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Abstract. This paper presents a method for generating semi-algebraic
invariants for systems governed by non-linear polynomial ordinary dif-
ferential equations under semi-algebraic evolution constraints. Based on
the notion of discrete abstraction, our method eliminates unsoundness
and unnecessary coarseness found in existing approaches for computing
abstractions for non-linear continuous systems and is able to construct
invariants with intricate boolean structure, in contrast to invariants typ-
ically generated using template-based methods. In order to tackle the
state explosion problem associated with discrete abstraction, we present
invariant generation algorithms that exploit sound proof rules for safety
verification, such as differential cut (DC), and a new proof rule that we
call differential divide-and-conquer (DDC), which splits the verification
problem into smaller sub-problems. The resulting invariant generation
method is observed to be much more scalable and efficient than the näıve
approach, exhibiting orders of magnitude performance improvement on
many of the problems.

1 Introduction

Establishing safe operation of embedded systems arising in modern engineering
increasingly involves reasoning about the behaviour of hybrid dynamical systems
that combine discrete and continuous state evolution. Continuous dynamics is
typically specified by ordinary differential equations (ODEs). Non-linear ODEs
afford the engineer the means of modelling rich dynamic behaviour that cannot
possibly occur in linear systems [12], but are also notoriously difficult to analyse
because they rarely possess solutions that can be expressed in closed form.

This paper is concerned with the problem of automating safety verification for
continuous systems modelled by non-linear ODEs under evolution constraints,
which is a problem of broader interest to automating safety verification for hybrid
dynamical systems. To solve the verification problem, one requires a proof that
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a given continuous system does not evolve into an unsafe state at any future
time from some given initial configuration while obeying its evolution constraint.
Additionally, given that solutions are rarely available, it is highly desirable to
arrive at such a proof by working with the ODEs directly, i.e. without solving
the initial value problem.

Traditionally, two popular techniques have been used for proving safety prop-
erties without computing solutions or putting a finite bound on the duration
of evolution in continuous systems: one based on first soundly abstracting the
continuous system and performing reachability analysis in the resulting discrete
transition system, and a deductive verification approach that works by reasoning
about appropriate invariants in the continuous system.

Deductive verification tools for hybrid systems crucially rely on (i) the ability
to prove invariance assertions about continuous systems (which was solved for
the case of semi-algebraic1 invariants and polynomial ODEs in [14]) and (ii)
having the means of automatically generating continuous invariants sufficient to
prove safety assertions about continuous systems. In practice, this latter point
is often the main bottleneck when verifying safety of hybrid systems in which
the continuous dynamics are non-linear.

Existing automatic procedures for generating invariants for use in deduc-
tive frameworks only make limited use of the boolean structure in invariants.
Approaches based on abstraction, in computing reachable sets of discrete sys-
tems, (implicitly) create invariants with more intricate boolean structure; their
limitations currently stem from the conservative nature of the discrete mod-
els, whose transition behaviour is often a very coarse over-approximation of the
evolution taking place in the continuous system.

A number of approaches have been proposed for generating invariants for
continuous systems [8,11,14,16,24,27,28,38,44], which either put serious restric-
tions on the form of the invariant or rely on the user pre-defining a template
and then attempt to find an instantiation of the parameters in the template
that yields an invariant. In this paper we pursue an alternative approach that
automatically generates semi-algebraic continuous invariants from discrete semi-
algebraic abstractions of continuous systems. Our rationale is that recent
advances in semi-algebraic invariant checking for polynomial ODEs [14] allow
deductive provers to work with arbitrary semi-algebraic invariants, yet few meth-
ods for invariant generation are able to synthesize interesting invariants with
boolean structure that one might find in reachable sets of discrete abstractions.
At the same time, discrete abstraction approaches do not take full advantage of
the results on invariant checking in constructing the transition relation for the
discrete transition system. We seek to address both of these issues.

Currently available methods for creating semi-algebraic abstractions of non-
linear polynomial systems [36,37] result in abstractions that are unsound for
certain degenerate cases and unnecessarily coarse even in very simple scenarios.
Additionally, discrete abstraction is known to scale poorly owing to (in the worst

1 A semi-algebraic set is a subset of Rn characterized by a finite boolean combination
of sets defined by polynomial equalities and inequalities.
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case) an exponential increase in the number of discrete states as the continuous
state space is partitioned [37], making it very difficult to refine abstractions.
To ameliorate this situation, we give a method for constructing semi-algebraic
abstractions that are sound and only as coarse as the partitioning of the continu-
ous state space into discrete regions itself. We then employ ideas from deductive
verification to give more scalable and efficient algorithms for generating semi-
algebraic invariants for polynomial continuous systems.

Contributions. In Sect. 3 of this paper we (I) introduce a method for con-
structing semi-algebraic abstractions of polynomial continuous systems in which
transitions between the discrete states occur if and only if a corresponding con-
tinuous evolution is possible in the continuous system. In Sect. 4 we give an algo-
rithm for generating semi-algebraic invariants for polynomial continuous systems
by efficiently extracting reachable sets from these abstractions. In Sect. 5 we (II)
introduce a sound proof rule DDC (differential divide-and-conquer) which works
to split the safety verification problem into smaller sub-problems by exploiting
properties of invariant real algebraic sets and (III) give more scalable invari-
ant generation algorithms employing sound proof rules differential weakening
(DW) [19] and differential cut (DC) [19,21] together with the new rule DDC to
address the discrete state explosion problem associated with computing abstrac-
tions. In Sect. 6 we (IV) evaluate our techniques on a collection of 100 safety
verification problems featuring predominantly non-linear ODEs.

2 Preliminaries

To simplify our presentation, we will use the notation for sets and formulas
characterizing those sets interchangeably in this paper, e.g. H will denote both a
semi-algebraic set H ⊆ R

n and a formula H in the first-order theory of real arith-
metic with free variables in x1, . . . , xn that characterizes this set. In what follows,
we shall restrict our attention to autonomous2 systems of polynomial ordinary
differential equations under semi-algebraic evolution domain constraints3, i.e.
systems of the form:

ẋi = fi(x), x ∈ H ⊆ R
n,

where fi ∈ R[x1, . . . , xn] for 1 ≤ i ≤ n and the evolution domain constraint
H is semi-algebraic. We will write this concisely using vector notation as ẋ =
f(x) & H.

One may wonder at this stage whether restricting attention to polynomial
systems represents a severe limitation; after all, non-linearities involving tran-
scendental functions such as sin, cos, e, ln, etc., are not uncommon in systems
of practical interest. Fortunately, it is often possible to transform such systems
into (larger) polynomial systems by introducing fresh variables and eliminating

2 In the sense of not having an explicit dependence on the time variable t.
3 Evolution constraints are often used to define operating modes in hybrid and cyber-

physical systems (so-called mode, or location invariants in the parlance of hybrid
automata [1,13]).
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non-polynomial non-linearities in a rather general technique [23], which is known
in various scientific communities as recasting [17,30] or differential axiomatiza-
tion [19]. Furthermore, it has been shown that such a transformation can be
mechanised for a broad class of non-polynomial systems using a terminating
algorithm [15]. Likewise, no generality is lost by only considering autonomous
systems because any system with explicit time dependence ẋ = f(x, t) & H can
be transformed into an autonomous system by introducing a fresh variable to
model time evolution, e.g. if we add ẋn+1 = 1 to the system and replace every
instance of t in the system with xn+1.

To state the safety verification problem for continuous systems in full gen-
erality we require a set of initial states for the system, which we denote by
ψ ⊆ R

n, and a set of safe states denoted φ ⊆ R
n. The problem is to prove that

starting inside ψ, the system ẋ = f(x) & H cannot leave φ by evolving inside
the evolution domain constraint H. We will only consider semi-algebraic ψ and
φ in this paper and will state the safety property formally, using notation from
differential dynamic logic (dL) [18], as follows:

ψ → [ẋ = f(x) & H] φ.

The above formula asserts that, starting in any state satisfying the pre-condition
(ψ), the system will necessarily (box modality [ ]) satisfy the post-condition
(φ) when following the system ẋ = f(x) & H for any amount of time.4 The
semantic definition of the dL assertion above is given in terms of the solution,
which precisely describes how continuous states evolve over time. A solution to
the initial value problem for the system ẋ = f(x) with initial value x0 ∈ R

n

is a differentiable function ϕt(x0) : (a, b) → R
n defined for t in some non-

empty interval of existence (a, b) ⊆ R ∪ {∞,−∞} including zero and such that
d
dtϕt(x0) = f(ϕt(x0)) for all t ∈ (a, b). Formally, the dL continuous safety
assertion above is valid if the following is true:

∀ x0 ∈ ψ. ∀ τ ≥ 0. (∀ t ∈ [0, τ ] .ϕt(x0) ∈ H) → ϕτ (x0) ∈ φ.

In practice, solutions to non-linear ODEs are almost never available in closed
form (by which we understand a finite expression in terms of polynomials and
elementary functions); even when they are, the resulting sentences often belong
to an undecidable theory [26] due to transcendental functions in the closed form
expression. Alternatively, the safety verification problem can sometimes be solved
directly in a deductive framework. This involves finding an appropriate set I ⊆
R

n, called a continuous invariant [22], that satisfies the three premises (above
the bar) of the following rule of inference:

(Safety)
H ∧ ψ → I I → [ẋ = f(x) & H] I I → φ

ψ → [ẋ = f(x) & H]φ

4 Considering the continuous system ẋ = f(x) & H as a program, the safety asser-
tion ψ → [ẋ = f(x) & H] φ expresses the (continuous) Hoare triple {ψ} ẋ =
f(x) & H {φ}.
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to conclude (below the bar) that the system is safe. Continuous invariants gen-
eralize positively invariant sets [6] to systems under evolution constraints.

Definition 1 (Continuous Invariant [22]). For a continuous system ẋ =
f(x) & H, a set I ⊆ R

n is a continuous invariant if and only if

∀ x0 ∈ I. ∀ τ ≥ 0. (∀ t ∈ [0, τ ]. ϕt(x0) ∈ H) → ϕt(x0) ∈ I.

Intuitively, a continuous invariant is any set of states I such that any motion ini-
tialized inside I that respects the evolution constraint H is guaranteed to remain
inside I.

When H and I are semi-algebraic and fi are polynomial, a decision procedure for
checking whether I is a continuous invariant was reported in [14], enabling us to
decide dL assertions of the form I → [ẋ = f(x) & H] I. The decision procedure
involves computing higher-order Lie derivatives and exploits the ascending chain
property of Noetherian rings. The interested reader is invited to consult [14]
for a detailed description of the procedure and also [8], where similar ideas
were employed. As a direct consequence, every premise of the rule (Safety) is
known to be decidable, since ψ, φ and H are also assumed to be semi-algebraic,
the goals H ∧ ψ → I and I → φ can be passed to a decision procedure for
real arithmetic [35]. The challenge in applying the rule now lies in finding an
appropriate continuous invariant I.

3 Discrete Abstraction of Continuous Systems

In a certain sense, with discrete abstraction one seeks to approximate continu-
ous systems by finite discrete transition systems. Such a transformation makes
it possible to perform reachability analysis and verify safety properties in the
simpler discrete model. The approach works by ensuring that the set of behav-
iours of the discrete (abstract) system over-approximates the set of behaviours
of the continuous (concrete) system; this is known as sound abstraction. If the
discrete abstraction is sound, then any violation of the safety property in the
continuous system is necessarily reproduced by the abstract discrete transition
system. Conversely, an abstraction is complete (with respect to the safety prop-
erty) when any violation of the safety property in the abstraction is reproduced
by the concrete continuous system.

Discrete abstraction of continuous systems was previously studied in [2,3]
(for linear systems) and [36,37] (for more general non-linear systems), where a
simple method for constructing abstractions was proposed but results in discrete
systems that may feature transitions between discrete states that are impossible
in the continuous system. In this section we describe the process of construct-
ing sound and exact abstractions of non-linear continuous systems. That is,
the resulting abstraction will feature a discrete transition between two abstract
states if and only if a corresponding continuous trajectory is possible in the
concrete system. The method we use is fundamentally different from [36,37]
in computing the discrete transition relation using a decision procedure for
continuous invariant assertions [14].
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3.1 Constructing the Discrete State Space

In this section we describe a way of partitioning the evolution domain constraint
H in the continuous system ẋ = f(x) & H using a set of polynomial functions.

Definition 2 (Semi-algebraic Decomposition). A semi-algebraic decompo-
sition of a semi-algebraic set H ⊆ R

n by a set of m polynomials A ⊂ R[x1, . . . , xn]
is a partition of H into k ≤ 3m regions giving all the non-empty intersections
of the form H ∩ p1 ∼1 0 ∩ · · · ∩ pm ∼m 0 where pi ∈ A and ∼i∈ {<,=, >} for
1 ≤ i ≤ m.

Computing the semi-algebraic decomposition of the evolution domain constraint
H for a finite set of polynomials A can be achieved using a simple procedure
that we will call SemiAlgDecomp. The decomposition defines a partition of H
into k non-empty regions, each corresponding to a single discrete state, which
we denote by si, where 1 ≤ i ≤ k. We will denote by S the set of all discrete
states obtained from the semi-algebraic decomposition, i.e. S ≡ {si | 1 ≤ i ≤ k}.

3.2 Constructing the Transition Relation

We now apply the decision procedure for semi-algebraic continuous invariant
assertion checking reported in [14] to exactly determine the transition relation
T ⊂ S×S, enabling us to construct exact discrete abstractions, which we denote
by the pair (S, T ). We will write si −→ sj for (si, sj) ∈ S × S, the discrete
transition from state si to sj .

We begin with a transition relation S × S in which every state is reachable
from every other state (including itself) in a single discrete transition. First, let
us observe that a continuous solution of the differential equation cannot pass
from a discrete state where p > 0 (for some polynomial p ∈ A) to a state where
p < 0 without passing through p = 0 first, nor vice versa. Using this intuition,
we can give a general definition of what it means for two discrete states to be
neighbouring (or adjacent [34]).

Definition 3. Let S be the set of discrete states constructed from a semi-algebraic
decomposition of H by a finite set of polynomials A ⊂ R[x1, . . . , xn]. Two dis-
crete states si, sj ∈ S, where i �= j, are neighbouring if there are no points
x1,x2 ∈ si ∪ sj such that p(x1) < 0 and p(x2) > 0 for any p in A.

We can now construct a neighbouring transition relation Tn ⊆ S × S in which
only the neighbouring states are reachable in a single transition (note that a state
cannot be its own neighbour using our definition). Intuitively, in the neighbouring
transition relation one cannot “jump across” p = 0 in a single discrete transition;
at the same time, any state is reachable from any other state. An abstraction
which results from (S, Tn) is still maximally coarse and therefore not very useful
(illustrated in Fig. 1).
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Fig. 1. Semi-algebraic decomposition of R
2 by A = {p1, p2} resulting in 9 discrete

states S ⊂ 2R
2

and the neighbouring transition relation Tn ⊂ S × S.

We are only interested in retaining those discrete transitions for which the
corresponding continuous transitions are possible in the original continuous sys-
tem. In order to eliminate impossible discrete transitions we need to decide an
invariance assertion:

si → [ẋ = f(x) & (si ∨ sj)] si,

for each pair of neighbouring discrete states (si, sj) ∈ Tn; we will proceed to
remove transitions si −→ sj from Tn if and only if the decision procedure for
continuous invariance assertions returns True. This process can be mechanized
in a terminating abstraction algorithm that we call ExactAbstraction. The result
is a discrete transition system (S, T ) with a transition relation T ⊆ Tn that does
not feature discrete transitions that are impossible; we will state this property
formally.

Proposition 4. Abstractions (S, T ) are exact with respect to the discretization,
i.e. si −→ sj is in T if and only if

∃ x0 ∈ si. ∃ τ > 0. ϕ0(x0) ∈ si ∧ ϕτ (x0) ∈ sj and ∀ t ∈ [0, τ ]. ϕt(x0) ∈ si ∪ sj ,

that is, if and only if the system may evolve continuously from state si into a
neighbouring state sj without leaving their union si∪sj. The abstraction is exactly
as coarse as the partition of the evolution constraint H into regions corresponding
to discrete states.

One can view the process of removing impossible discrete transitions as a sound
refinement of the neighbouring transition relation to T ⊆ Tn. In the worst case,
using a set of m polynomials for the semi-algebraic decomposition of H will result
in 3m discrete states and a neighbouring transition relation Tn with a total of
7m−3m discrete transitions that need to be checked. In practice, both the number
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of discrete states and the number of transitions in Tn will typically be much
lower than the pessimistic worst case bound. Furthermore, removing impossible
transitions from Tn is a massively parallel problem, allowing one to exploit multi-
core parallelism instead of iterating through the transitions sequentially.

3.3 Sound and Exact Abstraction

We will now discuss some important differences between earlier work and our
approach. The discrete abstraction method reported in [37] is fundamentally
different in the way it constructs the transition relation (let us call it T∼ ⊆ S×S),
which is described in [37, Sect. 3.2.2]. In essence, the method imposes conditions
for removing transitions from the neighbouring transition relation Tn in the
following way: given two neighbouring states si and sj , it removes the transition
si −→ sj from Tn if any of the following conditions are satisfied for any p ∈ A:

1. si has p < 0 and sj has p = 0 and si → dp
dt ≤ 0 is true,

2. si has p > 0 and sj has p = 0 and si → dp
dt ≥ 0 is true,

3. si has p = 0 and sj has p < 0 and (si → dp
dt = 0 ∨ si → dp

dt > 0) is true,
4. si has p = 0 and sj has p > 0 and (si → dp

dt = 0 ∨ si → dp
dt < 0) is true.

Remark 5. The abstraction method in [37] also considers so-called stuttering
(also self-looping [34]) transitions si −→ si, which we disregard here (already
in the way we define Tn). This discrepancy makes no practical difference to
safety verification as stuttering transitions have no effect on the reachable sets
of discrete abstractions.

The approach described in [37] is not (in general) sound when the polynomi-
als in A are allowed to be non-linear. To see this, consider the simple system
with constant derivatives ẋ1 = 1, ẋ2 = 0 and let A = {x2

1 + x2, x2 − x2
1}. The

abstraction one obtains (Fig. 2) suggests that the state x2
1 +x2 = 0∧x2 −x2

1 = 0
(equivalent to x1 = 0 ∧ x2 = 0) is invariant under the flow of the system, which
is incorrect. The nature of this problem was studied in non-convex analysis; a
solution would require reasoning about the contingent cone [42], which is not in
general computable. A sound and exact abstraction using our approach is shown
in Fig. 3.

Fig. 2. Abstraction (S, T∼) generated using method from [37].
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Fig. 3. Sound abstraction (S, T ) generated by ExactAbstraction.

The abstraction method in [37] additionally suffers from coarseness, because
it can introduce discrete transitions that correspond to evolutions that are impos-
sible in the concrete continuous system (the abstraction is therefore inexact). For
instance, consider a planar system of non-linear ordinary differential equations
featuring a stable limit cycle in the form of a unit circle enclosing an equilibrium
at the origin:

ẋ1 = −x3
1 − x2

2x1 + x1 + x2,

ẋ2 = −x3
2 − x2

1x2 + x2 − x1.

Let the system evolve under no evolution constraints and consider a simple
discretization by the axes polynomials, i.e. take A = {x1, x2}. The discrete
abstraction (S, T∼) generated using the method from [37] is shown in Fig. 4.
An exact abstraction (S, T ) without impossible transitions generated using our
approach is shown in Fig. 5. Abstraction (S, T∼) considers the origin reachable,
while (S, T ) does not.

Fig. 4. Inexact abstraction (S, T∼) generated using method from [37].
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Fig. 5. Exact abstraction (S, T ) generated by ExactAbstraction.

4 Extracting Continuous Invariants from Discrete
Abstractions

If one constructs a (sound) discrete abstraction of some system ẋ = f(x) & H
using some finite set of polynomials A, one may verify safety properties by
showing that they hold in the abstraction. For this, one needs to check whether an
unsafe abstract state (i.e. one which contains a state that satisfies the formula
¬φ) is reachable by following the discrete transitions starting from the set of
initial abstract states (those defining regions where ψ is satisfiable). If none of
the unsafe abstract states are reachable from the initial states in the abstraction,
one can conclude that the continuous system is safe.

By computing the forward-reachable set from the set of the initial states
ψ in the abstraction, which we denote by Reach→

A (ψ,H) ⊆ H, one generates
a continuous invariant. Provided the abstraction is exact, this is the smallest
continuous invariant with respect to the discretization by the polynomials in A
and is furthermore semi-algebraic. Formally, we define

Reach→
A (ψ,H) ≡

∨

i s.t. si∩ψ �=∅,
j s.t. si−→∗sj

sj ,

where −→∗ represents the reachability relation; that is, si −→∗ sj if state sj

is reachable from si in zero or more discrete transitions in the exact abstrac-
tion (S, T ), obtained from the discretization by polynomials in A. Thus, I ≡
Reach→

A (ψ,H) is a semi-algebraic set that is (by construction) guaranteed to
include the initial set (i.e. ψ → I) and is a continuous invariant for the system
(i.e. I → [ẋ = f(x) & H] I). If it is also true that I does not include any unsafe
states (i.e. I → φ), then I is sufficient to conclude that the system is safe using
the proof rule (Safety) from Sect. 2.

For invariant generation we are merely interested in extracting a semi-
algebraic continuous invariant containing the initial set of states ψ from the
abstraction, not the full abstraction (S, T ) itself. We now give a simple work-
list procedure that we call LazyReach (Algorithm 1) for constructing the set
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Algorithm 1. LazyReach

Data: ψ, ẋ = f(x) & H, A
Result: Reach→

A (ψ, H)
1 S ← SemiAlgDecomp({H}, A) ;
2 Tn ← NeighbourTrans(S) ;
3 Visited ← {s ∈ S | s ∩ ψ �= ∅} ;
4 Processed ← {} ;
5 while |Processed| < |Visited| do
6 Unprocessed ← Visited \ Processed ;
7 Processed ← Visited ;
8 foreach si in Unprocessed do
9 Validate ← {(si, sj) ∈ Tn | sj �∈ V isited};

10 foreach (si, sj) in Validate do
11 if ¬(si → [ẋ = f(x) & (si ∨ sj)] si) then
12 Visited ← Visited ∪ {sj} ;

13 return
∨

s ∈ Visited

s

Reach→
A (ψ,H) lazily (on demand), i.e. without eagerly constructing the exact

abstraction (S, T ) first.
Although the worst-case running time of LazyReach is exponential in m =

|A|, in practice employing Algorithm 1 is often far more efficient than computing
the exact abstraction (S, T ) in full and then extracting Reach→

A (ψ,H).

5 Tackling Discrete State Explosion

Discrete abstractions of continuous systems suffer from the discrete state explo-
sion problem, i.e. the number of discrete states in the abstraction grows expo-
nentially with the number of polynomials m = |A| used for the discretization.

If one is to consider each individual polynomial p ∈ A, it is intuitive that if
one can show that

1. for the initial set of states ψ, the polynomial p is sign-invariant, i.e. p(ψ) ∼ 0
where ∼∈ {<,=, >}, and

2. that this sign condition defines a continuous invariant for the system, i.e.
p ∼ 0 → [ẋ = f(x) & H] p ∼ 0 ,

then one can refine the evolution constraint to H ∧ p ∼ 0 and remove the
polynomial p from A and obtain an abstraction by the polynomials B ≡ A \ {p}
which has the property that

Reach→
B (ψ,H ∧ p ∼ 0) ≡ Reach→

A (ψ,H).

The number of discrete states generated using B for the semi-algebraic decom-
position of H ∧ p ∼ 0 is at most 3m−1 and the process can be repeated for other
polynomials that remain in B. This section will explore approaches to tackling
the discrete state space explosion based on this observation without making the
abstraction unnecessarily coarse. For this purpose we will use sound proof rules
differential cut and differential divide-and-conquer.
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5.1 Differential Cut

Platzer and Clarke [22] explored an approach to safety verification based on iter-
atively refining the evolution constraint H with differential invariants (a subset
of continuous invariants, see [19]). Such a sound refinement of the evolution
domain is possible using an inference rule called differential cut [21] (hence-
forth DC). Differential cuts are used repeatedly in a process called differential
saturation (see [22, Proposition 2]). The DC rule formalizes the idea that it is
always sound to restrict the evolution domain H by some continuous invariant
F , provided that it includes the initial set ψ, i.e.

(DC)
ψ → [ẋ = f(x) & H]F ψ → [ẋ = f(x) & H ∧ F ]φ

ψ → [ẋ = f(x) & H] φ

the original rationale being that it is easier to prove the safety property in the
more restricted system in the right premise.

5.2 Differential Divide-and-Conquer

We now introduce a new proof rule, akin to DC, that goes further and exploits a
property of sets that are continuous invariants in both positive and negative time
directions to split the continuous system into smaller continuous sub-systems
between which there is no continuous evolution.

Proposition 6. The proof rule DDC given below (with five premises) is sound.

(DDC)

p = 0 → [ẋ = f(x) & H] p = 0
p = 0 → [ẋ = −f(x) & H] p = 0

ψ ∧ p > 0 → [ẋ = f(x) & H ∧ p > 0] φ
ψ ∧ p = 0 → [ẋ = f(x) & H ∧ p = 0] φ
ψ ∧ p < 0 → [ẋ = f(x) & H ∧ p < 0] φ

ψ → [ẋ = f(x) & H] φ

Proof. For a continuous function p, no continuous trajectory inside H can cross
from a region where p > 0 to a region where p < 0 without first crossing p = 0. If
the first two premises hold, then p = 0 cannot be left inside H in either positive
or negative time, i.e. there are no solutions entering or leaving p = 0 inside H.
The reachable sets of the system initialized in ψ ∧p > 0, ψ ∧p = 0 and ψ ∧p < 0
are thus disjoint and confined to regions of H where p > 0, p = 0 and p < 0
respectively. The union of these sets constitutes the reachable set of the system
initialized in ψ and the result follows. ��
Informally, the rule allows one to split the original system into three dynamically
disconnected regions, that is disjoint regions that are not connected by a continu-
ous flow of the system5. Note that unlike DC, the rule DDC does not require the
5 All three regions are invariant sets in the terminology of dynamical systems [5,

Chapter II].
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initial set ψ to be wholly contained inside p > 0, p = 0 or p < 0. Instead, DDC
splits the initial set of states into three disjoint initial subsets ψ∧p > 0, ψ∧p = 0
and ψ ∧ p < 0. The rule DDC thus decomposes the original safety assertion into
three independent safety assertions about smaller sub-systems, allowing the user
to work on these separately. DDC is of practical interest in cases when two or
more of the sets ψ ∧ p > 0, ψ ∧ p = 0 and ψ ∧ p < 0 are non-empty (otherwise,
ψ lies entirely within p > 0, p = 0 or p < 0 and DC may be applied to refine the
constraint).

We now turn to applying the rules DC and DDC to tackle the state space
explosion problem. In Algorithm 2 we give a procedure for refining the evolution
domain constraint and removing polynomials from A, whenever this is possible,
using the proof rules DC and DDC. We call this procedure DWC as it also
exploits the sound reasoning principle of differential weakening DW [19], i.e.

(DW)
H → φ

ψ → [ẋ = f(x) & H] φ
,

which simply requires that the evolution domain be contained within the post-
condition to conclude that the system is safe.

Algorithm 2. DWC

Data: ψ, ẋ = f(x) & H, φ, A
Result: Continuous invariant I s.t. ψ ⊆ I

1 if H ∧ ψ → False then
2 return False

3 if H → φ then
4 return H //DW

5 foreach p ∈ A do
6 if (H ∧ ψ → p > 0) ∧ (p > 0 → [ẋ = f(x) & H] p > 0) then
7 return DWC (ψ, ẋ = f(x) & H ∧ p > 0, φ, A \ {p}) //DC

8 if (H ∧ ψ → p < 0) ∧ (p < 0 → [ẋ = f(x) & H] p < 0) then
9 return DWC (ψ, ẋ = f(x) & H ∧ p < 0, φ, A \ {p}) //DC

10 if (H ∧ ψ → p = 0) ∧ (p = 0 → [ẋ = f(x) & H] p = 0) then
11 return DWC (ψ, ẋ = f(x) & H ∧ p = 0, φ, A \ {p}) //DC

12 foreach p ∈ A do
13 if (p = 0 → [ẋ = f(x) & H] p = 0) ∧ (p = 0 → [ẋ = −f(x) & H] p = 0) then
14 GT ← DWC (ψ ∧ p > 0, ẋ = f(x) & H ∧ p > 0, φ, A \ {p});
15 EQ ← DWC (ψ ∧ p = 0, ẋ = f(x) & H ∧ p = 0, φ, A \ {p});
16 LT ← DWC (ψ ∧ p < 0, ẋ = f(x) & H ∧ p < 0, φ, A \ {p});
17 return GT ∨ EQ ∨ LT //DDC

18 return H

On lines 3 and 4, DWC applies the rule DW as a sufficiency check for termi-
nation. On lines 7, 9 and 11 the procedure discards those p for which p > 0, p < 0
or p = 0 describe a continuous invariant containing the initial set ψ (conditionals
on lines 6, 8 and 10). This step corresponds to an application of the rule DC with
F ≡ p > 0, F ≡ p < 0 and F ≡ p = 0 which, if the rule application is successful,
are used to refine the evolution constraint H in the recursive call. If p = 0 is an
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invariant in both positive and negative time and does not contain all the initial
states ψ, one can use the proof rule DDC to work with 3 smaller sub-systems
of the original system whose reachable set may be constructed by combining the
reachable sets of these smaller systems. This idea is implemented on lines 13-17
of Algorithm 2, where DWC recurses on the 3 smaller sub-systems and removes
the polynomial p (used to divide the system) from A. The over-approximations
of reachable sets obtained using these 3 recursive calls are then combined into a
union (line 17), which gives an over-approximation of the reachable set for the
original system. Finally, when no further progress can be made, the procedure
returns the evolution constraint H (line 18). Because the procedure only involves
applying sound proof rules, one may view DWC as a proof strategy that can be
implemented in a theorem prover. Indeed, if the procedure returns a result while
there are still polynomials remaining in A, one has a proof of safety involving
only the proof rules DW, DC and DDC.

Unlike LazyReach, the invariant generation procedure DWC will not (in gen-
eral) always be able to find a sufficiently strong continuous invariant to prove the
safety property, even if one exists in the semi-algebraic abstraction by the poly-
nomials A. The invariants DWC is able to generate are thus generally coarser
than those generated using LazyReach. However, we observe that in the worst
case the running-time of DWC is only quadratic in the number of polynomials
m = |A|, i.e. TDWC (m) = O(m2), compared the exponential time complexity of
LazyReach.

We now combine the procedure DWC together with the LazyReach algorithm
by replacing return H on the final line (18) in DWC with

returnLazyReach(ψ, ẋ = f(x)& H,A).

We call the resulting new invariant generation procedure DWCL. Instead of
returning H when no further progress can be made with DWC , DWCL falls
back to using the more expensive LazyReach algorithm with the remaining poly-
nomials. This combined procedure is theoretically as powerful as LazyReach, i.e.
is capable of extracting the exact reachable set Reach→

A (ψ,H) if necessary, but in
practice also as fast as DWC , although theoretically the running time of DWCL
remains exponential in m.

Example 7 (Invariant generated using DWCL). Consider the non-linear planar
system from [7, Ex. 10.7, p. 281] (with H = R

2):

ẋ1 = 2x1

(
x2
1 − 3

) (
4x2

1 − 3
) (

x2
1 + 21x2

2 − 12
)
,

ẋ2 = x2

(
35x6

1 + 105x2
2x

4
1 − 315x4

1 − 63x4
2x

2
1 + 378x2

1 + 27x6
2 − 189x4

2 + 378x2
2 − 216

)
,

As an initial set, take ψ ≡ (x1 − 1) 2 + x2
2 < 1

4 and let φ ≡ x2
1 + x2

2 < 8 be
the post-condition. Consider an abstraction of this system using the irreducible
polynomial factors of the right-hand side of the system of ODEs and the post-
condition, i.e. let

A = {x1, x
2
1 − 3, 4x2

1 − 3, x2, x
2
1 + x2

2 − 8, x2
1 + 21x2

2 − 12,

35x6
1 + 105x2

2x
4
1 − 315x4

1 − 63x4
2x

2
1+378x2

1 + 27x6
2 − 189x4

2 + 378x2
2 − 216}.
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There are 7 abstraction polynomials in total, which in the worst case could
lead to 37 = 2187 discrete states and 77 −37 = 821356 discrete transitions in the
neighbouring transition relation Tn. In practice, applying LazyReach to generate
the reachable set Reach→

A (ψ,H) for this problem takes an unreasonable amount
of time. The procedure DWC takes significantly less time to run, but is unable
to find a suitable invariant using DW, DC and DDC alone. Our implementation
of the combined procedure DWCL is able to generate the following continuous
invariant I ⊂ φ in 104 s:6

((
35x

6
1 + 105

(
x
2
2 − 3

)
x
4
1 + 27

(
x
6
2 − 7x

4
2 + 14x

2
2 − 8

)
< 63x

2
1

(
x
4
2 − 6

)
∨ x2 = 0

)

∧ 4x
2
1 = 3 ∧ x1 > 0

)
∨
(

x2 = 0 ∧
(
0 < x1 <

√
3

2
∨

√
3

2
< x1 <

√
3
))

∨
(
35x

6
1 + 105

(
x
2
2 − 3

)
x
4
1 + 27

(
x
6
2 − 7x

4
2 + 14x

2
2 − 8

)
< 63x

2
1

(
x
4
2 − 6

)

∧ x
2
1 + 21x

2
2 < 12 ∧

(
0 < x1 <

√
3

2
∨ (2x1 >

√
3 ∧ x

2
1 < 3 ∧ x2 �= 0

))
)

.

For this problem, the procedure DWCL makes repeated use of both DC and
DDC (each is used 4 times in total) before falling back to LazyReach, which in
every instance is given 3 polynomials that remain to perform the abstraction
(down from 7 in the original list A).

Fig. 6. Phase portrait, unsafe states ¬φ (red), initial set ψ (green) and a generated
continuous invariant I ⊂ φ (blue) (Color figure online).

5.3 Sources of Polynomials for Abstraction

Discrete semi-algebraic abstraction relies on the user supplying a set of polyno-
mials A to construct the set of discrete states through semi-algebraic decompo-
sition of the evolution constraint. The verification problem itself is often a good
6 expression simplified in Mathematica.
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source of polynomials; e.g. they could come from the description of the (semi-
algebraic) post-condition φ, the pre-condition ψ, or indeed from the right-hand
side of the (polynomial) system of ODEs, i.e. the polynomials f1, f2, . . . , fn, their
irreducible factors, etc. The use of Lie derivatives as a source of polynomials for
abstraction was previously investigated in [37] (see also [39] for related work). In
[43] abstraction is explored using Darboux polynomials (see [9,10]), whose real
roots are invariant under the flow of the system. Recent results on real algebraic
invariant checking [8] enable us to consider a more general class of polynomials
that share this property but are not necessarily Darboux.

6 Practical Evaluation

In this section we compare the performance of our invariant generation algo-
rithms LazyReach, DWC and DWCL on a set of 100 safety verification prob-
lems for continuous systems. The differential equations used in these problems
are predominantly non-linear and originate from examples found in texts on
dynamical systems [4,5,7,10,33,41], papers on the qualitative theory of ODEs
and safety verification of continuous and hybrid systems [11,25,31,32,40].7

The running time performance8 of the algorithms is summarised in Fig. 7. In
the graphs, the vertical axis gives the dependent time variable (in seconds on
a log scale) and the horizontal axis denotes the number of problems that could
be solved in under the time given by the curve for each algorithm. By solved
we understand that a semi-algebraic continuous invariant has been successfully
generated and that it implies the postcondition, i.e. is sufficient to prove the
safety assertion.

In our experiments we:

1. use polynomial factors of the right-hand side of the ODEs together with the
factors of the polynomials appearing in the postcondition φ to create the set
of polynomials A for the semi-algebraic decomposition (Fig. 7a),

2. extend the set A generated as in (1.) with Lie derivatives of every polynomial
in A (Fig. 7b), and

3. explore the utility of using polynomials whose real roots are invariant real
algebraic sets by extending the list of polynomials generated in (1.) and (2.)
with polynomials generated using a method presented in [8] (Fig. 7c and d
respecitvely).

In our results we observe that the DWC algorithm is significantly faster than
LazyReach, confirming our hopes for gains in efficiency. We observe that, when
using polynomial factors of the ODEs and the postcondition to abstract the sys-
tem, LazyReach was able to prove as many problems as DWC (43), although the
set of problems solved is different. This is not surprising, since a proof strategy
involving DW, DC and DDC, while very efficient, cannot in general be used to

7 See http://homepages.inf.ed.ac.uk/s0805753/invgen for the problems.
8 The comparison was performed on an i5-3570K CPU clocked at 3.40 GHz.

http://homepages.inf.ed.ac.uk/s0805753/invgen
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(a) Factors of f and polynomials in φ. (b) Factors, Lie derivatives.

(c) Factors, algebraic invariants. (d) Factors, Lie derivatives, alg. invariants.

Fig. 7. Safety verification performance.

extract reachable sets of exact abstractions like the more expensive LazyReach.
The combined method DWCL (using DW, DC, and DDC before falling back to
LazyReach) is seen to be both as practically efficient as DWC and able to solve
more problems (50) than LazyReach under a 600 s timeout; of course, given
enough time, DWCL and LazyReach will both succeed at solving exactly the
same problems (with LazyReach taking significantly more time).

Adding the first Lie derivatives of the polynomial factors of the ODE and
the postcondition effectively doubles the size of the list A which, unsurprisingly,
leads to diminished performance of LazyReach (only 25 problems solved) because
it is heavily affected by the discrete state explosion problem. However, DWC is
seen to perform slightly better than it did without the Lie derivatives in the list,
solving a total of 46 safety verification problems. The DWCL algorithm succeeds
at proving safety in 52 of the problems.

We observe that adding algebraic invariants to the list of polynomial factors
of the ODE and the postcondition resulted in a palpable improvement in the
number of problems that could be solved. This is very clearly visible in the case
of DWC , which is guaranteed to process every algebraic invariant by applying
the proof rules DC and DDC. Overall, for this choice of polynomials we see
LazyReach solving 46, DWC solving 52, and DWCL solving 60 problems out of
100 (see Fig. 7c). Likewise, by adding algebraic invariants to the list of polynomial
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factors and their Lie derivatives (as in 2.) we were able to solve 26, 53 and 59
problems using LazyReach, DWC and DWCL respectively (Fig. 7d).

Overall, in every set of benchmarks we observe only one problem for which
the algorithm DWC times out after 600 s, whereas LazyReach times out for many
of problems (e.g. in the experiments shown in Fig. 7d LazyReach timed out on 59
of the problems and was unable to produce a suitable invariant within the time
limit in only 15 instances). The procedure DWCL generally times out more often
than DWC , but significantly less frequently than LazyReach (e.g. 25 problems
from Fig. 7d resulted in a timeout, and 16 could not be solved using the resulting
invariant).

These results are very encouraging as they demonstrate that the discrete
state explosion problem can, to a certain extent, be addressed using algorithms
such as DWCL and that methods for automatic algebraic invariant generation
(such as that in [8]) can be used to generate polynomials that will often improve
the quality of the resulting abstractions.

It is perhaps surprising to see that many of the atomic predicates featuring
irreducible factors of polynomials harvested from the problem define continuous
invariants. As such, these polynomials are eminently suitable for processing using
our algorithms DWC and DWCL without incurring the performance penalty
associated with building finer abstractions using the conventional approach.

7 Related Work

In [44], the authors apply their earlier results about checking semi-algebraic con-
tinuous invariants to address the invariant generation problem using approaches
such as pre-defining parametric templates and restricting attention to classes
of invariants (such as polyhedra), as well as using qualitative analysis tech-
niques to suggest invariant templates. Our approach is different in that we do
not rely on parametric templates and put no restrictions on the form of the
semi-algebraic invariant which may be generated. Discrete abstraction of linear
systems using linear polynomials to discretize the state space was investigated
in [2,3]. A method for abstracting non-linear systems using non-linear polyno-
mials was studied in [36,37], but results in abstractions that are inexact; the
fundamental differences between this approach and our work is discussed at
length in Sect. 3. A powerful technique called relational abstraction was intro-
duced in [29]. With relational abstraction one aims to over-approximate the
finite time reachability relation between states in a continuous system. Com-
puting relational abstractions requires searching for appropriate invariants in a
larger auxiliary continuous system; once a relational abstraction is available, one
may use it to extract a continuous invariant containing any given initial state
of the system. Computing good relational abstractions for non-linear systems is
in practice expensive because it involves searching for invariants in continuous
systems with double the original number of state variables.
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8 Conclusion

This paper presented a powerful method for automatically discovering contin-
uous invariants that can be used in a formal deductive system to prove safety
assertions about continuous systems. We removed some important theoretical
limitations (unsoundness and coarseness) in existing methods for constructing
discrete abstractions of non-linear continuous systems and presented scalable
and efficient algorithms for continuous invariant generation that combine discrete
semi-algebraic abstraction with sound proof rules for deductive safety verifica-
tion. Verification of hybrid systems constructively reduces to proving properties
of differential equations [18,20], which provides a wider context for the future
development of our work. The results we observe are highly encouraging, but
much further work remains before safety verification (in the continuous frag-
ment) of hybrid systems can enjoy a high level of automation. For instance,
now that issues associated with inexact abstractions have been removed, the
(difficult [39]) problem of finding a good choice of polynomials for constructing
the semi-algebraic predicates is the only factor that determines the success of
our approach. We observed that polynomials whose real roots themselves define
invariants [8] can often be used to improve the quality of abstractions; however
the broader problem of choosing the right polynomials leaves many interesting
questions for future research.
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3. Alur, R., Dang, T., Ivančić, F.: Predicate abstraction for reachability analysis of
hybrid systems. ACM Trans. Embed. Comput. Syst. 5(1), 152–199 (2006)

4. Arrowsmith, D., Place, C.: Dynamical Systems. Differential Equations, Maps and
Chaotic Behaviour. Chapman & Hall, London (1992)
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