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Abstract. We revisit relational static analysis of numeric variables.
Such analyses face two difficulties. First, even inexpensive relational
domains scale too poorly to be practical for large code-bases. Second,
to remain tractable they have extremely coarse handling of non-linear
relations. In this paper, we introduce the subterm domain, a weakly
relational abstract domain for inferring equivalences amongst sub-
expressions, based on the theory of uninterpreted functions. This pro-
vides an extremely cheap approach for enriching non-relational domains
with relational information, and enhances precision of both relational
and non-relational domains in the presence of non-linear operations. We
evaluate the idea in the context of the software verification tool SeaHorn.

1 Introduction

This paper investigates a new approach to relational analysis. Our aim is to
develop a method that scales to very large code bases, yet maintains a reasonable
degree of precision, also for programs that use non-linear numeric operations.

Abstract interpretation is a well-established theoretical framework for sound
reasoning about program properties. It provides means for comparing program
analyses, especially with respect to the granularity of information (precision)
that analyses allow us to statically extract from programs. On the whole, reduc-
ing such questions to questions about abstract domains. An abstract domain,
essentially, specifies the (limited) language of judgements we are able to use
when reasoning statically about a program’s runtime behaviour.

A class of abstract domains that has received particular attention are the
numeric domains—those supporting reasoning about variables of numeric (often
integer or rational) type. Numeric domains are important because of the numer-
ous applications in termination and safety analyses, such as overflow detection
and out-of-bounds array analysis. The polyhedral abstract domain [9] allows us
to express linear arithmetic constraints (equalities and inequalities) over pro-
gram state spaces of arbitrary finite dimension k. But high expressiveness comes
at a cost; analysis using the polyhedral domain does not scale well to large code
bases. For this reason, a number of abstract domains have been proposed, seeking
to strike a better balance between cost and expressiveness.
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Language Restriction. The primary way of doing this is to limit expressive-
ness, that is, to restrict the language of allowed judgements. Most commonly
this is done by expressing only 1- or 2-dimensional projections of the program’s
(abstract) state space, often banning all but a limited set of coefficients in linear
constraints. Examples of this kind of restriction to polyhedral analysis abound,
including zones [19], TVPI [22,23], octagons [20], pentagons [18], and logahe-
dra [14]. These avoid the exponential behaviour of polyhedra, instead offering
polynomial (typically quadratic or cubic) decision and normalization procedures.
Still, they have been observed to be too expensive in practice for industrial code-
bases [18,24]. Hence other “restrictive” techniques have been proposed which are
sometimes integral to an analysis, sometimes orthogonal.

Dimensionality Restriction. These methods aim to lower the dimension k of
the program (abstract) state space, by replacing the full space with several lower-
dimension subspaces. Variables are separated into “buckets” or packs according
to some criterion. Usually the packs are disjoint, and relations can be explored
only amongst variables in the same pack (relaxations of this have also been
proposed [4]). The criterion for pack membership may be syntactic [8] or deter-
mined dynamically [24]. A variant is to only permit relations between sets; in
the Gauge domain [25], relations are only maintained between program variables
and introduced loop counters, not between sets of program variables.

Closure Restriction. Some methods abandon the systematic transitive clo-
sure of relations (and therefore lack a normal form for constraints). Constraints
that follow by transitive closure may be discovered lazily, or not at all. Closure
restriction was used successfully with the pentagon domain; a tolerable loss of
precision was compensated for by a significant cost reduction [18].

All of the work discussed up to this point has, in some sense, started from an
ideal (polyhedral) analysis and applied restrictions to the degree of “relational-
ity.” A different line of work starts from very basic analyses and adds mechanisms
to capture relational information. These approaches do not focus on restrictions,
but rather on how to compensate for limited precision using “symbolic” reason-
ing. Such symbolic methods maintain selected syntactic information about com-
putations and use this to enhance precision. The primary examples are Miné’s
linearization method [21], based on “symbolic constant propagation” and Chang
and Leino’s congruence closure extension [5].

Polyhedral analysis and its restrictions tend to fall back on overly coarse
approximation when faced with non-linear operations such as multiplication,
modulus, or bitwise operations. Higher precision is desirable, assuming the asso-
ciated cost is limited. Consider the example shown in Fig. 1(a). Figure 2(a) shows
the possible program states when execution reaches point A. With octagons, the
strongest claim that can be made at that point is

0 ≤ x ≤ 10,−10 ≤ y ≤ 10, y − z ≤ 90, z − y ≤ 90, x + z ≥ −90, z − x ≤ 90
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x = nondet(0,10)

y = nondet(-10,10)

z = x*y

A:

if (y < 0) {

z = -z

}

B:

(a)

u = nondet(0,10)

v = nondet(0,10)

w = nondet(0,10)

if (*)

t = u + v else t = u + w

if (t < 3)

u = u + 3 else u = 3

C:

(b)

Fig. 1. Two example programs

Fig. 2(b) shows the projection on the y-z plane. Almost all interaction between
y and z has been lost and as a result, we fail to detect that z is non-negative at
point B. The best possible polyhedral approximation adds

z ≥ −10x, z ≥ 10x + 10y − 100, z ≤ 10x, z ≤ 100 − 10x + 10y

While this expresses more of the relationship between x, y and z, we can still
only infer z ≥ −50 at point B.

y

z

100

-20
y

z

)c()b()a(

Fig. 2. (a) The reachable states at point A in Fig. 1(a); (b) the result of polyhedral
analysis at point A, projected onto the y-z plane, assuming analysis performs case split
on the sign of y (the convex hull forming a lozenge);(c) the result of polyhedral analysis
at point B. Dashed lines show octagon invariants.
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Table 1. States inferred for Fig. 1’s programs, points B (left) and C (right)

Octagons y − z ≤ 90, z − y ≤ 90, 0 ≤ t, 3 ≤ u ≤ 20, u + t ≤ 23

x + z ≥ −90, z − x ≤ 90

Polyhedra z ≥ −10x, z ≥ 10x + 10y − 100, 0 ≤ t ≤ 20, 3 ≤ u ≤ 5

z ≤ 10x, z ≤ 100 − 10x + 10y

Subterms 0 ≤ z ≤ 100 0 ≤ t ≤ 20, 3 ≤ u ≤ 5

In practice, weaker results may well be produced. A commonly used octagon
library yields y ∈ [−10, 10], z ∈ [−100, 100], rather than the dashed projections
shown in Fig. 2(b) and (c). For polyhedral analysis, multiplication is often han-
dled by projection and case-splitting. The two grey triangles in Fig. 2(b) show
the result, at point A, of case analysis according to the sign of y, as projected
onto the y-z plane; the lozenge is the convex hull. This explains how a commonly
used library infers {z ≥ 5y − 50, z ≤ 5y + 50} at point A. The pen-nib shaped
area in Fig. 2(c) shows the result, at point B, of polyhedral analysis. Note that
the triangle below the y axis is in fact infeasible.

Contribution. The proposal presented in this paper differs from all of the above.
It combines closure restriction and a novel symbolic approach. We extract and
utilise shared expression information to improve the precision of cheap non-
relational analyses (for example, interval analysis), at a small added cost. The
idea is to treat the arithmetic operators as uninterpreted function symbols. This
allows us to replace expensive convex hull operations by a combination of con-
straint propagation and term anti-unification. The resulting subterm domain
ST is an abstract domain of syntactic equivalences. It can be used to aug-
ment non-relational domains with relational information, and to improve pre-
cision of (possibly relational) domains in the presence of complex operations.
The improvement is not restricted to non-linear operations; it can equally well
support weakly relational domains that are unable to handle large coefficients.

Table 1 summarises the analysis results for the two programs in Fig. 1, com-
pared with the results of (ideal) octagon and polyhedral analysis.1 Note how the
subterm domain obtains a tight lower bound on z as well as a tight upper bound
on u.

The method has been implemented, and the experiments described later in
this paper suggest the combination strikes a happy balance between precision
and cost. After Sect. 2’s preliminaries, Sect. 3 provides algorithms for operations
on systems of terms, and Sect. 4 shows how this can be used to enhance a numeric
domain. Section 5 provides comparison with the closest related work. Section 6
reports on experimental results and Sect. 7 concludes.

1 We show transitive reductions and omit trivial bounds for variables. The result
obtained by the subterm domain for C, includes, behind the scenes, a term equation
t = u + s and a bound 0 ≤ s ≤ 10 on the freshly introduced variable s.
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2 Preliminaries

Abstract Interpretation. In standard abstract interpretation, a concrete
domain C� and its abstraction C# are related by a Galois connection (α, γ),
consisting of an abstraction function α : C� �→ C# and concretization func-
tion γ : C# → C�. The best approximation of a function f � on C� is
f#(ϕ) = α(f �(γ(ϕ))). When analysing imperative programs, C� is typically
the power-set of program states, and the corresponding lattice operations are
(⊆,∪,∩).

In a non-relational (or independent attribute) domain, the abstract state is
either the bottom value ⊥D (denoting an infeasible state), or a separate non-⊥
abstraction x# for each variable x in some domain DV (where each variable
admits some feasible value). That is, D = {⊥D} ∪ (DV \ {⊥D})|V |.

Sometimes backwards reasoning is required, to infer the set of states which
may/must give rise to some property. The pre-image transformer F -1

D ([[S]])(ϕ)
yields ϕpre such that (FD([[S]])(ϕ′) = ϕ) ⇒ (ϕ′ � ϕpre). Finding the minimal pre-
image of a complex (non-linear) operation can be quite expensive, so pre-image
transformers provided by numeric domains are usually coarse approximations.

We shall sometimes need to rename abstract values. Given a binary relation
π ⊆ V × V ′ and an element ϕ of an independent attribute domain over V , the
renaming π(ϕ) is given by:

renameπ(ϕ) = {x′ �→
�

D
(x,x′)∈π

ϕ(x) | x′ ∈ image(ϕ)}

The corresponding operation is more involved for relational domains. Assuming
D is closed under existential quantification, D can maintain systems of equalities
and V and V ′ are disjoint, we have renameπ(ϕ) = ∃V. (ϕ �{x = x′ | (x, x′) ∈ π}).

Term Equations. The set T of terms is defined recursively: every term is either
a variable v ∈ TVar or a construction F (t1, . . . , tn), where F ∈ Fun has arity
n ≥ 0 and t1, . . . , tn are terms. A substitution is an almost-identity mapping
θ ∈ TVar → T , naturally extended to T → T . We use standard notation for
substitutions; for example, {x �→ t} is the substitution θ such that θ(x) = t and
θ(v) = v for all v �= x. Any term θ(t) is an instance of term t.

If we define t � t′ iff t = θ(t′) for some substitution θ then � is a preorder.
Define t ≡ t′ iff t � t′ ∧ t′ � t. The set T/≡ ∪ {⊥}, that is T partitioned into
equivalence classes by ≡ plus {⊥}, is known to form a complete lattice, the so-
called term lattice.2 A unifier of t, t′ ∈ T is an idempotent substitution θ such
that θ(t) = θ(t′). A unifier θ of t and t′ is a most general unifier of t and t′ iff
θ′ = θ′ ◦ θ for every unifier θ′ of t and t′.

If we can calculate most general unifiers then we can find meets in the term
lattice: if θ is a most general unifier of t and t′ then θ(t) is the most general
term that simultaneously is an instance of t and an instance of t′, so θ(t) is the
meet of t and t′. Similarly, the join of t and t′ is the most specific generalization;
algorithms are available that calculate most specific generalizations [15].
2 � is extended to the term lattice by defining ⊥ � t for all elements t ∈ T/≡.
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Given a set of terms S ⊆ T and equivalences E ⊆ (S×S), we can partition S
into equivalent terms. Terms t and s are equivalent (t ≡ s) if they are identical
constants, are deemed equal, or t = f(t1, . . . , tm) and s = f(s1, . . . , sm) such
that for all i, ti ≡ si. Finding this partitioning is the well-studied congruence
closure problem, of complexity O(|S| log |S|) [10]. Of relevance is the case |E| = 1
(introduction of a single equivalence), which can be handled in O(|S|) time.

In the following, it will be necessary to distinguish a term as an object from
the syntactic expression it represents. We shall use id(t) to denote the name of
a term, and def(t) to denote the expression.

3 The Subterm Domain ST
An element of the subterm domain consists of a mapping η : V �→ T of pro-
gram variables to terms. While the domain structure derives from uninterpreted
functions, we must reason about the corresponding concrete computations. We
accordingly assume each function symbol F has been given a semantic function
S(F ) : Sn → S. Given some assignment θ : TVar → S of term variables to scalar
values, we can then recursively define the evaluation E(t, θ) of a term under θ.

E(x, θ) = θ(x)
E(f(t1, . . . , tn), θ) = S(f)(E(t1, θ), . . . ,E(tn, θ))

We say a concrete state {x1 �→ v1, . . . , xn �→ vn} satisfies mapping η iff there is
an assignment θ of values to term variables such that for all xi, E(η(xi), θ) = vi.
The concretization γ(η) is the set of concrete states which satisfy η.

However, the syntactic nature of our domain gives us difficulties. While we
can safely conclude that two (sub-)terms are equivalent, we have no way to
conclude that two terms differ. No Galois connection exists for this domain;
multiple sets of definitions could correspond to a given concrete state. Even if
states η1 and η2 are both valid approximations of the concrete state, the same
does not necessarily hold for η1 � η2.

Example 1. Consider two abstract states:

{x �→ +(a1, 7), y �→ a1, z �→ a2} {x �→ +(3, b1), y �→ b2, z �→ b1}

These correspond to the sets of states satisfying x = y + 7 and x = 3 + z
respectively. Many concrete states satisfy both approximations; one is (x, y, z) =
(7, 0, 4). However, a naive application of unification would attempt to unify
+(y, 7) with +(3, z), which would result in unifying y with 3, and z with 7.

Cousot and Cousot [7] discuss the consequences of a missing best approxi-
mation, and propose several approaches for repair: strengthening or weakening
the domain, or nominating a best approximation through a widening/narrowing.
However, these are of limited value in our application. Strengthening or weaken-
ing the domain enough that a best approximation is restored would greatly affect
the performance or precision, and explicitly reasoning over the set of equivalent
states is impractical. Using a widening/narrowing is sound advice, but offers
minimal practical guidance.
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3.1 Operations on ST

We must now specify several operations: state transformers for program state-
ments, join, meet, and widening. Assignment, join and widening all behave nicely
under ST ; meet is discussed in Sect. 3.2.

Figure 3 shows assignment and join operations on ST . Calls to generalize are
cached, so calls to generalize(s,t) all return the same term variable. In the case
of ST , the lattice join is safe: as η1 � η2 ⇒ γ(η1)�C� γ(η2) and � and �C� are
least upper bounds on their respective domains, we have γ(η1)� γ(η1 � η2) and
γ(η2)� γ(η1 � η2), so γ(η1)�C� γ(η2)�C� γ(η1 � η2). The worst-case complexity
of the join is O(|η1||η2|). But typical behaviour is expected to be closer to linear,
as most shared terms are either shared in both (so only considered once) or are
trivially distinct (so replaced by a variable). This is borne out in experiments, see
Sect. 6. As ST has no infinite ascending chains, �ST also serves as a widening.

FST [[x := f(y1 , . . . , yn)]](η) = η[x → f(η(y1), . . . , η(yn))]

η1 η2 = {x → generalize(η1(x), η2(x)) | x ∈ V }
generalize(c, c) = c
generalize(f(t1, . . . , tn), f(s1, . . . , sn)) = f(u1, . . . , un)

where ui = generalize(ti, si)
generalize(X, Y ) = freshvar

Fig. 3. Definitions of variable assignment and � in ST .

Every term in η1 � η2 corresponds to some specialization in η1 and η2. We
shall use πη1 �→η1 � η2 to denote the relation that maps terms in η1 to correspond-
ing terms in η1 � η2.

Example 2. Consider again Fig. 1(b). At the exit of the first if-then-else, we get
term-graphs η1 and η2 shown in Fig. 4(a) and (b). For η1 � η2, we first compute
the generalization of η1(u) = a0 with η2(u) = b0, obtaining a fresh variable c0.
Now, η1(t) and η2(t) are both (+2) terms, so we recurse on the children; the
generalization of (a0, b0) has already been computed, so we re-use the existing

tu v w

+

a0 a1 a2

tu v w

+

b0 b1 b2

tu v w

+

c0 c1 c2 c3

(a) η1 (b) η2 (c) η1 η2

Fig. 4. State at the end of the first (a) then and (b) else branches in Fig. 1(b), and
(c) the join of the two states.
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variable; but we must allocate a fresh variable for (a1, b2), resulting in t being
mapped to (+)(c0, c1). We repeat this process for v and w, yielding the state
shown in Fig. 4(c). Note that the result captures the fact that in both branches,
t is computed by adding some value to u.

3.2 The Quasi-meet ˜�
We require our quasi-meet �ST to be a sound approximation of the concrete
meet, that is, γ(η1)�C� γ(η2)�C� γ(η1 �ST η2). Ideally, we would like to preserve
several other properties enjoyed by lattice operations:

Minimality: If η1 �ST η2, then (η1 �ST η2) = η1
Monotonicity: If η1 �ST η′

1, then (η1 �ST η2)�ST (η′
1 �ST η2)

These are important for precision and termination respectively. However, in the
absence of a unique greatest lower bound these properties are mutually exclusive,
so the quasi-meet must be handled carefully to avoid non-termination [12].

A simple quasi-meet (denoted by ˜�, as distinct from a ‘true’ meet �) is to
adopt the approach of [21], deterministically selecting the term for each variable
from either η1 or η2. Minimality can be achieved by selecting the more precise
term (according to �ST ) when several choices exist. However, this discards a
great deal of information present in the conjunction. Of particular concern is the
loss of variable equivalences which are implied by η1 ∧η2 (the logical conjunction
of η1 and η2), but not by η1 and η2 individually.

We can infer all sub-term (and variable) equivalences of η1 ∧ η2 using the
congruence closure algorithm. Unfortunately, not only may this yield multiple
incompatible definitions for a variable, the resulting definitions may be cyclic.

w x y z

+

a0 a1

w x y z

+

b0 b1

w x y z

+

c1

w x y z

+
+

+

c0

c1

(a) η1 (b) η2 (c) (d)

Fig. 5. Abstract states η1 and η2, whose conjunction η1 ∧ η2 (c) cannot be represented
in ST ; it has an infinite descending chain of approximations (d).

Example 3. Consider the abstract states η1, η2 shown in Fig. 5(a) and (b). Com-
puting η1 ∧ η2, we start with constraints {η1(v) = η2(v) | v ∈ {w, x, y, z}}:

{t = (+)(a0, a1)} ∪ {s = (+)(b0, b1)} ∪ {a0 = b0, a0 = s, t = b0, a1 = b1}

After congruence closure, the terms are split into two equivalence classes:

E1 = {a0, b0, s, t}, E2 = {a1, b1}
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We then wish to extract an element of ST which preserves as much of this infor-
mation as possible. This conjunction, shown in Fig. 5(c), cannot be precisely
represented in ST – Fig. 5(d) gives an infinite descending chain of approxima-
tions. Note that we could obtain incomparable elements of ST by pointing each
of {w, x, y} at different (+) nodes in Fig. 5(d).

We therefore need a strategy for choosing a finite approximation of η1 ∧ η2
in ST . There are two elements to this decision: how a representative for each
equivalence class is chosen, and how cycles are broken. We wish to preserve as
many equivalences as possible, particularly between variables.

quasi-meet(η1, η2)
% Partition terms into congruence classes
Eq := congruence-close(Defs(η1) ∪ Defs(η2) ∪ {η1(x) = η2(x) | x ∈ V })
for each e ∈ Eq

indegree(e) := |{x | η1(x) ∈ eq}|
stack := ∅, repr := ∅, tvar := ∅
for each x ∈ V

η(x) := build-repr(Eq(η1(x)))
return η

build-repr(eq)
if eq ∈ stack % If this is a back-edge, break the cycle

if eq /∈ tvar
tvar(eq) := freshvar()

return tvar(eq)
if eq ∈ repr % If we have already computed the representative, return it

return repr(eq)
% The equivalence class has not yet been seen; select best concrete definition
stack .push(eq)
if mem(eq) = ∅ % No concrete definition exists

req := freshvar
else

f(s1, . . . , sm) := argmaxf(s1,...,sm)∈mem(eq)

i

0 if Eq(si) ∈ stack
indegree(Eq(si)) otherwise

for each i ∈ 1, . . . , m % Construct the representative for each subterm
ri := build-repr(Eq(si))

req := f(r1, . . . , rm)
repr(eq) := req
stack .pop(eq)
return req

Fig. 6. Algorithm to compute ˜
ST . Eq , stack , repr , tvar and indegree are global.

The algorithm for computing η1 ˜�ST η2 is given in Fig. 6. We first partition
the terms in η1 ∪ η2 into equivalence classes using the congruence closure algo-
rithm, then count the external references to each class. These counts, recorded
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in indegree, give us an indication of how valuable each class is, to discriminate
between candidate representatives. Eq(t) returns the equivalence class contain-
ing term t, and mem(eq) denotes the set of non-variable terms in class eq .

We then progressively construct the resulting system of terms, starting from
the mapping of each variable. Each equivalence class eq corresponds to at most
two terms in the meet; the main representative repr(eq), and a term variable
tvar(eq). Instantiating a term f(s1, . . . , sm), we look-up the corresponding equiv-
alence class eq i = Eq(si), and check whether expanding its definition repr(eq i)
(which may not yet be fully instantiated) would introduce a cycle. We then
replace si with either the recursively constructed representative of eq i (if the
resulting system is acyclic), or the free variable tvar(eq).

Example 4. Consider the abstract states η1, η2 shown in Fig. 5. Congruence clo-
sure yields two equivalence classes: q1 = {a0, (+)(a0, a1), b0, (+)(b0, b1)}, and
q2 = {a1, b1}. The construction of η1 ˜� η2 starts with Eq(w). We first mark q1
as being on the stack to avoid cycles, then choose an appropriate definition to
expand. The non-variable members of q1 are {t1 = (+)(a0, a1), t2 = (+)(b0, b1)}.
Both t1 and t2 have a single non-cycle incoming edge (Eq(a0) = Eq(b0) = q1,
which is already on the stack), so we arbitrarily choose t1.

We must then expand the sub-terms of t1. Eq(a0) is already on the stack, so
cannot be expanded; this occurrence of a0 is replaced with a fresh variable c0.
Now a1 has no non-variable definitions, so a fresh variable c1 is introduced. The
stack then collapses, yielding w �→ (+)(c0, c1).

The algorithm next considers x. A representative for q1 has already been
constructed, so x is mapped to (+)(c0, c1), as is y. Finally, Eq(z) = q2; this also
has an existing representative, so c1 is returned. The resulting abstract state is
shown in Fig. 7. �

w x y z

+

c0 c1

Fig. 7. η1 ˜
 η2

The algorithm given in Fig. 6 runs in O(n log n) time,
where n = |η1| + |η2|. The congruence closure step is run
once, in O(n log n) time. The main body of build-repr is run
at most once per equivalence class. Computing and scoring
the set of candidates is linear in |eq|, and happens once per
equivalence class. We detect back-edges in constant time,
by marking those equivalence classes which remain on the
call stack – any edge to a marked class is a back-edge. So
the reconstruction of η takes time O(n) in the worst case.
Therefore, the overall algorithm takes O(n log n).

Note that η1 ˜�ST η2 is sensitive to variable ordering, as this determines which
sub-term occurrence is considered a back-edge, and thus not expanded.

As for �ST , each term in η1 ˜�ST η2 corresponds to some set of terms in η1 or
η2. As before, πη1 �→η1 ˜	ST η2 denotes the mapping between terms in each operand
and the result.

3.3 Logical Assertions

Finally consider assertions [[x �	 y]], where �	 ∈ {=, �=, <,≤}. The abstract trans-
former for [[x < y]] and [[x ≤ y]] is the identity function, as ST has no notion of
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inequalities. ST can infer information from a disequality [[x �= y]], but only where
η has already inferred equality between x and y:

F [[x �= y]]η =
{

⊥ if η(x) = η(y)
η otherwise

In the case of an equality [[x = y]], we are left in a similar situation as for η1 � η2;
we must reconcile the defining terms for x and y, plus any other inferred equiv-
alences. This is done in the same way, by first computing equivalence classes,
then extracting an acyclic system of terms. As we introduce only a single addi-
tional equivalence, we can use the specialized linear-time algorithm described in
Sect. 3.4 of [10], then extract the resulting term system as for the meet.

4 ST as a Functor Domain

Assume we have some abstract domain D with the usual operations �, �, FD
and F -1

D as described in Sect. 2. In the following, we assume D is not relational,
so may only express independent properties of variables.

We would like to use ST to enhance the precision of analysis under D. Essen-
tially, we want a functor domain where ST is the functor instantiated with D.
While this is a simple formulation, it provides no path toward an efficient imple-
mentation. Where normally we use D to approximate the values of (or relation-
ships between) variables in V , we can instead approximate the values of terms
occurring in the program. An element of our lifted domain ST (D) is a pair 〈η, ρ〉
where η is a mapping of program variable to terms, and ρ ∈ D approximates the
set of satisfying term assignments.

4.1 Operations over ST (D)

Evaluating an assignment in the lifted domain may be performed using FD and
FST . We construct the updated definition of x in η, then assign the corresponding
‘variable’ in D to the result of the computation.

FST (D)[[x := f(y1, . . . , yn)]](〈η, ρ〉) = 〈η′, ρ′〉
where η′ = FST [[x := f(y1, . . . , yn)]]η

ρ′ = FD[[id(η′(x)) := f(η(y1), . . . , η(yn))]]ρ

Formulating �ST (D), �ST (D) and ˜�ST (D) is only slightly more involved, assum-
ing the presence of a renaming operator over D. We first determine the term
structure η′ of the result, then map ρ1 and ρ2 onto the terms in η′ before applying
the appropriate operator over D.

〈η1, ρ1〉 �ST (D)〈η2, ρ2〉 = 〈η′, ρ′〉
where η′ = η1 �ST η2

ρ′ = πη1 �→η′
(ρ1)�D πη2 �→η′

(ρ2)
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〈η1, ρ1〉�ST (D)〈η2, ρ2〉 = 〈η′, ρ′〉
where η′ = η1 �ST η2

ρ′ = πη1 �→η′
(ρ1)�D πη2 �→η′

(ρ2)

〈η1, ρ1〉 ˜�ST (D)〈η2, ρ2〉 = 〈η′, ρ′〉
where η′ = η1 ˜�ST η2

ρ′ = πη1 �→η′
(ρ1)�D πη2 �→η′

(ρ2)

4.2 Inferring Properties from Subterms

While this allows us to maintain approximations of subterms, we cannot use this
to directly derive tighter approximations of program variables.

However, upon encountering a branch which restricts x, we can then infer
properties on any other terms involving x. For now, we shall restrict ourselves
to ancestors of x. If the approximation of x has changed, and p is an immediate
parent of x, we can simply recompute p from its definition:

ρ′ = ρ� FST [[id(η(p)) := def(η(p))]]ρ

We can then propagate this information upwards.

x = ; y =
assert(x ≥ 0)

D: z = x ∗ y
assert(z > 0)

E:

Fig. 8. If E is reached,
y must be positive.

We can also infer information about a term from its
parents and siblings. Assume the program fragment in
Fig. 8 is being analysed using the (term-lifted) domain
of intervals. At point D we know only that x is non-
negative; this is not enough to infer bounds on z. How-
ever, when point E is reached we know z > 0. As we
already know x ≥ 0, this can only occur if y > 0, x > 0.

This requires us to reason about the values from
which a given computation could have resulted; this
is exactly the pre-image F -1

D discussed in Sect. 2. We
can then augment the algorithm to propagate information in both directions,
evaluating FD and F -1

D on each term until a fixpoint is reached. Unfortunately,
attempts to fully reduce an abstract state run into difficulties.

x y

−

c0

+

1

z

t1[0, 0]

t2[0, 106]

t3[0, 106]

ST D(t2) D(t3)

[0, 106] [0, 106]
t3 [0, 106-1] [1, 106]
t1 [1, 106-1] [1, 106-1]
t3 [1, 106-2] [2, 106-1]
t1 [2, 106-2] [2, 106-2]

. . .

Fig. 9. A system of terms with no solution; encoding x = x + 1. Each evaluation of t1
or t3 eliminates only two values from the corresponding bounds.
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Example 5. Consider the system of terms shown in Fig. 9, augmenting the
domain of intervals. Disregarding interval information, it encodes the constraint
y = x − z, z = x + 1. In the context of y = 0 (the interval bounds for y), this is
clearly unsatisfiable.

Propagating the consequences of these terms, we first apply the definition
t3 = t2 + 1. Doing so, we trim 0 from the domain of t3 (or z), and 106 from the
domain of t2 (or x). We then evaluate the definition t1 = t2−t3, thus removing 0
and 106 from t1 and t3 respectively. We can then evaluate the definitions of t3 and
t1 again, this time eliminating 2 and 106-1. This process eventually determines
unsatisfiability, but it takes 106+1 steps to do so.3

This rather undermines our objective of efficiently combining ST with D. If
D is not finite, the process may not terminate at all. Consider the case where
D(t2) = D(t3) = [0,∞] – the resulting iterates form an infinite descending chain,
where the lower bounds are tightened by one at each iteration step.

The existence of an efficient, general algorithm for normalizing 〈η, ρ〉 seems
doubtful. Even for the specific case of finite intervals, computing the fixpoint of
such a system of constraints is NP-complete [3] (in the weak sense – the standard
Kleene iteration runs in pseudo-polynomial time). Nevertheless, we can apply the
system of terms to ρ some bounded number of times in an attempt to improve
precision; a naive iterative approach is given in Fig. 10.

tighten( η, ρ , iters):
while(iters > 0)

ρ := tighten-step( η, ρ )
if (ρ = ρ ∨ ρ = ⊥)

return ρ
ρ := ρ
iters := iters − 1

tighten-step( η, ρ ):
let t1, . . . , tm be terms in η in

order of decreasing height
for t ∈ t1, . . . , tm

ρ := ρ F -1
D [[id(t) = def(t)]]ρ

for t ∈ tm, . . . , t1
ρ := ρ FD[[id(t) = def(t)]]ρ

return ρ

Fig. 10. Applying a system of terms η to tighten a numeric approximation ρ.

In practice, this iteration is wasteful. In an independent attribute domain,
applying [[t = f(c1 , . . . ck )]] cannot directly affect terms not in {t, c1, . . . , ck},
and we can easily detect which of these have changed. So we adopt a worklist
approach, updating terms with changed abstractions only. The tightening still
progresses level by level, to collect the tightest abstraction of each term before
re-applying the definitions. The algorithm is outlined in Fig. 11.

tighten-worklist incrementally applies a single pass of tighten-step, where only
terms in X have changed. Given the discussion above, the algorithm obviously
misses opportunities for propagation; this loss occurs at the point marked †.
3 This behaviour is also a well recognized problem for finite domain constraint solvers

(see e.g. [11]).
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tighten-worklist(X, η, ρ ):
forall l, Q↓

l := Q↑
l := ∅

for(x ∈ X) Q↓
height(x) := Q↓

height(x) ∪ {x}
lmin := minx∈X height(x)
l := lmax := maxx∈X height(x)
while(l ≥ lmin)

for(t ∈ Q↓
l )

enqueue parents(t)
ρ := ρ F -1

D ([[id(t) = def(t)]])ρ
for(c ∈ children(t))

if(changed(c, ρ, ρ )) enqueue down(c)
ρ := ρ

l := l − 1
l := lmin

while(l ≤ lmax)
for(t ∈ Q↑

l )
(†) ρ := ρ F ([[id(t) = def(t)]])ρ

if(changed(t, ρ, ρ )) enqueue parents(t)
ρ := ρ

l := l + 1
return ρ

enqueue down(t):
Q↓

height(t) := Q↓
height(t) ∪ {t}

lmin := min(lmin, height(t))

enqueue parents(t):
for(p in parents(t))

Q↑
height(p) := Q↑

height(p) ∪ {p}
lmax := max(lmax, height(p))

Fig. 11. An incremental approach for applying a single iteration of tighten-step.

Given some definition [[t = f(c1, c2)]] and new information about c1, we could
potentially tighten the abstraction of both t and c2; however, tighten-worklist only
applies this information to t.

It is sound to apply the same algorithm when D is relational; however, it
may miss further potential tightenings, as additional constraints on some term
can be reflected in other, apparently unrelated terms.

Care must be taken when combining normalization with widening. As is
observed in octagons, closure after widening does not typically preserve termi-
nation. A useful exception is the typical widening on intervals which preserves
termination when tightening is applied upwards.

5 Other Syntactic Approaches

As mentioned, the closest relatives to the term domain are the symbolic constant
domain of Miné [21] and the congruence closure (or alien expression) domain of
Chang and Leino [5]. Both domains record a mapping between program variables
and terms, with the objective of enriching existing numeric domains.

The term domain can be viewed as a generalization of the symbolic constant
domain. Both domains arise from the observation that abstract domains, be
they relational or otherwise, exhibit coarse handling of expressions outside their
native language – particularly non-linear expressions. And both store a mapping
from variables to defining expressions. The primary difference is in the join.
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Faced with non-equal definitions, the symbolic constant domain discards both
entirely. The term domain instead attempts to preserve whatever parts of the
computation are shared between the abstract states, which it can then use to
improve precision in the underlying domain.

The congruence closure domain [5] arises from a different application – coor-
dinating a heterogeneous set of base abstract domains, each supporting only a
subset of expressions appearing in the program. Functions which are alien to
a domain are replaced with a fresh variable; equivalences are inferred from the
syntactic terms, and added to the base abstract domains. The congruence closure
domain assumes the base domains are relational, maintaining a system of equiv-
alences and supported relations. As a result, it assumes the base domain will
take care of maintaining relationships between interpreted expressions and the
corresponding subterms. Hence it will not help with the examples from Fig. 1.

While the underlying techniques are similar, the objectives (and thus trade-
offs) are quite different. Congruence closure maintains an arbitrary (though
finite) system of uninterpreted function equations, allowing multiple – possi-
bly cyclic – definitions for subterms. This potentially preserves more equivalence
information than the acyclic system of the subterm domain, but increases the
cost and complexity of various operations (notably the join). As far as we know,
no experimental evaluation of the congruence-closure domain has been published.

6 Experimental Evaluation

The subterm domain has been implemented in crab, a language-agnostic C++
library of abstract domains and fixpoint algorithms. It is available, with the
rest of crab, at https://github.com/seahorn/crab. One purpose of crab is to
enhance verification tools by supplying them with inductive invariants that can
be expressed in some abstract domain chosen by the client tool. For our experi-
ments we used SeaHorn [13], one of the participants in SV-COMP 2015 [1].

We selected 2304 SV-COMP 2015 programs, in the categories best supported
by SeaHorn: ControlFlowInteger, Loops, Sequentialized, DeviceDrivers64, and
ProductLines (CFI, Loops, DD64, Seq, PL in Table 3). We first evaluated the
performance of the subterm domain by measuring only the time to generate
the invariants without running SeaHorn. We compared the subterm domain
enhancing intervals ST (Intv) with three other numeric abstract domains: classi-
cal intervals Intv [6] (our baseline abstract domain since it was the one used by
SeaHorn in SV-COMP 2015), the symbolic constant propagation SC(Intv) [21],
and an optimized implementation of difference-bound matrices using variable
packing VP(DBM) [24]. Second, we measured the precision gains using ST (Intv)
as an invariant supplier for SeaHorn and compared again with Intv, SC(Intv),
and VP(DBM). All experiments were carried out on a AMD Opteron Processor
6172 with 12 cores running at 2.1 GHz Core with 32 GB of memory.

Performance. Table 2(a) shows three scatter plots of analysis times comparing
ST (Intv) with Intv (left), with SC(Intv) (middle), and with VP(DBM) (right).

https://github.com/seahorn/crab
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Table 2. Performance of several abstract domains on SV-COMP’15 programs

(a) Scatter plots of analysis time

Domain TO Ttotal Tμ Tσ Tmax

Intv 0 175.4 0.08 0.38 11.12

SC(Intv) 0 265.0 0.11 0.49 12.75

ST (Intv) 0 456.0 0.19 0.96 24.57

VP(DBM) 3 441.7 0.19 1.41 30.00

(b) Analysis times (seconds)

Table 2(b) shows additional statistics about the analysis of the 2304 programs.
For this experiment, we set a limit of 30 s and 4 GB per program.

crab using ST (Intv), Intv, and SC(Intv) inferred invariants successfully for
all programs without any timeout (column TO in Table 2(b)). The total time
(denoted by Ttotal) indicates that Intv was the fastest with 175 s and ST (Intv)
the slowest with 456. The columns Tμ and Tσ denote the time average and
standard deviation per program, and the column Tmax is the time of analyzing
the program that took the longest. All domains displayed similar memory usage.
Again, Intv was the most efficient with an average memory usage per program
of 31 MB and a maximum of 1.34 GB whereas ST (Intv) was the least efficient
with an average of 37 MB and maximum of 1.52 GB.

It is not surprising that Intv and SC(Intv) are faster than ST (Intv); inter-
estingly, the evaluation suggests that in practice ST (Intv) incurs only a modest
constant-factor overhead of around 2.5. VP(DBM) was faster than ST (Intv) in
many cases but was more volatile, reaching the timeout in 3 cases. This is due
to the size of variable packs inferred by VP(DBM) [24]. If few interactions are
discovered, the packs remain of constant size and the analysis collapses down to
Intv. Conversely, if many variables are found to interact, the analysis degenerates
into a single DBM with cubic runtime.

Precision. Table 3 shows the results obtained running SeaHorn with crab
using the four abstract domains. We run SeaHorn on each verification task4

and count the number of tasks solved (i.e., SeaHorn reports “safe” or “unsafe”)
shown in columns labelled with #S. In T columns we show the total time
in seconds for solving all tasks. The top row gives, in parentheses, the num-
ber of programs per category. The row labelled Sea+Intv shows the number of

4 A program with its corresponding safety property also provided by the competition.
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Table 3. SeaHorn results on SV-COMP 2015 enhanced with abstract domains

CFI (48) Loops (142) DD64 (1256) Seq (261) PL (597)

#S T #S T #S T #S T #S T

Sea+Intv 41 1589 115 5432 1215 6283 109 26031 538 20818

Sea+SC(Intv) 41 1613 115 5480 1215 6520 110 25639 539 20741

Sea+ST (Intv) 41 1416 121 4274 1215 6557 110 25469 542 20763

Sea+VP(DBM) 41 1529 117 5071 1214 6854 110 25929 536 20787

tasks solved by SeaHorn using the interval domain (our baseline domain) as
invariant supplier, while rows labelled with Sea+SC(Intv), Sea+ST (Intv) and
Sea+VP(DBM) are similar but using SC(Intv), ST (Intv) and VP(DBM), respec-
tively. We set resource limits of 200 s and 4GB for each task. In all configurations,
we ran SeaHorn with Spacer [16] as back-end solver5.

The results in Table 3 demonstrate that the subterm domain can produce
significant gains in some categories (e.g., Loops and PL) and stay competitive
in all. We observe that SC(Intv) rarely improves upon the results of Sea+Intv.
Two factors appear to contribute to this: the join operation on SC(Intv) main-
tains only the definitions that are constant on all code paths; and SeaHorn’s
frontend (based on LLVM [17]) applies linear constant propagation, subsuming
many of the opportunities available to SC(Intv). Our evaluation also shows that
the subterm domain helps SeaHorn solve more tasks than VP(DBM) in several
categories. One reason could be that VP(DBM) does not perform propagation
across different packs and so it is less precise than classical DBMs [19]6 and
indeed incomparable with the subterm domain. Another reason might be the
more precise modelling of non-linear operations by the subterm domain. Nev-
ertheless, we observed that sometimes ST (Intv) can solve tasks that VP(DBM)
cannot, and vice versa. For PL, for example, Sea+ST (Intv) solved 9 tasks for
which Sea+VP(DBM) reached a timeout but Sea+VP(DBM) solved 3 tasks
that Sea+ST (Intv) missed. This is relevant for tools such as SeaHorn since it
motivates the idea of running SeaHorn with a portfolio of abstract domains.

7 Conclusion and Future Work

We have introduced the subterm abstract domain ST , and outlined its applica-
tion as a functor domain to improve precision of existing analyses. Experiments
on software verification benchmarks have demonstrated that ST , when used to
enrich an interval analysis, can substantially improve generated invariants while
only incurring a modest constant factor performance penalty.
5 We used the command sea pf --step=large --track=mem (i.e., large-block encod-

ing [2] of the transition system modelling both pointer offsets and memory contents).
For DD64 we add the option -m64.

6 We used an implementation of the classical DBM domain following [19] for the
experiment in Table 2 but it took more than three hours to complete.
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The performance of ST is obtained by disregarding algebraic properties of
operations. Extending ST to exploit these properties while preserving perfor-
mance poses an interesting future challenge.
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