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Abstract. Recently, Bradley proposed the PDR/IC3 model checking
algorithm for verifying safety properties, where forward and backward
reachability analyses are intertwined, and guide each other. Many vari-
ants of Bradley’s original algorithm have been developed and successfully
applied to both hardware and software verification. However, these algo-
rithms have been presented in an operational manner, in disconnect with
the rich literature concerning the theoretical foundation of static analysis
formulated by abstract interpretation.

Inspired by PDR, we develop a nonstandard semantics which com-
putes for every 0 ≤ N an over-approximation of the set of traces of length
N leading to a safety violation. The over approximation is precise, in the
sense that it only includes traces that do not start at an initial state,
unless the program is unsafe, and in this case the semantics aborts at
a special error state. In a way, the semantics computes multiple over-
approximations of bounded unsafe program behaviors using a sequence
of abstractions whose precision grows automatically with N.

We show that existing PDR algorithms can be described as a specific
implementation of our semantics, performing an abstract interpretation
of the program, but instead of aiming for a fixpoint, they stop early when
either the backward analysis finds a counterexample or the states com-
prising one of the bounded traces provides sufficient evidence that the
program is safe. This places PDR within the solid framework of abstract
interpretation, and thus provides a unified explanation of the different
PDR algorithms as well as a new proof of their soundness.

1 Introduction

Abstract interpretation [6] (AI ) provides a solid theoretical foundation for static
program analysis. AI algorithms verify that a program is safe by computing an
over-approximation of its concrete semantics: They find a conservative repre-
sentation of either the set of reachable traces, i.e., the traces that the program
generates when executing from a given set of initial states (forward analysis), or
of the set of evil traces, i.e., the ones that end in a bad state (backward analysis).
Using the AI framework to develop program analyses is attractive because it elu-
cidates the key semantic properties of the underlying abstraction and ensures,
by construction, that the analysis is sound.

Recently, Bradley proposed the property directed reachability (PDR/IC3)
model checking algorithm for verifying safety properties [3], where forward and
c© Springer-Verlag Berlin Heidelberg 2016
B. Jobstmann and K.R.M. Leino (Eds.): VMCAI 2016, LNCS 9583, pp. 104–123, 2016.
DOI: 10.1007/978-3-662-49122-5 5



Property Directed Abstract Interpretation 105

backward analyses are intertwined, and guide each other. Many variants of
Bradley’s original algorithm have been developed and successfully applied to
both hardware and software verification [1,2,5,7,9,10]. However, these algo-
rithms have been presented in an operational manner, in disconnect with the
rich literature concerning abstract interpretation. As a result, it is hard to
understand and compare these algorithms without delving into minute, almost
implementation-level, details.

In this paper, we provide a fresh view of the emerging family of property
directed reachability verification algorithms using abstract interpretation.1 We
begin by developing an abstract trace semantics which conservatively represents
the set of evil traces of length N by a sequence ωN of sets of states, called
cartesian trace. A cartesian trace abstracts a set of traces T by “forgetting” the
fine-grained correlation between consecutive states. Cartesian traces are then
further abstracted into sequences ω�

N where every set ω�
N (i) may include, in

addition to the states that lead to a violation in i steps, states which are not
reachable in N − i or less steps.2 This form of abstraction ensures that ω�

N does
not represent counterexamples of length N . Furthermore, if for some N and
i < N , it holds that ω�

N (i) = ω�
N (i + 1) then the program is safe.

In a way, our semantics can be seen as an approach to compute a conservative
over approximation of the set of states leading to a safety violation, where each
sequence ω�

N corresponds to a different abstraction whose precision increases
automatically as N grows. The semantics considers abstract cartesian traces
of every possible length simultaneously. As such, it considers infinitely many
abstractions with varying precision.

An important property of our semantics is that it can capture all the use-
ful fixpoints of the traditional collecting state semantics, where a fixpoint of a
backward semantics is useful if it is disjoint from the set of initial states, and
dually, a fixpoint of a forward semantics is useful if it is disjoint from the set of
bad states.

We then use our semantics to provide a unified view of existing PDR algo-
rithms: We show that they can be formulated as a specific scheduling of the
semantics which stops early when either a counterexample is found or the pro-
gram is determined to be safe. Informally, the algorithms combine backward
analysis to compute (a conservative over approximation) of ωN which are then
generalized to ω�

N using forward analysis. As the formulation in terms of the
semantics reveals, these algorithms consider (finitely many) cartesian traces of
multiple lengths simultaneously. This places PDR within the solid framework of
abstract interpretation, and thus presents a unified explanation of the different
PDR algorithms and a new proof of their soundness.
1 In this paper, we focus on linear property directed reachability, as opposed to, e.g.,

tree-IC3 [5]. See Sect. 9.
2 In model checking nomenclature, the abstraction of ωN (i) into ω�

N (i) is called
generalization.
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2 Preliminaries

Binary Relations. Let R ⊆ X × X be a binary relation over X . We write
x R−→ x ′ to denote that (x , x ′) ∈ R. We denote the inverse relation of R by

←−
R ,

i.e.,
←−
R = {(x ′, x ) | (x , x ′) ∈ R}. We denote the sets of elements preceding and

following an element x ∈ X according to R by
←−
R (x ) and R(x ), respectively, i.e.,←−

R (x ) = {x0 ∈ X | x0
R−→ x} and R(x ) = {x ′ ∈ X | x R−→ x ′}.

We lift R(·), and
←−
R (·) to sets in a point-wise manner, e.g., R(X ) = {x0 ∈

R(x ) | x ∈ X }. We write Rk (·), and
←−
R k (·) to denote k applications of R(·), and←−

R (·), respectively. For example, R0(X ) = X and Rk+1(X ) = R(Rk (X )).

Sequences. Given a natural number N ∈ N, we denote by [N ] the set of natural
numbers from 0 to N , i.e., [N ] = {n ∈ N | 0 ≤ n ≤ N }. A sequence s over a
set X is a total function from [N ], for some N ∈ N, to X , i.e., s ∈ [N ] →
X . We denote the set of sequences over X (including the empty sequence), by
seq(X ). We denote the length of a sequence s by |s| and its i -th element by
s(i). For example, s(0) and s(|s| − 1) denote the first and last elements of s,
respectively. We denote the domain of a sequence s by dom(s) and its range
by range(s), i.e., dom(s) = [|s| − 1] and range(s) = {s(i)|i ∈ dom(s)}. We
denote the concatenation of sequences by juxtaposition. By abuse of notation,
we sometimes treat an element x ∈ X as the sequence 〈x 〉. We denote the set of
sequences comprised of single elements of X by 〈X 〉, i.e., 〈X 〉 = {〈x 〉 | x ∈ X }.
Let R be a binary relation. A sequence s is a valid sequence of R if for every
i ∈ [|s| − 2], s(i) R−→ s(i + 1).

Stuttering Simulation. Let X and Y be sets and RX ⊆ X × X and RY ⊆
Y × Y be binary relations over X and Y , respectively. A binary relation sim ⊆
X ×Y is a stuttering simulation relation with respect to RX and RY if for every
(x , x ′) ∈ RX and (x , y) ∈ sim there exists a valid sequence of RY which starts
at y and ends in some element y ′ ∈ Y such that (x ′, y ′) ∈ sim.

States. We assume a given set of states Σ, ranged over by the meta-variable σ.

Transition Relations and Traces. We use transition relations and traces
as synonyms for binary relations and sequences, respectively, when semantic
elements are involved. We denote the set of transitions over states by Δ = Σ×Σ,
and the set of traces over states by Π = seq(Σ), and range over it using π. We
say that a trace is a valid trace of a transition relation TR if it is a valid sequence
of TR . We denote the set of valid traces of TR by �TR�Π.

Programs and Properties. We do not commit ourselves to a particular syn-
tax. Instead, given a program P , we expect to get its denotation TR(P) ⊆ Δ
as a transition relation over states. Similarly, we equate properties with their
denotation as sets of states.

Verification Problems. A verification problem V is a triple V = (Init ,P ,Bad)
comprised of a set of initial states Init ⊆ Σ, a program P , and a set of bad states
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Bad ⊆ Σ which does not contain initial states, i.e., Init ∩ Bad = ∅. Informally,
P is safe according to V if it cannot start executing in an initial state and end
up in a bad state.

Conventions. In the rest of the paper, we assume a fixed arbitrary program
P whose transition relation is TR = TR(P) and a fixed arbitrary verification
problem V = (Init ,P ,Bad). Thus, whenever we say the program, an initial state,
or a bad state, we mean P , a state in Init , and a state in Bad , respectively.

3 Small Step Collecting Trace Semantics

In this section, we define a small-step operational semantics over sets of traces.

Trace Semantics. Our venture point is a rather mundane trace semantics,
which defines the meaning of a program to be the set of traces it can produce.
A trace π is a forward trace of P if it is a valid trace of its transition relation,
i.e., if π ∈ �TR(P)�Π. Similarly, π is a backward trace of P if π ∈ �

←−−−−
TR(P)�Π. We

say that a forward trace π of P is reachable if it starts in an initial state and
that a backward trace π of P is evil if it begins in a bad state. We denote P ’s
reachable and evil traces by �P�FΠ and �P�BΠ , respectively:

�P�FΠ
def= {π ∈ �TR(P)�Π | π0 ∈ Init} , and �P�BΠ

def= {π ∈ �
←−−−−
TR(P)�Π | π0 ∈ Bad} .

Note that evil (backward) traces are read from left-to-right with the leftmost
state being a bad state. And thus the backward trace transition relation TRB

Π(P)
used to define CB

Π (T ) is in fact adding “pre-states” on the right.
We lift P ’s transition relation to forward and backward trace transition rela-

tions, denoted by TRF

Π(P) and TRB

Π(P), respectively:

TRF

Π(P) def= {(πσ, πσσ′) | σ
TR−→ σ′}, and TRB

Π(P) def= {(πσ, πσσ′) | σ
←−
TR−→ σ′}.

A trace π is reachable if there exists a valid sequence of P ’s forward trace
transition relation leading from 〈σ〉 to π, where σ is an initial state. Similarly,
π is evil if it is at the end of a valid sequence of the backward trace transitions
starting at a trace comprised of a bad state. This allows an characterizing �P�FΠ
and �P�BΠ as least fixpoints:

�P�FΠ = LFPCF
Π where CF

Π (T ) = 〈Init〉 ∪ TRF

Π(P)(T ), and

�P�BΠ = LFPCB
Π where CB

Π (T ) = 〈Bad〉 ∪ TRB

Π(P)(T ).

Small Step Collecting Trace Semantics. CF
Π and CB

Π , defined above, oper-
ate on sets of traces. Such sets are in fact elements of the collecting trace seman-
tics of P . The latter interprets P by accumulating the traces generated by its
trace semantics. Formally, the collecting trace domain DΠ = (P(Π),⊆) is a
powerset domain over the set of traces, ordered by set inclusion.

A collecting semantics is often used as means to compute fixpoints of an
underlying operational semantics. However, it can also be given an operation
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flavor by defining initial sets of traces and transitions between sets of traces.
The initial set of traces is 〈Init〉 in the forward collecting trace semantics, and
〈Bad〉 in the backward semantics. The transitions are defined as the pointwise
lifting of P ’s forward and backward trace transition relation to sets of traces,
denoted by TRF

P(Π)(P) and TRB

P(Π)(P), respectively:

TRF

P(Π)(P) def= {(T ,T ∪ {π′}) | ∃π ∈ T . π
TRF

Π(P)−−−−−→ π′}, and

TRB

P(Π)(P) def= {(T ,T ∪ {π′}) | ∃π ∈ T . π
TRB

Π(P)−−−−−→ π′}.

Note that both �P�FΠ and �P�BΠ are elements of DΠ. Recall that we consider
only finite sequences. Thus, there might not be a valid sequence according to,
e.g., TRB

P(Π)(P) which leads from from 〈Bad〉 to �P�BΠ because �P�BΠ \ 〈Bad〉
might be an infinite set. However, for every set of traces T ⊇ 〈Bad〉 and every
finite set of evil traces T ′, there is such a valid sequence going from T to T ′.
Formally:

Lemma 1. For every trace π, it holds that π ∈ �P�FΠ (respectively, π ∈ �P�BΠ )
if and only if there is a valid sequence of TRF

P(Π)(P) (respectively, TRB

P(Π)(P))
going from 〈Init〉 (respectively, 〈Bad〉) to T such that π ∈ T.

In Sect. 8, we show that PDR can be formalized as an abstract interpretation
of a program using (a conservative abstraction of) the collecting trace seman-
tics which develops simultaneously multiple traces. However, instead of trying
to compute a fixpoint of the program’s collecting trace semantics, PDR uses
the execution as means to come up with a useful fixpoint of its collecting state
semantics as we explain below.

Collecting State Semantics. It is standard to abstract a set of traces by
the set of their states. Formally, the collecting state semantics of programs is a
powerset domain over the set of states, ordered by set inclusion DΣ = (P(Σ),⊆).
We define the expected Galois connection (DΠ, αΣ, γΣ,DΣ) between sets of traces
and sets of states:

γΣ : P(Σ) → P(Π) ::= γΣ(S ) = {π ∈ Π | ∀i ∈ dom(π). π(i) ∈ S} and
αΣ : P(Π) → P(Σ) ::= αΣ(T ) = {σ ∈ range(π) | π ∈ T} .

We say that a state is reachable if it appears in a reachable trace and evil if
it appears in an evil one. The sets of reachable and evil states, denoted by �P�FΣ
and �P�BΣ , respectively, are defined using abstraction, and enjoy a least fixpoint
characterization:

�P�FΣ
def= αΣ(�P�FΠ ) = LFPCF

Σ where CF
Σ (S ) = Init ∪ TR(S ), and

�P�BΣ
def= αΣ(�P�BΠ ) = LFPCB

Σ where CB
Σ (S ) = Bad ∪ ←−

TR(S ).

4 Useful and Projected Fixpoints

We refer to an evil trace that leads to an initial state as a counterexample.
A program P is safe if none of its evil traces is a counterexample, and unsafe
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otherwise. In our setting, safety amounts to requiring that �P�FΣ ∩ �P�BΣ = ∅.
The goal of PDR and of its variants is to compute a superset of the reachable
states of P , if P is safe, and report that a counterexample exists, otherwise. This
is often done by looking for an inductive fixpoint of the (forward or backward)
collecting state semantics.

A set of states S is an inductive (forward) fixpoint if Init ⊆ S and TR(S ) ⊆
S . We say that S is a useful (forward) fixpoint if, in addition, S ∩ Bad = ∅.
(A useful forward fixpoint is often called a safe inductive invariant.) Similarly,
S is an inductive backward fixpoint if Bad ⊆ S and

←−
TR(S ) ⊆ S . It is useful if

S ∩ Init = ∅.
A standard technique to find an inductive fixpoint is to iteratively apply

the corresponding transformer. For example, to find an inductive fixpoint of the
backward collecting state semantics, we would usually repeatedly apply CB

Σ ,
while accumulating the discovered states, until no new state is discovered. As
CB

Σ is monotonic, it is ensured by Kleene’s Theorem that at the limit we reach
its least fixpoint. However, we can find such a fixpoint in a different way via
a projection of the elements computed by the collecting trace semantics using,
what we refer to, as projected fixpoints.

Given a set of traces T , we denote by T |iΣ = {π(i) | π ∈ T ∧ i < |π|} the
set of states in the i -th index of the traces in T . If there exists an index i > 0
such that (i) Bad ⊆ T |0Σ, (ii) for every 0 ≤ j ≤ i ,

←−
TR(T |jΣ) ⊆ T |j+1

Σ , and (iii)
T |iΣ = T |i+1

Σ , then S =
⋃i

j=0 T |jΣ is an inductive backward fixpoint of the
collecting state semantics. We refer to S as a projected fixpoint of the collecting
trace semantics. Intuitively, every evil trace can go only through states that
appear in S . We note that if T has been computed by accumulating the results
of some 0 ≤ k applications of CB

Π (·) starting from ∅, it suffices to check point
(iii) above to determine that T has a projected fixpoint.

5 Small Step Cartesian Trace Semantics

The cartesian trace semantics abstracts the (forward and backward) collecting
trace semantics using sequences of sets of states, which we refer to as cartesian
traces. Informally, a cartesian trace ω conservatively represents a set of traces
T of length |ω| or less by abstracting away the correlation between consecutive
states. In the following, we focus on abstracting the backward semantics, as it
is the one used by PDR. The cartesian semantics is suitable for tracking the
intermediate results that occur during an iterative conservative fixpoint compu-
tation, and thus fits well to describe the sequence of sets of states computed by
PDR. We refer to the set components of cartesian traces as anti-frames, as they
correspond to the complements of the sets maintianed by PDR, which are often
referred to as frames. (See Sect. 7.)

5.1 Cartesian Trace Transition Relation

We denote by Ω = seq(P(Σ)) the set of all sequences of sets of states, ranged over
by metavariable ω. Following the intuitive discussion above, we define a function
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γω which maps a cartesian trace ω to the set of traces that it represents. The
latter is comprised of any trace whose i -th state, for every i , is taken from the
corresponding set ω(i).

γω : Ω → P(Π) ::= γω(ω) def= {π ∈ Π | |π| ≤ |ω|∧∀i ∈ dom(π). π(i) ∈ ω(i)} .

Note that if ω represents a trace π, then ω also represents every prefix of π.
Cartesian traces allow to over-approximate the (backward) trace semantics

of P by lifting P ’s transition relation to a backward cartesian trace transition
relation, denoted by TRB

Ω(P):

TRB

Ω(P) def= {(ω1S1S2ω2, ω1S1(S2 ∪ S )ω2) | S ⊆ ←−
TR(S1)} .

Note that while the collecting transition relation TRB

P(Π)(P) extends traces,
the cartesian transition relation relates only traces of the same length. Indeed, it
can only add new states to sets that ω already contains. Intuitively, this means
that we can only over-approximate at most |ω| − 1 consecutive transitions of P .
We do not overcome this limitation, instead we weaken the guarantees we get
from abstract interpretation of P according to the cartesian trace semantics, as
we shortly explain.

5.2 Cartesian Traces Domain

To define the cartesian traces domain, we first introduce the subsumption order
between cartesian traces. We say that ω1 subsumes ω2, denoted by ω1 �ω ω2, if
every entry in ω2 subsumes the corresponding entry in ω1. Formally,

ω1 �ω ω2
def= |ω1| = |ω2| ∧ ∀i ∈ dom(ω1). ω1(i) ⊆ ω2(i) ,

The cartesian traces domain DΩ = (P(Ω),�Ω) utilizes the powerset of the
cartesian traces as its carrier set and it is ordered by a point-wise lifting of
subsumption:

DΩ = (P(Ω),�Ω) , where O1 �Ω O2 ⇐⇒ ∀ω1 ∈ O1.∃ω2 ∈ O2. ω1 �ω ω2 .

The Galois connection (DΠ, αΩ, γΩ,DΩ) between the domain of traces and
that of cartesian traces is defined by a pointwise lifting of γω to sets of cartesian
traces.

γΩ : P(Ω) → P(Π) ::= γΩ(O) = {π ∈ γω(ω) | ω ∈ O} , and
αΩ : P(Π) → P(Ω) ::= αΩ(T ) = {λi ∈ dom(π). {π(i)} | π ∈ T} .

Lemma 2. (DΠ, αΩ, γΩ,DΩ) is a Galois connection.

Lemma 3. Let π be a trace and ω be a cartesian trace such that 0 < |π| < |ω|.
If π ∈ γω(ω) then TRB

Π(P)(π) ⊆ γΩ(TRB

Ω(P)(ω)) .
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Lemma 3 ensures that TRB

Ω(P)(·) is a sound abstract transformer with respect
to TRB

Π(P)(·) when we consider only bounded executions. More specifically, given
a cartesian trace ω of length n and a trace π of length m represented by ω, we
can over-approximate the set of traces that can be reached by executing n−m−1

trace transitions
TRB

Π(P)−−−−−→. In particular, if ω(0) = Bad , we can use TRB

Ω(P)(·)
to over-approximate the evil traces of length n or less.

In a sense, the cartesian trace semantics allows to over-approximate bounded
under-approximations of the standard collecting trace semantics.

6 Property-Guided Abstraction of the Cartesian
Trace Semantics

We abstract the backward cartesian trace semantics in a property-guided man-
ner using two means: Firstly, we go to an error state in case we find a coun-
terexample. Secondly, and most importantly, we allow to over-approximate the
backward cartesian transition relation in a controlled way which ensures that
the abstract trace does not represent spurious counterexamples. This form of
abstraction explains the generalization operations in PDR. (See Sect. 7).

6.1 Property-Guided Cartesian Trace Transition Relation

The property-guided cartesian trace semantics over-approximates the backward
cartesian trace transition relation by adding two new kinds transitions: gener-
alization transitions, denoted by TRGen(B)

Ω (P), and error transitions, denoted by
TRErr(B)

Ω (P), which lead to a special error element �.

TRGen(B)
Ω (P)

def
= {(ω1S1S2ω2, ω1(S1 ∪ Y )S2ω2) | ←−

TR(Y ) ⊆ S2 ∧ Y ∩ Init = ∅}, and

TRErr(B)
Ω (P)

def
= {(ω, 	) | ω(|ω| − 1) ∩ Init 
= ∅}.

Generalization transitions add a “forward” flavor to the property-guided carte-
sian trace semantics as they add states at index j based on the states at index
j + 1. (Recall that these are backward traces, hence updates of j + 1 based on j
correspond to backward steps, while updates of j based on j + 1 correspond to
forward steps.)

Given a cartesian trace ω = ω1S1S2ω2, a generalization transition allows to
add to its j -th anti-frame, where j = |ω1|, any state σ such that any backward
trace of P of length |ω| − j which starts at σ goes only through states that
can be reached by a backward trace starting at one of the states in the j + 1
anti-frame. Thus, the states added by the generalization would not open a new
route towards an undiscovered state. Specifically, generalization would not lead
to over-approximating a counterexample, unless this counterexample is already
represented.

An error transition, happens when we find an initial state at the last anti-
frame of the trace. Note that this means that we found a counterexample.
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It suffices to look for an initial state only in the last anti-frame because of
our assumption that Init and Bad are disjoint and the restrictions on the trans-
formers which ensure that if the semantics computes a trace which goes through
an initial state, it can also compute a shorter (evil) trace which ends with that
state.

We denote the enriched transition relation by TRBGE

Ω (P), i.e.,

TRBGE

Ω (P) = TRB

Ω(P) ∪ TRGen(B)
Ω (P) ∪ TRErr(B)

Ω (P) .

In the following, we refer to the transitions defined in Sect. 5.1 as pre-
transitions. We say that a pre-transition (ω1S1S2ω2, ω1S1(S2 ∪S )ω2) ∈ TRB

Ω(P)
takes place at index |ω1|. (Note that we say that although the transition updates
the set at index |ω1|+1). We say that a gen-transition (ω1S1S2ω2, ω1(S1 ∪
Y )S2ω2) ∈ TRGen(B)

Ω (P) takes place at index |ω1| based on the set at index
|ω1| + 1.

6.2 Small Step Collecting Property-Guided Cartesian
Trace Semantics

Recall that the cartesian transition relation does not allow to extend the length
of a trace ω, nor do the generalization and error transition relations, and hence
they are limited to over-approximate bounded executions. To overcome this lim-
itation, we turn to the powerset domain; the underlying domain of the collecting
property-guided cartesian trace semantics is the cartesian trace domain, DΩ,
enriched with the error element, �, which is greater than any other element.

Property-guided Initial Cartesian Traces. We prepare ahead to produce
traces of any possible length by starting the interpretation of the program from
an unbounded set of cartesian traces: Let ∅k denote a cartesian trace of length
0 ≤ k whose anti-frames are all empty, i.e., ∅k = 〈∅, . . . , ∅〉. A cartesian trace ω
is property-guided initial (initial for short) if ω = 〈Bad〉∅k 〈Σ \ Init〉, for some
0 ≤ k , i.e., its first anti-frame is comprised of bad states, its last of the non-initial
ones, and all the others are empty. Note that all initial cartesian traces are of
length ≥ 2.

We denote the initial cartesian trace of length i (for i ≥ 2) by ω̂i , i.e.,
ω̂i = 〈Bad〉∅i−2〈Σ \ Init〉, and the set of initial cartesian traces by Ω̂. Note that
ω̂2 represents all traces of length 2 that start in a bad state and end in a non-
initial state as well as their prefixes, i.e., if the program is safe ω̂2 represents the
largest safe over-approximation (superset) of the evil traces of P of length at
most two. All other initial cartesian traces represent 〈Bad〉, the set of evil traces
of length one (which correspond to the prefix of length one since the second
element is ∅). Informally, starting from a given initial cartesian trace ω̂i , we can
simulate evil traces of length i or less.

Property-guided Collecting Cartesian Transition Relation. The collect-
ing property-guided cartesian trace semantics is obtained by lifting the enriched
transition relation TRBGE

Ω (P) to a collecting transition relation TRBGE

P(Ω)(P) which
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works in a pointwise manner on sets of cartesian traces. This is done similarly
to the way we obtained the transition relation of the collecting trace semantics
TRB

P(Π)(P) out of that of the trace semantics TRB

Π(P). (See, Sect. 3.) We also
adapt TRBGE

P(Ω)(P)(O) to go to � if there is a cartesian trace in O that leads to �
in one step. The valid sequences of TRBGE

P(Ω)(P) from Ω̂ define the property-guided
meaning of the program.

Lemma 4 (Soundness and Precision). A program P is safe if and only if
for any 0 ≤ k, it holds that (TRBGE

P(Ω)(P))k (Ω̂) �= �.

Lemma 4 ensures that we can use the property-guided cartesian trace semantics
to find any evil trace of P . Intuitively, we can compute any evil trace π by
first picking an initial cartesian trace of length |π| + 1 and then executing the
sequence of cartesian trace transitions corresponding to the ones which generated
π. Furthermore, it ensures that the property-guided semantics does not lose
precision when it comes to safety: Thanks to the restrictions on the generalization
steps, the semantics never reaches an error state if the program is safe.

We can adapt the notion of projected fixpoints to the cartesian semantics.
Given a cartesian trace ω, we say that ω(i), where 0 < i < |ω| − 1, is a projected
fixpoint if (i) Bad ⊆ ω(0), (ii) for every 0 ≤ j < i , ω(j ) ∪ ←−

TR(ω(j )) ⊆ ω(j + 1),
and (iii) ω(i) = ω(i + 1).

Lemma 5 (Projected Fixpoints). Let ω be a cartesian trace such that ω(i)
is a projected fixpoint. It holds that ω(i) is an inductive backward fixpoint of the
collecting state semantics.

In fact, given a useful backward fixpoint S , we can use the appropriate general-
ization transitions starting from Ω̂ to produce a cartesian trace ω which contains
S as a projected fixpoint at some index i .

We can now restate the last paragraph of Sect. 3 in a more precise way: In
Sect. 8, we show that PDR can be formalized as an abstract interpretation of the
collecting property-guided cartesian semantics, where every operation of PDR
can be understood as a sequence of steps taken by the semantics.

The semantics, when looking at it from the viewpoint of PDR, interprets the
program with two goals in mind. The first goal is to look for a useful fixpoint of
its collecting state semantics. This is done by taking generalization steps. The
second goal, which is done in parallel, is to look for a counterexample. This is
done using pre-transitions. The two goals affect each other: The states that are
discovered using the pre-transitions, are used to compute Y in the generalization
transitions by applying an algorithm specific-heuristic. The generalization, on
the other hand, might add states that would make future pre-transitions mute
as their targets would be detected early. This, could help PDR terminate faster
than if it had taken only pre-transitions.

The PDR-viewpoint helps understand the reason behind placing Σ \ Init as
the last component of the initial cartesian traces: It is apriori known that this set
provides (the most coarse) over-approximation of the last state of any evil trace
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which is not a counterexample. As a result, it provides the greatest opportunity
to apply generalization transitions at the penultimate set, and by extension, at
the ones preceding it. This flexibility is the reason that the collecting semantics
can compute any useful fixpoint.

7 Traditional PDR

In this section we describe PDR in an operational manner. Traditionally, PDR
uses a symbolic representation of states and sets of states as formulas in some
logic (either propositional or first order logic). In our description of PDR we
refer to the underlying states or sets of states explicitly.

We start by a high-level description of PDR and the data structures used
by it. The latter also define its configurations. We then describe the different
operations performed by the different implementations of PDR.

Initially, PDR checks if Init ∩ Bad = ∅, and reports a counterexample if this
is not the case. For simplicity of the presentation, we consider this check to be
done before PDR is invoked. We therefore assume that Init ∩ Bad = ∅.

Forward Reachability Sequence. PDR computes increasingly longer forward
reachability sequences. When referring to sequences maintained by PDR, we use
a subscript notation for the elements of a sequence: Fi instead of F (i). We
denote the sequence comprised of the elements F0, . . . ,FN , for some 0 < N , by
〈F0, . . . ,FN 〉.
Definition 1 (Forward Reachability Sequence). A forward reachability
sequence of length N + 1 is a sequence ϕN = 〈F0,F1, . . . ,FN 〉 ∈ seq(P(Σ))
which has the following properties:

1. F0 = Init,
2. Fi ⊆ Fi+1 for every 0 ≤ i < N ,
3. TR(Fi) ⊆ Fi+1 for every 0 ≤ i < N ,
4. Fi ∩ Bad = ∅ for every 0 ≤ i ≤ N .

The sets Fi in the sequence ϕN are called frames. N is called the iteration
counter.

Note that the property TR(Fi) ⊆ Fi+1 is equivalent to
←−
TR(Σ\Fi+1) ⊆ Σ\Fi . We

use the two interchangeably. The properties of a forward reachability sequence
ϕN imply that for every 0 ≤ i ≤ N , frame Fi over-approximates the set of states
reachable from the initial states in at most i steps. If the sequence includes an
index 0 ≤ i < N such that Fi = Fi+1 then property 3 simplifies to TR(Fi) ⊆ Fi .
Hence, together with properties 1 and 4, we conclude that Fi is a useful forward
fixpoint (or safe inductive invariant), which implies that P is safe.

PDR computes forward reachability sequences ϕN of increasing lengths,
starting from N = 1, until either a counterexample is found or a fixpoint is
reached.
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In the intermediate steps of the computation of the forward reachability
sequence ϕN , requirement 3 might not hold (only) for i = N − 1, in which case
we refer to ϕN as an intermediate forward sequence. Specifically, for N = 1,
ϕN is initialized to 〈Init ,Σ \ Bad〉. For N > 1, PDR initializes an intermediate
forward sequence ϕN by extending the forward reachability sequence ϕN−1 from
the previous iteration with an additional frame FN = Σ \ Bad . If requirement 3
does not hold due to the addition of FN , PDR tries to strengthen the frames Fi

(which over-approximate the reachable states) in order to satisfy requirement 3
for i = N − 1 as well. For this purpose, PDR iteratively retrieves from FN−1 a
state for which TR(σ) ⊆ FN does not hold (equivalently, σ ∈ ←−

TR(Bad)∩FN−1),
and tries to eliminate it by strengthening FN−1. To do so while maintaining the
(other) properties of a forward reachability sequence, PDR first has to strengthen
FN−2 to eliminate from it all the predecessors of σ. For the elimination of each
predecessor, the same process is needed. This results in a backward traversal of
the state space.

Obligations Queue. The states that need to be eliminated from their frames
are called counterexamples to induction (CTIs), since their removal is needed
in order to maintain the induction condition (TR(Fi) ⊆ Fi+1). A pair (i , σ)
consisting of an index i and a CTI σ that needs to be eliminated from Fi is
called a proof obligation (obligation in short). All obligations have the property
that their states lead to a bad state. Technically, PDR uses an obligation queue,
denoted q , to handle the obligations.

If all obligations are handled successfully, ϕN satisfies requirement 3 for i =
N − 1 as well, and hence it becomes a forward reachability sequence. However,
there might be intermediate steps where q is temporarily empty, even though
not all obligations have been handled (since not all have been discovered). To
distinguish between the former and the latter we use ⊥ to denote the value of
the queue when all obligations are handled, as opposed to ∅ which denotes an
empty queue, possibly temporarily.

PDR Configurations. A configuration of PDR is a triple κ = (N , ϕN , q),
where

– N ∈ N,
– ϕN = 〈F0,F1, . . . ,FN 〉 ∈ (P(Σ))N+1 is an intermediate forward sequence,

and
– q ∈ P([N ] × Σ) ∪ {⊥} is an obligations queue, where [N ] = {0, . . . ,N }.

Initial Configuration. Assuming that Init ∩Bad = ∅, the initial configuration
of PDR is κ0 = (1, 〈Init ,Σ \ Bad〉, ∅).

PDR Operations. Given a configuration κ = (N , ϕN , q) as above, PDR pro-
ceeds by performing one of the following procedures. We denote the resulting
configuration by κ′ = (N ′, ϕ′, q ′). Each procedure updates a subset of the com-
ponents of the configuration. We describe only the components that are indeed
updated.
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Queue Initialization: If q = ∅, and there is a state σ ∈ ←−
TR(Bad) ∩ FN−1, PDR

adds the obligation (N − 1, σ) to the queue, resulting in q ′ = {(N − 1, σ)}. If no
such state exist, it sets q ′ = ⊥.

Backward Step: Given an obligation (i , σ′) ∈ q , where 1 ≤ i ≤ N is the minimal
frame index in q , such that there is σ ∈ ←−

TR(σ′) ∩ Fi−1, PDR adds (i − 1, σ) to
q . Namely, q ′ = q ∪ {(i − 1, σ)}.

Obligation Lifting: Once an obligation (i − 1, σ) is added to q due to a back-
ward step from (i , σ′) ∈ q , PDR computes a lifting of the obligation, S =
OLift(σ, σ′,Fi), and adds the set of obligations {i − 1} × S to the queue, where
OLift(σ, σ′,Fi) computes a set of states S ⊆ Σ such that S ⊆ ←−

TR(σ′). Namely,
q ′ = q ∪ ({i − 1} × S ).

Obligation lifting helps accelerating PDR by lifting an obligation discovered
by a backward step from some obligation (i , σ′) ∈ q to a set of obligations, all
of which result from a backward step of the same obligation.

Blocking: Given an obligation (i , σ′) ∈ q , where 1 ≤ i ≤ N is the minimal frame
index in q and

←−
TR(σ′) ∩ Fi−1 = ∅, PDR removes (i , σ′) from q , and removes σ′

from Fi (if it was not yet removed). Note that since i ≥ 1, σ′ �∈ Init . This results
in the configuration κ′ = (N , 〈F0, . . . ,Fi−1,Fi \{σ′},Fi+1, . . . ,FN 〉, q \{(i , σ′)}).

Generalization: Once (i , σ′) is blocked, in addition to removing σ′ from Fi , PDR
computes a generalization of the blocked state, S = Gen(σ′,Fi−1), and removes
S from all Fj such that j ≤ i , where Gen(σ′,Fi−1) computes a set of states
S ⊆ Σ such that Init ∩ S = ∅ and TR(Fi−1) ∩ S = ∅ (i.e., where all states have
no predecessor in Fi−1). The result is ϕ′ = 〈F0,F1 \S , . . . ,Fi \S ,Fi+1, . . . ,FN 〉.

Inductive Generalization: Once (i , σ′) is blocked, in addition to removing σ′

from Fi , PDR computes an inductive generalization of the blocked state, S =
IGen(σ′,Fi−1), and removes S from all Fj such that j ≤ i , where IGen(σ′,Fi−1)
computes a set of states S ⊆ Σ such that Init ∩S = ∅ and TR(Fi−1 \S )∩S = ∅.
The result is ϕ′ = 〈F0,F1 \ S , . . . ,Fi \ S ,Fi+1, . . . ,FN 〉.

Inductive generalization is an enhancement of generalization which results in
a stronger strengthening of frames, as every generalization is also an inductive
generalization, but not the other way around. It is based on an attempt to
identify sets whose complements are inductive relatively to the current frame,
and therefore can be used to safely strengthen all frames up to the current
one while keeping the properties of an intermediate forward sequence (and in
particular, without excluding any reachable state).

Forward Propagation: Once Fi is updated by removing S from it (as a result of
generalization, inductive generalization, or forward propagation), i.e. Fi ∩S = ∅,
it is checked whether TR(Fi)∩S = ∅, and if so, Fi+1 is also updated to Fi+1 \S .
The result is ϕ′ = 〈F0, . . . ,Fi ,Fi+1 \ S ,Fi+2, . . . ,FN 〉.
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Forward propagation attempts to speculatively strengthen frames before
obligations are encountered. Similarly to inductive generalization, it considers
sets that are inductive relatively to the current frame (the complement of every
set that is removed from a frame corresponds to such a relative inductive set),
and checks whether they are also inductive relatively to consecutive frames.

Pushing Obligations Forward: Once an obligation (i , σ′) for 1 ≤ i ≤ N − 1
is removed from q , an obligation (i + 1, σ′) is added to q . The result is q ′ =
q ∪ {(i + 1, σ′)}.

Pushing obligations forward aims at an early discovery of obligations. An
obligation (i , σ′) consists of a state σ′ that reaches a bad state in some k > 0
steps. The same holds also when σ′ is considered in Fi+1, which makes (i +1, σ′)
a legitimate obligation (it will be discovered/handled at the latest when N =
i + 1 + k). Its early addition can help accelerate the strengthening towards a
fixpoint, or enable finding counterexamples that are longer than N + 1.

Unfolding: If q = ⊥ and fixpoint is not obtained, PDR initializes FN+1 to
Σ \ Bad , increases N to N + 1, and sets q to an empty queue. This results in
the configuration κ′ = (N + 1, 〈F0,F1, . . . ,FN ,Σ \ Bad〉, ∅).

Termination. If there is an obligation (0, σ′) ∈ q , PDR terminates and reports
a counterexample. If q = ⊥, and there exists i < N such that Fi = Fi+1, PDR
terminates with a fixpoint and reports safety.

PDR is parametric in the generalization function Gen, the inductive gen-
eralization function IGen (typically only one of them is used), and the lifting
function OLift.

Remark 1 (Symbolic PDR). PDR is typically implemented as a SAT-based or
an SMT-based model checking algorithm. It uses formulas in (propositional or
first order) logic over a vocabulary V to describe states and sets of states. In
particular, a state is described as a cube over V , i.e., a conjunction of literals
(predicates or their negations) and a set (e.g., a frame Fi) is described as a
CNF formula over V , i.e., conjunction of clauses where each clause consists of a
disjunction of literals. The transition relation TR is also described by a formula,
over a double vocabulary V ∪ V ′, where V represents the current state and
V ′ = {v ′ | v ∈ V } represents the next state.

Checks such as
←−
TR(σ′) ∩ Fi−1 = ∅ are done by validity checks of the cor-

responding formulas, e.g. Fi−1(V ) ∧ TR(V ,V ′) ⇒ ¬σ′(V ′), or alternatively,
unsatisfiability checks of their negation, i.e., Fi−1(V ) ∧ TR(V ,V ′) ∧ σ′(V ′).
When the formula is satisfiable, a state σ ∈ ←−

TR(σ′) ∩ Fi−1 is retrieved from the
satisfying assignment.

In this setting, generalization, inductive generalization and lifting are per-
formed on a cube, representing a state, and a CNF formula, representing a
frame. They compute a CNF formula representing a set of states.

For example, a typical implementation of generalization Gen(σ′,Fi−1) looks
for a sub-clause c of the clause ¬σ′(V ) such that Init(V ) ⇒ c(V ) and Fi−1(V )∧
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TR(V ,V ′) ⇒ c(V ′). If this holds, then Gen(σ′,Fi−1) returns ¬c(V ) as a for-
mula representing the set of states to be removed from Fj for all j ≤ i . The
removal is performed by conjoining Fj with c. Inductive generalization is per-
formed similarly.

Obligations lifting was performed in the original PDR paper [3] statically
by considering the k-step cone of influence. [7] performed dynamic lifting using
ternary simulation. [4] suggested a SAT-based approach, using unsatisfiability
cores, for lifting.

8 PDR as a Property-Guided Abstract Interpretation
of the Cartesian Trace Semantics

In this section, we show that the collecting property-guided cartesian trace
semantics defined in Sect. 6 simulates PDR, or in other words, PDR is an imple-
mentation of the semantics. For this purpose we define a simulation relation map-
ping PDR configurations to elements of the semantics, given by sets of sequences.
We show that each step of PDR is simulated by a sequence of transitions of the
semantics, in the sense that the resulting PDR configuration matches the result-
ing element in the semantics.

The mapping between PDR configurations and elements of the semantics is
given by a compatibility relation defined below. It should be noted that while the
sequences of frames used by PDR are indexed such that F0 = Init and increasing
indices represent increasing distance (with respect to TR) from the initial states,
the sequences used by our semantics are indexed such that ω(0) = Bad and
increasing indices represent increasing distance (with respect to

←−
TR) from the

bad states. In this sense, the two consider opposite directions of the transition
relation.

Definition 2 (Compatibility). Let κ = (N , ϕ = 〈F0,F1, . . . ,FN 〉, q) be a
PDR configuration, and ω ∈ Ω. The intermediate forward sequence ϕ is proof-
compatible with ω if |ω| = |ϕ| = N + 1 and for every 0 ≤ i ≤ N , Fi =
Σ \ ω(N − i). An obligation (i , σ) ∈ q is cex-compatible with ω if |ω| ≥ i + 1
and σ ∈ ω(|ω| − 1 − i).

We say that κ is compatible with a set of sequences O ⊆ Ω, if

1. there exists ωϕ ∈ O such that ϕ is proof-compatible with ωϕ, and
2. either q = ⊥ or for every obligation ψ = (i , σ) ∈ q, there exists ωψ ∈ O such

that ψ is cex-compatible with ωψ.

We refer to ωϕ and ωψ as the witnessing sequences for ϕ and ψ, respectively.

Thus, proof-compatibility requires that that sequences ϕ and ω are “mirrors” of
each other combined with a pointwise complement operation. This also explains
the choice of the term “anti-frames” for the sets in a backward cartesian trace.
(See Sect. 5.) Cex-compatibility requires that the CTI σ which appears as an
obligation in index i with respect to ϕ, will appear in ω in distance i from the
end of the sequence.
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Lemma 6. The compatibility relation is a stuttering simulation between reach-
able PDR configurations and reachable elements of the collecting property-guided
cartesian trace semantics.

Proof. We prove the claim by showing that the initial configurations of PDR and
the semantics are compatible, and that every step of PDR maintains
compatibility.

Initial Configuration. Let κ0 be the initial configuration of PDR, and Ω̂
be the initial element of the semantics. Then ϕ0 = 〈Init ,Σ \ Bad〉 is proof-
compatible with the sequence ω̂2 = 〈Bad ,Σ \ Init〉 ∈ Ω̂, and q is empty, hence
cex-compatibility holds trivially.

Steps of PDR. Let κ = (N , ϕ, q) be a configuration of PDR (where N ≥ 1),
and let O be an element of the semantics such that κ is compatible with O . For
each possible step of PDR leading to κ′ = (N ′, ϕ′, q ′), we show a corresponding
sequence of TRBGE

P(Ω)(P) leading from O to O ′ such that κ′ is compatible with O ′.
Note that it suffices to show sequences of transitions of TRBGE

Ω (P) leading
to witnesses for ϕ′ and for the obligations in q ′ separately. Since TRBGE

P(Ω)(P) is
monotonic and accumulative (i.e., if ω ∈ O and O has a transition of TRBGE

P(Ω)(P)
to O ′′, then ω ∈ O ′′ as well), these sequences of transitions of TRBGE

Ω (P) can
then be lifted to transitions of TRBGE

P(Ω)(P), concatenated and applied on O to
obtain O ′. For the same reason it suffices to show such sequences of transitions
only for the components in the PDR configuration that have changed in the
step from κ to κ′: for an unchanged component, the same witness from O , which
exists in any subsequent element O ′′ of O , remains a witness.

Queue Initialization: κ′ = (N , ϕ, q ′) where q ′ is either ⊥, or a singleton
{(N − 1, σ)}. Consider first the case where q ′ = ⊥. In this case, κ′ is compatible
with the same O , i.e. no transition of the semantics is needed.

Consider now the case where q ′ = {(N −1, σ)}, where σ ∈ ←−
TR(Bad)∩FN−1.

Recall that O is a reachable element of the semantics. Therefore, Ω̂ ⊆ O . Starting
from ω̂N+1 ∈ Ω̂ ⊆ O we apply a pre-transition of the semantics in index 0 of
ω̂N+1, adding the set {σ} to ω̂N+1(1). The transition is applicable since σ ∈←−
TR(Bad) and ω̂N+1(0) = Bad . The result is ω′ of length N + 1 such that
σ ∈ ω′(1), where 1 = |ω′| − 1 − (N − 1). Hence (N − 1, σ) is cex-compatible
with ω′.

Backward Step: κ′ = (N , ϕ, q ′), where q ′ = q ∪ {(i − 1, σ)}. Let ω(i,σ′) be
the witnessing sequence for the obligation (i , σ′) which is the trigger for this
step (where |ω(i,σ′)| ≥ i + 1). Similarly to the case of queue initialization, we
use a pre-transition of the semantics in index |ω(i,σ′)| − 1 − i of ω(i,σ′) to add
{σ} to ω(i,σ′)(|ω(i,σ′)| − i), resulting in ω′

(i,σ′) of the same length, such that
σ ∈ ω′

(i,σ′)(|ω(i,σ′)| − i). Therefore, ω′
(i,σ′) is a witness for cex-compatibility of

the new obligation (i − 1, σ).

Obligation Lifting: q ′ = q ∪ ({i − 1} × S ). Similarly to the backward step, let
ω(i,σ′) be the witnessing sequence for the obligation (i , σ′) which is the trigger for
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the backward step responsible for lifting. A witness is obtained for all (i −1, σ) ∈
{i − 1} × S , by a pre-transition from ω(i,σ′) in index |ω(i,σ′)| − 1 − i adding S to
ω(i,σ′)(|ω(i,σ′)| − i). The pre-transition is applicable since S ⊆ ←−

TR(σ′).

Blocking: q ′ = q \ {(i , σ′)}, and ϕ′ = 〈F0, . . . ,Fi−1,Fi \ {σ′},Fi+1, . . . ,FN 〉,
where 1 ≤ i ≤ N . Since q ′ is a subset of q , the same witnessing sequences for
its obligations in O appear in every subsequent element of O . As for ϕ′, let
ωϕ ∈ O be a witnessing sequence for ϕ. Since

←−
TR(σ′) ∩ Fi−1 = ∅, we generate a

witnessing sequence for ϕ′ by applying a generalization transition on ωϕ at index
N − i (i.e., updating index N − i based on N − i + 1) using the set Y = {σ′},
similarly to the simulation of a generalization step of PDR (see below).

Generalization: In this case, ϕ′ = 〈F0 \S , . . . ,Fi \S ,Fi+1, . . . ,FN 〉. Let ωϕ =
〈Σ \ FN , . . . ,Σ \ F0〉 be a witnessing sequence for ϕ in O . We obtain ω′

ϕ by
a sequence of generalization transitions. For every j = 1, . . . , i (in increasing
order), starting from ω1 = ωϕ, we apply a generalization transition on ωj =
〈Σ \ FN , . . . ,Σ \ Fj ,Σ \ (Fj−1 \ S ), . . . ,Σ \ (F1 \ S ),Σ \ F0〉 in index N − j
(i.e., updating index N − j based on N − j + 1) using the set Y = S , leading
to ωj+1. By the requirements of Gen, Init ∩ S = ∅ and TR(Fi−1) ∩ S = ∅,
i.e.,

←−
TR(S ) ⊆ Σ \ Fi−1. Since Fj−1 ⊆ Fi−1 for every j ≤ i , we have that←−

TR(S ) ⊆ Σ\Fj−1. As such S indeed satisfies the requirements of a generalization
transition in index N − j of ωj . Finally, ωi+1 is a witnessing sequence for ϕ′.

Inductive Generalization: This step is similar to generalization, where now←−
TR(S ) ⊆ Σ \ Fj−1 does not necessarily hold, but

←−
TR(S ) ⊆ Σ \ (Fj−1 \ S ) holds

(since TR(Fi−1 \ S ) ∩ S = ∅). However, since the transitions are performed
from j = 1 and up, when the generalization transition is performed on ωj =
〈Σ \ FN , . . . ,Σ \ Fj ,Σ \ (Fj−1 \ S ), . . . ,Σ \ (F1 \ S ),Σ \ F0〉 in index N − j (i.e.,
updating index N − j based on N − j + 1) using the set Y = S , it is already
the case that ωj (N − j + i) = Σ \ (Fj−1 \ S ). Therefore,

←−
TR(S ) ⊆ ωj (N − j + i)

holds.

Forward Propagation: ϕ′ = 〈F0, . . . ,Fi ,Fi+1 ∪ S ,Fi+2, . . . ,FN 〉. Let ωϕ be a
witnessing sequence for ϕ in O . We obtain ω′

ϕ by a generalization transition on
ωϕ in index N − i − 1 (updating index N − i − 1 based on N − i).

Pushing Obligations Forward: Recall that in this case κ′ = (N , ϕ, q ∪ {(i +
1, σ)}). In this case, we show how to obtain a cex-witness ω′ for (i + 1, σ) by
a sequence of pre-transitions. By the property of the obligations in PDR, there
exists k and a sequence 〈σk , σk−1, . . . , σ0〉 such that σk = σ and σ0 ∈ Bad (i.e., σ
leads to a bad state in k steps). Therefore, starting from ω0 = ω̂i+2+k ∈ Ω̂ ⊆ O
of length i + 2 + k , we apply pre-transitions for every j = 0, . . . , k − 1 (in
increasing order) in index j of ωj , adding the singleton {σj+1} to the j + 1-th
index, resulting in ωj+1 where ωj+1(j +1) = ωj (j +1)∪{σj+1}. The result of the
transitions is ωk of length i+2+k such that σ ∈ ωk (k), where k = |ωk |−1−(i+1).
Hence (i + 1, σ) is cex-compatible with ωk .
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Unfolding: In this case, κ′ = (N +1, 〈F0,F1, . . . ,FN ,Σ\Bad〉, ∅). We show how
to obtain a witnessing sequence for ϕ′ = 〈F0,F1, . . . ,FN ,Σ\Bad〉 by a sequence
of generalization transitions. We utilize again the property of reachable elements
of the semantics which ensures that ω̂N+2 = 〈Bad〉∅N 〈Σ \ Init〉 ∈ Ω̂ ⊆ O . For
every i = 0, . . . ,N − 1 (in increasing order), starting from ω0 = ω̂N+2, we apply
a generalization transition on ωi = 〈Bad〉∅N−i〈Σ \ Fi , . . . ,Σ \ F1,Σ \ Init〉 in
index N − i (i.e., updating index N − i based on index N − i + 1) using the set
Y = Σ\Fi+1, leading to ωi+1 = 〈Bad〉∅N−i−1〈Σ\Fi+1, . . . ,Σ\F1,Σ\ Init〉. To
be convinced that the transition from ωi to ωi+1 is well defined, we recall the
properties of PDR. By the properties of PDR, for every 0 ≤ i < N , TR(Fi) ⊆
Fi+1, or equivalently,

←−
TR(Σ \ Fi+1) ⊆ Σ \ Fi . In addition, Init ⊆ Fi+1, or

equivalently (Σ \ Fi+1) ∩ Init = ∅. As such, Y = Σ \ Fi+1 indeed satisfies the
requirements of a generalization transition in index N − i of ωi . Finally, ωN is a
witnessing sequence for ϕ′. Since q ′ = ∅, no witnesses for cex-compatibility are
needed. ��
The proof of Lemma 6 shows that different components of the PDR configuration
correspond to different sequences in the element of the semantics, O . In this
sense, PDR can be thought of as trying to compute multiple sequences of the
semantics simultaneously, as it both tries to find counterexamples of different
lengths, and at the same time tries to verify safety.

Lemma 6 implies that all reachable configurations of PDR are compatible
with reachable configurations of the semantics. This holds in particular for ter-
minal configurations of PDR. We now show that the correctness of the output
of PDR in each of the terminal configurations follows from their compatibility
with an element of the semantics.

Counterexample: If there is an obligation (0, σ′) ∈ q , PDR terminates and
reports a counterexample. Such an obligation indicates that σ′ ∈ F0, i.e. σ′ ∈
Init . Lemma 6 ensures that there is a reachable element O of the semantics with
some ω ∈ O such that σ′ ∈ ω(|ω| − 1). Indeed, since σ′ ∈ Init , it follows that ω
has an error transition leading to � (the error state of the semantics).

Fixpoint: If q = ⊥, and there exists i < N such that Fi = Fi+1, PDR ter-
minates and reports safety. PDR has the property that when q = ⊥, the inter-
mediate forward sequence ϕ becomes a forward reachability sequence. Lemma 6
ensures that there is a reachable element O of the semantics with some ω ∈ O
such that ϕ is proof-compatible with ω. Due to the properties of a forward reach-
ability sequence (that hold for ϕ), and since Fi ⊆ Fi+1 and TR(Fi) ⊆ Fi+1

together imply (Σ \ Fi+1) ∪ ←−
TR(Σ \ Fi+1) ⊆ Σ \ Fi , it follows that ω has a

projected fixpoint at its N − i − 1 index.

Remark 2. PDR is sometimes implemented such that FN is initialized to Σ
rather than Σ\Bad . In this case, in the intermediate forward sequences, require-
ment 4 of Definition 1 might not hold for i = N (while requirement 3 holds for
all frames). States that violate requirement 4 are used as obligations at index N .
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Our semantics can simulate such implementations by letting a backward carte-
sian trace ω be a witness for an intermediate forward sequence ϕ if the suffix of
ω in which the first anti-frame ω(0) is truncated is compatible with ϕ.

9 Discussion, Related Work and Conclusions

Implementations of PDR use a symbolic representation of states and sets of
states, as formulas in logic. In the original description of PDR [3,7], addressing
finite state systems, propositional formulas over boolean variables are used. In
this setting, which is most suitable for hardware designs, a SAT solver is used to
preform one step reachability checks. In subsequent works which extended PDR
to software, formulas in various theories of first order logic are considered, and
SMT solvers are used instead of a boolean SAT solver. For example, [5] experi-
ments with Linear Rational Arithmetic, [2,9] handle Linear Real Arithmetic, [1]
handles Linear Integer Arithmetic, and [10] considers universal formulas in first
order logic. In our work, we use an explicit representation for the description of
PDR, which captures all of these frameworks, in order to provide a view of PDR
which is not restricted to a certain representation.

Our operational description of PDR is inspired by works such as [8,9] which
provide an abstract description of PDR and its operations in the form of an
abstract transition relation (described via formulas). However, we continue and
show how this maps to a property-guided abstract interpretation of the program.

We consider linear PDR, where the semantics of a program is given via its
traces (linear sequences). Some works (e.g. [5,9]) have considered the extension
of PDR to a non-linear search. [5] defined tree-IC3 which can be thought of as
performing PDR on each branch of a program’s control flow graph. Handling
such algorithms is the subject of future work.

Conclusions. We study, using abstract interpretation [6], the family of linear
property directed reachability verification algorithms that has been developed
following Bradley’s original PDR/IC3 algorithm PDR [3]. We show that existing
algorithms can be explained and proven sound by relating them to the actions of
a non standard semantics which abstracts bounded backward traces. Arguably,
the most surprising insight our work provides is that even though PDR is typi-
cally described as a forward analysis, it is in fact based on an abstraction of the
backward collecting trace semantics. Besides the conceptual elegance of explain-
ing existing algorithms (e.g. [1,2,7,9,10]) using (sequences of) two basic opera-
tions, we believe that our work would allow to explain and prove correct future
PDR-based verification algorithms in a more systematic and abstract way than
existing specialized techniques.
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