
Consistency Verification
for GML Data Based on DOM

Xiaoli Gao1(&), Haixia Li1, Tingguang Yan1, Zhencai Cui1, Jiyu Yu1,
and Yehua Sheng2

1 Shandong Water Polytechnic, Rizhao, Shandong, China
wishuluck@126.com

2 Key Laboratory of Virtual Geographic Environment,
Nanjing Normal University, Nanjing, China

Abstract. GML schemas are metadata files, which define the structure, content
and restriction of GML instances. As a kernel of the GML parser, consistency
verification decides whether GML documents are consistent with the relevant
application schemas. In order to parse GML data more effectively and accu-
rately, an algorithm based on DOM was developed as to how GML consistency
can be verified. Furthermore, some primary user-defined methods and the
homologous regular expression technology, involving in this algorithm, were
discussed in detail. Experimental results show that the consistency verification
algorithm is efficient.

Keywords: GML � Schema-based parser � DOM � Consistency verification �
RegExp � HRegExp

1 Introduction

As the encoding standard for geographic information, GML documents have to meet
certain grammar specification to guarantee the correctness of physical structure and
logical structure, thus, which can be interpreted, process and sharing [4]. GML parsing
is the basis of geographic information storage, compress, transformation, conversion,
index, query and share, etc., which is related to studying and application of GML
tightly [5]. Almost all the studies related to GML, cannot be separated from GML
parsing. GML schema-based parser should be versatile. It is able to preserve the
properties of adaptive and self-expansion [6].

The integrative grammatical and semantic database, addresses the issue of how to
describe simple data type and complex data type in schemas, and lays the foundation
for GML grammar validation and GML grammatical and semantic parsing [1].

The GML grammar validation is the most basic and important foundation of GML
schema-based parser, and its purpose are to verify the correctness and the validity of

This work is sponsored by the Special Water Resources Projects Aided by Special Fun of Water
Resources Department of Shandong Province (No. sdw200709027) and the Provincial Water
Conservancy Science Research and Technology Promotion Project of Shandong Province
(No. SDSLKY201304).

© Springer-Verlag Berlin Heidelberg 2016
F. Bian and Y. Xie (Eds.): GRMSE 2015, CCIS 569, pp. 149–158, 2016.
DOI: 10.1007/978-3-662-49155-3_14

the GML data that based on the two aspects: validity and consistency, to ensure the
GML data is available.

Consistency verification is also known as the validity verification. It is an inference
that whether the GML instances and the GML patterns can match in the data structure,
which mainly for the effective judgment that whether elements, attributes, and data
structure of the GML instances conform with the corresponding defined requirements
of GML application schemas. When an inconsistent error occurs, it can prompt the
wrong position and the wrong type information, etc.

Normative GML documents should comply with the requirements of two aspects:
To be well-formed and to be valid.

The well-formed GML document is known as the legal GML document, whose
content and structure must comply fully with the GML basic grammar rules. Such as
the start tag and the end tag must appear in pairs, and the structure of the document
must be a hierarchical tree structure, etc.

The GML instance document that has completely passed the consistency test is
referred to as consistent (or effective) GML document. Such kind of document must be
well-formed, firstly, which also calls for its content and structure shall abide by the
provisions of the relevant application schemas or DTDs [7].

The consistent GML document has more restrictions than a well-formed GML
document, and has to follow a stricter specification. A well-formed GML document
cannot achieve the standard of consistency. However, consistent GML document will
meet the requirements of well-formed. From this point, consistency is the proper subset
of the legality [3]. In functional implementation of GML consistency verification, the
DOM technology mainly used as the GML parsing scheme.

2 The Specification of DOM API

DOM is the abbreviation of Document Object Model, proposed by the World Wide
Web Consortium (W3C), was an application programming interface (API) for XML
and HTML documents [8].

When parsing GML data using DOM, GML document is organized into a hierarchy
tree structure (called a DOM tree), and the DOM tree is loaded into the memory.
In DOM tree, all elements are organized as the tree nodes. DOM parser supplies a
series of API methods, provides abundant supports for manipulating tree nodes, such as
dynamic traversal, retrieving, adding nodes, removing nodes, modifying nodes, etc.
Moreover, DOM parser can establish, update, or access the GML document structure
and GML data style [7].

DOM offers the following four basic API classes.

• Document class represents the entire GML document. The document object is
actually the root of the DOM tree, which is the entrance leads to access data, or
other elements of the DOM tree.

• Node class, on behalf of an abstract node of the DOM tree, is the parent class of
many other classes.

150 X. Gao et al.

• NodeList class, providing the abstract definition of an ordered list of nodes, each
node appears as an item with its index value in the list.

• NamedNodeMap class, defines the operational methods set. The methods in the set
are used to process elements in an unordered collection of nodes. The instance
object is primarily used to access an attribute node, or to describe the corresponding
relations between a set of nodes and their names.

The working mechanism of DOM tree is shown in Fig. 1.

3 The Realization Principle of Consistency Verification

When the data entries in a GML document are manipulated using DOM, first organize
the collections of independent elements, attributes, text, data entity, and so on, into a
DOM tree structure in the memory, and make each node represent an embedded object
in the GML document. Secondly, a series of API functions are provided; they support
the application to access the contents of the DOM tree through the interface functions.
So many kinds of operations are allowed to apply to the nodes on a DOM tree, and then
process the results of operations, maps the results indirectly to the corresponding
documentation [2]. Finally, by complying with the requirements of the application, API
functions allow programmers to modify the DOM, and decide whether to save changes
back to the GML document.

Consistency validation process depends largely on the basis of the DOM tree and
the integrative GML grammatical and semantic database, and the recursive method is
utilized in the implementation. It is important in order to inspect whether the contents
of a data instance match the corresponding records in the integrative GML gram-
matical and semantic database. The contents of a data instance are made up of many
aspects in each data entity, including the organizational structure, data type, and range
of domain [7].

Fig. 1. The working mechanism of GML parsing using DOM.

Consistency Verification for GML Data Based on DOM 151

Once found that elements do not agree with the schema definition, the wrong type
and the error position will be recorded, so that the verified conclusions will be reported
to users at the end of the consistency validation process.

In view of the different element types, the consistency validation behavior will
change.

• For the built-in standard simple type element. It is mainly to check whether the
value scope of each element complies with the provision of the standard type.

• For the restricted simple type element. It is mainly to check whether the value of
each element complies with the facets of the simple type.

• For the complex type element. It is mainly to check whether the hierarchical tree
structure which is developed from elements and sub-elements complies with the
complex type structure defined by the model.

• For the reference element. It may not directly find the matching record in the
integrative GML grammatical and semantic database. Then it is necessary to check
the substitution group field in the relevant element definition table. Once the record
that has the same name as the reference element has been found, it is time to
perform the three conditions, one of the three cases described above will be pro-
cessed respectively according to the data type of substitution group field is simple or
complex, and the corresponding processing module will be performed. If the sub-
stitution group field is not present, it indicates that element verification has failed, so
the error handling module should invoke.

4 Implementation Algorithm of Consistency Verification

GML parsing relies on DOM trees mapping in memory. The tree data structure belongs
to the nonlinear hierarchical structure, and its definition is recursive. Because the
recursion has characteristics of concise, delicate, function perfectly, short code, efficient
performance, so recursive algorithm was designed in the implementation for consis-
tency verification.

The function of the method named consistency verification is to implement
dynamic analysis and check on the specified GML elements. A detailed algorithm
description is depicted below.

Input Description: Input objects consist of the specified GML instance document to
be verified, the integrative grammatical and semantic database of GML core schemas,
and the integrative grammatical and semantic database of GML application schemas.

Function Description: The core function of the algorithm is to check consistency of
the specified element. This function returns TRUE on success in consistency verifi-
cation, or FALSE on failure in consistency verification. When the specified element
takes its failure in consistency verification, the method named registerError will be
invoked immediately. The function of this method is to record the error location, the
error type, the wrong code, etc.

152 X. Gao et al.

Output Description: Output result is the conclusion through verification test, or error
messages caused by verification failures.

4.1 Description of Consistency Verification Method

The pseudo code of the key process in the method called consistency verification is
described as follows [1].

boolean consistencyVerification(Element checkedElement)
{ //Define a variable to store value returned by method
boolean verifiedResult=true;
if (dataTypeOf(checkedElement) standard simple type)
verifiedResult=

VerifyStandardSimpleType(checkedElement);
//Error occurs when verifies standard simple type
if (verifiedResult==false)
registerError(); //Invokes the registerError method

if (dataTypeOf(checkedElement) restricted simple type)
verifiedResult=

VerifyRestrictedSimpleType(checkedElement);
//Error occurs when verifies restricted simple type
if (verifiedResult==false)
registerError(); //Invokes the registerError method

if (dataTypeOf(checkedElement) complex type)
{//To concatenate checkedElement and its child elements
destinationConcatenate=

generateConcatenateStr(checkedElement);
//To gain the value of rule field from database
sourceRule=getRuleFromDB(DBFile,checkedElementType);
//To convert the parameter into a regular expression
sourceRegExp=regularization(sourceRule);
//Using regular expression as a template
boolean isMatch= Pattern.matches(

sourcePattern,destinationConcatenate);
if (isMatch==false) {//Pattern match suffers a failure
registerError(); //Invokes the registerError method
verifiedResult=false; //Assign false to variable

} else
verifiedResult=true; //Assign true to variable

//Realize the verification function using recursive
for (eachSubElement checkedElement.getChildNodes())
if ((consistencyVerification(eachSubElement))==false) {
registerError(); //Invokes the registerError method
verifiedResult=false; //Assign false to variable

} }//To complete the verification of complex type
return verifiedResult; //Returns value of the variable
} //To stop consistencyVerification method process

Consistency Verification for GML Data Based on DOM 153

4.2 Illustrations of Custom Methods

Some primary user-defined methods involving in the method of consistency verifica-
tion are given in Table 1.

Specially as is pointed, in generate ConcatenateStr() method, after producing a
string expression, pattern matching will be carried out on the expression and the
corresponding regular expression of a complex type. The next step is to decide whether
the structure of the element specified by the parameter of checkedElement consistents
with the structure of data type defined in the pattern files.

4.3 Regular Expression and Homologous Regular Expression

Regular expressions (abbreviated as RegExp) provide a concise and flexible means to
identify strings of text, such as particular characters, words, or patterns of characters.
RegExp can express the syntactic structure and nesting relationship perfectly, so we
select it to describe GML model information defining in complex types. There are
numerous advantages in describing and modeling regular language with RegExp. For
example, it is easy for people to understand and to use RegExp; it is easy for computers

Table 1. Important functions referenced in consistency verification module.

NO. Method Prototype Function description
1 String dataTypeOf(

Element checkedElement)
To determine the data type of parameter
checkedElement

2 void registerError() To record and store the error location, the error type,
the wrong code, etc.

3 boolean
verifyStandardSimpleType(
Element checkedElement)

To check whether the parameter of checkedElement
complies with the definition of standard simple type
according to the records in the integrative
grammatical and semantic database

4 boolean
verifyRestrictedSimpleType(
Element checkedElement)

To check whether the parameter of checkedElement
complies with the definition of restricted simple type
according to the records in the integrative
grammatical and semantic database

5 String generateConcatenateStr(
Element checkedElement)

To construct a string expression that is comprised of
the element specified by the parameter of
checkedElement and its child elements

6 String getRuleFromDB(
String DBFileName, Element
checkedElement)

To gain the homologous regular expression of a
complex type element specified by the parameter of
checkedElement from the database called
DBFileName

7 String regularization(
String sourceRule)

To convert the homologous regular expression into
the corresponding regular expression, To prepare
for the operation of pattern matching

154 X. Gao et al.

to parse and to process RegExp, and RegExp can describe complicated things in a
simple form [5], etc.

A regular expression is composed of some branches; and a branch is composed of
some pieces. The Piece can be seen as the basic independent element of RegExp, which
consists of atoms and quantifier.

Primary quantifiers and operators used in RegExp is given in Tables 2 and 3
respectively.

The above quantifiers and operators can be brought together to form arbitrarily
complex expressions. In order to enhance describing capacity of RegExp for parsing
the syntactic and semantic information, some grammar rules are extended. The
improved regular expression is called homologous regular expression(abbreviated as
HRegExp) in this paper [1].

The following syntax rules were added in HRegExp:

1. For an element in the complex type model, HRegExp decorates the element name
with a pair of characters (“<”, “>”) as the delimiters.

2. For an element reference to the complex type model, HRegExp decorates the ref-
erenced name with a pair of square brackets (“[”, “]”) as the delimiters.

3. For a named model group in the complex type model, HRegExp decorates the
referenced name of the group with a pair of tokens (“[#”, “#]”) as the delimiters.

4. All sub elements in a “sequence group” must be divided by the blank character.
5. All sub elements in a “choice group” must be separated by vertical bar(“|”).
6. All sub elements in a “all group” must be separated by slash(“/”).

Table 2. List of the quantifiers in RegExp.

No. Quantifier Description of usage

1 ? Matches the preceding element zero or one time
2 * Matches the preceding element zero or more times
3 + Matches the preceding element one or more times
4 {n} Preceding element can only occur n times
5 {n,} Preceding element occurs at least n times
6 {n, m} Preceding element occurs at least n times and not more than m times
7 No quantifier Element can only occur one time

Table 3. List of the operators in RegExp.

No. Operator Description of usage

1 αβ Sequence operator, matches token α firstly, then token β
2 α|β Choice operator, matches either token α or token β
3 (α) Token α is treated as grouping

Consistency Verification for GML Data Based on DOM 155

7. Uses multi-pairs of nested parentheses(“(”, “)”) to reflect the syntax structure of the
nested complex type model.

8. Named model group will conform to the above definition.

Therefore, it can be seen that HRegExp adds some special delimiters for four
different types of complex type models, to depict additional semantic information in
GML models.

5 Example Test for Consistency Verification Algorithm

The consistency validation program for checking GML data was developed with C#. It
can help users to judge whether a GML document is coherent or not [7].

A concrete example test has been laid on. The result of verification as showed in
Fig. 2, it indicates that the checked data segment does not meet the requirement of
consistency.

The test data comes from a document titled “City.XML”, which is a GML data
segment file describing the characteristics of the bridge element. Its content is shown as
follows.

Fig. 2. Example test for a GML data segment file.

156 X. Gao et al.

<gml:featureMember>
<Bridge>
100
<height>200</height>
<gml:centerLineOf>
<gml:LineString>
<gml:pos>100 200</gml:pos>
<gml:pos>200 200</gml:pos>

</gml:LineString>
</gml:centerLineOf>
<mobility>DrawBridge</mobility>
<spans> <Gorge/> </spans>

</Bridge>
</gml:featureMember>

A considerable amount of GML data instances were selected to verify the cor-
rectness and reliability of the program. The test results show that: The consistency
verification algorithm can verify the consistency of GML data effectively, and the
algorithm performance is higher. The detected errors are accurate and reliable [1].

6 Conclusion

DOM parsing technologies based on objects are adapted in the implementation of GML
grammar validation, which is contained within GML schema parsing. An algorithm for
GML data’s consistency verification using recursion technique is built and
implemented.

Experiments show that the algorithm relies on the integrative GML grammatical
and semantic database, which can make a correct judgment about the GML data
consistency, to resolve errors and eliminate hidden dangers effectively for GML
application data. The algorithm has the relatively high accuracy and fast execution
efficiency.

References

1. Gao, X.: Research on universal GML schema parsing based on grammatical and semantic
database. Dissertation for The Degree in M.A.Sc (in Chinese), pp. 11–29 (2006)

2. Lake, R., Burggraf, D.S., Trninic, M., Rae, L.: Geography Mark-UP Language (GML). John
Wiley & Sons Ltd, USA (2004)

3. Gao, X., Cui, Z., Jia, N., Xiao, H., Zhang, S.: Design and implementation of essential
algorithms for parsing GML schemas. In: 6th International Conference on Intelligent
Human-Machine Systems and Cybernetics, vol. 2, pp. 284–287. IEEE Computer Society CPS
Press, USA (2014)

4. Lake, R.: The application of geography markup language (GML) to the geological sciences.
J. Comput. Geosci. 31, 1081–1094 (2005)

Consistency Verification for GML Data Based on DOM 157

5. Gao, X., Li, H., Zhang, S., Sheng, Y.: Research on HRegExp applied to GML parsing. In: 5th
International Symposium on Computational Intelligence and Design, vol.2, pp. 214–217.
IEEE Computer Society CPS Press, USA (2012)

6. Walmsley, P.: Definitive XML Schema. Prentice Hall PTR, Upper Saddle River (2002)
7. Open Geospatial Consortium Inc.: Geographic information-Geography Markup Language

Version3.3”. http://www.opengeospatial.org/standards/gml
8. The World Wide Web Consortium: XML Technology. http://www.w3.org/standards/xml

158 X. Gao et al.

http://www.opengeospatial.org/standards/gml
http://www.w3.org/standards/xml

	Consistency Verification for GML Data Based on DOM
	Abstract
	1 Introduction
	2 The Specification of DOM API
	3 The Realization Principle of Consistency Verification
	4 Implementation Algorithm of Consistency Verification
	4.1 Description of Consistency Verification Method
	4.2 Illustrations of Custom Methods
	4.3 Regular Expression and Homologous Regular Expression

	5 Example Test for Consistency Verification Algorithm
	6 Conclusion
	References

