
Hybrid Analysis for Partial Order Reduction
of Programs with Arrays

Pavel Paŕızek(B)

Department of Distributed and Dependable Systems,
Faculty of Mathematics and Physics, Charles University in Prague,

Prague, Czech Republic
parizek@d3s.mff.cuni.cz

Abstract. An important component of efficient approaches to software
model checking and systematic concurrency testing is partial order reduc-
tion, which eliminates redundant non-deterministic thread scheduling
choices during the state space traversal. Thread choices have to be cre-
ated only at the execution of actions that access the global state visible
by multiple threads, so the key challenge is to precisely determine the set
of such globally-relevant actions. This includes accesses to object fields
and array elements, and thread synchronization.

However, some tools completely disable thread choices at actions
that access individual array elements in order to avoid state explosion.
We show that they can miss concurrency errors in such a case. Then, as
the main contribution, we present a new hybrid analysis that identifies
globally-relevant actions that access arrays. Our hybrid analysis com-
bines static analysis with dynamic analysis, usage of information from
dynamic program states, and symbolic interpretation of program state-
ments. Results of experiments with two popular approaches to partial
order reduction show that usage of the hybrid analysis (1) eliminates
many additional redundant thread choices and (2) improves the perfor-
mance of software model checking on programs that use arrays.

1 Introduction

Systematic traversal of the program state space is a popular approach for detect-
ing concurrency-related errors. It is used, for example, in software model check-
ing [22], where the goal is to check the program behavior under all possible
thread interleavings.

Each interleaving corresponds to a sequence of thread scheduling decisions
and also to a particular sequence of actions performed by the program threads.
We divide the actions into two sets: globally-relevant and thread-local. A globally-
relevant action reads or modifies the global state shared by multiple threads.
The set of globally-relevant actions contains accesses to fields of heap objects
and array elements, and thread synchronization operations (e.g., acquisition of
a lock). Other actions are thread-local.

Any non-trivial multithreaded program exhibits a huge number of possible
interleavings, but many of them differ only in the order of thread-local actions.
c© Springer-Verlag Berlin Heidelberg 2016
B. Jobstmann and K.R.M. Leino (Eds.): VMCAI 2016, LNCS 9583, pp. 291–310, 2016.
DOI: 10.1007/978-3-662-49122-5 14

292 P. Paŕızek

It is necessary to check just all the possible interleavings of globally-relevant
actions, and to explore each of them just once. Techniques based on state space
traversal use partial order reduction (POR) [5] to avoid redundant exploration
of thread interleavings in order to mitigate state explosion.

The key idea behind POR is to consider non-deterministic thread schedul-
ing choices only at globally-relevant actions, while avoiding redundant choices
at thread-local actions. A lot of work has been done on POR in the context of
software model checking (e.g., [3,4,6,15]). All the existing approaches to POR
have to conservatively over-approximate the set of globally-relevant actions in
order to ensure coverage of all distinct thread interleavings. On the other hand,
they also strive to be as precise as possible, because the number of thread inter-
leavings explored redundantly during the state space traversal depends on the
number of actions that are actually thread-local but were imprecisely identified
as globally-relevant. For example, dynamic POR [4] uses dynamic analysis to
identify (i) heap objects really accessed by multiple threads and (ii) actions per-
formed upon such objects. Another technique [3] uses escape analysis to identify
objects that are reachable from multiple threads. Some work has been done also
on the combination of static analysis with dynamic analysis for precise identifi-
cation of globally-relevant field accesses on shared heap objects [15,16].

An important category of actions that may be globally-relevant are accesses
to array objects stored in the heap. However, in the default configuration, POR
algorithms in tools like Java Pathfinder [8] do not allow thread scheduling choices
at actions that access individual array elements in order to avoid state explosion.
For each access to an array element, they make a scheduling choice only at the
preceding action that retrieves the array object from the heap (e.g., a field read
access).

The problem with this approach to POR is that state space traversal can miss
some concurrency errors. Consider the small Java-like program in Fig. 1, where
two threads access a shared array (buffer). Each thread retrieves a reference to
the array object from the heap through a field read, stores the reference into a
local variable buf, and then accesses the first element. The field read actions do
not have to be synchronized at all, but there is a race condition that involves
the array accesses. A verification tool cannot detect this race condition if it
uses a POR algorithm with disabled thread choices at accesses to individual
array elements. We found similar race conditions also in some of our benchmark
programs — we discuss that in more detail at the end of Sect. 5.

Fig. 1. Example: race condition involving an array element

Hybrid Analysis for Partial Order Reduction of Programs with Arrays 293

Consequently, the state space traversal procedure with POR has to create
thread scheduling choices at array element accesses in order to enable discovery
of all such race conditions and other concurrency errors. The basic option for
identifying globally-relevant accesses to array elements is to consider heap reach-
ability [3]. When the given array object is not reachable from multiple threads,
then every access to elements of the array is a thread-local action and no thread
choice is necessary.

We propose a new hybrid analysis that soundly identifies array elements
possibly accessed by multiple threads during the program execution. Results
of the hybrid analysis can be used by POR to decide more precisely whether a
given access to an array element is globally-relevant or thread-local. Then, thread
choices at accesses to individual elements can be enabled without a high risk of
state explosion. Although the state space size might increase in the worst case,
it will stay in reasonable limits because POR avoids many redundant choices at
thread-local accesses based on the hybrid analysis.

Our hybrid analysis combines static analysis with dynamic analysis and sym-
bolic interpretation of program statements, and it also uses information from
dynamic program states that is available on-the-fly during the state space traver-
sal. We describe key concepts on the examples of multithreaded Java programs,
but the analysis is applicable also to programs written in other languages, such
as C# and C++. For simplicity of presentation, we consider only arrays with a
single dimension in most of the paper and discuss support for multi-dimensional
arrays at the end of Sect. 3.

An important feature of the hybrid analysis is compatibility with all memory
models that we are aware of, including relaxed memory models such as JMM [10]
and TSO [19]. The only requirements are that the underlying tool, which per-
forms state space traversal, has to simulate the given memory model to a full
extent and it must provide correct information about the dynamic program state,
in particular taking into account delayed propagation of the effects of writes to
shared variables among threads.

Experimental results provided in Sect. 5 show that our hybrid analysis helps
to avoid many redundant thread choices during the state space traversal. It
improves the precision and performance of existing approaches to POR on mul-
tithreaded programs that use arrays, and therefore enables more efficient detec-
tion of concurrency-related errors that involve array elements by software model
checking.

In the next section we provide an overview of the whole approach. Then we
discuss situations and code patterns where our hybrid analysis can eliminate a
redundant thread choice (Sect. 3), and explain the analysis algorithm in more
detail in Sect. 4. The rest of the paper contains evaluation, description of related
work, and a brief summary.

2 Overview

Figure 2 shows the basic algorithm for depth-first state space traversal of mul-
tithreaded programs with POR. We assume that the program state space is

294 P. Paŕızek

Fig. 2. Basic algorithm for state space traversal with POR

constructed on-the-fly during traversal and that statements are interpreted using
dynamic concrete execution. In addition, we consider only thread scheduling
choices and ignore the data non-determinism in this paper. The symbol s repre-
sents a program state, the symbol ch represents a thread choice, and T denotes
a thread runnable in a particular state. Exploration starts from the initial state
s0 and the initial choice ch0, where only the main thread is runnable. An atomic
transition between two states corresponds to the execution of a sequence of
instructions (program statements) that consists of a globally-relevant action, fol-
lowed by any number of thread-local actions, and it ends with a thread choice.
The POR algorithm creates a new thread choice just before execution of an
action that it considers to be globally-relevant. All instructions in a transition
are executed by the same thread. Note that many popular tools, including Java
Pathfinder [8], use a state space traversal procedure that follows this approach.

In this setting, the POR algorithm itself can use information only from (i)
the current dynamic program state, (ii) the current state space path (execution
history), and (iii) the already explored part of the state space to decide whether
the action to be executed next is globally-relevant or thread-local, because it does
not see ahead in program execution. A popular approach is to identify globally-
relevant actions based on heap reachability in the current dynamic state [3]. This
approach is safe but not very precise — a particular heap object (an array) may
be reachable from multiple threads but really accessed only by a single thread

Hybrid Analysis for Partial Order Reduction of Programs with Arrays 295

during the program execution, or the individual threads may access different
elements of a given array. The POR algorithm has to conservatively assume that
each thread may in the future access every object reachable in the current state,
and therefore many redundant thread choices are created during the state space
traversal.

The proposed hybrid analysis determines more precise information about
which array elements may be accessed in the future during the rest of program
execution from the current state. We used the general principle introduced for
field accesses in [15] and adapted it significantly for accesses to array elements.
For each program point p in each thread T , the analysis computes the set of array
elements (over all array objects that may exist in the heap) possibly accessed by
thread T after the point p on any execution path. In other words, the analysis
provides over-approximate information about future behavior of T after a specific
code location. Array objects are identified by their static allocation sites and
individual elements are identified by their symbolic indexes.

Our hybrid analysis has two phases: (1) static analysis that computes partial
information, and (2) post-processing on-the-fly during the state space explo-
ration (i.e., at the dynamic analysis time). Full results are generated in the
second phase, when data provided by the static analysis are combined with spe-
cific information from dynamic program states, including the dynamic call stack
of each thread and concrete values of some expressions used as array element
indexes. The results are more precise than what would be possible to get with a
reasonably expensive static analysis.

Here, in the rest of this section, we describe how the analysis results are used
during the state space traversal to avoid redundant thread choices.

When the next action to be executed is an access to some array element, the
POR algorithm has to decide whether to make a thread choice or not. Figure 3
captures the procedure at a high level of abstraction. The symbol s represents
the current dynamic state, Tc is the currently scheduled thread, and i is the next
instruction of Tc.

First, the algorithm checks whether the target array object a is reachable
from multiple threads in the state s. If it is, then the procedure retrieves the

Fig. 3. Procedure that identifies globally-relevant accesses to array elements

296 P. Paŕızek

results of the hybrid analysis for the current point of every thread To other than
Tc, and inspects the results to find whether some of the other threads may access
the array a in a conflicting way (read versus write) on any execution path that
starts in s.

For the array accesses that may be performed by some other thread, the
hybrid analysis inspects also symbolic indexes of array elements. More specifi-
cally, it compares (1) the concrete value of the array element index for the next
access in Tc, which can be easily retrieved from the current dynamic state s,
and (2) the symbolic index for each of the possible future conflicting accesses to
a. Under some conditions, the concrete value of the array element index can be
soundly determined also for a possible future access — the respective situations
and code patterns are discussed in the next section.

A thread choice has to be created in the state s only when some thread To may
possibly access the same element of a as Tc, because otherwise the respective
action of Tc is thread-local. In particular, if every possible conflicting future
access to the array a in some other thread provably uses a different concrete
value of an element index, then the POR algorithm does not have to make a
thread choice.

3 Array Access Patterns

Here we discuss patterns of concurrent accesses to array elements, for which our
hybrid analysis can eliminate a redundant thread choice, and also cases where it
cannot eliminate a thread choice due to imprecision. Each code pattern involves
two threads:

– the active thread whose next action is the array access in question (where a
thread choice will be created or not depending on the analysis results), and

– the conflicting thread, which may access the same array elements as the active
thread in the future on some execution path.

In all the patterns we assume that the array data is reachable from both threads.
The various kinds of symbolic expressions that can be used as array element
indexes are considered only for the conflicting thread, because for the active
thread we can always get the actual concrete index value from the current
dynamic program state.

Constants. The most basic pattern is the usage of an integer constant as the
array element index. We show on this example how to interpret also the other
patterns below.

data[e] = x y = data[1]
active thread conflict thread

In the code of the active thread, we use the symbol e to denote the concrete
value of the index expression. The symbolic index associated with the possible
future access by the conflicting thread (i.e., the constant 1 in the code fragment

Hybrid Analysis for Partial Order Reduction of Programs with Arrays 297

above) is compared with the value e. If the values are different then a thread
choice would be redundant at the array access in the active thread, because each
thread accesses different elements.

Local Variables. Another common case is when the symbolic index associated
with the future access by the conflicting thread is a local variable v of a method
m. In order to decide soundly about making a new choice, the hybrid analysis
can use the current value of v (from the dynamic state) only if the following two
conditions are satisfied.

1. The conflicting thread is executing the method m in the current dynamic
state s.

2. The local variable v is not updated in the rest of the program execution
starting from the state s.

We consider all methods on the current dynamic call stack of a given thread as
currently executing. The concrete value obviously cannot be retrieved for local
variables of methods that are not yet on the dynamic call stack of a respective
thread. Note also that the local variable v of m may be updated in the future in
two ways — either by assignment in the rest of the current execution of m, or
by a future call of m at any time during the program execution.

Consider the following example, where the variable v is not updated after
the access to data and the method run is not called again.

main(): run(args):
... v = f(args)
data[e] = x
... y = data[v]

active thread conflict thread

The hybrid analysis can safely eliminate a thread choice only if the concrete
dynamic value of v is different from e.

A typical situation where the variable v may be updated later during the
execution of m is shown in the next example. Here, v is also a control variable
of the loop.

main(): run(args):
... for (v = 0; v < 10; v++)
data[e] = x y = data[v]

active thread conflict thread

The hybrid analysis cannot determine whether another iteration of the loop
might be executed or not, and therefore a future update of v is always possible
in this case.

We have to consider also future calls of the method m because every local
variable of m has to be initialized (i.e., updated) before it can be used as array
index. Although each execution of m has its own instances of local variables, the
symbolic name v is common to all of the executions. Therefore, an update of v
may occur between the current state and the relevant array access in a future
execution of m.

298 P. Paŕızek

Object Fields. When the symbolic index contains a field access path fp, the
analysis can use the current dynamic value of fp only if the following conditions
are satisfied.

1. In the case of instance fields, the access path must contain the local variable
this associated with one of the currently executing methods of the conflicting
thread.

2. No field in the access path fp is updated in the future during the rest of
program execution starting from the current dynamic state s.

Then, the dynamic value of fp can be used to compute the concrete value of
the array index expression in the conflicting thread. If the result is not equal to
the value of the index expression e used by the active thread, then both threads
will always access different elements of the shared array at the respective code
locations, and thus the POR algorithm does not have to create a new thread
choice.

Multi-dimensional Arrays. Our hybrid analysis supports multi-dimensional
arrays but only with a limited precision. Element indexes are inspected and
compared only for the innermost dimension, using the same approach as for
single-dimensional arrays. Index expressions for outer dimensions are completely
ignored by the hybrid analysis, which therefore assumes (i) that concurrent
threads may use the same index values and (ii) that any two elements of an
outer array may be aliased. A possible choice can be safely eliminated only when
both threads use provably different values of element indexes for the innermost
dimension. This case is illustrated by the following example, where e1 might be
equal to e2.

data[e1][0] = x y = data[e2][1]
active thread conflict thread

On the other hand, a choice must be preserved when both threads may use
the same index value for the innermost dimension, such as e1 and e2 in the
example below, even if different values (e.g., 0 and 1) are used at some outer
dimension. The expressions data[0] and data[1] may point to the same innermost
array because of aliasing.

data[0][e1] = x y = data[1][e2]
active thread conflict thread

Note also that we have to analyze possible read-write conflicts only for the
innermost dimension, because only read-read conflicts may happen at outer
dimensions and they do not require thread choices.

4 Hybrid Analysis

The hybrid analysis computes all the information necessary to decide whether a
thread choice must be created — in particular, for each of the scenarios described
in the previous section. We designed the analysis in a modular way. Each com-
ponent provides information about one of the following: (1) accesses to array

Hybrid Analysis for Partial Order Reduction of Programs with Arrays 299

objects, (2) future accesses to specific array elements, (3) symbolic values of
element indexes, (4) local variables possibly updated in the future, (5) updated
object fields, and (6) future method calls.

First we describe the general principles and then we provide additional details
about the individual components. Every component that is an inter-procedural
analysis has two phases: static and dynamic. Both phases are designed and exe-
cuted using an approach that was proposed in [15]. The static analysis runs first,
and then follows the state space traversal with dynamic analysis. Results of the
static analysis (phase 1) are combined with information taken from the dynamic
program state (phase 2) on-the-fly during the state space traversal, i.e. at the
dynamic analysis time.

The static phase involves a backward flow-sensitive and context-insensitive
analysis that is performed over the full inter-procedural control flow graph
(ICFG) of a given thread. For each program point p in the thread T , it pro-
vides only information about the behavior of T between the point p and the
return from the method m containing p. Note that the result for p in m covers
also methods called from m (transitively).

Full results are computed at the dynamic analysis time based on the knowl-
edge of the dynamic call stack of each thread, which is a part of the dynamic
program state. The dynamic call stack of a given thread specifies a sequence
p0, p1, . . . , pN of program points, where p0 is the current program counter of the
thread (in the top stack frame), and pi is the point from which execution of the
thread would continue after return from the method associated with the previ-
ous stack frame. When the hybrid analysis is queried for data about the current
point p of some thread T , it takes the data computed by the static analysis phase
for each point pi, i = 0, . . . , N on the dynamic call stack of T , where p = p0, and
merges them all to get the precise and complete results for p.

The complete results for a program point p in thread T cover the future
behavior of T after the point p (until the end of T), and also the behavior of all
child threads of T started after p. Here, a child thread of T is another thread
created and started by T .

Note also that the complete results of the hybrid analysis are fully context-
sensitive for the following two reasons: (1) they reflect the current dynamic
calling context of p in T , i.e., the current program counter in each method
on the dynamic call stack of T , and (2) they precisely match calls with returns.
Only those method call and return edges in the ICFG that can be actually taken
during the concrete program execution are considered by the hybrid analysis.

Accesses to Array Objects. This component of the hybrid analysis identifies
all arrays possibly accessed in the future by a given thread. More specifically, for
each program point p in each thread T , it computes the set of all array objects
that may be accessed on some execution path after p. Static allocation sites are
used to represent the actual array objects also here. The analysis considers read
and write accesses separately in order to enable precise detection of read-write
conflicts. It is an inter-procedural analysis, which therefore has two phases —
static and dynamic — in our approach.

300 P. Paŕızek

Instruction Transfer function
after[] = ∈succ() before[]

: v = a[i] before[] = after[] ∪ {r a}
: a[i] = v before[] = after[] ∪ {w a}
: return before[] = ∅
: call M before[] = before[M.entry] ∪ after[]
: other instr. before[] = after[]

Fig. 4. Transfer functions for the static phase of the array objects analysis

Figure 4 shows transfer functions for the static phase. When the analysis
encounters a read or write access to an array a, it adds the target array object
into the set of data-flow facts. The transfer functions for the call and return
statements are defined in this way to ensure that the result of the static phase
for a point p in a method m covers only the execution between p and return
from m. The merge operator is a set union.

Array Elements. Possible future accesses to individual array elements are iden-
tified using an analysis component that works in a very similar way to the one
for array objects. This analysis computes, for each program point p in each
thread, the set of all possible accesses to array elements that may occur on some
execution path after p. It gathers the following information about each access:
a target array object (allocation site), method signature, and instruction index
(bytecode position). Knowledge of the method signature and bytecode position
is used by the next component to associate each particular access with symbolic
values of array element indexes.

Symbolic Indexes. This component performs symbolic interpretation of the
code in each method to determine symbolic expressions that represent indexes
of array elements. A symbolic expression may include local variables, field access
paths, nested accesses to array elements, numeric constants, and arithmetic
operators.

When processing the code of a method, the analysis maintains a stack of
symbolic expressions, which models the concrete dynamic stack containing local
variables and operands. The symbolic stack is updated during interpretation to
capture the effects of executed program statements. For each statement, all its
operands are removed from the stack and then the result is pushed onto it.

The following example illustrates how the symbolic value of an element index
is computed for a particular array access. We consider the statement v = a[o.f+2].

1: load a [a]
2: load o [a, o]
3: getfield f [a, o.f]
4: const 2 [a, o.f, 2]
5: add [a, o.f+2]
6: arrayload [e]
7: store v []

instructions symbolic stack

Hybrid Analysis for Partial Order Reduction of Programs with Arrays 301

The left column contains a sequence of instructions that corresponds to the
statement, and the right column shows the content of the symbolic stack after
each instruction. At line 5, the top value on the stack represents the symbolic
array element index.

Updated Local Variables. The sets of possibly updated local variables are
computed by an intra-procedural static analysis of each method. For each point
p in method m, the analysis identifies all future write accesses to local variables
of m that may occur on some execution path in m. Note that this component of
the whole hybrid analysis does not use any information available in the dynamic
program state.

Transfer function for the store operation just records the index (name) of the
target local variable. For all other statements, the transfer function is identity.

Updated Fields. We use the field access analysis proposed in [15] to find all
fields that may be updated on some execution path in thread T after the point
p. The analysis is fully inter-procedural and combines the static phase with
information taken from the dynamic program state.

However, the field access analysis alone is not sufficient for the following rea-
son: a symbolic value of an array element index may refer to a field of a heap
object that does not exist yet in the current dynamic state. It is therefore neces-
sary to consider also possible future allocations of heap objects of the respective
class (type). The current dynamic value of a given field may be safely used by
the hybrid analysis and POR, as discussed in Sect. 3, only when the following
two conditions hold.

1. The field is provably not updated in the future according to the field access
analysis.

2. No heap object of the given type may be allocated later during the program
execution starting from the current dynamic state.

We use a simple analysis to find allocation sites at which some dynamic heap
object may be possibly allocated in the future (on some execution path starting
in p).

Although the conditions are quite restrictive, we believe that they will be
satisfied in many cases in practice. Based on manual inspection of the source
code of our benchmark programs (listed in Sect. 5), we found that array index
expressions quite often refer to fields of heap objects that are allocated early
during the program execution. The concrete dynamic value of an object field
can be safely used in such cases, helping to eliminate many redundant thread
choices.

Method Calls. The last component of the hybrid analysis identifies methods
that may be called in the future after the current state. It is an inter-procedural
analysis that represents methods by their signatures. The transfer function for
the call statement adds into the set of facts every method that is a possible
target according to the call graph.

302 P. Paŕızek

5 Evaluation

We implemented the proposed hybrid analysis in Java Pathfinder (JPF) [8],
which is a framework for state space traversal of multithreaded Java programs.
JPF uses on-the-fly state space construction, depth-first search, and concrete
execution of Java bytecode instructions. In order to support decisions about
thread choices based on the results of our hybrid analysis, we created a non-
standard interpreter of Java bytecode instructions for array access. We used the
WALA library [23] for static analysis and JPF API to retrieve information from
the dynamic program state. Symbolic interpretation of Java bytecode, which col-
lects symbolic expressions that represent indexes of array elements, is performed
by a custom engine that we also built using WALA.

Our prototype implementation, together with the experimental setup and
benchmark programs described below, is publicly available at http://d3s.mff.
cuni.cz/projects/formal methods/jpf-static/vmcai16.html.

Benchmarks. We evaluated the hybrid analysis on 11 multithreaded Java pro-
grams from widely known benchmark suites (Java Grande Forum [7], CTC [2],
pjbench [13]), our previous work, and existing studies by other researchers [20].
Table 1 shows the list of benchmark programs and their quantitative
characteristics — the total number of source code lines (Java LoC) and the
maximal number of concurrently running threads. All the benchmark programs
that we use contain array objects reachable from multiple threads and many
accesses to array elements in their source code.

Table 1. Benchmark programs

Benchmark Java LoC Threads

CRE Demo 1,300 2

Daisy 800 2

Crypt 300 2

Elevator 300 3

Simple JBB 2700 2

Alarm Clock 200 3

Prod-Cons 130 2

Rep Workers 400 2

SOR 160 2

TSP 420 2

QSort MT 290 2

For selected benchmarks, we provide a more detailed characteristic that is rele-
vant for the discussion of experimental results later in this section. The benchmark
program Crypt contains three shared arrays, but each thread accesses different
elements of the arrays, and therefore all possible thread choices at the accesses

http://d3s.mff.cuni.cz/projects/formal_methods/jpf-static/vmcai16.html
http://d3s.mff.cuni.cz/projects/formal_methods/jpf-static/vmcai16.html

Hybrid Analysis for Partial Order Reduction of Programs with Arrays 303

to arrays would be redundant. In the case of CRE Demo and Daisy, each array
object used directly in the application source code is reachable only from a single
thread, which means that accesses to arrays are thread-local, but the programs
involve shared collections (e.g., Vector and HashSet) that use arrays internally.

Experiments. The goal of our experimental evaluation was to find how many
redundant thread choices the hybrid analysis really eliminates during the state
space traversal, and how much it improves performance and scalability of dif-
ferent approaches to partial order reduction in the context of software model
checking. We performed experiments with the hybrid analysis for shared array
elements proposed in this paper, the hybrid field access analysis [15], the POR
algorithm based on heap reachability, and our implementation of the dynamic
POR algorithm described in [4]. For the purpose of our experiments, we have
implemented also the dynamic POR algorithm in JPF and combined it with
state matching.

Table 2 shows all configurations of POR that we considered in our experi-
ments. For each configuration, it provides a brief description and a short name
used in tables with results. Note that we say “array access” instead of “array
element access” in some table rows, but with the same intentional meaning, as
the table would be too large otherwise.

Table 2. Configurations of POR

Description Short name

Heap reachability without thread choices at
bytecode Instructions for array element
access

HR + no array ch

Heap reachability with thread choices enabled
at bytecode instructions for array element
access

HR + all array ch

Heap reachability with field access analysis and
enabled thread choices at array element
accesses

HR + fields + all array ch

Heap reachability with field access analysis,
thread choices at array accesses, and hybrid
analysis

HR + fields + hybrid

Dynamic POR without thread choices at
bytecode instructions for array element
access

DPOR + no array ch

Dynamic POR with thread choices enabled at
bytecode instructions for array access

DPOR + enabled array ch

Dynamic POR with field access analysis and
enabled choices at array element accesses

DPOR + fields + enabled array ch

Dynamic POR with field access analysis,
enabled choices at array accesses, and
hybrid analysis

DPOR + fields + hybrid

304 P. Paŕızek

For each configuration and benchmark program, i.e. for every experiment,
we report the following metrics: (1) the total number of thread choices created
by JPF at all kinds of bytecode instructions during the state space traversal,
and (2) the total running time of JPF combined with all phases of the hybrid
analysis. The number of thread choices shows precision, while the running time
indicates performance.

In the first set of experiments, we configured JPF to traverse the whole
state space of each benchmark program — we had to disable reporting of errors
because otherwise JPF would stop upon reaching an error state. We used the
time limit of 8 h and memory limit of 20 GB. The symbol “-”, when present in
some cell of a table with results, indicates that JPF run out of the limit for a
given configuration and benchmark.

Discussion. The results in Tables 3 and 4 show that usage of our hybrid analysis
together with POR in general reduces the number of thread choices and improves
the running time for both POR algorithms that we considered. In the next few
paragraphs, we discuss the results for individual benchmark programs in more
detail and highlight important observations.

For many configurations and benchmark programs, the total number of
thread choices created during the state space traversal is much higher when
choices are enabled at accesses to array elements. This is evident from the val-
ues in columns “HR + no array ch” and “HR + all array ch” (Table 3), respec-
tively in the columns “DPOR + no array ch” and “DPOR + enabled array ch”
(Table 4). We observed an extreme increase of the number of thread choices in
two cases — by the factor of 137 for the Crypt benchmark with POR based
on heap reachability, and by the factor of 300 for the SOR benchmark when
using the dynamic POR. On the other hand, there is a negligible increase for

Table 3. Experimental results: POR algorithm based on heap reachability

HR + no array ch HR + all array ch HR + fields +

all array ch

HR + fields +

hybrid

Benchmark choices time choices time choices time choices time

CRE Demo 30942 51 s 103016 174 s 41146 79 s 29737 69 s

Daisy 28436002 17954 s 32347254 18357 s 8453587 5972 s 8453587 6765 s

Crypt 4993 3 s 682273 238 s 674041 237 s 46105 29 s

Elevator 10167560 7656 s 23709139 18339 s 9980240 7426 s 4748393 3872 s

Simple JBB 575519 1779 s 836889 2583 s 515312 1722 s 344428 1269 s

Alarm Clock 531463 432 s 742027 601 s 344791 285 s 344791 289 s

Prod-Cons 6410 4 s 6934 4 s 2792 4 s 2792 6 s

Rep Workers 9810966 6860 s 9983423 7045 s 1714694 1169 s 1714694 1275 s

SOR 222129 123 s 1565386 882 s 772837 451 s 273693 160 s

TSP 35273 572 s 47475 779 s 15386 257 s 13258 221 s

Hybrid Analysis for Partial Order Reduction of Programs with Arrays 305

Table 4. Experimental results: dynamic POR

DPOR + no array ch DPOR + enabled

array ch

DPOR + fields +

enabled array ch

DPOR + fields

+ hybrid

Benchmark choices time choices time choices time choices time

CRE Demo 2015 11 s 2232 20 s 2207 18 s 2197 22 s

Daisy - - - - - - - -

Crypt 9 1 s 9 1 s 9 3 s 9 5 s

Elevator 414345 913 s 501732 1371 s 408192 886 s 342817 648 s

Simple JBB 602 30 s 608 36 s 608 36 s 608 38 s

Alarm Clock 102076 147 s 155974 227 s 103964 123 s 103964 125 s

Prod-Cons 429 1 s 444 1 s 407 3 s 407 4 s

Rep Workers - - - - - - - -

SOR 135 2 s 40594 208 s 26503 135 s 19819 71 s

TSP 101 67 s 101 94 s 97 66 s 97 58 s

Prod-Cons and Rep Workers, and no increase for the benchmarks Crypt, Simple
JBB, and TSP when using the dynamic POR.

Data in Tables 3 and 4 also indicate how many redundant choices were elim-
inated by the hybrid analysis, and how much it improved the performance and
scalability of state space traversal. The result for a particular benchmark and
POR based on heap reachability corresponds to the difference between values in
the columns “HR + fields + all array ch” and “HR + fields + hybrid” of Table 3.
Similarly, in the case of dynamic POR one has to consider values in the columns
“DPOR + fields + enabled array ch” and “DPOR + fields + hybrid” of Table 4.
We observe that our hybrid analysis eliminates many redundant thread choices
at array accesses for 6 out of 10 benchmarks, namely the following: CRE Demo,
Crypt, Elevator, Simple JBB, SOR, and TSP. In the case of four benchmark
programs — CRE Demo, Crypt, Simple JBB, and TSP — the hybrid analysis
significantly reduced the total number of thread choices only when it is combined
with the POR based on heap reachability. The factor of reduction in the number
of thread choices lies in the range from 1.16 (for TSP and POR based on heap
reachability) up to 14.62 (Crypt and again POR based on heap reachability).

Our results for the benchmarks Alarm Clock, Daisy, Prod-Cons, and Rep
Workers indicate that all redundant thread choices were eliminated by the field
access analysis. For example, by manual inspection of the source code of Prod-
Cons we have found that all accesses to array elements are properly synchronized,
and therefore no thread choices are created at their execution.

Here we compare dynamic POR with the POR algorithm based on heap
reachability. A well-known fact is that dynamic POR is very precise and creates
much less thread choices [12,16]. For example, it correctly identifies that all
accesses to array elements in the Crypt benchmark are thread-local actions.
It analyzes small programs very fast (in few seconds) — see, e.g., the data for
Crypt and Prod-Cons in Table 4 — but it has a significantly higher running time
and memory consumption for some of the more complex benchmark programs.

306 P. Paŕızek

Specifically, our implementation of dynamic POR run out of memory for Daisy
and Rep Workers. Even though dynamic POR itself avoids many redundant
thread choices, usage of our hybrid analysis can still improve precision and also
the running time — data for the benchmarks Elevator and TSP highlight this
case. We discuss reasons for the observed behavior of dynamic POR in Sect. 6.

The cost of the static phase of the hybrid analysis is negligible, as it runs
for few seconds at most. This is apparent especially from the data for bench-
marks Crypt and Prod-Cons, where a majority of the total running time is
consumed by static analysis. The cost of the dynamic analysis phase, which is
performed on-the-fly during the state space traversal, depends heavily on the
number of executed actions (program statements) for which JPF queries the
hybrid analysis. For every such action, the hybrid analysis must decide whether
it is globally-relevant or not. Results for the benchmarks Daisy and Rep Workers
in the right-most columns of Table 3 show that the cost of the dynamic analysis
phase may be significant if JPF performs many queries — in general, one query
for each thread choice created in the configuration “HR + all array ch”. Note
that for Daisy and Rep Workers, the hybrid analysis for shared array elements
does not eliminate any additional thread choices when compared to the config-
uration “HR + fields + all array ch” that involves just the field access analysis,
and therefore hybrid analysis is responsible for the increase of running time.
However, despite the relatively high cost, the speedup of JPF achieved due to
the elimination of many redundant thread choices makes the proposed hybrid
analysis practically useful for many programs.

We also performed experiments with several benchmark programs to find
whether our hybrid analysis improves the speed of error detection. For that
purpose, we had to manually inject concurrency errors into some of the programs.
Table 5 contains results for selected configurations. We have considered both
the POR based on heap reachability and the dynamic POR, each with enabled
thread choices at accesses to array elements, and then with or without the hybrid
analysis.

Usage of the hybrid analysis (i) helped to reduce the number of thread choices
created before reaching an error state for all the benchmarks, and (ii) also helped

Table 5. Experimental results: search for concurrency errors

HR + all array ch HR + fields +
hybrid

DPOR + enabled
array ch

DPOR + fields
+ hybrid

Benchmark choices time choices time choices time choices time

Daisy 253336 143 s 173441 151 s - - - -

Elevator 31169 14 s 8494 9 s 178748 529 s 80486 165 s

Alarm Clock 428 1 s 161 4 s 179 1 s 71 4 s

Prod-Cons 12073 17 s 3030 8 s 1114 3 s 1101 6 s

Rep Workers 6708 5 s 1545 6 s 4527 6 s 1699 6 s

QSort MT 2635 2 s 1428 4 s - - - -

Hybrid Analysis for Partial Order Reduction of Programs with Arrays 307

to improve performance by a factor greater than 2 for the benchmark Elevator
(with dynamic POR) and for the benchmark Prod-Cons (just with POR based
on heap reachability). When the error is detected very quickly in the base-
line configurations, then the cost of the hybrid analysis is responsible for slight
increase of the total running time — see, e.g., the data for Prod-Cons and the
dynamic POR. Interestingly, dynamic POR is much slower than JPF with heap
reachability for Elevator, and it did not find any error for Daisy and QSort MT.

Regarding the actual errors, JPF reported a race condition involving a par-
ticular array element only for the benchmarks Elevator and QSortMT. They
could not be detected if threads choices were disabled at array accesses. Other
benchmarks contain also race conditions that involve field accesses, and the cor-
responding error states are discovered by JPF sooner than the possible races at
array element accesses.

6 Related Work

We discuss selected approaches to partial order reduction, which are used in
software model checking, and also few static analysis-based techniques that can
be used to identify shared array elements.

Dwyer et al. [3] proposed to use a heap reachability information that is com-
puted by a static or dynamic escape analysis. If a given heap object is reachable
from multiple threads, then all operations upon the object have to be marked as
globally-relevant, independently of which threads may really access the object.
The dynamic escape analysis is performed on-the-fly during the state space tra-
versal, and therefore it can use knowledge of the dynamic program state to give
more precise results than the static escape analysis. An important limitation of
this approach is that it works at the granularity of whole objects and arrays.
For example, if an array object is reachable from two threads but every element
is accessed only by a single thread, then all the accesses are still imprecisely
considered as globally-relevant even though they are actually thread-local. Our
hybrid analysis is more precise because (i) for each thread T it computes the
set of array objects accessed by T and (ii) it can distinguish individual array
elements.

The dynamic POR algorithm that was proposed by Flanagan and Gode-
froid [4] is very precise. It explores each dynamic execution path of the given pro-
gram separately, and for each path determines the set of array elements that were
truly accessed by multiple threads on the path. The main advantage of dynamic
POR is that it can distinguish between individual dynamic heap objects, unlike
the static pointer analysis whose results we also use in our hybrid analysis. More
specifically, dynamic POR can precisely identify every shared memory location,
e.g. a dynamic array object with the concrete value of an element index, and
creates thread choices retroactively at accesses to such locations. Every added
choice corresponds to a new thread interleaving that must be explored later.
A limitation of this dynamic POR algorithm performance-wise is that it per-
forms redundant computation because (i) it has to execute each dynamic path

308 P. Paŕızek

until the end state and (ii) it has to track all accesses to object fields and array
elements. A given path has to be fully analyzed even if it does not contribute
any new thread choices, and this can negatively impact performance in the case
of long execution paths. We believe that the redundant computation is the main
reason for the surprisingly long running times of the dynamic POR that we
reported in Sect. 5. The need to keep track of many accesses to fields and array
elements is the main reason for high memory consumption that we observed with
our implementation. Our hybrid analysis improves the performance of dynamic
POR, when they are combined together, by identifying thread-local accesses to
array elements that the dynamic POR does not have to track. In Sect. 5, we also
reported that the combination of dynamic POR with hybrid analysis improves
precision for some benchmarks. The standalone dynamic POR does not consider
reachability of heap objects by individual threads, and therefore it may still
create some redundant thread choices. More specifically, when processing two
instructions i and j that access the same element on the same array object a,
the dynamic POR does not check whether the array a was reachable by thread
Tj (which executes j) at the time of the access by instruction i.

Other recent approaches to partial order reduction include, for example, the
Cartesian POR [6] and the combination of dynamic POR with state match-
ing [24], which address some limitations of the original approach to dynamic
POR. Unnecessary thread choices can be eliminated from the state space also
by preemption sealing [1], which allows the user to enable thread scheduler only
inside specific program modules.

Many techniques that improve the error detection performance of software
model checking are based on bounding the number of explored thread interleav-
ings. See the recent experimental study by Thomson et al. [20] for a compre-
hensive overview. Techniques from this group are orthogonal to our proposed
approach, because they limit the search to a particular region of the state space,
while preserving all thread choices.

Another group of related techniques includes static and dynamic analyses
that can determine whether a given heap object (field) is stationary according
to the definition in [21]. Such objects and fields may be updated only during
initialization, while they are reachable only from a single thread. Once the object
becomes shared, it can be just read in the rest of the program execution. The
analyses for detecting stationary objects [9] and fields [21] could be extended
towards array elements, and then used to compute a subset of the information
that is produced by our hybrid analysis. No thread choice would have to be
created at accesses to a stationary array element during the state space traversal,
because there cannot occur any conflicting pair of read-write accesses to such an
element from different threads.

Shape analysis together with pointer analysis can be also used to identify
heap objects and array elements possibly shared between multiple threads. For
example, the analysis proposed by Sagiv et al. [17] determines the set of memory
locations that are directly reachable from two or more pointer variables. Client
analyses can derive various higher-level sharing properties from this information.

Hybrid Analysis for Partial Order Reduction of Programs with Arrays 309

Our hybrid analysis is different especially in that it determines only whether an
array element is possibly accessed by multiple threads — it does not compute the
heap reachability information and does not perform any kind of shape analysis.

Marron et al. [11] proposed an analysis that determines whether elements of
a given array may be aliased. In that case, threads accessing the respective dif-
ferent array elements would in fact access the same object. Our hybrid analysis
does not compute aliasing information of such kind — rather it answers the ques-
tion whether multiple threads can access the same array element (i.e., whether
threads can use the same index when accessing the array), independently of
possible aliasing between array elements.

7 Conclusion

Our motivation for this work was to optimize the existing popular approaches
to partial order reduction in the context of programs that heavily use arrays.
We proposed a hybrid static-dynamic analysis that identifies array elements
that are possibly accessed by multiple threads during the program execution.
Results of experiments that we performed on several benchmark programs show
that combination of the hybrid analysis with POR improves performance and
scalability of state space traversal. The main benefit of the hybrid analysis is
that, in tools like Java Pathfinder, thread choices can be enabled at globally-
relevant accesses to individual arrays elements, which is a necessary step for
detecting specific race conditions and other kinds of concurrency errors, all that
without a high risk of state explosion and at a reasonable cost in terms of the
running time.

In the future, we plan to integrate the proposed hybrid analysis for array ele-
ments with the may-happen-before analysis [14]. Another possible line of future
research work is to design some variant of the dynamic determinacy analysis [18]
for multithreaded programs, and use it to improve the precision of our hybrid
analyses.

Acknowledgments. This work was partially supported by the Grant Agency of the
Czech Republic project 13-12121P.

References

1. Ball, T., Burckhardt, S., Coons, K.E., Musuvathi, M., Qadeer, S.: Preemption seal-
ing for efficient concurrency testing. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 420–434. Springer, Heidelberg (2010)

2. Concurrency Tool Comparison repository. https://facwiki.cs.byu.edu/vv-lab/
index.php/Concurrency Tool Comparison

3. Dwyer, M., Hatcliff, J., Ranganath, V., Robby, : Exploiting object escape and
locking information in partial-order reductions for concurrent object-oriented pro-
grams. Formal Meth. Syst. Des. 25, 199–240 (2004)

4. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Proceedings of POPL 2005. ACM (2005)

https://facwiki.cs.byu.edu/vv-lab/index.php/Concurrency_Tool_Comparison
https://facwiki.cs.byu.edu/vv-lab/index.php/Concurrency_Tool_Comparison

310 P. Paŕızek

5. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems. LNCS, vol. 1032. Springer, Heidelberg (1996)

6. Gueta, G., Flanagan, C., Yahav, E., Sagiv, M.: Cartesian partial-order reduction.
In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 95–112.
Springer, Heidelberg (2007)

7. The Java Grande Forum Benchmark Suite. https://www2.epcc.ed.ac.uk/
computing/research activities/java grande/index 1.html

8. Java Pathfinder: a system for verification of Java programs. http://babelfish.arc.
nasa.gov/trac/jpf/

9. Li, D., Srisa-an, W., Dwyer, M.B.: SOS: saving time in dynamic race detection
with stationary analysis. In: Proceedings of OOPSLA 2011. ACM (2011)

10. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: Proceedings of
POPL 2005. ACM (2005)

11. Marron, M., Mendez-Lojo, M., Hermenegildo, M., Stefanovic, D., Kapur, D.: Shar-
ing analysis of arrays, collections, and recursive structures. In: Proceedings of
PASTE 2008. ACM (2008)

12. Noonan, E., Mercer, E., Rungta, N.: Vector-clock based partial order reduction for
JPF. ACM SIGSOFT Softw. Eng. Notes 39(1), 1–5 (2014)

13. pjbench: Parallel Java Benchmarks. https://bitbucket.org/pag-lab/pjbench
14. Parizek, P., Jancik, P.: Approximating happens-before order: interplay between

static analysis and state space traversal. In: Proceedings of SPIN 2014. ACM (2014)
15. Parizek, P., Lhotak, O.: Identifying future field accesses in exhaustive state space

traversal. In: Proceedings of ASE 2011. IEEE CS (2011)
16. Parizek, P., Lhotak, O.: Model checking of concurrent programs with static analysis

of field accesses. Sci. Comput. Program. 98, 735–763 (2015)
17. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.

ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002)
18. Schaefer, M., Sridharan, M., Dolby, J., Tip, F.: Dynamic determinacy analysis. In:

Proceedings of PLDI 2013. ACM (2013)
19. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.: x86-TSO: a rigorous

and usable programmer’s model for x86 multiprocessors. Comm. ACM 53(7), 89–
97 (2010)

20. Thomson, P., Donaldson, A., Betts, A.: Concurrency testing using schedule bound-
ing: an empirical study. In: Proceedings of PPoPP 2014. ACM (2014)

21. Unkel, C., Lam, M.S.: Automatic inference of stationary fields: a generalization of
Java’s final fields. In: Proceedings of POPL 2008. ACM (2008)

22. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Autom. Softw. Eng. 10(2), 203–232 (2003)

23. Wala, T.J.: Watson Libraries for Analysis. http://wala.sourceforge.net/
24. Yang, Y., Chen, X., Gopalakrishnan, G.C., Kirby, R.M.: Efficient stateful dynamic

partial order reduction. In: Havelund, K., Majumdar, R. (eds.) SPIN 2008. LNCS,
vol. 5156, pp. 288–305. Springer, Heidelberg (2008)

https://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/index_1.html
https://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/index_1.html
http://babelfish.arc.nasa.gov/trac/jpf/
http://babelfish.arc.nasa.gov/trac/jpf/
https://bitbucket.org/pag-lab/pjbench
http://wala.sourceforge.net/

	Hybrid Analysis for Partial Order Reduction of Programs with Arrays
	1 Introduction
	2 Overview
	3 Array Access Patterns
	4 Hybrid Analysis
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

