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Abstract. The process of feature selection (FS) is a substantial task that has a
significant effect in the performance of a given algorithm. The goal is to choose
a subset of available features by eliminating the unnecessary features. This
hybrid algorithm is in maximising the classification performance and minimis-
ing the number of features to achieve an outstanding performance through a less
complex procedure. From the experiments, FSMOGSA was noted to be quite
unparalleled in comparison with other methods in reducing the error rate, and
maximising the general performance through irrelevant feature reduction.
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1 Introduction

Today, the relevance of feature selection (FS) in machine learning cannot be
under-rated. FS has considerable importance in real life applications such as medicine,
astronomy, biology, to mention but a few. The goal is to choose a subset of available
features by eliminating unnecessary features [1]. To obtain any desired result in using
datasets, high dimensionality imposes learning difficulties by degradation of relevant
information on the learned models. Real world datasets are entangled with many
irrelevant and misleading features for this reason (FS) is adopted to eliminate such
impediments. Furthermore, the objective of FS is to select a relevant subset of features
say q, from a set of p features (q < p) in a given dataset. To extract sufficient infor-
mation for example from an image set, it is appropriate to eliminate the features with no
predictive information and avoid redundant features.

2 Related Works on Feature Selection

Efficient processing and retrieval of features rely on the number of relevant features
extracted [2]. Hamdani et al. developed an entirely different method called,
multi-objective feature selection algorithm using non-dominated sorting-based
multi-objective GA II (NSGAII), however, it was not compared with any algorithm [3].
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Our work is focused on Multi-Object feature selection with gravitational search
algorithm (FSMOGSA) which is completely new in terms of feature selection. Tian
et al. [4] proposed a work on multi-objective optimization of short-term hydrothermal
scheduling using non-dominated sorting gravitational search algorithm with chaotic
mutation. A. R. Bhowmik and A. K. Chakraborty, proposed, Solution of optimal power
flow using non-dominated sorting multi-objective opposition based gravitational search
algorithm (NSMOOGSA) [5]. And in 2013, Bing Xue et al. proposed PSO for feature
selection and classification: a multi-objective approach and investigate two PSO-based
multi-objective feature selection algorithms [6].

Our FSMOGSA is in maximising the classification performance and minimising
the number of features to achieve an outstanding performance through a less complex
method. It finds the non-dominated (Pareto fronts) solutions and groups such solutions
into subsets of indexed non-dominated solutions.

2.1 Basic Gravitational Search Algorithm

Gravitational search algorithm was introduced in 2009 by Rashedi et al. [7], where the
solutions of optimisation problems are regarded as agents. All agents attract one
another in the solution space due to the force of gravity, lighter agents are attracted
(converge) towards the heavier agents, known as the optimal solution based on the law
of motion. Given a system of N agents the position of the ith agent is:

Xi ¼ ðx1i ; . . .; xdi ; . . .; xni Þ; for i ¼ 1; 2; . . .;N ð1Þ

Where xdi is the position of the ith agent in the dth dimension and n is the dimension
of the space.

Fd
ijðtÞ ¼ GðtÞMpiðtÞ �MajðtÞ

RijðtÞþ e
ðxdj ðtÞ � xdi ðtÞÞ ð2Þ

Where Maj is called active gravitational mass, Mpi is passive gravitational mass, G
(t) is gravitational constant at time t, e is infinitesimally small value then RijðtÞ, is a
Euclidean distance between masses i and j, RijðtÞ ¼ jXiðtÞ;XjðtÞj2:

Equation (3), is the force of the object i

Fd
i ðtÞ ¼

XN
j¼1;j 6¼i

randj F
d
ij tð Þ; ð3Þ

The acceleration of the ith object is : adi ðtÞ ¼
Fd
i ðtÞ
Mii

ð4Þ
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2.2 Velocity and Position of Particles

The successive velocity of a given object is obtained by the addition of its current
velocity to its acceleration that is Eq. (5), and the current position of the object can be
obtained by (6).

vdi ðtþ 1Þ ¼ randdi v
d
i ðtÞþ adi ðtÞ ð5Þ

xdi ðtþ 1Þ ¼ xdi ðtÞþ vdi ðtþ 1Þ ð6Þ

where randi is a random number between 0 and 1, present velocity vdi ðtÞ, next possible
velocity vdi ðtþ 1Þ, next possible position xdi ðtþ 1Þ, present position xdi ðtÞ, and accel-
eration adi ðtÞ of the ith particle at time t.

3 Multi-objective Gravitational Search Algorithm and Pareto
Front

This method operates based on the concept of dominance of set of optimal solutions
called Pareto front. A given multi-objective optimisation entails maximisation or
minimisation of multiple conflicting objective functions. From the training sets, any of
the subsets possessing fewer features is presumed to achieve higher quality function
value, as such the extrapolated features with the best fitness are chosen mostly out of
such subsets of features. Reducing the number of irrelevant features will have a positive
effect on the performance of the entire process. The minimisation is expressed below,

min;FðxÞ ¼ ½f1ðxÞ; f2ðxÞ; . . .; fMðxÞ� ð7Þ

giðxÞ� 0; i ¼ 1; 2; . . .m ð8Þ

hiðxÞ ¼ 0; i ¼ 1; 2; . . .l ð9Þ

where x is the vector of decision variables, fiðxÞ is a function of x, and k is the number
of objective functions to be minimised, giðxÞ and hiðxÞ are the constraint functions of
the problem. Given any minimisation task, solution x1 will dominate solution x2 if both
satisfy this condition:

8m 2 ½1;M�; fmðx1Þ� fmðx2Þ and 3 n : fnðx1Þ\fnðx2Þ ð10Þ

For m; n 2 ½1; 2; . . .;M�.

3.1 The Main Optimisation Process of (FSMOGSA)

If a given solution is not dominated by another set of solutions, then that solution is
called a Pareto-optimal solution. A collection of all the sets of Pareto-optimal solutions
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yields the Pareto front, some basic principles of choosing dominant or non-dominated
solutions in our algorithm is based on;

(a) The number of individuals a given individual dominates.
(b) The Pareto front an individual is located.
(c) The number of individuals that dominates a given individual solution.

Multi-objective tasks result if there is the necessity to make optimal decisions
between two or more conflicting objectives in a solution space. Hence, we will make
the equation of fitness of particles which is effective in a single objective to an equation
adoptable for multi-objective as shown below:

MiðtÞ ¼ jjejj þ
Xk
k¼1

mk
i ðtÞ

� �2
=
XN
j¼1

XK
k¼1

mk
j ðtÞ

h i2
ð11Þ

mk
i ðtÞ ¼

fitki ðtÞ � worstkðtÞ
bestkðtÞ � worstkðtÞ ; for k 2 1; k½ � ð12Þ

where jjejj is an infinitesimally small error value, mk
i ðtÞ is the normalised fitness value

of the ith agent in the kth objective; fitki ðtÞ is the fitness value of the ith agent in the kth
objective; K is the number of objectives; bestkðtÞ is the best fitness of all agents in the
kth objective; worstkðtÞ is the worst fitness of all the agents in the kth objective (Fig. 1).

Terminal condition reached?

Optimise acceleration, velocity & gravitational 
force of all particles.

Produce new particles by random mutation 
mapping in the solution space.

Rank and choose the Pareto (front) optimal 
solutions.

Pareto Non-dominated solutions

Initialisation

Generate particles, optimise fitness values and 
mass of all particles.

Unfit Particles 
Particles chosen as 

fit

Choose the non-dominated particles.

Update the velocity & position of each 
particle.

No

Yes

Fig. 1. Shows the FSMOGSA process.
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The particles are initialised and the fitness values, velocity, acceleration and
position of each particle is calculated and updated. Then, the non-dominated solutions
are chosen which is followed by the random mutation to produce a new population for
another optimisation.

3.1.1 The fitness function in Eq. (11) will improve the performance of the (FSMOGSA)
algorithm by prudently minimising the convergence rate of agents in the process. The
error factor jjejj in the fitness equation stabilises the motion of the agents, it assumes
infinitesimally small values within (0,1). The chosen features in the training set will be
in categories of; False negative, False positive, True negative and True positive. After
the fitness function had been utilised the error rate is further evaluated by Eq. (13)
below:

ErrorRateðwÞ ¼ FnþFp
FnþFpþ Tnþ Tp

ð13Þ

For Fn is false negative, Fp is positive, Tn is true negative and Tp is true positive
feature. This error rate can be adjusted to minimise error during feature selection.

3.1.2 Then the second purpose is reducing the number of features by choosing only
very highly ranked features, redundant features are left out. This work is a
multi-objective feature selection algorithm so a function other than Eq. (13) which will
perform the dual purpose of the fitness function is used to minimise the classification
error rate and as well guarantee minimisation of the number of features with high
classification performance is adopted as in Eq. (14):

Fitnessfunction ¼ Fselected

FAll
� aþ ERselected

ERAll
� ð1� aÞ

�
ð14Þ

Where Fselected is number of selected features, FAll is all the available features, a is a
negligible constant within (0, 1), ERselected is classification error rate of the selected
feature subset, ERAll is the classification error rate of all available features of the
training set. A preponderantly negative occurrence in SI optimisation is stagnation,
where the swarm agents get confined in local optimum.

3.2 Random Mutation to Generate New Agents

After every iteration period a mutation process is added to the population to randomly
generate a new solution population. As a result of the unforeseen random factors, a
random mapping process is employed to overcome premature convergence in
FSMOGSA algorithm in the creation of new agents. Whenever a new agent dominates
the current existing agent, the newly generated agent replaces the existing agent. In other
words, it updates the masses and chooses the agent with heavier mass. Equations (15),
(16) and (17) below are the mutation equations:
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fdi ¼ ½xdi ðtÞ � xdminðtÞ�=½xdmaxðtÞ � xdminðtÞ� ð15Þ

gd
i ¼ kfdi 1� fdi

� �
; fdi 2 ½0; 1� ð16Þ

x � cdi ðtÞ ¼ gdi ½xdmaxðtÞ � xdminðtÞ� þ xdminðtÞ ð17Þ

where fdi represents the normalised position of the ith agent in the dth dimension; k is a
constant; gd

i is the transformed value by random mutation; xcdi ðtÞ is the new position of
the ith agent [8].

To determine the position of a particle undergoing mutation Eq. (17) is adopted. In
the end of the mutation process, the steps to update the velocity and position of the
offspring population is developed for ranking of the solutions then another optimisation
process is carried out to select another set of Pareto solutions. The quantity fdi in
Eq. (15) is randomly generated within the interval [0,1] as the process starts, k is
considered to be a constant in Eq. (16).

The mutation begins by choosing a particle say p1, in a random pattern within the
current population. Then from a given Pareto front, another two particles p2 and p3 are
chosen lying within a bound. By Eq. (16) the mutation factor of particle p1, is evaluated
in the dth dimension from when d assumes the value 1 to n, then a newly mutated
particle is produced. The next step is the substitution of p1 with the newly mutated
particle. When the mutation process is over the fitness values of the new population is
evaluated, then, the error rate is also re-evaluated of the chosen features with Eqs. (13)
and (14). Every abnormally copied code of a feature will result to a new feature
(mutant), the process is not done orderly but randomly.

3.3 Indexed Non-dominated Solutions (Pareto Front Subsets)

A multi-objective method, unlike a single objective one searches for sets of optimally
non-dominated solutions. The set of solutions are indexed (grouped) as non-dominated
sets according to the various individual feature types. This idea helps to reduce
extraneous features from the relevant features and improves the classification perfor-
mance because the number of features is minimised.

Definition 3.3.1 Given different indexed feature sets, let F be a finite feature space, for
every feature f in F, there is a set of features Sf such that a set of common features
collected as G of Sf sets is known as an indexed collection of feature sets, that is a
collection of feature sets indexed by F in different dimensions. The collection G is
represented by Sf

� �
f2F , is the finite sets of indexed non-dominated feature sets rep-

resent Pareto fronts. Let G be the indexed sets of non-dominated solutions, so

Sf
� �

f2F¼ Sf1
� �

f12F ; Sf2
� �

f22F ; . . . Sfn
� �

fn2F
n o

hence, Sf
� �

f2F� G.
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Generally, for finite sets of non-dominated solutions, the union and intersection;Tn
i¼1

Gi ¼ x 2 U : 9i 2 1; 2; . . .; nf g; : x 2 Gif g and

Tn
i¼1

Gi ¼ x 2 U : 8i 2 1; 2; . . .; nf g; : x 2 Gif g.
The idea of indexed sets of non-dominated solutions is adopted here in two aspects:

(i) Disjoint Non-dominated Solutions (Pareto Fronts) For some indexed sets of
non-dominated solutions, there are some indexed finite Pareto fronts G1;G2;...;Gn

� �
, the

arbitrary intersection of the Pareto fronts is; G1\G2...\Gn ¼ ø. It implies,T
f2F

Uf ¼ xjx 2 Uf ; 8f 2 F
� � ¼ ø, and called “distinct or disjoint indexed non-domi-

nated solutions” in F which are ranked.

(ii) Connected or Intersecting Non-dominated Solutions (Pareto Fronts) If the
solution subsets of non-dominated solutions have one or more common features in the
indexed non-dominated solutions, then, the arbitrary intersection is non-empty. That is,
G1\G2...\Gn 6¼ ø, so

T
f2F

Uf ¼ xjx 2 Uf ; 8f 2 F
� � 6¼ ø, hence, called “connected or

intersecting indexed non-dominated solutions”.

This segregates the non-dominated solutions and the irrelevant solutions are
neglected.

The collection G is represented by Sf
� �

f2F , in this algorithm the finite sets of

indexed non-dominated feature sets represent Pareto fronts.

3.4 K-Nearest Neighbor (K-NN) Classifier

The K-nearest neighbor (K-NN) classifier is employed here to evaluate our method as a
result of its simplicity. The introduction of the K-nearest neighbor (K-NN) method in
1951 by Fix and Hodges has greatly contributed in the improvement of new algorithms.
One reason of the (K-NN) algorithm is for the classification of new features after the
random mutation. Due to the attributes and training samples obtained, the K-NN
evaluates the classification performed by our FSMOGSA method. As a multi-objective
task, the K-NN method consists of a supervised learning task where new indexed
non-dominated solution sets are evaluated in the K-neighbourhood and classified based
on the ranking in the solution space.

4 Experiments

The experiments were performed using some data sets from the UCI open access
repository, in which three other algorithms were used to compare with the performance
of our (FSMOGSA) method. Two of the algorithms are single objective method, that is,
gravitational search algorithm (GSA) and Binary particles swarm optimisation (BPSO).
The other is a multi-objective optimisation algorithm called Non-dominated solutions
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particle swarm optimisation feature selection (NSPSOFS), these three methods were
used in the comparison with our proposed method. Precisely, four different data sets
were used in the experiment to ascertain the efficiency of FSMOGSA. The experiment
was implemented on a 32-bit windows 7 operating system, processor: Intel®, core™,
Duo 3.00 GHz, RAM: 4 GB computer, with MATLAB (R2012a) suite (Table 1).

All the four methods were tested on each of the four (4) data sets and the results
were compared with one another. The outcome of each of the four algorithms for each
data set shows the rate of error with regards to the number of features in the data set
obtained.

Table 2, shows the percentage number of features and the error values of the four
methods, the best results (error values) obtained in each data set are underlined in bold
character. Every data set has different number of features as such the iterations are
different in number. Obviously, the error values for FSMOGSA algorithm are the least.
As the number of features increases the error value increases also. The Iris data set was
left out here due to the few features in it.

Figure 2(a–d) show the graphical display of the experiment on each data set.
The FSMOGSA algorithm shows a great degree of stabilisation of the low error rate

and minising the number of features to achieve our objectives. Since our
multi-objective was to maximise performance by reducing the error rate and at the same
time reducing the number of features, we used the error function in Eq. (14) to achieve
these goals. While the generation of new particles increased the chances of obtaining
optimal sets of non-dominated solutions, the indexed sets facilitate the ranking and
choosing of the best solution sets. The experimental validation of (FSMOGSA) is a

Table 1. Is the description of the four data sets

Data sets Iris Ionosphere Vehicle Wine

No. of instants 150 351 846 178
No. of classes 3 2 4 3
No. of features 4 34 18 13

Table 2. Is a performance Comparison of the error values with percentage number of features.

Wine_Dataset↓5%feature 15% 25% 35%    45%       55%     65%       75%     85%      95% ...  %
GSA                   19.312   20.114   21.089  20.400  21.822  21.997
BPSO                 17.216   18.102   23.182  24.377  24.921  23.994
NSPSOFS          13.882   14.876   14.993  15.734  15.871  16.822
FSMOGSA        12.002   12.399   13.118  14.723  14.892 15.177
Ionosphere_Dataset↓
GSA                   20.400   20.113   17.391  14.764  16.430  16.412  17.023  17.321  17.110    18.021
BPSO                 24.032   20.132   17.943  12.730  12.023  11.899  11.071  14.132  16.234    16.942
NSPSOFS          11.115   11.172   11.093  10.987  10.123  10.141  10.112  10.023   9.897       8.098
FSMOGSA        12.976   11.132   10.398    9.341    9.076 8.991    9.112    9.354    9.310
Vehicle_Dataset↓
GSA 27.114   13.344   14.019   20.786 23.324  23.124  22.921
BPSO 26.221   10.223   15.216   21.576 23.113  24.901  24.984
NSPSOFS 22.223   16.912   17.445   18.139 18.939  18.175  17.945
FSMOGSA 13.897   15.897   14.111   15.897 15.987  16.391  17.012
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good indication of the efficiency in its application to feature selection in a
multi-objective task over most existing feature selection methods. Again, it indicates
that FSMOGSA searches for the non-dominated solutions through the integration of
minimal feature set numbers and classifier performance to yield optimised indexed
non-dominated (Pareto fronts) solutions with high classification accuracy than the other
three methods.

5 Conclusion

The experimental validation indicates that our method is a more efficient one The best
results for the multi-objective algorithm’s validation were obtained by our FSMOGSA
algorithm, the next best result was NSPSOFS both of which are hybrid methods. This
shows that the hybrid methods have a better performance than the regular methods.
From the experiments, FSMOGSA was noted to be quite unparalleled in comparison
with the other methods in reducing the error rate and maximising the general perfor-
mance by minimising the irrelevant features. For the objective of efficient performance
we suggest a future work in binary GSA hybrid method.

Iris data set Vehicle data set

GSA

BPSO

NSPSOFS

FSMOGSA

BPSO

(a) (b)

Wine data set Ionosphere data set

(c) (d)

Fig. 2. (a) Is the Iris data set, the error rate was lower for FSMOGSA next by NSPSOFS, the
features are fewer in this data set. For the data set; vehicle in (b), FSMOGSA still has the least
error rate with reduced features. Then, the wine data set (c) the error rate is lower for NSPSOFS
than our FSMOGSA but it is negligible and on the fourth data set (d), FSMOGSA showed the
best result among the four algorithms employed on the Ionosphere data set.
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