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Abstract. We present Alias Refinement Types (Art), a new approach
that uses predicate-abstraction to automate the verification of correct-
ness properties of linked data structures. While there are many tech-
niques for checking that a heap-manipulating program adheres to its
specification, they often require that the programmer annotate the
behavior of each procedure, for example, in the form of loop invariants
and pre- and post-conditions. We introduce a technique that lifts predi-
cate abstraction to the heap by factoring the analysis of data structures
into two orthogonal components: (1) Alias Types, which reason about the
physical shape of heap structures, and (2) Refinement Types, which use
simple predicates from an SMT decidable theory to capture the logical
or semantic properties of the structures. We evaluate Art by implement-
ing a tool that performs type inference for an imperative language, and
empirically show, using a suite of data-structure benchmarks, that Art
requires only 21% of the annotations needed by other state-of-the-art
verification techniques.

1 Introduction

Separation logic (SL) [31] has proven invaluable as a unifying framework for
specifying and verifying correctness properties of linked data structures. Para-
doxically, the richness of the logic has led to a problem – analyses built upon
it are exclusively either expressive or automatic. To automate verification,
we must restrict the logic to decidable fragments, e.g. list-segments [4,21],
and design custom decision procedures [6,14,16,27,28] or abstract interpreta-
tions [7,23,40]. Consequently, we lose expressiveness as the resulting analyses
cannot be extended to user -defined structures. To express properties of user-
defined structures, we must fall back upon arbitrary SL predicates. We sacrifice
automation as we require programmer assistance to verify entailments over such
predicates [10,24]. Even when entailment is automated by specializing proof
search, the programmer has the onerous task of providing complex auxiliary
inductive invariants [9,30].

We observe that the primary obstacle towards obtaining expressiveness and
automation is that in SL, machine state is represented by monolithic assertions
that conflate reasoning about heap and data. While SL based tools commonly
describe machine state as a conjunction of a pure, heap independent formula,
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abs :: int nat1

function abs(x){ x : int
if (0 <= x) 0 x ; x : int
return x;

var r = 0 - x;
r : ν 0 x ;

0 x ; x : int
return r;

}

Fig. 1. Refinement types

absR :: x : data :int &x data :nat2

function absR(x){
Γ0

.
x : &x

Σ0
.

&x data : int
var d = x.data; Γ1

.
d : int; Γ0

var t = abs(d); Γ2
.
t :nat1; Γ1

x.data = t; Σ1
.

&x data :ν t
return;

}

Fig. 2. Strongly updating a location

and a* combination of heap predicates, the heap predicates themselves conflate
reasoning about links (e.g. reachability) and correctness properties (e.g. sizes or
data invariants), which complicates automatic checking and inference.

In this paper, we introduce Alias Refinement Types (Art), a subset of separa-
tion logic that reconciles expressiveness and automation by factoring the repre-
sentation of machine state along two independent axes: a “physical” component
describing the basic shape and linkages between heap cells and a “logical” com-
ponent describing semantic or relational properties of the data contained within
them. We connect the two components in order to describe global logical prop-
erties and relationships of heap structures, using heap binders that name pure
“snapshots” of the mutable data stored on the heap at any given point.

The separation between assertions about the heap’s structure and heap-
oblivious assertions about pure values allow Art to automatically infer precise
data invariants. First, the program is type-checked with respect to the physical
type system. Next, we generate a system of subtyping constraints over the logical
component of the type system. Because the logical component of each type is
heap-oblivious, solving the system of constraints amounts to solving a system
of Horn clauses. We use predicate abstraction to solve these constraints, thus
yielding precise refinements that summarize unbounded collections of objects.

In summary, this paper makes the following contributions:

– a description of Art and formalization of a constraint generation algorithm
for inferring precise invariants of linked data structures;

– a novel soundness argument in which types are interpreted as assertions in
separation logic, and thus typing derivations are interpreted as proofs;

– an evaluation of a prototype implementation that demonstrates Art is effec-
tive at verifying and, crucially, inferring data structure properties ranging from
the sizes and sorted-ness of linked lists to the invariants defining binary search
trees and red-black trees. Our experiments demonstrate that Art requires
only 21 % of the annotation required by other techniques to verify intermedi-
ate functions in these benchmarks.

2 Overview

Refinements Types and Templates. A basic refinement type is a basic type,
e.g. int, refined with a formula from a decidable logic, e.g. nat

.= {ν : int |� ν}
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is a refinement type denoting the set of non-negative integers, where int is
the basic or physical part of the type and the refinement 0 � ν is the log-
ical part. A template is a refinement type where, instead of concrete formu-
las we have variables κ that denote the unknown to-be-inferred refinements.
In the case that the refinement is simply true, we omit the refinement (e.g.
int = {ν : int | true}). We specify the behaviors of functions using refined func-
tion types: (x1 : t1, . . . , xn : tn) ⇒ t. The input refinement types ti specify the
function’s preconditions and t describes the postcondition.
Verification. Art splits verification into two phases: (1) constraint generation,
which traverses the program to create a set of Horn clause constraints over the
κ, and (2) constraint solving, which uses an off the shelf predicate abstraction
based Horn clause solver [32] that computes a least fixpoint solution that yields
refinement types that verify the program. Here, we focus on the novel step (1).
Path Sensitive Environments. To generate constraints Art traverses the
code, building up an environment of type bindings, mapping program variables to
their refinement types (or templates, when the types are unknown.) At each call-
site (resp. return), Art generates constraints that the arguments (resp. return
value) are a subtype of the input (resp. output) type. Consider abs in Fig. 1
which computes the absolute value of the integer input x. Art creates a template
(int) ⇒ {ν : int | κ1} where κ1 denotes the unknown output refinement. (We
write nat1 in the figure to connect the inferred refinement with its κ.) In Fig. 1, the
environment after each statement is shown on the right side. The initial environ-
ment contains a binder for x, which assumes that x may be any int. In each branch
of the if statement, the environment is extended with a guard predicate reflecting
the condition under which the branch is executed. As the type {ν : int | ν = x}
is problematic if x is mutable, we use SSA renaming to ensure each variable is
assigned (statically) at most once.

Subtyping. The returns in the then and else yield subtyping constraints:

x : int, 0 � x � &{ν : int | ν = x} � {ν : int | κ1}
x : int, ¬(0 � x), r :{ν : int | ν = 0 − x} � &{ν : int | ν = r} � {ν : int | κ1}

(1)

which respectively reduce to the Horn implications

(true ∧ 0 � x) ⇒ &(ν = x) ⇒ κ1

(true ∧ ¬(0 � x) ∧ r = 0 − x) ⇒ &(ν = r) ⇒ κ1

By predicate abstraction [32] we find the solution κ1
.= 0 � ν and hence infer

that the returned value is a nat, i.e. non-negative.
References and Heaps. In Fig. 2, absR takes a reference to a structure con-
taining an int valued data field, and updates the data field to its absolute
value. We use κ2 for the output refinement; hence the type of absR desugars
to: (x : &x)/&x �→ 〈data : int〉 ⇒ ()/&x �→ 〈data : κ2〉 which states that absR
requires a parameter x that is a reference to a location named &x. in an input
heap where &x contains a structure with an int-valued data field. The function
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absL :: x :list int &x list nat3

function absL(x){ Γ0
.
x : &x , Σ0

.
&x x0 : list int

//: unfold(&x);
Γ1

.
Γ0

Σ1
.

&x x1 : data : int, next :? &t &t t0 : list int
var d = x.data;

x.data = abs(d);

var xn = x.next;

Γ2
.
d : int, xn : ν :? &t ν x2.next , Γ1

Σ2
.

&x x2 : data :nat1, next :? &t &t t0 : list int

if (xn == null){
//: fold(&x); Γ3

.
xn null, Γ2, Σ3

.
&x list nat3

return;
}

absL(xn);
Γ4

.
xn null; Γ2

Σ4
.

&x x2 : data :nat1, next :? &t &t t1 : list nat3

//: fold(&x); Γ5
.

Γ4 Σ5
.

&x x3 : list nat3
return;

}

Fig. 3. Strongly updating a collection. The fold and unfold annotations are automat-
ically inserted by a pre-analysis [3]

returns () (i.e. no value) in an output heap where the location &x is updated to
a structure with a κ2-valued data-field.

We extend the constraint generation to precisely track updates to locations.
In Fig. 2, each statement of the code is followed by the environment Γ and heap
Σ that exists after the statement executes. Thus, at the start of the function,
x refers to a location, &x, whose data field is an arbitrary int. The call abs(d)
returns a κ1 that is bound to t, which is then used to strongly update the data
field of &x from int to κ1. At the return we generate a constraint that the return
value and heap are sub-types of the function’s return type and heap. Here, we
get the heap subtyping constraint:

x :〈&x〉, d : int, t :κ1 � & &x �→ 〈data :ν = t〉 	 &x �→ 〈data :κ2〉
which reduces by field subtyping to the implication: κ1[t/ν] ⇒ (ν = t) ⇒ κ2

which (together with the previous constraints) can be solved to κ2
.= 0 � ν

letting us infer that absR updates the structure to make data non-negative.
This is possible because the κ variables denote pure formulas, as reasoning about
the heap shape is handled by the alias type system. Next we see how this idea
extends to infer strong updates to collections of linked data structures.

Linked Lists. Linked lists can be described as iso-recursive alias types [38]. The
definition

type list[A] .= ∃!� �→ t : list[A].h :〈data :A, next?〈�〉〉
says list[A] is a head structure with a data field of type A, and a next field
that is either null or a reference to the tail, denoted by the ?〈�〉 type. The heap
� �→ t : list[A] denotes that a singleton list[A] is stored at the location denoted
by � if it is reachable at runtime. The ∃! quantification means that the tail is
distinct from every other location, ensuring that the list is inductively defined.
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Consider absL from Fig. 3, which updates each data field of a list with its
absolute value. As before, we start by creating a κ3 for the unknown output
refinement, so the function gets the template

(x :〈&x〉)/&x �→ x0 : list[int] ⇒ ()/&x �→ xr : list[κ3]

Figure 3 shows the resulting environment and heap after each statement.
The annotations unfold and fold allow Art to manage updates to collec-

tions such as lists. In Art, the user does not write fold and unfold annotations;
these may be inferred by a straightforward analysis of the program [3].

Unfold. The location &x that the variable x refers to initially contains a list[int]
named with a heap binder x0. The binder x0 may be used in refinements. Suppose
that x is a reference to a location containing a value of type list[A]. We require
that before the fields of x can be accessed, the list must be unfolded into a head
cell and a tail list. This is formalized with an unfold(&x) operation that unfolds
the list at &x from &x �→ x0 : list[int] to

&x �→ x1 :〈data : int, next?〈&t〉〉 ∗ &t �→ t0 : list[int],

corresponding to materializing in shape analysis. The type system guarantees
that the head structure and (if next is not null) the newly unfolded tail structure
are unique and distinct. So, after unfolding, the structure at &x can be strongly
updated as in absR. Hence, the field assignment generates a fresh binder x2 for
the updated structure whose data field is a κ1, the output of abs.

Fold. After updating the data field of the head, the function tests whether the
next field assigned to xn is null, and if so returns. Since the expected output is
a list, Art requires that we fold the structure back into a list[κ3] – effectively
computing a summary of the structure rooted at &x. As xn is null and xn :
{ν :?〈&t〉 | ν = x2.next}, fold(&x) converts &x �→ x2 : 〈data :κ1, next :?〈&t〉〉
to &x �→ list[κ3] after generating a heap subtyping constraint which forces the
“head” structure to be a subtype of the folded list’s “head” structure.

Γ3 � &x �→ x2 :〈data :κ1, . . .〉 	 &x �→ x2 :〈data :κ3, . . .〉 (2)

If instead, xn is non-null, the function updates the tail by recursively invoking
absL(xn). In this case, we can inductively assume the specification for absL and
so in the heap after the recursive call, the tail location &t contains a list[κ3].
As xn and hence the next field of x2 is non-null, the fold(&x) transforms

&x �→ x2 :〈data :κ1, next :?〈&t〉〉 ∗ &t �→ t1 : list[κ3]

into &x �→ list[κ3], as required at the return, by generating a heap subtyping
constraints for the head and tail:

Γ5 � &x �→ x2 :〈data :κ1, . . .〉 	 &x �→ x2 :〈data :κ3, . . .〉 (3)
Γ5 � &&t �→ t1 : list[κ3] 	 &t �→ t1 : list[κ3] (4)
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The constraints Eqs. (2), (3) and (4) are simplified field-wise into the implications
κ1 ⇒ κ3, κ1 ⇒ κ3 and κ3 ⇒ κ3 which, together with the previous constraints
(Eq. (1)) solve to: κ3

.= 0 � ν. Plugging this back into the template for absL we
see that we have automatically inferred that the function strongly updates the
contents of the input list to make all the data fields non-negative.

Art infers the update the type of the value stored at &x at fold and unfold
locations because reasoning about the shape of the updated list is delegated to
the alias type system. Prior work in refinement type inference for imperative
programs [33] can not type check this simple example as the physical type sys-
tem is not expressive enough. Increasing the expressiveness of the physical type
system allows Art to “lift” invariant inference to collections of objects.

Snapshots. So far, our strategy is to factor reasoning about pointers and the
heap into a “physical” alias type system, and functional properties (e.g. values of
the data field) into quantifier- and heap-free “logical” refinements that may be
inferred by classical predicate abstraction. However, reasoning about recursively
defined properties, such as the length of a list, depends on the interaction between
the physical and logical systems.

We solve this problem by associating recursively defined properties not
directly with mutable collections on the heap, but with immutable snapshot
values that capture the contents of the collection at a particular point in time.
These snapshots are related to the sequences of pure values that appear in the
definition of predicates such as list in [31]. Consider the heap Σ defined as:

&x0 �→ h :〈data = 0, next = &x1〉 ∗ &x1 �→ t :〈data = 1, next = null〉

We say that snapshot of &x0 inΣ is the value v0 defined as:

v0
.= (&x0, 〈data = 0, next = v1〉) v1

.= (&x1, 〈data = 1, next = null〉)

Now, the logical system can avoid reasoning about the heap reachable from
x0 – which depends on the heap – and can instead reason about the length of
the snapshot v0 which is independent of the heap.

Heap Binders. We use heap binders to name snapshots in the refinement logic.
In the desugared signature for absR from Fig. 2,

(x :〈&x〉)/&x �→ x0 : list[int] ⇒ ()/&x �→ xr : list[nat]

the name x0 refers to the snapshot of input heap at &x. In Art, no reachable
cell of a folded recursive structure (e.g. the list rooted at &x) can be modified
without first unfolding the data structure starting at the root: references pointing
into the cells of a folded structure may not be dereferenced. Thus we can soundly
update heap binders locally without updating transitively reachable cells.

Measures. We formalize structural properties like the length of a list or the
height of a tree and so on, with a class of recursive functions called measures,
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insert :: A, x :?list A ν :list A len ν 1 len x 4

function insert(k, x) Γ0 k :A; x :? &x Σ0 &x x0 : list A
if (x == null) {
var y =

{data:k,next:null};
Γ1

.
y : &y ; x null; Γ0

Σ1
.

&x x0 : list A &y y0 : data :A, next :null

//: fold(&y)
Γ2

.
len y1 1; Γ1

Σ2
.

&x x0 : list A &y y1 : list A
return y;

}

//: unfold(&x)
Γ3

.
len x0 1 len t0 ; x null; Γ0

Σ3
.

&x x1 : data :a, next :? &t &t t0 : list a
if (k <= x.data) {
var y =

{data:k,next:x};
Γ4

.
y : &y ; Γ3

Σ4
.

&y y2 : data :A, next :? &x Σ3

//: fold(&x)
Γ5

.
len x2 1 len t0 ; Γ4

Σ5
.

&x x2 : list A &y y2 : data :A, next :? &x
//: fold(&y) Γ6

.
len y3 1 len x2 ; Γ5 Σ6

.
&x y3 : list A

return y;

}
var z = x.next;

var u = insert(k,z);

x.next = u;

Γ7
.

u0 :κ4 t0 x0 ; u : &u ; z :? &t ; Γ3

Σ7
.

&x x1 : data :A, next : &u &u u0 : list A

//: fold(&x) Γ8
.
len x2 1 len u0 ; Γ7 Σ8

.
&x x2 : list A

return x;

}

Fig. 4. Inserting into a collection

which are catamorphisms over (snapshot values of) the recursive type. For exam-
ple, we specify the length of a list with the measure:

len: : list[A] ⇒ int len(null) = 0 len(x) = 1 + len(x.next)

We must reason algorithmically about these recursively defined functions. The
direct approach of encoding measures as background axioms is problematic due
to the well known limitations and brittleness of quantifier instantiation heuris-
tics [13]. Instead, we encode measures as uninterpreted functions, obeying the
congruence axiom, ∀x, y.x = y ⇒ f(x) = f(y). Second, we recover the seman-
tics of the function by adding instantiation constraints describing the measure’s
semantics. We add the instantiation constraints at fold and unfold operations,
automating the reasoning about measures while retaining completeness [36].

Consider insert in Fig. 4, which adds a key k of type A into its position in
an (ordered) list[A], by traversing the list, and mutating its links to accomodate
the new structure containing k. We generate a fresh κ4 for the output type to
obtain the function template:

(A, x :?〈&x〉)/&x �→ x0 : list[A] ⇒ 〈&l〉/&l �→ {ν : list[A] | κ4}
Here, the snapshot of the input list x upon entry is named with the heap binder
x0; the output list must satisfy the (as yet unknown) refinement κ4.

Constraint generation proceeds by additionally instantiating measures at
each fold and unfold. When x is null, the fold(&y) transforms the binding
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&y �→ y0 :〈data :A, next:null〉 into a (singleton) list &y �→ y1 : list[A] and so we
add the instantiation constraint len(y1) = 1 to the environment. Hence, the sub-
sequent return yields a subtyping constraint over the output list that simplifies
to the implication:

len(x0) = 0 ∧ len(y1) = 1 ⇒ ν = y1 ⇒ κ4 (5)

When x is non-null, unfold(&x) transforms the binding &x �→ x0 : list[A] to

&x �→ x1 :〈data :a, next?〈&t〉〉 ∗ &t �→ t0 : list[A]

yielding the instantiation constraint len(x0) = 1 + len(t0) that relates the length
of the list’s snapshot with that of its tail’s. When k <= x.data the subsequent
folds create the binders x2 and y3 with instantiation constraints relating their
sizes. Thus, at the return we get the implication:

len(x0) = 1+ len(t0)∧ len(x2) = 1+ len(t0)∧ len(y3) = 1+ len(x2) ⇒ ν = y3 ⇒ κ4

(6)
Finally, in the else branch, after the recursive call to insert, and subsequent
fold, we get the subtyping implication

len(x0) = 1+ len(t0)∧κ4[ν, x0/u0, t0]∧ len(x2) = 1+ len(u0) ⇒ ν = x2 ⇒ κ4 (7)

The recursive call that returns u0 constrains it to satisfy the unknown refinement
κ4 (after substituting t0 for the input binder x0). Since the heap is factored out by
the type system, the classical predicate abstraction fixpoint computation solves
Eqs. (5), (6) and (7) to κ4

.= len(ν) = 1+ len(x0) inferring a signature that states
that insert’s output has size one more than the input.

Abstract Refinements. Many important invariants of linked structures require
us to reason about relationships between elements of the structure. Next, we show
how our implementation of Art allows us to use abstract refinements, developed
in the purely functional setting [37], to verify relationships between elements of
linked data structures, allowing us to prove that insertSort in Fig. 5 returns an
ordered list. To this end, we parameterize types with abstract refinements that
describe relationships between elements of the structure. For example,

type list[A]〈p〉 .= ∃!l �→ t : list[{ν : A | p(data, ν)}]〈p〉.h :〈data :A, next :?〈l〉〉
is the list type as before, but now parameterized by an abstract refinement p
which is effectively a relation between two A values. The type definition states
that, if the data fields have values x1, . . . , xn where xi is the ith element of the
list, then for each i < j we have p(xi, xj).

Ordered Lists. We instantiate the refinement parameters with concrete refine-
ments to obtain invariants about linked data structures. For example, increasing
lists are described by the type incList[A] .= list[A]〈(�)〉.
Verification. Properties like sortedness may be automatically infered by using
liquid typing [32]. Art infers the types:

insertSort::(?list[A]) ⇒ incList[A] insert::(A, ?incList[A]) ⇒ incList[A]
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x :?list A ν :?incList A len ν len x

function insertSort(x){
if (x == null) return null;
//: unfold(&x);
var y = insertSort(x.next);
var t = insert(x.data, y);
//: fold(&t);
return t;

}

Fig. 5. Insertion Sort

i.e. that insert and insertSort return sorted lists. Thus, alias refinement types,
measures, and abstract refinements enable both the specification and automated
verification of functional correctness invariants of linked data structures.

3 Type Inference

To explain how Art infers refinement types as outlined in Sect. 2, we first explain
the core features of Art’s refinement type system. We focus on the more novel
features of our type system; a full treatment may be found in [3].

3.1 Type Rules

Type Environments. We describe Art in terms of an imperative language
Imp with record types and with the usual call by value semantics, whose syntax
is given in Fig. 6. A function environment is defined as a mapping, Φ, from
functions f to function schemas S. A type environment (Γ ) is a sequence of type
bindings x :T and guard expressions e. A heap (Σ) is a finite, partial map from
locations (�) to type bindings. We write Γ (x) to refer to T where x :T ∈ Γ , and
Σ(�) to refer to x :T where the mapping � �→ x :T ∈ Σ.

Type Judgements. The type system of Art defines a judgement Φ � f :: S,
which says given the environment Φ, the function f behaves according to its
pre- and post-conditions as defined by S. An auxiliary judgement Φ, Γ,Σ � s ::
Γ ′/Σ′ says that, given the input environments Γ and Σ, s produces the output
environments Γ ′ and Σ′. We say that a program p typechecks with respect to Φ
if, for every function f defined in p, Φ � f :: Φ(f).

Well-Formedness. We require that types T be well formed in their local envi-
ronments Γ and heaps Σ, written Γ,Σ � T . A heap Σ must heap be well formed
in its local environment Γ , written Γ � Σ. The rules for the judgment [3] capture
the intuition that a type may only refer to binders in its environment.

Subtyping. We require a notion of subsumption, e.g. so that the integer 2 can be
typed either as {ν : int | ν = 2} or simply int. The subtyping relation depends on
the environment. For example, {ν : int | ν = x} is a subtype of {ν : int | ν = 2}
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Expressions e :: n true false null r� x e e
Statements s :: s; s x e y x.f x.f e if e then s else s

return e x alloc f : e x f e
unfold � fold � concr x pad �

Programs p :: function f x {s}
Primitive Types b :: int bool α null � ? �

Types τ :: b C T f :T
Refined Types T :: ν :τ p

Type Definition C :: C α
.

! Σ. x : f : T
Contexts Γ :: x :T ; Γ e; Γ
Heaps Σ :: emp Σ � x :C T Σ � x : f :T

Function Types S :: �, α. x :T Σ !� . x :T Σ

n Integers, r� Reference Constants, x, y, f Identifiers, , , . . .

Fig. 6. Syntax of Imp programs and types

if x : {ν : int | ν = 2} holds as well. Subtyping is formalized by the judgment
Γ � T1 	 T2, of which selected rules are shown in Fig. 7. Subtyping in Imp reduces
to the validity of logical implications between refinement predicates. As the refine-
ments are drawn from a decidable logic of Equality, Linear Arithmetic, and Unin-
terpreted Functions, validity can be automatically checked by SMT solvers [13].
The last two rules convert between non-null and possibly null references (〈�〉 and
?〈�〉).
Heap Subtyping. The heap subtyping judgment Γ � Σ 	 Σ′ describes when
one heap is subsumed by another. Figure 7 summarizes the rules for heap sub-
sumption. Heap subtyping is covariant, which is sound because our type system
is flow sensitive – types in the heap are updated after executing a statement.

Statements. When the condition x, y fresh appears in the antecedent of a rule,
it means that x and y are distinct names that do not appear in the input envi-
ronment Γ or heap Σ. We write [y/x] for the capture avoiding substitution that
maps x to y. The rules for sequencing, assignment, control-flow joins, and func-
tion calls are relatively straightforward extensions from previous work (e.g. [33]).
Selected rules are given in Fig. 8. The complete set of rules may be found in [3].

Allocation. In T-alloc, a record is constructed from a sequence of field name
and expression bindings. The rule types each expression ef as Tf , generates a
record type T , and allocates a fresh location � on the heap whose type is T . To
connect fields with their containing records, we create a new binder y denoting
the record, and use the helper NameFields [3] to strengthen the type of each
field-binding for y from f :{νf : τ | p}, to f :{νf : τ | p ∧ νf = Field(ν, f)}. Here,
Field is an uninterpreted function.

Access. T-rd and T-wr both require that non-null pointers are used to access
a field in a record stored on the heap. As T-alloc strengthens each type with
NameFields, the type for y in T-rd contains the predicate νfi = Field(ν, fi).
Any facts established for y are linked, in the refinement logic, with the original
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Subtyping Γ T1 T2, Γ Σ Σ

Valid Γ p p

Γ ν :b p ν :b p
-b

Valid Γ p p ν null

Γ ν :? � p ν : � p
-down

Valid Γ p p

Γ ν : � p ν :? � p
-up1

Valid Γ p p

Γ ν :null p ν :? � p
-up2

Γ emp emp
-emp

Γ Σ Σ Γ T T

Γ Σ � x :T Σ � x :T
-heap

Heap Folding Γ x :T1 Σ1 � x :T2 Σ2

locs T1 Dom Σ1 Γ T1 T2

Γ x :T1 Σ1 � x :T2 Σ2

F-base

Σ1 Σ1 � x :T Σ2 Σ2 � x :T
Γ ν : � p T2 Γ x :T Σ1 � x :T Σ2

Γ y : ν : � p Σ1 � y :T2 Σ2

F-ref

Γ ν :? � p T2

Σ1 Σ1 � y :T Σ2 Σ2 � y :T
x : ν :? � p ν null ; Γ y :T Σ1 � y :T Σ2

x : ν :? � p ν null ; Γ y :T Σ1 � y :T Σ2

Γ x : ν :? � p Σ1 � x :T2 Σ2

F-?ref

Γ x :Ti Σ1 � x :Ti Σ2

Γ y : fi :Ti Σ1 � y : fi :Ti Σ2

F-heap

Fig. 7. Selected subtyping, heap subtyping, and heap folding rules

record’s field: when a record field is mutated, a new type binding is created in
the heap, and each unmutated field is linked to the old record using Field.

Concretization. As heaps also contain bindings of names to types, it would
be tempting to add these bindings to the local environment to strengthen the
subtyping context. However, due to the presence of possibly null references,
adding these bindings would be unsound. Consider the program fragment:

function f(){ return null; }

function g(){ var p = f(); assert(false) }

One possible type for f is ()/emp ⇒ ∃!�. r :?〈�〉/� �→ x :{ν : int | false} because
the location � is unreachable. If we added the binding x :{ν : int | false} to Γ
after the call to f, then the assert(false) in g would unsoundly typecheck!
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Statement Typing Φ, Γ, Σ s :: Γ Σ

Γ x : � � z : fi :Ti Σ

Φ, Γ, Σ y x.fi :: y :Ti; Γ Σ
T-rd

Γ x : � Γ e : ν :τ p
Tr NameFields z, f0 :T0, . . . , fi : ν :τ ν e , . . . z fresh

Φ, Γ, � y : fj :Tj Σ x.fi e :: Γ � z :Tr Σ
T-wr

for each ef , Γ, Σ ef : Tf T NameFields z, f :T �, z fresh

Φ, Γ, Σ x alloc f : ef :: x : � ; Γ � z :T Σ
T-alloc

Γ, Σ x : � Ty ν :τ p Tz ν :τ ν y z fresh

Φ, Γ, � y :Ty Σ concr x :: y :Ty; Γ � z :Tz Σ
T-concr

Γ C α ! Σc. xc :Tc C α M m x
.

em
Σ � x : ν :C T q Σ0 Σ � xc : T α Tc T α Σc Σ0

Γ, Σ T Γ, Σ Σ Dom Σc , Binders Σc , xc fresh

Φ, Γ, Σ unfold � ::
m
m x em ; Γ Σ

T-unfold

Γ C α ! Σc. x :Tc

Γ x :Tx Σx � x : T α Tc T α Σc Γ � y :Ty Σ Γ Σ Σ
C α M m x

.
em Ty ν :C T m m ν em y fresh

Φ, Γ, � x :Tx Σx Σ fold � :: Γ � y :Ty Σ
T-fold

Fig. 8. Selected Statement Typing Rules. We assume that type definitions (and, hence,
measures over these definitions) Γ � C[α] = ∃! Σ. x :T are α-convertible.

We thus require that in order to include a heap binder in a local context,
Γ , the location must first be made concrete, by checking that a reference to it
is definitely not null. Concretization of a location � is achieved with the heap
annotation concr(x). Given a non-null reference, T-concr transforms the local
context Γ and the heap Σ by (1) adding the binding y :Ty at the location � to
Γ ; (2) adding a fresh binding z :Tz at � that expresses the equality y = z.

Unfold. T-unfold describes how a type constructor application C[α] may be
unfolded according to its definition. The context is modified to contain the new
heap locations corresponding to those mentioned in the type’s definition. The
rule assumes an α-renaming such that the locations and binders appearing in
the definition of C are fresh, and then instantiates the formal type variables α
with the actual T . The environment is strengthened using the thus-instantiated
measure bodies.

Fold. Folding a set of heap bindings into a data structure is performed by T-
fold. Intuitively, to fold a heap into a type application of C, we ensure that it
is consistent with the definition of C. Note that the rules assume an appropriate
α-renaming of the definition of C. Simply requiring that the heap-to-be-folded
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be a subtype of the definition’s heap is too restrictive. Consider the first fold in
absL in Fig. 3. As we have reached the end of the list xn = null we need to fold

&x �→ x1 :〈data :nat, next?〈&t〉〉 ∗ &t �→ t0 : list[int]

into &x �→ x2 : list[nat]. An application of heap subtyping, i.e. requiring that the
heap-to-be-folded is a subtype of the body of the type definition, would require
that &t �→ list[int] 	 &t �→ list[nat], which does not hold! However, the fold is
safe, as the next field is null, rendering &t unreachable. We observe that it is
safe to fold a heap into another heap, so long as the sub-heap of the former that
is reachable from a given type is subsumed by the latter heap.

Our intuition is formalized by the relation Γ,Σ � x :T1/Σ1�x :T2/Σ2, which
is read: “given a local context Γ,Σ, the type T1 and the heap Σ1 may be folded
into the type T2 and heap Σ2.” F-base defines the ordinary case: from the point
of view of a type T , any heap Σ1 may be folded into another heap Σ2. On the
other hand, if T1 is a reference to a location �, then F-ref additionally requires
the folding relation to hold at the type bound at � in Σ1.

F-?ref splits into two cases, depending on whether the reference is null
or not. The relation is checked in two strengthened environments, respectively
assuming the reference is in fact null and non-null. This strengthening allows
the subtyping judgement to make use reachability. Recall the first fold in absL
that happens when xn = null. To check the fold(&x), the rule requires that
the problematic heap subtyping Γ � &t �→ list[int] 	 &t �→ list[nat] only holds
when x.next is non-null, i.e. when Γ is

xn :{ν :?〈&t〉 | ν = x2.next}, xn = null, x2.next �= null

This heap subtyping reduces to checking the validity of the following, which
holds as the antecedent is inconsistent:

xn = x2.next ∧ xn = null ∧ x2.next �= null ⇒ 0 � ν.

3.2 Refinement Inference

In the definition of the type system we assumed that type refinements were given.
In order to infer the refinements, we replace each refinement in a program with
a unique variable, κ

i
, that denotes the unknown refinement. More formally, let

Φ̂ denote a function environment as before except each type appearing in Φ̂
is optionally of the form {ν : τ | κi}, i.e. its refinement has been omitted and
replaced with a unique κ variable. Given a set of function definitions p and
a corresponding environment of unrefined function signatures Φ̂, to infer the
refinements denoted by each κ we extract a system of Horn clause constraints C.
The constraints, C, are satisfiable if there exists a mapping of K of κ-variables to
refinement formulas such each implication in KC, i.e. substituting each κi with
its image in K, is valid. We solve the constraints by abstract interpretation in the
predicate abstraction domain generated from user-supplied predicate templates.
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CGen : FunEnv TypeEnv HeapEnv Stmt {Constr} TypeEnv HeapEnv
CGen(Φ,Γ ,Σ,s) = match s with
. . .
| y = x.f let � = loc(Γ (x)) in ({Γ Γ x � }, y:TypeAt(Σ,�);Γ ,Σ)
| x. f = e let (cs, t) = CGEx(Γ ,Σ,e)

� = Loc(t)
(y:Ty, z) = (Σ(�), FreshId())
ht = NameFields(z, Ty[f : Shape(t) (v = e)])

in (cs {Γ t � }, Γ , Σ[� z:ht])

Fig. 9. Statement constraint generation

For more details, we refer the reader to [32]. We thus infer the refinements missing
from Φ̂ by finding such a solution, if it exists.

Constraint Generation. Constraint generation is carried out by the proce-
dure CGen which takes a function environment (Φ), type environment (Γ ), heap
environment (Σ), and statement (s) as input, and ouputs (1) a set of Horn con-
straints over refinement variables κ that appear in Φ, Γ , and Σ; (2) a new type-
and heap-environment which correspond to the effect (or post-condition) after
running s from the input type and heap environment (pre-condition).

The constraints output by CGen correspond to the well-formedness con-
straints, Γ,Σ � T , and subtyping constraints, Γ � T 	 T ′, defined by the type
system. Base subtyping constraints Γ � {ν : b | p} 	 {ν : b | q} correspond to
the (Horn) Constraint �Γ � ⇒ p ⇒ q, where �Γ � is the conjunction of all of the
refinements appearing in Γ [32]. Heap Subtyping constraints Γ � Σ 	 Σ′ are
decomposed via classical subtyping rules into base subtyping constraints between
the types stored at the corresponding locations in Σ and Σ′. This step crucially
allows the predicate abstraction to sidestep reasoning about reachability and the
heap, enabling inference.

CGen proceeds by pattern matching on the statement to be typed. Each
FreshType() or Fresh() call generates a new κ variable which may then appear
in subtyping constraints as described previously. Thus, in a nutshell, CGen cre-
ates Fresh templates for unknown refinements, and then performs a type-based
symbolic execution to generate constraints over the templates, which are solved
to infer precise refinements summarizing functions and linked structures. As an
example, the cases of CGen corresponding to T-rd and T-wr are show in Fig. 9.

3.3 Soundness

The constraints output by CGen enjoy the following property. Let (C,Γ ′,Σ′) be
the output of CGen(Φ̂,Γ ,Σ,s). If C is satisfiable, then there exists some solution
K such that KΦ̂,KΓ,KΣ � s :: KΓ ′/KΣ′ [32], that is, there is a type derivation
using the refinements from K. Thus K yields the inferred program typing Φ

.=
KΦ̂, where each unknown refinement has been replaced with its solution, such
that Φ � f :: Φ(f) for each f defined in the program p.
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To prove the soundness of the type system, we translate types, environments
and heaps into separation logic assertions and hence, typing derivations into
proofs by using the interpretation function � · �. We prove [3] the following:

Theorem 1. [Typing Translation]

• If Φ, Γ,Σ � s :: Γ ′/Σ′ then �Φ � � {�Γ,Σ �} s {�Γ ′, Σ′ �}
• If Φ � f :: S then �Φ � � {Pre(S)} Body(f) {Post(S)}
Pre(S), Post(S) and Body(f) are the translations of the input and output types
of the function, the function (body) statement. As a corollary of this theorem,
our main soundness result follows:

Corollary 1. [Soundness] If Φ, ∅, emp � s :: Γ/Σ, then �Φ � � {true} s {true}
If we typecheck a program in the empty environment, we get a valid separation
logic proof of the program starting with the pre-condition true. We can encode
programmer-specified asserts as calls to a special function whose type encodes
the assertion. Thus, the soundness result says that if a program typechecks then
on all executions of the program, starting from any input state: (1) all memory
accesses occur on non-null pointers, and (2) all assertions succeed.

4 Experiments

We have implemented alias refinement types in a tool called Art. The user pro-
vides (unrefined) function signatures, and Art infers (1) annotations required
for alias typing, and (2) refinements that capture correctness invariants. We eval-
uate Art on two dimensions: the first demonstrates that it is expressive enough
to verify a variety of sophisticated properties for linked structures; the second
that it provides a significant automation over the state-of-the-art, represented
by the SMT-based VCDryad system. VCDryad has annotations comparable
to other recent tools that use specialized decision procedures to discharge Sepa-
ration Logic VCs [11]. Our benchmarks are available at [1].

Expressiveness. Table 1 summarizes the set of data structures, procedures,
and properties we used to evaluate the expressiveness of Art. The user provides
the type definitions, functions (with unrefined type signatures), and refined type
specifications to be verified for top-level functions, e.g. the top-level specification
for insertSort. LOC is lines of code and T, the verification time in seconds.

We verified the following properties, where applicable: [Len] the output data
structures have the expected length; [Keys] the elements, or “keys” stored in each
data structure [Sort] the elements are in sorted order [Order] the ouput elements
have been labeled in the correct order (e.g. preorder) [Heap] the elements sat-
isfy the max heap property [BST] the structure satisfies the binary search tree
property [Red-black] the structure satisfies the red-black tree property.
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Table 1. Experimental Results (Expressiveness)

Data Structure Properties Procedures LOC T

Singly linked list Len, Keys append, copy, del, find,

insBack, insFront, rev

73 2

Doubly linked list Len, Keys append, del, delMid, insBack,

insMid, insFront

90 16

Cyclic linked list Len, Keys delBack, delFront, insBack,

insFront

49 2

Sorted linked list Len, Keys, Sort rev, double, pairwiseSum,

insSort, mergeSort,

quickSort

135 10

Binary Tree Order, Keys preOrder, postOrder, inOrder 31 2

Max heap Heap, Keys heapify 48 27

Binary search tree BST, Keys ins, find, del 105 11

Red-black tree Red-black, BST, Keys ins, del 322 213

Automation. To demonstrate the effectiveness of inference, we selected bench-
marks from Table 1 that made use of loops and intermediate functions requiring
extra proof annotations in the form of pre- and post-conditions in VCDryad,
and then used type inference to infer the intermediate pre- and post-conditions.
The results of these experiments is shown in Table 2. We omit incomparable
benchmarks, and those where the implementations consist of a single top-level
function. We compare the number of tokens required to specify type refinements
(in the case of Art) and pre- and post-conditions (for VCDryad). The table
distinguishes between two types of annotations: (1) those required to specify
the desired behavior of the top-level procedure, and (2) additional annotations
required (such as intermediate function specifications). Our results suggest that
it is possible to verify the correctness of a variety of data-structure manipulating
algorithms without requiring many annotations beyond the top-level specifica-
tion. On the benchmarks we examined, overall annotations required by Art were
about 34 % of those required by VCDryad. Focusing on intermediate function
specification, Art required about 21 % of the annotation required by VCDryad.

Limitations. Intuitively, Art is limited to “tree-like” ownership structures:
while sharing and cycles are allowed (as in double- or cyclic-lists), there is a
tree-like backbone used for traversal. For example, even with a singly linked list,
our system will reject programs that traverse deep into the list, and return a
pointer to a cell unboundedly deep inside the list. We believe it is possible to
exploit the connection made between the SL notion of “magic wands” and the
type-theoretic notion of “zippers” [18] identified in [34] to enrich the alias typing
discipline to accommodate such access patterns.
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Table 2. Experimental results (Inference). For each procedure listed we compare the
number of tokens used to specify: ART Type refinements for the top-level procedure in
Art; ART Annot manually-provided predicate templates required to infer the neces-
sary types [32]; VCDryad Spec pre- and post-conditions of the corresponding top-level
VCDryad procedure; and VCDryad Annot loop invariants as well as the specifications
required for intermediate functions in VCDryad. Art Annot totals include only unique
predicate templates across benchmarks.

Data Structure Procedure ART VCDryad

Specification Annotation Specification Annotation

Singly Linked List (definition) 34 - 31 -

rev 5 0 11 15

Sorted Linked List (definition) 38 - 50 -

rev 11 9 17 15

double 0 4 7 54

pairwiseSum 0 4 13 75

insSort 5 0 20 17

mergeSort 5 18 18 79

quickSort 5 18 11 140

Binary Search Tree (definition) 58 - 55 -

del 7 32 20 33

Total 168 63 253 428

5 Related Work

Physical Type Systems. Art infers logical invariants in part by leveraging
the technique of alias typing [2,38], in which access to dynamically-allocated
memory is factored into references and capabilities. In [8,29], capabilities are
used to decouple references from regions, which are collections of values. In these
systems, algebraic data types with an ML-like “match” are used to discover
spatial properties, rather than null pointer tests. fold &unfold are directly
related to roll &unroll in [38]. These operations, which give the program access
to quantified heap locations, resemble reasoning about capabilities [29,35]. These
systems are primarily restricted to verifying (non-)aliasing properties and finite,
non-relational facts about heap cells (i.e. “typestates”), instead of functional
correctness invariants. A possible avenue of future work would be to use a more
sophisticated physical type system to express more data structures with sharing.

Logical Type Systems. Refinement types [20,25,39], encode invariants about
recursive algebraic data types using indices or refinements. These approaches
are limited to purely functional languages, and hence cannot verify properties
of linked, mutable structures. Art brings logical types to the imperative setting
by using [38] to structure and reason about the interaction with the heap.

Interactive Program Logics. Several groups have built interactive verifiers
and used them to verify data structure correctness [12,41]. These verifiers require
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the programmer write pre- and postconditions and loop invariants in addition
to top-level correctness specifications. The system generates verification condi-
tions (VCs) which are proved with user interaction. [19] uses symbolic execution
and SMT solvers together with user-supplied tactics and annotations to prove
programs. [10,24] describe separation logic frameworks for Coq and tactics that
provide some automation. These are more expressive than Art but require non-
trivial user assistance to prove VCs.

Automatic Separation Logics. To automate the proofs of VCs (i.e. entail-
ment), one can design decision procedures for various fragments of SL, typically
restricted to common structures like linked lists. [4] describes an entailment pro-
cedure for linked lists, and [6,14,16] extend the logic to include constraints on list
data. [5,21,27,28] describe SMT-based entailment by reducing formulas (from a
list-based fragment) to first-order logic, combining reasoning about shape with
other SMT theories. The above approaches are not extensible (i.e. limited to list-
segments); other verifiers support user defined, separation-logic predicates, with
various heuristics for entailment [9,11]. Art is related to natural proofs [26,30]
and the work of Heule et al. [17], which instantiate recursive predicates using
the local footprint of the heap accessed by a procedure, similar to how we insert
fold and unfold heap annotations, enabling generalization and instantiation of
structure properties. Finally, heap binders make it possible to use recursive func-
tions (e.g. measures) over ADTs in the imperative setting. While our measure
instantiation [20] requires the programmer adhere to a typing discipline, it does
not require us to separately prove that the function enjoys special properties [36].

Inference. The above do not deal with the problem of inferring annotations
like the inductive invariants (or pre- and post- conditions) needed to generate
appropriately strong VCs. To address this problem, there are several abstract
interpreters [22] tailored to particular data structures like list-segments [40],
lists-with-lengths [23]. Another approach is to combine separate domains for
heap and data with widening strategies tailored to particular structures [7,15].
These approaches conflate reasoning about the heap and data using monolithic
assertions or abstract domains, sacrificing either automation or expressiveness.
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