
Abstraction-driven Concolic Testing

Przemys�law Daca1(B), Ashutosh Gupta2, and Thomas A. Henzinger1

1 IST Austria, Klosterneuburg, Austria
przemek@ist.ac.at

2 Tata Institute for Fundamental Research, Mumbai, India

Abstract. Concolic testing is a promising method for generating test
suites for large programs. However, it suffers from the path-explosion
problem and often fails to find tests that cover difficult-to-reach parts of
programs. In contrast, model checkers based on counterexample-guided
abstraction refinement explore programs exhaustively, while failing to
scale on large programs with precision. In this paper, we present a novel
method that iteratively combines concolic testing and model checking to
find a test suite for a given coverage criterion. If concolic testing fails to
cover some test goals, then the model checker refines its program abstrac-
tion to prove more paths infeasible, which reduces the search space for
concolic testing. We have implemented our method on top of the concolic-
testing tool Crest and the model checker CpaChecker. We evaluated
our tool on a collection of programs and a category of SvComp bench-
marks. In our experiments, we observed an improvement in branch cov-
erage compared to Crest from 48% to 63 % in the best case, and from
66% to 71 % on average.

1 Introduction

Testing has been a corner stone of ensuring software reliability in the industry,
and despite the increasing scalability of software verification tools, it still remains
the preferred method for debugging large software. A test suite that achieves
high code coverage is often required for certification of safety-critical systems,
for instance by the DO-178C standard in avionics [2].

Many methods for automated test generation have been proposed [9,10,13,
18,28,32,36,37]. In the recent years, concolic testing has gained popularity as
an easy-to-apply method that scales to large programs. Concolic testing [33,35]
explores program paths by a combination of concrete and symbolic execution.
This method, however, suffers from the path-explosion problem and fails to pro-
duce test cases that cover parts of programs that are difficult to reach.

Concolic testing explores program paths using heuristic methods that select
the next path depending on the paths explored so far. Several heuristics for path

This research was supported in part by the European Research Council (ERC) under
grant 267989 (QUAREM) and by the Austrian Science Fund (FWF) under grants
S11402-N23 (RiSE) and Z211-N23 (Wittgenstein Award).

c© Springer-Verlag Berlin Heidelberg 2016
B. Jobstmann and K.R.M. Leino (Eds.): VMCAI 2016, LNCS 9583, pp. 328–347, 2016.
DOI: 10.1007/978-3-662-49122-5 16

Abstraction-driven Concolic Testing 329

exploration have been proposed that try to maximize coverage of concolic test-
ing [11,19,20], e.g., randomly picking program branches to explore, driving explo-
ration toward uncovered branches that are closest to the last explored branch,
etc. These heuristics, however, are limited by their “local view” of the program
semantics, i.e., they are only aware of the (in)feasibility of the paths seen so
far. In contrast to testing, abstraction-based model checkers compute abstract
reachability graph of a program [3,26]. The abstract reachability graph repre-
sents a “global view” of the program, i.e., the graph contains all feasible paths.
Due to abstraction, not all paths contained in the abstract reachability graph
are guaranteed to be feasible, therefore abstract model checking is not directly
useful for generating test suites.

In this paper, we present a novel method to guide concolic testing by an
abstract reachability graph generated by a model checker. The inputs to our
method are a program and set of test goals, e.g. program branches or loca-
tions to be covered by testing. Our method iteratively runs concolic testing
and a counterexample-guided abstraction refinement (CEGAR) based model
checker [14]. The concolic tester aims to produce test cases covering as many goals
as possible within the given time budget. In case the tester has not covered all
the goals, the model checker is called with the original program and the remain-
ing uncovered goals marked as error locations. When the model checker reaches
a goal, it either finds a test that covers the goal or it refines the abstraction. We
have modified the CEGAR loop in the model checker such that it does not ter-
minate as soon as it finds a test, but instead it removes the goal from the set
of error locations and continues building the abstraction. As a consequence, the
model checker refines the abstraction with respect to the remaining goals. After
the model checker has exhausted its time budget, it returns tests that cover some of
the goals, and an abstraction. The abstraction may prove that some of the remain-
ing goals are unreachable, thus they can be omitted by the testing process.

We further use the abstraction computed by the model checker to construct
a monitor, which encodes the proofs of infeasibility of some paths in the control-
flow graph. To this end, we construct a program that is an intersection of the
monitor and the program. In the following iterations we run concolic testing
on the intersected program. The monitor drives concolic testing away from the
infeasible paths and towards paths that still may reach the remaining goals.
Due to this new “global-view” information concolic testing has fewer paths to
explore and is more likely to find test cases for the remaining uncovered goals. If
we are still left with uncovered goals, the model checker is called again to refine
the abstraction, which further reduces the search space for concolic testing. Our
method iterates until the user-defined time limit is reached.

The proposed method is configured by the ratio of time spent on model
checking to the time spent on testing. As we demonstrate in Sect. 2, this ratio
has a strong impact on the test coverage achieved by our method.

We implemented our method in a tool called Crabs, which is built
on top of a concolic-testing tool Crest [11] and a CEGAR-based model
checker CpaChecker [8]. We applied our tool on three hand-crafted examples,
three selected published examples, and on 13 examples from an SvComp category.

330 P. Daca et al.

We compared our implementation with two tools: a concolic toolCrest [11], and a
test-case generatorFshell based on bounded model checking [27]. The test objec-
tive was to cover program branches, and we calculate test coverage as the ratio of
branches covered by the generated test suite to the number of branches that have
not been proved unreachable. For a time limit of one hour, our tool achieved cov-
erage of 63% compared to 48% by other tools in the best case, and average cover-
age of 71% compared to 66% on the category examples. In absolute numbers, our
experiments may not appear very exciting. However, experience suggests that in
automated test generation increasing test coverage by every 1% becomes harder.
The experiments demonstrate that our method can cover branches that are dif-
ficult to reach by other tools and, unlike most testing tools, can prove that some
testing goals are unreachable.

To summarize, the main contributions of the paper are:

– We present a novel configurable algorithm that iteratively combines concolic
testing and model checking, such that concolic testing is guided by a program
abstraction and the abstraction is refined for the remaining test goals.

– We also present a modified CEGAR procedure that refines the abstraction
with respect to the uncovered goals.

– We provide an open-source tool [1] that implements the presented algorithm.
– An experimental evaluation of our algorithm and comparison with other

methods.

The paper is organized as follows. In Sect. 2 we motivate our approach on
examples. Section 3 presents background notation and concolic testing. In Sect. 4
we present our modified CEGAR procedure, and in Sect. 5 we describe our main
algorithm. Finally, Sect. 6 describes the experimental evaluation.

2 Motivating Example

In this section, we illustrate effectiveness of our method on two examples:
a hand-crafted program, and a benchmark for worst-case execution time analysis
adapted from [4].

Simple Loop. In Fig. 1 we present a simple program with a single while loop. The
program iterates 30 times through the while loop, and in every iteration it reads
an input. The test objective is to cover all locations of the program, in particular
to cover location 8, where the library function foo() is called. To cover the call
site to foo() the inputs in all iterations must equal 10, so only one out of 230 ways
to traverse the loop covers foo(). The standard concolic testing easily covers all
locations, except for foo() since it blindly explores exponentially many possible
ways to traverse the loop. As a consequence, a concolic-testing tool is not able to
generate a complete test suite that executes foo() within one hour.

Our algorithm uses a concolic tester and model checker based on predicate
abstraction, and runs them in alternation. First, we run concolic tester on the
example with a time budget of 1s. As we have observed earlier, the concolic

Abstraction-driven Concolic Testing 331

int i=0; bool b = false;

while (i<30){

int x = input();

if (x != 10)

b=true;

i++;

}

if (b == false)

foo();

(a)

(b)(b)

Fig. 1. (a) A simple while program. (b) The control-flow graph of the program.

tester covers all locations of the program except for foo(). Then, we declare the
call site to foo() as an error location and call the model checker on the program
for 5s. This time budget is sufficient for the model checker to perform only a few
refinements of the abstraction, without finding a feasible path that covers foo().
In particular, it finds an abstract counterexample that goes through locations
1, 2, 3, 4, 5, 6, 2, 7, 8, 9. This counterexample is spurious, so the refinement proce-
dure finds the predicate “b holds.” The abstraction refined with this predicate
is showed in Fig. 2(a).

In the second iteration of the algorithm, we convert the refined abstraction
into a monitor M shown in Fig. 2(b). A monitor is a control-flow graph that
represents all the paths that are allowed by the abstraction. A monitor is con-
structed by removing subsumed states from the abstraction. We say that an
abstract state sa is subsumed by a state s′

a, if sa = s′
a, or s′

a is more general
than sa. To this end, the monitor includes all the abstract states that are not
subsumed and the edges between them. The edges to the subsumed states are
redirected to the states that subsume them.

The monitor contains all the feasible paths of the program and is a refinement
of the control-flow graph of the original program. Therefore, we may perform
our subsequent concolic testing on the monitor interpreted as a program. In our
example, the structure of the monitor in Fig. 2(b) encodes the information that
foo() can be reached only if b is never set to true. The refined control flow
graph makes it easy for concolic testing to cover the call to foo() — it can
simply backtrack whenever the search goes to the part of the refined program
where foo() is unreachable. Now, if we run Crest on the monitor M then it
finds the test case in less than 1s.

Nsichneu. The “nsichneu” example is a benchmark for worst-case execution
time analysis [24] and it simulates a Petri net. This program consists of a large

332 P. Daca et al.

Fig. 2. (a) Abstraction refined with the predicate b. Dashed arrows show subsumption
between abstract state. (b) The monitor obtained from the abstraction.

number of if-then-else statements closed in a deterministic loop. The program
maintains several integer variables and fixed-sized arrays of integers. These data
objects are marked as volatile meaning that their value can change at any
time. We made their initial values the input to the program.

The structure of this benchmark makes it challenging for many testing tech-
niques. Testing based on bounded model checking (such as Fshell[27]) unwinds
the program up to a given bound and encodes the reachability problem as a
constraint-solving problem. However, this method may not find goals that are
deep in the program, as the number of constraints grows quickly with the bound.
Test generation based on model checking [7] also fails to deliver high coverage
on this example. The model checker needs many predicates to find a feasible
counterexample, and the abstraction quickly becomes expensive to maintain. In
contrast, pure concolic testing quickly covers easy-to-reach parts of the program.
However, later it struggles to cover goals that are reachable by fewer paths.

In our method, we run concolic testing and model checking alternatively,
each time with a time budget of 100s. Every iteration of model checking gives
us a more refined monitor to guide the testing process. Initially, our approach

Abstraction-driven Concolic Testing 333

covers goals at similar rate as pure concolic testing. When the easy goals have
been reached, our tool covers new goals faster than concolic testing, due to the
reachability information encoded in the monitor, which allows the testing process
to skip many long paths that would fail to cover new goals. After one hour, our
tool covers 63% of the test goals compared to 48% by concolic testing.

50%

60%

70%

0% 25% 50% 75% 100%

C
ov

er
ag

e

testing
testing+model checking

Fig. 3. Test coverage vs. ratio of test-
ing to total time in our method.

Furthermore, our method is config-
urable by the ratio of time spent on model
checking and concolic testing. In Fig. 3 we
present the effect of changing this ratio
on the example. If we run only concolic
testing then we obtain only 48% cover-
age. As we decrease the time spent on con-
colic testing, the coverage increases up to
64% and then starts decreasing. On the
other side of the spectrum, we generate
tests by model checking (as in [7]) and
obtain only 13.9% coverage. This obser-
vation allows one to configure our method
for most effective testing depending on the class of examples.

3 Preliminaries

In this paper, we consider only sequential programs and, for ease of presenta-
tion, we consider programs without procedures. Our method, however, is easily
applicable on programs with procedures and our implementation supports them.

Let V be a vector of variables names and V ′ be the vector of variables
obtained by placing prime after each variable in V . Let F (V) be the set of
first-order-logic formulas that only contain free variables from V .

Definition 1 (Program). A program P is a tuple (V,Loc, �I , E), where V is a
vector of variables, Loc is a finite set of locations, �I ∈ Loc is the initial location,
and E ⊆ Loc × F (V, V ′) × Loc is a set of program transitions.

A control-flow graph (CFG) is a graph representation of a program. We define
the product of two programs Pi=1..2 = (V,Loci, �

I
i , Ei) as the program P1 ×P2 =

(V,Loc1 × Loc2, (�I
1, �

I
2), E), where

E = {((�1, �2), e, (�′
1, �

′
2)) | (�1, e, �′

1) ∈ E1 ∧ (�2, e, �′
2) ∈ E2}.

A guarded command is a pair of a formula in F (V) and a list of updates
to variables in V . For ease of notation, we may write the formula in a pro-
gram transition as a guarded command over variables in V . For example, let
us consider V = [x, y]. The formula represented by the guarded command
(x > y, [x := x + 1]) is x > y ∧ x′ = x + 1 ∧ y′ = y. In our notation if a
variable is not updated in the command then the variable remains unchanged.
We use a special command variable := input() to model inputs to the program,

334 P. Daca et al.

which logically means unconstrained update of the variable. For example, the
formula represented by the guarded command x := input() is y′ = y. For an
expression or formula F we write F [/i] to denote a formula that is obtained
after adding subscript i + 1 to every primed variable and i to every unprimed
variable.

A valuation is a mapping from the program variables V to values in the data
domain. A state s = (l, v) consists of a program location l and a valuation v. For
a state s = (l, v) and a variable x, let s(x) denote the valuation of x in v and let
loc(s) = l. A path is a sequence e0, . . . , en−1 of program transitions such that e0 =
(�I , ,), and for 0 ≤ i < n, ei = (�i, , �i+1) ∈ E. An execution corresponding to
the path e0, . . . , en−1 is a sequence of states s0 = (�0, v0), . . . sn = (�n, vn), such
that (1) �0 = �I , and (2) for all 0 ≤ i < n, if ei = (, ci(V, V ′), �′) then �i+1 = �′

and ci(vi, vi+1) holds true. We assume that for each execution of the program
there exist exactly one corresponding path, i.e., there is no non-determinism in
the program except inputs.

A path is represented symbolically by a set of path constraints, which we
define as follows. Let frame(x) be the formula

∧
y∈V :y �=x y′ = y. Let rk be a

variable that symbolically represent the kth input on some path. We assume
the program does not contain any variable named r. Let e0, . . . , en−1 be a path.
If ei = (, [F, x := exp],) then let Ci = (F ∧ x′ = exp ∧ frame(x))[/i] and if
ei = (, [F, x := input()],) then let Ci = (F ∧ frame(x))[/i] ∧ xi+1 = rk, where
r0 up to rk−1 have been used in C0, . . . , Ci−1. The path constraints for the path
is C0, . . . , Cn−1.

A test of the program is a sequence of values. A test u1, . . . , uk realizes an
execution s0, . . . , sn and its corresponding path e0, . . . , en−1 if the following con-
ditions hold true:

– if n = 0, then k = 0.
– If n > 0 and en−1 = (, x := input(),), sn(x) = uk and u1, . . . , uk−1 realizes

s0, . . . , sn−1.
– Otherwise, u1, . . . , uk realizes s0, . . . , sn−1.

A path is said to be feasible if there exists a test that realizes it. In the above,
we assume that the program does not read a variable until its value is initialized
within the program or explicitly taken as input earlier. Thus, the initial values
are not part of tests.

In the context of test suit generation, we may refer to a transition as a branch
if the source location of the transition has multiple outgoing transitions. A test
t covers branch e if the test realizes a path that contains e. Branch e is reachable
if there exists a test t that covers e. The test generation problem is to find a set
of tests that covers every reachable branch in the program.

3.1 Concolic Testing

In concolic testing, a test suite is generated using both symbolic and concrete
execution. In Algorithm 1 we reproduce the procedure; the presentation is mod-
ified such that we may use the procedure in our main algorithm. For simplicity

Abstraction-driven Concolic Testing 335

Algorithm 1. Concolic(P = (V,L, �I , E), G, tb)
Require: program P = (V, L, �I , E), uncovered branches G, time budget tb
Ensure: tests suite, uncovered branches
1: tst ← ();
2: � ← �I ; arbitrary v; S ← λx ∈ V.⊥ � initial values
3: pathC ← (); suite ← ∅; k = 0;
4: while ct < tb and G �= ∅ do � ct always has the current time
5: if ∃e = (�, [F, x := exp], �′) ∈ E such that v |= F then � expand
6: G ← G − {e}; � ← �′;
7: pathC.push(F (S)) � F (S) is substitution
8: if exp = input() then
9: if |tst| = k then w ← randV al(); tst.push(w); else w ← tst(k);

10: v ← v[x �→ w]; S ← S[x �→ rk]; k = k + 1
11: else
12: v ← v[x �→ exp(v)]
13: S ← S[x → UpdateSymMem(S, exp, v)]
14: else � backtrack
15: suite ← suite∪{tst}
16: if ∃i < |pathC| such that φ =

∧
j<i pathC(j) ∧ ¬pathC(i) is sat then

17: m = getModel(φ)
18: l ← number of distinct ris that occur in φ
19: tst ← (m(r0), . . . , m(rl−1))
20: goto 2
21: else break;
22: return (suite, G)

of the presentation, we assume that there are at most two outgoing transitions
at any program location and their guards are complementary to each other. This
assumption does not restrict the applicability of the method.

The procedure takes a program P = (V,Loc, �I , E), a set of goal branches G,
and a time budget tb as input, and returns a test suite that covers a subset of G
within the time budget tb. The procedure maintains a symbolic memory S, which
is a partial function from the program variables V to symbolic expressions. We
use the symbol ⊥ to denote an undefined value in a partial function. In addition,
the procedure uses the following data structures: the current location �, current
valuation v of variables, list pathC that contains constraints along the current
path, test tst that produces the current path, counter k of inputs that have been
read on the current path, and a set suite of tests seen so far. We initialize all the
collecting data structures to be empty, � is initialized to be the initial location
�I , and the symbolic memory to be empty.

The algorithm proceeds by extending the current path by a transition in
each iteration of the while loop at line 4. The loop runs until there are no goals
to be covered or the procedure runs out of its time budget. In the loop body,
the condition checks if it is possible to extend the current path by a transition
e = (�, [F, x := exp], �′). If the guard of e satisfies the current valuation v then e
is removed from the set of goals and the current location is updated to �′. In case

336 P. Daca et al.

e has an input command x := input(), then (1) the algorithm updates v(x) to
the kth value from tst if it is available, (2) otherwise v(x) is assigned a random
value w, and w is appended to tst. In either case, S is updated by a fresh symbol
rk, assuming r0 to rk−1 have been used so far. If e is not an input command,
then both concrete and symbolic values of x are updated in v and S at line 10.

The symbolic memory is updated by the procedure UpdateSymMem.
UpdateSymMem first computes exp(S), and if the resulting formula is beyond
the capacity of available satisfiability checkers, then it simplifies the formula by
substituting the concrete values from v for some symbolic variables to make the
formula decidable in the chosen theory. UpdateSymMem is the key heuristics in
concolic testing that brings elements of concrete testing and symbolic execution
together. For details of this operation see [33,35].

At line 7, pathC is extended by F (S), which is the formula obtained after
substituting every variable x occurring in F by S(x). We assume that variables
are always initialized before usage, so S is always defined for free variables in F .

In case the current path cannot be further extended, at lines 16–19 the pro-
cedure tries to find a branch on the path to backtrack. For a chosen branch with
index i, a formula is built that contains the path constraints up to i − 1 and
the negation of the ith constraint. If this formula is satisfiable, then its model
is converted to a new test and path exploration restarts. Note that the branch
can be chosen non-deterministically, which allows us to choose a wide range of
heuristics for choosing the next path. For example, the branch can be chosen at
random or in the depth-first manner by picking the largest unexplored branch i.
Another important heuristic that is implemented in Crest is to follow a branch
that leads to the closest uncovered branch.

4 Coverage-Driven Abstraction Refinement

In this section, we present a modified version of CEGAR-based model checking
that we use in our main algorithm. Our modifications are: (1) the procedure
continues until all goal branches are covered by tests, proved unreachable or
until the procedure reaches the time limit, (2) the procedure always returns an
abstract reachability graph that is closed under the abstract post operator.

The classical CEGAR-based model checking executes a program using an
abstract semantics, which is defined by an abstraction. Typically, the abstraction
is chosen such that the reachability graph generated due to the abstract execution
is finite. If the computed reachability graph satisfies the correctness specifica-
tion, then the input program is correct. Otherwise, the model checker finds an
abstract counterexample, i.e., a path in the reachability graph that reaches an
error state. The abstract counterexample is spurious if there is no concrete exe-
cution that corresponds to the abstract counterexample. If the counterexample
is not spurious then a bug has been found and the model checker terminates. In
case of a spurious counterexample, the refinement procedure refines the abstract
model. This is done by refining the abstraction to remove the spurious coun-
terexample, and the process restarts with the newly refined abstraction. After

Abstraction-driven Concolic Testing 337

a number of iterations, the abstract model may have no more counterexamples,
which proves the correctness of the input program.

In this paper, we use predicate abstraction for model checking. Let π be
a set of predicates, which are formulas over variables V . We assume that π
always contains the predicate “false”. We define abstraction and concretization
functions α and γ between the concrete domain of all formulas over V , and the
abstract domain of 2π:

α(ρ) = {ϕ ∈ π | ρ =⇒ ϕ} γ(A) =
∧

A,

where A ⊆ π, and ρ is a formula over V . An abstract state sa of our program is
an element of Loc × 2π. Given an abstract state (�, A) and a program transition
(�, φ, �′), the abstract strongest post is defined as:

spa(A,φ) = α((∃V. γ(A) ∧ φ(V, V ′))[V ′/V]).

The abstraction is refined by adding predicates to π.
In Algorithm 2, we present the coverage-driven version of the CEGAR pro-

cedure. We do not declare error locations or transitions, instead the procedure

Algorithm 2. AbstractMC(P = (V,L, �I , E), π, G, tb)
Require: program P = (V, L, �I , E), predicates π, uncovered branches G,

time budget tb
Ensure: tests, remaining branches, branches proved unreachable, new predicates,

abstract reachability graph
1: worklist ← {(�I , ∅)}; reach ← ∅; subsume ← λsa.⊥; parent((�0, ∅)) ← ⊥
2: while worklist �= ∅ do
3: choose (�, A) ∈ worklist
4: worklist ← worklist \ {(�, A)}
5: if false ∈ A or ∃sa ∈ parent∗((�, A)). sa ∈ sub then continue
6: reach ← reach ∪ {(�, A)}
7: if ∃(�, A′) ∈ reach − sub. A ⊆ A′ then subsume ← subsume[(�, A) �→ (�, A′)]
8: else
9: if ∃(�, A′) ∈ reach − sub. A′ ⊆ A then subsume ← subsume[(�, A′) �→

(�, A)]
10: for each e = (�, ρ, �′) ∈ E do
11: A′ ← spa(A, ρ);worklist ← worklist ∪ {(�′, A′)}
12: parent((�′, A′)) = (�, A); trans((�′, A′)) = e
13: if e ∈ G then
14: if ∃m |= pathCons(path to (�′, A′)) then
15: G ← G − {e}
16: suite ← suite∪{the sequence of values of rks in m}
17: else
18: if ct < tb then � ct has current time
19: π ← π∪ Refine((�′, A′)); goto 1
20: U = G − {e | ∃sa ∈ reach. trans(sa) = e} � Unreachable goals
21: return (suite,G − U ,U ,π,(reach, parent, subsume, trans))

338 P. Daca et al.

takes goal transitions G as input along with a program P = (V,Loc, �I , E), pred-
icates π, and a time budget tb. Reachable states are collected in reach, while
worklist contains the frontier abstract states whose children are yet to be com-
puted. The procedure maintains functions parent and trans, such that if an
abstract state s′

a is a child of a state sa by a transition e, then parent(s′
a) = sa

and trans(s′
a) = e. To guarantee termination, one needs to ensure that abstract

states are not discovered repeatedly. Therefore, the procedure also maintains
the subsume function, such that subsume((�, A)) = (�′, A′) only if � = �′ and
A ⊆ A′. We write sub = {s | subsume(s) 	= ⊥} for the set of subsumed states.
We denote the reflexive transitive closure of parent and subsume, by parent∗

and subsume∗, respectively.
The algorithm proceeds as follows. Initially, all collecting data structures are

empty, except worklist containing the initial abstract state (�I , ∅). The loop at
line 2 expands the reachability graph in every iteration. At lines 3–4, it chooses
an abstract state (l, A) from worklist. If any ancestor of the state is already
subsumed or the state is false, the state is discarded and the next state is cho-
sen. Otherwise, (l, A) is added to reach. At lines 7–9, the subsume function
is updated. Afterwords, if (l, A) became subsumed then we proceed to choose
another state from worklist. Otherwise, we create the children of (l, A) in the
loop at line 10 by the abstract post spa. At line 12, parent and trans relations
are updated. At line 13, the procedure checks if the abstract reachability has
reached any of the goal transitions. If yes, then it checks the feasibility of the
reaching path. If the path is found to be feasible, we add the feasible solution
as a test to the suite at line 16. Otherwise, we refine and restart the reachabil-
ity computation to remove the spurious path from the abstract reachability at
lines 18–19. In case the algorithm has used its time budget, the refinement is
not performed, but the algorithm continues processing the states remaining in
worklist. As a consequence, the algorithm always returns a complete abstract
reachability graph.

We do not discuss details of the Refine procedure. The interested reader
may read a more detailed exposition of CEGAR in [25].

Abstract Reachability Graph (ARG). The relations parent, subsume, and
trans together define an abstract reachability graph (ARG), which is produced
by AbstractMC. A sequence of transitions e0, . . . , en−1 is a path in an ARG
if there is a sequence of abstract state s0, . . . , sn ∈ reach, such that

1. s0 = (�I , ∅),
2. for 1 < i ≤ n we have parent(si) ∈ subsume∗(si−1) and ei−1 = trans(si).

Theorem 1. Every feasible path of the program P is a path of an ARG. More-
over, every path in the ARG is a path of P .

AbstractMC returns a set suite of tests, set G of uncovered goals, proven
unreachable goals U , set π of predicates, and the abstract reachability graph.

Abstraction-driven Concolic Testing 339

Lazy Abstraction. Model checkers often implement various optimizations in
the computation of ARGs. One of the key optimization is lazy abstraction [26].
CEGAR may learn many predicates that lead to ARGs that are expensive to
compute. In lazy abstraction, one observes that not all applications of spa require
the same predicates. Let us suppose that the refinement procedure finds a new
predicate that must be added in specific place along a spurious counterexample
to remove this counterexample from future iterations. In other paths, however,
this predicate may be omitted. This can be achieved by localizing predicates to
parts of an ARG. Support for lazy abstraction can easily be added by additional
data structures that record the importance of a predicate in different parts of
programs.

5 Abstraction-Driven Concolic Testing

In this section, we present our algorithm that combines concolic testing and
model checking. The key idea is to use the ARG generated by a model checker
to guide concolic testing to explore more likely feasible parts of programs.

We start by presenting the function MonitorFromARG that converts
an ARG into a monitor program. Let A = (reach, parent, subsume, trans)
be an ARG. The monitor of A is defined as a program M = (V, reach −
sub, (�I , ∅), E1∪E2), where

– E1 = {(sa, e, s′
a) | sa = parent(s′

a) ∧ e = trans(s′
a) ∧ s′

a 	∈ sub},
– E2 = {(sa, e, s′′

a) | ∃s′
a. sa = parent(s′

a) ∧ e = trans(s′
a) ∧

∧s′′
a ∈ subsume+(s′

a) ∧ s′′
a 	∈ sub}.

The transitions in E1 are due to the child-parent relation, when the child abstract
state is not subsumed. In case the child state s′

a is subsumed, then E2 contains a
transition from the parent of s′

a to the non-subsumed state s′′
a in subsume+(s′

a),
where subsume+ denotes the transitive closure of subsume. From the way we
built an ARG, it follows that the state s′′

a is uniquely defined and the monitor
is always deterministic.

In Algorithm 3 we present our method Crabs. Crabs takes as input a
program P , a set G of goal branches to be covered, and time constraints: the total
time limit tb, and time budgets tc, tm for a single iteration of concolic testing and
model checking, respectively. The algorithm returns a test suite for the covered
goals, and a set of goals that are provably unreachable. The algorithm records
in G the set of remaining goals. Similarly, U collects the goal branches that are
proved unreachable by the model checker. The algorithm maintains a set π of
predicates for abstraction, a program P for concolic testing, and a set G of goals
for concolic testing. The program P is initialized to the original program P ,
and in the following iterations becomes refined by the monitors. The algorithm
collects in suite the tests generated by concolic testing and model checking.

The program P is a refinement of the original program P , so a single goal
branch in P can map to many branches in the program P . For this reason, we
perform testing for the set G of all possible extensions of G to the branches in

340 P. Daca et al.

Algorithm 3. Crabs(P = (V,Loc, �i, E), G, tb, tc, tm)
Require: program P = (V, Loc, �i, E), branches G ⊆ E to cover, time budget for

concolic testing tc, time budget for model checking tm, total time budget tb,
Ensure: a test suite, set of provably unreachable branches
1: π ← {false}; U ← ∅; � U is a set of provably unreachable goals
2: suite ← ∅ � suite is a set of test
3: P ← P ; G ← G � program and goals for testing
4:
5: while G �= ∅ and ct < tb do � ct always has current time.
6: (suite′,) ← ConcolicTest(P , G, ct + tc)
7: G ← G − {g ∈ E | ∃tst ∈ suite′.tst covers g}
8: suite ← suite ∪ suite′;
9: if G �= ∅ then

10: (suite′, G, U ′, π, A) ← AbstractMC(P, π, G, ct + tm)
11: suite ← suite ∪ suite′; U ← U∪U ′

12: P ← P × MonitorFromARG(A) � see sec. 5 for MonitorFromARG
13: G = {((�,), e, (�′,)) ∈ EP | (�, e, �′) ∈ G}
14: return (suite, U)

P . For simplicity, in our algorithm concolic testing tries to reach all goals in G,
even if they map to the same goal branch in G. In the implementation, however,
once concolic testing reaches a branch in G, it removes all branches from G that
have the same projection.

Crabs proceeds in iterations. At line 6, it first runs concolic testing on the
program P and the goal branches G with the time budget tc. The testing process
returns a tests suite′ and the set of remaining branches. Afterwords, if some
branches remain to be tested, a model checker is called on the program P with
predicates π, and a time budget tm at line 10. As we discussed in the previous
section, the model checker builds an abstract reachability graph (ARG), and
produces tests if it finds concrete paths to the goal branches. Since the model
checker runs for a limited amount of time, it returns an abstract reachability
graph that may have abstract paths to the goal branches, but no concrete paths
were discovered. Moreover, if the ARG does not reach some goal branch then
it is certain that the branch is unreachable. The model checker returns a new
set suite′ of tests, remaining goals G, and a set U ′ of newly proved unreachable
goals. Furthermore, it also returns a new set π of predicates for the next call
to the model checker, and an abstract reachability graph A. At line 12, we
construct a monitor from A by calling MonitorFromARG. We construct the
next program P by taking a product of the current P with the monitor. We also
update G to the set of all extensions of the branches in G to the branches in P .
In the next iteration concolic testing is called on P , which essentially explores
the paths of P that are allowed by the monitors generated from the ARG. The
algorithm continues until it runs out of time budget tb or no more goals remain.

The program P for testing is refined in every iteration by taking a product
with a new monitor. This ensures that P always becomes more precise, even if
the consecutive abstractions do not strictly refine each other, i.e. the ARG from

Abstraction-driven Concolic Testing 341

iteration i allows the set L of paths, while the ARG from iteration i + 1 allows
the set L′ such that L′ 	⊆ L. This phenomenon occurs when the model checker
follows the lazy abstraction paradigm, described in Sect. 4. In lazy abstraction,
predicates are applied locally and some may be lost due to refinement. As a
consequence, program parts that were pruned from an ARG may appear again
in some following ARG. Another reason for this phenomenon may be a deliberate
decision to remove some predicates when the abstraction becomes too expensive
to maintain.

6 Experiments

We implemented our approach in a tool Crabs, built on top of the concolic
tester Crest [11] and the model checker CpaChecker [8]. In our experiments,
we observed an improvement in branch coverage compared to Crest from 48%
to 63% in the best case, and from 66% to 71% on average.

Benchmarks. We evaluated our approach on a collection of programs: (1) a set
of hand-crafted examples (listed in [1]), (2) example “nsichneu” [24] described
in Sect. 2 with varying number of loop iterations, (3) benchmarks “parport” and
“cdaudio1” from various categories of SvComp [6], (4) all 13 benchmarks from
the “ddv-machzwd” SvComp category.

Optimizations. Constructing an explicit product of an program and a monitor
would be cumbersome, due to complex semantics of the C language, e.g. the
type system and scoping rules. To avoid this problem, our tool explores the
product on-the-fly, by keeping track of the program and monitor state. We have
done minor preprocessing of the examples, such that they can be parsed by
both Crest and CpaChecker. Furthermore, CpaCheckerdoes not deal well
with arrays, so in the “nsichneu” example we replaced arrays of fixed size (at
most 6) by a collection of variables.

Comparison of Heuristics and Tools. We compare our tool with four other heuris-
tics for guiding concolic search that are implemented in Crest : the depth-
first search (DFS), random branch search (RndBr), uniform random search
(UnfRnd), and CFG-guided search; for details see [11]. The depth-first search
is a classical way of traversing a tree of program paths. In the random branch
search, the branch to be flipped is chosen from all the branches on the current
execution with equal probability. Similarly, in the uniform random search the
branch to be flipped is also picked at random, but the probability decreases with
the position of the branch on the execution. In the CFG-guided heuristic the
test process is guided by a distance measure between program branches, which
is computed statically on the control-flow graph of the program. This heuris-
tic tries to drive exploration in into branches that are closer to the remaining
test goals. The concolic component of our tool uses the CFG-guided heuristic to
explore the product of a program and a monitor; this way branches closer in the

342 P. Daca et al.

T
a
b
le

1
.

E
x
p
er

im
en

ta
l

re
su

lt
s

fo
r

o
n
e

h
o
u
r.

R
n
d
B

r
st

a
n
d
s

fo
r

“
ra

n
d
o
m

b
ra

n
ch

se
a
rc

h
”

a
n
d

U
n
fR

n
d

fo
r

“
u
n
if
o
rm

ra
n
d
o
m

se
a
rc

h
.”

T
O

m
ea

n
s

th
a
t

n
o

su
it

e
w

a
s

g
en

er
a
te

d
b
ef

o
re

th
e

ti
m

e
li
m

it
.

E
x
a
m
p
le

C
r
a
b
s-
C
F
G

(t
h
is

p
a
p
e
r)

C
r
e
st

-D
F
S

[3
3
,3

5
]

C
r
e
st

-C
F
G

[1
1
]

C
r
e
st

-U
n
fR

n
d
[1
1
]

C
r
e
st

-R
n
d
B
r[
1
1
]

F
sh

e
l
l
[2
7
]

n
a
m
e

b
ra

n
ch

e
s

c
o
v
e
ra

g
e

c
o
v
e
ra

g
e

c
o
v
e
ra

g
e

c
o
v
e
ra

g
e

c
o
v
e
ra

g
e

c
o
v
e
ra

g
e

si
m
p
le
-w

h
il
e

1
2

1
2
/
1
2
(1

0
0
%
)

1
1
/
1
2
(9

1
.2

%
)

1
1
/
1
2
(9

1
.2

%
)

1
1
/
1
2
(9

1
.2

%
)

1
1
/
1
2
(9

1
.2

%
)

1
2
/
1
2
(1

0
0
%
)

b
ra

n
ch

e
s

1
2

1
2
/
1
2
(1

0
0
%
)

9
/
1
2
(7

5
%
)

7
/
1
2
(5

8
.3

%
)

1
2
/
1
2
(9

1
.2

%
)

1
2
/
1
2
(9

1
.2

%
)

1
2
/
1
2
(1

0
0
%
)

u
n
re
a
ch

1
0

9
/
9
(1

0
0
%
)

9
/
1
0
(9

0
%
)

9
/
1
0
(9

0
%
)

9
/
1
0
(9

0
%
)

9
/
1
0
(9

0
%
)

9
/
9
(1

0
0
%
)

n
si
ch

n
e
u
(2

)
5
7
8
6

3
8
4
3
/
5
7
5
3
(6

6
.8

%
)

5
3
6
5
/
5
7
8
6

(
9
2
.7

%
)

3
0
9
8
/
5
7
8
6
(5

3
.5

%
)

2
5
5
9
/
5
7
8
6
(4

4
.2

%
)

2
1
9
6
/
5
7
8
6
(3

8
.0

%
)

4
5
2
0
/
5
7
8
6
(7

8
.1

%
)

n
si
ch

n
e
u
(9

)
5
7
8
6

3
7
2
0
/
5
7
5
6
(6

4
.6

%
)

4
2
2
4
/
5
7
8
6

(
7
3
.0

%
)

2
8
4
3
/
5
7
8
6
(4

9
.1

%
)

2
4
9
3
/
5
7
8
6
(4

3
.1

%
)

2
1
8
7
/
5
7
8
6
(3

7
.8

%
)

1
2
6
1
/
5
7
8
6
(2

1
.8

%
)

n
si
ch

n
e
u
(1

7
)

5
7
8
6

3
6
1
9
/
5
7
4
6

(
6
3
.0

%
)

2
0
8
6
/
5
7
8
6
(3

6
.1

%
)

2
7
5
8
/
5
7
8
6
(4

7
.7

%
)

2
4
7
6
/
5
7
8
6
(4

2
.8

%
)

2
1
6
1
/
5
7
8
6
(3

7
.3

%
)

T
O

p
a
rp

o
rt

9
2
0

2
1
5
/
5
9
8

(
3
5
.9

%
)

2
1
5
/
9
2
0
(2

3
.4

%
)

2
1
5
/
9
2
0
(2

3
.4

%
)

2
1
5
/
9
2
0
(2

3
.4

%
)

2
1
5
/
9
2
0
(2

3
.4

%
)

T
O

c
d
a
u
d
io
1

3
4
0

2
4
8
/
2
4
9
(9

9
.6

%
)

2
5
0
/
3
4
0
(7

3
.5

%
)

2
5
0
/
3
4
0
(7

3
.5

%
)

2
4
6
/
3
4
0
(7

2
.3

%
)

2
5
0
/
3
4
0
(7

3
.5

%
)

2
6
6
/
2
6
6

(
1
0
0
%

)

d
d
v

o
u
tb

2
0
6

1
3
7
/
1
9
4

(
7
0
.8

%
)

7
8
/
2
0
6
(3

7
.9

%
)

1
3
6
/
2
0
6
(6

6
.2

%
)

1
1
1
/
2
0
6
(5

4
.2

%
)

1
3
5
/
2
0
6
(6

5
.7

%
)

T
O

d
d
v

p
th

re
a
d

2
0
0

1
3
4
/
1
8
9

(
7
1
.3

%
)

7
3
/
2
0
0
(3

6
.7

%
)

1
3
1
/
2
0
0
(6

5
.5

%
)

1
0
9
/
2
0
0
(5

4
.8

%
)

1
3
0
/
2
0
0
(6

5
.2

%
)

T
O

d
d
v

o
u
tw

p
2
0
0

1
3
4
/
1
8
9

(
7
0
.8

%
)

7
3
/
2
0
0
(3

6
.7

%
)

1
3
1
/
2
0
0
(6

5
.5

%
)

1
0
7
/
2
0
0
(5

3
.8

%
)

1
2
9
/
2
0
0
(6

4
.7

%
)

T
O

d
d
v

a
ll
fa
ls
e

2
1
4

1
4
3
/
1
9
9

(
7
2
.0

%
)

8
3
/
2
1
4
(3

8
.9

%
)

1
4
1
/
2
1
4
(6

6
.0

%
)

1
2
3
/
2
1
4
(5

7
.6

%
)

1
4
0
/
2
1
4
(6

5
.6

%
)

T
O

d
d
v

in
w
p

2
0
0

1
3
4
/
1
8
9

(
7
0
.7

%
)

7
6
/
2
0
0
(3

8
.2

%
)

1
3
1
/
2
0
0
(6

5
.5

%
)

1
0
8
/
2
0
0
(5

4
.2

%
)

1
2
9
/
2
0
0
(6

4
.8

%
)

T
O

d
d
v

in
b
p

2
0
0

1
3
3
/
1
8
9

(
7
0
.3

%
)

7
3
/
2
0
0
(3

6
.5

%
)

1
3
0
/
2
0
0
(6

5
.3

%
)

1
0
9
/
2
0
0
(5

4
.5

%
)

1
3
0
/
2
0
0
(6

5
.2

%
)

T
O

d
d
v

o
u
tl
p

2
0
0

1
3
3
/
1
8
9

(
7
0
.1

%
)

7
3
/
2
0
0
(3

6
.5

%
)

1
3
0
/
2
0
0
(6

5
.2

%
)

1
0
9
/
2
0
0
(5

4
.7

%
)

1
3
0
/
2
0
0
(6

5
.2

%
)

T
O

d
d
v

o
u
tb

p
2
0
0

1
3
4
/
1
8
8

(
7
1
.2

%
)

7
3
/
2
0
0
(3

6
.5

%
)

1
3
0
/
2
0
0
(6

5
.0

%
)

1
0
6
/
2
0
0
(5

3
.3

%
)

1
3
0
/
2
0
0
(6

5
.0

%
)

T
O

d
d
v

in
l

2
0
0

1
3
4
/
1
9
0

(
7
0
.7

%
)

8
9
/
2
0
0
(4

4
.8

%
)

1
3
1
/
2
0
0
(6

5
.8

%
)

1
0
9
/
2
0
0
(5

4
.7

%
)

1
2
9
/
2
0
0
(6

4
.8

%
)

T
O

d
d
v

in
lp

2
0
0

1
3
4
/
1
8
9

(
7
1
.1

%
)

7
5
/
2
0
0
(3

7
.8

%
)

1
3
1
/
2
0
0
(6

5
.5

%
)

1
0
8
/
2
0
0
(5

4
.3

%
)

1
2
9
/
2
0
0
(6

4
.8

%
)

T
O

d
d
v

in
w

2
0
6

1
3
9
/
1
9
4

(
7
2
.0

%
)

8
0
/
2
0
6
(3

9
.2

%
)

1
3
6
/
2
0
6
(6

6
.3

%
)

1
1
2
/
2
0
6
(5

4
.5

%
)

1
3
5
/
2
0
6
(6

5
.7

%
)

T
O

d
d
v

in
b

2
0
0

1
3
3
/
1
8
9

(
7
0
.5

%
)

7
3
/
2
0
0
(3

6
.5

%
)

1
3
0
/
2
0
0
(6

5
.3

%
)

1
1
4
/
2
0
0
(5

7
.3

%
)

1
3
0
/
2
0
0
(6

5
.2

%
)

T
O

d
d
v

o
u
tl

2
0
0

1
3
3
/
1
8
9

(
7
0
.5

%
)

7
3
/
2
0
0
(3

6
.5

%
)

1
3
1
/
2
0
0
(6

5
.5

%
)

1
0
9
/
2
0
0
(5

4
.8

%
)

1
3
1
/
2
0
0
(6

5
.7

%
)

T
O

Abstraction-driven Concolic Testing 343

monitor are explored first. Our additional experiments show that our approach
improves coverage for all heuristics implemented in Crest.

We compared our approach with the tool Fshell [27], which is based on the
bounded model checker CBMC. Fshell unwinds the control-flow graph until it
fully explores all loop iterations and checks satisfiability of paths that hit the
testing goals. This tool does not return a test suite, unless all loops are fully
explored.

Experimental Setup. All the tools were run with branch coverage as the test
objective. The coverage of a test suite is measured by the ratio c

r , where c is
the number of branches covered by a test suite, and r is the number of branches
that have not been proved unreachable. For Crest, we set r to be the number
of branches that are reachable in the control-flow graph by graph search, which
excludes code that is trivially dead. Our tool and Crest have the same number
of test goals, while Fshell counts more test goals on some examples. We run
our tool in a configuration, where testing takes approximately 80% of the time
budget. All experiments were performed on a machine with an AMD Opteron
6134 CPU and a memory limit of 12 GB, and were averaged over three runs.

Results. The experimental evaluation for a time budget of one hour is presented
in Table 1.

After one hour, our tool achieved the highest coverage on most examples. The
best case is “nsichneu(17),” where our tool achieved 63% coverage compared to
48% by the best other tool. Our additional experiments show that if we run our
tool with the DFS heuristic, we obtain even higher coverage of 69%. The hand-
crafted examples demonstrate that our method, as well as Fshell, can reach
program parts that are difficult to cover for concolic testing. In the benchmark
category, our tool obtained average coverage of 71% compared to 66% by Crest.
In many examples, we obtain higher coverage by both reaching more goals and
proving that certain goals are unreachable. Fshell generated test suites only
for three examples, since on other examples it was not able to fully unwind
program loops.

7 Related Work

Testing literature is rich, so we only highlight the most prominent approaches.
Random testing [9,13,32] can cheaply cover shallow parts of the program, but
it may quickly reach a plateau where coverage does not increase. Another test-
ing method is to construct symbolic objects that represent complex input to
a program [36,37]. In [10] objects for testing program are systematically con-
structed up to a given bound. The approach of [18] tests a concurrent program
by exploring schedules using partial-order reduction techniques.

344 P. Daca et al.

Concolic testing suffers from the path-explosion problem, so various search
orders testing have been proposed, several of them are discussed in Sect. 6. In
[20] multiple input vectors are generated from a single symbolic path by negating
constraints on the path one-by-one, which allows the algorithm to exercise paths
at different depths of the program. Hybrid concolic testing [30] uses random
testing to quickly reach deep program statements and then concolic testing to
explore the close neighborhood of that point.

Our work is closest related to Synergy [5,21,22]. Synergy is an approach
for verification of safety properties that maintains a program abstraction and a
forest of tested paths. Abstract error traces are ordered such that they follow
some tested execution until the last intersection with the forest. If an ordered
abstract trace is feasible, then a longer concrete path is added to the forest;
otherwise, the abstraction is refined. Compared to Synergy our method has
several key differences. First, in Synergy model checking and test generation
work as a single process, while in our approach these components are independent
and communicate only by a monitor. Second, unlike us, Synergy does not pass
the complete abstract model of the program to concolic testing, where the testing
heuristics guides the search. Finally, in our approach we can configure the ratio
of model checking to testing, while in Synergy every unsuccessful execution
leads to refinement.

Another related work is [12], where concolic testing is guided towards pro-
gram parts that a static analyzer was not able to verify. In contrast to our
approach, the abstraction is not refined. In [17] conditional model checking is
used to generate a residual that represents the program part that has been left
unverified; the residual is then tested.

The work of [34] applies program analysis to identify control locations in a
concurrent program that are relevant for reaching the target state. These loca-
tions guide symbolic search toward the target and predicates in failed symbolic
executions are analyzed to find new relevant locations. The Check‘n’Crash
[15] tool uses a constraint solver to reproduce and check errors found by static
analysis of a program. In [16] the precision of static analysis was improved by
adding a dynamic invariant detection.

The algorithm of [31] presents a testing method, where a program is simplified
by replacing function calls by unconstrained input. Spurious counterexample are
removed in a CEGAR loop by lazily inserting function bodies. In contrast, our
method performs testing on a concrete program and counterexamples are always
sound.

A number of papers consider testing program abstraction with bounded
model checking (BMC). If the abstraction is sufficiently small, then a program
invariant can be established by exhaustively testing the abstraction with BMC.
In [29] a Boolean circuit is abstracted, such that it decreases the bound that
needs to be explored in an exhaustive BMC search. In [23] BMC is run on an
abstract model up to some bound. If the invariant is not violated, then the model
is replaced by an unsat core and the bound is incremented. If a spurious coun-
terexample is found, then clauses that appear in the unsat core are added to the
abstraction.

Abstraction-driven Concolic Testing 345

8 Conclusion

We presented an algorithm that combines model checking and concolic testing
synergistically. Our method iteratively runs concolic testing and model checking,
such that concolic testing is guided by a program abstraction, and the abstrac-
tion is refined for the remaining test goals. Our experiments demonstrated that
the presented method can increase branch coverage compared to both concolic
testing, and test generation based on model checking.

We also observed that our method is highly sensitive to optimizations and
heuristics available in the model checker. For instance, lazy abstraction allows the
model checker to get pass bottlenecks created due to over-precision in some parts
of ARGs. However, lazy abstraction may lead to a monitor that is less precise
than the monitors of the past iterations, which may lead to stalled progress in
covering new goals by our algorithm. In the future work, we will study such
complimentary effects of various heuristics in model checkers to find the optimal
design of model checkers to assist a concolic-testing tool. We believe that adding
this feature will further improve the coverage of our tool.

Acknowledgments. We thank Andrey Kupriyanov for feedback on the manuscript,
and Michael Tautschnig for help with preparing the experiments.

References

1. CRABS tool. http://pub.ist.ac.at/∼przemek/crabs tool.html
2. Radio Technical Commission for Aeronautics. www.rtca.org
3. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static

analysis. In: POPL (2002)
4. Banerjee, A., Chattopadhyay, S., Roychoudhury, A.: Static analysis driven cache

performance testing. In: RTSS, pp. 319–329 (2013)
5. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests. In:

ISSTA, pp. 3–14 (2008)
6. Beyer, D.: Software verification and verifiable witnesses. In: Baier, C., Tinelli, C.

(eds.) TACAS 2015. LNCS, vol. 9035, pp. 401–416. Springer, Heidelberg (2015).
(Report on SV-COMP 2015)

7. Beyer, D., Chlipala, A., Henzinger, T.A., Jhala, R., Majumdar, R.: Generating
tests from counterexamples. In: Finkelstein, A., Estublier, J., Rosenblum, D.S.
(eds.) ICSE, pp. 326–335. IEEE Computer Society (2004)

8. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184–190. Springer, Heidelberg (2011)

9. Bird, D.L., Munoz, C.U.: Automatic generation of random self-checking test cases.
IBM Syst. J. 22(3), 229–245 (1983)

10. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on java
predicates. In: ISSTA, pp. 123–133 (2002)

11. Burnim, J., Sen, K.: Heuristics for scalable dynamic test generation. In: ASE, pp.
443–446 (2008)

http://pub.ist.ac.at/~przemek/crabs_tool.html
www.rtca.org

346 P. Daca et al.

12. Christakis, M., Müller, P., Wüstholz, V.: Guiding dynamic symbolic execution
toward unverified program executions. Technical report, ETH Zurich (2015)

13. Ciupa, I., Leitner, A., Oriol, M., Meyer, B.: ARTOO: adaptive random testing for
object-oriented software. In: Schäfer, W., Dwyer, M.B., Gruhn, V. (eds.) ICSE,
pp. 71–80. ACM (2008)

14. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: CAV (2000)

15. Csallner, C., Smaragdakis, Y.: Check ‘n’ crash: combining static checking and
testing. In: ICSE, pp. 422–431 (2005)

16. Csallner, C., Smaragdakis, Y., Xie, T.: DSD-Crasher: A hybrid analysis tool for
bug finding. ACM Trans. Softw. Eng. Methodol. 17(2), 1–37 (2008)

17. Czech, M., Jakobs, M.-C., Wehrheim, H.: Just test what you cannot verify!. In:
Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 100–114. Springer,
Heidelberg (2015)

18. Godefroid, P.: Model checking for programming languages using verisoft. In: POPL,
pp. 174–186 (1997)

19. Godefroid, P.: Compositional dynamic test generation. In: POPL, pp. 47–54 (2007)
20. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:

NDSS. The Internet Society (2008)
21. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional may-must

program analysis: unleashing the power of alternation. In: POPL, pp. 43–56 (2010)
22. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Synergy:

a new algorithm for property checking. In: SIGSOFT FSE, pp. 117–127 (2006)
23. Gupta, A., Strichman, O.: Abstraction refinement for bounded model checking.

In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 112–124.
Springer, Heidelberg (2005)

24. Gustafsson, J., Betts, A., Ermedahl, A., Lisper, B.: The Mälardalen WCET bench-
marks - past, present and future. In: Lisper, B. (ed.) WCET, pp. 137–147. OCG,
Brussels (2010)

25. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: POPL (2004)

26. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL
(2002)

27. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: FShell: Systematic test case
generation for dynamic analysis and measurement. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 209–213. Springer, Heidelberg (2008)

28. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How did you specify your
test suite. In: Pecheur, C., Andrews, J., Nitto, E.D. (eds.) ASE, pp. 407–416.
ACM (2010)

29. Kroening, D.: Computing over-approximations with bounded model checking.
Electr. Notes Theor. Comput. Sci. 144(1), 79–92 (2006)

30. Majumdar, R., Sen, K.: Hybrid concolic testing. In: ICSE, ICSE 2007, pp. 416–426.
IEEE Computer Society, Washington, DC (2007)

31. Majumdar, R., Sen, K.: Latest : Lazy dynamic test input generation. Technical
Report UCB/EECS-2007-36, EECS Department, University of California, Berkeley
(2007)

32. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test
generation. In: ICSE, pp. 75–84. IEEE Computer Society (2007)

33. Klarlund, N., Godefroid, P., Sen, K.: DART: directed automated random testing.
In: PLDI, pp. 213–223. ACM (2005)

Abstraction-driven Concolic Testing 347

34. Rungta, N., Mercer, E.G., Visser, W.: Efficient testing of concurrent programs with
abstraction-guided symbolic execution. In: Păsăreanu, C.S. (ed.) Model Checking
Software. LNCS, vol. 5578, pp. 174–191. Springer, Heidelberg (2009)

35. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
ESEC/SIGSOFT FSE, pp. 263–272 (2005)

36. Visser, W., Pasareanu, C.S., Khurshid, S.: Test input generation with Java
PathFinder. In: Avrunin, G.S., Rothermel, G. (eds.) ISSTA, pp. 97–107. ACM
(2004)

37. Xie, T., Marinov, D., Schulte, W., Notkin, D.: Symstra: a framework for generating
object-oriented unit tests using symbolic execution. In: Halbwachs, N., Zuck, L.D.
(eds.) TACAS 2005. LNCS, vol. 3440, pp. 365–381. Springer, Heidelberg (2005)

	Abstraction-driven Concolic Testing
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	3.1 Concolic Testing

	4 Coverage-Driven Abstraction Refinement
	5 Abstraction-Driven Concolic Testing
	6 Experiments
	7 Related Work
	8 Conclusion
	References

