
Lazy Constrained Monotonic Abstraction

Zeinab Ganjei(B), Ahmed Rezine, Petru Eles, and Zebo Peng

Linköping University, Linköping, Sweden
zeinab.ganjei@liu.se

Abstract. We introduce Lazy Constrained Monotonic Abstraction
(lazy CMA for short) for lazily and soundly exploring well structured
abstractions of infinite state non-monotonic systems. CMA makes use
of infinite state and well structured abstractions by forcing monotonic-
ity wrt. refinable orderings. The new orderings can be refined based on
obtained false positives in a CEGAR like fashion. This allows for the
verification of systems that are not monotonic and are hence inherently
beyond the reach of classical analysis based on the theory of well struc-
tured systems. In this paper, we consistently improve on the existing
approach by localizing refinements and by avoiding to trash the explored
state space each time a refinement step is required for the ordering. To
this end, we adapt ideas from classical lazy predicate abstraction and
explain how we address the fact that the number of control points (i.e.,
minimal elements to be visited) is a priori unbounded. This is unlike the
case of plain lazy abstraction which relies on the fact that the number of
control locations is finite. We propose several heuristics and report on our
experiments using our open source prototype. We consider both back-
ward and forward explorations on non-monotonic systems automatically
derived from concurrent programs. Intuitively, the approach could be
regarded as using refinable upward closure operators as localized widen-
ing operators for an a priori arbitrary number of control points.

Keywords: Constrained monotonic abstraction · Lazy exploration ·
Well structured systems · Safety properties · Counter machines
reachability

1 Introduction

Well structured transition systems (WSTS:s for short) are maybe everywhere
[17], but not all transition systems are well structured [3,18]. Problems such
as state reachability (e.g., safety) have been shown to be decidable for WSTS:s
[2,17]. This led to the development of algorithms that could check safety for
systems ranging from lossy channels and Petri Nets to concurrent programs and
broadcast protocols [19,23,25]. Many interesting examples of systems, including
list manipulating programs [9], cache protocols [13] and mutex algorithms [1] are
“almost” well structured in the sense that they would have been well structured

In part supported by the 12.04 CENIIT project.

c© Springer-Verlag Berlin Heidelberg 2016
B. Jobstmann and K.R.M. Leino (Eds.): VMCAI 2016, LNCS 9583, pp. 147–165, 2016.
DOI: 10.1007/978-3-662-49122-5 7

148 Z. Ganjei et al.

if it was not for a number of transitions that violate the required assumptions.
We build on the framework of Constrained Monotonic Abstraction (CMA for
short) where we derive well structured abstractions for infinite state systems
that are “almost” well structured.

To simplify, a WSTS comes with a well quasi ordering (wqo1 for short) on
the set of configurations. A key property of such systems is monotonicity: i.e., if
a smaller configuration can fire a transition and get to some configuration c, then
any configuration that is larger (wrt. the wqo) can also get to some configuration
that is larger than c. In other words, larger configurations simulate smaller ones.
Added to some assumptions on the effectivity of natural operations such as
computing minimal elements and images of upward closed sets of configurations,
it is possible to show the existence of sound and complete algorithms for checking
the reachability of upward closed sets of configurations (i.e., coverability).

Systems where only some transitions are non monotonic can be approximated
using WSTS:s by adding abstract transitions to restore monotonicity (monotonic
abstraction). The resulting abstraction is also infinite state, and reachability of
upward closed sets there is decidable. However, the obtained abstractions may
fail to enforce invariants that are crucial for establishing unreachability of bad
configurations in the original system. For instance, we explain in our recent work
[18] how we automatically account for the number of processes synchronizing
with (dynamic) barriers when establishing or refuting local (e.g., assertions) and
global (e.g., deadlock freedom) properties of programs manipulating arbitrary
many processes. Crucial invariants of such systems enforce an inherently non-
monotonic behavior (e.g., a barrier transition that is enabled on a configuration
is disabled if more processes are considered in a larger configuration).

Checking safety for such non-monotonic systems is not guaranteed to ter-
minate without abstraction. Plain monotonic abstraction [1,20] makes use of
sets that are upward closed wrt. natural orderings as a sound symbolic repre-
sentation. As stated earlier, this ensures termination if the used preorder is a
wqo [2]. Of course, this comes at the price of possible false positives. In [3], we
adapted existing counter example guided abstraction refinement (CEGAR) ideas
to refine the ordering in plain monotonic abstraction. The preorder is strength-
ened by only relating configurations that happen to be in the same equivalence
class, as defined by Craig interpolants obtained from the false positives. The
new preorder is also a wqo, and hence, termination is again ensured. As imple-
mented, the predicates are applied on all generated minimal elements to separate
upward closed sets and the exploration has to restart from scratch each time a
new refinement predicate is encountered.

We address these inefficiencies by adopting a lazy approach. Like in lazy
predicate abstraction [21], we strive to localize the application of the refinement
predicates and to reuse the explored state space. However, a major difference
with plain lazy predicate abstraction is that the number of “control locations”
1 A reflexive and transitive binary relation � over some set A is a preorder. It is said

to be a wqo over A if in any infinite sequence a1, a2, . . . of elements of A, there exist
1 ≤ i < j such that ai � aj .

Lazy Constrained Monotonic Abstraction 149

(i.e., the locations to which subsets of the refinement predicates are mapped) is
a priori unbounded (as opposed to the number of program locations of a non-
parameterized system). We propose in this paper three heuristics that can be
applied both in backward and in forward (something plain monotonic abstraction
is incapable of). All three heuristics adopt a backtracking mechanism to reuse,
as much as possible, the state space that has been explored so far. Schematically,
the first heuristic (point-based) associates refinement predicates to minimal ele-
ments. The second heuristic (order-based) associates the refinement predicates to
preorder related minimal elements. The third heuristic (descendants-based) uses
for the child the preserved predicates of the parent. We describe in details the
different approaches and state the soundness and termination of each refinement
step. In addition, we experimentally compare the heuristics against each other
and against the eager approach on our open source tool https://gitlab.ida.liu.
se/apv/zaama.

Related Work. Coverability of non-monotonic systems is undecidable in general.
Tests for zero are one source of non-monotonicy. The work in [8] introduces a
methodology for checking coverability by using an extended Karp-Miller accel-
eration for the case of Vector Addition Systems (VAS:s for short) with at most
one test for zero. Our approach is more general and tackles coverability and
reachability for counter machines with arbitrary tests.

Verification methods can be lazy in different ways. For instance, Craig inter-
polants obtained from program runs can be directly used as abstractions [26],
or abstraction predicates can be lazily associated to program locations [21].
Such techniques are now well established [5,10,27]. Unlike these approaches, we
address lazy exploration for transition systems with “infinite control”. Existing
WSTS based abstraction approaches do not allow for the possibility to refine the
used ordering [23,25], cannot model transfers for the local variables [16], or make
use of accelerations without termination guarantees [7]. For example, in [23] the
authors leverage on the combination of an exact forward reachability and of an
aggressive backward approximation, while in [25], the explicit construction of a
Petri Net is avoided.

The work in [24] gives a generalization of the IC3 algorithm and tries to build
inductive invariants for well-structured transition systems. It is unclear how to
adapt it to the kind of non-monotonic systems that we work with.

We believe the approach proposed here can be combined with such tech-
niques. To the best of our knowledge, there is no previous work that considered
making lazy the preorder refinement of a WSTS abstraction.

Outline. We start in Sect. 2 with some preliminaries. We then formalize targeted
systems and properties in Sect. 3. We describe the adopted symbolic representa-
tion in Sect. 4 and go through a motivating example in Sect. 5. This is followed
by a description of the eager and lazy procedures in Sect. 6. We finally report on
our experiments in Sect. 7 and conclude in Sect. 8.

https://gitlab.ida.liu.se/apv/zaama
https://gitlab.ida.liu.se/apv/zaama

150 Z. Ganjei et al.

2 Preliminaries

We write N and Z to respectively mean the sets of natural and integer values.
We let B = {tt, ff} be the set of boolean values. Assume in the following a set
X of integer variables. We write ξ(X) to mean the set of arithmetic expressions
over X. An arithmetic expression e in ξ(X) is either an integer constant k, an
integer variable x in X, or the sum or difference of two arithmetic expressions.
We write e(X) to emphasize that only variables in X are allowed to appear in e.
We write atomsOf(X) to mean the set of atoms over the variables X. An atom α
is either a boolean tt or ff or an inequality e ∼ e′ of two arithmetic expressions;
where ∼ ∈ {<,≤,≥, >}. We write A to mean a set of atoms. Observe that the
negation of an atom can be expressed as an atom. We often write ψ to mean a
conjunction of atoms, or conjunct for short, and use Ψ to mean a set of conjuncts.
We use Π(ξ(X)) to mean arbitrary conjunctions and disjunctions of atoms over
X. We can rewrite any presburger predicate over X in negated normal form
and replace the negated inequalities with the corresponding atoms to obtain an
equivalent predicate π in Π(ξ(X)). We write atomsOf(π) to mean the set of
atoms participating in π .

A mapping m : U → V associates an element in V to each element in U .
We write m : U �→ V to mean a partial mapping from U to V . We write
dom(m) and img(m) to respectively mean the domain and the image of m and use
εU : U �→ V for the mapping with an empty domain. We often write a partial
mapping m : U �→ V as the set {u ← m(u)| u ∈ dom(m)} and write m ∪ m′

to mean the union of two mappings m and m′ with disjoint domains. Given a
partial mapping x : X �→ ξ(X), we write νx(e) to mean the substitution in e of
X variables by their respective x images and the natural evaluation of the result.
As usual, νx(e) is a well defined integer value each time x is a total mapping to
Z. This is generalized to (sets of) atoms, conjuncts and predicates.

We let X (resp. X≥0) be the set of all total mappings X → Z (resp. X → N).
We write 0X for the total mapping X → {0}. The denotation of a conjunct ψ
over X (resp. X≥0), written [[ψ]]X (resp. [[ψ]]X≥0), is the set of all total mappings
x in X (resp. in X≥0) s.t. νx(ψ) evaluates to tt. We generalize to sets of atoms
or conjuncts by taking the union of the individual denotations. Let � be the
preorder over X≥0 defined by x � x′ iff x(x) ≤ x′(x) for each x ∈ X. Given a
predicate π in Π(ξ(X)), we say that a set M ⊆ [[ψ]]X≥0 is minimal for ψ if:
(i) x � x′ for any pair of different x, x′ ∈ M , and (ii) for any x′ ∈ [[ψ]]X≥0 , there
is an x ∈ M s.t. x � x′. We recall the following facts from Linear Programming
and [22].

Lemma 1. For a finite set of natural variables X, the preorder � is a partial
well quasi ordering. In addition, we can compute a finite and unique minimal
set (written min�(π)) for any predicate π in Π(ξ(X)).

3 The State Reachability Problem

In this section, we motivate and formally define the reachability problem.

Lazy Constrained Monotonic Abstraction 151

shared :
bool read := ∗;

process :
t0. pc0 → pc0 : spawn
t1. pc0 → pc1 : read := tt
......
//do some work before the barrier
......
t2. pc1 → pc2 : read := ff
t3. pc2 → pc3 : barrier()
t4. pc3 → pc4 : assert(!read)

init

rd

¬rd

trgt

gcini

gcini

gc0, gc1, gc3, gc4

gc2

gcerr

gc1

gc0, gc2, gc3

Fig. 1. The counter machine to the right captures the behaviour of the concurrent
program to the left. It makes use of one counter per program location. It involves the
following guarded commands: gcini ::= (c0, c1, c2, c3, c4 := 1, 0, 0, 0, 0), gc0 ::= (c0 ≥
1 ⇒ c0 := c0 + 1), gc1 ::= (c0 ≥ 1 ⇒ c0, c1 := c0 − 1, c1 + 1), gc2 ::= (c1 ≥ 1 ⇒
c1, c2 := c1 − 1, c2 + 1), gc3 ::= ((c2 ≥ 1 ∧ c0 + c1 = 0) ⇒ (c2, c3 := c2 − 1, c3 + 1)),
gc4 ::= (c3 ≥ 1 ⇒ c3, c4 := c3 − 1, c4 + 1), and gcerr : (c3 ≥ 1). The resulting system is
not well structured because of the zero test in gc3.

An Example. Consider the multi-threaded program to the left of Fig. 1 where
only a single thread starts executing the program. A thread can spawn arbitrar-
ily many concurrent threads with t0. Assume all threads asynchronously run
the same program. Each thread can then set the shared flag read to tt, and
perform some reading followed by resetting read to ff. All threads wait at the
barrier. Obviously, read should be ff after the barrier since all threads that
reached pc3 must have executed t2. The assertion at pc3 should therefore hold
no matter how many threads are spawned. Capturing the barrier behaviour is
crucial for establishing the non-violation of the assertion. The barrier behaviour
is inherently non monotonic (adding more threads does not keep the barrier
open). Our recent work [18] on combining different abstraction techniques can
automatically generate non-monotonic counter machines such as the one to the
right of Fig. 1. For this case, the assertion in the concurrent program is violated
iff the target state is reachable in the counter machine. We explain briefly in the
following how such counter machines are generated.

Our tool Pacman [18], takes as input multi-threaded programs similar to the
one to left of Fig. 1. It automatically performs predicate, counter and monotonic
abstractions on them and generates counter machines that overapproximate the
behaviour of the original program. It then tries to solve the reachability problem
for those machines.

Given a multi-threaded program, Pacman starts by generating concur-
rent boolean programs by performing predicate abstraction and incrementally
improving it in a CEGAR loop [14]. This results in a boolean multi-threaded pro-
gram that has the same control flow graph as the original program, but consists
of only boolean variables. To the obtained boolean program, Pacman applies
counter abstraction to generate a counter machine. Intuitively, each counter in
the machine is associated to each local state valuation of a thread (that consists

152 Z. Ganjei et al.

in the location and the valuation of the local variables of the thread). Each state
in the machine is also associated to a valuation of shared variables. An extra
state is reserved for the target. The statements of the boolean program are then
translated as transitions in the counter machine.

For instance, in Fig. 1, counters ci, for i : 0 ≤ i ≤ 4, correspond respectively
to the number of threads in program locations pci (the threads have no local
variables here). Similarly, each transition gci is associated to each ti. More-
over, there are two additional transitions gcini and gcerr to model transitions
involving initial or target states.

Note that the original multi-threaded program has non-monotonic invariants.
For instance, transitions such as barriers, or any transition that tests variables
representing the number of threads satisfying some property do not stay enabled
if we add more threads. At the same time, the boolean concurrent programs
generated above are inherently monotonic. This corresponds to a loss of preci-
sion. Thus, proving correctness of those programs whose correctness depends on
respecting the non-monotonic behaviour (e.g., the one enforced by a barrier) can
become impossible. As a remedy to this fact, Pacman automatically strengthens
counter machine transitions by enforcing barrier invariants or by deriving new
invariants (e.g., using an instrumented thread modular analysis) to regain some
of the precision. This proved to help in verifying several challenging benchmarks.
For example, consider the transition t3 in the program to the left of Fig. 1. At the
moment a thread crosses the barrier first, there should be no thread before loca-
tion pc2. This fact holds afterwards and forbids that a thread sets the flag read
when some thread is checking the assertion. The transition gc3 is its correspond-
ing transition in the strengthened counter machine. To ease the presentation of
the example, gc3 is strengthened with the guard (c0 + c1 = 0). (Observe that
this is a simplification to ease the presentation; we can more faithfully capture
the barrier by combining the test with a global flag.)

Counter machines. A counter machine is a tuple (Q,C,A,Δ, qinit, qtrgt) where
Q is a finite set of states, C and A are two distinct sets of counters (i.e., variables
ranging over N), Δ is a finite set of transitions and qinit and qtrgt are two states in
Q. A transition δ in Δ is of the form (q, (grd ⇒ cmd), q′) where src(δ) = q is the
source state, dst(δ) = q′ is the destination state and gc(δ) = (grd ⇒ cmd) is the
guarded command. A guard grd is a predicate in Π(ξ(A ∪ C)) and a command
cmd is a multiple assignment c1, . . . , cn := e1, . . . , en that involves e1, . . . en in
ξ(A ∪ C) and pairwise different c1, . . . cn in C.

Semantics. A configuration is a pair θ = (q, c) with the state st(θ) = q in Q and
the valuation val(θ) = c in C≥0 : C → N. We let Θ be the set of configurations.
We write θ � θ′ to mean st(θ) = st(θ′) and val(θ) � val(θ′) (see Sect. 2). The
relation � is a partial order over Θ. In fact, the pair (Θ,�) is a partial well quasi
ordering [22]. Given two configurations (q, c) and (q′, c′) and a transition δ ∈ Δ
with q = src(δ), q′ = dst(δ) and gc(δ) = (grd ⇒ (c1, . . . , cn := e1, . . . , en)),
we write (q, c) δ−→ (q′, c′) to mean that there exists an a ∈ A≥0 s.t. νa∪c(grd)
evaluates to tt and c′(ci) = νc∪a(ei) for each ci in C. The auxiliary variables

Lazy Constrained Monotonic Abstraction 153

allow us to capture transfers (needed by predicate abstraction of concurrent
programs). For instance, (c0 ≥ 1 ∧ c0 = a0 ∧ c1 = a1 ∧ a0 + a1 = a2 + a3) ⇒
(c0, c1, c2, c3 := 0, 0, a2 + c2, a3 + c3) captures situations where at least a thread
is at pc0 and all threads at pc0 and pc1 move to pc2 and pc3. A run ρ is a
sequence θ0θ1 · · · θn. We say that it covers the state st(θn). The run is feasible
if st(θ0) = qinit and θi−1

δi−→ θi for i : 1 ≤ i ≤ n. We write −→ for ∪δ∈Δ
δ−→.

Reachability. The reachability problem for a machine (Q,C,A,Δ, qinit, qtrgt) is
to decide whether it has a feasible run that covers qtrgt.

4 Symbolic Representation

Assume a machine (Q,C,A,Δ, qinit, qtrgt). We introduce (operations on) sym-
bolic representations used in our reachability procedures in Sect. 6.

Boxes. A box b over a set A of atoms is a partial mapping from A to booleans
B. Intuitively, a box corresponds to a bitvector denoting an equivalence class in
classical predicate abstraction. We use it to constrain the upward closure step.
The predicate ψb of a box b is ∧α∈dom(b)((b(α) ∧ α) ∨ (¬b(α) ∧ ¬α)) (tt is used
for the empty box). Observe that this predicate is indeed a conjunct for any
fixed box b and that [[ψb]] does not need to be finite. We write btt for the box
of the tt conjunct. We will say that a box b is weaker than (or is entailed by) a
box b′ if ψb′ ⇒ ψb is valid. We abuse notation and write b ⇐ b′. Observe this
is equivalent to [[ψb]] ⊆ [[ψb′]].

Constraints. A constraint over a set A of atoms is a triplet φ = (q, c,b) where
st(φ) ∈ Q is the state of the constraint, val(φ) = c is its minimal valua-
tion, and box(φ) = b over A is its box. We use Φ to mean a set of constraints.
A constraint (q, c,b) is well formed if νc(ψb) holds. We only consider well formed
constraints. We write clo(c,b) to mean the conjunct (∧c∈C(c ≥ c(c))∧ψb). Intu-
itively, clo(c,b) denotes those valuations that are both “in the box” and in the
�-upward closure of c. We let [[(q, c,b)]] be the set {(q, c′)| c′ ∈ [[clo(c,b)]]}. This
set contains at least (q, c) by well formedness. Given two constraints (q, c,b) and
(q′, c′,b′), we write (q, c,b) � (q′, c′,b′) to mean that: (i) q = q′, and (ii) c� c′,
and (iii) b ⇐ b′. Observe that φ � φ′ implies [[φ′]] ⊆ [[φ]]. A subset Φ of a set
of constraints Φ′ is minimal if: (i) φ1 �� φ2 for any pair of different constraints
φ1, φ2 ∈ Φ, and (ii) for any φ′ ∈ Φ′, there is a φ ∈ Φ s.t. φ � φ′.

Lemma 2. For a finite set of atoms A over C, the ordering � is a well quasi
ordering over the set of well formed constraints over A. In addition, we can
compute, for any set Φ of constraints, a finite �-minimal subset min	(Φ).

Image Computations. Assume a conjunct ψ over C and a guarded command
gc = (grd ⇒ cmd) for some δ ∈ Δ. Recall that grd is in Π(ξ(C ∪ A)) and that
cmd is of the form c1, . . . , cn := e1, . . . , en where, for each i : 1 ≤ i ≤ n, ci is in C
and ei is also in ξ(C ∪ A). We let L′ be the set of primed versions of all variables

154 Z. Ganjei et al.

appearing in the left hand side of cmd. We write pregc(ψ) to mean a set of
conjuncts whose disjunction is equivalent to (∃A ∪ L′.(∧1≤i≤n(c′

i = ei) ∧ grd ∧
ψ[{c ← c′| c′ ∈ L′}])). We also write postgc(ψ) to mean a set of conjuncts whose
disjunction is equivalent to (∃A∪C.(∧1≤i≤n(c′

i = ei)∧grd∧ψ))[{c′ ← c| c ∈ C}].
We naturally extend pregc(ψ) and postgc(ψ) to sets of conjuncts.

Lemma 3. Assume δ ∈ Δ and conjuncts Ψ . We can compute pregc(δ)(Ψ) and

postgc(δ)(Ψ) s.t. [[pregc(δ)(Ψ)]] (resp. [[postgc(δ)(Ψ)]]) equals {c| (src(δ), c) δ−→
(dst(δ), c′) with c′ ∈ [[Ψ]]} (resp. {c′| (src(δ), c) δ−→ (dst(δ), c′) with c ∈ [[Ψ]]}).

Grounded Constraints and Symbolic Sets. A grounded constraint is a pair
γ = ((q, c,b), ψ) that consists of a constraint cstrOf(γ) = (q, c,b) and a con-
junct groundOf(γ) = ψ. It is well formed if: (q, c,b) is well formed, ψ ⇒ clo(c,b)
is valid, and c ∈ [[ψ]]. We only manipulate well formed grounded constraints.
Intuitively, the ground ψ in ((q, c,b), ψ) represents the “non-approximated”
part of the �-upward closure of c. This information will be needed for refin-
ing the preorder during the analysis. We abuse notation and write cstrOf(Γ),
resp. groundOf(Γ), to mean the set of constraints, resp. grounds, of a set Γ
of grounded constraints. A trace σ of length n is a sequence starting with a
grounded constraint followed by n transitions and grounded constraints. We say
that two traces (φ0, ψ0)·δ1·(φ1, ψ1) · · · δn·(φn, ψn) and (φ′

0, ψ
′
0)·δ′

1·(φ′
1, ψ

′
1) · · · δ′

n′ ·
(φ′

n′ , ψ′
n′) are equivalent if: (i) n = n′, and (ii) δi is the same as δ′

i for each
i : 1 ≤ i ≤ n, and (iii) φi � φ′

i, φ′
i � φi and ψi ⇔ ψ′

i for each i : 0 ≤ i ≤ n.
A symbolic set is a set of pairs of grounded constraints and traces. Given a
symbolic set T , we also use cstrOf(T) to mean all constraints φ appearing in
some ((φ, ψ), σ) in T . Recall that we can compute a set min	(cstrOf(T)) of
�-minimal constraints for cstrOf(T).

5 An Illustrating Example

We use the example introduced in Sect. 3 to give an intuition of the lazy heuristics
described in this paper. A more detailed description follows in Sect. 6.

Plain monotonic abstraction proceeds backwards while systematically closing
upwards wrt. the natural ordering � on Θ. The trace depicted in Fig. 2 is a
generated false positive. In this description, for i : 0 ≤ i ≤ 7, we write γi =
(φi, ψi) to mean the grounded constraint with the grounded constraint ψi and
the constraint φi = (qi, ci,bi). Intuitively, the grounded constraint represents
“exact” valuations while the constraint captures over-approximations that are
of the form (qi, c) where ci � c and c satisfies ψbi

. The computation starts
from the grounded constraint γ7 = ((trgt, c7,btt), ψ7) where ψ7 is ∧c∈C(c ≥ 0)
(always implicit). For γ7, the exact and the over-approximated parts coincide.

The trace then computes ψ6 = (c3 ≥ 1) which captures the valua-
tions of the predecessors of (trgt, c7,btt) wrt. (rd, gcerr, trgt). This set hap-
pens to be upward closed and there is no need for approximation, hence
γ6 = ((rd, c6,btt), ψ6). Valuations of the exact predecessors of (rd, c6,btt) wrt.

Lazy Constrained Monotonic Abstraction 155

(rd, gc3, rd) are captured with the conjunct ψ5 = (c0 = c1 = 0 ∧ c2 ≥ 1). These
are approximated with the conjunct (c0 ≥ 0 ∧ c1 ≥ 0 ∧ c2 ≥ 1). Continuing to
compute the predecessors and closing upwards leads to the constraint φ0 which
involves the initial state init. The trace is reported as a possible reachability
witness. It is well known [4] that upward closed sets are not preserved by non-
monotonic transitions (such as those involving gc3 in Fig. 1). At the same time,
maintaining an exact analysis makes guaranteeing termination impossible.

Following the trace in forward from the left, it turns out that the upward
closure that resulted in γ5 is the one that made the spurious trace possible.
Indeed, it is its approximation that allowed the counter c1 to be non zero. This
new value for c1 is the one that allowed the machine to execute (¬rd, gc1, rd) in
backward from φ5, making reaching the initial state possible. The constraint φ5

is the pivot constraint of the trace. Constrained monotonic abstraction (CMA)
proposes to refine the used ordering by strengthening it with a relevant predicate.
In this case, c1 ≤ 0 is used for strengthening, but in general (the atoms of) any
predicate in Π(ξ(C)) that separates the exact predecessors from the reachable
part of the upward closure would do.

⎛
⎜⎜⎜⎜⎝

c0 = 0
c1 = 0
c2 = 0
c3 = 0
c4 = 0

⎞
⎟⎟⎟⎟⎠

γ0

init

c0

gcinit

⎛
⎜⎜⎜⎜⎝

c0 = 1
c1 = 0
c2 = 0
c3 = 0
c4 = 0

⎞
⎟⎟⎟⎟⎠

c0 ≥ 1

γ1

¬rd

c1

gc0

⎛
⎜⎜⎜⎜⎝

c0 = 2
c1 = 0
c2 = 0
c3 = 0
c4 = 0

⎞
⎟⎟⎟⎟⎠

c0 ≥ 2

γ2

¬rd

c2

gc1

⎛
⎜⎜⎜⎜⎝

c0 = 1
c1 = 1
c2 = 0
c3 = 0
c4 = 0

⎞
⎟⎟⎟⎟⎠

c0 ≥ 1
c1 ≥ 1

γ3

rd

c3

gc2

⎛
⎜⎜⎜⎜⎝

c0 = 1
c1 = 0
c2 = 1
c3 = 0
c4 = 0

⎞
⎟⎟⎟⎟⎠

c0 ≥ 1
c2 ≥ 1

γ4

¬rd

c4

gc1

⎛
⎜⎜⎜⎜⎝

c0 = 0
c1 = 0
c2 = 1
c3 = 0
c4 = 0

⎞
⎟⎟⎟⎟⎠

c2 ≥ 1

γ5

rd

c5

gc3

⎛
⎜⎜⎜⎜⎝

c0 = 0
c1 = 0
c2 = 0
c3 = 1
c4 = 0

⎞
⎟⎟⎟⎟⎠

c3 ≥ 1

γ6

rd

c6

gcerr

⎛
⎜⎜⎜⎜⎝

c0 = 0
c1 = 0
c2 = 0
c3 = 0
c4 = 0

⎞
⎟⎟⎟⎟⎠

γ7

trgt

c7

Fig. 2. A spurious trace generated by monotonic abstraction. The γ5 constraint intro-
duces the first over-approximation that makes the spurious trace possible. The config-
uration (rd, c5) is the pivot configuration of the spurious trace.

Eager CMA. Introduced in [3]. The exploration is restarted from scratch and
(c1 ≤ 0) is used to systematically partition all exact predecessors. The upward
closure is constrained to not alter the refinement predicate. All generated valu-
ations are therefore approximated with the stronger ordering. Localizing refine-
ment can make possible both reusing a potentially large part of the explored
state space and applying the (slower) refinement to a smaller number of sets.

Lazy CMA. When backtracking, we only eliminate those constraints that were
obtained as descendants of a constraint that needs to be refined. We refer to this
constraint as the pivot constraint, and to its minimal configuration as the pivot
configuration. In fact, we identify three localization heuristics:

– point-based-lazy. We map the refinement predicates to the pivot configura-
tions. Later in the exploration, when we hit a new pivot configuration, we
constrain wrt. those predicates that were already mapped to it.

– order-based-lazy. The point-based approach may be too localized as there is
an infinite number of pivot configurations. For instance, a similar trace can

156 Z. Ganjei et al.

continue, after (rd, c2 = 1), with gc1 and get to the minimal configuration
sending c2 to 2. This one is different from the mapped pivot configuration, and
hence we need to introduce a new pivot configuration with the same predicate
c0 ≤ 0. This approach considers the predicates of all larger or smaller pivot
configurations. The idea being that, if the predicate was important for the
mapped pivot configuration, then it must have been to separate it from a
reachable upward closed part, and hence it may be relevant.

– descendants-based-lazy. In addition to associating refinement predicates to
pivot configurations as in the point-based approach, this heuristic leverages on
the fact that predicates may remain relevant for a sequence of transitions. Here
we compare the exact predecessors with the predicates used to constrain the
upward closure of the parent. If those predicates still hold for the predecessors,
then we maintain them when closing upwards. This heuristic bears similarity
to forward propagation of clauses in IC3 [24], as in the IC3 algorithm the
clauses are propagated in the trace from a preceding formula to the succeeding
one if they still hold.

6 State Reachability Checking

We describe in this section four different forward CMA variants (eager, point-
based-lazy, order-based-lazy and descendants-based-lazy). The four procedures
can also be applied in backwards (as described in the experiments of Sect. 7).
The four variants use grounded constraints as symbolic representations for pos-
sibly infinite numbers of machine configurations. The symbolic representation is
refined using atoms obtained using a counterexample guided refinement scheme.
The difference between the four variants lays in the way discovered predicates
(in fact atoms for simplifying the presentation) are associated to the new sym-
bolic representations and in the way backtracking is carried out. We start by
introducing the basic “partition” procedure.

Input: a state q , a conjunct ψ and a finite set of atoms A
Output: a well formed set of grounded constraints

1 Γ := ∅;
2 foreach (total b : A → B) do
3 foreach (c ∈ min�(ψ ∧ ψb)) do Γ := Γ ∪ ((q, c,b), ψ ∧ clo(c,b)) ;
4 return Γ ;

Procedure partition(q, ψ, A) is common to all variants.

Partition. “partition(q, ψ,A)” partitions ψ according to all atoms in A. Each
obtained conjunct is further decomposed according to its �-minimal valuations.
Conjuncts are then used to build a well formed grounded constraint ((q, c,b), ψ′)
where b is a box over A. Observe that the disjunction of the grounds of
the obtained grounded constraints is equivalent to ψ. Soundness is stated in
Lemma 4.

Lemma 4. Assume a finite set A of atoms. For any conjunct ψ,
it is the case that [[(q, ψ)]] = {(q, c)| c ∈ [[ψ′]]≥0 for each ψ′ ∈
groundOf(partition)(q, ψ,A))} ⊆ [[cstrOf(partition)(q, ψ,A))]].

Lazy Constrained Monotonic Abstraction 157

Input: a machine M = (Q, C, A, Δ, qinit, qtrgt)
Output: A feasible run covering qtrgt or the value unreachable

1 if qinit = qtrgt then return (qinit, 0C);

2 S, Γ := ∅, partition(qinit, ∧c∈C(c ≥ 0), ∅);
3 foreach (γ ∈ Γ) do S := S ∪ {(γ, γ)} ;
4 return explore(M, S, S, ∅, εΘ);

Procedure checkReachability(M) is the common entry point for all variants.

Eager CMA, like the other variants, starts by passing a description of the
machine to the “checkReachability” procedure. It returns a feasible run cov-
ering qtrgt, or states that there are no such runs. The procedure returns directly
(line 1) if initial and target states coincide. It then calls “partition” to obtain a
set of well formed grounded constraints that together capture all initial config-
urations. These are passed to the “explore” procedure.

Explore. “explore(M, work, store, sleep, f)” results in a working list process
that maintains three symbolic sets work, store and sleep. The last is only
relevant for the lazy variants. The partial mapping f : Θ �→ atomsOf(C) encap-
sulates all refinement predicates discovered so far and is therefore empty when
the procedure is called from “checkReachability”. Intuitively, f(θ) associates to
the pivot configuration θ those predicates that helped eliminate a false positive
when θ was the minimal configuration of the constraint that made the false pos-
itive possible. We will explain how f is updated when introducing the procedure
“simulate”. The symbolic set work is used for the grounded constraints that are
yet to be visited (i.e., for which the successors are still to be computed and
approximated). The store set is used for both those grounded constraints that
have been visited and for those in working. The sleep set corresponds to those
constraints that might have to be visited but for which there is an �-equivalent
representative in store. In case a backtracking eliminates the representative in
store, the corresponding grounded constraint in sleep has to be reconsidered.
This is explained in the “backtrack” procedure of the lazy variants.

Input: A machine description M = (Q, C, A, Δ, qinit, qtrgt), three symbolic sets work, store

and sleep, and a partial mapping f : Θ
→ atomsOf(C)
Output: A feasible run covering qtrgt or the value unreachable

1 while there exists ((φ, ψ), σ) in work with φ ∈ min�(cstrOf(store)) do
2 remove ((φ, ψ), σ) from work;
3 (q, c,b) := φ ;
4 if q = qtrgt then
5 return simulate(M, work, store, sleep, f, σ);

6 foreach δ = (q, gc, q′) in Δ do
7 foreach ψp ∈ postgc(clo(c,b)) do

8 foreach (φ′, ψ′) in decompose(q′, ψp, f,b) do
9 σ′ := σ · δ · (φ′, ψ′);

10 if there is ((φe, ψe), σe) in store s.t. φe is 	-equivalent to φ′ then
11 if σe and σ′ are not equivalent then
12 add ((φ′, ψ′), σ′) to sleep;

13 else add ((φ′, ψ′), σ′) to both store and work ;

14 return unreachable;

Procedure explore(M, work, store, sleep, f) is common to all variants.

158 Z. Ganjei et al.

The procedure picks a pair ((φ, ψ), σ) from work and min	(cstrOf(store)).
If the initial state is reached, it calls procedure “simulate” to check the associ-
ated trace and to backtrack if needed (lines 4–5). Otherwise, we start by iterat-
ing through all transitions δ in Δ and compute an exact representation of the
predecessors of the constraint. The call “decompose(q, ψp, f,b)” boils down, for
the eager variant, to a call to “partition(q, ψp, img(f))”. The obtained grounded
constraints are used to update the store, work and sleep symbolic sets.

If there was no pair picked at line 1, then we have finished the exploration
and return unreachable. In fact, pairs are never removed from store if no target
states are encountered at line 4. In addition, two pairs with �-equivalent con-
straints cannot be added to work (lines 10–13). For this reason, executing the
first line an infinite number of times without calling procedure “simulate” would
result in an infinite sequence of constraints that would violate Lemma2.

Input: machine M , symbolic sets work, store and sleep, a mapping f : Θ
→ atomsOf(C) and
a trace σ = (φ0, ψ0) · δ1 · · · δn · (φn, ψn) with n ≥ 1 and q0 = qinit and qn = qtrgt;

Output: A feasible run covering qtrgt or the value unreachable

1 Ψn := {ψn};
2 for i ← (n − 1) to 0 do
3 Ψ ′

i := pregc(δi+1)(Ψi+1);

4 Ψi := {(ψi ∧ ψ′
i)| ψ′

i ∈ Ψ ′
i and (ψi ∧ ψ′

i) is sat};
5 if Ψi is empty then
6 f((st(φi), val(φi)))∪ := {α| α ∈ atomsOf(π) with π ∈ ITP({ψi}, Ψ ′

i)};
7 return backtrack(M, work, store, sleep, f, σ, i);

8 return a run starting at (qinit, c) for some c ∈ Ψ0 and following till qtrgt;

Procedure simulate(M, work, store, sleep, f, σ) is common to all variants.

Simulate. This procedure checks feasibility of a trace σ from qinit to qtrgt.
The procedure incrementally builds a sequence of sets of conjuncts Ψn, . . . , Ψ0

where each Ψi intuitively denotes the valuations that are backwards reachable
from qtrgt after k steps of σ (starting from k = 0), and are still denoted by
clo(c(n−k),b(n−k)). The idea is to systematically intersect (a representation of)
the successors of step k with the grounded constraint that gave raise to the
constraint at step k + 1. If the procedure finds a satisfiable Ψ0, then a run can
be generated by construction. Such a run is then returned at line 8. Otherwise,
there must have been a step where the “exact” set of conjuncts does not inter-
sect the conjunct representing the exact part that gave raise to the corresponding
constraint. In other words, the trace could be eliminated by strengthening the
over-approximation at line 7 of the “explore” procedure. In this case, (at line
6 of the “simulate” procedure), new refinement atoms are identified using an
off-the-shelf interpolation procedure for QF LIA (Quantifier Free Linear Arith-
metic). This information will be used differently by the eager and lazy variants
when calling their respective “backtrack” procedures.

Input: a machine M , sets work and store and mapping f : Θ
→ atomsOf(C) ;
Output: A feasible run covering qtrgt or the value unreachable

1 store, work := ∅, ∅;
2 Γ := partition(qinit, ∧c∈C(c ≥ 0), img(f));
3 foreach (φ, ψ) in Γ do
4 S := S ∪ {((φ, ψ), (φ, ψ))};
5 return explore(M, S, S, ∅, f);

Procedure backtrack(M, work, store, , f, ,) this is the eager variant.

Lazy Constrained Monotonic Abstraction 159

Eager backtracking throws away the explored state space (line 1) and restarts
the computation from scratch using the new refinement atoms captured in f.

Lazy Backtracking. Intuitively, all three lazy approaches reuse the part of the
explored state space that is not affected by the new refinements. This is done
by restarting the exploration from new sets work and store that are obtained
after pruning away the pivot constraint identified by the argument i passed
by “simulate” together with all its descendants (identified in lines 1–6). One
important aspect is that grounded constraints that have not been added to
store at line 11 of the “explore” procedure may have been discarded for the
wrong reason (i.e., there was an �-equivalent constraint that needs to be pruned
away now). This would jeopardize soundness. For this reason we maintain the
sleep set for tracking the discarded grounded constraints that have to be put
back to work and store if the constraint that blocked them is pruned away (see
lines 4–6). The refined pivot is added to the new sets work and store (lines
10–13). Lines 7–9 are only used by the descendants-based approach which takes
into account the box of the parent.

Input: symbolic sets work, store and sleep; a mapping f : Θ
→ atomsOf(C), a trace
σ = (φ0, ψ0) · δ0 · · · (φn, ψn) with n ≥ 1 and st(φ0) = qinit and st(φn) = qtrgt, and

a natural i : 0 ≤ i < n;
Output: A feasible run covering qtrgt or the value unreachable

1 foreach ((φ, ψ), τ) ∈ store st. (φ0, ψ0) · δ0 · · · (φi, ψi) is equivalent to a prefix of τ do
2 remove, if present, ((φ, ψ), τ) from work, store and sleep;
3 for j ← i to n do
4 if there is still a ((φ′, ψ′), τ ′) in sleep with φ′ is 	-equivalent to φj then
5 remove ((φ′, ψ′), τ ′) from sleep;

6 add ((φ′, ψ′), τ ′) to both work and store;

7 if i ≥ 1 then
8 bp := bi−1
9 else bp := btt;

10 foreach (φ′, ψ′) ∈ decompose(qi, ψi, f,bp) do
11 let σ′ := (φ0, ψ0) · δ1 · · · (φi−1, ψi−1) · δi · (φ′, ψ′);
12 if there is some ((φe, ψe), σe) in store st. φe is 	-equivalent to φ′ then
13 if σe and σ′ are not equivalent then
14 add ((φ′, ψ′), σ′) to sleep;

15 else add ((φ′, ψ′), σ′) to both store and work ;

16 return explore(M ,work,store,sleep, f);

Procedure backtrack(M, work, store, sleep, f, σ, i) common to all lazy variants.

The main difference between the lazy variants is in the way their respective
“decompose” procedures associate refinement atoms to “exact” conjuncts.

Point-based. This variant is the one that “localizes” most the refinement. Each
time an obtained grounded conjunct is considered for approximation, it checks
whether its minimal valuation has already been associated to some refinement
atoms. If it is the case, it passes them when calling the “partition” procedure.

Input: a state q , a conjunct ψ and a partial mapping f : Θ
→ atomsOf(C)
Output: a well formed set of grounded constraints

1 A := ∅;
2 foreach (θ ∈ dom(f) with val(θ) ∈ min�(ψ)) do A := A ∪ f(θ) ;
3 return partition(q, ψ, A)

Procedure decompose(q, ψ, f, −) of the point-based-lazy variant.

160 Z. Ganjei et al.

Order-based. This variant “localizes” less than the point-based variant. Each
time an obtained “exact” conjunct is considered for approximation, it checks
whether its minimal valuation is �-related to an already mapped valuation. The
union of all corresponding atoms is passed to the “partition” procedure.

Input: a state q , a conjunct ψ and a mapping f : Θ
→ atomsOf(C)
Output: a well formed set of grounded constraints

1 let A := ∅;
2 foreach (θ ∈ dom(f)) do
3 foreach (c′ ∈ min�(ψ)) do
4 if ((c′ � val(θ)) or (val(θ) � c′)) then
5 A := A ∪ f(θ);
6 break ;

7 return partition(q, ψ, A)

Procedure decompose(q, ψ, f,) of the order-based variant.

Descendants-based. This variant “localizes” less than the point-based variant,
but is incomparable with the order-based one. The idea is to keep those refine-
ment atoms that were used for the parent constraint, and that are still weaker
than the current conjunct that is to be approximated.

Input: a state q , a conjunct ψ, a box b and a mapping f : Θ → atomsOf(C)
Output: a well formed set of grounded constraints

1 let A := ∅;
2 foreach (θ ∈ dom(f) with val(θ) ∈ min�(ψ)) do A := A ∪ f(θ) ;
3 foreach α ∈ dom(b) do
4 if (b(α) ∧ (ψ ⇒ α)) or (¬b(α) ∧ (ψ ⇒ ¬α)) then
5 A := A ∪ {α};
6 return partition(q, ψ, A)

Procedure decompose(q, ψ, f,b) of the descendants-based variant.

Finally, we state the soundness of our four exploration variants. The proof
is by observing that store always represents, at the ith iteration of the loop
of procedure “explore”, an over-approximation of the machine configurations
obtained after i steps. Combined with Lemmas 2 and 3 and by well quasi ordering
of � on the set of constraints for a finite number of refinement atoms.

Theorem 1. All four exploration variants are sound. In addition, each call to
procedure “checkReachability” eventually terminates if only a finite number of
calls to procedure “simulate” are executed.

Proof. Sketch. Let workk, storek and sleepk be the sets work, store and sleep
obtained at line 1 at the kth iteration of the loop in procedure “explore”. We
can show the following propositions by induction on k (see the appendix for the
details):

(a) [[storek]] does not intersect (qtrgt, c) for any valuation c
(b) [[storek]] intersects (qinit, c) for every valuation c
(c) [[workk ∪ sleepk]] is a subset of [[storek]]
(d) for each element ((φ, ψ), σ) of storek such that ((φ, ψ), σ) �∈ workk and

φ ∈ min	(cstrOf(storek)) and for each transition δ = (q, gc, q′) ∈ Δ, the
configurations in {(q′, c′)| c′ ∈ [[postgc(clo(val(φ), box(φ)))]]} are also in
[[storek]]

Lazy Constrained Monotonic Abstraction 161

Soundness. Suppose the algorithm returns unreachable. Then at some iter-
ation, there is no element ((φ, ψ), σ) in work s.t. φ ∈ min	(cstrOf(store)).
Combined with propositions (b), (c) and (d), we have that [[store]] is a fixpoint
that is an overapproximation of all reachable configurations. Proposition (a)
ensures that no element with state qtrgt exists in store. If the algorithm returns
a trace, then the test at line 4 ensures that st(φn) = qtrgt for some ((φn, ψn), σ)
and σ = (φ0, ψ0) · δ1 · · · δn · (φn, ψn) satisfies that st(φ0) = qinit, st(φn) = qtrgt

and for 0 ≤ i < n, (st(φi), val(φi))
δi+1−−−→ (st(φi+1), val(φi+1)). This because of

the form of the added tuple at line 13 of “explore”.

Termination. The procedure “checkReachability” terminates if only a finite
number of calls to procedure “simulate” are executed. This relies on the fact
that the only source of non-termination can be the while loop in “explore” if the
set cstrOf(work) ∩ min	(cstrOf(store)) never becomes empty. Suppose there
is an infinite sequence of constraints as φ0, φ1 . . . obtained in the while loop.
First, we show that i �= j implies φi is not �-equivalent with φj for any i, j ≥ 0.
This holds because an element is added to store only if there is no �-equivalent
element there (line 9 of “explore”). Even if an element is moved from sleep to
store and work by “backtrack”, then it is done after removing the �-equivalent
element in store and work. Second, we show that for any 0 ≤ i < j, φi �� φj .
This holds because if φi � φj , then φj could not be in min	(cstrOf(store))
since φi (or an �-equivalent constraint) is already there. Finally, since the num-
ber of calls to “backtrack” is finite, then the number of predicates being used in
the boxes is also finite. Such a sequence would therefore violate Lemma2. ��

7 Experimental Results

We have implemented our techniques in our open source tool Zaama. The tool
and benchmarks are available online2. The tool relies on the Z3 SMT solver [12]
for its internal representations and operations.

The input of the prototype are counter machine encodings of boolean multi-
threaded programs with broadcasts and arbitrary tests (as described in Sect. 3).
We have experimented with more than eighty different counter machine reacha-
bility problems. These were obtained from our prototype tool Pacman [18] that
checks local (i.e., assertion) or a global (e.g., deadlock freedom) properties in
concurrent programs (some inspired from [11,15]).

Given a property to check on a concurrent program, Pacman proceeds in
predicate abstraction iterations. For each set of tracked predicates, it creates a
counter machine reachability problem. Combining Pacman with Zaama results
in a nested CEGAR loop: an outer loop for generating counter machine reach-
ability problems, and an inner loop for checking the resulting problems. About
45 % of the generated counter machines are not monotonic. We tested all those
2 https://gitlab.ida.liu.se/apv/zaama.

https://gitlab.ida.liu.se/apv/zaama

162 Z. Ganjei et al.

Order-based lazy

P
o
in

t-
b
a
se

d
la

zy

Forward

Backward

Order-based lazy

D
es

ce
n
d
a
n
ts

-b
a
se

d
la

zy

Forward

Backward

Point-based lazy

D
es

ce
n
d
a
n
ts

-b
a
se

d
la

zy

Forward

Backward

Eager
P
o
in

t-
b
a
se

d
la

zy

Forward

Backward

Eager

D
es

ce
n
d
a
n
t-

b
a
se

d
la

zy

Forward

Backward

Eager

O
rd

er
-b

a
se

d
la

zy

Forward

Backward

Fig. 3. Comparing eager and lazy variants on a logarithmic scale.

machines separately with Zaama in different settings for each benchmark and
reported the execution times. Thus, the Pacman overhead is not included in the
reported times. Note that although 55 % of the examples are monotonic, they
still need refinement in forward exploration.

We also tested our benchmarks with the tool Breach introduced in [23].
Breach cannot take non-monotonic inputs and is inherently incapable of solv-
ing reachability problems for such systems which are the main target of this
paper. Thus, we could apply it only to the monotonic benchmarks; for which,
the runtime of Breach was less than 5 seconds in each. We consider this to be
an encouraging result as we are working on adapting Breach to non-monotonic
systems. The challenge is to have an under-approximation search engine for such
systems and we are investigating possibilities to develop our own engine or to
use acceleration tools such as FASTer [6].

We have chosen a time-out of 30 min for each of the variants: eager, point-
based, order-based and descendants-based, both in forward and in backward.
We have conducted our experiments on an Intel Core i7 2.93 GHz processor with
8GB of memory. We report on our results in Fig. 3 where we consider, for each
setting, each lazy pair in addition to the pairs consisting in the eager and each
lazy.

Lazy Constrained Monotonic Abstraction 163

The forward explorations turned out to be faster than the corresponding
backward ones in about 25 % of the examples. We expected the forward explo-
ration to be slower as it needs several refinement steps because it starts from the
initial configurations which are typically much more constrained than the tar-
get configurations. We considered the forward exploration because it offers more
possibilities to test the effect of localizing the refinement in problems that typi-
cally require more refinement steps in forward. Indeed, the figures show that the
times of the different variants coincide more often in backward than in forward,
and overall, there has been many more time-outs in forward than in backward.

Furthermore, the lazy variants were able to conclude on most of the reacha-
bility problems, in fact each of the reachability problems has been solved by at
least one of the lazy variants (except for one problem in backward), when the
eager variant timed out on several of them. This is an encouraging result that
confirms the advantages of localizing refinement. There are some cases where
the eager variant did better than all lazy ones. These correspond to cases where
localization required more refinement efforts to reach a conclusion.

We also observe that the order-based approach times out in about half the
forward seraches, while the point-based only times out in two cases. This goes
against the initial intuition that larger valuations would profit from the refine-
ment predicates of the smaller ones. One explanation could be that if the larger
valuation would require the same predicate as the smaller one, then adding the
predicate would result in a redundant representation that should be eliminated.
It therefore seems that it does not take long for the point-based to discover this
redundancy while still profiting from the localization of the refinement. Instead,
the order-based uses predicates even when they are not proven to be needed
resulting in finer grained symbolic elements that slow down the exploration.

It is interesting to observe that the descendants-based approach did better in
forward than the point-based approach. One explanation could be that, in for-
ward, relevant refinement interpolants sometimes correspond to weak inductive
invariants that get propagated by this approach. In backwards it seems, at least
for our examples, that the invariants corresponding to the “bad” configurations
do not profit from this parent-child transmission.

8 Conclusion

We have introduced and discussed three different ways of localizing constrained
monotonic abstraction in systems with infinite control. For this, we have tar-
geted reachability problems for (possibly non-well structured) counter machines
obtained as abstractions of concurrent programs. Our new techniques allow us to
avoid systematically trashing the state space explored before encountering the
false positives that necessitate the introduction of new refinement predicates.
This allowed us to consistently improve on the existing eager exploration, both
in forward and in backward explorations. Possible future works concern combin-
ing forward and backward approximations, using the pivot configuration to make
possible the choice of interpolants that are easier to generalize and assessing the
feasibility of combination with new partial order techniques.

164 Z. Ganjei et al.

References

1. Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized verification of infinite-state
processes with global conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)

2. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: Proceedigs of the LICS 1996, 11th IEEE International
Symposium on Logic in Computer Science, pp. 313–321 (1996)

3. Abdulla, P.A., Chen, Y.-F., Delzanno, G., Haziza, F., Hong, C.-D., Rezine, A.:
Constrained monotonic abstraction: a CEGAR for parameterized verification. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 86–101.
Springer, Heidelberg (2010)

4. Abdulla, P.A., Delzanno, G., Ben Henda, N., Rezine, A.: Regular model checking
without transducers (on efficient verification of parameterized systems). In: Grum-
berg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736. Springer,
Heidelberg (2007)

5. Ball, T., Rajamani, S.K.: The SLAM Project: debugging system software via static
analysis. In: Proceedings of the 29th ACM SIGPLAN-SIGACT, POPL 2002, pp.
1–3. ACM, New York (2002)

6. Bardin, S., Finkel, A., Leroux, J.: FASTer acceleration of counter automata in
practice. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
576–590. Springer, Heidelberg (2004)

7. Bardin, S., Leroux, J., Point, G.: FAST extended release. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 63–66. Springer, Heidelberg (2006)

8. Bonnet, R., Finkel, A., Leroux, J., Zeitoun, M.: Model checking vector addition
systems with one zero-test (2012). arXiv preprint arXiv:1205.4458

9. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs
with lists are counter automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 517–531. Springer, Heidelberg (2006)

10. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: TACAS, pp. 570–574. Springer (2005)

11. Cogumbreiro, T., Hu, R., Martins, F., Yoshida, N.: Dynamic deadlock verification
for general barrier synchronisation. In: Proceeding of the 20th ACM SIGPLAN
PPoPP Symposium, pp. 150–160. ACM (2015)

12. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

13. Delzanno, G.: Automatic verification of parameterized cache coherence protocols.
In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 53–68.
Springer, Heidelberg (2000)

14. Donaldson, A.F., Kaiser, A., Kroening, D., Tautschnig, M., Wahl, T.:
Counterexample-guided abstraction refinement for symmetric concurrent pro-
grams. Formal Meth. Syst. Des. 41(1), 25–44 (2012)

15. Downey, A.: The Little Book of SEMAPHORES (2nd Edition): The Ins and Outs of
Concurrency Control and Common Mistakes. Createspace Ind, Pub (2009). http://
www.greenteapress.com/semaphores/

16. Farzan, A., Kincaid, Z., Podelski, A.: Proofs that count. In: Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2014, pp. 151–164. ACM, New York (2014)

http://arxiv.org/abs/1205.4458
http://www.greenteapress.com/semaphores/
http://www.greenteapress.com/semaphores/

Lazy Constrained Monotonic Abstraction 165

17. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!. Theor.
Comput. Sci. 256(1–2), 63–92 (2001)

18. Ganjei, Z., Rezine, A., Eles, P., Peng, Z.: Abstracting and counting synchronizing
processes. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol.
8931, pp. 227–244. Springer, Heidelberg (2015)

19. Geeraerts, G., Raskin, J.-F., Van Begin, L.: Expand, enlarge and check.. made
efficient. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
394–407. Springer, Heidelberg (2005)

20. Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 22–29. Springer, Heidelberg
(2010)

21. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Pro-
ceedings of the 29th ACM SIGPLAN-SIGACT, POPL 2002, pp. 58–70. ACM, New
York (2002)

22. Higman, G.; Ordering by divisibility in abstract algebras. In: Proceedings of the
London Mathematical Society, pp. 326–336 (1952)

23. Kaiser, A., Kroening, D., Wahl, T.: Efficient coverability analysis by proof mini-
mization. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454,
pp. 500–515. Springer, Heidelberg (2012)

24. Kloos, J., Majumdar, R., Niksic, F., Piskac, R.: Incremental, inductive coverabil-
ity. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 158–173.
Springer, Heidelberg (2013)

25. Liu, P., Wahl, T.: Infinite-state backward exploration of boolean broadcast pro-
grams. In: Proceedings of the 14th Conference on Formal Methods in Computer-
Aided Design, pp. 155–162. FMCAD Inc (2014)

26. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

27. Weissenbacher, G., Kroening, D., Malik, S.: Wolverine: battling bugs with inter-
polants. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp.
556–558. Springer, Heidelberg (2012)

	Lazy Constrained Monotonic Abstraction
	1 Introduction
	2 Preliminaries
	3 The State Reachability Problem
	4 Symbolic Representation
	5 An Illustrating Example
	6 State Reachability Checking
	7 Experimental Results
	8 Conclusion
	References

