa. Int. J. Health. Geogr. 8, 47 (2009)

37. Adhikari, D., Chettri, A., Barik, S.K.: Modelling the ecology and distribution of highly
pathogenic avian influenza (H5N1) in the Indian subcontinent. Curr. Sci. 97(1), 73–79
(2009)

38. Biswas, P.K., Christensen, J.P., Ahmed, S.S.U., Das, A., Rahman, M.H., Barua, H.,
Giasuddin, M., Hannan, A.S.M.A., Habib, M.A., Debnath, N.C.: Risk for infection with
highly pathogenic avian influenza virus (H5N1) in backyard chickens. Bangladesh Emerg.
Infect. Dis. 15(12), 1931–1936 (2009)

39. Olsen, B., Munster, V.J., Wallensten, A., Waldenström, J., Osterhaus, A.D.M.E., Fouchier,
R.A.M.: Global patterns of influenza a virus in wild birds. Science 312, 384–388 (2006)

40. Alerstam, T., Lindstrom, A.: Optimal bird migration: the relative importance of time, energy
and safety. In: Gwinner, E. (ed.) Bird Migration: Physiology and ecophysiology, pp. 331–
351. Springer, Berlin (1990)

41. Altman, M., Gill, J., McDonald, M.P., LeSage, J.P.: Spatial regression models (Chap. 9). In:
Numerical Issues in Statistical Computing for the Social Scientist. Wiley, Hoboken (2004)

720 P. Zhang and P.M. Atkinson

http://www.oie.int/
http://www.geodata.cn/
http://www.searo.who.int/LinkFiles/PublicationsandDocumentsfactors
http://www.searo.who.int/LinkFiles/PublicationsandDocumentsfactors


42. Jiang, J.M.: Chapter 3 Generalized linear mixed models: Part I. Linear and Generalized
Linear Mixed Models and Their Applications. Springer Series in Statistics, pp. 119–162.
Springer, Berlin (2007)

43. Zhu, H.T., Lee, S.Y.: Analysis of generalized linear mixed models via a stochastic
approximation algorithm with Markov chain. Stat. Comput. 12, 175–183 (2002)

44. Gan, X.: Generalized linear mixed models. J. Kunming Univ. Sci. Technol. 32(4), 107–113
(2007)

45. Dean, C.B., Nielsen, J.D.: Generalized linear mixed models: a review and some extensions.
Lifetime Data Anal. 13, 497–512 (2007)

46. Peterson, A.T.: Ecological niche modelling and spatial patterns of disease transmission.
Emerg. Infect. Dis. 12, 1822–1826 (2006)

Modelling the Risk of Highly Pathogenic Avian Influenza H5N1 721


	Modelling the Risk of Highly Pathogenic Avian Influenza H5N1 in Wild Birds and Poultry of China
	Abstract
	1 Introduction
	2 Methods
	2.1 Data and Test for Spatial Dependence
	2.2 Environmental Covariates
	2.3 Spatial Regression Model

	3 Results
	4 Discussion
	5 Conclusion
	References


