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Abstract. Almost all applications of SAT solvers generate Boolean for-
mulae from higher level expression graphs by encoding the semantics of
each operation or relation into propositional logic. All non-trivial rela-
tions have many different possible encodings and the encoding used can
have a major effect on the performance of the system. This paper gives
an abstract satisfaction based formalisation of one aspect of encoding
quality, the propagation strength, and shows that propagation complete
SAT encodings can be modelled by our formalism and automatically
computed for key operations. This allows a more rigorous approach to
designing encodings as well as improved performance.

1 Introduction

Almost all industrial applications of SAT solvers translate from a higher level
language into propositional logic. Many of these translations are modular in the
sense that each sub-expression is encoded into a set of clauses whose structure
is independent of how the expression is used. For example, an SMT solver can
use the same template to generate clauses for every occurrence of a 64-bit mul-
tiplication operation.

For most non-trivial expressions, there are many different encodings available.
For example, there are several ways to encode cardinality constraints [1,4,37].
These may use different clauses and possibly introduce auxiliary variables to sim-
plify and compact the encodings. The choice of encoding can have a significant
impact on the performance of the solver [35]. This difference can be large enough
that identifying a bad encoding from the CNF it generates and then replacing
it with a better one within the SAT solver can give a net improvement in solver
performance [34]. Despite the importance of choosing a good encoding there
remain open questions about why some encodings perform better than others.
A common rule of thumb is that smaller encodings (primarily in terms of number
clauses but also in the number of variables) are preferable. For some kinds of
encoding, for example cardinality constraints, arc consistency [24] is regarded to
be a desirable property. Another desirable property is being propagation com-
plete [11]. Encodings with this property are considered extremely important since
constraint solvers can benefit from the increase in inference power. However, its
use is not yet wide spread in encoding design within the SMT community.
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These issues are particularly relevant in encodings of bit-vector and floating-
point operations. Often the only way to tell if an encoding might be better
than another is to implement it and then compare system level performance
on a ‘representative’ set of benchmarks. Furthermore, the encodings commonly
used are frequently literal translations of circuits designs used to implement
these operations in hardware. These designs were created to minimise signal
propagation delay, to reduce area or for power and layout concerns. It is not
clear why a multiplier hardware design with low cycle count should give a good
encoding from bit-vector logic to CNF.

This paper advances both the theory and practice of the creation of encodings
through the following contributions:

– Section 3 uses and extends the framework of abstract satisfiability [19] to for-
malise one aspect of encoding quality: propagating strength. We show that
propagation complete encodings [11] are modelled by our framework and can
serve as a basis for comparing encodings.

– An algorithm is given in Sect. 4 which can be used to determine if an encoding
is propagation complete, strengthen it if it is not or generate a propagation
complete encoding from scratch with and without auxiliary variables.

– In Sect. 5 we show that using our propagation complete encodings improves
the performance of the CVC4 SMT solver on a wide range of bit-vector bench-
marks.

2 Abstract Satisfaction

The abstract satisfaction framework [19] uses the language of abstract interpre-
tation to characterise and understand the key components in a SAT solver [17].
One advantage of this viewpoint is that it is largely independent of the concrete
domain that is being searched (sets of assignments) or the abstract domain used
to represent information about the search (partial assignments). This allows
the CDCL algorithm to be generalised [18] and applied to a range of other
domains [12,20,27]. Another important feature of the abstract satisfaction frame-
work is that it allows the representation of a problem and the effects of reasoning
to be cleanly formalised. As we show later, this allows us to characterise prop-
agation algorithms, such as unit propagation, as a map from representation to
effect. In this section we recall some background results required to formalise
this idea.

The foundation of abstract interpretation is using an abstract domain to
perform approximate reasoning about a concrete domain. This requires a relation
between the two domains; with Galois connections being one of the simplest and
most popular choices.

Definition 1. Let (C,⊆) and (A,�) be sets with partial orders. The pair (α :
C → A, γ : A → C) form a Galois connection if:

∀c ∈ C, a ∈ A � α(c) � a ⇔ c ⊆ γ(a)
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C is referred to as the concrete domain and A is the abstract domain. It is
sometimes useful to use an equivalent definition of Galois connection: α and γ
are monotone and

∀c ∈ C � c ⊆ γ(α(c)) ∀a ∈ A � α(γ(a)) � a

If, additionally, γ ◦ α = id, then the pair is referred to as a Galois insertion
and each element of the concrete domain has one or more representations in the
abstract domain.

Given the domain that we want to reason about and the abstraction that will
be used to perform the reasoning, the next step is to characterise the reasoning
as transformers.

Definition 2. A concrete transformer is a monotonic function f : C → C.
Many of the transformers of interest are extensive, reductive or idempotent,
respectively defined as:

∀c ∈ C � c ⊆ f(c) ∀c ∈ C � f(c) ⊆ c f ◦ f = f

A function that is extensive, monotonic and idempotent is referred to as an
upper closure while a reductive, monotonic, idempotent function is referred to
as a lower closure.

Finally, we will need a means of approximating the transformer on the
abstract domain using an abstract transformer. This gives a key result: the space
of abstract transformers (for a given concrete transformer) forms a lattice with
a unique best abstract transformer.

Definition 3. Given a transformer f on C, fo : A → A is an (over-
approximate) abstract transformer if:

∀a ∈ A � α(f(γ(a))) ⊆ fo(a)

Proposition 1. Given a reductive transformer f on a lattice (C,⊆), the set of
abstract transformers on lattice (A,�) form a lattice with the bottom element,
referred to as the best abstract transformer, is equal to:

α ◦ f ◦ γ

3 Characterising Propagating Strength

While the framework we introduce in this section generalizes to other domains,
we will focus on CNF encodings targeting CDCL-style SAT solvers [9]. We only
consider unit propagation, but other propagation algorithms, such as generalised
unit propagation [33], can be treated in the same way.

A number of attributes can be used for evaluating encodings. Some of these
are algorithmic such as how much information it can propagate, how it affects
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the quality of learnt clauses, how it interacts with the branching heuristic or
what effect it has on preprocessing. Others are more implementation-oriented:
how many variables it uses, how many clauses it contains and how many are
binary, ternary, how quickly it propagates, etc. In this work we will be charac-
terising one of the major algorithmic properties: the amount of information that
can be propagated.

Informally, this can be thought of as the proportion of facts that are true
(with respect to the current partial assignment and encoding) that can be proven
with unit propagation. If E is an encoding, l is a literal and p is a partial assign-
ment expressed as a conjunct of all of the assigned literals, then it is the degree
to which:

p ∧ E |= l implies p ∧ E 
up l,

where |= represents logical entailment and 
up stands for unit propagation.
We formalise this intuition using the viewpoint of abstract satisfaction.

Figure 1 gives a visual summary of the formalisation; the key steps are:
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Fig. 1. A graphical presentation of the results in Sect. 3
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Fig. 2. A nest of adders
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1. Present syntax as an abstraction of semantics and define the space of
encodings of a set of assignments as a substructure of the syntax lattice
(Subsect. 3.1).

2. Show that partial assignments, the information about possible models that
is manipulated during the search, is also an abstraction of the semantics
(Subsect. 3.2).

3. Express the effects of reasoning as abstract transformers and characterise
propagation algorithms such as unit propagation as maps from representa-
tions of a problem to the effects of reasoning (Subsect. 3.3).

3.1 Syntax and Semantics

We first fix a set of variable names Σ. This will include the ‘input’ and ‘output’
bits of the encoding, plus any auxiliaries. Let Σ+ be the set of literals constructed
from these variables (i.e. Σ+ = {v|v ∈ Σ} ∪ {¬v|v ∈ Σ}). For simplicity we will
assume double negation is always simplified ¬¬v = v.

A clause is a disjunction of one or more literals. For convenience we will
identify clauses with the set of literals they contain. A clause is a tautology if
it contains a literal and its negation. Let CΣ+ be the set of non-tautological
clauses which can be constructed from Σ+. We identify sets of clauses with their
conjunction. Let 2CΣ+ denote the powerset of CΣ+ and note that it forms a
complete lattice ordered by ⊇. For convenience we will pick ∅ to be the top
element and CΣ+ to be the bottom.

Example 1. We will use a full adder as a running example. Figure 2 shows
one possible circuit that can be used to implement a full adder as well
as the truth table for the input which gives the 8 possible satisfying
assignments of the formula. In this case Σ = {a, b, cin, s, cout} so Σ+ =
{a, b, cin, s, cout,¬a,¬b,¬cin,¬s,¬cout}. Thus {a}, {b,¬a}, {s,¬s} are clauses
and only the last is a tautology. Also CΣ+ = {∅, {a}, {b}, {¬a}, {a, b},
{a,¬b}, . . . }.

An assignment is a map from Σ to {�,⊥} and the set of all assignments is
denoted by AΣ . Similarly 2AΣ forms a powerset lattice. Following usual conven-
tion (and the opposite of the syntax lattice), the top element will be AΣ and ∅
the bottom. With a slight abuse of notation, we use assignments to give literals
values: x(¬a) = ¬x(a).

The models relation, denoted using an infix |=, is a relationship between AΣ

and CΣ+ , defined as follows:

x |= c ⇔ ∃l ∈ c � x(l) = �
An assignment is a model of a set of clauses if the models relation holds for all
of the clauses in the set.

Example 2. An assignment for the full adder example would be:
x = {(a,�), (b,�), (cin,⊥), (cout,�), (s,⊥)}.
From this we can see that x |= {a} and x |= {a,¬cin, cout} but x �|= {¬b,¬a}. So
x is a model of {{a}, {a,¬cin, cout}}.
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This relation gives maps AofC : 2CΣ+ → 2AΣ and CofA : 2AΣ → 2CΣ+ :

AofC(C) = {x ∈ AΣ |∀c ∈ C � x |= c}
CofA(A) = {c ∈ CΣ+ |∀x ∈ A � x |= c}

AofC(C) is the set of assignments which are models of C, while CofA(A) is all
of the clauses that are consistent with all of the assignments in A. Both maps
are monotonic, AofC(CofA(A)) = A and CofA(AofC(C)) ⊇ C so they form a
Galois insertion between 2AΣ and 2CΣ+ . A set of clauses is a representation, or
abstraction, of its set of models.

Example 3. Given C = {{a,¬b}, {¬a}}, the set of all models of C is AofC(C) =
{y : Σ → {�,⊥}|y(a) = ⊥ ∧ y(b) = ⊥}. Conversely, CofA({x}) =
{{a}, {a, b}, {a,¬b}, . . . } is the set containing all of the clauses consistent with
the assignment x from Example 2. When multiple assignments are given this is
all of the clauses that are consistent with all of the assignments.

In the SAT field, similar Galois connections to the one presented in this
section have been studied in [32]. Although we have presented this result with
Boolean valuations (the “concrete” domain) and CNF (the “abstract” domain),
the construction is much more general and can be applied to SMT, CSP, ASP,

{¬a, ¬b, ¬cin, ¬cout, s} {¬a, ¬b, ¬cin, cout, ¬s} {¬a, ¬b, ¬cin, cout, s}
{¬a, ¬b, cin, ¬cout, ¬s} {¬a, ¬b, cin, cout, ¬s} {¬a, ¬b, cin, cout, s}
{¬a, b, ¬cin, ¬cout, ¬s} {¬a, b, ¬cin, cout, ¬s} {¬a, b, ¬cin, cout, s}
{¬a, b, cin, ¬cout, ¬s} {¬a, b, cin, ¬cout, s} {¬a, b, cin, cout, s}
{a, ¬b, ¬cin, ¬cout, ¬s} {a, ¬b, ¬cin, cout, ¬s} {a, ¬b, ¬cin, cout, s}
{a, ¬b, cin, ¬cout, ¬s} {a, ¬b, cin, ¬cout, s} {a, ¬b, cin, cout, s}
{a, b, ¬cin, ¬cout, ¬s} {a, b, ¬cin, ¬cout, s} {a, b, ¬cin, cout, s}
{a, b, cin, ¬cout, ¬s} {a, b, cin, ¬cout, s} {a, b, cin, cout, ¬s}

(a) Naı̈ve truth table encoding

{¬a, ¬b, cin, ¬s} {¬a, b, ¬cin, ¬s} {a, ¬b, ¬cin, ¬s} {a, b, cin, ¬s}
{¬a, ¬b, ¬cin, s} {¬a, b, cin, s} {a, b, ¬cin, s} {a, ¬b, cin, s}
{¬a, ¬b, cout} {¬a, ¬cin, cout} {¬b, ¬cin, cout}
{a, b, ¬cout} {a, cin, ¬cout} {b, cin, ¬cout}

(b) Eén and Sörensson’s basic encoding

{cin, ¬s, ¬cout} {a, ¬s, ¬cout} {b, ¬s, ¬cout} {a, b, cin, ¬s}
{¬a, ¬b, ¬cin, s} {¬cin, s, cout} {¬a, s, cout} {¬b, s, cout}
{¬a, ¬b, cout} {¬a, ¬cin, cout} {¬b, ¬cin, cout}
{a, b, ¬cout} {a, cin, ¬cout} {b, cin, ¬cout}

(c) A propagation complete encoding

Fig. 3. A nest of adder encodings
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etc. For more discussion of the Galois connection between syntax and semantics,
see [21].

Given a set of assignments M ⊂ AΣ , an encoding (of M) is any set of clauses
C ⊂ CΣ+ such that AofC(C) = M . We shall denote the set of encodings of M as
EM = {C ⊂ CΣ+ |AofC(C) = M}. If C and D are both encodings (of the same
set of models), then so is C∪D; this is the basis for redundant encodings in CSP.
It also implies that the encodings of a set of models form a meet semi-lattice
with a minimum element, CofA(M), the most verbose encoding. There can be
multiple, incomparable, least verbose encodings. For example if M = ∅, then
{a,¬a} is a least verbose encoding (as there are no proper subsets which are
encodings), but so is {b,¬b}. This notion of encoding has been studied is the
SAT field (e.g. [23]) and has recently been formalised as a formula that has the
same satisfying assignments as the set of assignments of a given specification [26].

Example 4. Continuing our example of a full adder, let M be the set of eight
models described by the truth table in Fig. 2a. There are many possible encod-
ings, some of which are given in Fig. 3. All of these are subsets of CofA(M), all
the clauses consistent with M , in effect, the ‘theory’ of the full adder. However,
not every subset of CofA(M) is an encoding, as they are required to have the
same models as M . Possible encodings include the naive encoding (Fig. 3a) in
which all full assignments that are not models are removed, the basic encoding
given by [23] (Fig. 3b) and a propagation complete encoding (Fig. 3c). Notice
that the first two encodings are not propagation complete.

To formally define propagation strength, we will need a notion of what kind
of information we are propagating and to relate the encoding to the action of
propagation.

3.2 Representing Information During Search

Some propositional logic tools, such as BDDs, represent sets of models directly.
For solving SAT problems this is not really viable — as soon as you have a model
that you could represent, you have solved the problem. Thus SAT algorithms
need a way of representing partial information about models. For example if an
encoding contains the clause {¬a} then the SAT solver needs a way of recording
“there are no models that assign a to �”. The most common approach is to use
partial assignments.

Following [17] we characterise a partial assignment over Σ (PΣ denotes the
set of all of them) as an abstraction of 2AΣ . Partial assignments are maps from
Σ to {�, ?,⊥}, where ? denotes an unknown or unassigned variable. They can
be ordered by:

p � q ⇔ ∀v ∈ Σ.q(v) �=? ⇒ p(v) = q(v)

Allowing an additional ‘contradiction’ partial assignment, ⊥P , ordered below
all other partial assignments, makes PΣ a complete lattice, where �P = λv.?
is the partial assignment that does not assign any variables. The discussion
below generalises to other abstractions; we use partial assignments as they are
a popular and simple choice.
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Example 5. In our running example, p and q are partial assignments:

p = {(a, ?), (b,⊥), (cin,⊥), (s,�), (cout,�)}
q = {(a, ?), (b, ?), (cin, ?), (s,�), (cout,�)}

with p � q because where q assigns a variable to � or ⊥, p agrees.

To use PΣ as an abstraction of 2AΣ , we need to define a Galois connection
between them. Let α : 2AΣ → PΣ denote the map from models to the most
complete partial assignment that is consistent with all of them and γ : PΣ →
2AΣ denote the map from a partial assignment to the set of models that is
consistent with it:

α(A) =
⊔

x∈A

x γ(p) = {x ∈ AΣ |∀v ∈ Σ � p(v) �=? ⇒ x(v) = p(v)}

Example 6. Let x1, x2, x3 and x4 be (full) assignments:

x1 = {(a,�), (b,�), (cin,⊥), (s,⊥), (cout,�)}
x2 = {(a,�), (b,⊥), (cin,�), (s,⊥), (cout,�)}
x3 = {(a,�), (b,�), (cin,�), (s,⊥), (cout,�)}
x4 = {(a,�), (b,⊥), (cin,⊥), (s,⊥), (cout,�)}

then:

α({x1, x2}) = {(a,�), (b, ?), (cin, ?), (s,⊥), (cout,�)}
γ(α({x1, x2})) = {x1, x2, x3, x4}

3.3 Effects of Reasoning

Having defined partial assignments as the ‘units’ of information that propagation
uses, the next step is to formalize what kind of reasoning we are performing. In a
SAT solver the role of reasoning is to add to a partial assignment p (i.e., reduce
the set of assignments that is being considered) that is consistent with all of the
models in γ(p). Formally, this is expressed in two steps: a models transformer
on the concrete domain, 2AΣ , which captures the kind of reasoning that we
are approximating and abstract transformers on PΣ , which express the actual
changes to the partial assignments.

In slight variation from [18] we define the models transformer, modM : 2AΣ →
2AΣ , as parameterised by a set of assignments rather than a formula:

modM (A) = M ∩ A

This is a downward closure function on 2AΣ and expresses the ideal reasoning,
or, conversely, the limit of what is sound.

Example 7. In the full adder example, let M be the set of assignments described
in the truth table in Fig. 2a. If A = {x1, x2, x3, x4}, then modM (A) = {x1, x2} as
these are the only two assignments in A that are also models of the full adder.



544 M. Brain et al.

As 2AΣ is not directly representable for problems of significant size, we
use PΣ . Likewise, we cannot directly implement modM so instead we must use
over-approximate transformers on PΣ . Let TmodM

denote the set of abstract
transformers that over-approximate modM and recall from Proposition 1 that
they can be ordered point-wise to form a lattice with id as the top element and
α ◦ modM ◦ γ as the bottom. The effect of a sound propagator or other form
of reasoning should be an abstract transformer, as they soundly add to partial
assignment.

The final link is to connect the encoding used to the effect of reasoning.
To do this we consider the unit propagation algorithm as a map from UP :
EM → (PΣ → PΣ) that uses a set of clauses to add assignments to a partial
assignment.

Definition 4. Let up : CΣ+ → (PΣ → PΣ) map clauses to functions on partial
assignments.

assign(l) = λk.

⎧
⎪⎨

⎪⎩

� k = l

⊥ k = ¬l

? otherwise

up(c) = λp.

{
p � assign(l) ∃l ∈ c � p(l) =? ∧ ∀k ∈ c � k �= l ⇒ p(k) = ⊥
p otherwise

Define UP as the (greatest) fix-point of applying up(c) for each clause in the
encoding:

UP(C)(p) = GFP

(
λq.p � (

�

c∈C

up(c)(q))

)

Example 8. Given the set C clauses in Fig. 3b we have:

UP(C)({(a,�), (b,�), (cin,�), (s, ?), (cout, ?)}) =
{(a,�), (b,�), (cin,�), (s,�), (cout,�)})

as the clause {¬a,¬b, cout} assigns cout to � and {¬a,¬b,¬cin, s} assigns s to
�.

Formalised in this manner, UP has a number of useful order-theoretic prop-
erties:

Proposition 2. Given C,D ⊂ CΣ+ , UP(Ci) is a closure function as:

UP(C) � id C � D =⇒ UP(C) � UP(D) UP(C) ◦ UP(C) = UP(C)

Note that UP is neither injective (up({{a}, {b}}) = up({{a}, {b}, {¬a, b}})) nor
surjective. Furthermore, UP does not preserve meets (well defined on encodings)
or joins (partially defined on encodings, fully defined on supersets of a given
encoding). A propagation algorithm that preserves joins would give a Galois
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connection between supersets of an encoding and abstract transformers, thus
giving a unique, minimal encoding required to give a certain amount of inference.

The final step is to show that the closure functions given by UP(C) are
abstract transformers and that they include the best abstract transformer.

Theorem 1. Let M ∈ 2AΣ be a set of assignments then:

{UP(C)|C ∈ EM} ⊆ TmodM
UP(CofA(M)) = α ◦ modM ◦ γ

Thus an encoding C ∈ EM is a propagation complete encoding (PCE) [11] when:

UP(C) = α ◦ modM ◦ γ

Propagation complete encodings (PCEs) are not unique and there may be
many, incomparable PCEs. One goal of encoding design can be the creation of
PCEs with other desirable properties, such as using a minimal number of clauses
or auxiliary variables. As with clauses, assignments and partial assignments, the
discussion above is more general than unit propagation alone. Using our abstract
satisfaction framework we can model PCEs. In the next section we present an
algorithm for automatically generating PCEs.

4 Generating Propagation Complete Encodings

The previous section defined the notion of propagation complete encodings
(PCEs) within our framework. Next, we present an algorithm (Algorithm 1) that
can be used to determine if an encoding is propagation complete, strengthen
it if not, and generate a PCE that is equisatisfiable to a reference encoding.
Algorithm 1 takes as input a set of variables Σ that will serve as the encoding
vocabulary, an initial encoding E0 and a reference encoding ERef (over a vocab-
ulary including Σ), such that AofC(ERef) = M . Note that, if E0 = ∅, then the
algorithm will build a PCE over Σ from scratch that is equisatisfiable to ERef .
In practice E0 = ∅, and ERef can be any encoding of the circuit.

The algorithm traverses the fix-points of the best abstract transformer α ◦
modM ◦γ, i.e. partial assignments where no new facts can be deduced. To achieve
this, the algorithm uses a priority queue (PQ) of partial assignments sorted by
partial assignment size. For each element of PQ, we examine the variables v
that unit propagation cannot infer from E and pa (line 5). We then check if the
reference encoding ERef , along with the current partial assignment pa logically
entail either v or ¬v. This check is done via a call to a SAT oracle at line 8 (in our
implementation this is a call to a CDCL SAT solver). If the query returns sat ,
the variable is not entailed and the extended partial assignment is added to the
queue. Otherwise, l was a missed propagation and the encoding is strengthened
by adding a clause that blocks the partial assignment pa.1

1 As an optimization we add the negation of the minimal unsatisfiable core of ¬pa′:
MUS(pa′).
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Algorithm 1. Generating a propagation complete encoding of a CNF for-
mula
Input: 〈Σ,E0,ERef〉

1 E ← E0

2 PQ.push(λv.?)
3 while not PQ.empty() do

// ∀q1, q2 ∈ PQ � UP(E)(q1) 
= UP(E)(q2) and ⊥P 
∈ PQ
4 pa ← PQ.pop()
5 foreach v ∈ {x|x ∈ Σ and UP(E )(pa)(v) =?} do
6 foreach l ∈ {v, ¬v} do
7 pa′ ← pa � assign(l)
8 if SATSolver(ERef , pa

′) = sat then
9 PQ.push(pa′)

10 else
11 E ← E ∪{¬MUS(pa′ )}
12 PQ.compact()

// UP(E)(pa) = (α ◦ modM ◦ γ)(pa)

13 return E

If two partial assignments q1 and q2 unit propagate the same literals
(UP(E)(q1) = UP(E)(q2)) we only need to explore extensions of one of them.
Therefore, the push operation on line 9 only adds pa′ to PQ if ∀q ∈ PQ �
UP(E)(q) �= UP(E)(pa). In other words we cache assignments that become equal
when extended by unit propagation. Because we are potentially strengthening
the encoding E with each iteration of the for-loop the amount of information unit
propagation can infer from E increases. The PQ.compact call on line 12 iterates
over the queue elements and removes queue elements that UP-extend to the same
partial assignment. This ensures the invariant at the beginning of the while-loop.
Furthermore, at the end of the while loop the current encoding E is strong enough
to unit propagate all literals entailed from pa. The continuous strengthening of
E also reduces the number of unassigned variables explored at line 5.

The algorithm is not always guaranteed to generate subset-minimal encod-
ings. The order in which the partial assignments is considered may lead to the
learning of redundant clauses. A clause c is redundant w.r.t. a PCE EPC if for
all literals l ∈ c unit propagation can infer l from EPC \ c assuming the nega-
tion of the other literals ¬(c \ {l}). For example, in the presence of a chain
of implications, v1 ⇒ v2 ⇒ . . . ⇒ vk, the algorithm may learn the redundant
clause c = {¬v1, vk}. Note that c is redundant since v1 ∧ (EPC \ c) 
up vk and
¬vk ∧ (EPC \ c) 
up ¬v1. For this reason, after running Algorithm 1 we use
the minimisation procedure described in [11] to remove redundant clauses while
maintaining propagation completeness.

Auxiliary Variables. The algorithm we described so far only works on a fixed
vocabulary Σ consisting of the input and output variables of the encoding.
For certain operators, there no polynomially-sized CNF encodings if we restrict
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Algorithm 2. Greedy algorithm for introducing auxiliary variables
1 E ← genPCE(E0, Eref , Σ)

2 while Aux 
= ∅ do
3 best ← undef
4 foreach aux ∈ Aux do
5 E′ ← genPCE(E0, Eref ∧ Def(aux ), Σ ∪ {aux})
6 if |E′| < |E| then
7 E ← E′

8 best ← aux

9 if best = undef then return E
10 Σ ← Σ ∪ {best}
11 Eref ← Eref ∧Def(best )
12 Aux ← Aux \{best}
13 return E

ourselves to the input/output variables only. For this reason, we extended our
algorithm to further reduce the size of the encoding while maintaining propa-
gation completeness by heuristically adding auxiliary variables. Given a set of
auxiliary variables Aux, we extend the reference encoding ERef by adding the def-
initional clauses Def(aux) for each auxiliary variable aux ∈ Aux: Def(aux) ∧ ERef .
For example, to introduce an auxiliary variable a ≡ x∧ y for inputs x, y, we add
the clauses corresponding to the formula a ⇔ (x∧y) to ERef and run Algorithm 1
on Σ ∪ {a}.

We implemented a greedy algorithm that iteratively repeats this process as
shown in Algorithm 2. We denote by genPCE the procedure of generating a prop-
agation complete encoding from a reference encoding given in Algorithm 1. We
denote by |E| the size of an encoding as the number of clauses. The algorithm
takes as input a reference encoding ERef , a fixed alphabet Σ as well as a set
of auxiliary variables Aux. It initially computes the PCE over the input/output
variables Σ. For each auxiliary variable aux in the current set of auxiliary vari-
ables, it computes the PCE over the alphabet Σ ∪{aux} from reference encoding
ERef ∧Def(aux), where Def(aux) is the set of definitional clauses for aux. It then
chooses the auxiliary variable best that minimises the encoding the most, and
adds it to the reference encoding. The process is repeated on the remaining aux-
iliary variables Aux \ {aux} until no minimisation is achieved. Note that this is a
greedy algorithm, and does not guarantee finding a minimal size encoding w.r.t.
the given auxiliary variables. For the set of potential auxiliary variables Aux, we
generate Boolean combinations over the input/output variables up to a limited
depth. As a heuristic, we also add to the set Aux the auxiliary variables used by
the reference encoding.

Generating Propagation Complete Encodings. Algorithm 1 solves an inherently
hard problem and may call a SAT solver an exponential number of times. It is
intended to be used as a tool to support encoding design rather than generating
complete encodings.
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Fig. 4. Composition of encoding primitives to build a n-bit less than comparator.

To explore the feasibility of generating PCEs, we analysed the propagation
completeness of encodings used in the CVC4 SMT solver [5]. CVC4 uses small
circuit primitives to build more complex encodings of word-level bit-vector oper-
ators. Figure 4 shows an example of how small circuits for unsigned less than
(a < b) primitives can be composed to build a more complex encoding to com-
pare n-bit bit-vectors. Each unsigned less than comparator (ULT) has three
input bits (a, b, r) and one output bit (o). There are different ways that this
primitive can be encoded into CNF. A possible PCE is: {{o,¬b, a}, {o,¬b,¬r},
{a,¬r, o}, {¬o, b,¬a}, {¬o, r,¬a}, {¬o, r, b}}. If r has value ⊥, then o will be �
iff a < b. Otherwise, if r has value �, then o will be � iff a ≤ b. This structure
allows the ULTs to be chained together to form an n-bit PCE for the ULT com-
parator. A similar construction can be done for other encoding primitives and
is common in circuit design. For example, full-adders can be chained to form a
ripple-carry adder. Note that, if the encoding primitives are not PC, then their
composition will not be PC. However, the converse does not necessarily hold.

Table 1 shows the size of the encodings generated by Algorithm 1 and by
introducing auxiliary variables compared to the size of the reference encoding
ERef , starting with an empty initial encoding E0. As encoding primitives (prim),
we have considered the if-then-else operator (ite-gadget), an unsigned less than
comparator (ult-gadget), a signed less than comparator (slt-gadget), the full-
adder (full-add), adder with base 4 (full-add-base4), bit-count circuits (bc3to2,
bc7to3), 2 x 2 multiplication circuit (mult2), and multiplication by a constant
(mult-const3, mult-const5, mult-const7). These encoding primitives are then com-
posed (comp) to build n-bit bit-vector operators.

These experiments were run on Intel Xeon X5667 processors (3.00 GHz) run-
ning Fedora 20 with a timeout of 3 h and a memory limit of 32 GB. In case of
timeout of the greedy algorithm, we present the smallest encoding found until
the timeout. The reference encodings used were the default implementations in
CVC4. From the encoding primitives presented in Table 1, ite is the only encoding
primitive that is propagation complete in CVC4. This scenario is not restricted
to CVC4, and most state-of-the-art SMT solvers do not build PCEs (see Sect. 5
for further details).

For small primitives our algorithms can easily find PCEs with small size even
when restricting the set of variables to inputs and outputs. For more complex
circuits, as mult-4bit, the PCE can be much larger than the non-PCE. When gen-
erating PCEs with Σ containing auxiliary variables, we can obtain considerably
smaller encodings. For example, for the addition operator add-4bit the number
of clauses decreased from 336 to 43 by only adding 3 auxiliary variables. In this
case, the auxiliary variables that are added by our greedy algorithm correspond
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Table 1. Generation of PCEs for small encoding primitives and their composition

to the carry bits from the chained adders. Note that the PCE for add-4bit formed
by chaining the propagation complete full-adder results in an encoding with 20
variables and 60 clauses, which has a similar size to the PCE found by our greedy
algorithm.

Even though the algorithm can take a considerable amount of time to find
small PCEs with auxiliary variables, our goal is not to apply such algorithm to
large formulae but only to find PCEs of primitives. This process is done once,
offline. Afterwards, the encoding primitives can be chained together to form
larger encodings for any bit-width. We verified with our algorithm that for small
bit-widths the composition of PCEs for adders and comparators is propagation
complete, while for the multiplier is not. We conjecture that the existence of a
reasonably-sized propagation complete multiplier is unlikely, as this would help
to efficiently solve hard factorization problems.

5 Experimental Evaluation

To explore the impact of propagation strength on performance, we implemented
the PCE primitives generated in Sect. 4 in the CVC4 SMT solver [5]. CVC4 is a
competitive solver that ranked 2nd in the 2015 SMT-COMP bit-vector division.
We instrumented the solver’s bit-blasting procedure to use the primitives to
build more complex encodings of word-level bit-vector operators.

We focused on the following bit-vector operators: comparison, addition and
multiplication. The rest of the bit-vector operations were either already propa-
gation complete (e.g. bitwise and), or could be expressed in terms of other opera-
tions. We implemented n-bit circuits using the primitives described in Sect. 4. For
addition, we used the propagation complete full-adder (cvcAO) and for compar-
ison the ult-gadget and slt-gadget (cvcLO). For multiplication we implemented
variants that use PC primitives: shift-add multiplication (cvc vs cvcMO), tree
reduction (cvcT vs cvcTO) and multiplication by blocking (cvcB2 vs cvcB2O).
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(a) Shift-add multiplier (b) Tree reduction multiplier

(c) Blocking multiplier

Fig. 5. The impact of using PC primitives in various kinds of multiplication circuits

We append O to the solver’s name to denote that the propagation complete sub-
circuits are enabled. All implementations of multiplications that use propagation
complete sub-circuits use the PC full-adder for adding the partial products, while
blocking multiplication also uses the propagation complete 2 by 2 multiplication
sub-circuit mult2.

We used 31066 quantifier-free bit-vector benchmarks from SMT-LIB v2.0 [6].
Experiments in this section were run on the StarExec [38] cluster infrastructure
on Intel Xeon E5-2609 processors (2.40 GHz) running Red Hat Enterprise Linux
Workstation release 6.3 (Santiago) with a timeout of 600 s seconds and a memory
limit of 200 GB.

Figure 5 quantifies the impact of the PC components in the various kinds
of multiplication circuits we implemented. The scatter plots are on the entire
31066 set of benchmarks, and are on a log-scale. Each point is a benchmark,
and the x and y-axis represent the time (seconds) taken by CVC4 to solve
the benchmark with the given configuration. Using the propagation complete
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Table 2. Comparison of performance of propagation complete encodings in CVC4

primitives (cvcMO, cvcTO and cvcB2O) consistently improves performance over
their default implementations. Although the performance improvement is not
dramatic, we believe it is consistent enough to show that propagation strength is
an important characteristic of encodings. Since cvcMO had the best performance
between multiplication circuits that use propagation complete sub-circuits, we
considered this encoding for further evaluation.

Table 2 gives the number of problems solved and the time taken to solve them
for CVC4 without propagation complete primitives (cvc) and with propagation
complete primitives, namely: shift-add multiplier (cvcMO); shift-add multiplier
and full-adder (cvcAMO); and shift-add multiplier, full-adder and comparison
(cvcALMO). Due to space constraints we removed rows where the number of
problems solved by all configurations was the same (see Appendix for full table).
Table 2 shows that adding each PC primitives increases performance, with the
configuration using PC primitives for addition, comparison and multiplication
(cvcALMO) solving the most.

We believe this improvement is not limited to CVC4 but will translate to
other solvers as well. We examined the source code of other competitive SMT
solvers, such as boolector [13], stp2 [28], yices2 [22] and z3 [15], and their implemen-
tation of addition is not propagation complete. Therefore, although the notion
of propagation complete encodings is not new, it is not widely applied to solver
encoding design. Preliminary results from implementing the PC full-adder in the
CBMC model-checker [14] also showed an improved performance. The improve-
ment is also not limited to constraint solvers that use CDCL SAT solvers but is
also expected for look-ahead SAT solvers [29]. These solvers are geared towards
propagation and are even more likely to take advantage of the increased inference
power than CDCL SAT solvers.

We have shown that the propagation complete encoding primitives our algo-
rithm generated can be used to build encodings of bit-vector operators in an SMT
solver. The results are promising considering we are only strengthening a small
part of the overall problem. Furthermore the propagation complete encodings
have been automatically generated from scratch, while the existing encodings
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had been optimized by hand. This highlights the importance of propagation
complete encoding in encoding design and that our proposed framework can
help practitioners improve encodings.

6 Related Work

The notion of propagation strength has been explored under various names such
as unit refutation complete [16] and propagation complete encodings (PCEs) [11]
in AI knowledge compilation. A formula is unit refutation complete [16] iff any
of its implicates can be refuted by unit propagation. Here we refer to refutation
as being the process of proving the implication E |= l by proving E ∧ ¬l |= ⊥.
Bordeaux et al. [10] consider variations of unit refutation complete encodings,
such as its disjunctive closure and a superset of unit refutation complete encod-
ings where variables can be existentially quantified and unit refutation concerns
only implications from free variables. Gwynne and Kullmann [25] introduce a
general hierarchy of CNF problems based on “propagation hardness” and gen-
eralise the notion of unit refutation complete encodings.

PCEs are a proper subset of refutation complete encodings [25] and have been
introduced by Bordeaux and Marques-Silva [11] for finding encodings where only
using unit propagation suffices to deduce all the literals that are logically valid.
The authors reduce the problem of generating PCEs to iteratively solving QBF
formulas. We consider PCEs using an abstract satisfaction framework and rely
on a SAT solver’s efficient UP routine to check whether a clause is empower-
ing. Since QBF is a PSPACE-complete problem, it is unclear that the approach
from [11] would scale better than ours. Because [11] has no implementation that
we are aware of, we cannot compare against them. Their framework can also sup-
port adding auxiliary variables to PCEs but this approach was not explored by
the authors. Our approach supports generating encodings over a limited alphabet
of auxiliary variables and includes an implementation and extensive experimen-
tal results that show performance gains. The work in [2] shows that checking
whether a clause is empowering (it is entailed by the given CNF formula and it
increases the propagation power of the formula) is co-NP complete. It also shows
the existence of operations that have only exponential PCEs. This supports our
targeting of small encoding primitives as opposed to n-bit circuits which is likely
intractable.

Propagation completeness has also been considered in CSP (e.g. [3,8])
because of its connection to Domain Consistency, also known as Generalised Arc
Consistency (GAC): when a constraint is encoded into SAT over some Finite-
Domain variables, if the encoding of the constraint is propagation complete, then
unit propagation on the SAT encoding effectively finds the same implications as
Domain Consistency. In CSP it is common to consider GAC over procedural
propagators [3] of specific constraints. Propagators can also be decomposed into
primitive constraints that can be translated to SAT [8]. GAC has been adopted
in SAT [24] and many encodings have this property [1,4,37]. However, GAC is
usually only enforced on input/output variables and not on auxiliary variables.
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PCEs consider a stronger notion of propagation strength since GAC is enforced
on both input/output variables as well as on auxiliary variables.

Trevor Hansen’s PhD [28] (independently) touches on many of the techniques
we have used. He considers both ‘bit-blasting’ encodings and forward propaga-
tors (algorithms that implement abstract transformers directly), but treats these
as independent approaches, omitting the link we show in Sect. 3. Although he
tests the propagators for propagation completeness and even generates clauses
to improve the propagators, he does not use this approach to generate com-
plete encodings, nor does he perform minimisation. The SMT solver Beaver [30]
also computes pre-synthesised templates for bit-vectors operators which are opti-
mised offline using logic synthesis tools such as the ABC logic synthesis engine [7].
However, these templates are only computed for predefined bit-widths and are
not PC. Hansen makes use of Reps’ et al. [36] work on computing best abstract
transformers via a lifted version of Stalmarck’s algorithm. Algorithm 1 similarly
uses breadth-first traversal, but the key difference is in how and when the algo-
rithms are used. In [36] and most applications of their work [31], the result of the
best abstract transformer is computed on-line as part of a search. We compute
an encoding that gives the best abstract transformer off-line as part of solver
development.

7 Conclusion

By using the abstract satisfaction framework we can characterise the space of
encodings, the effects of reasoning and the link between them. Propagation com-
plete encodings allow an increase of inference power that can be exploited by
CDCL SAT solvers. We have showed that these encodings are captured by our
abstract satisfaction formalism which allows us to reason about them and their
extensions (Sect. 3). It is possible to compute subset-minimal propagation com-
plete encodings and for various key operations these are tractably computable
and often smaller than conventional encodings. For more complex encodings,
we have shown that greedily introducing auxiliary variables can generate sig-
nificantly smaller propagation complete encodings (Sect. 4). Implementing these
in the CVC4 SMT solver gives performance improvements across a wide range
of benchmarks (Sect. 5). It is hoped that this work will contribute to a more
theoretically rigorous approach to encoding design.

Linking encodings to abstract transformers has many possible applications.
Abstract transformers are functions on ordered sets and are therefore partially
ordered. This gives a way of comparing the propagation strength of different encod-
ings or investigating the effects of pre and in-processing techniques. This is partic-
ularly important as for certain operators there are no polynomially sized PCEs.
A quantitative measure of propagation strength is a useful practical alternative.
Proof-theoretic measures can be expressed as properties of the syntactic repre-
sentation lattice, for example proof length becomes path length. Likewise solver
run-time is bounded by the length of paths in UP(2CΣ+ ). Finally, the abstract
satisfaction viewpoint provides a means of exploring many interesting questions
about composition of encodings and when they preserve propagation strength.
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