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Preface

This volume contains the papers presented at VMCAI 2016, the 17th International
Conference on Verification, Model Checking, and Abstract Interpretation, held during
January 17-19, 2016, in St. Petersburg, FL, USA, co-located with POPL 2016 (the
annual ACM SIGPLAN/SIGACT Symposium on Principles of Programming Lan-
guages). Previous meetings were held in Port Jefferson (1997), Pisa (1998), Venice
(2002), New York (2003), Venice (2004), Paris (2005), Charleston (2006), Nice
(2007), San Francisco (2008), Savannah (2009), Madrid (2010), Austin (2011),
Philadelphia (2012), Rome (2013), San Diego (2014), and Mumbai (2015).

VMCALI provides a forum for researchers from the communities of verification,
model checking, and abstract interpretation, facilitating interaction, cross-fertilization,
and advancement of hybrid methods that combine these and related areas. VMCAI
topics include: program verification, model checking, abstract interpretation and
abstract domains, program synthesis, static analysis, type systems, deductive methods,
program certification, debugging techniques, program transformation, optimization,
hybrid and cyber-physical systems.

This year the conference attracted 89 abstract submission leading to 67 full-paper
submissions. Each submission was reviewed by at least three Program Committee
members. The committee decided to accept 24 papers. The principal selection criteria
were relevance, quality, and originality. We are glad to include in the proceedings the
contributions of three invited keynote speakers: Peter Miiller on “Viper — A Verifi-
cation Infrastructure for Permission-based Reasoning,” Bryan Parno on “Ironclad —
Full Verification of Complex Systems,” and Thomas Reps on “Automating Abstract
Interpretation.” We would like to thank them for sharing their insights with us through
their talks and articles contributed to the proceedings.

We thank our wonderful Program Committee members and reviewers for their
reviews and discussions. Our gratitude goes to the Steering Committee members for
their helpful advice and support, in particular to Lenore Zuck and Dave Schmidt for
their assistance and invaluable experience with the organization of VMCAIL We would
like to thank Annabel Satin for the great help in coordinating the events co-located with
POPL 2016. We are indebted to EasyChair for providing us with an excellent con-
ference management system. Finally, we thank our sponsors, Facebook and Microsoft
Research, as well as NSF for providing travel grants for students.

November 2015 Barbara Jobstmann
K. Rustan M. Leino
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Ironclad: Full Verification of Complex Systems
(Invited Talk)

Bryan Parno

Microsoft Research

The Ironclad project at Microsoft Research is using a set of new and modified tools
based on automated theorem proving to build Ironclad services. An Ironclad service
guarantees to remote parties that every CPU instruction the service executes adheres to
a high-level specification, convincing clients that the service will be worthy of their
trust. To provide such end-to-end guarantees, we built a full stack of verified software.
That software includes a verified kernel; verified drivers; verified system and cryp-
tography libraries including SHA, HMAC, and RSA; and four Ironclad Apps [1]. As a
concrete example, our Ironclad database provably provides differential privacy to its
data contributors. In other words, if a client encrypts her personal data with the data-
base’s public key, then it can only be decrypted by software that guarantees, down to
the assembly level, that it preserves differential privacy when releasing aggregate
statistics about the data.

We’ve also recently expanded the scope of our verification efforts to distributed
systems, which are notorious for harboring subtle bugs. We have developed IronFleet
[2], a methodology for building practical and provably correct distributed systems. We
demonstrated the methodology on a complex implementation of a Paxos-based repli-
cated state machine library and a lease-based sharded key-value store. We proved that
each obeys a concise safety specification, as well as desirable liveness requirements.
Each implementation achieves performance competitive with a reference system.

In this talk, we describe our methodology, formal results, and lessons we learned from
building large stacks of verified systems software. In pushing automated verification tools
to new scales (over 70K lines of code and proof so far), our team has both benefited from
automated verification techniques and uncovered new challenges in using them.

By continuing to push verification tools to larger and more complex systems,
Ironclad ultimately aims to raise the standard for security- and reliability-critical sys-
tems from “tested” to “correct”.

References

1. Hawblitzel, C., Howell, J., Lorch, J.R., Narayan, A., Parno, B., Zhang, D., Zill, B.: Ironclad
apps: end-to-end security via automated full-system verification. In: Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation (OSDI), October
2014

2. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L., Setty, S., Zill, B.:
Ironfleet: proving practical distributed systems correct. In: Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP), October 2015
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Automating Abstract Interpretation

Thomas Reps'2®™) and Aditya Thakur®

1 University of Wisconsin, Madison, WI, USA
reps@cs.wisc.edu
2 GrammaTech, Inc., Ithaca, NY, USA
3 Google, Inc., Mountain View, CA, USA

Abstract. Abstract interpretation has a reputation of being a kind of
“black art,” and consequently difficult to work with. This paper describes
a twenty-year quest by the first author to address this issue by raising
the level of automation in abstract interpretation. The most recent leg of
this journey is the subject of the second author’s 2014 Ph.D. dissertation.
The paper discusses several different approaches to creating correct-by-
construction analyzers. Our research has allowed us to establish connec-
tions between this problem and several other areas of computer science,
including automated reasoning/decision procedures, concept learning,
and constraint programming.

1 Introduction

Establishing that a program is correct is undecidable in general. Consequently,
program-analysis and verification tools typically work on an abstraction of a
program, which over-approximates the original program’s behavior. The theory
underlying this approach is called abstract interpretation [18]. Abstract interpre-
tation provides a way to create program analyzers that obtain information about
the possible states that a program reaches during execution, but without actu-
ally running the program on specific inputs. Instead, the analyzer executes the
program using finite-sized descriptors that represent sets of states. For example,
one can use descriptors that represent only the sign of a variable’s value: neg,
zero, pos, or unknown. If the abstract state maps variables = and y as follows,
[ — neg, y — neg|, the product “z * y” would be performed as “neg * neg,”
yielding pos. This approximation discards information about the specific values
of x and y; [x — neg, y — neg] represents all concrete states in which x and
y hold negative integers. By using such descriptors to explore the program’s
behavior for all possible inputs, the analyzer accounts for all possible states that
the program can reach.
The tar-pit of undecidability is sidestepped via two concepts:

— Abstraction. In this context, abstraction means “representing an information
space by a smaller space that captures its essential features.” (The smaller

Portions of this work appeared in [26,35,45,63,64,66,70,76,78,81,82]. T. Reps has
an ownership interest in GrammaTech, Inc., which has licensed elements of the tech-
nology reported in this publication.

© Springer-Verlag Berlin Heidelberg 2016

B. Jobstmann and K.R.M. Leino (Eds.): VMCAI 2016, LNCS 9583, pp. 3-40, 2016.
DOI: 10.1007/978-3-662-49122-5_1



4 T. Reps and A. Thakur

space is called an abstract domain; an example of an abstract domain is the
set of all descriptors that record the signs of variables, as used above.)

— One-Sided Analysis. Whenever the analyzer says “no” it means “no,” but
whenever it says “yes” it means “maybe-yes/maybe-no”—i.e., the property
might or might not hold.

When the analyzer reports “no, a bad state is not reachable,” one is guaranteed
that only good states can arise—and hence that the program is correct with
respect to the property being checked. If the analyzer reports “yes, a bad state
might be reachable,” it must try other techniques to attempt to establish the
desired property (e.g., refining the abstraction in use).

However, there is a glitch: abstract interpretation has a reputation of being
a kind of “black art,” and consequently difficult to work with. This paper
describes a twenty-year quest to make abstract interpretation easier to work
with by (i) raising the level of discourse for specifying abstract interpreters,
and (ii) automating some of abstraction interpretation’s more difficult aspects,
thereby making it possible to create correct-by-construction analyzers.

A major focus of the work has been how to automate the construction of the
functions to transform abstract states—also known as abstract transformers.

The motivation came from our experience with two challenging analysis
contexts:

Analysis of Programs Manipulating Linked Data Structures: When
analyzing such programs, the number of fine-grained details that one needs
to track causes the abstractions to be inherently complex.

Analysis of Stripped Machine Code: Here an analyzer needs to use multiple
(separate and cooperating) abstract interpretations [6,45], and we also had
the goal of creating machine-code-analysis tools for multiple instruction sets.

In both cases, our experience with hand construction of abstract transformers
[6,69] was that the process was tedious, time-consuming, and a source of errors.

The paper summarizes three major milestones of our research, based on dif-
ferent approaches that we explored.

1. The TVLA system [12,42,70] introduced a way to create abstractions of
systems specified in first-order logic, plus transitive closure (Sect. 3). To con-
struct abstract transformers in TVLA, we developed a non-standard approach
to weakest precondition based on a finite-differencing transformation [63].

2. The TSL system [45] supports the creation of correct-by-construction imple-
mentations of the abstract transformers needed in tools that analyze machine
code (Sect.4). From a single specification of the concrete semantics of an
instruction set, TSL can generate abstract transformers for static analysis,
dynamic analysis, symbolic analysis, or any combination of the three.

3. Our work on symbolic methods for abstract interpretation [64,78,82] aims to
bridge the gap between (i) the use of logic for specifying program semantics
and program correctness, and (ii) abstract interpretation. Many of the issues,
including the construction of abstract transformers, can be reduced to the
problem of symbolic abstraction (Sect.5):
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Given formula ¢ in logic £, and abstract domain A, find the most-precise
descriptor af in A that over-approximates the meaning of .

A particularly exciting aspect of the work on symbolic abstraction is the num-
ber of links the problem has with other research areas that one would not nor-
mally think of as being connected to static program analysis. Our investigations
have established connections with such areas as automated reasoning/decision
procedures (Sect. 5.4), concept learning (Sect. 6.1), and constraint programming
(Sect. 6.2).

Section 7 discusses related work. Section 8 concludes with a few final insights
and takeaways.

2 Problem Statement

2.1 What Can Be Automated About Abstract Interpretation?
A static-analysis system can have many components, including

(1) construction and use of abstract transformers
— an algorithm to construct sound abstract transformers to model the
actions of language primitives and/or user-defined functions
— an algorithm to apply or compose abstract transformers
(ii) state-space exploration
— state-space-exploration algorithms (i.e., equation/constraint solvers)
— methods to enforce termination via widening policies
— containment algorithms (for determining whether state-space explo-
ration should terminate)
(iii) mechanisms for improving precision
— narrowing
— reduced product
— semantic reduction
— construction of best transformers
— determination of the best inductive invariant
(iv) abstraction refinement (enabled by (i))

While the first author has also done a lot of work on state-space-exploration
algorithms [62,65,67] and some on widening policies [29,30], because so many
of the other aspects of the problem of automating abstract interpretation are
enabled by automating the construction (and use) of abstract transformers, the
paper will focus on work he and his collaborators have carried out on that topic.
In Sect. 5, we discuss recent work on a uniform mechanism to construct abstract
transformers that also provides a way to address reduced product, semantic
reduction, and (for some abstract domains) finding the best inductive invariant.
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To create sound abstract transformers that use a given abstract domain, we
need to have some way to create the abstract analogs of

(I) each constant that can be denoted in the programming language
(IT) each primitive operation in the programming language
(IIT) each user-defined function in every program to be analyzed.

Task (I) is related to defining the abstraction function «; to create the abstract
analog k* of concrete constant k, apply «; i.e., k* = a({k}). By an abstract analog
of a concrete operation/function f, we mean an abstract operation/function f*
that satisfies

a(f(Vi,... Vi) E fHaVh), .. alVa)), (1)
where f denotes the lifting of f to operate on a set of values, i.e., f(Vl, s Vi) =
{f(v1,...,v%) | v1 € V1,...,u, € Vi}, and C denotes an ordering on abstract

values that respects concrete containment; i.e., aii C aﬁz implies v(aﬁ) C v(ag),

where v denotes the concretization function for the abstract domain.

The effort that has to go into task (II) is bounded—the language has a fixed
number of primitive operations—and task (II) only has to be done once for a
given abstract domain. However, task (ITI) needs automation, because it will be
performed for all functions in all users’ programs, which are not known a priori.

2.2 Non-Compositionality

Unfortunately, abstract interpretation is inherently mnon-compositional—
meaning that one cannot create abstract analogs of operations/functions sep-
arately, and put them together without losing precision (see below). The non-
compositionality property is the essence of what makes it hard to automate the
construction of abstract transformers. This message is an uncomfortable one for
computer scientists because compositionality is so ingrained in our training—
e.g., our programming languages are defined using context-free grammars; many
concepts and properties are defined using inductive definitions, and recursive
tree traversals are a basic workhorse.

Syntax-Directed Replacement. A compositional approach to constructing
sound abstract transformers is relatively easy to implement. In particular,
Eq. (1) makes possible a simple, compositional approach—mnamely, syntax-
directed replacement of the concrete constants and concrete primitive opera-
tions by their abstract analogs. For instance, consider the following function:
f(z1,22) = x1 * 29 + 1. First, hoist f to f, ie., f(Xl,Xg) = X1 ¥ Xo + {1}.
Then, by Eq. (1), we have

a(f(X1, Xo))=a(X1 % X5 F {1} T (X1 % Xo) +F {1} C (X)) #F (X)) +2 {1}
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Thus, one way to ensure that we have a sound f* is to define f#(z1,x2) by
fH(xy, 20) L L {l}u.

Drawbacks of Syntax-Directed Replacement. Although syntax-directed
replacement is simple and compositional, it can be quite myopic because it
focuses solely on what happens at a single production in the abstract syntax
tree. The approach can lead to a loss of precision by not accounting for correla-

tions between operations at far-apart positions in the abstract syntax tree.

To illustrate the issue, consider the function h(x) ECp (—x). Obviously,

h(z) always returns 0. Now suppose that we apply syntax-directed replacement,

ht(x) Ly 4t (—*z), and evaluate h! over the sign abstract domain, which con-
sists of six values: {neg, 0, pos,nonpos,nonneg, T}. In particular, the abstract
unary-minus operation is defined as follows:

€T T nonneg | nonpos | pos zero neg
7ﬁ17 T nonpos | nonneg | neg zero pos

Consider evaluating h®(x) with the abstract value pos for the value of .
(Abstract values at leaves and internal nodes of the AST of h*’s defining
expression are shown within square brackets in the tree in Fig.1.) Because
pos +% neg = T, we obtain no useful information from the abstract interpreta-
tion. In contrast, the concrete value is always 0, and therefore the most-precise
abstract answer is zero (because «({0}) = zero).
Artificially imposing compositionality on an abstract
interpreter has a number of drawbacks: [T]+*

PN

— compositionality at expression granularity may not pro- [pos|z [neg]—*
duce the best abstraction, even if all abstract program ‘
primitives are best abstract primitives [pos|z

— compositionality at statement or basic-block level may
not produce the best transformer, even if each abstract Fig. 1. Abstract sub-

transformer being composed is a best transformer traction when leaves
are correlated.
Moreover, if an analyzer loses precision at one point in

a program, it can provoke a cascade of precision loss
throughout the program.

2.3 What Does It Mean to Automate the Construction of Abstract
Transformers?

We sometimes describe our work by saying that we are working on “a yacc
for automating the construction of abstract transformers,” by which we mean
a tool that automates the task to an extent similar to the automation of the
construction of parsers achieved by yacc [36]. As a model for what we would
like to achieve, consider the problem that yacc addresses:
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— An instance of a parsing problem, Parse(L,s), has two parameters: L, a
context-free language; and s, a string to be parsed. String s changes more
frequently than language L.

— Context-free grammars are a formalism for specifying context-free
languages.

— Create a tool that implements the following specification:

e Input: a context-free grammar that describes language L.
e Output: a parsing function, yyparse (), for which executing yyparse ()
on string s computes Parse(L,s).

Thus, we would like to follow a similar scheme.

— An abstract interpreter Interpﬁ(MS, A, a*) has three inputs
e M, = the meaning function for a programming-language statement s
e A = an abstract domain
e a' = an abstract-domain value (which represents a set of pre-states)
a’ changes more frequently than M, and A.
— Find appropriate formalisms F} and F5 for specifying M and A.
— Create a tool that implements the following specification:
e Input:
x an Fj specification of the programming language’s semantics
x an Fy specification that characterizes the abstraction that A supports
e Output: a function I, 4(-) such that I, 4 (af) computes Interp*(Mj, A, a*)

An alternative goal for the tool’s output is as follows:

Output: a representation of the function I 5(-) that can be used in
the function-composition operations performed by interprocedural dataflow
analyzers [74].

Relationship to Partial Evaluation. Readers who are familiar with partial
evaluation [28,37] may be struck by how similar the problem statement above is
to the specification of partial evaluation, which suggests that partial evaluation
could play a role in automating abstract interpretation. However, we believe
that this observation is a red herring: whereas partial evaluation provides a
mechanism to speed up computations by removing interpretive overhead, the
key question in automating the construction of abstract transformers is “Given
the specification of an abstraction, how does one create an execution engine for
an analyzer that performs computations in an over-approrimating fashion?”

2.4 Four Questions

The above discussion suggests four questions to ask about methods for automat-
ing the construction of abstract transformers:
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Q1. What formalism is used to specify M?

Q2. What formalism is used to specify A?

Q3. What is the engine at work that applies/constructs abstract transformers?
(a) What method is used to create I 4(-)?
(b) Can it be used to create a representation of I 4(-)?

Q4. How is the non-compositionality issue discussed in Sect. 2.2 addressed?

The answers given in Sects. 3, 4, and 5 explain how these issues are addressed in
the three approaches described in the paper.

3 TVLA: 3-Valued Logic Analyzer

In 1999, Sagiv, Reps, and Wilhelm devised an abstraction method, called canon-
ical abstraction [70], for analyzing the properties of evolving logical structures.
The original motivation for developing canonical-abstraction domains was the
desire to apply abstract interpretation to imperative programs that manipulate
linked data structures, to check such properties as

— when the input to a list-insert program is an acyclic list, the output is an
acyclic list, and

— when the input to a list-reversal program that uses destructive-update oper-
ations is an acyclic list, the output is an acyclic list.

Such analysis problems are known generically as shape-analysis problems. In
programs that manipulate linked data structures, storage cells can be dynami-
cally allocated and freed, and structure fields can be destructively updated. Data
structures can thus grow and shrink, with no fixed upper bound on their size
or number. In the case of thread-based languages, such as Java, the number of
threads can also grow and shrink dynamically [84]. The challenge in shape analy-
sis is to find a way to create finite-sized descriptors of memory configurations
that (i) abstract away certain details, but (ii) retain enough key information so
that an analyzer can identify interesting node-linkage properties that hold.

A logical structure is a set of individuals together with a certain collection of
relations over the individuals. (In shape analysis, individuals represent entities
such as memory locations, threads, locks, etc.; unary and binary relations encode
the contents of variables, pointer-valued structure fields, and other aspects of
memory states; and first-order formulas with transitive closure are used to spec-
ify properties such as sharing, cyclicity, reachability, etc.) Because canonical
abstraction is a general method for abstracting logical structures, it actually
has much broader applicability for analyzing systems than just shape-analysis
problems. It is relevant to the analysis of any system that can be modeled as an
evolving logical structure [11,12,34,42].

The concrete semantics of a system—such as the concrete semantics of pro-
grams written in a given programming language—is defined using a fixed set
of core relation symbols C. (Different kinds of systems, such as different pro-
gramming languages, are defined by varying the symbols in C.) The concrete
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semantics expresses how a program statement st causes the core relations to
change. The semantics of st is specified with formulas in first-order logic plus
transitive closure over the client-defined core relations in C.

Different abstract domains are defined using canonical abstraction by

— Defining a set of instrumentation relations T (also known as derived relations
or views). Each instrumentation relation p(v) is defined by a formula v, (v)
over the core relations.

— Choosing a set of unary abstraction relations A from among the unary rela-

tions in the vocabulary R & (CWI).

T controls what information is maintained (in addition to the core relations);
A controls what individuals are indistinguishable. The two mechanisms are
connected because it is possible to declare unary instrumentation relations as
abstraction relations. An abstract logical structure is the quotient of a concrete
logical structure with respect to the sets of indistinguishable individuals.

The TVLA (Three-Valued-Logic Analyzer) system [12,42] automates some
of the more difficult aspects of working with canonical-abstraction domains.
However, the initial version of TVLA failed to meet our goal of automating
abstract interpretation because not all aspects of abstract transformers were
derived automatically from the specification of a given abstraction. The analysis
designer had to supply a key portion of every abstract transformer manually.

The introduction of instrumentation relations causes auxiliary information
to be recorded in a program state, such as whether an individual memory loca-
tion possesses (or does not possess) a certain property. The concrete semantics
expresses how a program statement st causes the core relations to change; the
challenge is how one should go about updating the instrumentation relations.
Canonical-abstraction domains are based on 3-valued logic, where the third truth
value (1/2) arises when it is not known whether a property holds or not. Suppose
that p(v) € 7 is defined by ¢,(v). Reevaluating ¢, (v) almost always yields 1/2,
and thus completely defeats the purpose of having augmented logical structures
with instrumentation relation p.

To overcome this effect, the initial version of TVLA required an analysis
designer to specify a relation-maintenance formula for each instrumentation rela-
tion, for each kind of statement in the language being analyzed. This approach
could obtain more precise results than that of reevaluating ,(v), but placed the
onus on the analysis designer to supply a key part of every abstract transformer,
which was both burdensome and a source of errors.

Table 1. Core relations for shape analysis of programs that manipulate linked lists.

Relation |Intended meaning

eq(v1,v2) | Do vy and vy denote the same memory cell?
z(v) Does pointer variable x point to memory cell v?

n(vy,v2) |Does the n-field of v; point to vy?
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In 2002, we developed a way to create relation-maintenance formulas—and
thereby abstract transformers—fully automatically [63]. Our solution to the
problem is based on a finite-differencing transformation. Finite-differencing turns
out to be a natural way to identify the “footprint” of statement st on an instru-
mentation relation p, which reduces the number of tuples in p that have to be
reevaluated (compared to reevaluating all of p’s tuples using 1, (v)).

2-Valued Logical Structures. A concrete state is a 2-valued logical structure,
which provides an interpretation of a vocabulary R = {eq, p1, ..., pn} of relation
symbols (with given arities). R denotes the set of k-ary symbols.

Definition 1. A 2-valued logical structure S over R is a pair S = (U, 1),

where U is the set of individuals, and v is the interpretation. Let B = {0,1}

be the domain of truth values. For p € R;, t(p): U* — B. We assume that

eq € Ro is the identity relation: (i) for all uw € U, v(eq)(u,u) = 1, and (i) for

all uy,ug € U such that uy and us are distinct individuals, t(eq)(uy,uz) = 0.
The set of 2-valued logical structures over R is denoted by Sa[R].

A concrete state is modeled by a 2-valued logical structure over a fixed vocab-
ulary C C R of core relations. Table 1 lists the core relations that are used to
represent a program state made up of linked lists. The set of unary core rela-
tions, C;, contains relations that encode the pointer variables of the program:
a unary relation of the form z(v) € C; encodes pointer variable x € Var. The
binary relation n(v1,ve) € C2 encodes list-node linkages.

R does not include constant or function symbols. Constant symbols are
encoded via unary relations, and k-ary functions via k + l-ary relations. In
both cases, we use integrity rules—i.e., global constraints that restrict the set
of structures considered to ones that we intend. The following integrity rules
restrict each unary relation z, for x € Var, to serve as a constant, and restrict
binary relation n to encode a partial function:

for each x € Var,Vuy,ve : 2(v1) A x(ve) = eq(vy, v2)
Yy, va,v3 : n(vs, v1) An(vs,ve) = eq(vy,va)

3-Valued Structures, Embedding, and Canonical Abstraction.
A 3-valued logical structure provides a finite over-approximation of a possibly

infinite set of 2-valued structures. The set T &' {0,1,1/2} of 3-valued truth
values is partially ordered under the information order: 1 C 1/2 for I € {0,1}. 0
and 1 are definite values; 1/2, which denotes uncertainty, is an indefinite value.
The symbol LI denotes the least-upper-bound operation with respect to C.

Definition 2. A 3-valued logical structure S = (U, 1) is almost identical to
a 2-valued structure, except that ¢ maps each p € R; to a 3-valued function
u(p): Ut — T. In addition, (i) for all u € U, t(eq)(u,u) I 1, and (ii) for all
uy,us € U such that uy and us are distinct individuals, t(eq)(u1,u2) = 0. (An
indiwidual u for which t(eq)(u,u) = 1/2 is called a summary individual.)
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The set of 3-valued logical structures over R is denoted by S5[R] 2 S2[R].
Given S = (U,), 8" = (U’',//) € S3[R], and surjective function f: U — U’, f
embeds S in S’, denoted by S T S', if for allp € R and uy,...,u, € U,
up)(u,...,ux) T/ (p)(f(wr),..., flur)) If, in addition, for all u}, ... ,uj, € U’,

Ll(p)(ullﬂ""u;c): |_| u(p)(ur, ... uy)

Uy ,...,up €U,s.t. f (u;)=u},1<i<k
then S’ is the tight embedding of S with respect to f, denoted by S' = f(S5).

The relation C'9, abbreviated as T, reflects the tuple-wise information order
between structures with the same universe. We have S Cf §’ & f (SYC 9.

The Embedding Theorem [70, Theorem 4.9] says that if S Cf S’, then every
piece of information extracted from S’ via a formula ¢ is a conservative approx-
imation of the information extracted from S via :

U, L> =

Theorem 1. (Embedding Theorem [simplified]). If S (
C [o]3

(U',)) € 83[R] such that S T/ S, then for every formula o, [¢]

wc/:

However, embedding alone is not enough. The universe U of 2-valued structure
S = (U,1) € 82[R] is of a priori unbounded size; consequently, we need a method
that maps U to an abstract universe U* of bounded size. The idea behind canon-
ical abstraction is to choose a subset A C R, of abstraction relations, and to
define an equivalence relation ~ 4s on U that is parameterized by S itself:

up s Uy < Vp € A:u(p)(ur) = o(p)(uz).

This equivalence relation defines the surjective function ff‘: U — (U] ~ys),
which maps an individual to its equivalence class. We have the Galois connection

p(S2[R]) == p(S3[R))
a(X) = {f5(5) | 5 € X} YY) ={S|St ey nSCS S},

where f i in the definition of « denotes the tight-embedding function for logical
structures induced by the node-embedding function f3: U — (U/ ~4s). The
abstraction function « is referred to as canonical abstraction. Note that there is
an upper bound on the size of each structure (U*, /) € S3[R] that is in the image
of a: |U¥| < 24l —and thus the power-set of the image of « is a finite sublattice
of p(S3[R]). The ordering on p(S3[R]) is the Hoare ordering: SS; T S5, if for
all S; € SS; there exists Sy € SS5 such that S; T/ 9.

Maintaining Instrumentation Relations. The technique used to create
abstract transformers for canonical-abstraction domains works as follows. The
post-state structures for statement st are determined using four primitives:
(i) partial concretization (or partial model enumeration) via the focus opera-
tion [70], [Sect. 6.3]; (ii) formula evaluation, using (a) for a core relation ¢ € C,
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the relation-update formula 7. from the concrete semantics, evaluated in 3-
valued logic: [7¢ 53, and (b) for an instrumentation relation p € Z, a finite-
differencing-based relation-maintenance formula p, s created by the technique
described below [63, Sects. 5 and 6]; (iii) lightweight logical reasoning via the
coerce operation [70, Sect. 6.4], which repeatedly performs semantic-reduction
steps [19] on the post-state structure to increase the precision of the result;
and (iv) a final application of canonical abstraction with respect to abstraction
relations A. Due to space limitations, we will only discuss step (ii).! Step (ii)
transforms a 3-valued pre-state structure S# that arises just before step (ii),
into post-state structure SQ# just after step (ii). The structure that consists of
just the core relations of S;# is called a proto-structure, denoted by S The

proto*

creation of core relation c in Sfmto from Sf& can be expressed as follows:
s¥  s* . . s
for each uy,...,ux € UL 17roro () (un, . .., ug) := [Te,st(u1, ..., uk)]s (2)

We now come to the crux of the matter: Suppose that instrumentation relation
p is defined by formula 1,; how should the analysis engine obtain the value
of relation p in SQ# ? From the standpoint of the concrete semantics, p is just
cached information that could always be recomputed by reevaluating the defining
formula 1), and thus the Embedding Theorem tells us that it is sound to perform

#
for each uq,...,u; € Usﬁvw, 57 ) (u1, ..., ug) = [p(u,. .. ,uk)]]zf”””. (3)

In practice, however, this approach loses too much precision.
An alternative approach is to create a relation-maintenance formula for p
with respect to st via a weakest-liberal-precondition (WLP) transformation,

def
Hp st = wp[c  Te,st | ce C]7 (4)

where [g < 0] denotes the formula obtained from ¢ by replacing each occur-
rence of relation symbol ¢ by formula 6. Formula p,, o+ is evaluated in Sf& :

# # S#
for each uy,...,up € U1 052 (p)(uy, ..., up) == lppst(uts .., ug)]st . (5)

However, Egs. (3) and (5) turn out to be equivalent—and hence equivalently

imprecise—because the steps of creating S mimic

]]S;)faﬁo
proto 3

and evaluating [,
#
exactly those of evaluating [¢,[c <= 7.5 | ¢ € C]]]gl .

Relation Maintenance via Finite Differencing. The algorithm for creating
a relation-maintenance formula p,, o, for p € 7, uses an incremental-computation

! It is interesting to note that the roles of steps (i), (iii), and (iv) are close to the steps
of splitting, propagation, and join, respectively, in our generalization of Stalmarck’s
algorithm to perform symbolic abstraction [82]. See Sect. 5.
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Fig. 2. How to maintain the value of 1, in 3-valued logic in response to changes in the
values of core relations caused by the execution of structure transformer st.
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Fig. 3. Finite-difference formulas for first-order formulas.

strategy: fip, s is defined in terms of the stored (pre-state) value of p, along with
two finite-differencing operators, denoted by A;[-] and AZ[].

Hop, st e p? _'As_t[djp] : A§[¢p]~ (6)
In this approach to the relation-maintenance problem, the two finite-differencing
operators characterize the tuples of relation p that are subtracted and added in
response to structure transformation st. Ag[-] has value 1 for tuples that st
changes from 1 to 0; A%[-] has value 1 for tuples that st changes from 0 to 1.
Equation (6) means that if the old value of a p tuple is 1, then its new value
is 1 unless there is a negative change; if the old value of a p tuple is 0, then
its new value is 0 unless there is a positive change. Figure2 depicts how the
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static-analysis engine evaluates A5[th,] and A%[ip,] in S and combines these
values with the value of the p tuple from S# to obtain the value of the p” tuple.

The operators Ag;[-] and AY[-] are defined recursively, as shown in Fig. 3.
The definitions in Fig. 3 make use of the operator F[p] (standing for “Future”),

defined as follows: et

Falo] = 0?2450 : Aflel. (7)

. def
Thus, maintenance formula p, s can also be expressed as pp s = Falpl.

Equation (7) and Fig.3 define a syntax-directed translation scheme that can
be implemented via a recursive walk over a formula ¢. The operators A_[-] and
AL]] are mutually recursive. For instance, Af[—p1] = AL p1] and A [—p1] =
Allp1]. Moreover, each occurrence of F[p;] contains additional occurrences of
Aglpi] and Ag[pi].

Note how Ag[-] and Af[] for Vs and @1 Aps resemble the product rule
of differentiation. Continuing the analogy, it helps to bear in mind that the
“independent variables” are the core relations, whose values are changed via the
Te,st formulas; the “dependent variable” is the relation defined by formula .

The relation-maintenance formula defined in Eq. (6) is, in essence, a non-
standard approach to WLP based on finite differencing, rather than substitu-
tion. To see the relationship with WLP, consider the substitution-based relation-
maintenance formula ¢, [c < 7 5 | ¢ € C| defined in Eq. (4), which computes the
WLP of post-state instrumentation relation p with respect to statement st. In
the concrete semantics, this formula is equivalent to the finite-differencing-based
relation-maintenance formula, F[p] = p? = A,[p] : AL [p] [63, Theorem 5.3]. In
effect, Fy[p] is a “footprint-based” version of WLP.

Answers to The Four Questions.

Q1. The concrete semantics is specified by (i) declaring a suitable set of core
relations C that define a system’s concrete states, and (ii) writing—using
first-order logic plus transitive closure over C—the 7. s; formulas that define
the concrete transformers.

Q2. A canonical-abstraction domain is specified by (i) defining instrumentation
relations Z (again, using first-order logic plus transitive closure), and (ii)
selecting which unary relations in C; WZ; to use as abstraction relations A.
7 controls what information is maintained (in addition to the core relations);
A controls what individuals are indistinguishable. The two mechanisms are
connected because one can declare unary instrumentation relations to be
abstraction relations.

Q3. (a) Abstract transformers are constructed automatically by means of the
four-part construction sketched in the section “Maintaining Instrumenta-
tion Relations” above. In particular, an instrumentation relation p € 7 is
evaluated using the relation-maintenance formula 1, s, created by applying
a finite-differencing transformation to p’s defining formula v, (Eq. (6)).

(b) Representations of abstract transformers can be created by means of
a principle of “pairing and then abstracting” [35, Sect.6]. In particular,
one uses (sets of) logical structures over a duplicated vocabulary R & R’
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to represent relations between logical structures over vocabulary R. The
relation-composition operation needed for interprocedural analysis [74], can
be performed in the usual way, i.e., Rs[RWUR"] = IR’ : R[RUR'|AR3[R'W
R"], using three vocabularies of relation symbols, a meet operation on
3-valued structures [4], and implementing IR’ by dropping all R’ relations
[35, Sect. 6.5].

Q4. For statement st, the relation-maintenance formula p,, 5; for instrumentation
relation p is p ? mA[1,] : AL[t,] (evaluated in the pre-state structure),
rather than ¢, (evaluated in the post-state structure) or ¢,[c < 7c 5 | ¢ € C]
(evaluated in the pre-state structure). Finite-differencing addresses the non-
compositionality issue because p, s+ identifies the “footprint” of statement
st on p, which reduces the number of tuples in p that have to be reevaluated.

4 TSL: Transformer Specification Language

In 2008, Lim and Reps created the TSL system [45], a meta-tool to help in the
creation of tools for analyzing machine code. From a single specification of the
concrete semantics of a machine-code instruction set, TSL automatically gener-
ates correct-by-construction implementations of the state-transformation func-
tions needed in state-space-exploration tools that use static analysis, dynamic
analysis, symbolic analysis, or any combination of the three [44,45,80].

The TSL meta-language is a strongly typed, first-order functional language
with a datatype-definition mechanism for defining recursive datatypes, plus
deconstruction by means of pattern matching. Writing a TSL specification for
an instruction set is similar to writing an interpreter in first-order ML: the spec-
ification of an instruction set’s concrete semantics is written as a TSL function

state interpInstr(instruction I, state S) ...;

where instruction and state are user-defined datatypes that represent the
instructions and the semantic states, respectively. TSL’s meta-language provides
a fixed set of basetypes; a fixed set of arithmetic, bitwise, relational, and logical
operators; and a facility for defining map-types.

TSL’s most basic mechanism for creating abstract transformers is similar to
the syntax-directed-replacement method described in Sect. 2.2. From the specifi-
cation of interplnstr for a given instruction set, the TSL compiler creates a C+-+
template that serves as a common intermediate representation (CIR). The CIR
template is parameterized on an abstract-domain class, A, and a fixed set of
A primitive operations that mainly correspond to the primitive operations of
the TSL meta-language. A C++ class that can be used to instantiate the CIR
is called a semantic reinterpretation [46,56-58]; it must implement an interface
that consists of 42 basetype operators, most of which have four variants, for
8-, 16-, 32-, and 64-bit integers, as well as 12 map access/update operations and
a few additional operations, such as join, meet, and widen.

The CIR can be used to create multiple abstract interpreters for a given
instruction set. Each analyzer is specified by supplying a semantic reinterpreta-
tion (for the TSL primitives), which—by extension to TSL expressions and user-
defined functions—provides the reinterpretation of the function interplnstr, which
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is essentially the desired function I 4(-) discussed in Sect.2.3. Each reinterpre-
tation instantiates the same CIR template, which in turn comes directly from
the specification of the instruction set’s concrete semantics. By this means, the
abstract transformers generated for different abstract domains are guaranteed to
be mutually consistent (and also to be consistent with an instruction-set emulator
that is generated from the same specification of the concrete semantics).

Although the syntax-directed-replacement method has its drawbacks, it
works well for machine-code instruction sets. Using a corpus of 19,066 Intel
x86 instructions, Lim and Reps found, for one abstract domain, that 96.8 %
of the transformers created via semantic reinterpretation reached the limit of
precision attainable with that abstract domain [45, Sect.5.4.1]. Evidently, the
semantic specifications of x86 instructions do not usually suffer from the kinds
of missed-correlation effects discussed in Sect. 2.2.

Answers to The Four Questions.

Q1. The semantics of machine-code instructions are specified by writing an inter-
preter in the TSL meta-language.

Q2. To define an abstract domain and its operations, one needs to supply a C++
class that implements a semantic reinterpretation.

Q3. (a) The common intermediate representation (CIR) generated for a given
TSL instruction-set specification is a C++ template that can be instantiated
with multiple semantic-reinterpretation classes to create multiple reinterpre-
tations of the function interplnstr.

(b) Representations of abstract transformers can be created via the app-
roach discussed below in the section “Relational Abstract Domains.”

Q4. One predefined reinterpretation is for quantifier-free formulas over the the-
ory of bitvectors and bitvector arrays (QF_ABV). One can avoid the myopia
of operator-by-operator reinterpretation illustrated in Sect. 2.2 by using the
QF_ABYV reinterpretation on basic blocks and loop-free fragments. The for-
mula so obtained has a “long-range view” of the fragment’s semantics. One
can then employ the symbolic-abstraction techniques described in Sect. 5.

Relational Abstract Domains. An interesting problem that we encountered
with TSL was how to perform reinterpretation for relational abstract domains,
such as polyhedra [21], weakly relational domains [49], and affine equalities
[27,40,55]. With such domains, the goal is to create a representation of an
abstract transformer that over-approximates the concrete transformer for an
instruction or basic block. Clearly state should be redefined as a relational-
abstract-domain class whose values represent a relation between input states
and output states; however, it was not immediately obvious how the TSL base-
types should be redefined, nor how operations such as Plus32, And32, Xor32, etc.
should be handled.

The literature on relational numeric abstract domains did not provide much
assistance. Most papers on such domains focus on some modeling language—
typically affine programs ([21, Sect. 4], [55, Sect. 2], [49, Sect. 4])—involving



18 T. Reps and A. Thakur

only assignments and tests written in some restricted form—and describe how
to create abstract transformers only for concrete transformers written in that
form. For instance, for an assignment statement “x := e”

— If e is a linear expression, the coefficients for the variables in e are used to
create an abstract-domain value that encodes a linear transformation.

— If e is a non-linear expression, it is modeled as “x := 7”7 or, equivalently,
“havoc(x).” (That is, after “x := €” executes, x can hold any value.)

In contrast, with TSL each abstract-domain value must be constructed by evalu-
ating an expression in the TSL meta-language. Moreover, the concrete semantics
of an instruction set often makes use of non-linear operators, such as bitwise-
and bitwise-or. There could be an unacceptable loss of precision if every use
of a non-linear operator in an instruction’s semantic definition caused a havoc.
Fortunately, we were able to devise a generic method for creating abstract trans-
formers, usable with multiple relational abstract domains, that can retain some
degree of precision for some occurrences of non-linear operators [27, Sect. 6.6.4].

For relational abstract domains, the usually straightforward syntax-directed-
replacement method is somewhat subtle. For a set of variables V', a value in type
Rel[V] denotes a set of assignments V — Val (for some value space Val). When
V and V' are disjoint sets of variables, the type Rel[V; V'] denotes the set of Rel
values over variables V & V/. We extend this notation to cover singletons: if 7 is
a single variable not in V', then the type Rel[V;i] denotes the set of Rel values
over the variables Vw{i}. (Operations sometimes introduce additional temporary
variables, in which case we have types like Rel[V';4,4'] and Rel[V;4,4',i"].)

In a reinterpretation that yields abstractions of concrete transition-relations,
the type state represents a relation on pre-states to post-states. For example,
suppose that the goal is to track relationships among the values of the processor’s
registers. The abstraction of state would be Rel[R; R'], where R is the set of
register names (e.g., for Intel x86, R e {eax, ebx,...}), and R’ is the same set
of names, distinguished by primes (R’ ef {eax’,ebx’,... }).

In contrast, the abstraction of a machine-integer type, such as INT32,
becomes a relation on pre-states to machine integers. Thus, for machine-integer
types, we introduce a fresh variable ¢ to hold the “current value” of a reinter-
preted machine integer. Because R still refers to the pre-state registers, we write
the type of a Rel-reinterpreted machine integer as Rel[R; i]. Although technically
we are working with relations, for a Rel[R;] value it is often useful to think of
R as a set of independent variables and i as the dependent variable.

Constants. The Rel reinterpretation of a constant c is the Rel[V; ] value that
encodes the constraint 7 = c.

Variable-Access Expressions. The Rel reinterpretation of a variable-access
expression access(S,v), where S’s value is a Rel state-transformer of type
Rel[V; V'] and v € V, is the Rel[V; ] value obtained as follows:



Automating Abstract Interpretation 19

1. Extend S to be a Rel[V; V’;i] value, leaving 7 unconstrained.

2. Assume the constraint ¢ = v’ on the extended S value (to retrieve v from the
“current state”).

3. Project away V', leaving a Rel[V;4] value that holds in ¢ constraints on v’s
value in terms of the pre-state vocabulary V.

Update Operations. Suppose that S € Rel[V; V'], and the reinterpretation of
expression e with respect to S has produced the reinterpreted value J € Rel[V; i].
We want to create S” € Rel[V;V’] that acts like S, except that post-state
variable v’ € V' satisfies the constraints on ¢ in J € Rel[V;4]. The operation
update(S, v, J) is carried out as follows:

1. Let S’ be the result of havocking v' from S.
2. Let K be the result of starting with J, renaming ¢ to v’, and then extending it
to be a Rel[V; V'] value by adding unconstrained variables in the set V' —{v’}.

3. Return " < ' N K.

S’ captures the state in which we “forget” the previous value of v/, and K asserts
that v’ satisfies the constraints (in terms of the pre-state vocabulary V') that were
obtained from evaluating e.

Addition. Suppose that we have two Rel[V;i] values z and y, and wish to
compute the Rel[V; ] value for the expression x + y. We proceed as follows:

1. Rename g’s i variable to ¢’; this makes y a Rel[V;#'] value.

2. Extend both z and y to be Rel[V;i,4’,¢"] values, leaving i and " uncon-
strained in z, and 7 and " unconstrained in y.

Compute = M y.

Assume the constraint i/ =i + ¢’ on the value computed in step (3).
Project away ¢ and ¢/, leaving a Rel[V'; "] value.

In the value computed in step (5), rename 7" to 4, yielding a Rel[V;1] value.

S G

5 Symbolic Abstraction

Since 2002, the first author has been interested in connections between abstract
interpretation and logic—in particular, how to harness decision procedures to
obtain algorithms for several fundamental primitives used in abstract interpre-
tation [64,78,79,82,85]. The work aims to bridge the gap between (i) the use
of logic for specifying program semantics and performing program analysis, and
(i) abstract interpretation. In 1997, Graf and Saidi [31] showed how to use the-
orem provers to generate best abstract transformers for predicate-abstraction
domains (fixed, finite collections of Boolean predicates). In 2004, Reps et al. [64]
gave a method that makes such a connection for a much broader class of abstract
domains. That paper also introduced the following problem, which we (now) call
symbolic abstraction:
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Given formula ¢ in logic £, and abstract domain A, find the most-precise
descriptor af in A that over-approximates the meaning of ¢ (i.e., [¢] C y(a¥).

We use @p(p) to denote the symbolic abstraction of ¢ € £ with respect to
abstract domain A. We drop the subscript A when it is clear from context.

The connection between logic and abstract interpretation becomes clearer if
we view an abstract domain A as a logic fragment £, of some general-purpose
logic £, and each abstract value as a formula in £,. We say that 7 is a symbolic-
concretization operation for A if it maps each af € A to ¢,: € L, such that the
meaning of ¢,: equals the concretization of a; i.e., [pq:] = v(a*). Ly is often
defined by a syntactic restriction on the formulas of L.

Ezxample 1. If A is the set of environments over intervals, £, is the set of con-
junctions of one-variable inequalities over the program variables. It is generally
easy to implement 7 for an abstract domain. For example, given af € A, it is
straightforward to read off the appropriate p,: € La: each entry & — [Ciow, Chigh)
contributes the conjuncts “cjoy, < 2”7 and “z < cpign.” O

Thus, symbolic abstraction addresses a fundamental approximation problem:

Given formula ¢ € £, find the strongest consequence of ¢ that is expressible
in a different logic £'.

Since 2011, we (Thakur and Reps) pursued several new insights on this ques-
tion. One insight was that generalized versions of an old, and not widely used,
method for validity checking of propositional-logic formulas, called Stalmarck’s
method, provide new ways to implement a. The methods that we subse-
quently developed [78,79,81,82] offer much promise for building more powerful
program-analysis tools. They (i) allow more precise implementations of abstract-
interpretation primitives to be created—including ones that attain the funda-
mental limits on precision that abstract-interpretation theory establishes—and
(ii) drastically reduce the time needed to implement such primitives while ensur-
ing correctness by construction. In [79], we described a method that, for a certain
class of abstract domains, uses & to solve the following problem:

Given program P and abstract domain A, find the most-precise inductive
A-invariant for P.

5.1 Abstract Transformers via Symbolic Abstraction

We now illustrate how & can be used both to apply an abstract transformer and
to construct a representation of an abstract transformer.
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Ezxample 2. Consider the Intel x86 instruction 7 = add bh,al, which adds al,
the low-order byte of 32-bit register eax, to bh, the second-to-lowest byte of
32-bit register ebx. No other register apart from ebx is modified. For simplicity,
we only consider the registers eax, ebx, and ecx. The semantics of 7 can be
expressed in the logic QF _ABV as the formula ¢, :

def o1 _ (ebx & 0xFFFFOOFF) Neax = eax (8)
$r = “ \J ((ebx + 256 x (eax & O0xFF)) & 0xFF00) ) Aecx’ = ecx,
where “&” and “|” denote the non-linear bit-masking operations bitwise-and

bitwise-or, respectively.

Suppose that the abstract domain is £gs2, the domain of affine equalities
over the 32-bit registers eax, ebx, and ecx, and that we would like to apply the
abstract transformer for 7 when the input abstract value in £32 is ebx = ecx.
This task corresponds to finding the strongest consequence of the formula ¢ =
(ebx = ecxAy,) that can be expressed as an affine relation among eax’, ebx’, and
ecx’, which turns out to be a () = (2%ebx’ = 2%ecx’ 4 2%%eax’) A (22%ebx’ =
224ecx’). Multiplying by a power of 2 shifts bits to the left; because we are
using arithmetic mod 232, bits shifted off the left end are unconstrained. Thus,
the first conjunct of a(w) captures the relationship between the low-order two
bytes of ebx’, the low-order two bytes of ecx’, and the low-order byte of eax’.
This example illustrates that the result of applying an abstract transformer can
be non-obvious—even for a single machine-code instruction—which serves to
motivate the desire for automation.

Now suppose that we would like to compute a representation of the best
abstract transformer for 7 in abstract domain Eys2. This task corresponds to
finding the strongest consequence of ¢, that can be expressed as an affine relation
among eax, ebx, ecx, eax’, ebx’, and ecx’, which turns out to be a(p,;) =
(2%6ebx’ = 216ebx + 22%eax) A (eax’ = eax) A (ecx’ = ecx). O

Fig. 4. Conversion between abstract domains with the clique approach ((a) and (b))
versus the symbolic-abstraction approach ((c) and (d)).
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5.2 Communication of Information Between Abstract Domains

We now show how symbolic abstraction provides a way to combine the results
from multiple analyses automatically (thereby enabling the construction of new,
more-precise analyzers that use multiple abstract domains simultaneously).

Figures 4(a) and (b) show what happens if we want to communicate informa-
tion between abstract domains without symbolic abstraction. Because it is nec-
essary to create explicit conversion routines for each pair of abstract domains,
we call this approach the “clique approach.” As shown in Fig.4(b), when a new
abstract domain A is introduced, the clique approach requires that a conver-
sion method be developed for each prior domain A;. In contrast, as shown in
Fig.4(d), the symbolic-abstraction approach only requires that we have a and
~ methods that relate A and L.

( 3<a<12
5<b<10
7<c<7

af = (a—even,
b—odd, o
c—T)

b—[5,10],
c—[7,7])
' = (a—[4,12],
b—[5,9],
c—[7,71)

af’ = (a—even,
b—odd,
c—odd)

Parity L Interval

Fig. 5. Improving values from two abstract domains via symbolic abstraction.

If each analysis 7 is sound, each result a? represents an over-approximation of
the actual set of concrete states. Consequently, the collection of analysis results
{a?} implicitly tells us that only the states in [, *y(ag) can actually occur. How-
ever, this information is only implicit, and it can be hard to determine what the
intersection value really is. One way to address this issue is to perform a seman-
tic reduction [19] of each of the a? with respect to the set of abstract values
{ag- | i # j}. Fortunately, symbolic abstraction provides a way to carry out such
semantic reductions without the need to develop pair-wise or clique-wise reduc-
tion operators. The principle is illustrated in Fig.5 for the case of two abstract
domains, P = Env[Parity] and Z = Env[Interval]. Given aﬁ e Panddl €T, we
can improve the pair <a§, a%) by first creating the formula ¢ dof ﬁp(ag) A ?I(ag),
and then applying ap and @z to ¢ to obtain agl = ap(p) and ag/ = az(p),

/ !/
respectively. au1 and ag can be smaller than the original values a’i and ag,

/ !
respectively. We then use the pair <a§ ,aﬁ2 ) instead of <a§, aé). Figure5 shows a
specific example of how this approach to semantic reduction improves both the
Env[Parity] value and the Env[Interval] value. When there are more than two

abstract domains, we form the conjunction ¢ def A ﬁi(ag), and then apply each

ﬁ/

&; to obtain a; = a;(y).
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5.3 Algorithms for Symbolic Abstraction

The various algorithms for computing symbolic abstraction can be seen as relying
on the following two properties:

Theorem 2. [76, Theorem 3.14] a(p) = {B(S)|S = ¢} O
Theorem 3. [76, Theorem 3.15] a(¢) =[Ha ‘ ©=7(a)} O

The representation function [ returns the abstraction of a singleton concrete

state; i.e., (o) = a ({c}).

RSY Algorithm. Reps et al. [64] presented a framework for computing a—
which we call the RSY algorithm—that applies to any logic £ and abstract
domain A that satisfy certain conditions. The key insight of the algorithm is the
use of an SMT solver for £ as a black-box to query for models of ¢ and then
make use of Theorem 2. Unfortunately, Theorem 2 does not directly lead to an
algorithm for computing a(p), because, as stated, it involves finding all models
of ¢, which would be impractical. The RSY algorithm queries the SMT solver

to compute a finite sequence o1, 09, ..., 0 of models of ¢. This sequence is used
to compute the sequence of abstract values ag, ag, ag, ey aﬁ as follows:
ag =1

9)

Merely sampling k arbitrary models of ¢ would not work. In particular, it is
possible that ag_l = a§7 in which case step ¢ has not made progress. To ensure

at = a?_ll_lﬁ(ai), o lEe, 1<i<k

K2

progress, we require o; to be a model of ¢ such that o; ¢ ’y(agfl). In other words,
o; should be a model that satisfies ¢ A 4’?(@371). Equation (9) can be restated as

a% _ Lﬁ St , (10)
a; = a;_yUpB(0i), oiEpAA(a;_y), 1<
Obtaining o; as a model of ¢ A —ﬁ(ag_l) ensures that either ag_l C af or else

ﬁ #

a;_; = a; = &(p). Thus, if A has no infinite ascending chains, the sequence

constructed by Eq. (10) forms a finite ascending chain that converges to a(¢):
L:a%[aﬁ[aé[...taiAEauk:a(cp). (11)
From Eq. (10), we can identify the requirements on £ and A:

1. There is a Galois connection C % A between A and concrete domain C,
and an implementation of the corresponding representation function (.
There is an algorithm to evaluate af L 3(c) for all af € A.

3. There is a symbolic-concretization operation 7 that maps an abstract value
a' € A to a formula F(af) in L.

A has no infinite ascending chains.

There is a decision procedure for logic £ that is also capable of returning a
model satisfying a given formula in L.

6. Logic L is closed under conjunction and negation.

Pseudo-code for the RSY algorithm can be found in [64].

o

Bkl
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Bilateral Algorithm. The bilateral algorithm [78] is a framework for comput-
ing @ that is similar to the RSY algorithm in that it queries an SMT solver.
However, the nature of the queries differ in the two algorithms. Furthermore,
the bilateral algorithm makes use of both Theorems 2 and 3. While the RSY
algorithm converges to the final answer by moving up the lattice, the bilateral
algorithm converges to the final answer by both moving up the lattice start-
ing from 1 and moving down the lattice starting from T. That is, the bilateral
algorithm computes a finite sequence of pairs of abstract values (lf, ug) such that

L=kCclCc..Clli=ap=dvC. CdCu=T. (12)

The progress guarantee for the RSY algorithm is that ag C ag 41 on each itera-
tion, the algorithm moves up the lattice. The progress guarantee for the bilateral
algorithm is slightly different: on each iteration, the algorithm either moves up
the lattice or moves down the lattice: either lg C l§+1 or uf_H C uf

A key concept in the bilateral algorithm is the notion of an abstract-
consequence operation:

Definition 3. An operation AC(-,-) is an acceptable abstract-consequence
operation iff for all I',u* € A such that I* C u!, af = AC(I*,u?) implies that
I* Cat and af 2 uf. O

In particular, y(a*) does not encompass y(u*), and whenever a* # 1, ~v(a*)
overlaps v(uf).

Readers familiar with the concept of interpolation [23] might see similari-
ties between interpolation and abstract consequence. However, as discussed in

[78, Sect. 3] there are significant differences between these two notions.
#

The sequence (l?7 u;) is computed using the following rules:

(1, ud) = (L,T) (13)
U uf)= (18 ul  MACE ul ), o= F(ACEE,ul ), I Culy (14)
(ud) = (F_, U B(o0),ul_y), o5 E o A=R(ACE_ il ), ., cul, (15)

The invariant that is maintained is that l? C a(p) C uf. lg is initialized to L,

and ug is initialized to T. Let a§—1 = AC(l?_l, U§_1)- There are two cases: either
#

¢ = F(al_,) or it does not. If ¢ = J(a’_, ), then u can be defined as u’_,Ma’_,,
and I = I’_| (Eq.(14)). This step makes progress because a'_, Z u’_, implies
that ug C U§—1 r ag_l. Otherwise, there must exist a model o; such that o; =
P A —ﬁ(agfl). In this case, l? can be defined as l§71 U GB(0s) (Eq. (15)). This step
makes progress for reasons similar to the RSY algorithm. Thus, on each iteration
either l? or uf is updated. The values lf and uf are guaranteed to converge to
a(p) provided A has neither infinite ascending chains nor infinite descending

chains.?

2 A slight modification to the bilateral algorithm can remove the requirement of having
no infinite descending chains [78].
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There can be multiple ways of defining the abstract-consequence operation.
In fact, the bilateral algorithm reduces to the RSY algorithm if we define

AC(lz 1 Ui 1) ef lf 1- Other algorithms for computing abstract consequence
for a large class of abstract domains are described in [78]. The choice of abstract
consequence determines the cost of each query of the SMT solver as well as the
rate of convergence of the bilateral algorithm.

The key advantage of the bilateral algorithm over the RSY algorithm is that
the bilateral algorithm is an anytime algorithm, because the algorithm can return
a sound over-approximation (uf) of the final answer if it is stopped at any point.
This property makes the bilateral algorithm resilient to SMT-solver timeouts.

Pseudo-code for the bilateral algorithm can be found in [78] and [76, Ch. 5].

Generalizations of Stalmarck’s Algorithm. In [81], we showed how
Stalmarck’s method [75], an algorithm for satisfiability checking of propositional
formulas, can be explained using abstract-interpretation terminology—in partic-
ular, as an instantiation of a more general algorithm, Stalmarck[A], that is para-
meterized on an abstract domain A and operations on A. The algorithm that
goes by the name “Stalmarck’s method” is one instantiation of Stalmarck[A]
with a certain Boolean abstract domain. At each step, Stalmarck[A] holds some
a' € A; each of the proof rules employed in Stalmarck’s method improves a* by
finding a semantic reduction of a® with respect to ¢.

The abstraction-interpretation-based view enables us to lift Stalmarck’s
method from propositional logic to richer logics by instantiating Stalmarck[A)]
with richer abstract domains [82]. Moreover, it brings out a new connection
between Stalmarck’s method and @. To check whether a formula ¢ is unsatis-
fiable, Stalmarck[A] computes @ (@) and performs the test “Ga(p) = La?" If
the test succeeds, it establishes that [] C v(La) = 0, and hence that ¢ is
unsatisfiable.

To explain the Stalmarck[A] algorithm for &, we first define the notion of
Assume. Given o € L and af € A, A@e[gp](a“) returns the best value in A
that over-approximates the meaning of ¢ in concrete states described by af.
That is, AguTne[cp](au) equals a([p] Nv(a)).

The principles behind the Stalmarck[A] algorithm for & can be understood
via the following equations:

G(ip) = Assume[g](T) (16)

Assume[p1 A go](af) C Assume[p:](a*) M Assume[go](a?) (17)
Assume|y](a!) T Assume|y](a! Mal) U Assume(p](a? M ab),

where y(a}) U~(da}) 2 ~(a*) (18)

A@nem(aﬁ) C pd(f) Maf, where £ is a literal in £ (19)

Equation (16) follows from the definition of & and Assume. Equation (17) fol-
lows from the definition of A and M, and corresponds to the simple deductive
rules used in Stalmarck’s algorithm. Equation (18) is the abstract-interpretation
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counterpart of the Dilemma Rule used in Stalmarck’s method: the current goal
a* is split into sub-goals using meet (), and the results of the sub-goals are
combined using join (U/). The correctness of this rule relies on the condition that

v(a?)Ury(ah) D ~(a?). The p@ operation in Eq. (19) translates a literal in £ into

an abstract value in A; that is pa(f) dof a(¢). However, for certain combinations

of £ and A, the pua operation is straightforward to implement—for example,
when L is linear rational arithmetic (LRA) and A is the polyhedral domain [21].
4@ can also be implemented using the RSY or bilateral algorithms when £ and
A satisfy the requirements for those frameworks.

The Stalmarck-based framework is based on much different principles from
the RSY and bilateral frameworks for computing symbolic abstraction. The lat-
ter frameworks use an inductive-learning approach to learn from examples, while
the Stalmarck-based framework uses a deductive approach by using inference
rules to deduce the answer. Thus, they represent two different classes of frame-
works, with different requirements for the abstract domain. In contrast to the
RSY /Bilateral framework, which uses a decision procedure as a black box, the
Stalmarck-based framework adopts (and adapts) some principles from decision
procedures.

Answers to The Four Questions.

Q1. The semantics of a statement st are specified as a two-vocabulary formula
st in some logic £. In our work, we have typically used quantifier-free
formulas over the theory of bitvectors and bitvector arrays (QF_ABV).

Q2. The abstract domain is specified via an interface consisting of the standard
operations (LI, M, etc.). The RSY and bilateral frameworks for symbolic
abstraction require the § operation. The Stalmarck-based framework for
symbolic abstraction requires the pua operation.

Q3. The various algorithms for a are the engines that apply/construct abstract
transformers for a concrete transformer 7.

(a) The abstract execution of 7 on a* is performed via at' = a(e- AJ(a%)).
(b) The representation of the abstract transformer for 7 is obtained via 7# =
a(epr).

Q4. The formula used to construct an abstract transformer can express the
concrete semantics of (i) a basic block or (ii) a loop-free fragment (including
a finite unrolling of a loop) & la large-block encoding [9] or adjustable-block
encoding [10]. In our work, we used the TSL framework to obtain such
formulas.

5.4 Automated Reasoning/Decision Procedures

Our investigation of symbolic abstraction led us to a new connection between
decision procedures and abstract interpretation—namely, how to exploit abstract
interpretation to provide new principles for designing decision procedures [82].
This work, which we call Satisfiability Modulo Abstraction (SMA), has led to
new principles for designing decision procedures, and provides a way to create
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decision procedures for new logics. At the same time, it shows great promise
from a practical standpoint. In other words, the methods for symbolic abstrac-
tion are “dual-use.” In addition to providing methods for building improved
abstract-interpretation tools, they also provide methods for building improved
logic solvers that use abstract interpretation to speed up the search that a solver
carries out.

One of the main advantages of the SMA approach is that it is able to
reuse abstract-interpretation machinery to implement decision procedures. For
instance, in [82], the polyhedral abstract domain—implemented in PPL [5]—is
used to implement an SMA solver for the logic of linear rational arithmetic.

More recently, we created an SMA solver for separation logic [77]. Separa-
tion logic (SL) [68] is an expressive logic for reasoning about heap structures in
programs, and provides a mechanism for concisely describing program states by
explicitly localizing facts that hold in separate regions of the heap. SL is unde-
cidable in general, but by using an abstract domain of shapes [70] we were able
to design an unsatisfiability checker for SL.

5.5 Symbolic Abstraction and Quantifier Elimination

Gulwani and Musuvathi [32] defined what they termed the “cover problem,”
which addresses approzimate existential-quantifier elimination:

Given a formula ¢ in logic £, and a set of variables V, find the strongest
quantifier-free formula @ in £ such that [3V : ¢] C [&].

(We use Covery (¢) to denote the cover of ¢ with respect to variable set V.)

Both Covery (¢) and a(p) (deliberately) lose information from ¢, and hence
both result in over-approximations of [¢]. In general, however, they yield differ-
ent over-approximations of [¢].

1. The information loss from Covery (¢) only involves the removal of variable
set V from the vocabulary of ¢. The resulting formula @ is still allowed to be
an arbitrarily complex L formula; @ can use all of the (interpreted) operators
and (interpreted) relation symbols of L.

2. The information loss from a(y) involves finding a formula 1 in an impover-
ished logic £’: 1 must be a restricted £ formula; it can only use the operators
and relation symbols of £’, and must be written using the syntactic restric-
tions of L.

One of the uses of information-loss capability 2 is to bridge the gap between
the concrete semantics and an abstract domain. In particular, it may be nec-
essary to use the full power of logic £ to express the semantics of a concrete
transformer 7 (e.g., Eq. (8)). However, the corresponding abstract transformer
must be expressed in £'. When £’ is something other than the restriction of £
to a sub-vocabulary, the cover of ¢, is not guaranteed to return an answer in
L', and thus does not yield a suitable abstract transformer. This difference is
illustrated using the scenario described in Ex. 2.



28 T. Reps and A. Thakur

Ezample 3. In Ex. 2, the application of the abstract transformer for 7 is obtained
by computing a(v) € Ey32, where Egs2 is the domain of affine equalities over the
32-bit registers eax, ebx, and ecx; ¢ = (ebx = ecx A ¢,); and ¢, is defined
in Eq. (8). In particular, a(y) = (2%bx’ = 2ecx’ + 224eax’) A (2%%ebx’ =
2%%ecx’).

Let R be the set of pre-state registers {eax, ebx, ecx}. The cover of ¢ with
respect to R is

_ s _ ( (ecx’ & OxFFFFOOFF)
Cover (1) = ebx’ = <| ((ecx’ + 256 * (eax’ & OxFF)) & OXFFOO)) (20)

Equation (20) shows that even though the result does not contain any unprimed
registers, it is not an abstract value in the domain Eys2. O

The notion of symbolic abstraction subsumes the notion of cover: if £’ is the
logic L restricted to the variables not contained in V, then az/ () = Covery (¢).

6 Connections with Other Areas of Computer Science

One of the most exciting aspects of the work on symbolic abstraction and
automating the creation of abstract transformers is that the problem turns
out to have many connections to other areas of Computer Science. Connections
with automated reasoning and decision procedures were discussed in Sect.5.4.
Other connections include concept learning (Sect.6.1) and constraint program-
ming (Sect. 6.2).

6.1 Concept Learning

Reps et al. [64] identified a connection between the RSY algorithm for symbolic
abstraction and the problem of concept learning in (classical) machine learning.
In machine-learning terms, an abstract domain A is a hypothesis space; each
domain element corresponds to a concept. A hypothesis space has an inductive
bias, which means that it has a limited ability to express sets of concrete objects.
In abstract-interpretation terms, inductive bias corresponds to the image of ~
on A not being the full power set of the concrete objects. Given a formula ¢, the
symbolic-abstraction problem is to find the most specific concept that explains
the meaning of ¢.

The RSY algorithm is related to the Find-S algorithm for concept learn-
ing [51, Sect. 2.4]. Both algorithms start with the most-specific hypothesis (i.e.,
1) and work bottom-up to find the most-specific hypothesis that is consistent
with positive examples of the concept. Both algorithms generalize their cur-
rent hypothesis each time they process a (positive) training example that is not
explained by the current hypothesis. A major difference is that Find-S receives a
sequence of positive and negative examples of the concept (e.g., from nature). It
discards negative examples, and its generalization steps are based solely on the
positive examples. In contrast, the RSY algorithm already starts with a precise
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statement of the concept in hand, namely, the formula ¢, and on each itera-
tion, calls a decision procedure to generate the next positive example; the RSY
algorithm never sees a negative example.

A similar connection exists between the Bilateral algorithm and the
Candidate-Elimination (CE) algorithm for concept learning [51, Sect. 2.5]. Both
algorithms maintain two approximations of the concept, one that is an over-
approximation and one that is an under-approximation. The CE algorithm
updates its under-approximation using positive examples in the same way that
the Find-S algorithm updates its under-approximation. Similarly, the Bilateral
algorithm updates its under-approximation (via a join) in the same way that the
RSY algorithm updates its under-approximation. One key difference between the
CE algorithm and the Bilateral algorithm is that the CE algorithm updates its
over-approximation using negative examples. Most conjunctive abstract domains
are not closed under negation. Thus, given a negative example, there usually does
not exist an abstract value that only excludes that particular negative example.

There are, however, some differences between the problems of symbolic
abstraction and concept learning. These differences mostly stem from the fact
that an algorithm for performing symbolic abstraction already starts with a pre-
cise statement of the concept in hand, namely, the formula ¢. In the machine-
learning context, usually no such finite description of the concept exists, which
imposes limitations on the types of queries that the learning algorithm can make
to an oracle (or teacher); see, for instance, [2, Sect. 1.2]. The power of the oracle
also affects the guarantees that a learning algorithm can provide. In particular,
in the machine-learning context, the learned concept is not guaranteed or even
required to be an over-approximation of the underlying concrete concept. Dur-
ing the past three decades, the machine-learning theory community has shifted
their focus to learning algorithms that only provide probabilistic guarantees.
This approach to learning is called probably approzimately correct learning (PAC
learning) [39,83]. The PAC guarantee also enables a learning algorithm to be
applicable to concept lattices that are not complete lattices.

The similarities and differences between symbolic abstraction and concept
learning open up opportunities for a richer exchange of ideas between the two
areas. In particular, one can imagine situations in which it is appropriate for
the over-approximation requirement for abstract transformers to be relaxed to
a PAC guarantee—for example, if abstract interpretation is being used only to
find errors in programs, instead of proving programs correct [14], or to analyze
programs with a probabilistic concrete semantics [22,41,52].

6.2 Constraint Programming

Constraint programming [54] is a declarative programming paradigm in which
problems are expressed as conjunctions of first-order-logic formulas, called con-
straints. A constraint-satisfaction problem is defined by (i) a set of variables
Vi,...,Vy; (ii) a search space S given by a domain D; for each variable V;;
and (iii) a set of constraints ¢1, ..., ¢,. The objective is to enumerate all vari-
able valuations in the search space that satisfy every constraint. Different fam-
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ilies of constraints come with specific operators—such as choice operators and
propagators—used by the solver to explore the search space of the problem and
to reduce its size, respectively. A constraint solver alternates two kinds of steps:

1. Propagation steps exploit constraints to reduce the domains of variables by
removing values that cannot participate in a solution. The goal is to achieve
consistency, when no more values can be removed.

2. When domains cannot be reduced further, the solver performs a splitting
step: it makes an assumption about how to split a domain, and continues
searching in the smaller search spaces.

The search proceeds, alternating propagation and splitting, until the search space
contains either no solution, only solutions, or is smaller than a user-specified size.
Backtracking may be used to explore other splitting assumptions.

Because the solution set cannot generally be enumerated exactly, continuous
solvers compute a collection of intervals with floating-point bounds that contain
all solutions and over-approximate the solution set while trying—on a best-effort
basis—to include as few non-solutions as possible. In our terminology, such a
constraint solver approaches a(y) from above, for a conjunctive formula ¢; the
abstract domain is the disjunctive completion of the domain of environments of
intervals; and the splitting and tightening steps are semantic reductions.

Several connections between abstract interpretation and constraint solving
have been made in the past. Apt observed that applying propagators can be seen
as an iterative fixpoint computation [3]. Pelleau et al. used this connection to
describe a parameterized constraint solver that can be instantiated with different
abstract domains [60]. Miné et al. describe a related algorithm to prove that a
candidate invariant ¢ for a loop really is an invariant [50]. The goal is to identify
a stronger invariant 1 that is both inductive and implies ¢. The algorithm is
parameterized on an abstract domain A; the algorithm’s actions are inspired by
constraint solvers: it repeatedly splits and tightens non-overlapping elements of
A (and therefore is searching for an inductive invariant in the disjunctive com-
pletion of A). The algorithm works from “above” in the sense that it starts with
(an under-approximation of) ¢ and creates descriptors of successively smaller
areas of the state space as it searches for a suitable .

7 Related Work

7.1 Best Abstract Transformers

In 1979, Cousot and Cousot [19] gave the specification of the best abstract
transformer:

Let 7 : Store — Store be a concrete transformer and C = P(Store).

Given a Galois connection C % A, the best abstract transformer,
defined by

g def

hest — Q0O T 07, (21)

T

is the most precise abstract transformer that over-approximates 7.
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Tgest establishes the limit of precision with which the actions of 7 can be tracked
using a given abstract domain A. It provides a limit on what can be achieved by a
system to automate the construction of abstract transformers. However, Eq. (21)
is non-constructive; it does not provide an algorithm, either for computing the
result of applying Tfest or for finding a representation of the function Tgest. In
particular, the explicit application of v to an abstract value would, in most cases,
yield an intermediate set of concrete states that is either infinite or too large to
fit into memory.

Graf and Saidi [31] showed that theorem provers can be used to generate best
abstract transformers for predicate-abstraction domains. In 2004, three papers
appeared that concerned the problem of automatically constructing abstract
transformers:

— Reps et al. [64] gave the method described in Sect.5.3 for computing best
transformers from below, which applies to a broader class of abstract domains
than predicate-abstraction domains.

— Yorsh et al. [85] gave a method that works from above, for abstract domains
based on canonical abstraction.

— Regehr and Reid [61] presented a method to construct abstract transformers
for machine instructions, for interval and bitwise abstract domains. Their
method is not based on logical reasoning, but instead uses a physical processor
(or simulator) as a black box. To compute the abstract post-state for an
abstract value af, the approach recursively divides af until an abstract value
is obtained whose concretization is a singleton set. The concrete semantics
are then used to derive the post-state value. The results of each division are
joined as the recursion unwinds to derive the abstract post-state value.

Since then, a number of other methods for creating best abstract transformers have
been devised [8,27,40,53,71,78,82]. (Some of them are discussed in Sect. 7.3.)

7.2 Heuristics for Good Transformers

With TVLA, a desired abstraction is specified by (i) defining the set of instru-
mentation relations Z to use, and (ii) selecting which unary relations to use as
abstraction relations A. The abstract transformers are then constructed auto-
matically by means of the four-part construction sketched in the paragraph
“Maintaining Instrumentation Relations” of Sect. 3. There is no expectation that
the abstract transformers constructed in this way are best transformers. How-
ever, practical experience with TVLA has shown that when the abstract domain
is defined by the right sets of relations Z and .4, TVLA produces excellent results.

Four theorems at the level of the framework—one for each part of the four-
part construction—relieve the TVLA user from having to write the usual “near-
commutativity” proofs of soundness that one finds in papers about one-off uses of
abstract interpretation.® These meta-level theorems are the key enabling factors

3 (i) The correctness theorem for focus [70, Lemmas 6.8 and 6.9]; (ii) the Embedding
Theorem [70, Theorem 4.9]; (iii) the correctness theorem for the finite-differencing
scheme for maintaining instrumentation relations [63, Theorem 5.3]; and (iv) the
correctness theorem for coerce [70, Theorem 6.28].
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that allow abstract transformers to be constructed automatically for canonical-
abstraction domains.

The finite-differencing approach is generally able to retain an appropriate
amount of precision because, for a concrete transformer 7, the application of the
finite-differencing operators to an instrumentation relation p’s defining formula
Yp identifies the “footprint” of st on p. Knowledge of the footprint lets the
relation-maintenance formula reuse as much information as possible from the pre-
state structure, and thereby avoid performing formula-reevaluation operations
for tuples whose values cannot be changed by st.

The term “footprint of a statement” also appears in work on abstract inter-
pretation using separation logic (SL) [15,24], but there it means a compact char-
acterization of the concrete semantics of a statement in terms of the resources
it accesses. In our terminology, footprints in the SL literature concern the core
relations—i.e., the independent variables in the analogy with differentiation from
Sect. 3. In this paper, when we refer to footprints, we mean the minimal effects
of the concrete transformer on the instrumentation relations—which play the
role of dependent variables.

The finite-differencing operators used in TVLA are most closely related to
work on logic and databases: finite-difference operators for the propositional case
were studied by Akers [1] and Sharir [73]. Work on (i) incrementally maintain-
ing materialized views in databases [33], (ii) first-order incremental evaluation
schemes [25], and (iii) dynamic descriptive complexity [59] have also addressed
the problem of maintaining one or more auxiliary relations after new tuples are
inserted into or deleted from base relations. In databases, view maintenance
is solely an optimization; the correct information can always be obtained by
reevaluating the defining formula. In the abstract-interpretation context, where
abstraction has been performed, this is no longer true: reevaluating a formula
in the local (3-valued) state can lead to a drastic loss of precision. Thus, the
motivation for the work is completely different, although the techniques have
strong similarities.

The method used in TVLA for finite differencing of formulas inspired some
follow-on work using numeric finite differencing for program analysis [26]. That
paper shows how to augment a numeric abstraction with numeric views, and
gives a technique based on finite differencing to maintain an over-approximation
of a view-variable’s value in response to a transformation of the program state.

The idea of augmenting domains with instrumentation values has been used
before in predicate-abstraction domains [31], which maintain the values of a given
set of Boolean predicates. Graf and Saidi [31] showed that decision procedures
can be used to generate best abstract transformers for predicate-abstraction
domains, but with high cost. Other work has investigated more efficient meth-
ods to generate approximate transformers that are not best transformers, but
approach the precision of best transformers [7,16]. Ball et al. [7] use a “focus”
operation inspired by TVLA’s focus, which as noted in footnote 1, plays a role
similar to the splitting step in Stalmarck’s algorithm.
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Scherpelz et al. [72] developed a method for creating abstract transformers
for use with parameterized predicate abstraction [17]. It performs WLP of a post-
state relation with respect to transformer 7, followed by heuristics that attempt
to determine combinations of pre-state relations that imply the WLP value.
Generating the abstract transformer for a (nullary) instrumentation relation
p € Z, defined by the nullary formula 1, (), involves two steps:

1. Create the formula ¢ = WLP(7, ¢,()).

2. Find a Boolean combination v, - of pre-state relations such that if v, » holds
in the pre-state, then ¢ must also hold in the pre-state (and hence p must
hold in the post-state).

The abstract transformer is a function that sets the value of p in the post-state
according to whether v, » holds in the pre-state.

Because WLP performs substitution on 1), (), the formula created by step (1)
is related to the substitution-based relation-maintenance formula defined in
Eq. (4). Step (4) applies several heuristics to ¢ to produce one or more strength-
enings of ¢; step (2) returns the disjunction of the strengthened variants of ¢.
In contrast, the finite-differencing algorithm discussed in Sect. 3 does not oper-
ate by trying to strengthen the substitution-based relation-maintenance formula;
instead, it uses a systematic approach—based on finite differencing of p’s defin-
ing formula 1, ()—to identify how 7 changes p’s value. Moreover, the method
is not restricted to nullary instrumentation relations: it applies to relations of
arbitrary arity.

A special case of canonical abstraction occurs when no abstraction relations
are used at all, in which case all individuals of a logical structure are collapsed
to a single individual. When this is done, in almost all structures the only useful
information remaining resides in the nullary core and instrumentation relations.
Predicate abstraction can be seen as going one step further, retaining only the
nullary instrumentation relations (and no abstracted core relations). However, to
be able to evaluate a “Future” formula—as defined in Eq. (7)—such as F,[p] def
p?—=AZ[p] : Ar[p|, one generally needs the pre-state abstract structure to hold
(abstracted) core relations. From that standpoint, the finite-differencing method
and that of Scherpelz et al. [72] are incomparable; they have different goals, and
neither can be said to subsume the other.

Cousot et al. [20, Sect. 7] define a method of abstract interpretation based on
using particular sets of logical formulas as abstract-domain elements (so-called
logical abstract domains). They face the problems of (i) performing abstraction
from unrestricted formulas to the elements of a logical abstract domain [20,
Sect. 7.2] and (ii) creating abstract transformers that transform input elements
of a logical abstract domain to output elements of the domain [20, Sect.7.3].
Their problems are particular cases of @(p). They present heuristic methods for
creating over-approximations of a(¢y).
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7.3 Symbolic Abstraction
Work on symbolic abstraction falls into three categories:

1. algorithms for specific domains [8,13,27,40,43,47,61,77]
2. algorithms for parameterized abstract domains [31,53,71,85]
3. abstract-domain frameworks [64,78,82].

What distinguishes category 3 from category 2 is that each of the results cited
in category 2 applies to a specific family of abstract domains, defined by a
parameterized Galois connection (e.g., with an abstraction function equipped
with a readily identifiable parameter for controlling the abstraction). In contrast,
the results in category 3 are defined by an interface; for any abstract domain
that satisfies the requirements of the interface, one has a method for symbolic
abstraction. The approaches presented in Sect. 5 fall into category 3.
Some of the work mentioned above has already been discussed in Sect.7.1.

Algorithms for Specific Domains. Brauer and King [13] developed a method
that works from below to derive abstract transformers for the interval domain.
Their method is based on an approach due to Monniaux [53] (see below), but
they changed two aspects:

1. They express the concrete semantics with a Boolean formula (via “bit-
blasting”), which allows a formula equivalent to Vz.¢ to be obtained from
© (in CNF) by removing the x and —x literals from all of the clauses of (.

2. Whereas Monniaux’s method performs abstraction and then quantifier elim-
ination, Brauer and King’s method performs quantifier elimination on the
concrete specification, and then performs abstraction.

The abstract transformer derived from the Boolean formula that results is a
guarded update: the guard is expressed as an element of the octagon domain
[48]; the update is expressed as an element of the abstract domain of rational
affine equalities [38]. The abstractions performed to create the guard and the
update are optimal for their respective domains. The algorithm they use to create
the abstract value for the update operation is essentially the King-Sgndergaard
algorithm for a [40], Fig. 2 which works from below. Brauer and King show that
optimal evaluation of such transfer functions requires linear programming. They
give an example showing that an octagon-closure operation on a combination of
the guard’s octagon and the update’s affine equality is sub-optimal.

Barrett and King [8] describe a method for generating range and set abstrac-
tions for bit-vectors that are constrained by Boolean formulas. For range analy-
sis, the algorithm separately computes the minimum and maximum value of the
range for an n-bit bit-vector using 2n calls to a SAT solver, with each SAT query
determining a single bit of the output. The result is the best over-approximation
of the value that an integer variable can take on (i.e., @).
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Li et al. [43] developed a symbolic-abstraction method for LRA, called
SYMBA. The scenario considered by [43] is the following: Given a formula ¢
in LRA logic and a finite set of objectives {t1,ts,...,t,}, where ¢; is a linear-
rational expression, SYMBA computes the lower and upper bounds 1,1z, ..., [,
and u1,us,...,u, such that p = (/\1<i<nli <t < ui). Similar to the bilat-
eral framework described in Sect. 5, the SYMBA algorithm maintains an under-
approximation and an over-approximation of the final answer.

McMillan [47] presents an algorithm for performing symbolic abstraction for
propositional logic and the abstract domain of propositional clauses of length
up to k. The algorithm can be viewed as an instance of the RSY algorithm:
a SAT solver is used to generate samples, and a trie data structure is used
to perform the join of abstract values. The specific application for which the
algorithm is used is to compute don’t-care conditions for logic synthesis.

Algorithms for Parameterized Abstract Domains. Template Constraint
Matrices (TCMs) are a parametrized family of linear-inequality domains for
expressing invariants in linear real arithmetic. Sankaranarayanan et al. [71]
gave a meet, join, and set of abstract transformers for all TCM domains.
Monniaux [53] gave an algorithm that finds the best transformer in a TCM
domain across a straight-line block (assuming that concrete operations consist of
piecewise linear functions), and good transformers across more complicated con-
trol flow. However, the algorithm uses quantifier elimination, and no polynomial-
time elimination algorithm is known for piecewise-linear systems.

8 Conclusion

The algorithms developed in our research reduce the burden on analysis design-
ers and implementers by raising the level of automation in abstraction inter-
pretation. The work summarized in this paper focuses on the question “Given
the specification of an abstraction, how does one create an execution engine
for an analyzer that performs computations in an over-approximating fashion?”
We know of only four systematic ways to address this question, three of which
feature in our work:

1. Semantic reinterpretation and the related technique of syntax-directed rein-
terpretation (Sect. 4).

2. A strategy of splitting, propagation, and join & la the work on the generalized
Stalmarckprocedure [82] and TVLA [63,70].

3. The approach illustrated by our bilateral algorithm, which uses concept learn-
ing via sampling, generalization, and abstract consequence to bound the
answer from below and above.

4. Heuristic methods for formula normalization, for use with abstract domains
in which abstract values are formulas in some logic ([24, Sect.5.1] and [20,
Sect. 7.3)).
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The availability of automated methods for creating abstract transformers
provides help along the following four dimensions:

Soundness: Creation of analyzers that are correct by construction, while
requiring an analysis designer to implement only a small number of opera-
tions. Consequently, one only relies on a small “trusted computing base.”

Precision: In contrast to most conventional approaches to creating abstract
transformers, the use of symbolic abstraction can achieve the fundamental
limits of precision that abstract-interpretation theory establishes.

Resource awareness: The algorithms for applying/constructing abstract
transformers that approach a(p,) from above can be implemented as “any-
time” algorithms—i.e., an algorithm can be equipped with a monitor, and if
the algorithm exhausts some time or space budget, the monitor can stop it
at any time, and a safe (over-approximating) answer can be returned.

Extensibility: If an additional abstract domain is needed in an analyzer,
automation makes it easy to add. In addition, for techniques 2 and 3,
information can be exchanged automatically between domains via symbolic
abstraction to improve the abstract values in each domain.

In terms of future research directions, we believe that because methods 2,
3, and 4 all provide a way to avoid the myopia of reinterpretation, they are all
worthy of future research. In particular, for method 2, more results on partial-
concretization and semantic-reduction operations are desirable, and for method
3, more results about abstract consequence are desirable. Finally, we believe that
it will be fruitful to continue to explore the connections between the problems
that arise in creating abstract transformers automatically and other areas of
computer science.
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Abstract. The automation of verification techniques based on first-order
logic specifications has benefitted greatly from verification infrastructures
such as Boogie and Why. These offer an intermediate language that can
express diverse language features and verification techniques, as well as
back-end tools: in particular, verification condition generators.

However, these infrastructures are not well suited to verification tech-
niques based on separation logic and other permission logics, because they
do not provide direct support for permissions and because existing tools
for these logics often favour symbolic execution over verification condi-
tion generation. Consequently, tool support for these logics (where avail-
able) is typically developed independently for each technique, dramatically
increasing the burden of developing automatic tools for permission-based
verification.

In this paper, we present a verification infrastructure whose inter-
mediate language supports an expressive permission model natively. We
provide tool support including two back-end verifiers: one based on sym-
bolic execution, and one on verification condition generation; an infer-
ence tool based on abstract interpretion is currently under development.
A wide range of existing verification techniques can be implemented via
this infrastructure, alleviating much of the burden of building permission-
based verifiers, and allowing the developers of higher-level reasoning tech-
niques to focus their efforts at an appropriate level of abstraction.

1 Introduction

Over the last 15 years, static program verification has made wide-ranging and sig-
nificant progress. Among the many theoretical and practical achievements that
enabled this progress, two have been particularly influential. First, the develop-
ment of widely-used common architectures for program verification tools, sim-
plifying the development of new verifiers. Second, the development of permission
logics (of which separation logic [34] is the most prominent example), simplifying
the specification and verification of heap-manipulating programs and concurrent
programs.

Many modern program verifiers use an architecture in which a front-end
tool translates the program to be verified, together with its specification, into
a simpler intermediate language such as Boogie [22] or Why [14]. The interme-
diate language provides a medium in which diverse high-level language features
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and verification problems can be encoded, while allowing for the development of
efficient common back-end tools such as verification condition generators. Devel-
oping a verifier for a new language or a new verification technique is, thus, often
reduced to developing an encoding into one of these intermediate languages.
For instance, Boogie is at the core of verifiers such as Chalice [26], Corral [20],
Dafny [23], Spec# [25], and VCC [11], while Why powers for instance Frama-
C [19] and Krakatoa [13].

This infrastructure is generally not ideal for verifiers based on permission
logics, such as separation logic. Verification condition generators and automatic
theorem provers support first-order logic, but typically have no support for per-
mission logics because of their higher-order nature. Therefore, most verifiers
based on these specialised logics implement their own reasoning engines, typi-
cally based on symbolic execution, for each technique independently, increasing
the burden of developing general-purpose automatic tools for permission-based
verification.

Chalice/Viper Scala Java OpenCL
Front-end Eronend Front-end Front-end
(Univ. of Twente) (Univ. of Twente)

"

Intermediate .~ ~, Specification
Language N Inference

/\.

Symbolic

VC Generation . .
Execution leer

l

Boogie
VC Generation
(Microsoft Research)

Z3
SMT Solver
(Microsoft Research)

Fig. 1. The Viper infrastructure, underlying tools and currently-existing front-ends.
All Viper components are implemented in Scala and can thus be used under Windows,
Mac OS and Linux (Boogie and Z3 can also be compiled for these systems).

In this paper, we present Viper, a verification infrastructure whose intermedi-
ate language includes a flexible permission model, allowing for simple encodings
of permission-based reasoning techniques. The Viper infrastructure provides two
back-end verifiers, one using symbolic execution and one using verification con-
dition (VC) generation (via an encoding into Boogie); a specification inference
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via abstract interpretation is under development. Currently, Viper is targeted by

four front-end tools: we developed front-ends for a re-implementation of Chalice

and for a small subset of Scala; front-ends for Java and for OpenCL [4] have been

developed in the context of the VerCors project [5]. Several additional front-ends

are under development. Fig. 1 gives an overview of the Viper infrastructure.
The Viper infrastructure serves three main purposes:

1. Viper facilitates the development of program verifiers based on permission log-
ics, alleviating much of the involved burden by making a large portion of the
tool chain reusable, and allowing the developers of higher-level techniques to
focus their efforts at this level of abstraction. To support this purpose, Viper
provides an expressive intermediate language with primitives that let front-
ends encode a wide range of source languages, specifications, and verification
techniques. Moreover, the Viper back-ends provide a high degree of automa-
tion, aiming to eliminate situations in which tool developers and users need
to understand the internals of the back-ends in order to guide the verification
effort. This automation is crucial to preserving both the abstractions provided
by the Viper infrastructure and the front-ends developed on top of it.

2. Viper allows researchers to rapidly prototype and experiment with new veri-
fication techniques by encoding them manually in our intermediate language
without (initially) developing a dedicated front-end. To support this purpose,
Viper’s intermediate language is human readable and provides high-level fea-
tures such as methods and loops. A parser and type-checker allow one to
write Viper code directly.

3. Viper supports the comparison and integration of different verification back-
ends. To support this purpose, Viper provides two deductive verifiers and
an abstract interpreter. The intermediate language is designed to cater for
different reasoning techniques, for instance by providing a heap model similar
to those of source languages (facilitating, for example, the use of existing heap
analyses).

Outline. This paper gives an overview of the Viper intermediate language. The
next section surveys key features of the language and illustrates how they are
used to encode more abstract languages and verification techniques. The subse-
quent sections provide more details on permissions and predicates (Sect. 3), the
specification of functional behaviour (Sect.4), and the encoding of mathematical
theories (Sect.5). We present an evaluation in Sect. 6, summarise related work
in Sect. 7, and conclude in Sect.8. A comprehensive set of examples, including
all examples presented in this paper, as well as manually encoded examples from
verification competitions, is available in an online appendix [28].

2 Viper in a Nutshell

The Viper infrastructure is centred around a sequential, imperative, object-
based intermediate language. A program in this language consists of a sequence
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of global declarations for fields, methods, functions, predicates, and custom
domains. There is no notion of class; every object has every field declared in
the program, and methods and functions have no implicit receiver. Predicates
[30] can be used both to abstract over concrete assertions and to write recursive
specifications of heap data structures. Custom domains are used to declare math-
ematical theories. Verification of Viper programs is method-modular; method
calls are verified with respect to the specification of the callee and not its
implementation.

In this section we illustrate the core features of the Viper language using
two examples. We use an implementation of a sorted list to illustrate how Viper
supports the specification and verification of heap data structures. We then use a
client of the list to demonstrate how to encode language features and verification
approaches which are not directly available in Viper.

2.1 Specification and Verification of Heap Data Structures

1 field data: Seq[Int]

3 define sorted(s) forall i: Int, j: Int :: 0 <=1 && i < j && j < |sl|
4 ==> s[i] <= s[j]

¢ method insert(this: Ref, elem: Int) returns (idx: Int)
7 requires acc(this.data) && sorted(this.data)

8 ensures acc(this.data) && sorted(this.data)

9 ensures O <= idx && idx <= old(|this.datal)

10 ensures this.data == old(this.data)[0..idx] ++

11 Seq(elem) ++ old(this.data) [idx. .]
12 {

13 idx := 0

14 while(idx < |this.datal| && this.data[idx] < elem)

15 invariant acc(this.data, 1/2)

16 invariant O <= idx && idx <= |this.data]

17 invariant forall i: Int :: O <= 1 && i < idx

18 ==> this.datal[i] < elem

19 {didx := idx + 1 }

20 this.data := this.data[0..idx] ++ Seq(elem) ++ this.datal[idx..]
21}

Fig. 2. A sorted list of integers, implemented via immutable sequences. We will discuss
implementations based on linked lists and arrays later.

Figure 2 shows the specification and implementation of a sorted integer list.
In this initial version, the list is represented using a mathematical sequence
datatype. Line 1 declares an appropriate field; "Int" and "Seq" are built-in
datatypes (along with booleans, references, sets and multisets). To make the



Viper: A Verification Infrastructure for Permission-Based Reasoning 45

example more concise, line 3 introduces a parameterised macro that expresses
that the argument sequence is sorted.

Viper controls access to the program heap using permissions. Permissions
simplify framing (that is, proving that an assertion is not affected by a heap
modification), as well as reasoning about concurrency. Permission to a heap
location may be held by a method execution or a loop iteration. A method or
loop body may access the location only if the appropriate permission is held at
the corresponding program point.

Permissions may be transferred between method executions and loop iter-
ations; the permissions to be transferred are specified as part of method pre-
and postconditions, and loop invariants, respectively. These specifications are
based on implicit dynamic frames [24,31,36]. The most fundamental construct
is the accessibility predicate, acc(e. f), which represents permission to a single
field location: the field f of the reference denoted by e.

Method insert in Fig. 2 adds a new element to the list. It returns the index
at which the element was inserted, which is useful both programmatically (to
retrieve the element later), and to simplify the specified postcondition. The pre-
condition of insert requires that callers provide permission to access the list’s
data field; moreover, the list must be sorted. The first postcondition returns the
permission to the caller and guarantees that the list remains sorted. The sec-
ond postcondition constrains the range of the returned index, while the third
postcondition specifies the functional behaviour. This postcondition uses an old
expression to refer to the content of the list in the method pre-state. The specifi-
cation of insert reveals implementation details by referring directly to the data
field. We will discuss language features that support information hiding and data
abstraction in Sect. 4.

The implementation of insert iterates over the sequence to determine
where to insert the new element. Besides the expected properties, the
loop invariant requires a fractional permission [7] to this.data, denoted by
acc(this.data, 1/2). Using a half permission here serves two purposes: first,
it allows the loop body to read this.data; second, leaving the other half permis-
sion in the method execution enclosing the loop lets the verifier conclude that
the loop does not modify this.data (for which the full permission is necessary);
that is, it can frame properties of this location such as sortedness of the sequence
across the loop.

Viper supports a flexible permission model which includes fractional permis-
sions, symbolic permissions via permission-typed variables (of the built-in type
Perm), and an approach to constrain such symbolic permissions without using
concrete fractions [16], which can be used to model counting permissions [8].

2.2 Encoding High-level Concepts

The example in the previous subsection shows that Viper can be used to manu-
ally specify and verify programs. However, the focus of the language design has
mostly been on making Viper an effective intermediate language which can be



46 P. Miiller et al.

targeted by a variety of front-ends. To illustrate this use of the language, this
subsection presents an encoding of a small client of a sorted list, implemented
in a Java-like language.

1 class Client {

2 QGuardedBy("this") List 1;

3 QGuardedBy("this") boolean changed;
4

5 monitor invariant forall int i, j :: 0 <=1 && 1 < j &&
6 j < |l.datal ==> l.datal[i] <= 1l.datalj]
7 monitor invariant old(l.data) == l.data || changed

8

9 synchronized void test(int el, int e2) {

10 1l.insert(el);

11 1.insert(e2);

12 assert 1l.data[0] <= 1l.datal1l];

13 changed = true;

14 }

15 F

Fig. 3. An example in a Java-like language whose Viper encoding is shown in Fig. 4. We
assume here that class List has a field data whose type is a mathematical sequence.
The GGuardedBy ("this") annotation indicates that the receiver must be locked before
accessing the decorated field. The first monitor invariant requires the list to be sorted;
the second is a two-state invariant and requires the changed flag to be set whenever a
thread changes the content of list 1 between acquiring and releasing the monitor.

Class Client in Fig. 3 stores a reference to a list in field 1. We assume here that
class List has a field data whose type is a mathematical sequence; we will show
an alternative encoding using mutable arrays in Sect.3.3. The client is thread-
safe and uses coarse-grained locking to protect its data representation (Java’s
@GuardedBy ("this") annotation indicates that the receiver must be locked before
accessing the field). It maintains two monitor invariants: the first is a one-state
invariant that requires the list to be sorted; the second is a two-state invariant
which states that any thread that acquires the monitor must either leave the
content of the underlying list unchanged or set the changed flag to true by the
time it releases the monitor. In the latter invariant, we use an old expression to
refer to the state in which the monitor was acquired. Method test acquires the
monitor of its receiver (since it is declared synchronized), adds two elements to
the list and asserts that the first two list elements are in order. It then sets the
changed flag and implicitly releases the monitor when it terminates.

Guarded command languages such as Boogie encode high-level language fea-
tures mostly via three primitives: assert statements to introduce proof obligations,
assume statements to state properties which the verifier may use because they have
been justified elsewhere, and havoc statements to assign non-deterministic values to
variables in order to model side effects or interference. Viper provides permission-
aware analogues of these primitives: the operation exhale A asserts all pure
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assertionsin A (that is, assertions that do not include accessibility predicates). Any
permissions specified in A via accessibility predicates are removed from the cur-
rent program state; if no permission is left for a location then no information about
its value is retained, similarly to havocking the location. Conversely, inhale A
assumes all pure assertions in A and adds permissions.

1 field changed: Bool
field 1: Ref

N

3 field held: Int

4

5 method test(this: Ref, el: Int, e2: Int)

6 ensures [true, forperml[held] r :: false]

7 A

8 // acquire 1

9 inhale acc(this.l) && acc(this.l.data) && acc(this.changed) &&

10 sorted(this.1.data)
11 inhale acc(this.held)
12 statelabel acq

14 var tmp: Int

15 tmp := insert(this.l, el)

16 tmp := insert(this.l, e2)

17 assert this.l.data[0] <= this.l.datal[1]

18 this.changed := true

19

20 // release 1

21 exhale acc(this.l) && acc(this.l.data) &% acc(this.changed) &&
22 sorted(this.l.data) &&

23 (oldlacq] (this.l.data) == this.l.data || this.changed)
24 exhale acc(this.held)

25 }

Fig. 4. A simplified Viper encoding of the source program in Fig. 3.

Figure4 shows a simplified Viper encoding of the client from Fig. 3, using
exhale and inhale to encode concurrency features, which are not supported by
Viper directly. We model locks as resources which can be transferred between
methods. To model this, the Viper program includes a field held and uses the
permission to location o.held to represent that the monitor of object o is held by
the current method execution. Consequently, acquiring the receiver’s monitor at
the start of method test is encoded by inhaling permission to this.held (line 11),
and releasing the monitor exhales this permission (line 24). This encoding ensures
that a monitor can be released only when it is held. We do not include checks for
other properties such as deadlock freedom here, but they could also be encoded.
Note that the only purpose of field held is to use its permission to represent that
a monitor is held; its value and type are irrelevant.
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We encode the @GuardedBy annotations by inhaling permission to the client’s
fields when acquiring the monitor (line 9) and exhaling them upon release
(line 21). We interpret @GuardedBy deeply and include the permission to the list’s
data field. Finally, the encoding of acquire and release also takes into account the
monitor invariants declared in the source program. Acquiring a monitor inhales
its (one-state) invariant (line 10). Releasing it exhales the one-state and two-state
invariants (lines 22-23). Checking a two-state invariant requires a way to access
the earlier of the two states: here, the state in which the monitor was acquired.
Viper provides a convenient way to refer to earlier program states: programs can
declare state labels (line 12) and refer to these states in later assertions using
labelled o1d expressions (line 23). This feature is also useful for encoding other
comparisons across states such as termination measures.

It is often useful to assert or assume properties about the permissions cur-
rently held, without adding or removing permission. Viper supports this via two
pure assertions: perm(o. f) yields the permission amount held for location o.f in
the current state; forperm[f] 7 :: P(r) expresses that all references r to which
the current state has non-zero permission to r.f, satisfy P(r). The example in
Fig. 4 uses the latter feature to encode a leak check for monitors; this check
fails if a method terminates without either releasing the monitors that it holds
or explicitly transferring them back to the caller via a postcondition. The leak
check is expressed by the assertion forperm[held] r :: false in line 6.

Since the leak check must be performed after any remaining monitors have
been transferred to the caller via the method’s postcondition, it cannot be placed
at the end of the method body, where it would be checked before exhaling the
postcondition. Therefore, we place it in a postcondition and encode it as inhale-
exhale assertion. These assertions have the form [A;,A2] and are interpreted
as A; when the assertion is inhaled and A; when the assertion is exhaled. In
our example, the leak check is performed during exhale, but no corresponding
assumption is made by the caller when inhaling the postcondition after a call.

It is common for encodings of high-level verification techniques to contain
asymmetries between the properties that are assumed and those that are checked.
The leak check is an example of a property that is checked, but not assumed. It
is also common to assume properties that are justified by a different (possibly
weaker or even vacuous) check together with an external argument provided
by a type system, soundness proof or other meta-reasoning. For instance, the
following assertion allows the verifier to use a quantified property in its direct
form when assuming the property, and to use the premises of the corresponding
inductive argument when proving the property:

[forall x: Int :: 0 <= x ==> P(x) ,
forall x: Int :: (forall y: Int :: O <=y && y < x ==> P(y)) &&
0 <= x ==> P(x)]
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3 Unbounded Heap Structures

Viper supports several idioms for specifying and reasoning about unbounded
heap structures. There are no specific definitions built in; instead, Viper includes
three features which allow one to provide the relevant definitions as part of the
input program: recursive predicates (the traditional means in separation-logic-
based tools), magic wands (useful for specifying data structures with “missing
parts”), and quantified permissions (for writing pointwise rather than recursive
specifications). We will briefly discuss each of these features in this section, with
respect to variations on our example in Fig. 2. We will focus on the specification
of permissions, and show how to extend these specifications with sortedness
constraints and rich functional properties in Sect. 4 and the online appendix [28].

3.1 Recursive Predicates

Recursive predicates [30] are the classical means in separation logic of specifying
linked data structures such as lists and trees. A predicate definition consists of
a name, a list of formal parameters, and a body, which contains the assertion
defining the predicate. The body is optional; omitting it results in an abstract
predicate, which is useful to hide implementation details from client code. Like
permissions, predicates may be held by method executions and loop iterations,
and may be transferred between them. Exchanging a predicate for its body and
vice versa is done via unfold and fold statements to prevent the automatic prover
from unfolding a recursive definition indefinitely. In expressions, unfolding can
be used to temporarily unfold a predicate.

field data: Ref // for the nodes

1

2 field next: Ref // for the nodes

3 field head: Ref // for the list head

4

5 predicate List(this: Ref)

6 1

7 acc(this.head) && acc(lseg(this.head, null))
s

©

10 predicate lseg(this: Ref, end: Ref)

1 {

12 this != end ==>

13 acc(this.data) && acc(this.next) && acc(lseg(this.next, end))
14 }

Fig.5. Fields and predicates for a linked list structure. The acc syntax around
predicate instances is optional, but needed when specifying fractional permissions to
predicates.

As an example, we consider a variant of Fig.2, in which the list is imple-
mented based on a linked list of nodes. The appropriate predicate definitions
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can be found in Fig. 5. The List predicate provides the definition for the permis-
sions to an entire instance of the list. It is defined in terms of the 1seg predicate,
which defines a list segment from start to end: in this case, from this.head
to null.

List segment predicates can be used to specify iterative traversals of linked
lists, as shown in Fig. 6. The loop invariant at lines 20-21 describes the permis-
sions to the list nodes in terms of one 1seg predicate for the nodes seen so far
and one for the remainder of the list. The former explains the need for a list
segment predicate; tracking permissions for the partial list already inspected is
needed to reassemble the whole list after the loop (the code to do this is omitted
at line 29).

Manipulating recursive predicates can be tedious. While it is easy to prepend
an element to a data structure (by folding another instance of the predicate),
extending a data structure at the other end requires additional work to unfold the
recursive predicate until the end and then re-fold it including the new element. In
Fig. 6, this operation is performed by the concat method, which plays the role of
proving the lemma that from lseg(x,y) && lseg(y,z) we can obtain lseg(x,z).
concat is a specification-only method, but Viper does not distinguish between
regular and ghost code. In the next subsection, we will explain an approach that
reduces the overhead of writing and proving such methods in many cases.

3.2 Magic Wands

The magic wand is a binary connective (written A — B), which describes the
promise that if combined with state satisfying the assertion A, the combination
can be exchanged for the assertion B [29,34].

Figure 7 shows an alternative specification of the loop from Fig.6 (lines 17-
31). The alternative loop invariant uses a magic wand to represent the permis-
sions to the partial list seen so far. These permissions are expressed indirectly, by
the promise that the wand can be combined with the permission to the remain-
der of the list (the list segment acc(1seg(ptr,null))) to obtain permission to
the full list. The permissions implicitly associated with the magic wand instance
are essentially the same as those required by the acc(1seg(hd,ptr)) assertion in
Fig. 6, which is replaced by the wand.

Viper’s support for magic wands [35] includes heuristics to automate (in many
cases) reasoning about magic wand assertions, for example, in establishing our
loop invariant. Magic wands can also be manipulated manually via dedicated
operations, similar to the fold and unfold statements used for predicates [35].
For example, the apply statement in line 12 of Fig.7 instructs the verifier to
exchange the magic wand assertion and its left-hand side for the right-hand-
side, restoring the full list after the (partial) traversal.

Compared to the solution without magic wands in Fig. 6, we no longer require
the auxiliary concat method to manage lseg predicates. In addition, we could
replace 1seg by a simpler predicate that describes only full lists. Magic wands
provide a general means for tracking partial versions of data structures, without
the need to explicitly define or manipulate these partial versions.
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method insert(this: Ref, elem: Int) returns (idx: Int)
requires acc(List(this))
ensures acc(List(this))

idx := 0; var tmp: Ref
unfold acc(List(this))
if (this.head !'= null) { unfold acc(lseg(this.head, null)) }

if (this.head == null || elem <= this.head.data)
{

... // allocate new node at this.head, fold predicates
} else {

var hd : Ref := this.head

var ptr: Ref := hd // running variable

idx := idx + 1

fold acc(lseg(hd, hd)) // for loop invariant
while(ptr.next != null &%

unfolding acc(lseg(ptr.next, null)) in ptr.next.data < elem)
invariant acc(lseg(hd, ptr)) && acc(ptr.next) && acc(ptr.data)

invariant acc(lseg(ptr.next, null))

unfold acc(lseg(ptr.next, null))
idx := idx + 1; var ptrn: Ref := ptr.next
fold acc(lseg(ptrn, ptrn)); fold acc(lseg(ptr, ptrn))
concat(hd, ptr, ptrn) // add to end of list segment
ptr := ptrn
b
. // allocate new node at ptr.next, fold predicates
concat (hd, ptr, null) // concat two lsegs to obtain full list
¥
fold acc(List(this))
h

method concat(this: Ref, ptr: Ref, end: Ref)
requires acc(lseg(this, ptr)) && acc(lseg(ptr, end))

requires end != null ==> acc(end.next, 1/2) // not forming a cycle

ensures acc(lseg(this, end))
ensures end '= null ==> acc(end.next, 1/2)

if (this !'= ptr) {
unfold acc(lseg(this, ptr)); concat(this.next, ptr, end)
fold acc(lseg(this, end))
¥
}

Fig. 6. The insert method of a sorted linked list with recursive predicates.
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while(ptr.next != null &&
unfolding acc(lseg(ptr.next, null)) in ptr.next.data < elem)
invariant acc(lseg(ptr, null)) --* acc(lseg(hd, null))
invariant acc(ptr.next) && acc(ptr.data)
invariant acc(lseg(ptr.next, null))

unfold acc(lseg(ptr.next, null))
idx := idx + 1; var last: Ref := ptr
ptr := ptr.next

© W N e oA W N R

10 }

11 ... // allocate new node at ptr.next, fold predicates

12 apply acc(lseg(ptr, null)) --* acc(lseg(hd, null)) // full list
13 }

Fig. 7. Alternative loop specification with magic wands (cf. Fig. 6, lines 17-31).

3.3 Quantified Permissions

In addition to recursive predicates, Viper supports quantified permissions as a
means of specifying unbounded heap structures. Quantified permissions are sim-
ilar to separation logic’s iterated separating conjunction [34] and allow the spec-
ification of permissions pointwise. The flat structure of a pointwise specification
is convenient for specifying data structures that are not limited to traversals in
a single, hierarchical fashion, such as cyclic lists, random access data structures
such as arrays, and general graphs.

We denote quantified permissions by a universal quantifier around the usual
accessibility predicates. For example, forall x: Ref ::x in S ==> acc(x.f)
denotes permission to the f field of every reference in the set S. The quanti-
fied variable can be of any type, and we permit arbitrary boolean expressions to
constrain its range.

Quantified permissions provide a natural way to specify properties of arrays.
Arrays are not supported natively in Viper but can be encoded. As we show
in Sect.5, we can introduce a custom type Array which models the ith slot
of an array a as loc(a,i).val, where loc(a: Array, i: Int): Ref is an injec-
tive function provided by the Array type. The type also provides a function
len(a: Array): Int to model the length of an array. One can then denote permis-
sion to the array slots via quantified permissions ranging over the array indices.

Figure 8 applies this approach to encode an array list. The field elems stores
the array, while size keeps track of the number of used array slots. The quantified
permission assertion at line 9 represents permission to all array slots. These are
used, for instance, to permit the array access in the while-condition in line 20.
Note that the loop invariant is essentially a copy of the AList predicate body
(with the additional constraint on the idx loop variable). We employ fractional
permissions (including fractional quantified permissions in line 23) to specify
that the loop will not modify the corresponding locations.
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1 field val: Int // array slots modelled by loc(this.elems,i).val
2 field elems: Array // see Array domain definition in Sec. 5
3 field size: Int // how many array slots have been used

5 predicate AList(this: Ref)

6 1

7 acc(this.elems) && acc(this.size) &&

8 0 <= this.size && this.size <= len(this.elems) &&

9 (forall i: Int :: O <= 1 && i < len(this.elems) ==>
10 acc(loc(this.elems, i).val))
11 F

12

13 method insert(this: Ref, elem: Int) returns (idx: Int)
14 requires acc(AList(this))

15 ensures acc(AList(this))

16 {

17 idx := 0
18 unfold acc(AList(this))

19

20 while (idx < this.size && loc(this.elems, idx).val < elem)

21 invariant acc(this.elems, 1/2) && acc(this.size, 1/2)

22 invariant this.size <= len(this.elems)

23 invariant forall i: Int :: O <= i && i < len(this.elems) ==>
24 acc(loc(this.elems, 1i).val, 1/2)
25 invariant 0 <= idx && idx <= this.size

26 { idx = idx + 1 }

27

28 ... // move the later elements forward by one, resize if necessary
29 loc(this.elems, idx).val := elem

30 this.size := this.size + 1

31 fold acc(AList(this))

32 }

Fig. 8. Array-list, specified using quantified permissions.

4 Functional Behaviour

The specifications shown in Sect. 3 focus on the management of permissions, but
do not constrain the values stored in data structures (for instance, to require
sortedness of the list) or computed by operations (for instance, to express the
functional behaviour of method insert). The examples in Sect.2 specify such
properties, but in a way which exposes implementation details. In this section,
we explain several ways to express functional behaviour in Viper.

A simple way to specify the values stored in data structures is to include con-
straints on the values in the body of a predicate, in addition to permissions. For
example, we could extend the body of the 1seg predicate in Fig. 5 by conjoining
the following assertion:
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unfolding acc(lseg(this.next, end)) in
this.next != end ==> this.data <= this.next.data

This assertion specifies sortedness pairwise between list nodes. Maintaining the
augmented predicate entails corresponding additions to the loop invariant and
specification of the concat method in Fig. 6, as shown in the online appendix.

Constraining values via predicates allows one to encode representation invari-
ants, but is not suitable to express client-visible invariants or the functional
behaviour of operations. To support such specifications, Viper supports heap-
dependent functions that may be used in program statements and assertions.
Functions (as opposed to methods) have (side-effect free) expressions rather than
statements as a body. A function’s precondition must require sufficient permis-
sions to evaluate the function’s body; in contrast to methods, invoking a function
does not consume these permissions, and they do not need to be returned via a
function’s postcondition.

Functions are a flexible feature which can play several different roles in a
Viper program. The first major role is to encode side-effect free observer methods
(pure methods in JML [21] and Spec# [1]), which are a part of the interface
of many data structures. For instance, list-style collections typically provide
observer methods such as length and itemAt to retrieve data. As an example,
we extend our 1seg-based specification from Sect. 3.1 with the following function
definition:

function lengthNodes(this: Ref, end: Ref): Int
requires acc(lseg(this, end))
{
unfolding acc(lseg(this, end)) in
this == end 7 0 : 1 + lengthNodes(this.next, end)
by

This definition enables us, whenever we hold an 1seg predicate instance, to
express its length via an application of lengthNodes. The Viper verifiers care-
fully (and automatically) control the unrolling of recursive function definitions,
essentially mimicking the traversal of the corresponding 1seg data structure [15].
A second major role of functions is to define abstraction functions [17] provid-
ing abstractions of the underlying data representation, in order to express spec-
ifications without revealing implementation details. For example, the following
function abstracts the values of a list segment to a mathematical sequence:

function contentNodes(this: Ref, end: Ref): Seq[Int]
requires acc(lseg(this, end))
ensures forall i: Int, j: Int :: 0 <=1 && i < j && j < |result]
==> result[i] <= result[j]
{
this == end 7 Seq[Ref] () : unfolding acc(lseg(this, end)) in
( Seq(this.data) ++ contentNodes(this.next, end) )
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Viper verifiers reason about function applications in terms of the function’s body.
Nevertheless, it is sometimes useful to provide a function postcondition. In the
above example, the postcondition expresses that the sequence of all values stored
in the list is sorted, which is implied by the pairwise sortedness we have added
to the 1seg predicate. Note that the inductive argument required to justify this
postcondition is implicit in the checking of contentNodes’s recursive definition.

A similar content function for the overall data structure (described by the
List predicate) allows us to specify the functional behaviour of insert:

ensures content(this) == old(content(this)) [0..index] ++
Seq(elem) ++ old(content(this)) [index. .]

Function bodies are optional in Viper, which allows hiding details when ver-
ifying client code (similarly to predicates). Omitting the body is also useful for
axiomatising a function rather than defining it (assuming the existence of the
function is otherwise justified). In the array list example from Fig. 8, defining
length and itemAt functions is straightforward. However, an analogous content
function would be awkward to define recursively since our specifications for this
random-access example avoid recursive definitions. Instead, we can axiomatise
the function, that is, specify its meaning via a quantified postcondition. Such
quantifiers are supported in Viper assertions in general, and provide another
important tool for writing functional specifications:

function content(this: Ref): Seq[Int]
requires acc(AList(this))

ensures |result| == length(this)
ensures forall i: Int :: 0 <= i && i < length(this)
==> result[i] == itemAt(this, i)

The third major role of heap-dependent functions is to express refinements of
existing predicate definitions. For example, instead of expressing sortedness as
part of a predicate definition, we can write a boolean function (here for the array
list from Fig.8) and use it in combination with the unchanged AList predicate:

function sorted(this: Ref): Bool
requires acc(AList(this))
{
unfolding acc(AList(this)) in
forall i: Int, j: Int :: O <=1 && 1 < j && j < this.size
==> result[i] <= result[j]

by

AList(this) && sorted(this) describes a sorted list, while AList (this) specifies
an array list that may or may not be sorted. In this way, functions can be used to
augment data-structure instances with additional invariants, without requiring
many versions of a predicate definition or resorting to higher-order logic.

The combination of predicates, functions, and quantifiers supported by Viper
provides the means for writing rich functional specifications in a variety of styles,
which are further illustrated by examples in the online appendix [28].
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5 First-Order Theories

Many specification and verification techniques provide their own mathematical
vocabulary, for instance, to encode algebraic data types. To support such tech-
niques, Viper supports the declaration of custom first-order theories via domains:
each domain introduces a (potentially polymorphic) type and may declare unin-
terpreted function symbols and axioms. Organising mathematical theories into
domains allows back-ends to provide dedicated support for certain theories. For
instance, while both Viper verifiers let the underlying SMT solver reason about
domains, an abstract-interpretation-based inference might provide specialised
abstract domains for certain Viper domains.

1 domain Array {

2 function loc(a: Array, i: Int): Ref

3 function len(a: Array): Int

4 function loc_a(r: Ref): Array

5 function loc_i(r: Ref): Int

6

7 axiom loc_injective {

8 forall a: Array, i: Int :: {loc(a, 1)} 0 <= i && i < len(a)
9 ==> loc_a(loc(a, 1))) == a && loc_i(loc(a, i))) == i
10 }

11

12 axiom length_nonneg { forall a: Array :: O <= len(a) }

13

Fig. 9. A domain definition for arrays, as used in Sect. 3.3. The injective function loc
maps an array and an index to a reference; in combination with a field (such as val in
Fig.8), an array slot a[i] can be encoded as loc(a, i).val.

Figure9 uses a domain to model arrays, which are not natively supported
in Viper. We represent the ith slot of an array a as loc(a,i).val, where loc
is a function introduced by the domain and val is a suitable field. Since each
array slot corresponds to a dedicated memory location, loc must be injective;
this property is expressed by the axiom loc_injective, which axiomatises loc_a
and loc_i as the inverse functions of loc. Axiomatising injectivity via inverse
functions improves performance of the SMT solver by reducing the number of
instantiations of the axiom.

Universal quantifiers in axioms (as well as in assertions) may be decorated with
triggers [27]: terms used as patterns which restrict the potential instantiations.
For instance, the trigger {loc(a, i)} in axiom loc_injective lets the SMT solver
instantiate the quantifier with = and y whenever it knows about a term loc(z,y).
When no trigger is provided, Viper attempts to infer triggers automatically. In
general, however, hand-crafted triggers lead to better performance.

The online appendix [28] shows how to encode algebraic data types as
domains, with functions for constructors and selectors, and with appropriate
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axioms. Such an encoding is useful when encoding source languages that pro-
vide ADTs (such as Scala’s case classes) or for specification languages that make
use of ADTs.

6 Evaluation

In this section, we evaluate the performance of the Viper verifiers on a wide
variety of examples. Moreover, we give preliminary qualitative and quantitative
evidence for Viper’s suitability as an intermediate verification language.

6.1 Performance of the Viper Verifiers

To evaluate the performance of the Viper verifiers, we ran both our symbolic
execution (SE) verifier and our verification-condition-generation (VCG) verifier
on the following collections of input programs: our own Viper regression tests,
Viper programs generated by the VerCors tools [4,5], and programs generated
from Chalice examples via our Chalice front-end. For the Viper and VerCors
programs, we split the files into those using quantified permissions (for which
only our SE verifier currently provides support), and those which can be run in
both verifiers. The set of VerCors examples was provided to us by the VerCors
developers as representative of their Viper usage.

The results are shown in Fig. 10. Both verifiers perform consistently well in
the average case, with the SE verifier being significantly faster. As the average
times suggest, the maximum times are true outliers—these were typically exam-
ples designed to be complex, in order to test what the tools could handle. The
Viper tests (which are mostly regression tests) tend to be shorter and less chal-
lenging than the VerCors-generated programs, which are representative of real
usage of Viper as a back-end infrastructure.

Number of | Average || Mean time (s) || Max. time (s)
Input programs programs | size (LOC) SE ‘ VCG SE ‘ VCG
Viper tests w/o QPs 208 43.8 0.23 0.81 18.36 | 34.17
VerCors w/o QPs 43 152.1 0.94 | 2.24 || 16.25 | 31.78
Chalice (no QPs) 221 122.0 0.26 0.97 21.26 | 29.37
Viper tests with QPs 74 34.0 0.30 - 2.00 -
VerCors with QPs 65 105.6 0.95 - 8.39 -

Fig. 10. Performance evaluation of Viper verifiers. Lines of code (LOC) measurements
do not include whitespace lines and comments. All input programs were run 10 times
and average times recorded. The mean and maximum times were calculated based on
these averages. Timings do not include JVM start-up time: we persist a JVM across test
runs using the Nailgun tool; for the VCG verifier, timings include start-up of Boogie
via Mono. All timings were gathered on a Lenovo Thinkpad T450s running Ubuntu
15.04 64 bit, with 12 GB RAM; full details are available in our online appendix [28].
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6.2 Viper as an Intermediate Verification Language

To assess Viper’s suitability as an intermediate verification language, we provide
some observations about Viper’s language design and compare the performance
of Viper as the back-end of the VerCors tools. to the previously-used Chalice-
Boogie tool chain [26].

Language Design. The most comprehensive front-ends for Viper are the Java
and OpenCL front-ends developed in the VerCors project and our own Chal-
ice/Viper front-end. Various language features of Viper have proven essential
for these different front-ends. VerCors’ work on verifying concurrent Java makes
use of Viper’s custom domains for encoding custom ADT-like datatypes along
with additional axioms, and makes heavy use of sequences, recursive functions
and predicates. The VerCors OpenCL front-end instead employs quantified per-
missions along with domains similar to the array encoding shown in Sect. 5, and
pure quantifiers to specify functional properties. Our front-end for Chalice makes
extensive use of inhale and exhale statements to encode high-level features, sim-
ilarly to the example in Sect.2.2. As such, the key language features described
in this paper have all been heavily used in at least one existing front-end.
There are Chalice front-ends for both Boogie and Viper, which support very
similar (but not identical) versions of the Chalice language. For the Chalice pro-
grams from the previous subsection, the Boogie files were between 3.3 and 32.1
times the size of the corresponding Viper files, and on average 11.2 times larger.
This significant difference illustrates the higher level of abstraction provided by
the Viper language, compared with existing intermediate verification languages.

Performance of the Infrastructure. The VerCors project switched from
using Chalice-Boogie as back-end infrastructure, to Viper. This switch was partly
motivated by the available language features; for instance, the VerCors OpenCL
front-end relies heavily on quantified permissions, which are not available in
Chalice. Another reason was the performance of the Viper tools. In the following,
we compare the performance of the two infrastructures on inputs generated by
the VerCors tools.

Running tests through the entire alternative tool chains proved difficult due
to legacy syntactic and implementation differences; however, we identified 17
VerCors examples from the test suite used in Sect.6.1 that could be run on
the alternative infrastructures. For each of these examples, we generated two
(essentially equivalent) Boogie programs, one using Chalice as a VerCors back-
end, and one using Viper with our VCG verifier.

Figure 11 shows the results of our comparison. In all cases, the Boogie files
generated via the Viper route were smaller and verified faster. The same example
was slowest via both routes, and more than 4 times faster in the Viper-generated
version. Although our sample size is small, the results suggest Viper enables a
more direct encoding and offers a more streamlined verification condition gen-
erator. In practice, the VerCors team typically use Viper’s SE verifier, which is
substantially faster still, as shown in Fig. 10.
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Average Mean Max.
size (LOC) | time (s) || time (s)
Boogie file via Chalice 945.0 0.83 3.22
Boogie file via Viper (VCG) 631.1 0.53 0.73
Ratio [ 668% [ 64.3% [ 22.5%

Fig.11. Comparison of alternative back-end infrastructures for the VerCors tools.
Using Viper’s VCG verifier significantly reduces the size and verification time of the
generated Boogie programs compared to the Chalice/Boogie infrastructure.

7 Related Work

Boogie [22] and Why [14] are widely-used intermediate verification languages,
but they do not offer native support for permission-based reasoning. Chalice [26]
demonstrates that permissions can be encoded in such a first-order setting; our
VCG-based back-end makes such a complex encoding reusable. Boogie and Why
front-ends encode heaps as maps. In contrast, the Viper language has a built-in
notion of heap, which is slightly less expressive (for instance, in Viper, heaps
cannot be stored in variables), but enables the development of more-specialised
back-ends, such as verifiers based on Smallfoot-style symbolic execution and
inference engines based on abstract interpretation.

To our knowledge, the only other verification infrastructure for permission-
based reasoning is coreStar [6], which includes an intermediate language for
separation logic and a symbolic execution engine. Front-ends implemented on
top of coreStar encode programs into coreStar’s language and also need to pro-
vide proof rules and abstraction rules to customise the behaviour of coreStar’s
symbolic execution, even for fundamental concepts such as permissions (points-
to predicates). In contrast, Viper has been designed to be expressive enough to
capture a wide variety of languages and verification techniques out of the box,
without requiring front-end developers to descend into the back-end(s). Fur-
thermore, having a fixed language (with fixed rules) simplifies writing different
back-ends, potentially with specialised handling of certain language features.

Some verifiers for separation logic such as Smallfoot [3], GRASShopper [33],
Asterix [32], and the work by Chin et al. [9], achieve a relatively high degree
of automation by restricting themselves to specific (classes of) theories: often
those of linked lists and trees. Without support for important features such as
fractional permissions or user-defined predicates and functions, they do not offer
the expressiveness needed for an intermediate language which can encode a wide
range of verification techniques.

VeriFast [18], a verifier for C and Java programs, supports an expressive
assertion language, including user-defined higher-order predicates and function
pointers, but it requires significant amounts of user annotations, in particular
when reasoning about functional specifications and abstractions. This compli-
cates the encoding of front-end languages that try to achieve a higher degree of
automation.
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Several verification techniques based on interactive proof assistants such as
Coq or HOL4 [2,10,12,37] provide tactics that automate common proof steps in
separation logic. Viper aims at a higher level of automation, such that users do
not have to interact directly with the verification back-ends.

8 Conclusion and Future Work

We have presented Viper, an infrastructure which facilitates the rapid proto-
typing of permission-based verification techniques and the development of veri-
fication tools. Viper’s intermediate language offers a flexible permission model,
supports user-defined predicates and functions, and provides advanced specifi-
cation features such as magic wands and quantified permissions. It provides the
necessary expressiveness to encode a wide range of language features and
permission-based verification techniques. In particular, users may choose
between and combine different styles of encodings, as we have demonstrated
in Sects.3 and 4. Viper includes two back-end verifiers: one based on verifica-
tion condition generation and one based on symbolic execution. An abstract-
interpretation-based specification inference is under development.

Viper is targeted by several front-ends, developed both inside and outside
of our research group. Together with collaborators, we are currently working
on encodings of verification techniques for JavaScript and for fine-grained con-
currency. Viper is also being used to verify safety and security properties of a
network router implemented in Python.

As future work, we plan to provide a comprehensive variety of specification
inference techniques and to improve the reporting and debugging of verification
failures. We are also interested in integrating alternative, possibly specialised
verification back-ends.
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Abstract. We present Alias Refinement Types (ART), a new approach
that uses predicate-abstraction to automate the verification of correct-
ness properties of linked data structures. While there are many tech-
niques for checking that a heap-manipulating program adheres to its
specification, they often require that the programmer annotate the
behavior of each procedure, for example, in the form of loop invariants
and pre- and post-conditions. We introduce a technique that lifts predi-
cate abstraction to the heap by factoring the analysis of data structures
into two orthogonal components: (1) Alias Types, which reason about the
physical shape of heap structures, and (2) Refinement Types, which use
simple predicates from an SMT decidable theory to capture the logical
or semantic properties of the structures. We evaluate ART by implement-
ing a tool that performs type inference for an imperative language, and
empirically show, using a suite of data-structure benchmarks, that ART
requires only 21 % of the annotations needed by other state-of-the-art
verification techniques.

1 Introduction

Separation logic (SL) [31] has proven invaluable as a unifying framework for
specifying and verifying correctness properties of linked data structures. Para-
doxically, the richness of the logic has led to a problem — analyses built upon
it are exclusively either expressive or automatic. To automate verification,
we must restrict the logic to decidable fragments, e.g. list-segments [4,21],
and design custom decision procedures [6,14,16,27,28] or abstract interpreta-
tions [7,23,40]. Consequently, we lose expressiveness as the resulting analyses
cannot be extended to wuser-defined structures. To express properties of user-
defined structures, we must fall back upon arbitrary SL predicates. We sacrifice
automation as we require programmer assistance to verify entailments over such
predicates [10,24]. Even when entailment is automated by specializing proof
search, the programmer has the onerous task of providing complex auxiliary
inductive invariants [9,30].

We observe that the primary obstacle towards obtaining expressiveness and
automation is that in SL, machine state is represented by monolithic assertions
that conflate reasoning about heap and data. While SL based tools commonly
describe machine state as a conjunction of a pure, heap independent formula,
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B. Jobstmann and K.R.M. Leino (Eds.): VMCAI 2016, LNCS 9583, pp. 65-84, 2016.
DOI: 10.1007/978-3-662-49122-5_3



66 A. Bakst and R. Jhala

(5 1

l abs :: (int) = nat ‘labsR it (x:{data:int)) = ()/&x — {(data:nat’ |
function abs(x){ x:int T = x.

3 - . 0= X.<&X>

if (0 <= x.) (0 < x);x:int |function absR(x){ Yo = &x s (datasint)

return x; var d = x.data; [} =d:int;[p
var r = 0 - x; r:{v =0—x}; var t = abs(d); Ib = t:nat!; I}
—(0 < x);x:int|| x.data = t; Y = &x—> {(data:v =t

return r; return;
} }

Fig. 1. Refinement types Fig. 2. Strongly updating a location

and a* combination of heap predicates, the heap predicates themselves conflate
reasoning about links (e.g. reachability) and correctness properties (e.g. sizes or
data invariants), which complicates automatic checking and inference.

In this paper, we introduce Alias Refinement Types (ART), a subset of separa-
tion logic that reconciles expressiveness and automation by factoring the repre-
sentation of machine state along two independent axes: a “physical” component
describing the basic shape and linkages between heap cells and a “logical” com-
ponent describing semantic or relational properties of the data contained within
them. We connect the two components in order to describe global logical prop-
erties and relationships of heap structures, using heap binders that name pure
“snapshots” of the mutable data stored on the heap at any given point.

The separation between assertions about the heap’s structure and heap-
oblivious assertions about pure values allow ART to automatically infer precise
data invariants. First, the program is type-checked with respect to the physical
type system. Next, we generate a system of subtyping constraints over the logical
component of the type system. Because the logical component of each type is
heap-oblivious, solving the system of constraints amounts to solving a system
of Horn clauses. We use predicate abstraction to solve these constraints, thus
yielding precise refinements that summarize unbounded collections of objects.

In summary, this paper makes the following contributions:

— a description of ART and formalization of a constraint generation algorithm
for inferring precise invariants of linked data structures;

— a novel soundness argument in which types are interpreted as assertions in
separation logic, and thus typing derivations are interpreted as proofs;

— an evaluation of a prototype implementation that demonstrates ART is effec-
tive at verifying and, crucially, inferring data structure properties ranging from
the sizes and sorted-ness of linked lists to the invariants defining binary search
trees and red-black trees. Our experiments demonstrate that ART requires
only 21 % of the annotation required by other techniques to verify intermedi-
ate functions in these benchmarks.

2 Overview

Refinements Types and Templates. A basic refinement type is a basic type,
e.g. int, refined with a formula from a decidable logic, e.g. nat = {v : int | < v}
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is a refinement type denoting the set of non-negative integers, where int is
the basic or physical part of the type and the refinement 0 < v is the log-
ical part. A template is a refinement type where, instead of concrete formu-
las we have wvariables k that denote the unknown to-be-inferred refinements.
In the case that the refinement is simply true, we omit the refinement (e.g.
int = {v :int | true}). We specify the behaviors of functions using refined func-
tion types: (21 :t1,...,%, : ty,) = t. The input refinement types t; specify the
function’s preconditions and t describes the postcondition.

Verification. ART splits verification into two phases: (1) constraint generation,
which traverses the program to create a set of Horn clause constraints over the
k, and (2) constraint solving, which uses an off the shelf predicate abstraction
based Horn clause solver [32] that computes a least fixpoint solution that yields
refinement types that verify the program. Here, we focus on the novel step (1).

Path Sensitive Environments. To generate constraints ART traverses the
code, building up an environment of type bindings, mapping program variables to
their refinement types (or templates, when the types are unknown.) At each call-
site (resp. return), ART generates constraints that the arguments (resp. return
value) are a subtype of the input (resp. output) type. Consider abs in Fig.1
which computes the absolute value of the integer input x. ART creates a template
(int) = {v : int | K1} where k1 denotes the unknown output refinement. (We
write nat! in the figure to connect the inferred refinement with its .) In Fig. 1, the
environment after each statement is shown on the right side. The initial environ-
ment contains a binder for x, which assumes that x may be any int. In each branch
of the if statement, the environment is extended with a guard predicate reflecting
the condition under which the branch is executed. As the type {v : int | v = x}
is problematic if x is mutable, we use SSA renaming to ensure each variable is
assigned (statically) at most once.

Subtyping. The returns in the then and else yield subtyping constraints:

x:int,0 < x F&{v:int | v=x}
xunt, (0 < x),r:{v:int | v=0—x} F&{v:int | v=r}

< {v:iint | K1}
<X {v:int | k1}

which respectively reduce to the Horn implications

(trueN0<x) = &(v=x%x) = K
(trueA-(0<x)Ar=0—-x) = &r=r) = K
By predicate abstraction [32] we find the solution x; = 0 < v and hence infer
that the returned value is a nat, i.e. non-negative.

References and Heaps. In Fig. 2, absR takes a reference to a structure con-
taining an int valued data field, and updates the data field to its absolute
value. We use ko for the output refinement; hence the type of absR desugars
to: (x:&x)/&x +— (data :int) = ()/&x +— (data: k2) which states that absR
requires a parameter x that is a reference to a location named &x. in an input
heap where &x contains a structure with an int-valued data field. The function
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[ absL :: (x:1list[int]) = ()/&x — list[nat’] ]
function absL(x){ Iou = x:{(&x), Yo = &x — xo:list[int]

o . Fl = FO
B LK Y1 = &x > x;:(data:int, next: 7(&t)y) * &t — to:list[int]
var d = x.data;

Iy = duint, xn:{v: &ty | v = z2.next}, I
.data = abs(d); . .o
*-cata _ abs (@) Yo = &x > x2:{data:nat’, next : &ty) # &t > to:list[int]
var xn = x.next;

if (xn == null){
//: fold(&x); I3 =zxn=null, s, X5 =&x— list[nat3]

return;
absL(xn) ; Iy = xn 7 null; I3
’ Xy = &x > x2:{data:nat’, next : W&ty * &t > t1 :list[nat’]
//: fold(&x); Is = Iy X5 = &x > x3:list[nat®]
return;

Fig. 3. Strongly updating a collection. The fold and unfold annotations are automat-
ically inserted by a pre-analysis [3]

returns () (i.e. no value) in an output heap where the location &x is updated to
a structure with a xo-valued data-field.

We extend the constraint generation to precisely track updates to locations.
In Fig. 2, each statement of the code is followed by the environment I" and heap
X’ that exists after the statement executes. Thus, at the start of the function,
x refers to a location, &x, whose data field is an arbitrary int. The call abs(d)
returns a k1 that is bound to t, which is then used to strongly update the data
field of &x from int to k1. At the return we generate a constraint that the return
value and heap are sub-types of the function’s return type and heap. Here, we
get the heap subtyping constraint:

x:(&x), drint, t:k; F & &x— (data:v =t) < &x — (data:ks)

which reduces by field subtyping to the implication: k1[t/v] = (v =1t) = ko
which (together with the previous constraints) can be solved to ko = 0 < v
letting us infer that absR updates the structure to make data non-negative.
This is possible because the k variables denote pure formulas, as reasoning about
the heap shape is handled by the alias type system. Next we see how this idea
extends to infer strong updates to collections of linked data structures.

Linked Lists. Linked lists can be described as iso-recursive alias types [38]. The
definition

type list[A] = W t:list[A].h:(data: A, next?{())

says list[A] is a head structure with a data field of type A, and a next field
that is either null or a reference to the tail, denoted by the ?(¢) type. The heap
£ t:list[A] denotes that a singleton list[A] is stored at the location denoted
by £ if it is reachable at runtime. The 3! quantification means that the tail is
distinct from every other location, ensuring that the list is inductively defined.
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Consider absL from Fig. 3, which updates each data field of a list with its
absolute value. As before, we start by creating a kg for the unknown output
refinement, so the function gets the template

(x:(&x)) /& — zo:list]int] = ()/&x — x,:list][ks)

Figure 3 shows the resulting environment and heap after each statement.

The annotations unfold and fold allow ART to manage updates to collec-
tions such as lists. In ART, the user does not write fold and unfold annotations;
these may be inferred by a straightforward analysis of the program [3].

Unfold. The location &x that the variable x refers to initially contains a list[int]
named with a heap binder xy. The binder xy may be used in refinements. Suppose
that x is a reference to a location containing a value of type list[A]. We require
that before the fields of x can be accessed, the list must be unfolded into a head
cell and a tail list. This is formalized with an unfold (&x) operation that unfolds
the list at &x from &x — xg:list[int] to

&x — x1:(data:int, next?(&t)) x &t — to:list[int],

corresponding to materializing in shape analysis. The type system guarantees
that the head structure and (if next is not null) the newly unfolded tail structure
are unique and distinct. So, after unfolding, the structure at &x can be strongly
updated as in absR. Hence, the field assignment generates a fresh binder zo for
the updated structure whose data field is a 1, the output of abs.

Fold. After updating the data field of the head, the function tests whether the
next field assigned to xn is null, and if so returns. Since the expected output is
a list, ART requires that we fold the structure back into a list[ks] — effectively
computing a summary of the structure rooted at &x. As xn is null and xn:
{v :2(&t) | v = za.next}, f0ld(&x) converts &x — x2:(data:ky,next:?(&t))
to &x +— list[k3] after generating a heap subtyping constraint which forces the
“head” structure to be a subtype of the folded list’s “head” structure.

I's F &x+— xzg9:({data:ky,...) 3 &x+> xg9:(data:ks,...) (2)

If instead, xn is non-null, the function updates the tail by recursively invoking
absL(xn). In this case, we can inductively assume the specification for absL and
so in the heap after the recursive call, the tail location &t contains a list[ks].
As xn and hence the next field of x5 is non-null, the fold(&x) transforms

&x — x5:(data: Ky, next: 7(&t)) x &t — ¢y :list[ks]

into & — list[ks], as required at the return, by generating a heap subtyping
constraints for the head and tail:

Is F&x— xy:(data:ky,...) <X &xr— x9:(data:ks,...) (3)
Is F &&t— ty:list[rg] < &t t1:list]ks] (4)
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The constraints Egs. (2), (3) and (4) are simplified field-wise into the implications
K1 = K3, k1 = K3 and k3 = k3 which, together with the previous constraints
(Eq. (1)) solve to: k3 = 0 < v. Plugging this back into the template for absL we
see that we have automatically inferred that the function strongly updates the
contents of the input list to make all the data fields non-negative.

ART infers the update the type of the value stored at &x at fold and unfold
locations because reasoning about the shape of the updated list is delegated to
the alias type system. Prior work in refinement type inference for imperative
programs [33] can not type check this simple example as the physical type sys-
tem is not expressive enough. Increasing the expressiveness of the physical type
system allows ART to “lift” invariant inference to collections of objects.

Snapshots. So far, our strategy is to factor reasoning about pointers and the
heap into a “physical” alias type system, and functional properties (e.g. values of
the data field) into quantifier- and heap-free “logical” refinements that may be
inferred by classical predicate abstraction. However, reasoning about recursively
defined properties, such as the length of a list, depends on the interaction between
the physical and logical systems.

We solve this problem by associating recursively defined properties not
directly with mutable collections on the heap, but with immutable snapshot
values that capture the contents of the collection at a particular point in time.
These snapshots are related to the sequences of pure values that appear in the
definition of predicates such as list in [31]. Consider the heap X defined as:

&g — h:{data = 0,next = &) * &xq — t:(data = 1,next = null)
We say that snapshot of &xgin X is the value vy defined as:
vo = (&xo, (data = 0,next = v1)) v; = (&z1, (data = 1,next = null))

Now, the logical system can avoid reasoning about the heap reachable from
zo — which depends on the heap — and can instead reason about the length of
the snapshot vy which is independent of the heap.

Heap Binders. We use heap binders to name snapshots in the refinement logic.
In the desugared signature for absR from Fig. 2,

(x:(&x)) /&x — x:list[int] = ()/ &z — z,:list[nat]

the name xzg refers to the snapshot of input heap at &z. In ART, no reachable
cell of a folded recursive structure (e.g. the list rooted at &z) can be modified
without first unfolding the data structure starting at the root: references pointing
into the cells of a folded structure may not be dereferenced. Thus we can soundly
update heap binders locally without updating transitively reachable cells.

Measures. We formalize structural properties like the length of a list or the
height of a tree and so on, with a class of recursive functions called measures,
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[ insert :: (A, x:71ist[A]) = {v:1ist[A] [ (len(v) = 1 + len(x))*} |
function insert(k, x) Io =%k: A; x:W&x) Xy = &x — zo:list[A]
if (x == null) {
var y = I =y :{&yy;x =null; [,
{data:k,next:nulll}; 5 = &x > x¢:list[A] * &y — yo:{data: A, next:null)
. nglen(yl)zl;f‘l
Qs el Yo = &x > xo:list[A] * &y — y1:list[A]
return y;

}
//: unfold(&x)

if (k <= x.data) {
var y = Iy =y &y I5
{data:k,next:x}; Y= &y( I—))yg :<data:A,)next:?<&x>> % g
] I's =len(z2) = 1+ len(to); I's
//: fold(&x) X5 = &x > o :list[A] # &y > y2:{data: A, next: &)
//: fold(&y) I = len(ys) = 1 + len(z2); I'5 X6 = &x — ys:list[A]
return y;

X

= x.next; .
ver z _ x-nex . I7 = wo:kafto/zo];u:{&uy; z: K &t); Is
var u = insert(k,z); . .
X.n6xt = u; Y7 = &x > x1:{data: A, next :{(&u)) * &u > ug:list[A]

//: fold(&x) Is =len(xz2) =1+ len(uo); [7 Xg = &x — xa:list[A]
return x;

I's = len(zo) = 1 + len(to);  # null; Iy
Y3 = &x — x1:{data:a,next: {&t)) * &t — to:list[a]

Fig. 4. Inserting into a collection

which are catamorphisms over (snapshot values of) the recursive type. For exam-
ple, we specify the length of a list with the measure:

len: : list[A] = int len(null) =0 len(z) =1+ len(x.next)

We must reason algorithmically about these recursively defined functions. The
direct approach of encoding measures as background axioms is problematic due
to the well known limitations and brittleness of quantifier instantiation heuris-
tics [13]. Instead, we encode measures as uninterpreted functions, obeying the
congruence axiom, Vz,y.x =y = f(x) = f(y). Second, we recover the seman-
tics of the function by adding instantiation constraints describing the measure’s
semantics. We add the instantiation constraints at fold and unfold operations,
automating the reasoning about measures while retaining completeness [36].

Consider insert in Fig.4, which adds a key k of type A into its position in
an (ordered) list[A], by traversing the list, and mutating its links to accomodate
the new structure containing k. We generate a fresh x4 for the output type to
obtain the function template:

(A, x:7(&x))/&x — xo:list[A] = (&) /&1 — {v : list[A] | K4}

Here, the snapshot of the input list x upon entry is named with the heap binder

Zo; the output list must satisfy the (as yet unknown) refinement k4.
Constraint generation proceeds by additionally instantiating measures at

each fold and unfold. When x is null, the fold(&y) transforms the binding
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&y — yp:(data: A, next:null) into a (singleton) list &y — y; :list[A] and so we
add the instantiation constraint len(y;) = 1 to the environment. Hence, the sub-
sequent return yields a subtyping constraint over the output list that simplifies
to the implication:

len(zg) =0Alen(y1) =1=v =1y = K4 (5)
When x is non-null, unfold (&x) transforms the binding &x — x¢:list[A] to
&x — z1:(data:a,next?(&t)) x &t — to:list[A]

yielding the instantiation constraint len(xzg) = 1 4 len(¢g) that relates the length
of the list’s snapshot with that of its tail’s. When k <= x.data the subsequent
folds create the binders xzo and y3 with instantiation constraints relating their
sizes. Thus, at the return we get the implication:

len(xzo) = 1+len(to) Alen(xa) = 1+len(to) Alen(ys) = 1+len(xe) = v = ys = Ky

(6)
Finally, in the else branch, after the recursive call to insert, and subsequent
fold, we get the subtyping implication

Ien(azo) = 1+Ien(t0)/\m4[1/, Io/UQ,to]/\|en(l’2) = 1+|en(u0) =V =29 = kK4 (7)

The recursive call that returns ug constrains it to satisfy the unknown refinement
k4 (after substituting ¢y for the input binder xg). Since the heap is factored out by
the type system, the classical predicate abstraction fixpoint computation solves
Egs. (5), (6) and (7) to k4 = len(v) = 1+len(xp) inferring a signature that states
that insert’s output has size one more than the input.

Abstract Refinements. Many important invariants of linked structures require
us to reason about relationships between elements of the structure. Next, we show
how our implementation of ART allows us to use abstract refinements, developed
in the purely functional setting [37], to verify relationships between elements of
linked data structures, allowing us to prove that insertSort in Fig. 5 returns an
ordered list. To this end, we parameterize types with abstract refinements that
describe relationships between elements of the structure. For example,

type list[A](p) =3 — t:list[{v: A | p(data,v)}](p).h:(data: A,next:?(l))

is the list type as before, but now parameterized by an abstract refinement p
which is effectively a relation between two A values. The type definition states
that, if the data fields have values 1, ..., z, where x; is the i*" element of the
list, then for each i < j we have p(x;, x;).

Ordered Lists. We instantiate the refinement parameters with concrete refine-
ments to obtain invariants about linked data structures. For example, increasing
lists are described by the type incList[A] = list[A]{(<)).

Verification. Properties like sortedness may be automatically infered by using
liquid typing [32]. ART infers the types:

insertSort::(?list[A]) = incList|A] insert::(A, ?incList[A]) = incList[A]
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[(x:71ist[A]) = {v:7incList[A] [len(v) =len(x)}]
function insertSort(x){
if (x == null) return null;
//: unfold(&x);
var y = insertSort(x.next);
var t = insert(x.data, y);
//: fold(&t);
return t;

Fig. 5. Insertion Sort

i.e. that insert and insertSort return sorted lists. Thus, alias refinement types,
measures, and abstract refinements enable both the specification and automated
verification of functional correctness invariants of linked data structures.

3 Type Inference

To explain how ART infers refinement types as outlined in Sect. 2, we first explain
the core features of ART’s refinement type system. We focus on the more novel
features of our type system; a full treatment may be found in [3].

3.1 Type Rules

Type Environments. We describe ART in terms of an imperative language
Imp with record types and with the usual call by value semantics, whose syntax
is given in Fig.6. A function environment is defined as a mapping, @, from
functions f to function schemas S. A type environment (I") is a sequence of type
bindings x:T and guard expressions e. A heap (X) is a finite, partial map from
locations (£) to type bindings. We write I'(z) to refer to T where 2:T € I', and
X(0) to refer to x:T where the mapping ¢ — z:T € X.

Type Judgements. The type system of ART defines a judgement @ - f :: S,
which says given the environment @, the function f behaves according to its
pre- and post-conditions as defined by S. An auxiliary judgement @, I, X' |- s ::
I'" /X’ says that, given the input environments I" and X, s produces the output
environments I and X’. We say that a program p typechecks with respect to @
if, for every function f defined in p, @+ f :: &(f).

‘Well-Formedness. We require that types T be well formed in their local envi-
ronments I" and heaps X, written I, X' - T'. A heap X must heap be well formed
in its local environment I', written I" = X. The rules for the judgment [3] capture
the intuition that a type may only refer to binders in its environment.

Subtyping. We require a notion of subsumption, e.g. so that the integer 2 can be
typed either as {v : int | v = 2} or simply int. The subtyping relation depends on
the environment. For example, {v : int | v = x} is a subtype of {v : int | v = 2}
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Egxpressions e ::=n | true| false| null| r¢| z| e@e
Statements s:=s;s| ct=e| y==x.f| x.f =e| if ethenselses
| returne| z =alloc {f:e}| = = f(e)
| unfold(¢) | fold(¢)| concr(z) | pad(¥)
Programs  p ::= function f(T) {s}
Primitive Types b::= int| bool | | null| )| 7y
Types Tu=b| C[T]| {f:T)

Refined Types T := {v:7|p}

Type Definition C := C[a] =N . 2 {f: T

Contexts =g | «:T;I| eI

Heaps Z:emp|2*€»—>x0[]|E*K.—)gc(fT}
Function Types =V (x:T)/X=3W.2":T /%

n € Integers, r¢ € Reference Constants, x,y, f € Identifiers, @€ {+,—,...}

Fig. 6. Syntax of Imp programs and types

if  : {v:int | v =2} holds as well. Subtyping is formalized by the judgment
I' Ty = Ty, of which selected rules are shown in Fig. 7. Subtyping in Imp reduces
to the validity of logical implications between refinement predicates. As the refine-
ments are drawn from a decidable logic of Equality, Linear Arithmetic, and Unin-
terpreted Functions, validity can be automatically checked by SMT solvers [13].
The last two rules convert between non-null and possibly null references ({¢) and

20)).

Heap Subtyping. The heap subtyping judgment I' = X' < %’ describes when
one heap is subsumed by another. Figure 7 summarizes the rules for heap sub-
sumption. Heap subtyping is covariant, which is sound because our type system
is flow sensitive — types in the heap are updated after executing a statement.

Statements. When the condition z,y fresh appears in the antecedent of a rule,
it means that x and y are distinct names that do not appear in the input envi-
ronment I” or heap X. We write [y/z] for the capture avoiding substitution that
maps = to y. The rules for sequencing, assignment, control-flow joins, and func-
tion calls are relatively straightforward extensions from previous work (e.g. [33]).
Selected rules are given in Fig. 8. The complete set of rules may be found in [3].

Allocation. In T-ALLOC, a record is constructed from a sequence of field name
and expression bindings. The rule types each expression ey as Ty, generates a
record type T, and allocates a fresh location £ on the heap whose type is T'. To
connect fields with their containing records, we create a new binder y denoting
the record, and use the helper NameFields [3] to strengthen the type of each
field-binding for y from f:{vy : 7| p}, to f:{vy : 7| p Avs = Field(v, f)}. Here,
Field is an uninterpreted function.

Access. T-rD and T-WR both require that non-null pointers are used to access
a field in a record stored on the heap. As T-ALLOC strengthens each type with
NameFields, the type for y in T-RD contains the predicate vy, = Field(v, f;).
Any facts established for y are linked, in the refinement logic, with the original
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Subtyping I T <D, rro<y

Valid([T'] = [p] = [2'])
I {v:b | p} < {v:b|p'}

Valid([I'] = [p] = [P’ A v # null])

- <-DOWN
I'=A{v: 26 | p} < {v: O | p'}
Valid([T] = [p) = /D _ Valid( [ 1) = [l > [PD
F'{v|pt<{v: KO |p} — ' {v:null | p} < {v: X0 |p'} —
r-x<y I-T<T
<-EMP <-HEAP
I' - emp < emp I'—YslzT <X sl—x:T
Heap Folding ] I2:T/% > a:To)/5s \
l T D X)) = I'=Ty <T:
ocs(Th) n Dom(X1) = & =T <15 F-BASE

I I—x:Tl/El I>$3T2/22

S1=X1sl>ax:T Yo=Xislz:T
F't{w|p}<T I'taz:T/Xi>a:T /5%

F-REF
Ty (vl | P}/ by T/
I w6 | p} < T
D1 =XslyT X=Xyl y:T
v | pavEnully; T -y:T/X > y:T' /35
zA{v: N | parv=null}; I +y:T/X>y:T' /3, Fo7REF
I'ax:{v: W | pt/Z1>a:Ta/X ’
I T/ 3> T Y
= o T30 b w5 F-HEAP

'+~ y<f1TZ>/E1 > y<f1117/>/22

Fig. 7. Selected subtyping, heap subtyping, and heap folding rules

record’s field: when a record field is mutated, a new type binding is created in
the heap, and each unmutated field is linked to the old record using Field.

Concretization. As heaps also contain bindings of names to types, it would
be tempting to add these bindings to the local environment to strengthen the
subtyping context. However, due to the presence of possibly null references,
adding these bindings would be unsound. Consider the program fragment:

function f(){ return null; }
function g(O{ var p = £(); assert(false) }

One possible type for £ is ()/emp = IW. r:?(¢) /{ — x:{v :int | false} because
the location ¢ is unreachable. If we added the binding z:{v : int | false} to I’
after the call to £, then the assert(false) in g would unsoundly typecheck!
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Statement Typing ’457 NyYvw-sar'/y

'bz:{) Lo z{fi:T)eXx
Y y=ufizy Tyl X

''tz:{) I'bte:{v:T|p}
T, = NameFields(z,{fo:To,..., fi:{v:T |v =1¢€},...)) =z fresh

— T-wr
DIl y{fi Ty« Xr+afi=eulfl—z:Th X
for cach es, T, X T; T = NameFields(z,{F-T5) ¢, h
or each ey Fep:Ty ameFields(z,{f:T)) z fres ToALLOC
O, [ Y ax=alloc {f:ep}uax:{; [/l 2:T %X
LY bz: T, ={v: L 5
Shai Ty={virlp) To={rrv=y) sfresh
O, Il y:Tyx X concr(z) ny: Ty Il 2T, X
I''-Clal =3 Y. zc:T. Cla] bu m(z) = em
Y=l a:{p:OT] |} * X0 Y =l xc:[T/a]Te # [T/a] L x o
YT Y'Y Dom(X.), Binders(X.), z. fresh
T-UNFOLD

&, I, X unfold(() :: (Am(z) =em); /X'

I'Cla] =3 X.. x: T
v 2:Th/5 oo [T/a]T./[T/alSe Tty T, +Y TFS<3

Clal -u m(z) =em T, ={v:C[T]| A, m¥) =em} vy fresh
Sl x:Typ s Xy s X fold(l) s I/l y:T, X'

T-FOLD

Fig. 8. Selected Statement Typing Rules. We assume that type definitions (and, hence,
measures over these definitions) I' - C[a] = 3! X. ©: T are a-convertible.

We thus require that in order to include a heap binder in a local context,
I, the location must first be made concrete, by checking that a reference to it
is definitely not null. Concretization of a location /¢ is achieved with the heap
annotation concr(zx). Given a non-null reference, T-CONCR transforms the local
context I" and the heap X by (1) adding the binding y:T} at the location ¢ to
I'; (2) adding a fresh binding z:T, at ¢ that expresses the equality y = z.

Unfold. T-UNFOLD describes how a type constructor application C[a] may be
unfolded according to its definition. The context is modified to contain the new
heap locations corresponding to those mentioned in the type’s definition. The
rule assumes an a-renaming such that the locations and binders appearing in
the definition of C' are fresh, and then instantiates the formal type variables &
with the actual T. The environment is strengthened using the thus-instantiated
measure bodies.

Fold. Folding a set of heap bindings into a data structure is performed by T-
FOLD. Intuitively, to fold a heap into a type application of C, we ensure that it
is consistent with the definition of C. Note that the rules assume an appropriate
a-renaming of the definition of C. Simply requiring that the heap-to-be-folded
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be a subtype of the definition’s heap is too restrictive. Consider the first fold in
absL in Fig. 3. As we have reached the end of the list n = null we need to fold

&x — x1:(data:nat, next?(&t)) * &t — tg:list[int]

into &x — x4 :list[nat]. An application of heap subtyping, i.e. requiring that the

heap-to-be-folded is a subtype of the body of the type definition, would require
that &t — list[int] < &t +— list[nat], which does not hold! However, the fold is
safe, as the next field is null, rendering &t unreachable. We observe that it is
safe to fold a heap into another heap, so long as the sub-heap of the former that
is reachable from a given type is subsumed by the latter heap.

Our intuition is formalized by the relation I ¥' b x: Ty /X1 > x: T/ X, which
is read: “given a local context I', X, the type 77 and the heap 3; may be folded
into the type T and heap Y5.” F-BASE defines the ordinary case: from the point
of view of a type T, any heap X7 may be folded into another heap X5. On the
other hand, if T} is a reference to a location ¢, then F-REF additionally requires
the folding relation to hold at the type bound at ¢ in .

F-7REF splits into two cases, depending on whether the reference is null
or not. The relation is checked in two strengthened environments, respectively
assuming the reference is in fact null and non-null. This strengthening allows
the subtyping judgement to make use reachability. Recall the first fold in absL
that happens when xn = null. To check the fold(&x), the rule requires that
the problematic heap subtyping I' b &t — list[int] < &t — list[nat] only holds
when x.next is non-null, i.e. when I" is

xn:{v :?7(&t) | v = xo.next}, xn = null, x9.next # null

This heap subtyping reduces to checking the validity of the following, which
holds as the antecedent is inconsistent:

Xn = ro.next A xn = null A xg.next # null = 0 < v

3.2 Refinement Inference

In the definition of the type system we assumed that type refinements were given.
In order to infer the refinements, we replace each refinement in a program with
a unique variable, k,, that denotes the unknown refinement. More formally, let
@ denote a functlon environment as before except each type appearing in @
is optionally of the form {v: 7| k;}, i.e. its refinement has been omitted and
replaced with a unique k variable. Given a set of function definitions p and
a corresponding environment of unrefined function signatures &, to infer the
refinements denoted by each xk we extract a system of Horn clause constraints C.
The constraints, C, are satisfiable if there exists a mapping of K of k-variables to
refinement formulas such each implication in K C| i.e. substituting each x; with
its image in K, is valid. We solve the constraints by abstract interpretation in the
predicate abstraction domain generated from user-supplied predicate templates.
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CGen : FunEnv x TypeEnv x HeapEnv x Stmt — {Constr} x TypeEnv x HeapEnv
CGen(®,I",Xs) = match s with

|y =xf - let £ = loc(I'(x)) in ({I' = I'(x) < {0}, y:TypeAt(X,4);,I", %)

| x.f =e — let (cs, t) = CGEx(I",Xe)
L = Loc(t)
(y:Ty, z) = (X(¥), Freshld())
ht = NameFields(z, Ty[f : Shape(t) m (v = ¢)])

in (cs U{I't=<{}, I Y€ —z:ht])

Fig. 9. Statement constraint generation

For more details, we refer the reader to [32]. We thus infer the refinements missing
from @ by finding such a solution, if it exists.

Constraint Generation. Constraint generation is carried out by the proce-
dure CGen which takes a function environment (@), type environment (1), heap
environment (X)), and statement (s) as input, and ouputs (1) a set of Horn con-
straints over refinement variables x that appear in @, I', and X; (2) a new type-
and heap-environment which correspond to the effect (or post-condition) after
running s from the input type and heap environment (pre-condition).

The constraints output by CGen correspond to the well-formedness con-
straints, I, X F T, and subtyping constraints, I' = T < T’, defined by the type
system. Base subtyping constraints I' = {v : b | p} < {v :b | ¢} correspond to
the (Horn) Constraint [I'] = p = ¢, where [I'] is the conjunction of all of the
refinements appearing in I" [32]. Heap Subtyping constraints I' - ¥ < ¥/ are
decomposed via classical subtyping rules into base subtyping constraints between
the types stored at the corresponding locations in ¥ and ¥’. This step crucially
allows the predicate abstraction to sidestep reasoning about reachability and the
heap, enabling inference.

CGen proceeds by pattern matching on the statement to be typed. Each
FreshType () or Fresh() call generates a new x variable which may then appear
in subtyping constraints as described previously. Thus, in a nutshell, CGen cre-
ates Fresh templates for unknown refinements, and then performs a type-based
symbolic execution to generate constraints over the templates, which are solved
to infer precise refinements summarizing functions and linked structures. As an
example, the cases of CGen corresponding to T-RD and T-WR are show in Fig. 9.

3.3 Soundness

The constraints output by CGen enjoy the following property. Let (C,I7,X’) be
the output of CGen(Qc),F ,28). If C' is satisfiable, then there exists some solution
K such that K&, KI', KX + s :: KI" /KX’ [32], that is, there is a type derivation
using the refinements from K. Thus K yields the inferred program typing @ =
K é, where each unknown refinement has been replaced with its solution, such
that @ F f :: &(f) for each f defined in the program p.
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To prove the soundness of the type system, we translate types, environments
and heaps into separation logic assertions and hence, typing derivations into
proofs by using the interpretation function [-]. We prove [3] the following:

Theorem 1. [Typing Translation)]

o If D NYXFsuI'/X then [P]HA{[LLX]}s{[I, 2]}
o [fdF f::S then [D]F {Pre(S)} Body(f) {Post(S)}

Pre(S), Post(S) and Body(f) are the translations of the input and output types
of the function, the function (body) statement. As a corollary of this theorem,
our main soundness result follows:

Corollary 1. [Soundness| If®, &, empt s:: I'/ X, then [®] b {true} s {true}

If we typecheck a program in the empty environment, we get a valid separation
logic proof of the program starting with the pre-condition true. We can encode
programmer-specified asserts as calls to a special function whose type encodes
the assertion. Thus, the soundness result says that if a program typechecks then
on all executions of the program, starting from any input state: (1) all memory
accesses occur on non-null pointers, and (2) all assertions succeed.

4 Experiments

We have implemented alias refinement types in a tool called ART. The user pro-
vides (unrefined) function signatures, and ART infers (1) annotations required
for alias typing, and (2) refinements that capture correctness invariants. We eval-
uate ART on two dimensions: the first demonstrates that it is expressive enough
to verify a variety of sophisticated properties for linked structures; the second
that it provides a significant automation over the state-of-the-art, represented
by the SMT-based VCDRYAD system. VCDRYAD has annotations comparable
to other recent tools that use specialized decision procedures to discharge Sepa-
ration Logic VCs [11]. Our benchmarks are available at [1].

Expressiveness. Table1 summarizes the set of data structures, procedures,
and properties we used to evaluate the expressiveness of ART. The user provides
the type definitions, functions (with unrefined type signatures), and refined type
specifications to be verified for top-level functions, e.g. the top-level specification
for insertSort. LOC is lines of code and T, the verification time in seconds.
We verified the following properties, where applicable: [Len] the output data
structures have the expected length; [Keys] the elements, or “keys” stored in each
data structure [Sort] the elements are in sorted order [Order| the ouput elements
have been labeled in the correct order (e.g. preorder) [Heap] the elements sat-
isfy the max heap property [BST]| the structure satisfies the binary search tree
property [Red-black] the structure satisfies the red-black tree property.
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Table 1. Experimental Results (Expressiveness)

Data Structure Properties Procedures LOC | T

Singly linked list | Len, Keys append, copy, del, find, 73 2
insBack, insFront, rev

Doubly linked list | Len, Keys append, del, delMid, insBack, 90 16
insMid, insFront

Cyclic linked list | Len, Keys delBack, delFront, insBack, 49 2
insFront

Sorted linked list | Len, Keys, Sort rev, double, pairwiseSum, 135 10
insSort, mergeSort,
quickSort

Binary Tree Order, Keys preOrder, postOrder, inOrder 31 2

Max heap Heap, Keys heapify 48 27

Binary search tree | BST, Keys ins, find, del 105 11

Red-black tree Red-black, BST, Keys | ins, del 322 | 213

Automation. To demonstrate the effectiveness of inference, we selected bench-
marks from Table 1 that made use of loops and intermediate functions requiring
extra proof annotations in the form of pre- and post-conditions in VCDRYAD,
and then used type inference to infer the intermediate pre- and post-conditions.
The results of these experiments is shown in Table2. We omit incomparable
benchmarks, and those where the implementations consist of a single top-level
function. We compare the number of tokens required to specify type refinements
(in the case of ART) and pre- and post-conditions (for VCDRYAD). The table
distinguishes between two types of annotations: (1) those required to specify
the desired behavior of the top-level procedure, and (2) additional annotations
required (such as intermediate function specifications). Our results suggest that
it is possible to verify the correctness of a variety of data-structure manipulating
algorithms without requiring many annotations beyond the top-level specifica-
tion. On the benchmarks we examined, overall annotations required by ART were
about 34 % of those required by VCDRYAD. Focusing on intermediate function
specification, ART required about 21 % of the annotation required by VCDRYAD.

Limitations. Intuitively, ART is limited to “tree-like” ownership structures:
while sharing and cycles are allowed (as in double- or cyclic-lists), there is a
tree-like backbone used for traversal. For example, even with a singly linked list,
our system will reject programs that traverse deep into the list, and return a
pointer to a cell unboundedly deep inside the list. We believe it is possible to
exploit the connection made between the SL notion of “magic wands” and the
type-theoretic notion of “zippers” [18] identified in [34] to enrich the alias typing
discipline to accommodate such access patterns.
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Table 2. Experimental results (Inference). For each procedure listed we compare the
number of tokens used to specify: ART Type refinements for the top-level procedure in
ART; ART Annot manually-provided predicate templates required to infer the neces-
sary types [32]; VCDryad Spec pre- and post-conditions of the corresponding top-level
VCDryad procedure; and VCDryad Annot loop invariants as well as the specifications
required for intermediate functions in VCDryad. ART Annot totals include only unique
predicate templates across benchmarks.

Data Structure Procedure ART VCDryad
Specification | Annotation | Specification | Annotation
Singly Linked List | (definition) 34 - 31 -
rev 5 0 11 15
Sorted Linked List | (definition) 38 - 50 -
rev 11 9 17 15
double 0 4 7 54
pairwiseSum 0 4 13 75
insSort 5 0 20 17
mergeSort 5 18 18 79
quickSort 5 18 11 140
Binary Search Tree | (definition) |58 - 55 -
del 7 32 20 33
Total 168 63 253 428

5 Related Work

Physical Type Systems. ART infers logical invariants in part by leveraging
the technique of alias typing [2,38], in which access to dynamically-allocated
memory is factored into references and capabilities. In [8,29], capabilities are
used to decouple references from regions, which are collections of values. In these
systems, algebraic data types with an ML-like “match” are used to discover
spatial properties, rather than null pointer tests. fold &unfold are directly
related to roll &unroll in [38]. These operations, which give the program access
to quantified heap locations, resemble reasoning about capabilities [29,35]. These
systems are primarily restricted to verifying (non-)aliasing properties and finite,
non-relational facts about heap cells (i.e. “typestates”), instead of functional
correctness invariants. A possible avenue of future work would be to use a more
sophisticated physical type system to express more data structures with sharing.

Logical Type Systems. Refinement types [20,25,39], encode invariants about
recursive algebraic data types using indices or refinements. These approaches
are limited to purely functional languages, and hence cannot verify properties
of linked, mutable structures. ART brings logical types to the imperative setting
by using [38] to structure and reason about the interaction with the heap.

Interactive Program Logics. Several groups have built interactive verifiers
and used them to verify data structure correctness [12,41]. These verifiers require
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the programmer write pre- and postconditions and loop invariants in addition
to top-level correctness specifications. The system generates verification condi-
tions (VCs) which are proved with user interaction. [19] uses symbolic execution
and SMT solvers together with user-supplied tactics and annotations to prove
programs. [10,24] describe separation logic frameworks for Coq and tactics that
provide some automation. These are more expressive than ART but require non-
trivial user assistance to prove VCs.

Automatic Separation Logics. To automate the proofs of VCs (i.e. entail-
ment), one can design decision procedures for various fragments of SL, typically
restricted to common structures like linked lists. [4] describes an entailment pro-
cedure for linked lists, and [6, 14, 16] extend the logic to include constraints on list
data. [5,21,27,28] describe SMT-based entailment by reducing formulas (from a
list-based fragment) to first-order logic, combining reasoning about shape with
other SMT theories. The above approaches are not extensible (.e. limited to list-
segments); other verifiers support user defined, separation-logic predicates, with
various heuristics for entailment [9,11]. ART is related to natural proofs [26,30]
and the work of Heule et al. [17], which instantiate recursive predicates using
the local footprint of the heap accessed by a procedure, similar to how we insert
fold and unfold heap annotations, enabling generalization and instantiation of
structure properties. Finally, heap binders make it possible to use recursive func-
tions (e.g. measures) over ADTs in the imperative setting. While our measure
instantiation [20] requires the programmer adhere to a typing discipline, it does
not require us to separately prove that the function enjoys special properties [36].

Inference. The above do not deal with the problem of inferring annotations
like the inductive invariants (or pre- and post- conditions) needed to generate
appropriately strong VCs. To address this problem, there are several abstract
interpreters [22] tailored to particular data structures like list-segments [40],
lists-with-lengths [23]. Another approach is to combine separate domains for
heap and data with widening strategies tailored to particular structures [7,15].
These approaches conflate reasoning about the heap and data using monolithic
assertions or abstract domains, sacrificing either automation or expressiveness.
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Abstract. We revisit relational static analysis of numeric variables.
Such analyses face two difficulties. First, even inexpensive relational
domains scale too poorly to be practical for large code-bases. Second,
to remain tractable they have extremely coarse handling of non-linear
relations. In this paper, we introduce the subterm domain, a weakly
relational abstract domain for inferring equivalences amongst sub-
expressions, based on the theory of uninterpreted functions. This pro-
vides an extremely cheap approach for enriching non-relational domains
with relational information, and enhances precision of both relational
and non-relational domains in the presence of non-linear operations. We
evaluate the idea in the context of the software verification tool SeaHorn.

1 Introduction

This paper investigates a new approach to relational analysis. Our aim is to
develop a method that scales to very large code bases, yet maintains a reasonable
degree of precision, also for programs that use non-linear numeric operations.

Abstract interpretation is a well-established theoretical framework for sound
reasoning about program properties. It provides means for comparing program
analyses, especially with respect to the granularity of information (precision)
that analyses allow us to statically extract from programs. On the whole, reduc-
ing such questions to questions about abstract domains. An abstract domain,
essentially, specifies the (limited) language of judgements we are able to use
when reasoning statically about a program’s runtime behaviour.

A class of abstract domains that has received particular attention are the
numeric domains—those supporting reasoning about variables of numeric (often
integer or rational) type. Numeric domains are important because of the numer-
ous applications in termination and safety analyses, such as overflow detection
and out-of-bounds array analysis. The polyhedral abstract domain [9] allows us
to express linear arithmetic constraints (equalities and inequalities) over pro-
gram state spaces of arbitrary finite dimension k. But high expressiveness comes
at a cost; analysis using the polyhedral domain does not scale well to large code
bases. For this reason, a number of abstract domains have been proposed, seeking
to strike a better balance between cost and expressiveness.
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Language Restriction. The primary way of doing this is to limit expressive-
ness, that is, to restrict the language of allowed judgements. Most commonly
this is done by expressing only 1- or 2-dimensional projections of the program’s
(abstract) state space, often banning all but a limited set of coefficients in linear
constraints. Examples of this kind of restriction to polyhedral analysis abound,
including zones [19], TVPI [22,23], octagons [20], pentagons [18], and logahe-
dra [14]. These avoid the exponential behaviour of polyhedra, instead offering
polynomial (typically quadratic or cubic) decision and normalization procedures.
Still, they have been observed to be too expensive in practice for industrial code-
bases [18,24]. Hence other “restrictive” techniques have been proposed which are
sometimes integral to an analysis, sometimes orthogonal.

Dimensionality Restriction. These methods aim to lower the dimension k of
the program (abstract) state space, by replacing the full space with several lower-
dimension subspaces. Variables are separated into “buckets” or packs according
to some criterion. Usually the packs are disjoint, and relations can be explored
only amongst variables in the same pack (relaxations of this have also been
proposed [4]). The criterion for pack membership may be syntactic [8] or deter-
mined dynamically [24]. A variant is to only permit relations between sets; in
the Gauge domain [25], relations are only maintained between program variables
and introduced loop counters, not between sets of program variables.

Closure Restriction. Some methods abandon the systematic transitive clo-
sure of relations (and therefore lack a normal form for constraints). Constraints
that follow by transitive closure may be discovered lazily, or not at all. Closure
restriction was used successfully with the pentagon domain; a tolerable loss of
precision was compensated for by a significant cost reduction [18].

All of the work discussed up to this point has, in some sense, started from an
ideal (polyhedral) analysis and applied restrictions to the degree of “relational-
ity.” A different line of work starts from very basic analyses and adds mechanisms
to capture relational information. These approaches do not focus on restrictions,
but rather on how to compensate for limited precision using “symbolic” reason-
ing. Such symbolic methods maintain selected syntactic information about com-
putations and use this to enhance precision. The primary examples are Miné’s
linearization method [21], based on “symbolic constant propagation” and Chang
and Leino’s congruence closure extension [5].

Polyhedral analysis and its restrictions tend to fall back on overly coarse
approximation when faced with non-linear operations such as multiplication,
modulus, or bitwise operations. Higher precision is desirable, assuming the asso-
ciated cost is limited. Consider the example shown in Fig. 1(a). Figure 2(a) shows
the possible program states when execution reaches point A. With octagons, the
strongest claim that can be made at that point is

0<z<10,-10<y <10,y —2<90,z—y <90, x4+ 2> —90,z —x <90
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x = nondet (0,10) u = nondet(0,10)

y = nondet(-10,10) v = nondet(0,10)

Z = X*y w = nondet(0,10)
A: if (%)

if (y <0) { t=u+v elset=u+w

z = -z if (¢ < 3)

} u=u+3 elseu=3

B: C
(a) (b)

Fig. 1. Two example programs

Fig.2(b) shows the projection on the y-z plane. Almost all interaction between
y and z has been lost and as a result, we fail to detect that z is non-negative at
point B. The best possible polyhedral approximation adds

z > —10x,2z > 102 + 10y — 100, z < 10z, 2 < 100 — 102 + 10y

While this expresses more of the relationship between x, y and z, we can still
only infer z > —50 at point B.

30

Fig. 2. (a) The reachable states at point A in Fig.1(a); (b) the result of polyhedral
analysis at point A, projected onto the y-z plane, assuming analysis performs case split
on the sign of y (the convex hull forming a lozenge);(c) the result of polyhedral analysis
at point B. Dashed lines show octagon invariants.
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Table 1. States inferred for Fig. 1’s programs, points B (left) and C (right)

Octagons y — 2 <90,z —y <90, 0<t,3<u<20,u+t<23
r+2z2>-90,z—x <90

Polyhedra z > —10z,z > 10x + 10y — 100, 0 <t <20,3<u <5
z < 102,z < 100 — 102 + 10y

Subterms 0 < z < 100 0<t<20,3<u<sh

In practice, weaker results may well be produced. A commonly used octagon
library yields y € [—10,10], z € [-100, 100], rather than the dashed projections
shown in Fig. 2(b) and (c). For polyhedral analysis, multiplication is often han-
dled by projection and case-splitting. The two grey triangles in Fig. 2(b) show
the result, at point A, of case analysis according to the sign of y, as projected
onto the y-z plane; the lozenge is the convex hull. This explains how a commonly
used library infers {z > 5y — 50,z < 5y + 50} at point A. The pen-nib shaped
area in Fig. 2(c) shows the result, at point B, of polyhedral analysis. Note that
the triangle below the y axis is in fact infeasible.

Contribution. The proposal presented in this paper differs from all of the above.
It combines closure restriction and a novel symbolic approach. We extract and
utilise shared expression information to improve the precision of cheap non-
relational analyses (for example, interval analysis), at a small added cost. The
idea is to treat the arithmetic operators as uninterpreted function symbols. This
allows us to replace expensive convex hull operations by a combination of con-
straint propagation and term anti-unification. The resulting subterm domain
ST is an abstract domain of syntactic equivalences. It can be used to aug-
ment non-relational domains with relational information, and to improve pre-
cision of (possibly relational) domains in the presence of complex operations.
The improvement is not restricted to non-linear operations; it can equally well
support weakly relational domains that are unable to handle large coefficients.

Table 1 summarises the analysis results for the two programs in Fig. 1, com-
pared with the results of (ideal) octagon and polyhedral analysis.! Note how the
subterm domain obtains a tight lower bound on z as well as a tight upper bound
on u.

The method has been implemented, and the experiments described later in
this paper suggest the combination strikes a happy balance between precision
and cost. After Sect. 2’s preliminaries, Sect. 3 provides algorithms for operations
on systems of terms, and Sect. 4 shows how this can be used to enhance a numeric
domain. Section 5 provides comparison with the closest related work. Section 6
reports on experimental results and Sect. 7 concludes.

1 We show transitive reductions and omit trivial bounds for variables. The result
obtained by the subterm domain for C, includes, behind the scenes, a term equation
t =u+ s and a bound 0 < s < 10 on the freshly introduced variable s.
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2 Preliminaries

Abstract Interpretation. In standard abstract interpretation, a concrete
domain C? and its abstraction C# are related by a Galois connection («,7),
consisting of an abstraction function a : C* — C# and concretization func-
tion v : C# — (C% The best approximation of a function f% on C? is
f#(¢) = a(fi(y(p))). When analysing imperative programs, C? is typically
the power-set of program states, and the corresponding lattice operations are
(C,u,N).

In a non-relational (or independent attribute) domain, the abstract state is
either the bottom value L p (denoting an infeasible state), or a separate non-_L
abstraction 27 for each variable 2 in some domain Dy (where each variable
admits some feasible value). That is, D = {Lp} U (Dy \ {Lp PVl

Sometimes backwards reasoning is required, to infer the set of states which
may/must give rise to some property. The pre-image transformer Fy ([S])(p)
yields ¢pre such that (Fp([S])(¢") = ¢) = (¢’ T ¢pre). Finding the minimal pre-
image of a complex (non-linear) operation can be quite expensive, so pre-image
transformers provided by numeric domains are usually coarse approximations.

We shall sometimes need to rename abstract values. Given a binary relation
m CV x V’ and an element ¢ of an independent attribute domain over V, the
renaming () is given by:

renamer(p) = {z' — [p ¢(@) | 2" € image(p)}

(z,z")enm
The corresponding operation is more involved for relational domains. Assuming

D is closed under existential quantification, D can maintain systems of equalities
and V and V' are disjoint, we have rename(¢) = IV. (p{z =2’ | (z,2") € 7}).

Term Equations. The set 7T of terms is defined recursively: every term is either
a variable v € TVar or a construction F(t1,...,t,), where F' € Fun has arity
n > 0 and ty,...,t, are terms. A substitution is an almost-identity mapping
0 € TVar — T, naturally extended to 7 — 7. We use standard notation for
substitutions; for example, {x — t} is the substitution 6 such that 6(x) = ¢t and
O(v) = v for all v # x. Any term 6(t) is an instance of term t.

If we define ¢ C ¢’ iff ¢t = 0(t') for some substitution # then C is a preorder.
Define t = t" iff t £ ¢’ At" C t. The set 7)= U {L}, that is 7 partitioned into
equivalence classes by = plus {_L}, is known to form a complete lattice, the so-
called term lattice.? A unifier of t,t' € T is an idempotent substitution  such
that 6(t) = 6(¢'). A unifier § of ¢t and ¢’ is a most general unifier of t and ¢ iff
0" = 6’ o 0 for every unifier 6’ of t and ¢'.

If we can calculate most general unifiers then we can find meets in the term
lattice: if 6 is a most general unifier of ¢ and ¢’ then 6(t) is the most general
term that simultaneously is an instance of ¢ and an instance of ¢, so 6(¢) is the
meet of ¢ and ¢'. Similarly, the join of ¢ and ¢’ is the most specific generalization;
algorithms are available that calculate most specific generalizations [15].

2 [ is extended to the term lattice by defining | C t for all elements t € T)=.
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Given a set of terms S C 7 and equivalences E C (S x S), we can partition S
into equivalent terms. Terms ¢ and s are equivalent (t = s) if they are identical
constants, are deemed equal, or t = f(t1,...,t;,) and s = f(s1,...,Sm) such
that for all 4, t; = s;. Finding this partitioning is the well-studied congruence
closure problem, of complexity O(].S|log |S]|) [10]. Of relevance is the case |E| = 1
(introduction of a single equivalence), which can be handled in O(|S]) time.

In the following, it will be necessary to distinguish a term as an object from
the syntactic expression it represents. We shall use id(¢) to denote the name of
a term, and def(¢) to denote the expression.

3 The Subterm Domain 87

An element of the subterm domain consists of a mapping n : V +— 7T of pro-
gram variables to terms. While the domain structure derives from uninterpreted
functions, we must reason about the corresponding concrete computations. We
accordingly assume each function symbol F' has been given a semantic function
S(F) : 8™ — S. Given some assignment 0 : TVar — S of term variables to scalar
values, we can then recursively define the evaluation E(¢,8) of a term under 6.

E(z,0) = 0(x)
E(f(t1,...,tn),0) =S(f)(E(t1,0),...,E(t,,0))
We say a concrete state {x1 — v1,...,2, — v, } satisfies mapping n iff there is

an assignment 6 of values to term variables such that for all z;, E(n(z;),0) = v;.
The concretization v(n) is the set of concrete states which satisfy 1.

However, the syntactic nature of our domain gives us difficulties. While we
can safely conclude that two (sub-)terms are equivalent, we have no way to
conclude that two terms differ. No Galois connection exists for this domain;
multiple sets of definitions could correspond to a given concrete state. Even if
states n; and 72 are both valid approximations of the concrete state, the same
does not necessarily hold for n; Mna.

Ezample 1. Consider two abstract states:
{CE = +(a1a 7)7y = a,z— a2} {x = +(37b1)7y = by, z bl}

These correspond to the sets of states satisfying * = y +7 and x = 3 + 2
respectively. Many concrete states satisfy both approximations; one is (x,y, z) =
(7,0,4). However, a naive application of unification would attempt to unify
+(y, 7) with +(3, z), which would result in unifying y with 3, and z with 7.

Cousot and Cousot [7] discuss the consequences of a missing best approxi-
mation, and propose several approaches for repair: strengthening or weakening
the domain, or nominating a best approximation through a widening/narrowing.
However, these are of limited value in our application. Strengthening or weaken-
ing the domain enough that a best approximation is restored would greatly affect
the performance or precision, and explicitly reasoning over the set of equivalent
states is impractical. Using a widening/narrowing is sound advice, but offers
minimal practical guidance.
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3.1 Operations on 8T

We must now specify several operations: state transformers for program state-
ments, join, meet, and widening. Assignment, join and widening all behave nicely
under §7; meet is discussed in Sect. 3.2.

Figure 3 shows assignment and join operations on S7 . Calls to generalize are
cached, so calls to generalize(s,t) all return the same term variable. In the case
of 8T, the lattice join is safe: as 71 Cna = v(m1) Ces y(n2) and U and Uy are
least upper bounds on their respective domains, we have ~(n;) E~(n; Une) and
Y(n2) Ey(m Un2), so y(m) Ues ¥(n2) Ecs ¥(m Unz). The worst-case complexity
of the join is O(|ny||n2|). But typical behaviour is expected to be closer to linear,
as most shared terms are either shared in both (so only considered once) or are
trivially distinct (so replaced by a variable). This is borne out in experiments, see
Sect. 6. As S7 has no infinite ascending chains, Lig7 also serves as a widening.

Fsr[x:=1£(y1,...,ya)](n) = nlz — £(n(y1),...,n(yn))]

m Une = {x — generalize(n: (z),n2(z)) |z € V}

generalize(c,c) = ¢

generalize(f(t1,...,tn), f(S1,...,8n)) = flu1,...,un)
where u; = generalize(t;, s;)

generalize(X,Y) = freshvar

Fig. 3. Definitions of variable assignment and LI in S7.

Every term in 7; U9 corresponds to some specialization in 77 and 72. We
shall use 77—~ Y72 to denote the relation that maps terms in 7; to correspond-
ing terms in 7 Unso.

Ezample 2. Consider again Fig. 1(b). At the exit of the first if-then-else, we get
term-graphs 7; and 73 shown in Fig. 4(a) and (b). For 71 Un9, we first compute
the generalization of n;(u) = ag with n2(u) = by, obtaining a fresh variable c¢g.
Now, n1(t) and n2(t) are both (42) terms, so we recurse on the children; the
generalization of (ag,bg) has already been computed, so we re-use the existing

. F ':: : L

&
@

5 6

(b) m2 (€) mUn2

m

(a)

Fig.4. State at the end of the first (a) then and (b) else branches in Fig. 1(b), and
(c) the join of the two states.
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variable; but we must allocate a fresh variable for (a1, bs), resulting in ¢ being
mapped to (+)(co,c1). We repeat this process for v and w, yielding the state
shown in Fig. 4(c). Note that the result captures the fact that in both branches,
t is computed by adding some value to w.

3.2 The Quasi-meet 1

We require our quasi-meet Mgz to be a sound approximation of the concrete
meet, that is, y(71) Nes ¥(n2) Cek (1 Ns7 12). Ideally, we would like to preserve
several other properties enjoyed by lattice operations:

Minimality: If 171 Tz 12, then (9 Mszn2) =
Monotonicity: If 71 Cs7 7y, then (01 Ms7 12) Es7 () Ms1 12)

These are important for precision and termination respectively. However, in the
absence of a unique greatest lower bound these properties are mutually exclusive,
so the quasi-meet must be handled carefully to avoid non-termination [12].

A simple quasi-meet (denoted by 1, as distinct from a ‘true’ meet M) is to
adopt the approach of [21], deterministically selecting the term for each variable
from either 7; or 72. Minimality can be achieved by selecting the more precise
term (according to Cg7) when several choices exist. However, this discards a
great deal of information present in the conjunction. Of particular concern is the
loss of variable equivalences which are implied by 71 Ana (the logical conjunction
of n1 and 72), but not by 7; and 7 individually.

We can infer all sub-term (and variable) equivalences of 11 A 12 using the
congruence closure algorithm. Unfortunately, not only may this yield multiple
incompatible definitions for a variable, the resulting definitions may be cyclic.

] [=] [¥] G [ (2] [¥] [ [l (=] [¥] (] [ml (=] [¢] (2

(a) m (b) 12 (c)

Fig. 5. Abstract states 11 and 72, whose conjunction 71 A7z (c) cannot be represented
in 87; it has an infinite descending chain of approximations (d).

Ezample 3. Consider the abstract states 1, 72 shown in Fig. 5(a) and (b). Com-
puting 11 A 12, we start with constraints {n;(v) = n2(v) | v € {w,z,y, 2} }:

{t = (+)(ao,a1)} U{s = (+)(bo, b1)} U{ao = bo, a0 = 5,1 = bp, a1 = b1 }
After congruence closure, the terms are split into two equivalence classes:

Ey = {ag,bo,s,t}, By = {a1,b1}
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We then wish to extract an element of ST which preserves as much of this infor-
mation as possible. This conjunction, shown in Fig.5(c), cannot be precisely
represented in S7 — Fig. 5(d) gives an infinite descending chain of approxima-
tions. Note that we could obtain incomparable elements of S7 by pointing each
of {w, z,y} at different (+) nodes in Fig. 5(d).

We therefore need a strategy for choosing a finite approximation of 1 A 72
in ST . There are two elements to this decision: how a representative for each
equivalence class is chosen, and how cycles are broken. We wish to preserve as
many equivalences as possible, particularly between variables.

quasi-meet(n1,72)
% Partition terms into congruence classes
Eq := congruence-close(Defs(n1) U Defs(n2) U {m(z) = na(z) |z € V'})
for each e € Eq
indegree(e) := |{x | m(z) € eq}]
stack = 0, repr := 0, tvar := 0
for each x € V
n(x) = build-repr(Eq(n:(z)))
return 7

build-repr(eq)
if eq € stack % If this is a back-edge, break the cycle
if eq ¢ tvar
tvar(eq) := freshvar()
return tvar(eq)
if eq € repr % If we have already computed the representative, return it
return repr(eq)
% The equivalence class has not yet been seen; select best concrete definition
stack.push(eq)
if mem(eq) =0 % No concrete definition exists
req := freshvar

else
. 0 if Bq(s;) € stack
f(Sl7 ceey Sm) = argmaXf(sl,...,s,n)67nem(eq)z { mdegree(Eq(sl)) otherwise
1
for each i € 1,...,m % Construct the representative for each subterm
r; := build-repr(Eq(s;))
Teq ‘= .f(rlv s 7rm)

repr(eq) == Teq
stack.pop(eq)
return r.,

Fig. 6. Algorithm to compute Msr. Eq, stack, repr, tvar and indegree are global.

The algorithm for computing 7 Ms7 72 is given in Fig. 6. We first partition
the terms in n; U 72 into equivalence classes using the congruence closure algo-
rithm, then count the external references to each class. These counts, recorded
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in indegree, give us an indication of how valuable each class is, to discriminate
between candidate representatives. Fq(t) returns the equivalence class contain-
ing term ¢, and mem(eq) denotes the set of non-variable terms in class eq.

We then progressively construct the resulting system of terms, starting from
the mapping of each variable. Each equivalence class eq corresponds to at most
two terms in the meet; the main representative repr(eq), and a term variable
tvar(eq). Instantiating a term f(s1, ..., Sy ), we look-up the corresponding equiv-
alence class eq; = Eq(s;), and check whether expanding its definition repr(eg;)
(which may not yet be fully instantiated) would introduce a cycle. We then
replace s; with either the recursively constructed representative of eq; (if the
resulting system is acyclic), or the free variable tvar(eq).

Ezxample 4. Consider the abstract states 11, 172 shown in Fig. 5. Congruence clo-
sure yields two equivalence classes: ¢ = {ao, (+)(ao,a1), bo, (+)(bo, b1)}, and
q2 = {a1,b,}. The construction of n; My starts with Eq(w). We first mark ¢;
as being on the stack to avoid cycles, then choose an appropriate definition to
expand. The non-variable members of ¢; are {t; = (+)(ao, a1),t2 = (+)(bo, b1)}.
Both t; and t5 have a single non-cycle incoming edge (Eq(ag) = Eq(bo) = qu,
which is already on the stack), so we arbitrarily choose t;.

We must then expand the sub-terms of ¢t1. Eq(ag) is already on the stack, so
cannot be expanded; this occurrence of aq is replaced with a fresh variable cg.
Now a1 has no non-variable definitions, so a fresh variable ¢y is introduced. The
stack then collapses, yielding w — (4)(co, ¢1).

The algorithm next considers x. A representative for ¢; has already been
constructed, so x is mapped to (+)(co, 1), as is y. Finally, Eq(z) = go; this also
has an existing representative, so c; is returned. The resulting abstract state is
shown in Fig. 7. (Il

The algorithm given in Fig. 6 runs in O(nlogn) time,
where n = |ni| + |12|. The congruence closure step is run  [5] [z] [7 p
once, in O(nlogn) time. The main body of build-repr is run
at most once per equivalence class. Computing and scoring 3
the set of candidates is linear in |eg|, and happens once per
equivalence class. We detect back-edges in constant time,
by marking those equivalence classes which remain on the
call stack — any edge to a marked class is a back-edge. So Fig. 7. m (e
the reconstruction of 7 takes time O(n) in the worst case.
Therefore, the overall algorithm takes O(nlogn).

Note that n; Mss 79 is sensitive to variable ordering, as this determines which
sub-term occurrence is considered a back-edge, and thus not expanded.

As for UsT, each term in 1y st 712 corresponds to some set of terms in 7; or
2. As before, 7~ s 2 denotes the mapping between terms in each operand
and the result.

3.3 Logical Assertions

Finally consider assertions [xxy], where 1 € {=, #, <, <}. The abstract trans-
former for [x < y] and [x < y] is the identity function, as S7 has no notion of
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inequalities. ST can infer information from a disequality [x # y], but only where
1 has already inferred equality between x and y:

_ J L ifn(z) = n(y)
Flx # yln = {17 otherwise

In the case of an equality [x = y], we are left in a similar situation as for ny Ms;
we must reconcile the defining terms for x and y, plus any other inferred equiv-
alences. This is done in the same way, by first computing equivalence classes,
then extracting an acyclic system of terms. As we introduce only a single addi-
tional equivalence, we can use the specialized linear-time algorithm described in
Sect. 3.4 of [10], then extract the resulting term system as for the meet.

4 87 as a Functor Domain

Assume we have some abstract domain D with the usual operations M, U, Fp
and Fji as described in Sect. 2. In the following, we assume D is not relational,
so may only express independent properties of variables.

We would like to use S7 to enhance the precision of analysis under D. Essen-
tially, we want a functor domain where S7 is the functor instantiated with D.
While this is a simple formulation, it provides no path toward an efficient imple-
mentation. Where normally we use D to approximate the values of (or relation-
ships between) variables in V', we can instead approximate the values of terms
occurring in the program. An element of our lifted domain S7 (D) is a pair (n, p)
where 7 is a mapping of program variable to terms, and p € D approximates the
set of satisfying term assignments.

4.1 Operations over ST (D)

Evaluating an assignment in the lifted domain may be performed using Fp and
Fs7. We construct the updated definition of x in 7, then assign the corresponding
‘variable’ in D to the result of the computation.

FST(D) HX = f(y17 cee ,Yn)]](<777 p>) = <77/5 p,>
where 1) = Fsr[x := £(y1,...,¥a)[n
p' = Fplid(n'(x)) :== £(n(y1),- ... n(ya))lp

Formulating Usz(p), Vs7(p) and ﬁST(D) is only slightly more involved, assum-
ing the presence of a renaming operator over D. We first determine the term
structure 1’ of the result, then map p; and ps onto the terms in 1’ before applying
the appropriate operator over D.

(1, p1) UsT (D) (N2, p2) = (', )
where ' =y Ust 10

p = e (p1) Up a2 (p2)
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(M1, p1) V(D) (M2, p2) = (', p')
where 1’ = 11 UsT 12
p=am (py) Vp T (p)

(1, p1) OsT (D) (N2, p2) = (', ')
where ' =y NsT 170
= (1) Mp 7277 (pg)

4.2 Inferring Properties from Subterms

While this allows us to maintain approximations of subterms, we cannot use this
to directly derive tighter approximations of program variables.

However, upon encountering a branch which restricts x, we can then infer
properties on any other terms involving x. For now, we shall restrict ourselves
to ancestors of x. If the approximation of x has changed, and p is an immediate
parent of x, we can simply recompute p from its definition:

p' = pM Fsr[id(n(p)) := def(n(p))]p

We can then propagate this information upwards.
We can also infer information about a term from its

parents and siblings. Assume the program fragment in X =%y =%
Fig. 8 is being analysed using the (term-lifted) domain assert(x > 0)
of intervals. At point D we know only that = is non- p: z = x y
negative; this is not enough to infer bounds on z. How- assert(z > 0)

ever, when point E is reached we know z > 0. As we E:
already know x > 0, this can only occur if y > 0, z > 0.

This requires us to reason about the values from Fig.8. If E is reached,
which a given computation could have resulted; this y must be positive.
is exactly the pre-image Fy discussed in Sect.2. We
can then augment the algorithm to propagate information in both directions,
evaluating Fp and F;' on each term until a fixpoint is reached. Unfortunately,
attempts to fully reduce an abstract state run into difficulties.

I z

ST| Dlts)  D(ts)

[0,10°] [0, 10°]

t5|[0,10°%1] [1, 106}

5[0, 10°] t1][1,10%-1] [1, 10°-1]

: ts|[1,10%-2] [2,10%-1]

20, 109] t1][2,10°-2 } [2,10°-2]

Fig. 9. A system of terms with no solution; encoding z = x + 1. Each evaluation of ¢;
or t3 eliminates only two values from the corresponding bounds.
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Example 5. Consider the system of terms shown in Fig.9, augmenting the
domain of intervals. Disregarding interval information, it encodes the constraint
y=x—2z,z=2x+ 1. In the context of y = 0 (the interval bounds for y), this is
clearly unsatisfiable.

Propagating the consequences of these terms, we first apply the definition
t3 = to + 1. Doing so, we trim 0 from the domain of ¢3 (or z), and 10° from the
domain of t5 (or ). We then evaluate the definition ¢; = t5 —t3, thus removing 0
and 10° from #; and ¢3 respectively. We can then evaluate the definitions of ¢3 and
t; again, this time eliminating 2 and 10%-1. This process eventually determines
unsatisfiability, but it takes 10641 steps to do so.?

This rather undermines our objective of efficiently combining S7 with D. If
D is not finite, the process may not terminate at all. Consider the case where
D(t2) = D(t3) = [0, 0] — the resulting iterates form an infinite descending chain,
where the lower bounds are tightened by one at each iteration step.

The existence of an efficient, general algorithm for normalizing (7, p) seems
doubtful. Even for the specific case of finite intervals, computing the fixpoint of
such a system of constraints is NP-complete [3] (in the weak sense — the standard
Kleene iteration runs in pseudo-polynomial time). Nevertheless, we can apply the
system of terms to p some bounded number of times in an attempt to improve
precision; a naive iterative approach is given in Fig. 10.

tighten({(n, p), iters): tighten-step({(n, p)):
while(iters > 0) let t1,...,ty be terms in 7 in
p' := tighten-step((n, p)) order of decreasing height
if (f)=pVvp=1) fortety,...,tm
return p p = pNFxlid(t) = def(t)]p
p =y fortety,,...,.t
iters := iters — 1 p = pN Fplid(t) = def(¢)]p
return p

Fig.10. Applying a system of terms 7 to tighten a numeric approximation p.

In practice, this iteration is wasteful. In an independent attribute domain,
applying [t = £(¢z,...¢;)] cannot directly affect terms not in {¢,c1,..., ¢k},
and we can easily detect which of these have changed. So we adopt a worklist
approach, updating terms with changed abstractions only. The tightening still
progresses level by level, to collect the tightest abstraction of each term before
re-applying the definitions. The algorithm is outlined in Fig. 11.

tighten-worklist incrementally applies a single pass of tighten-step, where only
terms in X have changed. Given the discussion above, the algorithm obviously
misses opportunities for propagation; this loss occurs at the point marked 7.

3 This behaviour is also a well recognized problem for finite domain constraint solvers
(see e.g. [11]).
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tighten-worklist(X, (n, p)):
forall 1, Q} == Q) =0
fOI‘((E € X) Q#eight(m) = Qieight(m) U {l}
lmin := mingex height(z)
I := lyas = maxgzex height(x)
while(l > l,in)

enqueue_down(¢):
! — 0!
Qheight(t) T Qheight(t) U {t}
lmin = min(lmina helght(t))

enqueue_parents(t):
for(p in parents(t))
for(t € Q}) ol =0l U{p}
enqueue,par?nt§(t) l, he,lgh-tg)max(l hel,g.ht#gight(p))
o = pr1 F7 ([id(t) = def(t)])p maz = MaX{lmas,
for(c € children(t))
if (changed(c, p, p')) enqueue_down(c)
pi=p
l=10-1
L= lmin
While(l S l"'Lﬂ.'L')
for(t € Q) .
() ¢ = pNF(lid(s) = def(t)])p
if (changed(t, p, p')) enqueue_parents(t)
p=7p
l:==1+1
return p

Fig.11. An incremental approach for applying a single iteration of tighten-step.

Given some definition [t = £(c4, c2)] and new information about ¢1, we could
potentially tighten the abstraction of both t and co; however, tighten-worklist only
applies this information to ¢.

It is sound to apply the same algorithm when D is relational; however, it
may miss further potential tightenings, as additional constraints on some term
can be reflected in other, apparently unrelated terms.

Care must be taken when combining normalization with widening. As is
observed in octagons, closure after widening does not typically preserve termi-
nation. A useful exception is the typical widening on intervals which preserves
termination when tightening is applied upwards.

5 Other Syntactic Approaches

As mentioned, the closest relatives to the term domain are the symbolic constant
domain of Miné [21] and the congruence closure (or alien expression) domain of
Chang and Leino [5]. Both domains record a mapping between program variables
and terms, with the objective of enriching existing numeric domains.

The term domain can be viewed as a generalization of the symbolic constant
domain. Both domains arise from the observation that abstract domains, be
they relational or otherwise, exhibit coarse handling of expressions outside their
native language — particularly non-linear expressions. And both store a mapping
from variables to defining expressions. The primary difference is in the join.
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Faced with non-equal definitions, the symbolic constant domain discards both
entirely. The term domain instead attempts to preserve whatever parts of the
computation are shared between the abstract states, which it can then use to
improve precision in the underlying domain.

The congruence closure domain [5] arises from a different application — coor-
dinating a heterogeneous set of base abstract domains, each supporting only a
subset of expressions appearing in the program. Functions which are alien to
a domain are replaced with a fresh variable; equivalences are inferred from the
syntactic terms, and added to the base abstract domains. The congruence closure
domain assumes the base domains are relational, maintaining a system of equiv-
alences and supported relations. As a result, it assumes the base domain will
take care of maintaining relationships between interpreted expressions and the
corresponding subterms. Hence it will not help with the examples from Fig. 1.

While the underlying techniques are similar, the objectives (and thus trade-
offs) are quite different. Congruence closure maintains an arbitrary (though
finite) system of uninterpreted function equations, allowing multiple — possi-
bly cyclic — definitions for subterms. This potentially preserves more equivalence
information than the acyclic system of the subterm domain, but increases the
cost and complexity of various operations (notably the join). As far as we know,
no experimental evaluation of the congruence-closure domain has been published.

6 Experimental Evaluation

The subterm domain has been implemented in CRAB, a language-agnostic C++
library of abstract domains and fixpoint algorithms. It is available, with the
rest of CRAB, at https://github.com/seahorn/crab. One purpose of CRAB is to
enhance verification tools by supplying them with inductive invariants that can
be expressed in some abstract domain chosen by the client tool. For our experi-
ments we used SEAHORN [13], one of the participants in SV-COMP 2015 [1].

We selected 2304 SV-COMP 2015 programs, in the categories best supported
by SEAHORN: ControlFlowInteger, Loops, Sequentialized, DeviceDrivers64, and
ProductLines (CFl, Loops, DD64, Seq, PL in Table3). We first evaluated the
performance of the subterm domain by measuring only the time to generate
the invariants without running SEAHORN. We compared the subterm domain
enhancing intervals ST (Intv) with three other numeric abstract domains: classi-
cal intervals Intv [6] (our baseline abstract domain since it was the one used by
SEAHORN in SV-COMP 2015), the symbolic constant propagation SC(Intv) [21],
and an optimized implementation of difference-bound matrices using variable
packing VP(DBM) [24]. Second, we measured the precision gains using S7 (Intv)
as an invariant supplier for SEAHORN and compared again with Intv, SC(Intv),
and VP (DBM). All experiments were carried out on a AMD Opteron Processor
6172 with 12 cores running at 2.1 GHz Core with 32 GB of memory.

Performance. Table 2(a) shows three scatter plots of analysis times comparing
ST (Intv) with Intv (left), with SC(Intv) (middle), and with VP(DBM) (right).


https://github.com/seahorn/crab

100 G. Gange et al.

Table 2. Performance of several abstract domains on SV-COMP’15 programs

Analysis time in seconds Analysis time in seconds Analysis time in seconds

Int
SC(Int)

5 § 75

STty ©sTany ’ © sT(iny

(a) Scatter plots of analysis time

‘ Domain ‘TO ‘ Trotal ‘ Tu ‘ To ‘ Tmax ‘

Intv 0 | 175.4 ] 0.08 | 0.38 | 11.12
SC(Intv) 0 ]265.0|0.11 | 0.49 | 12.75
ST (Intv) 0 | 456.0 | 0.19 | 0.96 | 24.57

VP(DBM) | 3 | 441.7 | 0.19 | 1.41 | 30.00

(b) Analysis times (seconds)

Table 2(b) shows additional statistics about the analysis of the 2304 programs.
For this experiment, we set a limit of 30s and 4 GB per program.

CRAB using ST (Intv), Intv, and SC(Intv) inferred invariants successfully for
all programs without any timeout (column TO in Table2(b)). The total time
(denoted by Tiotar) indicates that Intv was the fastest with 175s and S7 (Intv)
the slowest with 456. The columns T, and T, denote the time average and
standard deviation per program, and the column T, is the time of analyzing
the program that took the longest. All domains displayed similar memory usage.
Again, Intv was the most efficient with an average memory usage per program
of 31 MB and a maximum of 1.34 GB whereas ST (Intv) was the least efficient
with an average of 37 MB and maximum of 1.52 GB.

It is not surprising that Intv and SC(Intv) are faster than ST (Intv); inter-
estingly, the evaluation suggests that in practice S7 (Intv) incurs only a modest
constant-factor overhead of around 2.5. VP(DBM) was faster than S7 (Intv) in
many cases but was more volatile, reaching the timeout in 3 cases. This is due
to the size of variable packs inferred by VP(DBM) [24]. If few interactions are
discovered, the packs remain of constant size and the analysis collapses down to
Intv. Conversely, if many variables are found to interact, the analysis degenerates
into a single DBM with cubic runtime.

Precision. Table3 shows the results obtained running SEAHORN with CRAB
using the four abstract domains. We run SEAHORN on each verification task*
and count the number of tasks solved (i.e., SEAHORN reports “safe” or “unsafe”)
shown in columns labelled with #S. In T columns we show the total time
in seconds for solving all tasks. The top row gives, in parentheses, the num-
ber of programs per category. The row labelled SEA+Intv shows the number of

4 A program with its corresponding safety property also provided by the competition.
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Table 3. SEAHORN results on SV-COMP 2015 enhanced with abstract domains

CFI (48) | Loops (142) | DD64 (1256) | Seq (261) | PL (597)
#S|T #S|T #S T #S|T #S|T
SEA+Intv 41 | 1589|115 5432 |1215|6283 |109 | 26031 | 538 | 20818
SEA+SC(Intv) |41 1613 |115|5480 |1215|6520 | 110 25639 | 539 |20741
SEA+ST (Intv) |41 | 1416 | 1214274 |1215|6557 | 110 25469 | 542 | 20763
Sea+VP(DBM) |41 1529 | 1175071 |1214|6854 |110 25929 536 | 20787

tasks solved by SEAHORN using the interval domain (our baseline domain) as
invariant supplier, while rows labelled with SEA+SC(Intv), SEA+S7 (Intv) and
SEA+VP(DBM) are similar but using SC(Intv), ST (Intv) and VP(DBM), respec-
tively. We set resource limits of 200 s and 4GB for each task. In all configurations,
we ran SEAHORN with SPACER [16] as back-end solver®.

The results in Table3 demonstrate that the subterm domain can produce
significant gains in some categories (e.g., Loops and PL) and stay competitive
in all. We observe that SC(Intv) rarely improves upon the results of SEA+Intv.
Two factors appear to contribute to this: the join operation on SC(Intv) main-
tains only the definitions that are constant on all code paths; and SEAHORN’s
frontend (based on LLVM [17]) applies linear constant propagation, subsuming
many of the opportunities available to SC(Intv). Our evaluation also shows that
the subterm domain helps SEAHORN solve more tasks than VP(DBM) in several
categories. One reason could be that VP(DBM) does not perform propagation
across different packs and so it is less precise than classical DBMs [19] and
indeed incomparable with the subterm domain. Another reason might be the
more precise modelling of non-linear operations by the subterm domain. Nev-
ertheless, we observed that sometimes S7 (Intv) can solve tasks that VP(DBM)
cannot, and vice versa. For PL, for example, SEA+S7 (Intv) solved 9 tasks for
which SEA+VP(DBM) reached a timeout but SEA+VP(DBM) solved 3 tasks
that SEA+ST (Intv) missed. This is relevant for tools such as SEAHORN since it
motivates the idea of running SEAHORN with a portfolio of abstract domains.

7 Conclusion and Future Work

We have introduced the subterm abstract domain S7, and outlined its applica-
tion as a functor domain to improve precision of existing analyses. Experiments
on software verification benchmarks have demonstrated that S7, when used to
enrich an interval analysis, can substantially improve generated invariants while
only incurring a modest constant factor performance penalty.

5 We used the command sea pf --step=large --track=mem (i.e., large-block encod-
ing [2] of the transition system modelling both pointer offsets and memory contents).
For DD64 we add the option -m64.

5 We used an implementation of the classical DBM domain following [19] for the
experiment in Table 2 but it took more than three hours to complete.
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The performance of S7 is obtained by disregarding algebraic properties of
operations. Extending S7 to exploit these properties while preserving perfor-
mance poses an interesting future challenge.
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Abstract. Recently, Bradley proposed the PDR/IC3 model checking
algorithm for verifying safety properties, where forward and backward
reachability analyses are intertwined, and guide each other. Many vari-
ants of Bradley’s original algorithm have been developed and successfully
applied to both hardware and software verification. However, these algo-
rithms have been presented in an operational manner, in disconnect with
the rich literature concerning the theoretical foundation of static analysis
formulated by abstract interpretation.

Inspired by PDR, we develop a nonstandard semantics which com-
putes for every 0 < N an over-approximation of the set of traces of length
N leading to a safety violation. The over approximation is precise, in the
sense that it only includes traces that do mot start at an initial state,
unless the program is unsafe, and in this case the semantics aborts at
a special error state. In a way, the semantics computes multiple over-
approximations of bounded unsafe program behaviors using a sequence
of abstractions whose precision grows automatically with N.

We show that existing PDR algorithms can be described as a specific
implementation of our semantics, performing an abstract interpretation
of the program, but instead of aiming for a fixpoint, they stop early when
either the backward analysis finds a counterexample or the states com-
prising one of the bounded traces provides sufficient evidence that the
program is safe. This places PDR within the solid framework of abstract
interpretation, and thus provides a unified explanation of the different
PDR algorithms as well as a new proof of their soundness.

1 Introduction

Abstract interpretation [6] (A7) provides a solid theoretical foundation for static
program analysis. Al algorithms verify that a program is safe by computing an
over-approximation of its concrete semantics: They find a conservative repre-
sentation of either the set of reachable traces, i.e., the traces that the program
generates when executing from a given set of initial states (forward analysis), or
of the set of ewil traces, i.e., the ones that end in a bad state (backward analysis).
Using the Al framework to develop program analyses is attractive because it elu-
cidates the key semantic properties of the underlying abstraction and ensures,
by construction, that the analysis is sound.

Recently, Bradley proposed the property directed reachability (PDR/IC3)
model checking algorithm for verifying safety properties [3], where forward and
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backward analyses are intertwined, and guide each other. Many variants of
Bradley’s original algorithm have been developed and successfully applied to
both hardware and software verification [1,2,5,7,9,10]. However, these algo-
rithms have been presented in an operational manner, in disconnect with the
rich literature concerning abstract interpretation. As a result, it is hard to
understand and compare these algorithms without delving into minute, almost
implementation-level, details.

In this paper, we provide a fresh view of the emerging family of property
directed reachability verification algorithms using abstract interpretation.! We
begin by developing an abstract trace semantics which conservatively represents
the set of evil traces of length N by a sequence wy of sets of states, called
cartesian trace. A cartesian trace abstracts a set of traces T by “forgetting” the
fine-grained correlation between consecutive states. Cartesian traces are then
further abstracted into sequences w]ﬁv where every set w?v(z) may include, in
addition to the states that lead to a violation in 7 steps, states which are not
reachable in N — i or less steps.? This form of abstraction ensures that wg\, does
not represent counterexamples of length N. Furthermore, if for some N and
i < N, it holds that w?v(z) = w?v(z + 1) then the program is safe.

In a way, our semantics can be seen as an approach to compute a conservative
over approximation of the set of states leading to a safety violation, where each
sequence wg\, corresponds to a different abstraction whose precision increases
automatically as N grows. The semantics considers abstract cartesian traces
of every possible length simultaneously. As such, it considers infinitely many
abstractions with varying precision.

An important property of our semantics is that it can capture all the use-
ful fixpoints of the traditional collecting state semantics, where a fixpoint of a
backward semantics is useful if it is disjoint from the set of initial states, and
dually, a fixpoint of a forward semantics is useful if it is disjoint from the set of
bad states.

We then use our semantics to provide a unified view of existing PDR algo-
rithms: We show that they can be formulated as a specific scheduling of the
semantics which stops early when either a counterexample is found or the pro-
gram is determined to be safe. Informally, the algorithms combine backward
analysis to compute (a conservative over approximation) of wy which are then
generalized to wg\, using forward analysis. As the formulation in terms of the
semantics reveals, these algorithms consider (finitely many) cartesian traces of
multiple lengths simultaneously. This places PDR within the solid framework of
abstract interpretation, and thus presents a unified explanation of the different
PDR algorithms and a new proof of their soundness.

! In this paper, we focus on linear property directed reachability, as opposed to, e.g.,
tree-IC3 [5]. See Sect. 9.

2 In model checking nomenclature, the abstraction of wy (i) into w? (i) is called
generalization.
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2 Preliminaries

Binary Relations. Let R C X x X be a binary relation over X. We write
z 2 2/ to denote that (z,2") € R. We denote the inverse relation of R by %,
ie., R = {(z',2) | (z,2") € R}. We denote the sets of elements preceding and
following an element x € X according to R by (E(:v) and R(x), respectively, i.e.,
<E(:lc):{xoeX|91:0iulc}andR(;c):{az:’eX|:1c£>ac’}.

We lift R(-), and (E() to sets in a point-wise manner, e.g., R(X) = {2 €
R(z) | = € X}. We write R¥(-), and (Ek() to denote k applications of R(-), and
ﬁ(), respectively. For example, R(X) = X and R**1(X) = R(R*(X)).

Sequences. Given a natural number N € N, we denote by [N] the set of natural
numbers from 0 to N, ie., [N]={n € N|0 < n < N}. A sequence s over a
set X is a total function from [N], for some N € N, to X, ie., s € [N] —
X. We denote the set of sequences over X (including the empty sequence), by
seq(X). We denote the length of a sequence s by |s| and its i-th element by
s(i). For example, s(0) and s(|s| — 1) denote the first and last elements of s,
respectively. We denote the domain of a sequence s by dom(s) and its range
by range(s), i.e., dom(s) = [|s| — 1] and range(s) = {s(i)|¢ € dom(s)}. We
denote the concatenation of sequences by juxtaposition. By abuse of notation,
we sometimes treat an element z € X as the sequence (z). We denote the set of
sequences comprised of single elements of X by (X), i.e., (X) = {{z) | =z € X}.
Let R be a binary relation. A sequence s is a walid sequence of R if for every

iefls|—2], s(i) 2 s(i+1).

Stuttering Simulation. Let X and Y be sets and Rx C X x X and Ry C
Y x Y be binary relations over X and Y, respectively. A binary relation sim C
X x Y is a stuttering simulation relation with respect to Rx and Ry if for every
(z,2") € Rx and (z,y) € sim there exists a valid sequence of Ry which starts
at y and ends in some element y’ € Y such that (z/,y’) € sim.

States. We assume a given set of states ¥, ranged over by the meta-variable o.

Transition Relations and Traces. We use transition relations and traces
as synonyms for binary relations and sequences, respectively, when semantic
elements are involved. We denote the set of transitions over states by A = ¥ x 3,
and the set of traces over states by IT = seq(X), and range over it using 7. We
say that a trace is a valid trace of a transition relation TR if it is a valid sequence
of TR. We denote the set of valid traces of TR by [TR]yx.

Programs and Properties. We do not commit ourselves to a particular syn-
tax. Instead, given a program P, we expect to get its denotation TR(P) C A
as a transition relation over states. Similarly, we equate properties with their
denotation as sets of states.

Verification Problems. A verification problem V is a triple V = (Init, P, Bad)
comprised of a set of initial states Init C X, a program P, and a set of bad states
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Bad C ¥ which does not contain initial states, i.e., Init N Bad = (). Informally,
P is safe according to V if it cannot start executing in an initial state and end
up in a bad state.

Conventions. In the rest of the paper, we assume a fixed arbitrary program
P whose transition relation is TR = TR(P) and a fixed arbitrary verification
problem V = (Init, P, Bad). Thus, whenever we say the program, an initial state,
or a bad state, we mean P, a state in Init, and a state in Bad, respectively.

3 Small Step Collecting Trace Semantics

In this section, we define a small-step operational semantics over sets of traces.

Trace Semantics. Our venture point is a rather mundane trace semantics,
which defines the meaning of a program to be the set of traces it can produce.
A trace 7 is a forward trace of P if it is a valid trace of its transition relation,
ie., if 7 € [TR(P)]y. Similarly, 7 is a backward trace of P if m € [TR(P)]n. We
say that a forward trace m of P is reachable if it starts in an initial state and
that a backward trace m of P is ewil if it begins in a bad state. We denote P’s
reachable and evil traces by [P]L and [P]Z, respectively:

[P]E < {x € [TR(P)]n | 7o € Init} , and [P]Z = {x € [TR(P)]x | m0 € Bad}.

Note that evil (backward) traces are read from left-to-right with the leftmost
state being a bad state. And thus the backward trace transition relation TRy, (P)
used to define CZ(T) is in fact adding “pre-states” on the right.

We lift P’s transition relation to forward and backward trace transition rela-
tions, denoted by TR} (P) and TR;,(P), respectively:

TR!(P) = {(no,700") | 0 = ¢'}, and TRE(P) = {(no,m00’) | 0 — o'}.

A trace m is reachable if there exists a valid sequence of P’s forward trace
transition relation leading from (o) to 7, where o is an initial state. Similarly,
7 is evil if it is at the end of a valid sequence of the backward trace transitions
starting at a trace comprised of a bad state. This allows an characterizing [P]%
and [P]Z as least fixpoints:

[PIE =LFP Cf  where CE(T) = (Init) U TRL(P)(T), and
[P]Z =LFP CF where CF(T)= (Bad)UTRE(P)(T).

Small Step Collecting Trace Semantics. Crlf and Cﬁg , defined above, oper-
ate on sets of traces. Such sets are in fact elements of the collecting trace seman-
tics of P. The latter interprets P by accumulating the traces generated by its
trace semantics. Formally, the collecting trace domain Dy = (P (II),C) is a
powerset domain over the set of traces, ordered by set inclusion.

A collecting semantics is often used as means to compute fixpoints of an
underlying operational semantics. However, it can also be given an operation
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flavor by defining initial sets of traces and transitions between sets of traces.
The initial set of traces is (Init) in the forward collecting trace semantics, and
(Bad) in the backward semantics. The transitions are defined as the pointwise
lifting of P’s forward and backward trace transition relation to sets of traces,
denoted by TR, ;) (P) and TR, ;) (P), respectively:

(1)
. F
TRE, (P) 2 (T, TU{x'"}) | 3r € T.n 2 21 and
B
TRE,,. (P) 2 (T, TU{x'}) | 3r € T.n 2T 7y,

Note that both [P]% and [P]5 are elements of Dy;. Recall that we consider
only finite sequences. Thus, there might not be a valid sequence according to,
e.g., TRZ,;,(P) which leads from from (Bad) to [P]f because [P]5 \ (Bad)
might be an infinite set. However, for every set of traces T D (Bad) and every
finite set of evil traces T’, there is such a valid sequence going from T to T'.

Formally:

Lemma 1. For every trace w, it holds that = € [P]L (respectively, = € [P]%)
if and only if there is a valid sequence of TRE, . (P) (respectively, TRZ, , (P))

2 (1) 2 (1)

going from (Init) (respectively, (Bad)) to T such that € T.

In Sect. 8, we show that PDR can be formalized as an abstract interpretation
of a program using (a conservative abstraction of) the collecting trace seman-
tics which develops simultaneously multiple traces. However, instead of trying
to compute a fixpoint of the program’s collecting trace semantics, PDR uses
the execution as means to come up with a useful fizxpoint of its collecting state
semantics as we explain below.

Collecting State Semantics. It is standard to abstract a set of traces by
the set of their states. Formally, the collecting state semantics of programs is a
powerset domain over the set of states, ordered by set inclusion Dy, = (£ (%), C).
We define the expected Galois connection (Dy, as, Vs, Dx) between sets of traces
and sets of states:

Vs P () — Z(I) ¥s(S) ={m € I | Vi € dom(w). (i) € S} and
oy P(I) - P(X) == ay(T)={o crange(n) |7 T}.

We say that a state is reachable if it appears in a reachable trace and ewvil if
it appears in an evil one. The sets of reachable and evil states, denoted by [P]E
and [P]Z, respectively, are defined using abstraction, and enjoy a least fixpoint
characterization:

[PIE < ax([P]E) = LFPCE  where CE(S) = Init U TR(S), and

[P]2 % ag([P]B) = LFP CE where CE(S)= BadU TR(S).

4 Useful and Projected Fixpoints

We refer to an evil trace that leads to an initial state as a counterexample.
A program P is safe if none of its evil traces is a counterexample, and unsafe



Property Directed Abstract Interpretation 109

otherwise. In our setting, safety amounts to requiring that [P]f N [P]Z = 0.
The goal of PDR and of its variants is to compute a superset of the reachable
states of P, if P is safe, and report that a counterexample exists, otherwise. This
is often done by looking for an inductive fixpoint of the (forward or backward)
collecting state semantics.

A set of states S is an inductive (forward) fixpoint if Init C S and TR(S)
S. We say that S is a useful (forward) fizpoint if, in addition, S N Bad =
(A useful forward fixpoint is often called a safe inductive invariant.) Similarly,

S is an inductive backward fixpoint if Bad C S and <T_R(S) C S. It is useful if
SN Init = 0.

A standard technique to find an inductive fixpoint is to iteratively apply
the corresponding transformer. For example, to find an inductive fixpoint of the
backward collecting state semantics, we would usually repeatedly apply CZ,
while accumulating the discovered states, until no new state is discovered. As
CF is monotonic, it is ensured by Kleene’s Theorem that at the limit we reach
its least fixpoint. However, we can find such a fixpoint in a different way via
a projection of the elements computed by the collecting trace semantics using,
what we refer to, as projected fixpoints.

Given a set of traces T, we denote by T|% = {n(i) | 7 € T Ai < |n|} the
set of states in the i-th index of the traces in T'. If(t_here exists an index i > 0
such that (i) Bad C T|%, (i) for every 0 < j < i, TR(T[%) € TS, and (i)
T|y = T|&, then S = Uj—o TI%, is an inductive backward fixpoint of the
collecting state semantics. We refer to S as a projected fixpoint of the collecting
trace semantics. Intuitively, every evil trace can go only through states that
appear in S. We note that if T has been computed by accumulating the results
of some 0 < k applications of C£(-) starting from 0, it suffices to check point
(iii) above to determine that T has a projected fixpoint.

-
0.

5 Small Step Cartesian Trace Semantics

The cartesian trace semantics abstracts the (forward and backward) collecting
trace semantics using sequences of sets of states, which we refer to as cartesian
traces. Informally, a cartesian trace w conservatively represents a set of traces
T of length |w]| or less by abstracting away the correlation between consecutive
states. In the following, we focus on abstracting the backward semantics, as it
is the one used by PDR. The cartesian semantics is suitable for tracking the
intermediate results that occur during an iterative conservative fixpoint compu-
tation, and thus fits well to describe the sequence of sets of states computed by
PDR. We refer to the set components of cartesian traces as anti-frames, as they
correspond to the complements of the sets maintianed by PDR, which are often
referred to as frames. (See Sect. 7.)

5.1 Cartesian Trace Transition Relation

We denote by Q = seq(Z?(X)) the set of all sequences of sets of states, ranged over
by metavariable w. Following the intuitive discussion above, we define a function
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v, which maps a cartesian trace w to the set of traces that it represents. The
latter is comprised of any trace whose i-th state, for every i, is taken from the
corresponding set w(1).

Y, Q= PM) = (W) =E{relll||n| < |w/AVie dom(n).7(i) € w(i)}.
Note that if w represents a trace 7w, then w also represents every prefix of .
Cartesian traces allow to over-approzimate the (backward) trace semantics

of P by lifting P’s transition relation to a backward cartesian trace transition

relation, denoted by TRZ(P):

TRE(P) % {(w1S1Sows, wiS1(Ss U S)ws) | S C TR(S1)}.

Note that while the collecting transition relation TR, (P) extends traces,

the cartesian transition relation relates only traces of the same length. Indeed, it
can only add new states to sets that w already contains. Intuitively, this means
that we can only over-approximate at most |w| — 1 consecutive transitions of P.
We do not overcome this limitation, instead we weaken the guarantees we get
from abstract interpretation of P according to the cartesian trace semantics, as
we shortly explain.

5.2 Cartesian Traces Domain

To define the cartesian traces domain, we first introduce the subsumption order
between cartesian traces. We say that wy subsumes ws, denoted by wy <, wo, if
every entry in we subsumes the corresponding entry in w;. Formally,

Wy <, wy = |w1| = |we| AVi € dom(wy). w1 (2) C wa(i),

The cartesian traces domain D, = (L(Q2),C,,) utilizes the powerset of the
cartesian traces as its carrier set and it is ordered by a point-wise lifting of
subsumption:

D, = (@(Q),EQ) , where O1 C, Oy <= Vwi € 01.3ws € Os.wy <X, wo.

The Galois connection (Dy, g, Ve, Da) between the domain of traces and
that of cartesian traces is defined by a pointwise lifting of 7, to sets of cartesian
traces.

Vo : P(Q) - PAI) == ~4(0) = {re€q,(w)|we O} , and
2(Q) == ao(T) = {Niedom(nm).{n(i)} | 7€ T}.
Lemma 2. (Dy, aq,7q, Dq) is a Galois connection.

Lemma 3. Let 7 be a trace and w be a cartesian trace such that 0 < |w| < |w|.
If 7€ 7.(w) then TRE(P)(r) C 7u(TRA(P)(w))
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Lemma 3 ensures that TR (P)(+) is a sound abstract transformer with respect
to TRE (P)(+) when we consider only bounded executions. More specifically, given
a cartesian trace w of length n and a trace w of length m represented by w, we
can over-approximate the set of traces that can be reached by executing n—m—1

B
trace transitions =2, Iy particular, if w(0) = Bad, we can use TRS(P)(-)

to over-approximate the evil traces of length n or less.
In a sense, the cartesian trace semantics allows to over-approximate bounded
under-approximations of the standard collecting trace semantics.

6 Property-Guided Abstraction of the Cartesian
Trace Semantics

We abstract the backward cartesian trace semantics in a property-guided man-
ner using two means: Firstly, we go to an error state in case we find a coun-
terexample. Secondly, and most importantly, we allow to over-approximate the
backward cartesian transition relation in a controlled way which ensures that
the abstract trace does not represent spurious counterexamples. This form of
abstraction explains the generalization operations in PDR. (See Sect. 7).

6.1 Property-Guided Cartesian Trace Transition Relation

The property-guided cartesian trace semantics over-approximates the backward
cartesian trace transition relation by adding two new kinds transitions: gener-
alization transitions, denoted by TR (P), and error transitions, denoted by
TRE™ (P), which lead to a special error element T.

def

TRG™ (P) & {(w181 8wz, w1 (51U Y)Saws) | TR(Y) C 82 A Y () Init = 0}, and
TRE(P) ¥ {(w, T) | w(|w| — 1) N Init # 0}.

Generalization transitions add a “forward” flavor to the property-guided carte-
sian trace semantics as they add states at index j based on the states at index
J + 1. (Recall that these are backward traces, hence updates of j + 1 based on j
correspond to backward steps, while updates of j based on j 4+ 1 correspond to
forward steps.)

Given a cartesian trace w = w1.515ws, a generalization transition allows to
add to its j-th anti-frame, where j = |w1|, any state o such that any backward
trace of P of length |w| — j which starts at o goes only through states that
can be reached by a backward trace starting at one of the states in the j + 1
anti-frame. Thus, the states added by the generalization would not open a new
route towards an undiscovered state. Specifically, generalization would not lead
to over-approximating a counterexample, unless this counterexample is already
represented.

An error transition, happens when we find an initial state at the last anti-
frame of the trace. Note that this means that we found a counterexample.
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It suffices to look for an initial state only in the last anti-frame because of
our assumption that Init and Bad are disjoint and the restrictions on the trans-
formers which ensure that if the semantics computes a trace which goes through
an initial state, it can also compute a shorter (evil) trace which ends with that
state.

We denote the enriched transition relation by TR.*(P), i.e.,

TRZ(P) = TRE(P) U TRS"™(P) U TR (P).

In the following, we refer to the transitions defined in Sect.5.1 as pre-
transitions. We say that a pre-transition (w1.S;Saws, w151 (S2 U S)wse) € TRE(P)
takes place at index |w1|. (Note that we say that although the transition updates
the set at index |wi|+1). We say that a gen-transition (w;S1Sewe, wi(S1 U
Y)Sows) € TR (P) takes place at index |wi| based on the set at index
lw1] + 1.

6.2 Small Step Collecting Property-Guided Cartesian
Trace Semantics

Recall that the cartesian transition relation does not allow to extend the length
of a trace w, nor do the generalization and error transition relations, and hence
they are limited to over-approximate bounded executions. To overcome this lim-
itation, we turn to the powerset domain; the underlying domain of the collecting
property-guided cartesian trace semantics is the cartesian trace domain, D,
enriched with the error element, T, which is greater than any other element.

Property-guided Initial Cartesian Traces. We prepare ahead to produce
traces of any possible length by starting the interpretation of the program from
an unbounded set of cartesian traces: Let ()* denote a cartesian trace of length
0 < k whose anti-frames are all empty, i.e., 0¥ = (§,...,0). A cartesian trace w
is property-guided initial (initial for short) if w = (Bad)0* (X \ Init), for some
0 < k, i.e., its first anti-frame is comprised of bad states, its last of the non-initial
ones, and all the others are empty. Note that all initial cartesian traces are of
length > 2.

We denote the initial cartesian trace of length i (for i > 2) by &, i.e.,
&' = (Bad)0?~2(X \ Init), and the set of initial cartesian traces by Q. Note that
2 represents all traces of length 2 that start in a bad state and end in a non-
initial state as well as their prefixes, i.e., if the program is safe &2 represents the
largest safe over-approximation (superset) of the evil traces of P of length at
most two. All other initial cartesian traces represent (Bad), the set of evil traces
of length one (which correspond to the prefix of length one since the second
element is (). Informally, starting from a given initial cartesian trace &*, we can
simulate evil traces of length 7 or less.

Property-guided Collecting Cartesian Transition Relation. The collect-
ing property-guided cartesian trace semantics is obtained by lifting the enriched

transition relation TR;*(P) to a collecting transition relation TR, (P) which
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works in a pointwise manner on sets of cartesian traces. This is done similarly
to the way we obtained the transition relation of the collecting trace semantics
TR, ;) (P) out of that of the trace semantics TR;(P). (See, Sect.3.) We also
adapt TR, (P)(O) to go to T if there is a cartesian trace in O that leads to T

in one step. The valid sequences of TR, (P) from ) define the property-guided
meaning of the program.

Lemma 4 (Soundness and Precision).AA program P is safe if and only if
Jor any 0 < k, it holds that (TR, (P))F(Q) # T.

Lemma 4 ensures that we can use the property-guided cartesian trace semantics
to find any evil trace of P. Intuitively, we can compute any evil trace m by
first picking an initial cartesian trace of length || + 1 and then executing the
sequence of cartesian trace transitions corresponding to the ones which generated
7. Furthermore, it ensures that the property-guided semantics does not lose
precision when it comes to safety: Thanks to the restrictions on the generalization
steps, the semantics never reaches an error state if the program is safe.

We can adapt the notion of projected fixpoints to the cartesian semantics.
Given a cartesian trace w, we say that w(i), where 0 < ¢ < |w| — 1, is a projected
fizpoint if (i) Bad C w(0), (ii) for every 0 < j < 4, w(j) U (ﬁ(w(])) Cw(+1),
and (iii) w(i) = w(i + 1).

Lemma 5 (Projected Fixpoints). Let w be a cartesian trace such that w(t)
is a projected fizpoint. It holds that w(i) is an inductive backward fixpoint of the
collecting state semantics.

In fact, given a useful backward fixpoint S, we can use the appropriate general-
ization transitions starting from €2 to produce a cartesian trace w which contains
S as a projected fixpoint at some index 1.

We can now restate the last paragraph of Sect.3 in a more precise way: In
Sect. 8, we show that PDR can be formalized as an abstract interpretation of the
collecting property-guided cartesian semantics, where every operation of PDR
can be understood as a sequence of steps taken by the semantics.

The semantics, when looking at it from the viewpoint of PDR, interprets the
program with two goals in mind. The first goal is to look for a useful fizpoint of
its collecting state semantics. This is done by taking generalization steps. The
second goal, which is done in parallel, is to look for a counterexample. This is
done using pre-transitions. The two goals affect each other: The states that are
discovered using the pre-transitions, are used to compute Y in the generalization
transitions by applying an algorithm specific-heuristic. The generalization, on
the other hand, might add states that would make future pre-transitions mute
as their targets would be detected early. This, could help PDR terminate faster
than if it had taken only pre-transitions.

The PDR-viewpoint helps understand the reason behind placing ¥\ Init as
the last component of the initial cartesian traces: It is apriori known that this set
provides (the most coarse) over-approximation of the last state of any evil trace
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which is not a counterexample. As a result, it provides the greatest opportunity
to apply generalization transitions at the penultimate set, and by extension, at
the ones preceding it. This flexibility is the reason that the collecting semantics
can compute any useful fixpoint.

7 Traditional PDR

In this section we describe PDR in an operational manner. Traditionally, PDR
uses a symbolic representation of states and sets of states as formulas in some
logic (either propositional or first order logic). In our description of PDR we
refer to the underlying states or sets of states explicitly.

We start by a high-level description of PDR and the data structures used
by it. The latter also define its configurations. We then describe the different
operations performed by the different implementations of PDR.

Initially, PDR checks if Init N Bad = (J, and reports a counterexample if this
is not the case. For simplicity of the presentation, we consider this check to be
done before PDR is invoked. We therefore assume that Init N Bad = ().

Forward Reachability Sequence. PDR computes increasingly longer forward
reachability sequences. When referring to sequences maintained by PDR, we use
a subscript notation for the elements of a sequence: F; instead of F(i). We
denote the sequence comprised of the elements Fy,..., Fy, for some 0 < N, by

(Fo, ..., Fy).

Definition 1 (Forward Reachability Sequence). A forward reachability
sequence of length N + 1 is a sequence oy = (Fo, F1,...,Fn) € seq(Z2(%))
which has the following properties:

1. FO = Imt,

2. F; CFiyq for every0 <4 <N,

3. TR(F;) C Fiy1 for every 0 < i <N,
4. F;N Bad =0 for every 0 < ¢ < N.

The sets F; in the sequence ¢y are called frames. N is called the iteration
counter.

Note that the property TR(F;) C F;41 is equivalent to ﬁ(E\FHl) C ¥\ F;. We
use the two interchangeably. The properties of a forward reachability sequence
pn imply that for every 0 < i < N, frame F; over-approximates the set of states
reachable from the initial states in at most i steps. If the sequence includes an
index 0 < 4 < N such that F; = F;; then property 3 simplifies to TR(F;) C F;.
Hence, together with properties 1 and 4, we conclude that F; is a useful forward
fixpoint (or safe inductive invariant), which implies that P is safe.

PDR computes forward reachability sequences @y of increasing lengths,
starting from N = 1, until either a counterexample is found or a fixpoint is
reached.
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In the intermediate steps of the computation of the forward reachability
sequence @y, requirement 3 might not hold (only) for i = N — 1, in which case
we refer to pxn as an intermediate forward sequence. Specifically, for N = 1,
N is initialized to (Init, ¥ \ Bad). For N > 1, PDR initializes an intermediate
forward sequence ¢y by extending the forward reachability sequence ¢ y_; from
the previous iteration with an additional frame Fy = ¥\ Bad. If requirement 3
does not hold due to the addition of Fy, PDR tries to strengthen the frames F;
(which over-approximate the reachable states) in order to satisfy requirement 3
for i = N — 1 as well. For this purpose, PDR iteratively retrieves from Fy_; a
state for which TR(o) C Fx does not hold (equivalently, o € ﬁ(Bad) NFN_1),
and tries to eliminate it by strengthening Fy_;. To do so while maintaining the
(other) properties of a forward reachability sequence, PDR first has to strengthen
Fn_5 to eliminate from it all the predecessors of o. For the elimination of each
predecessor, the same process is needed. This results in a backward traversal of
the state space.

Obligations Queue. The states that need to be eliminated from their frames
are called counterexzamples to induction (CTIs), since their removal is needed
in order to maintain the induction condition (TR(F;) C Fit1). A pair (i,0)
consisting of an index ¢ and a CTI o that needs to be eliminated from F; is
called a proof obligation (obligation in short). All obligations have the property
that their states lead to a bad state. Technically, PDR uses an obligation queue,
denoted ¢, to handle the obligations.

If all obligations are handled successfully, @y satisfies requirement 3 for i =
N — 1 as well, and hence it becomes a forward reachability sequence. However,
there might be intermediate steps where ¢ is temporarily empty, even though
not all obligations have been handled (since not all have been discovered). To
distinguish between the former and the latter we use L to denote the value of
the queue when all obligations are handled, as opposed to () which denotes an
empty queue, possibly temporarily.

PDR Configurations. A configuration of PDR is a triple k = (N, pn, q),
where

- N €N,

— oy = (Fo, F1,...,Fy) € (2(X))V+! is an intermediate forward sequence,
and

- g€ Z([N] x £)U{L} is an obligations queue, where [N] = {0,..., N}.

Initial Configuration. Assuming that Init N Bad = (), the initial configuration
of PDR is ko = (1, (Init, ¥\ Bad),0).

PDR Operations. Given a configuration k = (N, ¢n, q) as above, PDR pro-
ceeds by performing one of the following procedures. We denote the resulting
configuration by ' = (N', ¢, ¢’). Each procedure updates a subset of the com-
ponents of the configuration. We describe only the components that are indeed
updated.
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Queue Initialization: If ¢ = (), and there is a state o € ﬁ(Bad) N Fy_1, PDR
adds the obligation (N —1,0) to the queue, resulting in ¢’ = {(N —1,0)}. If no
such state exist, it sets ¢/ = L.

Backward Step: Given an obligation (i,0’) € ¢, where 1 < 4 < N is the minimal

frame index in ¢, such that there is o € ﬁ(a’) N F;_1, PDR adds (i — 1,0) to
q. Namely, ¢/ = qU{(i —1,0)}.

Obligation Lifting: Once an obligation (¢ — 1,0) is added to ¢ due to a back-
ward step from (i,0’) € ¢q, PDR computes a lifting of the obligation, S =
OLift(c,0’, F;), and adds the set of obligations {i — 1} x S to the queue, where
OLift(o,0’, F;) computes a set of states S C ¥ such that § C ﬁ(a’). Namely,
¢ =qU({i-1} x9).

Obligation lifting helps accelerating PDR by lifting an obligation discovered
by a backward step from some obligation (i,0”) € ¢ to a set of obligations, all
of which result from a backward step of the same obligation.

Blocking: Given an obligation (i,0") € ¢, where 1 < ¢ < N is the minimal frame
index in ¢ and ﬁ%(a’) N F;_1 =0, PDR removes (i,0’) from ¢, and removes o’
from F; (if it was not yet removed). Note that since ¢ > 1, ¢’ & Init. This results
in the configuration &’ = (N, (Fo, ..., Fi_1, F\{c'}, Fiz1,..., Fn), ¢\{(i,0")}).

Generalization: Once (i, 0") is blocked, in addition to removing ¢’ from F;, PDR
computes a generalization of the blocked state, S = Gen(o’, F;_1), and removes
S from all F; such that j < i, where Gen(o’, F;_1) computes a set of states
S C ¥ such that Init NS =0 and TR(F;—1) NS =0 (i.e., where all states have
no predecessor in F;_1). The result is ¢’ = (Fo, F1\ S, ..., F;\ S, Fit1,..., Fn).

Inductive Generalization: Once (i,0’) is blocked, in addition to removing o’
from F;, PDR computes an inductive generalization of the blocked state, S =
IGen(o’, F;_1), and removes S from all F; such that j < i, where IGen(o’, F;_1)
computes a set of states S C ¥ such that InitNS = @ and TR(F;_1\S)NS = 0.
The result is (p/ = <F0,F1 \S, -7Fi \ S, Fi+1,...,FN>.

Inductive generalization is an enhancement of generalization which results in
a stronger strengthening of frames, as every generalization is also an inductive
generalization, but not the other way around. It is based on an attempt to
identify sets whose complements are inductive relatively to the current frame,
and therefore can be used to safely strengthen all frames up to the current
one while keeping the properties of an intermediate forward sequence (and in
particular, without excluding any reachable state).

Forward Propagation: Once F; is updated by removing S from it (as a result of
generalization, inductive generalization, or forward propagation), i.e. F;NS =0,
it is checked whether TR(F;)NS = 0, and if so, F; 1 is also updated to F; 41\ S.
The result is (p/ = <F0, ey F,‘, Fi+1 \ S,FH_Q, ey FN>
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Forward propagation attempts to speculatively strengthen frames before
obligations are encountered. Similarly to inductive generalization, it considers
sets that are inductive relatively to the current frame (the complement of every
set that is removed from a frame corresponds to such a relative inductive set),
and checks whether they are also inductive relatively to consecutive frames.

Pushing Obligations Forward: Once an obligation (i,0’) for 1 < 4 < N —1
is removed from ¢, an obligation (i + 1,0’) is added to g. The result is ¢’ =
quU{(i+1,0")}.

Pushing obligations forward aims at an early discovery of obligations. An
obligation (%,0’) consists of a state ¢’ that reaches a bad state in some & > 0
steps. The same holds also when ¢’ is considered in F;1, which makes (i 41, 0")
a legitimate obligation (it will be discovered/handled at the latest when N =
i+ 1+ k). Its early addition can help accelerate the strengthening towards a
fixpoint, or enable finding counterexamples that are longer than N + 1.

Unfolding: 1If ¢ = 1 and fixpoint is not obtained, PDR initializes Fy41 to
Y\ Bad, increases N to N + 1, and sets ¢ to an empty queue. This results in
the configuration &' = (N + 1,(Fy, Fi,..., Fn, %\ Bad),0).

Termination. If there is an obligation (0,0’) € ¢, PDR terminates and reports
a counterexample. If ¢ = 1, and there exists ¢ < N such that F; = F;;41, PDR
terminates with a fixpoint and reports safety.

PDR is parametric in the generalization function Gen, the inductive gen-
eralization function IGen (typically only one of them is used), and the lifting
function OLift.

Remark 1 (Symbolic PDR). PDR is typically implemented as a SAT-based or
an SMT-based model checking algorithm. It uses formulas in (propositional or
first order) logic over a vocabulary V to describe states and sets of states. In
particular, a state is described as a cube over V, i.e., a conjunction of literals
(predicates or their negations) and a set (e.g., a frame F;) is described as a
CNF formula over V| i.e., conjunction of clauses where each clause consists of a
disjunction of literals. The transition relation TR is also described by a formula,
over a double vocabulary V U V'’ where V represents the current state and
V' ={v' | v € V} represents the next state.

Checks such as ﬁ%(a’ )N F;—1 = () are done by validity checks of the cor-
responding formulas, e.g. F;_1(V) A TR(V, V') = —o'(V’), or alternatively,
unsatisfiability checks of their negation, i.e., F;_1(V) A TR(V, V') Ao’ (V).
When the formula is satisfiable, a state o € ﬁ(a' )N F;_4 is retrieved from the
satisfying assignment.

In this setting, generalization, inductive generalization and lifting are per-
formed on a cube, representing a state, and a CNF formula, representing a
frame. They compute a CNF formula representing a set of states.

For example, a typical implementation of generalization Gen(o’, F;_1) looks
for a sub-clause ¢ of the clause —o’( V') such that Init(V) = ¢(V) and F;,_1(V)A
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TR(V,V’) = ¢(V'). If this holds, then Gen(o’, F;_1) returns —¢(V) as a for-
mula representing the set of states to be removed from F; for all j < 4. The
removal is performed by conjoining F; with c. Inductive generalization is per-
formed similarly.

Obligations lifting was performed in the original PDR paper [3] statically
by considering the k-step cone of influence. [7] performed dynamic lifting using
ternary simulation. [4] suggested a SAT-based approach, using unsatisfiability
cores, for lifting.

8 PDR as a Property-Guided Abstract Interpretation
of the Cartesian Trace Semantics

In this section, we show that the collecting property-guided cartesian trace
semantics defined in Sect. 6 simulates PDR, or in other words, PDR is an imple-
mentation of the semantics. For this purpose we define a simulation relation map-
ping PDR configurations to elements of the semantics, given by sets of sequences.
We show that each step of PDR is simulated by a sequence of transitions of the
semantics, in the sense that the resulting PDR configuration matches the result-
ing element in the semantics.

The mapping between PDR configurations and elements of the semantics is
given by a compatibility relation defined below. It should be noted that while the
sequences of frames used by PDR are indexed such that Fy = Init and increasing
indices represent increasing distance (with respect to TR) from the initial states,
the sequences used by our semantics are indexed such that w(0) = Bad and
increasing indices represent increasing distance (with respect to ﬁ) from the
bad states. In this sense, the two consider opposite directions of the transition
relation.

Definition 2 (Compatibility). Let xk = (N,p = (Fo,F1,...,Fn),q) be a
PDR configuration, and w € Q. The intermediate forward sequence ¢ is proof-
compatible with w if |w| = |¢| = N + 1 and for every 0 < i < N, F; =
Y\ w(N —1i). An obligation (i,0) € q is cex-compatible with w if |w| > i+ 1
and o € w(|lw| —1 —1).

We say that k is compatible with a set of sequences O C €, if

1. there exists w, € O such that ¢ is proof-compatible with w,, and
2. either ¢ = L or for every obligation ¢ = (i,0) € ¢, there exists wy, € O such
that 1 is cex-compatible with wy,.

We refer to w, and wy, as the witnessing sequences for ¢ and 1), respectively.

Thus, proof-compatibility requires that that sequences ¢ and w are “mirrors” of
each other combined with a pointwise complement operation. This also explains
the choice of the term “anti-frames” for the sets in a backward cartesian trace.
(See Sect.5.) Cex-compatibility requires that the CTI ¢ which appears as an
obligation in index ¢ with respect to ¢, will appear in w in distance i from the
end of the sequence.
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Lemma 6. The compatibility relation is a stuttering simulation between reach-
able PDR configurations and reachable elements of the collecting property-guided
cartesian trace semantics.

Proof. We prove the claim by showing that the initial configurations of PDR and
the semantics are compatible, and that every step of PDR maintains
compatibility.

Initial Configuration. Let k¢ be the initial configuration of PDR, and Q
be the initial element of the semantics. Then o = (Init,% \ Bad) is proof-

compatible with the sequence ©? = (Bad, X \ Init) € €2, and ¢ is empty, hence
cex-compatibility holds trivially.

Steps of PDR. Let k = (N, ¢, q) be a configuration of PDR (where N > 1),
and let O be an element of the semantics such that x is compatible with O. For
each possible step of PDR leading to ' = (N’, ¢, ¢’), we show a corresponding
sequence of TR, (P) leading from O to O’ such that «’ is compatible with O’.

Note that it suffices to show sequences of transitions of TR, (P) leading
to witnesses for ¢’ and for the obligations in ¢’ separately. Since TRZ; g, (P) is
monotonic and accumulative (i.e., if w € O and O has a transition of TR, (P)
to O, then w € 0" as well), these sequences of transitions of TR.“*(P) can
then be lifted to transitions of TR S, (P), concatenated and applied on O to
obtain O’. For the same reason it suffices to show such sequences of transitions
only for the components in the PDR configuration that have changed in the
step from k to x’: for an unchanged component, the same witness from O, which

exists in any subsequent element O of O, remains a witness.

Queue Initialization: v = (N, ¢, q") where ¢’ is either L, or a singleton
{(N —1,0)}. Consider first the case where ¢’ = L. In this case, £’ is compatible
with the same O, i.e. no transition of the semantics is needed.

Consider now the case where ¢’ = {(N —1,0)}, where 0 € ﬁ(Bad) NFyn_1.
Recall that O is a reachable element of the semantics. Therefore, 2 C O. Starting
from &Nt € O C O we apply a pre-transition of the semantics in index 0 of
ONF1 adding the set {0} to @V*1(1). The transition is applicable since o €
ﬁ(Bad) and OV*1(0) = Bad. The result is w’ of length N + 1 such that
o € w'(1), where 1 = |w'| =1 — (N —1). Hence (N — 1,0) is cex-compatible
with '

Backward Step: v = (N,p,q'), where ¢ = qU {(i — 1,0)}. Let w(; ) be
the witnessing sequence for the obligation (7,0’) which is the trigger for this
step (where |w(; o1y > ¢ + 1). Similarly to the case of queue initialization, we
use a pre-transition of the semantics in index |w(; ,)| —1 — i of w(; ) to add
{o} to wiion(lwi,enl — i), resulting in w(; ., of the same length, such that

0 € wi; n(lweion| — @). Therefore, wi, . is a witness for cex-compatibility of

i,0")
the new obligation (i — 1,0).

Obligation Lifting: ¢' = qU ({i — 1} x S). Similarly to the backward step, let
w(;,0+) be the witnessing sequence for the obligation (7,0") which is the trigger for
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the backward step responsible for lifting. A witness is obtained for all (i—1,0) €
{i =1} x S, by a pre-transition from w(; 5y in index |w(; ;)| — 1 — i adding S to

W(i,00)(|w(i,oy| = ). The pre-transition is applicable since S C <ﬁ(o’).

Blocking: ¢ = ¢\ {(i,0")}, and ¢’ = (Fy,..., Fi_1, F; \ {0}, Fit1,..., Fn),
where 1 < i < N. Since ¢’ is a subset of ¢, the same witnessing sequences for
its obligations in O appear in every subsequent element of O. As for ¢’, let
w, € O be a witnessing sequence for ¢. Since <ﬁ(a') N F;_1 = (), we generate a
witnessing sequence for ¢’ by applying a generalization transition on wy, at index
N — i (i.e., updating index N — 4 based on N — i + 1) using the set ¥V = {o'},
similarly to the simulation of a generalization step of PDR (see below).

Generalization: In this case, ¢’ = (Fo\ S,..., F;\ S, Fiy1,...,Fn). Let w, =
(E\ Fn,..., %\ Fo) be a witnessing sequence for ¢ in O. We obtain w/, by
a sequence of generalization transitions. For every j = 1,...,i (in increasing
order), starting from w' = w,, we apply a generalization transition on w’ =
(E\ Fy,....,. 2\ F;, 2\ (Fj21\ S),.. ., 2\ (FA\ 9),2\ Fy) in index N —j
(i.e., updating index N — j based on N — j + 1) using the set ¥ = S, leading
to w/t1. By the requirements of Gen, Init NS = ) and TR(F;_1)N S = 0,
ie., ﬁ(S) C ¥\ Fi_1. Since Fj_1 C F;_y for every j < i, we have that
<ﬁB(S ) € X\ Fj_1. As such S indeed satisfies the requirements of a generalization
transition in index N — j of w;. Finally, w**! is a witnessing sequence for '.

Inductive Generalization: This step is similar to generalization, where now
<ﬁ(S) C ¥\ F;_1 does not necessarily hold, but (ﬁ%(S) C X\ (Fj—1\S) holds
(since TR(F;_1\ S) NS = (). However, since the transitions are performed
from j = 1 and up, when the generalization transition is performed on w’/ =
(E\Fn,....Z\Fj, 2\ (F521\S),..., 2\ (F1\ 9), 2\ Fy) in index N —j (i.e.,
updating index N — j based on N — j + 1) using the set ¥ = S, it is already
the case that w/ (N —j +i) =X\ (F;_1\ S). Therefore, <T_R(S) Cw/ (N —j+1)
holds.

Forward Propagation: ¢’ = (Fy,...,F;, Fiy1US, Fiya,...,Fy). Let w, be a
witnessing sequence for ¢ in O. We obtain wfp by a generalization transition on
w, in index N — 4 — 1 (updating index N — ¢ — 1 based on N — 7).

Pushing Obligations Forward: Recall that in this case k' = (N, ¢, ¢ U {(i +
1,0)}). In this case, we show how to obtain a cex-witness w’ for (i + 1,0) by
a sequence of pre-transitions. By the property of the obligations in PDR, there
exists k and a sequence {0y, 0%—1,...,00) such that o, = o and o¢ € Bad (i.e., o
leads to a bad state in k steps). Therefore, starting from w® = &*+2++ ¢ Qco
of length ¢ + 2 4+ k, we apply pre-transitions for every j = 0,...,k — 1 (in
increasing order) in index j of w’, adding the singleton {oj;1} to the j + 1-th
index, resulting in w’/™! where w/™1(j +1) = w’ (j +1)U{0;+1}. The result of the
transitions is w* of length i+2+k such that o € w*(k), where k = |w*|—1—(i+1).
Hence (i + 1,0) is cex-compatible with w*.
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Unfolding: In this case, K’ = (N+1,(Fy, F1, ..., Fy,X\ Bad), ). We show how
to obtain a witnessing sequence for ¢’ = (Fy, Fy, ..., Fn, X\ Bad) by a sequence
of generalization transitions. We utilize again the property of reachable elements
of the semantics which ensures that GN+2 = (Bad)0N (X \ Init) € Q C O. For
every i =0,..., N —1 (in increasing order), starting from w® = &N+2_ we apply
a generalization transition on w® = (Bad)0¥ =4S\ F;,..., %\ Fi, %\ Init) in
index N — i (i.e., updating index N — 4 based on index N — i + 1) using the set
Y = ¥\ Fi11, leading to w'*! = (Bad))N Y\ Fip1,..., S\ F1, 2\ Init). To
be convinced that the transition from w® to w’t! is well defined, we recall the
properties of PDR. By the properties of PDR, for every 0 < i < N, TR(F;) C
F;,1, or equivalently, <ﬁ(E \ Fit1) € X\ F;. In addition, Init C F;yq, or
equivalently (X \ Fy;11) N Init = (. As such, Y = ¥\ F;;; indeed satisfies the
requirements of a generalization transition in index N — i of w’. Finally, w® is a
witnessing sequence for ¢’. Since ¢’ = ), no witnesses for cex-compatibility are
needed. O

The proof of Lemma 6 shows that different components of the PDR configuration
correspond to different sequences in the element of the semantics, O. In this
sense, PDR can be thought of as trying to compute multiple sequences of the
semantics simultaneously, as it both tries to find counterexamples of different
lengths, and at the same time tries to verify safety.

Lemma6 implies that all reachable configurations of PDR are compatible
with reachable configurations of the semantics. This holds in particular for ter-
minal configurations of PDR. We now show that the correctness of the output
of PDR in each of the terminal configurations follows from their compatibility
with an element of the semantics.

Counterexample: If there is an obligation (0,¢’) € ¢, PDR terminates and
reports a counterexample. Such an obligation indicates that ¢’ € Fy, i.e. o’ €
Init. Lemma 6 ensures that there is a reachable element O of the semantics with
some w € O such that 0’ € w(|w| — 1). Indeed, since ¢’ € Init, it follows that w
has an error transition leading to T (the error state of the semantics).

Fixzpoint: If ¢ = 1, and there exists ¢ < N such that F; = F;11, PDR ter-
minates and reports safety. PDR has the property that when ¢ = L, the inter-
mediate forward sequence ¢ becomes a forward reachability sequence. Lemma 6
ensures that there is a reachable element O of the semantics with some w € O
such that ¢ is proof-compatible with w. Due to the properties of a forward reach-
ability sequence (that hold for ¢), and since F; C F;11 and TR(F;) C Fi11
together imply (X \ Fiy1) U (17%(2 \ Fiy1) C X\ Fj, it follows that w has a
projected fixpoint at its N — ¢ — 1 index.

Remark 2. PDR is sometimes implemented such that F is initialized to %
rather than X\ Bad. In this case, in the intermediate forward sequences, require-
ment 4 of Definition 1 might not hold for i = N (while requirement 3 holds for
all frames). States that violate requirement 4 are used as obligations at index N.



122 N. Rinetzky and S. Shoham

Our semantics can simulate such implementations by letting a backward carte-
sian trace w be a witness for an intermediate forward sequence ¢ if the suffiz of
w in which the first anti-frame w(0) is truncated is compatible with ¢.

9 Discussion, Related Work and Conclusions

Implementations of PDR use a symbolic representation of states and sets of
states, as formulas in logic. In the original description of PDR [3,7], addressing
finite state systems, propositional formulas over boolean variables are used. In
this setting, which is most suitable for hardware designs, a SAT solver is used to
preform one step reachability checks. In subsequent works which extended PDR
to software, formulas in various theories of first order logic are considered, and
SMT solvers are used instead of a boolean SAT solver. For example, [5] experi-
ments with Linear Rational Arithmetic, [2,9] handle Linear Real Arithmetic, [1]
handles Linear Integer Arithmetic, and [10] considers universal formulas in first
order logic. In our work, we use an explicit representation for the description of
PDR, which captures all of these frameworks, in order to provide a view of PDR
which is not restricted to a certain representation.

Our operational description of PDR is inspired by works such as [8,9] which
provide an abstract description of PDR and its operations in the form of an
abstract transition relation (described via formulas). However, we continue and
show how this maps to a property-guided abstract interpretation of the program.

We consider linear PDR, where the semantics of a program is given via its
traces (linear sequences). Some works (e.g. [5,9]) have considered the extension
of PDR to a non-linear search. [5] defined t¢ree-IC3 which can be thought of as
performing PDR on each branch of a program’s control flow graph. Handling
such algorithms is the subject of future work.

Conclusions. We study, using abstract interpretation [6], the family of linear
property directed reachability verification algorithms that has been developed
following Bradley’s original PDR/IC3 algorithm PDR [3]. We show that existing
algorithms can be explained and proven sound by relating them to the actions of
a non standard semantics which abstracts bounded backward traces. Arguably,
the most surprising insight our work provides is that even though PDR is typi-
cally described as a forward analysis, it is in fact based on an abstraction of the
backward collecting trace semantics. Besides the conceptual elegance of explain-
ing existing algorithms (e.g. [1,2,7,9,10]) using (sequences of) two basic opera-
tions, we believe that our work would allow to explain and prove correct future
PDR-based verification algorithms in a more systematic and abstract way than
existing specialized techniques.
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Abstract. We present local policy iteration (LPI), a new algorithm for
deriving numerical invariants that combines the precision of max-policy
iteration with the flexibility and scalability of conventional Kleene iter-
ations. It is defined in the Configurable Program Analysis (CPA) frame-
work, thus allowing inter-analysis communication.

LPT uses adjustable-block encoding in order to traverse loop-free pro-
gram sections, possibly containing branching, without introducing extra
abstraction. Our technique operates over any template linear constraint
domain, including the interval and octagon domains; templates can also
be derived from the program source.

The implementation is evaluated on a set of benchmarks from the
International Competition on Software Verification (SV-COMP). It com-
petes favorably with state-of-the-art analyzers.

1 Introduction

Program analysis by abstract interpretation [1] derives facts about the execu-
tion of programs that are always true regardless of the inputs. These facts
are proved using inductive invariants, which satisfy both the initial condition
and the transition relation, and thus always hold. Such invariants are found
within an abstract domain, which specifies what properties of the program can
be tracked. Classic abstract domains for numeric properties include [products
of] intervals and octagons [2], both of which are instances of template linear
constraint domains [3].

Consider classic abstract interpretation with intervals over the program
int 1=0; while (i < 1000000)i ++; After the first instruction, the analyzer has a
candidate invariant i € [0,0]. Going through the loop body it gets ¢ € [0, 1], thus
by least upper bound with the previous state [0, 0] the new candidate invari-
ant is ¢ € [0, 1]. Subsequent Kleene iterations yield [0,2], [0, 3] etc. In order to
enforce the convergence within a reasonable time, a widening operator is used,
which extrapolates this sequence to [0, 4+00). Then, a narrowing iteration yields
[0, 100000]. In this case, the invariant finally obtained is the best possible, but the
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same approach yields the suboptimal invariant [0,4o0c) if an unrelated nested
loop is added to the program: while (i<100000) {while(unknown()){} i++:}.
This happens because the candidate invariant obtained with widening is its own
post-image under the nested loop, hence narrowing cannot shrink the invariant.
In general, widenings and narrowings are brittle: a small program change may
result in a different analysis behavior. Their result is non-monotone: a locally
more precise invariant at one point may result in a less precise one elsewhere.

Max-Policy Iteration. In contrast, max-policy iteration [4] is guaranteed to
compute the least inductive invariant in the given abstract domain!. To compute
the bound h of the invariant ¢ < h for the initial example above, it considers that
h must satisfy h = maxi’ s.t. (¢ =0) V (¢/ =i+ 1A ¢ < 10000000 A i < h) and
computes the least inductive solution of this equation by successively considering
separate cases:

(i) h = (maxi’ s.t. i’ = 0) = 0, which is not inductive, since one can iterate
from i =0to ¢ =1.

(ii) h = maxi’ s.t. i/ =i+ 1 Ai < 1000000 A ¢ < h, which has two solutions
over RU{oo, —0o}: h = —oo (representing unreachable state, discarded) and
h = 1000000, which is finally inductive.

Earlier presentations of policy iteration solve a sequence of global convex opti-
mization problems whose unknowns are the bounds (here h) at every program
location. Further refinements [5] allowed restricting abstraction to a cut-set [6] of
program locations (a set of program points such that the control-flow graph con-
tains no cycle once these points are removed), through a combination with satis-
fiability modulo theory (SMT) solving. Nevertheless, a global view of the program
was needed, hampering scalability and combinations with other analyses.

Contribution. We present the new local-policy-iteration algorithm (LPI) for
computing inductive invariants using policy iteration. Our implementation is
integrated inside the open-source CPAchecker [7] framework for software verifi-
cation and uses the maximization-modulo-theory solver vZ [8]. To the best of
our knowledge, this is the first policy-iteration implementation that is capable of
dealing with C code. We evaluate LPI and show its competitiveness with state-
of-the-art analyzers using benchmarks from the International Competition on
Software Verification (SV-COMP).
Our solution improves on earlier max-policy approaches:

(i) Scalability. LPI constructs optimization queries that are at most of the
size of the largest loop in the program. At every step we only solve the
optimization problem necessary for deriving the local candidate invariant.

(ii) Ability to Cooperate with Other Analyses. LPI is defined within the
Configurable Program Analysis (CPA) [9] framework, which is designed
to allow easy inter-analysis collaboration. Expressing policy iteration as a

! It does not, however, necessarily output the strongest (potentially non-inductive)
invariant in an abstract domain, which in general entails solving the halting problem.
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fixpoint-propagation algorithm establishes a common ground with other
approaches (lazy abstraction, bounded model checking) and allows com-
municating with other analyses.

(iii) Precision. LPI uses adjustable-block encoding [10], and thus benefits from
the precision offered by SMT solvers, effectively checking executions of
loop-free program segments without the need for over-approximation. Path
focusing [5] has the same advantage, but at the cost of pre-processing the
control-flow graph, which significantly hinders inter-analysis communication.

Related Work. Policy iteration is not as widely used as classic abstract inter-
pretation and (bounded) model checking. Roux and Garoche [11] addressed a
similar problem of embedding the policy-iteration procedure inside an abstract
interpreter, however their work has a different focus (finding quadratic invari-
ants on relatively small programs) and the policy-iteration algorithm remains
fundamentally un-altered. The tool REAVER [12] also performs policy iteration,
but focuses on efficiently dealing with logico-numerical abstract domains; it only
operates on Lustre programs. The ability to apply policy iteration on strongly
connected components one by one was (briefly) mentioned before [13]. Our paper
takes the approach significantly further, as our value-determination problem
is more succinct, we apply the principle of locality to the policy-improvement
phase, and we formulate policy iteration as a classic fixpoint-iteration algorithm,
enabling communication with other analyses. Finally, it is possible to express the
search for an inductive invariant as a nonlinear constraint solving problem [14] or
as a quantifier elimination problem [15], but both these approaches scale poorly.

2 Background

We represent a program P as a control flow automaton (CFA) (nodes, X, edges),
where nodes is a set of control states, and X = {z1,...,2,} are the variables
of P. Each edge e € edges is a tuple (A,7(X,X’),B), where A and B are
nodes, and 7(X, X’) is a transition relation: a formula defining the semantics
of a transition over the set of input variables X and fresh output variables X’.
A concrete state of the program P is a map X — Q from variables to rationals?.
A set C of concrete states is represented using a first-order formula ¢ with free
variables from X, such that for all ¢ € C we have ¢ = ¢.

Template Linear Constraint Domains. A template linear constraint is a
linear inequality ¢ - X < b where t is a vector of constants (template), and b
is an unknown. A template linear constraint domain [3] (TCD) is an abstract
domain defined by a matrix of coefficients a;;, which determines what template
linear constraints are expressible within the domain: each row t of the matrix
is a template (the word “template” also refers to the symbolic product ¢ - X,
e.g. ¢ + 2j). An abstract state in a TCD is defined by a vector (di,...,dm)
and represents the set /\:il t; - X < d; of concrete states. The d;’s range over
extended rationals (RU{oo, —0co0}), where positive infinity represents unbounded

2 We support integers as well, as explained in Sect. 4.
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int i=0;

int j=0;

while (i<10)
it++;

while (j<10)
jtts

Fig. 1. Running example — C program and the corresponding CFA

templates and negative infinity represents unreachable abstract states. The domain
of products of intervals is one instance of TCD, where the templates are +x; < ¢;
for program variables x;. The domain of octagons [2] is another, with templates
+2; + x; and £x;. Any template linear constraint domain is a subset of the
domain of convex polyhedra [16].

The strongest abstract postcondition in a TCD is defined by optimization:
maximizing all templates subject to the constraints introduced by the semantics of
the transition and the previous abstract state. For the edge e = (A, 7(X, X'), B),
previous abstract state D = (dy, . ..,dn), and aset {t1,...,t,,} of templates, the
output abstract state is D’ = (d},...,d,,) with

d; = (maxti X! s.t. /\th - X < di /\T(X,X/))

For example, for the abstract state ¢ < 0 A j < 0 under the transition
i/ = i+ 1Ai < 10 the new abstract state is ¢ < d* A y < d?, where
d=maxi st. i <O0Aj<OAY =i+1A%5<10A5 = j and d/ is the
result of maximizing j’ subject to the same constraints. This gets simplified to
1<1A75<0.

Kleene iterations in a TCD (known as value iterations) may fail to converge in
finite time, thus the use of widenings, which result in hard-to-control imprecision.

Policy Iteration. Policy iteration addresses the convergence problem of value-
iteration algorithms by operating on an equation system that an inductive invari-
ant has to satisfy. Consider the running example shown in Fig.1. Suppose we
analyze this program with the templates {i,j}, and look for the least inductive
invariant D = (dY, &y, b, d};) that satisfies the following for all possible execu-
tions of the program (xzy denotes the value of the variable z at the node N):

ian <dy Nig <dgAja <d)Ajp < dl

To find it, we solve for the smallest D that satisfies the fizpoint equation [system]
for the running example, stating that the set of abstract states represented by
D is equal to its strongest postcondition within the abstract domain:
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Y =supi’ s.t. (i =0A 5 =0)
ViE<dYNj <Ay Ni<10AT =i+1A7 =5V L
@, =supj’ s.t. (' =0 A5 =0)
ViE<dyNj<dyNi<10AT =i+1A7 =5V L
o =supi’ st ((i <10)Ad < dYy Aj < & AT =)
V(E<dgANj<daNj<10Aj =j+1Aid =)V L
dly =supj’ s.t. (~(i <10) Ai <dy Aj < dly Ni' =1)
Vi<dgAj<dyANj<10Aj =j+1AT =i)V L

Note the equation structure: (i) Disjunctions represent non-deterministic
choice for a new value. (ii) The argument L is added to all disjunctions, repre-
senting infeasible choice, corresponding to the bound value —oo. (iii) Supremum
is taken because the bound must be higher than all the possible options, and it
has to be —oo if no choice is feasible.

A simplified equation system with each disjunction replaced by one of its
arguments is called a policy. The least solution of the whole equation system
is the least solution of at least one policy (obtained by taking the solution,
and picking one argument for each disjunction, such that the solution remains
unchanged). Policy iteration finds the least tuple of unknowns (d’s) satisfying
the fixpoint equation by iterating over possible policies, and finding a solution
for each one.

For program semantics consisting of linear assignments and possibly non-
deterministic guards it is possible to find a fixpoint of each policy using one
linear programming step. This is based on the result that for a monotone and
concave function® f and xg such that f(xg) > xo, the least fixpoint of f greater
than zg can be computed in a single step™.

It is possible to solve the global equation system by solving all (exponen-
tially many) policies one by one. Instead, policy iteration [4] computes solutions
for a sequence of policies; each solution is guaranteed to be less than the least
solution of the original equation system, and the solutions form an ascending
sequence. The iteration starts with the policy having least possible value (L for
each disjunction, the solution is —co assignment to all unknowns), and eventually
terminates when a solution of the original equation system (an inductive invari-
ant) is found. The termination is guaranteed as there is only a finite number of
solutions.

For each policy the algorithm finds a global value: the least fixpoint in the
template constraints domain of the reduced equation system. For instance, in
the running example, for the policy dy = supi’ s.t. i/ = 0 A j* = 0 (only one
unknown is shown for brevity) the global value is d%, = 0. This step is called value
determination. After the global value is computed the algorithm checks whether
the policy can be improved: that is, whether we can find another policy that

3 Order-concave in the presence of multiple templates, see [4] for detailed discussion.
4 Over rationals, we discuss the applicability to integers in Sect. 4.
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will yield a larger value than the previously obtained global value. In the running
example we want to test the following policy for the possibility of improvement:

Lo=supi st (i <dyAj<dYyNi<10AT =i+ 1AF =j)

We do so by computing the local value: substituting the unknown (d%) on the
right hand side with the value from the previously obtained global value, and
checking whether the result is greater than the previously obtained bound. In
our example we get the local value d4 = 1, which is indeed an improvement
over dyy = 0 (policy-improvement step). After the policy is selected, we go back
to the value-determination step, obtaining d’4 = 10, and we repeat the process
until convergence (reaching a step where no policy can be further improved).

Under the assumption that the operations on the edges can be expressed
as conjunctions of linear (in)equalities, it can be shown [4] that: (i) The value-
determination step can be performed with linear programming. (ii) The resulting
value is an under-approximation of the least inductive invariant. (iii) Each pol-
icy is selected at most once and the final fixed point yields the least inductive
invariant in the domain.

Example 1 (Policy-Iteration Trace on the Running Example). We solve for the
unknowns (d’y, &, dy, d%), defining a (global) abstract value v.

In our example, disjunctions arise from multiple incoming edges to a single
node, hence a policy is defined by a choice of an incoming edge per node per
template, or L if no such choice is feasible. We represent a policy symbolically as
a 4-tuple of predecessor nodes (or L), as there are two nodes, with two policies
to be chosen per node. The order corresponds to the order of the tuple of the
unknowns. The initial policy s is (L, L, L, 1). The trace on the example is:

1. Policy improvement: s = (I, 1, L, 1),
obtained with a local value (0,0, —oco, —00).

2. Value determination: corresponds to the initial condition v = (0, 0, —00, —00).

3. Policy improvement: s = (A, I, L, 1), selecting the looping edge, local value
is (1,0, —00, —00).

4. Value determination: accelerates the loop convergence to v = (10,0, —oco, —c0).

5. Policy improvement: s = (A, I, A, A), with a local value (10,0, 10,0) finally
there is a feasible policy for the templates associated with the node B.

6. Value determination: does not affect the result v = (10,0, 10, 0).

7. Policy improvement: select the second looping edge: s = (A, I, A, B) obtaining
a local value (10,0, 10, 1).

8. Value determination: accelerate the second loop to v = (10,0, 10, 10).

9. Finally, the policy cannot be improved any further and we terminate.

On this example we could have obtained the same result by Kleene itera-
tion, but in general the latter might fail to converge within finite time. The
usual workaround is to use heuristic widening, with possible and hard-to-control
imprecision. Our value-determination step can be seen as a widening that pro-
vides an under-approximation to the least fixed point.
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Each policy improvement requires at least four (small) linear programming
(LP) queries, and each value determination requires one (rather large) LP query.

Path Focusing and Large-Block Encoding. In traditional abstract inter-
pretation and policy iteration, the obtained invariant is expressed as an abstract
state at each CFA node. This can lead to a significant loss in precision: for
instance, since most abstract domains only express convex properties, it is impos-
sible to express |x| > 1, which is necessary to prove this assertion:
if (abs(x) >= 1) { assert(x !'=0);}

This loss can be recovered by reducing the number of “intermediate”
abstract states by allowing more expressive formulas associated with edges.
Formally, two consecutive edges (A, 71(X,X’),B) and (B, 72(X,X’),C), with
no other edges incoming or outgoing to B can be merged into one edge
(A, 71 (X, X) Amo(X,X"),C). Similarly, two parallel edges (A, (X, X'), B) and
(A, 72(X, X"), B), with no other edges incoming to B can be replaced by a new
edge (A, (X, X") V 12(X,X"), B). For a well-structured CFA, repeating this
transformation in a fixpoint manner (until no more edges can be merged) will
lead to a new CFA where the only remaining nodes are loop heads.

Such a transformation was shown to increase both precision and performance
for model checking [17]. Adjustable block encoding [10] gets the same advan-
tages without the need for CFA pre-processing. Independently, the approach
was applied with the same result to Kleene iterations [18] and to max-policy
iterations [5]. In fact, the CFA in Fig. 1 was already reduced in this manner for
the ease of demonstration.

On the reduced CFA the number of possible policies associated with a single
edge becomes exponential, and explicitly iterating over them is no longer feasible.
Instead, the path focusing approach uses a satisfiability modulo theory (SMT)
solver to select an improved policy.

Configurable Program Analysis. CPA [9] is a framework for expressing
algorithms performing program analysis. It uses a generic fixpoint-computation
algorithm, which is configured by a given analysis. We formulate LPI as a CPA.

The CPA framework makes no assumptions on the performed analysis, thus
many analyses were successfully expressed and implemented within it, such as
bounded model checking, abstract interpretation and k-induction (note that an
analysis defined within the framework is also referred to as a CPA).

Each CPA configures the fixpoint algorithm by providing an initial abstract
state, a transfer relation (specifying how to produce successors), a merge operator
(specifying whether and how to merge abstract states), and a stop operator
(specifying whether a newly produced abstract state is covered). The algorithm
keeps a set of reached abstract states and a list of “frontier” abstract states, and
at each step produces successor states from the frontier states using the transfer
relation, and then tries to merge the new states with existing states using the
merge operator. If a new state is covered by the set of reached states according
to the stop operator, it is discarded, otherwise it is added to the set of reached
states and the list of frontier states. We show the CPA algorithm as Algorithm 1.
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Algorithm 1. CPA Algorithm (taken from [9])

1: Input: a CPA (D, transfer-relation, merge, stop), an initial abstract state eg € F
(let E denote the set of elements of the semi-lattice of D)

2: Output: a set of reachable abstract states

3: Variables: a set reached of elements of F, a set waitlist of elements of F
4: waitlist «— {eo}

5: reached «— {eo}

6: while waitlist # () do

T Pop e from waitlist

8: for all ¢’ € transfer-relation(e) do

9: for all ¢” € reached do

10: > Combine with existing abstract state

11: €new +— merge(e’,e”)

12: if enew # €” then

13: waitlist « (waitlist U {enew}) \ {€”}

14: reached < (reached U {enew}) \ {€"}

15: > Whether €’ is already covered by existing states
16: if —stop(e’, reached) then

17: waitlist « waitlist U {e’}

18: reached < reached U {e’}

19: return reached

3 Local Policy Iteration (LPI)

The running example presented in the background (Example 1) has four value-
determination steps and five policy-improvement steps. Each policy-improvement
step corresponds to at most #policies X #templates x #nodes LP queries,
and each value-determination step requires solving an LP problem with at least
#policies x #templates x #nodes variables. Most of these queries are redun-
dant, as the updates propagate only locally through the CFA: there is no need
to re-compute the policy if no new information is available.

We develop a new policy-iteration-based algorithm, based on the principle of
locality, which aims to address the scalability issues and the problem of commu-
nicating invariants with other analyses. We call it local policy iteration or LPI.
To make it scalable, we consider the structure of a CFA being analyzed, and we
aim to exploit its sparsity.

A large majority of (non-recursive) programs are well-structured: they con-
sist of statements and possibly nested loops. Consider checking a program P
against an error property E. If P has no loops, it can be converted into a sin-
gle formula ¥(X'), and an SMT solver can be queried for the satisfiability of
U(X') AN E(X’), obtaining either a counter-example or a proof of unreachability
of E. However, in the presence of loops, representing all concrete states reach-
able by a program as a formula over concrete states in a decidable first-order
logic is impossible, and abstraction is required. For example, bounded model
checkers unroll the loop, lazy-abstraction-based approaches partially unroll the
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loop and use the predicates from Craig interpolants to “cover” future unrollings,
and abstract interpretation relies on abstraction within an abstract domain.

In LPI, we use the value-determination step to “close” the loop and compute
the fixpoint value for the given policy. Multiple iterations through the loop might
be necessary to find the optimal policy and reach the global fixpoint. In the
presence of nested loops, the process is repeated in a fixpoint manner: we “close”
the inner loop, “close” the outer loop with the new information from the inner
loop available, and repeat the process until convergence. Each iteration selects
a new policy, thus the number of possible iterations is bounded.

Formally, we state LPI as a Configurable Program Analysis (CPA), which
requires defining the lattice of abstract states, the transfer relation, the merge
operator, and the stop operator. The CPA for LPI is intended to be used in com-
bination with other CPAs such as a CPA for tracking location information (the
program counter), and thus does not need to keep track of this information itself.
To avoid losing precision, we do not express the invariant as an abstract state at
every node: instead the transfer relation operates on formulas and we only per-
form over-approximation at certain abstraction points (which correspond to loop
heads in a well-structured CFA ). This approach is inspired by adjustable-block
encoding [10], which performs the same operation for predicate abstraction. One
difference to path focusing [18] is that we still traverse intermediate nodes, which
facilitates inter-analysis communication.

We introduce two lattices: abstracted states (not to be confused with abstract
states in general: both intermediate and abstracted states are abstract) for states
associated with abstraction points (which can only express abstract states in the
template constraints domain) and intermediate states for all others (which can
express arbitrary concrete state spaces using decidable SMT formulas).

An abstracted state is an element of a template constraints domain with
meta-information added to record the policy being used.

Definition 1 (Abstracted State). An abstracted state is a mapping from the
externally given set T' of templates to tuples (d, policy, backpointer), where d € R
is a bound for the associated template ¢ (the represented property is t - X < d),
policy is a formula representing the policy that was used for deriving d (policy
has to be monotone and concave, and in particular contain no disjunctions), and
backpointer is an abstracted state that is a starting point for the policy (base
case is an empty mapping).

The preorder on abstracted states is defined by component-wise comparison of
bounds associated with respective templates (lack of a bound corresponds to an
unbounded template). The concretization is given by the conjunction of
represented template linear constraints, disregarding policy and backpointer
meta-information. For example, an abstracted state {z : (10,,-)} (underscores
represent meta-information irrelevant to the example) concretizes to
{c | c[x] < 10}, and the initial abstracted state {} concretizes to all concrete states.

Intermediate states represent reachable state-spaces using formulas directly,
again with meta-information added to record the “used” policy.
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Algorithm 2. LPI Abstraction

1: Input: intermediate state (ao, ¢), set T' of templates
2: Output: generated abstracted state new

3: new « empty abstracted state

4: for all template t € T' do

5: ¢ < ¢ with disjunctions annotated using a set of marking variables M
6: > Maximize subject to the constraints introduced by the formula

T > and the starting abstracted state.

8: d +— maxt - X’ subject to ¢(X, X’) A ag

9: M < model at the optimal

10: > Replace marking variables M in qAb with their value from the model M,
11: > generating a concave formula that represents the policy.

12: Policy ¢ «— ¢[M/M]
13: new(t] — (d, v, ao)
14: return new

Definition 2 (Intermediate State). An intermediate state is a tuple (ag, @),
where ag is a starting abstracted state, and ¢(X, X’) is a formula over a set of
input variables X and output variables X'.

The preorder on intermediate states is defined by syntactic comparison only:
states with identical starting states and identical formulas are deemed equal,
and incomparable otherwise. The concretization is given by satisfiable assign-
ments to X’ subject to ¢(X, X’) and the constraints derived from aq applied to
input variables X. For example, an intermediate state ({z : (10,_,)},2’ = 2 + 1)
concretizes to the set {c | c[z] < 11} of concrete states.

Abstraction (Algorithm 2) is the conversion of an intermediate state (ag, @)
to an abstracted state, by maximizing all templates ¢ € T' subject to constraints
introduced by ag and ¢, and obtaining a backpointer and a policy from the pro-
duced model M. This amounts to selecting the appropriate disjuncts in each
disjunction of ¢. To do so, we annotate ¢ with marking variables: each dis-
junction 7 V 75 in ¢ is replaced by (m A 1) V (-m A 72) where m is a fresh
propositional variable. A policy associated to a bound is then identified by the
values of the marking variables at the optimum (subject to the constraints intro-
duced by ¢ and ap), and is obtained by replacing the marking variables in ¢
with their values from M. Thus the abstraction operation effectively performs
the policy-improvement operation for the given node, as only the policies which
are feasible with respect to the current candidate invariant (given by previous
abstracted state) are selected.

Ezample 2 (LPI Propagation and Abstraction) Let us start with an abstracted
state a = {x : (100, _, )} (which concretizes to {c | c[z] < 100}, underscores
stand for some policy and some starting abstracted state) and a set {z} of
templates.

After traversing a section of code if (x <= 10){x += 1;} else {x = 0;} we
get an intermediate state (a,¢) with ¢ = (2 < 10A2' =z +1Vz > 10Az =0)
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Algorithm 3. Local Value Determination

1: Input: node n, map influencing from nodes to abstracted states, set T" of templates
2: Output: generated abstracted state new

3: constraints «— ()

4: for all node n; € influencing do

5: state s «— influencing[n;]

6: for all template t € s do

7: (bound d, policy 1, backpointer ag) < s[t]

8: Generate a unique string namespace

9: > Prefix all variables in ).
10: > X amespace X namespace 18 & set of namespaced output/input variables for 9.
11: constraints < constraints U {¢[X / X namespace|[ X'/ X;amesmcc}}
12: dy,, « fresh variable (upper bound on ¢ at n)
13: constraints < constraints U {df% =t- X,’mmesmce}
14: no < location associated with ag
15: for all ty € agp do
16: constraints «— constraints U {to - Xnamespace < dff’o}

17: new < empty abstracted state

18: for all templates ¢t € T do

19: (do, ¥, ao) < influencing[n]

20: d — max d?, subject to constraints
21: new(t] «— (d, ¥, ao)

22: return new

and a backpointer to the starting abstracted state a. Suppose in our example
the given C code fragment ends with a loop head. Then we use abstraction
(Algorithm 2) to convert the intermediate state (a,¢) into a new abstracted
state.

Firstly, we annotate ¢ with marking variables, which are used to identify the
selected policy, obtaining x < 10A Az’ =z +1Ami Ve >10Az = 0A —my.
Afterwards, we optimize the obtained formula (together with the constraints
from the starting abstracted state a) for the highest values of templates. This
amounts to a single OPT-SMT query:

supz’ s.t. 2 <100A (2 <10AZ =2+ 1Ami Ve >10Ax =0A-my)

The query is satisfiable with a maximum of 11, and an SMT model M : {2’ :
11,my : true, z : 10}. Replacing the marking variable m; in ¢ with its value in M
gives us a disjunction-free formula x < 10A2’ = 41, which we store as a policy.
Finally, the newly created abstracted state is {z : (11,2 < 10A 2z’ =z + 1,a)}.

The local value-determination step (Algorithm 3) computes the least fixpoint
for the chosen policy across the entire strongly connected component where the
current node n lies. The algorithm starts with a map influencing from nodes to
abstracted states, which is generated by transitively following policy backpoint-
ers, and converting the resulting set of abstracted states to a map®. From this

5 The are no collisions as abstracted states are joined at nodes.
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map, we generate a global optimization problem, where the set of fresh variables
dfw represents the maximal value a template ¢ can obtain at the node n; using
the policies selected. Variable dfh, is made equal to the namespaced® output value
of the policy (X, X’) chosen for ¢ at n; (line 13). For each policy ¢ and the
associated backpointer ag, we constrain the input variables of 1 using a set of
variables d¢ representing bounds at the node ng associated with ag (line 16).
This set of “input constraints” for value determination results in a quadratic
number of constraints in terms of the number of selected policies. Finally, for
each template ¢ we maximize for d!, (line 20), which is the maximum possible
value for t at node n under the current policy, and we record the bound in the
generated abstracted state (line 21), keeping the old policy and backpointer.

The local-value-determination algorithm is almost identical to max-strategy
evaluation [5], except for two changes: we only add potentially relevant con-
straints from the “closed” loop (found by traversing backpointers associated
with policies), and we maximize objectives one by one, not for their sum (which
avoids special casing infinities, and enables optimizations outlined in Sect.4).
Unlike classic policy iteration, we only run local value determination after merges
on loop heads, because in other cases the value obtained by abstraction is the
same as the value which could be obtained by value determination.

Formulation as a CPA. The initial state is the abstracted state{} (empty map),
representing T of the template constraints domain. The stop operator checks
whether a newly created abstracted state is covered by one of the existing
abstracted states using the preorder described above. The transfer relation finds
the successor state for a given CFA edge. It operates only on intermediate states
— an abstracted state ag is firstly converted to the intermediate state (ag, true).
Then, the transfer-relation operator runs symbolic execution: the successor of
an intermediate state (a, (X, X’)) under the edge (A, 7(X, X’), B) is the inter-
mediate state (a,¢’ (X, X)) with ¢/(X,X’) = IX.¢(X,X) A 7(X, X"). If the
successor node is a loop head, then abstraction (Algorithm 2) is performed on
the resulting state.

The merge operator has two operation modes, depending on whether we are
dealing with abstracted states or with intermediate states.

For two abstracted states, we perform the join: for each template, we pick
the largest bound out of the two possible, and we keep the corresponding policy
and the backpointer. If the merge “closes” the loop (that is, we merge at the
loop head, and one of the updated policies has a backpointer to a state inside the
loop), we find the map influencing by recursively following the backpointers of
the joined state, and run local value determination (Algorithm 3). For two inter-
mediate states (a1, ¢1) and (ag, ¢2) with a; identical to ag the merge operator
returns the disjunction (a1, ¢1 V ¢2). Otherwise, we keep the states separate.

The local-value-determination problem only contains the constraints result-
ing from policies of the abstracted states associated with nodes in the cur-
rent loop. This optimization does not affect the invariant as only the nodes

6 Namespacing means creating fresh copies by attaching a certain prefiz to variable
names.
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dominating the loop head can change it. Of those, only the invariants of the
nodes reachable from the loop head can be affected by the computation: i.e., the
strongly connected component of n.

Properties of LPI

Soundness. LPI, like any configurable program analysis, terminates when no
more updates can be performed, and newly produced abstract states are sub-
sumed (in the preorder defined by the lattice) by the already discovered ones.
Thus, it is an inductive invariant: the produced abstract states satisfy the initial
condition and all successor states are subsumed by the existing invariant. Hence
the obtained invariant is sound.

Termination. An infinite sequence of produced abstract states must contain
infinitely many abstracted states, as they are associated with loop heads. How-
ever, each subsequent abstraction on the same node must choose a different
policy to obtain a successively higher value, but the number of policies is finite.
An infinite sequence is thus impossible, hence termination.

Optimality. In the absence of integers, LPI terminates with the same invariant
as classical policy iteration with SMT [5]. The outline of the proof is that LPI can
be seen as an efficient oracle for selecting the next policy to update (note that
policies selected by LPI are always feasible with respect to the current invari-
ant candidate). Skipping value-determination steps when they have no effect,
and attempting to include only relevant constraints in the value-determination
problem do not alter the values of obtained fixed points.

Ezample 8 (LPI Trace on the Running Example) We revisit the running example
(Fig. 1) with LPL:

1. We start with the empty abstracted state ag = {}.

2. Transfer relation under the edge (I, ¢1, A) produces the new intermediate
state (ag,7’ = 0 A j/ = 0) associated with A. As A is a loop head, we perform
an abstraction to obtain the abstracted state a1 = {i : (0,_,a0),7 : (0,-,a0)}
(corresponding to ¢ < 0 A j < 0) [2 linear programming problems].

3. Transfer relation explores the edge (A, ¢2, A) and produces the intermediate
state (a1,7 < 0OAj' <0Ai =i+ 1). Again we perform an abstraction, obtain-
ing the abstracted state as = {i : (1,-,a1),5 : (0,-,a1)} [2 LP problems].

4. The merge operator on node A merges the new state as with the previous
state ay, yielding the abstracted state as = {i : (1,_,a1),7 : (0,-,a0)}. Value
determination “closes” the loop, producing a4 = {7 : (10, _,a1),7 : (0, -, a0)}.
[1 LP problem].

5. Transfer relation explores the edge (A, ¢3, B) and produces the intermediate
state (a3, i’ < 10 A (-’ < 10) A j/ < 0), which is abstracted to
as =971:(10,_,a4),7: (0,-,a4)} [2 LP problems].
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6. The edge (B, ¢4, B) is explored, resulting in the intermediate state
(ag,7 <10Aj <O0Aj =7+ 1), which is abstracted into
ag = {i: (10,,as5),5: (1,-,as)} [2 LP problems].

7. Value determination produces the state a; = {i : (10,_,a4),7 : (10,_,as5)},
and the exploration concludes. [1 LP problem].

Compared to the original algorithm there are two value-determination prob-
lems instead of four, both on considerably smaller scale. There are also only
ten LP problems, compared to more than twenty in the original version. The
improvement in performance is more than a fixed constant: if the number of
independent loops in the running example was to increase from 2 to N, the
increase in the analysis time of classic policy iteration would be quadratic, while
LPI would scale linearly.

4 Extensions and Implementation Aspects

Template Synthesis. The template constraints domain requires templates
defined for the given program. In LPI, we can simulate the interval and octagon
domains by synthesizing templates of the form +x, +x + y for every numeric vari-
able x, y in the program alive at the given program node. Moreover, the templates
can be synthesized from error properties: e.g. for assert(x >= 2 * y) we could
generate the templates &+(x — 2y).

We show the analysis time of LPI (excluding startup and parsing) in the
interval-domain-mode vs. octagon-domain-mode in Fig.2 (each data point cor-
responds to an analyzed program). The number of octagon templates is quadratic
in terms of the number of interval templates, thus we expect a quadratic rise in
analysis time, however in practice we observe a sub-quadratic increase.

This has motivated us to experiment with simulating a more expressive
domain. We generate templates +2x +y, o +y + 2, and even £2z + y + 2, for
every possible combination of live variables x, y, z at the given program location.
Using this new “rich” template generation strategy we achieve a significant pre-
cision improvement as shown by the number of verified programs in the legend
of Fig. 3a.

Dealing With Integers. Original publications on max-policy iteration in tem-
plate constraints domain deal exclusively with reals, whereas C programs oper-
ate primarily on integers’. Excessively naive handling of integers leads to poor
results: with an initial condition = = 0, = € [0,4] is inductive for the transition
system 2’ = x + 1 Az # 4 in integers, but not in rationals, due to the possibility
of the transition x = 3.5 to z = 4.5. An obvious workaround is to rewrite each
strict inequality a < b into a < b — 1: on this example, the transition becomes
r=x+1A(x<3Vz>5)and x € [0,4] becomes inductive on rationals. How-
ever, to make use of data produced by an additional congruence analysis, we use

" Previous work [19] deals with finding the exact interval invariants for programs
involving integers, but only for a very restricted program semantics.
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Fig. 2. Octagon vs. interval LPI analysis time (dataset and setup as in Sect. 5)

optimization modulo theory with integer and real variables for abstraction, and
mixed integer linear programming for value determination.

Unfortunately, linear relations over the integers are not concave, which is a
requirement for the least fixpoint property of policy iteration. Thus the encoding
described above may still result in an over-approximation. Consider the following
program:

x=0; x_new=unknown() ;
while (2 * xnew == x+2) {
x = x_new; x.new = unknown();

}
LPI terminates with a fixpoint x < 2, yet the least fixpoint is x < 1.

Congruence. A congruence analysis which tracks whether a variable is even or
odd can be run in parallel with LPI (a more general congruence analysis may
be used, but we did not find the need for it on our examples). During the LPI
abstraction step, the congruence information is conjoined to the formula being
maximized, and the bounds from LPI are used for the congruence analysis.

This combination enhances the precision on our dataset (cf. Fig.3a), and
demonstrates the usefulness of expressing policy iteration as a typical fixpoint
computation. Furthermore, it provides a strong motivation to use integer formu-
las for integer variables in programs, and not their rational relaxation.

Optimizations In Sect.3 we describe the local value-determination algorithm
which adds a quadratic number of constraints in terms of policies. In practice this
is often prohibitively expensive. The quadratic blow-up results from the “input”
constraints to each policy, which determine the bounds on the input variables.
We propose multiple optimization heuristics which increase the performance.
As a motivation example, consider a long trace ending with an assignment
x = 1. If this trace is feasible and chosen as a policy for the template x, the
output bound will be 1, regardless of the input. With that example in mind,
consider the abstraction procedure from which we derive the bound d for the
template t. Let (-, ¢(X, X’)) be the intermediate state used for the abstraction
(Algorithm 2). We check the satisfiability of ¢(X, X') At- X’ > d; if the result is
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unsatisfiable, then the bound of ¢ is input-independent, that is, it is always d if
the trace is feasible. Thus we do not add the input constraints for the associated
policy in the value-determination stage. Also, when computing the map nflu-
encing from nodes to abstracted states for the value-determination problem, we
do not follow the backpointers for input-independent policies, potentially drasti-
cally shrinking the resulting constraint set. Similarly, if none of the variables of
the “input template” occur in the policy, the initial constraint is irrelevant and
can be dropped.

Furthermore, we limit the size of the value-determination LP by merging
some of the unknowns. This is equivalent to equating these variables, thus
strengthening the constraints. The result thus under-approximates the fixed
point of the selected policy. If it is less than the policy fixed point (not inductive
with respect to the policy), we fall back to the normal value determination.

During abstraction on the intermediate state (ag, 1), we may skip the opti-
mization query based on a syntactic check: if we are optimizing for the tem-
plate t, and none of the variables of ¢ occur in v, we return the bound associated
with aglt].

Additionally, during maximization we add a redundant lemma to the set of
constraints that specifies that the resultant value has to be strictly larger than
the current bound. This significantly speeds up the maximization by shrinking
the search space.

Iteration Order. In our experiments, we have found performance to depend on
the iteration order. Experimentally, we have determined a good iteration order
to be the recursive iteration strategy using the weak topological ordering [20].
This is a strength of LPI: it blends into existing iteration strategies.

Unrolling. We unroll loops up to depth 2, as some invariants can only be
expressed in the template constraints domain in the presence of unrollings (e.g.,
invariants involving a variable whose initial value is set only inside the loop).

Abstraction Refinement for LPI. As a template constraints domain can
be configured by the number of templates present, it is a perfect candidate for
refinement, as templates can be added to increase the precision of the analysis.

However, a full abstraction-refinement algorithm for LPI would be outside of
the scope of this work, and thus to obtain the results we use a naive algorithm
that iteratively tries progressively more precise and costly configurations until
the program can be verified. The configurations we try are (in that order):

(i) Intervals

(ii) Octagons

(iii) Previous 4+ Unrolling

(iv) Previous + Rich Templates (£x £y + 2)
) Previous + Congruence Analysis.

5 Experiments

We have evaluated our tool on the benchmarks from the category “Loops” of the
International Competition on Software Verification (SV-COMP’15) [21] consisting



Program Analysis with Local Policy Iteration 143

of 142 C programs, 93 of which are correct (the error property is unreachable).
We have chosen this category for evaluation because its programs contain numer-
ical assertions about variables modified in loops, whereas other categories of SV-
COMP mostly involve variables with a small finite set of possible values that can
be enumerated effectively. All experiments were performed with the same resources
asin SV-COMP’15: an Intel Core i7-4770 quad-core CPU with 3.40 GHz, and lim-
its of 15 GB RAM and 900s CPU time per program. The tool is integrated inside
the open-source verification framework CPAchecker [7], used configuration and
detailed experimental results are available at http://lpi.metaworld.me.

We compare LPI (with abstraction refinement) with three tools representing
different approaches to program analysis: BLAST 2.7.3 (SV-COMP’15) [22],
which uses lazy abstraction, PAGAI (git hash 254c2fc693) [23], which uses
abstract interpretation with path focusing, and CPAchecker 1.3.10-svcomp15
(SV-COMP’15) [7], the winner of SV-COMP 2015 category “Overall”, which
uses an ensemble of different techniques: explicit value, k-induction, and lazy
predicate abstraction. For LPI we use CPAchecker in version 1.4.10-1pi-vmcail6.

Because LPI is an incomplete approach, it can only produce safety proofs
(no counter-examples). Thus in Table1 we present the statistics on the num-
ber of safety proofs produced by different tools. The first five columns represent
differences between approaches: the cell corresponding to the row A and a col-
umn B (read “A vs. B”) displays the number of programs A could verify and
B could not. In the column Unique we show the number of programs only the
given tool could verify (out of the analyzers included in the comparison). The
column Verified shows the total number of programs a tool could verify. The
column Incorrect shows false positives: programs that contained a bug, yet were
deemed correct by the tool — our current implementation unsoundly ignores
integer overflows, as though the program used mathematical integers.®

From this table we see that LPI verifies more examples than other tools can,
including seven programs that others cannot.

Timing Results. In Sect.4 we have described the various possible configu-
rations of LPI. As trying all possible combinations of features is exponential,
tested configurations represent cumulative stacking of features. We present the
timing comparison across those in the quantile plot in Fig.3a, and in the leg-
end we report the number of programs each configuration could verify. Each
data point is an analyzed program, and the series are sorted separately for each
configuration.

The quantile plot for timing comparison across different tools is shown in
Fig.3b. We have included two LPI configurations in the comparison: fastest
(LPI-Intervals) and the most precise one (LPI-Refinement, switches to a more
expensive strategy out of the ones in Fig. 3a if the program cannot be verified).
From the plot we can see that LPI performance compares favorably with lazy
abstraction, but that it is considerably outperformed by abstract interpretation.

8 Tt is possible to add sound overflow handling, as done in e.g. Astrée, to our approach,
at the expense of extra engineering.
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Table 1. Number of verified programs of different tools (LPI in abstraction-refinement
mode)

vs. PAGAI | LPI| BLAST | CPAchecker | Unique | Verified | Incorrect

PAGAI - 4 13 15 1 52 1

LPI 13 - 20 20 7 61 1

BLAST 6 4 - 8 0 45 1

CPAchecker 21 17 21 - 12 58 2
10° [ “o— Intervals (verified: 34) 108 | —o— PAGAT (verified: 52)

—#— Above +Octagons (40)
—e— +Unrolling (46)
—+— +Rich Templates (48)
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Fig. 3. Quantile timing plots. Each data point is an analyzed program, timeouts are
excluded.

The initial difference in the analysis time between the CPACHECKER-based tools
and others is due to JVM start-up time of about 2s.

6 Conclusion and Future Work

We have demonstrated that LPI is a viable approach to program analysis, which
can outperform state-of-the-art competitors either in precision (abstract inter-
pretation), or both in precision and scalability (predicate abstraction). However,
much work needs to be done to bring policy-iteration-based approaches to the
level of maturity required for analyzing industrial-scale codebases, in particular:

— Sound handling of machine integers and floats, and overflow checking in par-
ticular. The only incorrect result given by LPI on the dataset was due to the
unsound overflow handling. It is possible to check the obtained invariants for
inductiveness using bitvectors or overflow checks.

— Template abstract domains are perfect candidates for refinement: dynamically
adding templates during the analysis. Using counter-examples and refining the
domain using CEGAR [24] approach is a promising research direction.



Program Analysis with Local Policy Iteration 145

Acknowledgments. The authors wish to thank Tim King for proof-reading and
extremely valuable feedback, Nikolaj Bjgrner for improving vZ performance on our
difficult cases, and the anonymous reviewers for their helpful suggestions.

References

1.

10.

11.

12.

13.

14.

15.

Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Graham,
R.M., Harrison, M.A., Sethi, R. (eds.) POPL 1977, pp. 238-252. ACM, New York
(1977)

Miné, A.: The octagon abstract domain. High. Ord. Symbolic Comput. 19(1),
31-100 (2006)

Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems
using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol.
3385, pp. 25-41. Springer, Heidelberg (2005)

Gawlitza, T., Seidl, H.: Precise relational invariants through strategy iteration. In:
Duparec, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 23—40. Springer,
Heidelberg (2007)

Gawlitza, T.M., Monniaux, D.: Invariant generation through strategy iteration in
succinctly represented control flow graphs. Logical Meth. Comput. Sci. vol. 8(3:29)
(2012)

Shamir, A.: A linear time algorithm for finding minimum cutsets in reducible
graphs. SIAM J. Comput. 8(4), 645-655 (1979)

Beyer, D., Keremoglu, M.E.: CPACHECKER: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184-190. Springer, Heidelberg (2011)

Bjgrner, N., Phan, A.-D., Fleckenstein, L.: vZ - an optimizing SMT solver. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194-199. Springer,
Heidelberg (2015)

Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504-518. Springer, Heidelberg
(2007)

Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Bloem, R., Sharygina, N. (eds.) FMCAD 2010, pp. 189-197.
IEEE (2010)

Roux, P., Garoche, P.-L.: Integrating policy iterations in abstract interpreters.
In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 240-254.
Springer, Heidelberg (2013)

Monniaux, D., Schrammel, P.: Speeding up logico-numerical strategy iteration. In:
Miiller-Olm, M., Seidl, H. (eds.) Static Analysis. LNCS, vol. 8723, pp. 253—-267.
Springer, Heidelberg (2014)

Gaubert, S., Goubault, E., Taly, A., Zennou, S.: Static analysis by policy iteration
on relational domains. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
237-252. Springer, Heidelberg (2007)

Colén, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: Hunt Jr, W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 420-432. Springer, Heidelberg (2003)

Monniaux, D.: Automatic modular abstractions for template numerical constraints.
Logical Meth. Comput. Sci. 6(3:4), June 2010



146

16.

17.

18.

19.

20.

21.

22.

23.

24.

E.G. Karpenkov et al.

Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Aho, A.V., Zilles, S.N., Szymanski, T.G. (eds.) POPL 1978, pp.
84-96. ACM, New York (1978)

Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
model checking via large-block encoding. In: FMCAD 2009, pp. 25-32. IEEE (2009)
Monniaux, D., Gonnord, L.: Using bounded model checking to focus fixpoint itera-
tions. In: Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 369-385. Springer,
Heidelberg (2011)

Gawlitza, T., Seidl, H.: Precise fixpoint computation through strategy iteration. In:
De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 300-315. Springer, Heidelberg
(2007)

Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Broy, M.,
Pottosin, I.V., Bjgrner, D. (eds.) Formal Methods in Programming and Their
Applications. LNCS, vol. 735, pp. 128-141. Springer, Heidelberg (1993)

Beyer, D.: Software verification and verifiable witnesses. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 401-416. Springer, Heidelberg (2015)
Shved, P., Mandrykin, M., Mutilin, V.: Predicate analysis with BLAST 2.7. In:
Flanagan, C., Konig, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 525-527.
Springer, Heidelberg (2012)

Henry, J., Monniaux, D., Moy, M.: PAGAI: a path sensitive static analyser. Electr.
Notes Theor. Comput. Sci. 289, 15-25 (2012)

Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, EAllen, Sistla, Aravinda Prasad (eds.) CAV
2000. LNCS, vol. 1855. Springer, Heidelberg (2000)



Lazy Constrained Monotonic Abstraction

Zeinab Ganjei®™), Ahmed Rezine, Petru Eles, and Zebo Peng

Linko6ping University, Link6ping, Sweden
zeinab.ganjei@liu.se

Abstract. We introduce Lazy Constrained Monotonic Abstraction
(lazy CMA for short) for lazily and soundly exploring well structured
abstractions of infinite state non-monotonic systems. CMA makes use
of infinite state and well structured abstractions by forcing monotonic-
ity wrt. refinable orderings. The new orderings can be refined based on
obtained false positives in a CEGAR like fashion. This allows for the
verification of systems that are not monotonic and are hence inherently
beyond the reach of classical analysis based on the theory of well struc-
tured systems. In this paper, we consistently improve on the existing
approach by localizing refinements and by avoiding to trash the explored
state space each time a refinement step is required for the ordering. To
this end, we adapt ideas from classical lazy predicate abstraction and
explain how we address the fact that the number of control points (i.e.,
minimal elements to be visited) is a priori unbounded. This is unlike the
case of plain lazy abstraction which relies on the fact that the number of
control locations is finite. We propose several heuristics and report on our
experiments using our open source prototype. We consider both back-
ward and forward explorations on non-monotonic systems automatically
derived from concurrent programs. Intuitively, the approach could be
regarded as using refinable upward closure operators as localized widen-
ing operators for an a priori arbitrary number of control points.

Keywords: Constrained monotonic abstraction + Lazy exploration -
Well structured systems - Safety properties - Counter machines
reachability

1 Introduction

Well structured transition systems (WSTS:s for short) are maybe everywhere
[17], but not all transition systems are well structured [3,18]. Problems such
as state reachability (e.g., safety) have been shown to be decidable for WSTS:s
[2,17]. This led to the development of algorithms that could check safety for
systems ranging from lossy channels and Petri Nets to concurrent programs and
broadcast protocols [19,23,25]. Many interesting examples of systems, including
list manipulating programs [9], cache protocols [13] and mutex algorithms [1] are
“almost” well structured in the sense that they would have been well structured
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if it was not for a number of transitions that violate the required assumptions.
We build on the framework of Constrained Monotonic Abstraction (CMA for
short) where we derive well structured abstractions for infinite state systems
that are “almost” well structured.

To simplify, a WSTS comes with a well quasi ordering (wqo! for short) on
the set of configurations. A key property of such systems is monotonicity: i.e., if
a smaller configuration can fire a transition and get to some configuration ¢, then
any configuration that is larger (wrt. the wqo) can also get to some configuration
that is larger than c. In other words, larger configurations simulate smaller ones.
Added to some assumptions on the effectivity of natural operations such as
computing minimal elements and images of upward closed sets of configurations,
it is possible to show the existence of sound and complete algorithms for checking
the reachability of upward closed sets of configurations (i.e., coverability).

Systems where only some transitions are non monotonic can be approximated
using WSTS:s by adding abstract transitions to restore monotonicity (monotonic
abstraction). The resulting abstraction is also infinite state, and reachability of
upward closed sets there is decidable. However, the obtained abstractions may
fail to enforce invariants that are crucial for establishing unreachability of bad
configurations in the original system. For instance, we explain in our recent work
[18] how we automatically account for the number of processes synchronizing
with (dynamic) barriers when establishing or refuting local (e.g., assertions) and
global (e.g., deadlock freedom) properties of programs manipulating arbitrary
many processes. Crucial invariants of such systems enforce an inherently non-
monotonic behavior (e.g., a barrier transition that is enabled on a configuration
is disabled if more processes are considered in a larger configuration).

Checking safety for such non-monotonic systems is not guaranteed to ter-
minate without abstraction. Plain monotonic abstraction [1,20] makes use of
sets that are upward closed wrt. natural orderings as a sound symbolic repre-
sentation. As stated earlier, this ensures termination if the used preorder is a
wqo [2]. Of course, this comes at the price of possible false positives. In [3], we
adapted existing counter example guided abstraction refinement (CEGAR) ideas
to refine the ordering in plain monotonic abstraction. The preorder is strength-
ened by only relating configurations that happen to be in the same equivalence
class, as defined by Craig interpolants obtained from the false positives. The
new preorder is also a wqo, and hence, termination is again ensured. As imple-
mented, the predicates are applied on all generated minimal elements to separate
upward closed sets and the exploration has to restart from scratch each time a
new refinement predicate is encountered.

We address these inefficiencies by adopting a lazy approach. Like in lazy
predicate abstraction [21], we strive to localize the application of the refinement
predicates and to reuse the explored state space. However, a major difference
with plain lazy predicate abstraction is that the number of “control locations”

1 A reflexive and transitive binary relation < over some set A is a preorder. It is said
to be a wqo over A if in any infinite sequence a1, asz, ... of elements of A, there exist
1 <4 < j such that a; < aj.
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(i.e., the locations to which subsets of the refinement predicates are mapped) is
a priori unbounded (as opposed to the number of program locations of a non-
parameterized system). We propose in this paper three heuristics that can be
applied both in backward and in forward (something plain monotonic abstraction
is incapable of). All three heuristics adopt a backtracking mechanism to reuse,
as much as possible, the state space that has been explored so far. Schematically,
the first heuristic (point-based) associates refinement predicates to minimal ele-
ments. The second heuristic (order-based) associates the refinement predicates to
preorder related minimal elements. The third heuristic (descendants-based) uses
for the child the preserved predicates of the parent. We describe in details the
different approaches and state the soundness and termination of each refinement
step. In addition, we experimentally compare the heuristics against each other
and against the eager approach on our open source tool https://gitlab.ida.liu.
se/apv/zaama.

Related Work. Coverability of non-monotonic systems is undecidable in general.
Tests for zero are one source of non-monotonicy. The work in [8] introduces a
methodology for checking coverability by using an extended Karp-Miller accel-
eration for the case of Vector Addition Systems (VAS:s for short) with at most
one test for zero. Our approach is more general and tackles coverability and
reachability for counter machines with arbitrary tests.

Verification methods can be lazy in different ways. For instance, Craig inter-
polants obtained from program runs can be directly used as abstractions [26],
or abstraction predicates can be lazily associated to program locations [21].
Such techniques are now well established [5,10,27]. Unlike these approaches, we
address lazy exploration for transition systems with “infinite control”. Existing
WSTS based abstraction approaches do not allow for the possibility to refine the
used ordering [23,25], cannot model transfers for the local variables [16], or make
use of accelerations without termination guarantees [7]. For example, in [23] the
authors leverage on the combination of an exact forward reachability and of an
aggressive backward approximation, while in [25], the explicit construction of a
Petri Net is avoided.

The work in [24] gives a generalization of the IC3 algorithm and tries to build
inductive invariants for well-structured transition systems. It is unclear how to
adapt it to the kind of non-monotonic systems that we work with.

We believe the approach proposed here can be combined with such tech-
niques. To the best of our knowledge, there is no previous work that considered
making lazy the preorder refinement of a WSTS abstraction.

Outline. We start in Sect. 2 with some preliminaries. We then formalize targeted
systems and properties in Sect. 3. We describe the adopted symbolic representa-
tion in Sect.4 and go through a motivating example in Sect. 5. This is followed
by a description of the eager and lazy procedures in Sect. 6. We finally report on
our experiments in Sect.7 and conclude in Sect. 8.
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2 Preliminaries

We write N and Z to respectively mean the sets of natural and integer values.
We let B = {tt,ff} be the set of boolean values. Assume in the following a set
X of integer variables. We write £(X) to mean the set of arithmetic expressions
over X. An arithmetic expression e in £(X) is either an integer constant k, an
integer variable x in X, or the sum or difference of two arithmetic expressions.
We write e(X) to emphasize that only variables in X are allowed to appear in e.
We write atoms0f(X) to mean the set of atoms over the variables X. An atom «
is either a boolean tt or £f or an inequality e ~ ¢’ of two arithmetic expressions;
where ~ € {<, <, >,>}. We write A to mean a set of atoms. Observe that the
negation of an atom can be expressed as an atom. We often write ¢ to mean a
conjunction of atoms, or conjunct for short, and use ¥ to mean a set of conjuncts.
We use IT(£(X)) to mean arbitrary conjunctions and disjunctions of atoms over
X. We can rewrite any presburger predicate over X in negated normal form
and replace the negated inequalities with the corresponding atoms to obtain an
equivalent predicate 7 in IT(£(X)). We write atoms0f(7w) to mean the set of
atoms participating in 7.

A mapping m : U — V associates an element in V to each element in U.
We write m : U + V to mean a partial mapping from U to V. We write
dom(m) and img(m) to respectively mean the domain and the image of m and use
ey : U -+ V for the mapping with an empty domain. We often write a partial
mapping m : U - V as the set {u «— m(u)| v € dom(m)} and write m U m’
to mean the union of two mappings m and m’ with disjoint domains. Given a
partial mapping % : X -~ £(X), we write v,(e) to mean the substitution in e of
X variables by their respective x images and the natural evaluation of the result.
As usual, v, (e) is a well defined integer value each time x is a total mapping to
Z. This is generalized to (sets of) atoms, conjuncts and predicates.

We let X (resp. X>¢) be the set of all total mappings X — Z (resp. X — N).
We write Ox for the total mapping X — {0}. The denotation of a conjunct
over X (resp. X>¢), written [¢]x (resp. []x.,), is the set of all total mappings
% in X (resp. in X>q) s.t. 14,(¢)) evaluates to tt. We generalize to sets of atoms
or conjuncts by taking the union of the individual denotations. Let < be the
preorder over X>¢ defined by x <% iff z(x) < #(z) for each z € X. Given a
predicate 7 in IT(§(X)), we say that a set M C [¢]x., is minimal for ¢ if:
(i) 2 £ % for any pair of different z,%' € M, and (ii) for any 2’ € [¢]x.,, there
is an x € M s.t. x Ix'. We recall the following facts from Linear Programming
and [22].

Lemma 1. For a finite set of natural variables X, the preorder < is a partial
well quasi ordering. In addition, we can compute a finite and unique minimal
set (written ming(m)) for any predicate w in II(£(X)).

3 The State Reachability Problem

In this section, we motivate and formally define the reachability problem.
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shared :
bool read := x; 8Co, gC1, C3, 8Ca

process : 8Cini
to. PCo — PCo : sSpawn
ti1. pco — pcy : read :=tt

&Cerr

tz. pcy — pcp : read := ff

t3. pca — pcs : barrier()
ts. pcs — pcs : assert(lread) e gCo, EC2, EC3

Fig.1. The counter machine to the right captures the behaviour of the concurrent
program to the left. It makes use of one counter per program location. It involves the
following guarded commands: gcins ::= (co, c1,¢2,¢3,¢4 := 1,0,0,0,0), gco ::= (co >
1= c:=co+1),gci i=(co>1= co,c1 :=co— L,e1 +1), g2 i= (1 > 1=
ci,c2 :=c1—lyea+ 1), gea i=((c2 > 1 ANeco+c1 =0) = (co,c3 :=c2—1,c3+1)),
gca = (c3 > 1= c3,ca:=c3—1,ca + 1), and gcerr : (c3 > 1). The resulting system is
not well structured because of the zero test in gcs.

An Example. Consider the multi-threaded program to the left of Fig.1 where
only a single thread starts executing the program. A thread can spawn arbitrar-
ily many concurrent threads with to,. Assume all threads asynchronously run
the same program. Each thread can then set the shared flag read to tt, and
perform some reading followed by resetting read to £f. All threads wait at the
barrier. Obviously, read should be ff after the barrier since all threads that
reached pcz must have executed t,. The assertion at pcs should therefore hold
no matter how many threads are spawned. Capturing the barrier behaviour is
crucial for establishing the non-violation of the assertion. The barrier behaviour
is inherently non monotonic (adding more threads does not keep the barrier
open). Our recent work [18] on combining different abstraction techniques can
automatically generate non-monotonic counter machines such as the one to the
right of Fig. 1. For this case, the assertion in the concurrent program is violated
iff the target state is reachable in the counter machine. We explain briefly in the
following how such counter machines are generated.

Our tool PACMAN [18], takes as input multi-threaded programs similar to the
one to left of Fig. 1. It automatically performs predicate, counter and monotonic
abstractions on them and generates counter machines that overapproximate the
behaviour of the original program. It then tries to solve the reachability problem
for those machines.

Given a multi-threaded program, PACMAN starts by generating concur-
rent boolean programs by performing predicate abstraction and incrementally
improving it in a CEGAR loop [14]. This results in a boolean multi-threaded pro-
gram that has the same control flow graph as the original program, but consists
of only boolean variables. To the obtained boolean program, PACMAN applies
counter abstraction to generate a counter machine. Intuitively, each counter in
the machine is associated to each local state valuation of a thread (that consists
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in the location and the valuation of the local variables of the thread). Each state
in the machine is also associated to a valuation of shared variables. An extra
state is reserved for the target. The statements of the boolean program are then
translated as transitions in the counter machine.

For instance, in Fig. 1, counters c;, for i : 0 < i < 4, correspond respectively
to the number of threads in program locations pe; (the threads have no local
variables here). Similarly, each transition gc; is associated to each t;. More-
over, there are two additional transitions gcin; and gcery to model transitions
involving initial or target states.

Note that the original multi-threaded program has non-monotonic invariants.
For instance, transitions such as barriers, or any transition that tests variables
representing the number of threads satisfying some property do not stay enabled
if we add more threads. At the same time, the boolean concurrent programs
generated above are inherently monotonic. This corresponds to a loss of preci-
sion. Thus, proving correctness of those programs whose correctness depends on
respecting the non-monotonic behaviour (e.g., the one enforced by a barrier) can
become impossible. As a remedy to this fact, PACMAN automatically strengthens
counter machine transitions by enforcing barrier invariants or by deriving new
invariants (e.g., using an instrumented thread modular analysis) to regain some
of the precision. This proved to help in verifying several challenging benchmarks.
For example, consider the transition tz in the program to the left of Fig. 1. At the
moment a thread crosses the barrier first, there should be no thread before loca-
tion pcy. This fact holds afterwards and forbids that a thread sets the flag read
when some thread is checking the assertion. The transition gcs is its correspond-
ing transition in the strengthened counter machine. To ease the presentation of
the example, gcs is strengthened with the guard (co 4+ ¢4 = 0). (Observe that
this is a simplification to ease the presentation; we can more faithfully capture
the barrier by combining the test with a global flag.)

Counter machines. A counter machine is a tuple (Q,C, A, A, ¢;,,;¢, 44 g¢) Where
@ is a finite set of states, C' and A are two distinct sets of counters (i.e., variables
ranging over N), A is a finite set of transitions and g;,,;, and g;,.,, are two states in
Q. A transition § in A is of the form (g, (9rd = c¢md), q') where src(d) = ¢ is the
source state, dst(d) = ¢’ is the destination state and gc(d) = (grd = cmd) is the
guarded command. A guard grd is a predicate in II({(AUC)) and a command
cmd is a multiple assignment cy,...,¢, = e1,...,e, that involves eq,...¢e, in
(AU C) and pairwise different ¢q,...¢, in C.

Semantics. A configuration is a pair 8 = (¢, c) with the state st(f) = ¢ in @ and
the valuation val(f) = cin C>g : C' — N. We let © be the set of configurations.
We write 6 < 6’ to mean st(6) = st(0’) and val(d) <val(#’) (see Sect.2). The
relation < is a partial order over ©. In fact, the pair (0, <) is a partial well quasi
ordering [22]. Given two configurations (¢,c) and (¢’,c¢’) and a transition § € A
with ¢ = sre(d), ¢ = dst(0) and ge(d) = (grd = (c1,...,¢n = €1,...,€4)),
we write (g, c) LN (¢',c’) to mean that there exists an @ € A>q s.t. Vguc(grd)
evaluates to tt and ¢'(¢;) = veue(e;) for each ¢; in C. The auxiliary variables
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allow us to capture transfers (needed by predicate abstraction of concurrent
programs). For instance, (¢co > 1 Acog = agAcy = a1 Aag + a1 = ag + az) =
(co,c1,c2,c3 :=0,0,a2 + ca,a3 + c3) captures situations where at least a thread
is at pco and all threads at pco and pc; move to pcy and pcz. A run p is a
sequence 6pb; - - - 0,,. We say that it covers the state st(6,). The run is feasible

if st(0o) = ¢;,,;; and ;1 &, 0; for i:1 <i<n. We write — for Usea LN

Reachability. The reachability problem for a machine (Q,C, A, A, ¢4, Qirge) 18
to decide whether it has a feasible run that covers gy,..,.

4 Symbolic Representation

Assume a machine (Q,C, A, A, ¢4, @rge)- We introduce (operations on) sym-
bolic representations used in our reachability procedures in Sect. 6.

Bozxes. A box b over a set A of atoms is a partial mapping from A to booleans
B. Intuitively, a box corresponds to a bitvector denoting an equivalence class in
classical predicate abstraction. We use it to constrain the upward closure step.
The predicate 9, of a box b is Agedon(b) (P() A ) V (=b(a) A =ar)) (tt is used
for the empty box). Observe that this predicate is indeed a conjunct for any
fixed box b and that [¢p] does not need to be finite. We write by, for the box
of the tt conjunct. We will say that a box b is weaker than (or is entailed by) a
box b’ if 9, = 9y, is valid. We abuse notation and write b < b’. Observe this

is equivalent to [p] C [¢r]-

Constraints. A constraint over a set A of atoms is a triplet ¢ = (¢, c,b) where
st(¢) € @ is the state of the constraint, val(¢) = c is its minimal valua-
tion, and box(¢) = b over A is its box. We use @ to mean a set of constraints.
A constraint (g, ¢, b) is well formed if v¢ (1)) holds. We only consider well formed
constraints. We write clo(c, b) to mean the conjunct (Accc(c > ¢(c)) Ap). Intu-
itively, clo(c, b) denotes those valuations that are both “in the box” and in the
<J-upward closure of ¢. We let [(¢, ¢, b)] be the set {(¢,¢’)| ¢’ € [clo(c,b)]}. This
set contains at least (¢, ¢) by well formedness. Given two constraints (¢, ¢, b) and
(¢',d, '), we write (¢,c,b) C (¢/,c’,b’) to mean that: (i) ¢ = ¢/, and (ii) e < ¢/,
and (iii) b < b’. Observe that ¢ C ¢’ implies [¢'] C [¢]. A subset & of a set
of constraints @ is minimal if: (i) ¢1 £ ¢o for any pair of different constraints
@1,¢2 € @, and (ii) for any ¢’ € &, thereisa ¢ € P s.t. ¢ C ¢'.

Lemma 2. For a finite set of atoms A over C, the ordering C is a well quasi
ordering over the set of well formed constraints over A. In addition, we can
compute, for any set & of constraints, a finite C-minimal subset minc (P).

Image Computations. Assume a conjunct ¢ over C' and a guarded command
gc = (grd = cmd) for some § € A. Recall that grd is in IT(§(C U A)) and that
cmd is of the form ¢q,...,¢c, :=e€1,...,e, where, foreachi:1<i<mn, ¢ isin C
and e; is also in £(C'U A). We let L’ be the set of primed versions of all variables
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appearing in the left hand side of emd. We write pre (1) to mean a set of
conjuncts whose disjunction is equivalent to (3A U L'.(A1<i<n(c; = €;) A grd A
Y[{e | ¢ € L'}])). We also write post (1) to mean a set of conjuncts whose
disjunction is equivalent to (JAUC.(A1<i<n(c; = e;) AgrdAy))[{c — c| c € C}].
We naturally extend pregc(w) and postgc(w) to sets of conjuncts.

Lemma 3. Assume 6 € A and conjuncts ¥. We can compute prey, s (¥) and

posty (V) s.t. [pregs(P)] (resp. [post,.s)(¥)]) equals {c| (src(d),c) 2
(dst(9),c') with ¢’ € [#]} (resp. {c| (sre(d),c) 2 (dst(6),c") with c € [¥]}).

Grounded Constraints and Symbolic Sets. A grounded constraint is a pair
v = ((g,¢c,b),v) that consists of a constraint cstr0f(vy) = (¢,c,b) and a con-
junct ground0£(y) = %. It is well formed if: (¢, ¢, b) is well formed, 1) = clo(c, b)
is valid, and ¢ € [¢]. We only manipulate well formed grounded constraints.
Intuitively, the ground ¢ in ((¢g,c,b),%) represents the “non-approximated”
part of the <-upward closure of ¢. This information will be needed for refin-
ing the preorder during the analysis. We abuse notation and write cstr0f(I),
resp. ground0f(I”), to mean the set of constraints, resp. grounds, of a set I’
of grounded constraints. A trace o of length n is a sequence starting with a
grounded constraint followed by n transitions and grounded constraints. We say
that two traces (¢0a¢0)'51‘(¢171/)1) e 6n(¢n»¢n) and ((156»@/16)5’1( /1a'l/},1) T ;L"
(¢, 90, are equivalent if: (i) n = n’, and (ii) 0; is the same as ¢ for each
i:1<i<m,and (iii) ¢; C ¢, ¢; C ¢; and ¢; < ¢ for each i : 0 < i < n.
A symbolic set is a set of pairs of grounded constraints and traces. Given a
symbolic set T, we also use cstr0£f(T) to mean all constraints ¢ appearing in
some ((¢,),0) in T. Recall that we can compute a set ming(cstr0£(7T)) of
C-minimal constraints for cstr0f (7).

5 An Illustrating Example

We use the example introduced in Sect. 3 to give an intuition of the lazy heuristics
described in this paper. A more detailed description follows in Sect. 6.

Plain monotonic abstraction proceeds backwards while systematically closing
upwards wrt. the natural ordering < on 6. The trace depicted in Fig.2 is a
generated false positive. In this description, for ¢ : 0 < i < 7, we write v; =
(i, 1) to mean the grounded constraint with the grounded constraint +; and
the constraint ¢; = (g;,c;, b;). Intuitively, the grounded constraint represents
“exact” valuations while the constraint captures over-approximations that are
of the form (g;,c) where ¢; < ¢ and ¢ satisfies ¢p,. The computation starts
from the grounded constraint vz = ((trgt, 7, bes), ¥7) where ¥7 is Acec(c > 0)
(always implicit). For ~7, the exact and the over-approximated parts coincide.

The trace then computes g = (cs > 1) which captures the valua-
tions of the predecessors of (trgt,cr, byy) wrt. (rd, gcerr, trgt). This set hap-
pens to be upward closed and there is no need for approximation, hence
v6 = ((rd, cg, byt ), ¥6). Valuations of the exact predecessors of (rd, cg, by) wrt.
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(rd, gcs, rd) are captured with the conjunct ¢5 = (cg = ¢; =0 A ¢y > 1). These
are approximated with the conjunct (co > 0 Ac; > 0 A ce > 1). Continuing to
compute the predecessors and closing upwards leads to the constraint ¢g which
involves the initial state init. The trace is reported as a possible reachability
witness. It is well known [4] that upward closed sets are not preserved by non-
monotonic transitions (such as those involving gcs in Fig. 1). At the same time,
maintaining an exact analysis makes guaranteeing termination impossible.

Following the trace in forward from the left, it turns out that the upward
closure that resulted in 75 is the one that made the spurious trace possible.
Indeed, it is its approximation that allowed the counter ¢; to be non zero. This
new value for ¢; is the one that allowed the machine to execute (—rd, gcy, rd) in
backward from ¢5, making reaching the initial state possible. The constraint ¢s
is the pivot constraint of the trace. Constrained monotonic abstraction (CMA)
proposes to refine the used ordering by strengthening it with a relevant predicate.
In this case, ¢; < 0 is used for strengthening, but in general (the atoms of) any
predicate in IT(£(C)) that separates the exact predecessors from the reachable
part of the upward closure would do.

(‘0 >1 b i cg > 1 c3 > 1
—> —> 1 = —> - e
init Eclmt —rd gcen— trgt
co cQ cop =0
c1 cy c1 =0
co c co ] cy =0
c3 c3 < cg =0
cyq d g cy cyq cqg =0
5

[« C c7
Fig. 2. A spurious trace generated by monotonic abstraction. The 5 constraint intro-
duces the first over-approximation that makes the spurious trace possible. The config-
uration (rd,cs) is the pivot configuration of the spurious trace.
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Eager CMA. Introduced in [3]. The exploration is restarted from scratch and
(c1 < 0) is used to systematically partition all exact predecessors. The upward
closure is constrained to not alter the refinement predicate. All generated valu-
ations are therefore approximated with the stronger ordering. Localizing refine-
ment can make possible both reusing a potentially large part of the explored
state space and applying the (slower) refinement to a smaller number of sets.

Lazy CMA. When backtracking, we only eliminate those constraints that were
obtained as descendants of a constraint that needs to be refined. We refer to this
constraint as the pivot constraint, and to its minimal configuration as the pivot
configuration. In fact, we identify three localization heuristics:

— point-based-lazy. We map the refinement predicates to the pivot configura-
tions. Later in the exploration, when we hit a new pivot configuration, we
constrain wrt. those predicates that were already mapped to it.

— order-based-lazy. The point-based approach may be too localized as there is
an infinite number of pivot configurations. For instance, a similar trace can
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continue, after (rd,co = 1), with gc; and get to the minimal configuration
sending ¢y to 2. This one is different from the mapped pivot configuration, and
hence we need to introduce a new pivot configuration with the same predicate
¢o < 0. This approach considers the predicates of all larger or smaller pivot
configurations. The idea being that, if the predicate was important for the
mapped pivot configuration, then it must have been to separate it from a
reachable upward closed part, and hence it may be relevant.

— descendants-based-lazy. In addition to associating refinement predicates to
pivot configurations as in the point-based approach, this heuristic leverages on
the fact that predicates may remain relevant for a sequence of transitions. Here
we compare the exact predecessors with the predicates used to constrain the
upward closure of the parent. If those predicates still hold for the predecessors,
then we maintain them when closing upwards. This heuristic bears similarity
to forward propagation of clauses in IC3 [24], as in the IC3 algorithm the
clauses are propagated in the trace from a preceding formula to the succeeding
one if they still hold.

6 State Reachability Checking

We describe in this section four different forward CMA variants (eager, point-
based-lazy, order-based-lazy and descendants-based-lazy). The four procedures
can also be applied in backwards (as described in the experiments of Sect. 7).
The four variants use grounded constraints as symbolic representations for pos-
sibly infinite numbers of machine configurations. The symbolic representation is
refined using atoms obtained using a counterexample guided refinement scheme.
The difference between the four variants lays in the way discovered predicates
(in fact atoms for simplifying the presentation) are associated to the new sym-
bolic representations and in the way backtracking is carried out. We start by
introducing the basic “partition” procedure.

Input: a state ¢, a conjunct ¥ and a finite set of atoms A
Output: a well formed set of grounded constraints
.=
foreach (total b: A — B) do
| foreach (c € ming(¢) Ap)) do I':=TI U ((q,c,b), Aclo(c,b)) ;
return [

LI VI

Procedure partition(g, 1, A) is common to all variants.

Partition. “partition(q,, A)” partitions ¢ according to all atoms in A. Each
obtained conjunct is further decomposed according to its <-minimal valuations.
Conjuncts are then used to build a well formed grounded constraint ((g, ¢, b),¥’)
where b is a box over A. Observe that the disjunction of the grounds of
the obtained grounded constraints is equivalent to 1. Soundness is stated in
Lemma4.

Lemma 4. Assume a finite set A of atoms. For any conjunct 1,
it is the case that [(¢,¥)] = {(g,c)] ¢ € [¢]>0 foreach ' €
ground0f(partition)(q, v, A))} C [estrOf(partition)(q, v, A))].
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Input: a machine M = (Q,C, A, A, q;,,:4, prgt)

Output: A feasible run covering Qyrgy OF the value unreachable
if g;,,;4 = 4y then return (@init>0c);

S, I' := (), partition(q;,;;, Acec (c > 0),0);

foreach (v € I') do S:=SU{(v,7)};

return explore(M, S, S, 0, eo);

LI

Procedure checkReachability (M) is the common entry point for all variants.

Eager CMA, like the other variants, starts by passing a description of the
machine to the “checkReachability” procedure. It returns a feasible run cov-
ering ¢, or states that there are no such runs. The procedure returns directly
(line 1) if initial and target states coincide. It then calls “partition” to obtain a
set of well formed grounded constraints that together capture all initial config-
urations. These are passed to the “explore” procedure.

Ezxplore. “explore(M,work, store, sleep,[)” results in a working list process
that maintains three symbolic sets work, store and sleep. The last is only
relevant for the lazy variants. The partial mapping [ : © - atoms0f(C) encap-
sulates all refinement predicates discovered so far and is therefore empty when
the procedure is called from “checkReachability”. Intuitively, F(6) associates to
the pivot configuration @ those predicates that helped eliminate a false positive
when 6 was the minimal configuration of the constraint that made the false pos-
itive possible. We will explain how [ is updated when introducing the procedure
“simulate”. The symbolic set work is used for the grounded constraints that are
yet to be visited (i.e., for which the successors are still to be computed and
approximated). The store set is used for both those grounded constraints that
have been visited and for those in working. The sleep set corresponds to those
constraints that might have to be visited but for which there is an C-equivalent
representative in store. In case a backtracking eliminates the representative in
store, the corresponding grounded constraint in sleep has to be reconsidered.
This is explained in the “backtrack” procedure of the lazy variants.

Input: A machine description M = (Q,C, A, A, q; .45 qwgt)7 three symbolic sets work, store
and sleep, and a partial mapping [ : © - atoms0£f(C)
Output: A feasible run covering Qtrgt OF the value unreachable
while there exists ((¢,), o) in work with ¢ € ming (cstrOf(store)) do
remove ((¢, ), o) from work;
(q,¢,b) :=¢;
if ¢ = Qirgt then
‘ return simulate(M, work, store, sleep, [, o);
foreach § = (g, gc,q’) in A do
foreach v, € post_ (clo(c,b)) do
foreach (¢',%’) in decompose(q’,¥p,F,b) do
o =08 (¢ )
if there is ((¢e, ), 0,.) in store s.t. . is C-equivalent to ¢’ then
if o, and o’ are not equivalent then
| add ((¢',9’),0") to sleep;
else add ((¢’,%'),0’) to both store and work ;
return unreachable;

© 0 N AW N

B oe e
N = O

=R
oW

Procedure explore(M, work, store, sleep, [) is common to all variants.
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The procedure picks a pair ((¢,%),0) from work and ming (cstr0f(store)).
If the initial state is reached, it calls procedure “simulate” to check the associ-
ated trace and to backtrack if needed (lines 4-5). Otherwise, we start by iterat-
ing through all transitions ¢ in A and compute an exact representation of the
predecessors of the constraint. The call “decompose(q, ¥, [, b)” boils down, for
the eager variant, to a call to “partition(q, ¢y, img([))”. The obtained grounded
constraints are used to update the store,work and sleep symbolic sets.

If there was no pair picked at line 1, then we have finished the exploration
and return unreachable. In fact, pairs are never removed from store if no target
states are encountered at line 4. In addition, two pairs with C-equivalent con-
straints cannot be added to work (lines 10-13). For this reason, executing the
first line an infinite number of times without calling procedure “simulate” would
result in an infinite sequence of constraints that would violate Lemma 2.

Input: machine M, symbolic sets work, store and sleep, a mapping [ : © - atoms0f(C) and
a trace 0 = (¢o,%0) - 01+ On * (dn,¥n) With n > 1 and g5 = ;¢ and q,, = G445

Output: A feasible run covering Qyrg¢ OF the value unreachable

1 Wy = {Ynl};

2 for i« (n—1) to 0 do

3 vl = Preg (s, 1) (Fit1);

4 ;= {(Ys AYL)| L € P! and (¢; A ¥p)) is sat};

5 if ¥; is empty then

6 F((st(¢s),val(g;)))U := {a| o € atoms0f () with 7 € ITP({+;},¥/)};

7 return backtrack(M, work, store, sleep, [, o, i);

8 return a run starting at (g;,,;,,c) for some ¢ € ¥y and following till Aprgis

Procedure simulate(M, work, store, sleep, [, o) is common to all variants.

Simulate. This procedure checks feasibility of a trace o from g;,;; t0 G.g-
The procedure incrementally builds a sequence of sets of conjuncts ¥, ..., %,
where each ¥; intuitively denotes the valuations that are backwards reachable
from g,,,, after k steps of o (starting from k& = 0), and are still denoted by
clo(C(n—k), bn—r)). The idea is to systematically intersect (a representation of)
the successors of step k& with the grounded constraint that gave raise to the
constraint at step k + 1. If the procedure finds a satisfiable ¥, then a run can
be generated by construction. Such a run is then returned at line 8. Otherwise,
there must have been a step where the “exact” set of conjuncts does not inter-
sect the conjunct representing the exact part that gave raise to the corresponding
constraint. In other words, the trace could be eliminated by strengthening the
over-approximation at line 7 of the “explore” procedure. In this case, (at line
6 of the “simulate” procedure), new refinement atoms are identified using an
off-the-shelf interpolation procedure for QF_LIA (Quantifier Free Linear Arith-
metic). This information will be used differently by the eager and lazy variants
when calling their respective “backtrack” procedures.

Input: a machine M, sets work and store and mapping [ : © - atoms0£f(C) ;
Output: A feasible run covering Qyrgt OF the value unreachable

store, work := (), 0;

I' := partition(q;,,;4, Acec (¢ > 0), img(F));

foreach (¢, ) in I' do

| s:=5U{((¢¥),($,¥)}
return explore(M, S, s, 0, [);

[SI NI SR

Procedure backtrack(M, work, store, _,[, _, ) this is the eager variant.



Lazy Constrained Monotonic Abstraction 159

Eager backtracking throws away the explored state space (line 1) and restarts
the computation from scratch using the new refinement atoms captured in f.

Lazy Backtracking. Intuitively, all three lazy approaches reuse the part of the
explored state space that is not affected by the new refinements. This is done
by restarting the exploration from new sets work and store that are obtained
after pruning away the pivot constraint identified by the argument i passed
by “simulate” together with all its descendants (identified in lines 1-6). One
important aspect is that grounded constraints that have not been added to
store at line 11 of the “explore” procedure may have been discarded for the
wrong reason (i.e., there was an C-equivalent constraint that needs to be pruned
away now). This would jeopardize soundness. For this reason we maintain the
sleep set for tracking the discarded grounded constraints that have to be put
back to work and store if the constraint that blocked them is pruned away (see
lines 4-6). The refined pivot is added to the new sets work and store (lines
10-13). Lines 7-9 are only used by the descendants-based approach which takes
into account the box of the parent.

Input: symbolic sets work, store and sleep; a mapping [ : © + atoms0f(C), a trace
o = (¢0,%0) - 60 - - (én, ) With n > 1 and st(do) = ¢y;0 and st(dn) = gy, and
a natural 7 : 0 <7 < n;

Output: A feasible run covering Qrgt OF the value unreachable

1 foreach ((¢,v), ) € store st. (¢o,%0) - 6o - - - (¢i, ;) is equivalent to a prefiz of T do
2 remove, if present, ((¢, ), 7) from work, store and sleep;

3 for j «— i to n do

4 if there is still a ((¢',9’),7') in sleep with ¢’ is C-equivalent to ¢; then

5 remove ((¢', "), 7’) from sleep;

6 add ((¢’,¢"), ') to both work and store;

7 if ¢ > 1 then

8 ‘ |bp = [bi71

9 else b, := by;

10 foreach (¢’,v’) € decompose(q;,;,[,by) do
11 let o' := (¢o,%0) - 01+ (Pi—1,%i—1) - & - (¢',¥");

12 if there is some ((¢e,e),0,) in store st. ¢. is C-equivalent to ¢’ then
13 if o, and o’ are not equivalent then

14 | add ((¢',9’),0") to sleep;

15 else add ((¢’,%'),0’) to both store and work ;

16 return explore(M work,store,sleep, [);

Procedure backtrack(M, work, store, sleep, [, o, i) common to all lazy variants.
The main difference between the lazy variants is in the way their respective
“decompose” procedures associate refinement atoms to “exact” conjuncts.

Point-based. This variant is the one that “localizes” most the refinement. Each
time an obtained grounded conjunct is considered for approximation, it checks
whether its minimal valuation has already been associated to some refinement
atoms. If it is the case, it passes them when calling the “partition” procedure.

Input: a state ¢, a conjunct ¢ and a partial mapping [ : © - atoms0£f(C)
Output: a well formed set of grounded constraints

1 A= 0

2 foreach (0 € dom(f) with val(f) € ming(¢)) do A:= AUR() ;

3 return partition(q, ¢, A)

Procedure decompose(q, 1, [, —) of the point-based-lazy variant.
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Order-based. This variant “localizes” less than the point-based variant. Each
time an obtained “exact” conjunct is considered for approximation, it checks
whether its minimal valuation is <-related to an already mapped valuation. The
union of all corresponding atoms is passed to the “partition” procedure.

Input: a state ¢, a conjunct ¢ and a mapping [ : © + atoms0£f(C)
Output: a well formed set of grounded constraints
let A :=0;
foreach (6 € dom(f)) do
foreach (¢’ € ming(v)) d
if ((¢/ < wval(9)) or (val(G) <c’)) then
A:=AUC0);
break ;
return partition(q, ¢, A)

N Ok W N

Procedure decompose(q, 1, [, ) of the order-based variant.

Descendants-based. This variant “localizes” less than the point-based variant,
but is incomparable with the order-based one. The idea is to keep those refine-
ment atoms that were used for the parent constraint, and that are still weaker
than the current conjunct that is to be approximated.

Input: a state g, a conjunct v, a box b and a mapping f: @ — atoms0£(C)
Output: a well formed set of grounded constraints
let A := 0;
foreach (0 € dom(f) with val(9) € ming(¢))) do A:= AUC() ;
foreach a € dom(b) do B

if (b(a) A (¢ = «a)) or (mb(a) A (¢ = —a)) then

| A:=Au{a};

return partition(q, ¢, A)

[ A VN

Procedure decompose(q, 1, [, b) of the descendants-based variant.

Finally, we state the soundness of our four exploration variants. The proof
is by observing that store always represents, at the i*" iteration of the loop
of procedure “explore”, an over-approximation of the machine configurations
obtained after 7 steps. Combined with Lemmas 2 and 3 and by well quasi ordering
of C on the set of constraints for a finite number of refinement atoms.

Theorem 1. All four exploration variants are sound. In addition, each call to
procedure “checkReachability” eventually terminates if only a finite number of
calls to procedure “simulate” are executed.

Proof. Sketch. Let worky,, store;, and sleep, be the sets work, store and sleep
obtained at line 1 at the k" iteration of the loop in procedure “explore”. We
can show the following propositions by induction on & (see the appendix for the
details):

(a) [storei] does not intersect (qy,.,;,c) for any valuation ¢

(b) [storei] intersects (g;,,.,¢) for every valuation ¢

(c) [worky Usleep,] is a subset of [stores]

(d) for each element ((¢,1),0) of storey such that ((¢,v),0) ¢ work; and
¢ € ming (cstr0f(storey)) and for each tranbltlon 6 = (q,9¢,¢') € A, the
configurations in {(¢,¢’)| ¢’ € [post,.(clo(val(s),box(¢)))]} are also in
[store]
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Soundness. Suppose the algorithm returns unreachable. Then at some iter-
ation, there is no element ((¢,v),0) in work s.t. ¢ € ming(cstrOf(store)).
Combined with propositions (b), (¢) and (d), we have that [store] is a fixpoint
that is an overapproximation of all reachable configurations. Proposition (a)
ensures that no element with state g;,,, exists in store. If the algorithm returns
a trace, then the test at line 4 ensures that st(¢n) = q;,.,, for some ((¢n,%n), )
and 0 = (¢o,%0) - 01+ On + (¢n, n) satisfies that st(do) = ¢ipirs SE(Pn) = Qirge

and for 0 < i < n, (st(¢;), val(d;)) 2 (st(pir1), val(diz1)). This because of

the form of the added tuple at line 13 of “explore”.

Termination. The procedure “checkReachability” terminates if only a finite
number of calls to procedure “simulate” are executed. This relies on the fact
that the only source of non-termination can be the while loop in “explore” if the
set cstrOf(work) Nming (cstr0f(store)) never becomes empty. Suppose there
is an infinite sequence of constraints as ¢g, ¢ ... obtained in the while loop.
First, we show that ¢ # j implies ¢; is not C-equivalent with ¢; for any 7, j > 0.
This holds because an element is added to store only if there is no C-equivalent
element there (line 9 of “explore”). Even if an element is moved from sleep to
store and work by “backtrack”, then it is done after removing the C-equivalent
element in store and work. Second, we show that for any 0 <14 < j, ¢; £ ¢;.
This holds because if ¢; T ¢;, then ¢; could not be in ming (cstrOf(store))
since ¢; (or an C-equivalent constraint) is already there. Finally, since the num-
ber of calls to “backtrack” is finite, then the number of predicates being used in
the boxes is also finite. Such a sequence would therefore violate Lemma 2. a

7 Experimental Results

We have implemented our techniques in our open source tool ZAAMA. The tool
and benchmarks are available online?. The tool relies on the Z3 SMT solver [12]
for its internal representations and operations.

The input of the prototype are counter machine encodings of boolean multi-
threaded programs with broadcasts and arbitrary tests (as described in Sect. 3).
We have experimented with more than eighty different counter machine reacha-
bility problems. These were obtained from our prototype tool PACMAN [18] that
checks local (i.e., assertion) or a global (e.g., deadlock freedom) properties in
concurrent programs (some inspired from [11,15]).

Given a property to check on a concurrent program, PACMAN proceeds in
predicate abstraction iterations. For each set of tracked predicates, it creates a
counter machine reachability problem. Combining PACMAN with ZAAMA results
in a nested CEGAR loop: an outer loop for generating counter machine reach-
ability problems, and an inner loop for checking the resulting problems. About
45 % of the generated counter machines are not monotonic. We tested all those

2 https://gitlab.ida.liu.se/apv/zaama.
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Fig. 3. Comparing eager and lazy variants on a logarithmic scale.

machines separately with ZAAMA in different settings for each benchmark and
reported the execution times. Thus, the PACMAN overhead is not included in the
reported times. Note that although 55% of the examples are monotonic, they
still need refinement in forward exploration.

We also tested our benchmarks with the tool BREACH introduced in [23].
BREACH cannot take non-monotonic inputs and is inherently incapable of solv-
ing reachability problems for such systems which are the main target of this
paper. Thus, we could apply it only to the monotonic benchmarks; for which,
the runtime of BREACH was less than 5 seconds in each. We consider this to be
an encouraging result as we are working on adapting BREACH to non-monotonic
systems. The challenge is to have an under-approximation search engine for such
systems and we are investigating possibilities to develop our own engine or to
use acceleration tools such as FASTer [6].

We have chosen a time-out of 30 min for each of the variants: eager, point-
based, order-based and descendants-based, both in forward and in backward.
We have conducted our experiments on an Intel Core i7 2.93 GHz processor with
8GB of memory. We report on our results in Fig. 3 where we consider, for each
setting, each lazy pair in addition to the pairs consisting in the eager and each
lazy.
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The forward explorations turned out to be faster than the corresponding
backward ones in about 25 % of the examples. We expected the forward explo-
ration to be slower as it needs several refinement steps because it starts from the
initial configurations which are typically much more constrained than the tar-
get configurations. We considered the forward exploration because it offers more
possibilities to test the effect of localizing the refinement in problems that typi-
cally require more refinement steps in forward. Indeed, the figures show that the
times of the different variants coincide more often in backward than in forward,
and overall, there has been many more time-outs in forward than in backward.

Furthermore, the lazy variants were able to conclude on most of the reacha-
bility problems, in fact each of the reachability problems has been solved by at
least one of the lazy variants (except for one problem in backward), when the
eager variant timed out on several of them. This is an encouraging result that
confirms the advantages of localizing refinement. There are some cases where
the eager variant did better than all lazy ones. These correspond to cases where
localization required more refinement efforts to reach a conclusion.

We also observe that the order-based approach times out in about half the
forward seraches, while the point-based only times out in two cases. This goes
against the initial intuition that larger valuations would profit from the refine-
ment predicates of the smaller ones. One explanation could be that if the larger
valuation would require the same predicate as the smaller one, then adding the
predicate would result in a redundant representation that should be eliminated.
It therefore seems that it does not take long for the point-based to discover this
redundancy while still profiting from the localization of the refinement. Instead,
the order-based uses predicates even when they are not proven to be needed
resulting in finer grained symbolic elements that slow down the exploration.

It is interesting to observe that the descendants-based approach did better in
forward than the point-based approach. One explanation could be that, in for-
ward, relevant refinement interpolants sometimes correspond to weak inductive
invariants that get propagated by this approach. In backwards it seems, at least
for our examples, that the invariants corresponding to the “bad” configurations
do not profit from this parent-child transmission.

8 Conclusion

We have introduced and discussed three different ways of localizing constrained
monotonic abstraction in systems with infinite control. For this, we have tar-
geted reachability problems for (possibly non-well structured) counter machines
obtained as abstractions of concurrent programs. Our new techniques allow us to
avoid systematically trashing the state space explored before encountering the
false positives that necessitate the introduction of new refinement predicates.
This allowed us to consistently improve on the existing eager exploration, both
in forward and in backward explorations. Possible future works concern combin-
ing forward and backward approximations, using the pivot configuration to make
possible the choice of interpolants that are easier to generalize and assessing the
feasibility of combination with new partial order techniques.



164

7. Ganjei et al.

References

10.

11.

12.

13.

14.

15.

16.

. Abdulla, P.A.) Delzanno, G., Rezine, A.: Parameterized verification of infinite-state

processes with global conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 145-157. Springer, Heidelberg (2007)

Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: Proceedigs of the LICS 1996, 11*" IEEE International
Symposium on Logic in Computer Science, pp. 313-321 (1996)

Abdulla, P.A.] Chen, Y.-F., Delzanno, G., Haziza, F., Hong, C.-D., Rezine, A.:
Constrained monotonic abstraction: a CEGAR for parameterized verification. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 86-101.
Springer, Heidelberg (2010)

Abdulla, P.A., Delzanno, G., Ben Henda, N., Rezine, A.: Regular model checking
without transducers (on efficient verification of parameterized systems). In: Grum-
berg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721-736. Springer,
Heidelberg (2007)

Ball, T, Rajamani, S.K.: The SLAM Project: debugging system software via static
analysis. In: Proceedings of the 29th ACM SIGPLAN-SIGACT, POPL 2002, pp.
1-3. ACM, New York (2002)

Bardin, S., Finkel, A., Leroux, J.: FASTer acceleration of counter automata in
practice. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
576-590. Springer, Heidelberg (2004)

Bardin, S., Leroux, J., Point, G.: FAST extended release. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 63—66. Springer, Heidelberg (2006)
Bonnet, R., Finkel, A., Leroux, J., Zeitoun, M.: Model checking vector addition
systems with one zero-test (2012). arXiv preprint arXiv:1205.4458

. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs

with lists are counter automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 517-531. Springer, Heidelberg (2006)

Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: TACAS, pp. 570-574. Springer (2005)

Cogumbreiro, T., Hu, R., Martins, F., Yoshida, N.: Dynamic deadlock verification
for general barrier synchronisation. In: Proceeding of the 20th ACM SIGPLAN
PPoPP Symposium, pp. 150-160. ACM (2015)

de Moura, L., Bjgrner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008)

Delzanno, G.: Automatic verification of parameterized cache coherence protocols.
In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 53-68.
Springer, Heidelberg (2000)

Donaldson, A.F., Kaiser, A., Kroening, D., Tautschnig, M., Wahl, T.:
Counterexample-guided abstraction refinement for symmetric concurrent pro-
grams. Formal Meth. Syst. Des. 41(1), 25-44 (2012)

Downey, A.: The Little Book of SEMAPHORES (2nd Edition): The Ins and Outs of
Concurrency Control and Common Mistakes. Createspace Ind, Pub (2009). http://
www.greenteapress.com/semaphores/

Farzan, A., Kincaid, Z., Podelski, A.: Proofs that count. In: Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2014, pp. 151-164. ACM, New York (2014)


http://arxiv.org/abs/1205.4458
http://www.greenteapress.com/semaphores/
http://www.greenteapress.com/semaphores/

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Lazy Constrained Monotonic Abstraction 165

Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!. Theor.
Comput. Sci. 256(1-2), 63-92 (2001)

Ganjei, Z., Rezine, A., Eles, P., Peng, Z.: Abstracting and counting synchronizing
processes. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol.
8931, pp. 227-244. Springer, Heidelberg (2015)

Geeraerts, G., Raskin, J.-F., Van Begin, L.: Expand, enlarge and check.. made
efficient. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
394-407. Springer, Heidelberg (2005)

Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: Giesl, J.,
Hahnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 22-29. Springer, Heidelberg
(2010)

Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Pro-
ceedings of the 29th ACM SIGPLAN-SIGACT, POPL 2002, pp. 58-70. ACM, New
York (2002)

Higman, G.; Ordering by divisibility in abstract algebras. In: Proceedings of the
London Mathematical Society, pp. 326-336 (1952)

Kaiser, A., Kroening, D., Wahl, T.: Efficient coverability analysis by proof mini-
mization. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454,
pp. 500-515. Springer, Heidelberg (2012)

Kloos, J., Majumdar, R., Niksic, F., Piskac, R.: Incremental, inductive coverabil-
ity. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 158-173.
Springer, Heidelberg (2013)

Liu, P., Wahl, T.: Infinite-state backward exploration of boolean broadcast pro-
grams. In: Proceedings of the 14th Conference on Formal Methods in Computer-
Aided Design, pp. 155-162. FMCAD Inc (2014)

McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123-136. Springer, Heidelberg (2006)
Weissenbacher, G., Kroening, D., Malik, S.: WOLVERINE: battling bugs with inter-
polants. In: Flanagan, C., Konig, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp.
556-558. Springer, Heidelberg (2012)



Polyhedral Approximation of Multivariate
Polynomials Using Handelman’s Theorem

Alexandre Maréchal’ ™) Alexis Fouilhé!, Tim King?,
David Monniaux?, and Michael Périn!

! Université Grenoble-Alpes, VERIMAG, 38000 Grenoble, France
{alex.marechal ,alexis.fouilhe,tim.king,
david.monniaux,michael.perin}@imag.fr
2 CNRS, VERIMAG, 38000 Grenoble, France

Abstract. Convex polyhedra are commonly used in the static analysis of
programs to represent over-approximations of sets of reachable states of
numerical program variables. When the analyzed programs contain non-
linear instructions, they do not directly map to standard polyhedral opera-
tions: some kind of linearization is needed. Convex polyhedra are also used
in satisfiability modulo theory solvers which combine a propositional satis-
fiability solver with a fast emptiness check for polyhedra. Existing decision
procedures become expensive when nonlinear constraints are involved: a
fast procedure to ensure emptiness of systems of nonlinear constraints is
needed. We present a new linearization algorithm based on Handelman’s
representation of positive polynomials. Given a polyhedron and a polyno-
mial (in)equality, we compute a polyhedron enclosing their intersection as
the solution of a parametric linear programming problem. To get a scal-
able algorithm, we provide several heuristics that guide the construction
of the Handelman'’s representation. To ensure the correctness of our poly-
hedral approximation, our OCAML implementation generates certificates
verified by a checker certified in COQ.

1 Numerical Static Analysis and Satisfiability Testing
Using Convex Polyhedra

We present a new method for computing polyhedral approximations of poly-
nomial guards, with applications in both static analysis and satisfiability mod-
ulo theory (SMT) solving. It is implemented in the Verimag Verified Polyhedra
Library (vpL), a certified library written in OCAML for computing over con-
vex polyhedra [20]. Its operators generate certificates which may optionally be
checked by a verifier developed and proved correct in COQ. The VPL is used as
an abstract domain within a coQ-certified static analyzer [26].
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Convex Polyhedra. A convex polyhedron is defined by a conjunction of affine
constraints of the form ag + Z;L:l a;x; > 0 where the z;’s are variables, the a;’s
and ag are constants in Q. We subsequently omit convexr as we only deal with
convex polyhedra. For instance, the polyhedron P defined by

PE2{rx—-1>0,y+2>0,2—y>0,5—z—y>0} (1)

is the set {(x,y) |z > 1Ay > —-2Ax>yAx+y <5} represented in Fig. 1.
A bounded polyhedron is called a polytope.

Polyhedral Static Analysis. Static analyzers are verification tools that aim at
proving properties true for all possible executions of a program; desirable prop-
erties include for instance the absence of arithmetic overflow. In the abstract
interpretation framework, the analyzer attaches to each control point an invari-
ant chosen within a given class, called abstract domain [11]. Here, we focus on
the abstract domain of polyhedra which captures affine relations among program
variables [22]. A static analyzer using polyhedra cannot directly infer any infor-
mation on a variable z assigned with a non-linear expression e.g. z := x*y. A very
rough abstraction is to consider that z is assigned any value in (—o0, +00); the
consequence is a dramatic loss of precision which propagates along the analysis,
possibly failing to prove a property.

Satisfiability Modulo Theory. The satisfiability of a quantifier-free formula of
first-order linear arithmetic over the reals is usually decided by a “DPLL(T)” [21]
combination of a propositional solver and a decision procedure for conjunctions
of linear inequalities based on the simplex algorithm [17,18]. Nonlinear formulas
are more challenging; some solvers implement a variant of cylindrical algebraic
decomposition, a very complex and costly approach [27]; some replace the propo-
sitional abstraction of DPLL(T) by a direct search for a model [14].

Linearization Techniques. Nonlinear relations between variables, such as 22 +
y? < 1, occur for instance in address computations over matrices, computational
geometry, automatic control and in programs that approximate transcendental
functions (sin, cos, log...) by polynomials [6,7]. Therefore, linearization tech-
niques were developed to preserve precision in the presence of polynomials; they
provide an over-approximation of a polynomial on an input polyhedron. Miné
proposed two linearization techniques based on variable “intervalization” [34],
where some variables of the polynomial are replaced by their interval of variation:

(1) Switching to the abstract domain of polyhedra with interval coefficients [5]
to maintain precision, albeit at high algorithmic cost.

(2) Obtaining an affine expression with intervals as coefficients, which is then
converted into a polyhedron. This solution was implemented in the APRON
polyhedra library [24,34]: intervals are replaced with their center value and
the right-hand side constant of the equality is enlarged accordingly. We devel-
oped an improved and certified version of this algorithm in the vpL [4]. This
linearization technique is efficient but not very precise.
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Another well known linearization method consists in representing polynomi-
als in the Bernstein basis. Bernstein coefficients give a bounding polyhedron,
made as precise as needed by increasing the degree of the basis [35]. Bernstein’s
linearization works on systems of generators, either to get the range of each
variable, or to refer to variables as barycentric coordinates of the vertices [9]. It
would be well-suited for most libraries (APRON [24], PPL [1], POLYLIB [31]), as
they maintain a double representation of polyhedra: as systems of constraints,
and as systems of generators (in the case of polytopes, the generators are the
vertices). In contrast, our work aims at adding a precise linearization to the
VPL. In order to make certification more convenient, the VPL uses only the
constraint representation of polyhedra. Therefore, using Bernstein’s method
would be hardly appropriate as it would require expensive conversions between
representations [32].

Contributions. We present a new algorithm to linearize polynomial guards which
only needs constraint representation of polyhedra. Section 2 shows how any other
polynomial statement reduces to guards. As explained in Sect. 3, our approach
is based on Handelman’s theorem [23], which states that a polynomial that is
positive on a polytope can always be expressed as a nonnegative linear com-
bination of products of constraints of the polytope. The algorithm consists in
computing linear relaxations as solutions of a Parametric Linear Programming
Problem (PLOP). Section 4 sketches the principle of PLOP solvers and focuses on
an improvement we made to reduce exploration of branches that would yield
redundant constraints. The method presented in this paper requires only the
constraint representation of the polyhedron, as provided by the VPL or by a
DPLL(T) sMT-solver, and returns a polyhedron directly as constraints as well as
an emptiness flag. It soundly approximates polynomial operations over convex
polyhedra and generates certificates that are checked by a verifier developed and
proved in cOQ. The precision of the approximation is arbitrary depending on the
degree and the number of Handelman products in use; the selection of which is
delegated to the heuristics presented in Sect. 5. Precision and efficiency of our
algorithm are shown through a comparison with sMT-solvers on Quantifier-Free
Nonlinear Real Arithmetic benchmarks in Sect. 6.

This paper elaborates on a preliminary work by the authors [33], which pre-
sented the encoding of the linear relaxation problem as a PLOP, focusing on the
certification in coq of the resulting approximation. We reuse the encoding of [33]
and we extend the previous work with heuristics, an experimental evaluation and
a new application.

2 Focusing on Approximation of Polynomial Guards

The goal of linearization is to approximate nonlinear relations with linear ones.
The approximation is sound if it contains the original nonlinear set. In other
words, linearization must produce an over-approximation of the nonlinear set.
In this work, we consider polynomial expressions formed of (4+, —, x), such as
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4—x xx—yxy. More general algebraic expressions, including divisions and root
operators, may be reduced to that format; for instance y = v/x2 + 1 is equivalent
to y? = 22+ 1Ay > 0 [36]. The symbol g shall represent a polynomial expression
on the variables z1, .., x,, of a program. We only consider constraints in a positive
form g > 0 or g > 0: any other form (including equalities and negation) can be
changed into a disjunction of conjunctions of positive constraints, for example
“(g1=92) = (1 <g2Vg1>9g2) = (92—91 >0V g1 —g2>0).

1. intz,y, 2 ;

i r2>1lee y> -2
rT>ys T<H—Y

o

3. {if (x*x+y*y§4)

4. {z=yx*xx;} ¢ i
5. else

6. {z=0;}

7.

Fig. 1. A C program fragment with non-linear expressions x x x +y*y < 4 and y * x.
The first guard defines the polyhedron P = {x > 1, y > -2, 2 —y >0, x+y < 5};
the disc 4 2 {(x,y) | z* +y*> < 4} corresponds to the second guard; the octagon G
is a polyhedral approximation of &; the hashed region is the set P N'Y; the desired

A

approzimation of P N¥Y is the polyhedron P' = P A G, drawn with dotted lines.

We will use the program of Fig. 1 as a running example: our goal is to compute
a polyhedral over-approximation of the polynomial guard z? 4+ y? < 4 on line 3,
which is equivalent to g > 0 with g(x,y) = 4 — 22 — y2, in the context of the
polytope P2 {x —1>0, y+2>0, z—y >0, 5—2—y > 0} that corresponds
to the condition on line 2.

Note that assignments = := e reduce to guards. Let Z denote the value of
variable z after the assignment, while x denotes its value before the assignment.
Then, the effect of the assignment on a polyhedron P is ((P ANT < eANT >
€)/z)[%/x], where -/, denotes the elimination of = using projection and [%/z]
is the renaming of Z as x. This works when e is affine. When it is nonlinear,
Z is approximated by linearizing guards 2’ < e and 2’ > e. Therefore, we will
exclusively focus on the linearization of polynomial guards.

The effect of a guard g > 0 on a polyhedron P consists in the intersection
of the set of points of P with & £ {(x1,...,7,) | g(z1,...,2,) > 0}. When the
guard is linear, say x — 2y > 0, P N¥ is simply the conjunction of P and the
constraint x — 2y > 0 ; it is already a polyhedron. When the guard is not linear,
we approximate P N¥ by a polyhedron P’ such that PN¥ C P’. Computing,
instead, a polyhedral enclosure G of the set ¢ would not be a practical solution.
Indeed, it can be very imprecise: if ¢ = {(x,y) | y < 2%}, then G = Q2. Moreover,
it is superfluous work: only three of the eight constraints of polyhedron G on
Fig.1 are actually useful for the intersection.
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3 Linearizing Using Handelman’s Representation

Consider an input polyhedron P £ {C; > 0,...,C, > 0} defined on variables
(z1,...,2y) and a polynomial guard g > 0. Our goal is to find an affine term
ao + >y a;z; denoted by aff such that P = aff > g, meaning that aff bounds
g on P. By transitivity, we will conclude that PAg > 0 = P A aff > 0,
which can be expressed in terms of sets! as (PNg>0) C (PMaff>0). Our
linearization based on Handelman’s theorem provides several affine constraints
affi, - .., affi whose conjunction with P forms the approximation of PNg > 0. In
static analysis, where P describes the possible values of the program variables
(z1,...,7,) before a polynomial guard g > 0, the result P Mi=¥ aff > 0 will
be a polyhedral approximation of the program state after the guard. When this
polyhedron is empty, it means that the original guard P A g > 0 is unsatisfiable.

3.1 Representation of Positive Polynomials on a Polytope

Notations. Tuples & = (z1,...,2,) and multi-indices I = (i1,...,4,) € N
are set in boldface. The set of Handelman products associated to a polyhedron
P£{Cy>0,...,Cp >0} is the set #p of all products of constraints C; of P:

Hp ={C[' x - x Cl» | (iy,...,ip) ENP} (2)

Given a multi-index I = (i1, ...,i,), HT £ Ci* x ... x C}” denotes an element of
Hp. In our running example, H(©:2:00) = (y+2)2, F101L0) — (1 —1)(z—y) and
H®0.03) — (3 — 1)(—2 — y + 5)3 all belong to #p. The H!’s are nonnegative
polynomials on P as products of nonnegative constraints of P. Handelman’s
representation of a positive polynomial g(x) on P is

g(x) =Y A H' with \; e RY (3)
IeN? >3 >0

The Ar’s form a certificate that g(x) is nonnegative on P. Handelman’s theorem
states the non-trivial opposite implication: any positive polynomial on P can
be expressed in that form [23], [30, Th. 2.24], [37, Th. 5.4.6], [38, Th. 5.5]; a
similar result already appeared in Krivine’s work on decompositions of positive
polynomials on semialgebraic sets [29].

Theorem 1 (Handelman, 1988). Let P = {C; > 0,...,C, > 0} be a poly-
tope where each C; is an affine form over & = (x1,...,x,). Let g(x) be a positive
polynomial on P, i.e. g(x) > 0 for all x € P. Then there exists a finite subset T
of NP and A\f € RT for all I € Z, such that g(z) = > \fHL.
Iez

Remark 1. This does not necessarily hold if g(x) is only assumed to be non-
negative. Consider the inequalities x +1 > 0 and 1 — 2 > 0 and the nonnegative
polynomial 22, Assume the existence of a decomposition and apply (3) at 2 = 0:
HT(0) > 0 for any I, it follows that Ay = 0. This null decomposition is absurd.

! N denotes the usual intersection of sets; M is reserved for the intersection of polyhedra.
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Remark 2. One can look for a Handelman representation of a polynomial even
on unbounded polyhedra: its positivity will then be ensured. The existence of such
representation is not guaranteed though.

The common use of Handelman’s representation of a polynomial g(x) — A is
to determine a lower bound A of g(x) on P. For instance, Boland et al. use it to
compute an upper bound of the polynomial, in & and the error ¢, which defines
the cascading round-off effects of floating-point calculation [3]. Schweighofer’s
algorithm [38] can iteratively improve such a bound by increasing the degree
of the HI’s. We present here another use of Handelman’s theorem: we are not
interested in just one bound but in a whole set of affine constraints dominating
the polynomial g(x) on P.

3.2 Linearization as a Parametric Linear Optimization Problem

Recall that we are looking for an affine constraint aff £ ag + i, o that
approximates a non-linear guard g, meaning aff > g on P. According to
Theorem 1, if P is bounded, aff — g which is positive on the polytope P has
a Handelman representation as a nonnegative linear combination of products of
the constraints of P, i.e.

IT C NP, aff—g=> MH', A\ eRT, H' € #p (4)
IcT

Relation (4) ensures that there exists some positive combinations of g and some
HT € s that remove the monomials of degree >1 and lead to affine forms:

ag+ a1z + ... +apxy, =aff=1-g+ Z ArHT
IeNp

Remark 3. This decomposition is not unique in general. Consider P = {z >
0, y>0, x—y >0, 2+y > 0}. The polynomial 22 + 22y + 32 is equal to both
H©00.2) — (g4 )2 and HZ0.00) 4 2 (11.0,0) 4 [7(020.0) — (32) 4 2(zy) + (2).

Design of our Linearization Method. The principle of our algorithm is to take
advantage of the non-uniqueness of representation to get a precise approximation
of the guard: we suppose that a set T = {I1,...,I4} of indices is given and
we show how to obtain every possible affine form aff; that can be expressed as
g+ Zﬁj{ A H'e. Each of these aff bounds g on P and their conjunction forms
a polyhedron that over-approximates the set P N (¢ > 0). A major difference
between our work and previous work by Schweighofer [38] and Boland [3] is that
we are not interested in a constant bound «g but an affine bound ag + 121 +
...+ anx, which still depends on parameters x4, ..., x,. We now show that our
problem belongs to the class of parametric linear problems; Sect. 5 then describes
the heuristics used to determine Z.

Ezample 1. For g = 4 — 2? — y2, we choose T that gives these 15 products:
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I — (0,000 — 1 Hlz — (1,000 _ . _ 4

HYs = gO100 — 4o HYe = gO010 — 5y

HYs — gO00) — _p 45 HTe = {2000 _ (5 _1)2

7 — f(0,2,00) _ (y +2)? s — f(0,0,2,0) _ = (z —y)?

HIQ _ H(O,O,O,Q) — (—JZ —y+ 5)2 H110 _ H(l,l,o 0) _ ( 1)(y+2)

HNBr = gAOL0 — (2 — 1) (z —y) Hhz = g00h — (3 —1)(—z —y +5)
B = FOMO = (o) —y) = HOWD = (4 2) (-0 -y +5)

H® = HOOMY = (2 —y)(—x —y +5)

Considering the products { H7,... HT«} finding the Handelman represen-
tation of aff — g can be expressed as a linear problem. Relation (4) amounts to
finding Aq,...,A; > 0 such that

aff =1 g+ SIZINH = A\g, M, Ng) - (g, BT, HIO)T
Il Il AT HyT-M
ap+a1x1+ ... Faney }\T.’HgT.M
Il Il
MT - (ag,...,an,0,...,0) = MT Hy - X

where:

(1) H, is the matrix of the coefficients of g and the H’¢ organized with respect
to M, the sorted list of monomials that appear in the Handelman products
generated by 7.

(2) the column vector A = (Ag, A1,..., )T = (1, A1,..., Ag)T characterizes the
combination of g and the H’¢. We added a constant coefficient \, = 1 for
convenience of notations.

The product Hy - A is a vector « £ (o, .- .,a‘M‘,l)T representing the con-

straint g + a1 21 + ... + pxy + Zijzj\ﬁ_l a; - (M); where (M), denotes the
i*" monomial of M. Since we seek an affine constraint aff we are finally inter-
ested in finding A € {1} x (R*)? such that H, - A = (ag, ..., a,0,...,0)T. By

construction, each A gives an affine constraint aff that bounds g on P.

Ezample 2. Here is the matrix H, associated to g = 4 — 2% — y? and the Han-
delman products from Example 1 with respect to M = [1,z,y, zy, 22, y?].

HI1 glz glIs gla gls gle flr prls prle prlio fylix fpliz frlas fylia frlas

g
1 4 1 -1 2 0 5 1 4 0 25 -2 0 -5 0 10 0
z o o 1 o 1 -1 -2 0 ©0 -10 2 -1 6 2 -2 5
Yy o o o 1 -1 -1 0 4 ©0 -10 -1 1 1 -2 3 -5
zyl o o o o o o0 O O -2 2 1 -1 -1 1 -1 0
2 -1 0 0 0 0 0 1 0 i1 1 0 1 -1 0 0 -1
w2\ -1 0 0 0 0 0 o0 1 1 1 0 0 0 -1 -1 1

The choices Ay = A\¢ = A7 = 1 and every other A\; = 0 are a solution to the
problem H, - A = (ap, a1, a2,0,0,0)T. We obtain Hy - A = (9, —2,4,0,0,0)7 that
corresponds to 9 — 2z + 4y + 0 x 2y + 0 x 22 + 0 x y2. Thus, aff= 9 — 2z + 4y is
a constraint that bounds g on P, as shown on Fig. 2
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Fig. 2. (b) is the cut at z = 0 of (a) in which we added the polyhedron P & {z — 1 >
0, y+2>0, 22—y >0, —x—y+5>0}: the circle 9 of (b) appears in (a) as
the intersection of the surface z = g(x,y) £ 4 — xz® — y* with the plane z = 0. The
polyhedral approzimation of g is the inclined plane z = aff(z,y) & —2x + 4y + 9 that
dominates g. It cuts the plane z = 0 along the line L1 in (a) which is reported in (b).
The line L1 is the frontier of the affine constraint —2x + 4y +9 > 0. The filled area is
the polyhedron P N\ —2x + 4y +9 > 0 that over-approzimates PN {(z,y) | g(z,y) > 0}.

By construction, any solution A of the problem Hy-A = (ao, ..., ay,0,...,0)7
is a polyhedral constraint aff that bounds g on P. Among all these solutions we
are only interested in the best approximations. One constraint aff > g is better
than another aff’ > g at point (x1,...,2,) if aff(z1,...,2n) < aff (z1,...,24).
It then appears that for a given point (z1,...,z,) we are looking for the poly-
hedral constraint aff > ¢ that minimizes its value on that point. Therefore,
we define a linear minimization problem that depends on some parameters: the
point (z1,...,x,) of evaluation.

Finally, finding the tightest affine forms aff; that bound g on P with respect to
a given set of indices Z can be expressed as the Parametric Linear Optimization
Problem (PLOP) shown on Fig. 3. Such optimization problems can be solved using
the parametric simplex algorithm, which is outlined in Sect. 4. As we shall detail
later, the solution of H-PLOP is a function associating an affine form aff; to the
region of the parameter space where aff; is optimal. The over-approximation of
PN (g >0) that we return is then [ | {x € Q" | affi(z) > 0}.

Example 3. In our running example, the objective aff, i.e., g + Zﬁis N HIe,
isd+ XM +X-1)+X2+y)+Mz—y)+ B —z—y)+ Xe(1l —22) + X7 (4+
4y) + Ao (25 — 10z — 10y) + A10(2z —y — 2) + M1(y — z) + A12(62 +y — 5) + A13(2z —
2y) + A14(10 — 2 4 3y) + A15(5x — 5y).

In practice we use this presentation (without «) which exhibits the paramet-
ric coefficients in z,y of each variable A\. Nonlinear monomials do not appear
since the problem imposes cancelling the non-linear part of g + 2235 N HIe,
i.e. xy(—2>\8+2>\9+)\10—A11—A12+>\13—)\14)+1'2(—1+>\6+>\8+A9+)\11—>\12—>\15)+y2(—1+)\7+
As+Xo—A1s—A1a+X15). The solutions of the problem are the vectors A that min-
imize the objective and cancel the coefficients of zy, 2% and y2.



174 A. Maréchal et al.

Given a set of indices T =2 {I1,...,1,},
minimize aff ,i.e., ao + a1T1 + ... + ATy, also equal to g +
Zﬁ:{ MeH'® under the constraints

Hg : (A!]?)\lv"'?)\q)T = (0507"'7OCTL7O7'"70)T
{Ag =1, A>0 =14 (H-PLOP)
where A1, ..., \q are the decision variables of the PLOP; x1,...,xy are
the parameters ; and «o, . . ., an are kept for the sake of presentation ;

in practice they are substituted by their expression issued from Hy - X.

Fig. 3. Linearization as a parametric linear optimization problem

4 The Parametric Simplex Algorithm

We use the simplex algorithm for parametric objective functions to find the
solutions of the previous H-PLOP problem. This section explains how we obtain
the output polyhedron over-approximating P Ng > 0 from the solutions of
H-pLOP. We assume the reader is familiar with the simplex algorithm (see [§]
for an introduction) and we sketch the broad outlines of the parametric simplex
algorithm (see [12,33] for more details).

Principle of the Algorithm. The standard simplex algorithm is used to find the
optimal value of an affine function — called the objective — on a space delimited
by affine constraints, which is thus a polyhedron. More precisely, it solves linear
problems of the form

i=q
minimize the objecti'vez/\i ¢ 8.t A-A=0, A>0
i=1

where A € M, ,(Q) is a matrix and the constants ¢; € Q define the costs
associated to each decision variable (A1,..., ;) = A. To decrease the objective
value, recalling that each variable ); is nonnegative, a step in the standard
simplex algorithm, called a pivot, consists in finding a negative coefficient ¢; in
the objective function and in decreasing the value of the associated variable \;
as much as the constraints remain satisfied. The pivot operation modifies both
the costs of the objective function and the constraints. The optimal value is
reached when every c; is nonnegative, meaning that the objective value cannot
be decreased anymore.
The parametric simplex algorithm solves linear problems of the form

1=q
minimize the objecti'ueZ)\i (1, .. xp) S A-X=0, A >0
i=1
where ¢; are now affine functions from parameters (z1,...,2,) to Q. As in

the standard simplex we seek for a pivot to decrease the objective value, i.e.
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a negative coefficient in the objective function. In general the sign of a paramet-
ric coefficient, say c¢;, is unknown. The algorithm then explores two branches: one
in which ¢; is considered as nonnegative and we move to the next coefficient ¢; 41 ;
and another branch in which ¢; is assumed to be negative and we perform a pivot
on the associated variable \; exactly as in the standard version. The exploration
of a branch stops when the conjunction of the assumptions is unsatisfiable (the
branch is then discarded); or when it implies that all the updated parametric
coefficients are nonnegative, meaning that an optimum is reached. Both tests of
unsatisfiability and implication are polyhedral operations performed by the VPL.

The result of the solver is a decision tree: the values of the decision vari-
ables X at leaves give optima of the parametric objective; the conjunction of the
assumptions along a branch defines its region of relevance, it is a polyhedron in
the parameter space. Our solver implements this algorithm in 0OCAML and works
with rationals instead of floating points. It borrows a few optimizations from the
PIP algorithm [19] which was developed for the dual case where parameters are
in the right-hand side of the constraints, i.e. A-X = b(x1,...,zp).

Application to Handelman’s Linearization. Back to our running example, we
obtain the best polyhedral approximations of ¢ by running our parametric sim-
plex on H-PLOP where (A;)¢=1.4 are decision variables, Hle(xq,... 2,) are
parametric coefficients, x; are parameters and the matrix A is made of the
rows of H, corresponding to monomials of degree > 1 (the last three rows
of H, in Example 2). We obtain a decision tree with 5 optimal solutions A
at leaves. Each of them is interpreted as constraint aff(z1,...,z,) > 0 where
affle) = g(x) + Zﬁ:{ AeH™¢(x). These 5 constraints appear on Fig. 4(a) as the
lines Ly to Ly. Their conjunction with P forms the polyhedron P’ which over-
approximates P N (g > 0).

Useless Constraint Detection. Figure4(a) reveals that Ls and L4 are useless
since they do not intersect P’. This is not due to the parametric simplex: it
happens when a constraint aff; does not cross the plane z = 0 on its region of
relevance R;. Figure 4(b) shows the region of relevance of each constraint. This
remark leads us to a criterion to detect useless aff; during exploration. It requires
some explanations. Note that the output polyhedron P’ £ P (ﬂ;jf aff; > 0) is

equal to the set Uij (R; Maff; > 0). That can be proved by reasoning on sets,
using (1) distributivity and (2) simplification, exploiting two consequences of
the parametric simplex: (1) by construction of the exploration tree, the regions
(R;)=Zh form a partition of P; (2) if i # j, R; M (affi > 0) M (aff; > 0) =
R; M (aff; > 0) since aff; > aff; on R;. Indeed, we asked the parametric simplex
to seek for minimal affine forms. '

Now, let us study the equality P’ = Uijf (R; Maff; > 0): when the sign
of aff; is negative on its region of relevance R;, then (R; M aff; > 0) = § and
this term vanishes from the union. Therefore, such an aff; has no impact on
P’. We draw upon this remark to design an algorithm that early detects useless
exploration. The exploration of a new branch starts with the examination of the
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Fig. 4. (a) The polyhedron P' = PT1{L1 > 0,...,Ls > 0} is the over-approzimation
of PN (g > 0) computed by our linearization without detection of useless constraints.
P’ is delimited by P and the constraints L1, L, Ls returned by the parametric simplex;
Ls and L4 are useless: Ls is detected by our criterion. The redundancy of La cannot be
detected before the intersection with P. (b)Each constraint L; is the optimum associated
to a region R; of P. Our criterion eliminates L3 since it is negative on Rs.

possible pivots. For minimization problems, the pivoting operation lowers the
objective and the new region is a subpart of the previous one. Therefore, if all
pivots give an objective that is negative on the current region, every optimum aff
generated through this branch will be negative, thus useless; we simply cut this
branch. Our experiments are conducted with the parametric simplex algorithm
of Sect. 4 improved with this elimination criterion.

5 Heuristics and Certificates

We previously assumed a given set of Handelman products to be considered in
H-PLOP; our implementation actually uses Schweighofer products (ST), which
generalize Handelman’s ones as shown by Theorem 2 below. We shall now
describe the oracle that generates them together with a certificate of nonnega-
tivity, then the heuristics it uses.

Theorem 2 (Schweighofer, 2001). Let P = {Cy > 0,...,C, > 0} be a poly-
tope where each C; is an affine polynomial over & = (x1,...,2y,). Let gpy1,...,9q
be polynomials. Then g(x) >0 on PN {gpt1 >0,...,94 > 0} if and only if

g=>\0+z>\1-51, AoER*-’_, )\IER+
IeN4

where S(il,...,iq) _ CII . C;P . g;lrll .. .g;q.

Schweighofer products are products of polyhedral constraints of P and poly-
nomials (gi);zg 4+1- They are obviously nonnegative on the set P N {g,41 >
0,...,9¢ > 0}. From a certification viewpoint, the key property of the polynomi-
als resulting from Handelman or Schweighofer products is their nonnegativity on
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the input polyhedron. Therefore, heuristics must attach to each product a non-
negativity certificate as its representation in the 0CAML/C0OQ type nonNegCert
given below. The coQ checker contains the proof that this type only yields non-
negative polynomials by construction.

type nonNegCert = C of N with [C#)]=C;i>0of P
| Square of polynomial [Square (p)] = p*> > 0 Vp € Q[x]
| Power of N * nonNegCert [Power (n, S)] = S™ with S >0
| Product of nonNegCert list [Product (L)] =IIger, S >0

Design of the Oracle. The oracle treats the input polynomial g as the set .#
of its monomials and maintains a set .#¢ of already-canceled monomials. Each
heuristic looks for a monomial m in .Z it can apply to, checks that it doesn’t
belong to .#c and generates a product S or H for it. Monomial m is then
added to .#c and the monomials of S that are different from m are added
to .# . The oracle finally returns a list of couples formed of a product H or S
and its certificate of nonnegativity. The heuristics are applied according to their
priority. The most basic of them consists in taking every Handelman product
whose degree is smaller than or equal to that of g. If solving H-PLOP fails with
these products, we increase the maximum degree up to which all the products
are considered. Theorem 1 ensures eventual success. However, the number of
products quickly becomes so large that this heuristic is used as a last resort.

Targeted Heuristics. The following heuristics aim at finding either Handel-
man products H! or Schweighofer products S? which cancel a given nonlinear
monomial m. Besides a monomial canceling m, a product may contain non-
linear monomials which need to be eliminated. The heuristics guarantee that
these monomials are of smaller degree than m when the polyhedron is bounded,
thereby ensuring termination. Otherwise, they try to limit the degree of these
additional monomials as much as possible, so as to make them easier to can-
cel. As before, we consider an input polyhedron {C; > 0,...,C, > 0} with
C; = Z?Zl a;;T; + a0, where the x;’s are program variables and the a;;’s are
constants in Q. We wish to cancel monomial m £ ¢,, x it a2t with ¢, € Q.

Ezxtraction of Fven Powers. This heuristic builds on squares being always non-
negative to apply Schweighofer’s theorem in an attempt to simplify the problem.
The idea is to rewrite m into m = m/ x (25 ... 25)* where m/ £ ¢,,, x 23" ... 2,
with §; € {0,1}. The heuristic recursively calls the oracle in order to find a prod-
uct S canceling m’. Then, S x (25 ...25)° cancels the monomial m. If Wy is

the nonnegativity certificate for S, then Product [Ws; Square (25" ... x¢)] is that
of the product.

Simple Products. Consider a monomial m = ¢, X x1---x, where ¢,, € Q,
as can be produced by the previous heuristic. We aim at finding a Schweighofer
product S that cancels m, and such that every other monomial of .S has a degree
smaller than that of m. We propose an analysis based on intervals, expressing
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S as a product of variable bounds, i.e. xz; € [l;,u;] where l;, u; € Q. For each
variable x;, we may choose either constraint z; +1; > 0 or —x; +u; > 0, so that
the product of the chosen constraints contains x; ---x, with the appropriate
sign. Moreover, other monomials of this product are ensured to have a degree
smaller than that of m. The construction of a product of bounds is guided by
the following concerns.

— The sign of the canceling monomial is to be opposite to that of m.

— The bounds that are available in the input constraints are used in priority. It
is possible to call the VPL to deduce additional bounds on any variable from
the input constraints. However, finding a new bound requires solving a linear
problem.

— The selected bounds should exist, which is not necessarily the case if the input
polyhedron is not a polytope. If too many bounds don’t exist, the heuristic
fails.

Thanks to Farkas’ lemma [12, Th. 2.14], each implied bound on a variable
(xj +1; or —x; + u;) can be expressed as a nonnegative linear combination
of the input constraints, i.e. Zle B3:;C; for some B;; > 0 solutions of a linear
problem. The combination reduces to C; if C; is already a constraint of the input
polyhedron P. The resulting product of bounds can then be expressed as follows.

H(%‘Jrlj)x H(*xjﬂLUj): H (Zﬂij'ci))a Bij = 0

jer jeu JELUU={1,...n} i=1

The right-hand side expression is then refactorised with the C;’s kept symbolic,
so that the Handelman products appear. This case is illustrated in Example 4.

Ezxample 4. We illustrate the behavior of the oracle and the satisfiability test
on the polynomial ¢ = y? — 2%y + zy — 85 and still the same polytope P =
{(C1)2=1>0,(Cy) y+2>0,(C5) z—y >0, (Cy) 5—2x—y >0}. The oracle
starts with .# = {zy, —2%y,y?} and processes the monomials in order.

(zy) For eliminating zy, the simple product heuristic uses constraint (Cy)x—1 >
0 and the combination (Cy) + (C4) = (x — 1) + (—z — y + 5) which entails
—y+4 > 0. Their product (z—1)(—y+4) = —zy+4x+y—4 cancels zy and
the development C - (Cy + Cy) = C? + C,Cy reveals the useful Handelman
products: H, £ C? =22 —-22x+1 and H, £0Cy=—-2?—azy+6x+y—5.
They are returned with their certificates of nonnegativity: Power (2, C7) and
Product [C1; Cy). Then, xy is added to .#Z¢ as well as the new monomials x?
and —x2: They are not placed in .# since opposite monomials cancel each
other.

(—2%y) The heuristic for squares splits the term —z2y into m’ x 22 and lets the
oracle deal with m’ £ —y. The simple product heuristic reacts by looking for
a constraint with the term +y and as few variables as possible: (C2) y+2 > 0
fulfills these criteria. The calling heuristic builds the Schweighofer product
Sy & 22.Cy = x%y+ 222 that cancels —z2y, and returns S3 with its certificate
of nonnegativity Product [Square (z); Cs]. Then, the oracle removes x?y from
the working set and places it into the set of cancelled monomials.
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./

Fig.5. The polytopes resulting of 3 iterations of Handelman’s linearization: Py =
P, P, = HL(Pi_1,4 — 2® — y*> > 0). P1, P> and Ps are respectively composed of 5,
9 and 36 constraints.

(y?) The heuristic on squares cannot produce y? x (—1) with a certificate of
nonnegativity for —1. The last heuristic is then triggered and finds two
Handelman’s products that generate (—y2): Hy 2 CoCs = (y 4+ 2)(z — y) =
vy —y? +2x — 2y and Hs 2 CoCy = (y+2)(5 —x —y) = by — ay — y> +
10 — 22 — 2y. Hy is prefered since it does not introduce a new monomial —
indeed xy € .#¢c — whereas Hs would add —y? to the working set ..

Finally the oracle returns the four polynomials with their certificates. The
expanded forms of Hy, Hy,S3, Hy are installed in the matrix H, and are each
associated with a decision variable A1, ..., A\4. The parametric simplex computes
all the positive, minimal, affine constraints aff of the form 1-g+ A - Hy+Ao- Ho+
A3 - S3 + Ay - Hy. With such few products, it returns only one affine constraint
aff = g+ 2Hy + H3 + Hy = 13z + y — 95 from which we build a polyhedral
over-approximation of the set PN (g > 0) as P M aff > 0. The VPL reveals that
this polyhedron is empty, meaning that P A (¢ > 0) is unsatisfiable.

6 Implementation and Experiments

We implemented our linearization as part of the VPL. The linearization process
has two parts: an OCAML oracle, defined in Sect. 5, uses heuristics to select the
most promising Handelman-Schweighofer products Si,..., 5, then it runs the
parametric simplex to find coefficients A1, ..., A, such that g+ " \;S; is affine.
The result is fed into a checker implemented and proved correct in coqQ. It guar-
antees in three steps that aff is an affine form and dominates g on P: (1) it
verifies that aff is affine; (2) the proof of > A;S; > 0 boils down to “sums and
products of nonnegative reals are nonnegative” using the nonnegativity certifi-
cates W; provided by the oracle; (3) it checks that the two polynomials aff and
g+ > \S; are equal in expanded form using the internals of the ring tactic. We
pay some care to efficiency by caching translations of polynomials from certifi-
cates to the expanded form to reduce the overhead of certificate checking. The
architecture of the checker is detailed in a previous work [33].
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Increasing Precision. We show on Fig. 5 the results of Handelman’s linearization
on the running example. We chose the subset { H1, ..., HT15} from Example 1,
meaning that we are faced with a 15-variable linear problem. Precision can be
increased without degree elevation by iterating Handelman’s linearization (HL):
Py =P, Piy1 =HL(P;,g9 > 0). The linearization operator of the VPL computes
this sequence until reaching a fixpoint, i.e. P41 = Pj, or a time limit. The
sequence is decreasing with respect to inclusion since HL (P;,g > 0) = P; 11
N; affi > 0 is by construction included in P;.

Showing Emptiness of Nonlinear Sets. A sMT-solver for nonlinear real arithmetic
using the DPLL(T) architecture enumerates conjunctions of nonlinear inequali-
ties, each of which having to be tested for satisfiability. We show the unfeasibility
of the conjunction of C; > 0,...,C}, > 0 and nonlinear ones g; > 0,...,g, > 0 by
computing the sequence of approximations: Py = {C7 > 0,...,Cy > 0}, Piyq1 =
HL (P;,g; > 0). The polynomials are added one after the other, meaning that
gi+1 is linearized with respect to the previous polyhedral approximation P;. If
at some point P, = (), it means that the conjunction is unsatisfiable, as our
approximation is sound. Otherwise, as it is not complete, we cannot conclude.
Such a procedure can thus be used to soundly prune branches in DPLL(T) search.
Furthermore, the subset of constraints appearing in the products used in the
emptiness proof is unsatisfiable, and thus the negation of its conjunction may
be used as a learned clause.

Although our contribution applies to both static analysis and SMT solving,
we felt that performing our experimental evaluation with sMT-solvers was bet-
ter suited: the SMT community has a standard set of nonlinear benchmarks from
SMT-LIB, which the static analysis community is missing. Therefore, we exper-
imented with conjunctions arising from deciding formulas from the Quantifier-
Free Nonlinear Real Arithmetic (QF_NRA) benchmark, from SMT-LIB 2014 [2].
These conjunctions, that we know to be unsatisfiable, are mostly coming from
approximations of transcendental functions as polynomial expressions. We added
our linearization algorithm as a theory solver for the smMT-solver cvc4 [15]. The
calls to our linearization follow a factorization step, where for instance polyno-
mial guards such as x2 —y? > 0 are split into two cases (x+y > 0Ax—y > 0 and
z4+y < 0Az—y < 0), in order to give more constraints to the input polyhedron.

The comparison of our contribution with the state of the art smT-solvers
Z3 [13], Yices2 [16], SMT-RAT [10] and raSat [28] was done on the online
infrastructure StarExec [39]. Figure6 is a cactus plot showing the number of
benchmarks proved unsatisfiable depending on time. It illustrates that lineariza-
tion based on Handelman’s representation, implemented as a non-optimized
prototype, gives fast answers and that its results are precise enough in many
cases. Note that our approach also provides an easy-to-verify certificate, as
opposed to the cylindrical algebraic decomposition implemented in Z3 for exam-
ple. Indeed, if the answer of the VPL is that the final polyhedral approximation is
empty, then the nonzero coefficients in the solution A of the parametric problem
H-pLOPH-PLOP give a list of sufficient Schweighofer products. Together with the
nonlinear guards, the conjunction of the original constraints involved in these
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Fig. 6. Comparison between CVC4+VPL and other SMT-solvers on quantifier-free non-
linear real arithmetic benchmarks.

products are actually sufficient for emptiness. As mentioned above, in a SMT-
solver the negation of this conjunction may be used as a learned theory lemma.
However, due to engineering issues we have not been able to fully integrate
this procedure into cvc4 by sending back minimized learned lemmas. Over a
total of 4898 benchmarks, adding our method (represented in the figure as curve
cuc+uvpl) allows cved to show the unsatisfiability of 1030 more problems. Fail-
ure in showing emptiness may come from strict constraints since up to now, our
solver considers each inequality as nonstrict.

7 Conclusions and Future Work

We presented a new approach to the linear approximation of multivariate polyno-
mials, based on Handelman’s and Schweighofer’s theorems, and implemented it
in the Verimag Verified Polyhedra Library (VPL) as an operator of the abstract
domain of polyhedra. A verifier implemented and proved correct in COQ can
optionally check its results.

The approach is directly usable in static analysis by abstract interpretation:
besides linear expressions, the VPL now accepts polynomials as well. Apart from
handmade examples [33], we actually did not find programs manipulating inte-
gers where the linearization improves the global analysis result: non-linearity is
too sparse in such programs. We believe that it could have an impact on the
analysis of floating-point computations where polynomials appear more natu-
rally in programs for approximating transcendental functions and in the analysis
of the round-off errors [3]. Work in that direction is planned for the very near
future but supporting this claim still requires some work on the integration of
the VPL into a mature analyzer for floating-point programs, the treatment of
round-off errors and some certification effort. The VPL can already deal with
strict inequalities over the rationals but the algorithms are not yet certified (the
enlargement of any strict inequality < n over the integers to < n—1, is not valid
for polyhedra over the rational field).
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Our approach already proved to be useful in satisfiability modulo theory
solving. A simple coupling of our prototype, implemented in OCAML, with the
competitive sMT-solver cvc4 improved notably the performance of that solver
on nonlinear arithmetic.

In contrast to cylindrical algebraic decomposition, which is a complete app-
roach, our method may fail to prove a true property. However, it provides easy-
to-check certificates for its results.

From a polynomial guard g > 0 and an input polyhedron P, our algorithm
operates in two phases. The first selects products of constraints of P which are
likely to cancel nonlinear monomials from g. The second phase uses parametric
programming to explore the linear combinations of these products yielding an
affine form which bounds g. Both phases offer room for improvement.

(1) Blindly including all products of degree n is exponential in n and many
of them may be useless. This is why we developed an oracle procedure
using selection heuristics to obtain good precision at reasonable cost. In
a future refinement of this work, an incremental approach could grow the
set of products, using feedback from the solver about missing monomials in
cancellations.

(2) Our parametric linear solver currently relies on the parametric variant of
the simplex algorithm. The latter subdivides regions of relevance, leading to
multiple copies of each solution, which makes the exploration more expen-
sive than it should be. We are now working on more efficient exploration
algorithms, following previous work by Jones et al. [25].
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Abstract. We address the problem of computing an abstraction for a
set of examples, which is precise enough to separate them from a set
of counterexamples. The challenge is to find an over-approximation of
the positive examples that does not represent any negative example.
Conjunctive abstractions (e.g., convex numerical domains) and limited
disjunctive abstractions, are often insufficient, as even the best such
abstraction might include negative examples. One way to improve pre-
cision is to consider a general disjunctive abstraction.

We present D, a new algorithm for learning general disjunctive
abstractions. Our algorithm is inspired by widely used machine-learning
algorithms for obtaining a classifier from positive and negative examples.
In contrast to these algorithms which cannot generalize from disjunc-
tions, D3 obtains a disjunctive abstraction that minimizes the number
of disjunctions. The result generalizes the positive examples as much as
possible without representing any of the negative examples. We demon-
strate the value of our algorithm by applying it to the problem of data-
driven differential analysis, computing the abstract semantic difference
between two programs. Our evaluation shows that D3 can be used to
effectively learn precise differences between programs even when the dif-
ference requires a disjunctive representation.

1 Introduction

We address the problem of computing an abstraction for a set of examples, which
is precise enough to separate them from a set of counterexamples. Given a set
of positive examples Ct and a set of negative examples C~, both drawn from
some concrete domain D, our goal is to compute an abstraction of C using
a disjunctive abstract domain, such that the abstraction overapproximates C,
but does not represent any example from C~.

The need for such an abstraction arises in many settings [5,13,32], including
the problem of differential analysis - computing the abstract semantic difference
between two programs [28,29,35]. The abstract semantic difference between two
programs often contains ranges of input values for which the programs are known
to produce the same outputs, but other ranges for which the output values
differ. Computing a safe abstraction of difference/similarity ranges can produce
a succinct description of the difference/similarity between programs.

© Springer-Verlag Berlin Heidelberg 2016
B. Jobstmann and K.R.M. Leino (Eds.): VMCAI 2016, LNCS 9583, pp. 185-205, 2016.
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Unfortunately, computing such an abstraction is tricky due to the delicate
interplay between generalization and precision (required to ensure that the
abstraction is safe). When there are multiple ranges of equivalence or differ-
ence, typical conjunctive abstractions (e.g., convex numerical domains [11,24])
and limited disjunctive abstractions [3,6,15,23,30], are often insufficient, as even
the best such abstraction might include negative examples. On the other hand,
general (unlimited) disjunctive abstractions are too precise and do not naturally
generalize.

We present D3, a new Data-Driven algorithm for learning general Disjunc-
tive abstractions. D? is an active learning algorithm that iteratively accepts an
example and its label as positive or negative, and incrementally updates the dis-
junctive abstraction of all examples seen. D? is driven by a new notion of safe
generalization used to compute the abstraction of the seen examples. Safe gen-
eralization generalizes a precise disjunctive abstraction of the positive examples
into a more abstract one, but does so in a safe way that does not represent any
negative example.

The exploration of the input space is directed by D? by restricting the
sampling to advantageous regions of the space derived from the intermediate
abstractions.

D3 is a general algorithm and can be instantiated with different choices for
the following: (i) an oracle responsible for picking the next sample input from a
given region, (ii) an implementation of a teacher, used to label each sample, and
(iii) the abstract domain over which disjunctive abstractions are computed.

To implement differential analysis, we instantiate D3 with a code-aware ora-
cle for picking the next input, a teacher that labels an input by executing both
programs and comparing outputs, and several abstractions including intervals,
congruence intervals, and boolean predicates over arrays.

The main contributions of this paper are:

— A new operation, safe generalization, which takes a disjunctive abstraction
and generalizes it further while avoiding describing a set of counterexamples.

— A new algorithm D3 for learning general disjunctive abstractions, which uses
safe generalization, as well as a strategy to direct exploration of the input
space.

— An implementation of D3 and its application to the problem of data-driven
differential analysis, computing the abstract semantic difference between two
programs. Our evaluation shows that D3 can be used to effectively learn pre-
cise differences between programs even when the difference requires a disjunc-
tive representation.

2 Overview

In this section, we provide an informal overview of our approach using a dif-
ferential analysis example. Figure 1 shows two functions computing the sum of
digits in a number.
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def sumOfDigitsWrong(x : Int) : Int = {
var y = Math.abs (x)
if (y < 10) y
else {
var sum =y % 10
while (y > 0) {
sum +=y % 10
y =y / 10

def sumOfDigits(x : Int) : Int = {
@tailrec def sodRec (
sum : Int,
rest : Int) : Int = {
if (rest == 0) sum
else sodRec(sum + rest % 10, rest/10)
}
sodRec (0,Math.abs (x))
} 9 }
10 sum
11 }
2}

(@) (b)

R R S TR
® 9 U R W =

Fig. 1. Two Scala functions for computing the sum of a number’s digits. (a) is a correct
implementation. (b) has an error in initializing the variable sum and is correct only on
numbers that have 0 as the least significant digit, or on single-digit numbers.

Figure 1(a) is a model Scala implementation for summing the digits of an
input number. Figure 1(b) is an implementation by a less experienced program-
mer that uses a loop construct rather than the tail recursive approach. While
the second implementation is very similar to a correct implementation, it suffers
from an incorrect initialization of the result variable, which is easily missed with
poor testing.

The goal of differential analysis is to compute an abstract representation of
the difference between programs. For the programs of Fig. 1, the difference can
be described as \/,cy gy (z mod 10 = @) A (z < =11V x > 11). The similar-
ity between these two programs (inputs for which the programs agree) can be
described as (z mod 10=0)V (-9 <z <9).

We use an active learning approach for computing the difference between the
programs. In active learning, a learner iteratively picks points and asks a teacher
for the classification of each point. The result of active learning is a classifier
that generalizes from the observed points and can be used to classify new points.

In our example, the learner is trying to learn the difference between two
programs P and P’. We provide a simple teacher that runs the programs and
classifies a given input point ¢ as “positive” when both programs produce the
same result, i.e. P(c) = P'(c), and “negative” when the results of the two pro-
grams differ, i.e. P(c) # P'(c).

Our starting point is the Candidate Elimination algorithm, presented for-
mally in the next section. Candidate Elimination proceeds iteratively as follows:
in each iteration of the algorithm, the learner picks a point to be classified,
asks the teacher for a classification, and updates an internal representation that
captures the classification that has been learned so far. Based on this internal
representation, the learner can pick the next point to be classified. The itera-
tive process is repeated until the generalization of the positive points and the
exclusion of the negative points yields the same representation.

Applying the algorithm to our example program yields the following points:

(0, pos), (7, pos), (10, pos), (60, pos), (47, neg), (73, neg), (88, neg)
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The challenge is how to internally represent the set of positive points and the
set of negative points. The set of positive points cannot be directly represented
using a conjunctive (convex) representation, as the range [0, 60] also includes the
negative point 47. On the other hand, the negative range [47,88] also includes
the positive point 60.

Trying to represent the positive points using a precise disjunctive represen-
tation yields no generalization in the algorithm (Sect. 3.2), and would yield the
formula: x =0V x =7V 2 =10V x = 60. This disjunction would grow as addi-
tional positive points are added, does not provide any generalization for points
that have not been seen, and cannot represent an unbounded number of points.

The D? Algorithm. The main idea of the D3 algorithm (Algorithm 2) is to incre-
mentally construct a generalized disjunctive representation for the positive and
negative examples. Technically, D3 operates by maintaining two formulas: Ppos
that maintains the generalized disjunction representing positive examples, and
¢neg that maintains the generalized disjunction representing the negative exam-
ples. The algorithm preserves the invariant that ¢,,. and ¢,c, both correctly
classify all seen points. That is, any seen positive point satisfies ¢p0s, and any
seen negative point satisfies ¢,.y. When a new point arrives, D3 uses the gen-
eralization of the conjunctive domain as much as possible, but uses disjunctions
when needed in order to exclude points of opposite classification.

In the differential analysis setting, ¢,,s attempts to describe the similarity
between programs and ¢,y attempts to describe the difference. For the exam-
ple points above, the algorithm constructs the following @pes: (7 < < 7 Az
mod 10 = 7) V (0 < 2 < 60 A z mod 10 = 0). Note that this representation
correctly generalizes to include the positive points 20, 30, 40,50 that were not
seen. The resulting ey is (47 <z <47Az mod 10 =7) Vv (73 < z < 88).

The existence of points that satisfy both ¢, and ¢p.s does not contradict
the invariant of the algorithm because both formulas include unseen points due
to generalization. In fact, the points in the intersection can be used to refine the
generalization. Technically, this is done by using the intersection as one of the
regions to be sampled.

In addition to ¢pos and @peq, the algorithm maintains ¢ g and -, the pre-
cise disjunctive representations of the positive and negative examples, respec-
tively. Together, the four formulas determine the regions to be sampled, as
depicted in Fig. 2:

— Uncovered: =(¢¥pos V Pneg)
— Covered disagreement: @pos A Pneg

— Positive abstracted disagreement: ¢p,s A g
— Negative abstracted disagreement: ¢peq A -

The covered and uncovered are regions where a given point would either
satisfy both ¢pes and g4, or neither. The positive abstract disagreement region
is where a point would satisfy the generalized disjunctive representation ¢pos
but not the precise disjunctive representation ¢g (that is, the point is the result
of generalization). The negative abstract disagreement plays a similar role for
Pneg and P-G-
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991305 A ‘Pneg

¥-a
Ppos

Fig. 2. The regions of the input space as seen by the D? algorithm

Sampling from each of these regions ensures the algorithm would progress
towards abstracting and refining both positive and negative generalizations. Con-
vergence will occur if ¢, and -4 are equivalent, which means covered dis-
agreement is eliminated, and no region of the space is uncovered.

3 Active Concept Learning

Concept learning is an area of machine learning dedicated to learning a classifier
that is an abstraction of a dataset using a predefined language of predicates.
This section details the most commonly used concept learning algorithm, Can-
didate Elimination, and its relation to abstract domains. We further discuss
the limitations of Candidate Elimination, which are later addressed by our new
algorithm.

Concept Learning. Concept learning aims at learning a concept in a given
concept language. In our setting, a concept language would be used to describe
the space of inputs to a program. From now on, we fix an input space, denoted
D (also called a domain).

Definition 1 (Concept Language). A concept of domain D is a boolean func-
tion a over D. i.e. a : D — {true, false}. An element ¢ € D is described by
the concept a if a(c) = true. A concept language L is a set of concepts, i.e.
L C {true, false}P.

Each concept describes a subset of D, and a concept language defines the set of
possible subsets available to describe the domain. A concept language is usually
defined by a set of possible descriptions (templates) of boolean functions.

Ezample 1. The concept language of intervals includes all concepts described as
[[,h] = Azl <z < hst. l,h € N.[0,42] is a concept in the intervals concept
language, which from a domain of integers describes the subset {0,1,...,42}.
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Concept Languages Based on Logical Formulas. Given a concept lan-
guage Lo, we view its concepts (which are boolean functions) as atoms over
which propositional formulas can be constructed using logical connectives, such
as negation, conjunction and disjunction, thus defining new concepts (boolean
functions). For example, if a1, as € Lo, then the formula ¢ = a; A ag represents
the function Az. a;(z) Aaz(x). Note that this boolean function need not be in the
original concept language Ly. Thus, we obtain new, richer, concept languages.

Definition 2 (Conjunctive Concepts). Given a concept language Ly, con-
junctive concepts over Lo (or simply conjunctive concepts) are concepts defined
by a conjunction of finitely many concepts from L.

A cartesian product Ly X ... x L, is a special case of a conjunctive concept
language over Lo = |J;«;<,, Li, where the concepts are tuples comprised of one
concept from each L;, with the meaning of conjunction.

For example, the concept language of rectangles in 2D over a domain consist-
ing of pairs (x, y), is the product of two interval concept languages, one bounding
the x axis and the other bounding the y axis, and therefore it is a conjunctive
concept language.

Disjunctive concepts are defined similarly to conjunctive concepts. A disjunc-
tive concept language over Ly corresponds to the powerset domain over Lg [10].
We therefore denote it P(Ly).

Concept Lattices. Concept learning algorithms such as Candidate Elimina-
tion [25] are based on the fact that every concept language L has an inherent
partial order, denoted =, based on the implication relation between the individ-
ual concepts, defined in [25] as the more specific than relation. Formally, a; < a9
if and only if for every ¢ € D, a;(c) = az(c). For example, ¢ € [1,4] = ¢ € [0, 80]
which means [1,4] < [0, 80].

We are particularly interested in cases where this partially ordered set, (L, <),
forms a lattice. We assume that all concept languages include 1 = Az. false and
T = Ax.true, which are the least and greatest concepts w.r.t. =, respectively.
For instance, in the intervals lattice, [1,3] U [5,8] = [1, 8], and [1,3] M [5,8] = L.

Concepts as Abstractions. We view a concept language L as an abstract
domain for D, accompanied by a concretization function v : L — 2P that
transforms a concept a € L into all of its described objects, and an abstraction
function 8 : D — L which transforms an element ¢ € D to the most specific
concept representation.’ In the intervals concept language, for example, 3(c) =
[c,c] for every ¢ € D. Note that by definition of the < relation, a1 < ay <=

(a1) € ~(ag).

3.1 Candidate Elimination

Candidate Elimination is a machine learning algorithm aimed at learning a
binary classifier from D to the categories “positive” and “negative”. The input

1 A most specific representation need not exist. For simplicity of the presentation, we
consider the case where it does, and explain what adaptations are needed when it
does not.
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to the algorithm is a set of positive examples C* C D and a set of negative
examples C~ C D. The output is a classifier, given as a concept, also called
hypothesis, that is consistent with all the examples.

Definition 3 (Consistency). A hypothesis h is consistent with a set of positive
examples C* and a set of negative ezamples C~ if and only if for every c €
CtuUC™, hic) =true < ceCT .

The Candidate Elimination algorithm holds a lower bound and an upper bound
of possible consistent hypotheses in the lattice, representing all the lattice ele-
ments inbetween. Every concept below the upper bound excludes all the con-
crete points the upper bound excludes, and every concept above the lower bound
includes all points that the lower bound includes. The hypotheses represented by
the upper and lower bound created by processing a concrete set C = Ct U C~
are called the version space of C.

Algorithm 1. The Candidate Elimination algorithm formulated in
abstract domain operations

151

2 G {T}

3 for ¢ «— Samples do

4 if label(c) is positive then S «— S U B(c)
5 else G—{gMNn|geG,necomp ({c})}
6 G—{geG|SCyg}

7 if G =0 then

8 return L

9 if S € G then return §

// Training examples ran out but S and G have not converged
return some hypothesis bound between S and G

Jun
(=]

Algorithm 1 describes the full Candidate Elimination algorithm. In the code,
we use a function label(x) which for x € D returns either “positive” or “nega-
tive”. In the case of predefined sets of points C*,C~, label is a partial function
defined for C*t UC~ that will return positive if and only if z € C*. In the active
learning case, it will compute the label for any point in D. In this case it will
also be called a teacher.

The algorithm starts with a specific (lower) bound, S = 12 and a set of
generic (upper) bounds G = {T} (every element in G is a possible generic
bound). Using concrete examples from the sets C*t and C~, the algorithm
advances its hypotheses bounds from either direction until the lower and upper

2 If 3 maps a concrete point to a single concept which best represents it, it is easily
shown that it suffices to maintain S as a single element. Candidate Elimination can
also handle multiple representations, in which case S will be a set of specific bounds,
similarly to G.
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bound converge. For any positive example ¢, the algorithm modifies S to include
¢, and for every negative example ', it modifies all the bounds in G to elimi-
nate concepts that include ¢’. If the concept language used is a lattice, it is easy
to describe the Candidate Elimination algorithm in terms of lattice operations.
Modifying the bounds to include and exclude examples is done with the join and
meet operations, walking through the implication lattice.

The increase of the specific bound uses the abstraction function 3. In order
to describe the lowering of the generic bound, we define the set which is the
underapproximated complementation of a set, comp™.

Definition 4 (Underapproximated Complementation). Given a set of
concrete points C C D, comp~ (C) is the underapprozimating complement of
C. comp~(C) C L s.t.

- Complementation: Va € comp™ (C).v(a) NC =0, and
- Maximal underapproximation: Va € L.v(a)NC =0 = Ja’ € comp (C) :
a=<a

For some abstract domains comp™ is an inexpensive operation. For exam-
ple, in the interval domain its complexity is O(|C|): comp™ ({2,7}) =
{(=00,1],[3,6],[8,00)}, and so on for larger sets. For other domains, however,
comp~ will be costly or even not computable. Section 5 discusses several domains,
including a boolean predicate domain, where comp™ causes Candidate Elimina-
tion to be non-feasible to compute.

Ezample 2. Using a concept language of intervals, we initialize S = 1 and
G = {T} and begin processing examples. The first example is ¢ = 0, and label(0)
is negative. To handle a negative point, comp™({c}) = {(—o0,—1],[1,00)}
is computed, then the new value of G = {T M (—oo,—1], T M [1,00)} =
{(=00,—1],[1,00)}. All members of G are equal or greater than S (and therefore
consistent), so no filtering is required.

A second sample seen is ¢ = 2 and label(2) is positive. To handle a positive
sample, the algorithm computes 8(¢’) = [2,2] and then computes the new value
of S = L U[2,2] =[2,2]. We can now see that one of the members of G is no
longer consistent with ¢/, since if it were selected it would label ¢’ as negative,
which makes it incomparable with .S, so it is filtered, yielding G = {[1, o0]}.

Candidate Elimination is a general algorithm, which can be used both for active
learning and offline learning from a given set of points. It has several active
learning variations, including the CAL [8] and A? [4] algorithms for active version
space concept learning. Since in active learning the algorithm itself selects the
next point that will be labeled, these algorithms address the problem of selecting
an advantageous next point. For this, they define the region of disagreement, as
the set of all the points for which some two hypotheses that are currently viable
disagree:

Definition 5 (Region of Disagreement). The region of disagreement (some-
times region of uncertainty) [8] for a version space V is Ry = {c € D | 3h1, ha €

V: hl(C) 7§ hQ(C)}
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Selecting the next example from this region would guarantee the elimination of
at least one hypothesis with every step.

The final result of candidate elimination would be one of the following: a
single classifier S = | |.cc+ B(c), if S and G converge; no classifier, if S and G
become inconsistent; or a (possibly infinite) range of classifiers described by the
hypotheses bound between S and G, from which one or more can be selected.

3.2 Unbiased Learning

The concepts supported by the Candidate Elimination algorithms are conjunc-
tive (specifically, cartesian concepts), and the need to find the next hypothesis
that will be consistent with all examples while using only conjunction is the
learner’s bias. Bias is the way it generalizes about data it has not seen. However,
as the following example demonstrates, for the case of programs, conjunctive
concepts are not enough:

Ezxample 3. Consider the differential analysis of f(x)=x and g(x)=if
(abs(x) < 1000) 0 else x using the intervals concept language. These pro-
grams differ in intervals [—1000,—1] and [1,1000], and are the same in
[MinInt,—1001], [0,0] and [1001, MazInt], so describing the difference (or sim-
ilarity) using intervals requires disjunction. However, the (conjunctive) intervals
language only allows to bound a set of points using a single interval. Thus, any
concept describing all the positive points (where the programs agree) will also
include negative points (where the programs disagree) and vice versa. Specifi-
cally, candidate elimination will finish as inconsistent if it sees a single negative
sample amidst the positive samples.

Unbiased Learning. When disjunctions are added, more complex concepts
can be described despite the limitation of the basic concept language Lo (this
is equatable to the powerset lattice over Lg). However, the added freedom that
comes with disjunctions introduces a problem, which is inherent in the join
operation of the powerset lattice: a; Ll as = a1 V as. If every specific example is
generalized to B(c) and then joined to the rest, the specific lower bound will never
become more abstract than os = \/ .o+ B(c). Similarly, if allowing arbitrary
connectives, the generic upper bound will never become more refined than pg =
TE)

This is what Mitchell calls “the futility of the unbiased learner” [25]. Once
the ability to abstract is lost, the hypotheses at the bounds of the version space
will never be able to answer yes or no about examples they have never seen,
and unless the entire space is sampled (if this is at all possible), they will never
converge.

3.3 Unbiased Learning by Partitioning the Space

Mitchell’s original work on version spaces [26] suggests handling an inconsistency
that requires disjunction by working with a pre-partitioned space and perform-
ing the candidate elimination algorithm separately in every partition. While this
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approach is the most efficient, it requires prior knowledge of where the disjunc-
tions are likely to occur, and a more flexible concept language that allows for the
partition. Murray’s tool HYDRA [27] uses an operation equivalent to comp™ to
dynamically partition the domain using the negative samples, creating regions
where generalization is allowed. Every division of the space may cause a recal-
culation of impacted abstract elements, which need to be re-generalized within
the newly created regions. In addition to requiring an efficient comp™, HYDRA
lacks a simple convergence condition, but rather is intended to run until either
samples run out or the teacher is “satisfied” with the resulting description.

4 Learning Disjunctive Abstractions

In this section we describe our algorithm for learning disjunctive concepts. Just as
in the Candidate Elimination algorithm, what we seek to find is a boolean func-
tion partitioning the input space into the positive and the negative sets, described
using the concept language. As in Candidate Elimination, we are dependent
on the assumption that this partition is expressible using the concept lan-
guage. However, unlike Candidate Elimination, we consider a disjunctive concept
language, P(L).

From here on, we interchangeably describe disjunctive concepts in P(L) as
disjunctive formulas, e.g., a1 V ag, and as sets, e.g. {a1,as}. Further, U always
denotes the join of L, as opposed to the join of P(L), which is simply disjunction
or set union.

Our key idea is to combine the benefits of the generalization obtained by using
the join of L, with the expressiveness allowed by disjunctions. We therefore define
a safe generalization which generalizes a set of concepts (abstract elements) A €
P(L) in a way that keeps them separate from a concrete set of counterexamples.

Definition 6 (Safe Generalization). A safe generalization of a set of con-
cepts A € P(L) w.r.t. a concrete set of counterexamples Ceey € D is a set
SG(A,Ceey) € P(L) which satisfies the following requirements:

1. Abstraction: Va € A.3a’ € SG(A,Ceer).a 2 d
2. Separation: Va € SG(A, Ceer)-7(a) N Crex = 0
3. Precision: Va € SG(A,Cee,). A C Aa=]A

We say that SG(A, Cees) is maximal if whenever a € L satisfies the separation
and the precision requirements, there exists a’ € SG(A, Ceesz) s.t. a X d'.

Note that the separation requirement is the same as the “complementation”
requirement of comp~. Unlike the join of L which is restricted to return a con-
cept in L, SG(A, Ceey) returns a concept in P(L), and as such it can “refine” the
result of join in case | | A does not satisfy the separation requirement. The pre-
cision requirement is guided by the intuition that each a € SG(A, C¢es), which
represents a disjunct in the learned disjunctive concept, should generalize in
accordance with the generalization of L and not beyond. If any of the conditions
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cannot be met, then SG(A, C¢e;) is undefined. However, if v(A) and Cpe, are
disjoint, then SG(A, Ceey) is always defined because it will, at worst, perform
no generalization and will return A.

Using safe generalization, we can define the “safe abstractions” of two sets
CT,C™: @pos = SG({B(c) | ¢ € CT},C7), which characterizes the positive
examples, or @ne, = SG({B(c) | ¢ € C~},CT), which characterizes the negative
examples (provided that SG is defined for them).

The Ideal Solution. If C* and C~ partition the entire space and SG computes
mazimal safe generalization, then ¢pos and ¢,y Will be the optimal solutions, in
the sense of providing concepts with largest disjuncts which correctly partition
D. Note that in the case that the classifier is expressible as a concept in L,
the ideal solution is equivalent to the result of Candidate Elimination, which is
simply |[{8(c) | ¢ € C*}.

Since this definition, while optimal, is both unfeasible (for an infinite domain)
and requires SG, which like comp™ may be very expensive to compute, we pro-
pose instead a greedy algorithm to approximate it by directing the sampling of
points in CT and C~ and by implementing SG with a heuristic approximation
of maximality.

Our algorithm, D3, is presented in Algorithm 2, and described below.

Two Levels of Abstraction. D3 modifies the version space algorithms to keep
four hypotheses, divided into two levels of abstraction.

In the first level of abstraction, g, p-¢ € P(L) are formula representations
of the minimal overapproximation of the points that have actually been seen.
s corresponds to Candidate Elimination’s S, computed over P(L), for which
join is simply disjunction. In an effort to simplify and only deal with disjunction
and not negation, instead of G which underapproximates D\ C~, we use p_¢
that abstracts C~ directly. In the second level of abstraction, ¢pos, Pneq € P(L)
are added. These are incremental computations of the definition above, which
provide safe generalizations of pg w.r.t. the current C'~, and of p_g w.r.t. the
current C.

Technically, o5 =V cor B(c) and @pos =\ 95 s.t. ¥y = B(ci,)U--- U B(cyy, )
for some {c¢;;,...,c;,} € CT. It can be seen that Ct C v(ps) C Y(Ppos)-
Further, both ¢g and ¢p,s are consistent with all the examples seen (including
negative ones). Dually for C~, ¢ and ¢peg.

D3 updates the formulas as follows. Every positive sample ¢ that arrives
is first added to ¢g, and then if it is not already described by ©pes, ©pos 18
updated to a safe generalization of @pes V (c). If @peq is inconsistent with c,
then any disjunct ¥; € @y, for which ¢;(c) = true is refined by collapsing it
into its original set of points, abstracting them using § and re-generalizing while
considering the new point. Unlike Candidate Elimination, D? is symmetrical for
positive and negative samples, hence negative samples are handled dually.

D? converges when 