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Abstract. We present the first study of robustness of systems that are
both timed as well as reactive (I/O). We study the behavior of such
timed I/O systems in the presence of uncertain inputs and formalize
their robustness using the analytic notion of Lipschitz continuity: a timed
I/O system is K-(Lipschitz) robust if the perturbation in its output is
at most K times the perturbation in its input. We quantify input and
output perturbation using similarity functions over timed words such
as the timed version of the Manhattan distance and the Skorokhod dis-
tance. We consider two models of timed I/O systems — timed transduc-
ers and asynchronous sequential circuits. We show that K-robustness
of timed transducers can be decided in polynomial space under certain
conditions. For asynchronous sequential circuits, we reduce K-robustness
w.r.t. timed Manhattan distances to K-robustness of discrete letter-to-
letter transducers and show PSpace-completeness of the problem.

1 Introduction

Real-time systems operating in physical environments, i.e., timed I/O systems,
are increasingly commonplace today. An inherent problem faced by such com-
putational systems is input uncertainty caused by sensor inaccuracies, imprecise
environment assumptions etc. This means that the input data may be noisy
and/or may have timing errors. In such scenarios, it is not enough for a system
to be functionally correct. It is also desirable that the system be continuous
or robust, i.e., the system behavior degrade smoothly in the presence of input
disturbances [11]. We illustrate this property with two examples of timed I/O
systems.

Example 1. Consider two timed I/O systems which process a sequence of ticks
and calibrate the intervals between the ticks (see Fig. 1). In particular, the goal
is to track if an interval is greater than some given Δ. The first timed I/O system
T is an offline processor: upon arrival of each tick, T waits till the next tick, and
outputs � if the interval is less than or equal to Δ and ⊥ otherwise. The second
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timed I/O system T ′ is an online processor: T ′ starts generating � immediately
upon arrival of each tick, and switches its output to ⊥ after Δ time, until the
arrival of the next tick.

Consider two periodic tick sequences: i1 and i2 as shown in Fig. 1. The dura-
tion between ticks in i1, i2 is Δ, Δ + ε, respectively. Hence, i2 can be viewed as
a timing distortion of i1. While the output o1 of T on i1 is a constant sequence
of �, the output o2 of T on i2 consists of ⊥ entirely. Thus, a small timing per-
turbation in the input of T can cause a large perturbation in its output. On
the other hand, a small timing perturbation in the input of T ′ only causes a
proportionally small perturbation in its output. Indeed, while the output o′

1 of
T ′ on i1 is also a constant sequence of �, the output o′

2 of T ′ on i2 is a sequence
of �, with periodic ⊥ intervals of ε-duration. Thus, the behaviour of T is more
robust to small input timing distortions than the behaviour of T ′.
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Fig. 1. System behaviour under timing distortion

Example 2. Consider two asynchronous sequential circuits C and C′ shown in
Fig. 2. For each circuit, the input is i, the output is i ∨ y and the value of
variable y at time t equals the value of variable z at time t − 1. In circuit C,
variable z equals i∨ y and in circuit C′, variable z equals i. Initially y is set to 0.

Consider inputs i1 and i2 such that i1 is constantly 0, and i2 is 1 in the
interval [0, ε) and 0 otherwise (see Fig. 2). Thus, i2 can be viewed as represent-
ing a transient fault in i1. The outputs of both C and C′ for i1 are constantly
0. For i2, C produces a periodic sequence that equals 1 exactly in the intervals
[0, ε), [1, 1 + ε), [2, 2 + ε) . . ., whereas C′ produces an output that equals 1 only
in the intervals [0, ε) and [1, 1 + ε]. Thus, the effect of a small input perturba-
tion propagates forever in the output of C. On the other hand, the effect of a
small input perturbation is limited to a bounded time in the output of C′. The
behaviour of C is more robust to transient faults than the behaviour of C′.

We present the first study of robustness of systems that are both timed as well
as reactive (I/O). We formalize robustness of timed I/O systems as Lipschitz
continuity [12,18,19]. A function is Lipschitz-continuous if its output changes
proportionally to every change in the input. Given a constant K and similarity
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Fig. 2. System behaviour under transient fault

functions dΣ , dΓ for computing the input, output perturbation, respectively, a
timed I/O system T is defined to be K-Lipschitz robust (or simply, K-robust)
w.r.t. dΣ , dΓ if for all timed words w, v in the domain of T with finite dΣ(w, v),
dΓ(T (w), T (v)) ≤ KdΣ(w, v).

In this work, we focus on K-robustness of two models of timed I/O sys-
tems — timed transducers (Example 1) and asynchronous sequential circuits
(ASCs) (Example 2). We define a timed transducer as a timed automaton over
an alphabet partitioned into an input alphabet dΣ and an output alphabet dΓ. A
timed transducer defines a transduction over timed words, or a timed relation. An
ASC is composed of a combinational circuit (CC), delay elements and feedback
loops (see, for instance, Fig. 2). An ASC also defines a timed relation. However,
timed transducers and ASCs are expressively incomparable. A simple ASC that
delays its inputs by 1 time unit is not expressible by timed transducers — intu-
itively, the timed transducer at time 1 would need to remember arbitrarily many
timed events from the interval [0, 1). Conversely, a simple timed transducer that
outputs 1 if the duration between preceding input events is greater than 1, and
0 otherwise cannot be expressed by any ASC.

We show that K-robustness of timed transducers is undecidable is general,
and decidable under certain conditions on similarity functions. The key idea
behind decidability is a reduction of K-robustness of timed transducers to empti-
ness of weighted timed automata. In particular, our decidability results include
the following:

1. K-robustness w.r.t. timed Manhattan distances is PSpace-complete,
2. K-robustness w.r.t. accumulated delay distances is PSpace-complete under

practically-viable environment assumptions (e.g., minimum symbol persis-
tence), and,

3. K-robustness is PSpace-complete if the input perturbation is computed as
a Skorokhod distance and the output perturbation is computed as a timed
Manhattan distance.

We reduce K-robustness of ASCs w.r.t. timed Manhattan distances to K-
robustness of discrete letter-to-letter transducers, and show that K-robustness
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of ASCs is PSpace-complete. The reduction consists of two steps. First, we
show that on inputs that are step functions, ASCs behave like discrete letter-to-
letter transducers. Second, we show that if an ASC is not K-robust w.r.t. timed
Manhattan distances, there exists a witness consisting of a pair of inputs that
are step functions.

The paper is organized as follows. We first recall necessary formalisms (Sect. 2)
and present our models of timed I/O systems (Sect. 3). We formalize our notion
of robustness for such systems (Sect. 4) and define the similarity functions of
interest (Sect. 5). We then present our results on robustness analysis of timed
transducers (Sect. 6) and ASCs(Sect. 7) w.r.t. various similarity functions.

Related Work. Robustness of systems has been studied in different contexts
such as robust control [13], timed automata [5,10], discrete transducers [12,18,19]
and sequential circuits [9]. However, none of these results are directly applicable
to robustness of timed I/O systems. There are two main reasons. First, we are
interested in robustness w.r.t. input perturbation. Second, timed I/O systems
exhibit both discrete and continuous behavior. Robust control typically involves
reasoning about continuous state-spaces and focuses on designing controllers that
function properly in the presence of perturbation in various internal parameters
of a system’s model. The study of robustness of timed automata focuses on the
design of models whose language is robust to infinitesimal timing perturbation
(e.g. clock drifts) and does not focus on quantifying the effect of input perturba-
tion on the output. Robustness analysis of finite-state transducers is limited to
purely discrete systems and data. In [9], the authors study the robustness of syn-
chronous sequential circuits modeled as discrete Mealy machines. Their notion
of robustness bounds the persistence of the effect of a sporadic disturbance and
is also limited to discrete data.

In other related work [3,6,16], the authors develop different notions of robust-
ness for discrete reactive systems with ω-regular specifications interacting with
uncertain environments. There has also been foundational work on continuity
and robustness analysis of software programs manipulating numbers [7,8,17].

2 Preliminaries

2.1 Timed Automata

We briefly present basic notions regarding timed automata. We refer the reader
to [2] for a comprehensive survey on timed automata.

Timed Words. Let R
+, Q

+ denote the set of all nonnegative real numbers,
rational numbers, respectively. A (finite or infinite) timed word over an alpha-
bet Σ is a word over (Σ,R+): (a0, t0)(a1, t1) . . . such that t0, t1, . . . is a weakly
increasing sequence. A pair (a, t) is referred to as an event. We denote by T L(Σ)
the set of all timed words over Σ. For a timed word w = (a0, t0)(a1, t1) . . ., we
define untimed(w) = a0a1 . . . as the projection of w on the Σ component.
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Disjoint Union of Timed Words. Let w1, w2 be timed words over the alpha-
bet Σ. We define the disjoint union of w1 and w2, denoted w1 ⊕w2, as the union
of events of w1 and w2, annotated with the index of the word (w1 or w2) it belongs
to. E.g. 〈a, 0.4〉〈b, 2.1〉 ⊕ 〈b, 0.3〉〈b, 0.4〉 = 〈(b, 2), 0.3〉〈(a, 1), 0.4〉〈(b, 2), 0.4〉
〈(b, 1), 2.1〉. The word w1 ⊕ w2 is a timed word over the alphabet Σ × {1, 2}.

Clocks. Let X be a set of clocks. A clock constraint is a conjunction of terms of
the form x⊗ c, where x ∈ X, c ∈ Q

+ and ⊗ ∈ {<,≤,=,≥, >}. Let B(X) denote
the set of clock constraints. A clock valuation ν is a mapping ν : X �→ R

+.

Timed Automata. A timed automaton A is a tuple (Σ,L, l0,X, δ, F ) where Σ
is the alphabet of A, L is a set of locations, l0 ∈ L is an initial location, X is a
set of clocks, δ ⊆ L × Σ × B(X) × 2X × L is a switch relation and F ⊆ L is a
set of accepting locations.

Semantics of Timed Automata. The semantics of a timed automaton A is
defined using an infinite-state transition system PreA over the alphabet (Σ ∪
{ε}) × R

+. A state q of PreA is a pair (l, ν) consisting of a location l ∈ L and a
clock valuation ν. A state q = (l, ν) satisfies a clock constraint g, denoted q |= g,
if the formula obtained from g by substituting clocks from X by their valuations
in ν is true. There are two kinds of transitions in PreA: (i) elapse of time:
(l, ν) →τ (l, ν′) iff for every x ∈ X, ν′(x) = ν(x) + τ and (ii) location switch:
(l, ν) →a (l′, ν′) iff there is a switch of A, (l, a, g, γ, l′), such that (l, ν) |= g, and
for each x ∈ X, ν′(x) = 0 if x ∈ γ and ν′(x) = ν(x) otherwise. Consecutive
elapses of time can be merged, therefore we assume that an elapse of time is
followed by a location switch. The initial state of PreA is the state (l0, ν) where
for each x ∈ X, ν(x) = 0. The accepting states of PreA are all states of the form
〈l, ν〉, where l ∈ F . A run of A over a timed word w = (a0, t0)(a1, t1) . . . (ak, tk)
is the sequence: q0 →t0 q1 →a0 q2 →t1−t0 q3 →a1 . . . →ak q2k+2, where q0 is the
initial state of PreA. The run is accepting if q2k+2 is an accepting state. The set
of accepting runs of A is denoted [A]. We say a timed word w is accepted by A
if there is a run over w in [A].

The emptiness problem for timed automata is as follows: given a timed
automaton A, decide whether [A] is nonempty. The emptiness problem is also
referred to as the reachability problem as it is equivalent to reachability of an
accepting state in PreA.

2.2 Weighted Timed Automata

A weighted timed automaton (WTA) is a timed automaton augmented by a
function C : L ∪ δ �→ Q that associates weights with the locations and switches
of the timed automaton. The value of a run (l0, ν0) →τ0 (l0, ν1) →a0 . . . →ak

(lk, ν2k+2) is given by
k∑

i=0

C(li)τi +
k∑

i=0

C(ei)
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where ei is the switch taken in the transition (li, ν2i+1) →ai (li+1, ν2i+2). The
value of a timed word w assigned by a WTA A, denoted LA(w), is defined as
the infimum over values of all accepting runs of A on w.

The quantitative emptiness problem for WTA is as follows: given a WTA A
and λ ∈ Q, decide whether A has an accepting run with value smaller than λ.

Theorem 3 [4]. The quantitative emptiness problem for WTA is PSpace-
complete.

A WTA A is functional if for every timed word w, all accepting runs of A on w
have the same value.

2.3 Discrete Transducers

Discrete Transducers. A discrete transducer T is a tuple (Σ,Γ, Q,Q0, E, F )
where Σ is the input alphabet, Γ is the output alphabet, Q is a finite nonempty
set of states, Q0 ⊆ Q is a set of initial states, E ⊆ Q × Σ × Γ∗ × Q is a set of
transitions, and F is a set of accepting states.

Semantics of Discrete Transducers. A run γ of T on an input word s =
s[1]s[2] . . . s[n] is defined in terms of the sequence: (q0, u1), (q1, u2), . . ., (qn−1, un),
(qn, φ) where q0 ∈ Q0 and for each i ∈ {1, 2, . . . , n}, (qi−1, s[i], ui, qi) ∈ E. A
run (q0, u1), . . . (qn−1, un), (qn, φ) is accepting if qn ∈ F . The output of T along
a run is the word u = u1 · u2 · . . . · un if the run is accepting, and is undefined
otherwise. The transduction computed by a discrete transducer T is the rela-
tion �T � ⊆ Σω × Γω (resp., �T � ⊆ Σ∗ × Γ∗), where (s, u) ∈ �T � iff there is an
accepting run of T on s with u as the output along that run.

Types of Discrete Transducers. A discrete transducer T is called functional
if the relation �T � is a function. In this case, we use �T �(s) to denote the unique
output word generated along any accepting run of T on input word s. A discrete
transducer is a letter-to-letter transducer if in every transition (q, a, u, a′) we
have |u| = 1.

3 Models of Timed I/O Systems

In this section, we present two models of timed I/O systems whose robustness
will be studied in the following sections. The reason for studying these models
separately is that timed transducers and ASCs are expressively incomparable
(as explained in the introduction).

3.1 Timed Transducers

In the following, we define timed transducers, which extend classical discrete
transducers.
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Definition 4 (Timed Transducer). A timed transducer T is a timed automa-
ton over an alphabet partitioned into an input alphabet Σ and an output
alphabet Γ.

Semantics of Timed Transducers. Given a timed transducer T , we define a
relation �T � ⊆ T L(Σ) × T L(Γ) by �T � = {(w, v) : w ∈ T L(Σ), v ∈ T L(Γ), T
accepts w ⊕ v}. We say that v ∈ T L(Γ) is an output of T on w ∈ T L(Σ) if
(w, v) ∈ �T �.

Remark 5. Our model of timed transducers is similar to timed automata with
inputs and outputs presented in [14]. The main difference is the absence of dead-
lines in our automaton model.

In the following proposition, we relate the discrete part of the relation defined
by a timed transducer to the relation defined by a discrete transducer. For
a timed relation R ⊆ T L(Σ) × T L(Γ), let untimed(R) denote {(untimed(w),
untimed(v)) : (w, v) ∈ R}.

Proposition 6. (i): For every timed transducer T that has no cycles labeled by
Γ, there exists a (nondeterministic) discrete transducer T d of exponential size
in size(T ) such that untimed(�T �) and �T d� coincide. (ii): For every discrete
transducer T d, there exists a timed transducer T that has no cycles labeled by Γ
such that untimed(�T �) and �T d� coincide.

Functionality. A transducer is timed-functional iff �T � is a function, i.e., for
all w ∈ T L(Σ) and v1, v2 ∈ T L(Γ), if both (w, v1) ∈ �T � and (w, v2) ∈ �T �,
then v1 = v2. For a timed-functional transducer T , we use �T �(w) to denote the
unique output of T on w.

Proposition 7. Deciding timed functionality of a timed transducer is PSpace-
complete.

Observe that a timed transducer does not have to be timed-functional, even if
it is deterministic when viewed as a timed automaton. Indeed, a trivial timed
automaton that accepts every word over the alphabet Σ ∪Γ is deterministic and
is a timed transducer. However, it is not functional.

In Proposition 8, we present a sufficient condition for timed-functionality
which can be checked in polynomial time. We further identify a class of trans-
ducers for which this condition is also necessary. A switch in a timed automaton
is rigid iff it is guarded by a constraint containing equality. A location l in
a timed automaton is unambiguous if for any pair of outgoing switches, their
constraints g1 and g2 are strongly inconsistent, i.e., for all x1, . . . , xn, t ∈ R

+,
g1(x1, . . . , xn)∧g2(x1+t, . . . , xn+t) is false. A transducer is safe if every location
with outgoing Σ switches is accepting.

Proposition 8. (1) A deterministic timed transducer in which all switches
labeled by Γ are (a) rigid, and (b) all locations with outgoing switches labeled
by Γ are unambiguous, is functional. (2) Every function defined by a determin-
istic safe timed transducer is also defined by a deterministic safe timed transducer
satisfying (a) and (b) from (1).
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3.2 Asynchronous Sequential Circuits

The second model of timed I/O systems that we consider is an asynchronous
sequential circuit (ASC). A generic ASC is shown in Fig. 3 and some example
ASC’s are shown in Fig. 2.

combinatorial

circuit

i1
...
im

o1

...
on

y1

...
yk

dk

zk

...

d1

z1

...

Fig. 3. A generic ASC.

An ASC is an I/O system composed of a com-
binational circuit (CC) and memory devices, or
delay elements. A CC is simply a Boolean logic
circuit that computes Boolean functions of its
inputs. A CC is memoryless: the values of the
circuit’s output variables at time instant t are
functions of the values of the circuit’s input vari-
ables at the same time instant t. A delay element
is always labeled with some d > 0. The output
of a d-delay element at time t equals its input
at time t − d. We consider delays that are nat-
ural numbers (see Remark 11). ASC’s may con-
tain cycles, or feedback loops. Each such cycle is
required to contain at least one delay element.
Due to the presence of delay elements and feed-
back loops, an ASC has memory: the outputs of

an ASC at time instant t are in general functions of its inputs at time instant t
as well as at time instants t′ < t. The inputs of the delay elements of an ASC are
called excitation variables. The outputs of the delay elements of an ASC are
called secondary variables. The relationships between input, output, excitation
and secondary variables of an ASC are graphically represented in Fig. 3 and
formally defined below.

Definition 9. Let C be an ASC with input variables I = {i1, . . . , im}, output
variables O = {o1, . . . , on}, excitation variables Z = {z1, . . . , zk}, secondary
variables Y = {y1, . . . , yk} and delay elements Δ = {d1, . . . , dk}. Let i(t) and
I(t) denote the values of input i and all inputs I at time t, respectively. One can
similarly define o(t), Y(t) etc. We have the following:

∀j ∈ [1, k] : yj(t) =

{
0 if t = [0, dj)
zj(t − dj) if t ≥ dj

∀j ∈ [1, k] : zj(t) = f j(x1(t), . . . , xm(t), y1(t), . . . , yk(t))

∀j ∈ [1, n] : oj(t) = gj(x1(t), . . . , xm(t), y1(t), . . . , yk(t)).

Here, f1, . . . , fk and g1, . . . , gn are Boolean functions. The input alphabet of
ASC C, denoted Σ, is given by {0, 1}m. The output alphabet of C, denoted Γ, is
given by {0, 1}n. The ASC C defines a transduction �C� ⊆ T L(Σ)×T L(Γ) such
that �C� is a total function. Thus, the domain of C is given by dom(C) = T L(Σ).
We use �C�(w) to denote the unique output of C on w.
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Remark 10. Our model of ASCs shares some similarities (such as delays) with
models of discrete event systems ([20]). The main difference is that, in addition
to timing relations, ASCs also express functional relations between inputs and
outputs.

Remark 11 (Time stretching for ASCs). Let s > 0 and let λs : R �→ R be
time stretching defined for every t ∈ R as λs(t) = s · t. Consider an ASC with
rational delays C and an ASC with rational delays Cs obtained from C by mul-
tiplying all delays by s. Observe that for every input i(t) and the corresponding
output o(t) of C, the signal o(λs(t)) is the output of Cs on input i(λs(t)). Thus,
ASCs with rational delays do not introduce any behaviours that are significant
for robustness over ASCs with integer delays.

4 Problem Statement

Similarity Functions. In our work, we use similarity functions to measure
the similarity between timed words. Let S be a set of timed words and let R

∞

denote the set R ∪ {∞}. A similarity function d : S × S → R
∞ is a func-

tion with the properties: ∀x, y ∈ S : (1) d(x, y) ≥ 0 and (2) d(x, y) = d(y, x).
A similarity function d is also a distance (function or metric) if it satisfies
the additional properties: ∀x, y, z ∈ S : (3) d(x, y) = 0 iff x = y and (4)
d(x, z) ≤ d(x, y) + d(y, z). We emphasize that in our work we do not need to
restrict similarity functions to be distances.

In this paper, we are interested in studying the K-Lipschitz robustness of
timed-functional transducers and ASCs.

Definition 12 (K-Lipschitz Robustness of Timed I/O Systems). Let T
be a timed-functional transducer or an ASC with �T � ⊆ T L(Σ)×T L(Γ). Given
a constant K ∈ Q with K > 0 and similarity functions dΣ : T L(Σ)×T L(Σ) →
R

∞ and dΓ : T L(Γ) × T L(Γ) → R
∞, the timed I/O system T is called K-

Lipschitz robust w.r.t. dΣ, dΓ if:

∀w, v ∈ dom(T ) : dΣ(w, v) < ∞ ⇒ dΓ(�T �(w), �T �(v)) ≤ KdΣ(w, v).

5 Similarity Functions Between Timed Words

Timed Words as Càdlàg Functions. Consider a timed word w : (a0, t0)(a1, t1)
. . . (ak, tk) over (Σ, I), where I = [t0, tk] is an interval in R

+. We define a
Càdlàg function wC : I �→ Σ corresponding to w as follows: for each j ∈
{0, 1, . . . , k − 1}, wC(t) = aj if t ∈ [tj , tj+1), and wC(tk) = ak. We define
a timed word timed(wC) = (α0, δ0)(α1, δ1) . . . (αn, δn) corresponding to the
Càdlàg function wC such that: for each j ∈ {0, 1, . . . , n}, αj = wC(δj) and
δj ∈ {δ0, . . . , δn} iff wC changes value at δj . The timed word timed(wC) can
be interpreted as a stuttering-free version of the timed word w. The intervals
[δ0, δ1), [δ1, δ2), . . . , [δn−1, δn) are called segments of w.
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Example. Let w be the timed word (a, 0)(b, 1.3)(a, 2)(a, 2.9)(c, 3.7)(a, 5). Then
wC is given by the following Càdlàg function over the interval [0, 5].

a

b

c

1.3 2 3.7 5

The timed word timed(wC) = (a, 0)(b, 1.3)(a, 2)(c, 3.7)(a, 5).
In what follows, let w, v be timed words over (Σ, I) with I ⊆ R

+. Let wC ,
vC be Càdlàg functions over I, corresponding to w, v, as defined above. We
present below several similarity functions between timed words, computed as
the similarity function between their corresponding Càdlàg functions. We first
present a similarity function between discrete words.

Generalized Manhattan Distance. The generalized Manhattan distance. over
discrete words s, t is defined as: dM (s, t) =

∑max(|s|,|t|)
i=1 diff(s[i], t[i]), where

diff is a cost function that assigns costs for substituting letters. When diff(a, b)
is defined to be 1 for all a, b with a �= b, and 0 otherwise, dM is called the
Manhattan distance.

Timed Manhattan Distance. The timed Manhattan distance dTM extends
the generalized Manhattan distance by accumulating the pointwise distance, as
defined by diff, between the Càdlàg functions corresponding to timed words.
Given diff on Σ:

dTM (w, v) =
∫

I

diff(wC(x), vC(x))dx.

Accumulated Delay Distance. The accumulated delay distance dAD exam-
ines the timed words timed(wC) and timed(vC). If the projections of these
timed words on their Σ components are equal, then the distance dAD(w, v)
equals the sum of delays between the corresponding events; otherwise the dis-
tance is infinite. Let timed(wC) = (α0, δ0)(α1, δ1) . . . (αn, δn) and timed(vC) =
(β0, τ0)(β1, τ1) . . . (βn, τm).

dAD(w, v) =

{∑
j |δj − τj | if untimed(timed(wC)) = untimed(timed(vC))

∞ otherwise.

Skorokhod Distance w.r.t. Timed Manhattan Distance. The Skorokhod
distance dS is a popular distance metric for continuous functions. Hence, it is
also a natural choice for our Càdlàg functions. The Skorokhod distance permits
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wiggling of the function values as well as the timeline in order to match up the
functions. The timeline wiggle is executed using continuous bijective functions,
denoted λ, over the timeline. The first component of the Skorokhod distance
measures the magnitude of the timing distortion resulting from a timeline wiggle
λ. The second component of the Skorokhod distance measures the magnitude of
the function value mismatch under λ. The Skorokhod distance is the least value
obtained over all such timeline wiggles. The magnitudes of the timing distortion
and function value mismatch can be computed and combined in different ways.
In our work, the timing distortion is computed as the L1 norm, the function
value mismatch is computed as the timed Manhattan distance and the two are
combined using addition. Let Λ be the set of all continuous bijections from the
domain I of wC and vC onto itself.

dS(wC , vC) = inf
λ∈Λ

(||Id − λ||1 + dTM (wC , vC ◦ λ)) ,

where Id is the identity function over I, ||.||1 is the L1-norm over R
+ and ◦ is

the usual function composition operator.
We now present some helpful connections between the above distances. Let

d=
TM denote a timed Manhattan distance with diff given by: ∀a, b ∈ Σ, diff

(a, b) = 0 if a = b and diff(a, b) = ∞ otherwise. Let D≤1
TM denote a class of timed

Manhattan distances, d≤1
TM , with diff satisfying: ∀a, b ∈ Σ, diff(a, b) ≤ 1.

Proposition 13. [Relations between distances]. (i) The accumulated delay dis-
tance coincides with the Skorokhod distance w.r.t. d=

TM . (ii) For any d≤1
TM ∈

D≤1
TM , the Skorokhod distance w.r.t. d≤1

TM coincides with d≤1
TM .

6 Robustness Analysis of Timed Transducers

To investigate K-robustness as a decision problem, one needs to have a finitary
encoding of instances of the problem, in particular, of the similarity functions.
We use weighted timed automata to represent similarity functions.

Timed-automatic Similarity Function. A timed similarity function d is com-
puted by a WTA A iff for all w, v ∈ T L(Σ), d(w, v) = LA(w ⊕ v). A timed
similarity function d computed by a WTA is called a timed-automatic similarity
function.

Unfortunately, checking K-robustness of timed transducers w.r.t. timed-
automatic similarity functions is undecidable. The undecidability result follows
from a reduction from the universality problem for timed automata, which is
undecidable [1].

Theorem 14. K-robustness of timed transducers w.r.t. timed-automatic simi-
larity functions is undecidable.

K-robustness can, however, be decided using an automata-based, polynomial-
space, sound (but incomplete) procedure: if the procedure certifies a transducer
T to be K-robust, then T is indeed K-robust. This procedure becomes complete
under additional assumptions.
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Theorem 15. (i) There exists a polynomial-space sound procedure that given
timed-automatic similarity functions dΣ, dΓ and a timed transducer T ,
decides K-robustness of T w.r.t. dΣ , dΓ.

(ii) There exists a PSpace-complete procedure that given timed-automatic simi-
larity functions dΣ, dΓ, with dΓ computed by a functional WTA, and a timed
transducer T , decides K-robustness of T w.r.t. dΣ , dΓ.

Proof Sketch. PSpace-hardness in (ii) follows from a simple reduction from the
emptiness problem for timed automata. To show containment in PSpace, we
construct an automaton A that accepts words that are counterexamples to K-
robustness. More precisely, the automaton A accepts words w ⊕ v ⊕ �T �(w) ⊕
�T �(v) with value K ·dΣ(w, v)−dΓ(�T �(w), �T �(v)). Therefore, an accepted word
with value less than 0 corresponds to timed words w, v that form a counterexam-
ple for K-robustness of T w.r.t. dΣ , dΓ. The automaton A is a product automaton
that includes a copy of the WTA computing dΣ , with weights scaled by K, and
a copy of the WTA computing dΓ, with weights scaled by −1. Given words w, v,
the value computed by the last WTA is smaller than −dΓ(�T �(w), �T �(v)) in
general, and is exactly equal to −dΓ(�T �(w), �T �(v)) if the WTA is functional.
It follows that our automata-theoretic procedure for checking K-robustness is
sound in general and becomes complete when dΓ is computed by a functional
WTA. ��
We now define several timed similarity functions that can be computed by func-
tional and nondeterministic WTA.

Timed Similarity Functions Computed by Functional WTA. We show
that the timed Manhattan and accumulated delay distances can be computed
by functional WTA.

Lemma 16. The timed Manhattan distance dTM over timed words is computed
by a functional WTA.

To compute the timed Manhattan distance, the WTA simply tracks the value of
diff between timed events using its weight function. The semantics of WTA then
imply that the value assigned by the automaton to a pair of timed words is
precisely the timed Manhattan distance between them.

Lemma 17. Let D, B be any nonnegative real numbers. The accumulated delay
distance dAD over timed words w, v such that:

1. the duration of any segment in wC , vC is greater than D and
2. the delay |δj − τi| between corresponding events in wC , vC is less than B, is

computed by a functional WTA.

The WTA tracks with its weight function the number of unmatched events.
Again, the semantics of WTA imply that the value assigned by the automa-
ton to a pair of timed words is precisely the accumulated delay distance. To
make sure that every event is matched to the right event, i.e., the untimed parts
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are equal, the automaton implements a buffer to store the unmatched events.
The assumptions on the minimal duration of events and the maximal delay
between the corresponding events imply that the buffer’s size is bounded.

Timed Similarity Functions Computed by Nondeterministic WTA.
A (restricted) Skorokhod distance can be computed by a nondeterministic WTA.
We first prove the following lemma characterizing an essential subset of the set
Λ of all timing distortions.

Lemma 18. [Skorokhod distance is realized by a piecewise linear function]. Let
w, v be timed words. Let η be the number of segments in v. For every ε > 0,
there exists a piecewise linear function λ consisting of η segments such that
|(||Id − λ||1 + dTM (wC , vC ◦ λ)) − dS(wC , vC)| ≤ ε.

Observe that for piecewise linear functions λ, the value of ||Id||1 − λ coincides
with the accumulated delay distance between vC and vC ◦λ. This fact, combined
with Lemma 18, allows us to compute the Skorokhod distance using a WTA that
non-deterministically guesses λ and computes the sum of the accumulated delay
between vC and vC ◦λ and the timed Manhattan distance between wC and vC ◦λ.

Lemma 19. Let D, B be any nonnegative real numbers. The Skorokhod distance
dS over timed words w, v restricted to timeline wiggles λ such that:

1. the duration of any segment in vC , vC ◦ λ is greater than D and
2. the delay |δj − τi| between corresponding events in vC , vC ◦ λ is less than B,

is computed by a nondeterministic WTA.

Remark 20. Physical systems typically have a bounded rate at which they can
generate/process data. Hence, bounding the minimum possible duration of timed
symbols is not a severe restriction from the modeling perspective. Moreover, if an
input is delayed arbitrarily, it makes little sense to constraint the system behav-
ior. Hence, for robustness analysis, it is also reasonable to bound the maximum
delay between corresponding events.

Summary of Decidability Results. We summarize the decidability results
for timed transducers that follow from Theorem 15 and Lemmas 16, 17 and 19.

1. K-robustness is PSpace-complete for timed Manhattan distances.
2. K-robustness is PSpace-complete for accumulated delay distances (under

environment assumptions from Lemma 17).
3. K-robustness is PSpace-complete if the input perturbation is computed as

a Skorokhod distance (under environment assumptions from Lemma 19) and
the output perturbation is computed as a timed Manhattan distance.

7 Robustness Analysis of Asynchronous Sequential
Circuits

In this section, we show that robustness of ASCs w.r.t. the timed Manhattan
distances is PSpace-complete. The decision procedure is by reduction to discrete
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letter-to-letter transducers. Our argument consists of two steps and relies on the
use of step functions — Càdlàg functions that change values only at integer
points. First, we show that on inputs that are step functions, ASCs behave
like discrete letter-to-letter transducers. Second, we show that if an ASC is not
K-robust w.r.t. the timed Manhattan distances, there exists a counterexample
consisting of a pair of inputs that are step functions. Therefore, we can reduce
K-robustness of ASCs to K-robustness of discrete letter-to-letter transducers,
which can be solved employing techniques from [12].

ASCs Transforming Step Functions. There is a natural correspondence
between step functions f : [0, T ] �→ {0, 1}k and words over the alphabet {0, 1}k.
The function f defines the word word(f) = f(0)f(1) . . . f(T −1) and, conversely,
a word w ∈ ({0, 1}k)∗ defines a step function func(w) such that word(func(w))=
w. We aim to show that the behavior of an ASC on a step function f is captured
by a discrete transducer on word word(f).

First, observe that an ASC with integer delays transforms step functions
into step functions. Indeed, the output at time t depends on the input and sec-
ondary variables at time t, which are equal to the values of excitation variables at
times {t − d1, . . . , t − dk}. The excitation variables at times {t − d1, . . . , t − dk}
depend on inputs and secondary variables at times {t − d1, . . . , t − dk}. As delays
are integers, by unraveling the definition of the output variables (resp., excitation
and secondary variables) at time t, we obtain that the variables depend solely
on (a subset of) inputs at times t, t−1, . . . , frac(t)+1, frac(t), where frac(t) is
the fractional part of t. Therefore, if an input is a step function, then excitation,
secondary and output variables are all step functions. Moreover, the value of the
step function output in the interval [j, j +1) with j ∈ N can be computed using
the input value in the interval [j, j + 1) and the values of excitation variables
in the intervals [j − d1, j + 1 − d1), . . . [j − dk, j + 1 − dk). Therefore, we can
define a discrete letter-to-letter transducer that simulates the given ASC. Such
a transducer remembers in its states the values of the excitation variables in the
last max(d1, . . . , dk) intervals.

Lemma 21. (1) If the input to an ASC is a step function, the output is a step
function. (2) Given an ASC C, one can compute in polynomial space a discrete
letter-to-letter transducer TC such that for every step function f , the output of C
on f is func(�TC(word(f))�).

Remark 22. The transducer TC in Lemma 21 can be constructed in polynomial
space, meaning that its sets of states and accepting states are succinctly repre-
sentable and we can decide in polynomial time whether a given tuple (q, a, b, q′)
belongs to the transition relation of TC .

Counterexamples to K-robustness of ASCs. Consider an ASC with integer
delays that is not K-robust w.r.t. dΣ , dΓ. Then, there are two input functions
f1, f2, satisfying dΓ(�C�(f1), �C�(f2)) > K · dΣ(f1, f2), that are counterexamples
to K-robustness. We show that there exists a pair of step functions g1, g2 that are
counterexamples to K-robustness as well. Recall that the output of the ASC at
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time t depends only on inputs at times t, t − 1, . . . , frac(t) + 1, frac(t). Hence,
we argue that if f1, f2 are counterexamples to K-robustness, then for some x ∈
[0, 1), f1, f2 restricted to the domains Δx

1 = {y ∈ dom(f1) | frac(y) = x},
Δx

2 = {y ∈ dom(f2) | frac(y) = x}, respectively, are also counterexamples to
K-robustness. Since the sets Δx

1 , Δx
2 are discrete, we can define step functions

g1, g2 based on f1, f2 restricted to Δx
1 , Δx

2 , respectively..

Lemma 23. Let C be an ASC with integer delay elements. If C is not K-robust
w.r.t. timed Manhattan distances dΣ , dΓ, then there exists a pair of step functions
g1, g2 such that dΓ(�C�(f1), �C�(f2)) > K · dΣ(f1, f2).

K-robustness of Discrete Transducers. We next present a decidability result
that follows from [12]. Deciding K-robustness of letter-to-letter transducers w.r.t.
generalized Manhattan distances reduces to quantitative non-emptiness of
weighted automata with Sum-value function [12]. The latter problem can be
solved in nondeterministic logarithmic space, assuming that the weights are rep-
resented by numbers of logarithmic length. Hence, we obtain the following result
for short generalized Manhattan distances, i.e., distances whose diff values are
represented by numbers of logarithmic length.

Lemma 24. Deciding K-robustness of letter-to-letter transducers w.r.t. short
generalized Manhattan distances is in NLogspace.

We can now characterize the complexity of checking K-robustness of ASCs.

Theorem 25. Deciding K-robustness of ASCs with respect to timed Manhattan
distances is PSpace-complete.

... ...

......

w u

uv

∧
∧ u = t

1

1

E(v,w)

Oscillator
o

Fig. 4. The diagram of an ASC from the reduction of the reachability in succinctly
represented graphs to K-robustness of ASCs.

Proof. Observe that the timed Manhattan distance between step functions f, g
equals the generalized Manhattan distance between the words word(f), word(g)
corresponding to step functions f, g. This, together with Lemmas 21 and 23,
allows us to reduce checking K-robustness of ASCs w.r.t. timed Manhattan
distances to checking K-robustness of the corresponding letter-to-letter trans-
ducers w.r.t. generalized Manhattan distances. It then follows from Lemma 24
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that checking K-robustness of ASCs is in PSpace. Note that we consider short
generalized Manhattan distances whose descriptions are logarithmic in the expo-
nential size of the letter-to-letter transducer.

The PSpace-hardness of checking K-robustness of ASCs is obtained by a
reduction from the reachability problem for succinctly represented graphs, which
is PSpace-complete [15]. Succinctly represented graphs are given indirectly by
a propositional formula E(v,w), where v,w are vectors of n variables. The
vertexes of the graph are binary sequences of length n, and two sequences are
connected by an edge iff the formula E(v,w) on these sequences holds. Consider
the graph G represented by the formula E(v,w) and its vertex t. We claim that
the ASC given in Fig. 4 is K-robust iff the vertex t is not reachable from the
zero vector (0, . . . , 0) in G. Due to Lemma 23 it suffices to focus on inputs that
are step functions f , or discrete words word(f). The input is interpreted as a
sequence of vertexes of G. The ASC in Fig. 4 consists of (a) a circuit E(v,w)
which checks whether there is an edge between v and the input w, (b) a unit
that tests whether u equals the target vertex t and, (c) an oscillator (2) which
outputs 0 when the input is 0, and once the input is 1, outputs 1 until the end
of the input. Initially, v is the zero vector. If there is an edge between v and
w, u is set to w, and hence, v equals w in the next step and w is checked for
equality with t. If w = t, the oscillator is activated. Otherwise, if there is no edge
between v and w, u is set to the zero vector, which corresponds to transitioning
back to the initial vertex; v equals the zero vector in the next step and the zero
vector is checked for equality with t.

If t is not reachable from the zero vector, the output of the ASC is always
0, and hence the ASC is K-robust for every K. Conversely, we claim that if t is
reachable from the zero vector, then the ASC is not K-robust for any K. Indeed,
consider a shortest path from the zero vector to the target vertex 0,v1, . . . , t
and consider the following two inputs: i1 = 0,v1, . . . , t,0K , the path leading
to activation of the oscillator followed by K inputs that are zero vectors, and,
i2 = 0,v1, . . . , t

′,0K , which is obtained from i1 by changing one bit in t. Observe
that the oscillator in ASC is not activated on the input i2, hence the output is
0. Therefore, while the timed Manhattan distance between the inputs is 1, the
timed Manhattan distance between the outputs is K + 1, for any chosen K. ��

Remark 26. Recall that the domain of an ASC C with input alphabet Σ =
{0, 1}m is given by dom(C) = T L(Σ). For any timed Manhattan distance d≤1

TM

over dom(C) such that ∀a, b ∈ Σ, diff≤1(a, b) ≤ 1, Proposition 13 states that the
Skorohod distance w.r.t. d≤1

TM coincides with d≤1
TM . Hence, K-robustness w.r.t.

such Skorokhod distances is PSpace-complete as well.

8 Conclusions

In this paper, we investigated the K-Lipschitz robustness problem for timed
I/O systems using an automata-theoretic framework. For timed transducers, we
showed that K-robustness can be decided in polynomial space for an interesting
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class of similarity functions. For ASCs, we reduce K-robustness w.r.t. timed
Manhattan distances to K-robustness of discrete transducers and show PSpace-
completeness of the problem.

The essence of our framework is the use of weighted timed automata for
computing similarity functions. This motivates further study of weighted timed
automata; in particular, development of more expressive weighted timed
automata (with nice decidability properties) immediately improves our results.

We also plan to study robustness of other models such as probablistic systems
and explore specific application domains such as robotics.
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