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Preface

This volume contains the papers presented at VMCAI 2016, the 17th International
Conference on Verification, Model Checking, and Abstract Interpretation, held during
January 17–19, 2016, in St. Petersburg, FL, USA, co-located with POPL 2016 (the
annual ACM SIGPLAN/SIGACT Symposium on Principles of Programming Lan-
guages). Previous meetings were held in Port Jefferson (1997), Pisa (1998), Venice
(2002), New York (2003), Venice (2004), Paris (2005), Charleston (2006), Nice
(2007), San Francisco (2008), Savannah (2009), Madrid (2010), Austin (2011),
Philadelphia (2012), Rome (2013), San Diego (2014), and Mumbai (2015).

VMCAI provides a forum for researchers from the communities of verification,
model checking, and abstract interpretation, facilitating interaction, cross-fertilization,
and advancement of hybrid methods that combine these and related areas. VMCAI
topics include: program verification, model checking, abstract interpretation and
abstract domains, program synthesis, static analysis, type systems, deductive methods,
program certification, debugging techniques, program transformation, optimization,
hybrid and cyber-physical systems.

This year the conference attracted 89 abstract submission leading to 67 full-paper
submissions. Each submission was reviewed by at least three Program Committee
members. The committee decided to accept 24 papers. The principal selection criteria
were relevance, quality, and originality. We are glad to include in the proceedings the
contributions of three invited keynote speakers: Peter Müller on “Viper — A Verifi-
cation Infrastructure for Permission-based Reasoning,” Bryan Parno on “Ironclad —
Full Verification of Complex Systems,” and Thomas Reps on “Automating Abstract
Interpretation.” We would like to thank them for sharing their insights with us through
their talks and articles contributed to the proceedings.

We thank our wonderful Program Committee members and reviewers for their
reviews and discussions. Our gratitude goes to the Steering Committee members for
their helpful advice and support, in particular to Lenore Zuck and Dave Schmidt for
their assistance and invaluable experience with the organization of VMCAI. We would
like to thank Annabel Satin for the great help in coordinating the events co-located with
POPL 2016. We are indebted to EasyChair for providing us with an excellent con-
ference management system. Finally, we thank our sponsors, Facebook and Microsoft
Research, as well as NSF for providing travel grants for students.

November 2015 Barbara Jobstmann
K. Rustan M. Leino
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Ironclad: Full Verification of Complex Systems
(Invited Talk)

Bryan Parno

Microsoft Research

The Ironclad project at Microsoft Research is using a set of new and modified tools
based on automated theorem proving to build Ironclad services. An Ironclad service
guarantees to remote parties that every CPU instruction the service executes adheres to
a high-level specification, convincing clients that the service will be worthy of their
trust. To provide such end-to-end guarantees, we built a full stack of verified software.
That software includes a verified kernel; verified drivers; verified system and cryp-
tography libraries including SHA, HMAC, and RSA; and four Ironclad Apps [1]. As a
concrete example, our Ironclad database provably provides differential privacy to its
data contributors. In other words, if a client encrypts her personal data with the data-
base’s public key, then it can only be decrypted by software that guarantees, down to
the assembly level, that it preserves differential privacy when releasing aggregate
statistics about the data.

We’ve also recently expanded the scope of our verification efforts to distributed
systems, which are notorious for harboring subtle bugs. We have developed IronFleet
[2], a methodology for building practical and provably correct distributed systems. We
demonstrated the methodology on a complex implementation of a Paxos-based repli-
cated state machine library and a lease-based sharded key-value store. We proved that
each obeys a concise safety specification, as well as desirable liveness requirements.
Each implementation achieves performance competitive with a reference system.

In this talk, we describe ourmethodology, formal results, and lessons we learned from
building large stacks of verified systems software. In pushing automated verification tools
to new scales (over 70K lines of code and proof so far), our team has both benefited from
automated verification techniques and uncovered new challenges in using them.

By continuing to push verification tools to larger and more complex systems,
Ironclad ultimately aims to raise the standard for security- and reliability-critical sys-
tems from “tested” to “correct”.

References

1. Hawblitzel, C., Howell, J., Lorch, J.R., Narayan, A., Parno, B., Zhang, D., Zill, B.: Ironclad
apps: end-to-end security via automated full-system verification. In: Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation (OSDI), October
2014

2. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L., Setty, S., Zill, B.:
Ironfleet: proving practical distributed systems correct. In: Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP), October 2015
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Automating Abstract Interpretation

Thomas Reps1,2(B) and Aditya Thakur3

1 University of Wisconsin, Madison, WI, USA
reps@cs.wisc.edu

2 GrammaTech, Inc., Ithaca, NY, USA
3 Google, Inc., Mountain View, CA, USA

Abstract. Abstract interpretation has a reputation of being a kind of
“black art,” and consequently difficult to work with. This paper describes
a twenty-year quest by the first author to address this issue by raising
the level of automation in abstract interpretation. The most recent leg of
this journey is the subject of the second author’s 2014 Ph.D. dissertation.
The paper discusses several different approaches to creating correct-by-
construction analyzers. Our research has allowed us to establish connec-
tions between this problem and several other areas of computer science,
including automated reasoning/decision procedures, concept learning,
and constraint programming.

1 Introduction

Establishing that a program is correct is undecidable in general. Consequently,
program-analysis and verification tools typically work on an abstraction of a
program, which over-approximates the original program’s behavior. The theory
underlying this approach is called abstract interpretation [18]. Abstract interpre-
tation provides a way to create program analyzers that obtain information about
the possible states that a program reaches during execution, but without actu-
ally running the program on specific inputs. Instead, the analyzer executes the
program using finite-sized descriptors that represent sets of states. For example,
one can use descriptors that represent only the sign of a variable’s value: neg,
zero, pos, or unknown. If the abstract state maps variables x and y as follows,
[x �→ neg, y �→ neg], the product “x ∗ y” would be performed as “neg ∗ neg,”
yielding pos. This approximation discards information about the specific values
of x and y; [x �→ neg, y �→ neg] represents all concrete states in which x and
y hold negative integers. By using such descriptors to explore the program’s
behavior for all possible inputs, the analyzer accounts for all possible states that
the program can reach.

The tar-pit of undecidability is sidestepped via two concepts:

– Abstraction. In this context, abstraction means “representing an information
space by a smaller space that captures its essential features.” (The smaller

Portions of this work appeared in [26,35,45,63,64,66,70,76,78,81,82]. T. Reps has
an ownership interest in GrammaTech, Inc., which has licensed elements of the tech-
nology reported in this publication.

c© Springer-Verlag Berlin Heidelberg 2016
B. Jobstmann and K.R.M. Leino (Eds.): VMCAI 2016, LNCS 9583, pp. 3–40, 2016.
DOI: 10.1007/978-3-662-49122-5 1



4 T. Reps and A. Thakur

space is called an abstract domain; an example of an abstract domain is the
set of all descriptors that record the signs of variables, as used above.)

– One-Sided Analysis. Whenever the analyzer says “no” it means “no,” but
whenever it says “yes” it means “maybe-yes/maybe-no”—i.e., the property
might or might not hold.

When the analyzer reports “no, a bad state is not reachable,” one is guaranteed
that only good states can arise—and hence that the program is correct with
respect to the property being checked. If the analyzer reports “yes, a bad state
might be reachable,” it must try other techniques to attempt to establish the
desired property (e.g., refining the abstraction in use).

However, there is a glitch: abstract interpretation has a reputation of being
a kind of “black art,” and consequently difficult to work with. This paper
describes a twenty-year quest to make abstract interpretation easier to work
with by (i) raising the level of discourse for specifying abstract interpreters,
and (ii) automating some of abstraction interpretation’s more difficult aspects,
thereby making it possible to create correct-by-construction analyzers.

A major focus of the work has been how to automate the construction of the
functions to transform abstract states—also known as abstract transformers.

The motivation came from our experience with two challenging analysis
contexts:

Analysis of Programs Manipulating Linked Data Structures: When
analyzing such programs, the number of fine-grained details that one needs
to track causes the abstractions to be inherently complex.

Analysis of Stripped Machine Code : Here an analyzer needs to use multiple
(separate and cooperating) abstract interpretations [6,45], and we also had
the goal of creating machine-code-analysis tools for multiple instruction sets.

In both cases, our experience with hand construction of abstract transformers
[6,69] was that the process was tedious, time-consuming, and a source of errors.

The paper summarizes three major milestones of our research, based on dif-
ferent approaches that we explored.

1. The TVLA system [12,42,70] introduced a way to create abstractions of
systems specified in first-order logic, plus transitive closure (Sect. 3). To con-
struct abstract transformers in TVLA, we developed a non-standard approach
to weakest precondition based on a finite-differencing transformation [63].

2. The TSL system [45] supports the creation of correct-by-construction imple-
mentations of the abstract transformers needed in tools that analyze machine
code (Sect. 4). From a single specification of the concrete semantics of an
instruction set, TSL can generate abstract transformers for static analysis,
dynamic analysis, symbolic analysis, or any combination of the three.

3. Our work on symbolic methods for abstract interpretation [64,78,82] aims to
bridge the gap between (i) the use of logic for specifying program semantics
and program correctness, and (ii) abstract interpretation. Many of the issues,
including the construction of abstract transformers, can be reduced to the
problem of symbolic abstraction (Sect. 5):
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Given formula ϕ in logic L, and abstract domain A, find the most-precise
descriptor a� in A that over-approximates the meaning of ϕ.

A particularly exciting aspect of the work on symbolic abstraction is the num-
ber of links the problem has with other research areas that one would not nor-
mally think of as being connected to static program analysis. Our investigations
have established connections with such areas as automated reasoning/decision
procedures (Sect. 5.4), concept learning (Sect. 6.1), and constraint programming
(Sect. 6.2).

Section 7 discusses related work. Section 8 concludes with a few final insights
and takeaways.

2 Problem Statement

2.1 What Can Be Automated About Abstract Interpretation?

A static-analysis system can have many components, including

(i) construction and use of abstract transformers
– an algorithm to construct sound abstract transformers to model the

actions of language primitives and/or user-defined functions
– an algorithm to apply or compose abstract transformers

(ii) state-space exploration
– state-space-exploration algorithms (i.e., equation/constraint solvers)
– methods to enforce termination via widening policies
– containment algorithms (for determining whether state-space explo-

ration should terminate)
(iii) mechanisms for improving precision

– narrowing
– reduced product
– semantic reduction
– construction of best transformers
– determination of the best inductive invariant

(iv) abstraction refinement (enabled by (i))

While the first author has also done a lot of work on state-space-exploration
algorithms [62,65,67] and some on widening policies [29,30], because so many
of the other aspects of the problem of automating abstract interpretation are
enabled by automating the construction (and use) of abstract transformers, the
paper will focus on work he and his collaborators have carried out on that topic.
In Sect. 5, we discuss recent work on a uniform mechanism to construct abstract
transformers that also provides a way to address reduced product, semantic
reduction, and (for some abstract domains) finding the best inductive invariant.
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To create sound abstract transformers that use a given abstract domain, we
need to have some way to create the abstract analogs of

(I) each constant that can be denoted in the programming language
(II) each primitive operation in the programming language

(III) each user-defined function in every program to be analyzed.

Task (I) is related to defining the abstraction function α; to create the abstract
analog k� of concrete constant k, apply α; i.e., k� = α({k}). By an abstract analog
of a concrete operation/function f , we mean an abstract operation/function f �

that satisfies
α(f̃(V1, . . . , Vk)) � f �(α(V1), . . . , α(Vk)), (1)

where f̃ denotes the lifting of f to operate on a set of values, i.e., f̃(V1, . . . , Vk) =
{f(v1, . . . , vk) | v1 ∈ V1, . . . , vk ∈ Vk}, and � denotes an ordering on abstract
values that respects concrete containment; i.e., a�

1 � a�
2 implies γ(a�

1) ⊆ γ(a�
2),

where γ denotes the concretization function for the abstract domain.
The effort that has to go into task (II) is bounded—the language has a fixed

number of primitive operations—and task (II) only has to be done once for a
given abstract domain. However, task (III) needs automation, because it will be
performed for all functions in all users’ programs, which are not known a priori.

2.2 Non-Compositionality

Unfortunately, abstract interpretation is inherently non-compositional—
meaning that one cannot create abstract analogs of operations/functions sep-
arately, and put them together without losing precision (see below). The non-
compositionality property is the essence of what makes it hard to automate the
construction of abstract transformers. This message is an uncomfortable one for
computer scientists because compositionality is so ingrained in our training—
e.g., our programming languages are defined using context-free grammars; many
concepts and properties are defined using inductive definitions, and recursive
tree traversals are a basic workhorse.

Syntax-Directed Replacement. A compositional approach to constructing
sound abstract transformers is relatively easy to implement. In particular,
Eq. (1) makes possible a simple, compositional approach—namely, syntax-
directed replacement of the concrete constants and concrete primitive opera-
tions by their abstract analogs. For instance, consider the following function:
f(x1, x2) = x1 ∗ x2 + 1. First, hoist f to f̃ , i.e., f̃(X1,X2) = X1 ∗̃ X2 +̃ {1}.
Then, by Eq. (1), we have

α(f̃(X1,X2))=α(X1 ∗̃ X2 +̃ {1})� α(X1 ∗̃ X2)+� {1}� �α(X1) ∗� α(X2)+� {1}�
.
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Thus, one way to ensure that we have a sound f � is to define f �(x1, x2) by

f �(x1, x2)
def= x1 ∗� x2 +� {1}�

.

Drawbacks of Syntax-Directed Replacement. Although syntax-directed
replacement is simple and compositional, it can be quite myopic because it
focuses solely on what happens at a single production in the abstract syntax
tree. The approach can lead to a loss of precision by not accounting for correla-
tions between operations at far-apart positions in the abstract syntax tree.

To illustrate the issue, consider the function h(x) def= x + (−x). Obviously,
h(x) always returns 0. Now suppose that we apply syntax-directed replacement,
h�(x) def= x +� (−�x), and evaluate h� over the sign abstract domain, which con-
sists of six values: {neg, 0, pos, nonpos, nonneg,�}. In particular, the abstract
unary-minus operation is defined as follows:

x � nonneg nonpos pos zero neg
−�x � nonpos nonneg neg zero pos

Consider evaluating h�(x) with the abstract value pos for the value of x.
(Abstract values at leaves and internal nodes of the AST of h�’s defining
expression are shown within square brackets in the tree in Fig. 1.) Because
pos +� neg = �, we obtain no useful information from the abstract interpreta-
tion. In contrast, the concrete value is always 0, and therefore the most-precise
abstract answer is zero (because α({0}) = zero).

[�]+�

[pos]x [neg]−�

[pos]x

Fig. 1. Abstract sub-
traction when leaves
are correlated.

Artificially imposing compositionality on an abstract
interpreter has a number of drawbacks:

– compositionality at expression granularity may not pro-
duce the best abstraction, even if all abstract program
primitives are best abstract primitives

– compositionality at statement or basic-block level may
not produce the best transformer, even if each abstract
transformer being composed is a best transformer

Moreover, if an analyzer loses precision at one point in
a program, it can provoke a cascade of precision loss
throughout the program.

2.3 What Does It Mean to Automate the Construction of Abstract
Transformers?

We sometimes describe our work by saying that we are working on “a yacc
for automating the construction of abstract transformers,” by which we mean
a tool that automates the task to an extent similar to the automation of the
construction of parsers achieved by yacc [36]. As a model for what we would
like to achieve, consider the problem that yacc addresses:
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– An instance of a parsing problem, Parse(L,s), has two parameters: L, a
context-free language; and s, a string to be parsed. String s changes more
frequently than language L.

– Context-free grammars are a formalism for specifying context-free
languages.

– Create a tool that implements the following specification:
• Input: a context-free grammar that describes language L.
• Output: a parsing function, yyparse(), for which executing yyparse()

on string s computes Parse(L,s).

Thus, we would like to follow a similar scheme.

– An abstract interpreter Interp�(Ms, A, a�) has three inputs
• Ms = the meaning function for a programming-language statement s
• A = an abstract domain
• a� = an abstract-domain value (which represents a set of pre-states)
a� changes more frequently than Ms and A.

– Find appropriate formalisms F1 and F2 for specifying Ms and A.
– Create a tool that implements the following specification:

• Input:
∗ an F1 specification of the programming language’s semantics
∗ an F2 specification that characterizes the abstraction that A supports

• Output: a function Is,A(·) such that Is,A(a�) computes Interp�(Ms, A, a�)

An alternative goal for the tool’s output is as follows:

Output: a representation of the function Is,A(·) that can be used in
the function-composition operations performed by interprocedural dataflow
analyzers [74].

Relationship to Partial Evaluation. Readers who are familiar with partial
evaluation [28,37] may be struck by how similar the problem statement above is
to the specification of partial evaluation, which suggests that partial evaluation
could play a role in automating abstract interpretation. However, we believe
that this observation is a red herring: whereas partial evaluation provides a
mechanism to speed up computations by removing interpretive overhead, the
key question in automating the construction of abstract transformers is “Given
the specification of an abstraction, how does one create an execution engine for
an analyzer that performs computations in an over-approximating fashion?”

2.4 Four Questions

The above discussion suggests four questions to ask about methods for automat-
ing the construction of abstract transformers:
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Q1. What formalism is used to specify Ms?
Q2. What formalism is used to specify A?
Q3. What is the engine at work that applies/constructs abstract transformers?

(a) What method is used to create Is,A(·)?
(b) Can it be used to create a representation of Is,A(·)?

Q4. How is the non-compositionality issue discussed in Sect. 2.2 addressed?

The answers given in Sects. 3, 4, and 5 explain how these issues are addressed in
the three approaches described in the paper.

3 TVLA: 3-Valued Logic Analyzer

In 1999, Sagiv, Reps, and Wilhelm devised an abstraction method, called canon-
ical abstraction [70], for analyzing the properties of evolving logical structures.
The original motivation for developing canonical-abstraction domains was the
desire to apply abstract interpretation to imperative programs that manipulate
linked data structures, to check such properties as

– when the input to a list-insert program is an acyclic list, the output is an
acyclic list, and

– when the input to a list-reversal program that uses destructive-update oper-
ations is an acyclic list, the output is an acyclic list.

Such analysis problems are known generically as shape-analysis problems. In
programs that manipulate linked data structures, storage cells can be dynami-
cally allocated and freed, and structure fields can be destructively updated. Data
structures can thus grow and shrink, with no fixed upper bound on their size
or number. In the case of thread-based languages, such as Java, the number of
threads can also grow and shrink dynamically [84]. The challenge in shape analy-
sis is to find a way to create finite-sized descriptors of memory configurations
that (i) abstract away certain details, but (ii) retain enough key information so
that an analyzer can identify interesting node-linkage properties that hold.

A logical structure is a set of individuals together with a certain collection of
relations over the individuals. (In shape analysis, individuals represent entities
such as memory locations, threads, locks, etc.; unary and binary relations encode
the contents of variables, pointer-valued structure fields, and other aspects of
memory states; and first-order formulas with transitive closure are used to spec-
ify properties such as sharing, cyclicity, reachability, etc.) Because canonical
abstraction is a general method for abstracting logical structures, it actually
has much broader applicability for analyzing systems than just shape-analysis
problems. It is relevant to the analysis of any system that can be modeled as an
evolving logical structure [11,12,34,42].

The concrete semantics of a system—such as the concrete semantics of pro-
grams written in a given programming language—is defined using a fixed set
of core relation symbols C. (Different kinds of systems, such as different pro-
gramming languages, are defined by varying the symbols in C.) The concrete
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semantics expresses how a program statement st causes the core relations to
change. The semantics of st is specified with formulas in first-order logic plus
transitive closure over the client-defined core relations in C.

Different abstract domains are defined using canonical abstraction by

– Defining a set of instrumentation relations I (also known as derived relations
or views). Each instrumentation relation p(v) is defined by a formula ψp(v)
over the core relations.

– Choosing a set of unary abstraction relations A from among the unary rela-
tions in the vocabulary R def= (C 	 I).

I controls what information is maintained (in addition to the core relations);
A controls what individuals are indistinguishable. The two mechanisms are
connected because it is possible to declare unary instrumentation relations as
abstraction relations. An abstract logical structure is the quotient of a concrete
logical structure with respect to the sets of indistinguishable individuals.

The TVLA (Three-Valued-Logic Analyzer) system [12,42] automates some
of the more difficult aspects of working with canonical-abstraction domains.
However, the initial version of TVLA failed to meet our goal of automating
abstract interpretation because not all aspects of abstract transformers were
derived automatically from the specification of a given abstraction. The analysis
designer had to supply a key portion of every abstract transformer manually.

The introduction of instrumentation relations causes auxiliary information
to be recorded in a program state, such as whether an individual memory loca-
tion possesses (or does not possess) a certain property. The concrete semantics
expresses how a program statement st causes the core relations to change; the
challenge is how one should go about updating the instrumentation relations.
Canonical-abstraction domains are based on 3-valued logic, where the third truth
value (1/2) arises when it is not known whether a property holds or not. Suppose
that p(v) ∈ I is defined by ψp(v). Reevaluating ψp(v) almost always yields 1/2,
and thus completely defeats the purpose of having augmented logical structures
with instrumentation relation p.

To overcome this effect, the initial version of TVLA required an analysis
designer to specify a relation-maintenance formula for each instrumentation rela-
tion, for each kind of statement in the language being analyzed. This approach
could obtain more precise results than that of reevaluating ψp(v), but placed the
onus on the analysis designer to supply a key part of every abstract transformer,
which was both burdensome and a source of errors.

Table 1. Core relations for shape analysis of programs that manipulate linked lists.

Relation Intended meaning

eq(v1, v2) Do v1 and v2 denote the same memory cell?
x(v) Does pointer variable x point to memory cell v?
n(v1, v2) Does the n-field of v1 point to v2?
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In 2002, we developed a way to create relation-maintenance formulas—and
thereby abstract transformers—fully automatically [63]. Our solution to the
problem is based on a finite-differencing transformation. Finite-differencing turns
out to be a natural way to identify the “footprint” of statement st on an instru-
mentation relation p, which reduces the number of tuples in p that have to be
reevaluated (compared to reevaluating all of p’s tuples using ψp(v)).

2-Valued Logical Structures. A concrete state is a 2-valued logical structure,
which provides an interpretation of a vocabulary R = {eq , p1, . . . , pn} of relation
symbols (with given arities). Rk denotes the set of k-ary symbols.

Definition 1. A 2-valued logical structure S over R is a pair S = 〈U, ι〉,
where U is the set of individuals, and ι is the interpretation. Let B = {0, 1}
be the domain of truth values. For p ∈ Ri, ι(p) : U i → B. We assume that
eq ∈ R2 is the identity relation: (i) for all u ∈ U , ι(eq)(u, u) = 1, and (ii) for
all u1, u2 ∈ U such that u1 and u2 are distinct individuals, ι(eq)(u1, u2) = 0.

The set of 2-valued logical structures over R is denoted by S2[R].

A concrete state is modeled by a 2-valued logical structure over a fixed vocab-
ulary C ⊆ R of core relations. Table 1 lists the core relations that are used to
represent a program state made up of linked lists. The set of unary core rela-
tions, C1, contains relations that encode the pointer variables of the program:
a unary relation of the form x(v) ∈ C1 encodes pointer variable x ∈ Var . The
binary relation n(v1, v2) ∈ C2 encodes list-node linkages.

R does not include constant or function symbols. Constant symbols are
encoded via unary relations, and k-ary functions via k + 1-ary relations. In
both cases, we use integrity rules—i.e., global constraints that restrict the set
of structures considered to ones that we intend. The following integrity rules
restrict each unary relation x, for x ∈ Var , to serve as a constant, and restrict
binary relation n to encode a partial function:

for each x ∈ Var ,∀v1, v2 : x(v1) ∧ x(v2) ⇒ eq(v1, v2)
∀v1, v2, v3 : n(v3, v1) ∧ n(v3, v2) ⇒ eq(v1, v2)

3-Valued Structures, Embedding, and Canonical Abstraction.
A 3-valued logical structure provides a finite over-approximation of a possibly
infinite set of 2-valued structures. The set T

def= {0, 1, 1/2} of 3-valued truth
values is partially ordered under the information order : l � 1/2 for l ∈ {0, 1}. 0
and 1 are definite values; 1/2, which denotes uncertainty, is an indefinite value.
The symbol � denotes the least-upper-bound operation with respect to �.

Definition 2. A 3-valued logical structure S = 〈U, ι〉 is almost identical to
a 2-valued structure, except that ι maps each p ∈ Ri to a 3-valued function
ι(p) : U i → T. In addition, (i) for all u ∈ U , ι(eq)(u, u) � 1, and (ii) for all
u1, u2 ∈ U such that u1 and u2 are distinct individuals, ι(eq)(u1, u2) = 0. (An
individual u for which ι(eq)(u, u) = 1/2 is called a summary individual.)
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The set of 3-valued logical structures over R is denoted by S3[R] � S2[R].
Given S = 〈U, ι〉, S′ = 〈U ′, ι′〉 ∈ S3[R], and surjective function f : U → U ′, f
embeds S in S’, denoted by S �f S′, if for all p ∈ R and u1, . . . , uk ∈ U ,
ι(p)(u1, . . . , uk) � ι′(p)(f(u1), . . . , f(uk)) If, in addition, for all u′

1, . . . , u
′
k ∈ U ′,

ι′(p)(u′
1, . . . , u

′
k) =

⊔

u1,...,uk∈U,s.t.f(ui)=u′
i,1≤i≤k

ι(p)(u1, . . . , uk)

then S′ is the tight embedding of S with respect to f , denoted by S′ = f(S).

The relation �id, abbreviated as �, reflects the tuple-wise information order
between structures with the same universe. We have S �f S′ ⇔ f(S) � S′.

The Embedding Theorem [70, Theorem 4.9] says that if S �f S′, then every
piece of information extracted from S′ via a formula ϕ is a conservative approx-
imation of the information extracted from S via ϕ:

Theorem 1. (Embedding Theorem [simplified]). If S = 〈U, ι〉, S′ =
〈U ′, ι′〉 ∈ S3[R] such that S �f S′, then for every formula ϕ, [[ϕ]]S3 � [[ϕ]]S

′
3 .

However, embedding alone is not enough. The universe U of 2-valued structure
S = 〈U, ι〉 ∈ S2[R] is of a priori unbounded size; consequently, we need a method
that maps U to an abstract universe U � of bounded size. The idea behind canon-
ical abstraction is to choose a subset A ⊆ R1 of abstraction relations, and to
define an equivalence relation �AS on U that is parameterized by S itself:

u1 �AS u2 ⇔ ∀p ∈ A : ι(p)(u1) = ι(p)(u2).

This equivalence relation defines the surjective function fS
A : U → (U/ �AS ),

which maps an individual to its equivalence class. We have the Galois connection

℘(S2[R]) −−−→←−−−
α

γ
℘(S3[R])

α(X) = {fS
A(S) | S ∈ X} γ(Y ) = {S | S� ∈ Y ∧ S �f S�},

where fS
A in the definition of α denotes the tight-embedding function for logical

structures induced by the node-embedding function fS
A : U → (U/ �AS ). The

abstraction function α is referred to as canonical abstraction. Note that there is
an upper bound on the size of each structure 〈U �, ι�〉 ∈ S3[R] that is in the image
of α: |U �| ≤ 2|A|—and thus the power-set of the image of α is a finite sublattice
of ℘(S3[R]). The ordering on ℘(S3[R]) is the Hoare ordering: SS1 � SS2 if for
all S1 ∈ SS1 there exists S2 ∈ SS2 such that S1 �f S2.

Maintaining Instrumentation Relations. The technique used to create
abstract transformers for canonical-abstraction domains works as follows. The
post-state structures for statement st are determined using four primitives:
(i) partial concretization (or partial model enumeration) via the focus opera-
tion [70], [Sect. 6.3]; (ii) formula evaluation, using (a) for a core relation c ∈ C,
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the relation-update formula τc,st from the concrete semantics, evaluated in 3-
valued logic: [[τc,st]]3, and (b) for an instrumentation relation p ∈ I, a finite-
differencing-based relation-maintenance formula μp,st created by the technique
described below [63, Sects. 5 and 6]; (iii) lightweight logical reasoning via the
coerce operation [70, Sect. 6.4], which repeatedly performs semantic-reduction
steps [19] on the post-state structure to increase the precision of the result;
and (iv) a final application of canonical abstraction with respect to abstraction
relations A. Due to space limitations, we will only discuss step (ii).1 Step (ii)
transforms a 3-valued pre-state structure S#

1 that arises just before step (ii),
into post-state structure S#

2 just after step (ii). The structure that consists of
just the core relations of S#

2 is called a proto-structure, denoted by S#
proto . The

creation of core relation c in S#
proto from S#

1 can be expressed as follows:

for each u1, . . . , uk ∈ US#
1 , ιS

#
proto (c)(u1, . . . , uk) := [[τc,st(u1, . . . , uk)]]S

#
1

3 (2)

We now come to the crux of the matter: Suppose that instrumentation relation
p is defined by formula ψp; how should the analysis engine obtain the value
of relation p in S#

2 ? From the standpoint of the concrete semantics, p is just
cached information that could always be recomputed by reevaluating the defining
formula ψp, and thus the Embedding Theorem tells us that it is sound to perform

for each u1, . . . , uk ∈ US#
proto , ιS

#
2 (p)(u1, . . . , uk) := [[ψp(u1, . . . , uk)]]

S#
proto

3 . (3)

In practice, however, this approach loses too much precision.
An alternative approach is to create a relation-maintenance formula for p

with respect to st via a weakest-liberal-precondition (WLP) transformation,

μp,st
def= ψp[c ←↩ τc,st | c ∈ C], (4)

where ϕ[q ←↩ θ] denotes the formula obtained from ϕ by replacing each occur-
rence of relation symbol q by formula θ. Formula μp,st is evaluated in S#

1 :

for each u1, . . . , uk ∈ US#
1 , ιS

#
2 (p)(u1, . . . , uk) := [[μp,st(u1, . . . , uk)]]S

#
1

3 . (5)

However, Eqs. (3) and (5) turn out to be equivalent—and hence equivalently

imprecise—because the steps of creating S#
proto and evaluating [[ψp]]

S#
proto

3 mimic

exactly those of evaluating [[ψp[c ←↩ τc,st | c ∈ C]]]S
#
1

3 .

Relation Maintenance via Finite Differencing. The algorithm for creating
a relation-maintenance formula μp,st, for p ∈ I, uses an incremental-computation

1 It is interesting to note that the roles of steps (i), (iii), and (iv) are close to the steps
of splitting, propagation, and join, respectively, in our generalization of St̊almarck’s
algorithm to perform symbolic abstraction [82]. See Sect. 5.
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Fig. 2. How to maintain the value of ψp in 3-valued logic in response to changes in the
values of core relations caused by the execution of structure transformer st.

Fig. 3. Finite-difference formulas for first-order formulas.

strategy: μp,st is defined in terms of the stored (pre-state) value of p, along with
two finite-differencing operators, denoted by Δ−

st[·] and Δ+
st[·].

μp,st
def= p ? ¬Δ−

st[ψp] : Δ+
st[ψp]. (6)

In this approach to the relation-maintenance problem, the two finite-differencing
operators characterize the tuples of relation p that are subtracted and added in
response to structure transformation st. Δ−

st[·] has value 1 for tuples that st
changes from 1 to 0; Δ+

st[·] has value 1 for tuples that st changes from 0 to 1.
Equation (6) means that if the old value of a p tuple is 1, then its new value
is 1 unless there is a negative change; if the old value of a p tuple is 0, then
its new value is 0 unless there is a positive change. Figure 2 depicts how the
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static-analysis engine evaluates Δ−
st[ψp] and Δ+

st[ψp] in S#
1 and combines these

values with the value of the p tuple from S#
1 to obtain the value of the p′′ tuple.

The operators Δ−
st[·] and Δ+

st[·] are defined recursively, as shown in Fig. 3.
The definitions in Fig. 3 make use of the operator Fst[ϕ] (standing for “Future”),
defined as follows:

Fst[ϕ] def= ϕ ? ¬Δ−
st[ϕ] : Δ+

st[ϕ]. (7)

Thus, maintenance formula μp,st can also be expressed as μp,st
def= Fst[p].

Equation (7) and Fig. 3 define a syntax-directed translation scheme that can
be implemented via a recursive walk over a formula ϕ. The operators Δ−

st[·] and
Δ+

st[·] are mutually recursive. For instance, Δ+
st[¬ϕ1] = Δ−

st[ϕ1] and Δ−
st[¬ϕ1] =

Δ+
st[ϕ1]. Moreover, each occurrence of Fst[ϕi] contains additional occurrences of

Δ−
st[ϕi] and Δ+

st[ϕi].
Note how Δ−

st[·] and Δ+
st[·] for ϕ1∨ϕ2 and ϕ1∧ϕ2 resemble the product rule

of differentiation. Continuing the analogy, it helps to bear in mind that the
“independent variables” are the core relations, whose values are changed via the
τc,st formulas; the “dependent variable” is the relation defined by formula ϕ.

The relation-maintenance formula defined in Eq. (6) is, in essence, a non-
standard approach to WLP based on finite differencing, rather than substitu-
tion. To see the relationship with WLP, consider the substitution-based relation-
maintenance formula ψp[c ←↩ τc,st | c ∈ C] defined in Eq. (4), which computes the
WLP of post-state instrumentation relation p with respect to statement st. In
the concrete semantics, this formula is equivalent to the finite-differencing-based
relation-maintenance formula, Fst[p] = p ? ¬Δ−

st[p] : Δ+
st[p] [63, Theorem 5.3]. In

effect, Fst[p] is a “footprint-based” version of WLP.

Answers to The Four Questions.

Q1. The concrete semantics is specified by (i) declaring a suitable set of core
relations C that define a system’s concrete states, and (ii) writing—using
first-order logic plus transitive closure over C—the τc,st formulas that define
the concrete transformers.

Q2. A canonical-abstraction domain is specified by (i) defining instrumentation
relations I (again, using first-order logic plus transitive closure), and (ii)
selecting which unary relations in C1 	 I1 to use as abstraction relations A.
I controls what information is maintained (in addition to the core relations);
A controls what individuals are indistinguishable. The two mechanisms are
connected because one can declare unary instrumentation relations to be
abstraction relations.

Q3. (a) Abstract transformers are constructed automatically by means of the
four-part construction sketched in the section “Maintaining Instrumenta-
tion Relations” above. In particular, an instrumentation relation p ∈ I is
evaluated using the relation-maintenance formula μp,st, created by applying
a finite-differencing transformation to p’s defining formula ψp (Eq. (6)).
(b) Representations of abstract transformers can be created by means of
a principle of “pairing and then abstracting” [35, Sect. 6]. In particular,
one uses (sets of) logical structures over a duplicated vocabulary R 	 R′
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to represent relations between logical structures over vocabulary R. The
relation-composition operation needed for interprocedural analysis [74], can
be performed in the usual way, i.e., R3[R	R′′] = ∃R′ : R1[R	R′]∧R2[R′	
R′′], using three vocabularies of relation symbols, a meet operation on
3-valued structures [4], and implementing ∃R′ by dropping all R′ relations
[35, Sect. 6.5].

Q4. For statement st, the relation-maintenance formula μp,st for instrumentation
relation p is p ? ¬Δ−

st[ψp] : Δ+
st[ψp] (evaluated in the pre-state structure),

rather than ψp (evaluated in the post-state structure) or ψp[c ←↩ τc,st | c ∈ C]
(evaluated in the pre-state structure). Finite-differencing addresses the non-
compositionality issue because μp,st identifies the “footprint” of statement
st on p, which reduces the number of tuples in p that have to be reevaluated.

4 TSL: Transformer Specification Language

In 2008, Lim and Reps created the TSL system [45], a meta-tool to help in the
creation of tools for analyzing machine code. From a single specification of the
concrete semantics of a machine-code instruction set, TSL automatically gener-
ates correct-by-construction implementations of the state-transformation func-
tions needed in state-space-exploration tools that use static analysis, dynamic
analysis, symbolic analysis, or any combination of the three [44,45,80].

The TSL meta-language is a strongly typed, first-order functional language
with a datatype-definition mechanism for defining recursive datatypes, plus
deconstruction by means of pattern matching. Writing a TSL specification for
an instruction set is similar to writing an interpreter in first-order ML: the spec-
ification of an instruction set’s concrete semantics is written as a TSL function

state interpInstr(instruction I, state S) ...;

where instruction and state are user-defined datatypes that represent the
instructions and the semantic states, respectively. TSL’s meta-language provides
a fixed set of basetypes; a fixed set of arithmetic, bitwise, relational, and logical
operators; and a facility for defining map-types.

TSL’s most basic mechanism for creating abstract transformers is similar to
the syntax-directed-replacement method described in Sect. 2.2. From the specifi-
cation of interpInstr for a given instruction set, the TSL compiler creates a C++
template that serves as a common intermediate representation (CIR). The CIR
template is parameterized on an abstract-domain class, A, and a fixed set of
A primitive operations that mainly correspond to the primitive operations of
the TSL meta-language. A C++ class that can be used to instantiate the CIR
is called a semantic reinterpretation [46,56–58]; it must implement an interface
that consists of 42 basetype operators, most of which have four variants, for
8-, 16-, 32-, and 64-bit integers, as well as 12 map access/update operations and
a few additional operations, such as join, meet, and widen.

The CIR can be used to create multiple abstract interpreters for a given
instruction set. Each analyzer is specified by supplying a semantic reinterpreta-
tion (for the TSL primitives), which—by extension to TSL expressions and user-
defined functions—provides the reinterpretation of the function interpInstr, which
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is essentially the desired function Is,A(·) discussed in Sect. 2.3. Each reinterpre-
tation instantiates the same CIR template, which in turn comes directly from
the specification of the instruction set’s concrete semantics. By this means, the
abstract transformers generated for different abstract domains are guaranteed to
be mutually consistent (and also to be consistent with an instruction-set emulator
that is generated from the same specification of the concrete semantics).

Although the syntax-directed-replacement method has its drawbacks, it
works well for machine-code instruction sets. Using a corpus of 19,066 Intel
x86 instructions, Lim and Reps found, for one abstract domain, that 96.8 %
of the transformers created via semantic reinterpretation reached the limit of
precision attainable with that abstract domain [45, Sect. 5.4.1]. Evidently, the
semantic specifications of x86 instructions do not usually suffer from the kinds
of missed-correlation effects discussed in Sect. 2.2.

Answers to The Four Questions.

Q1. The semantics of machine-code instructions are specified by writing an inter-
preter in the TSL meta-language.

Q2. To define an abstract domain and its operations, one needs to supply a C++
class that implements a semantic reinterpretation.

Q3. (a) The common intermediate representation (CIR) generated for a given
TSL instruction-set specification is a C++ template that can be instantiated
with multiple semantic-reinterpretation classes to create multiple reinterpre-
tations of the function interpInstr.
(b) Representations of abstract transformers can be created via the app-
roach discussed below in the section “Relational Abstract Domains.”

Q4. One predefined reinterpretation is for quantifier-free formulas over the the-
ory of bitvectors and bitvector arrays (QF ABV). One can avoid the myopia
of operator-by-operator reinterpretation illustrated in Sect. 2.2 by using the
QF ABV reinterpretation on basic blocks and loop-free fragments. The for-
mula so obtained has a “long-range view” of the fragment’s semantics. One
can then employ the symbolic-abstraction techniques described in Sect. 5.

Relational Abstract Domains. An interesting problem that we encountered
with TSL was how to perform reinterpretation for relational abstract domains,
such as polyhedra [21], weakly relational domains [49], and affine equalities
[27,40,55]. With such domains, the goal is to create a representation of an
abstract transformer that over-approximates the concrete transformer for an
instruction or basic block. Clearly state should be redefined as a relational-
abstract-domain class whose values represent a relation between input states
and output states; however, it was not immediately obvious how the TSL base-
types should be redefined, nor how operations such as Plus32, And32, Xor32, etc.
should be handled.

The literature on relational numeric abstract domains did not provide much
assistance. Most papers on such domains focus on some modeling language—
typically affine programs ([21, Sect. 4], [55, Sect. 2], [49, Sect. 4])—involving
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only assignments and tests written in some restricted form—and describe how
to create abstract transformers only for concrete transformers written in that
form. For instance, for an assignment statement “x := e”

– If e is a linear expression, the coefficients for the variables in e are used to
create an abstract-domain value that encodes a linear transformation.

– If e is a non-linear expression, it is modeled as “x := ?” or, equivalently,
“havoc(x).” (That is, after “x := e” executes, x can hold any value.)

In contrast, with TSL each abstract-domain value must be constructed by evalu-
ating an expression in the TSL meta-language. Moreover, the concrete semantics
of an instruction set often makes use of non-linear operators, such as bitwise-
and bitwise-or. There could be an unacceptable loss of precision if every use
of a non-linear operator in an instruction’s semantic definition caused a havoc.
Fortunately, we were able to devise a generic method for creating abstract trans-
formers, usable with multiple relational abstract domains, that can retain some
degree of precision for some occurrences of non-linear operators [27, Sect. 6.6.4].

For relational abstract domains, the usually straightforward syntax-directed-
replacement method is somewhat subtle. For a set of variables V , a value in type
Rel[V ] denotes a set of assignments V → Val (for some value space Val). When
V and V ′ are disjoint sets of variables, the type Rel[V ; V ′] denotes the set of Rel
values over variables V 	 V ′. We extend this notation to cover singletons: if i is
a single variable not in V , then the type Rel[V ; i] denotes the set of Rel values
over the variables V 	{i}. (Operations sometimes introduce additional temporary
variables, in which case we have types like Rel[V ; i, i′] and Rel[V ; i, i′, i′′].)

In a reinterpretation that yields abstractions of concrete transition-relations,
the type state represents a relation on pre-states to post-states. For example,
suppose that the goal is to track relationships among the values of the processor’s
registers. The abstraction of state would be Rel[R; R′], where R is the set of
register names (e.g., for Intel x86, R

def= {eax, ebx, . . . }), and R′ is the same set
of names, distinguished by primes (R′ def= {eax’, ebx’, . . . }).

In contrast, the abstraction of a machine-integer type, such as INT32,
becomes a relation on pre-states to machine integers. Thus, for machine-integer
types, we introduce a fresh variable i to hold the “current value” of a reinter-
preted machine integer. Because R still refers to the pre-state registers, we write
the type of a Rel-reinterpreted machine integer as Rel[R; i]. Although technically
we are working with relations, for a Rel[R; i] value it is often useful to think of
R as a set of independent variables and i as the dependent variable.

Constants. The Rel reinterpretation of a constant c is the Rel[V ; i] value that
encodes the constraint i = c.

Variable-Access Expressions. The Rel reinterpretation of a variable-access
expression access(S, v), where S’s value is a Rel state-transformer of type
Rel[V ;V ′] and v ∈ V , is the Rel[V ; i] value obtained as follows:
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1. Extend S to be a Rel[V ;V ′; i] value, leaving i unconstrained.
2. Assume the constraint i = v′ on the extended S value (to retrieve v from the

“current state”).
3. Project away V ′, leaving a Rel[V ; i] value that holds in i constraints on v’s

value in terms of the pre-state vocabulary V .

Update Operations. Suppose that S ∈ Rel[V ; V ′], and the reinterpretation of
expression e with respect to S has produced the reinterpreted value J ∈ Rel[V ; i].
We want to create S′′ ∈ Rel[V ;V ′] that acts like S, except that post-state
variable v′ ∈ V ′ satisfies the constraints on i in J ∈ Rel[V ; i]. The operation
update(S, v, J) is carried out as follows:

1. Let S′ be the result of havocking v′ from S.
2. Let K be the result of starting with J , renaming i to v′, and then extending it

to be a Rel[V ; V ′] value by adding unconstrained variables in the set V ′−{v′}.
3. Return S′′ def= S′ � K.

S′ captures the state in which we “forget” the previous value of v′, and K asserts
that v′ satisfies the constraints (in terms of the pre-state vocabulary V ) that were
obtained from evaluating e.

Addition. Suppose that we have two Rel[V ; i] values x and y, and wish to
compute the Rel[V ; i] value for the expression x + y. We proceed as follows:

1. Rename y’s i variable to i′; this makes y a Rel[V ; i′] value.
2. Extend both x and y to be Rel[V ; i, i′, i′′] values, leaving i′ and i′′ uncon-

strained in x, and i and i′′ unconstrained in y.
3. Compute x � y.
4. Assume the constraint i′′ = i + i′ on the value computed in step (3).
5. Project away i and i′, leaving a Rel[V ; i′′] value.
6. In the value computed in step (5), rename i′′ to i, yielding a Rel[V ; i] value.

5 Symbolic Abstraction

Since 2002, the first author has been interested in connections between abstract
interpretation and logic—in particular, how to harness decision procedures to
obtain algorithms for several fundamental primitives used in abstract interpre-
tation [64,78,79,82,85]. The work aims to bridge the gap between (i) the use
of logic for specifying program semantics and performing program analysis, and
(ii) abstract interpretation. In 1997, Graf and Säıdi [31] showed how to use the-
orem provers to generate best abstract transformers for predicate-abstraction
domains (fixed, finite collections of Boolean predicates). In 2004, Reps et al. [64]
gave a method that makes such a connection for a much broader class of abstract
domains. That paper also introduced the following problem, which we (now) call
symbolic abstraction:
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Given formula ϕ in logic L, and abstract domain A, find the most-precise
descriptor a� in A that over-approximates the meaning of ϕ (i.e., [[ϕ]] ⊆ γ(a�).

We use α̂A(ϕ) to denote the symbolic abstraction of ϕ ∈ L with respect to
abstract domain A. We drop the subscript A when it is clear from context.

The connection between logic and abstract interpretation becomes clearer if
we view an abstract domain A as a logic fragment LA of some general-purpose
logic L, and each abstract value as a formula in LA. We say that γ̂ is a symbolic-
concretization operation for A if it maps each a� ∈ A to ϕa� ∈ LA such that the
meaning of ϕa� equals the concretization of a�; i.e., [[ϕa� ]] = γ(a�). LA is often
defined by a syntactic restriction on the formulas of L.

Example 1. If A is the set of environments over intervals, LA is the set of con-
junctions of one-variable inequalities over the program variables. It is generally
easy to implement γ̂ for an abstract domain. For example, given a� ∈ A, it is
straightforward to read off the appropriate ϕa� ∈ LA: each entry x �→ [clow, chigh]
contributes the conjuncts “clow ≤ x” and “x ≤ chigh.” ��
Thus, symbolic abstraction addresses a fundamental approximation problem:

Given formula ϕ ∈ L, find the strongest consequence of ϕ that is expressible
in a different logic L′.

Since 2011, we (Thakur and Reps) pursued several new insights on this ques-
tion. One insight was that generalized versions of an old, and not widely used,
method for validity checking of propositional-logic formulas, called St̊almarck’s
method, provide new ways to implement α̂. The methods that we subse-
quently developed [78,79,81,82] offer much promise for building more powerful
program-analysis tools. They (i) allow more precise implementations of abstract-
interpretation primitives to be created—including ones that attain the funda-
mental limits on precision that abstract-interpretation theory establishes—and
(ii) drastically reduce the time needed to implement such primitives while ensur-
ing correctness by construction. In [79], we described a method that, for a certain
class of abstract domains, uses α̂ to solve the following problem:

Given program P and abstract domain A, find the most-precise inductive
A-invariant for P .

5.1 Abstract Transformers via Symbolic Abstraction

We now illustrate how α̂ can be used both to apply an abstract transformer and
to construct a representation of an abstract transformer.
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Example 2. Consider the Intel x86 instruction τ ≡ add bh,al, which adds al,
the low-order byte of 32-bit register eax, to bh, the second-to-lowest byte of
32-bit register ebx. No other register apart from ebx is modified. For simplicity,
we only consider the registers eax, ebx, and ecx. The semantics of τ can be
expressed in the logic QF ABV as the formula ϕτ :

ϕτ
def= ebx′ =

(
(ebx & 0xFFFF00FF)

| ((ebx + 256 ∗ (eax & 0xFF)) & 0xFF00)

)∧ eax′ = eax
∧ ecx′ = ecx,

(8)

where “&” and “|” denote the non-linear bit-masking operations bitwise-and
bitwise-or, respectively.

Suppose that the abstract domain is E232 , the domain of affine equalities
over the 32-bit registers eax, ebx, and ecx, and that we would like to apply the
abstract transformer for τ when the input abstract value in E232 is ebx = ecx.
This task corresponds to finding the strongest consequence of the formula ψ ≡
(ebx = ecx∧ϕτ ) that can be expressed as an affine relation among eax′, ebx′, and
ecx′, which turns out to be α̂(ψ) ≡ (216ebx′ = 216ecx′ + 224eax′) ∧ (224ebx′ =
224ecx′). Multiplying by a power of 2 shifts bits to the left; because we are
using arithmetic mod 232, bits shifted off the left end are unconstrained. Thus,
the first conjunct of α̂(ψ) captures the relationship between the low-order two
bytes of ebx′, the low-order two bytes of ecx′, and the low-order byte of eax′.
This example illustrates that the result of applying an abstract transformer can
be non-obvious—even for a single machine-code instruction—which serves to
motivate the desire for automation.

Now suppose that we would like to compute a representation of the best
abstract transformer for τ in abstract domain E232 . This task corresponds to
finding the strongest consequence of ϕτ that can be expressed as an affine relation
among eax, ebx, ecx, eax′, ebx′, and ecx′, which turns out to be α̂(ϕτ ) ≡
(216ebx′ = 216ebx + 224eax) ∧ (eax′ = eax) ∧ (ecx′ = ecx). ��

Fig. 4. Conversion between abstract domains with the clique approach ((a) and (b))
versus the symbolic-abstraction approach ((c) and (d)).
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5.2 Communication of Information Between Abstract Domains

We now show how symbolic abstraction provides a way to combine the results
from multiple analyses automatically (thereby enabling the construction of new,
more-precise analyzers that use multiple abstract domains simultaneously).

Figures 4(a) and (b) show what happens if we want to communicate informa-
tion between abstract domains without symbolic abstraction. Because it is nec-
essary to create explicit conversion routines for each pair of abstract domains,
we call this approach the “clique approach.” As shown in Fig. 4(b), when a new
abstract domain A is introduced, the clique approach requires that a conver-
sion method be developed for each prior domain Ai. In contrast, as shown in
Fig. 4(d), the symbolic-abstraction approach only requires that we have α̂ and
γ̂ methods that relate A and L.

Fig. 5. Improving values from two abstract domains via symbolic abstraction.

If each analysis i is sound, each result a�
i represents an over-approximation of

the actual set of concrete states. Consequently, the collection of analysis results
{a�

i} implicitly tells us that only the states in
⋂

i γ(a�
i) can actually occur. How-

ever, this information is only implicit, and it can be hard to determine what the
intersection value really is. One way to address this issue is to perform a seman-
tic reduction [19] of each of the a�

i with respect to the set of abstract values
{a�

j | i �= j}. Fortunately, symbolic abstraction provides a way to carry out such
semantic reductions without the need to develop pair-wise or clique-wise reduc-
tion operators. The principle is illustrated in Fig. 5 for the case of two abstract
domains, P = Env [Parity ] and I = Env [Interval ]. Given a�

1 ∈ P and a�
2 ∈ I, we

can improve the pair 〈a�
1, a

�
2〉 by first creating the formula ϕ

def= γ̂P(a�
1) ∧ γ̂I(a�

2),
and then applying α̂P and α̂I to ϕ to obtain a�

1

′
= α̂P(ϕ) and a�

2

′
= α̂I(ϕ),

respectively. a�
1

′
and a�

2

′
can be smaller than the original values a�

1 and a�
2,

respectively. We then use the pair 〈a�
1

′
, a�

2

′〉 instead of 〈a�
1, a

�
2〉. Figure 5 shows a

specific example of how this approach to semantic reduction improves both the
Env [Parity ] value and the Env [Interval ] value. When there are more than two
abstract domains, we form the conjunction ϕ

def=
∧

i γ̂i(a
�
i), and then apply each

α̂i to obtain a�
i

′
= α̂i(ϕ).
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5.3 Algorithms for Symbolic Abstraction

The various algorithms for computing symbolic abstraction can be seen as relying
on the following two properties:

Theorem 2. [76, Theorem 3.14] α̂(ϕ) =
⊔{

β(S)
∣∣ S |= ϕ

} ��
Theorem 3. [76, Theorem 3.15] α̂(ϕ) =

{
a

∣∣ ϕ ⇒ γ̂(a)
} ��

The representation function β returns the abstraction of a singleton concrete
state; i.e., β(σ) = α ({σ}).

RSY Algorithm. Reps et al. [64] presented a framework for computing α̂—
which we call the RSY algorithm—that applies to any logic L and abstract
domain A that satisfy certain conditions. The key insight of the algorithm is the
use of an SMT solver for L as a black-box to query for models of ϕ and then
make use of Theorem 2. Unfortunately, Theorem 2 does not directly lead to an
algorithm for computing α̂(ϕ), because, as stated, it involves finding all models
of ϕ, which would be impractical. The RSY algorithm queries the SMT solver
to compute a finite sequence σ1, σ2, . . . , σk of models of ϕ. This sequence is used
to compute the sequence of abstract values a�

0, a
�
1, a

�
2, . . . , a

�
k as follows:

a�
0 = ⊥

a�
i = a�

i−1 � β(σi), σi |= ϕ, 1 ≤ i ≤ k
(9)

Merely sampling k arbitrary models of ϕ would not work. In particular, it is
possible that a�

i−1 = a�
i , in which case step i has not made progress. To ensure

progress, we require σi to be a model of ϕ such that σi /∈ γ(a�
i−1). In other words,

σi should be a model that satisfies ϕ∧¬γ̂(a�
i−1). Equation (9) can be restated as

a�
0 = ⊥

a�
i = a�

i−1 � β(σi), σi |= ϕ ∧ ¬γ̂(a�
i−1), 1 ≤ i

(10)

Obtaining σi as a model of ϕ ∧ ¬γ̂(a�
i−1) ensures that either a�

i−1 � a�
i or else

a�
i−1 = a�

i = α̂(ϕ). Thus, if A has no infinite ascending chains, the sequence
constructed by Eq. (10) forms a finite ascending chain that converges to α̂(ϕ):

⊥ = a�
0 � a�

1 � a�
2 � . . . � a�

k−1 � a�
k = α̂(ϕ). (11)

From Eq. (10), we can identify the requirements on L and A:

1. There is a Galois connection C −−−→←−−−
α

γ
A between A and concrete domain C,

and an implementation of the corresponding representation function β.
2. There is an algorithm to evaluate a� � β(σ) for all a� ∈ A.
3. There is a symbolic-concretization operation γ̂ that maps an abstract value

a� ∈ A to a formula γ̂(a�) in L.
4. A has no infinite ascending chains.
5. There is a decision procedure for logic L that is also capable of returning a

model satisfying a given formula in L.
6. Logic L is closed under conjunction and negation.

Pseudo-code for the RSY algorithm can be found in [64].
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Bilateral Algorithm. The bilateral algorithm [78] is a framework for comput-
ing α̂ that is similar to the RSY algorithm in that it queries an SMT solver.
However, the nature of the queries differ in the two algorithms. Furthermore,
the bilateral algorithm makes use of both Theorems 2 and 3. While the RSY
algorithm converges to the final answer by moving up the lattice, the bilateral
algorithm converges to the final answer by both moving up the lattice start-
ing from ⊥ and moving down the lattice starting from �. That is, the bilateral
algorithm computes a finite sequence of pairs of abstract values (l�i , u

�
i) such that

⊥ = l�0 � l�1 � . . . � l�k = α̂(ϕ) = u�
k � . . . � u�

1 � u�
0 = �. (12)

The progress guarantee for the RSY algorithm is that a�
i � a�

i+1: on each itera-
tion, the algorithm moves up the lattice. The progress guarantee for the bilateral
algorithm is slightly different: on each iteration, the algorithm either moves up
the lattice or moves down the lattice: either l�i � l�i+1 or u�

i+1 � u�
i .

A key concept in the bilateral algorithm is the notion of an abstract-
consequence operation:

Definition 3. An operation AC(·, ·) is an acceptable abstract-consequence
operation iff for all l�, u� ∈ A such that l� � u�, a� = AC(l�, u�) implies that
l� � a� and a� �� u�. ��
In particular, γ(a�) does not encompass γ(u�), and whenever a� �= ⊥, γ(a�)
overlaps γ(u�).

Readers familiar with the concept of interpolation [23] might see similari-
ties between interpolation and abstract consequence. However, as discussed in
[78, Sect. 3] there are significant differences between these two notions.

The sequence (l�i , u
�
i) is computed using the following rules:

(l�0, u
�
0) = (⊥,�) (13)

(l�i , u
�
i)=(l�i−1, u

�
i−1 � AC(l�i−1, u

�
i−1)), ϕ⇒ γ̂

(
AC(l�i−1, u

�
i−1)

)
, l�i−1 � u�

i−1 (14)

(l�i , u
�
i) = (l�i−1 � β(σi), u

�
i−1), σi |= ϕ ∧ ¬γ̂

(
AC(l�i−1, u

�
i−1)

)
, l�i−1 � u�

i−1 (15)

The invariant that is maintained is that l�i � α̂(ϕ) � u�
i . l�0 is initialized to ⊥,

and u�
0 is initialized to �. Let a�

i−1 = AC(l�i−1, u
�
i−1). There are two cases: either

ϕ ⇒ γ̂(a�
i−1) or it does not. If ϕ ⇒ γ̂(a�

i−1), then u�
i can be defined as u�

i−1�a�
i−1,

and l�i = l�i−1 (Eq. (14)). This step makes progress because a�
i−1 �� u�

i−1 implies
that u�

i � u�
i−1 � a�

i−1. Otherwise, there must exist a model σi such that σi |=
ϕ ∧ ¬γ̂(a�

i−1). In this case, l�i can be defined as l�i−1 � β(σi) (Eq. (15)). This step
makes progress for reasons similar to the RSY algorithm. Thus, on each iteration
either l�i or u�

i is updated. The values l�i and u�
i are guaranteed to converge to

α̂(ϕ) provided A has neither infinite ascending chains nor infinite descending
chains.2

2 A slight modification to the bilateral algorithm can remove the requirement of having
no infinite descending chains [78].
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There can be multiple ways of defining the abstract-consequence operation.
In fact, the bilateral algorithm reduces to the RSY algorithm if we define
AC(l�i−1, u

�
i−1)

def= l�i−1. Other algorithms for computing abstract consequence
for a large class of abstract domains are described in [78]. The choice of abstract
consequence determines the cost of each query of the SMT solver as well as the
rate of convergence of the bilateral algorithm.

The key advantage of the bilateral algorithm over the RSY algorithm is that
the bilateral algorithm is an anytime algorithm, because the algorithm can return
a sound over-approximation (u�

i) of the final answer if it is stopped at any point.
This property makes the bilateral algorithm resilient to SMT-solver timeouts.

Pseudo-code for the bilateral algorithm can be found in [78] and [76, Ch. 5].

Generalizations of St̊almarck’s Algorithm. In [81], we showed how
St̊almarck’s method [75], an algorithm for satisfiability checking of propositional
formulas, can be explained using abstract-interpretation terminology—in partic-
ular, as an instantiation of a more general algorithm, St̊almarck[A], that is para-
meterized on an abstract domain A and operations on A. The algorithm that
goes by the name “St̊almarck’s method” is one instantiation of St̊almarck[A]
with a certain Boolean abstract domain. At each step, St̊almarck[A] holds some
a� ∈ A; each of the proof rules employed in St̊almarck’s method improves a� by
finding a semantic reduction of a� with respect to ϕ.

The abstraction-interpretation-based view enables us to lift St̊almarck’s
method from propositional logic to richer logics by instantiating St̊almarck[A]
with richer abstract domains [82]. Moreover, it brings out a new connection
between St̊almarck’s method and α̂. To check whether a formula ϕ is unsatis-
fiable, St̊almarck[A] computes α̂A(ϕ) and performs the test “α̂A(ϕ) = ⊥A?” If
the test succeeds, it establishes that [[ϕ]] ⊆ γ(⊥A) = ∅, and hence that ϕ is
unsatisfiable.

To explain the St̊almarck[A] algorithm for α̂, we first define the notion of
Âssume. Given ϕ ∈ L and a� ∈ A, Âssume[ϕ](a�) returns the best value in A

that over-approximates the meaning of ϕ in concrete states described by a�.
That is, Âssume[ϕ](a�) equals α([[ϕ]] ∩ γ(a�)).

The principles behind the St̊almarck[A] algorithm for α̂ can be understood
via the following equations:

α̂(ϕ) = Âssume[ϕ](�) (16)

Âssume[ϕ1 ∧ ϕ2](a�) � Âssume[ϕ1](a�) � Âssume[ϕ2](a�) (17)

Âssume[ϕ](a�) � Âssume[ϕ](a� � a�
1) � Âssume[ϕ](a� � a�

2),

where γ(a�
1) ∪ γ(a�

2) ⊇ γ(a�) (18)

Âssume[�](a�) � μα̂(�) � a�,where � is a literal in L (19)

Equation (16) follows from the definition of α̂ and Âssume. Equation (17) fol-
lows from the definition of ∧ and �, and corresponds to the simple deductive
rules used in St̊almarck’s algorithm. Equation (18) is the abstract-interpretation
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counterpart of the Dilemma Rule used in St̊almarck’s method: the current goal
a� is split into sub-goals using meet (�), and the results of the sub-goals are
combined using join (�). The correctness of this rule relies on the condition that
γ(a�

1)∪ γ(a�
2) ⊇ γ(a�). The μα̂ operation in Eq. (19) translates a literal in L into

an abstract value in A; that is μα̂(�) def= α̂(�). However, for certain combinations
of L and A, the μα̂ operation is straightforward to implement—for example,
when L is linear rational arithmetic (LRA) and A is the polyhedral domain [21].
μα̂ can also be implemented using the RSY or bilateral algorithms when L and
A satisfy the requirements for those frameworks.

The St̊almarck-based framework is based on much different principles from
the RSY and bilateral frameworks for computing symbolic abstraction. The lat-
ter frameworks use an inductive-learning approach to learn from examples, while
the St̊almarck-based framework uses a deductive approach by using inference
rules to deduce the answer. Thus, they represent two different classes of frame-
works, with different requirements for the abstract domain. In contrast to the
RSY/Bilateral framework, which uses a decision procedure as a black box, the
St̊almarck-based framework adopts (and adapts) some principles from decision
procedures.

Answers to The Four Questions.

Q1. The semantics of a statement st are specified as a two-vocabulary formula
ϕst in some logic L. In our work, we have typically used quantifier-free
formulas over the theory of bitvectors and bitvector arrays (QF ABV).

Q2. The abstract domain is specified via an interface consisting of the standard
operations (�, �, etc.). The RSY and bilateral frameworks for symbolic
abstraction require the β operation. The St̊almarck-based framework for
symbolic abstraction requires the μα̂ operation.

Q3. The various algorithms for α̂ are the engines that apply/construct abstract
transformers for a concrete transformer τ .

(a) The abstract execution of τ on a� is performed via a�′ = α̂
(
ϕτ ∧ γ̂(a�)

)
.

(b) The representation of the abstract transformer for τ is obtained via τ � =
α̂(ϕτ ).

Q4. The formula used to construct an abstract transformer can express the
concrete semantics of (i) a basic block or (ii) a loop-free fragment (including
a finite unrolling of a loop) à la large-block encoding [9] or adjustable-block
encoding [10]. In our work, we used the TSL framework to obtain such
formulas.

5.4 Automated Reasoning/Decision Procedures

Our investigation of symbolic abstraction led us to a new connection between
decision procedures and abstract interpretation—namely, how to exploit abstract
interpretation to provide new principles for designing decision procedures [82].
This work, which we call Satisfiability Modulo Abstraction (SMA), has led to
new principles for designing decision procedures, and provides a way to create
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decision procedures for new logics. At the same time, it shows great promise
from a practical standpoint. In other words, the methods for symbolic abstrac-
tion are “dual-use.” In addition to providing methods for building improved
abstract-interpretation tools, they also provide methods for building improved
logic solvers that use abstract interpretation to speed up the search that a solver
carries out.

One of the main advantages of the SMA approach is that it is able to
reuse abstract-interpretation machinery to implement decision procedures. For
instance, in [82], the polyhedral abstract domain—implemented in PPL [5]—is
used to implement an SMA solver for the logic of linear rational arithmetic.

More recently, we created an SMA solver for separation logic [77]. Separa-
tion logic (SL) [68] is an expressive logic for reasoning about heap structures in
programs, and provides a mechanism for concisely describing program states by
explicitly localizing facts that hold in separate regions of the heap. SL is unde-
cidable in general, but by using an abstract domain of shapes [70] we were able
to design an unsatisfiability checker for SL.

5.5 Symbolic Abstraction and Quantifier Elimination

Gulwani and Musuvathi [32] defined what they termed the “cover problem,”
which addresses approximate existential-quantifier elimination:

Given a formula ϕ in logic L, and a set of variables V , find the strongest
quantifier-free formula ϕ in L such that [[∃V : ϕ]] ⊆ [[ϕ]].

(We use CoverV (ϕ) to denote the cover of ϕ with respect to variable set V .)
Both CoverV (ϕ) and α̂(ϕ) (deliberately) lose information from ϕ, and hence

both result in over-approximations of [[ϕ]]. In general, however, they yield differ-
ent over-approximations of [[ϕ]].

1. The information loss from CoverV (ϕ) only involves the removal of variable
set V from the vocabulary of ϕ. The resulting formula ϕ is still allowed to be
an arbitrarily complex L formula; ϕ can use all of the (interpreted) operators
and (interpreted) relation symbols of L.

2. The information loss from α̂(ϕ) involves finding a formula ψ in an impover-
ished logic L′: ψ must be a restricted L formula; it can only use the operators
and relation symbols of L′, and must be written using the syntactic restric-
tions of L′.

One of the uses of information-loss capability 2 is to bridge the gap between
the concrete semantics and an abstract domain. In particular, it may be nec-
essary to use the full power of logic L to express the semantics of a concrete
transformer τ (e.g., Eq. (8)). However, the corresponding abstract transformer
must be expressed in L′. When L′ is something other than the restriction of L
to a sub-vocabulary, the cover of ϕτ is not guaranteed to return an answer in
L′, and thus does not yield a suitable abstract transformer. This difference is
illustrated using the scenario described in Ex. 2.
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Example 3. In Ex. 2, the application of the abstract transformer for τ is obtained
by computing α̂(ψ) ∈ E232 , where E232 is the domain of affine equalities over the
32-bit registers eax, ebx, and ecx; ψ ≡ (ebx = ecx ∧ ϕτ ); and ϕτ is defined
in Eq. (8). In particular, α̂(ψ) ≡ (216ebx′ = 216ecx′ + 224eax′) ∧ (224ebx′ =
224ecx′).

Let R be the set of pre-state registers {eax, ebx, ecx}. The cover of ψ with
respect to R is

CoverR(ψ) ≡ ebx′ =
(

(ecx′ & 0xFFFF00FF)
| ((ecx′ + 256 ∗ (eax′ & 0xFF)) & 0xFF00)

)
(20)

Equation (20) shows that even though the result does not contain any unprimed
registers, it is not an abstract value in the domain E232 . ��

The notion of symbolic abstraction subsumes the notion of cover: if L′ is the
logic L restricted to the variables not contained in V , then α̂L′(ϕ) = CoverV (ϕ).

6 Connections with Other Areas of Computer Science

One of the most exciting aspects of the work on symbolic abstraction and
automating the creation of abstract transformers is that the problem turns
out to have many connections to other areas of Computer Science. Connections
with automated reasoning and decision procedures were discussed in Sect. 5.4.
Other connections include concept learning (Sect. 6.1) and constraint program-
ming (Sect. 6.2).

6.1 Concept Learning

Reps et al. [64] identified a connection between the RSY algorithm for symbolic
abstraction and the problem of concept learning in (classical) machine learning.
In machine-learning terms, an abstract domain A is a hypothesis space; each
domain element corresponds to a concept. A hypothesis space has an inductive
bias, which means that it has a limited ability to express sets of concrete objects.
In abstract-interpretation terms, inductive bias corresponds to the image of γ
on A not being the full power set of the concrete objects. Given a formula ϕ, the
symbolic-abstraction problem is to find the most specific concept that explains
the meaning of ϕ.

The RSY algorithm is related to the Find-S algorithm for concept learn-
ing [51, Sect. 2.4]. Both algorithms start with the most-specific hypothesis (i.e.,
⊥) and work bottom-up to find the most-specific hypothesis that is consistent
with positive examples of the concept. Both algorithms generalize their cur-
rent hypothesis each time they process a (positive) training example that is not
explained by the current hypothesis. A major difference is that Find-S receives a
sequence of positive and negative examples of the concept (e.g., from nature). It
discards negative examples, and its generalization steps are based solely on the
positive examples. In contrast, the RSY algorithm already starts with a precise
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statement of the concept in hand, namely, the formula ϕ, and on each itera-
tion, calls a decision procedure to generate the next positive example; the RSY
algorithm never sees a negative example.

A similar connection exists between the Bilateral algorithm and the
Candidate-Elimination (CE) algorithm for concept learning [51, Sect. 2.5]. Both
algorithms maintain two approximations of the concept, one that is an over-
approximation and one that is an under-approximation. The CE algorithm
updates its under-approximation using positive examples in the same way that
the Find-S algorithm updates its under-approximation. Similarly, the Bilateral
algorithm updates its under-approximation (via a join) in the same way that the
RSY algorithm updates its under-approximation. One key difference between the
CE algorithm and the Bilateral algorithm is that the CE algorithm updates its
over-approximation using negative examples. Most conjunctive abstract domains
are not closed under negation. Thus, given a negative example, there usually does
not exist an abstract value that only excludes that particular negative example.

There are, however, some differences between the problems of symbolic
abstraction and concept learning. These differences mostly stem from the fact
that an algorithm for performing symbolic abstraction already starts with a pre-
cise statement of the concept in hand, namely, the formula ϕ. In the machine-
learning context, usually no such finite description of the concept exists, which
imposes limitations on the types of queries that the learning algorithm can make
to an oracle (or teacher); see, for instance, [2, Sect. 1.2]. The power of the oracle
also affects the guarantees that a learning algorithm can provide. In particular,
in the machine-learning context, the learned concept is not guaranteed or even
required to be an over-approximation of the underlying concrete concept. Dur-
ing the past three decades, the machine-learning theory community has shifted
their focus to learning algorithms that only provide probabilistic guarantees.
This approach to learning is called probably approximately correct learning (PAC
learning) [39,83]. The PAC guarantee also enables a learning algorithm to be
applicable to concept lattices that are not complete lattices.

The similarities and differences between symbolic abstraction and concept
learning open up opportunities for a richer exchange of ideas between the two
areas. In particular, one can imagine situations in which it is appropriate for
the over-approximation requirement for abstract transformers to be relaxed to
a PAC guarantee—for example, if abstract interpretation is being used only to
find errors in programs, instead of proving programs correct [14], or to analyze
programs with a probabilistic concrete semantics [22,41,52].

6.2 Constraint Programming

Constraint programming [54] is a declarative programming paradigm in which
problems are expressed as conjunctions of first-order-logic formulas, called con-
straints. A constraint-satisfaction problem is defined by (i) a set of variables
V1, . . . , Vn; (ii) a search space S given by a domain Di for each variable Vi;
and (iii) a set of constraints ϕ1, . . . , ϕp. The objective is to enumerate all vari-
able valuations in the search space that satisfy every constraint. Different fam-
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ilies of constraints come with specific operators—such as choice operators and
propagators—used by the solver to explore the search space of the problem and
to reduce its size, respectively. A constraint solver alternates two kinds of steps:

1. Propagation steps exploit constraints to reduce the domains of variables by
removing values that cannot participate in a solution. The goal is to achieve
consistency, when no more values can be removed.

2. When domains cannot be reduced further, the solver performs a splitting
step: it makes an assumption about how to split a domain, and continues
searching in the smaller search spaces.

The search proceeds, alternating propagation and splitting, until the search space
contains either no solution, only solutions, or is smaller than a user-specified size.
Backtracking may be used to explore other splitting assumptions.

Because the solution set cannot generally be enumerated exactly, continuous
solvers compute a collection of intervals with floating-point bounds that contain
all solutions and over-approximate the solution set while trying—on a best-effort
basis—to include as few non-solutions as possible. In our terminology, such a
constraint solver approaches α̂(ϕ) from above, for a conjunctive formula ϕ; the
abstract domain is the disjunctive completion of the domain of environments of
intervals; and the splitting and tightening steps are semantic reductions.

Several connections between abstract interpretation and constraint solving
have been made in the past. Apt observed that applying propagators can be seen
as an iterative fixpoint computation [3]. Pelleau et al. used this connection to
describe a parameterized constraint solver that can be instantiated with different
abstract domains [60]. Miné et al. describe a related algorithm to prove that a
candidate invariant ϕ for a loop really is an invariant [50]. The goal is to identify
a stronger invariant ψ that is both inductive and implies ϕ. The algorithm is
parameterized on an abstract domain A; the algorithm’s actions are inspired by
constraint solvers: it repeatedly splits and tightens non-overlapping elements of
A (and therefore is searching for an inductive invariant in the disjunctive com-
pletion of A). The algorithm works from “above” in the sense that it starts with
(an under-approximation of) ϕ and creates descriptors of successively smaller
areas of the state space as it searches for a suitable ψ.

7 Related Work

7.1 Best Abstract Transformers

In 1979, Cousot and Cousot [19] gave the specification of the best abstract
transformer:

Let τ : Store → Store be a concrete transformer and C = P(Store).
Given a Galois connection C −−−→←−−−

α

γ
A, the best abstract transformer,

defined by
τ �
best

def= α ◦ τ̃ ◦ γ, (21)

is the most precise abstract transformer that over-approximates τ .
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τ �
best establishes the limit of precision with which the actions of τ can be tracked

using a given abstract domain A. It provides a limit on what can be achieved by a
system to automate the construction of abstract transformers. However, Eq. (21)
is non-constructive; it does not provide an algorithm, either for computing the
result of applying τ �

best or for finding a representation of the function τ �
best . In

particular, the explicit application of γ to an abstract value would, in most cases,
yield an intermediate set of concrete states that is either infinite or too large to
fit into memory.

Graf and Säıdi [31] showed that theorem provers can be used to generate best
abstract transformers for predicate-abstraction domains. In 2004, three papers
appeared that concerned the problem of automatically constructing abstract
transformers:

– Reps et al. [64] gave the method described in Sect. 5.3 for computing best
transformers from below, which applies to a broader class of abstract domains
than predicate-abstraction domains.

– Yorsh et al. [85] gave a method that works from above, for abstract domains
based on canonical abstraction.

– Regehr and Reid [61] presented a method to construct abstract transformers
for machine instructions, for interval and bitwise abstract domains. Their
method is not based on logical reasoning, but instead uses a physical processor
(or simulator) as a black box. To compute the abstract post-state for an
abstract value a�, the approach recursively divides a� until an abstract value
is obtained whose concretization is a singleton set. The concrete semantics
are then used to derive the post-state value. The results of each division are
joined as the recursion unwinds to derive the abstract post-state value.

Since then, a number of other methods for creating best abstract transformers have
been devised [8,27,40,53,71,78,82]. (Some of them are discussed in Sect. 7.3.)

7.2 Heuristics for Good Transformers

With TVLA, a desired abstraction is specified by (i) defining the set of instru-
mentation relations I to use, and (ii) selecting which unary relations to use as
abstraction relations A. The abstract transformers are then constructed auto-
matically by means of the four-part construction sketched in the paragraph
“Maintaining Instrumentation Relations” of Sect. 3. There is no expectation that
the abstract transformers constructed in this way are best transformers. How-
ever, practical experience with TVLA has shown that when the abstract domain
is defined by the right sets of relations I and A, TVLA produces excellent results.

Four theorems at the level of the framework—one for each part of the four-
part construction—relieve the TVLA user from having to write the usual “near-
commutativity” proofs of soundness that one finds in papers about one-off uses of
abstract interpretation.3 These meta-level theorems are the key enabling factors
3 (i) The correctness theorem for focus [70, Lemmas 6.8 and 6.9]; (ii) the Embedding

Theorem [70, Theorem 4.9]; (iii) the correctness theorem for the finite-differencing
scheme for maintaining instrumentation relations [63, Theorem 5.3]; and (iv) the
correctness theorem for coerce [70, Theorem 6.28].
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that allow abstract transformers to be constructed automatically for canonical-
abstraction domains.

The finite-differencing approach is generally able to retain an appropriate
amount of precision because, for a concrete transformer τst, the application of the
finite-differencing operators to an instrumentation relation p’s defining formula
ψp identifies the “footprint” of st on p. Knowledge of the footprint lets the
relation-maintenance formula reuse as much information as possible from the pre-
state structure, and thereby avoid performing formula-reevaluation operations
for tuples whose values cannot be changed by st.

The term “footprint of a statement” also appears in work on abstract inter-
pretation using separation logic (SL) [15,24], but there it means a compact char-
acterization of the concrete semantics of a statement in terms of the resources
it accesses. In our terminology, footprints in the SL literature concern the core
relations—i.e., the independent variables in the analogy with differentiation from
Sect. 3. In this paper, when we refer to footprints, we mean the minimal effects
of the concrete transformer on the instrumentation relations—which play the
role of dependent variables.

The finite-differencing operators used in TVLA are most closely related to
work on logic and databases: finite-difference operators for the propositional case
were studied by Akers [1] and Sharir [73]. Work on (i) incrementally maintain-
ing materialized views in databases [33], (ii) first-order incremental evaluation
schemes [25], and (iii) dynamic descriptive complexity [59] have also addressed
the problem of maintaining one or more auxiliary relations after new tuples are
inserted into or deleted from base relations. In databases, view maintenance
is solely an optimization; the correct information can always be obtained by
reevaluating the defining formula. In the abstract-interpretation context, where
abstraction has been performed, this is no longer true: reevaluating a formula
in the local (3-valued) state can lead to a drastic loss of precision. Thus, the
motivation for the work is completely different, although the techniques have
strong similarities.

The method used in TVLA for finite differencing of formulas inspired some
follow-on work using numeric finite differencing for program analysis [26]. That
paper shows how to augment a numeric abstraction with numeric views, and
gives a technique based on finite differencing to maintain an over-approximation
of a view-variable’s value in response to a transformation of the program state.

The idea of augmenting domains with instrumentation values has been used
before in predicate-abstraction domains [31], which maintain the values of a given
set of Boolean predicates. Graf and Säıdi [31] showed that decision procedures
can be used to generate best abstract transformers for predicate-abstraction
domains, but with high cost. Other work has investigated more efficient meth-
ods to generate approximate transformers that are not best transformers, but
approach the precision of best transformers [7,16]. Ball et al. [7] use a “focus”
operation inspired by TVLA’s focus, which as noted in footnote 1, plays a role
similar to the splitting step in St̊almarck’s algorithm.
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Scherpelz et al. [72] developed a method for creating abstract transformers
for use with parameterized predicate abstraction [17]. It performs WLP of a post-
state relation with respect to transformer τ , followed by heuristics that attempt
to determine combinations of pre-state relations that imply the WLP value.
Generating the abstract transformer for a (nullary) instrumentation relation
p ∈ I, defined by the nullary formula ψp(), involves two steps:

1. Create the formula ϕ = WLP(τ, ψp()).
2. Find a Boolean combination νp,τ of pre-state relations such that if νp,τ holds

in the pre-state, then ϕ must also hold in the pre-state (and hence p must
hold in the post-state).

The abstract transformer is a function that sets the value of p in the post-state
according to whether νp,τ holds in the pre-state.

Because WLP performs substitution on ψp(), the formula created by step (1)
is related to the substitution-based relation-maintenance formula defined in
Eq. (4). Step (4) applies several heuristics to ϕ to produce one or more strength-
enings of ϕ; step (2) returns the disjunction of the strengthened variants of ϕ.
In contrast, the finite-differencing algorithm discussed in Sect. 3 does not oper-
ate by trying to strengthen the substitution-based relation-maintenance formula;
instead, it uses a systematic approach—based on finite differencing of p’s defin-
ing formula ψp()—to identify how τ changes p’s value. Moreover, the method
is not restricted to nullary instrumentation relations: it applies to relations of
arbitrary arity.

A special case of canonical abstraction occurs when no abstraction relations
are used at all, in which case all individuals of a logical structure are collapsed
to a single individual. When this is done, in almost all structures the only useful
information remaining resides in the nullary core and instrumentation relations.
Predicate abstraction can be seen as going one step further, retaining only the
nullary instrumentation relations (and no abstracted core relations). However, to
be able to evaluate a “Future” formula—as defined in Eq. (7)—such as Fτ [p] def=
p ? ¬Δ−

τ [p] : Δ+
τ [p], one generally needs the pre-state abstract structure to hold

(abstracted) core relations. From that standpoint, the finite-differencing method
and that of Scherpelz et al. [72] are incomparable; they have different goals, and
neither can be said to subsume the other.

Cousot et al. [20, Sect. 7] define a method of abstract interpretation based on
using particular sets of logical formulas as abstract-domain elements (so-called
logical abstract domains). They face the problems of (i) performing abstraction
from unrestricted formulas to the elements of a logical abstract domain [20,
Sect. 7.2] and (ii) creating abstract transformers that transform input elements
of a logical abstract domain to output elements of the domain [20, Sect. 7.3].
Their problems are particular cases of α̂(ϕ). They present heuristic methods for
creating over-approximations of α̂(ϕ).
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7.3 Symbolic Abstraction

Work on symbolic abstraction falls into three categories:

1. algorithms for specific domains [8,13,27,40,43,47,61,77]
2. algorithms for parameterized abstract domains [31,53,71,85]
3. abstract-domain frameworks [64,78,82].

What distinguishes category 3 from category 2 is that each of the results cited
in category 2 applies to a specific family of abstract domains, defined by a
parameterized Galois connection (e.g., with an abstraction function equipped
with a readily identifiable parameter for controlling the abstraction). In contrast,
the results in category 3 are defined by an interface; for any abstract domain
that satisfies the requirements of the interface, one has a method for symbolic
abstraction. The approaches presented in Sect. 5 fall into category 3.

Some of the work mentioned above has already been discussed in Sect. 7.1.

Algorithms for Specific Domains. Brauer and King [13] developed a method
that works from below to derive abstract transformers for the interval domain.
Their method is based on an approach due to Monniaux [53] (see below), but
they changed two aspects:

1. They express the concrete semantics with a Boolean formula (via “bit-
blasting”), which allows a formula equivalent to ∀x.ϕ to be obtained from
ϕ (in CNF) by removing the x and ¬x literals from all of the clauses of ϕ.

2. Whereas Monniaux’s method performs abstraction and then quantifier elim-
ination, Brauer and King’s method performs quantifier elimination on the
concrete specification, and then performs abstraction.

The abstract transformer derived from the Boolean formula that results is a
guarded update: the guard is expressed as an element of the octagon domain
[48]; the update is expressed as an element of the abstract domain of rational
affine equalities [38]. The abstractions performed to create the guard and the
update are optimal for their respective domains. The algorithm they use to create
the abstract value for the update operation is essentially the King-Søndergaard
algorithm for α̂ [40], Fig. 2 which works from below. Brauer and King show that
optimal evaluation of such transfer functions requires linear programming. They
give an example showing that an octagon-closure operation on a combination of
the guard’s octagon and the update’s affine equality is sub-optimal.

Barrett and King [8] describe a method for generating range and set abstrac-
tions for bit-vectors that are constrained by Boolean formulas. For range analy-
sis, the algorithm separately computes the minimum and maximum value of the
range for an n-bit bit-vector using 2n calls to a SAT solver, with each SAT query
determining a single bit of the output. The result is the best over-approximation
of the value that an integer variable can take on (i.e., α̂).
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Li et al. [43] developed a symbolic-abstraction method for LRA, called
SYMBA. The scenario considered by [43] is the following: Given a formula ϕ
in LRA logic and a finite set of objectives {t1, t2, . . . , tn}, where ti is a linear-
rational expression, SYMBA computes the lower and upper bounds l1, l2, . . . , ln
and u1, u2, . . . , un such that ϕ ⇒ (∧

1≤i≤n li ≤ ti ≤ ui

)
. Similar to the bilat-

eral framework described in Sect. 5, the SYMBA algorithm maintains an under-
approximation and an over-approximation of the final answer.

McMillan [47] presents an algorithm for performing symbolic abstraction for
propositional logic and the abstract domain of propositional clauses of length
up to k. The algorithm can be viewed as an instance of the RSY algorithm:
a SAT solver is used to generate samples, and a trie data structure is used
to perform the join of abstract values. The specific application for which the
algorithm is used is to compute don’t-care conditions for logic synthesis.

Algorithms for Parameterized Abstract Domains. Template Constraint
Matrices (TCMs) are a parametrized family of linear-inequality domains for
expressing invariants in linear real arithmetic. Sankaranarayanan et al. [71]
gave a meet, join, and set of abstract transformers for all TCM domains.
Monniaux [53] gave an algorithm that finds the best transformer in a TCM
domain across a straight-line block (assuming that concrete operations consist of
piecewise linear functions), and good transformers across more complicated con-
trol flow. However, the algorithm uses quantifier elimination, and no polynomial-
time elimination algorithm is known for piecewise-linear systems.

8 Conclusion

The algorithms developed in our research reduce the burden on analysis design-
ers and implementers by raising the level of automation in abstraction inter-
pretation. The work summarized in this paper focuses on the question “Given
the specification of an abstraction, how does one create an execution engine
for an analyzer that performs computations in an over-approximating fashion?”
We know of only four systematic ways to address this question, three of which
feature in our work:

1. Semantic reinterpretation and the related technique of syntax-directed rein-
terpretation (Sect. 4).

2. A strategy of splitting, propagation, and join à la the work on the generalized
St̊almarckprocedure [82] and TVLA [63,70].

3. The approach illustrated by our bilateral algorithm, which uses concept learn-
ing via sampling, generalization, and abstract consequence to bound the
answer from below and above.

4. Heuristic methods for formula normalization, for use with abstract domains
in which abstract values are formulas in some logic ([24, Sect. 5.1] and [20,
Sect. 7.3]).
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The availability of automated methods for creating abstract transformers
provides help along the following four dimensions:

Soundness: Creation of analyzers that are correct by construction, while
requiring an analysis designer to implement only a small number of opera-
tions. Consequently, one only relies on a small “trusted computing base.”

Precision: In contrast to most conventional approaches to creating abstract
transformers, the use of symbolic abstraction can achieve the fundamental
limits of precision that abstract-interpretation theory establishes.

Resource awareness: The algorithms for applying/constructing abstract
transformers that approach α̂(ϕτ ) from above can be implemented as “any-
time” algorithms—i.e., an algorithm can be equipped with a monitor, and if
the algorithm exhausts some time or space budget, the monitor can stop it
at any time, and a safe (over-approximating) answer can be returned.

Extensibility: If an additional abstract domain is needed in an analyzer,
automation makes it easy to add. In addition, for techniques 2 and 3,
information can be exchanged automatically between domains via symbolic
abstraction to improve the abstract values in each domain.

In terms of future research directions, we believe that because methods 2,
3, and 4 all provide a way to avoid the myopia of reinterpretation, they are all
worthy of future research. In particular, for method 2, more results on partial-
concretization and semantic-reduction operations are desirable, and for method
3, more results about abstract consequence are desirable. Finally, we believe that
it will be fruitful to continue to explore the connections between the problems
that arise in creating abstract transformers automatically and other areas of
computer science.
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48. Miné, A.: The octagon abstract domain. In: WCRE (2001)
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Abstract. The automation of verification techniques based on first-order
logic specifications has benefitted greatly from verification infrastructures
such as Boogie and Why. These offer an intermediate language that can
express diverse language features and verification techniques, as well as
back-end tools: in particular, verification condition generators.

However, these infrastructures are not well suited to verification tech-
niques based on separation logic and other permission logics, because they
do not provide direct support for permissions and because existing tools
for these logics often favour symbolic execution over verification condi-
tion generation. Consequently, tool support for these logics (where avail-
able) is typically developed independently for each technique, dramatically
increasing the burden of developing automatic tools for permission-based
verification.

In this paper, we present a verification infrastructure whose inter-
mediate language supports an expressive permission model natively. We
provide tool support including two back-end verifiers: one based on sym-
bolic execution, and one on verification condition generation; an infer-
ence tool based on abstract interpretion is currently under development.
A wide range of existing verification techniques can be implemented via
this infrastructure, alleviating much of the burden of building permission-
based verifiers, and allowing the developers of higher-level reasoning tech-
niques to focus their efforts at an appropriate level of abstraction.

1 Introduction

Over the last 15 years, static program verification has made wide-ranging and sig-
nificant progress. Among the many theoretical and practical achievements that
enabled this progress, two have been particularly influential. First, the develop-
ment of widely-used common architectures for program verification tools, sim-
plifying the development of new verifiers. Second, the development of permission
logics (of which separation logic [34] is the most prominent example), simplifying
the specification and verification of heap-manipulating programs and concurrent
programs.

Many modern program verifiers use an architecture in which a front-end
tool translates the program to be verified, together with its specification, into
a simpler intermediate language such as Boogie [22] or Why [14]. The interme-
diate language provides a medium in which diverse high-level language features
c© Springer-Verlag Berlin Heidelberg 2016
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and verification problems can be encoded, while allowing for the development of
efficient common back-end tools such as verification condition generators. Devel-
oping a verifier for a new language or a new verification technique is, thus, often
reduced to developing an encoding into one of these intermediate languages.
For instance, Boogie is at the core of verifiers such as Chalice [26], Corral [20],
Dafny [23], Spec# [25], and VCC [11], while Why powers for instance Frama-
C [19] and Krakatoa [13].

This infrastructure is generally not ideal for verifiers based on permission
logics, such as separation logic. Verification condition generators and automatic
theorem provers support first-order logic, but typically have no support for per-
mission logics because of their higher-order nature. Therefore, most verifiers
based on these specialised logics implement their own reasoning engines, typi-
cally based on symbolic execution, for each technique independently, increasing
the burden of developing general-purpose automatic tools for permission-based
verification.

Fig. 1. The Viper infrastructure, underlying tools and currently-existing front-ends.
All Viper components are implemented in Scala and can thus be used under Windows,
Mac OS and Linux (Boogie and Z3 can also be compiled for these systems).

In this paper, we present Viper, a verification infrastructure whose intermedi-
ate language includes a flexible permission model, allowing for simple encodings
of permission-based reasoning techniques. The Viper infrastructure provides two
back-end verifiers, one using symbolic execution and one using verification con-
dition (VC) generation (via an encoding into Boogie); a specification inference
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via abstract interpretation is under development. Currently, Viper is targeted by
four front-end tools: we developed front-ends for a re-implementation of Chalice
and for a small subset of Scala; front-ends for Java and for OpenCL [4] have been
developed in the context of the VerCors project [5]. Several additional front-ends
are under development. Fig. 1 gives an overview of the Viper infrastructure.

The Viper infrastructure serves three main purposes:

1. Viper facilitates the development of program verifiers based on permission log-
ics, alleviating much of the involved burden by making a large portion of the
tool chain reusable, and allowing the developers of higher-level techniques to
focus their efforts at this level of abstraction. To support this purpose, Viper
provides an expressive intermediate language with primitives that let front-
ends encode a wide range of source languages, specifications, and verification
techniques. Moreover, the Viper back-ends provide a high degree of automa-
tion, aiming to eliminate situations in which tool developers and users need
to understand the internals of the back-ends in order to guide the verification
effort. This automation is crucial to preserving both the abstractions provided
by the Viper infrastructure and the front-ends developed on top of it.

2. Viper allows researchers to rapidly prototype and experiment with new veri-
fication techniques by encoding them manually in our intermediate language
without (initially) developing a dedicated front-end. To support this purpose,
Viper’s intermediate language is human readable and provides high-level fea-
tures such as methods and loops. A parser and type-checker allow one to
write Viper code directly.

3. Viper supports the comparison and integration of different verification back-
ends. To support this purpose, Viper provides two deductive verifiers and
an abstract interpreter. The intermediate language is designed to cater for
different reasoning techniques, for instance by providing a heap model similar
to those of source languages (facilitating, for example, the use of existing heap
analyses).

Outline. This paper gives an overview of the Viper intermediate language. The
next section surveys key features of the language and illustrates how they are
used to encode more abstract languages and verification techniques. The subse-
quent sections provide more details on permissions and predicates (Sect. 3), the
specification of functional behaviour (Sect. 4), and the encoding of mathematical
theories (Sect. 5). We present an evaluation in Sect. 6, summarise related work
in Sect. 7, and conclude in Sect. 8. A comprehensive set of examples, including
all examples presented in this paper, as well as manually encoded examples from
verification competitions, is available in an online appendix [28].

2 Viper in a Nutshell

The Viper infrastructure is centred around a sequential, imperative, object-
based intermediate language. A program in this language consists of a sequence
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of global declarations for fields, methods, functions, predicates, and custom
domains. There is no notion of class; every object has every field declared in
the program, and methods and functions have no implicit receiver. Predicates
[30] can be used both to abstract over concrete assertions and to write recursive
specifications of heap data structures. Custom domains are used to declare math-
ematical theories. Verification of Viper programs is method-modular; method
calls are verified with respect to the specification of the callee and not its
implementation.

In this section we illustrate the core features of the Viper language using
two examples. We use an implementation of a sorted list to illustrate how Viper
supports the specification and verification of heap data structures. We then use a
client of the list to demonstrate how to encode language features and verification
approaches which are not directly available in Viper.

2.1 Specification and Verification of Heap Data Structures

Fig. 2. A sorted list of integers, implemented via immutable sequences. We will discuss
implementations based on linked lists and arrays later.

Figure 2 shows the specification and implementation of a sorted integer list.
In this initial version, the list is represented using a mathematical sequence
datatype. Line 1 declares an appropriate field; "Int" and "Seq" are built-in
datatypes (along with booleans, references, sets and multisets). To make the
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example more concise, line 3 introduces a parameterised macro that expresses
that the argument sequence is sorted.

Viper controls access to the program heap using permissions. Permissions
simplify framing (that is, proving that an assertion is not affected by a heap
modification), as well as reasoning about concurrency. Permission to a heap
location may be held by a method execution or a loop iteration. A method or
loop body may access the location only if the appropriate permission is held at
the corresponding program point.

Permissions may be transferred between method executions and loop iter-
ations; the permissions to be transferred are specified as part of method pre-
and postconditions, and loop invariants, respectively. These specifications are
based on implicit dynamic frames [24,31,36]. The most fundamental construct
is the accessibility predicate, acc(e.f), which represents permission to a single
field location: the field f of the reference denoted by e.

Method insert in Fig. 2 adds a new element to the list. It returns the index
at which the element was inserted, which is useful both programmatically (to
retrieve the element later), and to simplify the specified postcondition. The pre-
condition of insert requires that callers provide permission to access the list’s
data field; moreover, the list must be sorted. The first postcondition returns the
permission to the caller and guarantees that the list remains sorted. The sec-
ond postcondition constrains the range of the returned index, while the third
postcondition specifies the functional behaviour. This postcondition uses an old
expression to refer to the content of the list in the method pre-state. The specifi-
cation of insert reveals implementation details by referring directly to the data
field. We will discuss language features that support information hiding and data
abstraction in Sect. 4.

The implementation of insert iterates over the sequence to determine
where to insert the new element. Besides the expected properties, the
loop invariant requires a fractional permission [7] to this.data, denoted by
acc(this.data, 1/2). Using a half permission here serves two purposes: first,
it allows the loop body to read this.data; second, leaving the other half permis-
sion in the method execution enclosing the loop lets the verifier conclude that
the loop does not modify this.data (for which the full permission is necessary);
that is, it can frame properties of this location such as sortedness of the sequence
across the loop.

Viper supports a flexible permission model which includes fractional permis-
sions, symbolic permissions via permission-typed variables (of the built-in type
Perm), and an approach to constrain such symbolic permissions without using
concrete fractions [16], which can be used to model counting permissions [8].

2.2 Encoding High-level Concepts

The example in the previous subsection shows that Viper can be used to manu-
ally specify and verify programs. However, the focus of the language design has
mostly been on making Viper an effective intermediate language which can be
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targeted by a variety of front-ends. To illustrate this use of the language, this
subsection presents an encoding of a small client of a sorted list, implemented
in a Java-like language.

Fig. 3. An example in a Java-like language whose Viper encoding is shown in Fig. 4. We
assume here that class List has a field data whose type is a mathematical sequence.
The @GuardedBy("this") annotation indicates that the receiver must be locked before
accessing the decorated field. The first monitor invariant requires the list to be sorted;
the second is a two-state invariant and requires the changed flag to be set whenever a
thread changes the content of list l between acquiring and releasing the monitor.

Class Client in Fig. 3 stores a reference to a list in field l. We assume here that
class List has a field data whose type is a mathematical sequence; we will show
an alternative encoding using mutable arrays in Sect. 3.3. The client is thread-
safe and uses coarse-grained locking to protect its data representation (Java’s
@GuardedBy("this") annotation indicates that the receiver must be locked before
accessing the field). It maintains two monitor invariants: the first is a one-state
invariant that requires the list to be sorted; the second is a two-state invariant
which states that any thread that acquires the monitor must either leave the
content of the underlying list unchanged or set the changed flag to true by the
time it releases the monitor. In the latter invariant, we use an old expression to
refer to the state in which the monitor was acquired. Method test acquires the
monitor of its receiver (since it is declared synchronized), adds two elements to
the list and asserts that the first two list elements are in order. It then sets the
changed flag and implicitly releases the monitor when it terminates.

Guarded command languages such as Boogie encode high-level language fea-
turesmostly via three primitives: assert statements to introduce proof obligations,
assume statements to state properties which the verifier may use because they have
been justified elsewhere, and havoc statements to assignnon-deterministic values to
variables in order to model side effects or interference. Viper provides permission-
aware analogues of these primitives: the operation exhale A asserts all pure
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assertions inA (that is, assertions that do not include accessibility predicates). Any
permissions specified in A via accessibility predicates are removed from the cur-
rent program state; if no permission is left for a location then no information about
its value is retained, similarly to havocking the location. Conversely, inhale A

assumes all pure assertions in A and adds permissions.

Fig. 4. A simplified Viper encoding of the source program in Fig. 3.

Figure 4 shows a simplified Viper encoding of the client from Fig. 3, using
exhale and inhale to encode concurrency features, which are not supported by
Viper directly. We model locks as resources which can be transferred between
methods. To model this, the Viper program includes a field held and uses the
permission to location o.held to represent that the monitor of object o is held by
the current method execution. Consequently, acquiring the receiver’s monitor at
the start of method test is encoded by inhaling permission to this.held (line 11),
and releasing the monitor exhales this permission (line 24). This encoding ensures
that a monitor can be released only when it is held. We do not include checks for
other properties such as deadlock freedom here, but they could also be encoded.
Note that the only purpose of field held is to use its permission to represent that
a monitor is held; its value and type are irrelevant.
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We encode the @GuardedBy annotations by inhaling permission to the client’s
fields when acquiring the monitor (line 9) and exhaling them upon release
(line 21). We interpret @GuardedBy deeply and include the permission to the list’s
data field. Finally, the encoding of acquire and release also takes into account the
monitor invariants declared in the source program. Acquiring a monitor inhales
its (one-state) invariant (line 10). Releasing it exhales the one-state and two-state
invariants (lines 22–23). Checking a two-state invariant requires a way to access
the earlier of the two states: here, the state in which the monitor was acquired.
Viper provides a convenient way to refer to earlier program states: programs can
declare state labels (line 12) and refer to these states in later assertions using
labelled old expressions (line 23). This feature is also useful for encoding other
comparisons across states such as termination measures.

It is often useful to assert or assume properties about the permissions cur-
rently held, without adding or removing permission. Viper supports this via two
pure assertions: perm(o.f) yields the permission amount held for location o.f in
the current state; forperm[f] r : : P (r) expresses that all references r to which
the current state has non-zero permission to r.f , satisfy P (r). The example in
Fig. 4 uses the latter feature to encode a leak check for monitors; this check
fails if a method terminates without either releasing the monitors that it holds
or explicitly transferring them back to the caller via a postcondition. The leak
check is expressed by the assertion forperm[held] r : : false in line 6.

Since the leak check must be performed after any remaining monitors have
been transferred to the caller via the method’s postcondition, it cannot be placed
at the end of the method body, where it would be checked before exhaling the
postcondition. Therefore, we place it in a postcondition and encode it as inhale-
exhale assertion. These assertions have the form [A1,A2] and are interpreted
as A1 when the assertion is inhaled and A2 when the assertion is exhaled. In
our example, the leak check is performed during exhale, but no corresponding
assumption is made by the caller when inhaling the postcondition after a call.

It is common for encodings of high-level verification techniques to contain
asymmetries between the properties that are assumed and those that are checked.
The leak check is an example of a property that is checked, but not assumed. It
is also common to assume properties that are justified by a different (possibly
weaker or even vacuous) check together with an external argument provided
by a type system, soundness proof or other meta-reasoning. For instance, the
following assertion allows the verifier to use a quantified property in its direct
form when assuming the property, and to use the premises of the corresponding
inductive argument when proving the property:

[forall x: Int : : 0 <= x ==> P(x) ,
forall x: Int : : (forall y: Int : : 0 <= y && y < x ==> P(y)) &&

0 <= x ==> P(x)]
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3 Unbounded Heap Structures

Viper supports several idioms for specifying and reasoning about unbounded
heap structures. There are no specific definitions built in; instead, Viper includes
three features which allow one to provide the relevant definitions as part of the
input program: recursive predicates (the traditional means in separation-logic-
based tools), magic wands (useful for specifying data structures with “missing
parts”), and quantified permissions (for writing pointwise rather than recursive
specifications). We will briefly discuss each of these features in this section, with
respect to variations on our example in Fig. 2. We will focus on the specification
of permissions, and show how to extend these specifications with sortedness
constraints and rich functional properties in Sect. 4 and the online appendix [28].

3.1 Recursive Predicates

Recursive predicates [30] are the classical means in separation logic of specifying
linked data structures such as lists and trees. A predicate definition consists of
a name, a list of formal parameters, and a body, which contains the assertion
defining the predicate. The body is optional; omitting it results in an abstract
predicate, which is useful to hide implementation details from client code. Like
permissions, predicates may be held by method executions and loop iterations,
and may be transferred between them. Exchanging a predicate for its body and
vice versa is done via unfold and fold statements to prevent the automatic prover
from unfolding a recursive definition indefinitely. In expressions, unfolding can
be used to temporarily unfold a predicate.

Fig. 5. Fields and predicates for a linked list structure. The acc syntax around
predicate instances is optional, but needed when specifying fractional permissions to
predicates.

As an example, we consider a variant of Fig. 2, in which the list is imple-
mented based on a linked list of nodes. The appropriate predicate definitions
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can be found in Fig. 5. The List predicate provides the definition for the permis-
sions to an entire instance of the list. It is defined in terms of the lseg predicate,
which defines a list segment from start to end: in this case, from this.head
to null.

List segment predicates can be used to specify iterative traversals of linked
lists, as shown in Fig. 6. The loop invariant at lines 20-21 describes the permis-
sions to the list nodes in terms of one lseg predicate for the nodes seen so far
and one for the remainder of the list. The former explains the need for a list
segment predicate; tracking permissions for the partial list already inspected is
needed to reassemble the whole list after the loop (the code to do this is omitted
at line 29).

Manipulating recursive predicates can be tedious. While it is easy to prepend
an element to a data structure (by folding another instance of the predicate),
extending a data structure at the other end requires additional work to unfold the
recursive predicate until the end and then re-fold it including the new element. In
Fig. 6, this operation is performed by the concat method, which plays the role of
proving the lemma that from lseg(x,y) && lseg(y,z) we can obtain lseg(x,z).
concat is a specification-only method, but Viper does not distinguish between
regular and ghost code. In the next subsection, we will explain an approach that
reduces the overhead of writing and proving such methods in many cases.

3.2 Magic Wands

The magic wand is a binary connective (written A −∗ B), which describes the
promise that if combined with state satisfying the assertion A, the combination
can be exchanged for the assertion B [29,34].

Figure 7 shows an alternative specification of the loop from Fig. 6 (lines 17-
31). The alternative loop invariant uses a magic wand to represent the permis-
sions to the partial list seen so far. These permissions are expressed indirectly, by
the promise that the wand can be combined with the permission to the remain-
der of the list (the list segment acc(lseg(ptr,null))) to obtain permission to
the full list. The permissions implicitly associated with the magic wand instance
are essentially the same as those required by the acc(lseg(hd,ptr)) assertion in
Fig. 6, which is replaced by the wand.

Viper’s support for magic wands [35] includes heuristics to automate (in many
cases) reasoning about magic wand assertions, for example, in establishing our
loop invariant. Magic wands can also be manipulated manually via dedicated
operations, similar to the fold and unfold statements used for predicates [35].
For example, the apply statement in line 12 of Fig. 7 instructs the verifier to
exchange the magic wand assertion and its left-hand side for the right-hand-
side, restoring the full list after the (partial) traversal.

Compared to the solution without magic wands in Fig. 6, we no longer require
the auxiliary concat method to manage lseg predicates. In addition, we could
replace lseg by a simpler predicate that describes only full lists. Magic wands
provide a general means for tracking partial versions of data structures, without
the need to explicitly define or manipulate these partial versions.
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Fig. 6. The insert method of a sorted linked list with recursive predicates.
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Fig. 7. Alternative loop specification with magic wands (cf. Fig. 6, lines 17-31).

3.3 Quantified Permissions

In addition to recursive predicates, Viper supports quantified permissions as a
means of specifying unbounded heap structures. Quantified permissions are sim-
ilar to separation logic’s iterated separating conjunction [34] and allow the spec-
ification of permissions pointwise. The flat structure of a pointwise specification
is convenient for specifying data structures that are not limited to traversals in
a single, hierarchical fashion, such as cyclic lists, random access data structures
such as arrays, and general graphs.

We denote quantified permissions by a universal quantifier around the usual
accessibility predicates. For example, forall x: Ref : : x in S ==> acc(x.f)
denotes permission to the f field of every reference in the set S. The quanti-
fied variable can be of any type, and we permit arbitrary boolean expressions to
constrain its range.

Quantified permissions provide a natural way to specify properties of arrays.
Arrays are not supported natively in Viper but can be encoded. As we show
in Sect. 5, we can introduce a custom type Array which models the ith slot
of an array a as loc(a,i).val, where loc(a: Array, i: Int): Ref is an injec-
tive function provided by the Array type. The type also provides a function
len(a: Array): Int to model the length of an array. One can then denote permis-
sion to the array slots via quantified permissions ranging over the array indices.

Figure 8 applies this approach to encode an array list. The field elems stores
the array, while size keeps track of the number of used array slots. The quantified
permission assertion at line 9 represents permission to all array slots. These are
used, for instance, to permit the array access in the while-condition in line 20.
Note that the loop invariant is essentially a copy of the AList predicate body
(with the additional constraint on the idx loop variable). We employ fractional
permissions (including fractional quantified permissions in line 23) to specify
that the loop will not modify the corresponding locations.
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Fig. 8. Array-list, specified using quantified permissions.

4 Functional Behaviour

The specifications shown in Sect. 3 focus on the management of permissions, but
do not constrain the values stored in data structures (for instance, to require
sortedness of the list) or computed by operations (for instance, to express the
functional behaviour of method insert). The examples in Sect. 2 specify such
properties, but in a way which exposes implementation details. In this section,
we explain several ways to express functional behaviour in Viper.

A simple way to specify the values stored in data structures is to include con-
straints on the values in the body of a predicate, in addition to permissions. For
example, we could extend the body of the lseg predicate in Fig. 5 by conjoining
the following assertion:
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unfolding acc(lseg(this.next, end)) in
this.next != end ==> this.data <= this.next.data

This assertion specifies sortedness pairwise between list nodes. Maintaining the
augmented predicate entails corresponding additions to the loop invariant and
specification of the concat method in Fig. 6, as shown in the online appendix.

Constraining values via predicates allows one to encode representation invari-
ants, but is not suitable to express client-visible invariants or the functional
behaviour of operations. To support such specifications, Viper supports heap-
dependent functions that may be used in program statements and assertions.
Functions (as opposed to methods) have (side-effect free) expressions rather than
statements as a body. A function’s precondition must require sufficient permis-
sions to evaluate the function’s body; in contrast to methods, invoking a function
does not consume these permissions, and they do not need to be returned via a
function’s postcondition.

Functions are a flexible feature which can play several different roles in a
Viper program. The first major role is to encode side-effect free observer methods
(pure methods in JML [21] and Spec# [1]), which are a part of the interface
of many data structures. For instance, list-style collections typically provide
observer methods such as length and itemAt to retrieve data. As an example,
we extend our lseg-based specification from Sect. 3.1 with the following function
definition:

function lengthNodes(this: Ref, end: Ref): Int
requires acc(lseg(this, end))

{
unfolding acc(lseg(this, end)) in

this == end ? 0 : 1 + lengthNodes(this.next, end)
}

This definition enables us, whenever we hold an lseg predicate instance, to
express its length via an application of lengthNodes. The Viper verifiers care-
fully (and automatically) control the unrolling of recursive function definitions,
essentially mimicking the traversal of the corresponding lseg data structure [15].

A second major role of functions is to define abstraction functions [17] provid-
ing abstractions of the underlying data representation, in order to express spec-
ifications without revealing implementation details. For example, the following
function abstracts the values of a list segment to a mathematical sequence:

function contentNodes(this: Ref, end: Ref): Seq[Int]
requires acc(lseg(this, end))
ensures forall i: Int, j: Int : : 0 <= i && i < j && j < |result|

==> result[i] <= result[j]
{

this == end ? Seq[Ref]() : unfolding acc(lseg(this, end)) in
( Seq(this.data) ++ contentNodes(this.next, end) )

}



Viper: A Verification Infrastructure for Permission-Based Reasoning 55

Viper verifiers reason about function applications in terms of the function’s body.
Nevertheless, it is sometimes useful to provide a function postcondition. In the
above example, the postcondition expresses that the sequence of all values stored
in the list is sorted, which is implied by the pairwise sortedness we have added
to the lseg predicate. Note that the inductive argument required to justify this
postcondition is implicit in the checking of contentNodes’s recursive definition.

A similar content function for the overall data structure (described by the
List predicate) allows us to specify the functional behaviour of insert:

ensures content(this) == old(content(this))[0..index] ++
Seq(elem) ++ old(content(this))[index..]

Function bodies are optional in Viper, which allows hiding details when ver-
ifying client code (similarly to predicates). Omitting the body is also useful for
axiomatising a function rather than defining it (assuming the existence of the
function is otherwise justified). In the array list example from Fig. 8, defining
length and itemAt functions is straightforward. However, an analogous content
function would be awkward to define recursively since our specifications for this
random-access example avoid recursive definitions. Instead, we can axiomatise
the function, that is, specify its meaning via a quantified postcondition. Such
quantifiers are supported in Viper assertions in general, and provide another
important tool for writing functional specifications:

function content(this: Ref): Seq[Int]
requires acc(AList(this))
ensures |result| == length(this)
ensures forall i: Int : : 0 <= i && i < length(this)

==> result[i] == itemAt(this, i)

The third major role of heap-dependent functions is to express refinements of
existing predicate definitions. For example, instead of expressing sortedness as
part of a predicate definition, we can write a boolean function (here for the array
list from Fig. 8) and use it in combination with the unchanged AList predicate:

function sorted(this: Ref): Bool
requires acc(AList(this))

{
unfolding acc(AList(this)) in

forall i: Int, j: Int : : 0 <= i && i < j && j < this.size
==> result[i] <= result[j]

}

AList(this) && sorted(this) describes a sorted list, while AList(this) specifies
an array list that may or may not be sorted. In this way, functions can be used to
augment data-structure instances with additional invariants, without requiring
many versions of a predicate definition or resorting to higher-order logic.

The combination of predicates, functions, and quantifiers supported by Viper
provides the means for writing rich functional specifications in a variety of styles,
which are further illustrated by examples in the online appendix [28].
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5 First-Order Theories

Many specification and verification techniques provide their own mathematical
vocabulary, for instance, to encode algebraic data types. To support such tech-
niques, Viper supports the declaration of custom first-order theories via domains:
each domain introduces a (potentially polymorphic) type and may declare unin-
terpreted function symbols and axioms. Organising mathematical theories into
domains allows back-ends to provide dedicated support for certain theories. For
instance, while both Viper verifiers let the underlying SMT solver reason about
domains, an abstract-interpretation-based inference might provide specialised
abstract domains for certain Viper domains.

Fig. 9. A domain definition for arrays, as used in Sect. 3.3. The injective function loc
maps an array and an index to a reference; in combination with a field (such as val in
Fig. 8), an array slot a[i] can be encoded as loc(a, i).val.

Figure 9 uses a domain to model arrays, which are not natively supported
in Viper. We represent the ith slot of an array a as loc(a,i).val, where loc
is a function introduced by the domain and val is a suitable field. Since each
array slot corresponds to a dedicated memory location, loc must be injective;
this property is expressed by the axiom loc_injective, which axiomatises loc_a
and loc_i as the inverse functions of loc. Axiomatising injectivity via inverse
functions improves performance of the SMT solver by reducing the number of
instantiations of the axiom.

Universal quantifiers in axioms (as well as in assertions) may be decorated with
triggers [27]: terms used as patterns which restrict the potential instantiations.
For instance, the trigger {loc(a, i)} in axiom loc_injective lets the SMT solver
instantiate the quantifier with x and y whenever it knows about a term loc(x,y).
When no trigger is provided, Viper attempts to infer triggers automatically. In
general, however, hand-crafted triggers lead to better performance.

The online appendix [28] shows how to encode algebraic data types as
domains, with functions for constructors and selectors, and with appropriate
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axioms. Such an encoding is useful when encoding source languages that pro-
vide ADTs (such as Scala’s case classes) or for specification languages that make
use of ADTs.

6 Evaluation

In this section, we evaluate the performance of the Viper verifiers on a wide
variety of examples. Moreover, we give preliminary qualitative and quantitative
evidence for Viper’s suitability as an intermediate verification language.

6.1 Performance of the Viper Verifiers

To evaluate the performance of the Viper verifiers, we ran both our symbolic
execution (SE) verifier and our verification-condition-generation (VCG) verifier
on the following collections of input programs: our own Viper regression tests,
Viper programs generated by the VerCors tools [4,5], and programs generated
from Chalice examples via our Chalice front-end. For the Viper and VerCors
programs, we split the files into those using quantified permissions (for which
only our SE verifier currently provides support), and those which can be run in
both verifiers. The set of VerCors examples was provided to us by the VerCors
developers as representative of their Viper usage.

The results are shown in Fig. 10. Both verifiers perform consistently well in
the average case, with the SE verifier being significantly faster. As the average
times suggest, the maximum times are true outliers—these were typically exam-
ples designed to be complex, in order to test what the tools could handle. The
Viper tests (which are mostly regression tests) tend to be shorter and less chal-
lenging than the VerCors-generated programs, which are representative of real
usage of Viper as a back-end infrastructure.

Fig. 10. Performance evaluation of Viper verifiers. Lines of code (LOC) measurements
do not include whitespace lines and comments. All input programs were run 10 times
and average times recorded. The mean and maximum times were calculated based on
these averages. Timings do not include JVM start-up time: we persist a JVM across test
runs using the Nailgun tool; for the VCG verifier, timings include start-up of Boogie
via Mono. All timings were gathered on a Lenovo Thinkpad T450s running Ubuntu
15.04 64 bit, with 12 GB RAM; full details are available in our online appendix [28].
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6.2 Viper as an Intermediate Verification Language

To assess Viper’s suitability as an intermediate verification language, we provide
some observations about Viper’s language design and compare the performance
of Viper as the back-end of the VerCors tools. to the previously-used Chalice-
Boogie tool chain [26].

Language Design. The most comprehensive front-ends for Viper are the Java
and OpenCL front-ends developed in the VerCors project and our own Chal-
ice/Viper front-end. Various language features of Viper have proven essential
for these different front-ends. VerCors’ work on verifying concurrent Java makes
use of Viper’s custom domains for encoding custom ADT-like datatypes along
with additional axioms, and makes heavy use of sequences, recursive functions
and predicates. The VerCors OpenCL front-end instead employs quantified per-
missions along with domains similar to the array encoding shown in Sect. 5, and
pure quantifiers to specify functional properties. Our front-end for Chalice makes
extensive use of inhale and exhale statements to encode high-level features, sim-
ilarly to the example in Sect. 2.2. As such, the key language features described
in this paper have all been heavily used in at least one existing front-end.

There are Chalice front-ends for both Boogie and Viper, which support very
similar (but not identical) versions of the Chalice language. For the Chalice pro-
grams from the previous subsection, the Boogie files were between 3.3 and 32.1
times the size of the corresponding Viper files, and on average 11.2 times larger.
This significant difference illustrates the higher level of abstraction provided by
the Viper language, compared with existing intermediate verification languages.

Performance of the Infrastructure. The VerCors project switched from
using Chalice-Boogie as back-end infrastructure, to Viper. This switch was partly
motivated by the available language features; for instance, the VerCors OpenCL
front-end relies heavily on quantified permissions, which are not available in
Chalice. Another reason was the performance of the Viper tools. In the following,
we compare the performance of the two infrastructures on inputs generated by
the VerCors tools.

Running tests through the entire alternative tool chains proved difficult due
to legacy syntactic and implementation differences; however, we identified 17
VerCors examples from the test suite used in Sect. 6.1 that could be run on
the alternative infrastructures. For each of these examples, we generated two
(essentially equivalent) Boogie programs, one using Chalice as a VerCors back-
end, and one using Viper with our VCG verifier.

Figure 11 shows the results of our comparison. In all cases, the Boogie files
generated via the Viper route were smaller and verified faster. The same example
was slowest via both routes, and more than 4 times faster in the Viper-generated
version. Although our sample size is small, the results suggest Viper enables a
more direct encoding and offers a more streamlined verification condition gen-
erator. In practice, the VerCors team typically use Viper’s SE verifier, which is
substantially faster still, as shown in Fig. 10.



Viper: A Verification Infrastructure for Permission-Based Reasoning 59

Fig. 11. Comparison of alternative back-end infrastructures for the VerCors tools.
Using Viper’s VCG verifier significantly reduces the size and verification time of the
generated Boogie programs compared to the Chalice/Boogie infrastructure.

7 Related Work

Boogie [22] and Why [14] are widely-used intermediate verification languages,
but they do not offer native support for permission-based reasoning. Chalice [26]
demonstrates that permissions can be encoded in such a first-order setting; our
VCG-based back-end makes such a complex encoding reusable. Boogie and Why
front-ends encode heaps as maps. In contrast, the Viper language has a built-in
notion of heap, which is slightly less expressive (for instance, in Viper, heaps
cannot be stored in variables), but enables the development of more-specialised
back-ends, such as verifiers based on Smallfoot-style symbolic execution and
inference engines based on abstract interpretation.

To our knowledge, the only other verification infrastructure for permission-
based reasoning is coreStar [6], which includes an intermediate language for
separation logic and a symbolic execution engine. Front-ends implemented on
top of coreStar encode programs into coreStar’s language and also need to pro-
vide proof rules and abstraction rules to customise the behaviour of coreStar’s
symbolic execution, even for fundamental concepts such as permissions (points-
to predicates). In contrast, Viper has been designed to be expressive enough to
capture a wide variety of languages and verification techniques out of the box,
without requiring front-end developers to descend into the back-end(s). Fur-
thermore, having a fixed language (with fixed rules) simplifies writing different
back-ends, potentially with specialised handling of certain language features.

Some verifiers for separation logic such as Smallfoot [3], GRASShopper [33],
Asterix [32], and the work by Chin et al. [9], achieve a relatively high degree
of automation by restricting themselves to specific (classes of) theories: often
those of linked lists and trees. Without support for important features such as
fractional permissions or user-defined predicates and functions, they do not offer
the expressiveness needed for an intermediate language which can encode a wide
range of verification techniques.

VeriFast [18], a verifier for C and Java programs, supports an expressive
assertion language, including user-defined higher-order predicates and function
pointers, but it requires significant amounts of user annotations, in particular
when reasoning about functional specifications and abstractions. This compli-
cates the encoding of front-end languages that try to achieve a higher degree of
automation.
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Several verification techniques based on interactive proof assistants such as
Coq or HOL4 [2,10,12,37] provide tactics that automate common proof steps in
separation logic. Viper aims at a higher level of automation, such that users do
not have to interact directly with the verification back-ends.

8 Conclusion and Future Work

We have presented Viper, an infrastructure which facilitates the rapid proto-
typing of permission-based verification techniques and the development of veri-
fication tools. Viper’s intermediate language offers a flexible permission model,
supports user-defined predicates and functions, and provides advanced specifi-
cation features such as magic wands and quantified permissions. It provides the
necessary expressiveness to encode a wide range of language features and
permission-based verification techniques. In particular, users may choose
between and combine different styles of encodings, as we have demonstrated
in Sects. 3 and 4. Viper includes two back-end verifiers: one based on verifica-
tion condition generation and one based on symbolic execution. An abstract-
interpretation-based specification inference is under development.

Viper is targeted by several front-ends, developed both inside and outside
of our research group. Together with collaborators, we are currently working
on encodings of verification techniques for JavaScript and for fine-grained con-
currency. Viper is also being used to verify safety and security properties of a
network router implemented in Python.

As future work, we plan to provide a comprehensive variety of specification
inference techniques and to improve the reporting and debugging of verification
failures. We are also interested in integrating alternative, possibly specialised
verification back-ends.
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Abstract. We present Alias Refinement Types (Art), a new approach
that uses predicate-abstraction to automate the verification of correct-
ness properties of linked data structures. While there are many tech-
niques for checking that a heap-manipulating program adheres to its
specification, they often require that the programmer annotate the
behavior of each procedure, for example, in the form of loop invariants
and pre- and post-conditions. We introduce a technique that lifts predi-
cate abstraction to the heap by factoring the analysis of data structures
into two orthogonal components: (1) Alias Types, which reason about the
physical shape of heap structures, and (2) Refinement Types, which use
simple predicates from an SMT decidable theory to capture the logical
or semantic properties of the structures. We evaluate Art by implement-
ing a tool that performs type inference for an imperative language, and
empirically show, using a suite of data-structure benchmarks, that Art
requires only 21% of the annotations needed by other state-of-the-art
verification techniques.

1 Introduction

Separation logic (SL) [31] has proven invaluable as a unifying framework for
specifying and verifying correctness properties of linked data structures. Para-
doxically, the richness of the logic has led to a problem – analyses built upon
it are exclusively either expressive or automatic. To automate verification,
we must restrict the logic to decidable fragments, e.g. list-segments [4,21],
and design custom decision procedures [6,14,16,27,28] or abstract interpreta-
tions [7,23,40]. Consequently, we lose expressiveness as the resulting analyses
cannot be extended to user -defined structures. To express properties of user-
defined structures, we must fall back upon arbitrary SL predicates. We sacrifice
automation as we require programmer assistance to verify entailments over such
predicates [10,24]. Even when entailment is automated by specializing proof
search, the programmer has the onerous task of providing complex auxiliary
inductive invariants [9,30].

We observe that the primary obstacle towards obtaining expressiveness and
automation is that in SL, machine state is represented by monolithic assertions
that conflate reasoning about heap and data. While SL based tools commonly
describe machine state as a conjunction of a pure, heap independent formula,
c© Springer-Verlag Berlin Heidelberg 2016
B. Jobstmann and K.R.M. Leino (Eds.): VMCAI 2016, LNCS 9583, pp. 65–84, 2016.
DOI: 10.1007/978-3-662-49122-5 3
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abs :: int nat1

function abs(x){ x : int
if (0 <= x) 0 x ; x : int
return x;

var r = 0 - x;
r : ν 0 x ;

0 x ; x : int
return r;

}

Fig. 1. Refinement types

absR :: x : data :int &x data :nat2

function absR(x){
Γ0

.
x : &x

Σ0
.

&x data : int
var d = x.data; Γ1

.
d : int; Γ0

var t = abs(d); Γ2
.
t :nat1; Γ1

x.data = t; Σ1
.

&x data :ν t
return;

}

Fig. 2. Strongly updating a location

and a* combination of heap predicates, the heap predicates themselves conflate
reasoning about links (e.g. reachability) and correctness properties (e.g. sizes or
data invariants), which complicates automatic checking and inference.

In this paper, we introduce Alias Refinement Types (Art), a subset of separa-
tion logic that reconciles expressiveness and automation by factoring the repre-
sentation of machine state along two independent axes: a “physical” component
describing the basic shape and linkages between heap cells and a “logical” com-
ponent describing semantic or relational properties of the data contained within
them. We connect the two components in order to describe global logical prop-
erties and relationships of heap structures, using heap binders that name pure
“snapshots” of the mutable data stored on the heap at any given point.

The separation between assertions about the heap’s structure and heap-
oblivious assertions about pure values allow Art to automatically infer precise
data invariants. First, the program is type-checked with respect to the physical
type system. Next, we generate a system of subtyping constraints over the logical
component of the type system. Because the logical component of each type is
heap-oblivious, solving the system of constraints amounts to solving a system
of Horn clauses. We use predicate abstraction to solve these constraints, thus
yielding precise refinements that summarize unbounded collections of objects.

In summary, this paper makes the following contributions:

– a description of Art and formalization of a constraint generation algorithm
for inferring precise invariants of linked data structures;

– a novel soundness argument in which types are interpreted as assertions in
separation logic, and thus typing derivations are interpreted as proofs;

– an evaluation of a prototype implementation that demonstrates Art is effec-
tive at verifying and, crucially, inferring data structure properties ranging from
the sizes and sorted-ness of linked lists to the invariants defining binary search
trees and red-black trees. Our experiments demonstrate that Art requires
only 21 % of the annotation required by other techniques to verify intermedi-
ate functions in these benchmarks.

2 Overview

Refinements Types and Templates. A basic refinement type is a basic type,
e.g. int, refined with a formula from a decidable logic, e.g. nat

.= {ν : int |� ν}
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is a refinement type denoting the set of non-negative integers, where int is
the basic or physical part of the type and the refinement 0 � ν is the log-
ical part. A template is a refinement type where, instead of concrete formu-
las we have variables κ that denote the unknown to-be-inferred refinements.
In the case that the refinement is simply true, we omit the refinement (e.g.
int = {ν : int | true}). We specify the behaviors of functions using refined func-
tion types: (x1 : t1, . . . , xn : tn) ⇒ t. The input refinement types ti specify the
function’s preconditions and t describes the postcondition.
Verification. Art splits verification into two phases: (1) constraint generation,
which traverses the program to create a set of Horn clause constraints over the
κ, and (2) constraint solving, which uses an off the shelf predicate abstraction
based Horn clause solver [32] that computes a least fixpoint solution that yields
refinement types that verify the program. Here, we focus on the novel step (1).
Path Sensitive Environments. To generate constraints Art traverses the
code, building up an environment of type bindings, mapping program variables to
their refinement types (or templates, when the types are unknown.) At each call-
site (resp. return), Art generates constraints that the arguments (resp. return
value) are a subtype of the input (resp. output) type. Consider abs in Fig. 1
which computes the absolute value of the integer input x. Art creates a template
(int) ⇒ {ν : int | κ1} where κ1 denotes the unknown output refinement. (We
write nat1 in the figure to connect the inferred refinement with its κ.) In Fig. 1, the
environment after each statement is shown on the right side. The initial environ-
ment contains a binder for x, which assumes that x may be any int. In each branch
of the if statement, the environment is extended with a guard predicate reflecting
the condition under which the branch is executed. As the type {ν : int | ν = x}
is problematic if x is mutable, we use SSA renaming to ensure each variable is
assigned (statically) at most once.

Subtyping. The returns in the then and else yield subtyping constraints:

x : int, 0 � x � &{ν : int | ν = x} � {ν : int | κ1}
x : int, ¬(0 � x), r :{ν : int | ν = 0 − x} � &{ν : int | ν = r} � {ν : int | κ1}

(1)

which respectively reduce to the Horn implications

(true ∧ 0 � x) ⇒ &(ν = x) ⇒ κ1

(true ∧ ¬(0 � x) ∧ r = 0 − x) ⇒ &(ν = r) ⇒ κ1

By predicate abstraction [32] we find the solution κ1
.= 0 � ν and hence infer

that the returned value is a nat, i.e. non-negative.
References and Heaps. In Fig. 2, absR takes a reference to a structure con-
taining an int valued data field, and updates the data field to its absolute
value. We use κ2 for the output refinement; hence the type of absR desugars
to: (x : &x)/&x �→ 〈data : int〉 ⇒ ()/&x �→ 〈data : κ2〉 which states that absR
requires a parameter x that is a reference to a location named &x. in an input
heap where &x contains a structure with an int-valued data field. The function
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absL :: x :list int &x list nat3

function absL(x){ Γ0
.
x : &x , Σ0

.
&x x0 : list int

//: unfold(&x);
Γ1

.
Γ0

Σ1
.

&x x1 : data : int, next :? &t &t t0 : list int
var d = x.data;

x.data = abs(d);

var xn = x.next;

Γ2
.
d : int, xn : ν :? &t ν x2.next , Γ1

Σ2
.

&x x2 : data :nat1, next :? &t &t t0 : list int

if (xn == null){
//: fold(&x); Γ3

.
xn null, Γ2, Σ3

.
&x list nat3

return;
}

absL(xn);
Γ4

.
xn null; Γ2

Σ4
.

&x x2 : data :nat1, next :? &t &t t1 : list nat3

//: fold(&x); Γ5
.

Γ4 Σ5
.

&x x3 : list nat3
return;

}

Fig. 3. Strongly updating a collection. The fold and unfold annotations are automat-
ically inserted by a pre-analysis [3]

returns () (i.e. no value) in an output heap where the location &x is updated to
a structure with a κ2-valued data-field.

We extend the constraint generation to precisely track updates to locations.
In Fig. 2, each statement of the code is followed by the environment Γ and heap
Σ that exists after the statement executes. Thus, at the start of the function,
x refers to a location, &x, whose data field is an arbitrary int. The call abs(d)
returns a κ1 that is bound to t, which is then used to strongly update the data
field of &x from int to κ1. At the return we generate a constraint that the return
value and heap are sub-types of the function’s return type and heap. Here, we
get the heap subtyping constraint:

x :〈&x〉, d : int, t :κ1 � & &x �→ 〈data :ν = t〉 	 &x �→ 〈data :κ2〉
which reduces by field subtyping to the implication: κ1[t/ν] ⇒ (ν = t) ⇒ κ2

which (together with the previous constraints) can be solved to κ2
.= 0 � ν

letting us infer that absR updates the structure to make data non-negative.
This is possible because the κ variables denote pure formulas, as reasoning about
the heap shape is handled by the alias type system. Next we see how this idea
extends to infer strong updates to collections of linked data structures.

Linked Lists. Linked lists can be described as iso-recursive alias types [38]. The
definition

type list[A] .= ∃!� �→ t : list[A].h :〈data :A, next?〈�〉〉
says list[A] is a head structure with a data field of type A, and a next field
that is either null or a reference to the tail, denoted by the ?〈�〉 type. The heap
� �→ t : list[A] denotes that a singleton list[A] is stored at the location denoted
by � if it is reachable at runtime. The ∃! quantification means that the tail is
distinct from every other location, ensuring that the list is inductively defined.
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Consider absL from Fig. 3, which updates each data field of a list with its
absolute value. As before, we start by creating a κ3 for the unknown output
refinement, so the function gets the template

(x :〈&x〉)/&x �→ x0 : list[int] ⇒ ()/&x �→ xr : list[κ3]

Figure 3 shows the resulting environment and heap after each statement.
The annotations unfold and fold allow Art to manage updates to collec-

tions such as lists. In Art, the user does not write fold and unfold annotations;
these may be inferred by a straightforward analysis of the program [3].

Unfold. The location &x that the variable x refers to initially contains a list[int]
named with a heap binder x0. The binder x0 may be used in refinements. Suppose
that x is a reference to a location containing a value of type list[A]. We require
that before the fields of x can be accessed, the list must be unfolded into a head
cell and a tail list. This is formalized with an unfold(&x) operation that unfolds
the list at &x from &x �→ x0 : list[int] to

&x �→ x1 :〈data : int, next?〈&t〉〉 ∗ &t �→ t0 : list[int],

corresponding to materializing in shape analysis. The type system guarantees
that the head structure and (if next is not null) the newly unfolded tail structure
are unique and distinct. So, after unfolding, the structure at &x can be strongly
updated as in absR. Hence, the field assignment generates a fresh binder x2 for
the updated structure whose data field is a κ1, the output of abs.

Fold. After updating the data field of the head, the function tests whether the
next field assigned to xn is null, and if so returns. Since the expected output is
a list, Art requires that we fold the structure back into a list[κ3] – effectively
computing a summary of the structure rooted at &x. As xn is null and xn :
{ν :?〈&t〉 | ν = x2.next}, fold(&x) converts &x �→ x2 : 〈data :κ1, next :?〈&t〉〉
to &x �→ list[κ3] after generating a heap subtyping constraint which forces the
“head” structure to be a subtype of the folded list’s “head” structure.

Γ3 � &x �→ x2 :〈data :κ1, . . .〉 	 &x �→ x2 :〈data :κ3, . . .〉 (2)

If instead, xn is non-null, the function updates the tail by recursively invoking
absL(xn). In this case, we can inductively assume the specification for absL and
so in the heap after the recursive call, the tail location &t contains a list[κ3].
As xn and hence the next field of x2 is non-null, the fold(&x) transforms

&x �→ x2 :〈data :κ1, next :?〈&t〉〉 ∗ &t �→ t1 : list[κ3]

into &x �→ list[κ3], as required at the return, by generating a heap subtyping
constraints for the head and tail:

Γ5 � &x �→ x2 :〈data :κ1, . . .〉 	 &x �→ x2 :〈data :κ3, . . .〉 (3)
Γ5 � &&t �→ t1 : list[κ3] 	 &t �→ t1 : list[κ3] (4)
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The constraints Eqs. (2), (3) and (4) are simplified field-wise into the implications
κ1 ⇒ κ3, κ1 ⇒ κ3 and κ3 ⇒ κ3 which, together with the previous constraints
(Eq. (1)) solve to: κ3

.= 0 � ν. Plugging this back into the template for absL we
see that we have automatically inferred that the function strongly updates the
contents of the input list to make all the data fields non-negative.

Art infers the update the type of the value stored at &x at fold and unfold
locations because reasoning about the shape of the updated list is delegated to
the alias type system. Prior work in refinement type inference for imperative
programs [33] can not type check this simple example as the physical type sys-
tem is not expressive enough. Increasing the expressiveness of the physical type
system allows Art to “lift” invariant inference to collections of objects.

Snapshots. So far, our strategy is to factor reasoning about pointers and the
heap into a “physical” alias type system, and functional properties (e.g. values of
the data field) into quantifier- and heap-free “logical” refinements that may be
inferred by classical predicate abstraction. However, reasoning about recursively
defined properties, such as the length of a list, depends on the interaction between
the physical and logical systems.

We solve this problem by associating recursively defined properties not
directly with mutable collections on the heap, but with immutable snapshot
values that capture the contents of the collection at a particular point in time.
These snapshots are related to the sequences of pure values that appear in the
definition of predicates such as list in [31]. Consider the heap Σ defined as:

&x0 �→ h :〈data = 0, next = &x1〉 ∗ &x1 �→ t :〈data = 1, next = null〉

We say that snapshot of &x0 inΣ is the value v0 defined as:

v0
.= (&x0, 〈data = 0, next = v1〉) v1

.= (&x1, 〈data = 1, next = null〉)

Now, the logical system can avoid reasoning about the heap reachable from
x0 – which depends on the heap – and can instead reason about the length of
the snapshot v0 which is independent of the heap.

Heap Binders. We use heap binders to name snapshots in the refinement logic.
In the desugared signature for absR from Fig. 2,

(x :〈&x〉)/&x �→ x0 : list[int] ⇒ ()/&x �→ xr : list[nat]

the name x0 refers to the snapshot of input heap at &x. In Art, no reachable
cell of a folded recursive structure (e.g. the list rooted at &x) can be modified
without first unfolding the data structure starting at the root: references pointing
into the cells of a folded structure may not be dereferenced. Thus we can soundly
update heap binders locally without updating transitively reachable cells.

Measures. We formalize structural properties like the length of a list or the
height of a tree and so on, with a class of recursive functions called measures,
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insert :: A, x :?list A ν :list A len ν 1 len x 4

function insert(k, x) Γ0 k :A; x :? &x Σ0 &x x0 : list A
if (x == null) {
var y =

{data:k,next:null};
Γ1

.
y : &y ; x null; Γ0

Σ1
.

&x x0 : list A &y y0 : data :A, next :null

//: fold(&y)
Γ2

.
len y1 1; Γ1

Σ2
.

&x x0 : list A &y y1 : list A
return y;

}

//: unfold(&x)
Γ3

.
len x0 1 len t0 ; x null; Γ0

Σ3
.

&x x1 : data :a, next :? &t &t t0 : list a
if (k <= x.data) {
var y =

{data:k,next:x};
Γ4

.
y : &y ; Γ3

Σ4
.

&y y2 : data :A, next :? &x Σ3

//: fold(&x)
Γ5

.
len x2 1 len t0 ; Γ4

Σ5
.

&x x2 : list A &y y2 : data :A, next :? &x
//: fold(&y) Γ6

.
len y3 1 len x2 ; Γ5 Σ6

.
&x y3 : list A

return y;

}
var z = x.next;

var u = insert(k,z);

x.next = u;

Γ7
.

u0 :κ4 t0 x0 ; u : &u ; z :? &t ; Γ3

Σ7
.

&x x1 : data :A, next : &u &u u0 : list A

//: fold(&x) Γ8
.
len x2 1 len u0 ; Γ7 Σ8

.
&x x2 : list A

return x;

}

Fig. 4. Inserting into a collection

which are catamorphisms over (snapshot values of) the recursive type. For exam-
ple, we specify the length of a list with the measure:

len: : list[A] ⇒ int len(null) = 0 len(x) = 1 + len(x.next)

We must reason algorithmically about these recursively defined functions. The
direct approach of encoding measures as background axioms is problematic due
to the well known limitations and brittleness of quantifier instantiation heuris-
tics [13]. Instead, we encode measures as uninterpreted functions, obeying the
congruence axiom, ∀x, y.x = y ⇒ f(x) = f(y). Second, we recover the seman-
tics of the function by adding instantiation constraints describing the measure’s
semantics. We add the instantiation constraints at fold and unfold operations,
automating the reasoning about measures while retaining completeness [36].

Consider insert in Fig. 4, which adds a key k of type A into its position in
an (ordered) list[A], by traversing the list, and mutating its links to accomodate
the new structure containing k. We generate a fresh κ4 for the output type to
obtain the function template:

(A, x :?〈&x〉)/&x �→ x0 : list[A] ⇒ 〈&l〉/&l �→ {ν : list[A] | κ4}
Here, the snapshot of the input list x upon entry is named with the heap binder
x0; the output list must satisfy the (as yet unknown) refinement κ4.

Constraint generation proceeds by additionally instantiating measures at
each fold and unfold. When x is null, the fold(&y) transforms the binding
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&y �→ y0 :〈data :A, next:null〉 into a (singleton) list &y �→ y1 : list[A] and so we
add the instantiation constraint len(y1) = 1 to the environment. Hence, the sub-
sequent return yields a subtyping constraint over the output list that simplifies
to the implication:

len(x0) = 0 ∧ len(y1) = 1 ⇒ ν = y1 ⇒ κ4 (5)

When x is non-null, unfold(&x) transforms the binding &x �→ x0 : list[A] to

&x �→ x1 :〈data :a, next?〈&t〉〉 ∗ &t �→ t0 : list[A]

yielding the instantiation constraint len(x0) = 1 + len(t0) that relates the length
of the list’s snapshot with that of its tail’s. When k <= x.data the subsequent
folds create the binders x2 and y3 with instantiation constraints relating their
sizes. Thus, at the return we get the implication:

len(x0) = 1+ len(t0)∧ len(x2) = 1+ len(t0)∧ len(y3) = 1+ len(x2) ⇒ ν = y3 ⇒ κ4

(6)
Finally, in the else branch, after the recursive call to insert, and subsequent
fold, we get the subtyping implication

len(x0) = 1+ len(t0)∧κ4[ν, x0/u0, t0]∧ len(x2) = 1+ len(u0) ⇒ ν = x2 ⇒ κ4 (7)

The recursive call that returns u0 constrains it to satisfy the unknown refinement
κ4 (after substituting t0 for the input binder x0). Since the heap is factored out by
the type system, the classical predicate abstraction fixpoint computation solves
Eqs. (5), (6) and (7) to κ4

.= len(ν) = 1+ len(x0) inferring a signature that states
that insert’s output has size one more than the input.

Abstract Refinements. Many important invariants of linked structures require
us to reason about relationships between elements of the structure. Next, we show
how our implementation of Art allows us to use abstract refinements, developed
in the purely functional setting [37], to verify relationships between elements of
linked data structures, allowing us to prove that insertSort in Fig. 5 returns an
ordered list. To this end, we parameterize types with abstract refinements that
describe relationships between elements of the structure. For example,

type list[A]〈p〉 .= ∃!l �→ t : list[{ν : A | p(data, ν)}]〈p〉.h :〈data :A, next :?〈l〉〉
is the list type as before, but now parameterized by an abstract refinement p
which is effectively a relation between two A values. The type definition states
that, if the data fields have values x1, . . . , xn where xi is the ith element of the
list, then for each i < j we have p(xi, xj).

Ordered Lists. We instantiate the refinement parameters with concrete refine-
ments to obtain invariants about linked data structures. For example, increasing
lists are described by the type incList[A] .= list[A]〈(�)〉.
Verification. Properties like sortedness may be automatically infered by using
liquid typing [32]. Art infers the types:

insertSort::(?list[A]) ⇒ incList[A] insert::(A, ?incList[A]) ⇒ incList[A]
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x :?list A ν :?incList A len ν len x

function insertSort(x){
if (x == null) return null;
//: unfold(&x);
var y = insertSort(x.next);
var t = insert(x.data, y);
//: fold(&t);
return t;

}

Fig. 5. Insertion Sort

i.e. that insert and insertSort return sorted lists. Thus, alias refinement types,
measures, and abstract refinements enable both the specification and automated
verification of functional correctness invariants of linked data structures.

3 Type Inference

To explain how Art infers refinement types as outlined in Sect. 2, we first explain
the core features of Art’s refinement type system. We focus on the more novel
features of our type system; a full treatment may be found in [3].

3.1 Type Rules

Type Environments. We describe Art in terms of an imperative language
Imp with record types and with the usual call by value semantics, whose syntax
is given in Fig. 6. A function environment is defined as a mapping, Φ, from
functions f to function schemas S. A type environment (Γ ) is a sequence of type
bindings x :T and guard expressions e. A heap (Σ) is a finite, partial map from
locations (�) to type bindings. We write Γ (x) to refer to T where x :T ∈ Γ , and
Σ(�) to refer to x :T where the mapping � �→ x :T ∈ Σ.

Type Judgements. The type system of Art defines a judgement Φ � f :: S,
which says given the environment Φ, the function f behaves according to its
pre- and post-conditions as defined by S. An auxiliary judgement Φ, Γ,Σ � s ::
Γ ′/Σ′ says that, given the input environments Γ and Σ, s produces the output
environments Γ ′ and Σ′. We say that a program p typechecks with respect to Φ
if, for every function f defined in p, Φ � f :: Φ(f).

Well-Formedness. We require that types T be well formed in their local envi-
ronments Γ and heaps Σ, written Γ,Σ � T . A heap Σ must heap be well formed
in its local environment Γ , written Γ � Σ. The rules for the judgment [3] capture
the intuition that a type may only refer to binders in its environment.

Subtyping. We require a notion of subsumption, e.g. so that the integer 2 can be
typed either as {ν : int | ν = 2} or simply int. The subtyping relation depends on
the environment. For example, {ν : int | ν = x} is a subtype of {ν : int | ν = 2}
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Expressions e :: n true false null r� x e e
Statements s :: s; s x e y x.f x.f e if e then s else s

return e x alloc f : e x f e
unfold � fold � concr x pad �

Programs p :: function f x {s}
Primitive Types b :: int bool α null � ? �

Types τ :: b C T f :T
Refined Types T :: ν :τ p

Type Definition C :: C α
.

! Σ. x : f : T
Contexts Γ :: x :T ; Γ e; Γ
Heaps Σ :: emp Σ � x :C T Σ � x : f :T

Function Types S :: �, α. x :T Σ !� . x :T Σ

n Integers, r� Reference Constants, x, y, f Identifiers, , , . . .

Fig. 6. Syntax of Imp programs and types

if x : {ν : int | ν = 2} holds as well. Subtyping is formalized by the judgment
Γ � T1 	 T2, of which selected rules are shown in Fig. 7. Subtyping in Imp reduces
to the validity of logical implications between refinement predicates. As the refine-
ments are drawn from a decidable logic of Equality, Linear Arithmetic, and Unin-
terpreted Functions, validity can be automatically checked by SMT solvers [13].
The last two rules convert between non-null and possibly null references (〈�〉 and
?〈�〉).
Heap Subtyping. The heap subtyping judgment Γ � Σ 	 Σ′ describes when
one heap is subsumed by another. Figure 7 summarizes the rules for heap sub-
sumption. Heap subtyping is covariant, which is sound because our type system
is flow sensitive – types in the heap are updated after executing a statement.

Statements. When the condition x, y fresh appears in the antecedent of a rule,
it means that x and y are distinct names that do not appear in the input envi-
ronment Γ or heap Σ. We write [y/x] for the capture avoiding substitution that
maps x to y. The rules for sequencing, assignment, control-flow joins, and func-
tion calls are relatively straightforward extensions from previous work (e.g. [33]).
Selected rules are given in Fig. 8. The complete set of rules may be found in [3].

Allocation. In T-alloc, a record is constructed from a sequence of field name
and expression bindings. The rule types each expression ef as Tf , generates a
record type T , and allocates a fresh location � on the heap whose type is T . To
connect fields with their containing records, we create a new binder y denoting
the record, and use the helper NameFields [3] to strengthen the type of each
field-binding for y from f :{νf : τ | p}, to f :{νf : τ | p ∧ νf = Field(ν, f)}. Here,
Field is an uninterpreted function.

Access. T-rd and T-wr both require that non-null pointers are used to access
a field in a record stored on the heap. As T-alloc strengthens each type with
NameFields, the type for y in T-rd contains the predicate νfi = Field(ν, fi).
Any facts established for y are linked, in the refinement logic, with the original
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Subtyping Γ T1 T2, Γ Σ Σ

Valid Γ p p

Γ ν :b p ν :b p
-b

Valid Γ p p ν null

Γ ν :? � p ν : � p
-down

Valid Γ p p

Γ ν : � p ν :? � p
-up1

Valid Γ p p

Γ ν :null p ν :? � p
-up2

Γ emp emp
-emp

Γ Σ Σ Γ T T

Γ Σ � x :T Σ � x :T
-heap

Heap Folding Γ x :T1 Σ1 � x :T2 Σ2

locs T1 Dom Σ1 Γ T1 T2

Γ x :T1 Σ1 � x :T2 Σ2

F-base

Σ1 Σ1 � x :T Σ2 Σ2 � x :T
Γ ν : � p T2 Γ x :T Σ1 � x :T Σ2

Γ y : ν : � p Σ1 � y :T2 Σ2

F-ref

Γ ν :? � p T2

Σ1 Σ1 � y :T Σ2 Σ2 � y :T
x : ν :? � p ν null ; Γ y :T Σ1 � y :T Σ2

x : ν :? � p ν null ; Γ y :T Σ1 � y :T Σ2

Γ x : ν :? � p Σ1 � x :T2 Σ2

F-?ref

Γ x :Ti Σ1 � x :Ti Σ2

Γ y : fi :Ti Σ1 � y : fi :Ti Σ2

F-heap

Fig. 7. Selected subtyping, heap subtyping, and heap folding rules

record’s field: when a record field is mutated, a new type binding is created in
the heap, and each unmutated field is linked to the old record using Field.

Concretization. As heaps also contain bindings of names to types, it would
be tempting to add these bindings to the local environment to strengthen the
subtyping context. However, due to the presence of possibly null references,
adding these bindings would be unsound. Consider the program fragment:

function f(){ return null; }

function g(){ var p = f(); assert(false) }

One possible type for f is ()/emp ⇒ ∃!�. r :?〈�〉/� �→ x :{ν : int | false} because
the location � is unreachable. If we added the binding x :{ν : int | false} to Γ
after the call to f, then the assert(false) in g would unsoundly typecheck!
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Statement Typing Φ, Γ, Σ s :: Γ Σ

Γ x : � � z : fi :Ti Σ

Φ, Γ, Σ y x.fi :: y :Ti; Γ Σ
T-rd

Γ x : � Γ e : ν :τ p
Tr NameFields z, f0 :T0, . . . , fi : ν :τ ν e , . . . z fresh

Φ, Γ, � y : fj :Tj Σ x.fi e :: Γ � z :Tr Σ
T-wr

for each ef , Γ, Σ ef : Tf T NameFields z, f :T �, z fresh

Φ, Γ, Σ x alloc f : ef :: x : � ; Γ � z :T Σ
T-alloc

Γ, Σ x : � Ty ν :τ p Tz ν :τ ν y z fresh

Φ, Γ, � y :Ty Σ concr x :: y :Ty; Γ � z :Tz Σ
T-concr

Γ C α ! Σc. xc :Tc C α M m x
.

em
Σ � x : ν :C T q Σ0 Σ � xc : T α Tc T α Σc Σ0

Γ, Σ T Γ, Σ Σ Dom Σc , Binders Σc , xc fresh

Φ, Γ, Σ unfold � ::
m
m x em ; Γ Σ

T-unfold

Γ C α ! Σc. x :Tc

Γ x :Tx Σx � x : T α Tc T α Σc Γ � y :Ty Σ Γ Σ Σ
C α M m x

.
em Ty ν :C T m m ν em y fresh

Φ, Γ, � x :Tx Σx Σ fold � :: Γ � y :Ty Σ
T-fold

Fig. 8. Selected Statement Typing Rules. We assume that type definitions (and, hence,
measures over these definitions) Γ � C[α] = ∃! Σ. x :T are α-convertible.

We thus require that in order to include a heap binder in a local context,
Γ , the location must first be made concrete, by checking that a reference to it
is definitely not null. Concretization of a location � is achieved with the heap
annotation concr(x). Given a non-null reference, T-concr transforms the local
context Γ and the heap Σ by (1) adding the binding y :Ty at the location � to
Γ ; (2) adding a fresh binding z :Tz at � that expresses the equality y = z.

Unfold. T-unfold describes how a type constructor application C[α] may be
unfolded according to its definition. The context is modified to contain the new
heap locations corresponding to those mentioned in the type’s definition. The
rule assumes an α-renaming such that the locations and binders appearing in
the definition of C are fresh, and then instantiates the formal type variables α
with the actual T . The environment is strengthened using the thus-instantiated
measure bodies.

Fold. Folding a set of heap bindings into a data structure is performed by T-
fold. Intuitively, to fold a heap into a type application of C, we ensure that it
is consistent with the definition of C. Note that the rules assume an appropriate
α-renaming of the definition of C. Simply requiring that the heap-to-be-folded
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be a subtype of the definition’s heap is too restrictive. Consider the first fold in
absL in Fig. 3. As we have reached the end of the list xn = null we need to fold

&x �→ x1 :〈data :nat, next?〈&t〉〉 ∗ &t �→ t0 : list[int]

into &x �→ x2 : list[nat]. An application of heap subtyping, i.e. requiring that the
heap-to-be-folded is a subtype of the body of the type definition, would require
that &t �→ list[int] 	 &t �→ list[nat], which does not hold! However, the fold is
safe, as the next field is null, rendering &t unreachable. We observe that it is
safe to fold a heap into another heap, so long as the sub-heap of the former that
is reachable from a given type is subsumed by the latter heap.

Our intuition is formalized by the relation Γ,Σ � x :T1/Σ1�x :T2/Σ2, which
is read: “given a local context Γ,Σ, the type T1 and the heap Σ1 may be folded
into the type T2 and heap Σ2.” F-base defines the ordinary case: from the point
of view of a type T , any heap Σ1 may be folded into another heap Σ2. On the
other hand, if T1 is a reference to a location �, then F-ref additionally requires
the folding relation to hold at the type bound at � in Σ1.

F-?ref splits into two cases, depending on whether the reference is null
or not. The relation is checked in two strengthened environments, respectively
assuming the reference is in fact null and non-null. This strengthening allows
the subtyping judgement to make use reachability. Recall the first fold in absL
that happens when xn = null. To check the fold(&x), the rule requires that
the problematic heap subtyping Γ � &t �→ list[int] 	 &t �→ list[nat] only holds
when x.next is non-null, i.e. when Γ is

xn :{ν :?〈&t〉 | ν = x2.next}, xn = null, x2.next �= null

This heap subtyping reduces to checking the validity of the following, which
holds as the antecedent is inconsistent:

xn = x2.next ∧ xn = null ∧ x2.next �= null ⇒ 0 � ν.

3.2 Refinement Inference

In the definition of the type system we assumed that type refinements were given.
In order to infer the refinements, we replace each refinement in a program with
a unique variable, κ

i
, that denotes the unknown refinement. More formally, let

Φ̂ denote a function environment as before except each type appearing in Φ̂
is optionally of the form {ν : τ | κi}, i.e. its refinement has been omitted and
replaced with a unique κ variable. Given a set of function definitions p and
a corresponding environment of unrefined function signatures Φ̂, to infer the
refinements denoted by each κ we extract a system of Horn clause constraints C.
The constraints, C, are satisfiable if there exists a mapping of K of κ-variables to
refinement formulas such each implication in KC, i.e. substituting each κi with
its image in K, is valid. We solve the constraints by abstract interpretation in the
predicate abstraction domain generated from user-supplied predicate templates.
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CGen : FunEnv TypeEnv HeapEnv Stmt {Constr} TypeEnv HeapEnv
CGen(Φ,Γ ,Σ,s) = match s with
. . .
| y = x.f let � = loc(Γ (x)) in ({Γ Γ x � }, y:TypeAt(Σ,�);Γ ,Σ)
| x. f = e let (cs, t) = CGEx(Γ ,Σ,e)

� = Loc(t)
(y:Ty, z) = (Σ(�), FreshId())
ht = NameFields(z, Ty[f : Shape(t) (v = e)])

in (cs {Γ t � }, Γ , Σ[� z:ht])

Fig. 9. Statement constraint generation

For more details, we refer the reader to [32]. We thus infer the refinements missing
from Φ̂ by finding such a solution, if it exists.

Constraint Generation. Constraint generation is carried out by the proce-
dure CGen which takes a function environment (Φ), type environment (Γ ), heap
environment (Σ), and statement (s) as input, and ouputs (1) a set of Horn con-
straints over refinement variables κ that appear in Φ, Γ , and Σ; (2) a new type-
and heap-environment which correspond to the effect (or post-condition) after
running s from the input type and heap environment (pre-condition).

The constraints output by CGen correspond to the well-formedness con-
straints, Γ,Σ � T , and subtyping constraints, Γ � T 	 T ′, defined by the type
system. Base subtyping constraints Γ � {ν : b | p} 	 {ν : b | q} correspond to
the (Horn) Constraint �Γ � ⇒ p ⇒ q, where �Γ � is the conjunction of all of the
refinements appearing in Γ [32]. Heap Subtyping constraints Γ � Σ 	 Σ′ are
decomposed via classical subtyping rules into base subtyping constraints between
the types stored at the corresponding locations in Σ and Σ′. This step crucially
allows the predicate abstraction to sidestep reasoning about reachability and the
heap, enabling inference.

CGen proceeds by pattern matching on the statement to be typed. Each
FreshType() or Fresh() call generates a new κ variable which may then appear
in subtyping constraints as described previously. Thus, in a nutshell, CGen cre-
ates Fresh templates for unknown refinements, and then performs a type-based
symbolic execution to generate constraints over the templates, which are solved
to infer precise refinements summarizing functions and linked structures. As an
example, the cases of CGen corresponding to T-rd and T-wr are show in Fig. 9.

3.3 Soundness

The constraints output by CGen enjoy the following property. Let (C,Γ ′,Σ′) be
the output of CGen(Φ̂,Γ ,Σ,s). If C is satisfiable, then there exists some solution
K such that KΦ̂,KΓ,KΣ � s :: KΓ ′/KΣ′ [32], that is, there is a type derivation
using the refinements from K. Thus K yields the inferred program typing Φ

.=
KΦ̂, where each unknown refinement has been replaced with its solution, such
that Φ � f :: Φ(f) for each f defined in the program p.
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To prove the soundness of the type system, we translate types, environments
and heaps into separation logic assertions and hence, typing derivations into
proofs by using the interpretation function � · �. We prove [3] the following:

Theorem 1. [Typing Translation]

• If Φ, Γ,Σ � s :: Γ ′/Σ′ then �Φ � � {�Γ,Σ �} s {�Γ ′, Σ′ �}
• If Φ � f :: S then �Φ � � {Pre(S)} Body(f) {Post(S)}
Pre(S), Post(S) and Body(f) are the translations of the input and output types
of the function, the function (body) statement. As a corollary of this theorem,
our main soundness result follows:

Corollary 1. [Soundness] If Φ, ∅, emp � s :: Γ/Σ, then �Φ � � {true} s {true}
If we typecheck a program in the empty environment, we get a valid separation
logic proof of the program starting with the pre-condition true. We can encode
programmer-specified asserts as calls to a special function whose type encodes
the assertion. Thus, the soundness result says that if a program typechecks then
on all executions of the program, starting from any input state: (1) all memory
accesses occur on non-null pointers, and (2) all assertions succeed.

4 Experiments

We have implemented alias refinement types in a tool called Art. The user pro-
vides (unrefined) function signatures, and Art infers (1) annotations required
for alias typing, and (2) refinements that capture correctness invariants. We eval-
uate Art on two dimensions: the first demonstrates that it is expressive enough
to verify a variety of sophisticated properties for linked structures; the second
that it provides a significant automation over the state-of-the-art, represented
by the SMT-based VCDryad system. VCDryad has annotations comparable
to other recent tools that use specialized decision procedures to discharge Sepa-
ration Logic VCs [11]. Our benchmarks are available at [1].

Expressiveness. Table 1 summarizes the set of data structures, procedures,
and properties we used to evaluate the expressiveness of Art. The user provides
the type definitions, functions (with unrefined type signatures), and refined type
specifications to be verified for top-level functions, e.g. the top-level specification
for insertSort. LOC is lines of code and T, the verification time in seconds.

We verified the following properties, where applicable: [Len] the output data
structures have the expected length; [Keys] the elements, or “keys” stored in each
data structure [Sort] the elements are in sorted order [Order] the ouput elements
have been labeled in the correct order (e.g. preorder) [Heap] the elements sat-
isfy the max heap property [BST] the structure satisfies the binary search tree
property [Red-black] the structure satisfies the red-black tree property.
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Table 1. Experimental Results (Expressiveness)

Data Structure Properties Procedures LOC T

Singly linked list Len, Keys append, copy, del, find,

insBack, insFront, rev

73 2

Doubly linked list Len, Keys append, del, delMid, insBack,

insMid, insFront

90 16

Cyclic linked list Len, Keys delBack, delFront, insBack,

insFront

49 2

Sorted linked list Len, Keys, Sort rev, double, pairwiseSum,

insSort, mergeSort,

quickSort

135 10

Binary Tree Order, Keys preOrder, postOrder, inOrder 31 2

Max heap Heap, Keys heapify 48 27

Binary search tree BST, Keys ins, find, del 105 11

Red-black tree Red-black, BST, Keys ins, del 322 213

Automation. To demonstrate the effectiveness of inference, we selected bench-
marks from Table 1 that made use of loops and intermediate functions requiring
extra proof annotations in the form of pre- and post-conditions in VCDryad,
and then used type inference to infer the intermediate pre- and post-conditions.
The results of these experiments is shown in Table 2. We omit incomparable
benchmarks, and those where the implementations consist of a single top-level
function. We compare the number of tokens required to specify type refinements
(in the case of Art) and pre- and post-conditions (for VCDryad). The table
distinguishes between two types of annotations: (1) those required to specify
the desired behavior of the top-level procedure, and (2) additional annotations
required (such as intermediate function specifications). Our results suggest that
it is possible to verify the correctness of a variety of data-structure manipulating
algorithms without requiring many annotations beyond the top-level specifica-
tion. On the benchmarks we examined, overall annotations required by Art were
about 34 % of those required by VCDryad. Focusing on intermediate function
specification, Art required about 21 % of the annotation required by VCDryad.

Limitations. Intuitively, Art is limited to “tree-like” ownership structures:
while sharing and cycles are allowed (as in double- or cyclic-lists), there is a
tree-like backbone used for traversal. For example, even with a singly linked list,
our system will reject programs that traverse deep into the list, and return a
pointer to a cell unboundedly deep inside the list. We believe it is possible to
exploit the connection made between the SL notion of “magic wands” and the
type-theoretic notion of “zippers” [18] identified in [34] to enrich the alias typing
discipline to accommodate such access patterns.
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Table 2. Experimental results (Inference). For each procedure listed we compare the
number of tokens used to specify: ART Type refinements for the top-level procedure in
Art; ART Annot manually-provided predicate templates required to infer the neces-
sary types [32]; VCDryad Spec pre- and post-conditions of the corresponding top-level
VCDryad procedure; and VCDryad Annot loop invariants as well as the specifications
required for intermediate functions in VCDryad. Art Annot totals include only unique
predicate templates across benchmarks.

Data Structure Procedure ART VCDryad

Specification Annotation Specification Annotation

Singly Linked List (definition) 34 - 31 -

rev 5 0 11 15

Sorted Linked List (definition) 38 - 50 -

rev 11 9 17 15

double 0 4 7 54

pairwiseSum 0 4 13 75

insSort 5 0 20 17

mergeSort 5 18 18 79

quickSort 5 18 11 140

Binary Search Tree (definition) 58 - 55 -

del 7 32 20 33

Total 168 63 253 428

5 Related Work

Physical Type Systems. Art infers logical invariants in part by leveraging
the technique of alias typing [2,38], in which access to dynamically-allocated
memory is factored into references and capabilities. In [8,29], capabilities are
used to decouple references from regions, which are collections of values. In these
systems, algebraic data types with an ML-like “match” are used to discover
spatial properties, rather than null pointer tests. fold &unfold are directly
related to roll &unroll in [38]. These operations, which give the program access
to quantified heap locations, resemble reasoning about capabilities [29,35]. These
systems are primarily restricted to verifying (non-)aliasing properties and finite,
non-relational facts about heap cells (i.e. “typestates”), instead of functional
correctness invariants. A possible avenue of future work would be to use a more
sophisticated physical type system to express more data structures with sharing.

Logical Type Systems. Refinement types [20,25,39], encode invariants about
recursive algebraic data types using indices or refinements. These approaches
are limited to purely functional languages, and hence cannot verify properties
of linked, mutable structures. Art brings logical types to the imperative setting
by using [38] to structure and reason about the interaction with the heap.

Interactive Program Logics. Several groups have built interactive verifiers
and used them to verify data structure correctness [12,41]. These verifiers require
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the programmer write pre- and postconditions and loop invariants in addition
to top-level correctness specifications. The system generates verification condi-
tions (VCs) which are proved with user interaction. [19] uses symbolic execution
and SMT solvers together with user-supplied tactics and annotations to prove
programs. [10,24] describe separation logic frameworks for Coq and tactics that
provide some automation. These are more expressive than Art but require non-
trivial user assistance to prove VCs.

Automatic Separation Logics. To automate the proofs of VCs (i.e. entail-
ment), one can design decision procedures for various fragments of SL, typically
restricted to common structures like linked lists. [4] describes an entailment pro-
cedure for linked lists, and [6,14,16] extend the logic to include constraints on list
data. [5,21,27,28] describe SMT-based entailment by reducing formulas (from a
list-based fragment) to first-order logic, combining reasoning about shape with
other SMT theories. The above approaches are not extensible (i.e. limited to list-
segments); other verifiers support user defined, separation-logic predicates, with
various heuristics for entailment [9,11]. Art is related to natural proofs [26,30]
and the work of Heule et al. [17], which instantiate recursive predicates using
the local footprint of the heap accessed by a procedure, similar to how we insert
fold and unfold heap annotations, enabling generalization and instantiation of
structure properties. Finally, heap binders make it possible to use recursive func-
tions (e.g. measures) over ADTs in the imperative setting. While our measure
instantiation [20] requires the programmer adhere to a typing discipline, it does
not require us to separately prove that the function enjoys special properties [36].

Inference. The above do not deal with the problem of inferring annotations
like the inductive invariants (or pre- and post- conditions) needed to generate
appropriately strong VCs. To address this problem, there are several abstract
interpreters [22] tailored to particular data structures like list-segments [40],
lists-with-lengths [23]. Another approach is to combine separate domains for
heap and data with widening strategies tailored to particular structures [7,15].
These approaches conflate reasoning about the heap and data using monolithic
assertions or abstract domains, sacrificing either automation or expressiveness.
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Abstract. We revisit relational static analysis of numeric variables.
Such analyses face two difficulties. First, even inexpensive relational
domains scale too poorly to be practical for large code-bases. Second,
to remain tractable they have extremely coarse handling of non-linear
relations. In this paper, we introduce the subterm domain, a weakly
relational abstract domain for inferring equivalences amongst sub-
expressions, based on the theory of uninterpreted functions. This pro-
vides an extremely cheap approach for enriching non-relational domains
with relational information, and enhances precision of both relational
and non-relational domains in the presence of non-linear operations. We
evaluate the idea in the context of the software verification tool SeaHorn.

1 Introduction

This paper investigates a new approach to relational analysis. Our aim is to
develop a method that scales to very large code bases, yet maintains a reasonable
degree of precision, also for programs that use non-linear numeric operations.

Abstract interpretation is a well-established theoretical framework for sound
reasoning about program properties. It provides means for comparing program
analyses, especially with respect to the granularity of information (precision)
that analyses allow us to statically extract from programs. On the whole, reduc-
ing such questions to questions about abstract domains. An abstract domain,
essentially, specifies the (limited) language of judgements we are able to use
when reasoning statically about a program’s runtime behaviour.

A class of abstract domains that has received particular attention are the
numeric domains—those supporting reasoning about variables of numeric (often
integer or rational) type. Numeric domains are important because of the numer-
ous applications in termination and safety analyses, such as overflow detection
and out-of-bounds array analysis. The polyhedral abstract domain [9] allows us
to express linear arithmetic constraints (equalities and inequalities) over pro-
gram state spaces of arbitrary finite dimension k. But high expressiveness comes
at a cost; analysis using the polyhedral domain does not scale well to large code
bases. For this reason, a number of abstract domains have been proposed, seeking
to strike a better balance between cost and expressiveness.
c© Springer-Verlag Berlin Heidelberg 2016
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DOI: 10.1007/978-3-662-49122-5 4



86 G. Gange et al.

Language Restriction. The primary way of doing this is to limit expressive-
ness, that is, to restrict the language of allowed judgements. Most commonly
this is done by expressing only 1- or 2-dimensional projections of the program’s
(abstract) state space, often banning all but a limited set of coefficients in linear
constraints. Examples of this kind of restriction to polyhedral analysis abound,
including zones [19], TVPI [22,23], octagons [20], pentagons [18], and logahe-
dra [14]. These avoid the exponential behaviour of polyhedra, instead offering
polynomial (typically quadratic or cubic) decision and normalization procedures.
Still, they have been observed to be too expensive in practice for industrial code-
bases [18,24]. Hence other “restrictive” techniques have been proposed which are
sometimes integral to an analysis, sometimes orthogonal.

Dimensionality Restriction. These methods aim to lower the dimension k of
the program (abstract) state space, by replacing the full space with several lower-
dimension subspaces. Variables are separated into “buckets” or packs according
to some criterion. Usually the packs are disjoint, and relations can be explored
only amongst variables in the same pack (relaxations of this have also been
proposed [4]). The criterion for pack membership may be syntactic [8] or deter-
mined dynamically [24]. A variant is to only permit relations between sets; in
the Gauge domain [25], relations are only maintained between program variables
and introduced loop counters, not between sets of program variables.

Closure Restriction. Some methods abandon the systematic transitive clo-
sure of relations (and therefore lack a normal form for constraints). Constraints
that follow by transitive closure may be discovered lazily, or not at all. Closure
restriction was used successfully with the pentagon domain; a tolerable loss of
precision was compensated for by a significant cost reduction [18].

All of the work discussed up to this point has, in some sense, started from an
ideal (polyhedral) analysis and applied restrictions to the degree of “relational-
ity.” A different line of work starts from very basic analyses and adds mechanisms
to capture relational information. These approaches do not focus on restrictions,
but rather on how to compensate for limited precision using “symbolic” reason-
ing. Such symbolic methods maintain selected syntactic information about com-
putations and use this to enhance precision. The primary examples are Miné’s
linearization method [21], based on “symbolic constant propagation” and Chang
and Leino’s congruence closure extension [5].

Polyhedral analysis and its restrictions tend to fall back on overly coarse
approximation when faced with non-linear operations such as multiplication,
modulus, or bitwise operations. Higher precision is desirable, assuming the asso-
ciated cost is limited. Consider the example shown in Fig. 1(a). Figure 2(a) shows
the possible program states when execution reaches point A. With octagons, the
strongest claim that can be made at that point is

0 ≤ x ≤ 10,−10 ≤ y ≤ 10, y − z ≤ 90, z − y ≤ 90, x + z ≥ −90, z − x ≤ 90
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x = nondet(0,10)

y = nondet(-10,10)

z = x*y

A:

if (y < 0) {

z = -z

}

B:

(a)

u = nondet(0,10)

v = nondet(0,10)

w = nondet(0,10)

if (*)

t = u + v else t = u + w

if (t < 3)

u = u + 3 else u = 3

C:

(b)

Fig. 1. Two example programs

Fig. 2(b) shows the projection on the y-z plane. Almost all interaction between
y and z has been lost and as a result, we fail to detect that z is non-negative at
point B. The best possible polyhedral approximation adds

z ≥ −10x, z ≥ 10x + 10y − 100, z ≤ 10x, z ≤ 100 − 10x + 10y

While this expresses more of the relationship between x, y and z, we can still
only infer z ≥ −50 at point B.

y

z

100

-20
y

z

)c()b()a(

Fig. 2. (a) The reachable states at point A in Fig. 1(a); (b) the result of polyhedral
analysis at point A, projected onto the y-z plane, assuming analysis performs case split
on the sign of y (the convex hull forming a lozenge);(c) the result of polyhedral analysis
at point B. Dashed lines show octagon invariants.
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Table 1. States inferred for Fig. 1’s programs, points B (left) and C (right)

Octagons y − z ≤ 90, z − y ≤ 90, 0 ≤ t, 3 ≤ u ≤ 20, u + t ≤ 23

x + z ≥ −90, z − x ≤ 90

Polyhedra z ≥ −10x, z ≥ 10x + 10y − 100, 0 ≤ t ≤ 20, 3 ≤ u ≤ 5

z ≤ 10x, z ≤ 100 − 10x + 10y

Subterms 0 ≤ z ≤ 100 0 ≤ t ≤ 20, 3 ≤ u ≤ 5

In practice, weaker results may well be produced. A commonly used octagon
library yields y ∈ [−10, 10], z ∈ [−100, 100], rather than the dashed projections
shown in Fig. 2(b) and (c). For polyhedral analysis, multiplication is often han-
dled by projection and case-splitting. The two grey triangles in Fig. 2(b) show
the result, at point A, of case analysis according to the sign of y, as projected
onto the y-z plane; the lozenge is the convex hull. This explains how a commonly
used library infers {z ≥ 5y − 50, z ≤ 5y + 50} at point A. The pen-nib shaped
area in Fig. 2(c) shows the result, at point B, of polyhedral analysis. Note that
the triangle below the y axis is in fact infeasible.

Contribution. The proposal presented in this paper differs from all of the above.
It combines closure restriction and a novel symbolic approach. We extract and
utilise shared expression information to improve the precision of cheap non-
relational analyses (for example, interval analysis), at a small added cost. The
idea is to treat the arithmetic operators as uninterpreted function symbols. This
allows us to replace expensive convex hull operations by a combination of con-
straint propagation and term anti-unification. The resulting subterm domain
ST is an abstract domain of syntactic equivalences. It can be used to aug-
ment non-relational domains with relational information, and to improve pre-
cision of (possibly relational) domains in the presence of complex operations.
The improvement is not restricted to non-linear operations; it can equally well
support weakly relational domains that are unable to handle large coefficients.

Table 1 summarises the analysis results for the two programs in Fig. 1, com-
pared with the results of (ideal) octagon and polyhedral analysis.1 Note how the
subterm domain obtains a tight lower bound on z as well as a tight upper bound
on u.

The method has been implemented, and the experiments described later in
this paper suggest the combination strikes a happy balance between precision
and cost. After Sect. 2’s preliminaries, Sect. 3 provides algorithms for operations
on systems of terms, and Sect. 4 shows how this can be used to enhance a numeric
domain. Section 5 provides comparison with the closest related work. Section 6
reports on experimental results and Sect. 7 concludes.

1 We show transitive reductions and omit trivial bounds for variables. The result
obtained by the subterm domain for C, includes, behind the scenes, a term equation
t = u + s and a bound 0 ≤ s ≤ 10 on the freshly introduced variable s.
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2 Preliminaries

Abstract Interpretation. In standard abstract interpretation, a concrete
domain C� and its abstraction C# are related by a Galois connection (α, γ),
consisting of an abstraction function α : C� �→ C# and concretization func-
tion γ : C# → C�. The best approximation of a function f � on C� is
f#(ϕ) = α(f �(γ(ϕ))). When analysing imperative programs, C� is typically
the power-set of program states, and the corresponding lattice operations are
(⊆,∪,∩).

In a non-relational (or independent attribute) domain, the abstract state is
either the bottom value ⊥D (denoting an infeasible state), or a separate non-⊥
abstraction x# for each variable x in some domain DV (where each variable
admits some feasible value). That is, D = {⊥D} ∪ (DV \ {⊥D})|V |.

Sometimes backwards reasoning is required, to infer the set of states which
may/must give rise to some property. The pre-image transformer F -1

D ([[S]])(ϕ)
yields ϕpre such that (FD([[S]])(ϕ′) = ϕ) ⇒ (ϕ′ � ϕpre). Finding the minimal pre-
image of a complex (non-linear) operation can be quite expensive, so pre-image
transformers provided by numeric domains are usually coarse approximations.

We shall sometimes need to rename abstract values. Given a binary relation
π ⊆ V × V ′ and an element ϕ of an independent attribute domain over V , the
renaming π(ϕ) is given by:

renameπ(ϕ) = {x′ �→ �
D

(x,x′)∈π

ϕ(x) | x′ ∈ image(ϕ)}

The corresponding operation is more involved for relational domains. Assuming
D is closed under existential quantification, D can maintain systems of equalities
and V and V ′ are disjoint, we have renameπ(ϕ) = ∃V. (ϕ �{x = x′ | (x, x′) ∈ π}).

Term Equations. The set T of terms is defined recursively: every term is either
a variable v ∈ TVar or a construction F (t1, . . . , tn), where F ∈ Fun has arity
n ≥ 0 and t1, . . . , tn are terms. A substitution is an almost-identity mapping
θ ∈ TVar → T , naturally extended to T → T . We use standard notation for
substitutions; for example, {x �→ t} is the substitution θ such that θ(x) = t and
θ(v) = v for all v �= x. Any term θ(t) is an instance of term t.

If we define t � t′ iff t = θ(t′) for some substitution θ then � is a preorder.
Define t ≡ t′ iff t � t′ ∧ t′ � t. The set T/≡ ∪ {⊥}, that is T partitioned into
equivalence classes by ≡ plus {⊥}, is known to form a complete lattice, the so-
called term lattice.2 A unifier of t, t′ ∈ T is an idempotent substitution θ such
that θ(t) = θ(t′). A unifier θ of t and t′ is a most general unifier of t and t′ iff
θ′ = θ′ ◦ θ for every unifier θ′ of t and t′.

If we can calculate most general unifiers then we can find meets in the term
lattice: if θ is a most general unifier of t and t′ then θ(t) is the most general
term that simultaneously is an instance of t and an instance of t′, so θ(t) is the
meet of t and t′. Similarly, the join of t and t′ is the most specific generalization;
algorithms are available that calculate most specific generalizations [15].
2 � is extended to the term lattice by defining ⊥ � t for all elements t ∈ T/≡.
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Given a set of terms S ⊆ T and equivalences E ⊆ (S×S), we can partition S
into equivalent terms. Terms t and s are equivalent (t ≡ s) if they are identical
constants, are deemed equal, or t = f(t1, . . . , tm) and s = f(s1, . . . , sm) such
that for all i, ti ≡ si. Finding this partitioning is the well-studied congruence
closure problem, of complexity O(|S| log |S|) [10]. Of relevance is the case |E| = 1
(introduction of a single equivalence), which can be handled in O(|S|) time.

In the following, it will be necessary to distinguish a term as an object from
the syntactic expression it represents. We shall use id(t) to denote the name of
a term, and def(t) to denote the expression.

3 The Subterm Domain ST
An element of the subterm domain consists of a mapping η : V �→ T of pro-
gram variables to terms. While the domain structure derives from uninterpreted
functions, we must reason about the corresponding concrete computations. We
accordingly assume each function symbol F has been given a semantic function
S(F ) : Sn → S. Given some assignment θ : TVar → S of term variables to scalar
values, we can then recursively define the evaluation E(t, θ) of a term under θ.

E(x, θ) = θ(x)
E(f(t1, . . . , tn), θ) = S(f)(E(t1, θ), . . . ,E(tn, θ))

We say a concrete state {x1 �→ v1, . . . , xn �→ vn} satisfies mapping η iff there is
an assignment θ of values to term variables such that for all xi, E(η(xi), θ) = vi.
The concretization γ(η) is the set of concrete states which satisfy η.

However, the syntactic nature of our domain gives us difficulties. While we
can safely conclude that two (sub-)terms are equivalent, we have no way to
conclude that two terms differ. No Galois connection exists for this domain;
multiple sets of definitions could correspond to a given concrete state. Even if
states η1 and η2 are both valid approximations of the concrete state, the same
does not necessarily hold for η1 � η2.

Example 1. Consider two abstract states:

{x �→ +(a1, 7), y �→ a1, z �→ a2} {x �→ +(3, b1), y �→ b2, z �→ b1}
These correspond to the sets of states satisfying x = y + 7 and x = 3 + z
respectively. Many concrete states satisfy both approximations; one is (x, y, z) =
(7, 0, 4). However, a naive application of unification would attempt to unify
+(y, 7) with +(3, z), which would result in unifying y with 3, and z with 7.

Cousot and Cousot [7] discuss the consequences of a missing best approxi-
mation, and propose several approaches for repair: strengthening or weakening
the domain, or nominating a best approximation through a widening/narrowing.
However, these are of limited value in our application. Strengthening or weaken-
ing the domain enough that a best approximation is restored would greatly affect
the performance or precision, and explicitly reasoning over the set of equivalent
states is impractical. Using a widening/narrowing is sound advice, but offers
minimal practical guidance.
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3.1 Operations on ST
We must now specify several operations: state transformers for program state-
ments, join, meet, and widening. Assignment, join and widening all behave nicely
under ST ; meet is discussed in Sect. 3.2.

Figure 3 shows assignment and join operations on ST . Calls to generalize are
cached, so calls to generalize(s,t) all return the same term variable. In the case
of ST , the lattice join is safe: as η1 � η2 ⇒ γ(η1)�C� γ(η2) and � and �C� are
least upper bounds on their respective domains, we have γ(η1)� γ(η1 � η2) and
γ(η2)� γ(η1 � η2), so γ(η1)�C� γ(η2)�C� γ(η1 � η2). The worst-case complexity
of the join is O(|η1||η2|). But typical behaviour is expected to be closer to linear,
as most shared terms are either shared in both (so only considered once) or are
trivially distinct (so replaced by a variable). This is borne out in experiments, see
Sect. 6. As ST has no infinite ascending chains, �ST also serves as a widening.

FST [[x := f(y1 , . . . , yn)]](η) = η[x → f(η(y1), . . . , η(yn))]

η1 η2 = {x → generalize(η1(x), η2(x)) | x ∈ V }
generalize(c, c) = c
generalize(f(t1, . . . , tn), f(s1, . . . , sn)) = f(u1, . . . , un)

where ui = generalize(ti, si)
generalize(X, Y ) = freshvar

Fig. 3. Definitions of variable assignment and � in ST .

Every term in η1 � η2 corresponds to some specialization in η1 and η2. We
shall use πη1 �→η1 � η2 to denote the relation that maps terms in η1 to correspond-
ing terms in η1 � η2.

Example 2. Consider again Fig. 1(b). At the exit of the first if-then-else, we get
term-graphs η1 and η2 shown in Fig. 4(a) and (b). For η1 � η2, we first compute
the generalization of η1(u) = a0 with η2(u) = b0, obtaining a fresh variable c0.
Now, η1(t) and η2(t) are both (+2) terms, so we recurse on the children; the
generalization of (a0, b0) has already been computed, so we re-use the existing

tu v w

+

a0 a1 a2

tu v w

+

b0 b1 b2

tu v w

+

c0 c1 c2 c3

(a) η1 (b) η2 (c) η1 η2

Fig. 4. State at the end of the first (a) then and (b) else branches in Fig. 1(b), and
(c) the join of the two states.
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variable; but we must allocate a fresh variable for (a1, b2), resulting in t being
mapped to (+)(c0, c1). We repeat this process for v and w, yielding the state
shown in Fig. 4(c). Note that the result captures the fact that in both branches,
t is computed by adding some value to u.

3.2 The Quasi-meet �̃
We require our quasi-meet �ST to be a sound approximation of the concrete
meet, that is, γ(η1)�C� γ(η2)�C� γ(η1 �ST η2). Ideally, we would like to preserve
several other properties enjoyed by lattice operations:

Minimality: If η1 �ST η2, then (η1 �ST η2) = η1
Monotonicity: If η1 �ST η′

1, then (η1 �ST η2)�ST (η′
1 �ST η2)

These are important for precision and termination respectively. However, in the
absence of a unique greatest lower bound these properties are mutually exclusive,
so the quasi-meet must be handled carefully to avoid non-termination [12].

A simple quasi-meet (denoted by �̃, as distinct from a ‘true’ meet �) is to
adopt the approach of [21], deterministically selecting the term for each variable
from either η1 or η2. Minimality can be achieved by selecting the more precise
term (according to �ST ) when several choices exist. However, this discards a
great deal of information present in the conjunction. Of particular concern is the
loss of variable equivalences which are implied by η1 ∧η2 (the logical conjunction
of η1 and η2), but not by η1 and η2 individually.

We can infer all sub-term (and variable) equivalences of η1 ∧ η2 using the
congruence closure algorithm. Unfortunately, not only may this yield multiple
incompatible definitions for a variable, the resulting definitions may be cyclic.

w x y z

+

a0 a1

w x y z

+

b0 b1

w x y z

+

c1

w x y z

+
+

+

c0

c1

(a) η1 (b) η2 (c) (d)

Fig. 5. Abstract states η1 and η2, whose conjunction η1 ∧ η2 (c) cannot be represented
in ST ; it has an infinite descending chain of approximations (d).

Example 3. Consider the abstract states η1, η2 shown in Fig. 5(a) and (b). Com-
puting η1 ∧ η2, we start with constraints {η1(v) = η2(v) | v ∈ {w, x, y, z}}:

{t = (+)(a0, a1)} ∪ {s = (+)(b0, b1)} ∪ {a0 = b0, a0 = s, t = b0, a1 = b1}
After congruence closure, the terms are split into two equivalence classes:

E1 = {a0, b0, s, t}, E2 = {a1, b1}
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We then wish to extract an element of ST which preserves as much of this infor-
mation as possible. This conjunction, shown in Fig. 5(c), cannot be precisely
represented in ST – Fig. 5(d) gives an infinite descending chain of approxima-
tions. Note that we could obtain incomparable elements of ST by pointing each
of {w, x, y} at different (+) nodes in Fig. 5(d).

We therefore need a strategy for choosing a finite approximation of η1 ∧ η2
in ST . There are two elements to this decision: how a representative for each
equivalence class is chosen, and how cycles are broken. We wish to preserve as
many equivalences as possible, particularly between variables.

quasi-meet(η1, η2)
% Partition terms into congruence classes
Eq := congruence-close(Defs(η1) ∪ Defs(η2) ∪ {η1(x) = η2(x) | x ∈ V })
for each e ∈ Eq

indegree(e) := |{x | η1(x) ∈ eq}|
stack := ∅, repr := ∅, tvar := ∅
for each x ∈ V

η(x) := build-repr(Eq(η1(x)))
return η

build-repr(eq)
if eq ∈ stack % If this is a back-edge, break the cycle

if eq /∈ tvar
tvar(eq) := freshvar()

return tvar(eq)
if eq ∈ repr % If we have already computed the representative, return it

return repr(eq)
% The equivalence class has not yet been seen; select best concrete definition
stack .push(eq)
if mem(eq) = ∅ % No concrete definition exists

req := freshvar
else

f(s1, . . . , sm) := argmaxf(s1,...,sm)∈mem(eq)

i

0 if Eq(si) ∈ stack
indegree(Eq(si)) otherwise

for each i ∈ 1, . . . , m % Construct the representative for each subterm
ri := build-repr(Eq(si))

req := f(r1, . . . , rm)
repr(eq) := req
stack .pop(eq)
return req

Fig. 6. Algorithm to compute ˜
ST . Eq , stack , repr , tvar and indegree are global.

The algorithm for computing η1 �̃ST η2 is given in Fig. 6. We first partition
the terms in η1 ∪ η2 into equivalence classes using the congruence closure algo-
rithm, then count the external references to each class. These counts, recorded
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in indegree, give us an indication of how valuable each class is, to discriminate
between candidate representatives. Eq(t) returns the equivalence class contain-
ing term t, and mem(eq) denotes the set of non-variable terms in class eq .

We then progressively construct the resulting system of terms, starting from
the mapping of each variable. Each equivalence class eq corresponds to at most
two terms in the meet; the main representative repr(eq), and a term variable
tvar(eq). Instantiating a term f(s1, . . . , sm), we look-up the corresponding equiv-
alence class eq i = Eq(si), and check whether expanding its definition repr(eq i)
(which may not yet be fully instantiated) would introduce a cycle. We then
replace si with either the recursively constructed representative of eq i (if the
resulting system is acyclic), or the free variable tvar(eq).

Example 4. Consider the abstract states η1, η2 shown in Fig. 5. Congruence clo-
sure yields two equivalence classes: q1 = {a0, (+)(a0, a1), b0, (+)(b0, b1)}, and
q2 = {a1, b1}. The construction of η1 �̃ η2 starts with Eq(w). We first mark q1
as being on the stack to avoid cycles, then choose an appropriate definition to
expand. The non-variable members of q1 are {t1 = (+)(a0, a1), t2 = (+)(b0, b1)}.
Both t1 and t2 have a single non-cycle incoming edge (Eq(a0) = Eq(b0) = q1,
which is already on the stack), so we arbitrarily choose t1.

We must then expand the sub-terms of t1. Eq(a0) is already on the stack, so
cannot be expanded; this occurrence of a0 is replaced with a fresh variable c0.
Now a1 has no non-variable definitions, so a fresh variable c1 is introduced. The
stack then collapses, yielding w �→ (+)(c0, c1).

The algorithm next considers x. A representative for q1 has already been
constructed, so x is mapped to (+)(c0, c1), as is y. Finally, Eq(z) = q2; this also
has an existing representative, so c1 is returned. The resulting abstract state is
shown in Fig. 7. �

w x y z

+

c0 c1

Fig. 7. η1 ˜
 η2

The algorithm given in Fig. 6 runs in O(n log n) time,
where n = |η1| + |η2|. The congruence closure step is run
once, in O(n log n) time. The main body of build-repr is run
at most once per equivalence class. Computing and scoring
the set of candidates is linear in |eq|, and happens once per
equivalence class. We detect back-edges in constant time,
by marking those equivalence classes which remain on the
call stack – any edge to a marked class is a back-edge. So
the reconstruction of η takes time O(n) in the worst case.
Therefore, the overall algorithm takes O(n log n).

Note that η1 �̃ST η2 is sensitive to variable ordering, as this determines which
sub-term occurrence is considered a back-edge, and thus not expanded.

As for �ST , each term in η1 �̃ST η2 corresponds to some set of terms in η1 or
η2. As before, πη1 �→η1 ˜	ST η2 denotes the mapping between terms in each operand
and the result.

3.3 Logical Assertions

Finally consider assertions [[x �	 y]], where �	 ∈ {=, �=, <,≤}. The abstract trans-
former for [[x < y]] and [[x ≤ y]] is the identity function, as ST has no notion of
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inequalities. ST can infer information from a disequality [[x �= y]], but only where
η has already inferred equality between x and y:

F [[x �= y]]η =
{⊥ if η(x) = η(y)

η otherwise

In the case of an equality [[x = y]], we are left in a similar situation as for η1 � η2;
we must reconcile the defining terms for x and y, plus any other inferred equiv-
alences. This is done in the same way, by first computing equivalence classes,
then extracting an acyclic system of terms. As we introduce only a single addi-
tional equivalence, we can use the specialized linear-time algorithm described in
Sect. 3.4 of [10], then extract the resulting term system as for the meet.

4 ST as a Functor Domain

Assume we have some abstract domain D with the usual operations �, �, FD
and F -1

D as described in Sect. 2. In the following, we assume D is not relational,
so may only express independent properties of variables.

We would like to use ST to enhance the precision of analysis under D. Essen-
tially, we want a functor domain where ST is the functor instantiated with D.
While this is a simple formulation, it provides no path toward an efficient imple-
mentation. Where normally we use D to approximate the values of (or relation-
ships between) variables in V , we can instead approximate the values of terms
occurring in the program. An element of our lifted domain ST (D) is a pair 〈η, ρ〉
where η is a mapping of program variable to terms, and ρ ∈ D approximates the
set of satisfying term assignments.

4.1 Operations over ST (D)

Evaluating an assignment in the lifted domain may be performed using FD and
FST . We construct the updated definition of x in η, then assign the corresponding
‘variable’ in D to the result of the computation.

FST (D)[[x := f(y1, . . . , yn)]](〈η, ρ〉) = 〈η′, ρ′〉
where η′ = FST [[x := f(y1, . . . , yn)]]η

ρ′ = FD[[id(η′(x)) := f(η(y1), . . . , η(yn))]]ρ

Formulating �ST (D), �ST (D) and �̃ST (D) is only slightly more involved, assum-
ing the presence of a renaming operator over D. We first determine the term
structure η′ of the result, then map ρ1 and ρ2 onto the terms in η′ before applying
the appropriate operator over D.

〈η1, ρ1〉 �ST (D)〈η2, ρ2〉 = 〈η′, ρ′〉
where η′ = η1 �ST η2

ρ′ = πη1 �→η′
(ρ1)�D πη2 �→η′

(ρ2)
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〈η1, ρ1〉�ST (D)〈η2, ρ2〉 = 〈η′, ρ′〉
where η′ = η1 �ST η2

ρ′ = πη1 �→η′
(ρ1)�D πη2 �→η′

(ρ2)

〈η1, ρ1〉 �̃ST (D)〈η2, ρ2〉 = 〈η′, ρ′〉
where η′ = η1 �̃ST η2

ρ′ = πη1 �→η′
(ρ1)�D πη2 �→η′

(ρ2)

4.2 Inferring Properties from Subterms

While this allows us to maintain approximations of subterms, we cannot use this
to directly derive tighter approximations of program variables.

However, upon encountering a branch which restricts x, we can then infer
properties on any other terms involving x. For now, we shall restrict ourselves
to ancestors of x. If the approximation of x has changed, and p is an immediate
parent of x, we can simply recompute p from its definition:

ρ′ = ρ� FST [[id(η(p)) := def(η(p))]]ρ

We can then propagate this information upwards.

x = ; y =
assert(x ≥ 0)

D: z = x ∗ y
assert(z > 0)

E:

Fig. 8. If E is reached,
y must be positive.

We can also infer information about a term from its
parents and siblings. Assume the program fragment in
Fig. 8 is being analysed using the (term-lifted) domain
of intervals. At point D we know only that x is non-
negative; this is not enough to infer bounds on z. How-
ever, when point E is reached we know z > 0. As we
already know x ≥ 0, this can only occur if y > 0, x > 0.

This requires us to reason about the values from
which a given computation could have resulted; this
is exactly the pre-image F -1

D discussed in Sect. 2. We
can then augment the algorithm to propagate information in both directions,
evaluating FD and F -1

D on each term until a fixpoint is reached. Unfortunately,
attempts to fully reduce an abstract state run into difficulties.

x y

−

c0

+

1

z

t1[0, 0]

t2[0, 106]

t3[0, 106]

ST D(t2) D(t3)

[0, 106] [0, 106]
t3 [0, 106-1] [1, 106]
t1 [1, 106-1] [1, 106-1]
t3 [1, 106-2] [2, 106-1]
t1 [2, 106-2] [2, 106-2]

. . .

Fig. 9. A system of terms with no solution; encoding x = x + 1. Each evaluation of t1
or t3 eliminates only two values from the corresponding bounds.



An Abstract Domain of Uninterpreted Functions 97

Example 5. Consider the system of terms shown in Fig. 9, augmenting the
domain of intervals. Disregarding interval information, it encodes the constraint
y = x − z, z = x + 1. In the context of y = 0 (the interval bounds for y), this is
clearly unsatisfiable.

Propagating the consequences of these terms, we first apply the definition
t3 = t2 + 1. Doing so, we trim 0 from the domain of t3 (or z), and 106 from the
domain of t2 (or x). We then evaluate the definition t1 = t2−t3, thus removing 0
and 106 from t1 and t3 respectively. We can then evaluate the definitions of t3 and
t1 again, this time eliminating 2 and 106-1. This process eventually determines
unsatisfiability, but it takes 106+1 steps to do so.3

This rather undermines our objective of efficiently combining ST with D. If
D is not finite, the process may not terminate at all. Consider the case where
D(t2) = D(t3) = [0,∞] – the resulting iterates form an infinite descending chain,
where the lower bounds are tightened by one at each iteration step.

The existence of an efficient, general algorithm for normalizing 〈η, ρ〉 seems
doubtful. Even for the specific case of finite intervals, computing the fixpoint of
such a system of constraints is NP-complete [3] (in the weak sense – the standard
Kleene iteration runs in pseudo-polynomial time). Nevertheless, we can apply the
system of terms to ρ some bounded number of times in an attempt to improve
precision; a naive iterative approach is given in Fig. 10.

tighten( η, ρ , iters):
while(iters > 0)

ρ := tighten-step( η, ρ )
if (ρ = ρ ∨ ρ = ⊥)

return ρ
ρ := ρ
iters := iters − 1

tighten-step( η, ρ ):
let t1, . . . , tm be terms in η in

order of decreasing height
for t ∈ t1, . . . , tm

ρ := ρ F -1
D [[id(t) = def(t)]]ρ

for t ∈ tm, . . . , t1
ρ := ρ FD[[id(t) = def(t)]]ρ

return ρ

Fig. 10. Applying a system of terms η to tighten a numeric approximation ρ.

In practice, this iteration is wasteful. In an independent attribute domain,
applying [[t = f(c1 , . . . ck )]] cannot directly affect terms not in {t, c1, . . . , ck},
and we can easily detect which of these have changed. So we adopt a worklist
approach, updating terms with changed abstractions only. The tightening still
progresses level by level, to collect the tightest abstraction of each term before
re-applying the definitions. The algorithm is outlined in Fig. 11.

tighten-worklist incrementally applies a single pass of tighten-step, where only
terms in X have changed. Given the discussion above, the algorithm obviously
misses opportunities for propagation; this loss occurs at the point marked †.
3 This behaviour is also a well recognized problem for finite domain constraint solvers

(see e.g. [11]).
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tighten-worklist(X, η, ρ ):
forall l, Q↓

l := Q↑
l := ∅

for(x ∈ X) Q↓
height(x) := Q↓

height(x) ∪ {x}
lmin := minx∈X height(x)
l := lmax := maxx∈X height(x)
while(l ≥ lmin)

for(t ∈ Q↓
l )

enqueue parents(t)
ρ := ρ F -1

D ([[id(t) = def(t)]])ρ
for(c ∈ children(t))

if(changed(c, ρ, ρ )) enqueue down(c)
ρ := ρ

l := l − 1
l := lmin

while(l ≤ lmax)
for(t ∈ Q↑

l )
(†) ρ := ρ F ([[id(t) = def(t)]])ρ

if(changed(t, ρ, ρ )) enqueue parents(t)
ρ := ρ

l := l + 1
return ρ

enqueue down(t):
Q↓

height(t) := Q↓
height(t) ∪ {t}

lmin := min(lmin, height(t))

enqueue parents(t):
for(p in parents(t))

Q↑
height(p) := Q↑

height(p) ∪ {p}
lmax := max(lmax, height(p))

Fig. 11. An incremental approach for applying a single iteration of tighten-step.

Given some definition [[t = f(c1, c2)]] and new information about c1, we could
potentially tighten the abstraction of both t and c2; however, tighten-worklist only
applies this information to t.

It is sound to apply the same algorithm when D is relational; however, it
may miss further potential tightenings, as additional constraints on some term
can be reflected in other, apparently unrelated terms.

Care must be taken when combining normalization with widening. As is
observed in octagons, closure after widening does not typically preserve termi-
nation. A useful exception is the typical widening on intervals which preserves
termination when tightening is applied upwards.

5 Other Syntactic Approaches

As mentioned, the closest relatives to the term domain are the symbolic constant
domain of Miné [21] and the congruence closure (or alien expression) domain of
Chang and Leino [5]. Both domains record a mapping between program variables
and terms, with the objective of enriching existing numeric domains.

The term domain can be viewed as a generalization of the symbolic constant
domain. Both domains arise from the observation that abstract domains, be
they relational or otherwise, exhibit coarse handling of expressions outside their
native language – particularly non-linear expressions. And both store a mapping
from variables to defining expressions. The primary difference is in the join.
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Faced with non-equal definitions, the symbolic constant domain discards both
entirely. The term domain instead attempts to preserve whatever parts of the
computation are shared between the abstract states, which it can then use to
improve precision in the underlying domain.

The congruence closure domain [5] arises from a different application – coor-
dinating a heterogeneous set of base abstract domains, each supporting only a
subset of expressions appearing in the program. Functions which are alien to
a domain are replaced with a fresh variable; equivalences are inferred from the
syntactic terms, and added to the base abstract domains. The congruence closure
domain assumes the base domains are relational, maintaining a system of equiv-
alences and supported relations. As a result, it assumes the base domain will
take care of maintaining relationships between interpreted expressions and the
corresponding subterms. Hence it will not help with the examples from Fig. 1.

While the underlying techniques are similar, the objectives (and thus trade-
offs) are quite different. Congruence closure maintains an arbitrary (though
finite) system of uninterpreted function equations, allowing multiple – possi-
bly cyclic – definitions for subterms. This potentially preserves more equivalence
information than the acyclic system of the subterm domain, but increases the
cost and complexity of various operations (notably the join). As far as we know,
no experimental evaluation of the congruence-closure domain has been published.

6 Experimental Evaluation

The subterm domain has been implemented in crab, a language-agnostic C++
library of abstract domains and fixpoint algorithms. It is available, with the
rest of crab, at https://github.com/seahorn/crab. One purpose of crab is to
enhance verification tools by supplying them with inductive invariants that can
be expressed in some abstract domain chosen by the client tool. For our experi-
ments we used SeaHorn [13], one of the participants in SV-COMP 2015 [1].

We selected 2304 SV-COMP 2015 programs, in the categories best supported
by SeaHorn: ControlFlowInteger, Loops, Sequentialized, DeviceDrivers64, and
ProductLines (CFI, Loops, DD64, Seq, PL in Table 3). We first evaluated the
performance of the subterm domain by measuring only the time to generate
the invariants without running SeaHorn. We compared the subterm domain
enhancing intervals ST (Intv) with three other numeric abstract domains: classi-
cal intervals Intv [6] (our baseline abstract domain since it was the one used by
SeaHorn in SV-COMP 2015), the symbolic constant propagation SC(Intv) [21],
and an optimized implementation of difference-bound matrices using variable
packing VP(DBM) [24]. Second, we measured the precision gains using ST (Intv)
as an invariant supplier for SeaHorn and compared again with Intv, SC(Intv),
and VP(DBM). All experiments were carried out on a AMD Opteron Processor
6172 with 12 cores running at 2.1 GHz Core with 32 GB of memory.

Performance. Table 2(a) shows three scatter plots of analysis times comparing
ST (Intv) with Intv (left), with SC(Intv) (middle), and with VP(DBM) (right).

https://github.com/seahorn/crab
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Table 2. Performance of several abstract domains on SV-COMP’15 programs

(a) Scatter plots of analysis time

Domain TO Ttotal Tμ Tσ Tmax

Intv 0 175.4 0.08 0.38 11.12

SC(Intv) 0 265.0 0.11 0.49 12.75

ST (Intv) 0 456.0 0.19 0.96 24.57

VP(DBM) 3 441.7 0.19 1.41 30.00

(b) Analysis times (seconds)

Table 2(b) shows additional statistics about the analysis of the 2304 programs.
For this experiment, we set a limit of 30 s and 4 GB per program.

crab using ST (Intv), Intv, and SC(Intv) inferred invariants successfully for
all programs without any timeout (column TO in Table 2(b)). The total time
(denoted by Ttotal) indicates that Intv was the fastest with 175 s and ST (Intv)
the slowest with 456. The columns Tμ and Tσ denote the time average and
standard deviation per program, and the column Tmax is the time of analyzing
the program that took the longest. All domains displayed similar memory usage.
Again, Intv was the most efficient with an average memory usage per program
of 31 MB and a maximum of 1.34 GB whereas ST (Intv) was the least efficient
with an average of 37 MB and maximum of 1.52 GB.

It is not surprising that Intv and SC(Intv) are faster than ST (Intv); inter-
estingly, the evaluation suggests that in practice ST (Intv) incurs only a modest
constant-factor overhead of around 2.5. VP(DBM) was faster than ST (Intv) in
many cases but was more volatile, reaching the timeout in 3 cases. This is due
to the size of variable packs inferred by VP(DBM) [24]. If few interactions are
discovered, the packs remain of constant size and the analysis collapses down to
Intv. Conversely, if many variables are found to interact, the analysis degenerates
into a single DBM with cubic runtime.

Precision. Table 3 shows the results obtained running SeaHorn with crab
using the four abstract domains. We run SeaHorn on each verification task4

and count the number of tasks solved (i.e., SeaHorn reports “safe” or “unsafe”)
shown in columns labelled with #S. In T columns we show the total time
in seconds for solving all tasks. The top row gives, in parentheses, the num-
ber of programs per category. The row labelled Sea+Intv shows the number of

4 A program with its corresponding safety property also provided by the competition.
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Table 3. SeaHorn results on SV-COMP 2015 enhanced with abstract domains

CFI (48) Loops (142) DD64 (1256) Seq (261) PL (597)

#S T #S T #S T #S T #S T

Sea+Intv 41 1589 115 5432 1215 6283 109 26031 538 20818

Sea+SC(Intv) 41 1613 115 5480 1215 6520 110 25639 539 20741

Sea+ST (Intv) 41 1416 121 4274 1215 6557 110 25469 542 20763

Sea+VP(DBM) 41 1529 117 5071 1214 6854 110 25929 536 20787

tasks solved by SeaHorn using the interval domain (our baseline domain) as
invariant supplier, while rows labelled with Sea+SC(Intv), Sea+ST (Intv) and
Sea+VP(DBM) are similar but using SC(Intv), ST (Intv) and VP(DBM), respec-
tively. We set resource limits of 200 s and 4GB for each task. In all configurations,
we ran SeaHorn with Spacer [16] as back-end solver5.

The results in Table 3 demonstrate that the subterm domain can produce
significant gains in some categories (e.g., Loops and PL) and stay competitive
in all. We observe that SC(Intv) rarely improves upon the results of Sea+Intv.
Two factors appear to contribute to this: the join operation on SC(Intv) main-
tains only the definitions that are constant on all code paths; and SeaHorn’s
frontend (based on LLVM [17]) applies linear constant propagation, subsuming
many of the opportunities available to SC(Intv). Our evaluation also shows that
the subterm domain helps SeaHorn solve more tasks than VP(DBM) in several
categories. One reason could be that VP(DBM) does not perform propagation
across different packs and so it is less precise than classical DBMs [19]6 and
indeed incomparable with the subterm domain. Another reason might be the
more precise modelling of non-linear operations by the subterm domain. Nev-
ertheless, we observed that sometimes ST (Intv) can solve tasks that VP(DBM)
cannot, and vice versa. For PL, for example, Sea+ST (Intv) solved 9 tasks for
which Sea+VP(DBM) reached a timeout but Sea+VP(DBM) solved 3 tasks
that Sea+ST (Intv) missed. This is relevant for tools such as SeaHorn since it
motivates the idea of running SeaHorn with a portfolio of abstract domains.

7 Conclusion and Future Work

We have introduced the subterm abstract domain ST , and outlined its applica-
tion as a functor domain to improve precision of existing analyses. Experiments
on software verification benchmarks have demonstrated that ST , when used to
enrich an interval analysis, can substantially improve generated invariants while
only incurring a modest constant factor performance penalty.
5 We used the command sea pf --step=large --track=mem (i.e., large-block encod-

ing [2] of the transition system modelling both pointer offsets and memory contents).
For DD64 we add the option -m64.

6 We used an implementation of the classical DBM domain following [19] for the
experiment in Table 2 but it took more than three hours to complete.
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The performance of ST is obtained by disregarding algebraic properties of
operations. Extending ST to exploit these properties while preserving perfor-
mance poses an interesting future challenge.
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Abstract. Recently, Bradley proposed the PDR/IC3 model checking
algorithm for verifying safety properties, where forward and backward
reachability analyses are intertwined, and guide each other. Many vari-
ants of Bradley’s original algorithm have been developed and successfully
applied to both hardware and software verification. However, these algo-
rithms have been presented in an operational manner, in disconnect with
the rich literature concerning the theoretical foundation of static analysis
formulated by abstract interpretation.

Inspired by PDR, we develop a nonstandard semantics which com-
putes for every 0 ≤ N an over-approximation of the set of traces of length
N leading to a safety violation. The over approximation is precise, in the
sense that it only includes traces that do not start at an initial state,
unless the program is unsafe, and in this case the semantics aborts at
a special error state. In a way, the semantics computes multiple over-
approximations of bounded unsafe program behaviors using a sequence
of abstractions whose precision grows automatically with N.

We show that existing PDR algorithms can be described as a specific
implementation of our semantics, performing an abstract interpretation
of the program, but instead of aiming for a fixpoint, they stop early when
either the backward analysis finds a counterexample or the states com-
prising one of the bounded traces provides sufficient evidence that the
program is safe. This places PDR within the solid framework of abstract
interpretation, and thus provides a unified explanation of the different
PDR algorithms as well as a new proof of their soundness.

1 Introduction

Abstract interpretation [6] (AI ) provides a solid theoretical foundation for static
program analysis. AI algorithms verify that a program is safe by computing an
over-approximation of its concrete semantics: They find a conservative repre-
sentation of either the set of reachable traces, i.e., the traces that the program
generates when executing from a given set of initial states (forward analysis), or
of the set of evil traces, i.e., the ones that end in a bad state (backward analysis).
Using the AI framework to develop program analyses is attractive because it elu-
cidates the key semantic properties of the underlying abstraction and ensures,
by construction, that the analysis is sound.

Recently, Bradley proposed the property directed reachability (PDR/IC3)
model checking algorithm for verifying safety properties [3], where forward and
c© Springer-Verlag Berlin Heidelberg 2016
B. Jobstmann and K.R.M. Leino (Eds.): VMCAI 2016, LNCS 9583, pp. 104–123, 2016.
DOI: 10.1007/978-3-662-49122-5 5
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backward analyses are intertwined, and guide each other. Many variants of
Bradley’s original algorithm have been developed and successfully applied to
both hardware and software verification [1,2,5,7,9,10]. However, these algo-
rithms have been presented in an operational manner, in disconnect with the
rich literature concerning abstract interpretation. As a result, it is hard to
understand and compare these algorithms without delving into minute, almost
implementation-level, details.

In this paper, we provide a fresh view of the emerging family of property
directed reachability verification algorithms using abstract interpretation.1 We
begin by developing an abstract trace semantics which conservatively represents
the set of evil traces of length N by a sequence ωN of sets of states, called
cartesian trace. A cartesian trace abstracts a set of traces T by “forgetting” the
fine-grained correlation between consecutive states. Cartesian traces are then
further abstracted into sequences ω�

N where every set ω�
N (i) may include, in

addition to the states that lead to a violation in i steps, states which are not
reachable in N − i or less steps.2 This form of abstraction ensures that ω�

N does
not represent counterexamples of length N . Furthermore, if for some N and
i < N , it holds that ω�

N (i) = ω�
N (i + 1) then the program is safe.

In a way, our semantics can be seen as an approach to compute a conservative
over approximation of the set of states leading to a safety violation, where each
sequence ω�

N corresponds to a different abstraction whose precision increases
automatically as N grows. The semantics considers abstract cartesian traces
of every possible length simultaneously. As such, it considers infinitely many
abstractions with varying precision.

An important property of our semantics is that it can capture all the use-
ful fixpoints of the traditional collecting state semantics, where a fixpoint of a
backward semantics is useful if it is disjoint from the set of initial states, and
dually, a fixpoint of a forward semantics is useful if it is disjoint from the set of
bad states.

We then use our semantics to provide a unified view of existing PDR algo-
rithms: We show that they can be formulated as a specific scheduling of the
semantics which stops early when either a counterexample is found or the pro-
gram is determined to be safe. Informally, the algorithms combine backward
analysis to compute (a conservative over approximation) of ωN which are then
generalized to ω�

N using forward analysis. As the formulation in terms of the
semantics reveals, these algorithms consider (finitely many) cartesian traces of
multiple lengths simultaneously. This places PDR within the solid framework of
abstract interpretation, and thus presents a unified explanation of the different
PDR algorithms and a new proof of their soundness.
1 In this paper, we focus on linear property directed reachability, as opposed to, e.g.,

tree-IC3 [5]. See Sect. 9.
2 In model checking nomenclature, the abstraction of ωN (i) into ω�

N (i) is called
generalization.
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2 Preliminaries

Binary Relations. Let R ⊆ X × X be a binary relation over X . We write
x R−→ x ′ to denote that (x , x ′) ∈ R. We denote the inverse relation of R by

←−
R ,

i.e.,
←−
R = {(x ′, x ) | (x , x ′) ∈ R}. We denote the sets of elements preceding and

following an element x ∈ X according to R by
←−
R (x ) and R(x ), respectively, i.e.,←−

R (x ) = {x0 ∈ X | x0
R−→ x} and R(x ) = {x ′ ∈ X | x R−→ x ′}.

We lift R(·), and
←−
R (·) to sets in a point-wise manner, e.g., R(X ) = {x0 ∈

R(x ) | x ∈ X }. We write Rk (·), and
←−
R k (·) to denote k applications of R(·), and←−

R (·), respectively. For example, R0(X ) = X and Rk+1(X ) = R(Rk (X )).

Sequences. Given a natural number N ∈ N, we denote by [N ] the set of natural
numbers from 0 to N , i.e., [N ] = {n ∈ N | 0 ≤ n ≤ N }. A sequence s over a
set X is a total function from [N ], for some N ∈ N, to X , i.e., s ∈ [N ] →
X . We denote the set of sequences over X (including the empty sequence), by
seq(X ). We denote the length of a sequence s by |s| and its i -th element by
s(i). For example, s(0) and s(|s| − 1) denote the first and last elements of s,
respectively. We denote the domain of a sequence s by dom(s) and its range
by range(s), i.e., dom(s) = [|s| − 1] and range(s) = {s(i)|i ∈ dom(s)}. We
denote the concatenation of sequences by juxtaposition. By abuse of notation,
we sometimes treat an element x ∈ X as the sequence 〈x 〉. We denote the set of
sequences comprised of single elements of X by 〈X 〉, i.e., 〈X 〉 = {〈x 〉 | x ∈ X }.
Let R be a binary relation. A sequence s is a valid sequence of R if for every
i ∈ [|s| − 2], s(i) R−→ s(i + 1).

Stuttering Simulation. Let X and Y be sets and RX ⊆ X × X and RY ⊆
Y × Y be binary relations over X and Y , respectively. A binary relation sim ⊆
X ×Y is a stuttering simulation relation with respect to RX and RY if for every
(x , x ′) ∈ RX and (x , y) ∈ sim there exists a valid sequence of RY which starts
at y and ends in some element y ′ ∈ Y such that (x ′, y ′) ∈ sim.

States. We assume a given set of states Σ, ranged over by the meta-variable σ.

Transition Relations and Traces. We use transition relations and traces
as synonyms for binary relations and sequences, respectively, when semantic
elements are involved. We denote the set of transitions over states by Δ = Σ×Σ,
and the set of traces over states by Π = seq(Σ), and range over it using π. We
say that a trace is a valid trace of a transition relation TR if it is a valid sequence
of TR . We denote the set of valid traces of TR by �TR�Π.

Programs and Properties. We do not commit ourselves to a particular syn-
tax. Instead, given a program P , we expect to get its denotation TR(P) ⊆ Δ
as a transition relation over states. Similarly, we equate properties with their
denotation as sets of states.

Verification Problems. A verification problem V is a triple V = (Init ,P ,Bad)
comprised of a set of initial states Init ⊆ Σ, a program P , and a set of bad states



Property Directed Abstract Interpretation 107

Bad ⊆ Σ which does not contain initial states, i.e., Init ∩ Bad = ∅. Informally,
P is safe according to V if it cannot start executing in an initial state and end
up in a bad state.

Conventions. In the rest of the paper, we assume a fixed arbitrary program
P whose transition relation is TR = TR(P) and a fixed arbitrary verification
problem V = (Init ,P ,Bad). Thus, whenever we say the program, an initial state,
or a bad state, we mean P , a state in Init , and a state in Bad , respectively.

3 Small Step Collecting Trace Semantics

In this section, we define a small-step operational semantics over sets of traces.

Trace Semantics. Our venture point is a rather mundane trace semantics,
which defines the meaning of a program to be the set of traces it can produce.
A trace π is a forward trace of P if it is a valid trace of its transition relation,
i.e., if π ∈ �TR(P)�Π. Similarly, π is a backward trace of P if π ∈ �

←−−−−
TR(P)�Π. We

say that a forward trace π of P is reachable if it starts in an initial state and
that a backward trace π of P is evil if it begins in a bad state. We denote P ’s
reachable and evil traces by �P�FΠ and �P�BΠ , respectively:

�P�FΠ
def= {π ∈ �TR(P)�Π | π0 ∈ Init} , and �P�BΠ

def= {π ∈ �
←−−−−
TR(P)�Π | π0 ∈ Bad} .

Note that evil (backward) traces are read from left-to-right with the leftmost
state being a bad state. And thus the backward trace transition relation TRB

Π(P)
used to define CB

Π (T ) is in fact adding “pre-states” on the right.
We lift P ’s transition relation to forward and backward trace transition rela-

tions, denoted by TRF

Π(P) and TRB

Π(P), respectively:

TRF

Π(P) def= {(πσ, πσσ′) | σ
TR−→ σ′}, and TRB

Π(P) def= {(πσ, πσσ′) | σ
←−
TR−→ σ′}.

A trace π is reachable if there exists a valid sequence of P ’s forward trace
transition relation leading from 〈σ〉 to π, where σ is an initial state. Similarly,
π is evil if it is at the end of a valid sequence of the backward trace transitions
starting at a trace comprised of a bad state. This allows an characterizing �P�FΠ
and �P�BΠ as least fixpoints:

�P�FΠ = LFPCF
Π where CF

Π (T ) = 〈Init〉 ∪ TRF

Π(P)(T ), and

�P�BΠ = LFPCB
Π where CB

Π (T ) = 〈Bad〉 ∪ TRB

Π(P)(T ).

Small Step Collecting Trace Semantics. CF
Π and CB

Π , defined above, oper-
ate on sets of traces. Such sets are in fact elements of the collecting trace seman-
tics of P . The latter interprets P by accumulating the traces generated by its
trace semantics. Formally, the collecting trace domain DΠ = (P(Π),⊆) is a
powerset domain over the set of traces, ordered by set inclusion.

A collecting semantics is often used as means to compute fixpoints of an
underlying operational semantics. However, it can also be given an operation
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flavor by defining initial sets of traces and transitions between sets of traces.
The initial set of traces is 〈Init〉 in the forward collecting trace semantics, and
〈Bad〉 in the backward semantics. The transitions are defined as the pointwise
lifting of P ’s forward and backward trace transition relation to sets of traces,
denoted by TRF

P(Π)(P) and TRB

P(Π)(P), respectively:

TRF

P(Π)(P) def= {(T ,T ∪ {π′}) | ∃π ∈ T . π
TRF

Π(P)−−−−−→ π′}, and

TRB

P(Π)(P) def= {(T ,T ∪ {π′}) | ∃π ∈ T . π
TRB

Π(P)−−−−−→ π′}.

Note that both �P�FΠ and �P�BΠ are elements of DΠ. Recall that we consider
only finite sequences. Thus, there might not be a valid sequence according to,
e.g., TRB

P(Π)(P) which leads from from 〈Bad〉 to �P�BΠ because �P�BΠ \ 〈Bad〉
might be an infinite set. However, for every set of traces T ⊇ 〈Bad〉 and every
finite set of evil traces T ′, there is such a valid sequence going from T to T ′.
Formally:

Lemma 1. For every trace π, it holds that π ∈ �P�FΠ (respectively, π ∈ �P�BΠ )
if and only if there is a valid sequence of TRF

P(Π)(P) (respectively, TRB

P(Π)(P))
going from 〈Init〉 (respectively, 〈Bad〉) to T such that π ∈ T.

In Sect. 8, we show that PDR can be formalized as an abstract interpretation
of a program using (a conservative abstraction of) the collecting trace seman-
tics which develops simultaneously multiple traces. However, instead of trying
to compute a fixpoint of the program’s collecting trace semantics, PDR uses
the execution as means to come up with a useful fixpoint of its collecting state
semantics as we explain below.

Collecting State Semantics. It is standard to abstract a set of traces by
the set of their states. Formally, the collecting state semantics of programs is a
powerset domain over the set of states, ordered by set inclusion DΣ = (P(Σ),⊆).
We define the expected Galois connection (DΠ, αΣ, γΣ,DΣ) between sets of traces
and sets of states:

γΣ : P(Σ) → P(Π) ::= γΣ(S ) = {π ∈ Π | ∀i ∈ dom(π). π(i) ∈ S} and
αΣ : P(Π) → P(Σ) ::= αΣ(T ) = {σ ∈ range(π) | π ∈ T} .

We say that a state is reachable if it appears in a reachable trace and evil if
it appears in an evil one. The sets of reachable and evil states, denoted by �P�FΣ
and �P�BΣ , respectively, are defined using abstraction, and enjoy a least fixpoint
characterization:

�P�FΣ
def= αΣ(�P�FΠ ) = LFPCF

Σ where CF
Σ (S ) = Init ∪ TR(S ), and

�P�BΣ
def= αΣ(�P�BΠ ) = LFPCB

Σ where CB
Σ (S ) = Bad ∪ ←−

TR(S ).

4 Useful and Projected Fixpoints

We refer to an evil trace that leads to an initial state as a counterexample.
A program P is safe if none of its evil traces is a counterexample, and unsafe
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otherwise. In our setting, safety amounts to requiring that �P�FΣ ∩ �P�BΣ = ∅.
The goal of PDR and of its variants is to compute a superset of the reachable
states of P , if P is safe, and report that a counterexample exists, otherwise. This
is often done by looking for an inductive fixpoint of the (forward or backward)
collecting state semantics.

A set of states S is an inductive (forward) fixpoint if Init ⊆ S and TR(S ) ⊆
S . We say that S is a useful (forward) fixpoint if, in addition, S ∩ Bad = ∅.
(A useful forward fixpoint is often called a safe inductive invariant.) Similarly,
S is an inductive backward fixpoint if Bad ⊆ S and

←−
TR(S ) ⊆ S . It is useful if

S ∩ Init = ∅.
A standard technique to find an inductive fixpoint is to iteratively apply

the corresponding transformer. For example, to find an inductive fixpoint of the
backward collecting state semantics, we would usually repeatedly apply CB

Σ ,
while accumulating the discovered states, until no new state is discovered. As
CB

Σ is monotonic, it is ensured by Kleene’s Theorem that at the limit we reach
its least fixpoint. However, we can find such a fixpoint in a different way via
a projection of the elements computed by the collecting trace semantics using,
what we refer to, as projected fixpoints.

Given a set of traces T , we denote by T |iΣ = {π(i) | π ∈ T ∧ i < |π|} the
set of states in the i -th index of the traces in T . If there exists an index i > 0
such that (i) Bad ⊆ T |0Σ, (ii) for every 0 ≤ j ≤ i ,

←−
TR(T |jΣ) ⊆ T |j+1

Σ , and (iii)
T |iΣ = T |i+1

Σ , then S =
⋃i

j=0 T |jΣ is an inductive backward fixpoint of the
collecting state semantics. We refer to S as a projected fixpoint of the collecting
trace semantics. Intuitively, every evil trace can go only through states that
appear in S . We note that if T has been computed by accumulating the results
of some 0 ≤ k applications of CB

Π (·) starting from ∅, it suffices to check point
(iii) above to determine that T has a projected fixpoint.

5 Small Step Cartesian Trace Semantics

The cartesian trace semantics abstracts the (forward and backward) collecting
trace semantics using sequences of sets of states, which we refer to as cartesian
traces. Informally, a cartesian trace ω conservatively represents a set of traces
T of length |ω| or less by abstracting away the correlation between consecutive
states. In the following, we focus on abstracting the backward semantics, as it
is the one used by PDR. The cartesian semantics is suitable for tracking the
intermediate results that occur during an iterative conservative fixpoint compu-
tation, and thus fits well to describe the sequence of sets of states computed by
PDR. We refer to the set components of cartesian traces as anti-frames, as they
correspond to the complements of the sets maintianed by PDR, which are often
referred to as frames. (See Sect. 7.)

5.1 Cartesian Trace Transition Relation

We denote by Ω = seq(P(Σ)) the set of all sequences of sets of states, ranged over
by metavariable ω. Following the intuitive discussion above, we define a function
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γω which maps a cartesian trace ω to the set of traces that it represents. The
latter is comprised of any trace whose i -th state, for every i , is taken from the
corresponding set ω(i).

γω : Ω → P(Π) ::= γω(ω) def= {π ∈ Π | |π| ≤ |ω|∧∀i ∈ dom(π). π(i) ∈ ω(i)} .

Note that if ω represents a trace π, then ω also represents every prefix of π.
Cartesian traces allow to over-approximate the (backward) trace semantics

of P by lifting P ’s transition relation to a backward cartesian trace transition
relation, denoted by TRB

Ω(P):

TRB

Ω(P) def= {(ω1S1S2ω2, ω1S1(S2 ∪ S )ω2) | S ⊆ ←−
TR(S1)} .

Note that while the collecting transition relation TRB

P(Π)(P) extends traces,
the cartesian transition relation relates only traces of the same length. Indeed, it
can only add new states to sets that ω already contains. Intuitively, this means
that we can only over-approximate at most |ω| − 1 consecutive transitions of P .
We do not overcome this limitation, instead we weaken the guarantees we get
from abstract interpretation of P according to the cartesian trace semantics, as
we shortly explain.

5.2 Cartesian Traces Domain

To define the cartesian traces domain, we first introduce the subsumption order
between cartesian traces. We say that ω1 subsumes ω2, denoted by ω1 �ω ω2, if
every entry in ω2 subsumes the corresponding entry in ω1. Formally,

ω1 �ω ω2
def= |ω1| = |ω2| ∧ ∀i ∈ dom(ω1). ω1(i) ⊆ ω2(i) ,

The cartesian traces domain DΩ = (P(Ω),�Ω) utilizes the powerset of the
cartesian traces as its carrier set and it is ordered by a point-wise lifting of
subsumption:

DΩ = (P(Ω),�Ω) , where O1 �Ω O2 ⇐⇒ ∀ω1 ∈ O1.∃ω2 ∈ O2. ω1 �ω ω2 .

The Galois connection (DΠ, αΩ, γΩ,DΩ) between the domain of traces and
that of cartesian traces is defined by a pointwise lifting of γω to sets of cartesian
traces.

γΩ : P(Ω) → P(Π) ::= γΩ(O) = {π ∈ γω(ω) | ω ∈ O} , and
αΩ : P(Π) → P(Ω) ::= αΩ(T ) = {λi ∈ dom(π). {π(i)} | π ∈ T} .

Lemma 2. (DΠ, αΩ, γΩ,DΩ) is a Galois connection.

Lemma 3. Let π be a trace and ω be a cartesian trace such that 0 < |π| < |ω|.
If π ∈ γω(ω) then TRB

Π(P)(π) ⊆ γΩ(TRB

Ω(P)(ω)) .
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Lemma 3 ensures that TRB

Ω(P)(·) is a sound abstract transformer with respect
to TRB

Π(P)(·) when we consider only bounded executions. More specifically, given
a cartesian trace ω of length n and a trace π of length m represented by ω, we
can over-approximate the set of traces that can be reached by executing n−m−1

trace transitions
TRB

Π(P)−−−−−→. In particular, if ω(0) = Bad , we can use TRB

Ω(P)(·)
to over-approximate the evil traces of length n or less.

In a sense, the cartesian trace semantics allows to over-approximate bounded
under-approximations of the standard collecting trace semantics.

6 Property-Guided Abstraction of the Cartesian
Trace Semantics

We abstract the backward cartesian trace semantics in a property-guided man-
ner using two means: Firstly, we go to an error state in case we find a coun-
terexample. Secondly, and most importantly, we allow to over-approximate the
backward cartesian transition relation in a controlled way which ensures that
the abstract trace does not represent spurious counterexamples. This form of
abstraction explains the generalization operations in PDR. (See Sect. 7).

6.1 Property-Guided Cartesian Trace Transition Relation

The property-guided cartesian trace semantics over-approximates the backward
cartesian trace transition relation by adding two new kinds transitions: gener-
alization transitions, denoted by TRGen(B)

Ω (P), and error transitions, denoted by
TRErr(B)

Ω (P), which lead to a special error element �.

TRGen(B)
Ω (P)

def
= {(ω1S1S2ω2, ω1(S1 ∪ Y )S2ω2) | ←−

TR(Y ) ⊆ S2 ∧ Y ∩ Init = ∅}, and

TRErr(B)
Ω (P)

def
= {(ω, 	) | ω(|ω| − 1) ∩ Init 
= ∅}.

Generalization transitions add a “forward” flavor to the property-guided carte-
sian trace semantics as they add states at index j based on the states at index
j + 1. (Recall that these are backward traces, hence updates of j + 1 based on j
correspond to backward steps, while updates of j based on j + 1 correspond to
forward steps.)

Given a cartesian trace ω = ω1S1S2ω2, a generalization transition allows to
add to its j -th anti-frame, where j = |ω1|, any state σ such that any backward
trace of P of length |ω| − j which starts at σ goes only through states that
can be reached by a backward trace starting at one of the states in the j + 1
anti-frame. Thus, the states added by the generalization would not open a new
route towards an undiscovered state. Specifically, generalization would not lead
to over-approximating a counterexample, unless this counterexample is already
represented.

An error transition, happens when we find an initial state at the last anti-
frame of the trace. Note that this means that we found a counterexample.
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It suffices to look for an initial state only in the last anti-frame because of
our assumption that Init and Bad are disjoint and the restrictions on the trans-
formers which ensure that if the semantics computes a trace which goes through
an initial state, it can also compute a shorter (evil) trace which ends with that
state.

We denote the enriched transition relation by TRBGE

Ω (P), i.e.,

TRBGE

Ω (P) = TRB

Ω(P) ∪ TRGen(B)
Ω (P) ∪ TRErr(B)

Ω (P) .

In the following, we refer to the transitions defined in Sect. 5.1 as pre-
transitions. We say that a pre-transition (ω1S1S2ω2, ω1S1(S2 ∪S )ω2) ∈ TRB

Ω(P)
takes place at index |ω1|. (Note that we say that although the transition updates
the set at index |ω1|+1). We say that a gen-transition (ω1S1S2ω2, ω1(S1 ∪
Y )S2ω2) ∈ TRGen(B)

Ω (P) takes place at index |ω1| based on the set at index
|ω1| + 1.

6.2 Small Step Collecting Property-Guided Cartesian
Trace Semantics

Recall that the cartesian transition relation does not allow to extend the length
of a trace ω, nor do the generalization and error transition relations, and hence
they are limited to over-approximate bounded executions. To overcome this lim-
itation, we turn to the powerset domain; the underlying domain of the collecting
property-guided cartesian trace semantics is the cartesian trace domain, DΩ,
enriched with the error element, �, which is greater than any other element.

Property-guided Initial Cartesian Traces. We prepare ahead to produce
traces of any possible length by starting the interpretation of the program from
an unbounded set of cartesian traces: Let ∅k denote a cartesian trace of length
0 ≤ k whose anti-frames are all empty, i.e., ∅k = 〈∅, . . . , ∅〉. A cartesian trace ω
is property-guided initial (initial for short) if ω = 〈Bad〉∅k 〈Σ \ Init〉, for some
0 ≤ k , i.e., its first anti-frame is comprised of bad states, its last of the non-initial
ones, and all the others are empty. Note that all initial cartesian traces are of
length ≥ 2.

We denote the initial cartesian trace of length i (for i ≥ 2) by ω̂i , i.e.,
ω̂i = 〈Bad〉∅i−2〈Σ \ Init〉, and the set of initial cartesian traces by Ω̂. Note that
ω̂2 represents all traces of length 2 that start in a bad state and end in a non-
initial state as well as their prefixes, i.e., if the program is safe ω̂2 represents the
largest safe over-approximation (superset) of the evil traces of P of length at
most two. All other initial cartesian traces represent 〈Bad〉, the set of evil traces
of length one (which correspond to the prefix of length one since the second
element is ∅). Informally, starting from a given initial cartesian trace ω̂i , we can
simulate evil traces of length i or less.

Property-guided Collecting Cartesian Transition Relation. The collect-
ing property-guided cartesian trace semantics is obtained by lifting the enriched
transition relation TRBGE

Ω (P) to a collecting transition relation TRBGE

P(Ω)(P) which
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works in a pointwise manner on sets of cartesian traces. This is done similarly
to the way we obtained the transition relation of the collecting trace semantics
TRB

P(Π)(P) out of that of the trace semantics TRB

Π(P). (See, Sect. 3.) We also
adapt TRBGE

P(Ω)(P)(O) to go to � if there is a cartesian trace in O that leads to �
in one step. The valid sequences of TRBGE

P(Ω)(P) from Ω̂ define the property-guided
meaning of the program.

Lemma 4 (Soundness and Precision). A program P is safe if and only if
for any 0 ≤ k, it holds that (TRBGE

P(Ω)(P))k (Ω̂) �= �.

Lemma 4 ensures that we can use the property-guided cartesian trace semantics
to find any evil trace of P . Intuitively, we can compute any evil trace π by
first picking an initial cartesian trace of length |π| + 1 and then executing the
sequence of cartesian trace transitions corresponding to the ones which generated
π. Furthermore, it ensures that the property-guided semantics does not lose
precision when it comes to safety: Thanks to the restrictions on the generalization
steps, the semantics never reaches an error state if the program is safe.

We can adapt the notion of projected fixpoints to the cartesian semantics.
Given a cartesian trace ω, we say that ω(i), where 0 < i < |ω| − 1, is a projected
fixpoint if (i) Bad ⊆ ω(0), (ii) for every 0 ≤ j < i , ω(j ) ∪ ←−

TR(ω(j )) ⊆ ω(j + 1),
and (iii) ω(i) = ω(i + 1).

Lemma 5 (Projected Fixpoints). Let ω be a cartesian trace such that ω(i)
is a projected fixpoint. It holds that ω(i) is an inductive backward fixpoint of the
collecting state semantics.

In fact, given a useful backward fixpoint S , we can use the appropriate general-
ization transitions starting from Ω̂ to produce a cartesian trace ω which contains
S as a projected fixpoint at some index i .

We can now restate the last paragraph of Sect. 3 in a more precise way: In
Sect. 8, we show that PDR can be formalized as an abstract interpretation of the
collecting property-guided cartesian semantics, where every operation of PDR
can be understood as a sequence of steps taken by the semantics.

The semantics, when looking at it from the viewpoint of PDR, interprets the
program with two goals in mind. The first goal is to look for a useful fixpoint of
its collecting state semantics. This is done by taking generalization steps. The
second goal, which is done in parallel, is to look for a counterexample. This is
done using pre-transitions. The two goals affect each other: The states that are
discovered using the pre-transitions, are used to compute Y in the generalization
transitions by applying an algorithm specific-heuristic. The generalization, on
the other hand, might add states that would make future pre-transitions mute
as their targets would be detected early. This, could help PDR terminate faster
than if it had taken only pre-transitions.

The PDR-viewpoint helps understand the reason behind placing Σ \ Init as
the last component of the initial cartesian traces: It is apriori known that this set
provides (the most coarse) over-approximation of the last state of any evil trace
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which is not a counterexample. As a result, it provides the greatest opportunity
to apply generalization transitions at the penultimate set, and by extension, at
the ones preceding it. This flexibility is the reason that the collecting semantics
can compute any useful fixpoint.

7 Traditional PDR

In this section we describe PDR in an operational manner. Traditionally, PDR
uses a symbolic representation of states and sets of states as formulas in some
logic (either propositional or first order logic). In our description of PDR we
refer to the underlying states or sets of states explicitly.

We start by a high-level description of PDR and the data structures used
by it. The latter also define its configurations. We then describe the different
operations performed by the different implementations of PDR.

Initially, PDR checks if Init ∩ Bad = ∅, and reports a counterexample if this
is not the case. For simplicity of the presentation, we consider this check to be
done before PDR is invoked. We therefore assume that Init ∩ Bad = ∅.

Forward Reachability Sequence. PDR computes increasingly longer forward
reachability sequences. When referring to sequences maintained by PDR, we use
a subscript notation for the elements of a sequence: Fi instead of F (i). We
denote the sequence comprised of the elements F0, . . . ,FN , for some 0 < N , by
〈F0, . . . ,FN 〉.
Definition 1 (Forward Reachability Sequence). A forward reachability
sequence of length N + 1 is a sequence ϕN = 〈F0,F1, . . . ,FN 〉 ∈ seq(P(Σ))
which has the following properties:

1. F0 = Init,
2. Fi ⊆ Fi+1 for every 0 ≤ i < N ,
3. TR(Fi) ⊆ Fi+1 for every 0 ≤ i < N ,
4. Fi ∩ Bad = ∅ for every 0 ≤ i ≤ N .

The sets Fi in the sequence ϕN are called frames. N is called the iteration
counter.

Note that the property TR(Fi) ⊆ Fi+1 is equivalent to
←−
TR(Σ\Fi+1) ⊆ Σ\Fi . We

use the two interchangeably. The properties of a forward reachability sequence
ϕN imply that for every 0 ≤ i ≤ N , frame Fi over-approximates the set of states
reachable from the initial states in at most i steps. If the sequence includes an
index 0 ≤ i < N such that Fi = Fi+1 then property 3 simplifies to TR(Fi) ⊆ Fi .
Hence, together with properties 1 and 4, we conclude that Fi is a useful forward
fixpoint (or safe inductive invariant), which implies that P is safe.

PDR computes forward reachability sequences ϕN of increasing lengths,
starting from N = 1, until either a counterexample is found or a fixpoint is
reached.
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In the intermediate steps of the computation of the forward reachability
sequence ϕN , requirement 3 might not hold (only) for i = N − 1, in which case
we refer to ϕN as an intermediate forward sequence. Specifically, for N = 1,
ϕN is initialized to 〈Init ,Σ \ Bad〉. For N > 1, PDR initializes an intermediate
forward sequence ϕN by extending the forward reachability sequence ϕN−1 from
the previous iteration with an additional frame FN = Σ \ Bad . If requirement 3
does not hold due to the addition of FN , PDR tries to strengthen the frames Fi

(which over-approximate the reachable states) in order to satisfy requirement 3
for i = N − 1 as well. For this purpose, PDR iteratively retrieves from FN−1 a
state for which TR(σ) ⊆ FN does not hold (equivalently, σ ∈ ←−

TR(Bad)∩FN−1),
and tries to eliminate it by strengthening FN−1. To do so while maintaining the
(other) properties of a forward reachability sequence, PDR first has to strengthen
FN−2 to eliminate from it all the predecessors of σ. For the elimination of each
predecessor, the same process is needed. This results in a backward traversal of
the state space.

Obligations Queue. The states that need to be eliminated from their frames
are called counterexamples to induction (CTIs), since their removal is needed
in order to maintain the induction condition (TR(Fi) ⊆ Fi+1). A pair (i , σ)
consisting of an index i and a CTI σ that needs to be eliminated from Fi is
called a proof obligation (obligation in short). All obligations have the property
that their states lead to a bad state. Technically, PDR uses an obligation queue,
denoted q , to handle the obligations.

If all obligations are handled successfully, ϕN satisfies requirement 3 for i =
N − 1 as well, and hence it becomes a forward reachability sequence. However,
there might be intermediate steps where q is temporarily empty, even though
not all obligations have been handled (since not all have been discovered). To
distinguish between the former and the latter we use ⊥ to denote the value of
the queue when all obligations are handled, as opposed to ∅ which denotes an
empty queue, possibly temporarily.

PDR Configurations. A configuration of PDR is a triple κ = (N , ϕN , q),
where

– N ∈ N,
– ϕN = 〈F0,F1, . . . ,FN 〉 ∈ (P(Σ))N+1 is an intermediate forward sequence,

and
– q ∈ P([N ] × Σ) ∪ {⊥} is an obligations queue, where [N ] = {0, . . . ,N }.

Initial Configuration. Assuming that Init ∩Bad = ∅, the initial configuration
of PDR is κ0 = (1, 〈Init ,Σ \ Bad〉, ∅).

PDR Operations. Given a configuration κ = (N , ϕN , q) as above, PDR pro-
ceeds by performing one of the following procedures. We denote the resulting
configuration by κ′ = (N ′, ϕ′, q ′). Each procedure updates a subset of the com-
ponents of the configuration. We describe only the components that are indeed
updated.
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Queue Initialization: If q = ∅, and there is a state σ ∈ ←−
TR(Bad) ∩ FN−1, PDR

adds the obligation (N − 1, σ) to the queue, resulting in q ′ = {(N − 1, σ)}. If no
such state exist, it sets q ′ = ⊥.

Backward Step: Given an obligation (i , σ′) ∈ q , where 1 ≤ i ≤ N is the minimal
frame index in q , such that there is σ ∈ ←−

TR(σ′) ∩ Fi−1, PDR adds (i − 1, σ) to
q . Namely, q ′ = q ∪ {(i − 1, σ)}.

Obligation Lifting: Once an obligation (i − 1, σ) is added to q due to a back-
ward step from (i , σ′) ∈ q , PDR computes a lifting of the obligation, S =
OLift(σ, σ′,Fi), and adds the set of obligations {i − 1} × S to the queue, where
OLift(σ, σ′,Fi) computes a set of states S ⊆ Σ such that S ⊆ ←−

TR(σ′). Namely,
q ′ = q ∪ ({i − 1} × S ).

Obligation lifting helps accelerating PDR by lifting an obligation discovered
by a backward step from some obligation (i , σ′) ∈ q to a set of obligations, all
of which result from a backward step of the same obligation.

Blocking: Given an obligation (i , σ′) ∈ q , where 1 ≤ i ≤ N is the minimal frame
index in q and

←−
TR(σ′) ∩ Fi−1 = ∅, PDR removes (i , σ′) from q , and removes σ′

from Fi (if it was not yet removed). Note that since i ≥ 1, σ′ �∈ Init . This results
in the configuration κ′ = (N , 〈F0, . . . ,Fi−1,Fi \{σ′},Fi+1, . . . ,FN 〉, q \{(i , σ′)}).

Generalization: Once (i , σ′) is blocked, in addition to removing σ′ from Fi , PDR
computes a generalization of the blocked state, S = Gen(σ′,Fi−1), and removes
S from all Fj such that j ≤ i , where Gen(σ′,Fi−1) computes a set of states
S ⊆ Σ such that Init ∩ S = ∅ and TR(Fi−1) ∩ S = ∅ (i.e., where all states have
no predecessor in Fi−1). The result is ϕ′ = 〈F0,F1 \S , . . . ,Fi \S ,Fi+1, . . . ,FN 〉.

Inductive Generalization: Once (i , σ′) is blocked, in addition to removing σ′

from Fi , PDR computes an inductive generalization of the blocked state, S =
IGen(σ′,Fi−1), and removes S from all Fj such that j ≤ i , where IGen(σ′,Fi−1)
computes a set of states S ⊆ Σ such that Init ∩S = ∅ and TR(Fi−1 \S )∩S = ∅.
The result is ϕ′ = 〈F0,F1 \ S , . . . ,Fi \ S ,Fi+1, . . . ,FN 〉.

Inductive generalization is an enhancement of generalization which results in
a stronger strengthening of frames, as every generalization is also an inductive
generalization, but not the other way around. It is based on an attempt to
identify sets whose complements are inductive relatively to the current frame,
and therefore can be used to safely strengthen all frames up to the current
one while keeping the properties of an intermediate forward sequence (and in
particular, without excluding any reachable state).

Forward Propagation: Once Fi is updated by removing S from it (as a result of
generalization, inductive generalization, or forward propagation), i.e. Fi ∩S = ∅,
it is checked whether TR(Fi)∩S = ∅, and if so, Fi+1 is also updated to Fi+1 \S .
The result is ϕ′ = 〈F0, . . . ,Fi ,Fi+1 \ S ,Fi+2, . . . ,FN 〉.
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Forward propagation attempts to speculatively strengthen frames before
obligations are encountered. Similarly to inductive generalization, it considers
sets that are inductive relatively to the current frame (the complement of every
set that is removed from a frame corresponds to such a relative inductive set),
and checks whether they are also inductive relatively to consecutive frames.

Pushing Obligations Forward: Once an obligation (i , σ′) for 1 ≤ i ≤ N − 1
is removed from q , an obligation (i + 1, σ′) is added to q . The result is q ′ =
q ∪ {(i + 1, σ′)}.

Pushing obligations forward aims at an early discovery of obligations. An
obligation (i , σ′) consists of a state σ′ that reaches a bad state in some k > 0
steps. The same holds also when σ′ is considered in Fi+1, which makes (i +1, σ′)
a legitimate obligation (it will be discovered/handled at the latest when N =
i + 1 + k). Its early addition can help accelerate the strengthening towards a
fixpoint, or enable finding counterexamples that are longer than N + 1.

Unfolding: If q = ⊥ and fixpoint is not obtained, PDR initializes FN+1 to
Σ \ Bad , increases N to N + 1, and sets q to an empty queue. This results in
the configuration κ′ = (N + 1, 〈F0,F1, . . . ,FN ,Σ \ Bad〉, ∅).

Termination. If there is an obligation (0, σ′) ∈ q , PDR terminates and reports
a counterexample. If q = ⊥, and there exists i < N such that Fi = Fi+1, PDR
terminates with a fixpoint and reports safety.

PDR is parametric in the generalization function Gen, the inductive gen-
eralization function IGen (typically only one of them is used), and the lifting
function OLift.

Remark 1 (Symbolic PDR). PDR is typically implemented as a SAT-based or
an SMT-based model checking algorithm. It uses formulas in (propositional or
first order) logic over a vocabulary V to describe states and sets of states. In
particular, a state is described as a cube over V , i.e., a conjunction of literals
(predicates or their negations) and a set (e.g., a frame Fi) is described as a
CNF formula over V , i.e., conjunction of clauses where each clause consists of a
disjunction of literals. The transition relation TR is also described by a formula,
over a double vocabulary V ∪ V ′, where V represents the current state and
V ′ = {v ′ | v ∈ V } represents the next state.

Checks such as
←−
TR(σ′) ∩ Fi−1 = ∅ are done by validity checks of the cor-

responding formulas, e.g. Fi−1(V ) ∧ TR(V ,V ′) ⇒ ¬σ′(V ′), or alternatively,
unsatisfiability checks of their negation, i.e., Fi−1(V ) ∧ TR(V ,V ′) ∧ σ′(V ′).
When the formula is satisfiable, a state σ ∈ ←−

TR(σ′) ∩ Fi−1 is retrieved from the
satisfying assignment.

In this setting, generalization, inductive generalization and lifting are per-
formed on a cube, representing a state, and a CNF formula, representing a
frame. They compute a CNF formula representing a set of states.

For example, a typical implementation of generalization Gen(σ′,Fi−1) looks
for a sub-clause c of the clause ¬σ′(V ) such that Init(V ) ⇒ c(V ) and Fi−1(V )∧
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TR(V ,V ′) ⇒ c(V ′). If this holds, then Gen(σ′,Fi−1) returns ¬c(V ) as a for-
mula representing the set of states to be removed from Fj for all j ≤ i . The
removal is performed by conjoining Fj with c. Inductive generalization is per-
formed similarly.

Obligations lifting was performed in the original PDR paper [3] statically
by considering the k-step cone of influence. [7] performed dynamic lifting using
ternary simulation. [4] suggested a SAT-based approach, using unsatisfiability
cores, for lifting.

8 PDR as a Property-Guided Abstract Interpretation
of the Cartesian Trace Semantics

In this section, we show that the collecting property-guided cartesian trace
semantics defined in Sect. 6 simulates PDR, or in other words, PDR is an imple-
mentation of the semantics. For this purpose we define a simulation relation map-
ping PDR configurations to elements of the semantics, given by sets of sequences.
We show that each step of PDR is simulated by a sequence of transitions of the
semantics, in the sense that the resulting PDR configuration matches the result-
ing element in the semantics.

The mapping between PDR configurations and elements of the semantics is
given by a compatibility relation defined below. It should be noted that while the
sequences of frames used by PDR are indexed such that F0 = Init and increasing
indices represent increasing distance (with respect to TR) from the initial states,
the sequences used by our semantics are indexed such that ω(0) = Bad and
increasing indices represent increasing distance (with respect to

←−
TR) from the

bad states. In this sense, the two consider opposite directions of the transition
relation.

Definition 2 (Compatibility). Let κ = (N , ϕ = 〈F0,F1, . . . ,FN 〉, q) be a
PDR configuration, and ω ∈ Ω. The intermediate forward sequence ϕ is proof-
compatible with ω if |ω| = |ϕ| = N + 1 and for every 0 ≤ i ≤ N , Fi =
Σ \ ω(N − i). An obligation (i , σ) ∈ q is cex-compatible with ω if |ω| ≥ i + 1
and σ ∈ ω(|ω| − 1 − i).

We say that κ is compatible with a set of sequences O ⊆ Ω, if

1. there exists ωϕ ∈ O such that ϕ is proof-compatible with ωϕ, and
2. either q = ⊥ or for every obligation ψ = (i , σ) ∈ q, there exists ωψ ∈ O such

that ψ is cex-compatible with ωψ.

We refer to ωϕ and ωψ as the witnessing sequences for ϕ and ψ, respectively.

Thus, proof-compatibility requires that that sequences ϕ and ω are “mirrors” of
each other combined with a pointwise complement operation. This also explains
the choice of the term “anti-frames” for the sets in a backward cartesian trace.
(See Sect. 5.) Cex-compatibility requires that the CTI σ which appears as an
obligation in index i with respect to ϕ, will appear in ω in distance i from the
end of the sequence.
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Lemma 6. The compatibility relation is a stuttering simulation between reach-
able PDR configurations and reachable elements of the collecting property-guided
cartesian trace semantics.

Proof. We prove the claim by showing that the initial configurations of PDR and
the semantics are compatible, and that every step of PDR maintains
compatibility.

Initial Configuration. Let κ0 be the initial configuration of PDR, and Ω̂
be the initial element of the semantics. Then ϕ0 = 〈Init ,Σ \ Bad〉 is proof-
compatible with the sequence ω̂2 = 〈Bad ,Σ \ Init〉 ∈ Ω̂, and q is empty, hence
cex-compatibility holds trivially.

Steps of PDR. Let κ = (N , ϕ, q) be a configuration of PDR (where N ≥ 1),
and let O be an element of the semantics such that κ is compatible with O . For
each possible step of PDR leading to κ′ = (N ′, ϕ′, q ′), we show a corresponding
sequence of TRBGE

P(Ω)(P) leading from O to O ′ such that κ′ is compatible with O ′.
Note that it suffices to show sequences of transitions of TRBGE

Ω (P) leading
to witnesses for ϕ′ and for the obligations in q ′ separately. Since TRBGE

P(Ω)(P) is
monotonic and accumulative (i.e., if ω ∈ O and O has a transition of TRBGE

P(Ω)(P)
to O ′′, then ω ∈ O ′′ as well), these sequences of transitions of TRBGE

Ω (P) can
then be lifted to transitions of TRBGE

P(Ω)(P), concatenated and applied on O to
obtain O ′. For the same reason it suffices to show such sequences of transitions
only for the components in the PDR configuration that have changed in the
step from κ to κ′: for an unchanged component, the same witness from O , which
exists in any subsequent element O ′′ of O , remains a witness.

Queue Initialization: κ′ = (N , ϕ, q ′) where q ′ is either ⊥, or a singleton
{(N − 1, σ)}. Consider first the case where q ′ = ⊥. In this case, κ′ is compatible
with the same O , i.e. no transition of the semantics is needed.

Consider now the case where q ′ = {(N −1, σ)}, where σ ∈ ←−
TR(Bad)∩FN−1.

Recall that O is a reachable element of the semantics. Therefore, Ω̂ ⊆ O . Starting
from ω̂N+1 ∈ Ω̂ ⊆ O we apply a pre-transition of the semantics in index 0 of
ω̂N+1, adding the set {σ} to ω̂N+1(1). The transition is applicable since σ ∈←−
TR(Bad) and ω̂N+1(0) = Bad . The result is ω′ of length N + 1 such that
σ ∈ ω′(1), where 1 = |ω′| − 1 − (N − 1). Hence (N − 1, σ) is cex-compatible
with ω′.

Backward Step: κ′ = (N , ϕ, q ′), where q ′ = q ∪ {(i − 1, σ)}. Let ω(i,σ′) be
the witnessing sequence for the obligation (i , σ′) which is the trigger for this
step (where |ω(i,σ′)| ≥ i + 1). Similarly to the case of queue initialization, we
use a pre-transition of the semantics in index |ω(i,σ′)| − 1 − i of ω(i,σ′) to add
{σ} to ω(i,σ′)(|ω(i,σ′)| − i), resulting in ω′

(i,σ′) of the same length, such that
σ ∈ ω′

(i,σ′)(|ω(i,σ′)| − i). Therefore, ω′
(i,σ′) is a witness for cex-compatibility of

the new obligation (i − 1, σ).

Obligation Lifting: q ′ = q ∪ ({i − 1} × S ). Similarly to the backward step, let
ω(i,σ′) be the witnessing sequence for the obligation (i , σ′) which is the trigger for
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the backward step responsible for lifting. A witness is obtained for all (i −1, σ) ∈
{i − 1} × S , by a pre-transition from ω(i,σ′) in index |ω(i,σ′)| − 1 − i adding S to
ω(i,σ′)(|ω(i,σ′)| − i). The pre-transition is applicable since S ⊆ ←−

TR(σ′).

Blocking: q ′ = q \ {(i , σ′)}, and ϕ′ = 〈F0, . . . ,Fi−1,Fi \ {σ′},Fi+1, . . . ,FN 〉,
where 1 ≤ i ≤ N . Since q ′ is a subset of q , the same witnessing sequences for
its obligations in O appear in every subsequent element of O . As for ϕ′, let
ωϕ ∈ O be a witnessing sequence for ϕ. Since

←−
TR(σ′) ∩ Fi−1 = ∅, we generate a

witnessing sequence for ϕ′ by applying a generalization transition on ωϕ at index
N − i (i.e., updating index N − i based on N − i + 1) using the set Y = {σ′},
similarly to the simulation of a generalization step of PDR (see below).

Generalization: In this case, ϕ′ = 〈F0 \S , . . . ,Fi \S ,Fi+1, . . . ,FN 〉. Let ωϕ =
〈Σ \ FN , . . . ,Σ \ F0〉 be a witnessing sequence for ϕ in O . We obtain ω′

ϕ by
a sequence of generalization transitions. For every j = 1, . . . , i (in increasing
order), starting from ω1 = ωϕ, we apply a generalization transition on ωj =
〈Σ \ FN , . . . ,Σ \ Fj ,Σ \ (Fj−1 \ S ), . . . ,Σ \ (F1 \ S ),Σ \ F0〉 in index N − j
(i.e., updating index N − j based on N − j + 1) using the set Y = S , leading
to ωj+1. By the requirements of Gen, Init ∩ S = ∅ and TR(Fi−1) ∩ S = ∅,
i.e.,

←−
TR(S ) ⊆ Σ \ Fi−1. Since Fj−1 ⊆ Fi−1 for every j ≤ i , we have that←−

TR(S ) ⊆ Σ\Fj−1. As such S indeed satisfies the requirements of a generalization
transition in index N − j of ωj . Finally, ωi+1 is a witnessing sequence for ϕ′.

Inductive Generalization: This step is similar to generalization, where now←−
TR(S ) ⊆ Σ \ Fj−1 does not necessarily hold, but

←−
TR(S ) ⊆ Σ \ (Fj−1 \ S ) holds

(since TR(Fi−1 \ S ) ∩ S = ∅). However, since the transitions are performed
from j = 1 and up, when the generalization transition is performed on ωj =
〈Σ \ FN , . . . ,Σ \ Fj ,Σ \ (Fj−1 \ S ), . . . ,Σ \ (F1 \ S ),Σ \ F0〉 in index N − j (i.e.,
updating index N − j based on N − j + 1) using the set Y = S , it is already
the case that ωj (N − j + i) = Σ \ (Fj−1 \ S ). Therefore,

←−
TR(S ) ⊆ ωj (N − j + i)

holds.

Forward Propagation: ϕ′ = 〈F0, . . . ,Fi ,Fi+1 ∪ S ,Fi+2, . . . ,FN 〉. Let ωϕ be a
witnessing sequence for ϕ in O . We obtain ω′

ϕ by a generalization transition on
ωϕ in index N − i − 1 (updating index N − i − 1 based on N − i).

Pushing Obligations Forward: Recall that in this case κ′ = (N , ϕ, q ∪ {(i +
1, σ)}). In this case, we show how to obtain a cex-witness ω′ for (i + 1, σ) by
a sequence of pre-transitions. By the property of the obligations in PDR, there
exists k and a sequence 〈σk , σk−1, . . . , σ0〉 such that σk = σ and σ0 ∈ Bad (i.e., σ
leads to a bad state in k steps). Therefore, starting from ω0 = ω̂i+2+k ∈ Ω̂ ⊆ O
of length i + 2 + k , we apply pre-transitions for every j = 0, . . . , k − 1 (in
increasing order) in index j of ωj , adding the singleton {σj+1} to the j + 1-th
index, resulting in ωj+1 where ωj+1(j +1) = ωj (j +1)∪{σj+1}. The result of the
transitions is ωk of length i+2+k such that σ ∈ ωk (k), where k = |ωk |−1−(i+1).
Hence (i + 1, σ) is cex-compatible with ωk .
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Unfolding: In this case, κ′ = (N +1, 〈F0,F1, . . . ,FN ,Σ\Bad〉, ∅). We show how
to obtain a witnessing sequence for ϕ′ = 〈F0,F1, . . . ,FN ,Σ\Bad〉 by a sequence
of generalization transitions. We utilize again the property of reachable elements
of the semantics which ensures that ω̂N+2 = 〈Bad〉∅N 〈Σ \ Init〉 ∈ Ω̂ ⊆ O . For
every i = 0, . . . ,N − 1 (in increasing order), starting from ω0 = ω̂N+2, we apply
a generalization transition on ωi = 〈Bad〉∅N−i〈Σ \ Fi , . . . ,Σ \ F1,Σ \ Init〉 in
index N − i (i.e., updating index N − i based on index N − i + 1) using the set
Y = Σ\Fi+1, leading to ωi+1 = 〈Bad〉∅N−i−1〈Σ\Fi+1, . . . ,Σ\F1,Σ\ Init〉. To
be convinced that the transition from ωi to ωi+1 is well defined, we recall the
properties of PDR. By the properties of PDR, for every 0 ≤ i < N , TR(Fi) ⊆
Fi+1, or equivalently,

←−
TR(Σ \ Fi+1) ⊆ Σ \ Fi . In addition, Init ⊆ Fi+1, or

equivalently (Σ \ Fi+1) ∩ Init = ∅. As such, Y = Σ \ Fi+1 indeed satisfies the
requirements of a generalization transition in index N − i of ωi . Finally, ωN is a
witnessing sequence for ϕ′. Since q ′ = ∅, no witnesses for cex-compatibility are
needed. ��
The proof of Lemma 6 shows that different components of the PDR configuration
correspond to different sequences in the element of the semantics, O . In this
sense, PDR can be thought of as trying to compute multiple sequences of the
semantics simultaneously, as it both tries to find counterexamples of different
lengths, and at the same time tries to verify safety.

Lemma 6 implies that all reachable configurations of PDR are compatible
with reachable configurations of the semantics. This holds in particular for ter-
minal configurations of PDR. We now show that the correctness of the output
of PDR in each of the terminal configurations follows from their compatibility
with an element of the semantics.

Counterexample: If there is an obligation (0, σ′) ∈ q , PDR terminates and
reports a counterexample. Such an obligation indicates that σ′ ∈ F0, i.e. σ′ ∈
Init . Lemma 6 ensures that there is a reachable element O of the semantics with
some ω ∈ O such that σ′ ∈ ω(|ω| − 1). Indeed, since σ′ ∈ Init , it follows that ω
has an error transition leading to � (the error state of the semantics).

Fixpoint: If q = ⊥, and there exists i < N such that Fi = Fi+1, PDR ter-
minates and reports safety. PDR has the property that when q = ⊥, the inter-
mediate forward sequence ϕ becomes a forward reachability sequence. Lemma 6
ensures that there is a reachable element O of the semantics with some ω ∈ O
such that ϕ is proof-compatible with ω. Due to the properties of a forward reach-
ability sequence (that hold for ϕ), and since Fi ⊆ Fi+1 and TR(Fi) ⊆ Fi+1

together imply (Σ \ Fi+1) ∪ ←−
TR(Σ \ Fi+1) ⊆ Σ \ Fi , it follows that ω has a

projected fixpoint at its N − i − 1 index.

Remark 2. PDR is sometimes implemented such that FN is initialized to Σ
rather than Σ\Bad . In this case, in the intermediate forward sequences, require-
ment 4 of Definition 1 might not hold for i = N (while requirement 3 holds for
all frames). States that violate requirement 4 are used as obligations at index N .
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Our semantics can simulate such implementations by letting a backward carte-
sian trace ω be a witness for an intermediate forward sequence ϕ if the suffix of
ω in which the first anti-frame ω(0) is truncated is compatible with ϕ.

9 Discussion, Related Work and Conclusions

Implementations of PDR use a symbolic representation of states and sets of
states, as formulas in logic. In the original description of PDR [3,7], addressing
finite state systems, propositional formulas over boolean variables are used. In
this setting, which is most suitable for hardware designs, a SAT solver is used to
preform one step reachability checks. In subsequent works which extended PDR
to software, formulas in various theories of first order logic are considered, and
SMT solvers are used instead of a boolean SAT solver. For example, [5] experi-
ments with Linear Rational Arithmetic, [2,9] handle Linear Real Arithmetic, [1]
handles Linear Integer Arithmetic, and [10] considers universal formulas in first
order logic. In our work, we use an explicit representation for the description of
PDR, which captures all of these frameworks, in order to provide a view of PDR
which is not restricted to a certain representation.

Our operational description of PDR is inspired by works such as [8,9] which
provide an abstract description of PDR and its operations in the form of an
abstract transition relation (described via formulas). However, we continue and
show how this maps to a property-guided abstract interpretation of the program.

We consider linear PDR, where the semantics of a program is given via its
traces (linear sequences). Some works (e.g. [5,9]) have considered the extension
of PDR to a non-linear search. [5] defined tree-IC3 which can be thought of as
performing PDR on each branch of a program’s control flow graph. Handling
such algorithms is the subject of future work.

Conclusions. We study, using abstract interpretation [6], the family of linear
property directed reachability verification algorithms that has been developed
following Bradley’s original PDR/IC3 algorithm PDR [3]. We show that existing
algorithms can be explained and proven sound by relating them to the actions of
a non standard semantics which abstracts bounded backward traces. Arguably,
the most surprising insight our work provides is that even though PDR is typi-
cally described as a forward analysis, it is in fact based on an abstraction of the
backward collecting trace semantics. Besides the conceptual elegance of explain-
ing existing algorithms (e.g. [1,2,7,9,10]) using (sequences of) two basic opera-
tions, we believe that our work would allow to explain and prove correct future
PDR-based verification algorithms in a more systematic and abstract way than
existing specialized techniques.
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Abstract. We present local policy iteration (LPI), a new algorithm for
deriving numerical invariants that combines the precision of max-policy
iteration with the flexibility and scalability of conventional Kleene iter-
ations. It is defined in the Configurable Program Analysis (CPA) frame-
work, thus allowing inter-analysis communication.

LPI uses adjustable-block encoding in order to traverse loop-free pro-
gram sections, possibly containing branching, without introducing extra
abstraction. Our technique operates over any template linear constraint
domain, including the interval and octagon domains; templates can also
be derived from the program source.

The implementation is evaluated on a set of benchmarks from the
International Competition on Software Verification (SV-COMP). It com-
petes favorably with state-of-the-art analyzers.

1 Introduction

Program analysis by abstract interpretation [1] derives facts about the execu-
tion of programs that are always true regardless of the inputs. These facts
are proved using inductive invariants, which satisfy both the initial condition
and the transition relation, and thus always hold. Such invariants are found
within an abstract domain, which specifies what properties of the program can
be tracked. Classic abstract domains for numeric properties include [products
of] intervals and octagons [2], both of which are instances of template linear
constraint domains [3].

Consider classic abstract interpretation with intervals over the program
int i=0; while (i < 1000000)i ++; After the first instruction, the analyzer has a
candidate invariant i ∈ [0, 0]. Going through the loop body it gets i ∈ [0, 1], thus
by least upper bound with the previous state [0, 0] the new candidate invari-
ant is i ∈ [0, 1]. Subsequent Kleene iterations yield [0, 2], [0, 3] etc. In order to
enforce the convergence within a reasonable time, a widening operator is used,
which extrapolates this sequence to [0, +∞). Then, a narrowing iteration yields
[0, 100000]. In this case, the invariant finally obtained is the best possible, but the
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same approach yields the suboptimal invariant [0, +∞) if an unrelated nested
loop is added to the program: while (i<100000) {while(unknown()){} i++;}.
This happens because the candidate invariant obtained with widening is its own
post-image under the nested loop, hence narrowing cannot shrink the invariant.

In general, widenings and narrowings are brittle: a small program change may
result in a different analysis behavior. Their result is non-monotone: a locally
more precise invariant at one point may result in a less precise one elsewhere.

Max-Policy Iteration. In contrast, max-policy iteration [4] is guaranteed to
compute the least inductive invariant in the given abstract domain1. To compute
the bound h of the invariant i ≤ h for the initial example above, it considers that
h must satisfy h = max i′ s.t. (i′ = 0) ∨ (i′ = i + 1 ∧ i < 10000000 ∧ i ≤ h) and
computes the least inductive solution of this equation by successively considering
separate cases:

(i) h = (max i′ s.t. i′ = 0) = 0, which is not inductive, since one can iterate
from i = 0 to i = 1.

(ii) h = max i′ s.t. i′ = i + 1 ∧ i < 1000000 ∧ i ≤ h, which has two solutions
over R∪{∞,−∞}: h = −∞ (representing unreachable state, discarded) and
h = 1000000, which is finally inductive.

Earlier presentations of policy iteration solve a sequence of global convex opti-
mization problems whose unknowns are the bounds (here h) at every program
location. Further refinements [5] allowed restricting abstraction to a cut-set [6] of
program locations (a set of program points such that the control-flow graph con-
tains no cycle once these points are removed), through a combination with satis-
fiability modulo theory (SMT) solving. Nevertheless, a global view of the program
was needed, hampering scalability and combinations with other analyses.

Contribution. We present the new local-policy-iteration algorithm (LPI) for
computing inductive invariants using policy iteration. Our implementation is
integrated inside the open-source CPAchecker [7] framework for software verifi-
cation and uses the maximization-modulo-theory solver νZ [8]. To the best of
our knowledge, this is the first policy-iteration implementation that is capable of
dealing with C code. We evaluate LPI and show its competitiveness with state-
of-the-art analyzers using benchmarks from the International Competition on
Software Verification (SV-COMP).

Our solution improves on earlier max-policy approaches:

(i) Scalability. LPI constructs optimization queries that are at most of the
size of the largest loop in the program. At every step we only solve the
optimization problem necessary for deriving the local candidate invariant.

(ii) Ability to Cooperate with Other Analyses. LPI is defined within the
Configurable Program Analysis (CPA) [9] framework, which is designed
to allow easy inter-analysis collaboration. Expressing policy iteration as a

1 It does not, however, necessarily output the strongest (potentially non-inductive)
invariant in an abstract domain, which in general entails solving the halting problem.
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fixpoint-propagation algorithm establishes a common ground with other
approaches (lazy abstraction, bounded model checking) and allows com-
municating with other analyses.

(iii) Precision. LPI uses adjustable-block encoding [10], and thus benefits from
the precision offered by SMT solvers, effectively checking executions of
loop-free program segments without the need for over-approximation. Path
focusing [5] has the same advantage, but at the cost of pre-processing the
control-flowgraph,which significantly hinders inter-analysis communication.

Related Work. Policy iteration is not as widely used as classic abstract inter-
pretation and (bounded) model checking. Roux and Garoche [11] addressed a
similar problem of embedding the policy-iteration procedure inside an abstract
interpreter, however their work has a different focus (finding quadratic invari-
ants on relatively small programs) and the policy-iteration algorithm remains
fundamentally un-altered. The tool ReaVer [12] also performs policy iteration,
but focuses on efficiently dealing with logico-numerical abstract domains; it only
operates on Lustre programs. The ability to apply policy iteration on strongly
connected components one by one was (briefly) mentioned before [13]. Our paper
takes the approach significantly further, as our value-determination problem
is more succinct, we apply the principle of locality to the policy-improvement
phase, and we formulate policy iteration as a classic fixpoint-iteration algorithm,
enabling communication with other analyses. Finally, it is possible to express the
search for an inductive invariant as a nonlinear constraint solving problem [14] or
as a quantifier elimination problem [15], but both these approaches scale poorly.

2 Background

We represent a program P as a control flow automaton (CFA) (nodes,X, edges),
where nodes is a set of control states, and X = {x1, . . . , xn} are the variables
of P . Each edge e ∈ edges is a tuple (A, τ(X,X ′), B), where A and B are
nodes, and τ(X,X ′) is a transition relation: a formula defining the semantics
of a transition over the set of input variables X and fresh output variables X ′.
A concrete state of the program P is a map X → Q from variables to rationals2.
A set C of concrete states is represented using a first-order formula φ with free
variables from X, such that for all c ∈ C we have c |= φ.

Template Linear Constraint Domains. A template linear constraint is a
linear inequality t · X ≤ b where t is a vector of constants (template), and b
is an unknown. A template linear constraint domain [3] (TCD) is an abstract
domain defined by a matrix of coefficients aij , which determines what template
linear constraints are expressible within the domain: each row t of the matrix
is a template (the word “template” also refers to the symbolic product t · X,
e.g. i + 2j). An abstract state in a TCD is defined by a vector (d1, . . . , dm)
and represents the set

∧m
i=1 ti · X ≤ di of concrete states. The di’s range over

extended rationals (R∪{∞,−∞}), where positive infinity represents unbounded

2 We support integers as well, as explained in Sect. 4.
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int i=0;

int j=0;

while (i<10)

i++;

while (j<10)

j++;

I

A

BC

i′ = 0 ∧ j′ = 0

i < 10 ∧ i′ = i + 1

¬(i < 10)

j < 10 ∧ j′ = j + 1¬(j < 10)

Fig. 1. Running example – C program and the corresponding CFA

templates and negative infinity represents unreachable abstract states. The domain
of products of intervals is one instance of TCD, where the templates are ±xi ≤ ci
for program variables xi. The domain of octagons [2] is another, with templates
±xi ± xj and ±xi. Any template linear constraint domain is a subset of the
domain of convex polyhedra [16].

The strongest abstract postcondition in a TCD is defined by optimization:
maximizing all templates subject to the constraints introduced by the semantics of
the transition and the previous abstract state. For the edge e = (A, τ(X,X ′), B),
previous abstract state D = (d1, . . . , dm), and a set {t1, . . . , tm} of templates, the
output abstract state is D′ = (d′

1, . . . , d
′
m) with

d′
i = (max ti · X ′ s.t.

∧
i ti · X ≤ di ∧ τ(X,X ′))

For example, for the abstract state i ≤ 0 ∧ j ≤ 0 under the transition
i′ = i + 1 ∧ i ≤ 10 the new abstract state is i ≤ di ∧ y ≤ dj , where
di = max i′ s.t. i ≤ 0 ∧ j ≤ 0 ∧ i′ = i + 1 ∧ i < 10 ∧ j′ = j and dj is the
result of maximizing j′ subject to the same constraints. This gets simplified to
i ≤ 1 ∧ j ≤ 0.

Kleene iterations in a TCD (known as value iterations) may fail to converge in
finite time, thus the use of widenings, which result in hard-to-control imprecision.

Policy Iteration. Policy iteration addresses the convergence problem of value-
iteration algorithms by operating on an equation system that an inductive invari-
ant has to satisfy. Consider the running example shown in Fig. 1. Suppose we
analyze this program with the templates {i, j}, and look for the least inductive
invariant D = (diA, djA, diB , djB) that satisfies the following for all possible execu-
tions of the program (xN denotes the value of the variable x at the node N):

iA ≤ diA ∧ iB ≤ diB ∧ jA ≤ djA ∧ jB ≤ djB

To find it, we solve for the smallest D that satisfies the fixpoint equation [system]
for the running example, stating that the set of abstract states represented by
D is equal to its strongest postcondition within the abstract domain:
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diA = sup i′ s.t. (i′ = 0 ∧ j′ = 0)

∨ (i ≤ di
A ∧ j ≤ dj

A ∧ i < 10 ∧ i′ = i + 1 ∧ j′ = j) ∨ ⊥
djA = sup j′ s.t. (i′ = 0 ∧ j′ = 0)

∨ (i ≤ diA ∧ j ≤ dj
A ∧ i < 10 ∧ i′ = i + 1 ∧ j′ = j) ∨ ⊥

diB = sup i′ s.t. (¬(i < 10) ∧ i ≤ diA ∧ j′ ≤ djA ∧ i′ = i)

∨ (i ≤ di
B ∧ j ≤ dj

B ∧ j < 10 ∧ j′ = j + 1 ∧ i′ = i) ∨ ⊥
djB = sup j′ s.t. (¬(i < 10) ∧ i ≤ diA ∧ j′ ≤ djA ∧ i′ = i)

∨ (i ≤ diB ∧ j ≤ dj
B ∧ j < 10 ∧ j′ = j + 1 ∧ i′ = i) ∨ ⊥

Note the equation structure: (i) Disjunctions represent non-deterministic
choice for a new value. (ii) The argument ⊥ is added to all disjunctions, repre-
senting infeasible choice, corresponding to the bound value −∞. (iii) Supremum
is taken because the bound must be higher than all the possible options, and it
has to be −∞ if no choice is feasible.

A simplified equation system with each disjunction replaced by one of its
arguments is called a policy. The least solution of the whole equation system
is the least solution of at least one policy (obtained by taking the solution,
and picking one argument for each disjunction, such that the solution remains
unchanged). Policy iteration finds the least tuple of unknowns (d’s) satisfying
the fixpoint equation by iterating over possible policies, and finding a solution
for each one.

For program semantics consisting of linear assignments and possibly non-
deterministic guards it is possible to find a fixpoint of each policy using one
linear programming step. This is based on the result that for a monotone and
concave function3 f and x0 such that f(x0) > x0, the least fixpoint of f greater
than x0 can be computed in a single step4.

It is possible to solve the global equation system by solving all (exponen-
tially many) policies one by one. Instead, policy iteration [4] computes solutions
for a sequence of policies; each solution is guaranteed to be less than the least
solution of the original equation system, and the solutions form an ascending
sequence. The iteration starts with the policy having least possible value (⊥ for
each disjunction, the solution is −∞ assignment to all unknowns), and eventually
terminates when a solution of the original equation system (an inductive invari-
ant) is found. The termination is guaranteed as there is only a finite number of
solutions.

For each policy the algorithm finds a global value: the least fixpoint in the
template constraints domain of the reduced equation system. For instance, in
the running example, for the policy di

A = sup i′ s.t. i′ = 0 ∧ j′ = 0 (only one
unknown is shown for brevity) the global value is di

A = 0. This step is called value
determination. After the global value is computed the algorithm checks whether
the policy can be improved : that is, whether we can find another policy that
3 Order-concave in the presence of multiple templates, see [4] for detailed discussion.
4 Over rationals, we discuss the applicability to integers in Sect. 4.
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will yield a larger value than the previously obtained global value. In the running
example we want to test the following policy for the possibility of improvement:

di
A = sup i′ s.t. (i ≤ diA ∧ j ≤ diA ∧ i < 10 ∧ i′ = i + 1 ∧ j′ = j)

We do so by computing the local value: substituting the unknown (diA) on the
right hand side with the value from the previously obtained global value, and
checking whether the result is greater than the previously obtained bound. In
our example we get the local value diA = 1, which is indeed an improvement
over di

A = 0 (policy-improvement step). After the policy is selected, we go back
to the value-determination step, obtaining diA = 10, and we repeat the process
until convergence (reaching a step where no policy can be further improved).

Under the assumption that the operations on the edges can be expressed
as conjunctions of linear (in)equalities, it can be shown [4] that: (i) The value-
determination step can be performed with linear programming. (ii) The resulting
value is an under-approximation of the least inductive invariant. (iii) Each pol-
icy is selected at most once and the final fixed point yields the least inductive
invariant in the domain.

Example 1 (Policy-Iteration Trace on the Running Example). We solve for the
unknowns (diA, djA, diB , djB), defining a (global) abstract value v.

In our example, disjunctions arise from multiple incoming edges to a single
node, hence a policy is defined by a choice of an incoming edge per node per
template, or ⊥ if no such choice is feasible. We represent a policy symbolically as
a 4-tuple of predecessor nodes (or ⊥), as there are two nodes, with two policies
to be chosen per node. The order corresponds to the order of the tuple of the
unknowns. The initial policy s is (⊥,⊥,⊥,⊥). The trace on the example is:

1. Policy improvement: s = (I, I,⊥,⊥),
obtained with a local value (0, 0,−∞,−∞).

2. Value determination: corresponds to the initial condition v = (0, 0,−∞,−∞).
3. Policy improvement: s = (A, I,⊥,⊥), selecting the looping edge, local value

is (1, 0,−∞,−∞).
4. Value determination: accelerates the loop convergence to v = (10, 0,−∞,−∞).
5. Policy improvement: s = (A, I,A,A), with a local value (10, 0, 10, 0) finally

there is a feasible policy for the templates associated with the node B.
6. Value determination: does not affect the result v = (10, 0, 10, 0).
7. Policy improvement: select the second looping edge: s = (A, I,A,B) obtaining

a local value (10, 0, 10, 1).
8. Value determination: accelerate the second loop to v = (10, 0, 10, 10).
9. Finally, the policy cannot be improved any further and we terminate.

On this example we could have obtained the same result by Kleene itera-
tion, but in general the latter might fail to converge within finite time. The
usual workaround is to use heuristic widening, with possible and hard-to-control
imprecision. Our value-determination step can be seen as a widening that pro-
vides an under-approximation to the least fixed point.
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Each policy improvement requires at least four (small) linear programming
(LP) queries, and each value determination requires one (rather large) LP query.

Path Focusing and Large-Block Encoding. In traditional abstract inter-
pretation and policy iteration, the obtained invariant is expressed as an abstract
state at each CFA node. This can lead to a significant loss in precision: for
instance, since most abstract domains only express convex properties, it is impos-
sible to express |x| ≥ 1, which is necessary to prove this assertion:
if (abs(x) >= 1) { assert(x != 0); }

This loss can be recovered by reducing the number of “intermediate”
abstract states by allowing more expressive formulas associated with edges.
Formally, two consecutive edges (A, τ1(X,X ′), B) and (B, τ2(X,X ′), C), with
no other edges incoming or outgoing to B can be merged into one edge
(A, τ1(X, X̂) ∧ τ2(X̂,X ′), C). Similarly, two parallel edges (A, τ1(X,X ′), B) and
(A, τ2(X,X ′), B), with no other edges incoming to B can be replaced by a new
edge (A, τ1(X,X ′) ∨ τ2(X,X ′), B). For a well-structured CFA, repeating this
transformation in a fixpoint manner (until no more edges can be merged) will
lead to a new CFA where the only remaining nodes are loop heads.

Such a transformation was shown to increase both precision and performance
for model checking [17]. Adjustable block encoding [10] gets the same advan-
tages without the need for CFA pre-processing. Independently, the approach
was applied with the same result to Kleene iterations [18] and to max-policy
iterations [5]. In fact, the CFA in Fig. 1 was already reduced in this manner for
the ease of demonstration.

On the reduced CFA the number of possible policies associated with a single
edge becomes exponential, and explicitly iterating over them is no longer feasible.
Instead, the path focusing approach uses a satisfiability modulo theory (SMT)
solver to select an improved policy.

Configurable Program Analysis. CPA [9] is a framework for expressing
algorithms performing program analysis. It uses a generic fixpoint-computation
algorithm, which is configured by a given analysis. We formulate LPI as a CPA.

The CPA framework makes no assumptions on the performed analysis, thus
many analyses were successfully expressed and implemented within it, such as
bounded model checking, abstract interpretation and k-induction (note that an
analysis defined within the framework is also referred to as a CPA).

Each CPA configures the fixpoint algorithm by providing an initial abstract
state, a transfer relation (specifying how to produce successors), a merge operator
(specifying whether and how to merge abstract states), and a stop operator
(specifying whether a newly produced abstract state is covered). The algorithm
keeps a set of reached abstract states and a list of “frontier” abstract states, and
at each step produces successor states from the frontier states using the transfer
relation, and then tries to merge the new states with existing states using the
merge operator. If a new state is covered by the set of reached states according
to the stop operator, it is discarded, otherwise it is added to the set of reached
states and the list of frontier states. We show the CPA algorithm as Algorithm1.
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Algorithm 1. CPA Algorithm (taken from [9])
1: Input: a CPA (D, transfer-relation, merge, stop), an initial abstract state e0 ∈ E

(let E denote the set of elements of the semi-lattice of D)
2: Output: a set of reachable abstract states
3: Variables: a set reached of elements of E, a set waitlist of elements of E
4: waitlist ← {e0}
5: reached ← {e0}
6: while waitlist �= ∅ do
7: Pop e from waitlist
8: for all e′ ∈ transfer-relation(e) do
9: for all e′′ ∈ reached do

10: � Combine with existing abstract state
11: enew ← merge(e′, e′′)
12: if enew �= e′′ then
13: waitlist ← (waitlist ∪ {enew}) \ {e′′}
14: reached ← (reached ∪ {enew}) \ {e′′}
15: � Whether e′ is already covered by existing states
16: if ¬stop(e′, reached) then
17: waitlist ← waitlist ∪ {e′}
18: reached ← reached ∪ {e′}
19: return reached

3 Local Policy Iteration (LPI)

The running example presented in the background (Example 1) has four value-
determination steps and five policy-improvement steps. Each policy-improvement
step corresponds to at most #policies × #templates × #nodes LP queries,
and each value-determination step requires solving an LP problem with at least
#policies × #templates × #nodes variables. Most of these queries are redun-
dant, as the updates propagate only locally through the CFA: there is no need
to re-compute the policy if no new information is available.

We develop a new policy-iteration-based algorithm, based on the principle of
locality, which aims to address the scalability issues and the problem of commu-
nicating invariants with other analyses. We call it local policy iteration or LPI.
To make it scalable, we consider the structure of a CFA being analyzed, and we
aim to exploit its sparsity.

A large majority of (non-recursive) programs are well-structured: they con-
sist of statements and possibly nested loops. Consider checking a program P
against an error property E. If P has no loops, it can be converted into a sin-
gle formula Ψ(X ′), and an SMT solver can be queried for the satisfiability of
Ψ(X ′) ∧ E(X ′), obtaining either a counter-example or a proof of unreachability
of E. However, in the presence of loops, representing all concrete states reach-
able by a program as a formula over concrete states in a decidable first-order
logic is impossible, and abstraction is required. For example, bounded model
checkers unroll the loop, lazy-abstraction-based approaches partially unroll the
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loop and use the predicates from Craig interpolants to “cover” future unrollings,
and abstract interpretation relies on abstraction within an abstract domain.

In LPI, we use the value-determination step to “close” the loop and compute
the fixpoint value for the given policy. Multiple iterations through the loop might
be necessary to find the optimal policy and reach the global fixpoint. In the
presence of nested loops, the process is repeated in a fixpoint manner: we “close”
the inner loop, “close” the outer loop with the new information from the inner
loop available, and repeat the process until convergence. Each iteration selects
a new policy, thus the number of possible iterations is bounded.

Formally, we state LPI as a Configurable Program Analysis (CPA), which
requires defining the lattice of abstract states, the transfer relation, the merge
operator, and the stop operator. The CPA for LPI is intended to be used in com-
bination with other CPAs such as a CPA for tracking location information (the
program counter), and thus does not need to keep track of this information itself.
To avoid losing precision, we do not express the invariant as an abstract state at
every node: instead the transfer relation operates on formulas and we only per-
form over-approximation at certain abstraction points (which correspond to loop
heads in a well-structured CFA ). This approach is inspired by adjustable-block
encoding [10], which performs the same operation for predicate abstraction. One
difference to path focusing [18] is that we still traverse intermediate nodes, which
facilitates inter-analysis communication.

We introduce two lattices: abstracted states (not to be confused with abstract
states in general: both intermediate and abstracted states are abstract) for states
associated with abstraction points (which can only express abstract states in the
template constraints domain) and intermediate states for all others (which can
express arbitrary concrete state spaces using decidable SMT formulas).

An abstracted state is an element of a template constraints domain with
meta-information added to record the policy being used.

Definition 1 (Abstracted State). An abstracted state is a mapping from the
externally given set T of templates to tuples (d, policy, backpointer), where d ∈ R

is a bound for the associated template t (the represented property is t · X ≤ d),
policy is a formula representing the policy that was used for deriving d (policy
has to be monotone and concave, and in particular contain no disjunctions), and
backpointer is an abstracted state that is a starting point for the policy (base
case is an empty mapping).

The preorder on abstracted states is defined by component-wise comparison of
bounds associated with respective templates (lack of a bound corresponds to an
unbounded template). The concretization is given by the conjunction of
represented template linear constraints, disregarding policy and backpointer
meta-information. For example, an abstracted state {x : (10, , )} (underscores
represent meta-information irrelevant to the example) concretizes to
{c | c[x] ≤ 10}, and the initial abstracted state {} concretizes to all concrete states.

Intermediate states represent reachable state-spaces using formulas directly,
again with meta-information added to record the “used” policy.
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Algorithm 2. LPI Abstraction
1: Input: intermediate state (a0, φ), set T of templates
2: Output: generated abstracted state new
3: new ← empty abstracted state
4: for all template t ∈ T do
5: φ̂ ← φ with disjunctions annotated using a set of marking variables M

6: � Maximize subject to the constraints introduced by the formula
7: � and the starting abstracted state.
8: d ← max t · X ′ subject to φ̂(X, X ′) ∧ a0

9: M ← model at the optimal

10: � Replace marking variables M in φ̂ with their value from the model M,
11: � generating a concave formula that represents the policy.
12: Policy ψ ← φ̂[M/M]
13: new [t] ← (d, ψ, a0)
14: return new

Definition 2 (Intermediate State). An intermediate state is a tuple (a0, φ),
where a0 is a starting abstracted state, and φ(X,X ′) is a formula over a set of
input variables X and output variables X ′.

The preorder on intermediate states is defined by syntactic comparison only:
states with identical starting states and identical formulas are deemed equal,
and incomparable otherwise. The concretization is given by satisfiable assign-
ments to X ′ subject to φ(X,X ′) and the constraints derived from a0 applied to
input variables X. For example, an intermediate state ({x : (10, , )}, x′ = x + 1)
concretizes to the set {c | c[x] ≤ 11} of concrete states.

Abstraction (Algorithm 2) is the conversion of an intermediate state (a0, φ)
to an abstracted state, by maximizing all templates t ∈ T subject to constraints
introduced by a0 and φ, and obtaining a backpointer and a policy from the pro-
duced model M. This amounts to selecting the appropriate disjuncts in each
disjunction of φ. To do so, we annotate φ with marking variables: each dis-
junction τ1 ∨ τ2 in φ is replaced by (m ∧ τ1) ∨ (¬m ∧ τ2) where m is a fresh
propositional variable. A policy associated to a bound is then identified by the
values of the marking variables at the optimum (subject to the constraints intro-
duced by φ and a0), and is obtained by replacing the marking variables in φ
with their values from M. Thus the abstraction operation effectively performs
the policy-improvement operation for the given node, as only the policies which
are feasible with respect to the current candidate invariant (given by previous
abstracted state) are selected.

Example 2 (LPI Propagation and Abstraction) Let us start with an abstracted
state a = {x : (100, , )} (which concretizes to {c | c[x] ≤ 100}, underscores
stand for some policy and some starting abstracted state) and a set {x} of
templates.

After traversing a section of code if(x <= 10){x += 1;} else {x = 0;} we
get an intermediate state (a, φ) with φ = (x ≤ 10 ∧ x′ = x + 1 ∨ x > 10 ∧ x′ = 0)
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Algorithm 3. Local Value Determination
1: Input: node n, map influencing from nodes to abstracted states, set T of templates
2: Output: generated abstracted state new
3: constraints ← ∅
4: for all node ni ∈ influencing do
5: state s ← influencing [ni]
6: for all template t ∈ s do
7: (bound d, policy ψ, backpointer a0) ← s[t]
8: Generate a unique string namespace

9: � Prefix all variables in ψ.
10: � X ′

namespace , Xnamespace is a set of namespaced output/input variables for ψ.
11: constraints ← constraints ∪ {ψ[X/Xnamespace ][X

′/X ′
namespace ]

}

12: dt
ni

← fresh variable (upper bound on t at n)
13: constraints ← constraints ∪ {dt

ni
= t · X ′

namespace

}

14: n0 ← location associated with a0

15: for all t0 ∈ a0 do
16: constraints ← constraints ∪ {t0 · Xnamespace ≤ dt0

n0

}

17: new ← empty abstracted state
18: for all templates t ∈ T do
19: (d0, ψ, a0) ← influencing [n]
20: d ← max dt

n subject to constraints
21: new [t] ← (d, ψ, a0)
22: return new

and a backpointer to the starting abstracted state a. Suppose in our example
the given C code fragment ends with a loop head. Then we use abstraction
(Algorithm 2) to convert the intermediate state (a, φ) into a new abstracted
state.

Firstly, we annotate φ with marking variables, which are used to identify the
selected policy, obtaining x ≤ 10 ∧ x′ = x + 1 ∧ m1 ∨ x > 10 ∧ x′ = 0 ∧ ¬m1.
Afterwards, we optimize the obtained formula (together with the constraints
from the starting abstracted state a) for the highest values of templates. This
amounts to a single OPT-SMT query:

supx′ s.t. x ≤ 100 ∧ (x ≤ 10 ∧ x′ = x + 1 ∧ m1 ∨ x > 10 ∧ x′ = 0 ∧ ¬m1)

The query is satisfiable with a maximum of 11, and an SMT model M : {x′ :
11,m1 : true, x : 10}. Replacing the marking variable m1 in φ with its value in M
gives us a disjunction-free formula x ≤ 10∧x′ = x+1, which we store as a policy.
Finally, the newly created abstracted state is {x : (11, x ≤ 10 ∧ x′ = x + 1, a)}.

The local value-determination step (Algorithm 3) computes the least fixpoint
for the chosen policy across the entire strongly connected component where the
current node n lies. The algorithm starts with a map influencing from nodes to
abstracted states, which is generated by transitively following policy backpoint-
ers, and converting the resulting set of abstracted states to a map5. From this
5 The are no collisions as abstracted states are joined at nodes.
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map, we generate a global optimization problem, where the set of fresh variables
dtni

represents the maximal value a template t can obtain at the node ni using
the policies selected. Variable dtni

is made equal to the namespaced6 output value
of the policy ψ(X,X ′) chosen for t at ni (line 13). For each policy ψ and the
associated backpointer a0, we constrain the input variables of ψ using a set of
variables dt0

n0
representing bounds at the node n0 associated with a0 (line 16).

This set of “input constraints” for value determination results in a quadratic
number of constraints in terms of the number of selected policies. Finally, for
each template t we maximize for dt

n (line 20), which is the maximum possible
value for t at node n under the current policy, and we record the bound in the
generated abstracted state (line 21), keeping the old policy and backpointer.

The local-value-determination algorithm is almost identical to max-strategy
evaluation [5], except for two changes: we only add potentially relevant con-
straints from the “closed” loop (found by traversing backpointers associated
with policies), and we maximize objectives one by one, not for their sum (which
avoids special casing infinities, and enables optimizations outlined in Sect. 4).
Unlike classic policy iteration, we only run local value determination after merges
on loop heads, because in other cases the value obtained by abstraction is the
same as the value which could be obtained by value determination.

Formulation as a CPA. The initial state is the abstracted state{}(empty map),
representing � of the template constraints domain. The stop operator checks
whether a newly created abstracted state is covered by one of the existing
abstracted states using the preorder described above. The transfer relation finds
the successor state for a given CFA edge. It operates only on intermediate states
– an abstracted state a0 is firstly converted to the intermediate state (a0, true).
Then, the transfer-relation operator runs symbolic execution: the successor of
an intermediate state (a, φ(X,X ′)) under the edge (A, τ(X,X ′), B) is the inter-
mediate state (a, φ′(X,X ′)) with φ′(X,X ′) ≡ ∃X̂.φ(X, X̂) ∧ τ(X̂,X ′). If the
successor node is a loop head, then abstraction (Algorithm 2) is performed on
the resulting state.

The merge operator has two operation modes, depending on whether we are
dealing with abstracted states or with intermediate states.

For two abstracted states, we perform the join: for each template, we pick
the largest bound out of the two possible, and we keep the corresponding policy
and the backpointer. If the merge “closes” the loop (that is, we merge at the
loop head, and one of the updated policies has a backpointer to a state inside the
loop), we find the map influencing by recursively following the backpointers of
the joined state, and run local value determination (Algorithm 3). For two inter-
mediate states (a1, φ1) and (a2, φ2) with a1 identical to a2 the merge operator
returns the disjunction (a1, φ1 ∨ φ2). Otherwise, we keep the states separate.

The local-value-determination problem only contains the constraints result-
ing from policies of the abstracted states associated with nodes in the cur-
rent loop. This optimization does not affect the invariant as only the nodes
6 Namespacing means creating fresh copies by attaching a certain prefix to variable

names.
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dominating the loop head can change it. Of those, only the invariants of the
nodes reachable from the loop head can be affected by the computation: i.e., the
strongly connected component of n.

Properties of LPI
Soundness. LPI, like any configurable program analysis, terminates when no
more updates can be performed, and newly produced abstract states are sub-
sumed (in the preorder defined by the lattice) by the already discovered ones.
Thus, it is an inductive invariant: the produced abstract states satisfy the initial
condition and all successor states are subsumed by the existing invariant. Hence
the obtained invariant is sound.

Termination. An infinite sequence of produced abstract states must contain
infinitely many abstracted states, as they are associated with loop heads. How-
ever, each subsequent abstraction on the same node must choose a different
policy to obtain a successively higher value, but the number of policies is finite.
An infinite sequence is thus impossible, hence termination.

Optimality. In the absence of integers, LPI terminates with the same invariant
as classical policy iteration with SMT [5]. The outline of the proof is that LPI can
be seen as an efficient oracle for selecting the next policy to update (note that
policies selected by LPI are always feasible with respect to the current invari-
ant candidate). Skipping value-determination steps when they have no effect,
and attempting to include only relevant constraints in the value-determination
problem do not alter the values of obtained fixed points.

Example 3 (LPI Trace on the Running Example) We revisit the running example
(Fig. 1) with LPI:

1. We start with the empty abstracted state a0 ≡ {}.
2. Transfer relation under the edge (I, φ1, A) produces the new intermediate

state (a0, i
′ = 0 ∧ j′ = 0) associated with A. As A is a loop head, we perform

an abstraction to obtain the abstracted state a1 ≡ {i : (0, , a0) , j : (0, , a0)}
(corresponding to i ≤ 0 ∧ j ≤ 0) [2 linear programming problems].

3. Transfer relation explores the edge (A,φ2, A) and produces the intermediate
state (a1, i ≤ 0 ∧ j′ ≤ 0 ∧ i′ = i + 1). Again we perform an abstraction, obtain-
ing the abstracted state a2 ≡ {i : (1, , a1) , j : (0, , a1)} [2 LP problems].

4. The merge operator on node A merges the new state a2 with the previous
state a1, yielding the abstracted state a3 ≡ {i : (1, , a1) , j : (0, , a0)}. Value
determination “closes” the loop, producing a4 ≡ {i : (10, , a1) , j : (0, , a0)}.
[1 LP problem].

5. Transfer relation explores the edge (A,φ3, B) and produces the intermediate
state (a3, i

′ ≤ 10 ∧ (¬i′ < 10) ∧ j′ ≤ 0), which is abstracted to
a5 ≡ {i : (10, , a4) , j : (0, , a4)} [2 LP problems].
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6. The edge (B,φ4, B) is explored, resulting in the intermediate state
(a4, i

′ ≤ 10 ∧ j ≤ 0 ∧ j′ = j + 1), which is abstracted into
a6 ≡ {i : (10, , a5) , j : (1, , a5)} [2 LP problems].

7. Value determination produces the state a7 ≡ {i : (10, , a4) , j : (10, , a5)},
and the exploration concludes. [1 LP problem].

Compared to the original algorithm there are two value-determination prob-
lems instead of four, both on considerably smaller scale. There are also only
ten LP problems, compared to more than twenty in the original version. The
improvement in performance is more than a fixed constant: if the number of
independent loops in the running example was to increase from 2 to N , the
increase in the analysis time of classic policy iteration would be quadratic, while
LPI would scale linearly.

4 Extensions and Implementation Aspects

Template Synthesis. The template constraints domain requires templates
defined for the given program. In LPI, we can simulate the interval and octagon
domains by synthesizing templates of the form ±x, ±x±y for every numeric vari-
able x, y in the program alive at the given program node. Moreover, the templates
can be synthesized from error properties: e.g. for assert(x >= 2 * y) we could
generate the templates ±(x − 2y).

We show the analysis time of LPI (excluding startup and parsing) in the
interval-domain-mode vs. octagon-domain-mode in Fig. 2 (each data point cor-
responds to an analyzed program). The number of octagon templates is quadratic
in terms of the number of interval templates, thus we expect a quadratic rise in
analysis time, however in practice we observe a sub-quadratic increase.

This has motivated us to experiment with simulating a more expressive
domain. We generate templates ±2x ± y, ±x ± y ± z, and even ±2x ± y ± z, for
every possible combination of live variables x, y, z at the given program location.
Using this new “rich” template generation strategy we achieve a significant pre-
cision improvement as shown by the number of verified programs in the legend
of Fig. 3a.

Dealing With Integers. Original publications on max-policy iteration in tem-
plate constraints domain deal exclusively with reals, whereas C programs oper-
ate primarily on integers7. Excessively naive handling of integers leads to poor
results: with an initial condition x = 0, x ∈ [0, 4] is inductive for the transition
system x′ = x + 1 ∧ x �= 4 in integers, but not in rationals, due to the possibility
of the transition x = 3.5 to x = 4.5. An obvious workaround is to rewrite each
strict inequality a < b into a ≤ b − 1: on this example, the transition becomes
x = x + 1 ∧ (x ≤ 3 ∨ x ≥ 5) and x ∈ [0, 4] becomes inductive on rationals. How-
ever, to make use of data produced by an additional congruence analysis, we use
7 Previous work [19] deals with finding the exact interval invariants for programs

involving integers, but only for a very restricted program semantics.
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Fig. 2. Octagon vs. interval LPI analysis time (dataset and setup as in Sect. 5)

optimization modulo theory with integer and real variables for abstraction, and
mixed integer linear programming for value determination.

Unfortunately, linear relations over the integers are not concave, which is a
requirement for the least fixpoint property of policy iteration. Thus the encoding
described above may still result in an over-approximation. Consider the following
program:

x=0; x new=unknown();
while (2 * x new == x+2) {

x = x new; x new = unknown();
}

LPI terminates with a fixpoint x ≤ 2, yet the least fixpoint is x ≤ 1.

Congruence. A congruence analysis which tracks whether a variable is even or
odd can be run in parallel with LPI (a more general congruence analysis may
be used, but we did not find the need for it on our examples). During the LPI
abstraction step, the congruence information is conjoined to the formula being
maximized, and the bounds from LPI are used for the congruence analysis.

This combination enhances the precision on our dataset (cf. Fig. 3a), and
demonstrates the usefulness of expressing policy iteration as a typical fixpoint
computation. Furthermore, it provides a strong motivation to use integer formu-
las for integer variables in programs, and not their rational relaxation.

Optimizations In Sect. 3 we describe the local value-determination algorithm
which adds a quadratic number of constraints in terms of policies. In practice this
is often prohibitively expensive. The quadratic blow-up results from the “input”
constraints to each policy, which determine the bounds on the input variables.
We propose multiple optimization heuristics which increase the performance.

As a motivation example, consider a long trace ending with an assignment
x = 1. If this trace is feasible and chosen as a policy for the template x, the
output bound will be 1, regardless of the input. With that example in mind,
consider the abstraction procedure from which we derive the bound d for the
template t. Let ( , φ(X,X ′)) be the intermediate state used for the abstraction
(Algorithm 2). We check the satisfiability of φ(X,X ′)∧ t ·X ′ > d; if the result is
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unsatisfiable, then the bound of t is input-independent, that is, it is always d if
the trace is feasible. Thus we do not add the input constraints for the associated
policy in the value-determination stage. Also, when computing the map influ-
encing from nodes to abstracted states for the value-determination problem, we
do not follow the backpointers for input-independent policies, potentially drasti-
cally shrinking the resulting constraint set. Similarly, if none of the variables of
the “input template” occur in the policy, the initial constraint is irrelevant and
can be dropped.

Furthermore, we limit the size of the value-determination LP by merging
some of the unknowns. This is equivalent to equating these variables, thus
strengthening the constraints. The result thus under-approximates the fixed
point of the selected policy. If it is less than the policy fixed point (not inductive
with respect to the policy), we fall back to the normal value determination.

During abstraction on the intermediate state (a0, ψ), we may skip the opti-
mization query based on a syntactic check: if we are optimizing for the tem-
plate t, and none of the variables of t occur in ψ, we return the bound associated
with a0[t].

Additionally, during maximization we add a redundant lemma to the set of
constraints that specifies that the resultant value has to be strictly larger than
the current bound. This significantly speeds up the maximization by shrinking
the search space.

Iteration Order. In our experiments, we have found performance to depend on
the iteration order. Experimentally, we have determined a good iteration order
to be the recursive iteration strategy using the weak topological ordering [20].
This is a strength of LPI: it blends into existing iteration strategies.

Unrolling. We unroll loops up to depth 2, as some invariants can only be
expressed in the template constraints domain in the presence of unrollings (e.g.,
invariants involving a variable whose initial value is set only inside the loop).

Abstraction Refinement for LPI. As a template constraints domain can
be configured by the number of templates present, it is a perfect candidate for
refinement, as templates can be added to increase the precision of the analysis.

However, a full abstraction-refinement algorithm for LPI would be outside of
the scope of this work, and thus to obtain the results we use a naive algorithm
that iteratively tries progressively more precise and costly configurations until
the program can be verified. The configurations we try are (in that order):

(i) Intervals
(ii) Octagons
(iii) Previous + Unrolling
(iv) Previous + Rich Templates (±x ± y ± z)
(v) Previous + Congruence Analysis.

5 Experiments

We have evaluated our tool on the benchmarks from the category “Loops” of the
International Competition on Software Verification (SV-COMP’15) [21] consisting
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of 142 C programs, 93 of which are correct (the error property is unreachable).
We have chosen this category for evaluation because its programs contain numer-
ical assertions about variables modified in loops, whereas other categories of SV-
COMP mostly involve variables with a small finite set of possible values that can
be enumerated effectively. All experiments were performed with the same resources
as in SV-COMP’15: an Intel Core i7-4770 quad-core CPU with 3.40 GHz, and lim-
its of 15 GB RAM and 900 s CPU time per program. The tool is integrated inside
the open-source verification framework CPAchecker [7], used configuration and
detailed experimental results are available at http://lpi.metaworld.me.

We compare LPI (with abstraction refinement) with three tools representing
different approaches to program analysis: BLAST 2.7.3 (SV-COMP’15) [22],
which uses lazy abstraction, PAGAI (git hash 254c2fc693) [23], which uses
abstract interpretation with path focusing, and CPAchecker 1.3.10-svcomp15
(SV-COMP’15) [7], the winner of SV-COMP 2015 category “Overall”, which
uses an ensemble of different techniques: explicit value, k-induction, and lazy
predicate abstraction. For LPI we use CPAchecker in version 1.4.10-lpi-vmcai16.

Because LPI is an incomplete approach, it can only produce safety proofs
(no counter-examples). Thus in Table 1 we present the statistics on the num-
ber of safety proofs produced by different tools. The first five columns represent
differences between approaches: the cell corresponding to the row A and a col-
umn B (read “A vs. B”) displays the number of programs A could verify and
B could not. In the column Unique we show the number of programs only the
given tool could verify (out of the analyzers included in the comparison). The
column Verified shows the total number of programs a tool could verify. The
column Incorrect shows false positives: programs that contained a bug, yet were
deemed correct by the tool — our current implementation unsoundly ignores
integer overflows, as though the program used mathematical integers.8

From this table we see that LPI verifies more examples than other tools can,
including seven programs that others cannot.

Timing Results. In Sect. 4 we have described the various possible configu-
rations of LPI. As trying all possible combinations of features is exponential,
tested configurations represent cumulative stacking of features. We present the
timing comparison across those in the quantile plot in Fig. 3a, and in the leg-
end we report the number of programs each configuration could verify. Each
data point is an analyzed program, and the series are sorted separately for each
configuration.

The quantile plot for timing comparison across different tools is shown in
Fig. 3b. We have included two LPI configurations in the comparison: fastest
(LPI-Intervals) and the most precise one (LPI-Refinement, switches to a more
expensive strategy out of the ones in Fig. 3a if the program cannot be verified).
From the plot we can see that LPI performance compares favorably with lazy
abstraction, but that it is considerably outperformed by abstract interpretation.
8 It is possible to add sound overflow handling, as done in e.g. Astrée, to our approach,

at the expense of extra engineering.

http://lpi.metaworld.me
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Table 1. Number of verified programs of different tools (LPI in abstraction-refinement
mode)

vs. PAGAI LPI BLAST CPAchecker Unique Verified Incorrect

PAGAI - 4 13 15 1 52 1

LPI 13 - 20 20 7 61 1

BLAST 6 4 - 8 0 45 1

CPAchecker 21 17 21 - 12 58 2
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Fig. 3. Quantile timing plots. Each data point is an analyzed program, timeouts are
excluded.

The initial difference in the analysis time between the CPAchecker-based tools
and others is due to JVM start-up time of about 2 s.

6 Conclusion and Future Work

We have demonstrated that LPI is a viable approach to program analysis, which
can outperform state-of-the-art competitors either in precision (abstract inter-
pretation), or both in precision and scalability (predicate abstraction). However,
much work needs to be done to bring policy-iteration-based approaches to the
level of maturity required for analyzing industrial-scale codebases, in particular:

– Sound handling of machine integers and floats, and overflow checking in par-
ticular. The only incorrect result given by LPI on the dataset was due to the
unsound overflow handling. It is possible to check the obtained invariants for
inductiveness using bitvectors or overflow checks.

– Template abstract domains are perfect candidates for refinement : dynamically
adding templates during the analysis. Using counter-examples and refining the
domain using CEGAR [24] approach is a promising research direction.
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zeinab.ganjei@liu.se

Abstract. We introduce Lazy Constrained Monotonic Abstraction
(lazy CMA for short) for lazily and soundly exploring well structured
abstractions of infinite state non-monotonic systems. CMA makes use
of infinite state and well structured abstractions by forcing monotonic-
ity wrt. refinable orderings. The new orderings can be refined based on
obtained false positives in a CEGAR like fashion. This allows for the
verification of systems that are not monotonic and are hence inherently
beyond the reach of classical analysis based on the theory of well struc-
tured systems. In this paper, we consistently improve on the existing
approach by localizing refinements and by avoiding to trash the explored
state space each time a refinement step is required for the ordering. To
this end, we adapt ideas from classical lazy predicate abstraction and
explain how we address the fact that the number of control points (i.e.,
minimal elements to be visited) is a priori unbounded. This is unlike the
case of plain lazy abstraction which relies on the fact that the number of
control locations is finite. We propose several heuristics and report on our
experiments using our open source prototype. We consider both back-
ward and forward explorations on non-monotonic systems automatically
derived from concurrent programs. Intuitively, the approach could be
regarded as using refinable upward closure operators as localized widen-
ing operators for an a priori arbitrary number of control points.

Keywords: Constrained monotonic abstraction · Lazy exploration ·
Well structured systems · Safety properties · Counter machines
reachability

1 Introduction

Well structured transition systems (WSTS:s for short) are maybe everywhere
[17], but not all transition systems are well structured [3,18]. Problems such
as state reachability (e.g., safety) have been shown to be decidable for WSTS:s
[2,17]. This led to the development of algorithms that could check safety for
systems ranging from lossy channels and Petri Nets to concurrent programs and
broadcast protocols [19,23,25]. Many interesting examples of systems, including
list manipulating programs [9], cache protocols [13] and mutex algorithms [1] are
“almost” well structured in the sense that they would have been well structured
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if it was not for a number of transitions that violate the required assumptions.
We build on the framework of Constrained Monotonic Abstraction (CMA for
short) where we derive well structured abstractions for infinite state systems
that are “almost” well structured.

To simplify, a WSTS comes with a well quasi ordering (wqo1 for short) on
the set of configurations. A key property of such systems is monotonicity: i.e., if
a smaller configuration can fire a transition and get to some configuration c, then
any configuration that is larger (wrt. the wqo) can also get to some configuration
that is larger than c. In other words, larger configurations simulate smaller ones.
Added to some assumptions on the effectivity of natural operations such as
computing minimal elements and images of upward closed sets of configurations,
it is possible to show the existence of sound and complete algorithms for checking
the reachability of upward closed sets of configurations (i.e., coverability).

Systems where only some transitions are non monotonic can be approximated
using WSTS:s by adding abstract transitions to restore monotonicity (monotonic
abstraction). The resulting abstraction is also infinite state, and reachability of
upward closed sets there is decidable. However, the obtained abstractions may
fail to enforce invariants that are crucial for establishing unreachability of bad
configurations in the original system. For instance, we explain in our recent work
[18] how we automatically account for the number of processes synchronizing
with (dynamic) barriers when establishing or refuting local (e.g., assertions) and
global (e.g., deadlock freedom) properties of programs manipulating arbitrary
many processes. Crucial invariants of such systems enforce an inherently non-
monotonic behavior (e.g., a barrier transition that is enabled on a configuration
is disabled if more processes are considered in a larger configuration).

Checking safety for such non-monotonic systems is not guaranteed to ter-
minate without abstraction. Plain monotonic abstraction [1,20] makes use of
sets that are upward closed wrt. natural orderings as a sound symbolic repre-
sentation. As stated earlier, this ensures termination if the used preorder is a
wqo [2]. Of course, this comes at the price of possible false positives. In [3], we
adapted existing counter example guided abstraction refinement (CEGAR) ideas
to refine the ordering in plain monotonic abstraction. The preorder is strength-
ened by only relating configurations that happen to be in the same equivalence
class, as defined by Craig interpolants obtained from the false positives. The
new preorder is also a wqo, and hence, termination is again ensured. As imple-
mented, the predicates are applied on all generated minimal elements to separate
upward closed sets and the exploration has to restart from scratch each time a
new refinement predicate is encountered.

We address these inefficiencies by adopting a lazy approach. Like in lazy
predicate abstraction [21], we strive to localize the application of the refinement
predicates and to reuse the explored state space. However, a major difference
with plain lazy predicate abstraction is that the number of “control locations”
1 A reflexive and transitive binary relation � over some set A is a preorder. It is said

to be a wqo over A if in any infinite sequence a1, a2, . . . of elements of A, there exist
1 ≤ i < j such that ai � aj .
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(i.e., the locations to which subsets of the refinement predicates are mapped) is
a priori unbounded (as opposed to the number of program locations of a non-
parameterized system). We propose in this paper three heuristics that can be
applied both in backward and in forward (something plain monotonic abstraction
is incapable of). All three heuristics adopt a backtracking mechanism to reuse,
as much as possible, the state space that has been explored so far. Schematically,
the first heuristic (point-based) associates refinement predicates to minimal ele-
ments. The second heuristic (order-based) associates the refinement predicates to
preorder related minimal elements. The third heuristic (descendants-based) uses
for the child the preserved predicates of the parent. We describe in details the
different approaches and state the soundness and termination of each refinement
step. In addition, we experimentally compare the heuristics against each other
and against the eager approach on our open source tool https://gitlab.ida.liu.
se/apv/zaama.

Related Work. Coverability of non-monotonic systems is undecidable in general.
Tests for zero are one source of non-monotonicy. The work in [8] introduces a
methodology for checking coverability by using an extended Karp-Miller accel-
eration for the case of Vector Addition Systems (VAS:s for short) with at most
one test for zero. Our approach is more general and tackles coverability and
reachability for counter machines with arbitrary tests.

Verification methods can be lazy in different ways. For instance, Craig inter-
polants obtained from program runs can be directly used as abstractions [26],
or abstraction predicates can be lazily associated to program locations [21].
Such techniques are now well established [5,10,27]. Unlike these approaches, we
address lazy exploration for transition systems with “infinite control”. Existing
WSTS based abstraction approaches do not allow for the possibility to refine the
used ordering [23,25], cannot model transfers for the local variables [16], or make
use of accelerations without termination guarantees [7]. For example, in [23] the
authors leverage on the combination of an exact forward reachability and of an
aggressive backward approximation, while in [25], the explicit construction of a
Petri Net is avoided.

The work in [24] gives a generalization of the IC3 algorithm and tries to build
inductive invariants for well-structured transition systems. It is unclear how to
adapt it to the kind of non-monotonic systems that we work with.

We believe the approach proposed here can be combined with such tech-
niques. To the best of our knowledge, there is no previous work that considered
making lazy the preorder refinement of a WSTS abstraction.

Outline. We start in Sect. 2 with some preliminaries. We then formalize targeted
systems and properties in Sect. 3. We describe the adopted symbolic representa-
tion in Sect. 4 and go through a motivating example in Sect. 5. This is followed
by a description of the eager and lazy procedures in Sect. 6. We finally report on
our experiments in Sect. 7 and conclude in Sect. 8.

https://gitlab.ida.liu.se/apv/zaama
https://gitlab.ida.liu.se/apv/zaama
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2 Preliminaries

We write N and Z to respectively mean the sets of natural and integer values.
We let B = {tt, ff} be the set of boolean values. Assume in the following a set
X of integer variables. We write ξ(X) to mean the set of arithmetic expressions
over X. An arithmetic expression e in ξ(X) is either an integer constant k, an
integer variable x in X, or the sum or difference of two arithmetic expressions.
We write e(X) to emphasize that only variables in X are allowed to appear in e.
We write atomsOf(X) to mean the set of atoms over the variables X. An atom α
is either a boolean tt or ff or an inequality e ∼ e′ of two arithmetic expressions;
where ∼ ∈ {<,≤,≥, >}. We write A to mean a set of atoms. Observe that the
negation of an atom can be expressed as an atom. We often write ψ to mean a
conjunction of atoms, or conjunct for short, and use Ψ to mean a set of conjuncts.
We use Π(ξ(X)) to mean arbitrary conjunctions and disjunctions of atoms over
X. We can rewrite any presburger predicate over X in negated normal form
and replace the negated inequalities with the corresponding atoms to obtain an
equivalent predicate π in Π(ξ(X)). We write atomsOf(π) to mean the set of
atoms participating in π .

A mapping m : U → V associates an element in V to each element in U .
We write m : U �→ V to mean a partial mapping from U to V . We write
dom(m) and img(m) to respectively mean the domain and the image of m and use
εU : U �→ V for the mapping with an empty domain. We often write a partial
mapping m : U �→ V as the set {u ← m(u)| u ∈ dom(m)} and write m ∪ m′

to mean the union of two mappings m and m′ with disjoint domains. Given a
partial mapping x : X �→ ξ(X), we write νx(e) to mean the substitution in e of
X variables by their respective x images and the natural evaluation of the result.
As usual, νx(e) is a well defined integer value each time x is a total mapping to
Z. This is generalized to (sets of) atoms, conjuncts and predicates.

We let X (resp. X≥0) be the set of all total mappings X → Z (resp. X → N).
We write 0X for the total mapping X → {0}. The denotation of a conjunct ψ
over X (resp. X≥0), written [[ψ]]X (resp. [[ψ]]X≥0), is the set of all total mappings
x in X (resp. in X≥0) s.t. νx(ψ) evaluates to tt. We generalize to sets of atoms
or conjuncts by taking the union of the individual denotations. Let � be the
preorder over X≥0 defined by x � x′ iff x(x) ≤ x′(x) for each x ∈ X. Given a
predicate π in Π(ξ(X)), we say that a set M ⊆ [[ψ]]X≥0 is minimal for ψ if:
(i) x � x′ for any pair of different x, x′ ∈ M , and (ii) for any x′ ∈ [[ψ]]X≥0 , there
is an x ∈ M s.t. x � x′. We recall the following facts from Linear Programming
and [22].

Lemma 1. For a finite set of natural variables X, the preorder � is a partial
well quasi ordering. In addition, we can compute a finite and unique minimal
set (written min�(π)) for any predicate π in Π(ξ(X)).

3 The State Reachability Problem

In this section, we motivate and formally define the reachability problem.
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shared :
bool read := ∗;

process :
t0. pc0 → pc0 : spawn
t1. pc0 → pc1 : read := tt
......
//do some work before the barrier
......
t2. pc1 → pc2 : read := ff
t3. pc2 → pc3 : barrier()
t4. pc3 → pc4 : assert(!read)

init

rd

¬rd

trgt

gcini

gcini

gc0, gc1, gc3, gc4

gc2

gcerr

gc1

gc0, gc2, gc3

Fig. 1. The counter machine to the right captures the behaviour of the concurrent
program to the left. It makes use of one counter per program location. It involves the
following guarded commands: gcini ::= (c0, c1, c2, c3, c4 := 1, 0, 0, 0, 0), gc0 ::= (c0 ≥
1 ⇒ c0 := c0 + 1), gc1 ::= (c0 ≥ 1 ⇒ c0, c1 := c0 − 1, c1 + 1), gc2 ::= (c1 ≥ 1 ⇒
c1, c2 := c1 − 1, c2 + 1), gc3 ::= ((c2 ≥ 1 ∧ c0 + c1 = 0) ⇒ (c2, c3 := c2 − 1, c3 + 1)),
gc4 ::= (c3 ≥ 1 ⇒ c3, c4 := c3 − 1, c4 + 1), and gcerr : (c3 ≥ 1). The resulting system is
not well structured because of the zero test in gc3.

An Example. Consider the multi-threaded program to the left of Fig. 1 where
only a single thread starts executing the program. A thread can spawn arbitrar-
ily many concurrent threads with t0. Assume all threads asynchronously run
the same program. Each thread can then set the shared flag read to tt, and
perform some reading followed by resetting read to ff. All threads wait at the
barrier. Obviously, read should be ff after the barrier since all threads that
reached pc3 must have executed t2. The assertion at pc3 should therefore hold
no matter how many threads are spawned. Capturing the barrier behaviour is
crucial for establishing the non-violation of the assertion. The barrier behaviour
is inherently non monotonic (adding more threads does not keep the barrier
open). Our recent work [18] on combining different abstraction techniques can
automatically generate non-monotonic counter machines such as the one to the
right of Fig. 1. For this case, the assertion in the concurrent program is violated
iff the target state is reachable in the counter machine. We explain briefly in the
following how such counter machines are generated.

Our tool Pacman [18], takes as input multi-threaded programs similar to the
one to left of Fig. 1. It automatically performs predicate, counter and monotonic
abstractions on them and generates counter machines that overapproximate the
behaviour of the original program. It then tries to solve the reachability problem
for those machines.

Given a multi-threaded program, Pacman starts by generating concur-
rent boolean programs by performing predicate abstraction and incrementally
improving it in a CEGAR loop [14]. This results in a boolean multi-threaded pro-
gram that has the same control flow graph as the original program, but consists
of only boolean variables. To the obtained boolean program, Pacman applies
counter abstraction to generate a counter machine. Intuitively, each counter in
the machine is associated to each local state valuation of a thread (that consists
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in the location and the valuation of the local variables of the thread). Each state
in the machine is also associated to a valuation of shared variables. An extra
state is reserved for the target. The statements of the boolean program are then
translated as transitions in the counter machine.

For instance, in Fig. 1, counters ci, for i : 0 ≤ i ≤ 4, correspond respectively
to the number of threads in program locations pci (the threads have no local
variables here). Similarly, each transition gci is associated to each ti. More-
over, there are two additional transitions gcini and gcerr to model transitions
involving initial or target states.

Note that the original multi-threaded program has non-monotonic invariants.
For instance, transitions such as barriers, or any transition that tests variables
representing the number of threads satisfying some property do not stay enabled
if we add more threads. At the same time, the boolean concurrent programs
generated above are inherently monotonic. This corresponds to a loss of preci-
sion. Thus, proving correctness of those programs whose correctness depends on
respecting the non-monotonic behaviour (e.g., the one enforced by a barrier) can
become impossible. As a remedy to this fact, Pacman automatically strengthens
counter machine transitions by enforcing barrier invariants or by deriving new
invariants (e.g., using an instrumented thread modular analysis) to regain some
of the precision. This proved to help in verifying several challenging benchmarks.
For example, consider the transition t3 in the program to the left of Fig. 1. At the
moment a thread crosses the barrier first, there should be no thread before loca-
tion pc2. This fact holds afterwards and forbids that a thread sets the flag read
when some thread is checking the assertion. The transition gc3 is its correspond-
ing transition in the strengthened counter machine. To ease the presentation of
the example, gc3 is strengthened with the guard (c0 + c1 = 0). (Observe that
this is a simplification to ease the presentation; we can more faithfully capture
the barrier by combining the test with a global flag.)

Counter machines. A counter machine is a tuple (Q,C,A,Δ, qinit, qtrgt) where
Q is a finite set of states, C and A are two distinct sets of counters (i.e., variables
ranging over N), Δ is a finite set of transitions and qinit and qtrgt are two states in
Q. A transition δ in Δ is of the form (q, (grd ⇒ cmd), q′) where src(δ) = q is the
source state, dst(δ) = q′ is the destination state and gc(δ) = (grd ⇒ cmd) is the
guarded command. A guard grd is a predicate in Π(ξ(A ∪ C)) and a command
cmd is a multiple assignment c1, . . . , cn := e1, . . . , en that involves e1, . . . en in
ξ(A ∪ C) and pairwise different c1, . . . cn in C.

Semantics. A configuration is a pair θ = (q, c) with the state st(θ) = q in Q and
the valuation val(θ) = c in C≥0 : C → N. We let Θ be the set of configurations.
We write θ � θ′ to mean st(θ) = st(θ′) and val(θ) � val(θ′) (see Sect. 2). The
relation � is a partial order over Θ. In fact, the pair (Θ,�) is a partial well quasi
ordering [22]. Given two configurations (q, c) and (q′, c′) and a transition δ ∈ Δ
with q = src(δ), q′ = dst(δ) and gc(δ) = (grd ⇒ (c1, . . . , cn := e1, . . . , en)),
we write (q, c) δ−→ (q′, c′) to mean that there exists an a ∈ A≥0 s.t. νa∪c(grd)
evaluates to tt and c′(ci) = νc∪a(ei) for each ci in C. The auxiliary variables
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allow us to capture transfers (needed by predicate abstraction of concurrent
programs). For instance, (c0 ≥ 1 ∧ c0 = a0 ∧ c1 = a1 ∧ a0 + a1 = a2 + a3) ⇒
(c0, c1, c2, c3 := 0, 0, a2 + c2, a3 + c3) captures situations where at least a thread
is at pc0 and all threads at pc0 and pc1 move to pc2 and pc3. A run ρ is a
sequence θ0θ1 · · · θn. We say that it covers the state st(θn). The run is feasible
if st(θ0) = qinit and θi−1

δi−→ θi for i : 1 ≤ i ≤ n. We write −→ for ∪δ∈Δ
δ−→.

Reachability. The reachability problem for a machine (Q,C,A,Δ, qinit, qtrgt) is
to decide whether it has a feasible run that covers qtrgt.

4 Symbolic Representation

Assume a machine (Q,C,A,Δ, qinit, qtrgt). We introduce (operations on) sym-
bolic representations used in our reachability procedures in Sect. 6.

Boxes. A box b over a set A of atoms is a partial mapping from A to booleans
B. Intuitively, a box corresponds to a bitvector denoting an equivalence class in
classical predicate abstraction. We use it to constrain the upward closure step.
The predicate ψb of a box b is ∧α∈dom(b)((b(α) ∧ α) ∨ (¬b(α) ∧ ¬α)) (tt is used
for the empty box). Observe that this predicate is indeed a conjunct for any
fixed box b and that [[ψb]] does not need to be finite. We write btt for the box
of the tt conjunct. We will say that a box b is weaker than (or is entailed by) a
box b′ if ψb′ ⇒ ψb is valid. We abuse notation and write b ⇐ b′. Observe this
is equivalent to [[ψb]] ⊆ [[ψb′ ]].

Constraints. A constraint over a set A of atoms is a triplet φ = (q, c,b) where
st(φ) ∈ Q is the state of the constraint, val(φ) = c is its minimal valua-
tion, and box(φ) = b over A is its box. We use Φ to mean a set of constraints.
A constraint (q, c,b) is well formed if νc(ψb) holds. We only consider well formed
constraints. We write clo(c,b) to mean the conjunct (∧c∈C(c ≥ c(c))∧ψb). Intu-
itively, clo(c,b) denotes those valuations that are both “in the box” and in the
�-upward closure of c. We let [[(q, c,b)]] be the set {(q, c′)| c′ ∈ [[clo(c,b)]]}. This
set contains at least (q, c) by well formedness. Given two constraints (q, c,b) and
(q′, c′,b′), we write (q, c,b) � (q′, c′,b′) to mean that: (i) q = q′, and (ii) c� c′,
and (iii) b ⇐ b′. Observe that φ � φ′ implies [[φ′]] ⊆ [[φ]]. A subset Φ of a set
of constraints Φ′ is minimal if: (i) φ1 �� φ2 for any pair of different constraints
φ1, φ2 ∈ Φ, and (ii) for any φ′ ∈ Φ′, there is a φ ∈ Φ s.t. φ � φ′.

Lemma 2. For a finite set of atoms A over C, the ordering � is a well quasi
ordering over the set of well formed constraints over A. In addition, we can
compute, for any set Φ of constraints, a finite �-minimal subset min	(Φ).

Image Computations. Assume a conjunct ψ over C and a guarded command
gc = (grd ⇒ cmd) for some δ ∈ Δ. Recall that grd is in Π(ξ(C ∪ A)) and that
cmd is of the form c1, . . . , cn := e1, . . . , en where, for each i : 1 ≤ i ≤ n, ci is in C
and ei is also in ξ(C ∪ A). We let L′ be the set of primed versions of all variables
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appearing in the left hand side of cmd. We write pregc(ψ) to mean a set of
conjuncts whose disjunction is equivalent to (∃A ∪ L′.(∧1≤i≤n(c′

i = ei) ∧ grd ∧
ψ[{c ← c′| c′ ∈ L′}])). We also write postgc(ψ) to mean a set of conjuncts whose
disjunction is equivalent to (∃A∪C.(∧1≤i≤n(c′

i = ei)∧grd∧ψ))[{c′ ← c| c ∈ C}].
We naturally extend pregc(ψ) and postgc(ψ) to sets of conjuncts.

Lemma 3. Assume δ ∈ Δ and conjuncts Ψ . We can compute pregc(δ)(Ψ) and

postgc(δ)(Ψ) s.t. [[pregc(δ)(Ψ)]] (resp. [[postgc(δ)(Ψ)]]) equals {c| (src(δ), c) δ−→
(dst(δ), c′) with c′ ∈ [[Ψ ]]} (resp. {c′| (src(δ), c) δ−→ (dst(δ), c′) with c ∈ [[Ψ ]]}).

Grounded Constraints and Symbolic Sets. A grounded constraint is a pair
γ = ((q, c,b), ψ) that consists of a constraint cstrOf(γ) = (q, c,b) and a con-
junct groundOf(γ) = ψ. It is well formed if: (q, c,b) is well formed, ψ ⇒ clo(c,b)
is valid, and c ∈ [[ψ]]. We only manipulate well formed grounded constraints.
Intuitively, the ground ψ in ((q, c,b), ψ) represents the “non-approximated”
part of the �-upward closure of c. This information will be needed for refin-
ing the preorder during the analysis. We abuse notation and write cstrOf(Γ ),
resp. groundOf(Γ ), to mean the set of constraints, resp. grounds, of a set Γ
of grounded constraints. A trace σ of length n is a sequence starting with a
grounded constraint followed by n transitions and grounded constraints. We say
that two traces (φ0, ψ0)·δ1·(φ1, ψ1) · · · δn·(φn, ψn) and (φ′

0, ψ
′
0)·δ′

1·(φ′
1, ψ

′
1) · · · δ′

n′ ·
(φ′

n′ , ψ′
n′) are equivalent if: (i) n = n′, and (ii) δi is the same as δ′

i for each
i : 1 ≤ i ≤ n, and (iii) φi � φ′

i, φ′
i � φi and ψi ⇔ ψ′

i for each i : 0 ≤ i ≤ n.
A symbolic set is a set of pairs of grounded constraints and traces. Given a
symbolic set T , we also use cstrOf(T ) to mean all constraints φ appearing in
some ((φ, ψ), σ) in T . Recall that we can compute a set min	(cstrOf(T )) of
�-minimal constraints for cstrOf(T ).

5 An Illustrating Example

We use the example introduced in Sect. 3 to give an intuition of the lazy heuristics
described in this paper. A more detailed description follows in Sect. 6.

Plain monotonic abstraction proceeds backwards while systematically closing
upwards wrt. the natural ordering � on Θ. The trace depicted in Fig. 2 is a
generated false positive. In this description, for i : 0 ≤ i ≤ 7, we write γi =
(φi, ψi) to mean the grounded constraint with the grounded constraint ψi and
the constraint φi = (qi, ci,bi). Intuitively, the grounded constraint represents
“exact” valuations while the constraint captures over-approximations that are
of the form (qi, c) where ci � c and c satisfies ψbi

. The computation starts
from the grounded constraint γ7 = ((trgt, c7,btt), ψ7) where ψ7 is ∧c∈C(c ≥ 0)
(always implicit). For γ7, the exact and the over-approximated parts coincide.

The trace then computes ψ6 = (c3 ≥ 1) which captures the valua-
tions of the predecessors of (trgt, c7,btt) wrt. (rd, gcerr, trgt). This set hap-
pens to be upward closed and there is no need for approximation, hence
γ6 = ((rd, c6,btt), ψ6). Valuations of the exact predecessors of (rd, c6,btt) wrt.
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(rd, gc3, rd) are captured with the conjunct ψ5 = (c0 = c1 = 0 ∧ c2 ≥ 1). These
are approximated with the conjunct (c0 ≥ 0 ∧ c1 ≥ 0 ∧ c2 ≥ 1). Continuing to
compute the predecessors and closing upwards leads to the constraint φ0 which
involves the initial state init. The trace is reported as a possible reachability
witness. It is well known [4] that upward closed sets are not preserved by non-
monotonic transitions (such as those involving gc3 in Fig. 1). At the same time,
maintaining an exact analysis makes guaranteeing termination impossible.

Following the trace in forward from the left, it turns out that the upward
closure that resulted in γ5 is the one that made the spurious trace possible.
Indeed, it is its approximation that allowed the counter c1 to be non zero. This
new value for c1 is the one that allowed the machine to execute (¬rd, gc1, rd) in
backward from φ5, making reaching the initial state possible. The constraint φ5

is the pivot constraint of the trace. Constrained monotonic abstraction (CMA)
proposes to refine the used ordering by strengthening it with a relevant predicate.
In this case, c1 ≤ 0 is used for strengthening, but in general (the atoms of) any
predicate in Π(ξ(C)) that separates the exact predecessors from the reachable
part of the upward closure would do.
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Fig. 2. A spurious trace generated by monotonic abstraction. The γ5 constraint intro-
duces the first over-approximation that makes the spurious trace possible. The config-
uration (rd, c5) is the pivot configuration of the spurious trace.

Eager CMA. Introduced in [3]. The exploration is restarted from scratch and
(c1 ≤ 0) is used to systematically partition all exact predecessors. The upward
closure is constrained to not alter the refinement predicate. All generated valu-
ations are therefore approximated with the stronger ordering. Localizing refine-
ment can make possible both reusing a potentially large part of the explored
state space and applying the (slower) refinement to a smaller number of sets.

Lazy CMA. When backtracking, we only eliminate those constraints that were
obtained as descendants of a constraint that needs to be refined. We refer to this
constraint as the pivot constraint, and to its minimal configuration as the pivot
configuration. In fact, we identify three localization heuristics:

– point-based-lazy. We map the refinement predicates to the pivot configura-
tions. Later in the exploration, when we hit a new pivot configuration, we
constrain wrt. those predicates that were already mapped to it.

– order-based-lazy. The point-based approach may be too localized as there is
an infinite number of pivot configurations. For instance, a similar trace can
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continue, after (rd, c2 = 1), with gc1 and get to the minimal configuration
sending c2 to 2. This one is different from the mapped pivot configuration, and
hence we need to introduce a new pivot configuration with the same predicate
c0 ≤ 0. This approach considers the predicates of all larger or smaller pivot
configurations. The idea being that, if the predicate was important for the
mapped pivot configuration, then it must have been to separate it from a
reachable upward closed part, and hence it may be relevant.

– descendants-based-lazy. In addition to associating refinement predicates to
pivot configurations as in the point-based approach, this heuristic leverages on
the fact that predicates may remain relevant for a sequence of transitions. Here
we compare the exact predecessors with the predicates used to constrain the
upward closure of the parent. If those predicates still hold for the predecessors,
then we maintain them when closing upwards. This heuristic bears similarity
to forward propagation of clauses in IC3 [24], as in the IC3 algorithm the
clauses are propagated in the trace from a preceding formula to the succeeding
one if they still hold.

6 State Reachability Checking

We describe in this section four different forward CMA variants (eager, point-
based-lazy, order-based-lazy and descendants-based-lazy). The four procedures
can also be applied in backwards (as described in the experiments of Sect. 7).
The four variants use grounded constraints as symbolic representations for pos-
sibly infinite numbers of machine configurations. The symbolic representation is
refined using atoms obtained using a counterexample guided refinement scheme.
The difference between the four variants lays in the way discovered predicates
(in fact atoms for simplifying the presentation) are associated to the new sym-
bolic representations and in the way backtracking is carried out. We start by
introducing the basic “partition” procedure.

Input: a state q , a conjunct ψ and a finite set of atoms A
Output: a well formed set of grounded constraints

1 Γ := ∅;
2 foreach (total b : A → B) do
3 foreach (c ∈ min�(ψ ∧ ψb)) do Γ := Γ ∪ ((q, c,b), ψ ∧ clo(c,b)) ;
4 return Γ ;

Procedure partition(q, ψ, A) is common to all variants.

Partition. “partition(q, ψ,A)” partitions ψ according to all atoms in A. Each
obtained conjunct is further decomposed according to its �-minimal valuations.
Conjuncts are then used to build a well formed grounded constraint ((q, c,b), ψ′)
where b is a box over A. Observe that the disjunction of the grounds of
the obtained grounded constraints is equivalent to ψ. Soundness is stated in
Lemma 4.

Lemma 4. Assume a finite set A of atoms. For any conjunct ψ,
it is the case that [[(q, ψ)]] = {(q, c)| c ∈ [[ψ′]]≥0 for each ψ′ ∈
groundOf(partition)(q, ψ,A))} ⊆ [[cstrOf(partition)(q, ψ,A))]].
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Input: a machine M = (Q, C, A, Δ, qinit, qtrgt)
Output: A feasible run covering qtrgt or the value unreachable

1 if qinit = qtrgt then return (qinit, 0C);

2 S, Γ := ∅, partition(qinit, ∧c∈C(c ≥ 0), ∅);
3 foreach (γ ∈ Γ ) do S := S ∪ {(γ, γ)} ;
4 return explore(M, S, S, ∅, εΘ);

Procedure checkReachability(M) is the common entry point for all variants.

Eager CMA, like the other variants, starts by passing a description of the
machine to the “checkReachability” procedure. It returns a feasible run cov-
ering qtrgt, or states that there are no such runs. The procedure returns directly
(line 1) if initial and target states coincide. It then calls “partition” to obtain a
set of well formed grounded constraints that together capture all initial config-
urations. These are passed to the “explore” procedure.

Explore. “explore(M, work, store, sleep, f)” results in a working list process
that maintains three symbolic sets work, store and sleep. The last is only
relevant for the lazy variants. The partial mapping f : Θ �→ atomsOf(C) encap-
sulates all refinement predicates discovered so far and is therefore empty when
the procedure is called from “checkReachability”. Intuitively, f(θ) associates to
the pivot configuration θ those predicates that helped eliminate a false positive
when θ was the minimal configuration of the constraint that made the false pos-
itive possible. We will explain how f is updated when introducing the procedure
“simulate”. The symbolic set work is used for the grounded constraints that are
yet to be visited (i.e., for which the successors are still to be computed and
approximated). The store set is used for both those grounded constraints that
have been visited and for those in working. The sleep set corresponds to those
constraints that might have to be visited but for which there is an �-equivalent
representative in store. In case a backtracking eliminates the representative in
store, the corresponding grounded constraint in sleep has to be reconsidered.
This is explained in the “backtrack” procedure of the lazy variants.

Input: A machine description M = (Q, C, A, Δ, qinit, qtrgt), three symbolic sets work, store

and sleep, and a partial mapping f : Θ 
→ atomsOf(C)
Output: A feasible run covering qtrgt or the value unreachable

1 while there exists ((φ, ψ), σ) in work with φ ∈ min�(cstrOf(store)) do
2 remove ((φ, ψ), σ) from work;
3 (q, c,b) := φ ;
4 if q = qtrgt then
5 return simulate(M, work, store, sleep, f, σ);

6 foreach δ = (q, gc, q′) in Δ do
7 foreach ψp ∈ postgc(clo(c,b)) do

8 foreach (φ′, ψ′) in decompose(q′, ψp, f,b) do
9 σ′ := σ · δ · (φ′, ψ′);

10 if there is ((φe, ψe), σe) in store s.t. φe is 	-equivalent to φ′ then
11 if σe and σ′ are not equivalent then
12 add ((φ′, ψ′), σ′) to sleep;

13 else add ((φ′, ψ′), σ′) to both store and work ;

14 return unreachable;

Procedure explore(M, work, store, sleep, f) is common to all variants.
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The procedure picks a pair ((φ, ψ), σ) from work and min	(cstrOf(store)).
If the initial state is reached, it calls procedure “simulate” to check the associ-
ated trace and to backtrack if needed (lines 4–5). Otherwise, we start by iterat-
ing through all transitions δ in Δ and compute an exact representation of the
predecessors of the constraint. The call “decompose(q, ψp, f,b)” boils down, for
the eager variant, to a call to “partition(q, ψp, img(f))”. The obtained grounded
constraints are used to update the store, work and sleep symbolic sets.

If there was no pair picked at line 1, then we have finished the exploration
and return unreachable. In fact, pairs are never removed from store if no target
states are encountered at line 4. In addition, two pairs with �-equivalent con-
straints cannot be added to work (lines 10–13). For this reason, executing the
first line an infinite number of times without calling procedure “simulate” would
result in an infinite sequence of constraints that would violate Lemma2.

Input: machine M , symbolic sets work, store and sleep, a mapping f : Θ 
→ atomsOf(C) and
a trace σ = (φ0, ψ0) · δ1 · · · δn · (φn, ψn) with n ≥ 1 and q0 = qinit and qn = qtrgt;

Output: A feasible run covering qtrgt or the value unreachable

1 Ψn := {ψn};
2 for i ← (n − 1) to 0 do
3 Ψ ′

i := pregc(δi+1)(Ψi+1);

4 Ψi := {(ψi ∧ ψ′
i)| ψ′

i ∈ Ψ ′
i and (ψi ∧ ψ′

i) is sat};
5 if Ψi is empty then
6 f((st(φi), val(φi)))∪ := {α| α ∈ atomsOf(π) with π ∈ ITP({ψi}, Ψ ′

i)};
7 return backtrack(M, work, store, sleep, f, σ, i);

8 return a run starting at (qinit, c) for some c ∈ Ψ0 and following till qtrgt;

Procedure simulate(M, work, store, sleep, f, σ) is common to all variants.

Simulate. This procedure checks feasibility of a trace σ from qinit to qtrgt.
The procedure incrementally builds a sequence of sets of conjuncts Ψn, . . . , Ψ0

where each Ψi intuitively denotes the valuations that are backwards reachable
from qtrgt after k steps of σ (starting from k = 0), and are still denoted by
clo(c(n−k),b(n−k)). The idea is to systematically intersect (a representation of)
the successors of step k with the grounded constraint that gave raise to the
constraint at step k + 1. If the procedure finds a satisfiable Ψ0, then a run can
be generated by construction. Such a run is then returned at line 8. Otherwise,
there must have been a step where the “exact” set of conjuncts does not inter-
sect the conjunct representing the exact part that gave raise to the corresponding
constraint. In other words, the trace could be eliminated by strengthening the
over-approximation at line 7 of the “explore” procedure. In this case, (at line
6 of the “simulate” procedure), new refinement atoms are identified using an
off-the-shelf interpolation procedure for QF LIA (Quantifier Free Linear Arith-
metic). This information will be used differently by the eager and lazy variants
when calling their respective “backtrack” procedures.

Input: a machine M , sets work and store and mapping f : Θ 
→ atomsOf(C) ;
Output: A feasible run covering qtrgt or the value unreachable

1 store, work := ∅, ∅;
2 Γ := partition(qinit, ∧c∈C(c ≥ 0), img(f));
3 foreach (φ, ψ) in Γ do
4 S := S ∪ {((φ, ψ), (φ, ψ))};
5 return explore(M, S, S, ∅, f);

Procedure backtrack(M, work, store, , f, , ) this is the eager variant.
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Eager backtracking throws away the explored state space (line 1) and restarts
the computation from scratch using the new refinement atoms captured in f.

Lazy Backtracking. Intuitively, all three lazy approaches reuse the part of the
explored state space that is not affected by the new refinements. This is done
by restarting the exploration from new sets work and store that are obtained
after pruning away the pivot constraint identified by the argument i passed
by “simulate” together with all its descendants (identified in lines 1–6). One
important aspect is that grounded constraints that have not been added to
store at line 11 of the “explore” procedure may have been discarded for the
wrong reason (i.e., there was an �-equivalent constraint that needs to be pruned
away now). This would jeopardize soundness. For this reason we maintain the
sleep set for tracking the discarded grounded constraints that have to be put
back to work and store if the constraint that blocked them is pruned away (see
lines 4–6). The refined pivot is added to the new sets work and store (lines
10–13). Lines 7–9 are only used by the descendants-based approach which takes
into account the box of the parent.

Input: symbolic sets work, store and sleep; a mapping f : Θ 
→ atomsOf(C), a trace
σ = (φ0, ψ0) · δ0 · · · (φn, ψn) with n ≥ 1 and st(φ0) = qinit and st(φn) = qtrgt, and

a natural i : 0 ≤ i < n;
Output: A feasible run covering qtrgt or the value unreachable

1 foreach ((φ, ψ), τ) ∈ store st. (φ0, ψ0) · δ0 · · · (φi, ψi) is equivalent to a prefix of τ do
2 remove, if present, ((φ, ψ), τ) from work, store and sleep;
3 for j ← i to n do
4 if there is still a ((φ′, ψ′), τ ′) in sleep with φ′ is 	-equivalent to φj then
5 remove ((φ′, ψ′), τ ′) from sleep;

6 add ((φ′, ψ′), τ ′) to both work and store;

7 if i ≥ 1 then
8 bp := bi−1
9 else bp := btt;

10 foreach (φ′, ψ′) ∈ decompose(qi, ψi, f,bp) do
11 let σ′ := (φ0, ψ0) · δ1 · · · (φi−1, ψi−1) · δi · (φ′, ψ′);
12 if there is some ((φe, ψe), σe) in store st. φe is 	-equivalent to φ′ then
13 if σe and σ′ are not equivalent then
14 add ((φ′, ψ′), σ′) to sleep;

15 else add ((φ′, ψ′), σ′) to both store and work ;

16 return explore(M ,work,store,sleep, f);

Procedure backtrack(M, work, store, sleep, f, σ, i) common to all lazy variants.

The main difference between the lazy variants is in the way their respective
“decompose” procedures associate refinement atoms to “exact” conjuncts.

Point-based. This variant is the one that “localizes” most the refinement. Each
time an obtained grounded conjunct is considered for approximation, it checks
whether its minimal valuation has already been associated to some refinement
atoms. If it is the case, it passes them when calling the “partition” procedure.

Input: a state q , a conjunct ψ and a partial mapping f : Θ 
→ atomsOf(C)
Output: a well formed set of grounded constraints

1 A := ∅;
2 foreach (θ ∈ dom(f) with val(θ) ∈ min�(ψ)) do A := A ∪ f(θ) ;
3 return partition(q, ψ, A)

Procedure decompose(q, ψ, f, −) of the point-based-lazy variant.
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Order-based. This variant “localizes” less than the point-based variant. Each
time an obtained “exact” conjunct is considered for approximation, it checks
whether its minimal valuation is �-related to an already mapped valuation. The
union of all corresponding atoms is passed to the “partition” procedure.

Input: a state q , a conjunct ψ and a mapping f : Θ 
→ atomsOf(C)
Output: a well formed set of grounded constraints

1 let A := ∅;
2 foreach (θ ∈ dom(f)) do
3 foreach (c′ ∈ min�(ψ)) do
4 if ((c′ � val(θ)) or (val(θ) � c′)) then
5 A := A ∪ f(θ);
6 break ;

7 return partition(q, ψ, A)

Procedure decompose(q, ψ, f, ) of the order-based variant.

Descendants-based. This variant “localizes” less than the point-based variant,
but is incomparable with the order-based one. The idea is to keep those refine-
ment atoms that were used for the parent constraint, and that are still weaker
than the current conjunct that is to be approximated.

Input: a state q , a conjunct ψ, a box b and a mapping f : Θ → atomsOf(C)
Output: a well formed set of grounded constraints

1 let A := ∅;
2 foreach (θ ∈ dom(f) with val(θ) ∈ min�(ψ)) do A := A ∪ f(θ) ;
3 foreach α ∈ dom(b) do
4 if (b(α) ∧ (ψ ⇒ α)) or (¬b(α) ∧ (ψ ⇒ ¬α)) then
5 A := A ∪ {α};
6 return partition(q, ψ, A)

Procedure decompose(q, ψ, f,b) of the descendants-based variant.

Finally, we state the soundness of our four exploration variants. The proof
is by observing that store always represents, at the ith iteration of the loop
of procedure “explore”, an over-approximation of the machine configurations
obtained after i steps. Combined with Lemmas 2 and 3 and by well quasi ordering
of � on the set of constraints for a finite number of refinement atoms.

Theorem 1. All four exploration variants are sound. In addition, each call to
procedure “checkReachability” eventually terminates if only a finite number of
calls to procedure “simulate” are executed.

Proof. Sketch. Let workk, storek and sleepk be the sets work, store and sleep
obtained at line 1 at the kth iteration of the loop in procedure “explore”. We
can show the following propositions by induction on k (see the appendix for the
details):

(a) [[storek]] does not intersect (qtrgt, c) for any valuation c
(b) [[storek]] intersects (qinit, c) for every valuation c
(c) [[workk ∪ sleepk]] is a subset of [[storek]]
(d) for each element ((φ, ψ), σ) of storek such that ((φ, ψ), σ) �∈ workk and

φ ∈ min	(cstrOf(storek)) and for each transition δ = (q, gc, q′) ∈ Δ, the
configurations in {(q′, c′)| c′ ∈ [[postgc(clo(val(φ), box(φ)))]]} are also in
[[storek]]
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Soundness. Suppose the algorithm returns unreachable. Then at some iter-
ation, there is no element ((φ, ψ), σ) in work s.t. φ ∈ min	(cstrOf(store)).
Combined with propositions (b), (c) and (d), we have that [[store]] is a fixpoint
that is an overapproximation of all reachable configurations. Proposition (a)
ensures that no element with state qtrgt exists in store. If the algorithm returns
a trace, then the test at line 4 ensures that st(φn) = qtrgt for some ((φn, ψn), σ)
and σ = (φ0, ψ0) · δ1 · · · δn · (φn, ψn) satisfies that st(φ0) = qinit, st(φn) = qtrgt

and for 0 ≤ i < n, (st(φi), val(φi))
δi+1−−−→ (st(φi+1), val(φi+1)). This because of

the form of the added tuple at line 13 of “explore”.

Termination. The procedure “checkReachability” terminates if only a finite
number of calls to procedure “simulate” are executed. This relies on the fact
that the only source of non-termination can be the while loop in “explore” if the
set cstrOf(work) ∩ min	(cstrOf(store)) never becomes empty. Suppose there
is an infinite sequence of constraints as φ0, φ1 . . . obtained in the while loop.
First, we show that i �= j implies φi is not �-equivalent with φj for any i, j ≥ 0.
This holds because an element is added to store only if there is no �-equivalent
element there (line 9 of “explore”). Even if an element is moved from sleep to
store and work by “backtrack”, then it is done after removing the �-equivalent
element in store and work. Second, we show that for any 0 ≤ i < j, φi �� φj .
This holds because if φi � φj , then φj could not be in min	(cstrOf(store))
since φi (or an �-equivalent constraint) is already there. Finally, since the num-
ber of calls to “backtrack” is finite, then the number of predicates being used in
the boxes is also finite. Such a sequence would therefore violate Lemma2. ��

7 Experimental Results

We have implemented our techniques in our open source tool Zaama. The tool
and benchmarks are available online2. The tool relies on the Z3 SMT solver [12]
for its internal representations and operations.

The input of the prototype are counter machine encodings of boolean multi-
threaded programs with broadcasts and arbitrary tests (as described in Sect. 3).
We have experimented with more than eighty different counter machine reacha-
bility problems. These were obtained from our prototype tool Pacman [18] that
checks local (i.e., assertion) or a global (e.g., deadlock freedom) properties in
concurrent programs (some inspired from [11,15]).

Given a property to check on a concurrent program, Pacman proceeds in
predicate abstraction iterations. For each set of tracked predicates, it creates a
counter machine reachability problem. Combining Pacman with Zaama results
in a nested CEGAR loop: an outer loop for generating counter machine reach-
ability problems, and an inner loop for checking the resulting problems. About
45 % of the generated counter machines are not monotonic. We tested all those
2 https://gitlab.ida.liu.se/apv/zaama.

https://gitlab.ida.liu.se/apv/zaama
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Fig. 3. Comparing eager and lazy variants on a logarithmic scale.

machines separately with Zaama in different settings for each benchmark and
reported the execution times. Thus, the Pacman overhead is not included in the
reported times. Note that although 55 % of the examples are monotonic, they
still need refinement in forward exploration.

We also tested our benchmarks with the tool Breach introduced in [23].
Breach cannot take non-monotonic inputs and is inherently incapable of solv-
ing reachability problems for such systems which are the main target of this
paper. Thus, we could apply it only to the monotonic benchmarks; for which,
the runtime of Breach was less than 5 seconds in each. We consider this to be
an encouraging result as we are working on adapting Breach to non-monotonic
systems. The challenge is to have an under-approximation search engine for such
systems and we are investigating possibilities to develop our own engine or to
use acceleration tools such as FASTer [6].

We have chosen a time-out of 30 min for each of the variants: eager, point-
based, order-based and descendants-based, both in forward and in backward.
We have conducted our experiments on an Intel Core i7 2.93 GHz processor with
8GB of memory. We report on our results in Fig. 3 where we consider, for each
setting, each lazy pair in addition to the pairs consisting in the eager and each
lazy.
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The forward explorations turned out to be faster than the corresponding
backward ones in about 25 % of the examples. We expected the forward explo-
ration to be slower as it needs several refinement steps because it starts from the
initial configurations which are typically much more constrained than the tar-
get configurations. We considered the forward exploration because it offers more
possibilities to test the effect of localizing the refinement in problems that typi-
cally require more refinement steps in forward. Indeed, the figures show that the
times of the different variants coincide more often in backward than in forward,
and overall, there has been many more time-outs in forward than in backward.

Furthermore, the lazy variants were able to conclude on most of the reacha-
bility problems, in fact each of the reachability problems has been solved by at
least one of the lazy variants (except for one problem in backward), when the
eager variant timed out on several of them. This is an encouraging result that
confirms the advantages of localizing refinement. There are some cases where
the eager variant did better than all lazy ones. These correspond to cases where
localization required more refinement efforts to reach a conclusion.

We also observe that the order-based approach times out in about half the
forward seraches, while the point-based only times out in two cases. This goes
against the initial intuition that larger valuations would profit from the refine-
ment predicates of the smaller ones. One explanation could be that if the larger
valuation would require the same predicate as the smaller one, then adding the
predicate would result in a redundant representation that should be eliminated.
It therefore seems that it does not take long for the point-based to discover this
redundancy while still profiting from the localization of the refinement. Instead,
the order-based uses predicates even when they are not proven to be needed
resulting in finer grained symbolic elements that slow down the exploration.

It is interesting to observe that the descendants-based approach did better in
forward than the point-based approach. One explanation could be that, in for-
ward, relevant refinement interpolants sometimes correspond to weak inductive
invariants that get propagated by this approach. In backwards it seems, at least
for our examples, that the invariants corresponding to the “bad” configurations
do not profit from this parent-child transmission.

8 Conclusion

We have introduced and discussed three different ways of localizing constrained
monotonic abstraction in systems with infinite control. For this, we have tar-
geted reachability problems for (possibly non-well structured) counter machines
obtained as abstractions of concurrent programs. Our new techniques allow us to
avoid systematically trashing the state space explored before encountering the
false positives that necessitate the introduction of new refinement predicates.
This allowed us to consistently improve on the existing eager exploration, both
in forward and in backward explorations. Possible future works concern combin-
ing forward and backward approximations, using the pivot configuration to make
possible the choice of interpolants that are easier to generalize and assessing the
feasibility of combination with new partial order techniques.
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in satisfiability modulo theory solvers which combine a propositional satis-
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hedral approximation, our ocaml implementation generates certificates
verified by a checker certified in coq.
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ulo theory (smt) solving. It is implemented in the Verimag Verified Polyhedra
Library (vpl), a certified library written in ocaml for computing over con-
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Convex Polyhedra. A convex polyhedron is defined by a conjunction of affine
constraints of the form a0 +

∑n
i=1 aixi ≥ 0 where the xi’s are variables, the ai’s

and a0 are constants in Q. We subsequently omit convex as we only deal with
convex polyhedra. For instance, the polyhedron P defined by

P � {x − 1 ≥ 0, y + 2 ≥ 0, x − y ≥ 0, 5 − x − y ≥ 0} (1)

is the set { (x, y) | x ≥ 1 ∧ y ≥ −2 ∧ x ≥ y ∧ x + y ≤ 5} represented in Fig. 1.
A bounded polyhedron is called a polytope.

Polyhedral Static Analysis. Static analyzers are verification tools that aim at
proving properties true for all possible executions of a program; desirable prop-
erties include for instance the absence of arithmetic overflow. In the abstract
interpretation framework, the analyzer attaches to each control point an invari-
ant chosen within a given class, called abstract domain [11]. Here, we focus on
the abstract domain of polyhedra which captures affine relations among program
variables [22]. A static analyzer using polyhedra cannot directly infer any infor-
mation on a variable z assigned with a non-linear expression e.g. z := x∗y. A very
rough abstraction is to consider that z is assigned any value in (−∞,+∞); the
consequence is a dramatic loss of precision which propagates along the analysis,
possibly failing to prove a property.

Satisfiability Modulo Theory. The satisfiability of a quantifier-free formula of
first-order linear arithmetic over the reals is usually decided by a “dpll(t)” [21]
combination of a propositional solver and a decision procedure for conjunctions
of linear inequalities based on the simplex algorithm [17,18]. Nonlinear formulas
are more challenging; some solvers implement a variant of cylindrical algebraic
decomposition, a very complex and costly approach [27]; some replace the propo-
sitional abstraction of dpll(t) by a direct search for a model [14].

Linearization Techniques. Nonlinear relations between variables, such as x2 +
y2 ≤ 1, occur for instance in address computations over matrices, computational
geometry, automatic control and in programs that approximate transcendental
functions (sin, cos, log. . . ) by polynomials [6,7]. Therefore, linearization tech-
niques were developed to preserve precision in the presence of polynomials; they
provide an over-approximation of a polynomial on an input polyhedron. Miné
proposed two linearization techniques based on variable “intervalization” [34],
where some variables of the polynomial are replaced by their interval of variation:

(1) Switching to the abstract domain of polyhedra with interval coefficients [5]
to maintain precision, albeit at high algorithmic cost.

(2) Obtaining an affine expression with intervals as coefficients, which is then
converted into a polyhedron. This solution was implemented in the apron
polyhedra library [24,34]: intervals are replaced with their center value and
the right-hand side constant of the equality is enlarged accordingly. We devel-
oped an improved and certified version of this algorithm in the vpl [4]. This
linearization technique is efficient but not very precise.
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Another well known linearization method consists in representing polynomi-
als in the Bernstein basis. Bernstein coefficients give a bounding polyhedron,
made as precise as needed by increasing the degree of the basis [35]. Bernstein’s
linearization works on systems of generators, either to get the range of each
variable, or to refer to variables as barycentric coordinates of the vertices [9]. It
would be well-suited for most libraries (apron [24], ppl [1], polylib [31]), as
they maintain a double representation of polyhedra: as systems of constraints,
and as systems of generators (in the case of polytopes, the generators are the
vertices). In contrast, our work aims at adding a precise linearization to the
vpl. In order to make certification more convenient, the vpl uses only the
constraint representation of polyhedra. Therefore, using Bernstein’s method
would be hardly appropriate as it would require expensive conversions between
representations [32].

Contributions. We present a new algorithm to linearize polynomial guards which
only needs constraint representation of polyhedra. Section 2 shows how any other
polynomial statement reduces to guards. As explained in Sect. 3, our approach
is based on Handelman’s theorem [23], which states that a polynomial that is
positive on a polytope can always be expressed as a nonnegative linear com-
bination of products of constraints of the polytope. The algorithm consists in
computing linear relaxations as solutions of a Parametric Linear Programming
Problem (plop). Section 4 sketches the principle of plop solvers and focuses on
an improvement we made to reduce exploration of branches that would yield
redundant constraints. The method presented in this paper requires only the
constraint representation of the polyhedron, as provided by the vpl or by a
dpll(t) smt-solver, and returns a polyhedron directly as constraints as well as
an emptiness flag. It soundly approximates polynomial operations over convex
polyhedra and generates certificates that are checked by a verifier developed and
proved in coq. The precision of the approximation is arbitrary depending on the
degree and the number of Handelman products in use; the selection of which is
delegated to the heuristics presented in Sect. 5. Precision and efficiency of our
algorithm are shown through a comparison with smt-solvers on Quantifier-Free
Nonlinear Real Arithmetic benchmarks in Sect. 6.

This paper elaborates on a preliminary work by the authors [33], which pre-
sented the encoding of the linear relaxation problem as a plop, focusing on the
certification in coq of the resulting approximation. We reuse the encoding of [33]
and we extend the previous work with heuristics, an experimental evaluation and
a new application.

2 Focusing on Approximation of Polynomial Guards

The goal of linearization is to approximate nonlinear relations with linear ones.
The approximation is sound if it contains the original nonlinear set. In other
words, linearization must produce an over-approximation of the nonlinear set.
In this work, we consider polynomial expressions formed of (+, −, ×), such as
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4−x×x−y×y. More general algebraic expressions, including divisions and root
operators, may be reduced to that format; for instance y =

√
x2 + 1 is equivalent

to y2 = x2+1∧y ≥ 0 [36]. The symbol g shall represent a polynomial expression
on the variables x1, .., xn of a program. We only consider constraints in a positive
form g ≥ 0 or g > 0: any other form (including equalities and negation) can be
changed into a disjunction of conjunctions of positive constraints, for example
¬(g1 = g2) ≡ (g1 < g2 ∨ g1 > g2) ≡ (g2 − g1 > 0 ∨ g1 − g2 > 0).

Fig. 1. A C program fragment with non-linear expressions x ∗ x + y ∗ y ≤ 4 and y ∗ x.
The first guard defines the polyhedron P � {x ≥ 1, y ≥ −2, x − y ≥ 0, x + y ≤ 5};
the disc G � { (x, y) | x2 + y2 ≤ 4} corresponds to the second guard; the octagon G
is a polyhedral approximation of G ; the hashed region is the set P ∩ G ; the desired
approximation of P ∩ G is the polyhedron P ′ � P ∧ G, drawn with dotted lines.

We will use the program of Fig. 1 as a running example: our goal is to compute
a polyhedral over-approximation of the polynomial guard x2 + y2 ≤ 4 on line 3,
which is equivalent to g ≥ 0 with g(x, y) � 4 − x2 − y2, in the context of the
polytope P � {x− 1 ≥ 0, y +2 ≥ 0, x− y ≥ 0, 5−x− y ≥ 0} that corresponds
to the condition on line 2.

Note that assignments x := e reduce to guards. Let x̃ denote the value of
variable x after the assignment, while x denotes its value before the assignment.
Then, the effect of the assignment on a polyhedron P is

(
(P ∧ x̃ ≤ e ∧ x̃ ≥

e)/x

)
[x̃/x], where ·/x denotes the elimination of x using projection and [x̃/x]

is the renaming of x̃ as x. This works when e is affine. When it is nonlinear,
x̃ is approximated by linearizing guards x′ ≤ e and x′ ≥ e. Therefore, we will
exclusively focus on the linearization of polynomial guards.

The effect of a guard g ≥ 0 on a polyhedron P consists in the intersection
of the set of points of P with G � { (x1, . . . , xn) | g(x1, . . . , xn) ≥ 0}. When the
guard is linear, say x − 2y ≥ 0, P ∩ G is simply the conjunction of P and the
constraint x − 2y ≥ 0 ; it is already a polyhedron. When the guard is not linear,
we approximate P ∩ G by a polyhedron P ′ such that P ∩ G ⊆ P ′. Computing,
instead, a polyhedral enclosure G of the set G would not be a practical solution.
Indeed, it can be very imprecise: if G = {(x, y) | y ≤ x2}, then G = Q

2. Moreover,
it is superfluous work: only three of the eight constraints of polyhedron G on
Fig. 1 are actually useful for the intersection.
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3 Linearizing Using Handelman’s Representation

Consider an input polyhedron P � {C1 ≥ 0, . . . , Cp ≥ 0} defined on variables
(x1, . . . , xn) and a polynomial guard g ≥ 0. Our goal is to find an affine term
α0 +

∑n
i=1 αixi denoted by aff such that P ⇒ aff > g, meaning that aff bounds

g on P . By transitivity, we will conclude that P ∧ g ≥ 0 ⇒ P ∧ aff > 0,
which can be expressed in terms of sets1 as (P ∩ g ≥ 0) ⊆ (P 
 aff > 0). Our
linearization based on Handelman’s theorem provides several affine constraints
aff1, . . . , affk whose conjunction with P forms the approximation of P ∩g ≥ 0. In
static analysis, where P describes the possible values of the program variables
(x1, . . . , xn) before a polynomial guard g ≥ 0, the result P 
i=k

i=1 affi > 0 will
be a polyhedral approximation of the program state after the guard. When this
polyhedron is empty, it means that the original guard P ∧ g ≥ 0 is unsatisfiable.

3.1 Representation of Positive Polynomials on a Polytope

Notations. Tuples x = (x1, . . . , xn) and multi-indices I = (i1, ..., in) ∈ N
n

are set in boldface. The set of Handelman products associated to a polyhedron
P � {C1 ≥ 0, . . . , Cp ≥ 0} is the set HP of all products of constraints Ci of P :

HP = {Ci1
1 × · · · × Cip

p | (i1, . . . , ip) ∈ N
p } (2)

Given a multi-index I = (i1, . . . , ip), HI � Ci1
1 × . . .×C

ip
p denotes an element of

HP . In our running example, H(0,2,0,0) = (y+2)2, H(1,0,1,0) = (x−1)(x−y) and
H(1,0,0,3) = (x − 1)(−x − y + 5)3 all belong to HP . The HI ’s are nonnegative
polynomials on P as products of nonnegative constraints of P . Handelman’s
representation of a positive polynomial g(x ) on P is

g(x ) =
∑

I∈Np

λI︸︷︷︸
≥0

HI
︸︷︷︸
≥0

with λI ∈ R
+ (3)

The λI ’s form a certificate that g(x ) is nonnegative on P . Handelman’s theorem
states the non-trivial opposite implication: any positive polynomial on P can
be expressed in that form [23], [30, Th. 2.24], [37, Th. 5.4.6], [38, Th. 5.5]; a
similar result already appeared in Krivine’s work on decompositions of positive
polynomials on semialgebraic sets [29].

Theorem 1 (Handelman, 1988). Let P = {C1 ≥ 0, . . . , Cp ≥ 0} be a poly-
tope where each Ci is an affine form over x = (x1, . . . , xn). Let g(x) be a positive
polynomial on P , i.e. g(x) > 0 for all x ∈ P . Then there exists a finite subset I
of Np and λI ∈ R

+ for all I ∈ I, such that g(x) =
∑
I∈I

λIH
I.

Remark 1. This does not necessarily hold if g(x ) is only assumed to be non-
negative. Consider the inequalities x + 1 ≥ 0 and 1 − x ≥ 0 and the nonnegative
polynomial x2. Assume the existence of a decomposition and apply (3) at x = 0:
HI (0) > 0 for any I , it follows that λI = 0. This null decomposition is absurd.
1 ∩ denotes the usual intersection of sets; � is reserved for the intersection of polyhedra.
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Remark 2. One can look for a Handelman representation of a polynomial even
on unbounded polyhedra: its positivity will then be ensured. The existence of such
representation is not guaranteed though.

The common use of Handelman’s representation of a polynomial g(x )−Δ is
to determine a lower bound Δ of g(x ) on P . For instance, Boland et al. use it to
compute an upper bound of the polynomial, in x and the error ε, which defines
the cascading round-off effects of floating-point calculation [3]. Schweighofer’s
algorithm [38] can iteratively improve such a bound by increasing the degree
of the HI ’s. We present here another use of Handelman’s theorem: we are not
interested in just one bound but in a whole set of affine constraints dominating
the polynomial g(x ) on P .

3.2 Linearization as a Parametric Linear Optimization Problem

Recall that we are looking for an affine constraint aff � α0 +
∑n

i=1 αixi that
approximates a non-linear guard g, meaning aff > g on P . According to
Theorem 1, if P is bounded, aff − g which is positive on the polytope P has
a Handelman representation as a nonnegative linear combination of products of
the constraints of P , i.e.

∃I ⊂ N
p, aff − g =

∑

I∈I
λIH

I , λI ∈ R
+, HI ∈ HP (4)

Relation (4) ensures that there exists some positive combinations of g and some
HI ∈ HP that remove the monomials of degree >1 and lead to affine forms:

α0 + α1x1 + . . . + αnxn = aff = 1 · g +
∑

I∈Np

λIH
I

Remark 3. This decomposition is not unique in general. Consider P = {x ≥
0, y ≥ 0, x − y ≥ 0, x + y ≥ 0}. The polynomial x2 + 2xy + y2 is equal to both
H(0,0,0,2) = (x+y)2 and H(2,0,0,0) +2H(1,1,0,0) +H(0,2,0,0) = (x2)+2(xy)+(y2).

Design of our Linearization Method. The principle of our algorithm is to take
advantage of the non-uniqueness of representation to get a precise approximation
of the guard: we suppose that a set I = {I 1, . . . , I q } of indices is given and
we show how to obtain every possible affine form affi that can be expressed as
g +

∑�=q
�=1 λ�H

I � . Each of these affi bounds g on P and their conjunction forms
a polyhedron that over-approximates the set P ∩ (g ≥ 0). A major difference
between our work and previous work by Schweighofer [38] and Boland [3] is that
we are not interested in a constant bound α0 but an affine bound α0 + α1x1 +
. . . + αnxn which still depends on parameters x1, . . . , xn. We now show that our
problem belongs to the class of parametric linear problems; Sect. 5 then describes
the heuristics used to determine I.

Example 1. For g = 4 − x2 − y2, we choose I that gives these 15 products:
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HI1 = H(0,0,0,0) = 1 HI2 = H(1,0,0,0) = x − 1

HI3 = H(0,1,0,0) = y + 2 HI4 = H(0,0,1,0) = x − y

HI5 = H(0,0,0,1) = −x − y + 5 HI6 = H(2,0,0,0) = (x − 1)2

HI7 = H(0,2,0,0) = (y + 2)2 HI8 = H(0,0,2,0) = (x − y)2

HI9 = H(0,0,0,2) = (−x − y + 5)2 HI10 = H(1,1,0,0) = (x − 1)(y + 2)

HI11 = H(1,0,1,0) = (x − 1)(x − y) HI12 = H(1,0,0,1) = (x − 1)(−x − y + 5)

HI13 = H(0,1,1,0) = (y + 2)(x − y) HI14 = H(0,1,0,1) = (y + 2)(−x − y + 5)

HI15 = H(0,0,1,1) = (x − y)(−x − y + 5)

Considering the products {HI 1 , . . . , HI q }, finding the Handelman represen-
tation of aff − g can be expressed as a linear problem. Relation (4) amounts to
finding λ1, . . . , λq ≥ 0 such that

aff

=

= 1 · g +
∑�=q

�=1 λ�H
I �

=
= (λg , λ1, . . . , λq)
︸ ︷︷ ︸

λᵀ

· (g, HI 1 , . . . , HI q

︸ ︷︷ ︸
)ᵀ

Hg
ᵀ·M

α0 + α1x1 + . . . + αnxn

=

λᵀ · Hg
ᵀ ·M

=

Mᵀ · (α0, . . . , αn, 0, . . . , 0) = Mᵀ · Hg · λ

where:

(1) Hg is the matrix of the coefficients of g and the HI � organized with respect
to M, the sorted list of monomials that appear in the Handelman products
generated by I.

(2) the column vector λ = (λg, λ1, . . . , λq)ᵀ = (1, λ1, . . . , λq)ᵀ characterizes the
combination of g and the HI � . We added a constant coefficient λg = 1 for
convenience of notations.

The product Hg · λ is a vector α � (α0, . . . , α|M|−1)
ᵀ representing the con-

straint α0 + α1x1 + . . . + αnxn +
∑i=|M|−1

i=n+1 αi · (M)i where (M)i denotes the
ith monomial of M. Since we seek an affine constraint aff we are finally inter-
ested in finding λ ∈ {1} × (R+)q such that Hg · λ = (α0, . . . , αn, 0, . . . , 0)ᵀ. By
construction, each λ gives an affine constraint aff that bounds g on P .

Example 2. Here is the matrix Hg associated to g � 4 − x2 − y2 and the Han-
delman products from Example 1 with respect to M = [1, x, y, xy, x2, y2].

g HI1 HI2 HI3 HI4 HI5 HI6 HI7 HI8 HI9 HI10HI11HI12HI13HI14HI15

1
x
y
xy
x2

y2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 1 -1 2 0 5 1 4 0 25 -2 0 -5 0 10 0
0 0 1 0 1 -1 -2 0 0 -10 2 -1 6 2 -2 5
0 0 0 1 -1 -1 0 4 0 -10 -1 1 1 -2 3 -5
0 0 0 0 0 0 0 0 -2 2 1 -1 -1 1 -1 0
-1 0 0 0 0 0 1 0 1 1 0 1 -1 0 0 -1
-1 0 0 0 0 0 0 1 1 1 0 0 0 -1 -1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

The choices λg = λ6 = λ7 = 1 and every other λ� = 0 are a solution to the
problem Hg · λ = (α0, α1, α2, 0, 0, 0)ᵀ. We obtain Hg · λ = (9,−2, 4, 0, 0, 0)ᵀ that
corresponds to 9 − 2x + 4y + 0 × xy + 0 × x2 + 0 × y2. Thus, aff = 9 − 2x + 4y is
a constraint that bounds g on P , as shown on Fig. 2.
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(a () b)

Fig. 2. (b) is the cut at z = 0 of (a) in which we added the polyhedron P � {x − 1 ≥
0, y + 2 ≥ 0, x − y ≥ 0, − x − y + 5 ≥ 0}: the circle G of (b) appears in (a) as
the intersection of the surface z = g(x, y) � 4 − x2 − y2 with the plane z = 0. The
polyhedral approximation of g is the inclined plane z = aff(x, y) � −2x + 4y + 9 that
dominates g. It cuts the plane z = 0 along the line L1 in (a) which is reported in (b).
The line L1 is the frontier of the affine constraint −2x + 4y + 9 ≥ 0. The filled area is
the polyhedron P ∧ −2x + 4y + 9 ≥ 0 that over-approximates P ∩ { (x, y) | g(x, y) ≥ 0}.

By construction, any solution λ of the problem Hg ·λ = (α0, . . . , αn, 0, . . . , 0)ᵀ

is a polyhedral constraint aff that bounds g on P . Among all these solutions we
are only interested in the best approximations. One constraint aff > g is better
than another aff ′ > g at point (x1, . . . , xn) if aff(x1, . . . , xn) < aff ′(x1, . . . , xn).
It then appears that for a given point (x1, . . . , xn) we are looking for the poly-
hedral constraint aff > g that minimizes its value on that point. Therefore,
we define a linear minimization problem that depends on some parameters: the
point (x1, . . . , xn) of evaluation.

Finally, finding the tightest affine forms affi that bound g on P with respect to
a given set of indices I can be expressed as the Parametric Linear Optimization
Problem (plop) shown on Fig. 3. Such optimization problems can be solved using
the parametric simplex algorithm, which is outlined in Sect. 4. As we shall detail
later, the solution of H-plop is a function associating an affine form affi to the
region of the parameter space where affi is optimal. The over-approximation of
P ∩ (g ≥ 0) that we return is then

�
i{x ∈ Q

n | affi(x ) ≥ 0}.

Example 3. In our running example, the objective aff , i.e., g +
∑�=15

�=1 λ�H
I � ,

is 4 + λ1 + λ2(x − 1) + λ3(2 + y) + λ4(x − y) + λ5(5 − x − y) + λ6(1 − 2x) + λ7(4 +

4y) + λ9(25 − 10x − 10y) + λ10(2x − y − 2) + λ11(y − x) + λ12(6x + y − 5) + λ13(2x −
2y) + λ14(10 − 2x + 3y) + λ15(5x − 5y).

In practice we use this presentation (without α) which exhibits the paramet-
ric coefficients in x, y of each variable λ. Nonlinear monomials do not appear
since the problem imposes cancelling the non-linear part of g +

∑�=15
�=1 λ�H

I � ,
i.e. xy(−2λ8+2λ9+λ10−λ11−λ12+λ13−λ14)+x2

(−1+λ6+λ8+λ9+λ11−λ12−λ15)+y2
(−1+λ7+

λ8+λ9−λ13−λ14+λ15). The solutions of the problem are the vectors λ that min-
imize the objective and cancel the coefficients of xy, x2 and y2.
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Fig. 3. Linearization as a parametric linear optimization problem

4 The Parametric Simplex Algorithm

We use the simplex algorithm for parametric objective functions to find the
solutions of the previous H-plop problem. This section explains how we obtain
the output polyhedron over-approximating P ∩ g ≥ 0 from the solutions of
H-plop. We assume the reader is familiar with the simplex algorithm (see [8]
for an introduction) and we sketch the broad outlines of the parametric simplex
algorithm (see [12,33] for more details).

Principle of the Algorithm. The standard simplex algorithm is used to find the
optimal value of an affine function – called the objective – on a space delimited
by affine constraints, which is thus a polyhedron. More precisely, it solves linear
problems of the form

minimize the objective

i=q∑

i=1

λi · ci s.t. A · λ = 0, λ ≥ 0

where A ∈ Mp,q(Q) is a matrix and the constants ci ∈ Q define the costs
associated to each decision variable (λ1, . . . , λq) = λ. To decrease the objective
value, recalling that each variable λi is nonnegative, a step in the standard
simplex algorithm, called a pivot, consists in finding a negative coefficient ci in
the objective function and in decreasing the value of the associated variable λi

as much as the constraints remain satisfied. The pivot operation modifies both
the costs of the objective function and the constraints. The optimal value is
reached when every ci is nonnegative, meaning that the objective value cannot
be decreased anymore.

The parametric simplex algorithm solves linear problems of the form

minimize the objective

i=q∑

i=1

λi · ci(x1, . . . , xn) s.t. A · λ = 0, λ ≥ 0

where ci are now affine functions from parameters (x1, . . . , xn) to Q. As in
the standard simplex we seek for a pivot to decrease the objective value, i.e.
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a negative coefficient in the objective function. In general the sign of a paramet-
ric coefficient, say ci, is unknown. The algorithm then explores two branches: one
in which ci is considered as nonnegative and we move to the next coefficient ci+1 ;
and another branch in which ci is assumed to be negative and we perform a pivot
on the associated variable λi exactly as in the standard version. The exploration
of a branch stops when the conjunction of the assumptions is unsatisfiable (the
branch is then discarded); or when it implies that all the updated parametric
coefficients are nonnegative, meaning that an optimum is reached. Both tests of
unsatisfiability and implication are polyhedral operations performed by the vpl.

The result of the solver is a decision tree: the values of the decision vari-
ables λ at leaves give optima of the parametric objective; the conjunction of the
assumptions along a branch defines its region of relevance, it is a polyhedron in
the parameter space. Our solver implements this algorithm in ocaml and works
with rationals instead of floating points. It borrows a few optimizations from the
pip algorithm [19] which was developed for the dual case where parameters are
in the right-hand side of the constraints, i.e. A · λ = b(x1, . . . , xn).

Application to Handelman’s Linearization. Back to our running example, we
obtain the best polyhedral approximations of g by running our parametric sim-
plex on H-plop where (λ�)�=1..q are decision variables, HI �(x1, . . . , xn) are
parametric coefficients, xi are parameters and the matrix A is made of the
rows of Hg corresponding to monomials of degree > 1 (the last three rows
of Hg in Example 2). We obtain a decision tree with 5 optimal solutions λ
at leaves. Each of them is interpreted as constraint aff(x1, . . . , xn) ≥ 0 where
aff(x ) = g(x ) +

∑�=q
�=1 λ�H

I �(x ). These 5 constraints appear on Fig. 4(a) as the
lines L1 to L5. Their conjunction with P forms the polyhedron P ′ which over-
approximates P ∩ (g ≥ 0).

Useless Constraint Detection. Figure 4(a) reveals that L3 and L4 are useless
since they do not intersect P ′. This is not due to the parametric simplex: it
happens when a constraint affj does not cross the plane z = 0 on its region of
relevance Rj . Figure 4(b) shows the region of relevance of each constraint. This
remark leads us to a criterion to detect useless affi during exploration. It requires
some explanations. Note that the output polyhedron P ′ � P 
(

�j=k
j=1 affj ≥ 0) is

equal to the set
⋃j=k

j=1 (Rj 
 affj ≥ 0). That can be proved by reasoning on sets,
using (1) distributivity and (2) simplification, exploiting two consequences of
the parametric simplex: (1) by construction of the exploration tree, the regions
(Ri)i=k

i=1 form a partition of P ; (2) if i �= j, Ri 
 (affi ≥ 0) 
 (affj ≥ 0) =
Ri 
 (affi ≥ 0) since affj ≥ affi on Ri. Indeed, we asked the parametric simplex
to seek for minimal affine forms.

Now, let us study the equality P ′ =
⋃j=k

j=1 (Rj 
 affj ≥ 0): when the sign
of affi is negative on its region of relevance Ri, then (Ri 
 affi ≥ 0) = ∅ and
this term vanishes from the union. Therefore, such an affi has no impact on
P ′. We draw upon this remark to design an algorithm that early detects useless
exploration. The exploration of a new branch starts with the examination of the
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(a () b)

Fig. 4. (a) The polyhedron P ′ = P � {L1 ≥ 0, . . . , L5 ≥ 0} is the over-approximation
of P ∩ (g ≥ 0) computed by our linearization without detection of useless constraints.
P ′ is delimited by P and the constraints L1, L2, L5 returned by the parametric simplex;
L3 and L4 are useless: L3 is detected by our criterion. The redundancy of L4 cannot be
detected before the intersection with P . (b)Each constraint Li is the optimum associated
to a region Ri of P . Our criterion eliminates L3 since it is negative on R3.

possible pivots. For minimization problems, the pivoting operation lowers the
objective and the new region is a subpart of the previous one. Therefore, if all
pivots give an objective that is negative on the current region, every optimum aff
generated through this branch will be negative, thus useless; we simply cut this
branch. Our experiments are conducted with the parametric simplex algorithm
of Sect. 4 improved with this elimination criterion.

5 Heuristics and Certificates

We previously assumed a given set of Handelman products to be considered in
H-plop; our implementation actually uses Schweighofer products (SI ), which
generalize Handelman’s ones as shown by Theorem 2 below. We shall now
describe the oracle that generates them together with a certificate of nonnega-
tivity, then the heuristics it uses.

Theorem 2 (Schweighofer, 2001). Let P = {C1 ≥ 0, . . . , Cp ≥ 0} be a poly-
tope where each Ci is an affine polynomial over x = (x1, . . . , xn). Let gp+1, . . . , gq

be polynomials. Then g(x) > 0 on P ∩ {gp+1 ≥ 0, . . . , gq ≥ 0} if and only if

g = λ0 +
∑

I∈Nq

λI · SI, λ0 ∈ R
∗+, λI ∈ R

+

where S(i1,...,iq) = Ci1
1 · · · Cip

p · g
ip+1
p+1 · · · giq

q .

Schweighofer products are products of polyhedral constraints of P and poly-
nomials (gi)

i=q
i=p+1. They are obviously nonnegative on the set P ∩ {gp+1 ≥

0, . . . , gq ≥ 0}. From a certification viewpoint, the key property of the polynomi-
als resulting from Handelman or Schweighofer products is their nonnegativity on
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the input polyhedron. Therefore, heuristics must attach to each product a non-
negativity certificate as its representation in the ocaml/coq type nonNegCert
given below. The coq checker contains the proof that this type only yields non-
negative polynomials by construction.

type nonNegCert = C of N with [[C(i)]] = Ci ≥ 0 of P
|Square of polynomial [[Square (p)]] = p2 ≥ 0 ∀p ∈ Q[x]
|Power of N * nonNegCert [[Power (n, S)]] = Sn with S ≥ 0
|Product of nonNegCert list [[Product (L)]] = ΠS∈L S ≥ 0

Design of the Oracle. The oracle treats the input polynomial g as the set M
of its monomials and maintains a set MC of already-canceled monomials. Each
heuristic looks for a monomial m in M it can apply to, checks that it doesn’t
belong to MC and generates a product S or H for it. Monomial m is then
added to MC and the monomials of S that are different from m are added
to M . The oracle finally returns a list of couples formed of a product H or S
and its certificate of nonnegativity. The heuristics are applied according to their
priority. The most basic of them consists in taking every Handelman product
whose degree is smaller than or equal to that of g. If solving H-plop fails with
these products, we increase the maximum degree up to which all the products
are considered. Theorem 1 ensures eventual success. However, the number of
products quickly becomes so large that this heuristic is used as a last resort.

Targeted Heuristics. The following heuristics aim at finding either Handel-
man products HI or Schweighofer products SI which cancel a given nonlinear
monomial m. Besides a monomial canceling m, a product may contain non-
linear monomials which need to be eliminated. The heuristics guarantee that
these monomials are of smaller degree than m when the polyhedron is bounded,
thereby ensuring termination. Otherwise, they try to limit the degree of these
additional monomials as much as possible, so as to make them easier to can-
cel. As before, we consider an input polyhedron {C1 ≥ 0, . . . , Cp ≥ 0} with
Ci =

∑n
j=1 aijxj + ai0, where the xj ’s are program variables and the aij ’s are

constants in Q. We wish to cancel monomial m � cm ×xe1
1 · · · xen

n , with cm ∈ Q.

Extraction of Even Powers. This heuristic builds on squares being always non-
negative to apply Schweighofer’s theorem in an attempt to simplify the problem.
The idea is to rewrite m into m = m′×(xε1

1 . . . xεn
n )2 where m′ � cm×xδ1

1 . . . xδn
n ,

with δj ∈ {0, 1}. The heuristic recursively calls the oracle in order to find a prod-
uct S canceling m′. Then, S × (xε1

1 . . . xεn
n )2 cancels the monomial m. If WS is

the nonnegativity certificate for S, then Product [WS ;Square (xε1
1 . . . xεn

n )] is that
of the product.

Simple Products. Consider a monomial m = cm × x1 · · · xn where cm ∈ Q,
as can be produced by the previous heuristic. We aim at finding a Schweighofer
product S that cancels m, and such that every other monomial of S has a degree
smaller than that of m. We propose an analysis based on intervals, expressing
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S as a product of variable bounds, i.e. xj ∈ [lj , uj ] where lj , uj ∈ Q. For each
variable xj , we may choose either constraint xj + lj ≥ 0 or −xj +uj ≥ 0, so that
the product of the chosen constraints contains x1 · · · xn with the appropriate
sign. Moreover, other monomials of this product are ensured to have a degree
smaller than that of m. The construction of a product of bounds is guided by
the following concerns.

– The sign of the canceling monomial is to be opposite to that of m.
– The bounds that are available in the input constraints are used in priority. It

is possible to call the vpl to deduce additional bounds on any variable from
the input constraints. However, finding a new bound requires solving a linear
problem.

– The selected bounds should exist, which is not necessarily the case if the input
polyhedron is not a polytope. If too many bounds don’t exist, the heuristic
fails.

Thanks to Farkas’ lemma [12, Th. 2.14], each implied bound on a variable
(xj + lj or −xj + uj) can be expressed as a nonnegative linear combination
of the input constraints, i.e.

∑p
i=1 βijCi for some βij ≥ 0 solutions of a linear

problem. The combination reduces to Ci if Ci is already a constraint of the input
polyhedron P . The resulting product of bounds can then be expressed as follows.

∏

j∈L

(xj + lj) ×
∏

j∈U

(−xj + uj) =
∏

j∈L∪U={1,...,n}

( p∑

i=1

βij · Ci)
)
, βij ≥ 0

The right-hand side expression is then refactorised with the Ci’s kept symbolic,
so that the Handelman products appear. This case is illustrated in Example 4.

Example 4. We illustrate the behavior of the oracle and the satisfiability test
on the polynomial g = y2 − x2y + xy − 85 and still the same polytope P =
{ (C1) x− 1 ≥ 0, (C2) y +2 ≥ 0, (C3) x− y ≥ 0, (C4) 5−x− y ≥ 0} . The oracle
starts with M = {xy,−x2y, y2 } and processes the monomials in order.

(xy) For eliminating xy, the simple product heuristic uses constraint (C1)x−1 ≥
0 and the combination (C1) + (C4) = (x − 1) + (−x − y + 5) which entails
−y+4 ≥ 0. Their product (x−1)(−y+4) = −xy+4x+y−4 cancels xy and
the development C1 · (C1 + C4) = C2

1 + C1C4 reveals the useful Handelman
products: H1 � C2

1 = x2 − 2x + 1 and H2 � C1C4 = −x2 − xy + 6x + y − 5.
They are returned with their certificates of nonnegativity: Power (2, C1) and
Product [C1;C4]. Then, xy is added to MC as well as the new monomials x2

and −x2: They are not placed in M since opposite monomials cancel each
other.

(−x2y) The heuristic for squares splits the term −x2y into m′ × x2 and lets the
oracle deal with m′ � −y. The simple product heuristic reacts by looking for
a constraint with the term +y and as few variables as possible: (C2) y+2 ≥ 0
fulfills these criteria. The calling heuristic builds the Schweighofer product
S3 � x2 ·C2 = x2y+2x2 that cancels −x2y, and returns S3 with its certificate
of nonnegativity Product [Square (x);C2]. Then, the oracle removes x2y from
the working set and places it into the set of cancelled monomials.
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Fig. 5. The polytopes resulting of 3 iterations of Handelman’s linearization: P0 =
P, Pi = HL (Pi−1, 4 − x2 − y2 ≥ 0). P1, P2 and P3 are respectively composed of 5,
9 and 36 constraints.

(y2) The heuristic on squares cannot produce y2 × (−1) with a certificate of
nonnegativity for −1. The last heuristic is then triggered and finds two
Handelman’s products that generate (−y2): H4 � C2C3 = (y + 2)(x − y) =
xy − y2 + 2x − 2y and H5 � C2C4 = (y + 2)(5 − x − y) = 5y − xy − y2 +
10 − 2x − 2y. H4 is prefered since it does not introduce a new monomial –
indeed xy ∈ MC – whereas H5 would add −y2 to the working set M .

Finally the oracle returns the four polynomials with their certificates. The
expanded forms of H1,H2, S3,H4 are installed in the matrix Hg and are each
associated with a decision variable λ1, . . . , λ4. The parametric simplex computes
all the positive, minimal, affine constraints aff of the form 1·g+λ1 ·H1+λ2 ·H2+
λ3 · S3 + λ4 · H4. With such few products, it returns only one affine constraint
aff = g + 2H2 + H3 + H4 = 13x + y − 95 from which we build a polyhedral
over-approximation of the set P ∩ (g ≥ 0) as P 
 aff ≥ 0. The vpl reveals that
this polyhedron is empty, meaning that P ∧ (g ≥ 0) is unsatisfiable.

6 Implementation and Experiments

We implemented our linearization as part of the vpl. The linearization process
has two parts: an ocaml oracle, defined in Sect. 5, uses heuristics to select the
most promising Handelman-Schweighofer products S1, . . . , Sq, then it runs the
parametric simplex to find coefficients λ1, . . . , λq such that g +

∑
λiSi is affine.

The result is fed into a checker implemented and proved correct in coq. It guar-
antees in three steps that aff is an affine form and dominates g on P : (1) it
verifies that aff is affine; (2) the proof of

∑
λiSi ≥ 0 boils down to “sums and

products of nonnegative reals are nonnegative” using the nonnegativity certifi-
cates Wi provided by the oracle; (3) it checks that the two polynomials aff and
g+

∑
λiSi are equal in expanded form using the internals of the ring tactic. We

pay some care to efficiency by caching translations of polynomials from certifi-
cates to the expanded form to reduce the overhead of certificate checking. The
architecture of the checker is detailed in a previous work [33].
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Increasing Precision. We show on Fig. 5 the results of Handelman’s linearization
on the running example. We chose the subset {HI1 , . . . , HI15 } from Example 1,
meaning that we are faced with a 15-variable linear problem. Precision can be
increased without degree elevation by iterating Handelman’s linearization (HL):
P0 = P, Pi+1 = HL (Pi, g ≥ 0). The linearization operator of the vpl computes
this sequence until reaching a fixpoint, i.e. Pk+1 = Pk, or a time limit. The
sequence is decreasing with respect to inclusion since HL (Pi, g ≥ 0) = Pi 
∧

i affi ≥ 0 is by construction included in Pi.

Showing Emptiness of Nonlinear Sets. A smt-solver for nonlinear real arithmetic
using the dpll(t) architecture enumerates conjunctions of nonlinear inequali-
ties, each of which having to be tested for satisfiability. We show the unfeasibility
of the conjunction of C1 ≥ 0, . . . , Cp ≥ 0 and nonlinear ones g1 ≥ 0, . . . , gq ≥ 0 by
computing the sequence of approximations: P0 = {C1 ≥ 0, . . . , Cq ≥ 0}, Pi+1 =
HL (Pi, gi ≥ 0). The polynomials are added one after the other, meaning that
gi+1 is linearized with respect to the previous polyhedral approximation Pi. If
at some point Pk = ∅, it means that the conjunction is unsatisfiable, as our
approximation is sound. Otherwise, as it is not complete, we cannot conclude.
Such a procedure can thus be used to soundly prune branches in dpll(t) search.
Furthermore, the subset of constraints appearing in the products used in the
emptiness proof is unsatisfiable, and thus the negation of its conjunction may
be used as a learned clause.

Although our contribution applies to both static analysis and smt solving,
we felt that performing our experimental evaluation with smt-solvers was bet-
ter suited: the smt community has a standard set of nonlinear benchmarks from
SMT-LIB, which the static analysis community is missing. Therefore, we exper-
imented with conjunctions arising from deciding formulas from the Quantifier-
Free Nonlinear Real Arithmetic (QF NRA) benchmark, from SMT-LIB 2014 [2].
These conjunctions, that we know to be unsatisfiable, are mostly coming from
approximations of transcendental functions as polynomial expressions. We added
our linearization algorithm as a theory solver for the smt-solver cvc4 [15]. The
calls to our linearization follow a factorization step, where for instance polyno-
mial guards such as x2−y2 ≥ 0 are split into two cases (x+y ≥ 0∧x−y ≥ 0 and
x+y ≤ 0∧x−y ≤ 0), in order to give more constraints to the input polyhedron.

The comparison of our contribution with the state of the art smt-solvers
Z3 [13], Yices2 [16], SMT-RAT [10] and raSat [28] was done on the online
infrastructure StarExec [39]. Figure 6 is a cactus plot showing the number of
benchmarks proved unsatisfiable depending on time. It illustrates that lineariza-
tion based on Handelman’s representation, implemented as a non-optimized
prototype, gives fast answers and that its results are precise enough in many
cases. Note that our approach also provides an easy-to-verify certificate, as
opposed to the cylindrical algebraic decomposition implemented in Z3 for exam-
ple. Indeed, if the answer of the vpl is that the final polyhedral approximation is
empty, then the nonzero coefficients in the solution λ of the parametric problem
H-plopH-plop give a list of sufficient Schweighofer products. Together with the
nonlinear guards, the conjunction of the original constraints involved in these
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Fig. 6. Comparison between CVC4+VPL and other smt-solvers on quantifier-free non-
linear real arithmetic benchmarks.

products are actually sufficient for emptiness. As mentioned above, in a smt-
solver the negation of this conjunction may be used as a learned theory lemma.
However, due to engineering issues we have not been able to fully integrate
this procedure into cvc4 by sending back minimized learned lemmas. Over a
total of 4898 benchmarks, adding our method (represented in the figure as curve
cvc4+vpl) allows cvc4 to show the unsatisfiability of 1030 more problems. Fail-
ure in showing emptiness may come from strict constraints since up to now, our
solver considers each inequality as nonstrict.

7 Conclusions and Future Work

We presented a new approach to the linear approximation of multivariate polyno-
mials, based on Handelman’s and Schweighofer’s theorems, and implemented it
in the Verimag Verified Polyhedra Library (vpl) as an operator of the abstract
domain of polyhedra. A verifier implemented and proved correct in coq can
optionally check its results.

The approach is directly usable in static analysis by abstract interpretation:
besides linear expressions, the vpl now accepts polynomials as well. Apart from
handmade examples [33], we actually did not find programs manipulating inte-
gers where the linearization improves the global analysis result: non-linearity is
too sparse in such programs. We believe that it could have an impact on the
analysis of floating-point computations where polynomials appear more natu-
rally in programs for approximating transcendental functions and in the analysis
of the round-off errors [3]. Work in that direction is planned for the very near
future but supporting this claim still requires some work on the integration of
the vpl into a mature analyzer for floating-point programs, the treatment of
round-off errors and some certification effort. The vpl can already deal with
strict inequalities over the rationals but the algorithms are not yet certified (the
enlargement of any strict inequality < n over the integers to ≤ n−1, is not valid
for polyhedra over the rational field).
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Our approach already proved to be useful in satisfiability modulo theory
solving. A simple coupling of our prototype, implemented in ocaml, with the
competitive smt-solver cvc4 improved notably the performance of that solver
on nonlinear arithmetic.

In contrast to cylindrical algebraic decomposition, which is a complete app-
roach, our method may fail to prove a true property. However, it provides easy-
to-check certificates for its results.

From a polynomial guard g ≥ 0 and an input polyhedron P , our algorithm
operates in two phases. The first selects products of constraints of P which are
likely to cancel nonlinear monomials from g. The second phase uses parametric
programming to explore the linear combinations of these products yielding an
affine form which bounds g. Both phases offer room for improvement.

(1) Blindly including all products of degree n is exponential in n and many
of them may be useless. This is why we developed an oracle procedure
using selection heuristics to obtain good precision at reasonable cost. In
a future refinement of this work, an incremental approach could grow the
set of products, using feedback from the solver about missing monomials in
cancellations.

(2) Our parametric linear solver currently relies on the parametric variant of
the simplex algorithm. The latter subdivides regions of relevance, leading to
multiple copies of each solution, which makes the exploration more expen-
sive than it should be. We are now working on more efficient exploration
algorithms, following previous work by Jones et al. [25].
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bers. Ph.D. thesis, École Polytechnique, Palaiseau, France (2013)

37. Prestel, A., Delzell, C.N.: Positive Polynomials: From Hilbert’s 17th Problem to
Real Algebra. Springer-Verlag, June 2001

38. Schweighofer, M.: An algorithmic approach to Schmüdgen’s Positivstellensatz. J.
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Abstract. We address the problem of computing an abstraction for a
set of examples, which is precise enough to separate them from a set
of counterexamples. The challenge is to find an over-approximation of
the positive examples that does not represent any negative example.
Conjunctive abstractions (e.g., convex numerical domains) and limited
disjunctive abstractions, are often insufficient, as even the best such
abstraction might include negative examples. One way to improve pre-
cision is to consider a general disjunctive abstraction.

We present D3, a new algorithm for learning general disjunctive
abstractions. Our algorithm is inspired by widely used machine-learning
algorithms for obtaining a classifier from positive and negative examples.
In contrast to these algorithms which cannot generalize from disjunc-
tions, D3 obtains a disjunctive abstraction that minimizes the number
of disjunctions. The result generalizes the positive examples as much as
possible without representing any of the negative examples. We demon-
strate the value of our algorithm by applying it to the problem of data-
driven differential analysis, computing the abstract semantic difference
between two programs. Our evaluation shows that D3 can be used to
effectively learn precise differences between programs even when the dif-
ference requires a disjunctive representation.

1 Introduction

We address the problem of computing an abstraction for a set of examples, which
is precise enough to separate them from a set of counterexamples. Given a set
of positive examples C+ and a set of negative examples C−, both drawn from
some concrete domain D, our goal is to compute an abstraction of C+ using
a disjunctive abstract domain, such that the abstraction overapproximates C+,
but does not represent any example from C−.

The need for such an abstraction arises in many settings [5,13,32], including
the problem of differential analysis - computing the abstract semantic difference
between two programs [28,29,35]. The abstract semantic difference between two
programs often contains ranges of input values for which the programs are known
to produce the same outputs, but other ranges for which the output values
differ. Computing a safe abstraction of difference/similarity ranges can produce
a succinct description of the difference/similarity between programs.
c© Springer-Verlag Berlin Heidelberg 2016
B. Jobstmann and K.R.M. Leino (Eds.): VMCAI 2016, LNCS 9583, pp. 185–205, 2016.
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Unfortunately, computing such an abstraction is tricky due to the delicate
interplay between generalization and precision (required to ensure that the
abstraction is safe). When there are multiple ranges of equivalence or differ-
ence, typical conjunctive abstractions (e.g., convex numerical domains [11,24])
and limited disjunctive abstractions [3,6,15,23,30], are often insufficient, as even
the best such abstraction might include negative examples. On the other hand,
general (unlimited) disjunctive abstractions are too precise and do not naturally
generalize.

We present D3, a new Data-Driven algorithm for learning general Disjunc-
tive abstractions. D3 is an active learning algorithm that iteratively accepts an
example and its label as positive or negative, and incrementally updates the dis-
junctive abstraction of all examples seen. D3 is driven by a new notion of safe
generalization used to compute the abstraction of the seen examples. Safe gen-
eralization generalizes a precise disjunctive abstraction of the positive examples
into a more abstract one, but does so in a safe way that does not represent any
negative example.

The exploration of the input space is directed by D3 by restricting the
sampling to advantageous regions of the space derived from the intermediate
abstractions.

D3 is a general algorithm and can be instantiated with different choices for
the following: (i) an oracle responsible for picking the next sample input from a
given region, (ii) an implementation of a teacher, used to label each sample, and
(iii) the abstract domain over which disjunctive abstractions are computed.

To implement differential analysis, we instantiate D3 with a code-aware ora-
cle for picking the next input, a teacher that labels an input by executing both
programs and comparing outputs, and several abstractions including intervals,
congruence intervals, and boolean predicates over arrays.

The main contributions of this paper are:

– A new operation, safe generalization, which takes a disjunctive abstraction
and generalizes it further while avoiding describing a set of counterexamples.

– A new algorithm D3 for learning general disjunctive abstractions, which uses
safe generalization, as well as a strategy to direct exploration of the input
space.

– An implementation of D3 and its application to the problem of data-driven
differential analysis, computing the abstract semantic difference between two
programs. Our evaluation shows that D3 can be used to effectively learn pre-
cise differences between programs even when the difference requires a disjunc-
tive representation.

2 Overview

In this section, we provide an informal overview of our approach using a dif-
ferential analysis example. Figure 1 shows two functions computing the sum of
digits in a number.
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Fig. 1. Two Scala functions for computing the sum of a number’s digits. (a) is a correct
implementation. (b) has an error in initializing the variable sum and is correct only on
numbers that have 0 as the least significant digit, or on single-digit numbers.

Figure 1(a) is a model Scala implementation for summing the digits of an
input number. Figure 1(b) is an implementation by a less experienced program-
mer that uses a loop construct rather than the tail recursive approach. While
the second implementation is very similar to a correct implementation, it suffers
from an incorrect initialization of the result variable, which is easily missed with
poor testing.

The goal of differential analysis is to compute an abstract representation of
the difference between programs. For the programs of Fig. 1, the difference can
be described as

∨
i∈{1..9}(x mod 10 = i) ∧ (x ≤ −11 ∨ x ≥ 11). The similar-

ity between these two programs (inputs for which the programs agree) can be
described as (x mod 10 = 0) ∨ (−9 ≤ x ≤ 9).

We use an active learning approach for computing the difference between the
programs. In active learning, a learner iteratively picks points and asks a teacher
for the classification of each point. The result of active learning is a classifier
that generalizes from the observed points and can be used to classify new points.

In our example, the learner is trying to learn the difference between two
programs P and P ′. We provide a simple teacher that runs the programs and
classifies a given input point c as “positive” when both programs produce the
same result, i.e. P (c) = P ′(c), and “negative” when the results of the two pro-
grams differ, i.e. P (c) �= P ′(c).

Our starting point is the Candidate Elimination algorithm, presented for-
mally in the next section. Candidate Elimination proceeds iteratively as follows:
in each iteration of the algorithm, the learner picks a point to be classified,
asks the teacher for a classification, and updates an internal representation that
captures the classification that has been learned so far. Based on this internal
representation, the learner can pick the next point to be classified. The itera-
tive process is repeated until the generalization of the positive points and the
exclusion of the negative points yields the same representation.

Applying the algorithm to our example program yields the following points:

(0, pos), (7, pos), (10, pos), (60, pos), (47, neg), (73, neg), (88, neg)
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The challenge is how to internally represent the set of positive points and the
set of negative points. The set of positive points cannot be directly represented
using a conjunctive (convex) representation, as the range [0, 60] also includes the
negative point 47. On the other hand, the negative range [47, 88] also includes
the positive point 60.

Trying to represent the positive points using a precise disjunctive represen-
tation yields no generalization in the algorithm (Sect. 3.2), and would yield the
formula: x = 0 ∨ x = 7 ∨ x = 10 ∨ x = 60. This disjunction would grow as addi-
tional positive points are added, does not provide any generalization for points
that have not been seen, and cannot represent an unbounded number of points.

The D3 Algorithm. The main idea of the D3 algorithm (Algorithm 2) is to incre-
mentally construct a generalized disjunctive representation for the positive and
negative examples. Technically, D3 operates by maintaining two formulas: ϕpos

that maintains the generalized disjunction representing positive examples, and
ϕneg that maintains the generalized disjunction representing the negative exam-
ples. The algorithm preserves the invariant that ϕpos and ϕneg both correctly
classify all seen points. That is, any seen positive point satisfies ϕpos, and any
seen negative point satisfies ϕneg. When a new point arrives, D3 uses the gen-
eralization of the conjunctive domain as much as possible, but uses disjunctions
when needed in order to exclude points of opposite classification.

In the differential analysis setting, ϕpos attempts to describe the similarity
between programs and ϕneg attempts to describe the difference. For the exam-
ple points above, the algorithm constructs the following ϕpos: (7 ≤ x ≤ 7 ∧ x
mod 10 = 7) ∨ (0 ≤ x ≤ 60 ∧ x mod 10 = 0). Note that this representation
correctly generalizes to include the positive points 20, 30, 40, 50 that were not
seen. The resulting ϕneg is (47 ≤ x ≤ 47 ∧ x mod 10 = 7) ∨ (73 ≤ x ≤ 88).

The existence of points that satisfy both ϕneg and ϕpos does not contradict
the invariant of the algorithm because both formulas include unseen points due
to generalization. In fact, the points in the intersection can be used to refine the
generalization. Technically, this is done by using the intersection as one of the
regions to be sampled.

In addition to ϕpos and ϕneg, the algorithm maintains ϕS and ϕ¬G, the pre-
cise disjunctive representations of the positive and negative examples, respec-
tively. Together, the four formulas determine the regions to be sampled, as
depicted in Fig. 2:

– Uncovered: ¬(ϕpos ∨ ϕneg)
– Covered disagreement: ϕpos ∧ ϕneg

– Positive abstracted disagreement: ϕpos ∧ ¬ϕS

– Negative abstracted disagreement: ϕneg ∧ ¬ϕ¬G

The covered and uncovered are regions where a given point would either
satisfy both ϕpos and ϕneg, or neither. The positive abstract disagreement region
is where a point would satisfy the generalized disjunctive representation ϕpos

but not the precise disjunctive representation ϕS (that is, the point is the result
of generalization). The negative abstract disagreement plays a similar role for
ϕneg and ϕ¬G.
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Fig. 2. The regions of the input space as seen by the D3 algorithm

Sampling from each of these regions ensures the algorithm would progress
towards abstracting and refining both positive and negative generalizations. Con-
vergence will occur if ϕpos and ¬ϕneg are equivalent, which means covered dis-
agreement is eliminated, and no region of the space is uncovered.

3 Active Concept Learning

Concept learning is an area of machine learning dedicated to learning a classifier
that is an abstraction of a dataset using a predefined language of predicates.
This section details the most commonly used concept learning algorithm, Can-
didate Elimination, and its relation to abstract domains. We further discuss
the limitations of Candidate Elimination, which are later addressed by our new
algorithm.

Concept Learning. Concept learning aims at learning a concept in a given
concept language. In our setting, a concept language would be used to describe
the space of inputs to a program. From now on, we fix an input space, denoted
D (also called a domain).

Definition 1 (Concept Language). A concept of domain D is a boolean func-
tion a over D. i.e. a : D → {true, false}. An element c ∈ D is described by
the concept a if a(c) = true. A concept language L is a set of concepts, i.e.
L ⊆ {true, false}D.

Each concept describes a subset of D, and a concept language defines the set of
possible subsets available to describe the domain. A concept language is usually
defined by a set of possible descriptions (templates) of boolean functions.

Example 1. The concept language of intervals includes all concepts described as
[l, h] = λx.l ≤ x ≤ h s.t. l, h ∈ N. [0, 42] is a concept in the intervals concept
language, which from a domain of integers describes the subset {0, 1, . . . , 42}.
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Concept Languages Based on Logical Formulas. Given a concept lan-
guage L0, we view its concepts (which are boolean functions) as atoms over
which propositional formulas can be constructed using logical connectives, such
as negation, conjunction and disjunction, thus defining new concepts (boolean
functions). For example, if a1, a2 ∈ L0, then the formula ϕ = a1 ∧ a2 represents
the function λx. a1(x)∧a2(x). Note that this boolean function need not be in the
original concept language L0. Thus, we obtain new, richer, concept languages.

Definition 2 (Conjunctive Concepts). Given a concept language L0, con-
junctive concepts over L0 (or simply conjunctive concepts) are concepts defined
by a conjunction of finitely many concepts from L0.

A cartesian product L1 × . . . × Ln is a special case of a conjunctive concept
language over L0 =

⋃
1≤i≤n Li, where the concepts are tuples comprised of one

concept from each Li, with the meaning of conjunction.
For example, the concept language of rectangles in 2D over a domain consist-

ing of pairs (x, y), is the product of two interval concept languages, one bounding
the x axis and the other bounding the y axis, and therefore it is a conjunctive
concept language.

Disjunctive concepts are defined similarly to conjunctive concepts. A disjunc-
tive concept language over L0 corresponds to the powerset domain over L0 [10].
We therefore denote it P(L0).

Concept Lattices. Concept learning algorithms such as Candidate Elimina-
tion [25] are based on the fact that every concept language L has an inherent
partial order, denoted 
, based on the implication relation between the individ-
ual concepts, defined in [25] as the more specific than relation. Formally, a1 
 a2

if and only if for every c ∈ D, a1(c) ⇒ a2(c). For example, c ∈ [1, 4] ⇒ c ∈ [0, 80]
which means [1, 4] 
 [0, 80].

We are particularly interested in cases where this partially ordered set, (L,
),
forms a lattice. We assume that all concept languages include ⊥ = λx.false and

 = λx.true, which are the least and greatest concepts w.r.t. 
, respectively.
For instance, in the intervals lattice, [1, 3] � [5, 8] = [1, 8], and [1, 3] � [5, 8] = ⊥.

Concepts as Abstractions. We view a concept language L as an abstract
domain for D, accompanied by a concretization function γ : L → 2D that
transforms a concept a ∈ L into all of its described objects, and an abstraction
function β : D → L which transforms an element c ∈ D to the most specific
concept representation.1 In the intervals concept language, for example, β(c) =
[c, c] for every c ∈ D. Note that by definition of the 
 relation, a1 
 a2 ⇐⇒
γ(a1) ⊆ γ(a2).

3.1 Candidate Elimination

Candidate Elimination is a machine learning algorithm aimed at learning a
binary classifier from D to the categories “positive” and “negative”. The input
1 A most specific representation need not exist. For simplicity of the presentation, we

consider the case where it does, and explain what adaptations are needed when it
does not.
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to the algorithm is a set of positive examples C+ ⊆ D and a set of negative
examples C− ⊆ D. The output is a classifier, given as a concept, also called
hypothesis, that is consistent with all the examples.

Definition 3 (Consistency). A hypothesis h is consistent with a set of positive
examples C+ and a set of negative examples C− if and only if for every c ∈
C+ ∪ C−, h(c) = true ⇐⇒ c ∈ C+ .

The Candidate Elimination algorithm holds a lower bound and an upper bound
of possible consistent hypotheses in the lattice, representing all the lattice ele-
ments inbetween. Every concept below the upper bound excludes all the con-
crete points the upper bound excludes, and every concept above the lower bound
includes all points that the lower bound includes. The hypotheses represented by
the upper and lower bound created by processing a concrete set C = C+ ∪ C−

are called the version space of C.

Algorithm 1. The Candidate Elimination algorithm formulated in
abstract domain operations
1 S ← ⊥
2 G ← {�}
3 for c ← Samples do
4 if label(c) is positive then S ← S � β(c)
5 else G ← {g � n | g ∈ G, n ∈ comp−({c})}
6 G ← {g ∈ G | S � g}
7 if G = ∅ then
8 return ⊥
9 if S ∈ G then return S

// Training examples ran out but S and G have not converged

10 return some hypothesis bound between S and G

Algorithm 1 describes the full Candidate Elimination algorithm. In the code,
we use a function label(x) which for x ∈ D returns either “positive” or “nega-
tive”. In the case of predefined sets of points C+, C−, label is a partial function
defined for C+ ∪C− that will return positive if and only if x ∈ C+. In the active
learning case, it will compute the label for any point in D. In this case it will
also be called a teacher.

The algorithm starts with a specific (lower) bound, S = ⊥2 and a set of
generic (upper) bounds G = {
} (every element in G is a possible generic
bound). Using concrete examples from the sets C+ and C−, the algorithm
advances its hypotheses bounds from either direction until the lower and upper

2 If β maps a concrete point to a single concept which best represents it, it is easily
shown that it suffices to maintain S as a single element. Candidate Elimination can
also handle multiple representations, in which case S will be a set of specific bounds,
similarly to G.
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bound converge. For any positive example c, the algorithm modifies S to include
c, and for every negative example c′, it modifies all the bounds in G to elimi-
nate concepts that include c′. If the concept language used is a lattice, it is easy
to describe the Candidate Elimination algorithm in terms of lattice operations.
Modifying the bounds to include and exclude examples is done with the join and
meet operations, walking through the implication lattice.

The increase of the specific bound uses the abstraction function β. In order
to describe the lowering of the generic bound, we define the set which is the
underapproximated complementation of a set, comp−.

Definition 4 (Underapproximated Complementation). Given a set of
concrete points C ⊆ D, comp−(C) is the underapproximating complement of
C. comp−(C) ⊆ L s.t.

– Complementation: ∀a ∈ comp−(C). γ(a) ∩ C = ∅, and
– Maximal underapproximation: ∀a ∈ L. γ(a)∩C = ∅ ⇒ ∃a′ ∈ comp−(C) :

a 
 a′

For some abstract domains comp− is an inexpensive operation. For exam-
ple, in the interval domain its complexity is O(|C|): comp−({2, 7}) =
{(−∞, 1], [3, 6], [8,∞)}, and so on for larger sets. For other domains, however,
comp− will be costly or even not computable. Section 5 discusses several domains,
including a boolean predicate domain, where comp− causes Candidate Elimina-
tion to be non-feasible to compute.

Example 2. Using a concept language of intervals, we initialize S = ⊥ and
G = {
} and begin processing examples. The first example is c = 0, and label(0)
is negative. To handle a negative point, comp−({c}) = {(−∞,−1], [1,∞)}
is computed, then the new value of G = {
 � (−∞,−1],
 � [1,∞)} =
{(−∞,−1], [1,∞)}. All members of G are equal or greater than S (and therefore
consistent), so no filtering is required.

A second sample seen is c′ = 2 and label(2) is positive. To handle a positive
sample, the algorithm computes β(c′) = [2, 2] and then computes the new value
of S = ⊥ � [2, 2] = [2, 2]. We can now see that one of the members of G is no
longer consistent with c′, since if it were selected it would label c′ as negative,
which makes it incomparable with S, so it is filtered, yielding G = {[1,∞]}.

Candidate Elimination is a general algorithm, which can be used both for active
learning and offline learning from a given set of points. It has several active
learning variations, including the CAL [8] and A2 [4] algorithms for active version
space concept learning. Since in active learning the algorithm itself selects the
next point that will be labeled, these algorithms address the problem of selecting
an advantageous next point. For this, they define the region of disagreement, as
the set of all the points for which some two hypotheses that are currently viable
disagree:

Definition 5 (Region of Disagreement). The region of disagreement (some-
times region of uncertainty) [8] for a version space V is RV = {c ∈ D | ∃h1, h2 ∈
V : h1(c) �= h2(c)}.
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Selecting the next example from this region would guarantee the elimination of
at least one hypothesis with every step.

The final result of candidate elimination would be one of the following: a
single classifier S =

⊔
c∈C+ β(c), if S and G converge; no classifier, if S and G

become inconsistent; or a (possibly infinite) range of classifiers described by the
hypotheses bound between S and G, from which one or more can be selected.

3.2 Unbiased Learning

The concepts supported by the Candidate Elimination algorithms are conjunc-
tive (specifically, cartesian concepts), and the need to find the next hypothesis
that will be consistent with all examples while using only conjunction is the
learner’s bias. Bias is the way it generalizes about data it has not seen. However,
as the following example demonstrates, for the case of programs, conjunctive
concepts are not enough:

Example 3. Consider the differential analysis of f(x)=x and g(x)=if

(abs(x) < 1000) 0 else x using the intervals concept language. These pro-
grams differ in intervals [−1000,−1] and [1, 1000], and are the same in
[MinInt,−1001], [0, 0] and [1001,MaxInt], so describing the difference (or sim-
ilarity) using intervals requires disjunction. However, the (conjunctive) intervals
language only allows to bound a set of points using a single interval. Thus, any
concept describing all the positive points (where the programs agree) will also
include negative points (where the programs disagree) and vice versa. Specifi-
cally, candidate elimination will finish as inconsistent if it sees a single negative
sample amidst the positive samples.

Unbiased Learning. When disjunctions are added, more complex concepts
can be described despite the limitation of the basic concept language L0 (this
is equatable to the powerset lattice over L0). However, the added freedom that
comes with disjunctions introduces a problem, which is inherent in the join
operation of the powerset lattice: a1 � a2 = a1 ∨ a2. If every specific example is
generalized to β(c) and then joined to the rest, the specific lower bound will never
become more abstract than ϕS =

∨
c∈C+ β(c). Similarly, if allowing arbitrary

connectives, the generic upper bound will never become more refined than ϕG =∧
c∈C− ¬β(c).

This is what Mitchell calls “the futility of the unbiased learner” [25]. Once
the ability to abstract is lost, the hypotheses at the bounds of the version space
will never be able to answer yes or no about examples they have never seen,
and unless the entire space is sampled (if this is at all possible), they will never
converge.

3.3 Unbiased Learning by Partitioning the Space

Mitchell’s original work on version spaces [26] suggests handling an inconsistency
that requires disjunction by working with a pre-partitioned space and perform-
ing the candidate elimination algorithm separately in every partition. While this



194 H. Peleg et al.

approach is the most efficient, it requires prior knowledge of where the disjunc-
tions are likely to occur, and a more flexible concept language that allows for the
partition. Murray’s tool Hydra [27] uses an operation equivalent to comp− to
dynamically partition the domain using the negative samples, creating regions
where generalization is allowed. Every division of the space may cause a recal-
culation of impacted abstract elements, which need to be re-generalized within
the newly created regions. In addition to requiring an efficient comp−, Hydra

lacks a simple convergence condition, but rather is intended to run until either
samples run out or the teacher is “satisfied” with the resulting description.

4 Learning Disjunctive Abstractions

In this section we describe our algorithm for learning disjunctive concepts. Just as
in the Candidate Elimination algorithm, what we seek to find is a boolean func-
tion partitioning the input space into the positive and the negative sets, described
using the concept language. As in Candidate Elimination, we are dependent
on the assumption that this partition is expressible using the concept lan-
guage. However, unlike Candidate Elimination, we consider a disjunctive concept
language, P(L).

From here on, we interchangeably describe disjunctive concepts in P(L) as
disjunctive formulas, e.g., a1 ∨ a2, and as sets, e.g. {a1, a2}. Further, � always
denotes the join of L, as opposed to the join of P(L), which is simply disjunction
or set union.

Our key idea is to combine the benefits of the generalization obtained by using
the join of L, with the expressiveness allowed by disjunctions. We therefore define
a safe generalization which generalizes a set of concepts (abstract elements) A ∈
P(L) in a way that keeps them separate from a concrete set of counterexamples.

Definition 6 (Safe Generalization). A safe generalization of a set of con-
cepts A ∈ P(L) w.r.t. a concrete set of counterexamples Ccex ⊆ D is a set
SG(A,Ccex) ∈ P(L) which satisfies the following requirements:

1. Abstraction: ∀a ∈ A.∃a′ ∈ SG(A,Ccex). a 
 a′

2. Separation: ∀a ∈ SG(A,Ccex). γ(a) ∩ Ccex = ∅
3. Precision: ∀a ∈ SG(A,Ccex).∃A′ ⊆ A. a =

⊔
A′

We say that SG(A,Ccex) is maximal if whenever a ∈ L satisfies the separation
and the precision requirements, there exists a′ ∈ SG(A,Ccex) s.t. a 
 a′.

Note that the separation requirement is the same as the “complementation”
requirement of comp−. Unlike the join of L which is restricted to return a con-
cept in L, SG(A,Ccex) returns a concept in P(L), and as such it can “refine” the
result of join in case

⊔
A does not satisfy the separation requirement. The pre-

cision requirement is guided by the intuition that each a ∈ SG(A,Ccex), which
represents a disjunct in the learned disjunctive concept, should generalize in
accordance with the generalization of L and not beyond. If any of the conditions
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cannot be met, then SG(A,Ccex) is undefined. However, if γ(A) and Ccex are
disjoint, then SG(A,Ccex) is always defined because it will, at worst, perform
no generalization and will return A.

Using safe generalization, we can define the “safe abstractions” of two sets
C+, C−: ϕpos = SG({β(c) | c ∈ C+}, C−), which characterizes the positive
examples, or ϕneg = SG({β(c) | c ∈ C−}, C+), which characterizes the negative
examples (provided that SG is defined for them).

The Ideal Solution. If C+ and C− partition the entire space and SG computes
maximal safe generalization, then ϕpos and ϕneg will be the optimal solutions, in
the sense of providing concepts with largest disjuncts which correctly partition
D. Note that in the case that the classifier is expressible as a concept in L,
the ideal solution is equivalent to the result of Candidate Elimination, which is
simply

⊔{β(c) | c ∈ C+}.
Since this definition, while optimal, is both unfeasible (for an infinite domain)

and requires SG, which like comp− may be very expensive to compute, we pro-
pose instead a greedy algorithm to approximate it by directing the sampling of
points in C+ and C− and by implementing SG with a heuristic approximation
of maximality.

Our algorithm, D3, is presented in Algorithm 2, and described below.

Two Levels of Abstraction. D3 modifies the version space algorithms to keep
four hypotheses, divided into two levels of abstraction.

In the first level of abstraction, ϕS , ϕ¬G ∈ P(L) are formula representations
of the minimal overapproximation of the points that have actually been seen.
ϕS corresponds to Candidate Elimination’s S, computed over P(L), for which
join is simply disjunction. In an effort to simplify and only deal with disjunction
and not negation, instead of G which underapproximates D \ C−, we use ϕ¬G

that abstracts C− directly. In the second level of abstraction, ϕpos, ϕneg ∈ P(L)
are added. These are incremental computations of the definition above, which
provide safe generalizations of ϕS w.r.t. the current C−, and of ϕ¬G w.r.t. the
current C+.

Technically, ϕS =
∨

c∈C+ β(c) and ϕpos =
∨

ψi s.t. ψi = β(ci1) � · · · � β(cik)
for some {ci1 , . . . , cik} ⊆ C+. It can be seen that C+ ⊆ γ(ϕS) ⊆ γ(ϕpos).
Further, both ϕS and ϕpos are consistent with all the examples seen (including
negative ones). Dually for C−, ϕ¬G and ϕneg.

D3 updates the formulas as follows. Every positive sample c that arrives
is first added to ϕS , and then if it is not already described by ϕpos, ϕpos is
updated to a safe generalization of ϕpos ∨ β(c). If ϕneg is inconsistent with c,
then any disjunct ψi ∈ ϕneg for which ψi(c) = true is refined by collapsing it
into its original set of points, abstracting them using β and re-generalizing while
considering the new point. Unlike Candidate Elimination, D3 is symmetrical for
positive and negative samples, hence negative samples are handled dually.

D3 converges when ϕpos and ϕneg constitute a partition of D. This means
that ϕpos ≡ ¬ϕneg. This requires that in terms of expressiveness, the partition
can be described both positively and negatively.
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Algorithm 2. The D3 algorithm
Input: O oracle, label teacher function

1 ϕpos ← false; ϕneg ← false
2 ϕS ← false; ϕ¬G ← false
3 C+ ← ∅; C− ← ∅
4 while ((ϕpos ∨ ϕneg �≡ true) ∨ (ϕpos ∧ ϕneg �≡ false)) ∧ ¬timeout do

// Check for consistency

5 cpos ← O |ϕS ; cneg ← O |ϕ¬G

6 if label(cneg) is positive ∨ label(cpos) is negative then
7 return no classifier

// Sample every region of disagreement

8 c1 ∈ O |¬ϕpos∧¬ϕneg

9 c2 ∈ O |ϕpos∧ϕneg

10 c3 ∈ O |ϕpos∧¬ϕS

11 c4 ∈ O |ϕneg∧¬ϕ¬G

12 C = {c1, c2, c3, c4}
13 for c ← C do
14 if label(c) is positive then
15 ϕS ← ϕS ∨ β(c)
16 if ¬ϕpos(c) then ϕpos ← SG(ϕpos ∨ β(c), C−);
17 if ϕneg(c) then ϕneg ← refine(ϕneg, c, C−, C+);
18 C+ ← C+ ∪ {c}
19 else // Symmetrical

20 ϕ¬G ← ϕ¬G ∨ β(c)
21 if ¬ϕneg(c) then ϕneg ← SG(ϕneg ∨ β(c), C+);
22 if ϕpos(c) then ϕpos ← refine(ϕpos, c, C

+, C−);
23 C− ← C− ∪ {c}
24 return ϕpos, ϕneg

Function SG(ϕ = ψ1 ∨ · · · ∨ ψk, Ccex)
1 consistent ← {{ψj} �→ ψj | 1 ≤ j ≤ k} // lvl = 1
2 for lvl ← 2 . . . k do
3 prevLvl ← {S | S ∈ P({ψ1, . . . , ψk}), |S| = lvl − 1, S ∈ dom(consistent)}
4 pairs ← {(S, S′) | S, S′ ∈ prevLvl, |S ∪ S′| = lvl}
5 for (S, S′) ← pairs do

// Can be optimized to not check the same S ∪ S′ twice

6 if S ∪ S′ �∈ dom(consistent) then
7 a ← consistent[S] � consistent[S′]
8 if γ(a) ∩ Ccex = ∅ then
9 consistent ← consistent ∪ {S ∪ S′ �→ a}
10 seen ← ∅; res ← ∅
11 while seen �= {ψ1, . . . , ψk} do
12 joint ← arg maxx{cardinality(x) | x ∈ dom(consistent), x ∩ seen = ∅}
13 seen ← seen ∪ joint
14 res ← res ∪ consistent[joint]

15 return
∨

res
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Function refine(ϕ = ψ1 ∨ · · · ∨ ψk, c, Cabstracted, Ccex)
1 contradicting ← {ψi | ψi(c), 1 ≤ i ≤ k}
2 consistent ← {ψi | 1 ≤ i ≤ k} \ contradicting
3 for ψ ← contradicting do
4 concrete ← {c′ ∈ Cabstracted | ψ(c′)}
5 generalized ← SG(

∨{β(c′) | c′ ∈ concrete}, Ccex)
6 consistent ← SG(consistent ∪ {θi | generalized = θ1 ∨ · · · ∨ θj}, Ccex)

7 return
∨

consistent

Greedily Computing Safe Generalization. Like comp−, computing SG
naively is doubly-exponential. We therefore use a greedy strategy. SG first finds
all the subsets of the input whose join is consistent. This is done inductively
bottom-up, based on the fact that if a1 � a2 is inconsistent with some point c,
then a1 � a2 � a3 will be as well. This means the bottom-up construction can
stop generalizing at smaller subsets. From the computed consistent generalized
concepts, a coverage of the input is selected greedily using a cardinality function:
P(L) → N that assigns a value to the desirability of a subset of L to the coverage.
A default cardinality function returns the number of concepts in the subset, pre-
ferring a generalized element created from the largest subset, but some domains
allow for a better one. This greedy selection no longer ensures maximality.

If the domain is assured to be one for which comp− is efficient to compute,
Hydra’s technique (Sect. 3.3) can be used to partition the space so that re-
joining after a contradiction has been refined around is linear. While this is not
always possible, the greedy computation of SG is improved to an exponential
operation. Care is taken to always perform it on the fewest possible elements.
With the exception of backtracking (calls to refine that do collapse a disjunct),
calls to SG will encounter a set of elements most of which cannot be joined
to each other, and the computation will never try computing any larger joins
containing them.

Example 4. In sampling inputs for f(x) and g(x) from Example 3, using intervals
as our concept language, consider the case where the algorithm has already seen
the concrete points: {0, 1002, −837} which means it has learned ϕS = [0, 0] ∨
[1002, 1002] and ϕ¬G = [−837, −837]. (Recall that positive points correspond to
program similarity and negative points correspond to a difference.) It has also
generalized ϕpos = [0, 1002], as right now it is a valid hypothesis that is not
in contradiction with any data, and since there is nothing to abstract, ϕneg =

[−837, −837].
When the algorithm sees a new concrete point 478, for which f(478) �=

g(478), it expands ϕ¬G to include the point. It also adds a second clause so
ϕneg = [−837, −837] ∨ [478, 478]. It then tries to generalize this using the inter-
vals lattice, where [−837, −837] � [478, 478] = [−837, 478] but this new classifier is
consistent with the fact that f(0) = g(0) and 0 ∈ [−837, 478]. This means these
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two points cannot be abstracted together. Likewise, ϕpos is tested, and since
478 ∈ [0, 1002] it has become inconsistent, so it is refined into [0, 0] ∨ [1002, 1002].

We examine another point, 10004, where f(10004) = g(10004), which is
added to ϕS and then to ϕpos. ϕpos is now comprised of [0, 0] ∨ [1002, 1002] ∨
[10004, 10004]. While [0, 1002] and [0, 10004] are inconsistent with what we know
about 478, [1002, 10004] is consistent, so we abstract ϕpos = [0, 0] ∨ [1002, 10004].

It should be noted that while ϕS and ϕ¬G advance in one direction, ϕpos and
ϕneg travel up and down the lattice in order to stay consistent.

Regions of Disagreement. As shown in Sect. 2, the four formulas maintained
by D3 partition the region of disagreement (Definition 5) into four separate
regions, which can be seen in Fig. 2. The uncovered and covered disagreement
regions represent a classification disagreement between the two abstractions,
and the positive and negative abstracted disagreement are a classification dis-
agreement between the bounds and the abstractions. Since all four formulas
are consistent with all previously processed points, these will all be unsampled
regions of the space.

Sampling the uncovered or covered disagreement regions is guaranteed to
advance the algorithm by either abstracting or refining at least one of the formu-
las. By sampling the region with an oracle, advantageous points can be selected.
In the case of sampling ϕpos ∧ ¬ϕS or ϕneg ∧ ¬ϕ¬G (note that these formulas
are not concepts in P(L), they are just used as an interface to the oracle), it is
possible that while the sampled point will be added to ϕS or ϕ¬G, it will make
no change in the generalized formulas, and in essence not advance the algorithm
toward convergence.

Timeout and Consistency Checks. Like Candidate Elimination, if D3 recog-
nizes that the concept language is not descriptive enough to allow it to con-
verge, it returns “no classifier”. This will happen if the abstraction inherent in
β causes inconsistency. To test for this, the algorithm samples specifically for
unseen points in ϕS and ϕ¬G and if they indicate inconsistency, returns “no
classifier”. If β is precise enough, there will be no such unseen points, and this
test will require no action.

Another option is that convergence is unattainable, either because the parti-
tion of the space cannot be described by P(L) from neither the positive nor the
negative direction, which will cause a loop of ϕpos and ϕneg continuously gener-
alizing to intersect each other and refining to create uncovered space, or because
the domain is infinite and not advantageously sampled by the oracle. A timeout
is introduced to stop the process. Our experiments have shown a timeout of 2000
iterations to be sufficient. In case of timeout, ϕpos and ϕneg can still be returned
(as both are consistent with the seen points).

4.1 D3 on a Fixed Example Set

If a fixed set of examples C is given to D3 along with a label function defined only
over C, which means there is no teacher to query about new samples, the con-
vergence condition no longer applies. D3 will run until samples are exhausted,
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and the role of the oracle will no longer be to provide a new sample, but rather
to order the samples so that the algorithm will have to do as little backtracking
as possible, and will be more efficient than simply computing SG.

For example, for the intervals domain, the oracle would return the samples
in ascending order, which would ensure no counterexample dividing an interval
disjunct would ever be provided.

5 Prototype Implementation and Evaluation

We have implemented the D3 algorithm in Scala for several domains, along
with several input sampling strategies (oracles). In this section we first describe
the sampling strategies and concept languages implemented in our differential
analysis experiments. We then describe our experimental results over a small
but challenging set of programs.

5.1 Input Sampling Strategy

An ideal oracle would offer points that would lead D3 to finding every disjunct
in the desired ϕpos and ϕneg, and that would lead to convergence. It would also
order the samples so that the number of refinements would always be minimal,
and the algorithm would converge on a precise result using the fewest operations
(However, note that the result of D3 is not sensitive to order of the sampled
points).

Coming up with an ideal oracle is in general undecidable. Instead, one may
choose between different heuristics for discovering interesting input values.

Naively, a requested region is sampled uniformly. However, this often misses
singularity points (e.g., due to testing if (x != 0)). A slightly better approach
is to use biased sampling with tools such as ScalaCheck [1] that favor “problem-
atic values” such as 0, −1, or Int.MaxValue. Other techniques, typically used to
increase test coverage (e.g., concolic testing [33], whitebox fuzzing [16]), can be
applied here as well.

Another practical solution is to use a grey-box approach. For instance, search-
ing the code for constants and operations, and generating from them a list of
special values that should be returned to the algorithm when they match one
of the sampled regions. We have implemented a constants-only oracle which has
proved sufficient for all implemented numerical domains.

5.2 Intervals and Intervals with Congruence

Intervals. We use a standard intervals lattice [9] with |γ([l, h])| as a cardinality
measure for an interval [l, h]. This measure is easily computed and directs the
greedy choice towards the largest intervals.

D3 with the intervals domain has the property that if some point from a
positive or negative region is seen, the algorithm will not converge until the
entire region is discovered. This is because

⊔
({β(c) | c ∈ C}) = [l, h] only if
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l, h ∈ C, and since in order for D3 to converge, the space needs to be covered
(i.e. l − 1 and h + 1 are, themselves, described by ϕpos or ϕneg), both sides of
every boundary between ϕpos and ϕneg are sampled. This means that the grey-
box oracle would be adequate because relevant points are likely to be present as
constants in the code.

While intervals are useful for some examples (see Table 1), they cannot
handle examples such as that in Fig. 1. Running D3 with intervals on Fig. 1
and assuming a finite domain of 32-bit integers will only converge by sam-
pling the whole domain. While a full description of similarity ({[x, x] | x

mod 10 = 0 ∧ −2147483648 ≤ x ≤ 2147483647} for a 32-bit integer) exists, it
consists of 400 million separate disjuncts. And since these disjuncts contain one
concrete element each, they are also likely to never be discovered and instead
be overapproximated by the description of difference. What the interval concept
language lacks is the ability to abstract these into one description.

Intervals with Congruence. We consider a richer domain of intervals with
congruences for several divisors. Instead of using the full congruence abstract
domain [17], we use its collapsed versions to the divisors 2 through 10 that allow
the information on several different congruences to be preserved simultaneously.
This allows us to learn the similarity (x ≤ 2147483640 ∧ x ≥ −2147483640 ∧ x

mod 2 = 0 ∧ x mod 5 = 0 ∧ x mod 10 = 0) ∨ (x ≤ 9 ∧ x ≥ −9) for the example of
Fig. 1.

Like intervals, the cardinality measure for intervals with congruence counts
the number of elements in the interval, accounting for all congruences that are
not 
. Using the grey-box oracle, the Sum of digits example converges with
the expected difference of

∨
i∈1...9(x ≤ −1 ∧ x mod 10 = i) ∨ (x ≥ 11 ∧ x

mod 10 = i).

Larger Arities. Both the intervals and intervals with congruence domains can
be applied to functions of different arities by using the product domain for as
many arguments to the function as necessary. We have implemented the domain
Intervals × Intervals for functions that take two int parameters.

Using the same grey-box oracle lifted to the product domain for two parame-
ters, and the area of the box as the cardinality function, we tested D3 on several
samples including the Quadrant test, in which the exercise is to take a point in
the geometric plane (x, y) and return the quadrant it is in. One implementation
defines Quadrant I as x > 0, y > 0 and the other as x ≥ 0, y ≥ 0, and the same
for Quadrant II and IV.

This yields the difference of x = 0 ∨ y = 0, and similarity of (x ≥ 1 ∧ y ≥
1) ∨ (x ≥ 1 ∧ y ≤ −1) ∨ (x ≤ −1 ∧ y ≥ 1) ∨ (x ≤ −1 ∧ y ≤ −1).

5.3 Quantified Boolean Predicates over Arrays

In the domain of quantified boolean predicates over arrays, comp− causes
the number of upper bounds to grow exponentially, which means Candidate
Elimination is non feasible to compute, even for simple conjunctive descriptions.
D3 finds these descriptions, as well as disjunctive ones.
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Creating Predicates. Since we have no property or assertions from which
to draw predicates, we use a template-based abstraction, as in [21,34,36]. For
simplicity, we use a fixed set of predicate templates filtered by correctness on
the concrete array, similar to those used by the Houdini [14] and Daikon [12]
annotation assistants.

The β Function. In our implementation β(c) is a conjunction of all the facts
the templates discover about it. For very small arrays we can allow a precise
beta function that generates specific predicates for arr(0), arr(1), . . . . For larger
arrays we keep more compact facts such as: ∀i.(arr(i) ≤ arrMax ∧ arr(i) ≥
arrMin) for the maximum and minimum values in the array. This is not a
precise β, which illustrates the importance of the consistency check in Sect. 4.

Oracle. The grey-box oracle approach, which works for most integer functions,
is insufficient for arrays - the simple syntactic analysis of the code is insufficient
for inferring meaningful examples. To demonstrate the D3 algorithm, we provide
our experiments with a manual “oracle procedure” specific to the test.

The Find2 test finds the occurrence of 2 in an array without using array
functions. The spec implementation provided is simply arr.indexOf(2), and the
tested implementation makes an off-by-one error failing to test arr(0). D3 learns
the difference arr(0) ≥ 2 ∧ arr(0) ≤ 2.

5.4 Experimental Evaluation

Table 1 compares each of the tests to the capabilities of a conjunctive method
such as joining all the samples of a large set of positive examples or running an
active version of Candidate Elimination. The columns for “conjunctive (differ-
ence)” and “conjunctive (similarity)” signify whether the analysis would succeed
if performed when treating the different points or the similar points as C+.

Tests Example 3, Sum of Digits, Quadrant and Find2 have been discussed
in detail previously. Square tests the difference between two implementations
of squaring a number, one which casts to Long, and another that does not,
thus causing an integer overflow, creating a difference in any number that is
large enough or small enough so that its square does not fit into an Integer.
StringAtIndex returns the character at the given index of a string, or null if
the index is outside the bounds of the string, where one implementation has an
off-by-one error, causing the 0th place in the string to be returned as null and
an exception to be thrown at one past the end. IsOdd tests a parameter for odd-
ness, where one implementation incorrectly tests negative numbers. SolveLinEq
returns the solution to a linear equation ax2+b = 0 where a, b are the arguments
of the functions. One implementation is undefined where a = 0 and the other
only when both a and b are zero. ArrayAverage averages the values in an array,
where one implementation is undefined (division by zero error) when the array is
empty and the other returns zero. ArrayMaximum searches for the maximum value
in an array, where one implementation has incorrect initialization of the max-
imum to 0 rather than the first element, thereby returning an incorrect result
when ∀i : arr(i) < 0.
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Table 1. Comparing the D3 algorithm to the capabilities of conjunctive algorithms

Test name Conjunctive
(difference)

Conjunctive
(similarity)

D3

Intervals Example 3 ✗ ✗ ✓

Square ✗ ✓ ✓

StringAtIndex ✗ ✗ ✓

Intervals with
congruence

IsOdd ✗ ✓ ✓

Sum of Digits ✗ ✗ ✓

Boxes SolveLinEq ✓ ✗ ✓

Quadrant ✗ ✗ ✓

Boolean predicates
over arrays

Find2 ✗ ✗ ✓

ArrayAverage ✗ ✗ ✓

ArrayMaximum ✗ ✗ ✓

As Table 1 shows, while some cases can be solved by attempting a conjunctive
technique from both directions separately and taking one if its result has not
become inconsistent, this will not work for others. In addition, in domains like
predicates on arrays where comp− is not available, the lowering of the upper
bound is not available, so only more primitive techniques such as generating a
large number of samples with no guidance and attempting their join remain.

6 Related Work

Disjunctive Abstraction. Since the original work introducing the powerset
construction for adding disjunction to a domain [10], there have been attempts
to create a more practical abstraction that allows for disjunction but also for the
abstraction that is limited by the powerset domain’s join operation, as discussed
in Sect. 3.2. The easiest limitation which introduces bias is limiting the number
of allowed disjuncts [6,23,30]. While this forces an abstraction once the number
of disjoint elements is reached, it may still be forced to cover a negative example
because the number of elements allowed is insufficient. Another is the finite
powerset domain [2,3] which keeps only the finite sets in the powerset. However,
this still retains the problem of the non-abstracting join.

The Boxes domain [20], based decision diagrams, is compact in representation
even for a large number of disjuncted boxes. It is specialized for the Integer ×
Integer domain, though the technique might be extendible to other domains.
Donut domains [15] allow for “holes” in a single convex set. This does not allow
a disjunction of the positive sets, and cannot be used with non-convex domains
such as congruence.
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Disjunctive Approaches to Candidate Elimination. Several methods have
been mentioned in Sect. 3.3. In [22], every step of the algorithm maintains n rep-
resentations of the specific and general bounds from 1 to n disjuncts, where n
is the number of samples seen. Then, the desired option can be selected either
by convergence or by other criteria. This method is both wasteful in represen-
tation if many samples are required to cover the space, and the criteria for the
best disjunction update are complex and require additional learning algorithms.
Sebag’s [31] approach learns a disjunction of conjunctions of negative examples.
This is meant to cope with noisy datasets, which are irrelevant in the case of
performing an abstraction, and decides at classification time based on tuning,
which means its output is not a description of the space but rather a function
capable of labeling individual points.

Abstracting with Learning Algorithms. Thakur et al. [37] use a variation
on Candidate Elimination to compute symbolic abstraction. Gupta et al. [19]
present an algorithm for actively learning an automaton that separates the
language of two models, called the separating automaton. Like D3, this is an
active learning algorithm based on asking a teacher to compute language inclu-
sion. However, this algorithm is relevant only to string languages (models and
automata). Counterexample-driven abstraction refinement techniques [5,7,18]
for verification behave like a learning algorithm, requesting “classification” of a
point or a trace, and eliminating it from the abstract representation, in much
the same way as Candidate Elimination and D3 do.

7 Conclusion

We presented D3, an active learning algorithm for computing an abstraction
of a set of positive examples, separating them from a set of negative examples.
A critical component of D3 is the safe generalization operation which transforms
an element in a powerset domain into a more general element that does not
intersect any negative point. In cases where D3 can actively query additional
points beyond an initial set, it aims at learning a partition of the entire space
(and not only abstract the initial samples). We apply D3 to compute an abstract
semantic difference between programs using several abstract domains. We show
that D3 can compute a precise description of difference/similarity for several
small but challenging examples.
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Abstract. A recent trend in the analysis of object-oriented programs is
the modeling of references as sets of guarded values, enabling multiple
heap shapes to be represented in a single state. A fundamental problem
with using these guarded value sets is the inability to generate test inputs
in a manner similar to symbolic execution based analyses. Although sev-
eral solutions have been proposed, none have been proven to be sound
and complete with respect to the heap properties provable by generalized
symbolic execution (GSE). This work presents a method for initializing
input references in a symbolic input heap using guarded value sets that
exactly preserves GSE semantics. A correctness proof for the initializa-
tion scheme is provided with a proof-of-concept implementation. Results
from an empirical evaluation on a common set of GSE data structure
benchmarks show an increase in the size and number of analyzed heaps
over existing GSE representations. The initialization technique can be
used to ensure that guarded value set based symbolic execution engines
operate in a provably correct manner with regards to symbolic references
as well as provide the ability to generate concrete heaps that serve as
test inputs to the program.

Keywords: Symbolic execution · Symbolic references · Constraint-based
reasoning

1 Introduction

In symbolic execution, the values of program variables are represented as con-
straints over the program’s inputs. During the course of an execution, a program
variable may assume a number of possible values under a variety of different con-
ditions. One way to represent this behavior is by pairing each possible value with
the constraints under which it is assumed. A set of such value-constraint pairs,
called a guarded value set1, represents the state of a program variable.

Guarded value sets are rising in importance in the representation of reference
values. First appearing in Verification-Condition Generator (VCG) style tech-
niques [12,35], guarded value sets are a convenient way to represent sets of heap
1 Guarded value sets are variously referred to in the literature as guarded location sets,
symbolic value sets, or value summaries. The term guarded value set is sometimes
abbreviated in this text as value set.
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shapes. More recently, guarded value sets are being used in symbolic execution
for the purposes of modularization [36], state merging [30], and for determining
invariants [16,32].

A common hurdle to using guarded value sets is the treatment of symbolic
heap inputs. A symbolic heap input refers to a portion of the heap that is
yet unconstrained, meaning that it is able to take on any shape. For many
applications, such a symbolic heap input is desirable for modeling sets of heaps
in the analysis: the operations on the heap discovered in the analysis further
constrain the symbolic heap input structure.

Precisely modeling operations on unconstrained heaps is challenging because
it requires formulating logical predicates over an input domain that contains a
potentially unbounded number of hidden references [7,27]. Generalized symbolic
execution (GSE), and its variants, provide an accurate solution, but they quickly
produce an overwhelming number of execution paths for all but the simplest
heap shapes [11,21]. Other efforts to create heap inputs for guarded value set-
based analysis techniques have yet to produce results provably equivalent to GSE
[12,35]. Thus, despite the advantages of using guarded value sets, it remains an
open question to how they can be used in symbolic execution to automatically
model all possible program behaviors in the case of an arbitrary input heap.

The contribution of this work is symbolic initialization for uninitialized ref-
erences in a fully symbolic heap. Where GSE lazily instantiates uninitialized
references to either NULL, a new instance of the correct type, or an alias to
a previously initialized object, symbolic initialization creates a guarded value
set expressing all of these eventualities in a single symbolic heap. Where GSE
branches the search space on each choice, symbolic initialization does not. Sym-
bolic initialization only branches on reference compares; thus it creates equiva-
lence classes over heaps and only partitions those classes at compares to indicate
heaps where the references alias and heaps where the references do not.

This paper includes a proof that symbolic initialization is sound and complete
with respect to properties provable by GSE. Such a result is important because
it means that symbolic initialization can be used to create test inputs for other
analyses in a way that is provably correct with regards to GSE: there are no
missing GSE heaps and there are no extra GSE heaps.

A proof-of-concept implementation of symbolic initialization is reported in
this paper. The implementation is for Java in the Java Pathfinder tool. It
demonstrates on a common set of data structure benchmarks for GSE evalu-
ation [3,9,11,16,28] an increase in the number of heaps that can be analyzed
when compared to existing GSE methods. Although guarded value sets require
extra interaction with an SMT solver, the savings in representing multiple heap
shapes in a single structure can overcome the cost of the solver calls. For the
tree structures in the standard benchmarks, the comparison shows an exponen-
tial increase in the number of heaps that can be analyzed, meaning that other
approaches based on GSE fail to complete in the allotted time.

In summary, this paper presents a new initialization technique called symbolic
initialization that enables the use of guarded value sets in heap representations
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Fig. 1. Example symbolic heap

in a sound and complete manner. Such a result means that guarded value set-
based analysis methods [12,16,30,32,35,36] can use symbolic initialization to
be assured of precision with regard to GSE semantics. This includes generating
concrete heaps for test input generation.

2 A Symbolic Heap

A symbolic heap, as defined in this work, is a tuple (L R φ η), indicating a location
map L, a reference map R, a path condition φ, and an environment η. Given a
reference r in the heap, L(r) = {(φ l) ...} is the guarded value set associated
with r. The constraint associated with each location is a guard representing the
conditions under which the associated reference maps to the given location. By
definition, any location appears at most once in any given value set. Unions of
value sets containing the same location are resolved by forming a disjunction
of the constraints from each set. R(l, f) = r is the reference associated with the
given location-field pair in the heap.

The path condition is a predicate of references in the heap. The environment
is a partial function so η(x) = r is the reference r associated with variable x. The
notation η′ = η[x �→ v] defines a new partial function η′ that is the same as η
except that the variable x now maps to v. This notation for update is used with
L and R as well.

Conceptually, the symbolic heap may be thought of as a bipartite graph.
Figure 1 shows an example symbolic heap graph. References are represented
by circles and locations are represented by squares. Arrows leaving references
correspond to the guarded value sets returned by the L function, and arrows
leaving the squares correspond to the R function. The reference r1 in the figure
has two members in its guarded value set, so the location pointed to by r1
depends on its aliasing relationship to r0.

The reference run is a special reference to indicate something that has yet
to be initialized. In general, every symbolic heap contains two special locations,
null (lnull), and uninitialized (lun), with corresponding references rnull and run
where L(rnull) = {(true lnull)} and L(run) = {(true lun)}.

A well-formed symbolic heap is deterministic and type consistent. Determin-
ism means a reference in (L R φ η) cannot point to multiple locations simulta-
neously: ∀r ∈ L← (∀(φ l), (φ′ l′) ∈ L(r) ((l �= l′ ∨ φ �= φ′) ⇒ (φ ∧ φ′ = false))
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where L← is the pre-image of L. Type consistent means that all locations in a
guarded value set from a reference have the same type2: ∀r ∈ L← (∀(φ l), (φ′ l′) ∈
L(r) ((Type(l) = Type(l′))))

3 Operational Semantics

This paper defines symbolic initialization using a small-step operational seman-
tics in the context of a syntactic machine with a CESK architecture [15,34].
The surface syntax (input) and machine syntax (state) are shown in Fig. 2. The
machine syntax omits the list based syntactic structures for the partial functions
in the heap etc. Terminals are in bold face while non-terminals are italicized.
Ellipses indicate zero or more repetitions. Tuples omit the commas for compact-
ness. The language only considers objects as values and does not support looping
structures to focus the discussion on the symbolic heap representation.

P ::= (μ (C m))
μ ::= (CL ...)
T ::= bool | C
CL ::= (class C ([C f ] ...)(M ...))
M ::= (T m [T x ] e)
e ::= x | (new C ) | (e $ f ) | (x $ f := e) | (e = e)

| (if e e else e) | (var T x := e in e) | (e @ m e)
| (x := e) | (begin e ...) | v

x ::= this | id
f,m,C ::= id

v ::= r | null | true | false | error
r ::= number

(a)

φ ::= (φ) | φ �� φ | ¬φ | true | false | r = r | r �= r
s ::= (μ L R φ η e k)
k ::= end | (* $ f → k) | (x $ f := * → k)

| (* = e → k) | (v = * → k) | (if * e else e → k)
| (var T x := * in e → k) | (x := * → k)
| (* @ m e → k) | (v @ m * → k)
| (begin * (e ...) → k) | (pop η k)

(b)

Fig. 2. (a) The surface syntax. (b) The machine syntax.

A program, P, is a registry of classes, μ, with a tuple indicating a class, C, and
a method, m, where execution starts. For simplicity in presentation, Booleans
are the only primitive type, classes have only non-primitive fields, and methods
have a single parameter. Expressions, e, include statements, and they use ‘:=’
2 Although not treated in this presentation, the concept naturally extends to poly-

morphic languages.
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to indicate assignment and ‘=’ to indicate comparison. The dot-operator for
field access is replaced by ‘$’, and the dot-operator for method invocation is
replaced by ‘@’. There is no explicit return statement; rather, the value of the
last expression is used as the return value. A variable is always indicated by x
and a value by v. A value can be a reference in the heap, r, or any of the special
values shown in Fig. 2(a).

The machine state s includes the program registry μ, the symbolic heap, the
current expression (i.e., program), and the continuation k. The registry never
changes so it is omitted from the state tuple in the rest of the presentation. The
continuation k indicates with the symbol * where the expression e came from,
stores temporary computation, and keeps track of the next continuation. For
example, the continuation (* $ f → k) indicates that the machine is evaluating
the expression for the object reference on which the field f is going to be accessed.
Once the field access is complete, the machine continues with k.

The semantics are expressed as rewrites on strings using pattern matching.
Consider the rewrite rule for the beginning of a field access instruction:

Field Access(eval)

(L R φ η (e $ f) k) →J (L R φ η e (* $ f → k))

If the string representing the current state matches the left side, then it cre-
ates the new string on the right. In this example, the new string on the right is
now evaluating the expression e in the field access, and it includes the continu-
ation indicating that it still needs to complete the actual field access once the
expression is evaluated.

The rewrite relations for the more mundane portions of the language that
do not update the symbolic heap are in [20]. Excepting NEW, the rules do
not update the heap, and are largely concerned with argument evaluation in
an expected way. It is assumed that only type safe programs are input to the
machine so there is no type checking. The machine halts if no rewrite is enabled.
In the rest of this paper the relation s →J s′ indicates that two states are related
by these more mundane rules.

4 GSE

This section introduces GSE semantics on which symbolic initialization builds.
GSE and its variants have the same non-deterministic choice given a reference
to an uninitialized object; that reference can point to null, a new instance of an
object with the correct type, or to an object of the same type that has been
instantiated previously by GSE [6,10,21,28]. The objects instantiated for new
instances are referred to as the input heap. Only these objects comprise the
potential alias set when GSE encounters references to uninitialized objects. In
general, the GSE search space branches at uninitialized objects, and the number
of branches depends on the size of the input heap.

The lazy initialization rules for GSE on the symbolic heap are in Fig. 3:
NULL, new, and alias. The symbol C represents a type (or class) while fields(C)
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returns the fields in the type. The function UN(L,R, r, f) = {(φ l) ...} returns
constraint-location pairs where the field f is uninitialized.

UN(L,R, r, f) = {(φ l) | (φ l) ∈ L(r) ∧ ∃φ′((φ′ lun) ∈ L(R(l, f)) ∧ S(φ ∧ φ′))}
The function S(φ∧φ′) returns true if there is a satisfying assignment of references
for φ ∧ φ′; otherwise it returns false.

The rules rely on fresh references and locations that strictly increase so it
is possible to minimize over a set to find the first created (i.e., references and
locations are ordered). As such, the minl function is able to return (φx lx) the
earliest created uninitialized location in a set, and similarly, minr is able to
return the earliest created reference in a set. Further, references are partitioned
to support latter proofs: initr() for the input heap; freshr() for auxiliary literals;
and stackr() for stack literals. In general, as shown in the next section, only input
heap references appear in constraints to express potential aliasing, and only
stack references appear in environments, expressions, or continuations. Finally,
the isInit function is true for initialized references from the input heap (i.e.,
potential aliases).

How the lazy initialization is used is defined in Fig. 4 with the →g relation
collecting all the rules into a single relation on states. GSE initialization takes
place on the field-access rule in Fig. 4, using the →∗

I relation from Fig. 3, to
ensure the accessed field is instantiated. Initialization in GSE never happens for
more than one object on any use of →∗

I : the set Λ is either empty or contains
exactly one location. This property is an artifact of how GSE case splits when
it instantiates: each choice, NULL, new, or an alias, is a new unique heap. This
changes in the next section with the new symbolic initialization that collects all
the choices into a single heap using guarded value sets. The field-write rule also
uses θ to represent a set of constraint-location pairs, which in GSE, again should
always be a singleton set for the same reason as previously mentioned.

The rest of the rules in Fig. 4 do not initialize, but they are included to eluci-
date how symbolic initialization differs from GSE with lazy initialization. In par-
ticular, there is no branching in the search space on reference compare for GSE
because references point to a single location after initialization. The new symbolic
initialization using guarded value sets in this papers changes this behavior.

5 Symbolic Initialization

This work presents a new initialization scheme which avoids the nondetermin-
ism introduced by GSE. Called symbolic initialization, this scheme leverages
the core idea in generalized symbolic execution with lazy initialization, using
on-the-fly reasoning to model a black-box input heap during symbolic execu-
tion. Unlike GSE, symbolic initialization constructs a single symbolic heap and
polynomially-sized path condition for each control flow path.

There are three sets of rewrite rules specific to the symbolic initialization
algorithm: (i) rules to initialize symbolic references, (ii) rules to perform field
dereferences and writes, and (iii) rules to check equality and inequality of refer-
ences. Rules relating to (ii) and (iii) are similar to previously proposed methods
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Initialize (null)

Λ = UN(L,R, r, f) Λ �= ∅ (φx lx) = minl(Λ)
r′ = freshr() θnull = {(true lnull)}
(L R r f C) →I (L[r′ �→ θnull ] R[(lx, f) �→ r′] r f C)

Initialize (new)

Λ = UN(L,R, r, f) Λ �= ∅ (φx lx) = minl(Λ)
r′ = initr() l′ = freshl(C)
θnew = {(true l′)}
R′ = R[∀f ∈ fields(C) ((l′ f) �→ run)]

(L R r f C) →I (L[r′ �→ θnew ] R′[(lx, f) �→ r′] r f C)

Initialize (alias)

Λ = UN(L,R, r, f) Λ �= ∅ (φx lx) = minl(Λ)
r′ = freshr()
ρ = {(ra la) | isInit(ra) ∧ ra = minr(R

←[la]) ∧ type(la) = C}
(ra la) ∈ ρ θalias = {(true la)}

(L R r f C) →I (L[r′ �→ θalias ] R[(lx, f) �→ r′] r f C)

Initialize (end)

Λ = UN(L,R, r, f) Λ = ∅
(L R r f C) →I (L R r f C)

Fig. 3. Initialization for generalized symbolic execution, s:: = (L R r fC), with s →∗
I

s′ = s →I · · · →I s′ →I s′.

utilizing guarded value sets [12,30]. The rules for (i) are novel in how they pre-
serve GSE semantics.

In Fig. 5, similar to before, given the uninitialized set Λ for field f , the minl

function returns (φx lx) which represents the earliest created uninitialized loca-
tion in that set. The set ρ contains reference-location pairs that represent poten-
tial aliases, where isInit() ensures that the references are initialized. There are
four cases encoded in the symbolic heap. The first three correspond to the three
types of choices made during lazy initialization: (i) θnull represents the condition
where lnull is possible, (ii) θnew represents the case where rf points to a fresh
location, (iii) each member of θalias restricts rf to a particular alias in ρ, and at
the same time, not alias any member of ρ that was initialized earlier than the
current choice.

Unlike the first three cases, which correspond directly to GSE initialization
rules, θorig , case (iv), is unique to symbolic initialization. In this case, θorig
implements conditional initialization to preserve the original heap structure. This
step is necessary in order to maintain homomorphism (i.e., equivalent shapes)
between symbolic heaps created using symbolic initialization and the GSE heaps
they are intended to represent. The sets from each of the four cases are added
into the heap on rf after the fields for lf are initialized to run .
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Field Access
{(φ l)} = L(r) l �= lnull C = type(l, f)
(L R r f C) →∗

I (L′ R′ r f C)
{(φ′ l′)} = L′(R′(l, f)) r′ = stackr()

(L R φg η r (* $ f → k)) →A
g

(L′[r′ �→ (φ′ l′)] R′ φg η r′ k)

Field Access (null)

{(φ l)} = L(r) l = lnull

(L R φg η r (* $ f → k)) →A′
g

(L R φg η error end)

Field Write
rx = η(x)
{(φ l)} = L(rx) l �= lnull
θ = L(r) r′ = freshr()

(L R φg η r (x $ f := * → k)) →W
g

(L[r′ �→ θ] R[(l f) �→ r′] φg η r k)

Field Write (null)

rx = η(x)
{(φ l)} = L(rx) l = lnull

(L R φg η r (x $ f := * → k)) →W ′
g

(L R φg η error end)

Equals (reference-true)

L(r0) = L(r1) φ′
g = (φg ∧ r0 = r1)

(L R φg η r0 (r1 = * → k)) →E
g

(L R φ′
g η true k)

Equals (reference-false)

L(r0) �= L(r1) φ′
g = (φg ∧ r0 �= r1)

(L R φg η r0 (r1 = * → k)) →E ′
g

(L R φ′
g η false k)

Fig. 4. Generalized symbolic execution with lazy initialization indicated by →g=→A
g

∪ →A′
g ∪ →W

g ∪ →W ′
g ∪ →E

g ∪ →E ′
g ∪ →J

g .

Figure 6 illustrates the initialization process. The graph in Fig. 6(a) repre-
sents the initial heap. The reference superscripts s and i indicate the partition
containing the reference: input, auxiliary, or stack. In Fig. 6, rs

0 represents a stack

Initialization
Λ = UN(L,R, r, f)
Λ �= ∅ (φx lx) = minl(Λ) rf = initr() lf = freshl(C)
ρ = {(ra la) | isInit(ra) ∧ ra = minr(R←[la]) ∧ type(la) = C}
θnull = {(φ lnull) | φ = (φx ∧ rf = rnull)}
θnew = {(φ lf ) | φ = (φx ∧ rf �= rnull ∧ (∧(r′

a l′a)∈ρrf �= r′
a))}

θalias = {(φ la) | ∃ra ((ra la) ∈ ρ ∧ φ = (φx ∧ rf �= rnull∧
rf = ra ∧ (∧(r′

a l′a)∈ρ (r′
a<ra)rf �= r′

a)))}
θorig = {(φ lorig) | ∃φorig((φorig lorig) ∈ L(R(lx, f)) ∧ φ = (¬φx ∧ φorig)}
θ = θnull ∪ θnew ∪ θalias ∪ θorig R′ = R[∀f ∈ fields(C) ((lf f) �→ run)]

(L R r f C) →S (L[rf �→ θ] R′[(lx, f) �→ rf ] r f C)

Fig. 5. Initializing fields, s:: = (L R r f C), with s →∗
S s′ = s →S · · · →S s′.
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l0

rs0

run

lun

yx

l0

rs0

run

lun

ri1

l1lnull

yx

φ1b
φ1a

l0

rs0

ri1

l1lnull lnulll2

yx

φ2bφ1b
φ2a

φ1a φ2c

ri2

(a) (b) (c)

ρ := {(ri1 l1)}
θnull := {(ri2 = rnull lnull)}
θnew := {(ri2 �= rnull ∧ ri2 �= ri1 l2)}
θalias := {(ri1 �= rnull ∧ ri2 �= rnull ∧ ri2 = ri1 l1)}
θorig := {}

φ1a := ri1 = rnull
φ1b := ri1 �= rnull
φ2a := ri2 = rnull
φ2b := ri2 �= rnull ∧ ri2 �= ri1
φ2c := ri2 �= rnull ∧ ri2 = ri1

(d)

Fig. 6. An example that initializes (this $ x) and (this $ y). (a) Initial heap structure.
(b) After (this $ x) is initialized. (c) After (this $ y) is initialized. (d) Sets in the
initialization rule and constraints on the edges.

reference for the this variable which has two fields x and y of the same type.
Note that when no constraint is specified for a location, there is an implicit true
constraint. For example, rs

0 points to l0 on the constraint true. The fields x and
y point to the uninitialized reference run . The graph in Fig. 6(b) represents the
symbolic heap after the initialization of the (this $ x) field while the graph in
Fig. 6(c) represents the symbolic heap after the initialization of the (this $ y)
field following the initialization of (this $ x). The list in Fig. 6(d) represents the
various sets constructed in the initialization for (this $ y).

There are two rewrite rules in Fig. 7, one for reading the value of a field (field-
access) and the other for writing to a field (field-write). Both rules first check
that the operations can be performed on a non-null location. The field-access
rewrite rule in Fig. 7 dereferences a field of type C, recall that the heaps are type
consistent and programs are type safe, and uses the →∗

S relation from Fig. 5, to
get a new symbolic heap that is initialized on the field f. The symbolic heap is
further modified to include a new stack reference pointing to the guarded value
set (possible values of the field) returned during the dereferencing; the new stack
reference is the return value from the VS operation.

Definition 1. The VS function constructs the value set given a heap, reference,
and desired field.

VS(L,R, φg, r, f) ::= {(φ ∧ φ′ l′) | ∃l ((φ l) ∈ L(r) ∧
(φ′ l′) ∈ L(R(l, f)) ∧
S(φ ∧ φ′ ∧ φg))}
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For a reference r and field f, the value set function computes the guarded
value set of locations and access path constraints that are feasible under the
current path condition φg. The access path constraint is the union of two local
constraints: the constraint φ from dereferencing r to location l, and the constraint
φ′ from dereferencing the field f of the location l to the actual location of the
field, l′. This access path constraint, paired with location l′, is a member of the
value set only if its union with the path condition is satisfiable, ensuring that
the access path is valid and feasible under the path condition.

For field-write in Fig. 7, after the non-null check and strengthening of the
global heap constraint, it computes the current references associated with the
field in every location in Ψx. Note that the reference rx is the base reference
whose field, rcur is being written to, while the reference r is the target reference.
The set Ψx contains tuples (φ l rcur ) of constraints, locations, and references.
These tuples represent access chains leading from rx to the reference of the field,
rcur . The goal is to change the fields to no longer point to rcur , but rather fresh
references that have both the original locations before the write and the locations
from the write in the value sets (i.e., conditional write). Since the target of the
write is r, the rule checks that the constraints of the guarded value set L(r) are
satisfiable when accessed through the rx chain in the strengthening function.

Definition 2. The function ST(L, r, φ, φg) strengthens every constraint in L(r)
with φ and retains strengthened location-constraint pairs that are satisfiable with
the path condition φg:

ST(L, r, φ, φg) ::= {(φ ∧ φ′ l′) | (φ′ l′) ∈ L(r)∧
S(φ ∧ φ′ ∧ φg)}

Constraints on locations are strengthened with new aliasing conditions and those
that are feasible with the current path condition are retained.

Strengthening in the field write creates a value set, X, that contains two
types of locations: those for the case where the write is feasible (the first call in
X ), and those for the case where it is not (the second call in X ). In the case
that φ is true then rcur will point to the guarded value set L(r). Whereas, if φ is
false then rcur will continue to point to the constraint location pair it currently
references. As the references are immutable, the rule creates fresh references for
each rcur and points them to the appropriate value sets.

The rewrite rule to compare two references in the symbolic heap is shown in
Fig. 8. The equals references-true rewrite rule returns true when two references r0
and r1 can be equal. Intuitively, Φα contains all constraints under which r0 and r1
may point to the same location in the symbolic heap. The second set, Φ0, contains
constraints under which the reference r0 points to corresponding locations such
that the reference r1 does not point to those locations under any constraint.
Finally, the set, Φ1, contains constraints under which r1 points to corresponding
locations and r0 does not point to those locations under any constraint. The
three sets of constraints are used to create a new path condition φ′

g as an update
of the current path condition φg. The update is accomplished by first taking the
disjunction of the constraints in Φα to indicate that if any of the constraints
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Field Access
∃(φ l) ∈ L(r) (l �= lnull ∧ S(φ ∧ φg))
θ = {φ | (φ lnull) ∈ L(r) ∧ S(φ ∧ φg)}
φ′

g = φg ∧ (∧φ∈θ¬φ)
{C} = {C | ∃(φ l) ∈ L(r) (C = type(l, f))}
(L R r f C) →∗

S (L′ R′ r f C) r′ = stackr()

(L R φg η r (* $ f → k)) →A
ς (L′[r′ �→ VS(L′,R′, r, f, φ′

g)] R
′ φ′

g η r′ k)

Field Write
rx = η(x) ∃(φ l) ∈ L(rx) (l �= lnull ∧ S(φ ∧ φg))
θ = {φ | (φ lnull) ∈ L(rx) ∧ S(φ ∧ φg)}
φ′

g = φg ∧ (∧φ∈θ¬φ)
Ψx = {(φ l rcur ) | (φ l) ∈ L(rx) ∧ rcur = R(l, f)}
X = {(l θ) | ∃φ ((φ l rcur ) ∈ Ψx ∧ θ = ST(L, r, φ, φ′

g) ∪ ST(L, rcur ,¬φ, φ′
g))}

R′ = R[∀(l θ) ∈ X ((l f) �→ freshr())]
L′ = L[∀(l θ) ∈ X (∃rtarg (rtarg = R′(l, f) ∧ (rtarg �→ θ)))]

(L R φg η r (x $ f := * → k)) →W
ς (L′ R′ φ′

g η r k)

Fig. 7. Field read and write relations: Field-access, →A
ς , and field-write, →W

ς , rewrite
rules for the →ς relation.

are satisfiable, then references r0 and r1 can be equal. This disjunction is then
conjoined with φg to form φ′

g. Furthermore, the conjunctions of negations to
the constraints in Φ0 and Φ1 is conjoined with φ′

g. This indicates for locations
that are not common to the references, the negations of their constraints are
satisfiable. The rule does not complete (i.e., is not feasible) if the new global
constraint is not satisfied on any aliasing assignment. In such a case, the true
outcome is not possible on any symbolic heap. Before the rewrite rule returns
true, it verifies the satisfiability of the updated global heap constraint. The
reference-false is the logical dual of the rule.

Equals (references-true)

Φα = {(φ0 ∧ φ1) | ∃l ((φ0 l) ∈ L(r0) ∧ (φ1 l) ∈ L(r1))}
Φ0 = {φ0 | ∃l0 ((φ0 l0) ∈ L(r0) ∧ ∀(φ1 l1) ∈ L(r1) (l0 �= l1))}
Φ1 = {φ1 | ∃l1 ((φ1 l1) ∈ L(r1) ∧ ∀(φ0 l0) ∈ L(r0) (l0 �= l1))}
φ′ = φ ∧ (∨φα∈Φα

φα) ∧ (∧φ0∈Φ0¬φ0) ∧ (∧φ1∈Φ1¬φ1)
S(φ′)

(L R φ η r0 (r1 = * → k)) →E
ς (L R φ′ η true k)

Fig. 8. The reference compare rewrite rule for true, →E
ς outcomes.
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Consider the example in Fig. 6(c). In order to compare ri
1 and ri

2, the Equals
rule gets the guarded value set associated with each of the references:

L(ri
1) = {(φ1a lnull) (φ1b l1)}

L(ri
2) = {(φ2a lnull) (φ2b l2) (φ2c l1)}

The three constraint sets are:

Φα = {(φ1a ∧ φ2a)(φ1b ∧ φ2c)} Φ0 = {} Φ1 = {φ2b}

Finally the global constraint is

φ′ = true ∧ [(φ1a ∧ φ2a) ∨ (φ1b ∧ φ2c)] ∧ ¬φ2b

6 Correctness

The theorems in this section establish the soundness and completeness of the
symbolic heap approach with respect to GSE. Intuitively, the theorems imply
that any properties proven with GSE can also be proven using the symbolic
initialization algorithm. What follows is a brief description of the requisite ter-
minology, followed by the theorem statements. The proofs for the theorems, as
well as the complete set of semantic rules for GSE and symbolic initialization
are in [20].

The theorems assert the existence of a bisimulation between sets of states
related by GSE (p →g p′) and states related by the symbolic heap and update
rules in this paper (q →ς q′). The relations are on the universe of well-formed
states S, which have the properties in Sect. 2 with the constraint that the states
are feasible: successors exist unless at end. Let p →g p′ be a union over relations
for GSE: →g=→A

g ∪ →A′
g ∪ →W

g ∪ →W ′
g ∪ →E

g ∪ →E ′
g ∪ →J , where A is a field

access after evaluating the expression for the base reference (* $ f → k), W is a
field write after evaluating the expression for the right operand (x $ f := * → k),
E is a reference compare after evaluating the left and right operands (v= * → k),
the prime symbol indicates a null reference in the operation or a false outcome,
and, is everything else in the language. Any state relation, say →Y

x , is extended
to sets of states as

P ↪→Y
x P ′ ::=∀p ∈ P (∀p′ (p →Y

x p′ ⇔ p′ ∈ P ′))

Let ↪→g be the extension of →g to sets of states. From this extension, a new
meta transition relation is defined over sets of states as

�g ::= ↪→A
g ∪ ↪→A′

g ∪ ↪→W
g ∪ ↪→W ′

g ∪ ↪→E
g ∪ ↪→E ′

g ∪ ↪→J

The relation captures the notion of splitting groups of heaps at certain opera-
tions. For example, suppose a set P contains a single state p with all references
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uninitialized. If p is a field access state, it has two potential successors in GSE:
a non-null reference and a null reference. Thus, the �g relation has two succes-
sors and divides P into the two outcomes.

The functional equivalence between heaps in states p and q requires both
a mapping to relate the two heaps and a constraint on the feasibility of that
mapping in the presence of a path constraint from symbolic execution. Subscripts
indicate state tuple members as in p = (Lp Rp φp ηp ep kp).

Definition 3. A homomorphism, given the universe of field indices F and
the universe of locations L, is

sp ⇀h sq ::= ∃h : L �→ L (∀lα (∀lβ (∀f ∈ F (∀φα (
(φα lα) ∈ Lp(Rp(lβ , f)) ⇒
∃φβ ((φβ h(lα)) ∈ Lq(Rq(h(lβ), f)) ))))))

Definition 4. The homomorphism constraint is

HC(p ⇀h q) ::=
∧

{φb |∃(φa l) ∈ L→
p ((φb h(l)) ∈ L→

q )}

The notation L→
p denotes the image of Lp. Functional equivalence asserts a

common structure in the two heaps under certain conditions. It is used to relate
states in p →g p′ to states in q →ς q′.

Definition 5. States (p q) are in the representation relation, p � q, if and
only if, ηp = ηq, ep = eq, kp = kq, and there exists a homomorphism p ⇀h q
such that S(φq ∧ HC(sp ⇀h sq)). The represented relation is extended to sets of
states P and a single state q as P � q ::=∀p (p � q ⇔ p ∈ P ).

The statement p � q ensures that a functionally equivalent heap to the one in
p is present, by the homomorphism, and valid, by the heap constraint and path
constraint, in q. As the states in P are only differentiated by heaps and those
states are only differentiated from q by both the heap and path constraint in q,
P � q implies that q is representative of all the states in P up to the given point
of execution expressed in φq.

Definition 6. The functional associated to bisimulation applied to �,
denoted as F∼(�), is the set of all pairs (P q) such that

∀P ′ (P �g P ′ ⇒ ∃q′ (q →ς q′ ∧ P ′ � q′)) (1)

∀q′ (q →ς q′ ⇒ ∃P ′ (P �g P ′ ∧ P ′ � q′)) (2)

If � is a bisimulation, then the greatest fixed point of F∼(�) is the bisimilarity
relation denoted by ∼.

Other than the use of a meta-relation, �g, Definition 6 reasons over the typical
forward and backward simulation [29].

In the following lemma, S is the universe of well-formed states, and SFA ⊆ S
is the set of states at a field access continuation having computed the base
reference.
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Lemma 1 (FIELD ACCESS Preserves � ⊆ F∼(�)). If P ∈ 2SFA and q ∈ S
are such that P � q, then (P q) is in the functional associated to bisimulation.

∀P ∈ 2SFA (P � q ⇒ (P q) ∈ F∼(�))

Similar lemmas are proven for field write and equals reference. These require
additional lemmas on the initialization relation →S : that it preserves determin-
ism, the homomorphism, and the satisfiability of the homomorphism constraint.

Theorem 1. The relation � is a bisimulation: � ⊆ ∼
Corollary 1 (→ς is Complete). If P ∈ 2SA and q ∈ S are such that P � q

then for any p ∈ P ∀p′ (p n→g p′ ⇒ ∃q′ (q n→ς q′ ∧ p′ � q′))

Corollary 2 (→ς is Sound). If P ∈ 2SA and q ∈ S are such that P � q then
∀q′ (q n→ς q′ ⇒ ∃p ∈ P (∃p′ (p n→g p′ ∧ p′ � q′)))

7 Evaluation

The symbolic initialization algorithm is implemented as an extension to the Sym-
bolic PathFinder (SPF) framework [26]. In addition to the operations presented
in this paper, the implementation contains support for operations over integers,
calculating per-path preconditions and postconditions, as well as generating test
input heaps that exercise all feasible control flow paths. Future work is adding
support for floating point operations, arrays, and bit-operations.

The symbolic initialization implementation uses jConstraints with the z3
solver [13,18,22]. The implementation takes advantage of incremental solving
and employs caching for performance since only small portions of the heap con-
straint change during the search.

SPF includes an implementation of GSE with lazy initialization. In recent
work, we implemented the Lazier and Lazier# algorithms in SPF [19]; these
constitute the state of art approaches to case-splitting based lazy initialization
techniques. The goal of our experiment is to evaluate the efficacy of our approach
with respect to these other techniques for symbolic execution of programs with
unbounded complex data input. The empirical study tries to answer the following
research question: How does the cost of the symbolic initialization algorithm
compare with that of the GSE and Lazier# algorithms?

The independent variable in the study is the k-bound; k-bounding bounds
the length of a reference chain from the root of the heap [9]. The study selects
three dependent variables and measures: (i) time, (ii) states explored, and (iii)
paths generated. The time is the total time taken by each algorithm to explore
the symbolic execution tree as well as total constraint solving time. The states
explored represents the number of nodes in the symbolic execution tree, and the
paths generated represents the number of unique paths in the symbolic execu-
tion tree.
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The data structures evaluated are a standard set that is commonly used
in analyses involving heap-manipulating programs [3,9,11,16,28], including a
linked list, binary search tree, and red/black tree. The actual tests use a repOk()
method (a class invariant) for data structures in object-oriented code to generate
valid inputs for the methods under test via symbolic execution [3,33]. Note
that this allows us to have precision in checking properties of the heap that
is not possible in static analysis based techniques (i.e., the symbolic execution
generated heaps satisfy the repOK() invariant) [12].

Table 1. Comparing symbolic initialization with the GSE and Lazier# algorithms.

Method k Time (seconds) States Paths

GSE L# SL GSE L# SL GSE L# SL

LinkedList 3 0.91 1.21 0.69 2465 2844 99 1656 1269 25

4 2.92 3.35 0.91 25774 29977 155 17485 13550 39

5 20.78 19.47 1.59 341164 400296 223 232743 181849 56

6 280.56 299.19 2.36 5447980 6437201 303 3731094 2933027 76

7 - - 5.07 - - 395 - - 99

8 - - 17.49 - - 499 - - 125

9 - - 63.96 - - 615 - - 154

10 - - 206.93 - - 743 - - 186

BinarySearchTree 1 0.26 0.28 0.36 19 23 29 6 6 6

2 0.83 1.28 0.93 143 143 145 43 42 33

3 20.63 25.55 4.03 1953 1703 1485 515 515 328

4 - - 410.89 - - 73635 - - 15563

TreeMap 1 0.47 0.52 0.77 65 70 215 11 11 11

2 8.99 9.73 4.72 1009 942 3219 127 122 73

3 - - 145.56 - - 78695 - - 887

The results of the experiments are presented in Table 1. Each row reports
the results for the specified k-bound for each artifact evaluated. The columns
show the total time in seconds, states explored, and paths generated for each
algorithm. The headings GSE, L#, and SL correspond to the GSE, Lazier#,
and symbolic initialization algorithms, respectively. A table entry of ‘-’ indicates
the analysis exceeded the allotted time bound of 1 hour.

The number of possible non-isomorphic heap configurations grows exponen-
tially for case-splitting techniques with a monotonic increase in k, resulting in a
corresponding exponential increase in analysis times. This is evident in all the
examples in Table 1. The GSE and L# algorithms are unable to finish explo-
ration in a time bound of one hour for k ≥ 7 for the LinkedList, k ≥ 4 for the
BinarySearchTree, and k ≥ 3 for the TreeMap examples. The improvement in
analysis time for the symbolic initialization over the state of the art case splitting
techniques range from 4.8x for BinarySearchTree at k=3, to 118x for LinkedList
at k=6. In fact, for some k-bounds, a number of experiments complete explo-
ration using the symbolic initialization algorithm in a few seconds whereas GSE
or Lazier# are unable to finish, e.g., BinarySearchTree for k=4 and LinkedList
for k=8.
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The number of path explored by the symbolic initialization algorithm are
strictly less than or equal to the number of paths explored by GSE for all the
evaluated artifacts. This result means it is possible to do more efficient test
case generation by using the generated path and corresponding symbolic heap
solutions provided by the constraint solver to instantiate a set of concrete heaps.
These heaps provide a smaller test suite to achieve control-flow path coverage
as compared to GSE and Lazier#. Note that the ability to perform test input
generation is another advantage of the symbolic initialization technique over
static analysis approaches.

The number of states varies between algorithms, for example, GSE has addi-
tional points of nondeterminism during field reads, but in contrast reference
compares are completely deterministic. Thus, in example programs with large
numbers of reference compares, such as TreeMap, state counts for Lazier# and
the symbolic initialization algorithm may exceed those for GSE. Observe that
the additional states generated by the summary heap algorithm are unsatisfiable
at the point of reference compares; this is why they do not contribute any addi-
tional branches in the final symbolic execution tree. More critically, the larger
state count and the corresponding satisfiability checks on the constraint solver
does not increase the overall runtime of the technique.

In summary, the benefits of avoiding case-splitting based non-determinism
outweigh the increased complexity in the constraints over heaps due to the
advances made in SMT solvers in these examples. In fact, the symbolic initializa-
tion algorithm can analyze certain types of programs with orders of magnitude
greater efficiency than that of GSE or Lazier#, while covering exactly the same
feasible control flow paths in the program.

8 Related Work

The symbolic heap methods in this work build upon a number of prior pro-
gram analysis techniques that use guarded value sets to represent program
state [12,14,30,32,35]. In particular, the field write and equals reference compare
rules are similar to methods appearing in these works. The real contribution of
symbolic initialization is the initialization part of the field access rules which pre-
serves the GSE semantics. Guarded value set heap initialization was pioneered
in Verification-Condition Generator (VCG) style techniques such as [35], where
value sets were used to initialize aliasing-free tree-like heaps. The work in [12]
relaxed the aliasing restrictions by using a pre-computed set of symbolic input
heaps, but was instead limited to heaps without recursive data structures.

Recently, value sets have been adapted for use in symbolic execution, for the
purposes of state merging [30,32] and invariant detection [16]. These methods
demonstrate the utility of value sets in combination with symbolic execution.
However, none of these techniques address the dereferencing of symbolic input
references. Since dereferencing is a fundamental problem treated in this paper,
these other works may be considered both orthogonal and complimentary to sym-
bolic initialization.
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Symbolic initialization also draws inspiration from lazy initialization, the
core idea of GSE [21]. Several projects have used lazy initialization to conduct
symbolic execution on programs with more general types, including references
and arrays [2,6,10,17]. Improvements to the basic lazy initialization algorithm
have been proposed, including delaying aliasing choices [11], or checking initial-
izations against invariants as they occur [4,28]. However, these GSE techniques
branch over multiple copies of the system state during dereferencing operations,
exacerbating path explosion.

A number of dynamic symbolic execution (DSE) methods use some form of
symbolic heap representation, including PEX [31] and SAGE [14]. These DSE
methods have shown a high degree of utility in practical applications with a wide
variety of real-world programs. PEX and SAGE use array theories to represent
program state instead of guarded value sets. SAGE has been proven complete
for programs whose memory allocations are independent of their inputs. This
work is complementary to PEX and SAGE and could be leveraged to further
improve those tools.

Several separation logic solvers have been proven to be sound and complete
for heaps with linked lists [1,8,23], trees [25], or data structures satisfying user-
supplied invariants [5]. Separation logic solvers can also reason about entailment
which is a subject of future work for symbolic initialization. Solutions in separa-
tion logic do not lend themselves to test case generation which is a contribution
of the new approach in this paper.

9 Conclusion

This paper presents a symbolic initialization algorithm for uninitialized refer-
ences in a fully symbolic heap. Where GSE lazily instantiates uninitialized ref-
erences to either NULL, a new instance of the correct type, or an alias to a
previously initialized object, the symbolic initialization in this work creates a
guarded value set expressing all of these eventualities in the same symbolic heap.
The paper includes a proof that the symbolic initialization algorithm is sound
and complete with respect to properties provable by GSE.

An initial implementation of the technique has been done within the Java
PathFinder framework. The symbolic initialization algorithm outperforms state-
of-the-art case-splitting based symbolic execution techniques, and in some cases,
the performance gains are considerable in a set of common Java data structure
artifacts used to benchmark symbolic representations. The performance gains in
symbolic execution may naturally benefit a variety of analyses based on symbolic
execution, for example, verification of properties, especially those related to the
heap, test case generation, program evolution techniques such as directed incre-
mental symbolic execution [24], and other back-end analyses. Potential future
work includes evaluating the impact of analyses that rely on symbolic execution
and solving the problem of detecting heap entailment.
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Abstract. We extend abstract interpretation for the purpose of veri-
fying hybrid systems. Abstraction has been playing an important role
in many verification methodologies for hybrid systems, but some special
care is needed for abstraction of continuous dynamics defined by ODEs.
We apply Cousot and Cousot’s framework of abstract interpretation to
hybrid systems, almost as it is, by regarding continuous dynamics as an
infinite iteration of infinitesimal discrete jumps. This extension follows
the recent line of work by Suenaga, Hasuo and Sekine, where deductive
verification is extended for hybrid systems by (1) introducing a constant
dt for an infinitesimal value; and (2) employing Robinson’s nonstandard
analysis (NSA) to define mathematically rigorous semantics. Our theo-
retical results include soundness and termination via uniform widening
operators; and our prototype implementation successfully verifies some
benchmark examples.

1 Introduction

Hybrid systems exhibit both discrete jump and continuous flow dynamics. Qual-
ity assurance of such systems are of paramount importance due to the current
ubiquity of cyber-physical systems (CPS) like cars, airplanes, and many oth-
ers. For the formal verification approach to hybrid systems, the challenges are:
(1) to incorporate flow-dynamics; and (2) to do so at the lowest possible cost,
so that the existing discrete framework smoothly transfers to hybrid situations.
A large body of existing work uses differential equations explicitly in the syntax;
see the discussion of related work below.

In [34], instead, an alternative approach of nonstandard static analysis—
combining static analysis and nonstandard analysis—is proposed. Its basic idea
is to introduce a constant dt for an infinitesimal (i.e. infinitely small) value, and
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turn flow into jump. With dt, the continuous operation of integration can be
represented by a while-loop, to which existing discrete techniques such as Hoare-
style program logics readily apply. For a rigorous mathematical development they
employ nonstandard analysis (NSA) beautifully formalized by Robinson [33].

Concretely, in [34] they took the common combination of a While-language
and a Hoare logic (e.g. in the textbook [36]); and added a constant dt to obtain
a modeling and verification framework for hybrid systems. Its components are
called Whiledt and Hoaredt. The soundness of Hoaredt is proved against deno-
tational semantics defined in the language of NSA. Subsequently in the non-
standard static analysis program: in [22] they presented a prototype automatic
theorem prover for Hoaredt; and in [35] they applied the same idea to stream
processing systems, realizing a verification framework for signal processing as in
Simulink.

Underlying these technical developments is the idea of so-called sectionwise
execution. Although this paper does not rely explicitly on it, it is still useful for
laying out the “operational” intuition of nonstandard static analysis. See the
following example.

t := 0 ;
while t ≤ 1 do

t := t + dt

Example 1.1. Let celapse be the program on the right. The
value of dt is infinitesimal; therefore the while loop will not
terminate within finitely many steps. Nevertheless it is some-
how intuitive to expect that after an “execution” of this pro-
gram, the value of t should be infinitesimally close to 1 and
larger than it.

t := 0 ;
while t ≤ 1 do

t := t + 1
i+1

One possible way of thinking is to imagine sectionwise
execution. For each natural number i we consider the i-th
section of the program celapse, denoted by celapse|i and shown
on the right. Concretely, celapse|i is obtained by replacing the
infinitesimal dt in celapse with 1

i+1 . Informally celapse|i is the
“i-th approximation” of the original celapse.

A section celapse|i does terminate within finite steps and yields 1+ 1
i+1 as the

value of t. Now we collect the outcomes of sectionwise executions and obtain a
sequence

( 1 + 1, 1 + 1
2
, 1 + 1

3
, . . . , 1 + 1

i
, . . . ) (1)

which is thought of as a progressive approximation of the actual outcome of
the original program celapse. Indeed, in the language of NSA, the sequence (1)
represents a hyperreal number r that is infinitesimally close to 1.

We note that a program in Whiledt is not intended to be executed: the pro-
gram celapse does not terminate. It is however an advantage of static approaches
to verification and analysis, that programs need not be executed to prove their
correctness. Instead well-defined mathematical semantics suffices. This is what
we do here as well as in [22,34,35], with the denotational semantics of Whiledt

exemplified in Example 1.1.

Our Contribution. In the previous work [22,34,35] invariant discovery has
been a big obstacle in scalability of the proposed verification techniques—as is
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usual in deductive verification. The current work, as a first step towards scal-
ability of the approach, extends abstract interpretation [10] with infinitesimals.
The abstract interpretation methodology is known for its ample applicability (it
is employed in model checking as well as in many deductive verification frame-
works) and scalability (the static analyzer Astrée [12] has been successfully used
e.g. for Airbus’s flight control system).

Our theoretical contribution includes: the theory of nonstandard abstract
interpretation where (standard) abstract domains are “∗-transformed,” in a rig-
orous NSA sense, to the abstract domains for hyperreals; their soundness in over-
approximating semantics of Whiledt programs and hybrid system modeling by
them; and introduction of the notion of uniform widening operators. With the
latter, inductive approximation is guaranteed to terminate within finitely many
steps—even after extension to the nonstandard setting. We show that many
known widening operators, if not all, are indeed uniform. Although we focus on
the domain of convex polyhedra in this paper, it is also possible to extend other
abstract domains like ellipsoids [14] in the same way.

These theoretical results form a basis of our prototype implementation,1

that successfully analyzes: water-level monitor, a common example of piecewise-
linear hybrid dynamics; and also thermostat that is beyond piecewise-linear.
The prototype deals with the constant dt as a truly infinitesimal number using
computer algebra system.

Related Work. There has been a lot of research work for verification of
hybrid systems and it has led to quite a few system verification tools, includ-
ing HyTech [25], PHAVer [16], SpaceEx [17], HySAT/iSAT [15], Flow* [5] and
KeYmaera [32]. All these rely on ODEs (or the explicit solutions of them) for
expressing continuous dynamics, much like hybrid automata [1] do.

Our nonstandard static analysis approach is completely different from those
in the following point: we do not use ODEs at all, and model hybrid systems
as an imperative program with an infinitesimal constant. It enables us to apply
static methodologies for discrete systems as they are. For example, in HyTech
and PHAVer, convex polyhedra is used to over-approximate the reachable sets.
They need, however, some special techniques such as linear phase-portrait [24],
to reduce the dynamics into piecewise linear one. Our framework does not need
such and usual abstract interpretation works as it is.

There are many other works we rely on, such as those on abstract interpre-
tation, nonstandard analysis, etc. These are discussed later when they become
relevant.

Organization. In Sect. 2 we start with the water-level monitor example and
present how our nonstandard abstract interpretation framework works. Then
we go on to its theoretical foundations. In Sect. 3 we review preliminaries
on: abstract interpretation; nonstandard analysis; and the modeling language
Whiledt from [34]. In Sect. 4 we extend the theory of abstract interpretation
with infinitesimals and build the theory of nonstandard abstract interpretation.

1 The prototype [29] is available at http://www-mmm.is.s.u-tokyo.ac.jp/∼kkido/.

http://www-mmm.is.s.u-tokyo.ac.jp/~kkido/
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Its theorems include soundness of approximation, and termination guaranteed
by (the ∗-transform of) a uniform widening operator. In Sect. 5 we present our
prototype implementation and the experiment results with it.

Appendices of this paper are found in the extended version [28]. Most proofs
and some more details of nonstandard analysis are there.

2 Leading Example: Analysis of Water-Level Monitor

We shall start with an example of analysis and let it exemplify how our
framework—that extends abstract interpretation with infinitesimals, and han-
dles continuous as well as discrete dynamics—works. We use the common exam-
ple of the water-level monitor [1]. In the current section, in particular, we will
first revisit how the usual abstract interpretation workflow (without extension)
would work, using a discretized variant of the problem. We emphasize the fact
that our extended framework works just in the same manner: without any explicit
ODEs or any additional theoretical infrastructure for ODEs; but only adding a
constant dt.

The concrete problem is as follows. See the figure on the
right. A water tank has a constant drain (2 cm per second).
When the water level x gets lower than 5 cm the switch is
turned on, which eventually makes the pump work but only
after a time lag of two seconds. While the pump is working,
the water level x rises by 1 cm per second. Once x reaches 10 cm the switch
is turned off, which will shut down the pump but again after a time lag of two
seconds. Our goal is the reachability analysis of this hybrid dynamics, that is,
to see the water level x remains in a certain “safe” range (we will see that the
range is 1 ≤ x ≤ 12).

2.1 Analysis by (Standard) Abstract Interpretation, as a Precursor

Fig. 1. Discretized water-level monitor

Let us first revisit the usual workflow
in reachability analyses by abstract
interpretation. We will use the dis-
cretized model of the water-level mon-
itor in Fig. 1, where each iteration of
its unique loop amounts to the lapse
of dt′ = 0.2 s. The model in Fig. 1
is an imperative program with while
loops, a typical subject of analyses by
abstract interpretation.

More specifically: x is the water
level, l is the counter for the time lag, p
stands for the state of the pump (p = 0
if the pump is off, and p = 1 if on) and
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s is for “signals,” meaning s = 1 if the pump has not yet responded to a signal
from the switch (such as, when the switch is on but the pump is not on yet).

The first step in the usual abstract interpretation workflow is to fix concrete
and abstract domains. Here in Sect. 2.1 we will use the followings.

– The Concrete Domain:
(P(R2)

)4
. We have two numerical variables l, x

and two Boolean ones p, s in Fig. 1, therefore a canonical concrete domain
would be P(B2 × R

2). We have the powerset operation P in it since we are
now interested in the reachable set of memory states.

However, for a better fit with our abstract domain (namely convex poly-
hedra), we shall use the set

(P(R2)
)4 that is isomorphic to the above set

P(B2 × R
2).

– The Abstract Domain: (CP2)4. We use the domain of convex polyhedra [13],
one of the most commonly-used abstract domains. Recall that a convex poly-
hedron is a subset of a Euclidean space characterized by a finite conjunction
of linear inequalities. Specifically, we let CP2, the set of 2-dimensional convex
polyhedra, approximate the set P(R2). Therefore, as an abstract domain for
the program in Fig. 1, we take (CP2)4 (that approximates

(P(R2)
)4).

The next step in the workflow is to over-approximate the set of memory
states that are reachable by the program in Fig. 1—this is a subset of the con-
crete domain

(P(R2)
)4—using the abstract domain (CP2)4. Since the desired

set can be thought of as a least fixed point, this over-approximation procedure
involves: (1) abstract execution of the program in (CP2)4 (that is straightforward,
see e.g. [13]); and (2) acceleration of least fixed-point computation in (CP2)4 via
suitable use of a widening operator. For convex polyhedra several widening oper-
ators are well-known. We shall use here ∇M , so-called the widening up to M
operator from [20,21]. One big reason for this choice is the uniformity of the
operator (a notion we introduce later in Sect. 4.3), among others. The set M of
linear constraints is a parameter for this widening operator; we fix it as usual,
collecting the linear constraints that occur in the program in question. That is,
M = {x ≤ 5, x ≥ 5, x ≤ 10, x ≥ 10, l ≤ 2, l ≥ 2}.

This over-approximation procedure is depicted in the iteration sequence in
Fig. 3. Let us look at some of its details. The graph 0 represents the initial
memory state (before the first iteration), where the pump is on and the water
level x is precisely 1. After one iteration the water level will be incremented by
1 × dt′ = 0.2 cm; as usual in abstract interpretation, however, at this moment
we invoke the widening operator ∇M , and the next “abstract reachable set”
is x ∈ [1, 5] instead of x ∈ [1, 1.2]. Here the upper bound 5 comes from the
constraint x ≤ 5 that is in the parameter M of the widening operator ∇M . This
results in the graph 1 in Fig. 3.

In the iteration sequence (Fig. 3) the four polyhedra (in four different colors)
gradually grow: in the graph 2 the water level x can be 10 cm so in the graph
3 appears a green polyhedron (meaning that a signal is sent from the switch to
the pump); after the graphs 3 and 9 we delay widening, a heuristic commonly
employed in abstract interpretation [9]. In the end, in the graph 12 we have a



234 K. Kido et al.

prefixed point (meaning that the polyhedra do not grow any further). There we
can see, from the range of x spanned by the polyhedra, that the water level never
reaches beyond 0.6 ≤ x ≤ 12.2.

2.2 Analysis by Nonstandard Abstract Interpretation

In the above “standard” scenario, we approximated the dynamics of the water
level by discretizing the continuous notion of time (dt′ = 0.2). While this made
the usual abstract interpretation workflow go around, there is a price to pay—
the analysis result is not precise. Specifically, the reachable region thus over-
approximated is 0.6 ≤ x ≤ 12.2, while the real reachable region is 1 ≤ x ≤ 12.2

Fig. 2. Water-level monitor in Whiledt

Obviously we can “tighten up”
the analysis by making the value dt′

smaller. Even better, we can leave the
expression dt′ in Fig. 1 as a variable,
and imagine the “limit” of analysis
results when the value of dt′ tends to
0. However here is a question: what is
that “limit,” in mathematically rigor-
ous terms? Taking dt′ = 0 obviously
does not work: do so in Fig. 1 and
we have no dynamics whatsoever. The
value of dt′ must be strictly positive.

Our contribution is an extension
of abstract interpretation that answers
the last question. In our framework, the same (hybrid) dynamics of the water-
level monitor is modeled by a program in Fig. 2. Here the expression dt is a new
constant that stands for a positive and infinitesimal (i.e. infinitely small) value.
Therefore the modeling is not an approximation by discretization; it is an exact
modeling.

It is important to notice that the program in Fig. 2 is the same as the one in
Fig. 1, except that now dt is some strange constant, while dt′ in Fig. 1 stood for
a real number (namely 0.2). This difference, however, does not prevent us from
applying the static, symbolic and syntax-based analysis by abstract interpreta-
tion. We can follow exactly the same path as in Sect. 2.1—taking the abstract
domain of convex polyhedra, executing the program in Fig. 2 on it, applying the
widening operator ∇M , and forming an iteration sequence much like in Fig. 3—
and this leads to the analysis result 1 − 2dt ≤ x ≤ 12 + dt. Since dt is an
infinitesimal number, the last result is practically as good as 1 ≤ x ≤ 12. We
have a prototype implementation that automates this analysis (Sect. 5).

What remains to be answered is the legitimacy of this extended abstract
interpretation framework. Is the outcome 1 − 2dt ≤ x ≤ 12 + dt sound, in the
sense that it indeed over-approximates the true reachable set? Even before that,

2 There are also examples in which discretization even leads to unsound analysis
results.
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what do we mean by the “true reachable set” of the program in Fig. 2, with an
exotic infinitesimal constant like dt? Moreover, are iteration sequences via the
widening operator ∇M guaranteed to terminate within finitely many steps, as is
the case in the standard framework [20,21]?

The rest of the paper is mostly devoted to (answering positively to) the
last questions. In it we use Robinson’s nonstandard analysis (NSA) [33] and
give infinitesimal numbers—clearly such do not exist in the set of (standard)
real numbers—a status as first-class citizens. The program in Fig. 2 is in fact
in the programming (or rather modeling) language Whiledt from [22,34]; and
its semantics can be understood in the line of Example 1.1. It turns out that
the theory of NSA—in particular its celebrated result of the transfer principle—
allows us to “transfer” meta results from the standard abstract interpretation to
our extension. That is, what is true in the world of standard reals (soundness,
termination, etc.) is also true in that of hyperreals.

3 Preliminaries

In Sect. 4 we will present our soundness and termination results as a “metathe-
ory” that justifies the workflow described in Sect. 2.2; in this section we recall
some preliminaries that are needed for those theoretical developments. First,
the general theory of abstract interpretation is briefly reviewed in Sect. 3.1
and the specific domain of convex polyhedra is presented in Sect. 3.2. Next,
some basic notions in nonstandard analysis are explained in Sect. 3.3. Finally,
in Sect. 3.4, the modeling language Whiledt from [34] and its (denotational)
collecting semantics based on nonstandard analysis are presented.

3.1 Abstract Interpretation

Abstract interpretation [13] is a well-established technique in static analysis. We
make a brief review of its basic theory; it is mostly for the purpose of fixing
notations. The goal of abstract interpretation is to over-approximate a con-
crete semantics defined on an concrete domain by an abstract semantics on an
abstract domain. We assume that the concrete semantics is defined as a least
fixed point on the concrete domain. The following proposition guarantee the
over-approximation of the least fixed point in the concrete domain by a prefixed
point in the abstract domain. In the proposition, the order � on the domain L
is extended to the order on L → L pointwisely. And the least fixed point relative
to ⊥- , denoted by lfp⊥- F , is the least among the fixed points of F above ⊥- ; by
the cpo structure of L and the continuity of F , it is given by

⊔
n∈N

Fn⊥- . Note
that we are using the concretization-based framework described in [11].

Proposition 3.1. Let (L,�) be a cpo; F : L → L be a continuous function; and
⊥- ∈ L be such that ⊥- � F (⊥- ). Let (L,�) be a preorder; γ : L → L be a function
(it is called concretization) such that a � b ⇒ γ(a) � γ(b) for all a, b ∈ L; and
F : L → L be a monotone function such that F ◦ γ � γ ◦F . Assume further that
x ∈ L is a prefixed point of F (i.e. F (x) � x) such that ⊥- � γ(x).

Then x over-approximates lfp⊥- F , that is, lfp⊥- F � γ(x). �
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Fig. 3. An iteration sequence for the water-level monitor example.
To save space, here we depict an element of (CP2)

4—i.e. a quadruple of convex
polyhedra—on the same plane R

2. The four convex polyhedra come in different colors:
those in blue, green, red and yellow correspond to the values (p, s) = (1, 0), (1, 1), (0, 0)
and (0, 1) of the Boolean variables, respectively.

In Sect. 2.1 where we analyzed the discretized water-level monitor, the set
P(Rn)—the set of subsets of memory states—is used as a concrete domain L;
and the domain of convex polyhedra is used as an abstract domain L. The inter-
pretations F and F on each domains are defined in a standard manner. Towards
the goal of obtaining x in Proposition 3.1, (i.e. finding a prefixed point in the
abstract domain), the following notion of widening is used (often together with
narrowing that we will not be using). Note that in the following definition and
proposition, the domain (L,�) is the abstract domain, corresponding to (L,�)
in Proposition 3.1.

Definition 3.2 (widening operator). Let (L,�) be a preorder. A function ∇ :
L×L → L is said to be a widening operator if the following two conditions hold.

– (Covering) For any x, y ∈ L, x � x∇y and y � x∇y.
– (Termination) For any ascending chain 〈xi〉 ∈ LN, the chain 〈yi〉 ∈ LN defined

by y0 = x0 and yi+1 = yi∇xi+1 for each i ∈ N is ultimately stationary.

A widening operator on a fixed abstract domain L is not at all unique. In this
paper we will discuss three widening operators previously introduced for CPn.

The use of widening is as in the following proposition: the covering condi-
tion ensures that the outcome is a prefixed point; and the procedure terminates
thanks to the termination condition.
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Proposition 3.3 (convergence of iteration sequences). Let (L,�) be a preorder;
F : L → L be a monotone function; ⊥- ∈ L be such that ⊥- � F (⊥- ); ∇ : L×L → L
be a widening operator; and 〈Xi〉i∈N ∈ LN be the infinite sequence defined by

X0 = ⊥- ; and, for each i ∈ N, Xi+1 =

{

Xi (if F (Xi) � Xi)

Xi∇F (Xi) (otherwise)

Then the sequence 〈Xi〉i∈N is increasing and ultimately stationary; moreover its
limit

⊔
i∈N

Xn is a prefixed point of F such that ⊥- � ⊔
i∈N

Xn. �


3.2 The Domain of Convex Polyhedra

The domain of convex polyhedra, introduced in [13], is one of the most commonly
used relational numerical abstract domains.

Definition 3.4 (domain of convex polyhedra CPn). An n-dimensional convex
polyhedron is the intersection of finitely many (closed) affine half-spaces. We
denote the set of convex polyhedra in R

n by CPn. Its preorder � is given by
the inclusion order (actually it is a partial order). The concretization function
γCPn

: CPn → P(Rn) is defined in an obvious manner.

We study three widening operators on CPn. They are namely: the standard
widening operator ∇S [19];3 the widening operator ∇M up to M [20,21]; and
the precise widening operator ∇N [3]. We briefly describe the former two; the
definition of the last is omitted for the lack of space. In the following definitions,
the function con maps a set of linear constraints (called a constraint system) to
the convex polyhedron induced by the conjunction of those linear constraints.

Definition 3.5 (standard widening ∇S). Let P1, P2 ∈ CPn; and C1 and C2 be
constraints system that induce P1 and P2, respectively. The standard widening
operator ∇S : CPn × CPn → CPn is defined by

P1∇SP2 :=

⎧

⎨

⎩

P2 if P1 = ∅
con

( {ϕ ∈ C1 | C2 implies ϕ, i.e.ϕ is everywhere true in P2}
∪{ψ ∈ C2

∣

∣∃ϕ ∈ C1. P1 = con(C1[ψ/ϕ])
}

)

otherwise.

Intuitively P1∇SP2 is represented by the set of those linear constraints of P1

which are satisfied by every point of P2.
The following second widening operator ∇M refines ∇S . This is what we use

in our implementation. Here M is a parameter.

Definition 3.6 (widening up to M , ∇M ). Let P1, P2 ∈ CPn, and M be a (given)
finite set of linear inequalities. The widening operator up to M is defined by

P1∇MP2 :=
(P1∇SP2

) ∩ con
({ϕ ∈ M | Pi ⊆ con({ϕ}) for i = 1, 2}).

The parameter M is usually taken to be the set of linear inequalities that occur
in the program under analysis.
3 The name “standard” is confusing with the distinction between standard and non-
standard entities in NSA. The use of “standard” in the former sense is scarce in this
paper.
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3.3 Nonstandard Analysis

Here we list a minimal set of necessary definitions and results in nonstandard
analysis (NSA) [33]. Some further details can be found in [28, Appendix A];
fully-fledged and accessible expositions of NSA are found e.g. in [18,26].

The following notions will play important roles.

– Hyperreals that extends reals by infinitesimals, infinites, etc.;
– The transfer principle, a celebrated result in NSA that states that reals and

hyperreals share “the same properties”;
– The first-order language LX that specifies formulas in which syntax, precisely,

are preserved by the transfer principle; and finally
– The semantical construct of superstructure for interpreting LX -formulas.

What is of paramount importance is the transfer principle; in order to formulate
it in a mathematically rigorous manner, the two last items (the language LX on
the syntactic side, and superstructures on the semantical side) are used. The first-
order language LX is essentially that of set theory and has two predicates = and
∈. The superstructure V (X) is then a semantical “universe” for such formulas,
constructed from the base set X: concretely V (X) is the union of X, P(X),
P(X ∪ P(X)), and so on. Finally, when we take X = R then the set ∗X = ∗

R

is that of hyperreals; and the transfer principle claims that A holds for reals if
and only if ∗A—a formula essentially the same as A—holds for hyperreals. Its
precise statement is:

Lemma 3.7 (the transfer principle). For any closed formula A in LX , the fol-
lowing are equivalent.

– The formula A is valid in the superstructure V (X).
– The *-transform ∗A of A—this is a formula in the language L∗X—is valid in

the superstructure V (∗X).

The transfer principle guarantees that we can employ the same abstract
interpretation framework, for reals and hyperreals alike—literally the same, in
the sense that we express the framework in the language LR. Concretely, various
constructions and meta results (such as soundness and termination) in abstract
interpretation will be expressed as LR-formulas, and since they are valid in
V (R), they are valid in the “nonstandard universe” V (∗

R) too, by the transfer
principle.

Hyperreals We fix an index set I = N, and an ultrafilter F ⊆ P(I) that extends
the cofinite filter Fc := {S ⊆ I | I \ S is finite}. Its properties to be noted: (1)
for any S ⊆ I, exactly one of S and I \ S belongs to F ; (2) if S is cofinite (i.e.
I \ S is finite), then S belongs to F .

Definition 3.8 (hyperreal r ∈ ∗
R). We define the set ∗

R of hyperreal numbers
(or hyperreals) by ∗

R := R
I/∼F . It is therefore the set of infinite sequences on

R modulo the following equivalence ∼F : we have (a0, a1, . . .) ∼F (a′
0, a

′
1, . . .) if

{i ∈ I | ai = a′
i} ∈ F , for which we say “di = d′

i for almost every i.” (2)

A hypernatural n ∈ ∗
N is defined similarly.
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It follows that: two sequences (ai)i and (a′
i)i that coincide except for finitely

many indices i represent the same hyperreal. The predicates besides = (such
as <) are defined in the same way. A notable consequence is the existence of
infinite numbers in the set of hyperreals and hypernaturals: ω := [(1, 2, 3, . . .)] is
a positive infinite since it is larger than any positive real r = [(r, r, . . .)] (i > r
for almost every i ∈ N). In addition, the set of hyperreals includes infinitesimal
numbers: a hyperreal ω−1 := [ (1, 1

2 , 1
3 , . . .) ] is positive (0 < ω−1) but is smaller

than any (standard) positive real r.

Superstructure. A superstructure is a “universe,” constructed step by step from
a certain base set X (whose typical examples are R and ∗

R). We assume N ⊆ X.

Definition 3.9 (superstructure). A superstructure V (X) over X is defined by
V (X) :=

⋃
n∈N

Vn(X), where V0(X) := X and Vn+1(X) := Vn(X) ∪ P(Vn(X)).

The superstructure V (X) might seem to be a closure of X only under powersets,
but it accommodates many set-forming operations. For example, ordered pairs
(a, b) and tuples (a1, . . . , am) are defined in V (X) as is usually done in set theory,
e.g. (a, b) := {{a}, {a, b}}. The function space a → b is thought of as a collection
of special binary relations (i.e. a → b ⊆ P(a × b)), hence is in V (X).

The First-Order Language LX . We use the following first-order language LX ,
defined for each choice of the base set X like R and ∗

R.

Definition 3.10 (the language LX). Terms in LX consist of: variables
x, y, x1, x2, . . .; and a constant a for each entity a ∈ V (X).

Formulas in LX are constructed as follows.

– The predicate symbols are = and ∈; both are binary. The atomic formulas
are of the form s = t or s ∈ t (where s and t are terms).

– We allow Boolean combinations of formulas. We use the symbols ∧,∨,¬
and ⇒.

– Given a formula A, a variable x and a term s, the expressions ∀x ∈ s.A and
∃x ∈ s.A are formulas.

Note that quantifiers always come with a bound s. The language LX depends
on the choice of X (it determines the set of constants). We shall also use the
following syntax sugars in LX , as is common in set theory and NSA.

(s, t) pair (s1, . . . , sm) tuple s × t direct product
s ⊆ t inclusion, short for ∀x ∈ s. x ∈ t
s(t) function application; short for x such that (t, x) ∈ s
s ◦ t function composition, (s ◦ t)(x) = s(t(x))
s ≤ t inequality in N; short for (s, t) ∈ ≤ where ≤ ⊆ N

2

Definition 3.11 (semantics of LX). We interpret LX in the superstructure
V (X) in the obvious way. Let A be a closed formula; we say A is valid if A is
true in V (X).
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The ∗-Transform and the Transfer Principle As we mentioned the transfer prin-
ciple says that a closed formula A in the language LX is valid in V (X) if and
only if ∗A in L∗X is valid in V (∗X). We shall describe how we syntactically
transform A in LX into ∗A in L∗X .

For that purpose, in particular in translating constants in LX (for entities in
V (X)) to L∗X , we will need the following semantical translation. The so-called
ultrapower construction yields a canonical map

∗( ) : V (X) −→ V (∗X), a �−→ ∗a (3)

that is called the *-transform. It is a map from the universe V (X) of standard
entities to V (∗X) of nonstandard entities. The details of its construction are
in [28, Appendix A] or in [26].

The above map ∗( ) : V (X) → V (∗X) becomes a monomorphism, a notion
in NSA. Most notably it will satisfy the transfer principle (Lemma 3.13).

Definition 3.12 (*-transform of formulas). Let A be a formula in LX . The
*-transform of A, denoted by ∗A, is a formula in L∗X obtained by replacing
each constant a occurring in A with the constant ∗a that designates the element
∗a ∈ V (∗X).

Lemma 3.13 (the transfer principle). For any closed formula A in LX , A is
valid (in V (X)) if and only if ∗A is valid (in V (∗X)). �

For example, the following proposition is proved using the transfer principle (the
proof is in [28, Appendix C]). This proposition has a practical implication: our
implementation relies on it in simplifying formulas including the infinitesimal
constant dt.

Proposition 3.14. Let A be an LR-formula with a unique free variable x; to
emphasize it we write A(x) for A. Then the validity of the formula

∃r ∈ R. (0 < r ∧ ∀x ∈ R. (0 < x < r ⇒ A (x)))

(in V (R)) implies the validity of ∗A(dt) in V (∗
R). �


3.4 The Modeling Language Whiledt

Whiledt, a modeling language for hybrid systems based on NSA, is introduced
in [34]. It is an augmentation of a usual imperative language (such as IMP
in [36]) with a constant dt that expresses an infinitesimal number.

Definition 3.15. Let Var be the set of variables. The syntax of Whiledt is as
follows:

AExp � a ::= x | r | a1 aop a2 | dt
where x ∈ Var, r ∈ R and aop∈ {+, −, ·, /}

BExp � b ::= true | false | b1 ∧ b2 | ¬b | a1 < a2

Cmd � c ::= skip | x := a | c1; c2 | if b then c1 else c2 | while b do c.

An expression a ∈ AExp is an arithmetic expression, b ∈ BExp is a Boolean
expression and c ∈ Cmd is a command.
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Fig. 4. Thermostat in Whiledt

As we explained in Sect. 1, the
infinitesimal constant dt enables us
to model not only discrete dynamics
but also continuous dynamics with-
out explicit ODEs. For example, the
water-level monitor is modeled as a
Whiledt program shown in Fig. 2. As
another example, the thermostat can
be modeled as the program on the
right. One can see that the continuous dynamics modeled in this example is
beyond piecewise-linear. Even dynamics defined by nonlinear ODEs can be mod-
eled in Whiledt in the same manner. To go further to accommodate an arbitrary
hybrid automaton we must properly deal with nondeterminism, a feature cur-
rently lacking in Whiledt. Although we expect that to be not hard, precise com-
parison between Whiledt and hybrid automata in expressivity is future work.

In the usual, standard abstract interpretation (without dt), a command c is
assigned its collecting semantics P(Var → R) → P(Var → R) (see e.g. [10]).
This is semantics by reachable sets of memory states, as the concrete semantics.
Presence of dt in the syntax of Whiledt calls for an infinitesimal number in the
picture. The first thing to try would be to replace R with ∗

R, and let Whiledt

commands interpreted as functions of the type P(Var → ∗
R) → P(Var → ∗

R).
This however is not suited for the purpose of interpreting recursion in pres-
ence of dt.4 We rely instead on our theory of hyperdomains that is used
in [35] and described in [28, Appendix B] ; see the interpretation of while loops
in Table 1. This calls for the interpretation of commands to be of the type
∗( P(Var → R) → P(Var → R)

)
, a subset of ∗P(Var → R) → ∗P(Var → R).

The last type will be used in the following definition.

Definition 3.16. Collecting semantics for Whiledt, in Table 1, has the fol-
lowing types where B is {tt,ff}: �a� : ∗(Var → R) → ∗

R for a ∈ AExp;
�b� : ∗(Var → R) → B for b ∈ BExp; and �c� : ∗P(Var → R) → ∗P(Var → R)
for c ∈ Cmd.

In [34] and in Sect. 1, the semantics of a while loop is defined using the idea
of sectionwise execution, instead of as a least fixed point. This is not suited
for employing abstract interpretation—the latter is after all for computing least
fixed points. The collecting semantics in Definition 3.16 (Table 1) does use least
fixed points; it is based on the alternative Whiledt semantics introduced in [27]
(it will also appear in the forthcoming full version of [22,34]). The equivalence
of the two semantics is established in [27].

4 If we interpret commands as functions P(Var → ∗
R) → P(Var → ∗

R), the inter-
pretation �while x < 10 do x := x + dt�{(x �→ 0)} by a least fixed point will be
{x �→ r | ∃n ∈ N. r = n ∗ dt}, not {x �→ r | ∃n ∈ ∗

N. r = n ∗ dt ∧ r ≤ 10} as we
expect. The problem is that internality—an “well-behavedness” notion in NSA—is
not preserved in such a modeling.
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In the rest of the paper we assume that the set of variables Var is finite.
This assumption—a realistic one when we focus on the program to be analyzed—
makes our NSA framework much simpler. Therefore P(Var → R) and ∗P(Var →
R) are equal to P(Rn) and ∗P(Rn) for some n ∈ N respectively; we prefer the
latter notations in what follows.

Table 1. Whiledt collecting semantics

4 Abstract Interpretation Augmented with Infinitesimals

In the current section are our main theoretical contributions—a metatheory of
nonstandard abstract interpretation that justifies the workflow in Sect. 2.2.

(Standard) abstract interpretation infrastructure such as Propositions 3.1
and 3.3 is not applicable to Whiledt programs since ∗P(Rn) is not a cpo.5

Thus, building on the theoretical foundations in the above, we now extend the
abstract interpretation framework for the analysis of Whiledt programs (and
the hybrid systems modeled thereby). We introduce an abstract hyperdomain
over ∗

R as the transfer of the (standard, over R) domain of convex polyhedra.
We then interpret Whiledt programs in them, and transfer the three widen-
ing operators mentioned in Sect. 3.1 to the nonstandard setting. We classify
them into uniform ones—for which termination is guaranteed even in the non-
standard setting—and non-uniform ones. The main theorems are Theorems 4.3
and 4.9, for soundness (in place of Proposition 3.1) and termination (in place of
Proposition 3.3) respectively.

5 One can see that the ascending chain defined by Xn := {k ∗ dt | 0 ≤ k ≤ n} does
not have the supremum in ∗P(Rn) since {k ∗ dt | k ∈ N} is not internal (see [28,
Appendix A]).
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4.1 The Domain of Convex Polyhedra over Hyperreals

We extend convex polyhedra to the current nonstandard setting.

Definition 4.1 (convex polyhedra over ∗
R). A convex polyhedron on (∗

R)n is
an intersection of finite number of affine half-spaces on (∗

R)n, that is, the set of
points x ∈ (∗

R)n that satisfy a certain finite set of linear inequalities. The set of
all convex polyhedra on (∗

R)n is denoted by CP
∗
R

n .

Proposition 4.2. The set CP
∗
R

n of all convex polyhedra over (∗
R)n is a (proper)

subset of ∗
CPn, the ∗-transform of the (standard) domain of convex polyhedra

over R
n. �


What lies in the difference between the two sets CP
∗
R

n �
∗
CPn is, for example,

a disk as a subset of R
2 (hence of ∗

R
2). In ∗

CP2 one can use a constraint system
whose number of linear constraints is a hypernatural number m ∈ ∗

N; using
e.g. m = ω = [(0, 1, 2, . . .)] allows us to approximate a disk with progressive
precision.

In the following development of nonstandard abstract interpretation, we will
use ∗

CPn as an abstract domain since it allows transfer of properties of CPn.
We note, however, that our over-approximation of the interpretation �c� of a
loop-free Whiledt program c is always given in CP

∗
R

n , i.e. with finitely many
linear inequalities.

4.2 Theory of Nonstandard Abstract Interpretation

Our goal is to over-approximate the collecting semantics for Whiledt programs
(Table 1) on convex polyhedra over ∗

R. As we mentioned at the beginning of this
section, however, abstract interpretation infrastructure cannot be applied since
∗P(Rn) is not a cpo. Fortunately it turns out that we can rely on the ∗-transform
(Sect. 3.3) of the theory in Sect. 3.1, where it suffices to impose the cpo structure
only on P(R) and the ∗-continuity—instead of the (standard) continuity—on the
function �c�. This theoretical framework of nonstandard abstract interpretation,
which we shall describe here, is an extension of the transferred domain theory
studied in [4,35]. Part of the latter is found also in [28, Appendix B].

Theorem 4.3. Let (L,�) be a cpo; F : ∗L → ∗L be a *-continuous function;
and ⊥- ∈ ∗L be such that ⊥- ∗� F (⊥- ). Let (L,�) be a preorder; γ : L → L be
a function such that a � b ⇒ γ(a) � γ(b) for all a, b ∈ L; and F : ∗L → ∗L
be a *-continuous function that is monotone with respect to ∗� and satisfies
F ◦ ∗γ ∗� ∗γ ◦ F . Note that (∗L, ∗�) is also a preorder. Assume further that
x ∈ ∗L is a prefixed point of F (i.e. F (x) ∗� x) such that ⊥- ∗� ∗γ(x).

Then x over-approximates lfp⊥- F , that is, lfp⊥- F ∗� ∗γ(x). �

Our goal is over-approximation of the semantics of iteration of a loop-free
Whiledt program c, relying on Theorem 4.3. Towards the goal, the next step
is to find a suitable F : ∗L → ∗L that “stepwise approximates” F = �c�, the col-
lecting semantics of c. The next result implies that the ∗-transformation of � �CP
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(defined in a usual manner in standard abstract interpretation, as mentioned in
Sect. 3.1) can be used in such F .

Proposition 4.4. Let (L,�), (L,�), γ : L → L satisfy the hypotheses in
Theorem4.3. Assume that a continuous function F : L → L is stepwise approx-
imated by a monotone function F : L → L, that is, F ◦ γ � γ ◦ F . Then the
*-continuous function ∗F : ∗L → ∗L is over-approximated by the monotone and
internal function ∗F : ∗L → ∗L, i.e. ∗F ◦ ∗γ ∗� ∗γ ◦ ∗F . �


We summarize what we observed so far on nonstandard abstract interpreta-
tion by instantiating the abstract domain to ∗

CPn. In the following �c� is from
Definition 3.16.

Corollary 4.5 (soundness of nonstandard abstract interpretation on ∗
CPn). Let

c be a loop-free Whiledt command; and let ⊥- ∈ ∗(P(Rn)) and x ∈ ∗
CPn be such

that (∗�c�CP)(x) ∗� x and ⊥- ∗� ∗γCPn
(x). Then we have lfp⊥- �c� ∗� ∗γCPn

(x). �


4.3 Hyperwidening and Uniform Widening Operators

Towards our goal of using Theorem4.3, the last remaining step is to find a
prefixed point x, i.e. F (x) ∗� x. This is where widening operators are standardly
used; see Sect. 3.1.

We can try ∗-transforming a (standard) notion—a strategy that we have
used repeatedly in the current section. This yields the following result, that has
a problem that is discussed shortly.

Theorem 4.6. Let (L,�) be a preorder and ∇ : L × L → L be a widening
operator on L. Let F : ∗L → ∗L be a monotone and internal function; and
⊥- ∈ ∗L be such that ⊥- ∗� F (⊥- ). The iteration hyper-sequence 〈Xi〉i∈∗N—indexed
by hypernaturals i ∈ ∗

N—that is defined by

X0 = ⊥- , Xi+1 =

{

Xi (if F (Xi)
∗� Xi)

Xi
∗∇F (Xi) (otherwise)

for all i ∈ ∗
N

reaches its limit within some hypernatural number of steps and the limit
⊔

i∈N
Xi

is a prefixed point of F such that ⊥- ∗� ⊔
i∈N

Xi. �

The problem of Theorem 4.6 is that the finite-step convergence of iteration
sequences for the original widening operator (described in Proposition 3.3) is now
transferred to hyperfinite-step convergence. This is not desired. All the entities
from NSA that we have used so far are constructs in denotational semantics—
whose only role is to ensure soundness of verification methodologies6 and
on which we never actually operate—and therefore their infinite/infinitesimal
nature has been not a problem. In contrast, computation of the iteration
hypersequence 〈Xi〉i∈∗N is what we actually compute to over-approximate pro-
gram semantics; and therefore its termination guarantee within i ∈ ∗

N steps
(Theorem 4.6) is of no use.
6 Recall that Whiledt is a modeling language and we do not execute them.



Abstract Interpretation with Infinitesimals 245

As a remedy we introduce a new notion of uniformity of the (standard) widen-
ing operators. It strengthens the original termination condition (Definition 3.2)
by imposing a uniform bound i for stability of arbitrary chains 〈xi〉 ∈ LN. Logi-
cally the change means replacing ∀∃ by ∃∀.

Definition 4.7 (uniform widening). Let (L,�) be a preorder. A function ∇ :
L × L → L is said to be a uniform widening operator if the following two
conditions hold.

– (Covering) For any x, y ∈ L, x � x∇y and y � x∇y.
– (Uniform termination) Let x0 ∈ L. There exists a uniform bound i ∈ N such

that: for any ascending chain 〈xk〉 ∈ LN starting from x0, there exists j ≤ i at
which the chain 〈yk〉 ∈ LN, defined by y0 = x0 and yk+1 = yk∇xk+1 for all k ∈
N, stabilizes (i.e. yj = yj+1).

It is straightforward that uniform termination implies termination.
We investigate uniformity of some of the commonly-known widening opera-

tors on convex polyhedra.

Theorem 4.8. Among the three widening operators in Sect. 3.1, ∇S

(Definition 3.5) and ∇M (Definition 3.6) are uniform, but ∇N ([3]) is not. �

For example, the widening operator ∇S is uniform because if the first element
x0 of an iteration sequence is fixed, the length of the iteration sequence is at
most the number of linear inequalities that define the first element x0. However,
∇N is not uniform because an iteration sequence can be arbitrarily long even if
the first element of it is fixed.

The following theorem is a “practical” improvement of Theorem 4.6; its proof
relies on instantiating the uniform bound i in a suitable LR-formula with a
Skolem constant, before transfer.

Theorem 4.9. Let (L,�) be a preorder and ∇ ∈ L × L → L be a uniform
widening operator on L. Let F : ∗L → ∗L be a monotone and internal function;
and ⊥- ∈ L be such that ∗⊥- ∗� F (∗⊥- ). The iteration sequence 〈Xi〉i∈N defined by

X0 = ∗⊥- , Xi+1 =

{

Xi (if F (Xi)
∗� Xi)

Xi
∗∇ F (Xi) (otherwise)

for all i ∈ N

reaches its limit within some finite number of steps; and the limit
⊔

i∈N
Xi is a

prefixed point of F such that ∗⊥- ∗� ⊔
i∈N

Xi. �

Note that uniformity of ∇ is a sufficient condition for the termination of non-
standard iteration sequences (by ∗∇); Theorem 4.9 does not prohibit other use-
ful widening operators in the nonstandard setting. Furthermore, there can be
a useful (nonstandard) widening operator except for the ones ∗∇ that arise via
standard ones ∇.

It is a direct consequence of Theorems 4.8 and 4.9 that the analysis of
Whiledt programs on ∗

CPn is terminating with ∇S or ∇M .
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5 Implementation and Experiments

5.1 Implementation

We implemented a prototype tool for analysis of Whiledt programs. The tool
currently supports: ∗

CPn as an abstract domain; and ∗∇M , *-transformation of
∇M in Definition 3.6 as a widening operator. Its input is a Whiledt program.
It outputs a convex polyhedron that over-approximates the set of reachable
memory states for each modes (or the values of discrete variables). Our tool
consists principally of the following two components: 1) an OCaml frontend for
parsing, forming an iteration sequence and making the set M for ∗∇M ; and 2)
a Mathematica backend for executing operations on convex polyhedra. The two
components are interconnected by a C++ program, via MathLink.

There are some libraries such as Parma Polyhedra Library [2] that are com-
monly used to execute operations on convex polyhedra. They cannot be used
in our implementation because we have to handle the infinitesimal constant
dt as an truly infinitesimal value. Instead we implemented Chernikova’s algo-
rithm [6–8,30] symbolically, using computer algebra system (CAS) on Mathe-
matica. Proposition 3.14 ensures that the transformation from ∗A(dt) to ∃r ∈
R. (0 < r ∧ ∀x ∈ R. (0 < x < r ⇒ A (x))) does not violate the soundness of the
analysis. Therefore, when we have to evaluate a formula including dt, we instead
resolve ∃r ∈ R. (0 < r ∧ ∀x ∈ R. (0 < x < r ⇒ A (x))) using CAS (e.g. quantifier
elimination).

5.2 Experiments

We analyzed two Whiledt programs—the water-level monitor (Fig. 2) and the
thermostat (Fig. 4)—with our prototype. The experiments were on Apple Mac-
Book Pro with 2.6 GHz Dual-core Intel Core i5 CPU and 8 GB memory and the
execution times are the average of 10 runs.

Water-Level Monitor. This is a piecewise-linear dynamics and a typical exam-
ple used in hybrid automata literature. Our tool automates the analysis pre-
sented in Sect. 2; the execution time was 22.151 s.

Thermostat. The dynamics of this example is beyond piecewise-linear. The
nonstandard abstract interpretation successfully analyzes this example with-
out explicit piecewise-linear approximation. We believe this result witnesses
a potential of our approach. We skip how it analyzes this example since the
procedure is the same as the water-level monitor case. Our tool executes in
2.259 sec. and outputs an approximation from which we obtain an invariant
18 − 54 ∗ dt ≤ x ≤ 22 + 24 ∗ dt.

6 Conclusions and Future Work

We presented an extended abstract interpretation framework in which hybrid
systems are exactly modeled as programs with infinitesimals. The logical
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infrastructure by nonstandard analysis (in particular the transfer principle)
establishes its soundness. Termination is also ensured for uniform widening oper-
ators. Our prototype analyzer automates the extended abstract interpretation
on the domain of convex polyhedra.

Regrettably our current implementation is premature and does not
compare—in precision or scalability—with the state-of-art tools for hybrid sys-
tem reachability such as SpaceEx [17] and Flow* [5]. In fact the two examples
in Sect. 5.2 are the only ones that we have so far succeeded to analyze. For
other examples—especially nonlinear ones, to which our framework is applica-
ble in principle—the analysis results are too imprecise to be useful. To enhance
the precision and scalability there are some possible directions of future work.
Firstly, we could utilize trace partitioning [31], narrowing operators (the use
of narrowing operators in the domain of convex polyhedra is indicated in [23,
Sect. 3.4]) and other techniques that have been introduced for the precision of the
analysis. Secondly, we believe abstract domains such as ellipsoids [14], or some
new ones that are tailored to nonlinear dynamics, can improve our analyzer.
Finally, the lack of scalability is mainly due to our current way of eliminating
dt (namely via Proposition 3.14): it relies on quantifier elimination (QE) that is
highly expensive. A faster alternative is desired.
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Abstract. We present the first study of robustness of systems that are
both timed as well as reactive (I/O). We study the behavior of such
timed I/O systems in the presence of uncertain inputs and formalize
their robustness using the analytic notion of Lipschitz continuity: a timed
I/O system is K-(Lipschitz) robust if the perturbation in its output is
at most K times the perturbation in its input. We quantify input and
output perturbation using similarity functions over timed words such
as the timed version of the Manhattan distance and the Skorokhod dis-
tance. We consider two models of timed I/O systems — timed transduc-
ers and asynchronous sequential circuits. We show that K-robustness
of timed transducers can be decided in polynomial space under certain
conditions. For asynchronous sequential circuits, we reduce K-robustness
w.r.t. timed Manhattan distances to K-robustness of discrete letter-to-
letter transducers and show PSpace-completeness of the problem.

1 Introduction

Real-time systems operating in physical environments, i.e., timed I/O systems,
are increasingly commonplace today. An inherent problem faced by such com-
putational systems is input uncertainty caused by sensor inaccuracies, imprecise
environment assumptions etc. This means that the input data may be noisy
and/or may have timing errors. In such scenarios, it is not enough for a system
to be functionally correct. It is also desirable that the system be continuous
or robust, i.e., the system behavior degrade smoothly in the presence of input
disturbances [11]. We illustrate this property with two examples of timed I/O
systems.

Example 1. Consider two timed I/O systems which process a sequence of ticks
and calibrate the intervals between the ticks (see Fig. 1). In particular, the goal
is to track if an interval is greater than some given Δ. The first timed I/O system
T is an offline processor: upon arrival of each tick, T waits till the next tick, and
outputs � if the interval is less than or equal to Δ and ⊥ otherwise. The second
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timed I/O system T ′ is an online processor: T ′ starts generating � immediately
upon arrival of each tick, and switches its output to ⊥ after Δ time, until the
arrival of the next tick.

Consider two periodic tick sequences: i1 and i2 as shown in Fig. 1. The dura-
tion between ticks in i1, i2 is Δ, Δ + ε, respectively. Hence, i2 can be viewed as
a timing distortion of i1. While the output o1 of T on i1 is a constant sequence
of �, the output o2 of T on i2 consists of ⊥ entirely. Thus, a small timing per-
turbation in the input of T can cause a large perturbation in its output. On
the other hand, a small timing perturbation in the input of T ′ only causes a
proportionally small perturbation in its output. Indeed, while the output o′

1 of
T ′ on i1 is also a constant sequence of �, the output o′

2 of T ′ on i2 is a sequence
of �, with periodic ⊥ intervals of ε-duration. Thus, the behaviour of T is more
robust to small input timing distortions than the behaviour of T ′.
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Fig. 1. System behaviour under timing distortion

Example 2. Consider two asynchronous sequential circuits C and C′ shown in
Fig. 2. For each circuit, the input is i, the output is i ∨ y and the value of
variable y at time t equals the value of variable z at time t − 1. In circuit C,
variable z equals i∨ y and in circuit C′, variable z equals i. Initially y is set to 0.

Consider inputs i1 and i2 such that i1 is constantly 0, and i2 is 1 in the
interval [0, ε) and 0 otherwise (see Fig. 2). Thus, i2 can be viewed as represent-
ing a transient fault in i1. The outputs of both C and C′ for i1 are constantly
0. For i2, C produces a periodic sequence that equals 1 exactly in the intervals
[0, ε), [1, 1 + ε), [2, 2 + ε) . . ., whereas C′ produces an output that equals 1 only
in the intervals [0, ε) and [1, 1 + ε]. Thus, the effect of a small input perturba-
tion propagates forever in the output of C. On the other hand, the effect of a
small input perturbation is limited to a bounded time in the output of C′. The
behaviour of C is more robust to transient faults than the behaviour of C′.

We present the first study of robustness of systems that are both timed as well
as reactive (I/O). We formalize robustness of timed I/O systems as Lipschitz
continuity [12,18,19]. A function is Lipschitz-continuous if its output changes
proportionally to every change in the input. Given a constant K and similarity
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Fig. 2. System behaviour under transient fault

functions dΣ , dΓ for computing the input, output perturbation, respectively, a
timed I/O system T is defined to be K-Lipschitz robust (or simply, K-robust)
w.r.t. dΣ , dΓ if for all timed words w, v in the domain of T with finite dΣ(w, v),
dΓ(T (w), T (v)) ≤ KdΣ(w, v).

In this work, we focus on K-robustness of two models of timed I/O sys-
tems — timed transducers (Example 1) and asynchronous sequential circuits
(ASCs) (Example 2). We define a timed transducer as a timed automaton over
an alphabet partitioned into an input alphabet dΣ and an output alphabet dΓ. A
timed transducer defines a transduction over timed words, or a timed relation. An
ASC is composed of a combinational circuit (CC), delay elements and feedback
loops (see, for instance, Fig. 2). An ASC also defines a timed relation. However,
timed transducers and ASCs are expressively incomparable. A simple ASC that
delays its inputs by 1 time unit is not expressible by timed transducers — intu-
itively, the timed transducer at time 1 would need to remember arbitrarily many
timed events from the interval [0, 1). Conversely, a simple timed transducer that
outputs 1 if the duration between preceding input events is greater than 1, and
0 otherwise cannot be expressed by any ASC.

We show that K-robustness of timed transducers is undecidable is general,
and decidable under certain conditions on similarity functions. The key idea
behind decidability is a reduction of K-robustness of timed transducers to empti-
ness of weighted timed automata. In particular, our decidability results include
the following:

1. K-robustness w.r.t. timed Manhattan distances is PSpace-complete,
2. K-robustness w.r.t. accumulated delay distances is PSpace-complete under

practically-viable environment assumptions (e.g., minimum symbol persis-
tence), and,

3. K-robustness is PSpace-complete if the input perturbation is computed as
a Skorokhod distance and the output perturbation is computed as a timed
Manhattan distance.

We reduce K-robustness of ASCs w.r.t. timed Manhattan distances to K-
robustness of discrete letter-to-letter transducers, and show that K-robustness
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of ASCs is PSpace-complete. The reduction consists of two steps. First, we
show that on inputs that are step functions, ASCs behave like discrete letter-to-
letter transducers. Second, we show that if an ASC is not K-robust w.r.t. timed
Manhattan distances, there exists a witness consisting of a pair of inputs that
are step functions.

The paper is organized as follows. We first recall necessary formalisms (Sect. 2)
and present our models of timed I/O systems (Sect. 3). We formalize our notion
of robustness for such systems (Sect. 4) and define the similarity functions of
interest (Sect. 5). We then present our results on robustness analysis of timed
transducers (Sect. 6) and ASCs(Sect. 7) w.r.t. various similarity functions.

Related Work. Robustness of systems has been studied in different contexts
such as robust control [13], timed automata [5,10], discrete transducers [12,18,19]
and sequential circuits [9]. However, none of these results are directly applicable
to robustness of timed I/O systems. There are two main reasons. First, we are
interested in robustness w.r.t. input perturbation. Second, timed I/O systems
exhibit both discrete and continuous behavior. Robust control typically involves
reasoning about continuous state-spaces and focuses on designing controllers that
function properly in the presence of perturbation in various internal parameters
of a system’s model. The study of robustness of timed automata focuses on the
design of models whose language is robust to infinitesimal timing perturbation
(e.g. clock drifts) and does not focus on quantifying the effect of input perturba-
tion on the output. Robustness analysis of finite-state transducers is limited to
purely discrete systems and data. In [9], the authors study the robustness of syn-
chronous sequential circuits modeled as discrete Mealy machines. Their notion
of robustness bounds the persistence of the effect of a sporadic disturbance and
is also limited to discrete data.

In other related work [3,6,16], the authors develop different notions of robust-
ness for discrete reactive systems with ω-regular specifications interacting with
uncertain environments. There has also been foundational work on continuity
and robustness analysis of software programs manipulating numbers [7,8,17].

2 Preliminaries

2.1 Timed Automata

We briefly present basic notions regarding timed automata. We refer the reader
to [2] for a comprehensive survey on timed automata.

Timed Words. Let R
+, Q

+ denote the set of all nonnegative real numbers,
rational numbers, respectively. A (finite or infinite) timed word over an alpha-
bet Σ is a word over (Σ,R+): (a0, t0)(a1, t1) . . . such that t0, t1, . . . is a weakly
increasing sequence. A pair (a, t) is referred to as an event. We denote by T L(Σ)
the set of all timed words over Σ. For a timed word w = (a0, t0)(a1, t1) . . ., we
define untimed(w) = a0a1 . . . as the projection of w on the Σ component.
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Disjoint Union of Timed Words. Let w1, w2 be timed words over the alpha-
bet Σ. We define the disjoint union of w1 and w2, denoted w1 ⊕w2, as the union
of events of w1 and w2, annotated with the index of the word (w1 or w2) it belongs
to. E.g. 〈a, 0.4〉〈b, 2.1〉 ⊕ 〈b, 0.3〉〈b, 0.4〉 = 〈(b, 2), 0.3〉〈(a, 1), 0.4〉〈(b, 2), 0.4〉
〈(b, 1), 2.1〉. The word w1 ⊕ w2 is a timed word over the alphabet Σ × {1, 2}.

Clocks. Let X be a set of clocks. A clock constraint is a conjunction of terms of
the form x⊗ c, where x ∈ X, c ∈ Q

+ and ⊗ ∈ {<,≤,=,≥, >}. Let B(X) denote
the set of clock constraints. A clock valuation ν is a mapping ν : X �→ R

+.

Timed Automata. A timed automaton A is a tuple (Σ,L, l0,X, δ, F ) where Σ
is the alphabet of A, L is a set of locations, l0 ∈ L is an initial location, X is a
set of clocks, δ ⊆ L × Σ × B(X) × 2X × L is a switch relation and F ⊆ L is a
set of accepting locations.

Semantics of Timed Automata. The semantics of a timed automaton A is
defined using an infinite-state transition system PreA over the alphabet (Σ ∪
{ε}) × R

+. A state q of PreA is a pair (l, ν) consisting of a location l ∈ L and a
clock valuation ν. A state q = (l, ν) satisfies a clock constraint g, denoted q |= g,
if the formula obtained from g by substituting clocks from X by their valuations
in ν is true. There are two kinds of transitions in PreA: (i) elapse of time:
(l, ν) →τ (l, ν′) iff for every x ∈ X, ν′(x) = ν(x) + τ and (ii) location switch:
(l, ν) →a (l′, ν′) iff there is a switch of A, (l, a, g, γ, l′), such that (l, ν) |= g, and
for each x ∈ X, ν′(x) = 0 if x ∈ γ and ν′(x) = ν(x) otherwise. Consecutive
elapses of time can be merged, therefore we assume that an elapse of time is
followed by a location switch. The initial state of PreA is the state (l0, ν) where
for each x ∈ X, ν(x) = 0. The accepting states of PreA are all states of the form
〈l, ν〉, where l ∈ F . A run of A over a timed word w = (a0, t0)(a1, t1) . . . (ak, tk)
is the sequence: q0 →t0 q1 →a0 q2 →t1−t0 q3 →a1 . . . →ak q2k+2, where q0 is the
initial state of PreA. The run is accepting if q2k+2 is an accepting state. The set
of accepting runs of A is denoted [A]. We say a timed word w is accepted by A
if there is a run over w in [A].

The emptiness problem for timed automata is as follows: given a timed
automaton A, decide whether [A] is nonempty. The emptiness problem is also
referred to as the reachability problem as it is equivalent to reachability of an
accepting state in PreA.

2.2 Weighted Timed Automata

A weighted timed automaton (WTA) is a timed automaton augmented by a
function C : L ∪ δ �→ Q that associates weights with the locations and switches
of the timed automaton. The value of a run (l0, ν0) →τ0 (l0, ν1) →a0 . . . →ak

(lk, ν2k+2) is given by
k∑

i=0

C(li)τi +
k∑

i=0

C(ei)
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where ei is the switch taken in the transition (li, ν2i+1) →ai (li+1, ν2i+2). The
value of a timed word w assigned by a WTA A, denoted LA(w), is defined as
the infimum over values of all accepting runs of A on w.

The quantitative emptiness problem for WTA is as follows: given a WTA A
and λ ∈ Q, decide whether A has an accepting run with value smaller than λ.

Theorem 3 [4]. The quantitative emptiness problem for WTA is PSpace-
complete.

A WTA A is functional if for every timed word w, all accepting runs of A on w
have the same value.

2.3 Discrete Transducers

Discrete Transducers. A discrete transducer T is a tuple (Σ,Γ, Q,Q0, E, F )
where Σ is the input alphabet, Γ is the output alphabet, Q is a finite nonempty
set of states, Q0 ⊆ Q is a set of initial states, E ⊆ Q × Σ × Γ∗ × Q is a set of
transitions, and F is a set of accepting states.

Semantics of Discrete Transducers. A run γ of T on an input word s =
s[1]s[2] . . . s[n] is defined in terms of the sequence: (q0, u1), (q1, u2), . . ., (qn−1, un),
(qn, φ) where q0 ∈ Q0 and for each i ∈ {1, 2, . . . , n}, (qi−1, s[i], ui, qi) ∈ E. A
run (q0, u1), . . . (qn−1, un), (qn, φ) is accepting if qn ∈ F . The output of T along
a run is the word u = u1 · u2 · . . . · un if the run is accepting, and is undefined
otherwise. The transduction computed by a discrete transducer T is the rela-
tion �T � ⊆ Σω × Γω (resp., �T � ⊆ Σ∗ × Γ∗), where (s, u) ∈ �T � iff there is an
accepting run of T on s with u as the output along that run.

Types of Discrete Transducers. A discrete transducer T is called functional
if the relation �T � is a function. In this case, we use �T �(s) to denote the unique
output word generated along any accepting run of T on input word s. A discrete
transducer is a letter-to-letter transducer if in every transition (q, a, u, a′) we
have |u| = 1.

3 Models of Timed I/O Systems

In this section, we present two models of timed I/O systems whose robustness
will be studied in the following sections. The reason for studying these models
separately is that timed transducers and ASCs are expressively incomparable
(as explained in the introduction).

3.1 Timed Transducers

In the following, we define timed transducers, which extend classical discrete
transducers.
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Definition 4 (Timed Transducer). A timed transducer T is a timed automa-
ton over an alphabet partitioned into an input alphabet Σ and an output
alphabet Γ.

Semantics of Timed Transducers. Given a timed transducer T , we define a
relation �T � ⊆ T L(Σ) × T L(Γ) by �T � = {(w, v) : w ∈ T L(Σ), v ∈ T L(Γ), T
accepts w ⊕ v}. We say that v ∈ T L(Γ) is an output of T on w ∈ T L(Σ) if
(w, v) ∈ �T �.

Remark 5. Our model of timed transducers is similar to timed automata with
inputs and outputs presented in [14]. The main difference is the absence of dead-
lines in our automaton model.

In the following proposition, we relate the discrete part of the relation defined
by a timed transducer to the relation defined by a discrete transducer. For
a timed relation R ⊆ T L(Σ) × T L(Γ), let untimed(R) denote {(untimed(w),
untimed(v)) : (w, v) ∈ R}.

Proposition 6. (i): For every timed transducer T that has no cycles labeled by
Γ, there exists a (nondeterministic) discrete transducer T d of exponential size
in size(T ) such that untimed(�T �) and �T d� coincide. (ii): For every discrete
transducer T d, there exists a timed transducer T that has no cycles labeled by Γ
such that untimed(�T �) and �T d� coincide.

Functionality. A transducer is timed-functional iff �T � is a function, i.e., for
all w ∈ T L(Σ) and v1, v2 ∈ T L(Γ), if both (w, v1) ∈ �T � and (w, v2) ∈ �T �,
then v1 = v2. For a timed-functional transducer T , we use �T �(w) to denote the
unique output of T on w.

Proposition 7. Deciding timed functionality of a timed transducer is PSpace-
complete.

Observe that a timed transducer does not have to be timed-functional, even if
it is deterministic when viewed as a timed automaton. Indeed, a trivial timed
automaton that accepts every word over the alphabet Σ ∪Γ is deterministic and
is a timed transducer. However, it is not functional.

In Proposition 8, we present a sufficient condition for timed-functionality
which can be checked in polynomial time. We further identify a class of trans-
ducers for which this condition is also necessary. A switch in a timed automaton
is rigid iff it is guarded by a constraint containing equality. A location l in
a timed automaton is unambiguous if for any pair of outgoing switches, their
constraints g1 and g2 are strongly inconsistent, i.e., for all x1, . . . , xn, t ∈ R

+,
g1(x1, . . . , xn)∧g2(x1+t, . . . , xn+t) is false. A transducer is safe if every location
with outgoing Σ switches is accepting.

Proposition 8. (1) A deterministic timed transducer in which all switches
labeled by Γ are (a) rigid, and (b) all locations with outgoing switches labeled
by Γ are unambiguous, is functional. (2) Every function defined by a determin-
istic safe timed transducer is also defined by a deterministic safe timed transducer
satisfying (a) and (b) from (1).



Lipschitz Robustness of Timed I/O Systems 257

3.2 Asynchronous Sequential Circuits

The second model of timed I/O systems that we consider is an asynchronous
sequential circuit (ASC). A generic ASC is shown in Fig. 3 and some example
ASC’s are shown in Fig. 2.

combinatorial

circuit

i1
...
im

o1

...
on

y1

...
yk

dk

zk

...

d1

z1

...

Fig. 3. A generic ASC.

An ASC is an I/O system composed of a com-
binational circuit (CC) and memory devices, or
delay elements. A CC is simply a Boolean logic
circuit that computes Boolean functions of its
inputs. A CC is memoryless: the values of the
circuit’s output variables at time instant t are
functions of the values of the circuit’s input vari-
ables at the same time instant t. A delay element
is always labeled with some d > 0. The output
of a d-delay element at time t equals its input
at time t − d. We consider delays that are nat-
ural numbers (see Remark 11). ASC’s may con-
tain cycles, or feedback loops. Each such cycle is
required to contain at least one delay element.
Due to the presence of delay elements and feed-
back loops, an ASC has memory: the outputs of

an ASC at time instant t are in general functions of its inputs at time instant t
as well as at time instants t′ < t. The inputs of the delay elements of an ASC are
called excitation variables. The outputs of the delay elements of an ASC are
called secondary variables. The relationships between input, output, excitation
and secondary variables of an ASC are graphically represented in Fig. 3 and
formally defined below.

Definition 9. Let C be an ASC with input variables I = {i1, . . . , im}, output
variables O = {o1, . . . , on}, excitation variables Z = {z1, . . . , zk}, secondary
variables Y = {y1, . . . , yk} and delay elements Δ = {d1, . . . , dk}. Let i(t) and
I(t) denote the values of input i and all inputs I at time t, respectively. One can
similarly define o(t), Y(t) etc. We have the following:

∀j ∈ [1, k] : yj(t) =

{
0 if t = [0, dj)
zj(t − dj) if t ≥ dj

∀j ∈ [1, k] : zj(t) = f j(x1(t), . . . , xm(t), y1(t), . . . , yk(t))

∀j ∈ [1, n] : oj(t) = gj(x1(t), . . . , xm(t), y1(t), . . . , yk(t)).

Here, f1, . . . , fk and g1, . . . , gn are Boolean functions. The input alphabet of
ASC C, denoted Σ, is given by {0, 1}m. The output alphabet of C, denoted Γ, is
given by {0, 1}n. The ASC C defines a transduction �C� ⊆ T L(Σ)×T L(Γ) such
that �C� is a total function. Thus, the domain of C is given by dom(C) = T L(Σ).
We use �C�(w) to denote the unique output of C on w.
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Remark 10. Our model of ASCs shares some similarities (such as delays) with
models of discrete event systems ([20]). The main difference is that, in addition
to timing relations, ASCs also express functional relations between inputs and
outputs.

Remark 11 (Time stretching for ASCs). Let s > 0 and let λs : R �→ R be
time stretching defined for every t ∈ R as λs(t) = s · t. Consider an ASC with
rational delays C and an ASC with rational delays Cs obtained from C by mul-
tiplying all delays by s. Observe that for every input i(t) and the corresponding
output o(t) of C, the signal o(λs(t)) is the output of Cs on input i(λs(t)). Thus,
ASCs with rational delays do not introduce any behaviours that are significant
for robustness over ASCs with integer delays.

4 Problem Statement

Similarity Functions. In our work, we use similarity functions to measure
the similarity between timed words. Let S be a set of timed words and let R

∞

denote the set R ∪ {∞}. A similarity function d : S × S → R
∞ is a func-

tion with the properties: ∀x, y ∈ S : (1) d(x, y) ≥ 0 and (2) d(x, y) = d(y, x).
A similarity function d is also a distance (function or metric) if it satisfies
the additional properties: ∀x, y, z ∈ S : (3) d(x, y) = 0 iff x = y and (4)
d(x, z) ≤ d(x, y) + d(y, z). We emphasize that in our work we do not need to
restrict similarity functions to be distances.

In this paper, we are interested in studying the K-Lipschitz robustness of
timed-functional transducers and ASCs.

Definition 12 (K-Lipschitz Robustness of Timed I/O Systems). Let T
be a timed-functional transducer or an ASC with �T � ⊆ T L(Σ)×T L(Γ). Given
a constant K ∈ Q with K > 0 and similarity functions dΣ : T L(Σ)×T L(Σ) →
R

∞ and dΓ : T L(Γ) × T L(Γ) → R
∞, the timed I/O system T is called K-

Lipschitz robust w.r.t. dΣ, dΓ if:

∀w, v ∈ dom(T ) : dΣ(w, v) < ∞ ⇒ dΓ(�T �(w), �T �(v)) ≤ KdΣ(w, v).

5 Similarity Functions Between Timed Words

Timed Words as Càdlàg Functions. Consider a timed word w : (a0, t0)(a1, t1)
. . . (ak, tk) over (Σ, I), where I = [t0, tk] is an interval in R

+. We define a
Càdlàg function wC : I �→ Σ corresponding to w as follows: for each j ∈
{0, 1, . . . , k − 1}, wC(t) = aj if t ∈ [tj , tj+1), and wC(tk) = ak. We define
a timed word timed(wC) = (α0, δ0)(α1, δ1) . . . (αn, δn) corresponding to the
Càdlàg function wC such that: for each j ∈ {0, 1, . . . , n}, αj = wC(δj) and
δj ∈ {δ0, . . . , δn} iff wC changes value at δj . The timed word timed(wC) can
be interpreted as a stuttering-free version of the timed word w. The intervals
[δ0, δ1), [δ1, δ2), . . . , [δn−1, δn) are called segments of w.
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Example. Let w be the timed word (a, 0)(b, 1.3)(a, 2)(a, 2.9)(c, 3.7)(a, 5). Then
wC is given by the following Càdlàg function over the interval [0, 5].

a

b

c

1.3 2 3.7 5

The timed word timed(wC) = (a, 0)(b, 1.3)(a, 2)(c, 3.7)(a, 5).
In what follows, let w, v be timed words over (Σ, I) with I ⊆ R

+. Let wC ,
vC be Càdlàg functions over I, corresponding to w, v, as defined above. We
present below several similarity functions between timed words, computed as
the similarity function between their corresponding Càdlàg functions. We first
present a similarity function between discrete words.

Generalized Manhattan Distance. The generalized Manhattan distance. over
discrete words s, t is defined as: dM (s, t) =

∑max(|s|,|t|)
i=1 diff(s[i], t[i]), where

diff is a cost function that assigns costs for substituting letters. When diff(a, b)
is defined to be 1 for all a, b with a �= b, and 0 otherwise, dM is called the
Manhattan distance.

Timed Manhattan Distance. The timed Manhattan distance dTM extends
the generalized Manhattan distance by accumulating the pointwise distance, as
defined by diff, between the Càdlàg functions corresponding to timed words.
Given diff on Σ:

dTM (w, v) =
∫

I

diff(wC(x), vC(x))dx.

Accumulated Delay Distance. The accumulated delay distance dAD exam-
ines the timed words timed(wC) and timed(vC). If the projections of these
timed words on their Σ components are equal, then the distance dAD(w, v)
equals the sum of delays between the corresponding events; otherwise the dis-
tance is infinite. Let timed(wC) = (α0, δ0)(α1, δ1) . . . (αn, δn) and timed(vC) =
(β0, τ0)(β1, τ1) . . . (βn, τm).

dAD(w, v) =

{∑
j |δj − τj | if untimed(timed(wC)) = untimed(timed(vC))

∞ otherwise.

Skorokhod Distance w.r.t. Timed Manhattan Distance. The Skorokhod
distance dS is a popular distance metric for continuous functions. Hence, it is
also a natural choice for our Càdlàg functions. The Skorokhod distance permits



260 T.A. Henzinger et al.

wiggling of the function values as well as the timeline in order to match up the
functions. The timeline wiggle is executed using continuous bijective functions,
denoted λ, over the timeline. The first component of the Skorokhod distance
measures the magnitude of the timing distortion resulting from a timeline wiggle
λ. The second component of the Skorokhod distance measures the magnitude of
the function value mismatch under λ. The Skorokhod distance is the least value
obtained over all such timeline wiggles. The magnitudes of the timing distortion
and function value mismatch can be computed and combined in different ways.
In our work, the timing distortion is computed as the L1 norm, the function
value mismatch is computed as the timed Manhattan distance and the two are
combined using addition. Let Λ be the set of all continuous bijections from the
domain I of wC and vC onto itself.

dS(wC , vC) = inf
λ∈Λ

(||Id − λ||1 + dTM (wC , vC ◦ λ)) ,

where Id is the identity function over I, ||.||1 is the L1-norm over R
+ and ◦ is

the usual function composition operator.
We now present some helpful connections between the above distances. Let

d=
TM denote a timed Manhattan distance with diff given by: ∀a, b ∈ Σ, diff

(a, b) = 0 if a = b and diff(a, b) = ∞ otherwise. Let D≤1
TM denote a class of timed

Manhattan distances, d≤1
TM , with diff satisfying: ∀a, b ∈ Σ, diff(a, b) ≤ 1.

Proposition 13. [Relations between distances]. (i) The accumulated delay dis-
tance coincides with the Skorokhod distance w.r.t. d=

TM . (ii) For any d≤1
TM ∈

D≤1
TM , the Skorokhod distance w.r.t. d≤1

TM coincides with d≤1
TM .

6 Robustness Analysis of Timed Transducers

To investigate K-robustness as a decision problem, one needs to have a finitary
encoding of instances of the problem, in particular, of the similarity functions.
We use weighted timed automata to represent similarity functions.

Timed-automatic Similarity Function. A timed similarity function d is com-
puted by a WTA A iff for all w, v ∈ T L(Σ), d(w, v) = LA(w ⊕ v). A timed
similarity function d computed by a WTA is called a timed-automatic similarity
function.

Unfortunately, checking K-robustness of timed transducers w.r.t. timed-
automatic similarity functions is undecidable. The undecidability result follows
from a reduction from the universality problem for timed automata, which is
undecidable [1].

Theorem 14. K-robustness of timed transducers w.r.t. timed-automatic simi-
larity functions is undecidable.

K-robustness can, however, be decided using an automata-based, polynomial-
space, sound (but incomplete) procedure: if the procedure certifies a transducer
T to be K-robust, then T is indeed K-robust. This procedure becomes complete
under additional assumptions.
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Theorem 15. (i) There exists a polynomial-space sound procedure that given
timed-automatic similarity functions dΣ, dΓ and a timed transducer T ,
decides K-robustness of T w.r.t. dΣ , dΓ.

(ii) There exists a PSpace-complete procedure that given timed-automatic simi-
larity functions dΣ, dΓ, with dΓ computed by a functional WTA, and a timed
transducer T , decides K-robustness of T w.r.t. dΣ , dΓ.

Proof Sketch. PSpace-hardness in (ii) follows from a simple reduction from the
emptiness problem for timed automata. To show containment in PSpace, we
construct an automaton A that accepts words that are counterexamples to K-
robustness. More precisely, the automaton A accepts words w ⊕ v ⊕ �T �(w) ⊕
�T �(v) with value K ·dΣ(w, v)−dΓ(�T �(w), �T �(v)). Therefore, an accepted word
with value less than 0 corresponds to timed words w, v that form a counterexam-
ple for K-robustness of T w.r.t. dΣ , dΓ. The automaton A is a product automaton
that includes a copy of the WTA computing dΣ , with weights scaled by K, and
a copy of the WTA computing dΓ, with weights scaled by −1. Given words w, v,
the value computed by the last WTA is smaller than −dΓ(�T �(w), �T �(v)) in
general, and is exactly equal to −dΓ(�T �(w), �T �(v)) if the WTA is functional.
It follows that our automata-theoretic procedure for checking K-robustness is
sound in general and becomes complete when dΓ is computed by a functional
WTA. ��
We now define several timed similarity functions that can be computed by func-
tional and nondeterministic WTA.

Timed Similarity Functions Computed by Functional WTA. We show
that the timed Manhattan and accumulated delay distances can be computed
by functional WTA.

Lemma 16. The timed Manhattan distance dTM over timed words is computed
by a functional WTA.

To compute the timed Manhattan distance, the WTA simply tracks the value of
diff between timed events using its weight function. The semantics of WTA then
imply that the value assigned by the automaton to a pair of timed words is
precisely the timed Manhattan distance between them.

Lemma 17. Let D, B be any nonnegative real numbers. The accumulated delay
distance dAD over timed words w, v such that:

1. the duration of any segment in wC , vC is greater than D and
2. the delay |δj − τi| between corresponding events in wC , vC is less than B, is

computed by a functional WTA.

The WTA tracks with its weight function the number of unmatched events.
Again, the semantics of WTA imply that the value assigned by the automa-
ton to a pair of timed words is precisely the accumulated delay distance. To
make sure that every event is matched to the right event, i.e., the untimed parts
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are equal, the automaton implements a buffer to store the unmatched events.
The assumptions on the minimal duration of events and the maximal delay
between the corresponding events imply that the buffer’s size is bounded.

Timed Similarity Functions Computed by Nondeterministic WTA.
A (restricted) Skorokhod distance can be computed by a nondeterministic WTA.
We first prove the following lemma characterizing an essential subset of the set
Λ of all timing distortions.

Lemma 18. [Skorokhod distance is realized by a piecewise linear function]. Let
w, v be timed words. Let η be the number of segments in v. For every ε > 0,
there exists a piecewise linear function λ consisting of η segments such that
|(||Id − λ||1 + dTM (wC , vC ◦ λ)) − dS(wC , vC)| ≤ ε.

Observe that for piecewise linear functions λ, the value of ||Id||1 − λ coincides
with the accumulated delay distance between vC and vC ◦λ. This fact, combined
with Lemma 18, allows us to compute the Skorokhod distance using a WTA that
non-deterministically guesses λ and computes the sum of the accumulated delay
between vC and vC ◦λ and the timed Manhattan distance between wC and vC ◦λ.

Lemma 19. Let D, B be any nonnegative real numbers. The Skorokhod distance
dS over timed words w, v restricted to timeline wiggles λ such that:

1. the duration of any segment in vC , vC ◦ λ is greater than D and
2. the delay |δj − τi| between corresponding events in vC , vC ◦ λ is less than B,

is computed by a nondeterministic WTA.

Remark 20. Physical systems typically have a bounded rate at which they can
generate/process data. Hence, bounding the minimum possible duration of timed
symbols is not a severe restriction from the modeling perspective. Moreover, if an
input is delayed arbitrarily, it makes little sense to constraint the system behav-
ior. Hence, for robustness analysis, it is also reasonable to bound the maximum
delay between corresponding events.

Summary of Decidability Results. We summarize the decidability results
for timed transducers that follow from Theorem 15 and Lemmas 16, 17 and 19.

1. K-robustness is PSpace-complete for timed Manhattan distances.
2. K-robustness is PSpace-complete for accumulated delay distances (under

environment assumptions from Lemma 17).
3. K-robustness is PSpace-complete if the input perturbation is computed as

a Skorokhod distance (under environment assumptions from Lemma 19) and
the output perturbation is computed as a timed Manhattan distance.

7 Robustness Analysis of Asynchronous Sequential
Circuits

In this section, we show that robustness of ASCs w.r.t. the timed Manhattan
distances is PSpace-complete. The decision procedure is by reduction to discrete
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letter-to-letter transducers. Our argument consists of two steps and relies on the
use of step functions — Càdlàg functions that change values only at integer
points. First, we show that on inputs that are step functions, ASCs behave
like discrete letter-to-letter transducers. Second, we show that if an ASC is not
K-robust w.r.t. the timed Manhattan distances, there exists a counterexample
consisting of a pair of inputs that are step functions. Therefore, we can reduce
K-robustness of ASCs to K-robustness of discrete letter-to-letter transducers,
which can be solved employing techniques from [12].

ASCs Transforming Step Functions. There is a natural correspondence
between step functions f : [0, T ] �→ {0, 1}k and words over the alphabet {0, 1}k.
The function f defines the word word(f) = f(0)f(1) . . . f(T −1) and, conversely,
a word w ∈ ({0, 1}k)∗ defines a step function func(w) such that word(func(w))=
w. We aim to show that the behavior of an ASC on a step function f is captured
by a discrete transducer on word word(f).

First, observe that an ASC with integer delays transforms step functions
into step functions. Indeed, the output at time t depends on the input and sec-
ondary variables at time t, which are equal to the values of excitation variables at
times {t − d1, . . . , t − dk}. The excitation variables at times {t − d1, . . . , t − dk}
depend on inputs and secondary variables at times {t − d1, . . . , t − dk}. As delays
are integers, by unraveling the definition of the output variables (resp., excitation
and secondary variables) at time t, we obtain that the variables depend solely
on (a subset of) inputs at times t, t−1, . . . , frac(t)+1, frac(t), where frac(t) is
the fractional part of t. Therefore, if an input is a step function, then excitation,
secondary and output variables are all step functions. Moreover, the value of the
step function output in the interval [j, j +1) with j ∈ N can be computed using
the input value in the interval [j, j + 1) and the values of excitation variables
in the intervals [j − d1, j + 1 − d1), . . . [j − dk, j + 1 − dk). Therefore, we can
define a discrete letter-to-letter transducer that simulates the given ASC. Such
a transducer remembers in its states the values of the excitation variables in the
last max(d1, . . . , dk) intervals.

Lemma 21. (1) If the input to an ASC is a step function, the output is a step
function. (2) Given an ASC C, one can compute in polynomial space a discrete
letter-to-letter transducer TC such that for every step function f , the output of C
on f is func(�TC(word(f))�).

Remark 22. The transducer TC in Lemma 21 can be constructed in polynomial
space, meaning that its sets of states and accepting states are succinctly repre-
sentable and we can decide in polynomial time whether a given tuple (q, a, b, q′)
belongs to the transition relation of TC .

Counterexamples to K-robustness of ASCs. Consider an ASC with integer
delays that is not K-robust w.r.t. dΣ , dΓ. Then, there are two input functions
f1, f2, satisfying dΓ(�C�(f1), �C�(f2)) > K · dΣ(f1, f2), that are counterexamples
to K-robustness. We show that there exists a pair of step functions g1, g2 that are
counterexamples to K-robustness as well. Recall that the output of the ASC at
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time t depends only on inputs at times t, t − 1, . . . , frac(t) + 1, frac(t). Hence,
we argue that if f1, f2 are counterexamples to K-robustness, then for some x ∈
[0, 1), f1, f2 restricted to the domains Δx

1 = {y ∈ dom(f1) | frac(y) = x},
Δx

2 = {y ∈ dom(f2) | frac(y) = x}, respectively, are also counterexamples to
K-robustness. Since the sets Δx

1 , Δx
2 are discrete, we can define step functions

g1, g2 based on f1, f2 restricted to Δx
1 , Δx

2 , respectively..

Lemma 23. Let C be an ASC with integer delay elements. If C is not K-robust
w.r.t. timed Manhattan distances dΣ , dΓ, then there exists a pair of step functions
g1, g2 such that dΓ(�C�(f1), �C�(f2)) > K · dΣ(f1, f2).

K-robustness of Discrete Transducers. We next present a decidability result
that follows from [12]. Deciding K-robustness of letter-to-letter transducers w.r.t.
generalized Manhattan distances reduces to quantitative non-emptiness of
weighted automata with Sum-value function [12]. The latter problem can be
solved in nondeterministic logarithmic space, assuming that the weights are rep-
resented by numbers of logarithmic length. Hence, we obtain the following result
for short generalized Manhattan distances, i.e., distances whose diff values are
represented by numbers of logarithmic length.

Lemma 24. Deciding K-robustness of letter-to-letter transducers w.r.t. short
generalized Manhattan distances is in NLogspace.

We can now characterize the complexity of checking K-robustness of ASCs.

Theorem 25. Deciding K-robustness of ASCs with respect to timed Manhattan
distances is PSpace-complete.

... ...

......

w u

uv

∧
∧ u = t

1

1

E(v,w)

Oscillator
o

Fig. 4. The diagram of an ASC from the reduction of the reachability in succinctly
represented graphs to K-robustness of ASCs.

Proof. Observe that the timed Manhattan distance between step functions f, g
equals the generalized Manhattan distance between the words word(f), word(g)
corresponding to step functions f, g. This, together with Lemmas 21 and 23,
allows us to reduce checking K-robustness of ASCs w.r.t. timed Manhattan
distances to checking K-robustness of the corresponding letter-to-letter trans-
ducers w.r.t. generalized Manhattan distances. It then follows from Lemma 24
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that checking K-robustness of ASCs is in PSpace. Note that we consider short
generalized Manhattan distances whose descriptions are logarithmic in the expo-
nential size of the letter-to-letter transducer.

The PSpace-hardness of checking K-robustness of ASCs is obtained by a
reduction from the reachability problem for succinctly represented graphs, which
is PSpace-complete [15]. Succinctly represented graphs are given indirectly by
a propositional formula E(v,w), where v,w are vectors of n variables. The
vertexes of the graph are binary sequences of length n, and two sequences are
connected by an edge iff the formula E(v,w) on these sequences holds. Consider
the graph G represented by the formula E(v,w) and its vertex t. We claim that
the ASC given in Fig. 4 is K-robust iff the vertex t is not reachable from the
zero vector (0, . . . , 0) in G. Due to Lemma 23 it suffices to focus on inputs that
are step functions f , or discrete words word(f). The input is interpreted as a
sequence of vertexes of G. The ASC in Fig. 4 consists of (a) a circuit E(v,w)
which checks whether there is an edge between v and the input w, (b) a unit
that tests whether u equals the target vertex t and, (c) an oscillator (2) which
outputs 0 when the input is 0, and once the input is 1, outputs 1 until the end
of the input. Initially, v is the zero vector. If there is an edge between v and
w, u is set to w, and hence, v equals w in the next step and w is checked for
equality with t. If w = t, the oscillator is activated. Otherwise, if there is no edge
between v and w, u is set to the zero vector, which corresponds to transitioning
back to the initial vertex; v equals the zero vector in the next step and the zero
vector is checked for equality with t.

If t is not reachable from the zero vector, the output of the ASC is always
0, and hence the ASC is K-robust for every K. Conversely, we claim that if t is
reachable from the zero vector, then the ASC is not K-robust for any K. Indeed,
consider a shortest path from the zero vector to the target vertex 0,v1, . . . , t
and consider the following two inputs: i1 = 0,v1, . . . , t,0K , the path leading
to activation of the oscillator followed by K inputs that are zero vectors, and,
i2 = 0,v1, . . . , t

′,0K , which is obtained from i1 by changing one bit in t. Observe
that the oscillator in ASC is not activated on the input i2, hence the output is
0. Therefore, while the timed Manhattan distance between the inputs is 1, the
timed Manhattan distance between the outputs is K + 1, for any chosen K. ��
Remark 26. Recall that the domain of an ASC C with input alphabet Σ =
{0, 1}m is given by dom(C) = T L(Σ). For any timed Manhattan distance d≤1

TM

over dom(C) such that ∀a, b ∈ Σ, diff≤1(a, b) ≤ 1, Proposition 13 states that the
Skorohod distance w.r.t. d≤1

TM coincides with d≤1
TM . Hence, K-robustness w.r.t.

such Skorokhod distances is PSpace-complete as well.

8 Conclusions

In this paper, we investigated the K-Lipschitz robustness problem for timed
I/O systems using an automata-theoretic framework. For timed transducers, we
showed that K-robustness can be decided in polynomial space for an interesting
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class of similarity functions. For ASCs, we reduce K-robustness w.r.t. timed
Manhattan distances to K-robustness of discrete transducers and show PSpace-
completeness of the problem.

The essence of our framework is the use of weighted timed automata for
computing similarity functions. This motivates further study of weighted timed
automata; in particular, development of more expressive weighted timed
automata (with nice decidability properties) immediately improves our results.

We also plan to study robustness of other models such as probablistic systems
and explore specific application domains such as robotics.
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Abstract. This paper presents a method for generating semi-algebraic
invariants for systems governed by non-linear polynomial ordinary dif-
ferential equations under semi-algebraic evolution constraints. Based on
the notion of discrete abstraction, our method eliminates unsoundness
and unnecessary coarseness found in existing approaches for computing
abstractions for non-linear continuous systems and is able to construct
invariants with intricate boolean structure, in contrast to invariants typ-
ically generated using template-based methods. In order to tackle the
state explosion problem associated with discrete abstraction, we present
invariant generation algorithms that exploit sound proof rules for safety
verification, such as differential cut (DC), and a new proof rule that we
call differential divide-and-conquer (DDC), which splits the verification
problem into smaller sub-problems. The resulting invariant generation
method is observed to be much more scalable and efficient than the näıve
approach, exhibiting orders of magnitude performance improvement on
many of the problems.

1 Introduction

Establishing safe operation of embedded systems arising in modern engineering
increasingly involves reasoning about the behaviour of hybrid dynamical systems
that combine discrete and continuous state evolution. Continuous dynamics is
typically specified by ordinary differential equations (ODEs). Non-linear ODEs
afford the engineer the means of modelling rich dynamic behaviour that cannot
possibly occur in linear systems [12], but are also notoriously difficult to analyse
because they rarely possess solutions that can be expressed in closed form.

This paper is concerned with the problem of automating safety verification for
continuous systems modelled by non-linear ODEs under evolution constraints,
which is a problem of broader interest to automating safety verification for hybrid
dynamical systems. To solve the verification problem, one requires a proof that
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a given continuous system does not evolve into an unsafe state at any future
time from some given initial configuration while obeying its evolution constraint.
Additionally, given that solutions are rarely available, it is highly desirable to
arrive at such a proof by working with the ODEs directly, i.e. without solving
the initial value problem.

Traditionally, two popular techniques have been used for proving safety prop-
erties without computing solutions or putting a finite bound on the duration
of evolution in continuous systems: one based on first soundly abstracting the
continuous system and performing reachability analysis in the resulting discrete
transition system, and a deductive verification approach that works by reasoning
about appropriate invariants in the continuous system.

Deductive verification tools for hybrid systems crucially rely on (i) the ability
to prove invariance assertions about continuous systems (which was solved for
the case of semi-algebraic1 invariants and polynomial ODEs in [14]) and (ii)
having the means of automatically generating continuous invariants sufficient to
prove safety assertions about continuous systems. In practice, this latter point
is often the main bottleneck when verifying safety of hybrid systems in which
the continuous dynamics are non-linear.

Existing automatic procedures for generating invariants for use in deduc-
tive frameworks only make limited use of the boolean structure in invariants.
Approaches based on abstraction, in computing reachable sets of discrete sys-
tems, (implicitly) create invariants with more intricate boolean structure; their
limitations currently stem from the conservative nature of the discrete mod-
els, whose transition behaviour is often a very coarse over-approximation of the
evolution taking place in the continuous system.

A number of approaches have been proposed for generating invariants for
continuous systems [8,11,14,16,24,27,28,38,44], which either put serious restric-
tions on the form of the invariant or rely on the user pre-defining a template
and then attempt to find an instantiation of the parameters in the template
that yields an invariant. In this paper we pursue an alternative approach that
automatically generates semi-algebraic continuous invariants from discrete semi-
algebraic abstractions of continuous systems. Our rationale is that recent
advances in semi-algebraic invariant checking for polynomial ODEs [14] allow
deductive provers to work with arbitrary semi-algebraic invariants, yet few meth-
ods for invariant generation are able to synthesize interesting invariants with
boolean structure that one might find in reachable sets of discrete abstractions.
At the same time, discrete abstraction approaches do not take full advantage of
the results on invariant checking in constructing the transition relation for the
discrete transition system. We seek to address both of these issues.

Currently available methods for creating semi-algebraic abstractions of non-
linear polynomial systems [36,37] result in abstractions that are unsound for
certain degenerate cases and unnecessarily coarse even in very simple scenarios.
Additionally, discrete abstraction is known to scale poorly owing to (in the worst

1 A semi-algebraic set is a subset of Rn characterized by a finite boolean combination
of sets defined by polynomial equalities and inequalities.
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case) an exponential increase in the number of discrete states as the continuous
state space is partitioned [37], making it very difficult to refine abstractions.
To ameliorate this situation, we give a method for constructing semi-algebraic
abstractions that are sound and only as coarse as the partitioning of the continu-
ous state space into discrete regions itself. We then employ ideas from deductive
verification to give more scalable and efficient algorithms for generating semi-
algebraic invariants for polynomial continuous systems.

Contributions. In Sect. 3 of this paper we (I) introduce a method for con-
structing semi-algebraic abstractions of polynomial continuous systems in which
transitions between the discrete states occur if and only if a corresponding con-
tinuous evolution is possible in the continuous system. In Sect. 4 we give an algo-
rithm for generating semi-algebraic invariants for polynomial continuous systems
by efficiently extracting reachable sets from these abstractions. In Sect. 5 we (II)
introduce a sound proof rule DDC (differential divide-and-conquer) which works
to split the safety verification problem into smaller sub-problems by exploiting
properties of invariant real algebraic sets and (III) give more scalable invari-
ant generation algorithms employing sound proof rules differential weakening
(DW) [19] and differential cut (DC) [19,21] together with the new rule DDC to
address the discrete state explosion problem associated with computing abstrac-
tions. In Sect. 6 we (IV) evaluate our techniques on a collection of 100 safety
verification problems featuring predominantly non-linear ODEs.

2 Preliminaries

To simplify our presentation, we will use the notation for sets and formulas
characterizing those sets interchangeably in this paper, e.g. H will denote both a
semi-algebraic set H ⊆ R

n and a formula H in the first-order theory of real arith-
metic with free variables in x1, . . . , xn that characterizes this set. In what follows,
we shall restrict our attention to autonomous2 systems of polynomial ordinary
differential equations under semi-algebraic evolution domain constraints3, i.e.
systems of the form:

ẋi = fi(x), x ∈ H ⊆ R
n,

where fi ∈ R[x1, . . . , xn] for 1 ≤ i ≤ n and the evolution domain constraint
H is semi-algebraic. We will write this concisely using vector notation as ẋ =
f(x) & H.

One may wonder at this stage whether restricting attention to polynomial
systems represents a severe limitation; after all, non-linearities involving tran-
scendental functions such as sin, cos, e, ln, etc., are not uncommon in systems
of practical interest. Fortunately, it is often possible to transform such systems
into (larger) polynomial systems by introducing fresh variables and eliminating

2 In the sense of not having an explicit dependence on the time variable t.
3 Evolution constraints are often used to define operating modes in hybrid and cyber-

physical systems (so-called mode, or location invariants in the parlance of hybrid
automata [1,13]).
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non-polynomial non-linearities in a rather general technique [23], which is known
in various scientific communities as recasting [17,30] or differential axiomatiza-
tion [19]. Furthermore, it has been shown that such a transformation can be
mechanised for a broad class of non-polynomial systems using a terminating
algorithm [15]. Likewise, no generality is lost by only considering autonomous
systems because any system with explicit time dependence ẋ = f(x, t) & H can
be transformed into an autonomous system by introducing a fresh variable to
model time evolution, e.g. if we add ẋn+1 = 1 to the system and replace every
instance of t in the system with xn+1.

To state the safety verification problem for continuous systems in full gen-
erality we require a set of initial states for the system, which we denote by
ψ ⊆ R

n, and a set of safe states denoted φ ⊆ R
n. The problem is to prove that

starting inside ψ, the system ẋ = f(x) & H cannot leave φ by evolving inside
the evolution domain constraint H. We will only consider semi-algebraic ψ and
φ in this paper and will state the safety property formally, using notation from
differential dynamic logic (dL) [18], as follows:

ψ → [ẋ = f(x) & H] φ.

The above formula asserts that, starting in any state satisfying the pre-condition
(ψ), the system will necessarily (box modality [ ]) satisfy the post-condition
(φ) when following the system ẋ = f(x) & H for any amount of time.4 The
semantic definition of the dL assertion above is given in terms of the solution,
which precisely describes how continuous states evolve over time. A solution to
the initial value problem for the system ẋ = f(x) with initial value x0 ∈ R

n

is a differentiable function ϕt(x0) : (a, b) → R
n defined for t in some non-

empty interval of existence (a, b) ⊆ R ∪ {∞,−∞} including zero and such that
d
dtϕt(x0) = f(ϕt(x0)) for all t ∈ (a, b). Formally, the dL continuous safety
assertion above is valid if the following is true:

∀ x0 ∈ ψ. ∀ τ ≥ 0. (∀ t ∈ [0, τ ] .ϕt(x0) ∈ H) → ϕτ (x0) ∈ φ.

In practice, solutions to non-linear ODEs are almost never available in closed
form (by which we understand a finite expression in terms of polynomials and
elementary functions); even when they are, the resulting sentences often belong
to an undecidable theory [26] due to transcendental functions in the closed form
expression. Alternatively, the safety verification problem can sometimes be solved
directly in a deductive framework. This involves finding an appropriate set I ⊆
R

n, called a continuous invariant [22], that satisfies the three premises (above
the bar) of the following rule of inference:

(Safety)
H ∧ ψ → I I → [ẋ = f(x) & H] I I → φ

ψ → [ẋ = f(x) & H]φ

4 Considering the continuous system ẋ = f(x) & H as a program, the safety asser-
tion ψ → [ẋ = f(x) & H] φ expresses the (continuous) Hoare triple {ψ} ẋ =
f(x) & H {φ}.



272 A. Sogokon et al.

to conclude (below the bar) that the system is safe. Continuous invariants gen-
eralize positively invariant sets [6] to systems under evolution constraints.

Definition 1 (Continuous Invariant [22]). For a continuous system ẋ =
f(x) & H, a set I ⊆ R

n is a continuous invariant if and only if

∀ x0 ∈ I. ∀ τ ≥ 0. (∀ t ∈ [0, τ ]. ϕt(x0) ∈ H) → ϕt(x0) ∈ I.

Intuitively, a continuous invariant is any set of states I such that any motion ini-
tialized inside I that respects the evolution constraint H is guaranteed to remain
inside I.

When H and I are semi-algebraic and fi are polynomial, a decision procedure for
checking whether I is a continuous invariant was reported in [14], enabling us to
decide dL assertions of the form I → [ẋ = f(x) & H] I. The decision procedure
involves computing higher-order Lie derivatives and exploits the ascending chain
property of Noetherian rings. The interested reader is invited to consult [14]
for a detailed description of the procedure and also [8], where similar ideas
were employed. As a direct consequence, every premise of the rule (Safety) is
known to be decidable, since ψ, φ and H are also assumed to be semi-algebraic,
the goals H ∧ ψ → I and I → φ can be passed to a decision procedure for
real arithmetic [35]. The challenge in applying the rule now lies in finding an
appropriate continuous invariant I.

3 Discrete Abstraction of Continuous Systems

In a certain sense, with discrete abstraction one seeks to approximate continu-
ous systems by finite discrete transition systems. Such a transformation makes
it possible to perform reachability analysis and verify safety properties in the
simpler discrete model. The approach works by ensuring that the set of behav-
iours of the discrete (abstract) system over-approximates the set of behaviours
of the continuous (concrete) system; this is known as sound abstraction. If the
discrete abstraction is sound, then any violation of the safety property in the
continuous system is necessarily reproduced by the abstract discrete transition
system. Conversely, an abstraction is complete (with respect to the safety prop-
erty) when any violation of the safety property in the abstraction is reproduced
by the concrete continuous system.

Discrete abstraction of continuous systems was previously studied in [2,3]
(for linear systems) and [36,37] (for more general non-linear systems), where a
simple method for constructing abstractions was proposed but results in discrete
systems that may feature transitions between discrete states that are impossible
in the continuous system. In this section we describe the process of construct-
ing sound and exact abstractions of non-linear continuous systems. That is,
the resulting abstraction will feature a discrete transition between two abstract
states if and only if a corresponding continuous trajectory is possible in the
concrete system. The method we use is fundamentally different from [36,37]
in computing the discrete transition relation using a decision procedure for
continuous invariant assertions [14].
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3.1 Constructing the Discrete State Space

In this section we describe a way of partitioning the evolution domain constraint
H in the continuous system ẋ = f(x) & H using a set of polynomial functions.

Definition 2 (Semi-algebraic Decomposition). A semi-algebraic decompo-
sition of a semi-algebraic set H ⊆ R

n by a set of m polynomials A ⊂ R[x1, . . . , xn]
is a partition of H into k ≤ 3m regions giving all the non-empty intersections
of the form H ∩ p1 ∼1 0 ∩ · · · ∩ pm ∼m 0 where pi ∈ A and ∼i∈ {<,=, >} for
1 ≤ i ≤ m.

Computing the semi-algebraic decomposition of the evolution domain constraint
H for a finite set of polynomials A can be achieved using a simple procedure
that we will call SemiAlgDecomp. The decomposition defines a partition of H
into k non-empty regions, each corresponding to a single discrete state, which
we denote by si, where 1 ≤ i ≤ k. We will denote by S the set of all discrete
states obtained from the semi-algebraic decomposition, i.e. S ≡ {si | 1 ≤ i ≤ k}.

3.2 Constructing the Transition Relation

We now apply the decision procedure for semi-algebraic continuous invariant
assertion checking reported in [14] to exactly determine the transition relation
T ⊂ S×S, enabling us to construct exact discrete abstractions, which we denote
by the pair (S, T ). We will write si −→ sj for (si, sj) ∈ S × S, the discrete
transition from state si to sj .

We begin with a transition relation S × S in which every state is reachable
from every other state (including itself) in a single discrete transition. First, let
us observe that a continuous solution of the differential equation cannot pass
from a discrete state where p > 0 (for some polynomial p ∈ A) to a state where
p < 0 without passing through p = 0 first, nor vice versa. Using this intuition,
we can give a general definition of what it means for two discrete states to be
neighbouring (or adjacent [34]).

Definition 3. Let S be the set of discrete states constructed from a semi-algebraic
decomposition of H by a finite set of polynomials A ⊂ R[x1, . . . , xn]. Two dis-
crete states si, sj ∈ S, where i �= j, are neighbouring if there are no points
x1,x2 ∈ si ∪ sj such that p(x1) < 0 and p(x2) > 0 for any p in A.

We can now construct a neighbouring transition relation Tn ⊆ S × S in which
only the neighbouring states are reachable in a single transition (note that a state
cannot be its own neighbour using our definition). Intuitively, in the neighbouring
transition relation one cannot “jump across” p = 0 in a single discrete transition;
at the same time, any state is reachable from any other state. An abstraction
which results from (S, Tn) is still maximally coarse and therefore not very useful
(illustrated in Fig. 1).



274 A. Sogokon et al.

Fig. 1. Semi-algebraic decomposition of R
2 by A = {p1, p2} resulting in 9 discrete

states S ⊂ 2R
2

and the neighbouring transition relation Tn ⊂ S × S.

We are only interested in retaining those discrete transitions for which the
corresponding continuous transitions are possible in the original continuous sys-
tem. In order to eliminate impossible discrete transitions we need to decide an
invariance assertion:

si → [ẋ = f(x) & (si ∨ sj)] si,

for each pair of neighbouring discrete states (si, sj) ∈ Tn; we will proceed to
remove transitions si −→ sj from Tn if and only if the decision procedure for
continuous invariance assertions returns True. This process can be mechanized
in a terminating abstraction algorithm that we call ExactAbstraction. The result
is a discrete transition system (S, T ) with a transition relation T ⊆ Tn that does
not feature discrete transitions that are impossible; we will state this property
formally.

Proposition 4. Abstractions (S, T ) are exact with respect to the discretization,
i.e. si −→ sj is in T if and only if

∃ x0 ∈ si. ∃ τ > 0. ϕ0(x0) ∈ si ∧ ϕτ (x0) ∈ sj and ∀ t ∈ [0, τ ]. ϕt(x0) ∈ si ∪ sj ,

that is, if and only if the system may evolve continuously from state si into a
neighbouring state sj without leaving their union si∪sj. The abstraction is exactly
as coarse as the partition of the evolution constraint H into regions corresponding
to discrete states.

One can view the process of removing impossible discrete transitions as a sound
refinement of the neighbouring transition relation to T ⊆ Tn. In the worst case,
using a set of m polynomials for the semi-algebraic decomposition of H will result
in 3m discrete states and a neighbouring transition relation Tn with a total of
7m−3m discrete transitions that need to be checked. In practice, both the number
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of discrete states and the number of transitions in Tn will typically be much
lower than the pessimistic worst case bound. Furthermore, removing impossible
transitions from Tn is a massively parallel problem, allowing one to exploit multi-
core parallelism instead of iterating through the transitions sequentially.

3.3 Sound and Exact Abstraction

We will now discuss some important differences between earlier work and our
approach. The discrete abstraction method reported in [37] is fundamentally
different in the way it constructs the transition relation (let us call it T∼ ⊆ S×S),
which is described in [37, Sect. 3.2.2]. In essence, the method imposes conditions
for removing transitions from the neighbouring transition relation Tn in the
following way: given two neighbouring states si and sj , it removes the transition
si −→ sj from Tn if any of the following conditions are satisfied for any p ∈ A:

1. si has p < 0 and sj has p = 0 and si → dp
dt ≤ 0 is true,

2. si has p > 0 and sj has p = 0 and si → dp
dt ≥ 0 is true,

3. si has p = 0 and sj has p < 0 and (si → dp
dt = 0 ∨ si → dp

dt > 0) is true,
4. si has p = 0 and sj has p > 0 and (si → dp

dt = 0 ∨ si → dp
dt < 0) is true.

Remark 5. The abstraction method in [37] also considers so-called stuttering
(also self-looping [34]) transitions si −→ si, which we disregard here (already
in the way we define Tn). This discrepancy makes no practical difference to
safety verification as stuttering transitions have no effect on the reachable sets
of discrete abstractions.

The approach described in [37] is not (in general) sound when the polynomi-
als in A are allowed to be non-linear. To see this, consider the simple system
with constant derivatives ẋ1 = 1, ẋ2 = 0 and let A = {x2

1 + x2, x2 − x2
1}. The

abstraction one obtains (Fig. 2) suggests that the state x2
1 +x2 = 0∧x2 −x2

1 = 0
(equivalent to x1 = 0 ∧ x2 = 0) is invariant under the flow of the system, which
is incorrect. The nature of this problem was studied in non-convex analysis; a
solution would require reasoning about the contingent cone [42], which is not in
general computable. A sound and exact abstraction using our approach is shown
in Fig. 3.

Fig. 2. Abstraction (S, T∼) generated using method from [37].
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Fig. 3. Sound abstraction (S, T ) generated by ExactAbstraction.

The abstraction method in [37] additionally suffers from coarseness, because
it can introduce discrete transitions that correspond to evolutions that are impos-
sible in the concrete continuous system (the abstraction is therefore inexact). For
instance, consider a planar system of non-linear ordinary differential equations
featuring a stable limit cycle in the form of a unit circle enclosing an equilibrium
at the origin:

ẋ1 = −x3
1 − x2

2x1 + x1 + x2,

ẋ2 = −x3
2 − x2

1x2 + x2 − x1.

Let the system evolve under no evolution constraints and consider a simple
discretization by the axes polynomials, i.e. take A = {x1, x2}. The discrete
abstraction (S, T∼) generated using the method from [37] is shown in Fig. 4.
An exact abstraction (S, T ) without impossible transitions generated using our
approach is shown in Fig. 5. Abstraction (S, T∼) considers the origin reachable,
while (S, T ) does not.

Fig. 4. Inexact abstraction (S, T∼) generated using method from [37].
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Fig. 5. Exact abstraction (S, T ) generated by ExactAbstraction.

4 Extracting Continuous Invariants from Discrete
Abstractions

If one constructs a (sound) discrete abstraction of some system ẋ = f(x) & H
using some finite set of polynomials A, one may verify safety properties by
showing that they hold in the abstraction. For this, one needs to check whether an
unsafe abstract state (i.e. one which contains a state that satisfies the formula
¬φ) is reachable by following the discrete transitions starting from the set of
initial abstract states (those defining regions where ψ is satisfiable). If none of
the unsafe abstract states are reachable from the initial states in the abstraction,
one can conclude that the continuous system is safe.

By computing the forward-reachable set from the set of the initial states
ψ in the abstraction, which we denote by Reach→

A (ψ,H) ⊆ H, one generates
a continuous invariant. Provided the abstraction is exact, this is the smallest
continuous invariant with respect to the discretization by the polynomials in A
and is furthermore semi-algebraic. Formally, we define

Reach→
A (ψ,H) ≡

∨

i s.t. si∩ψ �=∅,
j s.t. si−→∗sj

sj ,

where −→∗ represents the reachability relation; that is, si −→∗ sj if state sj

is reachable from si in zero or more discrete transitions in the exact abstrac-
tion (S, T ), obtained from the discretization by polynomials in A. Thus, I ≡
Reach→

A (ψ,H) is a semi-algebraic set that is (by construction) guaranteed to
include the initial set (i.e. ψ → I) and is a continuous invariant for the system
(i.e. I → [ẋ = f(x) & H] I). If it is also true that I does not include any unsafe
states (i.e. I → φ), then I is sufficient to conclude that the system is safe using
the proof rule (Safety) from Sect. 2.

For invariant generation we are merely interested in extracting a semi-
algebraic continuous invariant containing the initial set of states ψ from the
abstraction, not the full abstraction (S, T ) itself. We now give a simple work-
list procedure that we call LazyReach (Algorithm 1) for constructing the set
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Algorithm 1. LazyReach

Data: ψ, ẋ = f(x) & H, A
Result: Reach→

A (ψ, H)
1 S ← SemiAlgDecomp({H}, A) ;
2 Tn ← NeighbourTrans(S) ;
3 Visited ← {s ∈ S | s ∩ ψ �= ∅} ;
4 Processed ← {} ;
5 while |Processed| < |Visited| do
6 Unprocessed ← Visited \ Processed ;
7 Processed ← Visited ;
8 foreach si in Unprocessed do
9 Validate ← {(si, sj) ∈ Tn | sj �∈ V isited};

10 foreach (si, sj) in Validate do
11 if ¬(si → [ẋ = f(x) & (si ∨ sj)] si) then
12 Visited ← Visited ∪ {sj} ;

13 return
∨

s ∈ Visited

s

Reach→
A (ψ,H) lazily (on demand), i.e. without eagerly constructing the exact

abstraction (S, T ) first.
Although the worst-case running time of LazyReach is exponential in m =

|A|, in practice employing Algorithm 1 is often far more efficient than computing
the exact abstraction (S, T ) in full and then extracting Reach→

A (ψ,H).

5 Tackling Discrete State Explosion

Discrete abstractions of continuous systems suffer from the discrete state explo-
sion problem, i.e. the number of discrete states in the abstraction grows expo-
nentially with the number of polynomials m = |A| used for the discretization.

If one is to consider each individual polynomial p ∈ A, it is intuitive that if
one can show that

1. for the initial set of states ψ, the polynomial p is sign-invariant, i.e. p(ψ) ∼ 0
where ∼∈ {<,=, >}, and

2. that this sign condition defines a continuous invariant for the system, i.e.
p ∼ 0 → [ẋ = f(x) & H] p ∼ 0 ,

then one can refine the evolution constraint to H ∧ p ∼ 0 and remove the
polynomial p from A and obtain an abstraction by the polynomials B ≡ A \ {p}
which has the property that

Reach→
B (ψ,H ∧ p ∼ 0) ≡ Reach→

A (ψ,H).

The number of discrete states generated using B for the semi-algebraic decom-
position of H ∧ p ∼ 0 is at most 3m−1 and the process can be repeated for other
polynomials that remain in B. This section will explore approaches to tackling
the discrete state space explosion based on this observation without making the
abstraction unnecessarily coarse. For this purpose we will use sound proof rules
differential cut and differential divide-and-conquer.
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5.1 Differential Cut

Platzer and Clarke [22] explored an approach to safety verification based on iter-
atively refining the evolution constraint H with differential invariants (a subset
of continuous invariants, see [19]). Such a sound refinement of the evolution
domain is possible using an inference rule called differential cut [21] (hence-
forth DC). Differential cuts are used repeatedly in a process called differential
saturation (see [22, Proposition 2]). The DC rule formalizes the idea that it is
always sound to restrict the evolution domain H by some continuous invariant
F , provided that it includes the initial set ψ, i.e.

(DC)
ψ → [ẋ = f(x) & H]F ψ → [ẋ = f(x) & H ∧ F ]φ

ψ → [ẋ = f(x) & H] φ

the original rationale being that it is easier to prove the safety property in the
more restricted system in the right premise.

5.2 Differential Divide-and-Conquer

We now introduce a new proof rule, akin to DC, that goes further and exploits a
property of sets that are continuous invariants in both positive and negative time
directions to split the continuous system into smaller continuous sub-systems
between which there is no continuous evolution.

Proposition 6. The proof rule DDC given below (with five premises) is sound.

(DDC)

p = 0 → [ẋ = f(x) & H] p = 0
p = 0 → [ẋ = −f(x) & H] p = 0

ψ ∧ p > 0 → [ẋ = f(x) & H ∧ p > 0] φ
ψ ∧ p = 0 → [ẋ = f(x) & H ∧ p = 0] φ
ψ ∧ p < 0 → [ẋ = f(x) & H ∧ p < 0] φ

ψ → [ẋ = f(x) & H] φ

Proof. For a continuous function p, no continuous trajectory inside H can cross
from a region where p > 0 to a region where p < 0 without first crossing p = 0. If
the first two premises hold, then p = 0 cannot be left inside H in either positive
or negative time, i.e. there are no solutions entering or leaving p = 0 inside H.
The reachable sets of the system initialized in ψ ∧p > 0, ψ ∧p = 0 and ψ ∧p < 0
are thus disjoint and confined to regions of H where p > 0, p = 0 and p < 0
respectively. The union of these sets constitutes the reachable set of the system
initialized in ψ and the result follows. ��
Informally, the rule allows one to split the original system into three dynamically
disconnected regions, that is disjoint regions that are not connected by a continu-
ous flow of the system5. Note that unlike DC, the rule DDC does not require the
5 All three regions are invariant sets in the terminology of dynamical systems [5,

Chapter II].
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initial set ψ to be wholly contained inside p > 0, p = 0 or p < 0. Instead, DDC
splits the initial set of states into three disjoint initial subsets ψ∧p > 0, ψ∧p = 0
and ψ ∧ p < 0. The rule DDC thus decomposes the original safety assertion into
three independent safety assertions about smaller sub-systems, allowing the user
to work on these separately. DDC is of practical interest in cases when two or
more of the sets ψ ∧ p > 0, ψ ∧ p = 0 and ψ ∧ p < 0 are non-empty (otherwise,
ψ lies entirely within p > 0, p = 0 or p < 0 and DC may be applied to refine the
constraint).

We now turn to applying the rules DC and DDC to tackle the state space
explosion problem. In Algorithm 2 we give a procedure for refining the evolution
domain constraint and removing polynomials from A, whenever this is possible,
using the proof rules DC and DDC. We call this procedure DWC as it also
exploits the sound reasoning principle of differential weakening DW [19], i.e.

(DW)
H → φ

ψ → [ẋ = f(x) & H] φ
,

which simply requires that the evolution domain be contained within the post-
condition to conclude that the system is safe.

Algorithm 2. DWC

Data: ψ, ẋ = f(x) & H, φ, A
Result: Continuous invariant I s.t. ψ ⊆ I

1 if H ∧ ψ → False then
2 return False

3 if H → φ then
4 return H //DW

5 foreach p ∈ A do
6 if (H ∧ ψ → p > 0) ∧ (p > 0 → [ẋ = f(x) & H] p > 0) then
7 return DWC (ψ, ẋ = f(x) & H ∧ p > 0, φ, A \ {p}) //DC

8 if (H ∧ ψ → p < 0) ∧ (p < 0 → [ẋ = f(x) & H] p < 0) then
9 return DWC (ψ, ẋ = f(x) & H ∧ p < 0, φ, A \ {p}) //DC

10 if (H ∧ ψ → p = 0) ∧ (p = 0 → [ẋ = f(x) & H] p = 0) then
11 return DWC (ψ, ẋ = f(x) & H ∧ p = 0, φ, A \ {p}) //DC

12 foreach p ∈ A do
13 if (p = 0 → [ẋ = f(x) & H] p = 0) ∧ (p = 0 → [ẋ = −f(x) & H] p = 0) then
14 GT ← DWC (ψ ∧ p > 0, ẋ = f(x) & H ∧ p > 0, φ, A \ {p});
15 EQ ← DWC (ψ ∧ p = 0, ẋ = f(x) & H ∧ p = 0, φ, A \ {p});
16 LT ← DWC (ψ ∧ p < 0, ẋ = f(x) & H ∧ p < 0, φ, A \ {p});
17 return GT ∨ EQ ∨ LT //DDC

18 return H

On lines 3 and 4, DWC applies the rule DW as a sufficiency check for termi-
nation. On lines 7, 9 and 11 the procedure discards those p for which p > 0, p < 0
or p = 0 describe a continuous invariant containing the initial set ψ (conditionals
on lines 6, 8 and 10). This step corresponds to an application of the rule DC with
F ≡ p > 0, F ≡ p < 0 and F ≡ p = 0 which, if the rule application is successful,
are used to refine the evolution constraint H in the recursive call. If p = 0 is an
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invariant in both positive and negative time and does not contain all the initial
states ψ, one can use the proof rule DDC to work with 3 smaller sub-systems
of the original system whose reachable set may be constructed by combining the
reachable sets of these smaller systems. This idea is implemented on lines 13-17
of Algorithm 2, where DWC recurses on the 3 smaller sub-systems and removes
the polynomial p (used to divide the system) from A. The over-approximations
of reachable sets obtained using these 3 recursive calls are then combined into a
union (line 17), which gives an over-approximation of the reachable set for the
original system. Finally, when no further progress can be made, the procedure
returns the evolution constraint H (line 18). Because the procedure only involves
applying sound proof rules, one may view DWC as a proof strategy that can be
implemented in a theorem prover. Indeed, if the procedure returns a result while
there are still polynomials remaining in A, one has a proof of safety involving
only the proof rules DW, DC and DDC.

Unlike LazyReach, the invariant generation procedure DWC will not (in gen-
eral) always be able to find a sufficiently strong continuous invariant to prove the
safety property, even if one exists in the semi-algebraic abstraction by the poly-
nomials A. The invariants DWC is able to generate are thus generally coarser
than those generated using LazyReach. However, we observe that in the worst
case the running-time of DWC is only quadratic in the number of polynomials
m = |A|, i.e. TDWC (m) = O(m2), compared the exponential time complexity of
LazyReach.

We now combine the procedure DWC together with the LazyReach algorithm
by replacing return H on the final line (18) in DWC with

returnLazyReach(ψ, ẋ = f(x)& H,A).

We call the resulting new invariant generation procedure DWCL. Instead of
returning H when no further progress can be made with DWC , DWCL falls
back to using the more expensive LazyReach algorithm with the remaining poly-
nomials. This combined procedure is theoretically as powerful as LazyReach, i.e.
is capable of extracting the exact reachable set Reach→

A (ψ,H) if necessary, but in
practice also as fast as DWC , although theoretically the running time of DWCL
remains exponential in m.

Example 7 (Invariant generated using DWCL). Consider the non-linear planar
system from [7, Ex. 10.7, p. 281] (with H = R

2):

ẋ1 = 2x1

(

x2
1 − 3

) (

4x2
1 − 3

) (

x2
1 + 21x2

2 − 12
)

,

ẋ2 = x2

(

35x6
1 + 105x2

2x
4
1 − 315x4

1 − 63x4
2x

2
1 + 378x2

1 + 27x6
2 − 189x4

2 + 378x2
2 − 216

)

,

As an initial set, take ψ ≡ (x1 − 1) 2 + x2
2 < 1

4 and let φ ≡ x2
1 + x2

2 < 8 be
the post-condition. Consider an abstraction of this system using the irreducible
polynomial factors of the right-hand side of the system of ODEs and the post-
condition, i.e. let

A = {x1, x
2
1 − 3, 4x2

1 − 3, x2, x
2
1 + x2

2 − 8, x2
1 + 21x2

2 − 12,

35x6
1 + 105x2

2x
4
1 − 315x4

1 − 63x4
2x

2
1+378x2

1 + 27x6
2 − 189x4

2 + 378x2
2 − 216}.
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There are 7 abstraction polynomials in total, which in the worst case could
lead to 37 = 2187 discrete states and 77 −37 = 821356 discrete transitions in the
neighbouring transition relation Tn. In practice, applying LazyReach to generate
the reachable set Reach→

A (ψ,H) for this problem takes an unreasonable amount
of time. The procedure DWC takes significantly less time to run, but is unable
to find a suitable invariant using DW, DC and DDC alone. Our implementation
of the combined procedure DWCL is able to generate the following continuous
invariant I ⊂ φ in 104 s:6

(

(

35x
6
1 + 105

(

x
2
2 − 3

)

x
4
1 + 27

(

x
6
2 − 7x

4
2 + 14x

2
2 − 8

)

< 63x
2
1

(

x
4
2 − 6

)

∨ x2 = 0
)

∧ 4x
2
1 = 3 ∧ x1 > 0

)

∨
(

x2 = 0 ∧
(

0 < x1 <

√
3

2
∨

√
3

2
< x1 <

√
3
)

)

∨
(

35x
6
1 + 105

(

x
2
2 − 3

)

x
4
1 + 27

(

x
6
2 − 7x

4
2 + 14x

2
2 − 8

)

< 63x
2
1

(

x
4
2 − 6

)

∧ x
2
1 + 21x

2
2 < 12 ∧

(

0 < x1 <

√
3

2
∨ (2x1 >

√
3 ∧ x

2
1 < 3 ∧ x2 �= 0

)

)

)

.

For this problem, the procedure DWCL makes repeated use of both DC and
DDC (each is used 4 times in total) before falling back to LazyReach, which in
every instance is given 3 polynomials that remain to perform the abstraction
(down from 7 in the original list A).

Fig. 6. Phase portrait, unsafe states ¬φ (red), initial set ψ (green) and a generated
continuous invariant I ⊂ φ (blue) (Color figure online).

5.3 Sources of Polynomials for Abstraction

Discrete semi-algebraic abstraction relies on the user supplying a set of polyno-
mials A to construct the set of discrete states through semi-algebraic decompo-
sition of the evolution constraint. The verification problem itself is often a good
6 expression simplified in Mathematica.
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source of polynomials; e.g. they could come from the description of the (semi-
algebraic) post-condition φ, the pre-condition ψ, or indeed from the right-hand
side of the (polynomial) system of ODEs, i.e. the polynomials f1, f2, . . . , fn, their
irreducible factors, etc. The use of Lie derivatives as a source of polynomials for
abstraction was previously investigated in [37] (see also [39] for related work). In
[43] abstraction is explored using Darboux polynomials (see [9,10]), whose real
roots are invariant under the flow of the system. Recent results on real algebraic
invariant checking [8] enable us to consider a more general class of polynomials
that share this property but are not necessarily Darboux.

6 Practical Evaluation

In this section we compare the performance of our invariant generation algo-
rithms LazyReach, DWC and DWCL on a set of 100 safety verification prob-
lems for continuous systems. The differential equations used in these problems
are predominantly non-linear and originate from examples found in texts on
dynamical systems [4,5,7,10,33,41], papers on the qualitative theory of ODEs
and safety verification of continuous and hybrid systems [11,25,31,32,40].7

The running time performance8 of the algorithms is summarised in Fig. 7. In
the graphs, the vertical axis gives the dependent time variable (in seconds on
a log scale) and the horizontal axis denotes the number of problems that could
be solved in under the time given by the curve for each algorithm. By solved
we understand that a semi-algebraic continuous invariant has been successfully
generated and that it implies the postcondition, i.e. is sufficient to prove the
safety assertion.

In our experiments we:

1. use polynomial factors of the right-hand side of the ODEs together with the
factors of the polynomials appearing in the postcondition φ to create the set
of polynomials A for the semi-algebraic decomposition (Fig. 7a),

2. extend the set A generated as in (1.) with Lie derivatives of every polynomial
in A (Fig. 7b), and

3. explore the utility of using polynomials whose real roots are invariant real
algebraic sets by extending the list of polynomials generated in (1.) and (2.)
with polynomials generated using a method presented in [8] (Fig. 7c and d
respecitvely).

In our results we observe that the DWC algorithm is significantly faster than
LazyReach, confirming our hopes for gains in efficiency. We observe that, when
using polynomial factors of the ODEs and the postcondition to abstract the sys-
tem, LazyReach was able to prove as many problems as DWC (43), although the
set of problems solved is different. This is not surprising, since a proof strategy
involving DW, DC and DDC, while very efficient, cannot in general be used to

7 See http://homepages.inf.ed.ac.uk/s0805753/invgen for the problems.
8 The comparison was performed on an i5-3570K CPU clocked at 3.40 GHz.

http://homepages.inf.ed.ac.uk/s0805753/invgen
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(a) Factors of f and polynomials in φ. (b) Factors, Lie derivatives.

(c) Factors, algebraic invariants. (d) Factors, Lie derivatives, alg. invariants.

Fig. 7. Safety verification performance.

extract reachable sets of exact abstractions like the more expensive LazyReach.
The combined method DWCL (using DW, DC, and DDC before falling back to
LazyReach) is seen to be both as practically efficient as DWC and able to solve
more problems (50) than LazyReach under a 600 s timeout; of course, given
enough time, DWCL and LazyReach will both succeed at solving exactly the
same problems (with LazyReach taking significantly more time).

Adding the first Lie derivatives of the polynomial factors of the ODE and
the postcondition effectively doubles the size of the list A which, unsurprisingly,
leads to diminished performance of LazyReach (only 25 problems solved) because
it is heavily affected by the discrete state explosion problem. However, DWC is
seen to perform slightly better than it did without the Lie derivatives in the list,
solving a total of 46 safety verification problems. The DWCL algorithm succeeds
at proving safety in 52 of the problems.

We observe that adding algebraic invariants to the list of polynomial factors
of the ODE and the postcondition resulted in a palpable improvement in the
number of problems that could be solved. This is very clearly visible in the case
of DWC , which is guaranteed to process every algebraic invariant by applying
the proof rules DC and DDC. Overall, for this choice of polynomials we see
LazyReach solving 46, DWC solving 52, and DWCL solving 60 problems out of
100 (see Fig. 7c). Likewise, by adding algebraic invariants to the list of polynomial
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factors and their Lie derivatives (as in 2.) we were able to solve 26, 53 and 59
problems using LazyReach, DWC and DWCL respectively (Fig. 7d).

Overall, in every set of benchmarks we observe only one problem for which
the algorithm DWC times out after 600 s, whereas LazyReach times out for many
of problems (e.g. in the experiments shown in Fig. 7d LazyReach timed out on 59
of the problems and was unable to produce a suitable invariant within the time
limit in only 15 instances). The procedure DWCL generally times out more often
than DWC , but significantly less frequently than LazyReach (e.g. 25 problems
from Fig. 7d resulted in a timeout, and 16 could not be solved using the resulting
invariant).

These results are very encouraging as they demonstrate that the discrete
state explosion problem can, to a certain extent, be addressed using algorithms
such as DWCL and that methods for automatic algebraic invariant generation
(such as that in [8]) can be used to generate polynomials that will often improve
the quality of the resulting abstractions.

It is perhaps surprising to see that many of the atomic predicates featuring
irreducible factors of polynomials harvested from the problem define continuous
invariants. As such, these polynomials are eminently suitable for processing using
our algorithms DWC and DWCL without incurring the performance penalty
associated with building finer abstractions using the conventional approach.

7 Related Work

In [44], the authors apply their earlier results about checking semi-algebraic con-
tinuous invariants to address the invariant generation problem using approaches
such as pre-defining parametric templates and restricting attention to classes
of invariants (such as polyhedra), as well as using qualitative analysis tech-
niques to suggest invariant templates. Our approach is different in that we do
not rely on parametric templates and put no restrictions on the form of the
semi-algebraic invariant which may be generated. Discrete abstraction of linear
systems using linear polynomials to discretize the state space was investigated
in [2,3]. A method for abstracting non-linear systems using non-linear polyno-
mials was studied in [36,37], but results in abstractions that are inexact; the
fundamental differences between this approach and our work is discussed at
length in Sect. 3. A powerful technique called relational abstraction was intro-
duced in [29]. With relational abstraction one aims to over-approximate the
finite time reachability relation between states in a continuous system. Com-
puting relational abstractions requires searching for appropriate invariants in a
larger auxiliary continuous system; once a relational abstraction is available, one
may use it to extract a continuous invariant containing any given initial state
of the system. Computing good relational abstractions for non-linear systems is
in practice expensive because it involves searching for invariants in continuous
systems with double the original number of state variables.
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8 Conclusion

This paper presented a powerful method for automatically discovering contin-
uous invariants that can be used in a formal deductive system to prove safety
assertions about continuous systems. We removed some important theoretical
limitations (unsoundness and coarseness) in existing methods for constructing
discrete abstractions of non-linear continuous systems and presented scalable
and efficient algorithms for continuous invariant generation that combine discrete
semi-algebraic abstraction with sound proof rules for deductive safety verifica-
tion. Verification of hybrid systems constructively reduces to proving properties
of differential equations [18,20], which provides a wider context for the future
development of our work. The results we observe are highly encouraging, but
much further work remains before safety verification (in the continuous frag-
ment) of hybrid systems can enjoy a high level of automation. For instance,
now that issues associated with inexact abstractions have been removed, the
(difficult [39]) problem of finding a good choice of polynomials for constructing
the semi-algebraic predicates is the only factor that determines the success of
our approach. We observed that polynomials whose real roots themselves define
invariants [8] can often be used to improve the quality of abstractions; however
the broader problem of choosing the right polynomials leaves many interesting
questions for future research.
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Abstract. An important component of efficient approaches to software
model checking and systematic concurrency testing is partial order reduc-
tion, which eliminates redundant non-deterministic thread scheduling
choices during the state space traversal. Thread choices have to be cre-
ated only at the execution of actions that access the global state visible
by multiple threads, so the key challenge is to precisely determine the set
of such globally-relevant actions. This includes accesses to object fields
and array elements, and thread synchronization.

However, some tools completely disable thread choices at actions
that access individual array elements in order to avoid state explosion.
We show that they can miss concurrency errors in such a case. Then, as
the main contribution, we present a new hybrid analysis that identifies
globally-relevant actions that access arrays. Our hybrid analysis com-
bines static analysis with dynamic analysis, usage of information from
dynamic program states, and symbolic interpretation of program state-
ments. Results of experiments with two popular approaches to partial
order reduction show that usage of the hybrid analysis (1) eliminates
many additional redundant thread choices and (2) improves the perfor-
mance of software model checking on programs that use arrays.

1 Introduction

Systematic traversal of the program state space is a popular approach for detect-
ing concurrency-related errors. It is used, for example, in software model check-
ing [22], where the goal is to check the program behavior under all possible
thread interleavings.

Each interleaving corresponds to a sequence of thread scheduling decisions
and also to a particular sequence of actions performed by the program threads.
We divide the actions into two sets: globally-relevant and thread-local. A globally-
relevant action reads or modifies the global state shared by multiple threads.
The set of globally-relevant actions contains accesses to fields of heap objects
and array elements, and thread synchronization operations (e.g., acquisition of
a lock). Other actions are thread-local.

Any non-trivial multithreaded program exhibits a huge number of possible
interleavings, but many of them differ only in the order of thread-local actions.
c© Springer-Verlag Berlin Heidelberg 2016
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It is necessary to check just all the possible interleavings of globally-relevant
actions, and to explore each of them just once. Techniques based on state space
traversal use partial order reduction (POR) [5] to avoid redundant exploration
of thread interleavings in order to mitigate state explosion.

The key idea behind POR is to consider non-deterministic thread schedul-
ing choices only at globally-relevant actions, while avoiding redundant choices
at thread-local actions. A lot of work has been done on POR in the context of
software model checking (e.g., [3,4,6,15]). All the existing approaches to POR
have to conservatively over-approximate the set of globally-relevant actions in
order to ensure coverage of all distinct thread interleavings. On the other hand,
they also strive to be as precise as possible, because the number of thread inter-
leavings explored redundantly during the state space traversal depends on the
number of actions that are actually thread-local but were imprecisely identified
as globally-relevant. For example, dynamic POR [4] uses dynamic analysis to
identify (i) heap objects really accessed by multiple threads and (ii) actions per-
formed upon such objects. Another technique [3] uses escape analysis to identify
objects that are reachable from multiple threads. Some work has been done also
on the combination of static analysis with dynamic analysis for precise identifi-
cation of globally-relevant field accesses on shared heap objects [15,16].

An important category of actions that may be globally-relevant are accesses
to array objects stored in the heap. However, in the default configuration, POR
algorithms in tools like Java Pathfinder [8] do not allow thread scheduling choices
at actions that access individual array elements in order to avoid state explosion.
For each access to an array element, they make a scheduling choice only at the
preceding action that retrieves the array object from the heap (e.g., a field read
access).

The problem with this approach to POR is that state space traversal can miss
some concurrency errors. Consider the small Java-like program in Fig. 1, where
two threads access a shared array (buffer). Each thread retrieves a reference to
the array object from the heap through a field read, stores the reference into a
local variable buf, and then accesses the first element. The field read actions do
not have to be synchronized at all, but there is a race condition that involves
the array accesses. A verification tool cannot detect this race condition if it
uses a POR algorithm with disabled thread choices at accesses to individual
array elements. We found similar race conditions also in some of our benchmark
programs — we discuss that in more detail at the end of Sect. 5.

Fig. 1. Example: race condition involving an array element
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Consequently, the state space traversal procedure with POR has to create
thread scheduling choices at array element accesses in order to enable discovery
of all such race conditions and other concurrency errors. The basic option for
identifying globally-relevant accesses to array elements is to consider heap reach-
ability [3]. When the given array object is not reachable from multiple threads,
then every access to elements of the array is a thread-local action and no thread
choice is necessary.

We propose a new hybrid analysis that soundly identifies array elements
possibly accessed by multiple threads during the program execution. Results
of the hybrid analysis can be used by POR to decide more precisely whether a
given access to an array element is globally-relevant or thread-local. Then, thread
choices at accesses to individual elements can be enabled without a high risk of
state explosion. Although the state space size might increase in the worst case,
it will stay in reasonable limits because POR avoids many redundant choices at
thread-local accesses based on the hybrid analysis.

Our hybrid analysis combines static analysis with dynamic analysis and sym-
bolic interpretation of program statements, and it also uses information from
dynamic program states that is available on-the-fly during the state space traver-
sal. We describe key concepts on the examples of multithreaded Java programs,
but the analysis is applicable also to programs written in other languages, such
as C# and C++. For simplicity of presentation, we consider only arrays with a
single dimension in most of the paper and discuss support for multi-dimensional
arrays at the end of Sect. 3.

An important feature of the hybrid analysis is compatibility with all memory
models that we are aware of, including relaxed memory models such as JMM [10]
and TSO [19]. The only requirements are that the underlying tool, which per-
forms state space traversal, has to simulate the given memory model to a full
extent and it must provide correct information about the dynamic program state,
in particular taking into account delayed propagation of the effects of writes to
shared variables among threads.

Experimental results provided in Sect. 5 show that our hybrid analysis helps
to avoid many redundant thread choices during the state space traversal. It
improves the precision and performance of existing approaches to POR on mul-
tithreaded programs that use arrays, and therefore enables more efficient detec-
tion of concurrency-related errors that involve array elements by software model
checking.

In the next section we provide an overview of the whole approach. Then we
discuss situations and code patterns where our hybrid analysis can eliminate a
redundant thread choice (Sect. 3), and explain the analysis algorithm in more
detail in Sect. 4. The rest of the paper contains evaluation, description of related
work, and a brief summary.

2 Overview

Figure 2 shows the basic algorithm for depth-first state space traversal of mul-
tithreaded programs with POR. We assume that the program state space is
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Fig. 2. Basic algorithm for state space traversal with POR

constructed on-the-fly during traversal and that statements are interpreted using
dynamic concrete execution. In addition, we consider only thread scheduling
choices and ignore the data non-determinism in this paper. The symbol s repre-
sents a program state, the symbol ch represents a thread choice, and T denotes
a thread runnable in a particular state. Exploration starts from the initial state
s0 and the initial choice ch0, where only the main thread is runnable. An atomic
transition between two states corresponds to the execution of a sequence of
instructions (program statements) that consists of a globally-relevant action, fol-
lowed by any number of thread-local actions, and it ends with a thread choice.
The POR algorithm creates a new thread choice just before execution of an
action that it considers to be globally-relevant. All instructions in a transition
are executed by the same thread. Note that many popular tools, including Java
Pathfinder [8], use a state space traversal procedure that follows this approach.

In this setting, the POR algorithm itself can use information only from (i)
the current dynamic program state, (ii) the current state space path (execution
history), and (iii) the already explored part of the state space to decide whether
the action to be executed next is globally-relevant or thread-local, because it does
not see ahead in program execution. A popular approach is to identify globally-
relevant actions based on heap reachability in the current dynamic state [3]. This
approach is safe but not very precise — a particular heap object (an array) may
be reachable from multiple threads but really accessed only by a single thread
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during the program execution, or the individual threads may access different
elements of a given array. The POR algorithm has to conservatively assume that
each thread may in the future access every object reachable in the current state,
and therefore many redundant thread choices are created during the state space
traversal.

The proposed hybrid analysis determines more precise information about
which array elements may be accessed in the future during the rest of program
execution from the current state. We used the general principle introduced for
field accesses in [15] and adapted it significantly for accesses to array elements.
For each program point p in each thread T , the analysis computes the set of array
elements (over all array objects that may exist in the heap) possibly accessed by
thread T after the point p on any execution path. In other words, the analysis
provides over-approximate information about future behavior of T after a specific
code location. Array objects are identified by their static allocation sites and
individual elements are identified by their symbolic indexes.

Our hybrid analysis has two phases: (1) static analysis that computes partial
information, and (2) post-processing on-the-fly during the state space explo-
ration (i.e., at the dynamic analysis time). Full results are generated in the
second phase, when data provided by the static analysis are combined with spe-
cific information from dynamic program states, including the dynamic call stack
of each thread and concrete values of some expressions used as array element
indexes. The results are more precise than what would be possible to get with a
reasonably expensive static analysis.

Here, in the rest of this section, we describe how the analysis results are used
during the state space traversal to avoid redundant thread choices.

When the next action to be executed is an access to some array element, the
POR algorithm has to decide whether to make a thread choice or not. Figure 3
captures the procedure at a high level of abstraction. The symbol s represents
the current dynamic state, Tc is the currently scheduled thread, and i is the next
instruction of Tc.

First, the algorithm checks whether the target array object a is reachable
from multiple threads in the state s. If it is, then the procedure retrieves the

Fig. 3. Procedure that identifies globally-relevant accesses to array elements
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results of the hybrid analysis for the current point of every thread To other than
Tc, and inspects the results to find whether some of the other threads may access
the array a in a conflicting way (read versus write) on any execution path that
starts in s.

For the array accesses that may be performed by some other thread, the
hybrid analysis inspects also symbolic indexes of array elements. More specifi-
cally, it compares (1) the concrete value of the array element index for the next
access in Tc, which can be easily retrieved from the current dynamic state s,
and (2) the symbolic index for each of the possible future conflicting accesses to
a. Under some conditions, the concrete value of the array element index can be
soundly determined also for a possible future access — the respective situations
and code patterns are discussed in the next section.

A thread choice has to be created in the state s only when some thread To may
possibly access the same element of a as Tc, because otherwise the respective
action of Tc is thread-local. In particular, if every possible conflicting future
access to the array a in some other thread provably uses a different concrete
value of an element index, then the POR algorithm does not have to make a
thread choice.

3 Array Access Patterns

Here we discuss patterns of concurrent accesses to array elements, for which our
hybrid analysis can eliminate a redundant thread choice, and also cases where it
cannot eliminate a thread choice due to imprecision. Each code pattern involves
two threads:

– the active thread whose next action is the array access in question (where a
thread choice will be created or not depending on the analysis results), and

– the conflicting thread, which may access the same array elements as the active
thread in the future on some execution path.

In all the patterns we assume that the array data is reachable from both threads.
The various kinds of symbolic expressions that can be used as array element
indexes are considered only for the conflicting thread, because for the active
thread we can always get the actual concrete index value from the current
dynamic program state.

Constants. The most basic pattern is the usage of an integer constant as the
array element index. We show on this example how to interpret also the other
patterns below.

data[e] = x y = data[1]
active thread conflict thread

In the code of the active thread, we use the symbol e to denote the concrete
value of the index expression. The symbolic index associated with the possible
future access by the conflicting thread (i.e., the constant 1 in the code fragment
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above) is compared with the value e. If the values are different then a thread
choice would be redundant at the array access in the active thread, because each
thread accesses different elements.

Local Variables. Another common case is when the symbolic index associated
with the future access by the conflicting thread is a local variable v of a method
m. In order to decide soundly about making a new choice, the hybrid analysis
can use the current value of v (from the dynamic state) only if the following two
conditions are satisfied.

1. The conflicting thread is executing the method m in the current dynamic
state s.

2. The local variable v is not updated in the rest of the program execution
starting from the state s.

We consider all methods on the current dynamic call stack of a given thread as
currently executing. The concrete value obviously cannot be retrieved for local
variables of methods that are not yet on the dynamic call stack of a respective
thread. Note also that the local variable v of m may be updated in the future in
two ways — either by assignment in the rest of the current execution of m, or
by a future call of m at any time during the program execution.

Consider the following example, where the variable v is not updated after
the access to data and the method run is not called again.

main(): run(args):
... v = f(args)
data[e] = x
... y = data[v]

active thread conflict thread

The hybrid analysis can safely eliminate a thread choice only if the concrete
dynamic value of v is different from e.

A typical situation where the variable v may be updated later during the
execution of m is shown in the next example. Here, v is also a control variable
of the loop.

main(): run(args):
... for (v = 0; v < 10; v++)
data[e] = x y = data[v]

active thread conflict thread

The hybrid analysis cannot determine whether another iteration of the loop
might be executed or not, and therefore a future update of v is always possible
in this case.

We have to consider also future calls of the method m because every local
variable of m has to be initialized (i.e., updated) before it can be used as array
index. Although each execution of m has its own instances of local variables, the
symbolic name v is common to all of the executions. Therefore, an update of v
may occur between the current state and the relevant array access in a future
execution of m.
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Object Fields. When the symbolic index contains a field access path fp, the
analysis can use the current dynamic value of fp only if the following conditions
are satisfied.

1. In the case of instance fields, the access path must contain the local variable
this associated with one of the currently executing methods of the conflicting
thread.

2. No field in the access path fp is updated in the future during the rest of
program execution starting from the current dynamic state s.

Then, the dynamic value of fp can be used to compute the concrete value of
the array index expression in the conflicting thread. If the result is not equal to
the value of the index expression e used by the active thread, then both threads
will always access different elements of the shared array at the respective code
locations, and thus the POR algorithm does not have to create a new thread
choice.

Multi-dimensional Arrays. Our hybrid analysis supports multi-dimensional
arrays but only with a limited precision. Element indexes are inspected and
compared only for the innermost dimension, using the same approach as for
single-dimensional arrays. Index expressions for outer dimensions are completely
ignored by the hybrid analysis, which therefore assumes (i) that concurrent
threads may use the same index values and (ii) that any two elements of an
outer array may be aliased. A possible choice can be safely eliminated only when
both threads use provably different values of element indexes for the innermost
dimension. This case is illustrated by the following example, where e1 might be
equal to e2.

data[e1][0] = x y = data[e2][1]
active thread conflict thread

On the other hand, a choice must be preserved when both threads may use
the same index value for the innermost dimension, such as e1 and e2 in the
example below, even if different values (e.g., 0 and 1) are used at some outer
dimension. The expressions data[0] and data[1] may point to the same innermost
array because of aliasing.

data[0][e1] = x y = data[1][e2]
active thread conflict thread

Note also that we have to analyze possible read-write conflicts only for the
innermost dimension, because only read-read conflicts may happen at outer
dimensions and they do not require thread choices.

4 Hybrid Analysis

The hybrid analysis computes all the information necessary to decide whether a
thread choice must be created — in particular, for each of the scenarios described
in the previous section. We designed the analysis in a modular way. Each com-
ponent provides information about one of the following: (1) accesses to array
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objects, (2) future accesses to specific array elements, (3) symbolic values of
element indexes, (4) local variables possibly updated in the future, (5) updated
object fields, and (6) future method calls.

First we describe the general principles and then we provide additional details
about the individual components. Every component that is an inter-procedural
analysis has two phases: static and dynamic. Both phases are designed and exe-
cuted using an approach that was proposed in [15]. The static analysis runs first,
and then follows the state space traversal with dynamic analysis. Results of the
static analysis (phase 1) are combined with information taken from the dynamic
program state (phase 2) on-the-fly during the state space traversal, i.e. at the
dynamic analysis time.

The static phase involves a backward flow-sensitive and context-insensitive
analysis that is performed over the full inter-procedural control flow graph
(ICFG) of a given thread. For each program point p in the thread T , it pro-
vides only information about the behavior of T between the point p and the
return from the method m containing p. Note that the result for p in m covers
also methods called from m (transitively).

Full results are computed at the dynamic analysis time based on the knowl-
edge of the dynamic call stack of each thread, which is a part of the dynamic
program state. The dynamic call stack of a given thread specifies a sequence
p0, p1, . . . , pN of program points, where p0 is the current program counter of the
thread (in the top stack frame), and pi is the point from which execution of the
thread would continue after return from the method associated with the previ-
ous stack frame. When the hybrid analysis is queried for data about the current
point p of some thread T , it takes the data computed by the static analysis phase
for each point pi, i = 0, . . . , N on the dynamic call stack of T , where p = p0, and
merges them all to get the precise and complete results for p.

The complete results for a program point p in thread T cover the future
behavior of T after the point p (until the end of T ), and also the behavior of all
child threads of T started after p. Here, a child thread of T is another thread
created and started by T .

Note also that the complete results of the hybrid analysis are fully context-
sensitive for the following two reasons: (1) they reflect the current dynamic
calling context of p in T , i.e., the current program counter in each method
on the dynamic call stack of T , and (2) they precisely match calls with returns.
Only those method call and return edges in the ICFG that can be actually taken
during the concrete program execution are considered by the hybrid analysis.

Accesses to Array Objects. This component of the hybrid analysis identifies
all arrays possibly accessed in the future by a given thread. More specifically, for
each program point p in each thread T , it computes the set of all array objects
that may be accessed on some execution path after p. Static allocation sites are
used to represent the actual array objects also here. The analysis considers read
and write accesses separately in order to enable precise detection of read-write
conflicts. It is an inter-procedural analysis, which therefore has two phases —
static and dynamic — in our approach.
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Instruction Transfer function
after[ ] = ∈succ( ) before[ ]

: v = a[i] before[ ] = after[ ] ∪ {r a}
: a[i] = v before[ ] = after[ ] ∪ {w a}
: return before[ ] = ∅
: call M before[ ] = before[M.entry] ∪ after[ ]
: other instr. before[ ] = after[ ]

Fig. 4. Transfer functions for the static phase of the array objects analysis

Figure 4 shows transfer functions for the static phase. When the analysis
encounters a read or write access to an array a, it adds the target array object
into the set of data-flow facts. The transfer functions for the call and return
statements are defined in this way to ensure that the result of the static phase
for a point p in a method m covers only the execution between p and return
from m. The merge operator is a set union.

Array Elements. Possible future accesses to individual array elements are iden-
tified using an analysis component that works in a very similar way to the one
for array objects. This analysis computes, for each program point p in each
thread, the set of all possible accesses to array elements that may occur on some
execution path after p. It gathers the following information about each access:
a target array object (allocation site), method signature, and instruction index
(bytecode position). Knowledge of the method signature and bytecode position
is used by the next component to associate each particular access with symbolic
values of array element indexes.

Symbolic Indexes. This component performs symbolic interpretation of the
code in each method to determine symbolic expressions that represent indexes
of array elements. A symbolic expression may include local variables, field access
paths, nested accesses to array elements, numeric constants, and arithmetic
operators.

When processing the code of a method, the analysis maintains a stack of
symbolic expressions, which models the concrete dynamic stack containing local
variables and operands. The symbolic stack is updated during interpretation to
capture the effects of executed program statements. For each statement, all its
operands are removed from the stack and then the result is pushed onto it.

The following example illustrates how the symbolic value of an element index
is computed for a particular array access. We consider the statement v = a[o.f+2].

1: load a [a]
2: load o [a, o]
3: getfield f [a, o.f]
4: const 2 [a, o.f, 2]
5: add [a, o.f+2]
6: arrayload [e]
7: store v []

instructions symbolic stack
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The left column contains a sequence of instructions that corresponds to the
statement, and the right column shows the content of the symbolic stack after
each instruction. At line 5, the top value on the stack represents the symbolic
array element index.

Updated Local Variables. The sets of possibly updated local variables are
computed by an intra-procedural static analysis of each method. For each point
p in method m, the analysis identifies all future write accesses to local variables
of m that may occur on some execution path in m. Note that this component of
the whole hybrid analysis does not use any information available in the dynamic
program state.

Transfer function for the store operation just records the index (name) of the
target local variable. For all other statements, the transfer function is identity.

Updated Fields. We use the field access analysis proposed in [15] to find all
fields that may be updated on some execution path in thread T after the point
p. The analysis is fully inter-procedural and combines the static phase with
information taken from the dynamic program state.

However, the field access analysis alone is not sufficient for the following rea-
son: a symbolic value of an array element index may refer to a field of a heap
object that does not exist yet in the current dynamic state. It is therefore neces-
sary to consider also possible future allocations of heap objects of the respective
class (type). The current dynamic value of a given field may be safely used by
the hybrid analysis and POR, as discussed in Sect. 3, only when the following
two conditions hold.

1. The field is provably not updated in the future according to the field access
analysis.

2. No heap object of the given type may be allocated later during the program
execution starting from the current dynamic state.

We use a simple analysis to find allocation sites at which some dynamic heap
object may be possibly allocated in the future (on some execution path starting
in p).

Although the conditions are quite restrictive, we believe that they will be
satisfied in many cases in practice. Based on manual inspection of the source
code of our benchmark programs (listed in Sect. 5), we found that array index
expressions quite often refer to fields of heap objects that are allocated early
during the program execution. The concrete dynamic value of an object field
can be safely used in such cases, helping to eliminate many redundant thread
choices.

Method Calls. The last component of the hybrid analysis identifies methods
that may be called in the future after the current state. It is an inter-procedural
analysis that represents methods by their signatures. The transfer function for
the call statement adds into the set of facts every method that is a possible
target according to the call graph.
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5 Evaluation

We implemented the proposed hybrid analysis in Java Pathfinder (JPF) [8],
which is a framework for state space traversal of multithreaded Java programs.
JPF uses on-the-fly state space construction, depth-first search, and concrete
execution of Java bytecode instructions. In order to support decisions about
thread choices based on the results of our hybrid analysis, we created a non-
standard interpreter of Java bytecode instructions for array access. We used the
WALA library [23] for static analysis and JPF API to retrieve information from
the dynamic program state. Symbolic interpretation of Java bytecode, which col-
lects symbolic expressions that represent indexes of array elements, is performed
by a custom engine that we also built using WALA.

Our prototype implementation, together with the experimental setup and
benchmark programs described below, is publicly available at http://d3s.mff.
cuni.cz/projects/formal methods/jpf-static/vmcai16.html.

Benchmarks. We evaluated the hybrid analysis on 11 multithreaded Java pro-
grams from widely known benchmark suites (Java Grande Forum [7], CTC [2],
pjbench [13]), our previous work, and existing studies by other researchers [20].
Table 1 shows the list of benchmark programs and their quantitative
characteristics — the total number of source code lines (Java LoC) and the
maximal number of concurrently running threads. All the benchmark programs
that we use contain array objects reachable from multiple threads and many
accesses to array elements in their source code.

Table 1. Benchmark programs

Benchmark Java LoC Threads

CRE Demo 1,300 2

Daisy 800 2

Crypt 300 2

Elevator 300 3

Simple JBB 2700 2

Alarm Clock 200 3

Prod-Cons 130 2

Rep Workers 400 2

SOR 160 2

TSP 420 2

QSort MT 290 2

For selected benchmarks, we provide a more detailed characteristic that is rele-
vant for the discussion of experimental results later in this section. The benchmark
program Crypt contains three shared arrays, but each thread accesses different
elements of the arrays, and therefore all possible thread choices at the accesses

http://d3s.mff.cuni.cz/projects/formal_methods/jpf-static/vmcai16.html
http://d3s.mff.cuni.cz/projects/formal_methods/jpf-static/vmcai16.html
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to arrays would be redundant. In the case of CRE Demo and Daisy, each array
object used directly in the application source code is reachable only from a single
thread, which means that accesses to arrays are thread-local, but the programs
involve shared collections (e.g., Vector and HashSet) that use arrays internally.

Experiments. The goal of our experimental evaluation was to find how many
redundant thread choices the hybrid analysis really eliminates during the state
space traversal, and how much it improves performance and scalability of dif-
ferent approaches to partial order reduction in the context of software model
checking. We performed experiments with the hybrid analysis for shared array
elements proposed in this paper, the hybrid field access analysis [15], the POR
algorithm based on heap reachability, and our implementation of the dynamic
POR algorithm described in [4]. For the purpose of our experiments, we have
implemented also the dynamic POR algorithm in JPF and combined it with
state matching.

Table 2 shows all configurations of POR that we considered in our experi-
ments. For each configuration, it provides a brief description and a short name
used in tables with results. Note that we say “array access” instead of “array
element access” in some table rows, but with the same intentional meaning, as
the table would be too large otherwise.

Table 2. Configurations of POR

Description Short name

Heap reachability without thread choices at
bytecode Instructions for array element
access

HR + no array ch

Heap reachability with thread choices enabled
at bytecode instructions for array element
access

HR + all array ch

Heap reachability with field access analysis and
enabled thread choices at array element
accesses

HR + fields + all array ch

Heap reachability with field access analysis,
thread choices at array accesses, and hybrid
analysis

HR + fields + hybrid

Dynamic POR without thread choices at
bytecode instructions for array element
access

DPOR + no array ch

Dynamic POR with thread choices enabled at
bytecode instructions for array access

DPOR + enabled array ch

Dynamic POR with field access analysis and
enabled choices at array element accesses

DPOR + fields + enabled array ch

Dynamic POR with field access analysis,
enabled choices at array accesses, and
hybrid analysis

DPOR + fields + hybrid
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For each configuration and benchmark program, i.e. for every experiment,
we report the following metrics: (1) the total number of thread choices created
by JPF at all kinds of bytecode instructions during the state space traversal,
and (2) the total running time of JPF combined with all phases of the hybrid
analysis. The number of thread choices shows precision, while the running time
indicates performance.

In the first set of experiments, we configured JPF to traverse the whole
state space of each benchmark program — we had to disable reporting of errors
because otherwise JPF would stop upon reaching an error state. We used the
time limit of 8 h and memory limit of 20 GB. The symbol “-”, when present in
some cell of a table with results, indicates that JPF run out of the limit for a
given configuration and benchmark.

Discussion. The results in Tables 3 and 4 show that usage of our hybrid analysis
together with POR in general reduces the number of thread choices and improves
the running time for both POR algorithms that we considered. In the next few
paragraphs, we discuss the results for individual benchmark programs in more
detail and highlight important observations.

For many configurations and benchmark programs, the total number of
thread choices created during the state space traversal is much higher when
choices are enabled at accesses to array elements. This is evident from the val-
ues in columns “HR + no array ch” and “HR + all array ch” (Table 3), respec-
tively in the columns “DPOR + no array ch” and “DPOR + enabled array ch”
(Table 4). We observed an extreme increase of the number of thread choices in
two cases — by the factor of 137 for the Crypt benchmark with POR based
on heap reachability, and by the factor of 300 for the SOR benchmark when
using the dynamic POR. On the other hand, there is a negligible increase for

Table 3. Experimental results: POR algorithm based on heap reachability

HR + no array ch HR + all array ch HR + fields +

all array ch

HR + fields +

hybrid

Benchmark choices time choices time choices time choices time

CRE Demo 30942 51 s 103016 174 s 41146 79 s 29737 69 s

Daisy 28436002 17954 s 32347254 18357 s 8453587 5972 s 8453587 6765 s

Crypt 4993 3 s 682273 238 s 674041 237 s 46105 29 s

Elevator 10167560 7656 s 23709139 18339 s 9980240 7426 s 4748393 3872 s

Simple JBB 575519 1779 s 836889 2583 s 515312 1722 s 344428 1269 s

Alarm Clock 531463 432 s 742027 601 s 344791 285 s 344791 289 s

Prod-Cons 6410 4 s 6934 4 s 2792 4 s 2792 6 s

Rep Workers 9810966 6860 s 9983423 7045 s 1714694 1169 s 1714694 1275 s

SOR 222129 123 s 1565386 882 s 772837 451 s 273693 160 s

TSP 35273 572 s 47475 779 s 15386 257 s 13258 221 s
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Table 4. Experimental results: dynamic POR

DPOR + no array ch DPOR + enabled

array ch

DPOR + fields +

enabled array ch

DPOR + fields

+ hybrid

Benchmark choices time choices time choices time choices time

CRE Demo 2015 11 s 2232 20 s 2207 18 s 2197 22 s

Daisy - - - - - - - -

Crypt 9 1 s 9 1 s 9 3 s 9 5 s

Elevator 414345 913 s 501732 1371 s 408192 886 s 342817 648 s

Simple JBB 602 30 s 608 36 s 608 36 s 608 38 s

Alarm Clock 102076 147 s 155974 227 s 103964 123 s 103964 125 s

Prod-Cons 429 1 s 444 1 s 407 3 s 407 4 s

Rep Workers - - - - - - - -

SOR 135 2 s 40594 208 s 26503 135 s 19819 71 s

TSP 101 67 s 101 94 s 97 66 s 97 58 s

Prod-Cons and Rep Workers, and no increase for the benchmarks Crypt, Simple
JBB, and TSP when using the dynamic POR.

Data in Tables 3 and 4 also indicate how many redundant choices were elim-
inated by the hybrid analysis, and how much it improved the performance and
scalability of state space traversal. The result for a particular benchmark and
POR based on heap reachability corresponds to the difference between values in
the columns “HR + fields + all array ch” and “HR + fields + hybrid” of Table 3.
Similarly, in the case of dynamic POR one has to consider values in the columns
“DPOR + fields + enabled array ch” and “DPOR + fields + hybrid” of Table 4.
We observe that our hybrid analysis eliminates many redundant thread choices
at array accesses for 6 out of 10 benchmarks, namely the following: CRE Demo,
Crypt, Elevator, Simple JBB, SOR, and TSP. In the case of four benchmark
programs — CRE Demo, Crypt, Simple JBB, and TSP — the hybrid analysis
significantly reduced the total number of thread choices only when it is combined
with the POR based on heap reachability. The factor of reduction in the number
of thread choices lies in the range from 1.16 (for TSP and POR based on heap
reachability) up to 14.62 (Crypt and again POR based on heap reachability).

Our results for the benchmarks Alarm Clock, Daisy, Prod-Cons, and Rep
Workers indicate that all redundant thread choices were eliminated by the field
access analysis. For example, by manual inspection of the source code of Prod-
Cons we have found that all accesses to array elements are properly synchronized,
and therefore no thread choices are created at their execution.

Here we compare dynamic POR with the POR algorithm based on heap
reachability. A well-known fact is that dynamic POR is very precise and creates
much less thread choices [12,16]. For example, it correctly identifies that all
accesses to array elements in the Crypt benchmark are thread-local actions.
It analyzes small programs very fast (in few seconds) — see, e.g., the data for
Crypt and Prod-Cons in Table 4 — but it has a significantly higher running time
and memory consumption for some of the more complex benchmark programs.
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Specifically, our implementation of dynamic POR run out of memory for Daisy
and Rep Workers. Even though dynamic POR itself avoids many redundant
thread choices, usage of our hybrid analysis can still improve precision and also
the running time — data for the benchmarks Elevator and TSP highlight this
case. We discuss reasons for the observed behavior of dynamic POR in Sect. 6.

The cost of the static phase of the hybrid analysis is negligible, as it runs
for few seconds at most. This is apparent especially from the data for bench-
marks Crypt and Prod-Cons, where a majority of the total running time is
consumed by static analysis. The cost of the dynamic analysis phase, which is
performed on-the-fly during the state space traversal, depends heavily on the
number of executed actions (program statements) for which JPF queries the
hybrid analysis. For every such action, the hybrid analysis must decide whether
it is globally-relevant or not. Results for the benchmarks Daisy and Rep Workers
in the right-most columns of Table 3 show that the cost of the dynamic analysis
phase may be significant if JPF performs many queries — in general, one query
for each thread choice created in the configuration “HR + all array ch”. Note
that for Daisy and Rep Workers, the hybrid analysis for shared array elements
does not eliminate any additional thread choices when compared to the config-
uration “HR + fields + all array ch” that involves just the field access analysis,
and therefore hybrid analysis is responsible for the increase of running time.
However, despite the relatively high cost, the speedup of JPF achieved due to
the elimination of many redundant thread choices makes the proposed hybrid
analysis practically useful for many programs.

We also performed experiments with several benchmark programs to find
whether our hybrid analysis improves the speed of error detection. For that
purpose, we had to manually inject concurrency errors into some of the programs.
Table 5 contains results for selected configurations. We have considered both
the POR based on heap reachability and the dynamic POR, each with enabled
thread choices at accesses to array elements, and then with or without the hybrid
analysis.

Usage of the hybrid analysis (i) helped to reduce the number of thread choices
created before reaching an error state for all the benchmarks, and (ii) also helped

Table 5. Experimental results: search for concurrency errors

HR + all array ch HR + fields +
hybrid

DPOR + enabled
array ch

DPOR + fields
+ hybrid

Benchmark choices time choices time choices time choices time

Daisy 253336 143 s 173441 151 s - - - -

Elevator 31169 14 s 8494 9 s 178748 529 s 80486 165 s

Alarm Clock 428 1 s 161 4 s 179 1 s 71 4 s

Prod-Cons 12073 17 s 3030 8 s 1114 3 s 1101 6 s

Rep Workers 6708 5 s 1545 6 s 4527 6 s 1699 6 s

QSort MT 2635 2 s 1428 4 s - - - -
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to improve performance by a factor greater than 2 for the benchmark Elevator
(with dynamic POR) and for the benchmark Prod-Cons (just with POR based
on heap reachability). When the error is detected very quickly in the base-
line configurations, then the cost of the hybrid analysis is responsible for slight
increase of the total running time — see, e.g., the data for Prod-Cons and the
dynamic POR. Interestingly, dynamic POR is much slower than JPF with heap
reachability for Elevator, and it did not find any error for Daisy and QSort MT.

Regarding the actual errors, JPF reported a race condition involving a par-
ticular array element only for the benchmarks Elevator and QSortMT. They
could not be detected if threads choices were disabled at array accesses. Other
benchmarks contain also race conditions that involve field accesses, and the cor-
responding error states are discovered by JPF sooner than the possible races at
array element accesses.

6 Related Work

We discuss selected approaches to partial order reduction, which are used in
software model checking, and also few static analysis-based techniques that can
be used to identify shared array elements.

Dwyer et al. [3] proposed to use a heap reachability information that is com-
puted by a static or dynamic escape analysis. If a given heap object is reachable
from multiple threads, then all operations upon the object have to be marked as
globally-relevant, independently of which threads may really access the object.
The dynamic escape analysis is performed on-the-fly during the state space tra-
versal, and therefore it can use knowledge of the dynamic program state to give
more precise results than the static escape analysis. An important limitation of
this approach is that it works at the granularity of whole objects and arrays.
For example, if an array object is reachable from two threads but every element
is accessed only by a single thread, then all the accesses are still imprecisely
considered as globally-relevant even though they are actually thread-local. Our
hybrid analysis is more precise because (i) for each thread T it computes the
set of array objects accessed by T and (ii) it can distinguish individual array
elements.

The dynamic POR algorithm that was proposed by Flanagan and Gode-
froid [4] is very precise. It explores each dynamic execution path of the given pro-
gram separately, and for each path determines the set of array elements that were
truly accessed by multiple threads on the path. The main advantage of dynamic
POR is that it can distinguish between individual dynamic heap objects, unlike
the static pointer analysis whose results we also use in our hybrid analysis. More
specifically, dynamic POR can precisely identify every shared memory location,
e.g. a dynamic array object with the concrete value of an element index, and
creates thread choices retroactively at accesses to such locations. Every added
choice corresponds to a new thread interleaving that must be explored later.
A limitation of this dynamic POR algorithm performance-wise is that it per-
forms redundant computation because (i) it has to execute each dynamic path
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until the end state and (ii) it has to track all accesses to object fields and array
elements. A given path has to be fully analyzed even if it does not contribute
any new thread choices, and this can negatively impact performance in the case
of long execution paths. We believe that the redundant computation is the main
reason for the surprisingly long running times of the dynamic POR that we
reported in Sect. 5. The need to keep track of many accesses to fields and array
elements is the main reason for high memory consumption that we observed with
our implementation. Our hybrid analysis improves the performance of dynamic
POR, when they are combined together, by identifying thread-local accesses to
array elements that the dynamic POR does not have to track. In Sect. 5, we also
reported that the combination of dynamic POR with hybrid analysis improves
precision for some benchmarks. The standalone dynamic POR does not consider
reachability of heap objects by individual threads, and therefore it may still
create some redundant thread choices. More specifically, when processing two
instructions i and j that access the same element on the same array object a,
the dynamic POR does not check whether the array a was reachable by thread
Tj (which executes j) at the time of the access by instruction i.

Other recent approaches to partial order reduction include, for example, the
Cartesian POR [6] and the combination of dynamic POR with state match-
ing [24], which address some limitations of the original approach to dynamic
POR. Unnecessary thread choices can be eliminated from the state space also
by preemption sealing [1], which allows the user to enable thread scheduler only
inside specific program modules.

Many techniques that improve the error detection performance of software
model checking are based on bounding the number of explored thread interleav-
ings. See the recent experimental study by Thomson et al. [20] for a compre-
hensive overview. Techniques from this group are orthogonal to our proposed
approach, because they limit the search to a particular region of the state space,
while preserving all thread choices.

Another group of related techniques includes static and dynamic analyses
that can determine whether a given heap object (field) is stationary according
to the definition in [21]. Such objects and fields may be updated only during
initialization, while they are reachable only from a single thread. Once the object
becomes shared, it can be just read in the rest of the program execution. The
analyses for detecting stationary objects [9] and fields [21] could be extended
towards array elements, and then used to compute a subset of the information
that is produced by our hybrid analysis. No thread choice would have to be
created at accesses to a stationary array element during the state space traversal,
because there cannot occur any conflicting pair of read-write accesses to such an
element from different threads.

Shape analysis together with pointer analysis can be also used to identify
heap objects and array elements possibly shared between multiple threads. For
example, the analysis proposed by Sagiv et al. [17] determines the set of memory
locations that are directly reachable from two or more pointer variables. Client
analyses can derive various higher-level sharing properties from this information.
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Our hybrid analysis is different especially in that it determines only whether an
array element is possibly accessed by multiple threads — it does not compute the
heap reachability information and does not perform any kind of shape analysis.

Marron et al. [11] proposed an analysis that determines whether elements of
a given array may be aliased. In that case, threads accessing the respective dif-
ferent array elements would in fact access the same object. Our hybrid analysis
does not compute aliasing information of such kind — rather it answers the ques-
tion whether multiple threads can access the same array element (i.e., whether
threads can use the same index when accessing the array), independently of
possible aliasing between array elements.

7 Conclusion

Our motivation for this work was to optimize the existing popular approaches
to partial order reduction in the context of programs that heavily use arrays.
We proposed a hybrid static-dynamic analysis that identifies array elements
that are possibly accessed by multiple threads during the program execution.
Results of experiments that we performed on several benchmark programs show
that combination of the hybrid analysis with POR improves performance and
scalability of state space traversal. The main benefit of the hybrid analysis is
that, in tools like Java Pathfinder, thread choices can be enabled at globally-
relevant accesses to individual arrays elements, which is a necessary step for
detecting specific race conditions and other kinds of concurrency errors, all that
without a high risk of state explosion and at a reasonable cost in terms of the
running time.

In the future, we plan to integrate the proposed hybrid analysis for array ele-
ments with the may-happen-before analysis [14]. Another possible line of future
research work is to design some variant of the dynamic determinacy analysis [18]
for multithreaded programs, and use it to improve the precision of our hybrid
analyses.
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Abstract. Logic model checkers are unparalleled in their ability to
reveal subtle bugs in multi-threaded software systems. The underlying
verification procedure is based on a systematic search of potentially faulty
system behaviors, which can be computationally expensive for larger
problem sizes. In this paper we consider if it is possible to significantly
reduce the runtime requirements of a verification with cloud comput-
ing techniques. We explore the use of large numbers of CPU-cores, that
each perform small, fast, independent, and randomly different searches
to achieve the same problem coverage as a much slower stand-alone run
on a single CPU. We present empirical results to demonstrate what is
achievable.

Keywords: Software verification · Logic model checking · Software test-
ing · Concurrency · Multi-threaded code · Cloud computing · Swarm
verification · Massive parallelism

1 Introduction

Although the amount of memory that is available on standard desktop com-
puters continues to increase, clockspeeds have stalled at their current levels for
well over a decade. With access to ever larger amounts of RAM memory, logic
model checkers could in principle search ever larger problem sizes, but the time
required to perform those searches can become substantial. Time, not memory,
has become the main bottleneck in formal verification.

As one simple example, consider the CPU-time requirements for the verifi-
cation of a large problem on a system with 128 GB of main memory. Even if
the model checker runs at a fast rate of about 105 newly discovered states per
second, we can explore only about 9.109 states in a 24-hour period.

Using the bitstate storage method [1,6,8], we can record up to 1012 unique
hash signatures of states in 128 GB, cf. AppendixA. This means that a verifica-
tion run could take over three months before it fills RAM.

At this point, the search may still be incomplete. Assume it has reached a
coverage of C% of the full search space. There are two things we may want to do:
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increase the coverage until it reaches 100 %, or obtain the same level of coverage
faster by performing the search differently, using more machines. We show that
both objectives can be realized with the help of a cloud-compute infrastructure
and hash-randomization techniques.

To see how this could work, first note that when, in our example, we reduce
the size of the hash-arena from 128 GB to 128 MB, we can store 103 times fewer
states, and as a result the search would also complete up to 103 times faster.
While it is attractive to see the maximal runtime shrink, we do not like the
simultaneous reduction in coverage. But we can fix that.

If we repeat the faster run with a randomly different, statistically indepen-
dent, hash-function, the new run will take roughly the same amount of time as
before, but visit a partly different set of states. The two runs together will have
greater coverage then either one separately, but they take the same amount of
time and since they are independent they can be performed in parallel.

As first noted in [6], we can continue to increase the cumulative coverage of
the verification, until it reaches 100 %, by performing more and more independent
runs, each time using a different, randomly selected hash-function.

Since each faster run, using 128 MB instead of 128 GB, explores 103 fewer
states, we may expect that we would need to perform well over 103 independent
fast runs to make up for the loss of coverage, because inevitably there will be
overlap between the state spaces that are explored in the separate runs. The
question is how many more parallel runs would we need to bridge the gap. We
study that question in this paper.

Earlier work, e.g., [4,9], considered the use of only small numbers of CPUs
in multi-core systems or local networks. Here we focus on the potential increase
in capability that can result when we make use the massive parallelism that is
available today in commercial cloud compute networks.

2 Methodology

We make use of the bitstate storage method [1,6,8] to perform multiple indepen-
dent partial searches in large state spaces. The method we describe here depends
on a capability to generate randomly different hash polynomials to perform the
individual searches. The Spin model checker [16], Version 6.4, was extended with
an algorithm for generating such polynomials. The algorithm uses an unsigned
32-bit number as a seed for a scan for a usable hash polynomial that completes
in a fraction of a second. The use of a 32-bit seed trivially sets an upper-limit
to the number of distinct hash polynomials that could be generated to 232. Not
every seed number leads to a usable polynomial in the first round of the scan
though, so the true limit is lower.

Figure 1 shows the results of a test of the number of tries that the hash-
polynomial generation algorithm makes, starting with random 32-bit numbers.
In this tests, the number of tries was between zero and 200, with an average of
about 30 tries. This means that an upper limit for the total number of distinct
hash polynomials that the algorithm that we use could generate is in the order
of 108.
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Fig. 1. The number of tries that the hash polynomial generator makes, starting from a
randomly chosen unsigned 32-bit number. The average over 1,000 calls was 30.4 tries.

We can increase the diversity of parallel runs further by varying additional
search parameters. We can do so, for instance, by randomly changing also the
number of hash-polynomials that are used to compute the hash-signature of each
state, changing the maximum search depth, changing the search order (consid-
ering processes and transitions from left to right in the transition table, right
to left, or in random order), and the search discipline itself (e.g., depth-first,
breadth-first, or a context-switching bounded search [10]). Randomization and
diversification can thus be used to create very large numbers of independent
verification engines.

In the measurements we report on in this paper we restrict to just a few
of these possible search options. To perform the tests, we used the following
runtime flags and parameters that the current version of Spin (Version 6.4.4)
provides.

-RSN to seed the random number generator to N
-rhash to randomly generate a bitstate hash polynomial
-wN to set the size of the hash-arena to 2N bits
-kN to set the number of bits set per state to N
-mN to set the maximum search depth to N

To seed the random number generator we avoid using timestamps or the standard
rand command from Unix and Linux-based systems. The Unix rand command
uses a time-based algorithm, which means that it can return the same value
if called too quickly in succession. We can avoid this by defining the following
command, as a more reliable source for random numbers on Linux and Linux-like
systems:
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$ cat /usr/local/bin/myrand
#!/bin/bash
od -vAn -N4 -tu4 < /dev/urandom | sed ‘s; *;;’

We use this command to start potentially large sets of verification runs that each
are guaranteed to receive a different seed value, for instance in a Bourne or Bash
shell-script as follows:

$ spin -a spec.pml
$ cc -O2 -DBITSTATE -DRHASH -o pan pan.c
$ for i in ‘seq 1000‘

do # start each run in the background
./pan -RS‘myrand‘ -rhash -w20 -k1 -m20000 &

done

The compiler directive -DBITSTATE is used here to enable the bitstate storage
method, and directive -DRHASH enables runtime option -rhash, which not only
triggers the generation of a random hash polynomial but also randomizes the
transition selection order to be used as well as the process scheduling orders, to
achieve greater diversity.

The argument -w20 sets the hash-arena size to 220 bits (128 Kbytes) for a very
fast model checking run. Argument -k1 sets the number of bits set per state to
one, and -m20000 sets the maximum search depth to 20,000. The numeric argu-
ment to each of these last three arguments can, of course, readily be randomized
as well.

3 Measurements

We explore two types of applications of the cloud-based verification approach we
discussed above. First we consider the typical case where the purpose of a model
checking run is to demonstrate the presence of subtle defects in a multi-threaded
software application that may be missed in standard testing. A cloud-based
verification method could provide an added capability that is both faster and
more thorough. Separately, we also consider the potential use of this technique
for formally proving the absence of defects.

3.1 Defect Discovery

The initial motivation for this study was the verification of the source code for a
double-sided queue algorithm using compare-and-swap instructions, referred to
as the DCAS algorithm. The implementation described in [2] has a subtle bug,
which was discovered when a formal proof of correctness was attempted with
the PVS theorem prover [3]. The discovery of the bug took several months of
work with the theorem prover.

We are interested here in finding out if the same bug can be discovered faster
with a cloud-based verification approach.
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We discussed the verification of the DCAS algorithm earlier in [11]. We used
Modex [14] to extract a Spin model from the C code, while adding two test
drivers, also in C, that would normally be part of a standard test suite. In [11]
our objective was to show that we can extract formal models from unmodified
C code, while adding only the test code that a tester would normally already
provide. The model checking runs can then be automated to significantly increase
the accuracy of the tests that are performed.

The verification described in [11] immediately discovered an assertion vio-
lation, with just two threads of execution in the DCAS model: a reader and a
writer. This was unexpected because the only defect in the algorithm known
at that point required at least three threads of execution to complete. Unfor-
tunately, the test drivers we used were faulty, and the assertion violation that
was found originated in the test itself, not in the code being tested. A corrected
version of the test drivers is given in [12].

With the corrected version of the test drivers, the model checker needs just
three seconds of CPU-time to formally prove that with two threads of execution
the DCAS algorithm is correct and cannot violate the assertion.

Increasing the number of threads from two to three increases the complex-
ity of verification sufficiently that an exhaustive proof becomes intractable. We
aborted a bitstate verification attempt after 138 h of CPU-time, having explored
over 1011 states, without locating the bug. The question is if a cloud-based swarm
of small and randomly different verification tasks can still succeed in locating
the bug, and do so quickly and reliably.

As noted, by setting the size of the hash-arena we can control how long
the verification tasks can maximally take. Figure 2 illustrates this effect, for the
DCAS verification. To check if a fast cloud verification run can identify the
flaw in the algorithm we set the size of the bit-state hash-arena to just 128 KB,
using runtime parameter -w20. We performed a verification with a swarm of
1,000 small independent verification tasks, differing only in the selection of the
hash-function each used. The script below describes the verification steps.

Compared to the earlier examples, we added the compiler directive -DPUTPID
to add the process number of each thread of execution to the name of any
counter-example traces that are found, to prevent the parallel runs from over-
writing each other’s output. We also added the directive -DSAFETY, since we’re
only interested in assertion violations for this example. Note that the verifier is
linked to the C source code of the implementation.

$ spin -a dcas.pml
$ cc -O2 -DBITSTATE -DSAFETY \

-DRHASH -DPUTPID -o pan pan.c dcas.c
$ for i in ‘seq 1000‘
do ./pan -w20 -RS‘myrand‘ -rhash -k1 &
done

Each of the verification runs uses a hash-arena of just 128 KB of memory, and
sets one single bit per state visited. Because of the very small hash-arena used,
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Fig. 2. Correlation between the size of the hash-arena and runtime. A choice of N=20
corresponds to a hash-arena size of 220 bits or 128 KB.

each run completes in a fraction of a second, which means that if all runs are
performed in parallel the entire task also completes that quickly.

In this test, two of the 1,000 runs successfully located the assertion violation
in the code and generated counter-example traces (Table 1), in a fraction of a
second.

If we increase the size of the hash-arena, more runs will be able to locate a
counter-example, but the runs will also take longer to complete. If, on the other
hand, we decrease the size of the hash-arena, a smaller fraction of the runs can
be expected to successfully identify the bug in the algorithm. We can counter
that effect by increasing the size of the swarm. To illustrate this, we performed
sequential runs of the verifier at a range of different settings of the hash-arena
size, stopping each batch as soon as the first counter-example was found (with
that hash-arena size), see Fig. 3.

As expected, the number of runs to be performed increases as the size of the
hash-arena shrinks. Clearly there is a minimum size of a swarm of parallel tasks
before the swarm as a whole can be successful in locating defects. Trivially, if
each task has a probability p of locating a defect, we would need to run at least
1/p parallel tasks to be successful.

Figure 3 shows the randomness in this process. In these tests it took closer
to 5000 runs at a hash-arena size of -w20 to uncover the first counter-example,
where in our earlier test fewer than 1,000 runs sufficed. Similarly, for a hash-
arena size of -w22 or 512 KB, this test reported a first counter-example after just
three attempts, where based on context perhaps a run of 300 would statistically
have been more likely. Note that all runs with a hash-arena size smaller than
-w26 (16 MB) completed in under a minute of runtime and runs below -w20 in
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Fig. 3. Correlation between the size of the hash-arena and the number of random runs
needed to find a first counter-example. From 16MB (227 bits) to 32 KB (218 bits).

under a second (cf. Fig. 2). In both cases this is considerably faster than the
weeks or months that would be needed for a traditional exhaustive verification
attempt.

Other Tests. We performed two other tests of this technique on similarly large
models that defy exhaustive verification by traditional means, summarized in
Table 1.

The first of these is the Fleet model, which is a pure Promela model of a
distributed system architecture designed by Ivan Sutherland [17]. A cloud-based
verification attempt using just 100 small parallel bitstate runs, similar to the
runs used for the DCAS model, locates multiple variants of the bug (also an
assertion violation), again in a fraction of a second. In this case, setting the
hash-arena as low as -w13, storing just 213 bits (or 1 Kbyte of memory), sufficed
to locate the bug.

In another test we applied the cloud-based verification method to test the C
implementation of POSIX routines implementing a non-volatile flash file system
(NVFS) designed for use in a spacecraft, cf. [13]. The models were extracted
from the C code in this case with the Modex model extractor, [7,11,14]. The
resulting models are well beyond the reach of traditional verification techniques.
In bug-finding mode we ran 500 parallel tasks with a hash-arena sized to store
217 bits (16 Kbytes) of memory, which sufficed to locate six counter-examples of
the correctness properties in under one second of runtime.
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Table 1. Performance of Cloud verification runs. In each of the cases considered, the
verification tasks are too complex for traditional exhaustive verification to succeed in
a reasonable amount of CPU-time, but the cloud verification approach succeeds in
locating counter-examples quickly.

Model Nr. Cores Run-Time Defects found

DCAS 1000 0.2s 2

Fleet 100 0.1s 1

NVFS 500 0.5s 6

3.2 Formal Verification

The cloud-based verification approach can be a powerful alternative for bug
hunting, since this generally does not require exhaustive coverage of a problem
domain. This does not necessarily mean though that it is also be suitable for
full formal verification. One important reason for this is that there is no easy
way to determine what the cumulative coverage is that is realized by a swarm of
small fast verification tasks. On statistical grounds we know that larger swarms
provide better coverage than smaller ones, and that swarms using larger hash-
arenas similarly provide better coverage than those using smaller hash-arenas.

Measuring the cumulative coverage can be done by instrumenting the code,
capturing every state visited by every task, and then post-processing that infor-
mation to compute the total number of unique states that was explored by
all tasks together (i.e., after eliminating the overlap). If we know how many
reachable system states there are, we can then compute the cumulative coverage
accurately.

If we do not know the total, we can in deduce an approximate coverage
by performing two or more swarm runs sequentially, with different hash-arena
sizes for each swarm run. Figure 4 illustrates the effect on the number of unique
states that is visited when we perform this experiment for a range of different
hash-arena sizes.

Note that once 100 % coverage is realized, the number of unique states visited
can no longer increase when we increase the size of the hash-arena: the growth
ratio will be one. When we are far from complete coverage, on the other hand,
the number of unique states visited will double with each doubling of the size
of the hash-arena: the growth ratio is now two. If we are somewhere in between
these two points, the growth ratio will be somewhere between one and two. The
growth ratio measured can thus give us an indication of the problem coverage
realized, though not a precise one.

Adding the instrumentation and the processing of the counts will of course
lead to the loss of a portion of the speed advantage of a swarm verification search.

For the following tests we performed we chose test examples for which we
could measure the cumulative state space size independently with standard ver-
ification techniques, so that we could calculate the cumulative coverage of a
cloud-based verification run accurately.
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Fig. 4. Growth in the number of unique states visited per run, when the hash-arena
size is doubled, for a range of hash-arena sizes. Model from Example 1 in Sect. 3.2, also
used in Fig. 6, [5].

We use two medium-sized examples with known state space sizes. The first
is an algorithm for concurrent garbage collection [5], with a total of about 192
Million reachable system states. The second is a Spin model of an operating
system for small spacecraft [15], with about 22 Million reachable system states.

We setup a test environment for the measurements on a machine with 64
cores and 128 GB of shared memory. We run a single collector process on this
machine that creates a traditional hash-table, large enough to store all reachable
states. The collector process creates an array of n buffers (channels) in shared
memory, as many as fit, to receive 64-bit state hash signatures from n different
generator processes that run in parallel.

To test the coverage that is realized by a swarm of N small verification tasks,
where generally N is much larger than n, we split up all tasks in n batches of N/n
tasks each. The tasks in each batch execute sequentially, and are instrumented
to connect to a specific channel to the collector when they start up, to transmit
the hash signatures for the states that each of those tasks explore. The collector
reads the hash signatures from the channels, and adds them to its own state hash-
table, while omitting duplicates. At the end of the experiment, the collector can
give us a count of the number of unique states that were reported by all tasks
cumulatively, so that we can compute the coverage of all N generator processes
combined. The test setup is illustrated in Fig. 5.

Since each task in the swarm is configured to use a randomly generated hash-
polynomial, we have to make sure that the hash signatures that are sent to the
collector process are computed with a single additional polynomial that is fixed for
all verification tasks. To make the measurement possible, the generator processes
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Fig. 5. Test setup for measuring cumulative coverage of cloud-verification

therefore must compute an additional fixed hash-signatures for each state, which
slows them down compared to an actual cloud-based verification run.

Example 1. The Spin model we used for this first example was adapted from a
formal PVS specification written by Klaus Havelund [5]. As was the case with the
DCAS algorithm we discussed earlier, the PVS proof of this concurrent garbage
collection algorithm took months of dedicated human time to complete.

In this first example, the search space that must be explored for an exhaustive
verification attempt is very deep. A depth-first search attempt, for instance,
quickly reaches a depth of 50 Million steps. This feature makes the application
of a cloud verification especially interesting, because it may limit the accuracy
of each small verification task.

To get an accurate measurement of the full state space size for this model
we performed an exhaustive verification with Spin. With compression enabled,
the verification requires about 23.2 GByte of memory, and reaches about 192
Million states in 17 min of CPU-time. Note that a cloud based approach is not
needed for this model, but we chose it to study the relative performance of this
approach.

We tested the coverage for hash-arena sizes that range from a low value
of 1 MByte per task (using runtime parameter -w23), or about four orders of
magnitude smaller than the 23.2 GByte that is needed for a single exhaustive
verification, to 256 MB (-w31), or about two orders of magnitude below the
size needed for exhaustive verification. We measured the cumulative coverage
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for swarms of verification tasks ranging from one single task to 1,048,576 small
parallel tasks. Figure 6 summarizes the results.

At the lower end of the scale, a run with parameter -w23 completes in about
20 s of CPU-time, or about 50 times faster than the exhaustive run. A run with
parameter -w25 takes four times as long: about 80 s, about 12 times faster than
exhaustive.

As expected, the further we shrink the size of the hash-arena, the more cores
are needed to make up for the loss of coverage. The increase is exponential.
A first set of say 1,000 cores provides most of the problem coverage. Increasing
coverage closer and closer to 100 % becomes increasingly expensive for shrinking
hash-arena sizes (which is needed to produce faster verification results). For
-w28, Table 2 shows how quickly the number of cores needed to reach specific
levels of coverage increases.

Table 2. Number of cores needed to reach specific levels of coverage for the verification
of the concurrent garbage collection algorithm, using a hash-arena of 32 MB (-w28),
which is 0.1 % of the size needed for a single exhaustive verification run.

Nr Cores Coverage

1 69.7 %

3 90 %

8 99 %

32 99.9 %

64 99.99 %

256 99.999 %

512 99.9999 %

2048 100 %

We can speed up the verification eightfold by shrinking the hash-arena fur-
ther to -w25, but we will then need 2,048 cores to reach 90 % coverage. To
increase coverage to 98.7 % requires 65,536 cores. Substantially more cores would
be needed to reach 100 % coverage for this very small hash-arena, but it should
still be feasible.

Because all verification tasks are independent, they can be run either in
parallel or sequentially, on any available machine. If we have access to a large
cloud network, it is advantageous to execute all tasks in parallel for the fastest
possible result. If, however, we only have access to a single machine with limited
memory that is not large enough to support a single full exhaustive verification
run. We can improve the problem coverage by performing a large number of
randomized bitstate runs sequentially, although the speed advantage would be
lost in that case.
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Fig. 6. Number of unique states reached, out of 192 Million known reachable states, for
varying hash-arena sizes and varying numbers of cores, for a spin verification model of
a concurrent garbage collection algorithm [5]. Storing a compressed version of the full
statespace takes 17 min and 23 GB. The same coverage can be realized using a Cloud
network in 20 s using four orders of magnitude less storage (1 MB).

Example 2. As a second example we look at a Spin model of the DEOS oper-
ating system kernel developed at Honeywell Laboratories, discussed in [15]. The
results of a series of experiments are shown in Fig. 7.

Reading the chart in Fig. 7 vertically: when given the same amount of mem-
ory, the cumulative coverage reached by 100 randomized parallel runs is clearly
superior to that of a single run.

Reading the chart horizontally, we can see that the same coverage can be
realized by a parallel swarm using up to 16 times less memory per task (24), and
thus also 16 times faster.

4 Comparisons

To understand better what the relative performance of a cloud-based verification
approach is relative to standard software testing, we measured the number of
unique system states that is reached in a rigorous software test of one module
of the flight code for a recent space mission: the NVFS file system code that we
saw earlier in Table 1.
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Fig. 7. State coverage of a swarm search for the DEOS verification model. In this
experiment we used 100 randomized parallel bitstate runs, and compared the coverage
realized with that of a single bitstate run, as a function of the amount of memory used.
When sufficient memory is available (right-side of the chart) both methods perform
similarly. When less memory is available, though, the swarm approach achieves greater
coverage. Every increment (horizontal axis) indicates a doubling of the hash-arena size.

The standard test that was used for this application was designed to realize
98 % MC/DC coverage, which is in line with the prevailing guidance documents
DO-178B and DO-178C from the RTCA (Radio Technical Commission for Aero-
nautics) for safety and mission critical software systems. We independently mea-
sured that a total of 35,796 distinct system states were reached in these tests,
exploring approximately 100 unique execution paths. These tests and the corre-
sponding execution paths were of course not randomly chosen, but designed to
test nominal and moderately off-nominal executions of the code, to make sure
they comply with all requirements, cf. Fig. 8.

For comparison, we also performed a full model checking run of the same
code, and measured that it reached a total of 745 Million unique system states,
while exploring about 50 Million unique execution paths. This means that the
standard test provided a coverage four orders of magnitude smaller than the
model checking run, or just 0.01 %. In this context it is not surprising that the
model checking run was able to uncover a subtle flaw in the code that was missed
in the standard software test suite.

This example illustrates what the added value can be in a cloud-based veri-
fication approach, even when it falls short of realizing 100 % problem coverage.
Consider, for instance, the case where a cloud-based verification achieves only
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Fig. 8. Set 1 illustrates the set of nominal executions that is normally tested most
thoroughly. Set 2 is a small subset of off-nominal executions that are often included
in a system test. Set 3 contains all other executions, which is generally dominated by
the off-nominal behaviors. In the example of the NVFS file system tests, sets 1 and
2 combined were shown to cover just 0.01 % of all possible behaviors. A randomly
chosen execution is most likely to fall in set 3, and is therefore likely to reveal untested
erroneous behaviors.

a low level of coverage of just 10 %. Even this low coverage level is still three
orders of magnitude better than a typical software test suite.

The two tests are not immediately comparable by their relative levels of
problem coverage though. The difference is that the 0.01 % executions form the
standard test are carefully chosen to include most nominal and moderately off-
nominal executions, while the cloud-based verification samples 10 % of the exe-
cution space randomly, independent of how nominal or off-nominal the selected
executions are.

The two sets, therefore, do not necessarily overlap, so it would not be valid
to say that a cloud-based approach could replace standard software testing.

It is equally invalid, though, to say that unless we can reach exhaustive
problem coverage no intermediate step is of value. It should be clear that even the
coverage delivered by a cloud-based verification approach near the left-hand side
of Fig. 6, with limited problem coverage, can significantly increase the chances
of finding subtle software bugs that would otherwise escape detection, or failing
to do so increase our confidence that such bugs do not exist.

5 Conclusions

We have explored the characteristics of a new method for overcoming the compu-
tational complexity of software verification problems, by using massive
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parallelism. This approach is motivated by the expectation that access to large
cloud compute networks is quickly becoming routine. Our measurements show
that this approach can increase the rigor of software testing in a meaningful way.

Several heuristic strategies are possible to increase the chances of finding
software defects in the shortest possible amount of time, given the availability
of a fixed maximum number of CPU cores. The simplest strategy would be to
pick the desired maximum runtime, and size the hash-array for each verification
task the same, so that all complete in roughly the same amount of time. We can,
however, also decide to do this only with half of all available CPU cores. On
half of the remaining cores we can then give each task only half the size of the
hash-array compared to the first set, which makes them complete twice as fast,
while providing half the (randomly selected) coverage. We continue that process,
each time taking half the number of remaining available cores, and halving the
hash-array size. This method trades some coverage for an increased chance to
find defects in the shortest amount of time. It is similar to the iterative search
refinement strategy that was first described in [7], but with all phases of the
search running in parallel, rather than one by one.

With a response time of minutes or less, there is little impediment to per-
form series of experiments on a cloud network that will either result in defect
discovery, or the best available confidence for the absence of defects. In the cases
considered here, an investment in this type of cloud-based verification compares
favorably with all currently existing alternative techniques, both those that are
more rigorous and those that are less so.

A Appendix: Bitstate Hash Storage

The bitstate hash storage method [6] can most easily be understood as an appli-
cation of the theory of Bloom filters [1]. The storage method is used in explicit
state on-the-fly model checkers, such as Spin [8], for fast approximate searches
in statespaces that are too large to be explored exhaustively. The method uses
one or more hash functions with uniform random distribution to compute 64-bit
signatures of each newly generated reachable state.

A hash-arena of, say, 32 GB (235 bytes) contains 238 addressable bits. If using
a single hash-function, we can use the 64 available bits from the hash signature
to produce a 35-bit address into the hash-arena. If the bit at this address is at its
initial value of zero, then we know that the newly generated state was not visited
before in the search. We now record the fact that the state has been explored
by setting that bit position to a one, so that the next time this state shows up
in the search we know that we do not have to explore it again.

If the size of a single state descriptor for this example is 210 bytes, we would
not be able to store more than 235/210 = 225 unique states in 32 GB (about 33.5
million). The bitstate storage method on the other hand, can in principle store
up to 238 or 275 billion unique states, for an increase of almost four orders of
magnitude.

In sufficiently many bits are used to index the hash-arena, the probability of
hash collisions can be very small. A hash collision would happen if two states
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that are not equal produce the same 35-bit hash signature. The search truncates
in this case, which means that it is no longer guaranteed to be exhaustive. We
can reduce the probability of hash collisions effectively by using multiple hash-
functions for each state, which then corresponds to checking and setting multiple
bit-positions. If h hash-functions are used, for instance, a hash-collision must now
occur on all h bit-positions for the state to be affected. The Spin model checker
uses three hash-functions per state by default, but the number is user-selectable.

For large state spaces, or large state descriptors, where exhaustive storage
of a complete statespace with a traditional method is infeasible, the bitstate
storage method is an attractive alternative to increase problem coverage, by a
significant margin. Another advantage of the use of a bistate storage method for
large problem sizes is that for a given size of the hash-arena, the maximal runtime
of the algorithm is fixed and known, independent of the actual statespace size.
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Abstract. Concolic testing is a promising method for generating test
suites for large programs. However, it suffers from the path-explosion
problem and often fails to find tests that cover difficult-to-reach parts of
programs. In contrast, model checkers based on counterexample-guided
abstraction refinement explore programs exhaustively, while failing to
scale on large programs with precision. In this paper, we present a novel
method that iteratively combines concolic testing and model checking to
find a test suite for a given coverage criterion. If concolic testing fails to
cover some test goals, then the model checker refines its program abstrac-
tion to prove more paths infeasible, which reduces the search space for
concolic testing. We have implemented our method on top of the concolic-
testing tool Crest and the model checker CpaChecker. We evaluated
our tool on a collection of programs and a category of SvComp bench-
marks. In our experiments, we observed an improvement in branch cov-
erage compared to Crest from 48% to 63 % in the best case, and from
66% to 71 % on average.

1 Introduction

Testing has been a corner stone of ensuring software reliability in the industry,
and despite the increasing scalability of software verification tools, it still remains
the preferred method for debugging large software. A test suite that achieves
high code coverage is often required for certification of safety-critical systems,
for instance by the DO-178C standard in avionics [2].

Many methods for automated test generation have been proposed [9,10,13,
18,28,32,36,37]. In the recent years, concolic testing has gained popularity as
an easy-to-apply method that scales to large programs. Concolic testing [33,35]
explores program paths by a combination of concrete and symbolic execution.
This method, however, suffers from the path-explosion problem and fails to pro-
duce test cases that cover parts of programs that are difficult to reach.

Concolic testing explores program paths using heuristic methods that select
the next path depending on the paths explored so far. Several heuristics for path
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exploration have been proposed that try to maximize coverage of concolic test-
ing [11,19,20], e.g., randomly picking program branches to explore, driving explo-
ration toward uncovered branches that are closest to the last explored branch,
etc. These heuristics, however, are limited by their “local view” of the program
semantics, i.e., they are only aware of the (in)feasibility of the paths seen so
far. In contrast to testing, abstraction-based model checkers compute abstract
reachability graph of a program [3,26]. The abstract reachability graph repre-
sents a “global view” of the program, i.e., the graph contains all feasible paths.
Due to abstraction, not all paths contained in the abstract reachability graph
are guaranteed to be feasible, therefore abstract model checking is not directly
useful for generating test suites.

In this paper, we present a novel method to guide concolic testing by an
abstract reachability graph generated by a model checker. The inputs to our
method are a program and set of test goals, e.g. program branches or loca-
tions to be covered by testing. Our method iteratively runs concolic testing
and a counterexample-guided abstraction refinement (CEGAR) based model
checker [14]. The concolic tester aims to produce test cases covering as many goals
as possible within the given time budget. In case the tester has not covered all
the goals, the model checker is called with the original program and the remain-
ing uncovered goals marked as error locations. When the model checker reaches
a goal, it either finds a test that covers the goal or it refines the abstraction. We
have modified the CEGAR loop in the model checker such that it does not ter-
minate as soon as it finds a test, but instead it removes the goal from the set
of error locations and continues building the abstraction. As a consequence, the
model checker refines the abstraction with respect to the remaining goals. After
the model checker has exhausted its time budget, it returns tests that cover some of
the goals, and an abstraction. The abstraction may prove that some of the remain-
ing goals are unreachable, thus they can be omitted by the testing process.

We further use the abstraction computed by the model checker to construct
a monitor, which encodes the proofs of infeasibility of some paths in the control-
flow graph. To this end, we construct a program that is an intersection of the
monitor and the program. In the following iterations we run concolic testing
on the intersected program. The monitor drives concolic testing away from the
infeasible paths and towards paths that still may reach the remaining goals.
Due to this new “global-view” information concolic testing has fewer paths to
explore and is more likely to find test cases for the remaining uncovered goals. If
we are still left with uncovered goals, the model checker is called again to refine
the abstraction, which further reduces the search space for concolic testing. Our
method iterates until the user-defined time limit is reached.

The proposed method is configured by the ratio of time spent on model
checking to the time spent on testing. As we demonstrate in Sect. 2, this ratio
has a strong impact on the test coverage achieved by our method.

We implemented our method in a tool called Crabs, which is built
on top of a concolic-testing tool Crest [11] and a CEGAR-based model
checker CpaChecker [8]. We applied our tool on three hand-crafted examples,
three selected published examples, and on 13 examples from an SvComp category.
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We compared our implementation with two tools: a concolic toolCrest [11], and a
test-case generatorFshell based on bounded model checking [27]. The test objec-
tive was to cover program branches, and we calculate test coverage as the ratio of
branches covered by the generated test suite to the number of branches that have
not been proved unreachable. For a time limit of one hour, our tool achieved cov-
erage of 63% compared to 48% by other tools in the best case, and average cover-
age of 71% compared to 66% on the category examples. In absolute numbers, our
experiments may not appear very exciting. However, experience suggests that in
automated test generation increasing test coverage by every 1% becomes harder.
The experiments demonstrate that our method can cover branches that are dif-
ficult to reach by other tools and, unlike most testing tools, can prove that some
testing goals are unreachable.

To summarize, the main contributions of the paper are:

– We present a novel configurable algorithm that iteratively combines concolic
testing and model checking, such that concolic testing is guided by a program
abstraction and the abstraction is refined for the remaining test goals.

– We also present a modified CEGAR procedure that refines the abstraction
with respect to the uncovered goals.

– We provide an open-source tool [1] that implements the presented algorithm.
– An experimental evaluation of our algorithm and comparison with other

methods.

The paper is organized as follows. In Sect. 2 we motivate our approach on
examples. Section 3 presents background notation and concolic testing. In Sect. 4
we present our modified CEGAR procedure, and in Sect. 5 we describe our main
algorithm. Finally, Sect. 6 describes the experimental evaluation.

2 Motivating Example

In this section, we illustrate effectiveness of our method on two examples:
a hand-crafted program, and a benchmark for worst-case execution time analysis
adapted from [4].

Simple Loop. In Fig. 1 we present a simple program with a single while loop. The
program iterates 30 times through the while loop, and in every iteration it reads
an input. The test objective is to cover all locations of the program, in particular
to cover location 8, where the library function foo() is called. To cover the call
site to foo() the inputs in all iterations must equal 10, so only one out of 230 ways
to traverse the loop covers foo(). The standard concolic testing easily covers all
locations, except for foo() since it blindly explores exponentially many possible
ways to traverse the loop. As a consequence, a concolic-testing tool is not able to
generate a complete test suite that executes foo() within one hour.

Our algorithm uses a concolic tester and model checker based on predicate
abstraction, and runs them in alternation. First, we run concolic tester on the
example with a time budget of 1s. As we have observed earlier, the concolic



Abstraction-driven Concolic Testing 331

int i=0; bool b = false;

while (i<30){

int x = input();

if (x != 10)

b=true;

i++;

}

if (b == false)

foo();

(a)

(b)(b)

Fig. 1. (a) A simple while program. (b) The control-flow graph of the program.

tester covers all locations of the program except for foo(). Then, we declare the
call site to foo() as an error location and call the model checker on the program
for 5s. This time budget is sufficient for the model checker to perform only a few
refinements of the abstraction, without finding a feasible path that covers foo().
In particular, it finds an abstract counterexample that goes through locations
1, 2, 3, 4, 5, 6, 2, 7, 8, 9. This counterexample is spurious, so the refinement proce-
dure finds the predicate “b holds.” The abstraction refined with this predicate
is showed in Fig. 2(a).

In the second iteration of the algorithm, we convert the refined abstraction
into a monitor M shown in Fig. 2(b). A monitor is a control-flow graph that
represents all the paths that are allowed by the abstraction. A monitor is con-
structed by removing subsumed states from the abstraction. We say that an
abstract state sa is subsumed by a state s′

a, if sa = s′
a, or s′

a is more general
than sa. To this end, the monitor includes all the abstract states that are not
subsumed and the edges between them. The edges to the subsumed states are
redirected to the states that subsume them.

The monitor contains all the feasible paths of the program and is a refinement
of the control-flow graph of the original program. Therefore, we may perform
our subsequent concolic testing on the monitor interpreted as a program. In our
example, the structure of the monitor in Fig. 2(b) encodes the information that
foo() can be reached only if b is never set to true. The refined control flow
graph makes it easy for concolic testing to cover the call to foo() — it can
simply backtrack whenever the search goes to the part of the refined program
where foo() is unreachable. Now, if we run Crest on the monitor M then it
finds the test case in less than 1s.

Nsichneu. The “nsichneu” example is a benchmark for worst-case execution
time analysis [24] and it simulates a Petri net. This program consists of a large
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Fig. 2. (a) Abstraction refined with the predicate b. Dashed arrows show subsumption
between abstract state. (b) The monitor obtained from the abstraction.

number of if-then-else statements closed in a deterministic loop. The program
maintains several integer variables and fixed-sized arrays of integers. These data
objects are marked as volatile meaning that their value can change at any
time. We made their initial values the input to the program.

The structure of this benchmark makes it challenging for many testing tech-
niques. Testing based on bounded model checking (such as Fshell[27]) unwinds
the program up to a given bound and encodes the reachability problem as a
constraint-solving problem. However, this method may not find goals that are
deep in the program, as the number of constraints grows quickly with the bound.
Test generation based on model checking [7] also fails to deliver high coverage
on this example. The model checker needs many predicates to find a feasible
counterexample, and the abstraction quickly becomes expensive to maintain. In
contrast, pure concolic testing quickly covers easy-to-reach parts of the program.
However, later it struggles to cover goals that are reachable by fewer paths.

In our method, we run concolic testing and model checking alternatively,
each time with a time budget of 100s. Every iteration of model checking gives
us a more refined monitor to guide the testing process. Initially, our approach
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covers goals at similar rate as pure concolic testing. When the easy goals have
been reached, our tool covers new goals faster than concolic testing, due to the
reachability information encoded in the monitor, which allows the testing process
to skip many long paths that would fail to cover new goals. After one hour, our
tool covers 63% of the test goals compared to 48% by concolic testing.

50%

60%

70%

0% 25% 50% 75% 100%

C
ov

er
ag

e

testing
testing+model checking

Fig. 3. Test coverage vs. ratio of test-
ing to total time in our method.

Furthermore, our method is config-
urable by the ratio of time spent on model
checking and concolic testing. In Fig. 3 we
present the effect of changing this ratio
on the example. If we run only concolic
testing then we obtain only 48% cover-
age. As we decrease the time spent on con-
colic testing, the coverage increases up to
64% and then starts decreasing. On the
other side of the spectrum, we generate
tests by model checking (as in [7]) and
obtain only 13.9% coverage. This obser-
vation allows one to configure our method
for most effective testing depending on the class of examples.

3 Preliminaries

In this paper, we consider only sequential programs and, for ease of presenta-
tion, we consider programs without procedures. Our method, however, is easily
applicable on programs with procedures and our implementation supports them.

Let V be a vector of variables names and V ′ be the vector of variables
obtained by placing prime after each variable in V . Let F (V ) be the set of
first-order-logic formulas that only contain free variables from V .

Definition 1 (Program). A program P is a tuple (V,Loc, �I , E), where V is a
vector of variables, Loc is a finite set of locations, �I ∈ Loc is the initial location,
and E ⊆ Loc × F (V, V ′) × Loc is a set of program transitions.

A control-flow graph (CFG) is a graph representation of a program. We define
the product of two programs Pi=1..2 = (V,Loci, �

I
i , Ei) as the program P1 ×P2 =

(V,Loc1 × Loc2, (�I
1, �

I
2), E), where

E = {((�1, �2), e, (�′
1, �

′
2)) | (�1, e, �′

1) ∈ E1 ∧ (�2, e, �′
2) ∈ E2}.

A guarded command is a pair of a formula in F (V ) and a list of updates
to variables in V . For ease of notation, we may write the formula in a pro-
gram transition as a guarded command over variables in V . For example, let
us consider V = [x, y]. The formula represented by the guarded command
(x > y, [x := x + 1]) is x > y ∧ x′ = x + 1 ∧ y′ = y. In our notation if a
variable is not updated in the command then the variable remains unchanged.
We use a special command variable := input() to model inputs to the program,
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which logically means unconstrained update of the variable. For example, the
formula represented by the guarded command x := input() is y′ = y. For an
expression or formula F we write F [/i] to denote a formula that is obtained
after adding subscript i + 1 to every primed variable and i to every unprimed
variable.

A valuation is a mapping from the program variables V to values in the data
domain. A state s = (l, v) consists of a program location l and a valuation v. For
a state s = (l, v) and a variable x, let s(x) denote the valuation of x in v and let
loc(s) = l. A path is a sequence e0, . . . , en−1 of program transitions such that e0 =
(�I , , ), and for 0 ≤ i < n, ei = (�i, , �i+1) ∈ E. An execution corresponding to
the path e0, . . . , en−1 is a sequence of states s0 = (�0, v0), . . . sn = (�n, vn), such
that (1) �0 = �I , and (2) for all 0 ≤ i < n, if ei = ( , ci(V, V ′), �′) then �i+1 = �′

and ci(vi, vi+1) holds true. We assume that for each execution of the program
there exist exactly one corresponding path, i.e., there is no non-determinism in
the program except inputs.

A path is represented symbolically by a set of path constraints, which we
define as follows. Let frame(x) be the formula

∧
y∈V :y �=x y′ = y. Let rk be a

variable that symbolically represent the kth input on some path. We assume
the program does not contain any variable named r. Let e0, . . . , en−1 be a path.
If ei = ( , [F, x := exp], ) then let Ci = (F ∧ x′ = exp ∧ frame(x))[/i] and if
ei = ( , [F, x := input()], ) then let Ci = (F ∧ frame(x))[/i] ∧ xi+1 = rk, where
r0 up to rk−1 have been used in C0, . . . , Ci−1. The path constraints for the path
is C0, . . . , Cn−1.

A test of the program is a sequence of values. A test u1, . . . , uk realizes an
execution s0, . . . , sn and its corresponding path e0, . . . , en−1 if the following con-
ditions hold true:

– if n = 0, then k = 0.
– If n > 0 and en−1 = ( , x := input(), ), sn(x) = uk and u1, . . . , uk−1 realizes

s0, . . . , sn−1.
– Otherwise, u1, . . . , uk realizes s0, . . . , sn−1.

A path is said to be feasible if there exists a test that realizes it. In the above,
we assume that the program does not read a variable until its value is initialized
within the program or explicitly taken as input earlier. Thus, the initial values
are not part of tests.

In the context of test suit generation, we may refer to a transition as a branch
if the source location of the transition has multiple outgoing transitions. A test
t covers branch e if the test realizes a path that contains e. Branch e is reachable
if there exists a test t that covers e. The test generation problem is to find a set
of tests that covers every reachable branch in the program.

3.1 Concolic Testing

In concolic testing, a test suite is generated using both symbolic and concrete
execution. In Algorithm 1 we reproduce the procedure; the presentation is mod-
ified such that we may use the procedure in our main algorithm. For simplicity
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Algorithm 1. Concolic(P = (V,L, �I , E), G, tb)
Require: program P = (V, L, �I , E), uncovered branches G, time budget tb
Ensure: tests suite, uncovered branches
1: tst ← ();
2: � ← �I ; arbitrary v; S ← λx ∈ V.⊥ � initial values
3: pathC ← (); suite ← ∅; k = 0;
4: while ct < tb and G �= ∅ do � ct always has the current time
5: if ∃e = (�, [F, x := exp], �′) ∈ E such that v |= F then � expand
6: G ← G − {e}; � ← �′;
7: pathC.push(F (S)) � F (S) is substitution
8: if exp = input() then
9: if |tst| = k then w ← randV al(); tst.push(w); else w ← tst(k);

10: v ← v[x �→ w]; S ← S[x �→ rk]; k = k + 1
11: else
12: v ← v[x �→ exp(v)]
13: S ← S[x → UpdateSymMem(S, exp, v)]
14: else � backtrack
15: suite ← suite∪{tst}
16: if ∃i < |pathC| such that φ =

∧

j<i pathC(j) ∧ ¬pathC(i) is sat then
17: m = getModel(φ)
18: l ← number of distinct ris that occur in φ
19: tst ← (m(r0), . . . , m(rl−1))
20: goto 2
21: else break;
22: return (suite, G)

of the presentation, we assume that there are at most two outgoing transitions
at any program location and their guards are complementary to each other. This
assumption does not restrict the applicability of the method.

The procedure takes a program P = (V,Loc, �I , E), a set of goal branches G,
and a time budget tb as input, and returns a test suite that covers a subset of G
within the time budget tb. The procedure maintains a symbolic memory S, which
is a partial function from the program variables V to symbolic expressions. We
use the symbol ⊥ to denote an undefined value in a partial function. In addition,
the procedure uses the following data structures: the current location �, current
valuation v of variables, list pathC that contains constraints along the current
path, test tst that produces the current path, counter k of inputs that have been
read on the current path, and a set suite of tests seen so far. We initialize all the
collecting data structures to be empty, � is initialized to be the initial location
�I , and the symbolic memory to be empty.

The algorithm proceeds by extending the current path by a transition in
each iteration of the while loop at line 4. The loop runs until there are no goals
to be covered or the procedure runs out of its time budget. In the loop body,
the condition checks if it is possible to extend the current path by a transition
e = (�, [F, x := exp], �′). If the guard of e satisfies the current valuation v then e
is removed from the set of goals and the current location is updated to �′. In case
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e has an input command x := input(), then (1) the algorithm updates v(x) to
the kth value from tst if it is available, (2) otherwise v(x) is assigned a random
value w, and w is appended to tst. In either case, S is updated by a fresh symbol
rk, assuming r0 to rk−1 have been used so far. If e is not an input command,
then both concrete and symbolic values of x are updated in v and S at line 10.

The symbolic memory is updated by the procedure UpdateSymMem.
UpdateSymMem first computes exp(S), and if the resulting formula is beyond
the capacity of available satisfiability checkers, then it simplifies the formula by
substituting the concrete values from v for some symbolic variables to make the
formula decidable in the chosen theory. UpdateSymMem is the key heuristics in
concolic testing that brings elements of concrete testing and symbolic execution
together. For details of this operation see [33,35].

At line 7, pathC is extended by F (S), which is the formula obtained after
substituting every variable x occurring in F by S(x). We assume that variables
are always initialized before usage, so S is always defined for free variables in F .

In case the current path cannot be further extended, at lines 16–19 the pro-
cedure tries to find a branch on the path to backtrack. For a chosen branch with
index i, a formula is built that contains the path constraints up to i − 1 and
the negation of the ith constraint. If this formula is satisfiable, then its model
is converted to a new test and path exploration restarts. Note that the branch
can be chosen non-deterministically, which allows us to choose a wide range of
heuristics for choosing the next path. For example, the branch can be chosen at
random or in the depth-first manner by picking the largest unexplored branch i.
Another important heuristic that is implemented in Crest is to follow a branch
that leads to the closest uncovered branch.

4 Coverage-Driven Abstraction Refinement

In this section, we present a modified version of CEGAR-based model checking
that we use in our main algorithm. Our modifications are: (1) the procedure
continues until all goal branches are covered by tests, proved unreachable or
until the procedure reaches the time limit, (2) the procedure always returns an
abstract reachability graph that is closed under the abstract post operator.

The classical CEGAR-based model checking executes a program using an
abstract semantics, which is defined by an abstraction. Typically, the abstraction
is chosen such that the reachability graph generated due to the abstract execution
is finite. If the computed reachability graph satisfies the correctness specifica-
tion, then the input program is correct. Otherwise, the model checker finds an
abstract counterexample, i.e., a path in the reachability graph that reaches an
error state. The abstract counterexample is spurious if there is no concrete exe-
cution that corresponds to the abstract counterexample. If the counterexample
is not spurious then a bug has been found and the model checker terminates. In
case of a spurious counterexample, the refinement procedure refines the abstract
model. This is done by refining the abstraction to remove the spurious coun-
terexample, and the process restarts with the newly refined abstraction. After
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a number of iterations, the abstract model may have no more counterexamples,
which proves the correctness of the input program.

In this paper, we use predicate abstraction for model checking. Let π be
a set of predicates, which are formulas over variables V . We assume that π
always contains the predicate “false”. We define abstraction and concretization
functions α and γ between the concrete domain of all formulas over V , and the
abstract domain of 2π:

α(ρ) = {ϕ ∈ π | ρ =⇒ ϕ} γ(A) =
∧

A,

where A ⊆ π, and ρ is a formula over V . An abstract state sa of our program is
an element of Loc × 2π. Given an abstract state (�, A) and a program transition
(�, φ, �′), the abstract strongest post is defined as:

spa(A,φ) = α((∃V. γ(A) ∧ φ(V, V ′))[V ′/V ]).

The abstraction is refined by adding predicates to π.
In Algorithm 2, we present the coverage-driven version of the CEGAR pro-

cedure. We do not declare error locations or transitions, instead the procedure

Algorithm 2. AbstractMC(P = (V,L, �I , E), π, G, tb)
Require: program P = (V, L, �I , E), predicates π, uncovered branches G,

time budget tb
Ensure: tests, remaining branches, branches proved unreachable, new predicates,

abstract reachability graph
1: worklist ← {(�I , ∅)}; reach ← ∅; subsume ← λsa.⊥; parent((�0, ∅)) ← ⊥
2: while worklist �= ∅ do
3: choose (�, A) ∈ worklist
4: worklist ← worklist \ {(�, A)}
5: if false ∈ A or ∃sa ∈ parent∗((�, A)). sa ∈ sub then continue
6: reach ← reach ∪ {(�, A)}
7: if ∃(�, A′) ∈ reach − sub. A ⊆ A′ then subsume ← subsume[(�, A) �→ (�, A′)]
8: else
9: if ∃(�, A′) ∈ reach − sub. A′ ⊆ A then subsume ← subsume[(�, A′) �→

(�, A)]
10: for each e = (�, ρ, �′) ∈ E do
11: A′ ← spa(A, ρ);worklist ← worklist ∪ {(�′, A′)}
12: parent((�′, A′)) = (�, A); trans((�′, A′)) = e
13: if e ∈ G then
14: if ∃m |= pathCons(path to (�′, A′)) then
15: G ← G − {e}
16: suite ← suite∪{the sequence of values of rks in m}
17: else
18: if ct < tb then � ct has current time
19: π ← π∪ Refine((�′, A′)); goto 1
20: U = G − {e | ∃sa ∈ reach. trans(sa) = e} � Unreachable goals
21: return (suite,G − U ,U ,π,(reach, parent, subsume, trans))
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takes goal transitions G as input along with a program P = (V,Loc, �I , E), pred-
icates π, and a time budget tb. Reachable states are collected in reach, while
worklist contains the frontier abstract states whose children are yet to be com-
puted. The procedure maintains functions parent and trans, such that if an
abstract state s′

a is a child of a state sa by a transition e, then parent(s′
a) = sa

and trans(s′
a) = e. To guarantee termination, one needs to ensure that abstract

states are not discovered repeatedly. Therefore, the procedure also maintains
the subsume function, such that subsume((�, A)) = (�′, A′) only if � = �′ and
A ⊆ A′. We write sub = {s | subsume(s) 	= ⊥} for the set of subsumed states.
We denote the reflexive transitive closure of parent and subsume, by parent∗

and subsume∗, respectively.
The algorithm proceeds as follows. Initially, all collecting data structures are

empty, except worklist containing the initial abstract state (�I , ∅). The loop at
line 2 expands the reachability graph in every iteration. At lines 3–4, it chooses
an abstract state (l, A) from worklist. If any ancestor of the state is already
subsumed or the state is false, the state is discarded and the next state is cho-
sen. Otherwise, (l, A) is added to reach. At lines 7–9, the subsume function
is updated. Afterwords, if (l, A) became subsumed then we proceed to choose
another state from worklist. Otherwise, we create the children of (l, A) in the
loop at line 10 by the abstract post spa. At line 12, parent and trans relations
are updated. At line 13, the procedure checks if the abstract reachability has
reached any of the goal transitions. If yes, then it checks the feasibility of the
reaching path. If the path is found to be feasible, we add the feasible solution
as a test to the suite at line 16. Otherwise, we refine and restart the reachabil-
ity computation to remove the spurious path from the abstract reachability at
lines 18–19. In case the algorithm has used its time budget, the refinement is
not performed, but the algorithm continues processing the states remaining in
worklist. As a consequence, the algorithm always returns a complete abstract
reachability graph.

We do not discuss details of the Refine procedure. The interested reader
may read a more detailed exposition of CEGAR in [25].

Abstract Reachability Graph (ARG). The relations parent, subsume, and
trans together define an abstract reachability graph (ARG), which is produced
by AbstractMC. A sequence of transitions e0, . . . , en−1 is a path in an ARG
if there is a sequence of abstract state s0, . . . , sn ∈ reach, such that

1. s0 = (�I , ∅),
2. for 1 < i ≤ n we have parent(si) ∈ subsume∗(si−1) and ei−1 = trans(si).

Theorem 1. Every feasible path of the program P is a path of an ARG. More-
over, every path in the ARG is a path of P .

AbstractMC returns a set suite of tests, set G of uncovered goals, proven
unreachable goals U , set π of predicates, and the abstract reachability graph.
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Lazy Abstraction. Model checkers often implement various optimizations in
the computation of ARGs. One of the key optimization is lazy abstraction [26].
CEGAR may learn many predicates that lead to ARGs that are expensive to
compute. In lazy abstraction, one observes that not all applications of spa require
the same predicates. Let us suppose that the refinement procedure finds a new
predicate that must be added in specific place along a spurious counterexample
to remove this counterexample from future iterations. In other paths, however,
this predicate may be omitted. This can be achieved by localizing predicates to
parts of an ARG. Support for lazy abstraction can easily be added by additional
data structures that record the importance of a predicate in different parts of
programs.

5 Abstraction-Driven Concolic Testing

In this section, we present our algorithm that combines concolic testing and
model checking. The key idea is to use the ARG generated by a model checker
to guide concolic testing to explore more likely feasible parts of programs.

We start by presenting the function MonitorFromARG that converts
an ARG into a monitor program. Let A = (reach, parent, subsume, trans)
be an ARG. The monitor of A is defined as a program M = (V, reach −
sub, (�I , ∅), E1∪E2), where

– E1 = {(sa, e, s′
a) | sa = parent(s′

a) ∧ e = trans(s′
a) ∧ s′

a 	∈ sub},
– E2 = {(sa, e, s′′

a) | ∃s′
a. sa = parent(s′

a) ∧ e = trans(s′
a) ∧

∧s′′
a ∈ subsume+(s′

a) ∧ s′′
a 	∈ sub}.

The transitions in E1 are due to the child-parent relation, when the child abstract
state is not subsumed. In case the child state s′

a is subsumed, then E2 contains a
transition from the parent of s′

a to the non-subsumed state s′′
a in subsume+(s′

a),
where subsume+ denotes the transitive closure of subsume. From the way we
built an ARG, it follows that the state s′′

a is uniquely defined and the monitor
is always deterministic.

In Algorithm 3 we present our method Crabs. Crabs takes as input a
program P , a set G of goal branches to be covered, and time constraints: the total
time limit tb, and time budgets tc, tm for a single iteration of concolic testing and
model checking, respectively. The algorithm returns a test suite for the covered
goals, and a set of goals that are provably unreachable. The algorithm records
in G the set of remaining goals. Similarly, U collects the goal branches that are
proved unreachable by the model checker. The algorithm maintains a set π of
predicates for abstraction, a program P for concolic testing, and a set G of goals
for concolic testing. The program P is initialized to the original program P ,
and in the following iterations becomes refined by the monitors. The algorithm
collects in suite the tests generated by concolic testing and model checking.

The program P is a refinement of the original program P , so a single goal
branch in P can map to many branches in the program P . For this reason, we
perform testing for the set G of all possible extensions of G to the branches in
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Algorithm 3. Crabs(P = (V,Loc, �i, E), G, tb, tc, tm )
Require: program P = (V, Loc, �i, E), branches G ⊆ E to cover, time budget for

concolic testing tc, time budget for model checking tm, total time budget tb,
Ensure: a test suite, set of provably unreachable branches
1: π ← {false}; U ← ∅; � U is a set of provably unreachable goals
2: suite ← ∅ � suite is a set of test
3: P ← P ; G ← G � program and goals for testing
4:
5: while G �= ∅ and ct < tb do � ct always has current time.
6: (suite′, ) ← ConcolicTest(P , G, ct + tc)
7: G ← G − {g ∈ E | ∃tst ∈ suite′.tst covers g}
8: suite ← suite ∪ suite′;
9: if G �= ∅ then

10: (suite′, G, U ′, π, A) ← AbstractMC(P, π, G, ct + tm)
11: suite ← suite ∪ suite′; U ← U∪U ′

12: P ← P × MonitorFromARG(A) � see sec. 5 for MonitorFromARG
13: G = {((�, ), e, (�′, )) ∈ EP | (�, e, �′) ∈ G}
14: return (suite, U)

P . For simplicity, in our algorithm concolic testing tries to reach all goals in G,
even if they map to the same goal branch in G. In the implementation, however,
once concolic testing reaches a branch in G, it removes all branches from G that
have the same projection.

Crabs proceeds in iterations. At line 6, it first runs concolic testing on the
program P and the goal branches G with the time budget tc. The testing process
returns a tests suite′ and the set of remaining branches. Afterwords, if some
branches remain to be tested, a model checker is called on the program P with
predicates π, and a time budget tm at line 10. As we discussed in the previous
section, the model checker builds an abstract reachability graph (ARG), and
produces tests if it finds concrete paths to the goal branches. Since the model
checker runs for a limited amount of time, it returns an abstract reachability
graph that may have abstract paths to the goal branches, but no concrete paths
were discovered. Moreover, if the ARG does not reach some goal branch then
it is certain that the branch is unreachable. The model checker returns a new
set suite′ of tests, remaining goals G, and a set U ′ of newly proved unreachable
goals. Furthermore, it also returns a new set π of predicates for the next call
to the model checker, and an abstract reachability graph A. At line 12, we
construct a monitor from A by calling MonitorFromARG. We construct the
next program P by taking a product of the current P with the monitor. We also
update G to the set of all extensions of the branches in G to the branches in P .
In the next iteration concolic testing is called on P , which essentially explores
the paths of P that are allowed by the monitors generated from the ARG. The
algorithm continues until it runs out of time budget tb or no more goals remain.

The program P for testing is refined in every iteration by taking a product
with a new monitor. This ensures that P always becomes more precise, even if
the consecutive abstractions do not strictly refine each other, i.e. the ARG from



Abstraction-driven Concolic Testing 341

iteration i allows the set L of paths, while the ARG from iteration i + 1 allows
the set L′ such that L′ 	⊆ L. This phenomenon occurs when the model checker
follows the lazy abstraction paradigm, described in Sect. 4. In lazy abstraction,
predicates are applied locally and some may be lost due to refinement. As a
consequence, program parts that were pruned from an ARG may appear again
in some following ARG. Another reason for this phenomenon may be a deliberate
decision to remove some predicates when the abstraction becomes too expensive
to maintain.

6 Experiments

We implemented our approach in a tool Crabs, built on top of the concolic
tester Crest [11] and the model checker CpaChecker [8]. In our experiments,
we observed an improvement in branch coverage compared to Crest from 48%
to 63% in the best case, and from 66% to 71% on average.

Benchmarks. We evaluated our approach on a collection of programs: (1) a set
of hand-crafted examples (listed in [1]), (2) example “nsichneu” [24] described
in Sect. 2 with varying number of loop iterations, (3) benchmarks “parport” and
“cdaudio1” from various categories of SvComp [6], (4) all 13 benchmarks from
the “ddv-machzwd” SvComp category.

Optimizations. Constructing an explicit product of an program and a monitor
would be cumbersome, due to complex semantics of the C language, e.g. the
type system and scoping rules. To avoid this problem, our tool explores the
product on-the-fly, by keeping track of the program and monitor state. We have
done minor preprocessing of the examples, such that they can be parsed by
both Crest and CpaChecker. Furthermore, CpaCheckerdoes not deal well
with arrays, so in the “nsichneu” example we replaced arrays of fixed size (at
most 6) by a collection of variables.

Comparison of Heuristics and Tools. We compare our tool with four other heuris-
tics for guiding concolic search that are implemented in Crest : the depth-
first search (DFS), random branch search (RndBr), uniform random search
(UnfRnd), and CFG-guided search; for details see [11]. The depth-first search
is a classical way of traversing a tree of program paths. In the random branch
search, the branch to be flipped is chosen from all the branches on the current
execution with equal probability. Similarly, in the uniform random search the
branch to be flipped is also picked at random, but the probability decreases with
the position of the branch on the execution. In the CFG-guided heuristic the
test process is guided by a distance measure between program branches, which
is computed statically on the control-flow graph of the program. This heuris-
tic tries to drive exploration in into branches that are closer to the remaining
test goals. The concolic component of our tool uses the CFG-guided heuristic to
explore the product of a program and a monitor; this way branches closer in the
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monitor are explored first. Our additional experiments show that our approach
improves coverage for all heuristics implemented in Crest.

We compared our approach with the tool Fshell [27], which is based on the
bounded model checker CBMC. Fshell unwinds the control-flow graph until it
fully explores all loop iterations and checks satisfiability of paths that hit the
testing goals. This tool does not return a test suite, unless all loops are fully
explored.

Experimental Setup. All the tools were run with branch coverage as the test
objective. The coverage of a test suite is measured by the ratio c

r , where c is
the number of branches covered by a test suite, and r is the number of branches
that have not been proved unreachable. For Crest, we set r to be the number
of branches that are reachable in the control-flow graph by graph search, which
excludes code that is trivially dead. Our tool and Crest have the same number
of test goals, while Fshell counts more test goals on some examples. We run
our tool in a configuration, where testing takes approximately 80% of the time
budget. All experiments were performed on a machine with an AMD Opteron
6134 CPU and a memory limit of 12 GB, and were averaged over three runs.

Results. The experimental evaluation for a time budget of one hour is presented
in Table 1.

After one hour, our tool achieved the highest coverage on most examples. The
best case is “nsichneu(17),” where our tool achieved 63% coverage compared to
48% by the best other tool. Our additional experiments show that if we run our
tool with the DFS heuristic, we obtain even higher coverage of 69%. The hand-
crafted examples demonstrate that our method, as well as Fshell, can reach
program parts that are difficult to cover for concolic testing. In the benchmark
category, our tool obtained average coverage of 71% compared to 66% by Crest.
In many examples, we obtain higher coverage by both reaching more goals and
proving that certain goals are unreachable. Fshell generated test suites only
for three examples, since on other examples it was not able to fully unwind
program loops.

7 Related Work

Testing literature is rich, so we only highlight the most prominent approaches.
Random testing [9,13,32] can cheaply cover shallow parts of the program, but
it may quickly reach a plateau where coverage does not increase. Another test-
ing method is to construct symbolic objects that represent complex input to
a program [36,37]. In [10] objects for testing program are systematically con-
structed up to a given bound. The approach of [18] tests a concurrent program
by exploring schedules using partial-order reduction techniques.
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Concolic testing suffers from the path-explosion problem, so various search
orders testing have been proposed, several of them are discussed in Sect. 6. In
[20] multiple input vectors are generated from a single symbolic path by negating
constraints on the path one-by-one, which allows the algorithm to exercise paths
at different depths of the program. Hybrid concolic testing [30] uses random
testing to quickly reach deep program statements and then concolic testing to
explore the close neighborhood of that point.

Our work is closest related to Synergy [5,21,22]. Synergy is an approach
for verification of safety properties that maintains a program abstraction and a
forest of tested paths. Abstract error traces are ordered such that they follow
some tested execution until the last intersection with the forest. If an ordered
abstract trace is feasible, then a longer concrete path is added to the forest;
otherwise, the abstraction is refined. Compared to Synergy our method has
several key differences. First, in Synergy model checking and test generation
work as a single process, while in our approach these components are independent
and communicate only by a monitor. Second, unlike us, Synergy does not pass
the complete abstract model of the program to concolic testing, where the testing
heuristics guides the search. Finally, in our approach we can configure the ratio
of model checking to testing, while in Synergy every unsuccessful execution
leads to refinement.

Another related work is [12], where concolic testing is guided towards pro-
gram parts that a static analyzer was not able to verify. In contrast to our
approach, the abstraction is not refined. In [17] conditional model checking is
used to generate a residual that represents the program part that has been left
unverified; the residual is then tested.

The work of [34] applies program analysis to identify control locations in a
concurrent program that are relevant for reaching the target state. These loca-
tions guide symbolic search toward the target and predicates in failed symbolic
executions are analyzed to find new relevant locations. The Check‘n’Crash
[15] tool uses a constraint solver to reproduce and check errors found by static
analysis of a program. In [16] the precision of static analysis was improved by
adding a dynamic invariant detection.

The algorithm of [31] presents a testing method, where a program is simplified
by replacing function calls by unconstrained input. Spurious counterexample are
removed in a CEGAR loop by lazily inserting function bodies. In contrast, our
method performs testing on a concrete program and counterexamples are always
sound.

A number of papers consider testing program abstraction with bounded
model checking (BMC). If the abstraction is sufficiently small, then a program
invariant can be established by exhaustively testing the abstraction with BMC.
In [29] a Boolean circuit is abstracted, such that it decreases the bound that
needs to be explored in an exhaustive BMC search. In [23] BMC is run on an
abstract model up to some bound. If the invariant is not violated, then the model
is replaced by an unsat core and the bound is incremented. If a spurious coun-
terexample is found, then clauses that appear in the unsat core are added to the
abstraction.
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8 Conclusion

We presented an algorithm that combines model checking and concolic testing
synergistically. Our method iteratively runs concolic testing and model checking,
such that concolic testing is guided by a program abstraction, and the abstrac-
tion is refined for the remaining test goals. Our experiments demonstrated that
the presented method can increase branch coverage compared to both concolic
testing, and test generation based on model checking.

We also observed that our method is highly sensitive to optimizations and
heuristics available in the model checker. For instance, lazy abstraction allows the
model checker to get pass bottlenecks created due to over-precision in some parts
of ARGs. However, lazy abstraction may lead to a monitor that is less precise
than the monitors of the past iterations, which may lead to stalled progress in
covering new goals by our algorithm. In the future work, we will study such
complimentary effects of various heuristics in model checkers to find the optimal
design of model checkers to assist a concolic-testing tool. We believe that adding
this feature will further improve the coverage of our tool.

Acknowledgments. We thank Andrey Kupriyanov for feedback on the manuscript,
and Michael Tautschnig for help with preparing the experiments.
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Abstract. In this paper we present a decision algorithm for computing
maximal/minimal reward-bounded reachability probabilities in weighted
MDPs with uncertainties. Even though an uncertain weighted MDP
(UwMDP) represents an equivalent weighted MDP which may be expo-
nentially larger, our algorithm does not cause an exponentially blow-up
and will terminate in polynomial time with respect to the size ofUwMDPs.
We also define bisimulation relations for UwMDPs, which are composi-
tional and can be decided in polynomial time as well. We develop a proto-
type tool and apply it to some case studies to show its effectiveness.

1 Introduction

Markov Decision Processes (MDPs) are powerful models for systems involv-
ing both decision-making and probabilistic dynamics [37]. Prominent applica-
tions range from economics to computer networking, verification and artificial
intelligence. Model checkers for MDPs, such as PRISM [31], Modest [10], and
IscasMC [22] have been developed and applied in practice successfully.

A particular practical challenge in modeling probabilistic systems is rooted in
the fact that precise models are often hard to obtain, particularly with respect to
the probabilities occurring therein. These may be derived from statistical data or
repeated experimentation, but the result can still be far from accurate [35]. This
makes the consideration of “robust” probabilities important. A viable option in
this respect is to resort to using probability intervals instead of single proba-
bilities. This can lead to more robust analysis and verification results in many
applications. This motivation is behind several probabilistic models with uncer-
tainties including interval Markov chains [26,29], Interval MDP s [35,36,40]
(IMDPs), and abstract probabilistic automata [16].

In this paper we propose to use weighted Markov decision processes to model
probabilistic systems with uncertainties. Different from IMDPs, each transition
in an Uncertain weighted Markov Decision Process (UwMDP) is associated with
a weight interval such that any integer value in this interval is a feasible weight
for that transition1. Weights in our models play a similar role as in GSPN [34]
1 We only consider integer weights in this paper. The extension to rational weights is

straightforward.
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or EMPA [6], namely, they will be used to induce a distribution over all tran-
sitions with the same label. If from a state s, there are transitions leading to
s1 and s2 with weights 2 and 3, respectively, then this means that s will evolve
into s1 and s2 with probabilities 2

5 and 3
5 , respectively. The model of UwMDPs

has intervals of weights attached to each transition. One can think of this model
as a game between a scheduler and nature. Different from ordinary wMDPs,
nature might also be non-deterministic (besides being probabilistic). More pre-
cisely, nature selects a realization of weights from a set of feasible weights that is
specified in terms of intervals. The selected weights by the nature then induces
a probabilistic transition over states.

UwMDPs are more expressive than IMDPs, as in IMDPs there is no informa-
tion about weights. In case IMDPs were equipped with weights, the two mod-
els will have the same expressiveness with respect to properties considered in
this paper (cf. Remark 4), as any IMDP can be transformed into an equivalent
UwMDP and vice versa. However, such transformations may induce exponential
blow-up in both directions. Nevertheless, IMDPs and UwMDPs are distinguished
in several aspects. In UwMDPs, weights can be used to denote priorities or prefer-
ences, which are quantities used to generate probabilistic behaviors. For instance,
a robot may choose to serve its clients stochastically relative to the preferences
they expressed. In this respect, UwMDPs offer users more flexibility to model
uncertainties. In addition, we will show thatUwMDPs are equipped with a compo-
sitional theory based on bisimulation. This implies that compositional minimiza-
tion approaches [8,9,13] can be applied to alleviate state space explosion problems.
This has been introduced as a powerful way to abstract from details of systems in
the formal verification community; see for instance [3]. More concretely, we define
bisimulation relations for UwMDPs and establish compositionality with respect
to a parallel operator, which is a conservative extension of the one for probabilis-
tic automata [33]. Furthermore, we point out that bisimulations of UwMDPs can
be computed efficiently in polynomial time with respect to sizes of UwMDPs, in
contrast to IMDPs [24].

With respect to model analysis, we discuss extreme (maximal/minimal)
reward-bounded reachability probabilities [1] ofUwMDPs in this paper. Thus each
UwMDP is associated with a reward-structure, which assigns to each weighted
transition a reward. On the one hand, our work is an extension of the work in [1]
enrichedwith uncertainties, while on the other hand, it can also be seen as an exten-
sion of the work in [36] to models with reward-structures. Despite the fact that
an UwMDP may represent an equivalent, but exponentially larger, model with-
out uncertainties, we propose an algorithm to compute extreme reward-bounded
reachability probabilities in pseudo polynomial time – polynomial with respect to
the size of the given UwMDP and quadratic with respect to the reward bound.
Along the line of [36], extreme reachability probabilities without reward bounds
can be computed efficiently for UwMDPs as well.

Summarizing, the main contributions of this paper are as follows.

– We introduce a novel stochastic model to capture quantities like preferences or
priorities in a non-deterministic scenario with uncertainties. The model is very
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close to the model of interval MDPs first introduced by Puggelli et al. [36],
but more convenient to model with when non-probability uncertainties like
weights, preference, priority, etc. are involved.

– We consider the problem of computing maximal/minimal reward-bounded
reachability probabilities on UwMDPs, for which we present an efficient algo-
rithm running in pseudo polynomial time. This extends the results in [36]
to deal with properties and models with rewards and the work in [1] with
non-determinisms and uncertainties.

– We define bisimulation relations on UwMDPs, which can be decided efficiently
in polynomial time. We also show that bisimulations are compositional, hence
they make compositional minimization possible. The proposed compositional
minimization approach cannot be performed efficiently for the models consid-
ered in [36].

– We show promising results on a variety of case study, obtained by a prototyp-
ical implementation of all algorithms.

Related work. Related work falls into two main categories: Verification of
PCTL [23] specifications and compositional minimization for uncertain MDPs.
Probabilistic modeling formalisms with uncertainties have attracted much atten-
tion recently. Interval Markov chains [26,29] or abstract Markov chains [18]
extend classical discrete-time Markov chains (MC) with uncertainties; however,
they do not reflect non-determinism in transitions. In uncertain MDPs [35,36,40]
both non-deterministic and probabilistic choices coexist and more expressive
uncertainty sets are allowed to model transition probabilities. Over the last few
years, several new verification algorithms for uncertain Markovian models have
been proposed in the literature. The problems of computing reachability prob-
abilities and expected total reward were studied for interval Markov chains [14]
and Interval MDPs [41]. Model checking of PCTL and LTL has been investi-
gated in [5,14,30] for interval Markov chains and also in [36,40] for IMDPs.
Strategy synthesis for MDPs with respect to PCTL properties was first studied
in [4], which was then extended to parametric MDPs [21] and to MDPs with
ellipsoidal uncertainty [35]. Uncertain Markovian models were also extensively
studied in the control community [20,35,41], with the aim to maximize expected
finite-horizon (un)discounted rewards. We are not aware of any existing result
related to reward-bounded reachability for uncertain MDPs. However, our algo-
rithm is inspired by [1], which deals with the model checking of reachability
properties on MCs with rewards.

From the point of view of compositional minimization, interval Markov
chains [28] and abstract probabilistic automata [15,16] offer extensive specifi-
cation theories for Markov chains and probabilistic automata. These theories
support both satisfaction and various refinement relations [16,17,26]. In [24]
probabilistic bisimulation relations were introduced in order to reduce the size
of interval MDPs while preserving PCTL properties. Moreover, an algorithm
was given to compute the quotients induced by these bisimulations in time poly-
nomial in the size of the model and exponential in the uncertain branching.
Notably, we show that for UwMDPs, bisimulation quotients can be computed
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in polynomial time even with respect to the uncertain branching. Furthermore,
bisimulation relations are proved to be compositional with respect to a par-
allel operator. This enables compositional minimization to enhance the model
checking of UwMDPs.

Structure of the Paper. The rest of the paper is organized as follows. Section 2
gives necessary background on uncertain weighted MDPs and interval MDPs. In
Sect. 3, we define the notion of maximal reward-bounded reachability probability
for UwMDPs and show a least-fixed point characterization. In Sect. 4, we give the
definition of bisimulation for UwMDPs and show that it is compositional. Then
we give a tractable decision algorithm to compute it. In Sect. 5, we demonstrate
our approach on some case studies and present promising experimental results.
Finally we conclude our paper in Sect. 6.

2 Preliminaries

In this paper, the sets of all integers, positive integers, real numbers and non-
negative real numbers are denoted by Z, N0, R, and R

≥0, respectively.
For a set X, we denote by Δ(X) the set of discrete probability distributions

over X. The support of μ ∈ Δ(X) is defined by supp(μ) = {x ∈ X | μ(x) > 0}.
In case μ(x) = 1 for some x ∈ X, we write μ as δx. We often write {x : μ(x) |
x ∈ supp(μ)} alternatively for a distribution μ. For instance, {x1 : 0.4, x2 : 0.6}
denotes a distribution μ such that μ(x1) = 0.4 and μ(x2) = 0.6.

2.1 Weighted Markov Decision Processes

Below we introduce the definition of weighted Markov Decision Processes, where
w, . . . and s, t, u, . . . range over N0 and states, respectively.

Definition 1 (wMDP). A weighted Markov Decision Process (wMDP) is a
tuple MW = (SW,AW,WW, s̄W, APW, LW), where SW is a finite set of states,
AW is a finite set of actions, WW : SW × AW × SW �→ N0 defines a transition
relation, s̄W ∈ SW is the initial state, APW is a finite set of atomic propositions,
LW : SW �→ 2APW is a labelling function.

We write s
a,w−−→ μ iff w =

∑
t∈SW WW(s, a, t) > 0 and μ(t) = WW(s,a,t)

w . Let

s
a,w−−→c μ, called combined transitions [39], iff there exists {μi}i∈I and {pi ∈

[0, 1]}i∈I such that
∑

i∈I pi · μi = μ where
∑

i∈I pi = 1 and s
a,w−−→ μi for each

i ∈ I.
In Definition 1, all weights have to be given precisely, which sometimes is

not possible, especially when all weights are estimated or based on experiments.
On the other hand, uncertain weighted MDPs relax this condition such that it
allows weights to vary as long as they are in certain intervals. Formally,
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Definition 2 (UwMDP ). An Uncertain weighted Markov Decision Process
(UwMDP) is a tuple MU = (SU,AU,WU, s̄U, APU, LU) similar as in
Definition 1 except that WU : SU × AU × SU �→ [wl, wh] defines a transition
relation with uncertainties, where wl, wh ∈ N0 with wl ≤ wh. Let AU(s) denote
the set of available actions at state s ∈ SU.

The only difference between Definitions 1 and 2 is that in a wMDP all transitions
are labelled by a weight, while in an UwMDP, transitions are labelled by an inter-
val specifying all allowed weights. We denote by wa

st a resolution of uncertainties
corresponding to the transition from s to t with label a, i.e.,wa

st ∈ WU(s, a, t).
We write s

a,w−−→ μ iff there exists wa
st ∈ WU(s, a, t) for each t ∈ SU such that

w =
∑

t∈SU wa
st > 0 and μ(t) = wa

st

w . Similarly, we can define the combined
transitions for UwMDPs.

Let us formally state the semantics of an UwMDP MU. A transition ini-
tialised from state si in MU happens in three steps. First, an action a ∈ AU(si)
is chosen non-deterministically. Secondly, a resolution wa

sit ∈ WU(si, a, t) is cho-
sen for each t ∈ SU. The selection of wa

sit models uncertainty in the transition.
Lastly, a successor state si+1 is chosen randomly, according to the induced tran-
sition probability distribution μ. It is not hard to see that each UwMDP MU
corresponds to a wMDP, which may be exponentially larger than MU.

A path in MU is a finite or infinite sequence of the form ξ =
s0w

a0
s0s1

s1w
a1
s1s2

s2 · · · where si ∈ SU, ai ∈ AU(si) and 0 < wai
sisi+1

∈
WU(si, ai, si+1) for any i ≥ 0. For a finite path ξ, we denote by ξ ↓ the last
state of ξ. The i-th state (action) along a path ξ is denoted by ξ[i] (ξ(i)),
if it exists. The set of all finite paths and the set of all infinite paths in the
given MU are denoted by Pathsfin

MU and Paths inf
MU , respectively. Furthermore, let

Pathsξ
MU = {ξξ′ | ξ′ ∈ Paths inf

MU} denote the set of paths with ξ ∈ Pathsfin
MU

being its finite prefix.

Remark 1. The size of a given MU is determined as follows. Let |SU| denote the
number of states in MU. Then each state has O(|AU|) actions, while each action
corresponds to at most O(|SU|2) transitions, each of which is associated with a
weight interval. Therefore, the overall size of MU |MU| is in O(|SU|2 |AU|).
Due to the existing of non-determinism, to resolve which, we need to introduce
notions of scheduler and nature.

Definition 3 (Scheduler and Nature in UwMDPs). Given an UwMDP

MU, a scheduler is a function λ : Pathsfin
MU → Δ(AU) that to each finite path ξ

assigns a distribution over the set of actions. A nature is a function γ : Pathsfin
MU ×

AU → Δ(SU) that to each finite path ξ and action a assigns a feasible distribution,
i.e. γ(ξ, a) = μ if and only if ξ ↓ a,w−−→ μ for some w. We denote by ΛMU the set of all
schedulers and by ΓMU the set of all natures of MU.
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For an initial state s, a scheduler λ, and a nature γ, let Prλ,γ
MU,s denote

the unique probability measure over (Paths inf
MU ,B)2 such that the probability

Prλ,γ
MU,s[Pathss′

MU ] of starting in s′ equals 1 if s = s′ and 0, otherwise; and the prob-

ability Prλ,γ
MU,s[Pathsξs′

MU ] of traversing a finite path ξs′ equals Prλ,γ
MU,s[Pathsξ

MU ] ·∑
a∈AU λ(ξ)(a) · γ(ξ, a)(s′).
Observe that a scheduler does not choose an action but a distribution over

actions. It is well-known [38] that such randomisation brings more power in the
context of bisimulations. To the contrary, a nature is not allowed to randomise
over the set of feasible distributions. This is in fact not necessary, since the set
of feasible distributions is closed under convex combinations. A scheduler λ is
said to be deterministic if λ(ξ)(a) = 1 for all finite paths ξ for some action a.

In order to model other quantitative measures of an UwMDP, we associate
a reward to each weighted transition of a state. This is done by introducing a
reward structure:

Definition 4. A reward structure for an UwMDP is a function rU : SU×AU×
N0 → N0 that assigns to each state s ∈ SU, action a ∈ AU(s), and weight w ∈ N0

a reward rU(s, a, w) > 0.

Note that the definition of reward structure is quite flexible. We could easily
define rewards independent of weights of transitions. Below defines the accumu-
lated reward of a path before reaching a set of goal states.

Definition 5. Given a reward structure rU and a path ξ = s0w
a0
s0s1

s1w
a1
s1s2

s2 · · · ∈
Paths inf

MU and a set GU ⊆ SU of states, we denote by rew(ξ,GU) the accumulated
reward along ξ until GU is reached; Formally, if ξ[t] ∈ GU for some t ≥ 0 then
rew(ξ,GU) =

∑n−1
i=0 rU(si, ai,w

ai
sisi+1

) where n ∈ N0 is the smallest integer such
that ξ[n] ∈ GU; otherwise ∞ if ξ[t] 
∈ GU for every t ≥ 0,

Below presents an example of UwMDP.

Fig. 1. An example of UwMDP MU

Example 1. Figure 1 depicts an UwMDP
containing three states with s being
the initial one. Letters in curly braces
besides each circle denote the labels of
each state. Moreover, WU(s, a, t) = [2, 3],
WU(s, a, u) = [0, 1], and WU(s, b, u) =
[1, 2]. A reward structure for the MU can
be as follows: rU(s, a, 2) = 3, rU(s, a, 3) =
1, rU(s, a, 4) = 5, rU(s, b, 1) = 4,
rU(s, b, 2) = 3.

2 Here, B is the standard σ-algebra over Paths inf
MU generated from the set of all cylinder

sets {Pathsξ
MU | ξ ∈ Pathsfin

MU}. The unique probability measure is obtained by the
application of the extension theorem (see, e.g. [7]) .
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2.2 Interval Markov Decision Processes

In this subsection we shall introduce the notion of Interval Markov Decision
Processes, which is similar as UwMDPs except all uncertainties are represented
as probability intervals. Formally,

Definition 6 (IMDP). An Interval Markov Decision Process (IMDP) MI is
a tuple (SI, s̄I,AI, API, LI, I ), where SI is a finite set of states, s̄I ∈ SI is
the initial state, AI is a finite set of actions, API is a finite set of atomic
propositions, LI : SI → 2API is a labelling function, and I : SI × AI × SI → I

is an interval transition probability function with I being the set of subintervals
of [0, 1]. The set of available actions at state s ∈ SI is denoted by AI(s).

Furthermore, for each state s and action a, we write s
a−→ ha

s if ha
s ∈ Δ(SI) is

a feasible distribution, i.e. for each state s′ we have ha
ss′ = ha

s(s′) ∈ I (s, a, s′).
By Ha

s , we denote the set of feasible distributions ha
s ∈ Δ(SI) for state s and

action a.
As for UwMDPs, we need to define schedulers and natures for IMDPs to

resolve non-deterministic transitions.

Definition 7 (Scheduler and Nature in IMDPs). Given an IMDP MI, a
scheduler is a function σ : Pathsfin

MI → Δ(AI) that to each finite path ξ assigns a
distribution over the set of actions. A nature is a function π : Pathsfin

MI ×AI →
Δ(SI) that to each finite path ξ and action a assigns a feasible distribution, i.e.
an element of Ha

s where s = ξ ↓. We denote by ΣMI the set of all schedulers and
by ΠMI the set of all natures.

Given a state si of an IMDP, a scheduler σ, and a nature π, we proceed as
follows: First, an action a ∈ AI(si) is chosen non-deterministically by σ. Then,
π resolves the uncertainties and chooses non-deterministically one feasible dis-
tribution ha

si
∈ Ha

si
. Finally, the next state si+1 is chosen randomly according to

the distribution ha
si

.
A path in MI is a finite or infinite sequence of the form ξ = s0h

a0
s0s1

s1h
a1
s1s2

· · ·
where si ∈ SI, ai ∈ AI(si) and hai

sisi+1
> 0 for each i ≥ 0. For a finite path ξ,

we extend notions ξ ↓, ξ[i], ξ(i) to IMDPs. The set of all finite paths and the
set of all infinite paths in the given MI are denoted by Pathsfin

MI and Paths inf
MI ,

respectively. Similarly, let Pathsξ
MI = {ξξ′ | ξ′ ∈ Paths inf

MI} denote the set of
paths that have the finite prefix ξ ∈ Pathsfin

MI .

Remark 2. The size of a given MI is determined similarly as in Remark 1. Thus,
the overall size |MI| of an IMDP MI is in O(|SI|2 |AI|).
For an initial state s, a scheduler σ, and a nature π, the unique probability
measure Prσ,π

MI,s can be defined similarly as for UwMDPs. A scheduler σ is said
to be deterministic if σ(ξ)(a) = 1for all finite paths ξ for some action a.

As in Definitions 4 and 5, we can also define reward structures for IMDPs
and accumulated rewards for paths of IMDPs. The only difference is that reward
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structures are defined over states and actions, since transitions of IMDPs are not
weighted. As we shall see in Sect. 3, this makes no essential difference. Further-
more, for both IMDP and UwMDP models, it is assumed in Definitions 3 and 7
that the nature is in general history-dependent. However, for the quantitative
properties considered in this paper, it is indeed memoryless, i.e., the concrete
probability values and weights do not depend on the history.

3 Reward-Bounded Reachability Probability

In this section we shall first define maximal reward-bounded reachability prob-
abilities for UwMDPs formally, and then show that they can be computed effi-
ciently in pseudo-polynomial time.

Below defines maximal reward-bounded reachability probabilities for
UwMDPs:

Definition 8. Let λ ∈ ΛMU and γ ∈ ΓMU be a scheduler and a nature of a given
UwMDP MU. Let GU be a set of goal states. Define Prλ,γ

MU,GU : SU ×N0 → [0, 1]
by: Prλ,γ

MU,GU (s,R) := Prλ,γ
MU,s(Ω

R
GU ) where ΩR

GU := {ξ ∈ Pathss
MU | rew(ξ,GU) ≤

R}. Define Prmax
MU,GU (s,R) : SU × N0 → [0, 1] by:

Prmax
MU,GU (s,R) := sup

λ∈ΛMU
sup

γ∈ΓMU
Prλ,γ

MU,GU (s,R). (1)

From the definition, we can see that ΩR
GU is the set of paths which can reach

GU within the reward bound R. Therefore, Prmax
MU,GU (s,R) denotes the maximal

probability of reaching states in GU from s within R rewards. It is easy to see
that ΩR

GU is measurable and all functions in Definition 8 are well-defined.

Remark 3. Here we follow the convention of model checking MDPs by consid-
ering all possible resolutions of non-determinism in an UwMDP. Differently, in
UwMDPs, there are two levels of non-determinism resolved by schedulers and
natures, respectively. Therefore, the maximal reachability probability is achieved
by maximizing over all possible schedulers and natures as in Eq. (1). We men-
tion that a distinction between schedulers and natures is not necessary. However,
such a distinction increases readability of proofs and arguments discussed in the
paper, which is also adopted in [36].

In order to compute maximal reward-bounded reachability probabilities, we
could have transformed each UwMDP to its equivalent wMDP, for which existing
algorithms [1] can be applied. However, as we mentioned before, the transfor-
mation may result in a wMDP exponentially larger than the original UwMDP,
which makes the computation tedious. Instead, we show that each UwMDP MU
can be alternatively transformed into an IMDP MI, where maximal reward-
bounded reachability probabilities are preserved and can be computed efficiently.
Notably, the size of the resulting MI is in O(|MU| ∗W ), i.e., pseudo polynomial,
where

W = max{w | ∃s
a,w−−→ μ ∧ rU(s, a, w) ≤ R} (2)
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for a given reward structure rU and a reward bound R. Clearly, W ≤ max{w |
∃s

a,w−−→ μ}.
Now we describe in details how an UwMDP can be transformed into an

IMDP.

Definition 9. (Model Transformation). Given an UwMDP MU =
(SU,AU,WU, s̄U, APU, LU), a given set of goal states GU ⊆ SU, a reward
structure rU, and a reward bound R ∈ N0, the corresponding IMDP MI =
(SI, s̄I,AI, API, LI, I ) is defined as follows: SI = SU, s̄I = s̄U, API = APU,
LI = LU, AI = {aw|a ∈ AU, w ∈ {1, · · · ,W}}, where W is defined as in
Eq. (2). The reward structure rI of MI is defined by: rI(s, aw) = rU(s, a, w)
for each s ∈ SI and aw ∈ AI(t). Moreover, I (s, aw, t) := ( 1

w ·WU(s, a, t))∩ [0, 1]
for each s, t ∈ SI and aw ∈ AI(s), provided I (s, aw, t) 
= ∅. Finally, in the
resulting IMDP MI, the set of goal states is GI = GU and the initial state and
the reward bound are the same as the ones in UwMDP MU.

Directly from Definition 9, we can see that the transformation can be done in
time polynomial in both the size of the original UwMDP and W defined as in
Eq. (2). Therefore, the size of the resultant IMDP is in O(|MU| W ). Without
loss of generality, in the sequel we assume r(s, a, w) = w, hence W = R.

Fig. 2. The resultant IMDP
MI generated from the MU in
Fig. 1.

Example 1 (cont.). Consider the UwMDP MU
depicted in Fig. 1. Assume the reward bound is
R = 4. The value of W is computed as

W = max{w | ∃s
a,w−−→ μ ∧ rU(s, a, w) ≤ 4} = 3

According to the transformation described in
Definition 9, we obtain an IMDP MI, which is
depicted as in Fig. 2. The bold numbers indi-
cated besides the actions are the reward struc-
ture for the generated IMDP MI.

Remark 4. In Definition 9, we show a procedure
to transform an UwMDP to an IMDP preserving
all maximal reward-bounded reachability probabilities with reward less than
a given value. By setting W to be the largest possible reward associated to
transitions in an UwMDP in Definition 9, we can obtain an equivalent IMDP,
where all maximal reward-bounded reachability probabilities coincide with the
original UwMDP. Indeed, despite that an UwMDP represents a discrete set of
wMDPs, while an IMDP corresponds to a continuous set of MDPs, UwMDPs and
IMDPs are closely related with respect to properties considered in this paper:

– Any UwMDP can be transformed into an IMDP by associating its transi-
tions with proper rewards. However, in order to preserve all maximal reward-
bounded reachability probabilities, the size of the IMDP may blow up, as its
size depends on the largest reward in the UwMDP, which can be any positive
integer in principle.
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– Conversely, any IMDP essentially corresponds to an MDP, whose size may be
exponentially larger than the original IMDP. It is obvious that any MDP can
be transformed into a wMDP, which in turn can be seen as a special case of
UwMDP. Thus, the transformation from IMDPs to UwMDPs may also cause
an exponentially blow-up. For the moment, we do not know whether IMDPs can
be transformed into UwMDPs directly without causing exponential blow-up.

Definition 10. Let σ ∈ ΣMI and π ∈ ΠMI be a scheduler and nature of
a given IMDP MI. Define the function Prσ,π

MI,GI : SI × N0 → [0, 1] by:
Prσ,π

MI,GI(s,R) := Prσ,π
MI,s(Ω

R
GI) where ΩR

GI := {ξ ∈ Pathss
MI | rew(ξ,GI) ≤

R}. Define Prmax
MI,GI(s,R) : SI × N0 → [0, 1] by: Prmax

MI,GI(s,R) :=
supσ∈ΣMI

supπ∈ΠMI
Prσ,π

MI,GI(s,R) for each s ∈ SI and R ∈ N0.

In the following proposition, we show that our model transformation preserves
maximal reward-bounded reachability probabilities. More precisely, our trans-
formation guarantees that all optimal resolutions in the IMDP can be projected
back to the original given UwMDP. Formally,

Proposition 1. Assume we are given an UwMDP MU = (SU,AU,WU, s̄U,
APU, LU), a state s ∈ SU, a set of goal states GU ⊆ SU, and a reward bound
R ∈ N0. Let MI = (SI, s̄I,AI, API, LI, I ) be the corresponding IMDP obtained
according to Definition 9. Then: Prmax

MU,GU (s,R) = Prmax
MI,GI(s,R).

Due to this result, in the rest of this section, we turn our attention to IMDPs
to compute maximal reward-bounded reachability probabilities. Given an IMDP
MI, a state s ∈ SI, a set of goal states GI ⊆ SI, and a reward bound R ∈ N0,
we shall present a routine to compute Prmax

MI,GI(s,R).
We first define reward-positional schedulers and natures and then show that

deterministic reward-positional schedulers and natures suffice to obtain the max-
imal reward-bounded reachability probabilities in an IMDP.

Definition 11. Suppose that R[ξ] is total accumulated reward along a finite
path ξ. A scheduler σ is reward-positional if and only if σ(ξ) = σ(ξ′) whenever
ξ ↓= ξ′ ↓ and R[ξ] = R[ξ′]. Similarly, we can define reward-positional natures.

In an intuitive description, reward-positional schedulers and natures make their
decision entirely on the current state and the reward accumulated so far. Below
we show that a deterministic reward-positional scheduler and nature suffices to
achieve maximal reward-bounded reachability probability in an IMDP.

Theorem 1. Given an IMDP MI, a set of goal states GI ⊆ SI, there
exist a deterministic reward-positional scheduler σ and nature π such that
Prmax

MI,GI(s,R) = Prσ,π
MI,s(Ω

R
GI).

Because of Theorem 1, we shall assume all schedulers and natures are determin-
istic reward-positional in the sequel.
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Corollary 1. Given an IMDP MI equivalent to some UwMDP MU, let
σ ∈ ΣMI and π ∈ ΠMI be a scheduler and nature of the given MI. The
function Prσ,π

MI,GI(s,R) satisfies the following conditions: 1. If s ∈ GI, then
Prσ,π

MI,GI(s,R) = 1; 2. If s /∈ GI, then

Pr
σ,π
MI,GI (s,R) =

∑

aw∈AI(s)∧rI(s,aw)≤R
σ(s)(aw).

⎧

⎨

⎩

∑

s′∈SI
h
aw
ss′ . Pr

σ,π
MI,GI (s

′
,R − rI(s, aw))

⎫

⎬

⎭

where haw

ss′ is a feasible transition probability resolved by π(s, aw), i.e., haw

ss′ =
π(s, aw)(s′).

In the following theorem, we present the fixed-point characterization for
Prmax

MI,GI(s,R).

Theorem 2. Given an IMDP MI equivalent to some UwMDP MU, the func-
tion Prmax

MI,GI(�, �) is the least fixed-point (w.r.t ≤) of the high-order oper-
ator FGI(h) : [SI × N0 → [0, 1]] → [SI × N0 → [0, 1]] defined as follows:•
FGI(h)(s,R) = 1 for all s ∈ GI and R ∈ N0 ; • For any given s /∈ GI ,

FGI(h)(s,R) = max
aw∈AI(s)∧rI(s,aw)≤R

max
h
aw
s ∈Haw

s

∑

s′∈SI

haw

ss′ . h(s′,R − rI(s, aw))

for each h : SI × N0 → [0, 1].

We show that the problem of computing the maximal reward-bounded reach-
ability probability in an IMDP can be reduced to solving a sequence of linear
programming problems. The algorithm is shown in Algorithm 1. Intuitively, we
let probs store all computed reachability probabilities such that probs[i][r] is
the maximal probability of reaching GI from si within the reward bound r. We
compute probs inductively starting from r = 1 until r = R. At each step all
probabilities probs[i][r] are computed using values probs[i][r′] with r′ < r which
have been computed before. From the moment we fix a bound r. Let xi denote
the probability probs[i][r]. Let yi,j,a,w be the probability of going to sj by choos-
ing the transition with label aw when at state si. Hence the constraint in line 8
has to be satisfied. Line 9 guarantees the probability mass from si sums up to
1. Since yi,j,a,w is not arbitrary, but has to be within the given bound, which is
guaranteed by line 10.

In the next lemma, we discuss the time complexity of the proposed routine
to compute Prmax

MI,GI(s,R). Formally,

Lemma 1. Algorithm 1 is sound and complete, and it is guaranteed to terminate
in time polynomial with respect to the size of IMDP MI and the reward bound R.

As the transformation in Definition 9 is also pseudo polynomial, we obtain the
main result of this paper.

Theorem 3. Maximal reward-bounded reachability probabilities for an UwMDP
MU can be computed in pseudo polynomial time O(|MU|R2).
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Algorithm 1. Computing maximal reward-bounded reachability
Input: An IMDP MI, a state s0, a set of goal states GI, and a reward bound R.
Output: The maximal probability of reaching GI from s0 within the bound R.

1 begin
2 n ← |SI|;
3 ∀0 ≤ i < n, 0 ≤ r ≤ R.probs[i][r] = (1 if si ∈ GI else 0);
4 for (r = 1 to R) do
5 ∀0 ≤ i < n.probs[i][r] = xi, where xi is determined by the following LP

problem;
6 min

∑

0≤i<n xi;

7 for (0 ≤ i < n and aw ∈ AI(si) with rI(si, aw) ≤ r) do
8 xi ≥∑0≤j<n probs[j][r − rI(si, aw)] · yi,j,a,w;

9
∑

0≤j<n yi,j,a,w = 1;

10 ∀0 ≤ j < n.yi,j,a,w ∈ I (si, aw, sj);

11 return probs[0][R];

Remark 5. The extension of Algorithm 1 to deal with minimal reward-bounded
reachability is straightforward. We note that extreme reachability probabilities
without reward bounds in UwMDPs can also be computed efficiently using the
technique presented in [36]. The only change we need to make is Definition 9,
where a reward bound is necessary for the transformation. However, if the reward
bound is not available, we can simply let R be the maximal weight appearing
in the given UwMDP. After that, the algorithm in [36] can be applied directly.
Along the same routine in [1], the algorithm can be extended to deal with full
PRCTL. We omit the details in this paper.

4 Compositional Minimization for Uncertain Weighted
MDPs

In this section we extend the notion of probabilistic bisimulation [39] to
UwMDPs. We first show its compositionality with respect to a parallel oper-
ator, then give a decision algorithm for it. Finally, we discuss the complexity of
the algorithm.

4.1 Probabilistic Bisimulation

Below defines bisimulation relations over states of an UwMDP, which is an
extension of the definition in [12]. For simplicity, we omit reward structures in
this section, which can be integrated easily.

Definition 12. Let MU := (SU,AU,WU, s̄U, APU, LU) be an UwMDP. Let
R ⊆ SU × SU. R is a bisimulation iff s R t implies: • LU(s) = LU(t); •
whenever s

a,w−−→ μ, there exists t
a,w−−→c ν such that μ ≡R ν; • symmetrically
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for t. Two states s and t are bisimilar, written as s ∼ t, iff there exists a
bisimulation R such that s R t.

The following proposition is straightforward from Definition 12.

Proposition 2. ∼ is an equivalence relation.

4.2 Compositionality

In this subsection we first introduce the notion of parallel operator for UwMDPs,
and then we show that bisimulation in Definition 12 is compositional with respect
to the parallel operator.

Below introduces the parallel operator for UwMDPs inspired by the one
defined in [33] for probabilistic automata.

Definition 13. Let Mi
U with i ∈ {0, 1} be two UwMDPs. Let A ⊆ A0

U ∩ A1
U

be a set of actions. The parallel composition of M0
U and M1

U by enforcing
synchronization on actions in A, denoted M0

U ‖A M1
U, is an UwMDP MU,

where • SU = S0
U × S1

U; • AU = A0
U ∪ A1

U; • whenever a ∈ A and
∀i ∈ {0, 1}.W i

U(si, a, ti) = [wi
l , w

i
h], then WU(s0 ‖A s1, a, t0 ‖A t1) = [wl, wh],

where wl = w0
l × w1

l and wh = w0
h × w1

h; • whenever a 
∈ A and ∃i ∈
{0, 1}.W i

U(si, a, ti) = [wi
l , w

i
h], then WU(s0 ‖A s1, α, t0 ‖A t1) = [wi

l , w
i
h], where

t1−i = s1−i; • s̄U = s̄0U ‖A s̄1U; • LU(s0 ‖A s1) = LU(s0) ∪ LU(s1).

Definition 13 resembles the definition of parallel operator in [33] in the sense
that weights are handled in the same way as probabilities. Since weights in our
models play the role of resolving non-deterministic transitions in a probabilistic
manner. This explains why weight bounds are multiplied in Definition 13.

Let Mi
U with i ∈ {0, 1} and A be as in Definition 13. We say ∼ is com-

positional with respect to ‖A iff for any s, t ∈ S0
U, whenever s ∼ t, then

s ‖A u ∼ t ‖A u for any u ∈ S1
U. Below we show that ∼ is indeed composi-

tional.

Theorem 4. ∼ is compositional.

4.3 Decision Algorithm

In this subsection we show that bisimulations defined in Definition 12 can
be decided in polynomial time. Our algorithm follows the classical partition-
refinement approach [12,19,25,27].

Before presenting the algorithm we give an alternative definition of bisimu-
lation and show that it is equivalent to Definition 12. Let W l

U(s, a, s′) = wl and
Wh

U(s, a, s′) = wh, where WU(s, a, s′) = [wl, wh].

Lemma 2. Let MU := (SU,AU,WU, s̄U, APU, LU) be an UwMDP. Let R ⊆
SU × SU be an equivalence relation. R is a bisimulation iff s R t implies •
LU(s) = LU(t); • W l

U(s, a, C) = W l
U(t, a, C) and Wh

U(s, a, C) = Wh
U(t, a, C) for

each C ∈ SU/R, where W l
U(s, a, C) =

∑
s′∈C W l

U(s, a, s′) and Wh
U(s, a, C) =∑

s′∈C Wh
U(s, a, s′).
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Algorithm 2. Deciding bisimulation
Input: An UwMDP MU := (SU,AU, WU, s̄U, APU, LU), two states s, t ∈ SU.
Output: ‘true’ if s ∼ t, or ‘false’ otherwise.

1 begin
2 Partition ← {{SU}};
3 splitter ← FindSplitter(Partition);
4 while (splitter �= ∅) do
5 Partition ← Refine(MU, Partition, splitter);
6 splitter ← FindSplitter(MU, Partition);

7 if there exists C ∈ Partition such that s, t ∈ C then
8 return true;
9 else

10 return false;

Algorithm 3. Procedure FindSplitter

Input: An UwMDP MU := (SU,AU, WU, s̄U, APU, LU) and Partition.
Output: A splitter of Partition with respect to ∼.

1 begin
2 for (C ∈ Partition and s, t ∈ C) do
3 for (C′ ∈ Partition and a ∈ AU) do

4 if W l
U(s, a, C′) �= W l

U(t, a, C′) or W h
U(s, a, C′) �= W h

U(t, a, C′) then
5 return (C′, a);

6 return ∅;

Because of Lemma 2, we can now present the algorithm to check whether
two states are bisimilar. The key procedure is FindSplitter presented in
Algorithm 3, which finds a pair (C ′, a) of block in the current partition and
an action a distinguishing two states in a block. The found splitter (C ′, a) is
then used by Algorithm 2 to further refine the current partition. The algorithm
terminates if no splitter can be found and the current partition stays stable.

Even though UwMDPs offer a compact manner to encode uncertainties
appearing in a weighted MDP, which may be exponentially larger than its cor-
responding UwMDP, we do not need to pay extra costs to compute bisimula-
tion relations on UwMDPs. Formally, Algorithm 2 has the same complexity as
Algorithm 1 in [12], where n and m are the numbers of states and (uncertain)
transitions in an UwMDP, respectively.

Theorem 5. Algorithm 2 terminates in time O(n(n2 + m)) in the worst case.

5 Case Studies

The goal of this experiment is two-fold: (1) quantitatively evaluate the impact
of uncertainty on the results of verification of reward-bounded reachability
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probabilities of UwMDPs; (2) assess the impact of compositional minimization,
as a pre-processing step, on speeding up the run time of the model checking algo-
rithm. Our prototype is built upon the tool presented in [36], which is able to
model check PCTL properties over IMDPs. The tool is implemented in Python
and relies on MOSEK (http://www.mosek.com) to solve all linear programming
problems. All experiments were obtained on a laptop with an Intel i7-4600U
2.1 GHz CPU and 4 GB RAM running Ubuntu.

Our first case study is inspired by “Autonomous Nondeterministic Tour
Guides” (ANTG) in [11], which models a complex museum with a variety of
collections. Models in [11] are MDPs. In our experiment, we will insert some
uncertainties in a way that we will describe in details soon. Due to the popular-
ity of the museum, there are many visitors at the same time. Different visitors
may have different preferences of arts. We assume the museum divides all collec-
tions into different categories so that visitors can choose what they would like to
visit and pay tickets according to their preferences. In order to obtain the best
experience, a visitor can first assign certain weights to all categories denoting
their preferences to the museum, and then design the best strategy for a target.
However, the preference of a sort of arts to a visitor may depend on many factors
like price, weather, or the length of queue at that moment etc., hence it is hard
to assign fixed values to these preferences. In our model we allow uncertainties
of preferences such that their values may lie in an interval.

For simplicity we assume all collections are organized in an n×n square with
n ≥ 10. Let m = n−1

2 . We assume all collections at (i, j) are assigned with a
weight 1 if |i − m| > n

5 or |j − m| > n
5 , with a weight 2 if |i − m| ∈ ( n

10 , n
5 ] or

|j − m| ∈ ( n
10 , n

5 ]; otherwise they are assigned with a weight interval [2, 4]. In
other words, we expect collections in the middle will be more popular and subject
to more uncertainties than others. Furthermore, we assume that people at each
location (i, j) have two non-deterministic choices: either move to the north and
west, or to the north and east if i ≥ j, while if i ≤ j, they can move either
to the south and west, or to the south and east. Therefore, for a model with
parameter n, it has n2 states in total and roughly 2n2 transitions, 2 % of which
are associated with uncertain weights. Notice that a transition with uncertain
weights essentially corresponds to several transitions with concrete weights. In
each ANTG model, the 2 % transitions with uncertain transitions contribute to
about 20 % of transitions in the resultant wMDP.

We define a reward structure denoting the reward one can obtain by visiting
each collection. For simplicity, we let the reward be the same as the weight of
a collection. Let the point (0, 0) be the entrance and (n − 1, n − 1) the exit.
We can ask questions like “Whether it is possible to go through the museum,
i.e., from the entrance to the exit, with probability greater than 0.9, while the
accumulated reward is not greater than R, i.e., P≥0.9(F≤Rexit)”.

Our experiment results without computing bisimulation quotients are shown
in Table 1, which presents the time (in minute) taken to compute P≥0.9(F≤Rexit)
with corresponding reward bounds and models of different sizes. For each case,
we keep increasing the bound until the probability is greater than 0.9. All cells
marked with’-’ denote cases that we did not reach. We also implemented the

http://www.mosek.com
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Table 1. Experiment results without bisimulation minimization(in minute)

Table 2. Experiment results without bisimulation minimization(in minute)

algorithm to compute bisimulation relations. Table 2 presents the experiment
results, where bisimulation minimization was conducted before performing ver-
ification. In this figure, reported time is sum of the time spent to conduct the
minimization and the time spent to check the quotient systems. The column
“BisimMin” of Tables 2 denotes the time spent to conduct the minimization,
while the column “Ratio” shows ratios between time to compute reachability
probabilities with and without bisimulation minimization. All values in column
“Ratio” are obtained by comparing time corresponding to the maximal reached
reward for each case in Tables 1 and 2. For instance, when n = 80, we divide
60.01 by 114.19 (c = 400), hence 0.53 is obtained. Similarly, for the case with
n = 100 and c = 550, bisimulation minimization accelerated the verification for
more than 40 %. The time of computing reachability probabilities without/with
computing bisimulation quotients is visualized in Fig. 3a for n = 90 where “BM”
denotes “bisimulation minimization”. The counterpart for n = 100 is depicted
in Fig. 3b. We shall see that the larger of the model and the reward bound, the
more time we will save by applying bisimulation minimization.



Reward-Bounded Reachability Probability for Uncertain Weighted MDPs 367

100 200 300 400 500

0

50

100

150

200

reward bound

tim
e

Without BM
With BM

(a) n 90

0 100 200 300 400 500 600

0

0.5

1

1.5

2

10. 4

reward bound

tim
e

Without BM
With BM

(b) n 100

Fig. 3. Performance difference with and without bisimulation minimization (in minute)

To the best of our knowledge, there is no algorithm or tool, which can deal
with UwMDPs directly. However, we can reduce the model checking of UwMDPs
to checking their equivalent wMDPs. For instance if WW(s, a, s1) = [1, 2] and
WW(s, a, s2) = [2, 3], then essentially s has four non-deterministic transitions:
s

a,3−−→ { 1
3 : s1,

2
3 : s2}, s

a,4−−→ { 1
4 : s1,

3
4 : s2}, s

a,4−−→ { 1
2 : s1,

1
2 : s2}, and

s
a,5−−→ { 2

5 : s1,
3
5 : s2}. After resolving all uncertainties, we can apply the existing

algorithm [1] to compute maximal reward-bounded reachability probabilities.
Obviously, this step may cause an exponential blow-up. Indeed, our experiment
showed that when the proportion of states with uncertain weights in an UwMDP
is not trivial, such enumeration is very time consuming. For instance when n = 10
and R = 100, our algorithm took around 135 seconds, while the näıve approach
took more than 10 min, provided that all transitions are associated with a weight
interval [1,6].

In the second case study we consider randomized consensus protocol [2,32].
Models are obtained from PRISM benchmarks by adding some uncertainties
to the transition probabilities. In order to evaluate how the algorithm scales
with respect to weight intervals of different sizes, i.e., their lower and upper
bounds and lengths, we performed experiments on models after inserting weight
intervals of various sizes. Specifically, instead of using a fair coin, we adopt
an unfair coin with uncertainties: After each coin tossing, head and tail will
occur with probabilities according to weights in [6 − δ, 7 − δ] and [8 − δ, 10 − δ],
respectively, where δ is an integer in [0, 5]. We consider the minimal probability
of reaching a set of goal states within a given reward bound, where the goal states
are those labeled by atomic propositions “finished” and “all coins equal 0”. The
experiment results are shown in Fig. 4, for which we can see that the amount of
uncertainties has an important impact on the verification time, especially when
the reward bound is large. This is as expected since the size of the underlying
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Fig. 4. Experiment results of randomized consensus protocols (in seconds)

wMDP of an UwMDP increases exponentially with respect to the amount of
uncertainties in the UwMDP.

We have omitted most details of randomized consensus protocol. We refer
interested readers to [31] for detailed descriptions.

6 Concluding Remarks

In this paper, we established a fixed-point characterization for maximal reward-
bounded reachability probabilities in UwMDPs as well as a pseudo polynomial
algorithm to compute these probabilities. In this work, we assumed cooperative
resolution of non-determinisms in which both scheduler and nature are playing
together to maximize the model performance, i.e., reachability probabilities. We
propose a notion of bisimulation relations of UwMDPs and show that they are
compositional and can be computed efficiently in polynomial time. We demon-
strate feasibility of our theory via some case studies. All results proposed in this
paper can be extended to model check the Probabilistic Reward Computation
Tree Logic (PRCTL) [1] in a standard way [3].

As future work, we aim to address a richer formalism for uncertainties such
as likelihood or ellipsoidal uncertainties to capture a less conservative analysis.
Optimal control of UwMDPs is another interesting direction for future work in
which we aim to synthesize a strategy for UwMDPs such that the performance
of the model becomes optimized under all resolution of uncertainties. Also, we
plan to extend our approach to the multi-objective setting, e.g. multi-objective
reachability problem under the presence of uncertainties, and to apply the com-
positional minimization approach to further complicated case studies.
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Abstract. Interval Markov Chains (IMCs) are the base of a classic prob-
abilistic specification theory introduced by Larsen and Jonsson in 1991.
They are also a popular abstraction for probabilistic systems. In this
paper we study parameter synthesis for a parametric extension of Inter-
val Markov Chains in which the endpoints of intervals may be replaced
with parameters. In particular, we propose constructions for the synthe-
sis of all parameter values ensuring several properties such as consistency
and consistent reachability in both the existential and universal settings
with respect to implementations. We also discuss how our constructions
can be modified in order to synthesise all parameter values ensuring other
typical properties.

1 Introduction

Interval Markov Chains (IMCs for short) extend Markov Chains by allowing
to specify intervals of possible probabilities on transitions instead of precise
probabilities. When modelling real-life systems, the exact value of transition
probabilities may not be known precisely. Indeed, in most cases, these values are
measured from observations or experiments which are subject to imprecision. In
this case, using intervals of probabilities that take into account the imprecision
of the measures makes more sense than using an arbitrary but precise value.

IMCs have been introduced by Larsen and Jonsson [22] as a specification
formalism—a basis for a stepwise-refinement-like modelling method, where ini-
tial designs are very abstract and underspecified, and then they are made contin-
uously more precise, until they are concrete. Unlike richer specification models
such as Constraint Markov Chains [7] or Abstract Probabilistic Automata [13],
IMCs are difficult to use for compositional specification due to the lack of basic
modelling operators. Nevertheless, IMCs have been intensively used in order to
model real-life systems in domains such as systems biology, security or commu-
nication protocols [2,6,17,25]. Going further in the abstraction hierarchy, one
could then assume that the endpoints of probability intervals are also imprecise.
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As an example, consider that a given component can be built with arbitrary
quality by using different, more or less costly, materials. This quality can be
related in practice to the maximal error rate of the component, which is reflected
in our design by the upper endpoint of the interval associated with a transition
leading to an error state. Since this value can be chosen arbitrarily, it can be
represented as a parameter. Obviously, if several instances of this component are
embedded in our design, the same parameter will be used in several places. In
this setting, the designer will be interested in computing the set of acceptable
values for this parameter – i.e. ensuring that the overall design satisfies some
given properties; or synthesising the best acceptable value for this parameter
– i.e. giving the best compromise between some given (quantitative?) property
and the production cost.

This new setting thus calls for methods and tools for modelling and analysing
IMCs where interval endpoints are not fixed in advance.

Parametric Interval Markov Chains (pIMCs for short) have been introduced
in [15] as an extension of IMCs that allows for using parameters instead of
numeric values as the lower or upper endpoint of intervals. The goal of using
such a model is then to synthesise parameter values ensuring correctness w.r.t.
given properties. In this paper, we focus on the first basic property of such
models: consistency. Consistency of a parameter valuation in a given pIMC
boils down to verifying that the chosen parameter values are not incoherent,
i.e. that the resulting IMC can be implemented. While [15] focuses on deciding
whether a consistent parameter valuation exists in a given pIMC, we propose
in this paper constructions for synthesising all consistent parameter valuations
of a given pIMC. In addition, we also consider other objectives such as reach-
ability or avoidability while always guaranteeing consistency. Reachability can
be formulated in two flavours: either universal reachability, i.e. ensuring that all
implementations reach a given set of states, or existential reachability, i.e. ensur-
ing that there exists at least one implementation that satisfies the property. We
therefore propose constructions for solving both problems while still ensuring
consistency of the model.

Related work. Our work is a follow-up on [15], which is to the best of our knowl-
edge the only existing work addressing parametric probabilistic specification the-
ories where parameters range over probability values. In [15], we only study the
consistency problem in the existential setting and propose an algorithm for decid-
ing whether there exists at least one parameter valuation ensuring consistency for
a subclass of pIMCs. In contrast, the results we provide here are fully general, and,
more importantly, we attack a slightly different problem that consists in synthe-
sising all parameter values ensuring consistency and reachability.

Other classes of systems where parameters give some latitude on probability
distributions, such as parametric Markov models [23], have been studied in the
literature [19,24]. The activity in this domain has yielded decidability results [21],
parametric probabilistic model-checking algorithms [11] and even tools [12,20].
Continuous-time parametric and probabilistic models have also been considered
in some very restricted settings [9]. Networks of probabilistic processes where
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the number of processes is a parameter have also been studied in [4,5], and
probabilistic timed automata with parameters in clock constraints and invariants
have been studied in [1].

In another setting, the model checking problem for Interval Markov Chains
has been addressed in [3,8,10]. In [3,10], the authors propose algorithms and
complexity bounds for checking respectively ω-regular and LTL properties on
Interval Markov Chains with closed intervals. [3] assumes that parameters can
be present in the models and formulae, but these parameters do not range on
the probability endpoints of the intervals, as in our work. On the other hand, [8]
focuses on Interval Markov Chains with open intervals and proposes algorithms
for verifying PCTL properties but does not consider parameters.

Outline. First, Sect. 2 recalls the basic definitions and notations of Interval
Markov chains and their parametric extension. Then, Sect. 3 explores the con-
sistency of Parametric Interval Markov Chains and proposes a construction for
synthesising all the parameter valuations that guarantee consistency. The prob-
lem of existential consistent reachability is addressed in Sect. 4, and we show
how our constructions can be adapted to solve other problems such as consistent
avoidability and universal consistent reachability. Finally, Sect. 5 summarises the
paper contributions and gives hints for future work. For space reasons, our proofs
are presented in an extended version of this paper [16].

2 Background

Throughout the paper, we use the notion of parameters. A parameter p ∈ P is
a variable ranging through the interval [0, 1]. A valuation for P is a function ψ :
P → [0, 1] that associates values with each parameter in P . We write Int[0,1](P )
for the set of all closed parametric intervals of the form [x, y] where x, y can be
either reals in the interval [0, 1] or parameters from P . When P = ∅, we write
Int[0,1] = Int[0,1](∅) to denote closed intervals with real-valued endpoints. Given
an interval I of the form I = [a, b], Low(I) and Up(I) respectively denote the lower
and upper endpoints of I, i.e. a and b. Given an interval I = [a, b] ∈ Int[0,1], we
say that I is well-formed whenever a ≤ b. It is worth noting that, for readability
reasons, we limit ourselves to closed intervals. Nevertheless, all the results we
propose can be extended with minor modifications to open/semi-open intervals
whose endpoints contain linear combinations of parameters and constants.

Given a parametric interval I ∈ Int[0,1](P ) and a parameter valuation
ψ : P → [0, 1], we write ψ(I) for the interval of Int[0,1] obtained by substi-
tuting in the endpoints of I each parameter p by the value ψ(p). Constraints
on parameter valuations are expressions on parameter variables that restrict
their potential values. Given a constraint C over P and a parameter valuation
ψ : P → [0, 1], we write ψ � C when the parameter valuation satisfies constraint
C. In the following, we abuse notations and identify constraints on parameter
valuations with the set of parameter valuations that satisfy them. Therefore,
given a constraint C over P , we sometimes write ψ ∈ C instead of ψ � C.
We also use intersections (resp. unions) of constraints to represent the set of
parameter valuations satisfying their conjunction (resp. disjunction).
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Given a finite set S, we denote by Dist(S) the set of distributions over S,
i.e. the set of functions ρ : S → [0, 1] such that

∑
s∈S ρ(s) = 1. In the rest of the

paper, we assume that all the states in our structures are equipped with labels
taken from a fixed set of atomic propositions A. A state-labelling function over
S is thus a function V : S → 2A that assigns to each state a set of labels in A.

2.1 Markov Chains Definitions

We recall the notion of Markov Chains (MCs), that will act as models for (para-
metric) IMCs. An example of a Markov Chain is given in Fig. 1a.

Definition 1 (Markov Chain). A Markov Chain is a tuple M =
(S, s0,M,A, V ), where S is a finite set of states containing the initial state
s0, A is a set of atomic propositions, V : S → 2A is a labeling func-
tion, and M : S × S → [0, 1] is a probabilistic transition function such that
∀s ∈ S,

∑
t∈S M(s, t) = 1.

We now recall the notion of Interval Markov Chains (IMCs), adapted from [14].
IMCs are a specification formalism that allows one to represent an infinite set
of MCs. Roughly, IMCs extend MCs by replacing exact probability values on
transitions with intervals of allowed probability values. An example of an IMC
is given in Fig. 1b.

Definition 2 (Interval Markov Chain [14]). An Interval Markov Chain
(IMC) is a tuple I = (S, s0, ϕ,A, V ), where S, s0, A and V are as for MCs,
and ϕ : S × S → Int[0,1] is a transition constraint that associates with each
potential transition an interval of probabilities.

The following definition recalls the notion of satisfaction introduced in [14]. Satis-
faction (also called implementation in some cases) allows to characterise the set of
MCs represented by a given IMC specification. Crucially, satisfaction abstracts
from the syntactic structure of transitions in IMCs: a single transition in the
implementation MC can contribute to satisfaction of more than one transition
in the specification IMC, by distributing its probability mass against several
transitions. Similarly many MC transitions can contribute to the satisfaction of
just one specification transition. This crucial notion is embedded in the so-called
correspondence function δ introduced below. Informally, such a function is given
for all pairs of states (t, s) in the satisfaction relation, and associates with each
successor state t′ of t – in the implementation MC – a distribution over potential
successor states s′ of s – in the specification IMC – specifying how the transition
t → t′ contributes to the transition s → s′.

Definition 3 (Satisfaction Relation [14]). Let I = (S, s0, ϕ,A, V I) be an
IMC and M = (T, t0,M,A, V M ) be a MC. A relation R ⊆ T ×S is a satisfaction
relation if whenever tRs,



376 B. Delahaye et al.

1. the labels of s and t agree: V M (t) = V I(s),
2. there exists a correspondence function δ : T → (S → [0, 1]) such that

(a) for all t′ ∈ T such that M(t, t′) > 0, δ(t′) is a distribution on S,
(b) for all s′ ∈ S, we have (

∑
t′∈T M(t, t′) · δ(t′)(s′)) ∈ ϕ(s, s′), and

(c) for all t′ ∈ T and s′ ∈ S, if δ(t′)(s′) > 0, then (t′, s′) ∈ R.
We say that state t ∈ T satisfies state s ∈ S (written t |= s) iff there exists
a (minimal) satisfaction relation containing (t, s) and that M satisfies I
(written M |= I) iff t0 |= s0.

The notion of satisfaction between the MC M from Fig. 1a and the IMC I
from Fig. 1b is illustrated in Fig. 1c. In this figure, we remark that the transition
1 → 3 in the MC M partly contributes to the satisfaction of transitions A → B
and A → C in the IMC I. Similarly, transitions 1 → 2 and 1 → 3 in the MC M
both contribute to the satisfaction of transition A → B in the IMC I.
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Fig. 1. Markov Chain, Interval Markov Chain and satisfaction relation [14]

The set of MCs satisfying a given IMC I is written [[I]]. Formally, [[I]] =
{M | M |= I}. We say that an IMC I is consistent iff [[I]] �= ∅. Although
the satisfaction relation abstracts from the syntactic structure of transitions,
we recall the following result from [15], that states that whenever a given IMC
is consistent, it admits at least one implementation that strictly respects its
structure.

Theorem 1 ([15]). An IMC I = (S, s0, ϕ,A, V ) is consistent iff it admits an
implementation of the form M = (S, s0,M,A, V ) where, for all reachable states
s in M, it holds that M(s, s′) ∈ ϕ(s, s′) for all s′.

In the following, we say that state s is consistent in the IMC I = (S, s0, ϕ,A, V )
if there exists an implementation M = (S, s0,M,A, V ) of I in which state s is
reachable with a non-zero probability.
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2.2 pIMCs and their Relations to IMCs/MCs

We now recall the notion of Parametric Interval Markov Chain (pIMC), previ-
ously introduced in [15]. Intuitively, pIMCs extend IMCs by allowing parameters
to be used as interval endpoints.

Definition 4 (Parametric Interval Markov Chain). A parametric Interval
Markov Chain (pIMC) is a tuple IP = (S, s0, ϕP , A, V, P ), where S, s0, A and
V are as for IMCs, P is a set of variables (parameters) ranging over [0, 1] and
ϕP : S×S → Int[0,1](P ) associates with each potential transition a (parametric)
interval.

Given a pIMC IP = (S, s0, ϕP , A, V, P ) and a parameter valuation ψ : P →
[0, 1], we write ψ(IP ) for the IMC obtained by replacing ϕP by the function
ϕ : S × S → Int[0,1] defined by ∀s, s′ ∈ S, ϕ(s, s′) = ψ(ϕP (s, s′)). The IMC
ψ(IP ) is called an instance of pIMC IP .

Finally, we say that a MC M = (T, t0,M,A, V M ) implements pIMC IP ,
written M |= IP , iff there exists an instance I of IP such that M |= I. We
write [[IP ]] for the set of MCs implementing IP and say that a pIMC is consistent
iff its set of implementations is not empty.

In the rest of the paper, and in particular in examples, we sometimes omit
atomic propositions in our figures and reasonings as they do not impact any of
the problems we solve.

3 Consistency

When considering IMCs, one question of interest is to decide whether it is con-
sistent without computing its set of implementations. This problem has already
been addressed in the literature [14,15], yielding polynomial decision algorithms
and procedures that produce one implementation when the IMC is consistent.
The same question holds for pIMCs, although in a slightly different setting.
In [15], we have proposed a polynomial algorithm for deciding whether a given
pIMC is consistent, in the sense that it admits at least one parameter valuation
for which the resulting IMC is consistent.
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Example 1. Consider pIMC IP given in Fig. 2. In this pIMC, parameters p and
q appear in the outgoing transitions of several states, therefore the algorithm
presented in [15] cannot be used in order to decide if IP is consistent. From the
outgoing transitions of state 4, we can extract constraints stating that the value
of parameter p must be at the same time greater than 0.5 and lower than 0.3.
Although state 4 is thus clearly inconsistent, IP can still be consistent if there
exists implementations avoiding state 4. Hence, the probability to move from
state 2 to state 4 must be 0. Such an implementation is given in Fig. 3 for the
parameter valuation p = q = 0.5.

In this section, we move one step further and introduce a construction that syn-
thesises all parameter valuations ensuring that a given pIMC is consistent. Observe
that consistency is a recursive notion: a state is consistent iff there exists a distrib-
ution matching its outgoing intervals and such that all states reached through this
distribution are themselves consistent. Based on this observation, we propose an
inductive notion of n-consistency that follows this reasoning to a given depth n.
We then build on this notion to synthesise the set of parameter valuations ensuring
that a given pIMC is consistent. The section is organised as follows.

We start by introducing notions and notations that will be used throughout
the rest of the paper. We then introduce the notion of n-consistency in the IMC
setting, adapt it to the pIMC setting and finally present our main contribution:
a construction that synthesises all parameter valuations ensuring that a given
pIMC is consistent.

3.1 Notations

Let IP = (S, s0, ϕP , A, V, P ) be a pIMC and let s ∈ S be a state of IP . We
say that state s is consistent in pIMC IP if there exists an implementation
M = (S, s0,M,A, V ) of IP in which s is reachable from s0.

In order to decide whether a given IMC is consistent, we need to address
the set of potential successors of a given state s. Obviously, this set of potential
successors will depend on the values given to the parameters in IP . Nevertheless,
we can rule out all states s′ for which the interval of probabilities going from
s to s′ in IP is [0, 0]. We thus write Succ(s) for the set of states that can
be reached from s with a probability interval not reduced to [0, 0]. Formally,
Succ(s) = {s′ ∈ S | ϕP (s, s′) �= [0, 0]}.

Other states of interest are the states s′ for which ϕP (s, s′) is not reduced
to [0, 0], but that can still be avoided as successors by setting the actual
probability of going from s to s′ to 0 in an implementation. In order to
be able to set this probability to 0, the subsequent interval must contain
the value 0. As a consequence, s′ must be such that Low(ϕP (s, s′)) = 0 or
such that the lower endpoint of the interval of probability is a parameter,
i.e. Low(ϕP (s, s′)) ∈ P . Indeed, in this case, we can force this interval to
contain 0 by setting the value of its lower endpoint to 0. We thus define
LP (s) = {s′ ∈ Succ(s) | Low(ϕP (s, s′)) ∈ P} and Z(s) = LP (s) ∪ {s′ ∈
Succ(s) | Low(ϕP (s, s′)) = 0}. Therefore, states in Z(s) can be avoided as suc-
cessors of s in some implementations. We now propose a constraint on parameter
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valuations that ensures that a probability distribution exists that matches
the outgoing intervals of s while reaching only states from a given set S′.

LC(s, S′) =

[
∑

s′∈S′
Up(ϕP (s, s′)) ≥ 1

]
∩

[
∑

s′∈S′
Low(ϕP (s, s′)) ≤ 1

]

∩
[

⋂

s′∈S′
Low(ϕP (s, s′)) ≤ Up(ϕP (s, s′))

]

Informally, LC(s, S′) represents all parameter valuations ensuring that all out-
going intervals of s are well-formed and that the sum of their lower endpoints is
lower or equal to 1 while the sum of their upper endpoints is greater or equal to 1.

Example 2. Consider pIMC IP from Fig. 2. We illustrate the construction of
LC for state 2 of IP . Let S′ = {0, 1, 2, 3}. From the definition of LC, we obtain
LC(2, {0, 1, 2, 3}) = (p + q ≥ 1) ∩ (0 ≤ 1) ∩ (p ≥ 0) ∩ (q ≥ 0). As a consequence,
ψ ∈ LC(2, {0, 1, 2, 3}) iff ψ(p) + ψ(q) ≥ 1.

As a clear consequence of the definition of LC, any parameter valuation ψ is in
LC(s, S′) iff there exists a distribution in the IMC ψ(IP ) that avoids all states
not in S′ and satisfies all the intervals of probability going from s to S′.

Proposition 1. Given a pIMC IP = (S, s0, ϕP , A, V, P ), a state s ∈ S and a
set S′ ⊆ Succ(s), we have that for any parameter valuation ψ,

ψ ∈ LC(s, S′) ⇐⇒ ∃ρ ∈ Dist(S) s.t.
{∀s′ ∈ S \ S′, ρ(s′) = 0 and

∀s′ ∈ S′, ρ(s′) ∈ ψ(ϕP (s, s′))

We remark that the intervals associated with transitions to states outside of S′

are not taken into account in this proposition. Indeed, we only ensure that there
exists a distribution ρ such that the intervals of probability going from s to S′

are satisfied and ρ(S \ S′) = 0, but we do not ensure that 0 is an admissible
probability value for transitions going from s to S \ S′. Therefore S′ has to
be well chosen, i.e. such that (Succ(s) \ S′) ⊆ Z(s), and LC(s, S′) has to be
accompanied with other constraints in order to ensure that 0 is an admissible
probability value for transitions going outside of S′.

3.2 The Notion of n-consistency for IMCs

We now introduce the notion of n-consistency in the IMC setting and then
adapt this notion to pIMCs. Informally, a state s is n-consistent in IMC
I = (S, s0, ϕ,A, V ) if there exists an unfolding of depth n starting from s for
which each node admits a probability distribution satisfying all of its outgoing
probability intervals. Intuitively, if one can find a sufficiently deep unfolding sat-
isfying this property from s0, then the IMC is consistent. Finding the optimal
depth for this unfolding is an issue, but we prove later in the section that we do
not need to go deeper than |S|. In practice, n-consistency is defined by induc-
tion over the structure of I. The intuition is that state s ∈ S is n-consistent
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iff there exists a distribution ρ matching its outgoing intervals, and if n > 0
then ρ(s′) > 0 implies that s′ is (n − 1)-consistent. Unfortunately, this intuitive
definition raises an issue: it may be the case that some state s′ appears several
times in the unfolding from s and we cannot ensure that the same outgoing
distribution is chosen every time s′ appears. This is problematic as we want use
this unfolding in order to build an implementation respecting the structure of
I, and we therefore need to provide a unique distribution for each reachable
state in S. We thus propose an alternative definition that first fixes an outgoing
distribution for all states via a function D : S → Dist(S) and then enforces this
distribution in the induction.

Definition 5 (n-consistency). Let I = (S, s0, ϕ,A, V ) be an IMC and let D :
S → Dist(S) be a function that assigns a distribution on S to each state of I.
State s ∈ S is (n,D)-consistent iff for all s′ ∈ S, D(s)(s′) ∈ ϕ(s, s′), and, for
n > 0, D(s)(s′) > 0 implies s′ is (n − 1,D)-consistent.

We say that s is n-consistent if there exists D : S → Dist(S) such that s is
(n,D)-consistent.

We start with the following intuitive observation: whenever a given state is
(n,D)-consistent, then it is also (n − 1,D)-consistent.

Lemma 1. Given an IMC I = (S, s0, ϕ,A, V ), a function D : S → Dist(S)
and a state s ∈ S, for all n > 0, s ∈ S is (n,D)-consistent implies s ∈ S is
(n − 1,D)-consistent.

Although the definition of n-consistency introduced above requires that a unique
distribution is fixed a priori for all states in the IMC, we show in the following
lemma that this is in fact not necessary and that the function D : S → Dist(S)
can be constructed on-the-fly.

Lemma 2. Given an IMC I = (S, s0, ϕ,A, V ) and a state s ∈ S, we have that
for all n > 0, if there exists ρ ∈ Dist(S) such that ρ(s′) ∈ ϕ(s, s′) for all s′

and ρ(s′) > 0 implies that s′ is (n − 1)-consistent, then there exists a function
D : S → Dist(S) such that D(s) = ρ and s is (n,D)-consistent.

Definition 5 is thus equivalent to the following intuitive inductive definition: a
state s is n-consistent iff there exists a distribution ρ satisfying all of its outgoing
probability intervals and such that for all s′ ∈ S, ρ(s′) > 0 implies that s′ is
(n − 1)-consistent.

Example 3. Consider pIMC IP from Fig. 2 and two of its instances ψ1(IP ) and
ψ2(IP ), with ψ1(p) = ψ1(q) = 0.3 and ψ2(p) = ψ2(q) = 0.5. In both IMCs, state
4 is not 0-consistent as one cannot find any distribution satisfying its outgoing
intervals. On the other hand, State 2 is 0-consistent in both IMCs. State 2 is also
1-consistent in ψ2(IP ) as there exists a distribution matching its intervals and
avoiding State 4, but not in ψ1(IP ) as any distribution satisfying the outgoing
intervals of State 2 in ψ1(IP ) must assign a positive probability to the transition
to State 4, which is not 0-consistent.
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As explained above, the intuition is that an IMC I = (S, s0, ϕ,A, V ) is
consistent whenever one can find a sufficiently deep unfolding starting in its
initial state and such that every node in this unfolding admits a probability
distribution that satisfies its outgoing intervals. We show in the following lemma
that the notion of n-consistency admits a fixpoint in the sense that there is a
bound N for which being N -consistent is equivalent to being k-consistent for
any k ≥ N . In fact, we show that |S| is an upper bound for the value of N .

Lemma 3. Given an IMC I = (S, s0, ϕ,A, V ), a function D : S → Dist(S)
and a state s ∈ S, for all n ≥ |S|, s is (n,D)-consistent implies that s is
(n + 1,D)-consistent.

As a consequence to Lemmas 1 and 3, we say that state s is D-consistent if it is
(n,D)-consistent for some n ≥ |S|. Similarly, we say that state s is consistent if
it is D-consistent for some D.

We now propose two lemmas that link the notion of (|S|,D)-consistency
of the initial state of a given IMC I = (S, s0, ϕ,A, V ) to the existence of an
implementation M respecting the structure of I. The intuition of the following
lemma is that the transition matrix defined in M is a candidate function for the
(|S|,D)-consistency of s0.

Lemma 4. Given an IMC I = (S, s0, ϕ,A, V ), if (S, s0,M,A, V ) is an imple-
mentation of I then s0 is (|S|,D)-consistent, where D : S → Dist(S) is defined
by ∀s, s′ ∈ S,D(s)(s′) = M(s, s′).

Reversely, the next lemma shows that whenever s0 is (|S|,D)-consistent, then
D is a candidate transition matrix for an implementation of I respecting its
structure.

Lemma 5. Given an IMC I = (S, s0, ϕ,A, V ), if s0 is (|S|,D)-consistent, then
the Markov Chain (S, s0,M,A, V ), where M is defined by ∀s, s′ ∈ S,D(s)(s′) =
M(s, s′), is an implementation of I.

The following theorem follows directly from Theorem 1 and Lemmas 4 and 5 and
concludes our section by stating one of our main results: a new characterisation
of consistency for IMCs based on the notion of n-consistency.

Theorem 2. Given an IMC I = (S, s0, ϕ,A, V ), I is consistent iff s0 is |S|-
consistent.

3.3 Consistency of pIMCs

We now move to the problem of consistency of pIMCs. As said earlier, our aim
in this case is not only to decide whether a given pIMC is consistent, but also
to synthesise all parameter valuations that ensure consistency of the resulting
IMC. For this purpose, we adapt the notion of n-consistency defined above to
pIMCs.
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Given a pIMC IP = (S, s0, ϕP , A, V, P ), we say that s ∈ S is n-consistent iff
there exists an IMC I = (S, s0, ϕ,A, V ) such that I is an instance of IP and
in which s is n-consistent. The set of parameter valuations ensuring that s is
n-consistent is {ψ | s is n-consistent in ψ(IP )}. We now propose a construction
for the set of parameter valuations Consn(s) ensuring that a given state s in IP

is n-consistent. As in the previous section, this set is defined by induction on
n. The intuition is as follows: a given parameter valuation ψ is in Consn(s) iff
there exists a distribution ρ that matches the outgoing probability intervals of
s in ψ(IP ) and such that it only leads to (n − 1)-consistent states. Because of
Lemma 2, this ensures that s is indeed n-consistent in ψ(IP ). The existence of a
distribution such as ρ is then conditioned by the set of potential successor states
that can be reached from s in ψ(IP ). We thus start by fixing a set of states X
that we want to avoid and then compute the set of valuations ConsXn (s) that
ensure n-consistency of s through a distribution ρ that avoids states from X.
Formally, we define ConsXn (s) as follows: let ConsX0 (s) = LC(s, Succ(s) \ X) ∩[⋂

s′∈X Low(ϕP (s, s′)) = 0
]

and for n ≥ 1,

ConsXn (s) =

⎡

⎣
⋂

s′∈Succ(s)\X
Consn−1(s′)

⎤

⎦ ∩ [LC(s, Succ(s) \ X)]

∩
[

⋂

s′∈X

Low(ϕP (s, s′)) = 0

]

The set of valuations ensuring n-consistency is then the union, for all poten-
tial choices of X, of ConsXn (s). Recall that, because of the definition of LC given
at the end of Sect. 3.1, we need to choose X as a subset of Z(s). Therefore, we
define Consn(s) =

⋃
X⊆Z(s) Cons

X
n (s). We first observe that the choice of X has

no impact on 0-consistency.

Lemma 6. Let IP = (S, s0, ϕP , A, V, P ) be a pIMC and let s ∈ S. For all
X ⊆ Z(s), we have ConsX0 (s) ⊆ Cons∅

0(s).

As a consequence of Lemma 6 above, we have Cons0(s) = LC(s, Succ(s)). We
illustrate the construction for Consn in the following example.

Example 4. Consider the pIMC IP given in Fig. 2. The computation of Consn
for states 0, 1, 2 is illustrated in Fig. 4. We start with computing the parameter
valuations ensuring 0-consistency of all states: Cons0(0) = Cons0(3) and both
allow all possible parameter valuations, Cons0(4) = (p ≤ 0.3) ∩ (p ≥ 0.5) = ∅,
Cons0(2) = (p + q + 0.5 ≥ 1) and Cons0(1) = (q + 0.3 ≤ 1) ∩ (q + 1 ≥ 1) ∩ (q ≥
0.3) = (q ≤ 0.7)∩(q ≥ 0.3). Observe that for all n, we have Consn(s) = Cons0(s)
for s = 1, 3, 4 since the value of Cons for their successors remains the same. We
now reason on 1-consistency for state 2. By construction, its set of possibly
avoidable successors is Z(2) = {1, 2, 4}, and ConsX1 (2) = ∅ when 4 /∈ X because
Cons0(4) = ∅, and also when X = {1, 2, 4}. For the other values of X, we obtain
Cons

{1,4}
1 (2) = Cons0(2) ∩ (q ≥ 1) = (p + q + 0.5 ≥ 1) ∩ (q ≥ 1) = (q = 1),
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Fig. 4. Illustration of the construction of Consn in pIMC IP from Fig. 2

Cons
{2,4}
1 (2) = Cons0(1) ∩ (p ≥ 1) = (q ≤ 0.7) ∩ (q ≥ 0.3) ∩ (p ≥ 1) and

Cons
{4}
1 (2) = Cons0(1) ∩ Cons0(2) ∩ (p + q ≥ 1) = (q ≤ 0.7) ∩ (q ≥ 0.3) ∩

(p + q + 0.5 ≥ 1) ∩ (p + q ≥ 1) = (q ≤ 0.7) ∩ (q ≥ 0.3) ∩ (p + q ≥ 1). Hence
Cons1(2) =

⋃
X⊆Z(2) Cons

X
1 (2) = (q = 1)∪ [(q ≤ 0.7)∩(q ≥ 0.3)∩(p ≥ 1)]∪ [(q ≤

0.7) ∩ (q ≥ 0.3) ∩ (p + q ≥ 1)] = (q = 1) ∪ [(q ≤ 0.7) ∩ (q ≥ 0.3) ∩ (p + q ≥ 1)].
Furthermore, we can show that Consn(2) = Cons1(2) for all n ≥ 1. Similarly,
we can show that Cons1(0) = (p + q ≥ 0.5) ∪ [(q ≤ 0.7) ∩ (q ≥ 0.3)], and
Consn(0) = Cons2(0) = [(q ≤ 0.7) ∩ (q ≥ 0.3)] ∪ (q = 1) for all n ≥ 2.

Our aim is now to prove that Consn(s) contains exactly all parameter valuations
ensuring that s is n-consistent. We first show that ConsXn (s) works as intended,
i.e. contains exactly all parameter valuations ψ ensuring that s is n-consistent
in ψ(IP ) while using a distribution that avoids X.

Lemma 7. Given a pIMC IP = (S, s0, ϕP , A, V, P ), a state s ∈ S, a set X ⊆
Z(s) and a parameter valuation ψ : P → [0, 1], we have ψ ∈ ConsXn (s) iff there
exists a function D : S → Dist(S) such that ∀s, s′, s′ ∈ X implies D(s)(s′) = 0
and state s is (n,D)-consistent in the IMC ψ(IP ).

A direct consequence of Lemma 7 above is that Consn(s) contains exactly all
parameter valuations ensuring that s is n-consistent.

Proposition 2. Given a pIMC IP = (S, s0, ϕP , A, V, P ), a state s ∈ S and a
parameter valuation ψ : P → [0, 1], we have ψ ∈ Consn(s) iff s is n-consistent
in the IMC ψ(IP ).

It directly follows from Lemma 1 and Proposition 2 that for all n ≥ 1 and s ∈ S,
Consn(s) ⊆ Consn−1(s), i.e. that each computation step restricts the sets of
parameter valuations.
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We conclude this section by our main result, which follows directly from
Proposition 2 and Theorem 2: the set Cons|S|(s0) contains exactly all parameter
valuations ensuring that the pIMC IP = (S, s0, ϕP , A, V, P ) is consistent.

Theorem 3. Given a pIMC IP = (S, s0, ϕP , A, V, P ) and a parameter valua-
tion ψ : P → [0, 1], we have ψ ∈ Cons|S|(s0) iff the IMC ψ(IP ) is consistent.

One can therefore compute the set of parameter valuations ensuring that a given
pIMC IP = (S, s0, ϕP , A, V, P ) is consistent by computing Cons|S|(s0). If the
parameters are chosen inside Cons|S|(s0), the resulting IMC is consistent: it
admits at least one implementation that avoids all inconsistent states.

Example 5. In our running example, Cons5(0) = (0.3 ≤ q ≤ 0.7) ∪ (q = 1).
Hence, the IMC is consistent for all values of q satisfying this condition and any
value of p.

Regarding complexity, if, for instance, we represent the sets of parameters by
finite unions of systems of linear inequalities, basic set operations like intersection
are polynomial in the number of parameters. Then computing Cons0(s) for all
s ∈ S is polynomial in the number of parameters, as well as, given some X,n and
s, computing ConsXn (s). There are |S| states and here n can also take at most
|S| successive values. Set X however is chosen in Z(s) for each s. So there are
up to 2|Z(S)| possible choices for X. Now, remark that |Z(s)| is typically small
compared to |S| but, in the worst case, it can be equal to |S|. So the worst case
asymptotic complexity of the algorithm is exponential in the number of states
of the pIMC.

In the following, we write Cons(s) (resp. ConsX(s)) for the sets Cons|S|(s)
(resp. ConsX|S|(s)).

4 Consistent Reachability

Another interesting problem for IMCs and pIMCs is consistent reachability. This
problem can be declined in two flavours: existential and universal. Given an IMC
I = (S, s0, ϕ,A, V ) and a target set of states G ⊆ S, existential consistent reach-
ability amounts to deciding whether there exists an implementation M respect-
ing the structure of I in which G is reachable from s0 with a non-zero probability.
Dually, universal consistent reachability amounts to deciding whether the set G
is reachable from s0 with a non-zero probability in all implementations respect-
ing the structure of I. When moving to pIMCs, as in the previous section, we
are interested in synthesising all parameter valuations ensuring that a given set
of states is universal/existential consistent reachable in the resulting IMCs. In
this section, we first focus on the existential problem and start with providing a
construction that allows for deciding the existential consistent reachability prob-
lem for IMCs. We then adapt this construction to the pIMC setting and finally
discuss how this construction can be adapted in order to solve the universal
consistent reachability problem for IMCs/pIMCs.
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4.1 Existential Consistent Reachability for IMCs

Given an IMC I = (S, S0, ϕ,A, V ), we say that a target set G ⊆ S is existential
consistent reachable in I iff there exists an implementation M = (S, s0,M,A, V )
of I in which the probability of reaching G from s0 is strictly greater than 0.
Formally, there must exist a path s0 → · · · → sn in M where M(si, si+1) > 0 for
all 0 ≤ i < n and sn ∈ G. We insist on the word consistent because it is not only
important that there exists a sequence of transitions with positive probability
matching the intervals in I and reaching G, but also that this sequence can be
mimicked in an implementation, i.e. that the chosen probability distributions
do not violate other intervals or do not impose that inconsistent states are also
reached. In the following, when clear from the context, we sometimes omit the
words “existential consistent” and only say that G is reachable in I.

Notice that our definition of existential consistent reachability only takes into
account implementations that respect the structure of I. Although this looks like
a limitation, the following theorem shows that any implementation M of I can
be turned into an implementation M̃ that respects the structure of I and that
is equivalent to M with respect to consistent reachability.

Theorem 4. Let I = (S, s0, ϕ,A, V ) be an IMC and G ⊆ S be a target set
of states. For all MC M = (T, t0,M,A, VM ) ∈ [[I]], there exists an MC M̃ =
(S, s0, M̃ , A, V ) ∈ [[I]] such that G is reachable in M̃ iff {t ∈ T | ∃s ∈ G, t |= s}
is reachable in M.

Since the problem of existential consistent reachability mixes the notions of con-
sistency and reachability, we cannot separate these two notions. For consistency
of a given state s, one has to show that there exists a distribution matching the
outgoing intervals of s and reaching only consistent states. On the other hand,
for reachability of G, one has to show that there exists a distribution that reaches
a state s′ from which G is reachable. The difficulty here is that we have to make
sure that the same distribution is chosen for both problems, not only in state s
but also in all the states that are reached both through the unfolding inherent
to consistency and through the path inherent to reachability. As for consistency,
we thus propose to start by fixing a unique outgoing distribution for all states
in S with a function D : S → Dist(S) and enforce that these distributions have
to be chosen in our inductive definition of consistent existential reachability.

Formally, we say that G ⊆ S is (0,D)-reachable from s ∈ S iff s is D-
consistent and s ∈ G. For n > 0, G is (n,D)-reachable from s iff s is D-consistent
and either s ∈ G or there exists s′ such that D(s)(s′) > 0 and G is (n − 1,D)-
reachable from s′. The intuition is that G is (n,D)-reachable from s if s is
consistent and G can be reached in at most n steps from s using distributions
from D. We then say that G is n-reachable from s if there exists a function
D : S → Dist(S) such that G is (n,D)-reachable from s.

As for consistency, we can also provide another equivalent definition for n-
reachability in which the function D : S → Dist(S) is constructed on the fly: G ⊆
S is n-reachable from s ∈ S iff either s ∈ G and s is consistent, or there exists a
distribution matching the outgoing intervals of s, reaching only consistent states
and at least one state s′ from which G is (n − 1)-reachable.
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We start with the following intuitive observation: whenever G can be reached
in at most n steps from s through D, it can also be reached in at most k steps
for any k ≥ n. This is formalised in the following lemma.

Lemma 8. Let I = (S, s0, ϕ,A, V ) be an IMC, G ⊆ S a target set of states and
D : S → Dist(S) a function that associates a distribution on S with all states.
We have that for all n ≥ 0 and s ∈ S, if G is (n,D)-reachable from s then G is
(n + 1,D)-reachable from s.

From our definitions, we can say that G is reachable in I iff there exists N such
that G is N -reachable from the initial state s0. Intuitively, we expect that N ≤
|S|, i.e. that if a path of length at most |S| leading to G cannot be found, then
there is no hope of finding a longer path leading to G. This result is formalised
in the following lemma.

Lemma 9. Given an IMC I = (S, s0, ϕ,A, V ) and a target set G ⊆ S, G is
existential consistent reachable in I iff G is |S|-reachable from s0.

We thus conclude that our construction for n-reachability allows deciding in a
linear number of iterations whether a given set G is reachable in the IMC I.

4.2 Existential Consistent Reachability for pIMCs

We now move to the pIMC setting. As said previously, given a pIMC IP =
(S, s0, ϕP , A, V, P ) and a target set of states G ⊆ S, our aim is to compute
the set of parameter valuations ψ ensuring that there exists an implementa-
tion of IMC ψ(IP ) in which G is reachable. We proceed as for the consistency
problem presented in the previous section: we propose a construction based on
the notion of n-reachability for IMCs that, for each state s ∈ S, inductively
constructs a set of parameter valuations ReachGn (s) that eventually converges
to the desired set. The intuition is similar to the construction for Consn(s):
we first select a set X ⊆ Z(s) of states that we want to avoid and define
the set of valuations ReachG,X

n (s) that ensure that G can be reached from s
in at most n steps with a distribution that avoids X while preserving consis-
tency. In the rest of the section, we use the constraint on parameters (s ∈ G)
with the following meaning: (s ∈ G) is empty if s �∈ G and universal other-
wise. We formally define ReachG,X

n (s) for all s ∈ S, n ≥ 0 and X ⊆ Z(s)
inductively as follows: ReachG,X

0 (s) = ConsX(s) ∩ (s ∈ G), and for n > 0

ReachG,X
n (s) = ConsX(s)∩

⎡

⎣(s ∈ G) ∪
⋃

s′∈Succ(s)\X
ReachGn−1(s

′) ∩ Up(ϕP (s, s′)) > 0 ∩
∑

s′′ �=s′
Low(ϕP (s, s′′)) < 1

⎤

⎦

Informally, ReachG,X
0 (s) is empty if s /∈ G and contains exactly all parameter

valuations ensuring that s is consistent while avoiding X otherwise. For n > 0,
ReachG,X

n (s) either contains exactly all parameter valuations ensuring that s is
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consistent while avoiding X if s ∈ G or all parameter valuations ensuring that s
is consistent while avoiding X and that G is reachable in at most n−1 steps from
at least one potential successor s′ of s not in X that can be reached in one step
from s with a strictly positive probability. In some sense, choosing a given set X
constrains the structure of the implementations we are looking for. Since we are
attacking the problem of existential consistent reachability, we therefore need to
explore every possible choice for X, and return all parameter valuations ensuring
the property for at least one set X. We thus define ReachGn (s) as the union, for
all potential choices of X, of ReachG,X

n (s): ReachGn (s) =
⋃

X⊆Z(s) Reach
G,X
n (s).

Remark that, for n = 0, we obviously have ReachG0 (s) = Cons(s) ∩ (s ∈ G).
We show in the following lemma that the definition of ReachG,X

n (s) is faithful
to our intuition and contains exactly all parameter valuations ψ ensuring that
G is n-reachable from s while avoiding X in the IMC ψ(IP ).

Lemma 10. Given a pIMC IP = (S, s0, ϕP , A, V, P ), a state s ∈ S, a target
set of states G ⊆ S, X ⊆ Z(s) and n ≥ 0, ψ ∈ ReachG,X

n (s) iff there exists
a function D : S → Dist(S) such that D(s)(s′) = 0 for all s′ ∈ X and G is
(n,D)-reachable from s in the IMC ψ(IP ).

A direct consequence of Lemma 10 is the following proposition, stating that
ReachGn (s) contains exactly all the parameter valuations ψ ensuring that G is
n-reachable from s in the IMC ψ(IP ).

Proposition 3. Given a pIMC IP = (S, s0, ϕP , A, V, P ), a state s ∈ S, a target
set of states G ⊆ S and n ≥ 0, ψ ∈ ReachGn (s) iff G is n-reachable from state s
in the IMC ψ(IP ).

Based on Proposition 3 and Lemma 9, we conclude with the following theorem
that shows that the set of parameter valuations ensuring existential consistent
reachability can be computed in a linear number of iterations using our con-
struction.

Theorem 5. Given a pIMC IP = (S, s0, ϕP , A, V, P ) and a target set G ⊆ S,
ReachG|S|(s0) is the exact set of parameter values such that G is reachable in IP .

4.3 Consistent Avoidability and Universal Consistent Reachability

We now briefly show how the results presented in this paper can be adapted
to universal consistent reachability, i.e. the problem of synthesising all parame-
ter valuations ensuring that a set G is reachable in all implementations of the
corresponding instances of a given pIMC IP . We first start with a related prob-
lem, consistent avoidability, and then build a solution to the universal consistent
reachability problem from the proposed solution.

Consistent Avoidability. Given an IMC I = (S, s0, ϕ,A, V ), we say that a set
G ⊆ S is consistent avoidable in I iff I is consistent and there exists an imple-
mentation M respecting the structure of I in which G is not reachable from s0.
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Given a pIMC IP = (S, s0, ϕP , A, V, P ), we want to synthesise all parameter val-
uations ψ such that G ⊆ S is consistent avoidable in ψ(IP ). The construction
for consistent avoidability resembles the construction for consistency presented
in Sect. 3. Intuitively, consistency is an avoidability property, in which we want
to avoid the locally inconsistent states. We therefore need only to update our
notion of local consistency: formally, we say that G is 0-avoidable from s if s /∈ G
and s is 0-consistent. For n > 0, we say that G is n-avoidable from s if s /∈ G and
there exists a distribution ρ satisfying the outgoing intervals of s and reaching
only states from which G is (n − 1)-avoidable. Following the same reasoning as
in Sect. 3, we can show that, given an IMC I = (S, s0, ϕ,A, V ) and a set G ⊆ S,
G is avoidable in I iff G is |S|-avoidable from s0.

In the pIMC setting, we proceed similarly: we directly use the formula for
Consn(s) replacing all occurrences of LC(s, S′), for any s ans S′, with LC(s, S′)∩
(s �∈ G). We thus define the new operator AvoidGn (s), for all n ≥ 0 and all states
s of the pIMC. It is then easy to show that the set AvoidG|S|(s0), hereafter written
just AvoidG(s0), represents the desired set of parameter valuations, i.e. exactly
all parameter valuations ψ ensuring that G is consistent avoidable in ψ(IP ).

Universal Consistent Reachability. Given an IMC I = (S, s0, ϕ,A, V ) and
a target set of states G ⊆ S, we say that G is universal consistent reachable
in I iff G is reachable from s0 in all implementations respecting the structure
of I. In the pIMC setting, our aim is to synthesise all parameter valuations
ensuring that a given target set of states G is universal consistent reachable
in the resulting IMCs. This set can be directly derived from the constructions
proposed in the previous sections. Indeed, the complement set of AvoidG as
presented above represents all the parameter valuations ensuring either that the
resulting IMC is inconsistent or that the set G is reachable in all implementations
of the resulting IMC. Therefore, given a pIMC IP = (S, s0, ϕP , A, V, P ) and a
target set of states G ⊆ S, we can define uReachG(s0) = Cons(s0) ∩ AvoidG(s0)
and show that uReachG(s0) contains exactly all parameter valuations ψ ensuring
that G is universal consistent reachable in ψ(IP ).

5 Conclusion and Future Work

In this paper, we have explored the problem of consistency of pIMCs, an extension
of Interval Markov Chains that allows parameters as endpoints of the intervals.
Indeed, parameter valuationsmust satisfy constraints so that all the outgoing inter-
vals of reachable states are well-formed and the sum of their endpoints surround 1.
We show that such consistency constraints can be iteratively explored, solved and
combined, thus synthesising all parameter values ensuring consistency. A similar
approach also applies to consistent reachability and avoidability problems.

The properties in this paper give a good view of how to proceed to synthesise
parameters in order to guarantee consistency and reachability. Future work will
aim at providing efficient algorithms and heuristics for pIMCs exploration.
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1. André, É., Fribourg, L., Sproston, J.: An extension of the inverse method to prob-
abilistic timed automata. Formal Meth. Syst. Des. 42(2), 119–145 (2013)

2. Barbuti, R., Levi, F., Milazzo, P., Scatena, G.: Probabilistic model checking of
biological systems with uncertain kinetic rates. Theor. Comput. Sci. 419, 2–16
(2012)

3. Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval markov
chains. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 32–46. Springer, Heidelberg (2013)

4. Bertrand, N., Fournier, P.: Parameterized verification of many identical probabilis-
tic timed processes. FSTTCS. LIPIcs 24, 501–513 (2013)

5. Bertrand, N., Fournier, P., Sangnier, A.: Playing with probabilities in reconfig-
urable broadcast networks. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS,
vol. 8412, pp. 134–148. Springer, Heidelberg (2014)

6. Biondi, F., Legay, A., Nielsen, B.F., W ↪asowski, A.: Maximizing entropy over
markov processes. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2013.
LNCS, vol. 7810, pp. 128–140. Springer, Heidelberg (2013)

7. Caillaud, B., Delahaye, B., Larsen, K., Legay, A., Pedersen, M., Wasowski, A.:
Constraint markov chains. Theor. Comput. Sci. 412(34), 4373–4404 (2011)

8. Chakraborty, S., Katoen, J.-P.: Model checking of open interval markov chains. In:
Remke, A., Manini, D., Gribaudo, M. (eds.) ASMTA 2015. LNCS, vol. 9081, pp.
30–42. Springer, Heidelberg (2015)

9. Chamseddine, N., Duflot, M., Fribourg, L., Picaronny, C., Sproston, J.: Com-
puting expected absorption times for parametric determinate probabilistic timed
automata. In: QEST, pp. 254–263. IEEE Computer Society (2008)

10. Chatterjee, K., Sen, K., Henzinger, T.A.: Model-checking ω-regular properties of
interval markov chains. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962,
pp. 302–317. Springer, Heidelberg (2008)

11. Daws, C.: Symbolic and parametric model checking of discrete-time markov chains.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer,
Heidelberg (2005)

12. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen,
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Abstract. We propose a novel notion of pointer race for concurrent
programs manipulating a shared heap. A pointer race is an access to a
memory address which was freed, and it is out of the accessor’s control
whether or not the cell has been re-allocated. We establish two results.
(1) Under the assumption of pointer race freedom, it is sound to verify
a program running under explicit memory management as if it was run-
ning with garbage collection. (2) Even the requirement of pointer race
freedom itself can be verified under the garbage-collected semantics. We
then prove analogues of the theorems for a stronger notion of pointer
race needed to cope with performance-critical code purposely using racy
comparisons and even racy dereferences of pointers. As a practical con-
tribution, we apply our results to optimize a thread-modular analysis
under explicit memory management. Our experiments confirm a speed-
up of up to two orders of magnitude.

1 Introduction

Today, one of the main challenges in verification is the analysis of concurrent
programs that manipulate a shared heap. The numerous interleavings among the
threads make it hard to predict the dynamic evolution of the heap. This is even
more true if explicit memory management has to be taken into account. With
garbage collection as in Java, an allocation request results in a fresh address
that was not being pointed to. The address is hence known to be owned by the
allocating thread. With explicit memory management as in C, this ownership
guarantee does not hold. An address may be re-allocated as soon as it has been
freed, even if there are still pointers to it. This missing ownership significantly
complicates reasoning against the memory-managed semantics.

In the present paper1, we carefully investigate the relationship between the
memory-managed semantics and the garbage-collected semantics. We show that
the difference only becomes apparent if there are programming errors of a par-
ticular form that we refer to as pointer races. A pointer race is a situation

This work was supported by the Czech Science Foundation, project 13-37876P, and
by the German Science Foundation (DFG), project R2M2.

1 The full version is available as technical report [9].
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where a thread uses a pointer that has been freed before. We establish two the-
orems. First, if the memory-managed semantics is free from pointer races, then
it coincides with the garbage-collected semantics. Second, whether or not the
memory-managed semantics contains a pointer race can be checked with the
garbage-collected semantics.

The developed semantic understanding helps to optimize program analyses.
We show that the more complicated verification of the memory-managed seman-
tics can often be reduced to an analysis of the simpler garbage-collected seman-
tics — by applying the following policy: check under garbage collection whether
the program is pointer race free. If there are pointer races, tell the programmer
about these potential bugs. If there are no pointer races, rely on the garbage-
collected semantics in all further analyses. In thread-modular reasoning, one
of the motivations for our work, restricting to the garbage-collected semantics
allows us to use a smaller abstract domain and an optimized fixed point compu-
tation. Particularly, it removes the need to correlate the local states of threads,
and it restricts the possibilities of how threads can influence one another.

Example 1. We illustrate the idea of pointer race freedom on Treiber’s stack [14],
a lock-free implementation of a concurrent stack that provides the following
methods:

// global variables: pTop
void : push(v)

pnode := malloc;(1)
pnode.data := v;(2)
repeat(3)

ptop := pTop;(4)
pnode.next := ptop;(5)

until cas(pTop, ptop, pnode);(6)

bool : pop(&v)
repeat(7)

ptop := pTop;(8)
if (ptop = null) return false;(9)
pnode := ptop.next;(10)

until cas(pTop, ptop, pnode);(11)
v := ptop.data;(12)
ptop := free; return true;(13)

This code is correct (i.e. linearizable and pops return the latest value pushed)
in the presence of garbage collection, but it is incorrect under explicit memory
management. The memory-managed semantics suffers from a problem known as
ABA, which indeed is related to a pointer race. The problem arises as follows.
Some thread t executing pop sets its local variable ptop to the global top of the
stack pTop, say address a. The variable pnode is assigned the second topmost
address b. While t executes pop, another thread frees address a with a pop. Since
it has been freed, address a can be re-allocated and pushed, becoming the top of
the stack again. However, the stack might have grown in between the free and
the re-allocation. As a consequence, b is no longer the second node from the top.
Thread t now executes the cas (atomic compare-and-swap). The command first
tests pTop = ptop (to check for consistency of the program state: has the top of
the stack moved?). The test passes since pTop has come back to a due to the
re-allocation. Thread t then redirects pTop to pnode. This is a pointer race: t
relies on the variable ptop where the address was freed, and the re-allocation was
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not under t’s control. At the same time, this causes an error. If pnode no longer
points to the second address from the top, moving pTop loses stack content. ��
Performance-critical implementations often intentionally make use of pointer
races and employ other mechanisms to protect themselves from harmful effects
due to accidental re-allocations. The corrected version of Treiber’s stack [10] for
example equips every pointer with a version counter logging the updates. Pointer
assignments then assign the address together with the value of the associated
version counter, and the counters are taken into account in the comparisons
within cas. That is, the cas(pTop, ptop, pnode) command atomically executes
the following code:

if (pTop = ptop ∧ pTop.version = ptop.version) {
pTop := pnode; pTop.version := ptop.version + 1; return true;

} else { return false; }
This makes the cas from Example 1 fail and prevents stack corruption. Another
pointer race occurs when the pop in Line (10) dereferences a freed pointer. With
version counters, this is harmless. Our basic theory, however, would consider
the comparison as well as the dereference pointer races, deeming the corrected
version of Treiber’s stack buggy.

To cope with performance-critical applications that implement version coun-
ters or techniques such as hazard pointers [11], reference counting [6], or grace
periods [8], we strengthen the notion of pointer race. We let it tolerate assertions
on freed pointers and dereferences of freed pointers where the value obtained by
the dereference does not visibly influence the computation (e.g., it is assigned
to a dead variable). To analyse programs that are only free from strong pointer
races, the garbage-collected semantics is no longer sufficient. We define a more
general ownership-respecting semantics by imposing an ownership discipline on
top of the memory-managed semantics. With this semantics, we are able to show
the following analogues of the above results. First, if the program is free from
strong pointer races (SPRF) under the memory-managed semantics, then the
memory-managed semantics coincides with the ownership-respecting semantics.
Second, the memory-managed semantics is SPRF if and only if the ownership-
respecting semantics is SPRF.

As a last contribution, we show how to apply our theory to optimize thread-
modular reasoning. The idea of thread-modular analysis is to buy efficiency by
abstracting from the relationship between the local states of individual threads.
The loss of precision, however, is often too severe. For instance, any inductive
invariant strong enough to show memory safety of Treiber’s stack must correlate
the local states of threads. Thread-modular analyses must compensate this loss of
precision. Under garbage collection, an efficient way used e.g. in [7,17] is keeping
as a part of the local state of each thread information about the ownership
of memory addresses. A thread owns an allocated address. No other thread can
access it until it enters the shared part of the heap. Unfortunately, this exclusivity
cannot be guaranteed under the memory-managed semantics. Addresses can be
re-allocated with pointers of other threads still pointing to them. Works such as
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[1,15] therefore correlate the local states of threads by more expensive means
(cf. Sect. 5), for which they pay by severely decreased scalability.

We apply our theory to put back ownership information into thread-modular
reasoning under explicit memory management. We measure the impact of our
technique on the method of [1] when used to prove linearizability of programs
such as Treiber’s stack or Michael & Scott’s lock-free queue under explicit mem-
ory management. We report on resource savings of about two orders of magni-
tude.

Contributions. We claim the following contributions, where [[P ]]mm denotes the
memory-managed semantics, [[P ]]own the ownership-respecting semantics, and
[[P ]]gc the garbage-collected semantics of program P .

(1) We define a notion of pointer race freedom (PRF) and an equivalence ≈
among computations such that the following two results hold.
(1.1) If [[P ]]mm is PRF, then [[P ]]mm ≈ [[P ]]gc .
(1.2) [[P ]]mm is PRF if and only if [[P ]]gc is PRF.

(2) We define a notion of strong pointer race freedom (SPRF) and an ownership-
respecting semantics [[P ]]own such that the following two results hold.
(2.1) If [[P ]]mm is SPRF, then [[P ]]mm = [[P ]]own .
(2.2) [[P ]]mm is SPRF if and only if [[P ]]own is SPRF.

(3) Using the Results (2.1) and (2.2), we optimize the recent thread-modular
analysis [1] by a use of ownership and report on an experimental evaluation.

The Results (2.1) and (2.2) give less guarantees than (1.1) and (1.2) and hence
allow for less simplifications of program analyses. On the other hand, the stronger
notion of pointer race makes (2.1) and (2.2) applicable to a wider class of pro-
grams which would be racy in the original sense (which is the case for our most
challenging benchmarks).

Finally, we note that our results are not only relevant for concurrent pro-
grams but apply to sequential programs as well. The point in the definition of
pointer race freedom is to guarantee the following: the execution does not depend
on whether a malloc has re-allocated an address, possibly with other pointers
still pointing to it, or it has allocated a fresh address. However, it is mainly rea-
soning about concurrent programs where we see a motivation to strive for such
guarantees.

Related Work. Our work was inspired by the data race freedom (DRF) guaran-
tee [2]. The DRF guarantee can be understood as a contract between hardware
architects and programming language designers. If the program is DRF under
sequential consistency (SC), then the semantics on the actual architecture will
coincide with SC. We split the analogue of the statement into two, coincidence
([[P ]]mm PRF implies [[P ]]mm ≈ [[P ]]gc) and means of checking ([[P ]]mm PRF
iff [[P ]]gc PRF). There are works that weaken the DRF requirement while still
admitting efficient analyses [3,4,13]. Our notion of strong pointer races is along
this line.
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The closest related work is [8]. Gotsman et al. study re-allocation under
explicit memory management. The authors focus on lock-free data structures
implemented with hazard pointers, read-copy-update, or epoch-based reclama-
tion. The key observation is that all three techniques rely on a common synchro-
nization pattern called grace periods. Within a grace period of a cell a and a
thread t, the thread can safely access the cell without having to fear a free com-
mand. The authors give thread-modular reasoning principles for grace periods
and show that they lead to elegant and scalable proofs.

The relationship with our work is as follows. If grace periods are respected,
then the program is guaranteed to be SPRF (there are equality checks on freed
addresses). Hence, using Theorem 3 in this work, it is sufficient to verify lock-
free algorithms under the ownership-respecting semantics. Interestingly, Gots-
man et al. had an intuitive idea of pointer races without making the notion
precise (quote: ...potentially harmful race between threads accessing nodes and
those trying to reclaim them is avoided [8]). Moreover, they did not study the
implications of race freedom on the semantics, which is the main interest of this
paper. We stress that our approach does not make assumptions about the syn-
chronization strategy. Finally, Gotsman et al. do not consider the problem of
checking the synchronization scheme required by grace periods. We show that
PRF and SPRF can actually be checked on simpler semantics.

Data refinement in the presence of low-level memory operation is studied
in [12]. The work defines a notion of substitutability that only requires a refine-
ment of error-free computations. In particular, there is no need to refine compu-
tations that dereference dangling pointers. In our terms, these dereferences yield
pointer races. We consider [12] as supporting our requirement for (S)PRF.

The practical motivation of our work, thread-modular analysis [5], has
already been discussed. We note the adaptation to heap-manipulating pro-
grams [7]. Interesting is also the combination with separation logic from [16,17]
(which uses ownership to improve precision). There are other works studying
shape analysis and thread-modular analysis. As these fields are only a part of
the motivation, we do not provide a full overview.

2 Heap-Manipulating Programs

Syntax We consider concurrent heap-manipulating programs, defined to
be sets of threads P = {t1, t2, . . .} from a set Thrd . We do not assume finiteness
of programs. This ensures our results carry over to programs with a parametric
number of threads. Threads t are ordinary while-programs operating on data
and pointer variables. Data variables are denoted by x , y ∈ DVar . For pointer
variables, we use p, q ∈ PVar . We assume DVar ∩ PVar = ∅ and obey this
typing. Pointer variables come with selectors p.next1, . . . , p.nextn and p.data for
finitely many pointer fields and one data field (for simplicity; the generalization
to arbitrary data fields is straightforward). We use pt to refer to pointers p
and p.next. Similarly, by dt we mean data variables x and the corresponding
selectors p.data. Pointer and data variables are either local to a thread, indicated
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by p, x ∈ localt , or they are shared among the threads in the program. We use
shared for the set of all shared variables.

The commands com ∈ Com employed in our while-language are

cond ::= p = q � x = y � ¬cond
com ::= assert cond � p := malloc � p := free

� q := p.next � p.next := q � p := q
� x := p.data � p.data := x � x := op(x1, . . . , xn) .

Pointer variables are allocated with p := malloc and freed via p := free.
Pointers and data variables can be used in assignments. These assignments are
subject to typing: we only assign pointers to pointers and data to data. Moreover,
a thread only uses shared variables and its own local variables. To compute
on data variables, we support operations op that are not specified further. We
only assume that the program comes with a data domain (Dom,Op) so that its
operations op stem from Op. We support assertions that depend on equalities and
inequalities among pointers and data variables. Like in if and while commands,
we require assertions to have complements: if a control location has a command
assert cond , then it also has a command assert ¬cond . We use as a running
example the program in Example 1, Treiber’s stack [14].

Semantics. A heap is defined over a set of addresses Adr that contains the
distinguished element seg. Value seg indicates that a pointer has not yet been
assigned a cell and thus its data and next selectors cannot be accessed. Such an
access would result in a segfault. A heap gives the valuation of pointer variables
PVar � Adr , the valuation of the next selector functions Adr � Adr , the
valuation of the data variables DVar � Dom, and the valuation of the data
selector fields Adr � Dom. In Sect. 3, we will restrict heaps to a subset of so-
called valid pointers. To handle such restrictions, it is convenient to let heaps
evaluate expressions a.next rather than next functions. Moreover, with the use
of restrictions valuation functions will typically be partial.

Let PExp := PVar � {a.next | a ∈ Adr \ {seg} and next a selector} be the
set of pointer expressions and DExp := DVar �{a.data | a ∈ Adr \{seg}} be the
set of data expressions. A heap is a pair h = (pval , dval) with pval : PExp � Adr
the valuation of the pointer expressions and dval : DExp � Dom the valuation of
the data expressions. We use pexp and dexp for a pointer and a data expression,
and also write h(pexp) or h(dexp). The valuation functions are clear from the
expression. The addresses inside the heap that are actually in use are

adr(h) := (dom(pval) ∪ range(pval) ∪ dom(dval)) ∩ Adr .

Here, we use {a.next} ∩ Adr := {a} and similar for data selectors.
We model heap modifications with updates [pexp 
→ a] and [dexp 
→ d] from

the set Upd . Update [pexp 
→ a] turns the partial function pval into the new
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partial function pval [pexp 
→ a] with dom(pval [pexp 
→ a]) := dom(pval)∪{pexp}.
It is defined by pval [pexp 
→ a](qexp) := pval(qexp) if qexp �= pexp, and
pval [pexp 
→ a](pexp) := a. We also write h[pexp 
→ a] since the valuation that is
altered is clear from the update.

We define three semantics for concurrent heap-manipulating programs.
All three are in terms of computations, sequences of actions from
Act := Thrd × Com × Upd . An action act = (t, com, up) consist of a thread
t, a command com executed in the thread, and an update up. By thrd(act) := t,
com(act) := com, and upd(act) := up we access the thread, the command, and
the update in act . To make the heap resulting from a computation τ ∈ Act∗

explicit, we define hε := (∅,∅) and hτ .act := hτ[upd(act)]. So we modify the
current heap with the update required by the last action.

The garbage-collected semantics and the memory-managed semantics only
differ on allocations. We define a strict form of garbage collection that never
re-allocates a cell. With this, we do not have to define unreachable parts of the
heap that should be garbage collected. We only model computations that are
free from segfaults. This means a transition accessing next and data selectors is
enabled only if the corresponding pointer is assigned a cell.

Formally, the garbage-collected semantics of a program P , denoted by
[[P ]]gc , is a set of computations in Act∗. The definition is inductive. In the base
case, we have single actions (⊥,⊥, [pval , dval ]) ∈ [[P ]]gc with pval : PVar → {seg}
and dval : DVar → Dom arbitrary. No pointer variable is mapped to a cell
and the data variables contain arbitrary values. In the induction step, con-
sider τ ∈ [[P ]]gc where thread t is ready to execute command com. Then
τ .(t, com, up) ∈ [[P ]]gc , provided one of the following rules holds.

(Asgn). Let com be p.next := q , hτ(p) = a �= seg, hτ(q) = b. We set
up = [a.next 
→ b]. The remaining assignments are similar.

(Asrt). Let com be assert p = q . The precondition is hτ(p) = hτ(q). There
are no updates, up = ∅. The assertion with a negated condition is defined
analogously. A special case occurs if hτ(p) or hτ(q) is seg. Then the assert and
its negation will pass. Intuitively, undefined pointers hold arbitrary values.
Our development does not depend on this modeling choice.

(Free). If com is p := free, there are no constraints and no updates.
(Malloc1). Let com be p := malloc, a /∈ adr(hτ), and d ∈ Dom. Then we define

up = [p 
→ a, a.data 
→ d, {a.next 
→ seg | for every selector next}]. The
rule only allocates cells that have not been used in the computation. Such a
cell holds an arbitrary data value and the next selectors have not yet been
allocated.

With explicit memory management, we can re-allocate a cell as soon as it
has been freed. Formally, the memory-managed semantics [[P ]]mm ⊆ Act∗ is
defined like [[P ]]gc but has a second allocation rule:

(Malloc2). Let com be p := malloc and a ∈ freed τ. Then up = [p 
→ a].
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Note that (Malloc2) does not alter the selectors of address a. The set freed τ

contains the addresses that have been allocated in τ and freed afterwards. The
definition is by induction. In the base case, we have freedε := ∅. The step case is

freed τ .(t,p:=free,up) := freed τ ∪ {a}, if hτ(p) = a �= seg
freed τ .(t,p:=malloc,up) := freed τ \ {a}, if malloc returns a

freed τ .(t,act,up) := freed τ, otherwise.

3 Pointer Race Freedom

We show that for well-behaved programs the garbage-collected semantics coin-
cides with the memory-managed semantics. Well-behaved means there is no com-
putation where one pointer frees a cell and later a dangling pointer accesses this
cell. We call such a situation a pointer race, referring to the fact that the free
command and the access are not synchronized, for otherwise the access should
have been avoided. To apply this equivalence, we continue to show how to reduce
the check for pointer race freedom itself to the garbage-collected semantics.

3.1 PRF Guarantee

The definition of pointer races relies on a notion of validity for pointer expres-
sions. To capture the situation sketched above, a pointer is invalidated if the cell
it points to is freed. A pointer race is now an access to an invalid pointer. The
definition of validity requires care when we pass pointers. Consider an assign-
ment p := q .next where q points to a and a.next points to b. Then p becomes
a valid pointer to b only if both q and a.next were valid. In Definition 1, we use
pexp to uniformly refer to p and a.next on the left-hand side of assignments. In
particular, we evaluate pointer variables p to hτ(p) = a and write a.next := q
for the assignment p.next := q .

Definition 1. The valid pointer expressions in a computation τ ∈ [[P ]]mm ,
denoted by valid τ ⊆ PExp, are defined inductively by validε := PExp and

valid τ .(t,p:=q.next,up) := valid τ ∪ {p}, if q ∈ valid τ ∧ hτ(q).next ∈ valid τ

valid τ .(t,p:=q.next,up) := valid τ \ {p}, if q /∈ valid τ ∨ hτ(q).next /∈ valid τ

valid τ .(t,pexp:=q,up) := valid τ ∪ {pexp}, if q ∈ valid τ

valid τ .(t,pexp:=q,up) := valid τ \ {pexp}, if q /∈ valid τ

valid τ .(t,p:=free,up) := valid τ \ invalida, if a = hτ(p)
valid τ .(t,p:=malloc,up) := valid τ ∪ {p},

valid τ .(t,act,up) := valid τ, otherwise.

If a �= seg, then invalida := {pexp | hτ(pexp) = a} ∪ {a.next1, . . . , a.nextn}. If
a = seg, then invalida := ∅.
When we pass a valid pointer, this validates the receiver (adds it to valid τ).
When we pass an invalid pointer, this invalidates the receiver. As a result, only
some selectors of an address may be valid. When we free an address a �= seg,
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all expressions that point to a as well as all next selectors of a become invalid.
This has the effect of isolating a so that the address behaves like a fresh one for
valid pointers. A malloc validates the respective pointer but does not validate
the next selectors of the allocated address.

Definition 2 (Pointer Race). A computation τ .(t, com, up) ∈ [[P ]]mm is called
a pointer race (PR), if com is

(i) a command containing p.data or p.next or p := free with p /∈ valid τ, or
(ii) an assertion containing p /∈ valid τ.

The last action of a PR is said to raise a PR. A set of computations is pointer
race free (PRF) if it does not contain a PR. In Example 1, the discussed
comparison pTop = ptop within cas raises a PR since ptop is invalid. It is worth
noting that we can still pass around freed addresses without raising a PR. This
means the memory-managed and the garbage-collected semantics will not yield
isomorphic heaps, but only yield isomorphic heaps on the valid pointers. We now
define the notion of isomorphism among heaps h.

A function fadr : adr(h) → Adr is an address mapping, if fadr (a) = seg
if and only if a = seg. Every address mapping induces a function
fexp : dom(h) → PExp ∪ DExp on the pointer and data expressions inside the
heap by

fexp(p) := p fexp(x ) := x
fexp(a.next) := fadr (a).next fexp(a.data) := fadr (a).data.

Pointer and data variables are mapped identically. Pointers on the heap a.next
are mapped to fadr (a).next as defined by the address mapping, and similar for
the data.

Definition 3. Two heaps h1 and h2 with hi = (pval i, dval i) are
isomorphic, denoted by h1 ≡ h2, if there is a bijective address mapping
isoadr : adr(h1) → adr(h2) where the induced isoexp : dom(h1) → dom(h2)
is again bijective and satisfies

isoadr (pval1(pexp)) = pval2(isoexp(pexp)) dval1(dexp) = dval2(isoexp(dexp)).

To prove a correspondence between the two semantics, we restrict heaps
to the valid pointers. The restriction operation keeps the data selectors for all
addresses that remain. To be more precise, let h = (pval , dval) and P ⊆ PExp.
The restriction of h to P is the new heap h|P := (pval |P , dval |D) with

D := DVar ∪ {a.data | ∃pexp ∈ dom(pval) ∩ P : pval(pexp) = a}.
Restriction and update enjoy a pleasant interplay with isomorphism.

Lemma 1. Let h1 ≡ h2 via isoadr and let P ⊆ PExp. Then

h1|P ≡ h2|isoexp(P ) (14)

h1[a.next 
→ b] ≡ h2[a′.next 
→ b′] (15)
h1[a.data 
→ d] ≡ h2[a′.data 
→ d]. (16)
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Isomorphisms (15) and (16) have a side condition. If a ∈ adr(h1) then
a′ = isoadr (a). If a /∈ adr(h1) then a′ /∈ adr(h2), and similar for b.

Two computations are heap equivalent, if their sequences of actions coincide
when projected to the threads and commands, and if the resulting heaps are
isomorphic on the valid part. We use ↓ for projection.

Definition 4. Computations τ, σ ∈ [[P ]]mm are heap-equivalent, τ ≈ σ, if

τ ↓Thrd×Com = σ ↓Thrd×Com and hτ|validτ
≡ hσ|validσ

.

We also write [[P ]]mm ≈ [[P ]]gc to state that for every computation τ ∈ [[P ]]mm ,
there is a computation σ ∈ [[P ]]gc with τ ≈ σ, and vice versa.

We are now ready to state the PRF guarantee. The idea is to consider pointer
races programming errors. If a program has pointer races, the programmer should
be warned. If the program is PRF, further analyses can rely on the garbage-
collected semantics:

Theorem 1 (PRF Guarantee). If [[P ]]mm is PRF, then [[P ]]mm ≈ [[P ]]gc.

The memory-managed semantics of Treiber’s stack suffers from the ABA-
problem while the garbage-collected semantics does not. The two are not heap-
equivalent. By Theorem 1, the difference is due to a PR. One such race is
discussed in Example 1.

In the proof of Theorem 1, the inclusion from right to left always holds. The
reverse direction needs information about the freed addresses: if an address has
been freed, it no longer occurs in the valid part of the heap — provided the
computation is PRF.

Lemma 2. Assume τ ∈ [[P ]]mm is PRF. Then freed τ ∩ adr(hτ|validτ
) = ∅.

Lemmas 1 and 2 allow us to prove Proposition 1. The result implies the missing
direction of Theorem 1 and will also be helpful later on.

Proposition 1. Consider τ ∈ [[P ]]mm PRF. Then there is σ ∈ [[P ]]gc with σ ≈ τ.

To apply Theorem 1, one has to prove [[P ]]mm PRF. We develop a technique for
this.

3.2 Checking PRF

We show that checking pointer race freedom for the memory-managed semantics
can be reduced to checking pointer race freedom for the garbage-collected seman-
tics. The key argument is that the earliest possible PR always lie in the garbage-
collected semantics. Technically, we consider a shortest PR in the memory-
managed semantics and from this construct a PR in the garbage-collected
semantics.

Theorem 2 (Checking PRF). [[P ]]mm is PRF if and only if [[P ]]gc is PRF.
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To illustrate the result, the pointer race in Example 1 belongs to the memory-
managed semantics. Under garbage collection, there is a similar computation
which does not re-allocate a. Freeing a still renders ptop invalid and, as before,
leads to a PR in cas. The proof of Theorem 2 applies Proposition 1 to mimic
the shortest racy computation up to the last action. To mimic the action that
raises the PR, we need the fact that an invalid pointer variable does not hold
seg, as stated in the following lemma.

Lemma 3. Consider a PRF computation σ ∈ [[P ]]gc. (i) If p /∈ validσ, then
hσ(p) �= seg. (ii) If pexp ∈ validσ, hσ(pexp) = a �= seg, and a.next /∈ validσ,
then hσ(a.next) �= seg.

While the completeness proof of Theorem 2 is non-trivial, checking PRF for
[[P ]]gc is an easy task. One instruments the given program P to a new program
P ′ as follows: P ′ tags every address that is freed and checks whether a tagged
address is dereferenced, freed, or used in an assertion. In this case, P ′ enters a
distinguished goal state.

Proposition 2. [[P ]]gc is PRF if and only if [[P ′]]gc cannot reach the goal state.

For the correctness proof, we only need to observe that under garbage collection
the invalid pointers are precisely the pointers to the freed cells.

Lemma 4. Let σ ∈ [[P ]]gc and hσ(pexp) = a �= seg. Then pexp /∈ validσ iff
a ∈ freedσ.

The lemma does not hold for the memory-managed semantics. Moreover, the
statement turns Lemma 2, which can be read as an implication, into an equiva-
lence. Namely, Lemma 2 says that if a pointer has been freed, then it cannot be
valid. Under the assumtpions of Lemma 4, it also holds that if a pointer is not
valid, then it has been freed.

4 Strong Pointer Race Freedom

The programing style in which a correct program should be pointer race free
counts on the following policy: a memory address is freed only if it is not meant
to be touched until its re-allocation, by any means possible.

This simplified treatment of dynamic memory is practical in common pro-
graming tasks, but the authors of performance-critical applications are often
forced to employ subtler techniques. For example, the version of Treiber’s stack
equipped with version counters to prevent ABA under explicit memory manage-
ment contains two violations of the simple policy, both of which are pointer races.
(1) The cas may compare invalid pointers. This could potentially lead to ABA,
but the programmer prevents the harmful effect of re-allocation using version
counters, which make the cas fail. (2) The command pnode := ptop.next in Line
10 of pop may dereference the next field of a freed (and therefore invalid) pointer.
This is actually correct only under the assumption that neither the environment
nor any thread of the program itself may redirect a once valid pointer outside
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the accessible memory (otherwise the dereference could lead to a segfault). The
value obtained by the dereference may again be influenced by that the address
was re-allocated. The reason for why this is fine is that the subsequent cas is
bound to fail, which makes pnode a dead variable — its value does not matter.

In both cases, the programmer only prevents side effects of an accidental
re-allocation. He uses a subtler policy and frees an address only if its content
is not meant to be of any relevance any more. Invalid addresses can still be
compared, and their pointer fields can even be dereferenced unless the obtained
value influences the control.

4.1 SPRF Guarantee

We introduce a stronger notion of pointer race that expresses the above subtler
policy. In the definition, we will call strongly invalid the pointer expressions that
have obtained their value from dereferencing an invalid/freed pointer.

Definition 5 (Strong Invalidity). The set of strongly invalid expressions
in τ ∈ [[P ]]mm , denoted by sinvalid τ ⊆ PExp ∪ DExp, is defined inductively by
sinvalidε := ∅ and

sinvalid τ .(t,p:=q.next,up) := sinvalid τ ∪ {p}, if q �∈ valid τ

sinvalid τ .(t,pexp:=q,up) := sinvalid τ ∪ {pexp}, if q ∈ sinvalid τ

sinvalid τ .(t,x :=q.data,up) := sinvalid τ ∪ {x}, if q �∈ valid τ

sinvalid τ .(t,dexp:=x ,up) := sinvalid τ ∪ {dexp}, if x ∈ sinvalid τ

sinvalid τ .act := sinvalid τ \ valid τ .act , in all other cases.

The value obtained by dereferencing a freed pointer may depend on actions of
other threads that point to the cell due to re-allocation. However, by assuming
that a once valid pointer can never be set to seg, we obtain a guarantee that
the actions of other threads cannot prevent the dereference itself from being
executed (they cannot make it segfault). Assigning the uncontrolled value to
a local variable is therefore not harmful. We only wish to prevent a correct
computation from being influenced by that value. We thus define incorrect/racy
any attempt to compare or dereference the value. Then, besides allowing for the
creation of strongly invalid pointers, the notion of strong pointer race strengthens
PR by tolerating comparisons of invalid pointers.

Definition 6 (Strong Pointer Race). A computation τ .(t, com, up) ∈ [[P ]]mm

is a strong pointer race (SPR), if the command com is one of the following:

(i) p.next := q or p.data := x or p := free with p /∈ valid τ

(ii) an assertion containing p or x in sinvalid τ

(iii) a command containing p.next or p.data where p ∈ sinvalid τ.

The last action of an SPR raises an SPR. A set of computations is strong
pointer race free (SPRF) if it does not contain an SPR. An SPR can be
seen in Example 1 as a continuation of the race ending at cas. The subsequent
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ptop := free raises an SPR as ptop is invalid. The implementation corrected
with version counters is SPRF.

Theorems 1 and 2 no longer hold for strong pointer race freedom. It is not pos-
sible to verify [[P ]]mm modulo SPRF by analysing [[P ]]gc . The reason is that the
garbage-collected semantics does not cover SPRF computations that compare or
dereference invalid pointers. To formulate a sound analogy of the theorems, we
have to replace [[.]]gc by a more powerful semantics. This, however, comes with a
trade-off. The new semantics should still be amenable to efficient thread-modular
reasoning.

The idea of our new semantics [[P ]]own is to introduce the concept of own-
ership to the memory-managed semantics, and show that SPRF computations
stick to it. Unlike with garbage collection, we cannot use a naive notion of owner-
ship that guarantees the owner exclusive access to an address. This is too strong
a guarantee. In [[P ]]mm , other threads may still have access to an owned address
via invalid pointers. Instead, we design ownership such that dangling pointers
are not allowed to influence the owner. The computation will thus proceed as if
the owner had allocated a fresh address.

To this end, we let a thread own an allocated address until one of the two
events happen: either (1) the address is published, that is, it enters the shared
part of the heap (which consists of addresses reached from shared variables by
following valid pointers and of freed addresses), or (2) the address is compro-
mised, that is, the owner finds out that the cell is not fresh by comparing it with
an invalid pointer. Taking away ownership in this situation is needed since the
owner can now change its behavior based on the re-allocation. The owner may
also spread the information about the re-allocation among the other threads
and change their behavior, too. It can thus no longer be guaranteed that the
computation will continue as if a fresh address had been allocated.

Definition 7 (Owned Addresses). For τ ∈ [[P ]]mm and a thread t, we define
the set of addresses owned by t, denoted by ownτ(t), as ownε(t) := ∅ and

ownτ .(t,p:=malloc,up)(t) :=ownτ(t)∪{a}, if p ∈ localt and malloc returns a
ownτ .(t,p:=free,∅)(t) :=ownτ(t)\{hτ(p)}, if p ∈ valid τ

ownτ .(t,p:=q,[p �→a])(t) :=ownτ(t)\{a}, if p ∈ shared ∧ q ∈ valid τ

ownτ .(t,p:=q.next,[p �→a])(t) :=ownτ(t)\{a}, if p ∈ shared ∧ q , hτ(q).next ∈ valid τ

ownτ .(·,p:=q.next,[p �→a])(t) :=ownτ(t)\{a}, if hτ(q)�∈ownτ(t) ∧ q , hτ(q).next ∈ valid τ

ownτ .(t,assert p=q,∅)(t) :=ownτ(t)\{hτ(p)}, if p /∈ valid τ ∨ q /∈ valid τ

ownτ .act(t) :=ownτ(t), in all other cases.

The first four cases of losing ownership are due to publishing, the last case is
due to the address being compromised by comparing with an invalid pointer.

The following lemma states the intuitive fact that an owned address cannot
be pointed to by a valid shared variable or by a valid local variable of another
thread, since such a configuration can be achieved only by publishing the address.

Lemma 5. Let τ ∈ [[P ]]mm and p ∈ valid τ with hτ(p) ∈ ownτ(t). Then p ∈ localt .
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We now define ownership violations as precisely those situations in which the
fact that an owned address was re-allocated while an invalid pointer was still
pointing to it influences the computation. Technically, the address is freed or its
content is altered due to an access via a pointer of another thread or a shared
pointer.

Definition 8 (Ownership Violation). Acomputation τ .(t, com, up) ∈ [[P ]]mm

violates ownership, if com is one of the following

q .next := p, q .data := x , or q := free,

where hτ(q) ∈ ownτ(t′) and (t′ �= t or q ∈ shared).

The last action of a computation violating ownership is called an ownership
violation and a computation which does not violate ownership respects own-
ership. We define the ownership-respecting semantics [[P ]]own as those com-
putations of [[P ]]mm that respect ownership. The following lemma shows that
SPRF computations respect ownership.

Lemma 6. If τ .(t, com, act) ∈ [[P ]]mm violates ownership, then it is an SPR.

The proof of Lemma 6 is immediate from Lemma 5 and the definitions of owner-
ship violation and strong pointer race. The lemma implies the main result of this
section: the memory-managed semantics coincides with the ownership-respecting
semantics modulo SPRF.

Theorem 3 (SPRF Guarantee). If [[P ]]mm is SPRF, then [[P ]]mm = [[P ]]own .

4.2 Checking SPRF

This section establishes that checking SPRF may be done in the ownership-
respecting semantics. In other words, if [[P ]]mm has an SPR, then there is also
one in [[P ]]own . This result, perhaps much less intuitively expected than the sym-
metrical result of Sect. 3.2, is particularly useful for optimizing thread-modular
analysis of lock-free programs (cf. Section 5). Its proof depends on a subtle inter-
play of ownership and validity.

Let ownpntrsτ be the owning pointers, pointers in hτ to addresses that
are owned by threads and the next fields of addresses owned by threads. To
be included in ownpntrsτ, the pointers have to be valid. A set of pointers
O ⊆ ownpntrsτ is coherent if for all pexp, qexp ∈ ownpntrsτ with the same
target or source address (in case of a.next or a.data) we have pexp ∈ O if and
only if qexp ∈ O.

Lemma 7 below establishes the following fact. For every computation that
respects ownership, there is another one that coincides with it but assigns fresh
cells to some of the owning pointers. To be more precise, given a computation
τ ∈ [[P ]]own and a coherent set of owning pointers O ⊆ ownpntrsτ, we can find
another computation τ′ ∈ [[P ]]own where the resulting heap coincides with hτ

except for O. These pointers are assigned fresh addresses. The proof of Lemma 7
is nontrivial and can be found in [9].
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Lemma 7. Consider τ ∈ [[P ]]own SPRF and O ⊆ ownpntrsτ a coherent set.
There is τ′ ∈ [[P ]]own and an address mapping fadr : adr(O) → Adr that satisfy
the following:

(1) τ ↓Thrd×Com =
′
τ ↓Thrd×Com freedτ ⊆ freedτ′ (4)

(2) hτ|PExp\O = hτ′ |PExp\fexp(O) ownpntrsτ′ = (ownpntrsτ \ O) ∪ fexp(O) (5)

(3) hτ|validτ ≡ hτ′ |validτ′ by fadr ∪ id adr(hτ) ∩ hτ′ (fexp(O)) = ∅. (6)

In this lemma, function fadr specifies the new addresses that τ′ assigns to the
owning expressions in O. These new addresses are fresh by Point (6). Point (1)
says that τ and τ′ are the same up to the particular addresses they manipulate,
and Point (2) says that the reached states hτ and hτ′ are the same up to the
pointers touched by fadr . Point (3) states that the valid pointers of hτ stay valid
or become valid fexp-images of the originals. Point (5) says that also the owned
pointers of hτ remain the same or become fexp-images of the originals. Finally,
Point (4) says that hτ′ re-allocates less cells.

Lemma 7 is a cornerstone in the proof of the main result in this section,
namely that SPRF is equivalent for the memory-managed and the ownership-
respecting semantics.

Theorem 4 (Checking SPRF). [[P ]]mm is SPRF if and only if [[P ]]own is
SPRF.

Proof. If [[P ]]mm is SPRF, by [[P ]]own ⊆ [[P ]]mm this carries over to the ownership-
respecting semantics. For the reverse direction, assume [[P ]]mm has an SPR.
In this case, there is a shortest computation τ .act ∈ [[P ]]mm where act raises
an SPR. In case τ .act ∈ [[P ]]own , we obtain the same SPR in the ownership-
respecting semantics.

Assume τ .act /∈ [[P ]]own . We first argue that act violates ownership. By prefix
closure, τ ∈ [[P ]]mm . By minimality, τ is SPRF. Since ownership violations are
SPR by Lemma 6, τ does not contain any, τ ∈ [[P ]]own . Hence, if act respected
ownership we could extend τ to the computation τ .act ∈ [[P ]]own — a contra-
diction to our assumption.

We turn this ownership violation in the memory-managed semantics into
an SPR in the ownership-respecting semantics. To this end, we construct a new
computation τ′ .act ′ ∈ [[P ]]own that mimics τ .act , respects ownership, but suffers
from SPR. Since τ .act is an ownership violation, act takes the form (t, com, up)
with com being

q .next := p, q .data := x , or q := free.

Here, hτ(q) ∈ ownτ(t′) and (t′ �= t or q ∈ shared). Since the address is owned,
Lemma 5 implies q /∈ valid τ.

As a first step towards the new computation, we construct τ′.
Let O := ownpntrsτ be the (coherent) set of all owning pointers in all threads
(with q /∈ O). With this choice of O, we apply Lemma 7. It returns τ′ ∈ [[P ]]own

with τ′ ↓Thrd×Com = τ ↓Thrd×Com and

hτ′ |PExp\fexp(O) = hτ|PExp\O and hτ′ |validτ′ ≡ hτ|validτ
.
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Address hτ′(q) is not owned by any thread. This follows from

ownpntrsτ′ = (ownpntrsτ \ O) ∪ fexp(O) = fexp(O)

and q �∈ fexp(O). Finally, q /∈ valid τ′ by the isomorphism hτ′ |validτ′ ≡ hτ|validτ
.

As a last step, we mimic act = (t, com, up) by an action act ′ = (t, com, up′).
If com is q := free, then we free the invalid pointer q /∈ valid τ′ and obtain
an SPR in [[P ]]own . Assume com is an assignment q .next := p (the case of
q .data := x is similar). Since act is enabled after τ and hτ′(q) = hτ(q), we have
hτ′(q) �= seg. Hence, the command is also enabled after τ′. Since q /∈ valid τ′ ,
the assignment is again to an invalid pointer. It is thus an SPR according by
Definition 6.(i). ��

5 Improving Thread-Modular Analyses

We now describe how the theory developed so far can be used to increase the
efficiency of thread-modular analyses of pointer programs under explicit memory
management.

Thread-modular reasoning abstracts a program state into a set of states of
individual threads. A thread’s state consists of the local state, the part of the
heap reachable from the local variables, and the shared state, the heap reachable
from the shared variables.

The analysis saturates the set of reachable thread states by a fixpoint com-
putation. Every step in this computation creates new thread states out of the
existing ones by applying the following two rules. (1) Sequential step: a thread’s
state is modified by an action of this thread. (2) Interference: a state of a victim
thread is changed by an action of another, interfering thread. This is accounted
for by creating combined two-threads states from existing pairs of states of the
victim and the interferer thread. The states that are combined have to agree on
the shared part. The combined state is constructed by deciding which addresses
in the two local states coincide. It is then observed how an action of the interferer
changes the state of the victim within the combined state.

Pure thread-modular reasoning does not keep any information about what
thread states can appear simultaneously during a computation and what iden-
tities can possibly hold between addresses of local states of threads. This brings
efficiency, but also easily leads to false positives. To see this, consider in Treiber’s
stack a state s of a thread that is just about to perform the cas in push. Vari-
able pnode points to an address a allocated in the first line of push, pTop,
ptop, and pnode.next are at the top of the stack. Consider an interference step
where the states sv of the victim and si of the interferer are isomorphic to s,
with pnode pointing to the newly allocated addresses av and ai, respectively.
Since the shared states conincide, the interference is triggered. The combination
must account for all possible equalities among the local variables. Hence, there
is a combined state with av = ai, which does not occur in reality. This is a
crucial imprecision, which leads to false positives. Namely, the interferer’s cas
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succeeds, resulting in the new victim’s state s′
v with pTop on ai (which is equal

to av). The victim’s cas then fails, and the thread continues with the commands
ptop := pTop; pnode.next := ptop. This results in av.next pointing back to av,
and a loss of the stack content.

Methods based on thread-modular reasoning must prevent such false posi-
tives by maintaining the necessary information about correlations of local states.
An efficient technique commonly used under garbage collection is based on own-
ership: a thread’s state records that a has just been allocated and hence no other
thread can access the address, until it enters the shared state. This is enough to
prevent false positives such as the one described above. Namely, the addresses
ai and av are owned by the respective threads and therefore they cannot be
equal. Interference may then safely ignore the problematic case when av = ai.
Moreover, besides the increased precision, the ability to avoid interference steps
due to ownership significantly improves the overall efficiency. This technique was
used for instance to prove safety (and linearizability) of Treiber’s stack and other
subtle lock-free algorithms in [17].

Under explicit memory management, ownership of this form cannot be guar-
anteed. Addresses can be freed and re-allocated while still being pointed to.
Other techniques must be used to correlate the local states of threads. The solu-
tion chosen in [1,15] is to replace the states of individual threads by states of
pairs of threads. Precision is thus restored at the cost of an almost quadratic
blow-up of the abstract domain that in turn manifests itself in a severe decrease
of scalability.

5.1 Pointer Race Freedom Saves Ownership

Using the results from Sects. 3 and 4, we show how to apply the ownership-based
optimization of thread-modular reasoning to the memory-managed semantics.
To this end, we split the verification effort into two phases. Depending on the
notion of pointer race freedom, we first check whether the program under scrutiny
is (S)PRF. If the check fails, we report pointer races as potential errors to the
developer. If the check succeeds, the second phase verifies the property of interest
(here, linearizability) assuming (S)PRF.

When the notion of PRF from Sect. 3 is used, the second verification phase
can be performed in the garbage-collected semantics due to Theorem 1. This
allows us to apply the ownership-based optimization discussed above. More-
over, Theorem 2 says that the first PR has to appear in the garbage-collected
semantics. Hence, even the first phase, checking PRF, can rely on garbage collec-
tion and ownership. The PRF check itself is simple. Validity of pointers is kept
as a part of the individual thread states and updated at every sequential and
interference step. Based on this, every computation step is checked for raising a
PR according to Definition 2. Our experiments suggest that the overhead caused
by the recorded validity information is low.

For SPRF, we proceed analogously. Due to the Theorems 3 and 4, checking
SPRF in the first phase and property verification in the second phase can both
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be done in the ownership-respecting semantics. The SPRF check is similar to
the PRF check. Validity of pointers together with an information about strong
invalidity is kept as a part of a thread’s state, and every step is checked for
raising an SPR according to Definition 6.

The surprising good news is that both phases can again use the ownership-
based optimization. That is, also in the ownership-respecting semantics, inter-
ferences on the owned memory addresses can be skipped. We argue that this
is sound. Due to Lemma 5, if a thread t owns an address a, other threads
may access a only via invalid pointers. Therefore, (1) modifications of a by t
need not be considered as an interference step for other threads. Indeed, if a
thread t′ �= t was influenced by such a modification (t′ reads a next or the
data field of a), then the corresponding variable of t′ would become strongly
invalid, Definition 5. Hence, either this variable is never used in an assertion
or in a dereference again (it is effectively dead), or the first use raises an SPR,
Cases (ii) and (iii) in Definition 6. (2) In turn, in the ownership-respecting seman-
tics, another thread t′ cannot make changes to a, by Definition 8 of ownership
violations. This means we can also avoid the step where t′ interferes with the
victim t.

5.2 Experimental Results

To substantiate our claim for a more efficient analysis with practical experi-
ments, we implemented the thread-modular analysis from [1] in a prototype
tool. This analysis is challenging for three reasons: it checks linearizability as
a non-trivial requirement, it handles an unbounded number of threads, and it
supports an unbounded heap. Our tool covers the garbage-collected semantics,
the new ownership-respecting semantics of Sect. 4, and the memory-managed
semantics. For the former two, we use the abstract domain where local states
refer to single threads. Moreover, we support the ownership-based pruning of
interference steps from Sect. 5.1. For the memory-managed semantics, to restore
precision as discussed above, the abstract domain needs local states with pairs
of threads. Rather than running two phases, our tool combines the PRF check
and the actual analysis. We tested our implementation on lock-free data struc-
tures from the literature and verified linearizability following the approach
in [1].

The experimental results are listed in Table 1. The experiments were con-
ducted on an Intel Xeon E5-2650 v3 running at 2.3 GHz. The table includes the
following: (1) runtime taken to establish correctness, (2) number of explored
thread states (i.e. size of the search space), (3) number of sequential steps,
(4) number of interference steps, (5) number of interference steps that have been
pruned by the ownership-based optimization, and (6) the result of the analysis,
i.e. whether or not correctness could be established. For a comparison, we also
include the results with the ownership-based optimization turned off (suffix −).
Recall that the optimization does not apply to the memory-managed semantics.
We elaborate on our findings.
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Table 1. Experimental results for thread-modular reasoning using different memory
semantics.

Program Time in Explored Sequential Interference Pruned Correctness

seconds state count step count step count interferences established

Single lock stack GC 0.053 328 941 3276 10160 yes

OWN 0.21 703 1913 6983 22678 yes

GC− 0.20 507 1243 19321 – yes

OWN− 0.60 950 2474 38117 – yes

MM− 5.34 16117 25472 183388 – yes

Single lock queue GC 0.034 199 588 738 5718 yes

OWN 0.56 520 1336 734 31200 yes

GC− 0.19 331 778 9539 – yes

OWN− 2.52 790 1963 65025 – yes

MM− 31.7 27499 60263 442306 – yes

Treiber’s lock GC 0.052 269 779 3516 15379 yes

free stack OWN 2.36 744 2637 43261 95398 yes

(with version GC− 0.16 296 837 11530 – yes

counters) [10] OWN− 4.21 746 2158 73478 – yes

MM− 602 116776 322057 7920186 – yes

Michael & Scott’s GC 2.52 3134 6607 46838 1237012 yes

lock free queue OWN 10564 19553 43305 6678240 20747559 yes

[10] (with hints) GC− 9.08 3309 7753 187349 – yes

OWN− 51046 31329 64234 35477171 – yes

MM− aborted ≥ 69000 ≥ 90000 – – false positive

Our experiments confirm the usefulness of pointer race freedom. When
equipped with pruning (OWN), the ownership-respecting semantics provides
a speed-up of two orders of magnitude for Treiber’s stack and the single lock
data structures compared to the memory-managed semantics (MM−). The size
of the explored state space is close to the one for the garbage-collected semantics
(GC) and up to two orders of magnitude smaller than the one for explicit mem-
ory management. We also stress tested our tool by purposely inserting pointer
races, for example, by discarding the version counters. In all cases, the tool was
able to detect those races.

For Michael & Scott’s queue we had to provide hints in order to eliminate
certain patterns of false positives. This is due to an imprecision that results
from joins over a large number of states (we are using the joined representation of
states from [1] based on Cartesian abstraction). Those hints are sufficient for the
analysis relying on the ownership-respecting semantics to establish correctness.
The memory-manged semantics produces more false positives, the elimination
of which would require more hinting, as also witnessed by the implementation
of [1]. Regarding the stress tests from above, note that we ran those tests with
the same hints and were still able to find the purposely inserted bugs.
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Abstract. We describe a simple, but powerful, program logic for
reasoning about C11 relaxed accesses used in conjunction with release
and acquire memory fences. Our logic, called fenced separation logic
(FSL), extends relaxed separation logic with special modalities for
describing state that has to be protected by memory fences. Like its
precursor, FSL allows ownership transfer over synchronizations and can
be used to verify the message-passing idiom and other similar programs.
The soundness of FSL has been established in Coq.

1 Introduction

In order to achieve good performance, modern hardware provides rather weak
guarantees on the semantics of concurrent memory accesses. Similarly, to enable
as many compiler optimizations as possible, modern “low-level” programming
languages (such as C or C++) provide very weak memory models. In this paper
we will focus on the memory model defined in the C and C++ standards from
2011 [6,7] (henceforth, the C11 memory model).

The C11 memory model successfully provides a concise abstraction over the
various existing hardware implementations, encompassing all the behaviors of
widely used hardware platforms. In order not to restrict the set of behaviors
exhibited by hardware, the C11 model had to be weaker than any of the hardware
models, which makes the guarantees it provides very weak. This pronounced lack
of guarantees provided by the C11 model makes it difficult to reason about the
model, but those difficulties can be overcome, as evidenced by Relaxed Separation
Logic (RSL) [16] and GPS [14].

Both of these program logics provide a framework for reasoning about the
main novel synchronization mechanism provided by the C11 model, namely
release and acquire atomic accesses. However, release and acquire accesses are
not the only synchronization mechanism that C11 provides. A more advanced
mechanism are memory fences, which are not supported by any existing program
logics.

In this paper, our goal is to provide simple proof rules for memory fences that
can give users of the logic insight and intuition about the behavior of memory
fences within the C11 memory model. In order to achieve this goal, we are going
to design Fenced Separation Logic (FSL) as an extension of RSL. We are choosing
to build on top of RSL, because we want our rules for fences to be in the spirit
of the RSL rules – clean, simple and intuitive.
c© Springer-Verlag Berlin Heidelberg 2016
B. Jobstmann and K.R.M. Leino (Eds.): VMCAI 2016, LNCS 9583, pp. 413–430, 2016.
DOI: 10.1007/978-3-662-49122-5 20
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Fig. 1. Definition of the synchronizes-with relation. For all actions a and b, a synchro-
nizes with b, written sw(a, b), if one of the cases above holds.

We will show that in spite of memory fences having a very global effect on
the semantics of C11 programs, we can specify them cleanly by local rules in the
style of separation logic.

The remainder of the paper recalls the C11 memory model and RSL (Sect. 2),
presents the rules of our logic (Sect. 3), applies them to a few illustrative examples
(Sect. 4), and outlines its semantics (Sect. 5) and the proof of soundness (Sect. 6).
The full soundness proof was mechanized in Coq and can be found at http://
plv.mpi-sws.org/fsl/.

2 Background

2.1 The C11 Memory Model

For the purposes of this paper, we will consider the relevant subset of the C11
memory model. Fuller formalizations of C11 can be found in [3,15,16].

The C11 memory model defines the semantics of a program as a set of execu-
tions consistent with a certain set of axioms. A program execution is a directed
graph whose nodes represent actions (such as memory accesses or fences) and
whose edges represent various relations between the actions.

The types of edges that will be of interest in order to prove soundness of FSL
are sequenced-before and reads-from edges.

– Sequenced-before (sb) edges describe the program flow. We have an sb edge
from a to b if a immediately precedes b in the thread’s control flow. Fork
actions are considered to immediately precede all of the initial actions of the
forked threads, while join actions are considered to be immediate successors
of all the joined threads’ last actions.

– There is a reads-from (rf) edge from a to b if a is the write action that wrote
the value read by the read action b.

http://plv.mpi-sws.org/fsl/
http://plv.mpi-sws.org/fsl/
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In the restricted model we are considering, each memory access can be either
non-atomic or atomic, where atomic accesses are further subdivided into relaxed,
release, and acquire access types.

Non-atomic accesses should be used as regular accesses throughout the pro-
gram, whenever we are not implementing a synchronization mechanism. The C11
memory model does not allow data races on non-atomic accesses, and programs
with such data races are considered to have undefined semantics.

The intended use of the atomic accesses is to implement synchronization
mechanisms. As can be seen from Fig. 1, release writes synchronize with acquire
reads, whereas in order to achieve synchronization with relaxed accesses, we need
some help from acquire and release fences.

Two additional relations between events are derived from the two relations
mentioned above: synchronizes-with and happens-before.

– Synchronizes-with (sw) relates a release event with an acquire event, according
to the rules summarized in Fig. 1. Intuitively, synchronization happens when
an acquire event can “see” a release event through an rf edge.

– Happens-before (hb) is a partial order representing the intuitive notion that
one action completed before the other one started. For the subset of the model
we are considering, hb = (sb ∪ sw)+.

2.2 Relaxed Separation Logic

Relaxed Separation Logic (RSL) allows reasoning about the release-acquire frag-
ment of the C11 model. More precisely, using RSL we can reason about ownership
transfer that happens when an acquire read reads from a release write. The two
most important inference rules in RSL that enable this kind of reasoning are the
release write rule (rsl-w-rel) and the acquire read rule (rsl-r-acq).

Besides having rules for read and write accesses, RSL also deals with compare-
and-swap (CAS) accesses. In this paper, we want to concentrate on dealing with
memory fences; so, for the sake of simplicity, we will not model CAS accesses.

Before explaining (rsl-w-rel) and (rsl-r-acq), we need to talk about
RSL’s view of memory locations. Since the C11 model provides us with two
classes of accesses (atomic and non-atomic), RSL classifies each location as either
atomic or non-atomic, depending on the access mode that will be used through-
out the program. For this reason, RSL provides two allocation rules. Rule (a-na)
gives us an uninitialized non-atomic location, while (a-at) allocates an atomic
location by providing us with corresponding release and acquire permissions.

{
emp

}
alloc()

{
�. Uninit(�)

}
(a-na)

{
emp

}
alloc()

{
�. Rel(�,Q) ∗ Acq(�,Q)

}
(a-at)

The assertions Rel(�,Q) and Acq(�,Q) “attach” a mapping Q from values to
assertions to location �. This mapping should be used to describe the manner
in which we intend to use the location �. We can roughly consider Q to be an
invariant stating: “if location � holds value v, then the assertion Q(v) is true.”
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We can now proceed with presenting RSL’s rules for atomic accesses in which
we will further clarify how release and acquire permissions are used. For non-
atomic accesses, RSL imports the standard separation logic rules.

Release Write. RSL’s release write rule
{
Rel(�,Q) ∗ Q(v)

}
[�]rel := v

{
Rel(�,Q) ∗ Init(�)

}
(rsl-w-rel)

says that in order to do a release write of value v to location �, we need to have
a permission to do so, Rel(�,Q), and we have to satisfy the invariant specified
by that permission, namely Q(v). After the write is done, we no longer own the
resources specified by the invariant (so that readers can obtain them), and we
gain the knowledge that the location � has been initialized.

Acquire Read. The acquire read rule

∀x. precise(Q(x)){
Init(�) ∗ Acq(�,Q)

}
[�]acq

{
v. Acq(�,Q[v:=emp]) ∗ Q(v)

} (rsl-r-acq)

complements the release write rule. Here we are able to execute an acquire read
of location � if we know that it is initialized, and we have an acquire permission
for �. Just as in a release permission, an acquire permission carries a mapping Q
from values to assertions. In case of an acquire permission this mapping describes
what resource will be acquired by reading a certain value, so if the value v is
read, resource Q(v) is acquired.

This rule is slightly complicated by two technical details. First, we have to
lose the permission to acquire the same ownership by reading v again. Hence, the
acquire permission becomes Q[v:=emp] def= λy. if y=v then emp else Q(y) in
the postcondition. Second, we require all the assertions Q(x) to be precise [10].
This technical detail arises from the nature of the semantics of RSL triples. For
details, see [16].

With these two rules, various message passing idioms can be proven correct,
as long as we refrain from using relaxed atomic accesses.

Relaxed Atomic Accesses. RSL also provides simple and intuitive rules for
dealing with relaxed atomic reads and writes. Since relaxed accesses do not
synchronize, we are going to allow relaxed writes only when our permission
states that we are releasing an empty resource. Similarly when doing an acquire
read, we have to know that the location is initialized, but we will not be acquiring
any ownership. The only thing we assert about the value read is that it is one
of those that, given the permission structure, could have been written.

Q(v) = emp{
Rel(�,Q)

}
[�]rlx := v

{
Init(�)

} (rsl-w-rlx)

{
Init(�) ∗ Acq(�,Q)

}
[�]rlx

{
v. Acq(�,Q) ∧ (Q(v) �= false)

}
(rsl-r-rlx)
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Unfortunately, no matter how reasonable the rules seem, both (rsl-w-rlx)
and (rsl-r-rlx) are unsound under the standard C11 model, due to the well
known problem of the so called thin-air reads [2,16]. Since this behavior makes
the standard C11 relaxed atomics unusable, when dealing with relaxed accesses
RSL assumes a certain strengthening of the C11 model. Namely, we consider
the union of the happens-before and reads-from relations to be acyclic. Since
this strengthening was necessary even for the simple rules above, we consider it
justifiable to work under the same strengthened model when developing a logic
that will enable us to do ownership transfer using relaxed accesses together with
memory fences.

3 Fenced Separation Logic (FSL)

Our goal is to enhance the rules from the previous section to allow ownership
transfer through relaxed accesses. Ideally, we would like the rules for release
writes and acquire reads to remain unchanged, so that all valid RSL proofs
remain valid FSL proofs. We will therefore need to change the rules for dealing
with relaxed accesses, and we will need to come up with rules for memory fences.

Looking back at Fig. 1, we can see how the rules (rsl-w-rel) and (rsl-
r-acq) describe the simple situation in the top left corner. Imagine how the
resource released by the read travels along the rf-edge in order to appear as
acquired resource after the acquire read has been done.

Note also how the other three situations look like decompositions of the
simplest one. The release write has been split into a release fence after which
comes a relaxed write, and the acquire read has been split into a relaxed read
after which comes an acquire fence. This is more than just a good intuition:
release writes and acquire reads can, in fact, be implemented in this fashion.

Now, the question is, can we extend our mental image of a released resource
“traveling” over the rf-edge to the point of it being acquired? Well, in the simple
case, we were lucky, since the rf-edge coincided with the synchronization arrow,
but in other cases the situation is a bit more complicated. We would like for the
resource to disappear from the release point, and reappear at the acquire point,
but the problem arises from the fact that the only point of transfer possible is
the rf-edge.

A solution to the above mentioned conundrum is, in the presence of fences
and relaxed accesses, to think of resource transfer in the following way. If we are
releasing a resource by a combination of a release fence and a relaxed write, at the
fence we should decide what is going to be released, and not touch that resource
until we finally send it away by doing the write. Conversely, when acquiring a
resource using a pair of a relaxed read and an acquire fence, once we do the read,
we know which resources we are going to get, but we will not be able to use those
resources until we reach a synchronization point marked by the acquire fence.

In order to formally represent our intuition, we will introduce two modalities
into RSL’s language of assertions. We will mark the resources that have been
prepared to be released by �, while � will mark resources that are waiting for
synchronization. Therefore, we define FSL assertions by the following grammar:
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P,Q:: = false | P → Q | P ∗ Q | ∀x. P | emp | e 
→ e′ | Uninit(e)
| Rel(e,Q) | Acq(e,Q) | Init(e) | �P | �P .

FSL judgments follow the form of RSL judgments
{
P

}
E

{
y.Q

}
, where y

binds the return value of the expression E.
FSL supports all the standard rules of Hoare and separation logic, just as

RSL does. Non-atomics and allocation are also treated exactly as in RSL. Fur-
thermore, FSL support RSL’s program relaxation rule. Namely, if we define
relaxation of a program E to be a program E′ identical to E except that
E′ can have weaker atomic accesses according to the following partial order:
rlx � rel � sc, rlx � acq � sc; the following rule is sound:

{
P

}
E′ {y. Q

}
E′ � E{

P
}

E
{
y. Q

} . (relax)

Which RSL rules saw changes happen to them? As expected, rules for atomic
accesses.

Atomic Writes. First we take a look at the rule for release writes. It got a
small cosmetic change:

normalizable(Q(v)){
Rel(�,Q) ∗ Q(v)

}
[�]rel := v

{
Rel(�,Q) ∗ Init(�)

} . (w-rel)

We will define the notion of normalizability in Sect. 5.1. For now, the important
thing to note is that any RSL assertion (i.e., any FSL formula in which modalities
� and � do not appear) is normalizable. For this reason, our stated goal to keep
RSL proofs to be valid FSL proofs has not been compromised.

The rule for relaxed writes is almost exactly the same as (w-rel).
{
Rel(�,Q) ∗ �Q(v)

}
[�]rlx := v

{
Rel(�,Q) ∗ Init(�)

}
(w-rlx)

All the main ingredients are the same: we have to have a release permission, and
we have to own the resource specified by the permission. The only additional
requirement is that the resource has to be under the modality stating that it can
be released by a relaxed write. As we will later see this ensures that our write is
placed after a release fence.

Atomic Reads. The acquire read rule got changed in the same vein as the
release write rule, by adding a normalizability requirement:

∀x. precise(Q(x)) ∧ normalizable(Q(x)){
Init(�) ∗ Acq(�,Q)

}
[�]acq

{
v. Acq(�,Q[v:=emp]) ∗ Q(v)

} . (r-acq)

Just as it was the case for writes, the rule for relaxed reads differs only in a
single modality appearance:

∀x. precise(Q(x)) ∧ normalizable(Q(x)){
Init(�) ∗ Acq(�,Q)

}
[�]rlx

{
v. Acq(�,Q[v:=emp]) ∗ �Q(v)

} . (r-rlx)
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In order to do an atomic read, we have to have an acquire permission, and
to know that the location has been initialized. After an acquire read, we gain
ownership of the resource described by the permission. In the case of a relaxed
read, we get the same resource, but under the � modality. This, as we will see
below, makes the resource unusable before we reach an acquire fence.

Fences. Finally, let us turn our attention to the two rules describing the actions
of memory fences. These are by far the simplest rules, as the only job of fences
is to manage the two modalities. This is achieved by the following two rules:

normalizable(P ){
P

}
fencerel

{�P
} (f-rel)

{�P
}
fenceacq

{
P

}
(f-acq)

Release fences protect resources that are to be released by putting them under
the � modality, while acquire fences clear the � modality making resources
under it usable.

A Note About Normalizability. Even though the normalizability require-
ment that appears in several places in atomic accesses and fence rules looks pretty
cumbersome, we can easily see that is not the case. The requirement is formally
necessary, but a user of the logic, when doing proofs, will never even notice it.
In practice, the only resources we want to transfer are the ones described by
formulas containing no modalities, which are always normalizable. Because of
this, the only situation where we are forced to think of normalizability is when
proving the inference rules sound, and not when proving programs correct.

4 Examples

Let us first take a look at the message passing example in Fig. 2. In this example,
the middle thread initializes two non-atomic variables (a and b), and then uses
two atomic variables (x and y) to signal to consumer threads that the resources
are ready. The consumer threads then proceed to increment the variables a and b.

The middle thread uses only one release fence in order to transfer ownership
using two different relaxed writes. In order to be able to verify such idioms,
it is necessary for our modalities to distribute over separating conjunction (see
Sect. 5.1).

The most interesting part of the proof in the consumer threads is the waiting
loop. Let us have a more detailed look at how we derive the triple

{
Acq(x,P) ∗ Init(x)

}
while([x]rlx == 0);

{
true ∗ �a 
→ 42

}
.

We first use the equivalence Init(x) ⇐⇒ Init(x) ∗ Init(x), and apply (r-rlx)
(together with the frame rule) inside the loop:
{
Acq(x,P) ∗ Init(x) ∗ Init(x)

}
[x]rlx

{
v. Acq(x,P[v:=emp]) ∗ �P(v) ∗ Init(x)

}
.
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P def
= λv. if v = 0 then emp else a → 42 ,

Q def
= λv. if v = 0 then emp else b → 7 .

emp
a := alloc(); b := alloc();

Uninit(a) ∗ Uninit(b)
x := alloc(); y := alloc();

Uninit(a) ∗ Uninit(b) ∗ Rel(x, P) ∗ Acq(x, P) ∗ Rel(y, Q) ∗ Acq(y, Q)
[x]rlx := 0; [x]rlx := 0

Uninit(a) ∗ Uninit(b) ∗ Rel(x, P) ∗ Acq(x, P) ∗ Rel(y, Q) ∗ Acq(y, Q) ∗ Init(x) ∗ Init(y)

Acq(x, P) ∗ Init(x)
while([x]rlx == 0);

true ∗ a → 42

acq;
true ∗ a → 42

[a]na := [a]na + 1;
true ∗ a → 43

Uninit(a) ∗ Uninit(b) ∗ Rel(x, P) ∗ Rel(y, Q)
[a]na := 42; [b]na := 7;
a → 42 ∗ b → 7 ∗ Rel(x, P) ∗ Rel(y, Q)

rel;
(a → 42 ∗ b → 7) ∗ Rel(x, P) ∗ Rel(y, Q)
a → 42 b → 7 ∗ Rel(x, P) ∗ Rel(y, Q)

[x]rlx := 1;
Init(x) b → 7 ∗ Rel(y, Q)

[y]rlx := 1;
Init(x) ∗ Init(y)

Acq(y, Q) ∗ Init(y)
while([y]rlx == 0);

true ∗ b → 7

acq;
true ∗ b → 7

[b]na := [b]na + 1;
true ∗ b → 8

a → 43 ∗ b → 8 ∗ true

Fig. 2. Double message passing example.

It is important to note that P(0) = emp, and consequently P[0:=emp] = P.
Therefore, as long as we stay in the loop (i.e., the value being read is 0), our
postcondition reads {Acq(x,P)∗�emp∗Init(x)}. Since we have �emp ⇐⇒ emp,
this is equivalent to {Acq(x,P) ∗ Init(x) ∗ Init(x)}. With this, the loop invariant
has been established.

Once we are out of the loop, we know that the value we read from x is not 0.
Therefore, we have

{Acq(x,P) ∗ Init(x)}
while([x]rlx==0);

{v. v �= 0 ∧ Acq(x,P[v:=emp])∗�P(v)∗Init(x)}.

We can transform the postcondition into
{
v. v �= 0 ∧ true ∗ �P(v)

}
, using the

consequence rule. Expanding the definition of P, and using the fact that v �= 0,
the postcondition becomes

{
v. v �= 0 ∧ true ∗ �a 
→ 42

}
.

We can now use the consequence rule to transform the loop postcondition into
{
true ∗ �a 
→ 42

}
.

Note how the consumer threads encounter a fence only once, when the
resource they have been waiting for has been made ready. On architectures such
as PowerPC and ARM, this way of implementing waiting loops gives us perfor-
mance benefit over doing an acquire read in the loop. The difference comes from
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Q def
= λv. if v = 0 then emp else a → 42 .

a → 0 ∗ Rel(x, Q)
[a]na := 42;
a → 42 ∗ Rel(x, Q)

rel;
a → 42 ∗ Rel(x, Q)

[x]rlx := 1;
true

Acq(x, Q) ∗ Init(x)
while([x]rlx == 0);

a → 42 ∗ true
[y]rlx := 1;
true

Acq(y, Q) ∗ Init(y)
while([y]rlx == 0);

a → 42 ∗ true

acq;
a → 42 ∗ true

[a]na := [a]na + 1;
a → 43 ∗ true

Fig. 3. Example showing that merging the two modalities into one is unsound.

the fact that those architectures require placing a hardware fence instruction
in order to implement acquire reads, while relaxed reads can be implemented
by plain read instructions. This shows that the ability to reason about memory
fences enables verification of an important class of programs.

Our next example, given in Fig. 3, shows that we could not have designed our
logic to have only one modality. In the example, we assume that all our inference
rules use only one modality ♦ in all the places where � or � are used. Before the
fork, x and y have been allocated as atomic variables, and a has been allocated
as non-atomic. All variables have been initialized to 0. As we can see, using the
rules with only one modality, we can verify the ownership transfer from the left
thread to the right thread via the middle thread.

The problem here is that, since there is no rf communication between the
threads on the left and right, no synchronization can happen between them,
which means that the two accesses of the non-atomic location a are racing.
According to the C11 model, this program has undefined semantics, and we
should not have been able to verify it.

The problem lies in the middle thread. After we use the (r-rlx) rule to get
the protected resource ♦a 
→ 42, we can now immediately use the (w-rlx) rule
to send that resource away to be acquired in the right thread, and subsequently
used in a racy manner. In order to avoid this behavior, we have to make resources
produced by the (r-rlx) rule unusable by the (w-rlx) rule, and that is exactly
what has been done by introducing two different modalities.

5 Semantics

5.1 Semantics of Assertions

We first briefly describe the interpretation of the Rel and Acq assertions. In order
to model release and acquire permissions, we store equivalence classes of asser-
tions (Assn), modulo an equivalence relation ∼ (e.g., treating conjunctions up to
commutativity and associativity). For our purposes, we can take the relation
used in RSL, extending it with the requirement that for any two assertions P
and Q, if P ∼ Q holds, then �P ∼ �Q and �P ∼ �Q also have to hold.

The greatest challenge in defining the semantics of FSL assertions is inter-
preting the modalities, especially when applied to the Acq and Rel assertions.
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The obvious idea is to add a single label to each location, and use that label
to track its “protection status” (is it under a modality and which one). This
solution works perfectly for dealing with locations that are being accessed non-
atomically. For atomic locations, the situation is more complicated because of
the three splitting rules inherited from RSL, which we also have to support
in FSL.

Init(�) ⇐⇒ Init(�) ∗ Init(�) (init-split)
Rel(�,Q1) ∗ Rel(�,Q2) ⇐⇒ Rel(�, λv. Q1(v) ∨ Q2(v)) (rel-split)

Acq(�,Q1) ∗ Acq(�,Q2) ⇐⇒ Acq(�, λv. Q1(v) ∗ Q2(v)) (acq-split)

When thinking of modalities, we are thinking about them protecting loca-
tions from being tampered with after being prepared for being released by a
release fence, or from being prematurely accessed while waiting on a synchro-
nizing acquire fence. We can think of release permissions as giving us the right
to write to a location and initializations as giving us the right to read the loca-
tion. Therefore, for each atomic location we should keep separate labels for
release permissions and initialization. Keeping labels for acquire permissions is
not necessary, because acquire permissions are always used in conjunction with
initializations.

The model of heaps is as follows:

Lab
def= {◦,�,�} ,

M def= Val → Assn/∼ ,

Heapspec
def= Loc ⇀ NA[(U + Val) × Lab] + Atom[M × M × P(Lab) × P(Lab)] .

Locations can be either non-atomic or atomic. Non-atomic locations have a label
and are either uninitialized (denoted by the symbol U) or contain a value. Atomic
locations contain two permission mappings, representing the release and acquire
permissions, and two sets of labels, for keeping track of protection status of the
release permission and of the location’s initialization. We need to keep sets of
labels in order to give meaning to assertions such as Init(�) ∗ �Init(�). Heap
composition ⊕ is defined as follows:

h1 ⊕′ h2
def
= λ�.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1(�) if � ∈ dom(h1) \ dom(h2)

h2(�) if � ∈ dom(h2) \ dom(h1)

Atom[λv. P1(v) ∨ P2(v),

λv. Q1(v) ∗ Q2(v), Λ1 ∪ Λ2, Γ1 ∪ Γ2] if hi(�) = Atom[Pi, Qi, Λi, Γi]

for i = 1, 2

undef otherwise

h1 ⊕ h2
def
=

{
h1 ⊕′ h2 if dom(h1 ⊕′ h2) = dom(h1) ∪ dom(h2)

undef otherwise

In order to define the semantics of assertions, we need to define two more
notions.
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Definition 1 (Heap Similarity). Heaps h1 and h2 are similar (h1 ≈ h2) if
dom(h1) = dom(h2) and for all locations �, h1(�) � h2(�), where � is defined as
follows:

NA[x, λ] � NA[x′, λ′] def⇐⇒ x = x′ ,

Atom[P,Q, Λ, Γ ] � Atom[P ′,Q′, Λ′, Γ ′] def⇐⇒
P = P ′ ∧ Q = Q′ ∧
(Λ = ∅ ⇐⇒ Λ′ = ∅)
(Γ = ∅ ⇐⇒ Γ ′ = ∅) .

Definition 2 (Exact Label). Heap h is exactly labeled by λ ∈ Lab (notation:
labeled(h, λ)) if, for all locations �, h(�) = NA[x, γ] ⇒ γ = λ, and h(�) =
Atom[P,Q, Λ, Γ ] ⇒ Λ \ {λ} = Γ \ {λ} = ∅.

In short, two heaps are similar when they only differ in labels which appear
in the heap, and a heap is exactly labeled by a label if that’s the only label
appearing in the heap.

We are now ready to define semantics of FSL assertions.

Definition 3 (Assertion Semantics). Let �−� : Assn → P(Heapspec) be:
�false� def

= ∅ �P ∗ Q�
def
= {h1 ⊕ h2 | h1 ∈ �P � ∧ h2 ∈ �Q�}

�emp�
def
= {∅} �P → Q�

def
= {h | h ∈ �P � =⇒ h ∈ �Q�}

�∀x. P �
def
= {h | ∀v. h ∈ �P [v/x]�} �Init(�)� def

= {{� �→ Atom[False,Emp, ∅, {◦}]}}
�Uninit(�)� def

= {{� �→ NA[U, ◦]}} �Rel(�, Q)�
def
= {{� �→ Atom[Q,Emp, {◦}, ∅]}}

�� �→ v�
def
= {{� �→ NA[v, ◦]}} �Acq(�, Q)�

def
= {{� �→ Atom[False, Q, ∅, ∅]}}

��P �
def
= {h | labeled(h, �) ∧ ∃h′ ∈ �P �. h ≈ h′ ∧ labeled(h′, ◦)}

��P �
def
= {h | labeled(h, �) ∧ ∃h′ ∈ �P �. h ≈ h′ ∧ labeled(h′, ◦)}

With this definition, we can prove the splitting rules sound and that the
modalities distribute over conjunction, disjunction, and separating conjunction.

Lemma 1. The properties (init-split), (rel-split), (acq-split) hold uni-
versally, as well as the following equivalences:

�(P ∧ Q) ⇐⇒ �P ∧ �Q �(P ∧ Q) ⇐⇒ �P ∧ �Q
�(P ∨ Q) ⇐⇒ �P ∨ �Q �(P ∨ Q) ⇐⇒ �P ∨ �Q
�(P ∗ Q) ⇐⇒ �P ∗ �Q �(P ∗ Q) ⇐⇒ �P ∗ �Q

As conditions in several inference rules presented in Sect. 3, we encountered
precision and normalizability. The definition of precision is standard [10], and
normalizability means that if an assertion is satisfied by some heap, then it is
also satisfied by some subheap exactly labeled by ◦.

Definition 4 (Normalizability). An assertion P is normalizable if for all
h ∈ �P �, there exist h◦ and h′ such that h = h◦⊕h′, h◦ ∈ �P �, and labeled(h◦, ◦).
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5.2 The Semantics of Triples

The semantics of FSL triples closely follows that of RSL triples. To define the
semantics of a triple

{
P

}
E

{
y.Q

}
, we annotate edges of executions of E, put into

an arbitrary context, with the restriction that each execution of E should have
a unique incoming sb-edge and a unique outgoing sb-edge from/to its context.
These edges will be responsible for carrying heaps satisfying precondition P and
postcondition Q.

Triple semantics is defined in terms of annotation validity. In short, validity
states that the sum of heaps on all incoming edges of a node is equal to the
sum of heaps on all outgoing edges, modulo the effect of the node’s action (e.g.,
allocation will produce a new heap cell).

Figure 4 showcases the most important parts of FSL’s validity definition,
namely the conditions for nodes corresponding to atomic accesses and fences.
In the figure, hmap is the function that annotates edges of the execution with
heaps, and SBin(a), SBout(a), RFin(a), and RFout(a) denote sets of incoming sb-
edges, outgoing sb-edges, incoming rf-edges, and outgoing rf-edges of node a,
respectively. We also extend each execution by adding a special sink node. Each
node a of the execution is connected to the sink node by an edge which we denote
by Sink(a).

The main idea of the validity conditions is to have heaps satisfying pre-
conditions of inference rules on the incoming sb-edges, while heaps satisfying
postconditions go on the outgoing sb-edges. If there is some ownership transfer,
we will put the resources being transferred on rf-edges.

Let us now take a closer look at the validity conditions presented in Fig. 4.
The first line of the validity condition for the WZ(�, v) action establishes

that the outgoing sb-edge contains everything there was on the incoming edge,
except hr, the resources released by the write. In addition, the outgoing sb-edge
can contain the knowledge that the location � has been initialized. The second
line says that the outgoing sb-edge (and by the first line, also the incoming
sb-edge) contains release permission Rel(�,Q). Note that the release permission
label contains ◦. We need this to ensure that only resources labeled by ◦ are
being accessed. We often refer to resources labeled by ◦ as normal resources.
For the same reason, we force the initialization label on the outgoing sb-edge to
contain ◦.

The next two lines ensure that the resource being released (hr) is, in fact,
described by Q(v), as stated by the release permission. The idea is for the
resources that have been acquired by some read to go on the corresponding
rf-edges, and those that have been released, but not (yet) acquired to be anno-
tated on the sink edge. Note how we require resources that have been released to
be labeled only by �. This is to mark them as unusable until a synchronization
point is reached. The last line states that only release writes can release normal
resources. Relaxed writes can only release resources marked by �, which means
that those resources have been protected by a release fence.

The first line of the validity condition for RZ(�, v) states that the incoming
sb edge has to contain initialization information for � (labeled with ◦), together
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Fig. 4. Validity conditions for atomic accesses and fences.

with the acquire permission Acq(�,Q). We lose the permission to acquire more
ownership by reading the same value, and that lost permission gets placed on the
sink edge (line 2). Line 3 states that the resources acquired via the rf-edge are
exactly those described by the acquire permission. The contents of the incoming
sb-edge (without the lost permission), together with the resources acquired via
the rf-edge, are to be placed on the sb-edge (line 4). Line 5 states the technical
requirements of precision and normalizability.

The last line serves a purpose analogous to the last line in the validity of
writes. Only acquire reads can make acquired resources immediately usable (by
changing their label from � to ◦). Acquire reads can do this because they serve as
synchronization points. Relaxed reads have to leave the � label on the acquired
resources, which will force us to wait for a synchronization point provided by an
acquire fence before we will be able to use those resources.

Note 1 (Sink Edges). Using sink edges to keep track of lost permissions and
resources that have been released but that nobody has acquired may seem like an
unnecessary complication. Why do we not just forget about them? The reason for
introducing sink edges is pragmatism. Keeping track of those “lost” annotations
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greatly simplifies the soundness proofs of (r-acq) and (r-rlx) rules because it
makes Lemma 2 in Sect. 6 more widely applicable.

The validity conditions for fences are fairly straightforward. Release fences take
some normal resource and protect it by setting its labels to �, while acquire
fences make resources usable by changing labels from � to ◦.

Now that we have defined annotation validity, we can proceed to discuss the
semantics of triples.

Somewhat simplified, in RSL the triple
{
P

}
E

{
y.Q

}
holds if all executions

of E satisfying the precondition P (i.e. the unique incoming sb-edge to the
execution of E is annotated by a heap satisfying P ∗ R, where R is some frame)
can be validly annotated such that the annotation of the unique outgoing sb-edge
from the execution of E satisfies Q ∗ R.

In FSL, the triple semantics differs from the one in RSL in one minor detail.
Whereas in RSL the heap annotating the outgoing sb-edge should satisfy Q ∗ R,
here we allow it to be bigger: it suffices that the heap can be split into the sum
of two heaps h⊕h′ such that h ∈ �Q ∗ R�, while h′ can be arbitrary. The reason
for this change will be discussed in the next section.

6 Soundness

In this section, we illustrate some key points in the soundness proof of FSL. Of
particular interest are the places where the proof structure deviates from that
of RSL. The full soundess proof can be found at http://plv.mpi-sws.org/fsl/.

When talking about the soundness of a program logic like FSL, it is, of course,
necessary to prove the inference rules valid according to the semantics of triples,
but we also want to say that if

{
P

}
E

{
Q

}
holds, then the program E satisfies

some useful properties. The properties of interest here are race-freedom, memory
safety and absence of reads of uninitialized locations. In the definitions below,
we list formal statements of these three properties.

Definition 5 (Conflicting Accesses). Two actions are conflicting if both of
them are accesses (i.e. reads or writes) of the same location, at least one of them
is a write, and at least one of them is non-atomic.

Definition 6 (Race-Freedom). Execution X is race-free if for every two con-
flicting actions a and b in X , we have hb(a, b) or hb(b, a).

Definition 7 (Memory Safety). Execution X is memory safe if for every
access action b in X there is an allocation action a in X such that a allocates
the location accessed by b, and hb(a, b).

Definition 8 (Initialized Reads). We say that in execution X all reads are
initialized if for every read action r in X there is a write action w in X accessing
the same location such that hb(w, r).

http://plv.mpi-sws.org/fsl/
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Recall that for
{
P

}
E

{
Q

}
to hold, there has to be a way to validly annotate

every execution of E. Therefore, to establish the properties we are interested in,
it suffices to prove the following theorem.

Theorem 1. If X is a validly annotated execution, then X is memory safe and
race-free, and all reads in X are initialized.

Let us first concentrate on proving race-freedom for a validly annotated exe-
cution, X . We start with two conflicting accesses a and b, and we first want to
show is that there is a path in X connecting a and b. For this, we need the heap
compatibility lemma.

Definition 9 (Independent Edges). In an execution, X , a set of edges, T ,
is pairwise independent if for all (a, a′), (b, b′) ∈ T , we have ¬(sb ∪ rf)∗(a′, b).

Lemma 2 (Independent Heap Compatibility). For every consistent exe-
cution X , validly annotated by hmap, and pairwise independent set of edges T ,⊕

e∈T hmap(e) is defined.

Since this is exactly the same lemma that appears in the soundness proof of
RSL, details of its proof can be found in [16].

Now, since our accesses a and b access the same location, and at least
one of them is non-atomic, validity conditions guarantee that hmap(SBin(a)) ⊕
hmap(SBin(b)) is undefined. Therefore, according to independent heap compat-
ibility, execution X has to contain a path between a and b. Without loss of
generality we can assume that the path goes from a to b.

Here we hit the main difference between RSL and FSL. In RSL existence of
a path from a to b immediately implies hb(a, b), but in FSL we need to do some
more work before getting there.

What we are going to do is take a closer look at the location � that is being
accessed by a and b. Denote the immediate sb predecessor of b by b′. We want to
obtain a path π from a to b′ such that for any edge e ∈ π, � ∈ dom(hmap(e)). The
building blocks for showing the existence of path π are the validity conditions
and the independent heap compatibility lemma. Using these two, we can start
at SBin(a) and inductively build our path π, eventually reaching the node b′.

If we can show that the endpoints of π are related by hb, our work is done.
In order to do that, let us look at the labels assigned to location � by the edges
along the path SBin(a);π;SBin(b). (If hmap(e)(�) = NA[ , λ], we say that edge
e assigns label λ to location �.) If we write out these labels, we get a string
described by the regular expression (◦+ �∗ �+◦+)+.

Sequences of “normal labels” ◦ are of no concern, since validity conditions
mandate that ◦ appears only on sb-edges, which are part of hb relation. Therefore
we turn our attention to the parts of the path where labeling of location � is
described by ◦ �∗ �+◦. Luckily, our validity conditions are designed in such a
way as to reflect the definition sw relation (Fig. 1), which means that the node
at which the ◦ label disappears is always sw-related with the node at which the
◦ label reappears.
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This concludes the race-freedom part of the proof.
Next, we turn our attention to memory safety. If a is an action that accesses

location �, we follow the location � starting from the SBin(a) edge backwards
in the execution until we reach the node that allocates �. Along the way we
make note of the labels appearing alongside �, and similarly to the race-freedom
proof, use the validity conditions to establish happens-before relation between
the allocation and the access of �.

The analysis here is a bit more complicated since now we have to also deal
with atomic locations, which have a more complicated labeling structure, while
in the case of race-freedom it sufficed to consider only non-atomic locations.

Finally, the fact that all reads are initialized is proven analogously to memory
safety. We start at the read and in case the location that has been read is non-
atomic, we follow it backwards until we reach a write to that location that
happened before the read. When dealing with an atomic location, we have to be
more careful. For atomic locations, we follow its initialization label until we find
a write that happened before our read.

The only thing left to do is to prove all the inference rules valid according to
the semantics of triples. Since all the proofs are analogous to the validity proofs of
RSL’s rules, we will concentrate on explaining the normalizability condition and
the reason for the change in the definition of the triple semantics (see Sect. 5.2).
We will do this by taking a look at the two rules that are new to FSL, (f-rel)
and (f-acq).

Let us first turn our attention to the one that does not use the normaliz-
ability condition, namely (f-acq). To prove the rule valid, we need to validly
annotate a very simple execution. It consists of a single node a, representing the
acquire fence, one incoming and one outgoing sb-edge. Incoming edge (SBin(a)),
is annotated by a heap satisfying precondition �P , plus some heap satisfying the
frame R. In short, hmap(SBin(a)) = hP ⊕ hR, where hP ∈ ��P � and hR ∈ �R�.
Our job is to annotate outgoing edge (SBout(a)) satisfying both the validity
condition and triple semantics.

Since hP ∈ ��P �, from the assertion semantics we know that labeled hP�
holds, and that there is a heap h◦P ∈ �P � such that hP ≈ h◦P and labeled h◦P ◦.
We set hmap(SBout(a)) = h◦P ⊕ hR. This satisfies the triple semantics, because
h◦P ⊕hR ∈ �P ∗ R�. The validity conditions are also satisfied by selecting hrel =
h′
rel = ∅, hacq = hP , h′

acq = h◦P , and hF = hR.
Let us now see what happens in the proof of validity of the (f-rel) rule. Here

we start in a very similar situation with node a representing the release fence, one
incoming and one outgoing sb-edge. The initial annotation is hmap(SBin(a)) =
hP ⊕ hR, where hR ∈ �R�, hP ∈ �P �, and normalizable(P ). Before even trying
to select a proper annotation for SBout(a), we can see that there is a problem
when trying to satisfy the validity condition. Namely, what should we choose
for hrel? There is no obvious heap labeled exactly by ◦, and validity requires
labeled(hrel, ◦). This is where normalizability saves the day.

Normalizability of P gives us a decomposition hP = h◦P ⊕ h′, where h◦P ∈
�P �, and labeled(h◦P , ◦). We can now set hmap(SBout(a)) = h�P ⊕h′⊕hR, where
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h�P is obtained from h◦P by replacing all the labels appearing in h◦P with �.
Validity is now satisfied by selecting hrel = h◦P , h′

rel = h�P , hacq = h′
acq = ∅,

and hF = h′ ⊕ hR.
The RSL-style triple semantics is not satisfied by setting hmap(SBout(a)) =

h�P ⊕ h′ ⊕ hR, since we cannot guarantee h�P ⊕ h′ ⊕ hR ∈ ��P ∗ R�, but FSL
allows us to “forget” about h′, and since h�P ⊕hR ∈ ��P ∗ R�, we satisfied our
new triple semantics.

7 Related Work and Conclusion

We have presented FSL, an extension of RSL [16] for handling C11 memory
fences. FSL is the first program logic that can handle C11 fences, as both existing
program logics for C11, namely RSL [16] and GPS [14], do not support reasoning
about these programming language features.

In this paper, our focus was on exploring modalities we introduced in order to
specify the behavior of memory fences within the C11 model. We therefore chose
to base our logic on the simpler logic (RSL) instead of the more powerful one,
GPS. The simpler structure of RSL enabled us to give very simple specifications
to fences, and retain simple rules for atomic accesses.

GPS is a noticeably more powerful logic than RSL. Its strength stems from
the more flexible way in which GPS handles ownership transfer. Instead of relying
on release and acquire permissions, GPS offers protocols, ghost resources and
escrows, with which it is possible to verify a wider range of programs, such as
an implementation of the RCU synchronization mechanism [13].

The soundness proof of GPS closely follows the structure of the soundness
proof of RSL. Because of this, we feel confident that lessons learned in building
FSL on top of RSL can be used in order to enrich GPS with FSL-style modalities,
giving rise to a much more useful logic for reasoning about memory fences.

There have been other logics dealing with weak memory, mainly focusing
on the TSO memory model. Notable examples include a rely-guarantee logic
for x86-TSO by Ridge [11], and iCAP-TSO [12] which embeds separation logic
inside a logic that deals with TSO concurrency. For the release-acquire model,
there is also a recent Owicki-Gries logic called OGRA [8]. All of these logics
assume stronger memory models than we have done in this paper.

Aside from program logics, there are model checking tools for C11 programs.
Worth noting is CDSChecker [9] which includes support for memory fences.

An alternative approach to reasoning about weak memory behaviors is to
restore sequential consistency. This can be done by placing fences in order to
eliminate weak behavior [1], or by proving robustness theorems [4,5] stating
conditions under which programs have no observable weak behaviors. So far,
none of these techniques have been used to specifically target the C11 memory
model.
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Abstract. We propose a method that transforms a C program manip-
ulating containers using low-level pointer statements into an equivalent
program where the containers are manipulated via calls of standard high-
level container operations like push back or pop front. The input of our
method is a C program annotated by a special form of shape invariants
which can be obtained from current automatic shape analysers after a
slight modification. The resulting program where the low-level pointer
statements are summarized into high-level container operations is more
understandable and (among other possible benefits) better suitable for
program analysis. We have implemented our approach and successfully
tested it through a number of experiments with list-based containers,
including experiments with simplification of program analysis by sepa-
rating shape analysis from analysing data-related properties.

1 Introduction

We present a novel method that recognizes low-level pointer implementations of
operations over containers in C programs and transforms them to calls of stan-
dard high-level container operations, such as push back, insert, or is empty.
Unlike the related works that we discuss below, our method is fully automated
and yet it guarantees preservation of the original semantics. Transforming a pro-
gram by our method—or even just the recognition of pointer code implementing
container operations that is a part of our method—can be useful in many differ-
ent ways, including simplification of program analysis by separating shape and
data-related analyses (as we show later on in the paper), automatic paralleliza-
tion [11], optimization of garbage collection [21], debugging and automatic bug
finding [2], profiling and optimizations [18], general understanding of the code,
improvement of various software engineering tasks [6], detection of abnormal
data structure behaviour [12], or construction of program signatures [4].

We formalize the main concepts of our method instantiated for NULL-
terminated doubly-linked lists (DLLs). However, the concepts that we introduce
can be generalized (as we discuss towards the end of the paper) and used to
handle code implementing other kinds of containers, such as singly-linked lists,
circular lists, or trees, as well.
c© Springer-Verlag Berlin Heidelberg 2016
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Fig. 1. A running example. (a) A C code using low-level pointer manipulations. (b)
The transformed pseudo-C++ code using container operations. (c) A part of the CFG
of the low-level code from Part (a) corresponding to lines 1–12, annotated by shape
invariants.

We have implemented our method and successfully tested it through a num-
ber of experiments with programs using challenging pointer operations. Our
benchmarks cover a large variety of program constructions implementing con-
tainers based on NULL-terminated DLLs. We have also conducted experiments
showing that our method can be instantiated to other kinds of containers, namely
circular DLLs as well as DLLs with head/tail pointers (our implementation is
limited to various kinds of lists due to limitations of the shape analyser used).
We further demonstrate that our method can simplify verification of pointer
programs by separating the issue of shape analysis from that of verification of
data-related properties. Namely, we first obtain shape invariants from a spe-
cialised shape analyser (Predator [8] in our case), use it within our method to
transform the given pointer program into a container program, and then use a
tool that specialises in verification of data-related properties of container pro-
grams (for which we use the J2BP tool [15,16]).
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Overview of the Proposed Method. We demonstrate our method on a running
example given in Fig. 1(a). It shows a C program that creates a DLL of non-
deterministically chosen length on lines 2–12 and then iterates through all its
elements on lines 13–17. Figure 1(b) shows the code transformed by our method.
It is an equivalent C++-like program where the low-level pointer operations are
replaced by calls of container operations which they implement. Lines 4–8, 10,
and 11 are identified as push back (i.e., insertion of an element at the end of the
list), line 13 as setting an iterator to the first element of a list, and line 16 as a
shift of the iterator.

The core of our approach is recognition of low-level pointer implementa-
tions of destructive container operations, i.e., those that change the shape of the
memory, such as push back in our example. In particular, we search for control
paths along which pieces of the memory evolve in a way corresponding to the
effect of some destructive container operations. This requires (1) a control-flow
graph with edges annotated by an (over)approximation of the effect of program
statements on the memory (i.e., their semantics restricted to the reachable pro-
gram configurations) and (2) a specification of the operational semantics of the
container operations that are to be searched for.

We obtain an approximation of the effect of program statements by extend-
ing current methods of shape analysis. These analyses are capable of inferring
a shape invariant for every node of the control-flow graph (CFG). The shape
invariants are based on using various abstract objects to represent concrete or
summarized parts of memory. For instance, tools based on separation logic [14]
use points-to and inductive predicates; TVLA [20] uses concrete and summary
nodes; the graph-based formalism of [8] uses regions and list-segments; and sub-
automata represent list-like or tree-like structures in [9]. In all these cases, it is
easy to search for configurations of abstract objects that may be seen as having a
shape of a container (i.e., a list-like container, a tree-like container, etc.) within
every possible computation. This indicates that the appropriate part of memory
may be used by the programmer to implement a container.

To confirm this hypothesis, one needs to check that this part of memory is
actually manipulated as a container of the appropriate type across all statements
that work with it. Additional information about the dynamics of memory changes
is needed. In particular, we need to be able to track the lifecycle of each part of
the memory through the whole computation, to identify its abstract encodings
in successive abstract configurations, and by comparing them, to infer how the
piece of the memory is changing. We therefore need the shape analyser to explicitly
tell us which abstract objects of a successor configuration are created from which
abstract objects of a predecessor configuration or, in other words, which abstract
objects in the predecessor configuration denote parts of the memory intersecting
with the denotation of an object in the successor configuration. We say that the
former objects are transformed into the latter ones, and we call the relationship
a transformation relation. A transformation relation is normally not output by
shape analysers, however, tools such as Predator [8] (based on SMGs), Slayer [1]
(based on separation logic), or Forester [9] (based on automata) actually work with
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it at least implicitly when applying abstract transformers. We only need them to
output it.

The above concepts are illustrated in Fig. 1(c). It shows a part of the CFG
of the program from Fig. 1(a) with lines annotated by the shape invariant in the
round boxes on their right. The invariant is expressed in the form of so-called
symbolic memory graphs (SMGs), the abstract domain of the shape analyser
Predator [8], simplified to a bare minimum sufficient for exposing main concepts
of our method. The basic abstract objects of SMGs are shown as the black circles
in the figure. They represent continuous memory regions allocated by a single
allocation command. Every region has a next selector, shown as the line on its
right-top leading into its target region on the right, and prev selector, shown as
a line on its left-bottom leading to the target region on the left. The ⊥ stands
for the value NULL. Pairs of regions connected by the represent the second
type of abstract object, so called doubly-linked segments (DLS). They represent
doubly-linked lists of an arbitrary length connecting the two regions. The dashed
envelope indicates a memory that has the shape of a container, namely of a
NULL-terminated doubly-linked list. The transformation relation between objects
of successive configurations is indicated by the dashed lines. Making the tool
Predator [8] output it was easy, and we believe that it would be easy for other
tools as well.

Further, we propose a specification of operational semantics of the container
operations which has the same form as the discussed approximation of opera-
tional semantics of the program. It consists of input and output symbolic config-
uration, with abstract objects related by a transformation relation. For example,
Fig. 2 shows a specification of push back as an operation which appends a region
pointed by a variable y to a doubly-linked list pointed by x. The left pair specifies
the case when the input DLL is empty, the right pair the case when it is not.

Fig. 2. Specification of
z = push back(x, y).

To find an implementation of thus specified
push back, semantic annotations of the CFG are
searched for chains of the transformation relation
matching the specification. That is, they start and
end by configurations that include the input and the
output of the push back specification, resp., and the
composition of the transformation relation between
these configurations matches the transformation rela-
tion specified.

In Fig. 1(c), one of the chains implementing push back is shown as the
sequence of greyed configurations. It matches the case of the non-empty input DLL
on the right of Fig. 2. Destructive program statements within the chain imple-
menting the found operation are candidates for replacement by a call of the con-
tainer operation. In the figure, lines 7, 8, 10 are candidates for replacement by
L=push back(L,p). However, the replacement can be done only if a set of chains is
found that together gives a consistent image about a use of containers in the whole
program. In our example, it is important that on the left of the greyed chain, there
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is another chain implementing the case of push back for empty DLLs (matching
the left part of the specification in Fig. 2).

After identifying containers and destructive container operations as discussed
above, we search for implementations of non-destructive operations (like iterators
or emptiness tests). This leads to replacement of lines 13 and 16 in Fig. 1(a) by
the initialization and shift of the iterator shown on the same lines in Fig. 1(b).
This step is much simpler, and we will only sketch it in the paper. We then
simplify the code using standard static analysis. In the example, the fact that h
and t become a dead variable until line 13 leads to removing lines 4, 5, 6, and 11.

Our method copes even with cases when the implementation of a container
operation is interleaved with other program statements provided that they do
not interfere with the operation (which may happen, e.g., when a manipulation of
several containers is interleaved). Moreover, apart from the container operations,
arbitrary low-level operations can be used over the memory structures linked in
the containers provided they do not touch the container linking fields.

Related Work. There have been proposed many dynamic analyses for recognition
of heap data structures, such as, e.g., [4,10,13,17,18,23]. These approaches are
typically based on observing program executions and matching observed heap
structures against a knowledge base of predefined structures. Various kinds of
data structures can be recognised, including various kinds of lists, red-black trees,
B-trees, etc. The main purposes of the recognition include reverse engineering,
program understanding, and profiling. Nevertheless, these approaches do not
strive for being so precise that the inferred information could be used for safe,
fully automatic code replacement.

There exist static analyses with similar targets as the dynamic analyses
above. Out of them, the closest to us is probably the work [5]. Its authors do
also target transformation of a program with low-level operations into high-level
ones. However, their aim is program understanding (design recovery), not gen-
eration of an equivalent “executable” program. Indeed, the result does not even
have to be a program, it can be a natural language description. Heap operations
are recognised on a purely syntactical level, using a graph representation of the
program on which predefined rewriting rules are applied.

Our work is also related to the entire field of shape analysis, which provides
the input for our method. Due to a lack of space, we cannot give a comprehen-
sive overview here (see, e.g., [1,8,9] for references). Nevertheless, let us note that
there is a line of works using separation-logic-based shape analysis for recogni-
tion of concurrently executable actions (e.g., [19,22]). However, recognizing such
actions is a different task than recognizing low-level implementation of high-level
container usage.

In summary, to the best of our knowledge, our work is the first one which
targets automatic replacement of a low-level, pointer-manipulating code by a
high-level one, with guarantees of preserving the semantics.
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2 Symbolic Memory Graphs with Containers

We now present an abstract domain of symbolic memory graphs (SMGs), orig-
inally introduced in [8], which we use for describing shape invariants of the
programs being processed. SMGs are a graph-based formalism corresponding to
a fragment of separation logic capable of describing classes of heaps with linked
lists. We present their simplified version restricted to dealing with doubly-linked
lists, sufficient for formalising the main concepts of our method. Hence, nodes of
our SMGs represent either concrete memory regions allocated by a single alloca-
tion statement or doubly-linked list segments (DLSs). DLSs arise by abstraction
and represent sets of doubly-linked sequences of regions of an arbitrary length.
Edges of SMGs represent pointer links.

In [8], SMGs are used to implement a shape analysis within the generic frame-
work of abstract interpretation [3]. We use the output of this shape analysis,
extended with a transformation relation, which provides us with precise infor-
mation about the dynamics of the memory changes, as a part of the input of our
method (cf. Sect. 4). Further, in Sect. 3, we propose a way how SMGs together
with a transformation relation can be used to specify the container operations
to be recognized.

Before proceeding, we recall that our use of SMGs can be changed for other
domains common in the area of shape analysis (as mentioned already in the
introduction and further discussed in Sect. 7).

Symbolic Memory Graphs. We use � to explicitly denote undefined values of
functions. We call a region any block of memory allocated as a whole (e.g., using a
single malloc() statement), and we denote by ⊥ the special null region. For a set
A, we use A⊥, A�, and A⊥,� to denote the sets A∪{⊥}, A∪{�}, and A∪{⊥,�},
respectively. Values stored in regions can be accessed through selectors (such as
next or prev). To simplify the presentation, we assume dealing with pointer and
integer values only.

For the rest of the paper, we fix sets of pointer selectors Sp, data selectors Sd,
regions R, pointer variables Vp, and container variables Vc (container variables
do not appear in the input programs, they get introduced by our transformation
procedure to denote parts of memory which the program treats as containers).
We assume all these sets to be pairwise disjoint and disjoint with Z⊥,�. We use
V to denote the set Vp ∪ Vc of all variables, and S to denote the set Sp ∪ Sd of
all selectors.

A doubly-linked list segment (DLS) is a pair (r, r′) ∈ R × R of regions that
abstracts a doubly-linked sequence of regions of an arbitrary length that is unin-
terrupted by any external pointer pointing into the middle of the sequence and
interconnects the front region represented by r with the back region r′. We use
D to denote the set of all DLSs and assume that R ∩ D = ∅. Both regions and
DLSs will be called objects.

To illustrate the above, the top-left part of Fig. 3 shows a memory layout
with five regions (black circles), four of which form a NULL-terminated DLL.
The bottom-left part of Fig. 3 shows a sequence of three doubly-linked regions
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abstracted into a DLS (depicted as a pair of regions linked via the “spring” ).
Note that we could also abstract all four doubly-linked regions into a single DLS.

Fig. 3. A DLL and an SDLL, a PC and
an SPC.

We can now define a symbolic
memory graph (SMG) formally. It is
a triple G = (R,D, val) consisting of
a set R ⊆ R of regions, a set D ⊆
R × R ⊆ D of DLSs, and a map val
defining the pointer and data fields
of regions in R. It assigns to every
pointer selector selp ∈ Sp a function
val(selp) : R → R⊥,� that defines the
successors of every region r ∈ R. Further, it assigns to every data selector
seld ∈ Sd a function val(seld) : R → Z� that defines the data values of every
region r ∈ R. We will sometimes abuse the notation and write simply sel(r)
to denote val(sel)(r). An SMG G′ = (R′,D′, val′) is a sub-SMG of G, denoted
G′ 
 G, if R′ ⊆ R, D′ ⊆ D, and val′(sel) ⊆ val(sel) for all sel ∈ S.

Container Shapes. We now proceed to defining a notion of container shapes
that we will be looking for in shape invariants produced by shape analysis and
whose manipulation through given container operations we will be trying to
recognise. For simplicity, we restrict ourselves to NULL-terminated DLLs. How-
ever, in our experimental section, we present results for some other kinds of
list-shaped containers too. Moreover, at the end of the paper, we argue that a
further generalization of our approach is possible. Namely, we argue that the
approach can work with other types of container shapes as well as on top of
other shape domains.

A symbolic doubly-linked list (SDLL) with a front region r and a back region
r′ is an SMG in the form of a sequence of regions possibly interleaved with
DLSs, interconnected so that it represents a DLL. Formally, it is an SMG G =
(R,D, val) where R = {r1, . . . , rn}, n ≥ 1, r1 = r, rn = r′, and for each 1 ≤ i < n,
either next(ri) = ri+1 and prev(ri+1) = ri, or (ri, ri+1) ∈ D and next(ri) =
prev(ri+1) = �. An SDLL which is NULL-terminated, i.e., with prev(r) = ⊥ and
next(r′) = ⊥, is called a container shape (CS). We write csh(G) to denote the
set of all CSs G′ that are sub-SMGs of an SMG G. The bottom-right part of
Fig. 3 contains an SDLL connecting a DLS and a region. It is NULL-terminated,
hence a CS, which is indicated by the dashed envelope .

Symbolic Program Configurations. A symbolic program configuration (SPC) is
a pair (G, σ) where G = (R,D, val) is an SMG and σ : (Vp → R⊥,�) ∪ (Vc →
csh(G)�) is a valuation of the variables. An SPC C ′ = (G′, σ′) is a sub-SPC of
an SPC C = (G, σ), denoted C ′ 
 C, if G′ 
 G and σ ⊆ σ′. The bottom-right
part of Fig. 3 depicts an SPC with pointer variables h and t positioned next to
the regions σ(h) and σ(t) they evaluate to. The figure further shows a variable
L positioned next to the CS σ(L) it evaluates to. The top-right part of Fig. 3 is
a PC as it has no DLSs. Examples of other SPCs are shown in the annotations
of program locations in Fig. 1(c)—for some more, see [7].
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Additional Notation. For an SMG or an SPC X, we write reg(X) to denote
the set of its regions, and obj (X) to denote the set of all its objects (regions
and DLSs). A (concrete) memory graph (MG), program configuration (PC), or
doubly-linked list (DLL) is an SMG, SPC, or DLL, respectively, whose set of
DLSs is empty, i.e., no abstraction is involved. A bijection π : R → R is called
a region renaming. For an SMG, SPC, or a variable valuation x, we denote by
π(x) the structure arising from x by replacing each occurrence of r ∈ R by π(r).
A bijection λ : V → V is called a variable renaming, and we define λ(x) analogous
to π(x).

Abstraction and Concretization. We now formalize the standard pair of abstrac-
tion and concretization functions used in abstract interpretation for our domains
of MGs and SMGs. An SMG G is an abstraction of an MG g iff it can be obtained
via the following three steps: (i) Renaming regions of g by some region renam-
ing π (making the semantics of an SMG closed under renaming). (ii) Removing
some regions (which effectively removes some constraint on a part of the mem-
ory, thus making its representation more abstract). (iii) Folding some DLLs into
DLSs (abstracting away some details of the internal structure of the DLLs). In
particular, a DLL l with a front region r and a back region r′ may be folded into
a DLS dl = (r, r′) by removing the inner regions of l (we say that these regions
get folded into dl), removing the next-value of r and the prev -value of r′ (unless
r = r′), and adding dl into the set DG of DLSs of G.

Now, let g be a component of a PC (g, σ). The PC may be abstracted into an
SPC (G, σ′) by (a) forgetting values of some variables x ∈ dom(σ), i.e., setting
σ′(x) to �, and (b) abstracting g into G by Steps (i–iii) above. Here, Step (i) is
augmented by redirecting every σ′(x) to π(σ(x)), Step (ii) is allowed to remove
only regions that are neither in dom(σ′) nor in any CS that is in dom(σ′), and
Step (iii) may fold a DLL into a DLS only if none of its inner regions is in
dom(σ′), redirecting values of container variables from the original CSs to the
ones that arise from it by folding.

The concretization of an SPC (SMG) X is then the set �X� of all PCs (MGs,
resp.) that can be abstracted to X. When X is a set of SPCs (SMGs), then
�X� =

⋃
X∈X

�X�.
The left part of Fig. 3 shows an abstraction of an MG (top) into an SMG

(bottom). Step (i) renames all regions in the MG into the regions of the SMG,
Step (ii) is not applied, and Step (iii) folds three left-most regions of the DLL into
a DLS. The repre arrows show the so-called assignment of representing objects
defined below.

3 Operations and Their Specification

In this section, we introduce a notion of operations and propose their finite
encoding in the form of the so-called symbolic operations. Symbolic operations
play a crucial role in our approach since they are used to describe both of the
two inputs of our algorithm for recognition of high-level container operations in
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low-level code. In particular, on one hand, we assume a (slightly extended) shape
analyser to provide us with a CFG of the program being processed annotated by
symbolic operations characterizing the effect of the low-level pointer statements
used in the program (as discussed in Sect. 4). On the other hand, we assume
the high-level container operations whose effect—implemented by sequences of
low-level pointer statements—is to be sought along the annotated CFG to be
also described as symbolic operations. This can either be done by the users of
the approach (as discussed at the end of this section), or a library of typical
high-level container operations can be pre-prepared.

Below, we, in particular, concentrate on destructive container operations, i.e.,
those container operations which change the shape of the heap. Non-destructive
container operations are much easier to handle, and we discuss them at the end
of Sect. 5.

Operations and Symbolic Operations. We define an operation as a binary rela-
tion δ on PCs capturing which input configurations are changed to which output
configurations by executing the operation. The individual pairs u = (c, c′) ∈ δ
relating one input and one output configuration are called updates. Operations
corresponding to pointer statements or container operations relate infinitely
many different input and output configurations, hence they must be represented
symbolically. We therefore define a symbolic update as a triple U = (C,�, C ′)
where C = (G, σ), C ′ = (G′, σ′) are SPCs, and � is a binary relation over
objects (regions and DLSs) called transformation relation. A symbolic operation
is then simply a (finite) set Δ of symbolic updates.

Symbolic updates will be used to search for implementation of destructive
container operations based on changes of the SMGs labelling the given CFG.
To be able to do this with enough precision, symbolic updates must describe
the “destructive” effect that the operation has on the shape of the memory
(addition/removal of a region or a change of a selector value). For this, we
require the semantics of a symbolic update to be transparent, meaning that
every destructive change caused by the operation is explicitly and unambiguously
visible in the specification of the operation (i.e., it cannot, e.g., happen in an
invisible way somewhere inside a DLS). On the other hand, we are not interested
in how the code modifies data values of regions. The semantics of a symbolic
update thus admits their arbitrary changes.

Semantics of Symbolic Updates. To define semantics of symbolic operations, we
need to distinguish abstract object (region or DLS) of an SPC C = (G, σ) repre-
senting a region r of a PC c = (g, σ′) ∈ �C�. Recall that G arises by abstracting
g by Steps (i–iii). Let π be the region renaming used in Step (i). We define the
representing object repre(r) of r in C as (1) the region π(r) if π(r) ∈ reg(G), (2)
� if π(r) is removed in G by Step (ii), and (3) the DLS d if π(r) is folded into
d ∈ obj (G) in Step (iii). We use c ∈repre �C� to denote that the function repre is
an assignment of representing objects of C to regions of c. The inverse repre−1(o)
gives the set of all regions of c that are represented by the object o ∈ obj (C).
Notice that the way of how g is abstracted to G by Steps (i–iii) is not necessarily
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unique, hence the assignment repre is not unique either. The right part of Fig. 3
shows an example of abstraction of a PC c (top) to an SPC C (bottom), with the
assignment of representing objects repre shown via the top-down arrows.

Using this notation, the semantics of a symbolic update U = (C,�, C ′) can
be defined as the operation �U� which contains all updates u = (c, c′) such that:

1. c ∈repre �C� and c′ ∈repre′ �C ′�.
2. An object o ∈ obj (C) transforms into an object o′ ∈ obj (C ′), i.e., o � o′, iff

the denotations repre−1(o) and (repre ′)−1(o) share some concrete region, i.e.,
∃r ∈ reg(c) ∩ reg(c′) : repre(r) = o ∧ repre ′(r) = o′.

3. The semantics is transparent: (i) each selector change is explicit, i.e., if sel(r)
in c differs from sel(r) in c′ for a region r ∈ reg(c) ∩ reg(c′), then repre(r) ∈
reg(C) and repre ′(r) ∈ reg(C ′) are regions such that sel(repre(r)) in C differs
from sel(repre ′(r)) in C ′; (ii) every deallocation is explicit meaning that if
a region r of c is removed (i.e., it is not a region of c′), then repre(r) is a
region (not a DLS) of C; (iii) every allocation is explicit meaning that if a
region r of c′ is added (i.e., it is not a region of c), then repre ′(r) is a region
of C ′.

The semantics of a symbolic operation Δ is naturally defined as xs�Δ� =⋃
U∈Δ �U�.

An example of a symbolic update is shown e.g. in Fig. 1(c), on the right of
the program edge between locations 3 and 4. It consists of the right-most SPCs
attached to these locations (denote them as C = (G, σ) and C ′ = (G′, σ′), and
their DLSs as d and d′, respectively) and the transformation relation between their
objects denoted by the dotted vertical lines. The allocation done between the con-
sidered locations does not touch the DLSs, it only adds a new region pointed to
by p. This is precisely expressed by the symbolic update U = (C,�, C ′) where
� = {(σ(L), σ′(L))}. The relation � (the dotted line between objects σ(L) and
σ′(L)) says that, for every update from �U�, denotations of the two DLSs d and d′

share regions (by Point 2 above). By Point 3, there are no differences in pointer
links between the DLLs encoded by the two DLSs; the DLLs encoded by d and
the ones encoded by d′ must be identical up to values of data fields. The only
destructive change that appears in the update is the addition of the freshly allo-
cated region σ′(p) that does not have a �-predecessor (due to Point 3 (iii) above).

User Specification of Destructive Container Operations. As stated already above,
we first concentrate on searching for implementations of user-specified destruc-
tive container operations in low-level code. In particular, we consider non-iterative
container operations, i.e., those that can be implemented as non-looping sequences
of destructive pointer updates, region allocations, and/or de-allocations.1

1 Hence, e.g., an implementation of a procedure inserting an element into a sorted list,
which includes the search for the element, will not be understood as a single destruc-
tive container operation, but rather as a procedure that calls a container iterator in a
loop until the right place for the inserted element is found, and then calls a destruc-
tive container operation that inserts the given region at a position passed to it as a
parameter.
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We require the considered destructive container operations to be operations
δy=op(x) that satisfy the following requirements: (1) Each δy=op(x) is determinis-
tic, i.e., it is a function. (2) The sets x = x1, ..., xn ∈ V

n and y = y1, ..., ym ∈ V
m,

n,m ≥ 0, are the input and output parameters of the operation so that for every
update ((g, σ), (g′, σ′)) ∈ δy=op(x), the input PC has dom(σ) = {x1, . . . , xn}
and the output PC has dom(σ′) = {y1, . . . , ym}. (3) Since we concentrate on
destructive operations only, the operation does not modify data values, i.e.,
δy=op(x) ⊆ δconst where δconst contains all updates that do not change data val-
ues except for creating an unconstrained data value or destroying a data value
when creating or destroying some region, respectively.

Container operations δy=op(x) of the above form can be specified by a user as
symbolic operations, i.e., sets of symbolic updates, Δy=op(x) such that δy=op(x) =
�Δy=op(x)� ∩ δconst. Once constructed, such symbolic operations can form a
reusable library.

For instance, the operation δz=push back(x,y) can be specified as a symbolic
operation Δz=push back(x,y) which inputs a CS referred to by variable x and a
region pointed to by y and outputs a CS referred by z. This symbolic operation
is depicted in Fig. 2. It consists of two symbolic updates in which the user relates
possible initial and final states of the memory. The left one specifies the case when
the input container is empty, the right one the case when it is nonempty.

4 Annotated Control Flow Graphs

In this section, we describe the semantic annotations of a control-flow graph that
our procedure for recognizing implementation of high-level container operations
in low-level code operates on.

Control-Flow Graph. A control flow graph (CFG) is a tuple cfg = (L,E, �I , �F )
where L is a finite set of (control) locations, E ⊆ L × Stmts× L is a set of edges
labelled by statements from the set Stmts defined below, �I is the initial location,
and �F the final location. For simplicity, we assume that any two locations �, �′

are connected by at most one edge 〈�, stmt , �′〉.
The set of statements consists of pointer statements stmtp ∈ Stmtsp, integer

data statements stmtd ∈ Stmtsd, container statements stmtc ∈ Stmtsc, and the
skip statement skip, i.e., Stmts = Stmtsp ∪ Stmtsd ∪ Stmtsc ∪ {skip}. The con-
tainer statements and the skip statement do not appear in the input programs,
they are generated by our transformation procedure. The statements from Stmts
are generated by the following grammar (we present a simplified minimalistic
form to ease the presentation):

stmtp :: = p = (p | p�s | malloc() | ⊥) | p�s = p | free(p) | p == (p | ⊥) | p!= (p | ⊥)

stmtd :: = p�d = (n | p�d) | p�d == p�d | p�d != p�d stmtc :: = y = op(x )

Above, p ∈ Vp, s ∈ Sp, d ∈ Sd, n ∈ Z, and x, y ∈ V
∗.
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For each stmt ∈ Stmtsp ∪ Stmtsd, let δstmt be the operation encoding its
standard C semantics. For example, the operation δx=y->next contains all updates
(c, c′) where c = (g, σ) is a PC s.t. σ(y) �= � and c′ is the same as c up to the
variable x that is assigned the next-successor of the region pointed to by y. For
each considered container statement stmt ∈ Stmtsc, the operation δstmt is to be
specified by the user. Let p = e1, . . . , en where ei = 〈�i−1, stmt i, �

′
i〉, 1 ≤ i ≤ n,

be a sequence of edges of cfg . We call p a control flow path if �′
i = �i for each

1 ≤ i < n. The semantics �p� of p is the operation δstmtn
◦ · · · ◦ δstmt1 .

A state of a computation of a CFG cfg is a pair (l, c) where l is a location of cfg
and c is a PC. A computation of cfg is a sequence of states φ = (�0, c0), (�1, c1), . . .
of length |φ| ≤ ∞ where there is a (unique) edge ei = 〈�i, stmt i, �i+1〉 ∈ E such
that (ci, ci+1) ∈ δstmti

for each 0 ≤ i < |φ|. The path e0, e1, . . . is called the
control path of φ.

Semantic Annotations. A semantic annotation of a CFG cfg consists of a mem-
ory invariant mem, a successor relation �, and a transformation relation �.
The quadruple (cfg ,mem,�, �) is then called an annotated control-flow graph
(annotated CFG). A memory invariant mem is a total map that assigns to every
location � of cfg a set mem(�) of SPCs describing (an overapproximation of) the
set of memory configurations reachable at the given location. For simplicity, we
assume that sets of regions of any two different SPCs in img(mem) are disjoint.
The successor relation is a binary relation on SPCs. For an edge e = 〈�, stmt , �′〉
and SPCs C ∈ mem(�), C ′ ∈ mem(�′), C � C ′ indicates that PCs of �C� are
transformed by executing stmt into PCs of �C ′�. The relation � is a transfor-
mation relation on objects of configurations in img(mem) relating objects of C
with objects of its �-successor C ′ in order to express how the memory changes
by executing the edge e. The change is captured in the form of the symbolic
operation Δe = {(C, �, C ′) | (C,C ′) ∈ � ∩ mem(�) × mem(�′)}. For our analysis
to be sound, we require Δe to overapproximate δstmt restricted to �mem(�)�, i.e.,
�Δe� ⊇ δ�

stmt for δ�
stmt = {(c, c′) ∈ δstmt | c ∈ �mem(�)�}.

A symbolic trace of an annotated CFG is a possibly infinite sequence of SPCs
Φ = C0, C1, . . . provided that Ci � Ci+1 for each 0 ≤ i < |Φ| ≤ ∞. Given a
computation φ = (�0, c0), (�1, c1), . . . of length |φ| = |Φ| such that ci ∈ �Ci� for
0 ≤ i ≤ |φ|, we say that Φ is a symbolic trace of computation φ.

A part of the annotated CFG of our running example from Fig. 1(a) is given
in Fig. 1(c), another part can be found in [7]. For each location �, the set mem(l)
of SPCs is depicted on the right of the location l. The relation � is depicted by
dotted lines between objects of SPCs attached to adjacent program locations.
The relation � is not shown as it can be almost completely inferred from �:
Whenever objects of two SPCs are related by �, the SPCs are related by �. The
only exception is the �-chain of the left-most SPCs along the control path 1, 2,
3, 4 in Fig. 1(c).
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5 Replacement of Low-Level Manipulation of Containers

With all the notions designed above, we are now ready to state our methods
for identifying low-level implementations of container operations in an anno-
tated CFG and for replacing them by calls of high-level container operations.
Apart from the very end of the section, we concentrate on destructive container
operations whose treatment turns out to be significantly more complex. We
assume that the destructive container operations to be sought and replaced are
specified as sequences of destructive pointer updates, region allocations, and/or
de-allocations as discussed in the last paragraph of Sect. 3.

Given a specification of destructive container operations and an annotated
CFG, our algorithm needs to decide: (1) which low-level pointer operations to
remove, (2) where to insert calls of container operations that replace them and
what are these operations, and (3) where and how to assign the right values
to the input parameters of the inserted container operations. To do this, the
algorithm performs the following steps.

The algorithm starts by identifying container shapes in the SPCs of the given
annotated CFG. Subsequently, it looks for the so-called transformation chains of
these container shapes which capture their evolution along the annotated CFG.
Each such chain is a sequence of sub-SMGs that appear in the labels of a path
of the given annotated CFG. In particular, transformation chains consisting of
objects linked by the transformation relation, meaning that the chain represents
evolution of the same piece of memory, and corresponding to some of the specified
container operations are sought.

The algorithm then builds a so-called replacement recipe of a consistent set of
transformation chains that interprets the same low-level code as the same high-
level container operation for each possible run of the code. The recipe determines
which code can be replaced by which container operation and where exactly the
container operation is to be inserted within the sequence of low-level statements
implementing it. This sequence can, moreover, be interleaved with some inde-
pendent statements that are to be preserved and put before or after the inserted
call of a container operation.

The remaining step is then to find out how and where to assign the right
values of the input parameters of the inserted container operations. We do this
by computing a so-called parameter assignment relation. We now describe the
above steps in detail. For the rest of Sect. 5, we fix an input annotated CFG
cfg and assume that we have specified a symbolic operation Δstmt for every
container statement stmt ∈ Stmtsc.

5.1 Transformation Chains

A transformation chain is a sequence of sub-SMGs that describes how a piece
of memory evolves along a control path. We in particular look for such trans-
formation chains whose overall effect corresponds to the effect of some specified
container operation. Such transformation chains serve us as candidates for code
replacement.
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Let p = 〈�0, stmt1, �1〉, . . . , 〈�n−1, stmtn, �n〉 be a control flow path. A trans-
formation chain (or simply chain) with the control path p is a sequence τ =
τ [0] · · · τ [n] of SMGs such that, for each 0 ≤ i ≤ n, there is an SPC Ci =
(Gi, σi) ∈ mem(�i) with τ [i] 
 Gi and the relation �τ= {(Ci−1, Ci) | 1 ≤ i ≤ n}
is a subset of �, i.e., Ci is the successor of Ci−1 for each i. We will call the
sequence C0, . . . , Cn the symbolic trace of τ , and we let �i

τ = �∩ (obj (τ [i−1])×
obj (τ [i])) for 1 ≤ i ≤ n denote the transformation relation between the objects
of the i − 1th and ith SMG of τ .

An example of a chain, denoted as τpb below, is the sequence of the six SMGs
that are a part of the SPCs highlighted in grey in Fig. 1(c). The relation �τpb

links the six SPCs, and the relation �τpb consists of the pairs of objects connected
by the dotted lines.

Let Δ be a specification of a container operation. We say that a transforma-
tion chain τ implements Δ w.r.t. some input/output parameter valuations σ/σ′

iff �Uτ � ⊆ �Δ� for the symbolic update Uτ = ((τ [0], σ), �n
τ ◦ · · · ◦ �1

τ , (τ [n], σ′)).
Intuitively, Uτ describes how MGs in �τ [0]� are transformed into MGs in �τ [n]�
along the chain. When put together with the parameter valuations σ/σ′, Uτ is
required to be covered by Δ.

In our example, by taking the composition of relations �5
τpb ◦· · ·◦�1

τpb (relating
objects from location 4 linked by dotted lines with objects at location 11), we
see that the chain τpb implements the symbolic operation Δz=push back(x,y) from
Fig. 2, namely, its symbolic update on the right. The parameter valuations σ/σ′

can be constructed as L and p correspond to x and y at location 4, respectively,
and L corresponds to z at location 11.

Let τ be a chain implementing Δ w.r.t. input/output parameter valuations
σ/σ′. We define implementing edges of τ w.r.t. Δ, σ, and σ′ as the edges of the path
p of τ that are labelled by those destructive pointer updates, region allocations,
and/or deallocations that implement the update Uτ . Formally, the i-th edge ei of
p, 1 ≤ i ≤ n, is an implementing edge of τ iff �((τ [i − 1], ∅), �, (τ [i], ∅))� ∩ δconst

is not an identity (the update does not talk about values of variables, hence the
empty valuations).

For our example chain τpb, the edges (7,8), (8,9), and (10,11) are implementing.

Finding Transformation Chains in an Annotated CFG. Let Δstmt be one of the
given symbolic specifications of the semantics of a destructive container state-
ment stmt ∈ Stmtsc. We now sketch our algorithm for identifying chains that
implement Δstmt . More details can be found in [7]. The algorithm is based on pre-
computing sets Û of so-called atomic symbolic updates that must be performed to
implement the effect of each symbolic update U ∈ Δstmt . Each atomic symbolic
update corresponds to one pointer statement that performs a destructive pointer
update, a memory allocation, or a deallocation. The set Û can be computed by
looking at the differences in the selector values of the input and output SPCs
of U . The algorithm then searches through symbolic traces of the annotated
CFG cfg and looks for sequences of sub-SMGs present in them and linked by
the atomic symbolic updates from Û (in any permutation) or by identity (mean-
ing that a statement irrelevant for stmt is performed). Occurrences of atomic
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updates are found based on testing entailment between symbolic atomic updates
and symbolic updates annotating subsequent CFG locations. This amounts to
checking entailment of the two source and the two target SMGs of the updates
using methods of [8], augmented with testing that the transformation relation
is respected. Soundness of the procedure depends on the semantics of symbolic
updates being sufficiently precise, which is achieved by transparency of their
semantics.

For example, for the container statement z=push back(x,y) and the sym-
bolic update U corresponding to an insertion into a list of length one or more,
Û will consist of (i) symbolic updates corresponding to the pointer statements
assigning y to the next-selector of the back region of x, (ii) assigning the back
region of x to the prev -selector of y, and (iii) assigning ⊥ to the next-selector
of y. Namely, for the chain τpb in Fig. 1(c) and the definition of the operation
Δz=push back(x,y) in Fig. 2, the set Û consists of three symbolic updates: from
location 7 to 8 by performing Point (i), then from location 8 to 9 by performing
(iii), and from location 10 to 11 by performing (ii).

5.2 Replacement Locations

A replacement location of a transformation chain τ w.r.t. Δ, σ, and σ′ is one
of the locations on the control path p of τ where it is possible to insert a call
of a procedure implementing Δ while preserving the semantics of the path. In
order to formalize the notion of replacement locations, we call the edges of p
that are not implementing (do not implement the operation—e.g., they modify
data) and precede or succeed the replacement location as the prefix or suffix
edges, and we denote pp/s/i the sequences of edges obtained by removing all but
prefix/suffix/implementing edges, respectively. The replacement location must
then satisfy that �·pi·�

∣∣
�mem(�0)�

= �p�
∣∣
�mem(�0)�

where the notation δ
∣∣
S

stands
for the operation δ restricted to updates with the source configurations from the
set S. The prefix edges are chosen as those which read the state of the container
shape as it would be before the identified container operation, the suffix edges as
those which read its state after the operation. The rest of not implementing edges
is split arbitrarily. If we do not find a splitting satisfying the above semantical
condition, τ is discarded from further processing.

For our example chain τpb, the edges (4,7) and (9,10) can both be put into
the prefix since none of them saves values of pointers used in the operation (see
Fig. 1(c)). The edge (9,10) is thus shifted up in the CFG, and the suffix remains
empty. Locations 8–11 can then be used as the replacement locations.

5.3 Replacement Recipes

A replacement recipe is a map Υ that assigns to each chain τ of the annotated
CFG cfg a quadruple Υ(τ) = (Δτ , σin

τ , σout
τ , �τ ), called a replacement template,

with the following meaning: Δτ is a specification of a container operation that
is to be inserted at the replacement location �τ as a replacement of the imple-
menting edges of τ . Next, σin

τ /σout
τ are input/output parameter valuations that
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specify which parts of the memory should be passed to the inserted operation
as its input parameters and which parts of the memory correspond to the values
of the output parameters that the operation should return.

For our example chain τpb, a replacement template Υ(τpb) can be obtained,
e.g., by taking Δτpb = Δz=push back(x,y), �τpb = 11, σin

τpb(x) = στpb[0](L) denoting
the CS in the gray SPC of loc. 4, σin

τpb(y) = στpb[0](p) denoting the right-most
region of the gray SPC of loc. 4, and σout

τpb (z) = στpb[5](L) denoting the CS in the
gray SPC of loc. 11.

We now give properties of replacement recipes that are sufficient for the CFG
cfg ′ generated by our code replacement procedure, presented in Sect. 5.5, to be
semantically equivalent to the original annotated CFG cfg .

Local Consistency. A replacement recipe Υ must be locally consistent meaning
that (i) every τ ∈ dom(Υ) implements Δτ w.r.t. σin

τ and σout
τ and (ii) �τ is

a replacement location of τ w.r.t. Δτ , σin
τ , and σout

τ . Further, to enforce that τ is
not longer than necessary, we require its control path τ to start and end by an
implementing edge. Finally, implementing edges of the chain τ cannot modify
selectors of any object that is a part of a CS which is itself not at the input of
the container operation.

Global Consistency. Global consistency makes it safe to replace the code w.r.t.
multiple overlapping chains of a replacement recipe Υ, i.e., the replacements
defined by them do not collide. A replacement recipe Υ is globally consistent iff
the following holds:

1. A location is a replacement location within all symbolic traces passing it
or within none. Formally, for each maximal symbolic trace Φ passing the
replacement location �τ of a chain τ ∈ dom(Υ), there is a chain τ ′ ∈ dom(Υ)
s.t. �τ ′ = �τ and the symbolic trace of τ ′ is a sub-sequence of Φ passing �τ .

2. An edge is an implementing edge within all symbolic traces passing it or
within none. Formally, for each maximal symbolic trace Φ passing an imple-
menting edge e of a chain τ ∈ dom(Υ), there is a chain τ ′ ∈ dom(Υ) s.t. e
is its implementing edge and the symbolic trace of τ ′ is a sub-sequence of Φ
passing e.

3. For any chains τ, τ ′ ∈ dom(Υ) that appear within the same symbolic trace, the
following holds: (a) If τ , τ ′ share an edge, then they share their replacement
location, i.e., �τ = �τ ′ . (b) Moreover, if �τ = �τ ′ , then τ is an infix of τ ′ or τ ′

is an infix of τ . The latter condition is technical and simplifies the proof of
correctness of our approach.

3. Chains τ, τ ′ ∈ dom(Υ) with the same replacement location �τ = �τ ′ have the
same operation, i.e., Δτ = Δτ ′ .

4. An edge is either implementing for every chain of dom(Υ) going through that
edge or for no chain in dom(Υ) at all.

Notice that Points 1, 2, and 3 speak about symbolic traces. That is, they do not
have to hold along all control paths of the given CFG cfg but only those which
appear within computations starting from �mem(�I)�.
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Connectedness. The final requirement is connectedness of a replacement recipe Υ.
It reflects the fact that once some part of memory is to be viewed as a container,
then destructive operations on this part of memory are to be done by destructive
container operations only until the container is destroyed by a container destruc-
tor. Note that this requirement concerns operations dealing with the linking fields
only, the rest of the concerned objects can be manipulated by any low-level opera-
tions. Moreover, the destructive pointer statements implementing destructive con-
tainer operations can also be interleaved with other independent pointer manip-
ulations, which are handled as the prefix/suffix edges of the appropriate chain.

Connectedness of Υ is verified over the semantic annotations by checking that
in the �-future and past of every container (where a container is understood as
a container shape that was assigned a container variable in Υ), the container
is created, destroyed, and its linking fields are modified by container operations
only. Due to space restrictions, we refer the reader to [7] for a formal description.

Computing Recipes. The algorithm for building a replacement recipe Υ starts
by looking for chains τ of the annotated CFG cfg that can be associated with
replacement templates Υ(τ) = (Δτ , σin

τ , σout
τ , �τ ) s.t. local consistency holds. It

uses the approach described in Sect. 5.1. It then tests global consistency of Υ.
All the five sub-conditions can be checked straightforwardly based on their def-
initions. If Υ is found not globally consistent, problematic chains are pruned it
until global consistency is achieved. Testing for connectedness is done by test-
ing all �cs-paths leading forward from output parameters of chains and back-
ward from input parameters of chains. Testing whether �(S, �, S′)� ∩ δconst or
�(S′, �, S)� ∩ δconst is an identity, which is a part of the procedure, can be done
easily due to the transparency of symbolic updates. Chains whose container para-
meters contradict connectedness are removed from Υ. The pruning is iterated
until Υ is both globally consistent and connected.

5.4 Parameter Assignment

To prevent conflicts of names of parameters of the inserted container operations,
their calls are inserted with fresh parameter names. Particularly, given a replace-
ment recipe Υ, the replacement location �τ of every chain τ ∈ dom(Υ) is assigned
a variable renaming λ�τ

that renames the input/output parameters of the sym-
bolic operation Δτ , specifying the destructive container operation implemented
by τ , to fresh names. The renamed parameters of the container operations do
not appear in the original code, and so the code replacement algorithm must
insert assignments of the appropriate values to the parameters of the operations
prior to the inserted calls of these operations. For this, we compute a parameter
assignment relation ν containing pairs (�, x := y) specifying which assignment
x := y is to be inserted at which location �. Intuitively, ν is constructed so that
the input parameters of container operations take their values from the output
container parameters of the preceding container operations or, in case of pointer
variables, directly from the access paths (consisting of a pointer variable v or a
selector value v�s) that are used in the original program to access the concerned
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memory regions. Due to space limitations, details are given in [7]. Let us just
note that if we fail to find a parameter assignment, we remove some chains from
Υ and restart the search.

5.5 Code Replacement

The input of the replacement procedure is the annotated CFG cfg , a replacement
recipe Υ, a variable renaming λ� for every replacement location � of Υ, and a
parameter assignment relation ν. The procedure produces a modified CFG cfg ′.
It first removes all implementing edges of every chain τ ∈ dom(Υ) and adds
instead an edge with a call to λ�(Δ�) at �τ , and then adds an edge with the
assignment x := y at � for every pair (�, x := y) ∈ ν. The edge removal is done
simply by replacing the statement on the given edge by the skip statement whose
semantics is identity. Given a statement stmt and a location �, edge addition
amounts to: (1) adding a fresh location �•, (2) adding a new edge 〈�, stmt , �•〉,
(3) replacing every edge 〈�, stmt ′, �′〉 by 〈�•, stmt ′, �′〉. Intuitively, edge removal
preserves all control paths going through the original edge, only the statement
is now “skipped”, and edge addition inserts the given statement into all control
paths containing the given location.

After replacing destructive container operations, we replace non-destructive
container operations, including, in particular, usage of iterators to reference ele-
ments of a list and to move along the list, initialisation of iterators (placing an
iterator at a particular element of a list), and emptiness tests. With a replacement
recipe Υ and an assignment relation ν at hand, recognizing non-destructive oper-
ations in the annotated CFG cfg is a much easier task than that of recognizing
destructive operations. Actually, for the above operations, the problem reduces
to analysing annotations of one CFG edge at a time. Due to space limitations,
we refer an interested reader to [7] for more details.

Preservation of Semantics. It can now be proved (cf. [7]) that under the assump-
tion that the replacement recipe Υ is locally and globally consistent and con-
nected and the parameter assignment relation ν is complete, our code replace-
ment procedure preserves the semantics. In particular, computations of the CFG
cfg are surjectively mapped to computations of the CFG cfg ′ that are equivalent
in the following sense. They can be divided into the same number of segments
that are in the computation of cfg delimited by borders of the chains that it
passes through. The two computations agree on the final PCs of the respective
segments. Note also that the transformation preserves memory safety errors—if
they appear, the related containers will not be introduced due to violation of
connectedness.

6 Implementation and Experimental Results

We have implemented our approach as an extension of the Predator shape
analyser [8] and tested it through a number of experiments. Our code and experi-
ments are publicly available at http://www.fit.vutbr.cz/research/groups/verifit/
tools/predator-adt.

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator-adt
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator-adt
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The first part of our experiments concentrated on how our approach can
deal with various low-level implementations of list operations. We built a collec-
tion of 18 benchmark programs manipulating NULL-terminated DLLs via differ-
ent implementations of typical list operations, such as insertion, iteration, and
removal. Moreover, we generated further variants of these implementations by
considering various legal permutations of their statements. We also considered
interleaving the pointer statements implementing list operations with various
other statements, e.g., accessing the data stored in the lists.2 Finally, we also
considered two benchmarks with NULL-terminated Linux lists that heavily rely
on pointer arithmetics. In all the benchmarks, our tool correctly recognised list
operations among other pointer-based code and gave us a complete recipe for
code transformation. On a standard desktop PC, the total run time on a bench-
mark was almost always under 1s (with one exception at 2.5 s), with negligible
memory consumption.

Next, we successfully applied our tool to multiple case studies of creating, tra-
versing, filtering, and searching lists taken from the benchmark suite of Slayer [1]
(modified to use doubly-linked instead of singly-linked lists). Using a slight exten-
sion of our prototype, we also successfully handled examples dealing with lists
with head/tail pointers as well as with circular lists. These examples illustrate
that our approach can be generalized to other kinds of containers as discussed in
Sect. 7. These examples are also freely available at the link above. Moreover, in
[7], we present an example how we deal with code where two container operations
are interleaved.

Further, we concentrated on showing that our approach can be useful to
simplify program analysis by separating low-level pointer-related analysis from
analysing other, higher-level properties (like, e.g., sortedness or other data-
related properties). To illustrate this, we used our approach to combine shape
analysis implemented in Predator with data-related analysis provided by the
J2BP analyser [15]. J2BP analyses Java programs, and it is based on predicate
abstraction extended to cope with containers.

We used 4 benchmarks for the evaluation. The first one builds an ordered
list of numerical data, inserts another data element into it, and finally checks
sortedness of the resulting list, yielding an assertion failure if this is not the case
(such a test harness must be used since J2BP expects a closed program and
verifies absence of assertion failures). The other benchmarks are similar in that
they produce lists that should fulfill some property, followed by code that checks
whether the property is satisfied. The considered properties are correctness of
the length of a list, the fact that certain inserted values appear in a certain order,
and correctness of rewriting certain values in a list. We used our tool to process
the original C code. Next, we manually (but algorithmically) rewrote the result
into an equivalent Java program. Then, we ran J2BP to verify that no assertion
failures are possible in the obtained code, hence verifying the considered data-
related properties. For each benchmark, our tool was able to produce (within 1 s.)

2 In practice, there would typically be many more such statements, seemingly increas-
ing the size of the case studies, but such statements are not an issue for our method.
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a container program for J2BP, and J2BP was able to complete the proof. At the
same time, note that neither Predator nor J2BP could perform the verification
alone (Predator does not reason about numerical data and J2BP does not handle
pointer-linked dynamic data structures).

7 Possibilities of Generalizing the Approach

Ourmethod is built around the idea of specifying operations using a pair of abstract
configurations equipped with a transformation relation over their components.
Although we have presented all concepts for the simple abstract domain of SMGs
restricted to NULL-terminated DLLs, the main idea can be used with abstract
domains describing other kinds of lists, trees, and other data structures too. We
now highlight what is needed for that. The abstract domain to be used must allow
one to define a sufficiently fine-grained assignment of representing objects, which
is necessary to define symbolic updates with transparent semantics. Moreover, one
needs a shape analysis that computes annotations of theCFGwith a precise enough
invariant, equipped with the transformation relation, encoding pointer manipula-
tions in a transparent way. However, most shape analyses do actually work with
such information internally when computing abstract post-images (due to com-
puting the effect of updates on concretized parts of the memory). We thus believe
that, instead of Predator, tools like, e.g., Slayer [1] or Forester [9] can be modified
to output CFGs annotated in the needed way.

Other than that, given an annotated CFG, our algorithms searching for
container operations depend mostly on an entailment procedure over symbolic
updates (cf. Sect. 5.1, [7]). Entailment of symbolic updates is, however, easy to
obtain as an extension of entailment over the abstract domain provided the
entailment is able to identify which parts of the symbolic shapes encode the
same parts of the concrete configurations.

8 Conclusions and Future Work

We have presented and experimentally evaluated a method that can transform
in a sound and fully automated way a program manipulating NULL-terminated
list containers via low-level pointer operations to a high-level container program.
Moreover, we argued that our method is extensible beyond the considered list
containers (as illustrated also by our preliminary experiments with lists extended
with additional pointers and circular lists). A formalization of an extension of our
approach to other kinds of containers, a better implementation of our approach,
as well as other extensions of our approach (including, e.g., more sophisticated
target code generation and recognition of iterative container operations) are
subject of our current and future work.

Acknowledgement. This work was supported by the Czech Science Foundation
project 14-11384S.
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and Jun Sun4

1 Yale-NUS College, Singapore, Singapore
2 Autodesk, Singapore, Singapore

3 Uppsala University, Uppsala, Sweden
philipp.ruemmer@it.uu.se

4 Singapore University of Design and Technology, Singapore, Singapore

Abstract. Symmetry reduction is a well-known approach for alleviating
the state explosion problem in model checking. Automatically identifying
symmetries in concurrent systems, however, is computationally expen-
sive. We propose a symbolic framework for capturing symmetry patterns
in parameterised systems (i.e. an infinite family of finite-state systems):
two regular word transducers to represent, respectively, parameterised
systems and symmetry patterns. The framework subsumes various types
of “symmetry relations” ranging from weaker notions (e.g. simulation
preorders) to the strongest notion (i.e. isomorphisms). Our framework
enjoys two algorithmic properties: (1) symmetry verification: given a
transducer, we can automatically check whether it is a symmetry pat-
tern of a given system, and (2) symmetry synthesis: we can automatically
generate a symmetry pattern for a given system in the form of a trans-
ducer. Furthermore, our symbolic language allows additional constraints
that the symmetry patterns need to satisfy to be easily incorporated in
the verification/synthesis. We show how these properties can help iden-
tify symmetry patterns in examples like dining philosopher protocols,
self-stabilising protocols, and prioritised resource-allocator protocol. In
some cases (e.g. Gries’s coffee can problem), our technique automati-
cally synthesises a safety-preserving finite approximant, which can then
be verified for safety solely using a finite-state model checker.

1 Introduction

Symmetry reduction [12,19,22] is a well-known approach for alleviating the state
explosion problem in automatic verification of concurrent systems. The essence of
symmetry reduction is to identify symmetries in the system and avoid exploring
states that are “similar” (under these symmetries) to previously explored states.

One main challenge with symmetry reduction methods is the difficulty in
identifying symmetries in a given system in general. One approach is to provide
dedicated language instructions for specifying symmetries (e.g. see [22,29,30])
or specific languages (e.g. see [13,24,25]) so that users can provide insight on
what symmetries are there in the system. For instance, Murϕ provides a spe-
cial data type with a list of syntactic restrictions and all values that belong
c© Springer-Verlag Berlin Heidelberg 2016
B. Jobstmann and K.R.M. Leino (Eds.): VMCAI 2016, LNCS 9583, pp. 455–475, 2016.
DOI: 10.1007/978-3-662-49122-5 22
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to this type are symmetric. Another approach is to detect symmetry automat-
ically without requiring expert insights. Automatic detection of symmetries is
an extremely difficult computational problem. A number of approaches have
been proposed in this direction (e.g. [15,16,33]). For example, Donaldson and
Miller [15,16] designed an automatic approach to detecting process symmetries
for channel-based communication systems, based on constructing a graph called
static channel diagram from a Promela model whose automorphisms correspond
to symmetries in the model. Nonetheless, it is clear from their experiments that
existing approaches work only for small numbers of processes.

In practice, concurrent systems are often obtained by replicating a generic
behavioral description [32]. For example, a prioritised resource-allocator proto-
col [14], [Sect. 4.4] provides a description of an allocator program and a client
program in a network with a star topology (allocator in the center), from which
a concurrent system with 1 allocator and m clients (for any given m ∈ Z>0)
can be generated. This is in fact the standard setting of parameterised systems
(e.g. see [4,31]), which are symbolic descriptions of infinite families {Si}∞

i=1 of
transition systems Si that can be generated by instantiating some parameters
(e.g. the number of processes).

Adopting this setting of parameterised systems, we consider the problem of
formulating and generating symbolic symmetry patterns, abstract descriptions
of symmetries that can be instantiated to obtain concrete symmetries for every
instance of a parameterised system. A formal language to specify symmetry pat-
terns should be able to capture interesting symmetry patterns, e.g., that each
instance Si of the parameterised system S = {Si}∞

i=1 exhibits the full symme-
try Sn (i.e. invariant under permuting the locations of the processes). Ideally,
such a language L should also enjoy the following algorithmic properties: (1)
symmetry verification, i.e., given a symmetry pattern P ∈ L, we can automati-
cally check whether P is a symmetry pattern of a given parameterised system,
and (2) symmetry synthesis: given a parameterised system, we can automati-
cally generate symmetry patterns P ∈ L that the system exhibits. In particular,
if L is sufficiently expressive to specify commonly occuring symmetry patterns,
Property (1) would allow us to automatically compute which common symme-
try patterns hold for a given parameterised system. In the case when symmetry
patterns might be less obvious, Property (2) would allow us to identify further
symmetries that are satisfied by the given parameterised systems. To the best
of our knowledge, to date no such languages have been proposed.

Contribution: We propose a general symbolic framework for capturing symme-
try patterns for parameterised systems. The framework uses finite-state letter-to-
letter word transducers to represent both parameterised systems and symmetry
patterns. In the sequel, symmetry patterns that are recognised by transducers
are called regular symmetry patterns. Based on extensive studies in regular model
checking (e.g. see [1,4,27,31]), finite-state word transducers are now well-known
to be good symbolic representations of parameterised systems. Moreover, equiv-
alent logic-based (instead of automata-based) formalisms are also available, e.g.,
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LTL(MSO) [3] which can be used to specify parameterised systems and prop-
erties (e.g. safety and liveness) in a convenient way. In this paper, we show
that transducers are not only also sufficiently expressive for representing many
common symmetry patterns, but they enjoy the two aforementioned desirable
algorithmic properties: automatic symmetry verification and synthesis.

There is a broad spectrum of notions of “symmetries” for transition systems
that are of interest to model checking. These include simulation preorders (a
weak variant) and isomorphisms (the strongest), e.g., see [6]. We suggest that
transducers are not only sufficiently powerful in expressing many such notions
of symmetries, but they are also a flexible symbolic language in that constraints
(e.g. the symmetry pattern is a bijection) can be easily added to or relaxed from
the specification. In this paper, we shall illustrate this point by handling simula-
tion preorders and isomorphisms (i.e. bijective simulation preorders) within the
same framework. Another notable point of our symbolic language is its ability
to specify that the simulation preorder gives rise to an abstracted system that is
finite-state and preserves non-safety (i.e. if the original system is not safe, then
so is the abstracted system). In other words, we can specify that the symmetry
pattern reduces the infinite-state parameterised system to a finite-state system.
Safety of finite-state systems can then be checked using standard finite-state
model checkers.

We next show how to specialise our framework to process symmetries
[12,19,22]. Roughly speaking, a process symmetry for a concurrent system S
with n processes is a permutation π : [n] → [n] (where [n] := {1, . . . , n}) such
that the behavior of S is invariant under permuting the process indices by π
(i.e. the resulting system is isomorphic to the original one under the natural
bijection induced by π). For example, if the process indices of clients in the
aforementioned resource-allocator protocol with 1 allocator and m clients are
1, . . . , m+1, then any permutation π : [m+1] → [m+1] that fixes 1 is a process
symmetry for the protocol. The set of such process symmetries is a permutation
group on [m + 1] (under functional composition) generated by the following two
permutations specified in standard cyclic notations: (2, 3) and (2, 3, . . . ,m + 1).
This is true for every value of m ≥ 2. In addition, finite-state model check-
ers represent symmetry permutation groups by their (often exponentially more
succinct) finite set of generators. Thus, if S = {Sn}∞

n=1 is a parameterised sys-
tem where Sn is the instance with n processes, we represent the parameterised
symmetry groups G = {Gn}∞

n=1 (where Gn is the process symmetry group for
Sn) by a finite list of regular symmetry patterns that generate G. We postu-
late that commonly occuring parameterised process symmetry groups (e.g. full
symmetry groups and rotations groups) can be captured in this framework, e.g.,
parameterised symmetry groups for the aforementioned resource-allocator pro-
tocol can be generated by the symmetry patterns {(2, 3)(4) · · · (m + 1)}m≥3 and
{(2, 3, . . . ,m + 1)}m≥3, which can be easily expressed using transducers. Thus,
using our symmetry verification algorithm, commonly occuring process symme-
tries for a given parameterised system could be automatically identified.

The aforementioned approach of checking a given parameterised system
against a “library” of common regular symmetry patterns has two problems.
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Firstly, some common symmetry patterns are not regular, e.g., reflections. To
address this, we equip our transducers with an unbounded pushdown stack.
Since pushdown transducers in general cannot be synchronised [5] (a crucial
property to obtain our symmetry verification algorithm), we propose a restric-
tion of pushdown transducers for which we can recover automatic symmetry
verification. Secondly, there are many useful but subtle symmetry patterns in
practice. To address this, we propose the use of our symmetry synthesis algo-
rithm. Since a naive enumeration of all transducers with k = 1, . . . , n states does
not scale, we devise a CEGAR loop for our algorithm in which a SAT-solver pro-
vides a candidate symmetry pattern (perhaps satisfying some extra constraints)
and an automata-based algorithm either verifies the correctness of the guess, or
returns a counterexample that can be further incorporated into the guess of the
SAT-solver.

We have implemented our symmetry verification/synthesis algorithms and
demonstrated its usefulness in identifying regular symmetry patterns for
examples like dining philosopher protocols, self-stabilising protocols, resource-
allocator protocol, and Gries’s coffee can problem. In the case of the coffee can
problem, we managed to obtain a reduction from the infinite system to a finite-
state system.

RelatedWork: Our work is inspired by regular model checking (e.g. [1,3,4,31]),
which focuses on symbolically computing the sets of reachable configurations of
parameterised systems as regular languages. Such methods are generic, but are not
guaranteed to terminate in general. As in regular model checking, our framework
uses transducers to represent parameterised systems. However, instead of com-
puting their sets of reachable configurations, our work finds symmetry patterns
of the parameterised systems, which can be exploited by an explicit-state finite-
state model checker to verify the desired property over finite instances of the sys-
tem (see [32] for more details). Although our verification algorithm is guaranteed
to terminate in general (in fact, in polynomial-time assuming the parameterised
system is given as a DFA), our synthesis algorithm only terminates when we fix
the number of states for the transducers. Finding process symmetry patterns is
often easier since there are available tools for finding symmetries for finite (albeit
small) instances of the systems (e.g. [15,16,33]).

Another related line of works is “cutoff techniques” (e.g. see [17,18] and the
survey [31]), which allows one to reduce verification of parameterised systems
into verification of finitely many instances (in some cases, ≤ 10 processes). These
works usually assume verification of LTL\X properties. Although such techniques
are extremely powerful, the systems that can be handled using the techniques
are often quite specific (e.g. see [31]).

Organisation: Section 2 contains preliminaries. In Sect. 3, we present our
framework of regular symmetry patterns. In Sect. 4 (resp. Section 5), we present
our symmetry verification algorithm (resp. synthesis) algorithms. Section 6 dis-
cusses our implementation and experiment results. Section 7 concludes with
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future work. Due to space constraints, some details are relegated into the full
version [28].

2 Preliminaries

General Notations. For two given natural numbers i ≤ j, we define [i, j] =
{i, i + 1, . . . , j}. Define [k] = [1, k]. Given a set S, we use S∗ to denote the set
of all finite sequences of elements from S. The set S∗ always includes the empty
sequence which we denote by ε. Given two sets of words S1, S2, we use S1 ·S2 to
denote the set {v · w | v ∈ S1, w ∈ S2} of words formed by concatenating words
from S1 with words from S2. Given two relations R1, R2 ⊆ S ×S, we define their
composition as R1 ◦ R2 = {(s1, s3) | ∃s2. (s1, s2) ∈ R1 ∧ (s2, s3) ∈ R2}. Given a
subset X ⊆ S, we define the image R(X) (resp. preimage R−1(X)) of X under
R as the set {s ∈ S | ∃s′. (s′, s) ∈ R} (resp. {s′ ∈ S | ∃s. (s′, s) ∈ R}). Given
a finite set S = {s1, . . . , sn}, the Parikh vector P(v) of a word v ∈ S∗ is the
vector (|v|s1 , . . . , |v|sn

) of the number of occurrences of the elements s1, . . . , sn,
respectively, in v.
Transition Systems. Let ACT be a finite set of action symbols. A transition
system over ACT is a tuple S = 〈S; {→}a∈ACT〉, where S is a set of configurations,
and →a ⊆ S × S is a binary relation over S. We use → to denote the relation(⋃

a∈ACT →a

)
. In the sequel, we will often only consider the case when |ACT| = 1

for simplicity. The notation →+ (resp. →∗) is used to denote the transitive (resp.
transitive-reflexive) closure of →. We say that a sequence s1 → · · · → sn is a
path (or run) in S (or in →). Given two paths π1 : s1 →∗ s2 and π2 : s2 →∗ s3

in →, we may concatenate them to obtain π1 � π2 (by gluing together s2). In
the sequel, for each S′ ⊆ S we use the notation post∗→(S′) to denote the set of
configurations s ∈ S reachable in S from some s ∈ S.
Words, Automata, and Transducers. We assume basic familiarity with word
automata. Fix a finite alphabet Σ. For each finite word w = w1 . . . wn ∈ Σ∗, we
write w[i, j], where 1 ≤ i ≤ j ≤ n, to denote the segment wi . . . wj . Given a
(nondeterministic finite) automaton A = (Σ, Q, δ, q0, F ), a run of A on w is a
function ρ : {0, . . . , n} → Q with ρ(0) = q0 that obeys the transition relation δ.
We may also denote the run ρ by the word ρ(0) · · · ρ(n) over the alphabet Q.
The run ρ is said to be accepting if ρ(n) ∈ F , in which case we say that the
word w is accepted by A. The language L(A) of A is the set of words in Σ∗

accepted by A. In the sequel, we will use the standard abbreviations DFA/NFA
(Deterministic/Nondeterministic Finite Automaton).

Transducers are automata that accept binary relations over words [8,9] (a.k.a.
“letter-to-letter” automata, or synchronised transducers). Given two words w =
w1 . . . wn and w′ = w′

1 . . . w′
m over the alphabet Σ, let k = max{n,m} and

Σ# := Σ∪{#}, where # is a special padding symbol not in Σ. We define a word
w ⊗ w′ of length k over alphabet Σ# × Σ# as follows:

w⊗w′ = (a1, b1) . . . (ak, bk), where ai =

{
wi i ≤ n

# i > n,
and bi =

{
w′

i i ≤ m

# i > m.
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In other words, the shorter word is padded with #’s, and the ith letter of w⊗w′ is
then the pair of the ith letters of padded w and w′. A transducer (a.k.a. letter-to-
letter automaton) is simply a finite-state automaton over Σ#×Σ#, and a binary
relation R ⊆ Σ∗ × Σ∗ is regular if the set {w ⊗ w′ : (w,w′) ∈ R} is accepted by
a letter-to-letter automaton. The relation R is said to be length-preserving if R
only relates words of the same length [4], i.e., that any automaton recognising
R consumes no padded letters of the form (a,#) or (#, a). In the sequel, for
notation simplicity, we will confuse a transducer and the binary relation that it
recognises (i.e. R is used to mean both).

Finally, notice that the notion of regular relations can be easily extended
to r-ary relations R for each positive integer r (e.g. see [8,9]). To this end, the
input alphabet of the transducer will be Σr

#. Similarly, for R to be regular, the
set {w1 ⊗ · · · ⊗ wr : (w1, . . . , wr) ∈ R} of words over the alphabet Σr must be
regular.
Permutation Groups. We assume familiarity with basic group theory (e.g.
see [11]). A permutation on [n] is any bijection π : [n] → [n]. The set of all
permutations on [n] forms the (nth) full symmetry group Sn under functional
composition. A permutation group on [n] is any set of permutations on [n] that
is a subgroup of Sn (i.e. closed under composition). A generating set for a per-
mutation group G on [n] is a finite set X of permutations (called generators)
such that each permutation in G can be expressed by taking compositions of
elements in X. In this case, we say that G can be generated by X. A word
w = a0 . . . ak−1 ∈ [n]∗ containing distinct elements of [n] (i.e. ai �= aj if i �= j)
can be used to denote the permutation that maps ai �→ ai+1 mod k for each
i ∈ [0, k) and fixes other elements of [n]. In this case, w is called a cycle (more
precisely, k-cycle or transposition in the case when k = 2), which we will often
write in the standard notation (a0, . . . , ak−1) so as to avoid confusion. Any per-
mutation can be written as a composition of disjoint cycles [11]. In addition, it
is known that Sn can be generated by the set {(1, 2), (1, 2, . . . , n)}. Each sub-
group G of Sn acts on the set Σn (over any finite alphabet Σ) under the group
action of permuting indices, i.e., for each π ∈ G and v = (a1, . . . , an) ∈ Σn,
we define πv := (aπ−1(1), . . . , aπ−1(n)). That way, each π induces the bijection
fπ : Σn → Σn such that fπ(v) = πv.

Given a permutation group G on [n] and a transition system S = 〈S;→〉 with
state space S = Σn, we say that S is G-invariant if the bijection fπ : Σn → Σn

induced by each π ∈ Gn is an automorphism on S, i.e., ∀v, w ∈ S: v → w implies
fπ(v) → fπ(w).

3 The Formal Framework

This section describes our symbolic framework regular symmetry patterns.

3.1 Representing Parameterised Systems

As is standard in regular model checking [1,4,31], we use length-preserving trans-
ducers to represent parameterised systems. As we shall see below, we will use
non-length-preserving transducers to represent symmetry patterns.
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Definition 1 (Automatic transition systems1). A transition system S =
〈S; {→}a∈ACT〉 is said to be (length-preserving) automatic if S is a regular set
over a finite alphabet Σ and each relation →a is given by a transducer over Σ.

More precisely, the parameterised system defined by S is the family {Sn}n≥0

with Sn = 〈Sn;→a,n〉, where Sn := S ∩ Σn is the set of all words in S of
length n and →a,n is the transition relation →a restricted to Sn. In the sequel,
for simplicity we will mostly consider examples when |ACT| = 1. When the
meaning is understood, we shall confuse the notation →a for the transition
relation of S and the transducer that recognises it. To illustrate our framework
and methods, we shall give three examples of automatic transition systems (see
[3,31] for numerous other examples).

Example 1. We describe a prioritised resource-allocator protocol [14], [Sect. 4.4],
which is a simple mutual exclusion protocol in network with a star topology.
The protocol has one allocator and m clients. Initially, each process is in an
idle state. However, clients might from time to time request for an access to
a resource (critical section), which can only be used by one process at a time.
For simplicity, we will assume that there is only one resource shared by all the
clients. The allocator manages the use of the resource. When a request is lodged
by a client, the allocator can allow the client to use the resource. When the client
has finished using the resource, it will send a message to the allocator, which
can then allow other clients to use the resource.

To model the protocol as a transducer, we let Σ = {i, r, c}, where i stands
for “idle”, r for “request”, and c for “critical”. Allocator can be in either the
state i or the state c, while a client can be in one of the three states in Σ. A
valid configuration is a word aw, where a ∈ {i, c} represents the state of the
allocator and w ∈ Σ∗ represents the states of the |w| clients (i.e. each position in
w represents a state of a client). Letting I = {(a, a) : a ∈ Σ} (representing idle
local transitions), the transducer can be described by a union of the following
regular expressions:

– I+(i, r)I∗ — a client requesting for a resource.
– (i, c)I∗(r, c)I∗ — a client request granted by the allocator.
– (c, i)I∗(c, i)I∗ — the client has finished using the resource. ��
Example 2. We describe Israeli-Jalfon self-stabilising protocol [23]. The original
protocol is probabilistic, but since we are only interested in reachability, we may
use nondeterminism to model randomness. The protocol has a ring topology,
and each process either holds a token (denoted by �) or does not hold a token
(denoted by ⊥). Dynamics is given by the following rules:

– A process P holding a token can pass the token to either the left or the right
neighbouring process P ′, provided that P ′ does not hold a token.

1 Length-preserving automatic transition systems are instances of automatic struc-
tures [8,9].
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– If two neighbouring processes P1 and P2 hold tokens, the tokens can be merged
and kept at process P1.

We now provide a transducer that formalises this parameterised system. Our
relation is on words over the alphabet Σ = {⊥,�}, and thus a transducer is an
automaton that runs over Σ × Σ. In the following, we use I := {(�,�), (⊥,⊥)}.
The automaton is given by a union of the following regular expressions:

– I∗(�,⊥)(⊥,�)I∗

– I∗(⊥,�)(�,⊥)I∗
– I∗(�,�)(�,⊥)I∗

– (⊥,�)I∗(�,⊥)
– (�,⊥)I∗(⊥,�)
– (�,⊥)I∗(�,�) ��

Example 3. Our next example is the classical David Gries’s coffee can problem,
which uses two (nonnegative) integer variables x and y to store the number of
black and white coffee beans, respectively. At any given step, if x + y ≥ 2 (i.e.
there are at least two coffee beans), then two coffee beans are nondeterministi-
cally chosen. First, if both are of the same colour, then they are both discarded
and a new black bean is put in the can. Second, if they are of a different colour,
the white bean is kept and the black one is discarded. We are usually interested
in the colour of the last bean in the can. We formally model Gries’s coffee can
problem as a transition system with domain N × N and transitions:

(a) if x ≥ 2, then x := x − 1 and y := y.
(b) if y ≥ 2, then x := x + 1 and y := y − 2.
(c) if x ≥ 1 and y ≥ 1, then x := x − 1 and y := y.

To distinguish the colour of the last bean, we shall add self-loops to all configu-
rations in N×N, except for the configuration (1, 0). We can model the system as
a length-preserving transducer as follows. The alphabet is Σ := Ωx ∪ Ωy, where
Ωx := {1x,⊥x} and Ωy := {1y,⊥y}. A configuration is a word in the regular lan-
guage 1∗

x⊥∗
x1

∗
y⊥∗

y . For example, the configuration with x = 5 and y = 3, where
the maximum size of the integer buffers x and y is 10, is represented as the word
(1x)5(⊥x)5(1y)3(⊥y)7. The transducer for the coffee can problem can be easily
constructed. ��

3.2 Representing Symmetry Patterns

Definition 2. Let S = 〈S;→〉 be a transition system with S ⊆ Σ∗. A symmetry
pattern for S = 〈S;→〉 is a simulation preorder R ⊆ S×S for S, i.e., satisfying:

(S1) R respects each →a, i.e., for all v1, v2, w1 ∈ S, if v1 →a w1, and (v1, v2) ∈
R, then there exists w2 ∈ S such that (w1, w2) ∈ R and v2 →a w2;

(S2) R is length-decreasing, i.e., for all v1, v2 ∈ S, if (v1, v2) ∈ R, then
|v1| ≥ |v2|.

The symmetry pattern is said to be complete if additionally the relation is length-
preserving and a bijective function.
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Complete symmetry patterns will also be denoted by functional notation f . In
the case of complete symmetry pattern f , it can be observed that Condition (S1)
also entails that f(v) →a f(w) implies v →a w. This condition does not hold in
general for simulation preorders. We shall also remark that, owing to the well-
known property of simulation preorders, symmetry patterns preserve non-safety.
To make this notion more precise, we define the image of a transition system
S = 〈S;→〉 (with S ⊆ Σ∗) under the symmetry pattern R as the transition
system S1 = 〈S1;→1〉 such that S1 = R(S) and that →1 is the restriction of →
to S1.

Proposition 1. Given two sets I, F ⊆ Σ∗, if post∗→1
(R(I)) ∩ R(F ) = ∅, then

post∗→(I) ∩ F = ∅.
In other words, if S1 is safe, then so is S. In the case when S1 is finite-state,
this check can be performed using a standard finite-state model checker. We
shall define now a class of symmetry patterns under which the image S1 of the
input transition system can be automatically computed.

Definition 3 (Regular Symmetry Pattern). A symmetry pattern R ⊆ S×S
for an automatic transition system S = 〈S;→〉 is said to be regular if the relation
R is regular.

Proposition 2. Given an automatic transition systemS = 〈S;→〉 (with S ⊆ Σ∗)
and a regular symmetry pattern R ⊆ S×S, the image ofS under R is an automatic
transition system and can be constructed in polynomial-time.

In particular, whether the image of S under R is a finite system can be auto-
matically checked since checking whether the language of an NFA is finite can
be done in polynomial-time. The proof of this proposition (in the full version) is
a simple automata construction that relies on the fact that regular relations are
closed under projections. We shall next illustrate the concept of regular symme-
try patterns in action, especially for Israeli-Jalfon self-stabilising protocol and
Gries’s coffee can problem.

We start with Gries’s coffee can problem (cf. Example 3). Consider the func-
tion f : (N × N) → (N × N) where f(x, y) is defined to be (i) (0, 1) if y is odd,
(ii) (2, 0) if y is even and (x, y) �= (1, 0), and (iii) (1, 0) if (x, y) = (1, 0). This
is a symmetry pattern since the last bean for the coffee can problem is white
iff y is odd. Also, that a configuration (x, y) with y ≡ 0 (mod 2) and x > 1 is
mapped to (2, 0) is because (2, 0) has a self-loop, while (1, 0) is a dead end. It is
easy to show that f is a regular symmetry pattern. To this end, we construct a
transducer for each of the cases (i)–(iii). For example, the transducer handling
the case (x, y) when y ≡ 1 (mod 2) works as follows: simultaneously read the
pair (v, w) of words and ensure that w = ⊥x⊥x1y and v ∈ 1∗

x⊥∗
x1y(1y1y)

∗⊥∗
y . As

an NFA, the final transducer has ∼ 10 states.

Process Symmetry Patterns. We now apply the idea of regular symmetry pat-
terns to capture process symmetries in parameterised systems. We shall show
how this applies to Israeli-Jalfon self-stabilising protocol. A parameterised per-
mutation is a family π̄ = {πn}n≥1 of permutations πn on [n]. We say that π̄ is reg-
ular if, for each alphabet Σ, the bijection fπ̄ : Σ∗ → Σ∗ defined by fπ̄(v) := πnv,
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where v ∈ Σn, is a regular relation. We say that π̄ is effectively regular if π̄ is
regular and if there is an algorithm which, on input Σ, constructs a transducer
for the bijection fπ̄. As we shall only deal with effectively regular permutations,
when understood we will omit mention of the word “effectively”. As we shall
see below, examples of effectively regular parameterised permutations include
transpositions (e.g. {(1, 2)(3) · · · (n)}n≥2) and rotations {(1, 2, . . . , n)}n≥1.

We now extend the notion of parameterised permutations to parameterised
symmetry groups G := {Gn}n≥1 for parameterised systems, i.e., each Gn is a
permutation group on [n]. A finite set F = {π̄1, . . . , π̄r} of parameterised per-
mutations (with π̄j = {πj

n}n≥1) generates the parameterised symmetry groups
G if each group Gn ∈ G can be generated by the set {πj

n : j ∈ [r]}, i.e., the nth
instances of parameterised permutations in F . We say that G is regular if each
π̄j in F is regular.

We will single out three commonly occuring process symmetry groups for
concurrent systems with n processes: full symmetry group Sn (i.e. generated
by (1, 2) and (1, 2, . . . , n)), rotation group Rn (i.e. generated by (1, 2, . . . , n)),
and the dihedral group Dn (i.e. generated by (1, 2, . . . , n) and the “reflection”
permutation (1, n)(2, n − 1) · · · (�n/2�, �n/2�)). The parameterised versions of
them are: (1) S := {Sn}n≥1, (2) R := {Rn}n≥1, and (3) D := {Dn}n≥1.

Theorem 1. Parameterised full symmetry groups S and parameterised rotation
symmetry groups R are effectively regular.

As we will see in Proposition 3 below, parameterised dihedral groups are not
regular. We will say how to deal with this in the next section. As we will see
in Theorem 4, Theorem 1 can be used to construct a fully-automatic method
for checking whether each instance Sn of a parameterised system S = {Sn}n≥0

represented by a given transducer A has a full/rotation process symmetry group.

Proof (Sketch of Theorem 1). To show this, it suffices to show that F =
{(1, 2)(3) · · · (n)}n≥2 and F ′ = {(1, 2, . . . , n)}n≥2 are effectively regular. [The
degenerate case when n = 1 can be handled easily if necessary.] For, if this is the
case, then the parameterised full symmetry S and the parameterised rotation
symmetry groups can be generated by (respectively) {F ,F ′} and F ′. Given an
input Σ, the transducers for both F and F ′ are easy. For example, the trans-
ducer for F simply swaps the first two letters in the input, i.e., accepts pairs of
words of the form (abw, baw) where a, b ∈ Σ and w ∈ Σ∗. These transducers can
be constructed in polynomial time (details in the full version). ��
The above proof shows that {(1, 2)(3) · · · (n)}n≥0 and {(1, 2, . . . , n)}n≥0 are
regular parameterised permutations. Using the same proof techniques, we can
also show that the following simple variants of these parameterised permu-
tations are also regular for each i ∈ Z>0: (a) {(i, i + 1)(i + 2) · · · (n)}n≥1,
and (b) {(i, i + 1, . . . , n)}n≥1. As we saw from Introduction, the prioritised
resource-allocator protocol has a star topology and so both {(2, 3)(4) · · · }n≥1

and {(2, 3, . . . , n)}n≥1 generate complete symmetry patterns for the protocol
(i.e. invariant under permuting the clients). Therefore, our library L of regular
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symmetry patterns could store all of these regular parameterised permutations
(up to some fixed i).

Parameterised dihedral groups D are generated by rotations π̄ =
{(1, 2, . . . , n)}n≥2 and reflections σ̄ = {(1, n)(2, n − 1) · · · (�n/2�, �n/2�)}n≥2.
Reflections σ̄ are, however, not regular for the same reason that the language of
palindromes (i.e. words that are the same read backward as forward). In fact, it
is not possible to find a different list of generating parameterised permutations
that are regular (proof in the full version):

Proposition 3. Parameterised dihedral groups D are not regular.

4 Symmetry Verification

In this section, we will present our symmetry verification algorithm for regular
symmetry patterns. We then show how to extend the algorithm to a more general
framework of symmetry patterns that subsumes parameterised dihedral groups.

4.1 The Algorithm

Theorem 2. Given an automatic transition system S = 〈S;→〉 and a regular
relation R ⊆ S ×S, we can automatically check if R is a symmetry pattern of S.

Proof. Let D be the set of words over the alphabet Σ3 of the form v1⊗v2⊗w1, for
some words v1, v2, w2 ∈ Σ∗ satisfying: (1) v1 → w1, (2) (v1, v2) ∈ R, and (3) there
does not exist w2 ∈ Σ∗ such that v2 → w2 and (w1, w2) ∈ R. Observe that R is
a symmetry pattern for S iff D is empty. An automaton A = (Σ3, Q,Δ, q0, F )
for D can be constructed via a classical automata construction.

As before, for simplicity of presentation, we will assume that S = Σ∗; for,
otherwise, we can perform a simple product automata construction with the
automaton for S. Let A1 = (Σ2, Q1,Δ1, q

1
0 , F1) be an automaton for →, and

A2 = (Σ2
#, Q2,Δ2, q

2
0 , F2) an automaton for R.

We first construct an NFA A3 = (Σ2
#, Q3,Δ3, q

3
0 , F3) for the set Y ⊆ S × S

consisting of pairs (v2, w1) such that the condition (3) above is false. This can
be done by a simple product/projection automata construction that takes into
account the fact that R might not be length-preserving: That is, define Q3 :=
Q1 × Q2, q3

0 := (q1
0 , q2

0), and F3 := F1 × F2. The transition relation Δ consists
of transitions ((q1, q2), (a, b), (q′

1, q
′
2)) such that, for some c ∈ Σ#, it is the case

that (q2, (b, c), q′
2) ∈ Δ2 and one of the following is true: (i) (q1, (a, c), q′

1) ∈ Δ1,
(ii) q1 = q′

1, b �= #, and a = c = #. Observe that the construction for A3 runs
in polynomial-time.

In order to construct A, we will have to perform a complementation operation
on A3 (to compute the complement of Y ) and apply a similar product automata
construction. The former takes exponential time (since A3 is nondeterministic),
while the latter costs an additional polynomial-time overhead. ��
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The above algorithm runs in exponential-time even if R and S are presented
as DFA, since an automata projection operation in general yields an NFA. The
situation improves dramatically when R is functional (i.e. for all x ∈ S, there
exists a unique y ∈ S such that R(x, y)).

Theorem 3. There exists a polynomial-time algorithm which, given an auto-
matic transition system S = 〈S;→〉 presented as a DFA and a functional regu-
lar relation R ⊆ S × S presented as an NFA, decides whether R is a symmetry
pattern for S.

Proof. Let D be the set of words over the alphabet Σ4 of the form v1 ⊗v2 ⊗w1 ⊗
w2, for some words v1, v2, w1, w2 ∈ Σ∗ satisfying: (1) v1 → w1, (2) (v1, v2) ∈ R,
(2’) (w1, w2) ∈ R, and (3) v2 �→ w2 Observe that R is a symmetry pattern
for S iff D is empty. The reasoning is similar to the proof of Theorem 2, but
the difference now is that given any w1 ∈ Σ∗, there is a unique w2 such that
(w1, w2) ∈ R since R is functional. For this reason, we need only to make sure
that v2 �→ w2. An automaton A for D can be constructed by first complementing
the automaton for → and then a standard product automata construction as
before. The latter takes polynomial-time if → is presented as a DFA, while the
latter costs an additional polynomial-time computation overhead (even if R is
presented as an NFA). ��
Proposition 4. The following two problems are solvable in polynomial-space:
given a regular relation R ⊆ S ×S, check whether (1) R is functional, and (2) R
is a bijective function. Furthermore, the problems are polynomial-time reducible
to language inclusion for NFA.

Observe that there are fast heuristics for checking language inclusion for NFA
using antichain and simulation techniques (e.g. see [2,10]). The proof of the
above proposition uses standard automata construction, which is relegated to
the full version.

4.2 Process Symmetries for Concurrent Systems

We say that an automatic transition system S = 〈S;→〉 (with S ⊆ Σ∗) is
G-invariant if each instance Sn = 〈S ∩ Γn;→〉 of S is Gn-invariant. If G is
generated by regular parameterised permutations π̄1, . . . , π̄r, then G-invariance
is equivalent to the condition that, for each j ∈ [r], the bijection fπj : Σ∗ → Σ∗

is a regular symmetry pattern for S. The following theorem is an immediate
corollary of Theorem 3.

Theorem 4. Given an automatic transition system S = 〈S;→〉 (with S ⊆ Σ∗)
and a regular parameterised symmetry group G presented by regular parameterised
permutations π̄1, . . . , π̄k, we can check that S is G-invariant in polynomial-time
assuming that S is presented as DFA.

In fact, to check whether S is G-invariant, it suffices to sequentially go through
each π̄j and ensure that it is a symmetry pattern for S, which by Theorem 3
can be done in polynomial-time.
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4.3 Beyond Regular Symmetry Patterns

Proposition 3 tells us that regular symmetry patterns do not suffice to capture
parameterised reflection permutation. This leads us to our inability to check
whether a parameterised system is invariant under parameterised dihedral sym-
metry groups, e.g., Israeli-Jalfon’s self-stabilising protocol and other randomised
protocols including Lehmann-Rabin’s protocol (e.g. [26]). To deal with this prob-
lem, we extend the notion of regular length-preserving symmetry patterns to a
subclass of “context-free” symmetry patterns that preserves some nice algorith-
mic properties. Proviso: All relations considered in this subsection are length-
preserving.

Recall that a pushdown automaton (PDA) is a tuple P = (Σ,Γ, Q,Δ, q0, F ),
where Σ is the input alphabet, Γ is the stack alphabet (containing a special
bottom-stack symbol, denoted by ⊥, that cannot be popped), Q is the finite set
of control states, q0 ∈ Q is an initial state, F ⊆ Q is a set of final states, and
Δ ⊆ (Q × Γ) × Σ × (Q × Γ≤2) is a set of transitions, where Γ≤2 denotes the set
of all words of length at most 2. A configuration of P is a pair (q, w) ∈ Q × Γ∗

with stack-height |w|. For each a ∈ Σ, we define the binary relation →a on
configurations of P as follows: (q1, w1) →a (q2, w2) if there exists a transition
((q1, o), a, (q2, v)) ∈ Δ such that w1 = wo and w2 = wv for some w ∈ Γ∗.
A computation path π of P on input a1 . . . an is any sequence

(q0,⊥) →a1 (q1, w1) →a2 · · · →an
(qn, wn)

of configurations from the initial state q0. In the following, the stack-height
sequence of π is the sequence |⊥|, |w1|, . . . , |wn| of stack-heights. We say that
a computation path π is accepting if qn ∈ F .

We now extend Theorem 4 to a class of transducers that allows us to cap-
ture the reflection symmetry. This class consists of “height-unambiguous” push-
down transducers, which is a subclass of pushdown transducers that is amenable
to synchronisation. We say that a pushdown automaton is height-unambiguous
(h.u.) if it satisfies the restriction that the stack-height sequence in an accepting
computation path on an input word w is uniquely determined by the length |w|
of w. That is, given an accepting computation path π on w and an accepting
computation path π′ of w′ with |w| = |w′|, the stack-height sequences of π and π′

coincide. Observe that the definition allows the stack-height sequence of a non-
accepting path to differ. A language L ⊆ Σ∗ is said to be height-unambiguous
context-free (huCF) if it is recognised by a height-unambiguous PDA. A sim-
ple example of a huCF language is the language of palindromes (i.e. the input
word is the same backward as forward). A simple non-example of a huCF lan-
guage is the language of well-formed nested parentheses. This can be proved by
a standard pumping argument.

We extend the definitions of regularity of length-preserving relations, symme-
try patterns, etc. from Sects. 2 and 3 to height-unambiguous pushdown automata
in the obvious way, e.g., a length-preserving relation R ⊆ S × S is huCF if
{v ⊗ w : (v, w) ∈ R} is a huCF language. We saw in Proposition 3 that
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parameterised dihedral symmetry groups D are not regular. We shall show now
that they are huCF.

Theorem 5. Parameterised dihedral symmetry groups D are effectively height-
unambiguous context-free.

Proof. To show this, it suffices to show that the parameterised reflection permu-
tation σ̄ = {σn}n≥2, where σn := (1, n)(2, n − 1) · · · (�n/2�, �n/2�), is huCF. To
this end, given an input alphabet Σ, we construct a PDA P = (Σ2,Γ, Q,Δ, q0, F )
that recognises fσ̄ : Σ∗ → Σ∗ such that fσ̄(v) = σnv whenever v ∈ Σn. The
PDA P works just like the PDA recognising the language of palindromes. We
shall first give the intuition. Given a word w of the form v1 ⊗ v2 ∈ (Σ2)∗, we
write w−1 to denote the word v2 ⊗v1. On an input word w1w2w3 ∈ (Σ2)∗, where
|w1| = |w3| and |w2| ∈ {0, 1}, the PDA will save w1 in the stack and compares
it with w3 ensuring that w3 is the reverse of w−1

1 . It will also make sure that
w2 = (a, a) for some a ∈ Σ in the case when |w2| = 1. The formal definition of
P is given in the full version. ��
Theorem 6. There exists a polynomial-time algorithm which, given an auto-
matic transition system S = 〈S;→〉 presented as a DFA and a functional h.u.
context-free relation R ⊆ S × S presented as an NFA, decides whether R is a
symmetry pattern for S.

To prove this theorem, let us revisit the automata construction from the proof
of Theorem 3. The problematic part of the construction is that we need to show
that, given an huCF relation R, the 4-ary relation

R := (R × R) ∩ {(w1, w2, w3, w4) ∈ (Σ∗)4 : |w1| = |w2| = |w3| = |w4|} (∗)

is also huCF. The rest of the construction requires only taking product with
regular relations (i.e. → or its complement), which works for unrestricted push-
down automata since context-free languages are closed under taking product
with regular languages via the usual product automata construction for regular
languages.

Lemma 1. Given an huCF relation R, we can construct in polynomial-time an
h.u. PDA recognising the 4-ary relation R.

Proof. Given a h.u. PDA P = (Σ2,Γ, Q,Δ, q0, F ) recognising R, we will con-
struct a PDA P ′ = (Σ4,Γ′, Q′,Δ′, q′

0, F
′) recognising R. Intuitively, given an

input (v, w) ∈ R, the PDA P ′ is required to run two copies of P at the same
time, one on the input v (to check that v ∈ R) and the other on input w (to
check that w ∈ R). Since P is height-unambiguous and |v| = |w|, we can assume
that the stack-height sequences of accepting runs of P on v and w coincide. That
is, in an accepting run π1 of P on v and an accepting run of π2 of P on w, when
a symbol is pushed onto (resp. popped from) the stack at a certain position in
π1, then a symbol is also pushed onto (resp. popped from) the stack in the same
position in π2. The converse is also true. These two stacks can, therefore, be



Regular Symmetry Patterns 469

simultaneously simulated using only one stack of P ′ with Γ′ = Γ × Γ. For this
reason, the rest of the details is a standard product automata construction for
finite-state automata. Therefore, the automaton P ′ is of size quadratic in the
size of P. The detailed definition of P ′ is given in the full version. ��
We shall finally pinpoint a limitation of huCF symmetry patterns, and discuss
how we can address the problem in practice. It can be proved by a simple reduc-
tion from Post Correspondence Problem that it is undecidable to check whether
a given PDA is height-unambiguous. In practice, however, this is not a major
obstacle since it is possible to manually (or semi-automatically) add a selection
of huCF symmetry patterns to our library L of regular symmetry patterns from
Sect. 3. Observe that this effort is independent of any parameterised system that
one needs to check for symmetry. Checking whether any huCF symmetry pattern
in C is a symmetry pattern for a given automatic transition system S can then
be done automatically and efficiently (cf. Theorem 6). For example, Theorems 5
and 6 imply that we can automatically check whether an automatic transition
system is invariant under the parameterised dihedral groups:

Theorem 7. Given an automatic transition system S = 〈S;→〉 (with S ⊆ Σ∗)
presented as DFA, checking whether S is D-invariant can be done in polynomial-
time.

Among others, this allows us to automatically confirm that Israeli-Jalfon self-
stabilising protocol is D-invariant.

5 Automatic Synthesis of Regular Symmetry Patterns

Some regular symmetry patterns for a given automatic system might not be obvi-
ous, e.g., Gries’s coffee can example. Even in the case of process symmetries, the
user might choose different representations for the same protocol. For example,
the allocator process in Example 1 could be represented by the last (instead
of the first) letter in the word, which would mean that {(1, 2, . . . , n − 1)}n≥3

and {(1, 2)(3) · · · (n)}n≥3 are symmetry patterns for the system (instead of
{(2, 3, . . . , n)}n≥2 and {(2, 3)(4) · · · (n)}n≥3). Although we can put reasonable
variations of common symmetry patterns in our library L, we would benefit
from a systematic way of synthesising regular symmetry patterns for a given
automatic transition system S. In this section, we will describe our automatic
technique for achieving this. We focus on the case of symmetry patterns that
are total functions (i.e. homomorphisms), but the approach can be generalised
to other patterns.

Every transducer A = (Σ# × Σ#, Q, δ, q0, F ) over Σ∗
# represents a regular

binary relation R over Σ∗. We have shown in Sect. 4 that we can automatically
check whether R represents a symmetry pattern, perhaps satisfying further con-
straints like functionality or bijectivity as desired by the user. Furthermore, we
can also automatically check that it is a symmetry pattern for a given automatic
transition system S. Our overall approach for computing such transducers makes
use of two main components, which are performed iteratively within a refinement
loop:
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Synthesise. A candidate transducer A with n states is computed with the help
of a SAT-solver, enforcing a relaxed set of conditions encoded as a Boolean
constraint ψ (Sect. 5.1).

Verify. As described in Sect. 4, it is checked whether the binary relation R repre-
sented by A is a symmetry pattern for S (satisfying further constraints like
completeness, as desired by the user). If this check is negative, ψ is strength-
ened to eliminate counterexamples, and Synthesise is invoked (Sect. 5.2).

This refinement loop is enclosed by an outer loop that increments the para-
meter n (initially set to some small number n0) when Synthesise determines
that no transducers satisfying ψ exist anymore. The next sections describe the
Synthesise step, and the generation of counterexamples in case Verify fails,
in more detail.

5.1 Synthesise: Computation of a Candidate Transducer A
Our general encoding of transducers A = (Σ# ×Σ#, Q, δ, q0, F ) uses a represen-
tation as a deterministic automaton (DFA), which is suitable for our refinement
loop since counterexamples (in particular, words that should not be accepted)
can be eliminated using succinct additional constraints. We assume that the
states of the transducer A to be computed are Q = {1, . . . , n}, and that q0 = 1
is the initial state. We use the following variables to encode transducers with n
states:

– xt (of type Boolean), for each tuple t = (q, a, b, q′) ∈ Q × Σ# × Σ# × Q;
– zq (of type Boolean), for each q ∈ Q.

The assignment xt = 1 is interpreted as the existence of the transition t in A.
Likewise, we use zq = 1 to represent that q is an accepting state in the automa-
ton; since we use DFA, it is in general necessary to have more than one accepting
state.

The set of considered transducers in step Synthesise is restricted by impos-
ing a number of conditions, selected depending on the kind of symmetry to be
synthesised: for general symmetry homomorphisms, conditions (C1)–(C8) are
used, for complete symmetry patterns (C1)–(C10), and for process symmetries
(C1)–(C11).

(C1) The transducer A is deterministic.

(C2) For every transition q
(a,b)−→ q′ in A it is the case that a �= #.2

(C3) Every state of the transducer is reachable from the initial state.
(C4) From every state of the transducer an accepting state can be reached.
(C5) The initial state q0 is accepting.
(C6) The language accepted by the transducer is infinite.

(C7) There are no two transitions q
(a,b)−→ q′ and q

(a,b′)−→ q′ with b �= b′.

2 Note that all occurrences of # are in the end of words.
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(C8) If an accepting state q has self-transitions q
(a,a)−→ q for every letter a ∈ Σ#,

then q has no outgoing edges.

(C9) For every transition q
(a,b)−→ q′ in A it is the case that b �= #.

(C10) There are no two transitions q
(a,b)−→ q′ and q

(a′,b)−→ q′ with a �= a′.

Condition (C2) implies that computed transducers are length-decreasing, while
(C3) and (C4) rule out transducers with redundant states. (C5) and (C6)
follow from the simplifying assumption that only homomorphic symmetries pat-
terns are computed, since a transducer representing a total function Σ∗ → Σ∗

has to accept the empty word and words of unbounded length. Note that (C5)
and (C6) are necessary, but not sufficient conditions for total functions, so fur-
ther checks are needed in Verify. (C7) and (C8) are necessary (but again
not sufficient) conditions for transducers representing total functions, given the
additional properties (C3) and (C4); it can be shown that a transducer vio-
lating (C7) or (C8) cannot be a total function. Condition (C9) implies that
padding # does not occur in any accepted word, and is a sufficient condition
for length-preservation; as a result, the symbol # can be eliminated altogether
from the transducer construction.

Finally, for process symmetries the assumption can be made that the trans-
ducer preserves not only word length, but also the number of occurrences of each
symbol:

(C11) The relation R represented by the transducer only relates words with the
same Parikh vector, i.e., R(v, w) implies P(v) = P(w).

The encoding of the conditions (C1)–(C11) as Boolean constraints is mostly
straightforward. Further Boolean constraints can be useful in special cases,
in particular for Example 3 the restriction can be made that only image-
finite transducers are computed. We can also constrain the search in the
Synthesise stage to those transducers that accept manually defined words
W = {v1 ⊗ w1, . . . , vk ⊗ wk}, using a similar encoding as the one for counterex-
amples in Sect. 5.2. This technique can be used, among others, to systematically
search for symmetry patterns that generalise some known finite symmetry.

5.2 Counterexample Generation

Once a transducer A representing a candidate relation R ⊆ Σ∗ × Σ∗ has been
computed, Theorem 2 can be used to implement the Verify step of the algo-
rithm. When using the construction from the proof of Theorem 2, one of three
possible kinds of counterexample can be detected, corresponding to three differ-
ent formulae to be added to the constraint ψ used in the Synthesise stage:

1. A word v has to be included in the domain R−1(Σ∗
#): ∃w. R(v, w)

2. A word w has to be included in the range R(Σ∗
#): ∃v. R(v, w)

3. One of two contradictory pairs has to be eliminated: ¬R(v1, w1)∨¬R(v2, w2)
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Case 1 indicates relations R that are not total; case 2 relations that are not
surjective; and case 3 relations that are not functions, not injective, or not simu-
lations.3 Each of the formulae can be directly translated to a Boolean constraint
over the vocabulary introduced in Sect. 5.1. We illustrate how the first kind of
counterexample is handled, assuming v = a1 · · · am ∈ Σ∗

# is the word in ques-
tion; the two other cases are similar. We introduce Boolean variables ei,q for
each i ∈ {0, . . . , m} and state q ∈ Q, which will be used to identify an accepting
path in the transducer with input letters corresponding to the word v. We add
constraints that ensure that exactly one ei,q is set for each state q ∈ Q, and that
the path starts at the initial state q0 = 1 and ends in an accepting state:

{ ∨

q∈Q

ei,q

}

i∈{0,...,m}
,

{
¬ei,q ∨ ¬ei,q′

}
i∈{0,...,m}

q 
=q′∈Q

, e0,1,
{
em,q → zq

}
q∈Q

.

For each i ∈ {1, . . . , m} a transition on the path, with input letter ai has to be
enabled: {

ei−1,q ∧ ei,q′ →
∨

b∈Σ

x(q,ai,b,q′)

}
i∈{1,...,m}

q,q′∈Q

.

Table 1. Experimental results on verifying and generating symmetry patterns

Symmetry Systems (#letters) # Transducer states Verif. time Synth. time

Herman Protocol (2) 5 0.0 s 4 s

Israeli-Jalfon Protocol (2) 5 0.0 s 5 s

Gries’s Coffee Can (4) 8 0.1 s 3 m19 s

Resource Allocator (3) 11 0.0 s 4 m56 s

Dining Philosopher (4) 17 0.4 s 26 m

6 Implementation and Evaluation

We have implemented a prototype tool based on the aforementioned approach
for verifying and synthesising regular symmetry patterns. The programming lan-
guage is Java and we use SAT4J [7] as the SAT solver. The source code and the
benchmarking examples can be found at https://bitbucket.org/truongkhanh/
parasymmetry. The input of our tool includes a model (i.e. a textual represen-
tation of transducers), and optionally a set of finite instance symmetries (to
speed up synthesis of regular symmetry patterns), which can be generated using
existing tools like [33].

3 Note that this is for the special case of homomorphisms. Simulation counterexamples
are more complicated than case 3 when considering simulations relations that are
not total functions.

https://bitbucket.org/truongkhanh/parasymmetry
https://bitbucket.org/truongkhanh/parasymmetry
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We apply our tool to 5 models: the Herman self-stabilising protocol [21],
Israeli-Jalfon self-stabilising protocol [23], the Gries’ coffee can example [20],
Resource Allocator, and Dining Philosopher. For the coffee can example, the
tool generates the functional symmetry pattern described in Sect. 3, whereas the
tool generates rotational process symmetries for the other models (see the full
version for state diagrams). Finite instance symmetries were added as constraints
in the last three examples.

Table 1 presents the experimental results: the number of states of the synthe-
sised symmetry transducer, the time needed to verify that the transducer indeed
represents a symmetry pattern (using the method from Sect. 4), and the total
time needed to compute the transducer (using the procedure from Sect. 5). The
data are obtained using a MacBook Pro (Retina, 13-inch, Mid 2014) with 3 GHz
Intel Core i7 processor and 16 GB 1600 MHz DDR3 memory. In almost all cases,
it takes less than 5 min (primarily SAT-solving) to find the regular symmetry
patterns for all these models. As expected, the verification step is quite fast (<1
second).

7 Future Work

Describe the expressivity and nice algorithmic properties that regular symmetry
patterns enjoy, we have pinpointed a limitation of regular symmetry patterns in
expressing certain process symmetry patterns (i.e. reflections) and showed how
to circumvent it by extending the framework to include symmetry patterns that
can be recognised by height-unambiguous pushdown automata. One possible
future research direction is to generalise our symmetry synthesis algorithm to
this more general class of symmetry patterns. Among others, this would require
coming up with a syntactic restriction of this “semantic” class of pushdown
automata.

Acknowledgment. Lin is supported by Yale-NUS Grants, Rümmer by the Swedish
Research Council. We thank Marty Weissman for a fruitful discussion.
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Abstract. Guarded protocols were introduced in a seminal paper by
Emerson and Kahlon (2000), and describe systems of processes whose
transitions are enabled or disabled depending on the existence of other
processes in certain local states. We study parameterized model checking
and synthesis of guarded protocols, both aiming at formal correctness
arguments for systems with any number of processes. Cutoff results
reduce reasoning about systems with an arbitrary number of processes
to systems of a determined, fixed size. Our work stems from the observa-
tion that existing cutoff results for guarded protocols (i) are restricted to
closed systems, and (ii) are of limited use for liveness properties because
reductions do not preserve fairness. We close these gaps and obtain new
cutoff results for open systems with liveness properties under fairness
assumptions. Furthermore, we obtain cutoffs for the detection of global
and local deadlocks, which are of paramount importance in synthesis.
Finally, we prove tightness or asymptotic tightness for the new cutoffs.

1 Introduction

Concurrent hardware and software systems are notoriously hard to get cor-
rect. Formal methods like model checking or synthesis can be used to guar-
antee correctness, but the state explosion problem prevents us from using such
methods for systems with a large number of components. Furthermore, correct-
ness properties are often expected to hold for an arbitrary number of components.
Both problems can be solved by parameterized model checking and synthesis
approaches, which give correctness guarantees for systems with any number of
components without considering every possible system instance explicitly.

While parameterized model checking (PMC) is undecidable in general [25],
there exist a number of methods that decide the problem for specific classes
of systems [12,14,16], as well as semi-decision procedures that are successful in
many interesting cases [9,18,21]. In this paper, we consider the cutoff method
that can guarantee properties of systems of arbitrary size by considering only
systems of up to a certain fixed size, thus providing a decision procedure for
PMC if components are finite-state.

We consider systems that are composed of an arbitrary number of processes,
each an instance of a process template from a given, finite set. Process templates
c© Springer-Verlag Berlin Heidelberg 2016
B. Jobstmann and K.R.M. Leino (Eds.): VMCAI 2016, LNCS 9583, pp. 476–494, 2016.
DOI: 10.1007/978-3-662-49122-5 23
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can be viewed as synchronization skeletons [11], i.e., program abstractions that
suppress information not necessary for synchronization. In our system model,
processes communicate by guarded updates, where guards are statements about
other processes that are interpreted either conjunctively (“every other process
satisfies the guard”) or disjunctively (“there exists a process that satisfies the
guard”). Conjunctive guards can model atomic sections or locks, disjunctive
guards can model token-passing or to some extent pairwise rendezvous (cf. [13]).

This class of systems has been studied by Emerson and Kahlon [12], and cut-
offs that depend on the size of process templates are known for specifications of
the form ∀p̄. Φ(p̄), where Φ(p̄) is an LTL\X property over the local states of one
or more processes p̄. Note that this does not allow us to specify fairness assump-
tions, for two reasons: (i) to specify fairness, additional atomic propositions for
enabledness and scheduling of processes are needed, and (ii) specifications with
global fairness assumptions are of the form (∀p̄. fair(p̄)) → (∀p̄. Φ(p̄)). Because
neither is supported by [12], the existing cutoffs are of limited use for reasoning
about liveness properties.

N T C
true ∀{T,N}

true

Emerson and Kahlon [12] mentioned this limita-
tion and illustrated it using the process template on
the figure on the right. Transitions from the initial
state N to the “trying” state T , and from the crit-
ical state C to N are always possible, while the transition from T to C is only
possible if no other process is in C. The existing cutoff results can be used to
prove safety properties like mutual exclusion for systems composed of arbitrarily
many copies of this template. However, they cannot be used to prove starvation-
freedom properties like ∀p.AG(Tp → FCp), stating that every process p that
enters its local state Tp will eventually enter state Cp, because without fairness
of scheduling the property does not hold.

Also, Emerson and Kahlon [12] consider only closed systems. Therefore, in
this example, processes always try to enter C. In contrast, in open systems the
transition to T might be a reaction to a corresponding input from the environ-
ment that makes entering C necessary. While it is possible to convert an open
system to a closed system that is equivalent under LTL properties, this comes at
the cost of a blow-up.

Motivation. Our work is inspired by applications in parameterized synthe-
sis [17], where the goal is to automatically construct process templates such that
a given specification is satisfied in systems with an arbitrary number of compo-
nents. In this setting, one generally considers open systems that interact with an
uncontrollable environment, and most specifications contain liveness properties
that cannot be guaranteed without fairness assumptions. Also, one is in general
interested in synthesizing deadlock-free systems. Cutoffs are essential for para-
meterized synthesis, and we will show in Sect. 4 how size-dependent cutoffs can
be integrated into the parameterized synthesis approach.

Contributions.

– We show that existing cutoffs for model checking of LTL\X properties are
in general not sufficient for systems with fairness assumptions, and provide
new cutoffs for this case.
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– We improve some of the existing cutoff results, and give separate cutoffs for
the problem of deadlock detection, which is closely related to fairness.

– We prove tightness or asymptotical tightness for all of our cutoffs, showing
that smaller cutoffs cannot exist with respect to the parameters we consider.

Moreover, all of our cutoffs directly support open systems, where each process
may communicate with an adversarial environment. This makes the blow-up
incurred by translation to an equivalent closed system unnecessary. The results
presented here are based on a more detailed preliminary version of this paper [4].

2 Related Work

As mentioned, we extend the results of Emerson and Kahlon [12] who study
PMC of guarded protocols, but do not support fairness assumptions, nor provide
cutoffs for deadlock detection. In [13] they extended their work to systems with
limited forms of guards and broadcasts, and also proved undecidability of PMC
of conjunctive guarded protocols wrt. LTL (including X), and undecidability wrt.
LTL\X for systems with both conjunctive and disjunctive guards.

Bouajjani et al. [7] study parameterized model checking of resource allocation
systems (RASs). Such systems have a bounded number of resources, each owned
by at most one process at any time. Processes are pushdown automata, and can
request resources with high or normal priority. RASs are similar to conjunctive
guarded protocols in that certain transitions are disabled unless a processes has
a certain resource. RASs without priorities and with processes being finite state
automata can be converted to conjunctive guarded protocols (at the price of
blow up), but not vice versa. The authors study parameterized model checking
wrt. LTL\X properties on arbitrary or on strong-fair runs, and (local or global)
deadlock detection. The proof structure resembles that of [12], as does ours.

German and Sistla [16] considered global deadlocks and strong fairness prop-
erties for systems with pairwise rendezvous communication in a clique. Emerson
and Kahlon [13] have shown that disjunctive guard systems can be reduced
to such pairwise rendezvous systems. However, German and Sistla [16] do not
provide cutoffs, nor do they consider local deadlocks, and their specifications
can talk about one process only. Aminof et al. [3] have recently extended these
results to more general topologies, and have shown that for some decidable PMC
problems there are no cutoffs, even in cliques.

Emerson and Namjoshi provide cutoffs for systems that pass a valueless token
in a ring [14], which is essentially resource allocation of a single resource with
a specific allocation scheme. Their results have been extended to more general
topologies [2,10]. All of these results consider fairness of token passing in the
sense that every process receives the token infinitely often.

Many of the decidability results above have recently been surveyed by Bloem
et al. [6]. In addition, there are many methods based on semi-algorithms.

“Dynamic cutoff” approaches [1,18] support larger classes of systems, and
try to find cutoffs for a concrete system and specification. These methods can
find smaller cutoffs than those that are statically determined for a whole class
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of systems and specifications, but are currently limited to safety properties. The
invisible invariants method [23] tries to find invariants in small systems, and
applies a specialized cutoff result to prove correctness of all instances, including
an extension to liveness properties [15].

Finally, there are methods that work completely without cutoffs, like regular
model checking [8], network invariants [19,21,26], and counter abstraction [24].
They are in general incomplete, but may provide decision procedures for certain
classes of systems and specifications, and support liveness to some extent.

3 Preliminaries

3.1 System Model

We consider systems A‖Bn, usually written (A,B)(1,n), consisting of one copy
of a process template A and n copies of a process template B, in an interleaving
parallel composition. We distinguish objects that belong to different templates
by indexing them with the template. E.g., for process template U ∈ {A,B}, QU

is the set of states of U . For this section, fix two disjoint finite sets QA, QB as
sets of states of process templates A and B, and a positive integer n.

Processes. A process template is a transition system U = (Q, init, Σ, δ) with

– Q is a finite set of states including the initial state init,
– Σ is a finite input alphabet,
– δ : Q × Σ × P(QA ∪̇ QB) × Q is a guarded transition relation.

A process template is closed if Σ = ∅, and otherwise open.
We define the size |U | of a process template U ∈ {A,B} as |QU |. A copy of

template U will be called a U -process. Different B-processes are distinguished
by subscript, i.e., for i ∈ [1..n], Bi is the ith copy of B, and qBi

is a state of Bi.
A state of the A-process is denoted by qA.

For the rest of this subsection, fix templates A and B. We assume that
ΣA ∩ ΣB = ∅. We will also write p for a process in {A,B1, . . . , Bn}, unless p is
specified explicitly.

Disjunctive and Conjunctive Systems. In a system (A,B)(1,n), consider
global state s = (qA, qB1 , . . . , qBn

) and global input e = (σA, σB1 , . . . , σBn
). We

also write s(p) for qp, and e(p) for σp. A local transition (qp, σp, g, q′
p) ∈ δU of

p is enabled for s and e if its guard g is satisfied for p in s, written (s, p) |= g.
Disjunctive and conjunctive systems are distinguished by the interpretation of
guards:

In disjunctive systems: (s, p) |= g iff ∃p′ ∈ {A,B1, . . . , Bn} \ {p} : qp′ ∈ g.

In conjunctive systems: (s, p) |= g iff ∀p′ ∈ {A,B1, . . . , Bn} \ {p} : qp′ ∈ g.

Note that we check containment in the guard (disjunctively or conjunctively)
only for local states of processes different from p. A process is enabled for s and
e if at least one of its transitions is enabled for s and e, otherwise it is disabled.
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Like Emerson and Kahlon [12], we assume that in conjunctive systems initA
and initB are contained in all guards, i.e., they act as neutral states. Furthermore,
we call a conjunctive system 1-conjunctive if every guard is of the form (QA ∪̇
QB) \ {q} for some q ∈ QA ∪̇ QB .

Then, (A,B)(1,n) is defined as the transition system (S, initS , E,Δ) with

– set of global states S = (QA) × (QB)n,
– global initial state initS = (initA, initB , . . . , initB),
– set of global inputs E = (ΣA) × (ΣB)n,
– and global transition relation Δ ⊆ S × E × S with (s, e, s′) ∈ Δ iff

(i) s = (qA, qB1 , . . . , qBn
),

(ii) e = (σA, σB1 , . . . , σBn
), and

((iii) s′ is obtained from s by replacing one local state qp with a new local
state q′

p, where p is a U -process with local transition (qp, σp, g, q′
p) ∈ δU

and (s, p) |= g.

We say that a system (A,B)(1,n) is of type (A,B). It is called a conjunctive system
if guards are interpreted conjunctively, and a disjunctive system if guards are
interpreted disjunctively. A system is closed if all of its templates are closed. We
often denote the set {B1, ..., Bn} as B.

Runs. A configuration of a system is a triple (s, e, p), where s ∈ S, e ∈ E, and
p is either a system process, or the special symbol ⊥. A path of a system is a
configuration sequence x = (s1, e1, p1), (s2, e2, p2), . . . such that for all m < |x|
there is a transition (sm, em, sm+1) ∈ Δ based on a local transition of process
pm. We say that process pm moves at moment m. Configuration (s, e,⊥) appears
iff all processes are disabled for s and e. Also, for every p and m < |x|: either
em+1(p) = em(p) or process p moves at moment m. That is, the environment
keeps input to each process unchanged until the process can read it.1

A system run is a maximal path starting in the initial state. Runs are either
infinite, or they end in a configuration (s, e,⊥). We say that a run is initializing
if every process that moves infinitely often also visits its init infinitely often.

Given a system path x = (s1, e1, p1), (s2, e2, p2), . . . and a process p, the local
path of p in x is the projection x(p) = (s1(p), e1(p)), (s2(p), e2(p)), . . . of x onto
local states and inputs of p. Similarly define the projection on two processes
p1, p2 denoted by x(p1, p2).

Deadlocks and Fairness. A run is globally deadlocked if it is finite. An infinite
run is locally deadlocked for process p if there exists m such that p is disabled
for all sm′ , em′ with m′ ≥ m. A run is deadlocked if it is locally or globally
deadlocked. A system has a (local/global) deadlock if it has a (locally/globally)
deadlocked run. Note that absence of local deadlocks for all p implies absence of
global deadlocks, but not the other way around.

1 By only considering inputs that are actually processed, we approximate an action-
based semantics. Paths that do not fulfill this requirement are not very interesting,
since the environment can violate any interesting specification that involves input
signals by manipulating them when the corresponding process is not allowed to move.
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A run (s1, e1, p1), (s2, e2, p2), ... is unconditionally-fair if every process moves
infinitely often. A run is strong-fair if it is infinite and for every process p, if p
is enabled infinitely often, then p moves infinitely often. We will discuss the role
of deadlocks and fairness in synthesis in Sect. 4.

Remark 1. Why do we consider systems A‖Bn? Emerson and Kahlon [12]
showed how to generalize cutoffs for such systems to systems of the form
Am‖Bn, and further to systems with an arbitrary number of process templates
Un1
1 ‖ . . . ‖Unm

m . This generalization also works for our new results, except for the
cutoffs for deadlock detection that are restricted to 1-conjunctive systems (see
Sect. 5).

3.2 Specifications

Fix templates (A,B). We consider formulas in LTL\X, i.e., LTL without the
next-time operator X. Let h(A,Bi1 , . . . , Bik

) be an LTL\X formula over atomic
propositions from QA ∪ ΣA and indexed propositions from (QB ∪ ΣB) ×
{i1, . . . , ik}. For a system (A,B)(1,n) with n ≥ k and ij ∈ [1..n], satisfaction
of Ah(A,Bi1 , . . . , Bik

) and Eh(A,Bi1 , . . . , Bik
) is defined in the usual way (see

e.g. [5]).

Parameterized Specifications. A parameterized specification is a temporal
logic formula with indexed atomic propositions and quantification over indices.
We consider formulas of the forms ∀i1, . . . , ik.Ah(A,Bi1 , . . . , Bik

) and
∀i1, . . . , ik.Eh(A,Bi1 , . . . , Bik

). For given n ≥ k,

(A,B)(1,n)|=∀i1, . . ., ik.Ah(A,Bi1 , . . ., Bik
)

iff

(A,B)(1,n)|=
∧

j1 �=...�=jk∈[1..n]

Ah(A,Bj1 , . . ., Bjk
).

By symmetry of guarded protocols, this is equivalent (cp. [12]) to (A,B)(1,n) |=
Ah(A,B1, . . . , Bk). The latter formula is denoted by Ah(A,B(k)), and we often
use it instead of the original ∀i1, . . . , ik.Ah(A,Bi1 , ..., Bik

). For formulas with
path quantifier E, satisfaction is defined analogously, and equivalent to satisfac-
tion of Eh(A,B(k)).

Specification of Fairness and Local Deadlocks. It is often convenient to
express fairness assumptions and local deadlocks as parameterized specifications.
To this end, define auxiliary atomic propositions movep and enp for every process
p of system (A,B)(1,n). At moment m of a given run (s1, e1, p1), (s2, e2, p2), . . .,
let movep be true whenever pm = p, and let enp be true if p is enabled for sm, em.
Note that we only allow the use of these propositions to define fairness, but not
in general specifications. Then, an infinite run is
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– local-deadlock-free if it satisfies ∀p.GF enp, abbreviated as Φ¬dead,
– strong-fair if it satisfies ∀p.GF enp → GFmovep, abbreviated as Φstrong, and
– unconditionally-fair if it satisfies ∀p.GFmovep, abbreviated as Φuncond.

If fair is a fairness notion and Ah(A,B(k)) a specification, then we write
Afair h(A,B(k)) for A(Φfair → h(A,B(k))). Similarly, we write Efair h(A,B(k))
for E(Φfair ∧ h(A,B(k))).

3.3 Model Checking and Synthesis Problems

For a given system (A,B)(1,n) and specification h(A,B(k)) with n ≥ k,

– the model checking problem is to decide whether (A,B)(1,n) |= Ah(A,B(k)),
– the deadlock detection problem is to decide whether (A,B)(1,n) does not have

global nor local deadlocks,
– the parameterized model checking problem (PMCP) is to decide whether

∀m ≥ n : (A,B)(1,m) |= Ah(A,B(k)), and
– the parameterized deadlock detection problem is to decide whether for all

m ≥ n, (A,B)(1,m) does not have global nor local deadlocks.

For a given number n ∈ N and specification h(A,B(k)) with n ≥ k,

– the template synthesis problem is to find process templates A,B such that
(A,B)(1,n) |= Ah(A,B(k)) and (A,B)(1,n) does not have global deadlocks.

– the bounded template synthesis problem for a pair of bounds (bA, bB) ∈ N×N

is to solve the template synthesis problem with |A| ≤ bA and |B| ≤ bB .
– the parameterized template synthesis problem is to find process templates A,B

such that ∀m ≥ n : (A,B)(1,m) |= Ah(A,B(k)) and (A,B)(1,m) does not have
global deadlocks.

These definitions can be flavored with different notions of fairness (and similarly
for the E path quantifier). In the next section we clarify the problems studied.

4 Reduction Method and Challenges

We show how to use existing cutoff results of Emerson and Kahlon [12] to reduce
the PMCP to a standard model checking problem, and parameterized synthesis
to template synthesis. We note the limitations of the existing results that are
crucial in the context of synthesis.
Reduction by Cutoffs. A cutoff for a system type (A,B) and a specification
Φ is a number c ∈ N such that:

∀n ≥ c :
(
(A,B)(1,n) |= Φ ⇔ (A,B)(1,c) |= Φ

)
.

Similarly, c ∈ N is a cutoff for (local/global) deadlock detection if ∀n ≥ c :
(A,B)(1,n) has a (local/global) deadlock iff (A,B)(1,c) has a (local/global) dead-
lock. For the systems and specifications presented in this paper, cutoffs can be
computed from the size of process template B and the number k of copies of B
mentioned in the specification, and are given as expressions like |B| + k + 1.
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Remark 2. Our definition of a cutoff is different from that of Emerson and
Kahlon [12], and instead similar to, e.g., Emerson and Namjoshi [14]. The reason
is that we want the following property to hold for any (A,B) and Φ:

if n0 is the smallest number such that ∀n ≥ n0 : (A,B)(1,n) |= Φ,

then any c < n0 is not a cutoff, any c ≥ n0 is a cutoff.
We call n0 the tight cutoff. The definition in [12, page 2] requires that
∀n ≤ c.(A,B)(1,n) |= Φ if and only if ∀n ≥ 1 : (A,B)(1,n) |= Φ, and thus allows
stating c < n0 as a cutoff if Φ does not hold for all n. ��
In model checking, a cutoff allows us to check whether any “big” system
satisfies the specification by checking it in the cutoff system. As noted by Jacobs
and Bloem [17], a similar reduction applies to the parameterized synthesis prob-
lem. For guarded protocols, we obtain the following semi-decision procedure for
parameterized synthesis:

0. set initial bound (bA, bB) on size of process templates;
1. determine cutoff for (bA, bB) and Φ;
2. solve bounded template synthesis problem for cutoff, size bound, and Φ;
3. if successful return (A,B) else increase (bA, bB) and goto (1).

Existing Cutoff Results. Emerson and Kahlon [12] have shown:

Theorem 1 (Disjunctive Cutoff Theorem). For closed disjunctive systems,
|B|+2 is a cutoff (†) for formulas of the form Ah(A,B(1)) and Eh(A,B(1)), and
for global deadlock detection.

Theorem 2 (Conjunctive Cutoff Theorem). For closed conjunctive sys-
tems, 2 |B| is a cutoff (†) for formulas of the form Ah(A) and Eh(A), and for
global deadlock detection. For formulas of the form Ah(B(1)) and Eh(B(1)),
2 |B| + 1 is a cutoff.

Remark 3. (†) Note that Emerson and Kahlon [12] proved these results for a
different definition of a cutoff (see Remark 2). Their results also hold for our
definition, except possibly for global deadlocks. For the latter case to hold with
the new cutoff definition, one also needs to prove the direction “global deadlock
in the cutoff system implies global deadlock in a large system” (later called
Monotonicity Lemma). In Sects. 6.3 and 7.3 we prove these lemmas for the case
of general deadlock (global or local).

Challenge: Open Systems. For any open system S there exists a closed system
S′ such that S and S′ cannot be distinguished by LTL specifications (cp. Manna
and Pnueli [22]). Thus, one approach to PMC for open systems is to use a
translation between open and closed systems, and then use the existing cutoff
results for closed systems.

While such an approach works in theory, it might not be feasible in practice:
since cutoffs depend on the size of process templates, and the translation blows
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up the process template, it also blows up the cutoffs. Thus, cutoffs that directly
support open systems are important.
Challenge: Liveness and Deadlocks under Fairness. We are interested in
cutoff results that support liveness properties. In general, we would like to con-
sider only runs where all processes move infinitely often, i.e., use the unconditional
fairness assumption ∀p.GFmovep. However, this would mean that we accept all
systems that always go into a local deadlock, since then the assumption is vio-
lated. This is especially undesirable in synthesis, because the synthesizer usually
tries to violate the assumptions in order to satisfy the specification. To avoid this,
we require the absence of local deadlocks under the strong fairness assumption
∀p.(GF enp → GFmovep). Since strong fairness and absence of local deadlocks
imply unconditional fairness, we can then use the latter as an assumption for the
original specification.

In summary, for a parameterized specification Φ, we consider satisfaction of

“all runs are infinite” ∧ Astrong Φ¬dead ∧ Auncond Φ.

This is equivalent to “all runs are infinite” ∧Astrong(Φ¬dead ∧ Φ), but by con-
sidering the form above we can separate the tasks of deadlock detection and of
model checking LTL\X-properties, and obtain modular cutoffs.

In the following, we present cutoffs for problems of the forms (i) Auncond Φ,
(ii) Astrong Φ¬dead and no global deadlocks (and the variants with E path
quantifier).

5 New Cutoff Results

We present new cutoff results that extend Theorems 1 and 2, summarized in the
table below. We distinguish between disjunctive and conjunctive systems, non-
fair and fair executions, as well as between the satisfaction of LTL\X properties
h(A,B(k)) and the existence of deadlocks. All results hold for open systems, and
for both path quantifiers A and E. Cutoffs depend on the size of process template
B and the number k ≥ 1 of B-processes a property talks about:

h(A,B(k)) Deadlock detection h(A,B(k)) Deadlock detection

no fairness no fairness uncond. fairness strong fairness

Disjunctive |B| + k + 1 2|B| − 1 2|B| + k − 1 2|B| − 1

Conjunctive k + 1 2|B| − 2 (∗) k + 1 (∗) 2|B| − 2 (∗)

Results marked with a (∗) are for a restricted class of systems: For conjunctive
systems with fairness, we require infinite runs to be initializing, i.e., all non-
deadlocked processes return to init infinitely often.2 Additionally, the cutoffs for
2 This assumption is in the same flavor as the restriction that initA and initB appear

in all conjunctive guards. Intuitively, the additional restriction makes sense since
conjunctive systems model shared resources, and everybody who takes a resource
should eventually release it.
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deadlock detection in conjunctive systems only support 1-conjunctive systems.
The reason for this restriction will be explained in Remark 4.

All cutoffs in the table are tight – no smaller cutoff can exist for this class of
systems and properties – except for the case of deadlock detection in disjunctive
systems without fairness. There, the cutoff is asymptotically tight, i.e., it must
increase linearly with the size of the process template.

Proof Structure. To justify the entries in the table, we first recapitulate the
proof structure of the original Theorems 1 and 2. The proofs are based on two
lemmas, Monotonicity and Bounding. We give some basic proof ideas of the
lemmas from [12] and mention extensions to the cases with fairness and deadlock
detection. For cases where this extension is not easy, we will introduce additional
proof techniques and explain how to use them in Sects. 6 and 7. Note that we only
consider properties of the form h(A,B(1)) — the proof ideas extend to general
properties h(A,B(k)) without difficulty. Similarly, in most cases the proof ideas
extend to open systems without major difficulties — mainly because when we
construct a simulating run, we have the freedom to choose the input that is
needed. Only for the case of deadlock detection we have to handle open systems
explicitly.
(1) Monotonicity Lemma: if a behavior is possible in a system with n ∈ N

copies of B, then it is also possible in a system with one additional process:

(A,B)(1,n) |= Eh(A,B(1)) =⇒ (A,B)(1,n+1) |= Eh(A,B(1)),

and if a deadlock is possible in (A,B)(1,n), then it is possible in (A,B)(1,n+1).

Proof ideas. The lemma is easy to prove for properties Eh(A,B(1)) in both dis-
junctive and conjunctive systems, by letting the additional process stay in its
initial state initB forever (cp. [12]). This cannot disable transitions with disjunc-
tive guards, as these check for existence of a local state in another process (and
we do not remove any processes), and it cannot disable conjunctive guards since
they contain initB by assumption. However, this construction violates fairness,
since the new process never moves. This can be resolved in the disjunctive case
by letting the additional process mimic all transitions of an existing process. But
in general this does not work in conjunctive systems (due to the non-reflexive
interpretation of guards). For this case and for deadlock detection, the proof is
not trivial and may only work for n ≥ c, for some lower bound c ∈ N (see Sects. 6
and 7). ��

(2) Bounding Lemma: for a number c ∈ N, a behavior is possible in a system
with c copies of B if it is possible in a system with n ≥ c copies of process B:

(A,B)(1,c) |= Eh(A,B(1)) ⇐= (A,B)(1,n) |= Eh(A,B(1)),

and a deadlock is possible in (A,B)(1,c) if it is possible in (A,B)(1,n).
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Proof ideas. For disjunctive systems, the main difficulty is that removing
processes might falsify guards of the local transitions of A or B1 in a given
run (see Sect. 6). For conjunctive systems, removing processes from a run is easy
for the case of infinite runs, since a transition that was enabled before cannot
become disabled. Here, the difficulty is in preserving deadlocks, because remov-
ing processes may enable processes that were deadlocked before (Sect. 7). ��

6 Proof Techniques for Disjunctive Systems

6.1 LTL\X Properties Without Fairness: Existing Constructions

We revisit the main technique of the original proof of Theorem1 [12]. It con-
structs an infinite run y of (A,B)(1,c) with y |= h(A,B(1)), based on an infinite
run x of (A,B)(1,n) with n > c and x |= h(A,B(1)). The idea is to copy local
runs x(A) and x(B1) into y, and construct runs of other processes in a way that
enables all transitions along x(A) and x(B1). The latter is achieved with the
flooding construction.
Flooding Construction [12]. Given a run x = (s1, e1, p1), (s2, e2, p2) . . . of
(A,B)(1,n), let VisitedB(x) be the set of all local states visited by B-processes in
x, i.e., VisitedB(x) = {q ∈ QB | ∃m∃i. sm(Bi) = q}.

For every q ∈ VisitedB(x) there is a local run of (A,B)(1,n), say x(Bi), that
visits q first, say at moment mq. Then, saying that process Biq

of (A,B)(1,c)

floods q means:

y(Biq
) = x(Bi)[1 :mq](q)ω.

In words: the run y(Biq
) is the same as x(Bi) until moment mq, and after that

the process never moves.
The construction achieves the following. If we copy local runs of A and B1

from x to y, and in y for every q ∈ VisitedB(x) introduce one process that floods
q, then: if in x at some moment m there is a process in state q′, then in y at
moment m there will also be a process (different from A and B1) in state q′.
Thus, every transition of A and B1, which is enabled at moment m in x, will
also be enabled in y.
Proof Idea of the Bounding Lemma. The lemma for disjunctive systems
without fairness can be proved by copying local runs x(A) and x(B1), and flood-
ing all states in VisitedB(x). To ensure that at least one process moves infinitely
often in y, we copy one additional (infinite) local run from x. Finally, it may hap-
pen that the resulting collection of local runs violates the interleaving semantics
requirement. To resolve this, we add stuttering steps into local runs whenever
two or more processes move at the same time, and we remove global stutter-
ing steps in y. Since the only difference between x(A,B1) and y(A,B1) are
stuttering steps, y and x satisfy the same LTL\X-properties h(A,B(1)). Since
|VisitedB(x)| ≤ |B|, we need at most 1 + |B| + 1 copies of B in (A,B)(1,c).
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6.2 LTL\X Properties with Fairness: New Constructions

The flooding construction does not preserve fairness, and also cannot be used to
construct deadlocked runs since it does not preserve disabledness of transitions
of processes A or B1. For these cases, we provide new proof constructions.

Consider the proof task of the bounding lemma for disjunctive systems with
fairness: given an unconditionally fair run x of (A,B)(1,n) with x |= h(A,B(1)),
we want to construct an unconditionally fair run y of (A,B)(1,c) with y |=
h(A,B(1)). In contrast to unfair systems, we need to ensure that all processes
move infinitely often in y. The insight is that after a finite time all processes
will start looping around some set Visitedinf of states. We construct a run y that
mimics this. To this end, we introduce two constructions. Flooding with evac-
uation is similar to flooding, but instead of keeping processes in their flooding
states forever it evacuates the processes into Visitedinf. Fair extension lets all
processes move infinitely often without leaving Visitedinf.
Flooding with Evacuation. Given a subset F ⊆ B and an infinite run x =
(s1, e1, p1) . . . of (A,B)(1,n), define

VisitedinfF (x) = {q |∃ infinitely many m : sm(Bi) = q for some Bi ∈ F} (1)

VisitedfinF (x) = {q |∃ only finitely many m : sm(Bi) = q for some Bi ∈ F} (2)

Let q ∈ VisitedfinF (x). In run x there is a moment fq when q is reached for the first
time by some process from F , denoted Bfirstq . Also, in run x there is a moment
lq such that: slq (Blastq ) = q for some process Blastq ∈ F , and st(Bi) �= q for all
Bi ∈ F , t > lq — i.e., when some process from F is in state q for the last time in
x. Then, saying that process Biq

of (A,B)(1,c) floods q ∈ VisitedfinF (x) and then
evacuates into VisitedinfF (x) means:

y(Biq
) = x(Bfirstq )[1 :fq] · (q)(lq−fq+1) · x(Blastq )[lq :m] · (q′)ω,

where q′ is the state in VisitedinfF (x) that x(Blastq ) reaches first, at some moment
m ≥ lq. In words, process Biq

mimics process Bfirstq until it reaches q, then does
nothing until process Blastq starts leaving q, then it mimics Blastq until it reaches
VisitedinfF (x).

The construction ensures: if we copy local runs of all processes not in F from
x to y, then all transitions of y are enabled. This is because: for any process p of
(A,B)(1,c) that takes a transition in y at any moment, the set of states visible
to process p is a superset of the set of states visible to the original process in
(A,B)(1,n) whose transitions process p copies.
Fair Extension. Here, we consider a path x that is the postfix of an uncon-
ditionally fair run x′ of (A,B)(1,n), starting from the moment where no local
states from VisitedfinB (x′) are visited anymore. We construct a corresponding
unconditionally-fair path y of (A,B)(1,c), where no local states from VisitedfinB (x′)
are visited.

Formally, let n ≥ 2|B|, and x an unconditionally-fair path of (A,B)(1,n) such
that VisitedfinB (x) = ∅. Let c ≥ 2|B|, and s′

1 a state of (A,B)(1,c) with
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– s′
1(A1) = s1(A1), s′

1(B1) = s1(B1)
– for every q ∈ VisitedinfB2..Bn

(x)\VisitedinfB1
(x), there are two processes Biq

, Bi′
q

of
(A,B)(1,c) that start in q, i.e., s′

1(Biq
) = s′

1(Bi′
q
) = q

– for every q ∈ VisitedinfB2..Bn
(x) ∩ VisitedinfB1

(x), there is one process Biq
of

(A,B)(1,c) that starts in q

– for some q� ∈ VisitedinfB2..Bn
(x)∩VisitedinfB1

(x), there is one additional process of
(A,B)(1,c), different from any in the above, called Bi′

q�
, that starts in q�.

– any other process Bi of (A,B)(1,c) starts in some state of VisitedinfB2..Bn
(x).

Note that if VisitedinfB2..Bn
(x) ∩ VisitedinfB1

(x) = ∅, then the third and fourth pre-
requisites are trivially satisfied.

The fair extension extends state s′
1 of (A,B)(1,c) to an unconditionally-fair

path y = (s′
1, e

′
1, p

′
1) . . . with y(A1, B1) = x(A1, B1) as follows:

(a) y(A1) = x(A1), y(B1) = x(B1)
(b) for every q ∈ VisitedinfB2..Bn

(x)\VisitedinfB1
(x): in run x there is Bi ∈ {B2..Bn}

that starts in q and visits it infinitely often. Let Biq
and Bi′

q
of (A,B)(1,c)

mimic Bi in turns: first Biq
mimics Bi until it reaches q, then Bi′

q
mimics

Bi until it reaches q, and so on.
(c) arrange states of VisitedinfB2..Bn

(x)∩VisitedinfB1
(x) in some order (q�, q1, . . . , ql).

The processes Bi′
q�

, Biq� , Biq1
, . . . , Biql

behave as follows. Start with Bi′
q�

:
when B1 enters q� in y, it carries3 Bi′

q�
from q� to q1, then carries Biq1

from
q1 to q2, . . . , then carries Biql

from ql to q�, then carries Biq� from q� to q1,
then carries Bi′

q�
from q1 to q2, then carries Biq1

from q2 to q3, and so on.

(d) any other Bi of (A,B)(1,c), starting in q ∈ VisitedinfB2..Bn
(x), mimics Biq

.

Note that parts (b) and (c) of the constrution ensure that there is always at least
one process in every state from VisitedinfB2..Bn

(x). This ensures that the guards of
all transitions of the construction are satisfied. Excluding processes in (d), the
fair extension uses up to 2|B| copies of B.4

Proof Idea of the Bounding Lemma. Let c = 2 |B|. Given an unconditionally-
fair run x of (A,B)(1,n) we construct an unconditionally-fair run y of the cutoff
system (A,B)(1,c) such that y(A,B1) is stuttering equivalent to x(A,B1).

Note that in x there is a moment m such that all local states that are visited
after m are in VisitedinfB (x).

The construction has two phases. In the first phase, we apply flooding for
states in VisitedinfB (x), and flooding with evacuation for states in VisitedfinB (x):

(a) y(A) = x(A), y(B1) = x(B1)

3 “Process B1 starting at moment m carries process Bi from q to q′” means: process
Bi mimics the transitions of B1 starting at moment m at q until B1 first reaches q′.

4 A careful reader may notice that if |VisitedinfB1
(x)| = 1 and |VisitedinfB2..Bn

(x)| = |B|,
then the construction uses 2|B| + 1 copies of B. But one can slightly modify the
construction for this special case, and remove process Bi′

q�
from the pre-requisites.
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(b) for every q ∈ VisitedinfB2..Bn
(x)\VisitedinfB1

(x), devote two processes of (A,B)(1,c)

that flood q
(c) for some q� ∈ VisitedinfB2..Bn

(x)∩VisitedinfB1
(x), devote one process of (A,B)(1,c)

that floods q�

(d) for every q ∈ VisitedfinB2..Bn
(x), devote one process of (A,B)(1,c) that floods q

and evacuates into VisitedinfB2..Bn
(x)

(e) let other processes (if any) mimic process B1

The phase ensures that at moment m in y, there are no processes in VisitedfinB (x),
and all the pre-requisites of the fair extension are satisfied.

The second phase applies the fair extension, and then establishes the inter-
leaving semantics as in the bounding lemma in the non-fair case. The overall
construction uses up to 2|B| copies of B.

6.3 Detection of Local and Global Deadlocks: New Constructions

Monotonicity Lemmas. The lemma for deadlock detection, for fair and unfair
cases, is proven for n ≥ |B| + 1. In the case of local deadlocks, process Bn+1

mimics a process that moves infinitely often in x. In the case of global deadlocks,
by pigeon hole principle, in the global deadlock state there is a state q with at
least two processes in it—let process Bn+1 mimic a process that deadlocks in q.
Bounding Lemmas. For the case of global deadlocks, fairness does not affect
the proof of the bounding lemma. The insight is to divide deadlocked local states
into two disjoint sets, dead1 and dead2, as follows. Given a globally deadlocked
run x of (A,B)(1,n), for every q ∈ dead1, there is a process of (A,B)(1,n) dead-
locked in q with input i, that has an outgoing transition guarded “∃q” – hence,
adding one more process into q would unlock the process. In contrast, q ∈ dead2
if any process deadlocked in q stays deadlocked after adding more processes
into q. Let us denote the set of B-processes deadlocked in dead1 by D1. Finally,
abuse the definition in Eq. 2 and denote by VisitedfinB\D1

(x) the set of states that
are visited by B-processes not in D1 before reaching a deadlocked state.

Given a globally deadlocked run x of (A,B)(1,n) with n ≥ 2|B| − 1, we
construct a globally deadlocked run y of (A,B)(1,c) with c = 2|B| − 1 as follows:

– copy from x into y the local runs of processes in D1 ∪ {A}
– flood every state of dead2
– for every q ∈ VisitedfinB\D1

(x), flood q and evacuate into dead2.

The construction ensures: (1) for any moment and any process in y, the set of
local states that are visible to the process includes all the states that were visible
to the corresponding process in (A,B)(1,n) whose transitions we copy; (2) in y,
there is a moment when all processes deadlock in dead1 ∪ dead2.

For the case of local deadlocks, the construction is similar but slightly more
involved, and needs to distinguish between unfair and fair cases. In the unfair
case, we also copy the behaviour of an infinitely moving process. In the strong-fair
case, we continue the runs of non-deadlocked processes with the fair extension.
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7 Proof Techniques for Conjunctive Systems

7.1 LTL\X Properties Without Fairness: Existing Constructions

Recall that the Monotonicity lemma is proven by keeping the additional process
in the initial state. To prove the bounding lemma, Emerson and Kahlon [12]
suggest to simply copy the local runs x(A) and x(B1) into y. In addition, we
may need one more process that moves infinitely often to ensure that an infinite
run of (A,B)(1,n) will result in an infinite run of (A,B)(1,c). All transitions of
copied processes will be enabled because removing processes from a conjunctive
system cannot disable a transition that was enabled before.

7.2 LTL\X Properties with Fairness: New Constructions

The proof of the Bounding lemma is the same as in the non-fair case, noting
that if the original run is unconditional-fair, then so will be the resulting run.

Proving the Monotonicity lemma is more difficult, since the fair extension
construction from disjunctive systems does not work for conjunctive systems –
if an additional process mimics the transitions of an existing process then it

disables transitions of the form q
“ ∀¬q”→ q′ or q

“ ∀¬q′”→ q′. Hence, we add the
restriction of initializing runs, which allows us to construct a fair run as follows.
The additional process Bn+1 “shares” a local run x(Bi) with an existing process
Bi of (A,B)(1,n+1): one process stutters in initB while the other makes transitions
from x(Bi), and whenever x(Bi) enters initB (this happens infinitely often),
the roles are reversed. Since this changes the behavior of Bi, Bi should not be
mentioned in the formula, i.e., we need n ≥ 2 for a formula h(A,B(1)).

7.3 Detection of Local and Global Deadlocks: New Constructions

Monotonicity Lemmas. for both fair and unfair cases are proven by keeping
process Bn+1 in the initial state, and copying the runs of deadlocked processes. If
the run of (A,B)(1,n) is globally deadlocked, then process Bn+1 may keep moving
in the constructed run, i.e., it may only be locally deadlocked. In case of a local
deadlock in (A,B)(1,n), distinguish two cases: there is an infinitely moving B-
process, or all B-processes are deadlocked (and thus A moves infinitely often).
In the latter case, use the same construction as in the global deadlock case
(the correctness argument uses the fact that systems are 1-conjunctive, runs are
initializing, and there is only one process of type A). In the former case, copy the
original run, and let Bn+1 share a local run with an infinitely moving B-process.
Bounding Lemma (No Fairness). In the case of global deadlock detection,
Emerson and Kahlon [12] suggest to copy a subset of the original local runs.
For every local state q that is present in the final state of the run, we need
at most two local runs that end in this state. In the case of local deadlocks,
our construction uses the fact that systems are 1-conjunctive. In 1-conjunctive
systems, if a process is deadlocked, then there is a set of states DeadGuards that
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all need to be populated by other processes in order to disable all transitions
of the deadlocked process. Thus, the construction copies: (i) the local run of a
deadlocked process, (ii) for each q ∈ DeadGuards, the local run of a process
that is in q at the moment of the deadlock, and (iii) the local run of an infinitely
moving process.
Bounding Lemma (Strong Fairness). We use a construction that is similar
to that of properties under fairness for disjunctive systems (Sect. 6.2): in the
setup phase, we populate some “safe” set of states with processes, and then
we extend the runs of non-deadlocked processes to satisfy strong fairness, while
ensuring that deadlocked processes never get enabled.

Let c = 2|QB\{initB}|. Let x = (s1, e1, p1) . . . be a locally deadlocked strong-
fair intitializing run of (A,B)(1,n) with n > c. We construct a locally deadlocked
strong-fair initializing run y of (A,B)(1,c).

Let D ⊆ B be the set of deadlocked B-processes in x. Let d be the moment in
x starting from which every process in D is deadlocked. Let dead(x) be the set of
states in which processes D of (A,B)(1,n) are deadlocked. Let dead2(x) ⊆ dead(x)
be the set of deadlocked states such that: for every q ∈ dead2(x), there is a
process Bi ∈ D with sd(Bi) = q and that for input e≥d(Bi) has a transition
guarded with “∀¬q”. Thus, a process in q is deadlocked with ed(Bi) only if there
is another process in q in every moment ≥ d. Let dead1(x) = dead(x)\dead2(x).
Define DeadGuards to be the set

{ q | ∃Bi ∈ D with a transition guarded “ ∀¬q” in (sd(Bi), ed(Bi)) }.

Figure 1 illustrates properties of sets DeadGuards, dead1, dead2, Visited
inf
B\D(x).

Fig. 1. Bounding lemma (strong fairness): Venn diagram for dead1, dead2,
DeadGuards, VisitedinfB\D(x). States q1, ..., q6 are to illustrate that the corresponding sets

may be non-empty. E.g., in x, a process may be deadlocked in q1 ∈ (DeadGuards ∩
dead1 ∩VisitedinfB\D(x)), and another process in q3 ∈ dead1 ∩DeadGuards\VisitedinfB\D(x).

In the setup phase, we copy from x into y:

– the local run of A;
– for every q ∈ dead1, the local run of one process deadlocked in q;
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– for every q ∈ dead2, the local runs of two5 processes deadlocked in q;
– for every q ∈ DeadGuards\dead, the local run of a process that reaches q

after moment d.
– Finally, we keep one B-process in initB until moment d.

The setup phase ensures: in every state q ∈ dead, there is at least one process
deadlocked in q at moment d in y. Now we need to ensure that the non-deadlocked
processes in DeadGuards\dead and initB move infinitely often, which is done
using the looping extension described bellow.

Order arbitrarily DeadGuards\dead = (q1, . . . , qk) ⊆ VisitedinfB\D(x). Let P ⊆
{B1, ..., Bc} be the non-deadlocked processes of (A,B)(1,c) that we moved into
(q1, . . . , qk) ∪̇ {initB} in the setup phase. Note that |P| = |(q1, ..., qk)| + 1.

The looping phase is: set i = 1, and repeat infinitely the following.

– let Binit ∈ P be the process of (A,B)(1,c) that is currently in initB , and Bqi
∈ P

be the process of (A,B)(1,c) that is currently in qi

– let B̃qi
∈ VisitedinfB\D(x) be a process of (A,B)(1,n) that visits qi and initB

infinitely often. Let Binit of (A,B)(1,c) copy transitions of B̃qi
on some path

initB → . . . → qi, then let Bqi
copy transitions of B̃qi

on some path qi →
. . . → initB . For copying we consider only the paths of B̃qi

that happen after
moment d.

– i = i ⊕ 1

Remark 4. In 1-conjunctive systems, the set DeadGuards is “static”, i.e., there
is always at least one process in each state of DeadGuards starting from the
moment of the deadlock. In contrast, in general conjunctive systems where
guards can overlap, there is no such set. However, there is a similar set of sets of
states, such that one state from each set always needs to be populated to ensure
the deadlock.

8 Conclusion

We have extended the cutoff results for guarded protocols of Emerson and
Kahlon [12] to support local deadlock detection, fairness assumptions, and open
systems. In particular, our results imply decidability of the parameterized model
checking problem for this class of systems and specifications, which to the best
of our knowledge was unknown before. Furthermore, the cutoff results can easily
be integrated into the parameterized synthesis approach [17,20].

Since conjunctive guards can model atomic sections and read-write locks, and
disjunctive guards can model pairwise rendezvous (for some classes of specifica-
tions, cp. [13]), our results apply to a wide spectrum of systems models. But the
5 Strictly speaking, in x we might not have two deadlocked processes in a state in
dead2 – one process may be deadlocked, others enter and exit the state infinitely
often. In such case, there is always a non-deadlocked process in the state. Then, copy
the local run of such infinitely moving process until it enters the deadlocked state,
and then deadlock it by providing the same input as the deadlocked process receives.
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expressivity of the model comes at a high cost: cutoffs are linear in the size of
a process, and are shown to be tight (with respect to this parameter). For con-
junctive systems, our new results are restricted to systems with 1-conjunctive
guards, effectively only allowing to model a single shared resource. We conjecture
that our proof methods can be extended to systems with more general conjunc-
tive guards, at the price of even bigger cutoffs. We leave this extension and the
question of finding cutoffs that are independent of the size of processes for future
research.
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CUR 2002. LNCS, vol. 2421, pp. 101–115. Springer, Heidelberg (2002).
http://dx.doi.org/10.1007/3-540-45694-5 8

20. Khalimov, A., Jacobs, S., Bloem, R.: PARTY parameterized synthesis of token
rings. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 928–933.
Springer, Heidelberg (2013)

21. Kurshan, R.P., McMillan, K.L.: A structural induction theorem for processes. Inf.
Comp. 117(1), 1–11 (1995)

22. Manna, Z., Pnueli, A.: Temporal specification and verification of reactive modules.
Weizmann Institute of Science Technical Report (1992)

23. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic deductive verification with invisible
invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp.
82–97. Springer, Heidelberg (2001). http://dx.doi.org/10.1007/3-540-45319-9 7

24. Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0, 1,∞)-counter abstraction. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122.
Springer, Heidelberg (2002). http://dx.doi.org/10.1007/3-540-45657-0 9

25. Suzuki, I.: Proving properties of a ring of finite state machines. Inf. Process. Lett.
28(4), 213–214 (1988)

26. Wolper, P., Lovinfosse, V.: Verifying properties of large sets of processes with
network invariants. In: Sifakis, J. (ed.) Automatic Verification Methods for
Finite State Systems. LNCS, vol. 407, pp. 68–80. Springer, Heidelberg (1989).
http://dx.doi.org/10.1007/3-540-52148-8 6

http://dx.doi.org/10.1016/0167-6423(83)90017-5
http://dx.doi.org/10.1007/s10009-005-0193-x
http://dx.doi.org/10.1007/978-3-642-14295-6_55
http://dx.doi.org/10.1007/978-3-642-14295-6_55
http://dx.doi.org/10.1007/3-540-45694-5_8
http://dx.doi.org/10.1007/3-540-45319-9_7
http://dx.doi.org/10.1007/3-540-45657-0_9
http://dx.doi.org/10.1007/3-540-52148-8_6


A General Modular Synthesis Problem
for Pushdown Systems

Ilaria De Crescenzo(B) and Salvatore La Torre

Dipartimento di Informatica, Università degli Studi di Salerno,
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Abstract. The modular synthesis from a library of components (Lms)
asks to compose a recursive state machine satisfying a given specification,
by modularly controlling a finite set of component instances taken from
the library. It combines and subsumes two synthesis problems studied
in the literature: the synthesis from libraries of recursive components
and the modular strategy synthesis. We consider standard specifications
as reachability and safety (expressed by finite automata), and visibly
pushdown automata specifications, and show that for all these classes of
specifications the Lms problem is EXPTIME-complete.

1 Introduction

Component-based design is a main approach for developing configurable and
scalable digital systems. In this setting, the reusability of pre-existing compo-
nents plays a main role. In fact, it is current practice to design specialized hard-
ware using some base components and programming by libraries and frameworks.

A component is a piece of hardware or software that can be directly plugged
into a solution or a template that needs to be customized for a specific use. In the
procedural-programmingworld, a general notion of component composition canbe
obtained by allowing to synthesize some modules from generic templates and then
connect them along with other off-the-shelf modules via the call-return paradigm.

In this paper, we study a general synthesis problem for component-based
pushdown systems, the modular synthesis from a library of components (Lms).
The goal is to synthesize a recursive state machine (RSM) S [1] by composing, via
the call-return paradigm, modules that are instantiated from library components
such that all runs of S satisfy a given specification.

We model each component as a game graph with vertices split between player
0 (pl0) and player 1 (pl1), and the addition of boxes as place-holders for calls
to components. The library is equipped with a box-to-component map that is
a partial function from boxes to components. An instance of a component C is
essentially a copy of C along with a local strategy that resolves the nondetermin-
ism of pl0. An RSM S synthesized from a library is a set of instances along with
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Salerno.

c© Springer-Verlag Berlin Heidelberg 2016
B. Jobstmann and K.R.M. Leino (Eds.): VMCAI 2016, LNCS 9583, pp. 495–513, 2016.
DOI: 10.1007/978-3-662-49122-5 24



496 I. De Crescenzo and S. La Torre

a total function that maps each box in S to an instance of S and is consistent
with the box-to-component map of the library.

In this paper, we give a solution to the Lms problem with winning condi-
tions given as internal reachability objectives, or as external deterministic finite
automata (FA) and deterministic visibly pushdown automata (VPA) [6]. We
show that the Lms problem is EXPTIME-complete for any of the considered
specifications. In particular, for reachability we adapt the algorithm from [9]
that considers a special case of the Lms problem where the boxes of the com-
ponents are all un-mapped (i.e., the library has no box-to-component map).
The lower bound is inherited from [9]. The lower bounds for safety and VPA
specifications can be obtained by standard reductions from alternating linear-
space Turing machines. For safety specifications, the upper bound is based on
a reduction to tree automata emptiness that is based on the notion of library
tree: an infinite tree that encodes the library along with a choice for a total box-
to-component map where both the components and the total map are unrolled.
The construction is structured into several pieces and exploits the closure prop-
erties of tree automata under concatenation, intersection and union. The upper
bound for VPA specifications is obtained by a reduction to safety specifications
that exploits the synchronization between the stacks of the VPA and the syn-
thesized RSM.

A solution to the Lms problem can involve arbitrarily many instances of
each library component with possibly different local strategies. Such a diversity
in the system design is often not affordable or unrealistic, therefore we also con-
sider restrictions of this problem by focusing on solutions with few component
instances and designs. In our setting, a natural way to achieve this is by restrict-
ing the synthesized RSMs such that: (1) at most one instance of each library com-
ponent is allowed (few component instances), or (2) all the instances of a same
library component must be controlled by a same local strategy (few designs).
We refer to the Lms problems with these restrictions as the single-instance Lms
problem and the component-based Lms problem, respectively. Note that in the
component-based Lms there is no restriction imposed on the local strategy to be
synthesized for a component and two instances of the same component can still
differ in the mapping of the boxes.

The single-instance Lms problem can be reduced to the modular synthesis
on recursive game graphs by guessing a total box-to-component map for the
library, and thus we immediately get that the problem is NP-complete for reach-
ability [4], and EXPTIME-complete for FA [3] and VPA [10] specifications. For
the component-based Lms problem we get the same complexity as for the gen-
eral Lms problem: the upper bounds are obtained by adapting the constructions
given for the general case.

The LMS problem also gives a general framework for program repair where
besides the intra-module repairs considered in the standard approach (see
[13,14]) one can think of repairing a program by replacing a call to a module
with a call to another module (function call repairs).

Related Work. The Lms problem strictly extends the modular synthe-
sis on recursive game graphs [3,5,10] by allowing to synthesize multiple
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(possibly different) instances from each component and the call-return rela-
tion among them (i.e., the box-to-instance map). Our constructions build on
the techniques used in these papers and rely on well established connections
between games on graphs and tree automata. Besides that, the presented results
and also the notion of library tree, which is the key of our translation to tree
automata, are new.

The Lms problem also strictly generalizes the synthesis from libraries of
[18,19] where there is no internal game within the components forming the
library. In some sense, our problem generalizes their setting to library of infinitely
many elements that are defined as instances of finitely many components.

The synthesis from libraries of components with simple specifications has
been also implemented in tools (see [12] and references therein). The notion
of modular strategy has found application in the automatic transformation of
programs for ensuring security policies in privilege-aware operating systems [11].

Related synthesis problems concern component libraries [7,18] and weaker
forms of modular strategies [8]. Modular synthesis with modules expressed as
terms of the λY -calculus is captured by [21]. The synthesis problem from [20]
differs from our setting in that programs and not transition systems are dealt
with, and the number of functions of a synthesized program is bounded a priory
but no structure of the functions is given. Deciding standard pushdown games
(i.e., where strategies may be non-modular) is known to be EXPTIME-complete
for reachability specifications [25], 2EXPTIME-complete for VPA specifications
and 3EXPTIME-complete for temporal logic specifications [17].

2 Modular Synthesis from Libraries

For n ∈ N and 0 ≤ j < n, with [j, n] we denote the set of integers i s.t. j ≤ i ≤ n
and with [n] we denote [1, n]. Also we let Σ be a finite alphabet.

Library of Components. For k ∈ N, a k-component is a finite game graph
with two kinds of vertices, the standard nodes and the boxes, and with an entry
node and k exit nodes. Each box has a call point and k return points, and
each edge takes from a node/return to a node/call in the component. Nodes and
returns are split into player 0 (pl0) positions and player 1 (pl1) positions.

For a box b, we denote with (1, b) the only call of b and with (b, i) the ith return of
b for i ∈ [k]. A k-component C is a tuple (NC , BC , eC ,ExC , ηC , δC , P 0

C , P 1
C) where

NC is a finite set of nodes, BC is a finite set of boxes, eC ∈ NC is the entry, ExC :
[k] → NC is an injection that maps each i to the ith exit, ηC : VC → Σ is a labeling
map of the set of C vertices VC = NC ∪ CallsC ∪ RetnsC , δ : NC ∪ RetnsC →
2NC∪CallsC is a transition function with RetnsC = {(b, i) | b ∈ BC , i ∈ [k]} (set
of C returns) and CallsC = {(1, b) | b ∈ BC} (set of C calls), and P 0

C (the pl0
positions) and P 1

C (the pl1 positions) form a partition of NC ∪ RetnsC .
We introduce the notion of isomorphism between two k-components. Intu-

itively, two components are isomorphic if and only if their game structures are
equivalent, that is: the properties of standard isomorphism of labeled graphs
must hold, and additionally isomorphic vertices must be assigned to the same
player and be of the same kind.
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Formally, the k-components C and C ′ are isomorphic, denoted C
iso≡ C ′, if

there exists a bijection iso : VC ∪ BC → VC′ ∪ BC′ s.t.: (1) for all u, v ∈ VC , v ∈
δC(v) iff iso(v) ∈ δC′(iso(u)) and (2) for u ∈ VC ∪ BC and u′ ∈ VC′ ∪ BC′ , we
get u′ = iso(u) iff u and u′

– have the same labeling, i.e. ηC(u) = ηC′(u′);
– are assigned to the same player, i.e., u ∈ P j

C iff u′ ∈ P j
C′ for j ∈ [0, 1];

– are of the same kind, i.e.:
• u is an entry/box of C iff u′ is an entry/box of C ′;
• for i ∈ [k], u is the ith exit of C iff u′ is the ith exit of C ′;
• u = (1, b) iff u′ = (1, iso(b)) and for i ∈ [k], u = (b, i) iff u′ = (iso(b), i)

(calls and ith-returns of isomorphic boxes must be isomorphic).

For k > 0, a k-library is a tuple Lib = 〈{Ci}i∈[0,n],YLib〉 where:

– {Ci}i∈[0,n] is a finite set of k-components;
– C0 is the main component ;
– let BLib =

⋃
i∈[0,n] BCi

be the set of all boxes of the library components,
YLib : BLib → {Ci}i∈[n] is a partial function (box-to-component map).

Running Example. We illustrate the definitions with an example. In Fig. 1(a), we
give a library Lib of four components C0, C1, C2 and C3. Each component has
two exits. In the figure, we denote the nodes of pl0 with circles and the nodes of
pl1 with squares. Rounded squares are used to denote the boxes. Entries (resp.,
exits) are denoted by nodes intersecting the frame of the component on the left
(resp., on the right). For example, C0 has entry e0 and two exits x1 and x2, one
internal node u1 and two boxes b1 and b2. With “b1 : C1” we denote that box b1
is mapped to component C1. The only unmapped box is b3. To keep the figure
simple, we only show the labeling of vertices with labels α, β and γ, and hide
the labeling for all the remaining vertices (meaning that they are labeled with
any other symbol).

Notes. For the ease of presentation, we have imposed a few restrictions. First,
in the definition of library, YLib can map a box to each component but the
main component C0. We observe that this is in accordance with the choice of
many programming languages where the main function cannot be called by other
functions and is without loss of generality of our results. Second, multiple entries
can be handled by making for each component as many copies as the number
of its entries, and accommodating calls and returns accordingly. Third, all the
components of a library have the same number of exits that also matches the
number of returns for each box. This can be relaxed at the cost of introducing
a notion of compatibility between a box and a component, and map boxes to
components only when they are compatible. We make a further assumption
that is standard: in the components there are no transitions leaving from exits
(assigning them to pl0 or pl1 is thus irrelevant).

Instances and Recursive State Machines. We are interested in synthesiz-
ing a recursive state machine (RSM) [1] from a library of components. Such a
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Fig. 1. A library (a) and RSMs from it: unrestricted (b), same local strategy for
instances of the same component (c), and at most one instance for each component (d).

machine is formed by a finite number of instances of library components, where
each instance is isomorphic to a library component and resolves the nondeter-
minism of pl0 by a finite-state local strategy. The boxes of each instance are
mapped to instances in the machine with the meaning that when a call of a box
b is reached then the execution continues on the entry of the mapped instance
and when the ith exit of such instance is reached then it continues at the ith

return of b (as in the recursive call-return paradigm). The box-to-instance map
of an RSM must agree with the box-to-component map of the library when this
is defined.

We observe that our definition of RSM differs from the standard one in that
(i) each finite-state machine is implicitly given by a component and a finite-state
local strategy, and (ii) the nodes are split between pl0 and pl1. (However the last
is immaterial since the nondeterminism of pl0 is completely resolved by the local
strategies).

For a component C, a local strategy is f : V ∗
C .P 0

C → CallsC ∪ NC such that
f(w.u) ∈ δC(u). The strategy is finite-state if it is computable by a finite automa-
ton (we omit a formal definition here, see [23]).

An instance of C is I = (G, f) where G is s.t. G
iso≡ C holds and f is a finite-

state local strategy of G. For example, in Fig. 1, X1 and X2 are two instances
of C1 that differ on the local strategy (we have denoted with dashed edges the
transitions that cannot be taken because of the local strategies). Also, Y1 is an
instance of C1 and has the same local strategy as X1. Note that, though the
local strategies used in this example are memoryless, this is not mandatory and
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thus the number of instances of each component with different local strategies
is in general unbounded.

Fix a library Lib = 〈{Ci}i∈[0,n],YLib〉. A recursive state machine (RSM)
from Lib is S = 〈{Ii}i∈[0,m],YS〉 where:

– for i ∈ [0,m], Ii = (Gi, fi) is an instance of a component Cji from Lib;
– I0 is an instance of the main component C0;
– the box-to-instance map YS :

⋃
i∈[0,m] BGi

→ {Ii}i∈[m] is a total function that
is consistent with YLib, i.e., for each i ∈ [0,m] and b ∈ BGi

, denoting with
b′ the box of Cji that is isomorphic to b, it holds that if YLib(b′) = Cjh then
YS(b) = Gh.

Examples of RSM for the library from Fig. 1(a) are given in Fig. 1(b)–(d).
We assume the following notation: VS =

⋃
i∈[0,m] VGi

(set of all vertices);
BS =

⋃
i∈[0,m] BGi

(set of all boxes); EnS =
⋃

i∈[0,m]{eGi
} (set of all entries);

ExS =
⋃

i∈[0,m] ExGi
(set of all exits); CallsS =

⋃
i∈[0,m] CallsGi

(set of all calls);
RetnsS =

⋃
i∈[0,m] RetnsGi

(set of all returns); and P j
S =

⋃
i∈[0,m] P

j
Gi

for j = 0, 1
(set of all positions of plj).

A state of S is (γ, u) where u ∈ VYS(bh) is a vertex and γ = γ1 . . . γh is a
finite sequence of pairs γi = (bi, μi) with bi ∈ BS and μi ∈ V ∗

YS(bi)
for i ∈ [h]

(respectively, calling box and local memory of the called instance).
In the following, for a state s = (γ, u), we denote with V (s) its vertex u.

Moreover, we define the labeling map of S, denoted ηS , from the labeling ηGi
of

each instance Ii in the obvious way, i.e., ηS(s) = ηGi
(V (s)) for each V (s) ∈ VGi

and i ∈ [0,m]. ηS naturally extends to sequences.
A run of S is an infinite sequence of states σ = s0s1s2 . . . such that s0 =

((ε, eG0), eG0) and for i ∈ N, denoting si = (γi, ui) and γi = (b1, μ1) . . . (bh, μh),
one of the following holds:

– Internal pl1 move: ui ∈ (NS ∪RetnsS)\ExS , and ui ∈ P 1
S , then ui+1 ∈ δS(ui)

and γi+1 = (b1, μ1) . . . (bh, μh.ui+1);
– Internal pl0 move: ui ∈ (NS ∪ RetnsS) \ ExS , ui ∈ P 0

S and ui ∈ VGj
with

j ∈ [0,m], then ui+1 = fj(μh) and γi+1 = (b1, μ1) . . . (bh, μh.ui+1).
– Call to an instance: ui = (1, b) ∈ CallsS , ui+1 = eYS(b) and γi+1 =

γi.(b, eYS(b));
– Return from a call: ui ∈ ExS and ui corresponds to the jth exit of an

instance Ih, then ui+1 = (bh, j) and γi+1 = (b1, μ1) . . . (bh−1, μh−1.ui+1).

An infinite RSM is defined as an RSM where we just relax the request that
the set of instances is finite. We omit a formal definition and retain the notation.
Note that the definitions of state and run given above still hold in this case.

Synthesis Problem. Fix a library Lib = 〈{Ci}i∈[0,n],YLib〉 with alphabet Σ.
A library game is (Lib,W) where Lib is a library of components and W is a

a winning set, i.e., a language W ⊆ Σω.
The modular synthesis from libraries (Lms, for short) is the problem of deter-

mining if for a given library game (Lib,W) there is an RSM S = 〈{Ii}i∈[0,m],YS〉
from Lib that satisfies W, i.e., ηS(σ) ∈ W for each run σ of S.
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As an example, consider the Lms queries Qi = (Lib,Wi), i ∈ [3], where
Lib is from Fig. 1(a) and denoting Σ = {α, β, γ} : W1 is the set of all ω-words
whose projection into Σ gives the word (γα)ω,W2 is the set of all words whose
projection into Σ gives a word in (γβα+γβ2α)ω, and W3 is the set of all ω-words
with no occurrences of β. The RMSs from Fig. 1(b)–(d) are solutions of the Lms
queries Q1,Q2 and Q3 respectively. In the figure, we use circles to denote all
the nodes, this is to stress that the splitting between the two players is not
meaningful any more.

3 Safety Lms

A safety automaton A is a deterministic finite automaton with no final states,
and the language accepted by A, denoted WA, is the set of all ω-words on which
A has a run (see [22] for a survey on ω-words automata). We denote a safety
automaton by (Σ,Q, q0, δA) where Σ is a finite set of input symbols, Q is a finite
set of states, q0 ∈ Q is the initial state, and δA : Q×Σ → Q is a partial function
(the transition function).

In the safety Lms problem the winning set is given by the set of words
accepted by a safety automaton. In this section we show that deciding this
problem is EXPTIME-complete. Our decision procedure consists of reducing the
problem to checking the emptiness of tree automata. We assume familiarity with
tree automata and refer the reader to [22] for the definitions.

Overview of the Construction. Fix a safety Lms query (Lib,WA) where Lib =
〈{Ci}i∈[0,n],YLib〉 is a library and A = (Σ,Q, qo, δA) is a safety automaton. We
aim to construct an automaton A that accepts the trees that encode an RSM S
synthesized from Lib iff S satisfies WA.

For the RSM encoding we introduce the notions of component tree and library
tree. Intuitively, a component tree corresponds to the unrolling of a library com-
ponent, and a library tree is a concatenation of component trees that encodes
a choice of the box-to-instance map and of the components for the synthesis of
the instances.

For a library tree t, denote with Roots(t) the set of all nodes of t that cor-
respond to a root of a component tree. A set I = {Ix}x∈Roots(t) is compatible
with t if Ix is an instance of the component corresponding to the component
tree rooted at x. Such a set I and the total box-to-instance map defined by
the concatenation of component trees in t define a possibly infinite RSM (it is
infinite iff Roots(t) is infinite). Denote SI,t such RSM.

Intuitively, the automaton A checks that the input tree t is a library tree
of Lib and that there is a set of instances I that is compatible with t s.t. SI,t

satisfies WA. For this, A simulates the safety automaton A on the unrolling
of each component and on pl0 nodes also guesses a move of the local strategy
(in this way we also guess an instance of the component). To move across the
boxes, A uses a box summary that is guessed at the root of each component tree.
For x ∈ Roots(t), denoting with Cx the corresponding component and with xb
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the child of x corresponding to a box b of Cx, the box summary guessed at x
essentially tells for each such b (recall that Q is the set of states of A):

1. the associated component Cxb
in t, and

2. a non empty set Q′ ⊆ Q, and for i ∈ [k] and q ∈ Q′, sets Qb
q,i ⊆ Q s.t. for

any run π of SI,t that starts at the entry of the instance Ixb
and ends at its

ith exit, if the safety automaton A starts from q and reads the sequence of
input symbols along π then it must reach a state of Qb

q,i.

The above assumption 2 is called a pre-post condition for Cxb
. The correctness

of the pre-post condition for each such Cxb
is checked in the simulation of A on

the unrolling of Cxb
.

We give A as the composition of several tree automata: ALib checks that the
input tree is a library tree, and each AC

P,B checks on the unrolling of C that the
pre-post condition P holds provided that the box-summary B holds.

Component and Library Trees. For a component C of Lib, the component tree
of C is a tree where the subtree rooted at the first child of the root is essentially
the unrolling of C from its entry node and the other children of the root are
leaves s.t. each box of C is mapped to exactly one of them.

Consider a library Lib = 〈{Ci}i∈[0,n],YLib〉. Let BLib =
⋃

i∈[0,n] BCi
be the

set of all boxes and VLib =
⋃

i∈[0,n] VCi
be the set of all vertices (i.e. nodes, calls

and returns) of the library components.
Let d be the maximum over the number of exits, the number of boxes in each

component and the out-degree of the vertices of the library components.
Denote with Ω̂ the set {dummy ,C0 , ...,Cn} ∪ BLib ∪ VLib. A component tree

of some component Ci in Lib is an Ω̂-labeled d-tree such that its first subtree
encodes the unrolling of Ci and the children of its root, from the second through
the (� + 1)th, are leaves corresponding respectively to each of the � boxes of Ci.
We make use of dummy nodes to complete the d-tree.

Precisely, an Ω̂-labeled d-tree TCi
is a component tree of Ci in Lib, if:

– the root of TCi
is labeled with Ci ;

– the subtree T 1
Ci

that is rooted at the first child of the root corresponds to
the unrolling of the component Ci; the nodes of T 1

Ci
are labeled with the

corresponding vertices of the component Ci; thus, in particular, the root of
T 1

Ci
is labeled with eCi

and the calls have as children the matching returns;
a tree-node labeled with an exit has no children; in T 1

Ci
all the nodes that

do not correspond to a vertex in the unrolling of Ci are labeled with dummy,
meaning that they are not meaningful in the encoding;

– for i ∈ [2, � + 1], the jth child of the root is labeled with b ∈ BCi
and for any

j, z ∈ [2, � + 1] with j 
= z the labels of the jth child and the zth child must
be different;

– the tree-nodes labeled with b ∈ BCi
have no children;

– the remaining tree-nodes are labeled with dummy.



A General Modular Synthesis Problem for Pushdown Systems 503

(a)
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(1, b3) x3

(b3, 1) (b3, 2)

x3 dummy x4 dummy

(b)

C0

e0 C1 C1

(1, b1) (1, b2) e1 C1 e1 C1

(b1, 1) (b1, 2)

x1 u1 dummy

e0 dummy

Fig. 2. Top fragments of (a) the component tree of C1 and (b) the library tree from
our running example.

As an example, in Fig. 2(a) we show a fragment of the component tree of the
component C1 from the library given in Fig. 1(a).

A library tree is a tree obtained by starting with the component tree of the
main component and then iteratively gluing at each leaf corresponding to a box
b: any component tree, if YLib(b) is not defined, and the component tree of
YLib(b), otherwise.

One can formally define a library tree t as the ω-fold concatenation over
languages of component trees. (We refer the reader to [22] for a formal definition
of ω-fold concatenation). For this, let TC be the component tree of C for each
component C of Lib and denote b = (b1, . . . , bn) where BLib = {b1, . . . , bn}
(recall that with BLib we denote the union of the set of boxes over all the
components of Lib). For each i ∈ [n], we let Ti be the language {TC}, if YLib(bi) =
C, and {TC′ | C ′ is a component of Lib}, otherwise.

A library tree for Lib is thus any tree t ∈ T0 ·b (T1, . . . , Tn)ωb where
T0 = {TC0}.

In Fig. 2(b) we show the initial fragment of the library tree for the library
from Fig. 1(a). Note that the second and the third child of the root correspond
respectively to the boxes b1 and b2 of C0 and thus each of them is replaced by a
copy of TC1 in the sample library tree.

The construction of ALib can be obtained from the automata accepting the
component trees for Lib using the standard construction for the ω-fold concate-
nation (see [22]). Thus, we get:

Proposition 1. There exists an effectively constructible Büchi tree automaton
ALib of size linear in the size of Lib, that accepts a tree if and only if it is a
library tree of Lib.

Sketch of the Construction of AC
P,B. We first formalize the notions of pre-post

condition and box summary that we have informally introduced earlier in this
section. Intuitively, box summaries are composed of pre-post conditions and
each postcondition summarizes the states of the safety automaton A that can
be reached along a play of a strategy at the exits of a corresponding component
instance.
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Formally, a pre-post condition P is a set of tuples (q, [Q1, . . . , Qk]) where
q ∈ Q and Qi ⊆ Q for each i ∈ [k], and s.t. for any pair of tuples (q, [Q1, . . . , Qk]),
(q′, [Q′

1, . . . , Q
′
k]) ∈ P: (1) q 
= q′, and (2) Qi = ∅ implies Q′

i = ∅ for each i ∈ [k]
(i.e., for each q there is at most a tuple with q as first component and each other
component is either the empty set for all the tuples or it is non-empty for all of
them). For such a pre-post condition P, each q is a precondition and each tuple
[Q1, . . . , Qk] is a postcondition. Note that according to the above intuition, part
(2) above captures the fact that all the postconditions of a pre-post condition
must agree on the assumption on whether the ith exit is reachable (i.e., Qi = ∅)
or not (i.e., Qi 
= ∅).

A box summary of an instance of C is a tuple BC = 〈ŶC , {Pb}b∈BC
〉, where

ŶC : BC → {Ci}i∈[n] is a total map that is consistent with the library box-to-
component map YLib and for each box b ∈ BC , Pb is a pre-post condition.

Fix a component C, a pre-post condition P = {(qi, [Qi1 , ..., Qik ])}i∈[h] and a
box summary B = 〈ŶC , {Pb}b∈BC

〉.
Denote TC the component tree of C and T 1

C the subtree rooted at the first
child of TC . Recall that T 1

C corresponds to the unrolling of C from the entry
node. For a local strategy f for C, a path x1 . . . xj of T 1

C conforms to f if the
corresponding sequence of C vertices v1 . . . vj is s.t. for i ∈ [j − 1] if vi is a node
of pl0 then vi+1 = f(v1 . . . vi).

For each path π of T 1
C , a run of the safety automaton A on π according to

box summary B is a run where a state q is updated (1) according to a transition
of A, from a tree-node corresponding to a node or a return of C, and (2) by
nondeterministically selecting a state from Qi with (q, [Q1, . . . , Qk]) ∈ Pb (i.e., a
state from the postcondition for box b in B), from a tree-node corresponding to
a call (1, b) to one corresponding to a return (b, i). Note that, we do not consider
the case of an empty postcondition for a return. This is fine for our purposes
since we need to simulate the safety automaton A only on the returns (b, i) that
can be effectively reached in a play (according to the guessed box summary).

We construct AC
P,B s.t. it rejects any tree other than TC and accepts TC iff

(recall h is the number of tuples in the pre-post condition P):

(P1) There is a local strategy f for C s.t. for each i ∈ [h], j ∈ [k], and path π
of T 1

C from the root to the jth exit that conforms to f , each run of A on π
according to B that starts from qi ends at a state in Qij (i.e., the pre-post
condition P holds).

For this, we define AC
P,B such that it summarizes for each precondition of P

the states of the safety automaton A that can be reached at a given node.
The states of AC

P,B are: an initial state qs, an accepting sink state qa, a
rejecting sink state qr, a state qe, a state qb for each box b of C, and summary
states of the form (R1, . . . , Rh) where Ri ⊆ Q for i ∈ [h].

AC
P,B accepts on a finite path if it ends at qa upon reading its sequence of

labels. No condition is required in order to accept on infinite paths (the existence
of a run suffices in this case).

At the root of TC , from qs the automaton enters qe on the first child and
for each box b of C, qb on the child corresponding to b. From qb, it then accepts
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entering qa if the node is labeled with b. From qe, it behaves as from
({q1}, . . . , {qh}) if the current node corresponds to the entry of C (where
q1, . . . , qh are the preconditions of P).

In each run of AC
P,B, for a state of the form (R1, . . . , Rh) at a tree-node x, we

keep the following invariant: for i ∈ [h], Ri is the set of all the states that end
any run of A starting from qi on the path from the root of T 1

C up to x (according
to the box summary B).

From a tree-node corresponding to a node or a return of C, the transitions of
AC

P,B update each Ri as in a standard subset construction provided that there is
a transition of A from all the states in

⋃
j∈[h] Rj (we recall that a run is unsafe if

A halts), thus maintaining the invariant. The updated state is entered on all the
children from pl1 vertices, and on only one nondeterministically selected child
from pl0 vertices (this correspond to guessing a local strategy in C).

The update on tree-nodes corresponding to a call (1, b) of C is done according
to the pre-post condition Pb from the box summary B. In particular, denoting
Pb = {(q′

i, [Q
′
i,1, . . . , Q

′
i,k])}i∈[h′], from (R1, . . . , Rh) we enter qa on the tree-node

corresponding to any return (b, j) that is not reachable according to Pb, i.e.,
each Q′

i,j = ∅ (we accept since the guessed local strategy excludes such paths
and thus the condition P does not need to be checked). On the reachable returns
(b, j), we enter the state (R′

1, . . . , R
′
h) where R′

i =
⋃

q′
d∈Ri

Q′
d,j for i ∈ [h], i.e.,

according to the above invariant, for each position i in the tuple we collect the
postconditions of the jth exit for each precondition of Pb that applies.

At a tree-node corresponding to the ith exit of C, AC
P,B accepts by entering

qa iff P is fulfilled, i.e., AC
P,B is in a state (R1, . . . , Rh) s.t. Ri ⊆ Qi for i ∈ [h].

The state qr is entered in all the remaining cases.
By a simple counting, we get that the size of AC

P,B is linear in the number
of boxes and exponential in the number of states of the specification automaton
A. Thus, we get:

Lemma 1. AC
P,B accepts TC iff property P1 holds. Moreover, the size of AC

P,B
is linear in the number of C boxes and exponential in the number of A states.

The Construction of A. We first construct an automaton A′. For this, we extend
the alphabets such that AC

P,B accepts the trees that are obtained from the com-
ponent tree TC of C by labeling the leaf corresponding to b, for each box b of C,
with any tuple of the form (Ŷ (b),Pb,Bb) where Ŷ is the total map of the box
summary B and Bb is any box summary for component Ŷ (b). Denote LC

P,B the
set of all trees accepted by any such automaton.

Let P0 = {(q0, [∅, . . . , ∅])} where q0 is the initial state of A and Lab be the
set of all labels (C,P,B) s.t. C is a component, P is a pre-post condition of C,
and B is a box summary of C. For each box summary B0 for C0 denote TB0

the language LC0
P0,B0

·c̄ (〈LC
P,B〉(C,P,B)∈Lab)ωc̄ where c̄ = 〈(C,P,B)〉(C,P,B)∈Lab,

i.e., the infinite trees obtained starting from a tree in LC0
P0,B0

and then for all
(C,P,B) ∈ Lab iteratively concatenating at each leaf labeled with (C,P,B) a
tree from LC

P,B until all such leaves are replaced.



506 I. De Crescenzo and S. La Torre

By standard constructions (see [22]), we construct the automaton A′ that
accepts the union of the languages TB for each box summary B of the main
component.

The automaton A is then taken as the intersection of ALib and A′. Thus, from
Proposition 1, Lemma 1 and known results on tree automata [22], we get that
the size of A is exponential in the sizes of Lib and A. Recall that the emptiness
of (Büchi) nondeterministic tree automata can be checked in linear time and if
the language is not empty then it is possible to determine a finite witness of it
(regular tree) [22]. The finiteness of a regular tree ensures both the finiteness of
the local strategies and of the number of instances. Moreover, it encodes an RSM
and thus starting from the automaton A, we can use standard algorithms for
tree automata to synthesize an RSM that fulfills the specification A. Note that
from Proposition 1 and Lemma 1 we also get that the encoded strategy for each
instance is local and, consequently, the set of synthesized strategies is modular.
Further, we can show an EXPTIME lower bound with a direct reduction from
alternating linear-space Turing machines. Therefore, we get:

Theorem 1. The safety Lms problem is EXPTIME-complete.

4 Lms with Deterministic VPA Specification

A visibly pushdown automaton (VPA) is a pushdown automaton where the stack
operations are determined by the input symbols: a call symbol causes a push, a
return symbol causes a pop and an internal symbol causes just a change of the
finite control [6].

In the VPA Lms problem the specification is giving as a deterministic VPA.
The labeling of the library components is synchronized with the usage of the
stack of the VPA: calls are labeled with call symbols, returns with return symbols
and nodes with internal symbols.

VPAs are strictly more expressive than finite state automata and they allow
to express many additional specifications, as stack inspection properties, partial
correctness or local properties (see [2]). For example, with a VPA we could
express the requirement that along any run of an RSM M , every γ must be
followed by at least an α in the same instance invocation where γ occurs. The
RMS in Fig. 1(b) does not satisfy this requirement. In fact, though in any run
each occurrence of γ is always followed by an occurrence of α, indeed each γ
occurs during an invocation of either X1 or X2 while α always occurs in the only
invocation of X0 (when the invocations of X1 and X2 have already returned).

We give a reduction from the VPA Lms problem to the safety Lms problem.
The idea is to achieve the synchronization on the stack symbols between automa-
ton and specification using the mechanics of the game, such that the specification
can be considered as a finite state automaton. The top symbol of the stack is
embedded in the states of the specification automaton. Before every invocation
of an instance, the adversary pl1 has to declare the top symbol pushed by the
specification automaton and the specification automaton has to verify that the
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adversary is honest (otherwise, pl1 loses). After such declaration, the instance is
invoked and, when its execution terminates, the adversary repeats the declared
top-of-the-stack symbol such that the finite state automaton can update the
simulated top symbol accordingly.

Consider a VPA Lms query with library Lib = 〈{Ci}i∈[0,n],YLib〉 and deter-
ministic VPA Av. We define a new library game (L̂ib,WA), where L̂ib =
〈{Ci}i∈[0,n] ∪ {Cstacki}i∈[n],ŶLib

〉 and WA is the language recognized by a finite
state automaton A.

The structure of a component Cstacki with i ∈ [1, n] is given in Fig. 3 where
with g we denote the number of stack symbols. Recall that k denotes the num-
ber of exits of any possible component C. Also, note that all the vertices are
controlled by pl1 and all the boxes are mapped to component Ci.

Cstacki

ein

vγg

γg

vγ1

γ1

u1
γ1

γ1

uk
γ1

γ1

u1
γg

γg

uk
γg

γg

ex1

exkbg:Ci

b1:Ci

Fig. 3. The component Cstacki for i ∈ [n]

The main purpose of the new components is to store the symbol that is
pushed onto the stack in the Av pushes. This is achieved by letting pl1 to guess
a stack symbol γj , then call the corresponding Lib component and on returning
from exit x of such component, restore γj before exiting from the exit corre-
sponding to x (thus reporting to the caller the exit of the callee).

We encode the stack of the specification in the library by enforcing each call to
a component Ci of Lib to occur through a call to the new component Cstacki , for
i ∈ [n]. For this, we define the box-to-component map Y

̂Lib
, such that it preserves

the original box-to-component of the input library and partially guarantees the
interleaving of calls of components and calls of stack components. Namely, for
i ∈ [n], if YLib maps a box b to a component Ci, then Y

̂Lib
maps such box to the

new component Cstacki . Then, Y
̂Lib

maps all the boxes of Cstacki to Ci. In all
the other case, i.e., if YLib is undefined for a box b, also Y

̂Lib
is undefined for it.

The winning condition is given as a finite state automaton A given as the
intersection of two finite state automata A1 and A2. We embed the top stack
symbol of the deterministic VPA in the states of A1. Moreover, the states of A1

simulate the corresponding states of Av, and the winning condition is equivalent.
On calls, A1 must mimic a push transition t from the current state, by first
storing in the control the pushed symbol γ and the next control state according
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to t, then, if the next input is γ, it continues, otherwise it enters an accepting
sink state. Returns are handled similarly (the popped symbol occurs after the
return, and the fact that this corresponds to the symbol actually pushed in the
current run on the matching call is ensured by the instance of a component
Cstacki).

The alternation of calls to instances of components Cstacki and calls to
instances of the components Ci is guaranteed by the box-to-component map
except for the case of the calls from unmapped boxes of instances of the input
library. In fact, since these are unmapped also in the library L̂ib, in an RSM
from L̂ib, we could map them to instances of both kinds of components Cstacki

and Ci. Thus, in order to enforce the alternation, and thus prevent them to be
mapped directly to instances of Ci, we use the second finite state automaton A2.
This automaton cycles on a state qin until it reads a node labeled with the call
of an unmapped box. Then, the automaton enters a state qwait and cycles on it,
waiting for an entry. If the first encountered entry e is the entry of a component
Cstacki , then the automaton enters again qin, otherwise it enters a rejecting sink
state.

Note that pl0 has no moves in the Cstacki instances, and the moves of pl1
there are not visible to her in the other instances. Thus, the local strategies for
pl0 in the original game are exactly the same in the new game.

Denote with g the number of stack symbols. Each of the new components
Cstacki has O(g k) size. Since there are only n additional components, the result-
ing library L̂ib has O(|Lib| + n g k) size. Also, the constructed automaton A has
O(g |Av|) size. By Theorem 1, we thus have:

Theorem 2. The VPA Lms problem is EXPTIME-complete.

5 On Modular Synthesis Problems

Modular Synthesis and Program Repair. Given a misbehaving program according
to a correctness specification, the program repair looks for the fault localization
and a possible small modification of the program such that the repaired program
satisfies its specification. The repair problem is closely related to the synthesis
problem. In [14] the fault localization and correction of the problem are achieved
using infinite games: the system chooses which component is incorrect, then, if
for any input sequence, the system can select a behavior of this component such
that the specification is satisfied, the replacement behavior for the component
can be used to make the system correct.

Consider the program in Fig. 4(a) and the correctness specifications requir-
ing that statement (done=true) is reachable (termination) and condition
(a[0]<=a[1]) && (a[1]<=a[2]) && (a[2]<=a[3]) holds at the end of the pro-
gram execution (correct result). This program does not fulfill both specifications.
In fact, it contains an error that causes an infinite cycle of unreturned function
calls: in function MergeSort1 there is no control over the values of left and
right, and no return statement before executing the recursive calls.
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1 main(){ 11 void MergeSort1(int a[], 20 void MergeSort2(int a[],
2 const int n=4; int left, int right){ int left, int right){
3 bool done=false; 12 int center= 21 if (left<left)
4 int a[n]={7,4,5,1} (left+right)/2; 22 {
5 MergeSort1(a,0,n-1); 13 MergeSort1(a,left, 23 int center=
6 ;)retnec;eurt=enod (left+right)/2;
7 } 14 MergeSort1(a,center+1, 24 MergeSort2(a,left,

right); center);
15 Merge(a,left, 25 MergeSort2(a,center+1,

center,right); right);
8 void Merge(int a[], 16 } 26 Merge(a,left,

int left,int center, center,right);
int right){ ... 27 }

9 //code with no errors 28 }
10 ...}

(a) (b)

Fig. 4. A faulty program (a) and a pre-existing function (b).

Note that this error cannot be repaired, because there is no assignment or
condition on which we can set a diagnosis. However, MergeSort1 is a sorting
algorithm. Thus, we could look within an available library for a different function
implementing a sorting algorithm, and possibly this function is either correct or
could be repaired.

In our example, suppose now that we can use a library that contains the
function MergeSort2 given in Fig. 4(b). This function is faulty, but repairable,
and the location of the error and its correction can be found using the approach
in [14]: by assuming that in main we call MergeSort2, the algorithm suggests
to change the left-hand side of the condition in Line 21 from left<left to
left<right. Therefore, by fixing this error and replacing the call in Line 5 with a
call to MergeSort2, the repaired program will now satisfy the given specification.

We can generalize this approach and apply it directly using the modular
synthesis. Given a program P and a correctness specification, we construct a
library game. Intuitively, we use the internal game to find and repair fixable faults
and the external compositional game to substitute the components that can not
be repaired (function call repair). As library we consider a given set of standard
pre-existing components and the components of the program P , both modeled
as game components to find and fix possible bugs as in the standard program
repair approach. All the call assignments of the boxes that invoke suspected
faulty functions are modeled as unassigned boxes. The correctness specification
is unchanged. If there is a solution to such library game, we can obtain a repaired
version of the program P that fulfills the given specification.

Other Formulations of the Modular Synthesis. We introduce two variations of the
Lms problem based on the two restrictions for the RSMs that can be synthesized.
The idea is to constrain our algorithms to synthesize, when possible, “simpler”
RSMs. For example, in the function call repair we can imagine that it is not
good to fix a fault introducing or duplicating an arbitrarily large number of
new instances and we could be interested to construct a repaired system that
implements at most one instance of each library component.
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Fix a library Lib. An RSM S from Lib is component-based if for any two S
instances I = (G, f) and I ′ = (G′, f ′) of a component C from Lib, the local
strategies f and f ′ coincide (up to a renaming). Moreover, S is single-instance
if it has at most one instance of each library component.

The component-based (resp. single-instance) Lms problem is the Lms problem
restricted to component-based (resp. single-instance) RSMs.

Denote with Psingle (resp. Pcomp, PLMS) the set of Lms queries (Lib,WA) for
which the single-instance Lms problem (resp. component-based Lms problem,
Lms problem) admits a positive answer. Directly from the definitions, a single-
instance RSM is also component-based. Thus we get that Psingle ⊆ Pcomp ⊆
PLMS . These inclusions are indeed strict.

Let Lib be the library from Fig. 1(a). The RSM in Fig. 1(b) is not component-
based (and thus not single-instance): X1 and X2 are instances of C1 and use two
different local strategies. The RSM in Fig. 1(c) instead is component-based but
not single-instance since Y1 and Y2 are two instances of C1 (note that even if they
have the same local strategy, they differ on the reachable vertices because the
box is mapped differently). The RSM from Fig. 1(d) is clearly single-instance.

Let W1,W2 and W3 be the winning conditions given at the end of Sect. 2.
Observe that they are all expressible by safety automata. Moreover, there is no
component-based RSM from Lib that satisfies W1 and no single-instance RSM
from Lib that satisfies W2. Thus, we get the following lemma:

Lemma 2. Psingle ⊂ Pcomp ⊂ PLMS.

The single-instance LMS problems and the synthesis of modular strategies on
recursive game graphs are strictly related: a modular game is a single-instance
LMS game where the box-to-component map is total. Given an instance of single-
instance Lms game, we guess a total box-to-component map for the library and
then we can solve all the considered single-instance Lms problems applying the
algorithms proposed in [3,5,10]. We get:

Theorem 3. The safety and VPA single-instance Lms problems are EXPTIME-
complete. The reachability single-instance Lms problem is NP-complete.

The construction given in Sect. 3 is based on the notion of library tree that
essentially encodes the components and the box-to-instance map of an RSM.
The local strategies are guessed on-the-fly by the tree automaton. To constrain
the RSM to be component-based we should guess a strategy for each component
C and then use it while visiting each component tree of C in the input library
tree. This requires to prove first boundedness of the local strategies if there is a
component-based RSM that satisfies the winning condition.

A simpler solution can be obtained by adapting the solution given in [3]
for the synthesis of modular strategies. This problem is a particular case of the
single-instance Lms problem where the box-to-component map is total, i.e., each
box is pre-assigned. The solution given in [3] is based on the notion of strategy
tree that unrolls each component as a subtree of the root and encodes in the
labels of this encoding a local strategy. To adapt their automaton construction
for the component-based Lms we just need to guess the mapping for the boxes
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that are not mapped by the box-to-component map of the library, every time a
component subtree is visited.

To solve the reachability component-based Lms problem, we modify the algo-
rithm proposed in [9] (which solves a simplified version of the reachability Lms
problem), fixing the local strategy for each component.

For the VPA winning condition, the reduction proposed in Sect. 4 clearly
applies also to component-based and we get the same complexity. We get:

Theorem 4. The reachability, safety and VPA component-based Lms problems
are EXPTIME-complete.

6 Discussion and Conclusion

Synthesis is a central task in computer science that in general cannot be autom-
atized [24]. We have presented a decidable synthesis problem for an expressive
class of systems. Our decision algorithms for reachability specifications are fixed-
point labeling computations and can be easily turned into an automatic synthesis
of RSMs. All the other decision algorithms that we have presented are based on a
reduction to tree automata, and thus also can be turned into automatic synthesis
using standard results of this theory (see [22]).

Looking at the Lms as a game-graph problem the winning strategies we com-
pute are modular and thus the local strategy of an instance that is called several
times is oblivious of previous calls, i.e., it does not keep the memory of previous
invocations. It is known that non-oblivious modular games are undecidable [5].
If we extend the class of solutions in the LMS problems by allowing to resolve
the internal nondeterminism of pl0 by a global strategy, we can show that the
resulting problem is still decidable (this does not contradict the previous unde-
cidability result since each pl1 move is now observable by pl0 in all the instances).

Further, the global Lms problem can be reduced to a standard pushdown
game (PDG) with an exponential blow-up and vice-versa a PDG can be polyno-
mially translated to a global Lms with a total box-to-component map (see also
[1,5]). We can also show that there are Lms queries for which a global strategy
exists while a modular one does not.

Nondeterministic finite automata and nondeterministic VPA specifications
can be handled via determinization (since these classes are determinizable).
Other common classes of specifications such as deterministic/universal Büchi/co-
Büchi automata and temporal logic formulas can also be allowed in our settings
by retaining decidability.

Details on all the above will be given in the extended version of this paper.
Finally, we observe that the computational complexity of the Lms prob-

lem is unlikely to improve even with simple temporal logic specifications [10]
(differently from RSM model checking [16]). Also, investigating succinct repre-
sentations, such as in [15], could be meaningful in the Lms settings. Further, we
have given an example on how our formalism can be used to include in program
repair a notion of function call repair. We believe that this direction deserves
further investigation and leave it for future research.
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Abstract. Three variants of multi-threaded ic3 are presented. Each
variant has a fixed number of ic3s running in parallel, and communi-
cating by sharing lemmas. They differ in the degree of synchronization
between threads, and the aggressiveness with which proofs are checked.
The correctness of all three variants is shown. The variants have unpre-
dictable runtime. On the same input, the time to find the solution over
different runs varies randomly depending on the thread interleaving. The
use of a portfolio of solvers to maximize the likelihood of a quick solution
is investigated. Using the Extreme Value theorem, the runtime of each
variant, as well as their portfolios is analyzed statistically. A formula for
the portfolio size needed to achieve a verification time with high proba-
bility is derived, and validated empirically. Using a portfolio of 20 parallel
ic3s, speedups over 300 are observed compared to the sequential ic3 on
hardware model checking competition examples. The use of parameter
sweeping to implement a solver that performs well over a wide range of
problems with unknown “hardness” is investigated.

1 Introduction

In recent years, ic3 [6] has emerged as a leading algorithm for model checking
hardware. It has been refined [10] and incorporated into state-of-the-art tools,
and generalized to verify software [8,12]. Our interest is that ic3 is amenable
to parallelization [6], and promises new approaches to enhance the capability of
model checking by harnessing the abundant computing power available today.
Indeed, the original ic3 paper [6] described a parallel version of ic3 informally
and reported on its positive performance. In this paper, we build on that work
and make three contributions.

First, we formally present three variants – ic3sync, ic3async and ic3proof –
of parallel ic3, and prove their correctness. All the variants have some common
features: (i) they consist of a fixed number of threads that execute in parallel; (ii)
each thread learns new lemmas and looks for counterexamples (CEXes) or proofs
as in the original ic3; (iii) all lemmas learned by a thread are shared with the other
threads to limit duplicated effort; and (iv) if any thread finds a CEX, the overall
algorithm declares the problem unsafe and terminates.
c© Springer-Verlag Berlin Heidelberg 2016
B. Jobstmann and K.R.M. Leino (Eds.): VMCAI 2016, LNCS 9583, pp. 517–535, 2016.
DOI: 10.1007/978-3-662-49122-5 25
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However, the variants differ in the degree of inter-thread synchronization,
and the frequency and technique for detecting proofs, making different trade-
offs between the overhead and likelihood of proof-detection. Threads in ic3sync
(cf. Sect. 4.1) synchronize after each round of new lemma generation and prop-
agation, and check for proofs in a centralized manner. Threads in ic3async
(cf. Sect. 4.2) are completely asynchronous. Proof-detection is decentralized and
done by each thread periodically. Finally, threads in ic3proof are also asyn-
chronous and perform their own proof detection, but more aggressively than
ic3async. Specifically, each thread saves the most recent set of inductive lem-
mas constructed. When one of the threads finds a new set of inductive lem-
mas, it checks if the collection of inductive lemmas across all threads form an
inductive invariant. Thus, in terms of increasing overhead (and likelihood) of
proof-detection, the variants are ordered as follows: ic3sync, ic3async, and
ic3proof. Collectively, we refer to all three variants as ic3par.

The runtime of ic3par is unpredictable (this is a known phenomenon [6]).
In essence, the number of steps to arrive at a proof (or CEX) is sensitive to the
thread interleaving. We propose to counteract this variance using a portfolio –
run several ic3pars in parallel, and stop as soon as any one terminates with an
answer. But how large should such a portfolio be? Our second contribution is
a statistical analysis to answer this question. Our insight is that the runtime of
ic3par should follow the Weibull distribution [20] closely. This is because it can
be thought of as the minimum of the runtimes of the threads in ic3par, which
are themselves independent and identically distributed (i.i.d.) random variables.
According to the Extreme Value theorem [11], the minimum of i.i.d. variables
converges to a Weibull. We empirically demonstrate the validity of this claim.

Next, we hoist the same idea to a portfolio of ic3pars. Again, the runtime of
the portfolio should be approximated well by a Weibull, since it is the minimum
of the runtime of each ic3par in the portfolio. Under this assumption, we derive
a formula (cf. Theorem 5) to compute the portfolio size sufficient to solve any
problem with a specific probability and speedup compared to a single ic3par.
For example, this formula implies that a portfolio of 20 ic3pars has 0.99999
probability of solving a problem in time no more than the “expected time” for a
single ic3par to solve it. We empirically show (cf. Sect. 6.3) that the predictions
based on this formula have high accuracy. Note that each solver in the portfolio
potentially searches for a different proof/CEX. The first one to succeed provides
the solution. In this way, a portfolio utilizes the power of ic3par to search for a
wide range of proofs/CEXes without sacrificing performance.

Finally, we implement all three ic3par variants, and evaluate them on bench-
marks from the 2014 Hardware Model Checking Competition (HMCC14) and
the Tip Suite. Using each variant individually, and in portfolios of size 20, we
observe that ic3proof and ic3async outperform ic3sync. Moreover, compared
to a purely sequential ic3, the variants are faster, providing an average speedup
of over 6 and a maximum speedup of over 300. We also show that widening the
proof search of ic3 by randomizing its SAT solver is not as effective as paral-
lelization. In addition, we evaluate the performance of the parallel version of ic3
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reported earlier [6], which we refer to as ic3par2010. Experimental results indi-
cate that our parallelization approach is a good complement to ic3par2010, and
overall outperforms it. Complete details are presented in Sects. 6.1, 6.2 and 6.3.

Next, we note that ic3par is paramaterized by the number of threads and
SAT solvers. We empirically show that the parameter value affects performance
of ic3par significantly, and the best parameter choice is located unpredictably
in the input space. Thus, for any input problem, the best parameter choice is
difficult to compute. However, we show empirically that a “parameter sweep-
ing” [2] solver that executes a randomly selected ic3par variant with random
parameters is competitive with the best ic3par variant with fixed parameters
over a range of problems. Complete details are presented in Sect. 6.4.

For brevity, we defer proofs and other supporting material to an extended
version of the paper [7]. The rest of the paper is organized as follows. Sect. 2
surveys related work. Sect. 3 presents preliminary definitions. Sect. 4 presents
the three variants of parallel ic3. Sect. 5 presents the statistical analysis of the
runtime of an ic3par solver, as well as a portfolio of such solvers. Sect. 6 presents
our experimental results, and Sect. 7 concludes.

2 Related Work

The original ic3 paper [6] presents a parallel version informally, which we call
ic3par2010, and shows empirically that parallelism can improve verification
time. Our ic3par solvers were inspired by this work, but are different. For exam-
ple, the parallel ic3 in [6] implements clause propagation by first distributing
learned clauses over all solvers and then propagating them one frame at a time,
in lock step. It also introduces uncertainty in the proof search by randomizing
the backend SAT solver. Our ic3par solvers perform clause propagation asyn-
chronously, and use deterministic SAT solvers. We also present each ic3par
variant formally with pseudo-code and prove their correctness. In addition, we
evaluate the performance of ic3par2010 empirically, and show that our par-
allelization approach provides a good complement to (and overall outperforms)
it in terms of speedup. Finally, we go beyond the earlier work on parallelizing
ic3 [6] by performing a statistical analysis of the runtimes of both ic3par solvers
and their portfolios. Experimental results (cf. Sect. 6.1) indicate that a portfolio
of ic3par solvers is more efficient than a portfolio composed of ic3 solvers with
randomized SAT solvers.

A number of projects focus on parallelizing model checking [1,3–5,13,17].
Ditter et al. [9] have developed GPGPU algorithms for explicit-state model
checking. They do not report on variance in runtime, nor analyze it statistically
like us, or explore the use of portfolios. Lopes et al. [15] do address variance
in runtime of a parallel software model checker. However, their approach is to
make the model checker’s runtime more predictable by ensuring that the coun-
terexample generation procedure is deterministic. They also do not perform any
statistical analysis or explore portfolios.

Portfolios have been used successfully in SAT solving [14,16,19,22], SMT
solving [21] and symbolic execution [18]. However, these portfolios are composed
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of a heterogeneous set of solvers. Our focus is on homogeneous portfolios of
ic3par solvers and statistical analysis of their runtimes.

3 Preliminaries

Assume Boolean state variables V , and their primed versions V ′. A verification
problem is (I, T, S) where I(V ), T (V, V ′) and S(V ) denote initial states, transi-
tion relation and safe states, respectively. We omit V when it is clear from the
context, and write S′ to mean S(V ′). Let Post(X) denote the image of X(V )
under the transition relation T , i.e., Post(X) = (∃V � X ∧ T )[V ′ �→ V ]. Let
Postk(X) be the result of applying Post(·) k times on X with Post0(X) = X,
and Postk+(X) =

⋃
j≥k

Postj(X). The verification problem (I, T, S) is safe if

Post0+(I) ⊆ S, and unsafe (a.k.a. buggy) otherwise. A “lemma” is a clause (i.e.,
disjunction of minterms) over V , and a “frame” is a set of lemmas.

A random variable X has a Weibull distribution with shape k and scale
λ, denoted X ∼ wei(k, λ), iff its probability density function (pdf) pdf X and
cumulative distribution function (cdf) cdf X are defined as follows:

pdf X(x) =
{

k
λ (x

λ )k−1e−( x
λ )k

if x ≥ 0
0 if x < 0

cdf X(x) = 1 − e−( x
λ )k

Let X1, . . . , Xn be i.i.d. random variables (rvs) whose pdfs are lower bounded
at zero, i.e., ∀x < 0 � pdf Xi

(x) = 0. Then, by the Extreme Value theorem [11]
(EVT), the pdf of the rv X = min(X1, . . . , Xn) converges to a Weibull as n → ∞.
The “Gamma” function, Γ , is an extension of the factorial function to real and
complex numbers, with its argument decreased by 1, and is defined as follows:
Γ (t) =

∫ ∞
x=0

xt−1e−xdx.

4 Parallelizing IC3

We begin with a description of the sequential ic3 algorithm. Figure 1 shows its
pseudo-code. ic3 works as follows: (i) checks that no state in ¬S is reachable in 0
or 1 steps from some state in I (lines 16–17); (ii) iteratively construct an array of
frames, each consisting of a set of clauses, as follows: (a) initialize the frame array
and flags (lines 18–19); (b) strengthen() the frames by adding new clauses (line
22); if a counterexample is found in this step (indicated by bug being set), ic3
terminates (line 24); (c) otherwise, propagate() clauses that are inductive to
the next frame (line 26); if a proof of safety is found (indicated by an empty
frame), ic3 again terminates (lines 27–28); (d) add a new empty frame to the
end of the array (line 30) and repeat from step (b). In the rest of this paper we
use the term “function” to mean a “procedure”, as opposed to a mathematical
function. In particular, we use terms “pdf” and “cdf” to mean probability and
cumulative distribution functions of random variables, respectively.
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1 //-- global variables
2 var (I, T, S) : problem (P )
3 var F: frame [] (array of frames)
4 var K: int (size of F)
5 var bug: bool (CEX flag)
6
7 //-- invariants
8 ∀i ∈ [0,K − 1], let f(i) =

∧
j∈[i,K−1]

∧
α∈F[j]

α

9 A1 : ∀i ∈ [0,K − 1] � I =⇒ f(i)

10 A2 : ∀i ∈ [0,K − 2] � f(i) ∧ T =⇒ f ′(i + 1)

11 A3 : ∀i ∈ [0,K − 3] � f(i) ∧ T =⇒ S′

12 A4 : ∀i ∈ [0,K − 2] � f(i) ∧ T =⇒ S′

13
14 //-- main function.
15 bool IC3 ()

16 if (I ∧ ¬S 
= ⊥) ∨ (I ∧ T ∧ ¬S′ 
= ⊥)
17 return ⊥;
18 K := 3; F[0] := I; F[1] := ∅;
19 F[2] := ∅; bug := ⊥;
20 while (�)
21 @INV{I1 : A1 ∧ A2 ∧ A3}
22 strengthen(F,K);
23 @INV{I2 : bug ∨ (A1 ∧ A2 ∧ A4)}
24 if (bug) return ⊥;
25 @INV{I3 : A1 ∧ A2 ∧ A4}
26 propagate(F,K);
27 if (∃i ∈ [1,K − 2] � F[i] = ∅)
28 return �;
29 @INV{I3}
30 F[K] := ∅; K := K + 1;

31 //-- add new lemmas to frames. stop
32 //-- with a CEX or when A4 holds.
33 void strengthen (F, K)
34 var PQ : priority queue
35 while (�)

36 if (f(K − 2) ∧ T =⇒ S′) return;

37 let m |= f(K − 2) ∧ T ∧ ¬S′;
38 PQ.insert(m, K − 3);
39 while (¬PQ.empty())
40 (m, l) := PQ.top();

41 if (f(l) ∧ T ∧ m′ = ⊥)
42 F [l + 1] := F [l + 1] ∪ {¬m};
43 PQ.erase(m, l);
44 else if (l = 0)
45 bug := �; return;
46 else
47 let m0 |= f(l) ∧ T ∧ m;
48 PQ.insert(m0, l − 1);
49
50
51 //-- push inductive clauses forward.
52 void propagate(F, K)
53 for i : 1 . . . K − 2
54 for α ∈ F [i]

55 if (f(i) ∧ T =⇒ α′)
56 F [i + 1] := F [i + 1] ∪ {α};
57 F [i] := F [i] \ {α};

Fig. 1. Pseudo-Code for ic3. Variables are passed by reference, and arrays are indexed
from 0. This holds for all the pseudo-code in this article.

Definition 1 (Frame Monotonicity). A function is frame monotonic if at
each point during its execution, ∀i ∈ [0,K − 1] � f(i) =⇒ f̃(i) where f̃(i) is the
value of f(i) when the function was called.

Correctness. Figure 1 also shows the invariants (indicated by @INV) before and
after strengthen() and propagate(). Since strengthen() always adds new
lemmas to frames, it is frame monotonic, and hence it maintains A1 and A3. It
also maintains A2 since a new lemma ¬m is added to frame F [l + 1] (line 42)
only if f(l) ∧ T =⇒ ¬m′ (line 41). Finally, when strengthen() returns, then
either bug = 
 (line 45), or f(K − 2) ∧ T =⇒ S′ (line 36). Hence I2 is a valid
post-condition for strengthen(). Also, propagate() is frame monotonic since
it always pushes inductive lemmas forward (the order of the two statements at
lines 56–57 is crucial for this). Hence, propagate() maintains A1 and A4 at all
times. It also maintains A2 since a new lemma α is added to frame F [i+1] (line
56) only if f(i) ∧ T =⇒ α′ (line 55). Hence I3 is a valid post-condition for
propagate(). Finally, note that A4 ≡ A3 ∧ f [K − 2] =⇒ S. Hence, after K
is incremented, A4 becomes A3. Also, since the last frame is initialized to ∅, A1

and A2 are preserved. Hence: {I3}F[K] := ∅;K := K+ 1; {I1}. The correctness
of ic3 is summarized by Theorem 1. Its proof is in the appendix of [7].

Theorem 1. If IC3() returns 
, then the problem is safe. If IC3() returns ⊥,
then the problem is unsafe.
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58 //-- global variables
59 var (I, T, S) : problem (P )
60 var ∀i ∈ [1, n] � Fi: frame []
61 var K: int (size of each Fi)
62 var bug: bool (CEX flag)
63
64 //-- invariants
65 ∀j ∈ [0,K − 1], let
66 f(j) =

∧
i∈[1,n]

∧
k∈[j,K−1]

∧
α∈Fi[k]

α

67
68 B1 : ∀j ∈ [0,K − 1] � I =⇒ f(j)

69 B2 : ∀j ∈ [0,K − 2] � f(j) ∧ T =⇒ f ′(j + 1)

70 B3 : ∀j ∈ [0,K − 3] � f(j) ∧ T =⇒ S′

71 B4 : ∀j ∈ [0,K − 2] � f(j) ∧ T =⇒ S′

72 bool IC3Sync (n)

73 if (I ∧ ¬S 
= ⊥) ∨ (I ∧ T ∧ ¬S′ 
= ⊥)
74 return ⊥;
75 K := 3; bug := ⊥;
76 ∀i ∈ [1, n] � Fi[0] := I; Fi[1] := Fi[2] := ∅;
77 while (�)
78 @INV{I4 : B1 ∧ B2 ∧ B3}
79 {strengthen(F1,K); propagate(F1,K)}
80 ‖ · · · ‖
81 {strengthen(Fn,K); propagate(Fn,K)};
82 @INV{I5 : bug ∨ (B1 ∧ B2 ∧ B4)}
83 if (bug) return ⊥;
84 @INV{I6 : B1 ∧ B2 ∧ B4}
85 if (∃j ∈ [1,K − 2] � ∀i ∈ [1, n] � Fi[j] = ∅)
86 return �;
87 @INV{I6}
88 ∀i ∈ [1, n] � Fi[K] := ∅; K := K + 1;

Fig. 2. Pseudo-Code for ic3sync(n). Functions strengthen() and propagate() are
defined in Fig. 1.

We now present the three versions of parallel ic3 and their correctness (their
termination follows in the same way as ic3 [6] – see Theorem 5 in the appendix
of [7]).

4.1 Synchronous Parallel IC3

The first parallelized version of ic3, denoted ic3sync, runs a number of copies of
the sequential ic3 “synchronously” in parallel. Let ic3sync(n) be the instance
of ic3sync consisting of n copies of ic3 executing concurrently. The copies
maintain separate frames. However, for any copy, the frames of other copies
act as “background lemmas”. Specifically, the copies interact by: (i) using the
frames of all other copies when computing f(i); (ii) declaring the problem unsafe
if any copy finds a counterexample; (iii) declaring the problem safe if some frame
becomes empty across all the copies; and (iv) “synchronizing” after each call to
strengthen() and propagate().

The pseudo-code for ic3sync(n) is shown in Fig. 2. The main function is
IC3Sync(). After checking the base cases (lines 73–74), it initializes flags and
frames (lines 75–76), and then iteratively performs the following steps: (i) run
n copies ic3 where each copy does a single step of strengthen() followed by
propagate() (lines 79–81); (ii) check if any copy of ic3 found a counterexample,
and if so, terminate (line 83); (iii) check if a proof of safety has been found, and if
so, terminate (lines 85–86); and (iv) add a frame and repeat from step (i) above
(line 88). Functions strengthen() and propagate() are syntactically identical
to ic3 (cf. Fig. 1). However, the key semantic difference is that lemmas from all
copies are used to define f(j) (lines 65–66). Global variables are shared, and
accessed atomically. Note that even though all ic3 copies write to variable bug ,
there is no race condition since they always write the same value (
).

Correctness. The correctness of ic3sync follows from the invariants specified in
Fig. 2. To show these invariants are valid, the main challenge is to show that
if I4 holds at line 78, then I5 holds at line 82. Note that since strengthen()
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and propagate() are frame monotonic, they preserve B1 and B3. This means
that B1 ∧ B3 holds at line 82. Now suppose that at line 82, we have ¬bug . This
means that each strengthen() called at lines 79–81 returned from line 36. Thus,
the condition f(K − 2) ∧ T =⇒ S′ was established at some point, and once
established, it continues to hold due to the frame monotonicity of strengthen()
and propagate(). Since B4 ≡ B3 ∧ (f(K − 2) ∧ T =⇒ S′), we therefore know
that B1 ∧ B4 holds at line 82. Also, B2 holds at line 82 since a new lemma α is
only added to frame Fi[j +1] by strengthen() (line 42) and propagate() (line
56) under the condition f(j)∧T =⇒ α′. Note that once f(j)∧T =⇒ α′ is true,
it continues to hold even in the concurrent setting due to frame monotonicity.
Finally, the statement at line 88 transforms I6 to I4. The correctness of ic3sync
is summarized by Theorem 2. Its proof is in the appendix of [7].

Theorem 2. If IC3Sync() returns 
, then the problem is safe. If IC3Sync()
returns ⊥, then the problem is unsafe.

89 //-- invariants
90 ∀j ∈ [0,max(K1, . . . ,Kn) − 1], let
91 f(j) =

∧
i∈[1,n]

∧
k∈[j,Ki−1]

∧
α∈Fi[k]

α

92
93 C1 : ∀j ∈ [0,Ki − 1] � I =⇒ f(j)

94 C2 : ∀j ∈ [0,Ki − 2] � f(j) ∧ T =⇒ f ′(j + 1)

95 C3 : ∀j ∈ [0,Ki − 3] � f(j) ∧ T =⇒ S′

96 C4 : ∀j ∈ [0,Ki − 2] � f(j) ∧ T =⇒ S′

97
98
99

100 //-- top -level function
101 bool IC3Async (n)

102 if (I ∧ ¬S 
= ⊥) ∨ (I ∧ T ∧ ¬S′ 
= ⊥)
103 return ⊥;
104 bug := ⊥;
105 IC3Copy(1) � · · · � IC3Copy(n);
106 return bug ? ⊥ : �;

107 //-- global variables
108 var (I, T, S) : problem (P )
109 var ∀i ∈ [1, n] � Fi: frame []
110 var ∀i ∈ [1, n] � Ki: int (size of Fi)
111 var bug: bool (CEX flag)
112
113 void IC3Copy (i)
114 Ki := 3; Fi[0] := I;
115 Fi[1] := ∅; Fi[2] := ∅;
116 while (�)
117 @INV{I7 : C1 ∧ C2 ∧ C3}
118 strengthen(Fi,Ki);
119 @INV{I8 : bug ∨ (C1 ∧ C2 ∧ C4)}
120 if (bug) return;
121 @INV{I9 : C1 ∧ C2 ∧ C4}
122 propagate(Fi,Ki);
123 if (∃j ∈ [1,Ki − 2] � ∀l ∈ [1, n] � Fl[j] = ∅)
124 return;
125 @INV{I9}
126 Fi[Ki] := ∅; Ki := Ki + 1;

Fig. 3. Pseudo-Code for ic3async(n). Functions strengthen() and propagate() are
defined in Fig. 1.

4.2 Asynchronous Parallel IC3

The next parallelized version of ic3, denoted ic3async, runs a number of copies
of the sequential ic3 “asynchronously” in parallel. Let ic3async(n) be the
instance of ic3async consisting of n copies of ic3 executing concurrently. Sim-
ilar to ic3sync, the copies maintain separate frames, interact by sharing lem-
mas when computing f(i), and declare the problem unsafe if any copy finds a
counterexample. However, due to the lack of synchronization, proof detection is
distributed over all the copies instead of being centralized in the main thread.

Figure 3 shows the pseudo-code for ic3async(n). The main function is
IC3Async(). After checking the base cases (lines 102–103), it initializes flags
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(line 104), launches n copies of ic3 in parallel (line 105) and waits for some copy
to terminate (the � operator), and checks the flag and returns with an appropri-
ate result (line 106). Function IC3Copy() is similar to IC3() in Fig. 1. The key
difference is that lemmas from all copies are used to compute f(j) (lines 90–91).

Correctness. The correctness of ic3async follows from the invariants specified
in Fig. 3. To see why these invariants are valid, note that C1 and C3 are always
preserved due to frame monotonicity. If strengthen() returns with bug = ⊥,
then it returned from line 36, and hence f(Ki −2)∧T =⇒ S′ was true at some
point in the past and continues to hold due to frame monotonicity. Together
with C3, this implies that C4 holds at line 119. Also, C2 holds at line 119 since
a new lemma α is only added to frame Fi[j + 1] by strengthen() (line 42) and
propagate() (line 56) under the condition f(j) ∧ T =⇒ α′. Note that once
f(j) ∧ T =⇒ α′ is true, it continues to hold even under concurrency due to
frame monotonicity. Hence, I8 holds at line 119. Since bug is never set to ⊥ after
line 104, this means that I9 holds at line 121 even under concurrency. Finally,
the statement at line 126 transforms I9 to I7. The correctness of ic3async is
summarized by Theorem 3. Its proof is in the appendix of [7].

Theorem 3. If IC3Async() returns 
, then the problem is safe. If IC3Async()
returns ⊥, then the problem is unsafe.

127 //-- global variables
128 var (I, T, S) : problem (P )
129 var ∀i ∈ [1, n] � Fi,Pi: frame []
130 var ∀i ∈ [1, n] � Ki: int (size of Fi and Pi)
131 var bug, safe: bool (CEX and proof flags)
132
133
134 void IC3PrCopy (i)
135 Ki := 3; Fi[0] := I;
136 Fi[1] := ∅; Fi[2] := ∅;
137 while (�)
138 @INV{I7 : C1 ∧ C2 ∧ C3}
139 strengthen(Fi,Ki);
140 @INV{I8 : bug ∨ (C1 ∧ C2 ∧ C4)}
141 if (bug) return;
142 @INV{I9 : C1 ∧ C2 ∧ C4}
143 propProof(Fi,Ki);
144 if (safe) return;
145 @INV{I9}
146 Fi[Ki] := ∅; Ki := Ki + 1;

147 bool IC3Proof (n)

148 if (I ∧ ¬S 
= ⊥) ∨ (I ∧ T ∧ ¬S′ 
= ⊥)
149 return ⊥;
150 bug := ⊥; safe := ⊥;
151 IC3PrCopy(1) � · · · � IC3PrCopy(n);
152 return bug ? ⊥ : �;
153
154 void propProof(F, K)
155 for j : 1 . . . K − 2
156 for α ∈ F [j]

157 if (f(j) ∧ T =⇒ α′)
158 F [j + 1] := F [j + 1] ∪ {α};
159 F [j] := F [j] \ {α};
160 if (F [j] = ∅)
161 Pj :=

⋃
j<k≤K−1

F [k];

162 Π :=
⋃

{i|1≤i≤n∧j<Ki}
Pi;

163 if (Π ∧ T =⇒ Π′)
164 safe := �; return;

Fig. 4. Pseudo-Code for ic3proof(n). Function strengthen() is defined in Fig. 1.
Formulas f(j), I7, I8, and I9 are defined in Fig. 3.

4.3 Asynchronous Parallel IC3 with Proof-Checking

The final parallelized version of ic3, denoted ic3proof, is similar to ic3async,
but performs more aggressive checking for proofs. Let ic3proof(n) be the
instance of ic3proof consisting of n copies of ic3 executing concurrently. Simi-
lar to ic3async, the copies maintain separate frames, interact by sharing lemmas
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when computing f(i), and declare the problem unsafe if any copy finds a coun-
terexample. However, whenever a copy finds an empty frame, it checks whether
the set of lemmas over all the copies for that frame forms an inductive invariant.

The pseudo-code for ic3proof(n) is shown in Fig. 4. The main function is
IC3Proof(). After checking the base cases (lines 148–149), it initializes flags
(line 150), launches n copies of ic3 in parallel (line 151) and waits for at least
one copy to terminate, and checks the flag and returns with an appropriate result
(line 152). Function IC3PrCopy is similar to IC3 in Fig. 1, but calls propProof()
instead of propagate() where, once an empty frame is detected (line 160), we
check whether a proof has been found by collecting the lemmas for that frame
(lines 161–162), and checking if these lemmas are inductive (line 163).

Correctness. The correctness of ic3proof follows from the invariants (whose
validity is similar to those for ic3async) specified in Fig. 4. It is summarized by
Theorem 4. The proof of the theorem is in the appendix of [7].

Theorem 4. If IC3Proof() returns 
, then the problem is safe. If IC3Proof()
returns ⊥, then the problem is unsafe.

5 Parallel ic3 Portfolios

In this section, we investigate the question of how a good portfolio size can
be selected if we want to implement a portfolio of ic3pars. We begin with an
argument about the pdf of the runtime of ic3async(n).

Conjecture 1. The runtime of ic3async(n) converges to a Weibull rv as n → ∞.

Argument: Recall that each execution of ic3async(n) consists of n copies of
ic3 running in parallel, and that ic3async(n) stops as soon as one copy finds a
solution. We can consider the runtime of each copy of ic3 to be a rv. Specifically,
let rv Xi be the runtime of the i-th copy of ic3 under the environment provided
by the other n − 1 copies. Recall that the pdf of Xi has a lower bound of 0,
since no run of ic3 can take negative time. Also, for the sake of argument,
assume that (X1, . . . , Xn) are i.i.d. since the interaction between the copies of
ic3 is logical and symmetric. Finally, let X be the random variable denoting the
runtime of ic3async(n). Note that X = min(X1, . . . , Xn). Hence, by the EVT,
X ∼ wei(k, λ) for large n. ��

A similar argument holds for ic3sync and ic3proof, and therefore their run-
time should follow Weibull as well. Indeed, despite the assumption of (X1, . . . , Xn)
being i.i.d., we empirically find that the runtime of ic3par(n) follows a Weibull
distribution closely for even modest values of n. Specifically, we selected 10
examples (5 safe and 5 buggy) from HWMCC14, and for each example we:

1. Executed ic3async(4) “around” 3000 times (we actually ran each example
3000 times but some timed out – the exact number of timeouts varied across
examples);

2. Measured the runtimes;



526 S. Chaki and D. Karimi

ic3sync (4) ic3async (4) ic3proof (4)
Example k λ μ, μ∗ σ, σ∗ k λ μ, μ∗ σ, σ∗ k λ μ, μ∗ σ, σ∗

6s286 4.07 1119 1015,1015 280,274 4.44 990 902,903 230,220 4.35 980 892,892 232,228
intel026 2.71 49.0 43.6,44.2 17.3,14.6 3.70 50.2 45.3,46.2 13.6,10.1 3.70 50.1 45.2,46.1 13.6,10.3
6s273 3.80 26.1 23.6,23.6 6.93,6.57 4.11 23.5 21.3,21.4 5.85,5.36 4.17 23.3 21.2,21.3 5.73,5.29

intel057 6.58 16.0 14.9,15.1 2.66,2.11 7.31 17.2 16.1,16.1 2.60,2.46 7.52 17.8 16.7,16.9 2.63,2.07
intel054 7.82 24.3 22.8,23.0 3.46,2.94 8.69 26.1 24.6,24.8 3.38,2.84 9.26 26.1 24.7,24.8 3.20,2.92

6s215 2.38 7.69 6.82,7.03 3.05,2.34 4.71 6.75 6.17,6.21 1.49,1.34 4.72 6.38 5.84,5.90 1.41,1.21
6s216 1.95 35.1 31.1,31.0 16.6,16.9 3.56 27.5 24.8,24.9 7.74,6.97 2.78 28.1 25.0,25.1 9.74,9.05

oski3ub1i 5.98 54.9 50.9,51.4 9.90,7.90 7.02 52.3 48.9,49.2 8.20,6.71 4.78 54.8 50.2,50.8 11.9,9.53
oski3ub3i 5.71 52.4 48.5,48.9 9.84,8.00 5.51 52.2 48.2,48.6 10.1,8.51 5.66 52.2 48.2,48.5 9.87,8.39
oski3ub5i 5.08 66.8 61.4,61.9 13.8,11.6 4.94 67.2 61.6,62.0 14.2,12.4 4.93 66.2 60.7,61.1 14.0,12.1

SAFE 5.00 246 224,224 62.1,60.2 5.65 221 202,202 51.1,48.3 5.80 219 200,200 51.4,49.7
BUG 4.22 43.4 39.7,40.0 10.6,9.37 5.15 41.2 37.9,38.2 8.36,7.20 4.58 41.5 38.0,38.3 9.42,8.07
ALL 4.61 145 131,132 36.4,34.7 5.40 131 120,120 29.7,27.7 5.19 130 119,119 30.4,28.9

Fig. 5. Fitting ic3par(4) runtime to Weibull. First 5 examples are safe, next 5 are
buggy; SAFE, BUG, ALL = average over safe, buggy, and all examples; μ, μ∗ = pre-
dicted, observed mean; σ, σ∗ = predicted, observed standard deviation.

3. Estimated the k and λ values for the Weibull distribution that best fits these
values (using maximum likelihood estimation and the R statistical tool); and

4. Computed the observed mean and standard deviation from the data, and the
predicted mean and standard deviation from the k and λ estimates.

We repeated these experiments with ic3sync and ic3proof. The results
are shown in Fig. 5. We see that in all cases, the observed mean and standard
deviation is quite close to the predicted ones, indicating that the estimated
Weibull distribution is a good fit for the measured runtimes. ic3async and
ic3proof have similar performance, are and slightly faster overall than ic3sync,
indicating that additional synchronization is counter-productive. The estimated
k and λ values vary widely over the examples, indicating their diversity. Note
that smaller values of λ mean a smaller expected runtime.

Determining Portfolio Size. Consider a portfolio of ic3pars. In general, increas-
ing the size of the portfolio reduces the expected time to solve a problem. How-
ever, there is diminishing returns to adding more solvers to a portfolio in terms
of expected runtime. We now express this mathematically, and derive a formula
for computing a portfolio size to achieve an runtime with a target probabil-
ity. Consider a portfolio of m ic3par solvers run on a specific problem. Let Yi

denote the runtime of the i-th ic3par. From previous discussion we know that
Yi ∼ wei(k, λ) for some k and λ. Therefore, the cdf of Yi is: cdf Yi

(x) = 1−e−( x
λ )k

.
Note that Yi refers to an instance of ic3par, whereas Xi, used before, referred
to a single thread (executing a copy of ic3) within an instance of ic3par.

Let Y be the rv denoting the runtime of the portfolio. Thus, we have Y =
min(Y1, . . . , Ym). More importantly, the cdf of Y is:

cdf Y (x) = 1 − (1 − cdfY1(x)) × · · · × (1 − cdf Ym
(x))

= 1 − (e−( x
λ )k

)m = 1 − e−m( x
λ )k

= 1 − e−( xm
1
k

λ )k
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Note that this means Y is also a Weibull rv, not just when m → ∞ (as
per the EVT) but for all m. More specifically, Y ∼ wei(k, λ

m
1
k

). Recall that if
m = 1, then the expected time to solve the problem by the portfolio is E[Y1].
We refer to this time as t∗, the expected solving time for a single ic3par. Recall
the Gamma function Γ . Since Y1 ∼ wei(k, λ), it is known that t∗ = λΓ (1 + 1

k ).
Now, we come to our result, which expresses the probability that a portfolio of
m ic3pars will require no more than t∗ to solve the problem.

Theorem 5. Let p(m) be the probability that Y ≤ t∗. Then p(m) > 1 − e− m
eγ

where γ ≈ 0.57721 is the Euler-Mascheroni constant.

Proof. We know that:

p(m) = cdf Y (t∗) = 1 − e−m(Γ (1+ 1
k ))k

= 1 − (α(k))m, where α(k) = e−(Γ (1+ 1
k ))k

Next, observe that α(k) increases monotonically with k but does not diverge as
k → ∞. For example, Fig. 11 in the appendix of [7] shows a plot of α(k). Since we
want to prove an lower bound on p(m), let us consider the limiting case k → ∞.
It can be shown that (see Lemma 2 in the appendix of [7]): limk→∞ α(k) = e− 1

eγ .
In practice, as seen in Fig. 11 in the appendix of [7], the value of α(k) converges
quite rapidly to this limit as k increases. For example, α(5) > 0.91 · e− 1

eγ , and
α(10) > 0.95 · e− 1

eγ . Since ∀k � α(k) < e− 1
eγ , we have our result:

p(m) > 1−(e− 1
eγ )m = 1−e− m

eγ ��

Achieving a Target Probability. Now suppose we want p(m) to be greater than
some target probability p. Then, from Theorem 5, we have:

p = 1 − (e− 1
eγ )m ⇐⇒ 1 − p = e− m

eγ ⇐⇒ ln(1 − p) = − m
eγ

⇐⇒ ln( 1
1−p ) = m

eγ ⇐⇒ m = eγ ln( 1
1−p )

For example, if we want p = 0.99999, then m ≈ 20. Thus, a portfolio of 20
ic3pars has about 0.99999 probability of solving a problem at least as quickly as
the expected time in which a single ic3par will solve it. We validated the efficacy
of Theorem 5 by comparing its predictions with empirically observed results
on the HWMCC14 benchmarks. Overall, we find the observed and predicted
probabilities to agree significantly. Further details are presented in Sect. 6.3.

Speeding Up the Portfolio. To reduce the portfolio’s runtime below t∗, we must
increase m appropriately. In general, for any constant c ∈ [0, 1], the probability
that a portfolio of m ic3par solvers will have a runtime ≤ c · t∗ is given by:

p(m, c, k) = 1 − e−m(c·Γ (1+ 1
k ))k

For c < 1 we do not have a closed form for lim
k→∞

p(m, c, k), unlike when c = 1.

However, the value of p(m, c, k) is computable for fixed m, c and k. Figure 6(a)
plots p(m, c, 4) for m = {1, . . . , 100} and c = {0.4, 0.5, 0.6}. Figure 6(b) plots
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Fig. 6. (a) p(m, c, 4) for different values of c; (b) p(m, .5, k) for different values of k.

p(m, .5, k) for m = {1, . . . , 100} and k = {3, 4, 5}. As expected, p(m, c, k) increases
with: (i) increasing m; (ii) increasing c; and (iii) decreasing k. One challenge here
is that we do not know how to estimate k for a problem without actually solving
it. In general, a smaller value of k means that a smaller portfolio will reach the
target probability. In our experiments – recall Fig. 5 – we observed k-values in a
tight range (1–10) for problems from HWMCC14. These numbers can serve as
guidelines, and be refined based on additional experimentation.

6 Experimental Results

We implemented ic3sync, ic3async and ic3proof by modifying a publicly
available reference implementation of ic3 (https://github.com/arbrad/IC3ref),
which we call ic3ref. All propositional queries in ic3 are implemented by calls
to minisat. We refer to the variant of ic3ref that uses a randomized minisat
as ic3rnd. We use ic3rnd to introduce uncertainty in ic3 purely by random-
izing the backend SAT solver. We performed two experiments – one to evaluate
the effectiveness of the ic3par variants, and another to validate our statistical
analysis of their portfolios. All our tools and results are available at http://www.
andrew.cmu.edu/∼schaki/misc/paric3.tgz.

Benchmarks. We constructed four benchmarks. The first was constructed by pre-
processing the safe examples from HWMCC14 (http://fmv.jku.at/hwmcc14cav)
with iimc (http://ecee.colorado.edu/wpmu/iimc), and selecting the ones solved
by ic3ref within 900 s on a 8 core 3.4 GHz machine with 8GB of RAM. The
remaining three benchmarks were constructed similarly from the buggy examples
from HWMCC14, and the safe and buggy examples (without pre-processing)
from the TIP benchmark suite (http://fmv.jku.at/aiger/tip-aig-20061215.zip).
We refer to the four benchmarks as hwcsafe, hwcbug, tipsafe and tipbug,
respectively.

https://github.com/arbrad/IC3ref
http://www.andrew.cmu.edu/~schaki/misc/paric3.tgz
http://www.andrew.cmu.edu/~schaki/misc/paric3.tgz
http://fmv.jku.at/hwmcc14cav
http://ecee.colorado.edu/wpmu/iimc
http://fmv.jku.at/aiger/tip-aig-20061215.zip
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SAT Solver Pool. The function f (cf. Fig. 1–4) is implemented in ic3ref by a
SAT solver (minisat). A separate SAT solver Si is used for each f(i). Whenever
f(i) changes due to the addition of a new lemma to a frame, the corresponding
solver Si is also updated by asserting the lemma. To avoid a single SAT solver
from becoming the bottleneck between competing threads in ic3par, we use a
“pool” of minisat solvers to implement each Si. The solvers are maintained in a
FIFO queue. When a thread requests a solver, the first available solver is given
to it. When a lemma is added to the pool, it is added to all available solvers,
and recorded as “pending” for the busy ones. When a busy solver is released by
a thread, all pending lemmas are first asserted to it, and then it is inserted at
the back of the queue. We refer to the number of solvers in each pool as SPSz.

6.1 Comparing Parallel ic3 Variants

These experiments were carried on a Intel Xeon machine with 128 cores, each
running at 2.67 GHz, and 1TB of RAM. For each solver selected from
{ic3async(4), ic3sync(4), ic3proof(4), ic3rnd} and each benchmark B, and
with SPSz = 3, we performed the following steps:

1. extract all problems from B that are solved by ic3ref in at least 10 s; call
this set B∗; the cutoff of 10 s was a tradeoff between problem complexity and
benchmark size; our goal was to avoid evaluating our approach on very simple
examples to limit measurement errors, and also to have enough examples for
statistically meaningful results;

2. solve each problem in B∗ with ic3ref and also with a portfolio of 20 solvers,
compute the ratio of the two runtimes; this is the speedup for the specific
problem;

3. compute the mean and max of the speedups over all problems in B∗.

Figure 7(a) shows the results obtained. In all cases, we see speedup. On
this particular run, ic3proof performs best overall, with an average speedup
of over 6 and a maximum speedup of over 300. As in the non-portfolio case

ic3sync ic3async ic3proof ic3rnd
B |B∗| Mean Max Mean Max Mean Max Mean Max

hwcsafe 31 1.30 5.61 1.58 5.47 1.60 4.08 1.17 4.64
hwcbug 14 2.49 18.7 14.3 151 25.1 309 1.07 1.49
tipsafe 14 1.28 4.50 2.61 11.1 2.29 12.8 1.37 3.80
tipbug 9 2.23 5.35 2.82 7.32 3.50 12.1 1.16 2.17

safe 44 1.30 5.61 1.93 11.1 1.83 12.8 1.24 4.64
bug 23 2.38 18.7 9.58 151 16.3 309 1.11 2.17

all 67 1.67 18.7 4.74 151 6.79 309 1.19 4.64

ic3par2010

B |B+| Mean Max
hwcsafe 20 2.67 14.40
hwcbug 15 1.62 3.91
tipsafe 14 .89 1.82
tipbug 7 1.32 1.67

safe 34 1.94 14.40
bug 22 1.52 3.91

all 56 1.77 14.40

)b()a(

Fig. 7. (a) Speedup of ic3sync, ic3async, ic3proof and ic3rnd compared to ic3ref;
(b) Speedup of ic3par2010 compared to ic3ref2010.



530 S. Chaki and D. Karimi

(cf. Fig. 5) ic3proof and ic3async have similar performance, and are bet-
ter than ic3sync. The pattern is followed for both safe and buggy examples.
Finally, ic3rnd provides mediocre speedup (not just on the whole, but across
all examples) indicating that parallelization enables better search for shorter
proofs/CEXes compared to randomizing the SAT solver.

ρ - ic3async ρ - ic3sync ρ - ic3proof
Example Mean StDev Mean StDev Mean StDev
6s286 1.0000 0.0016 1.0010 0.0046 0.9996 0.0032

intel026 1.0042 0.0233 1.0028 0.0163 1.0027 0.0163
6s273 1.0025 0.0122 1.0031 0.0149 1.0030 0.0154

intel057 0.9968 0.0214 0.9855 0.0381 1.0002 0.0136
intel054 1.0029 0.0162 0.9998 0.0076 0.9994 0.0080

6s215 1.0001 0.0057 0.9988 0.0099 0.9991 0.0058
6s216 1.0038 0.0204 1.0025 0.0163 1.0034 0.0182

oski3ub1i 1.0063 0.0321 1.0055 0.0293 1.0049 0.0274
oski3ub3i 1.0042 0.0230 1.0049 0.0259 1.0053 0.0272
oski3ub5i 1.0061 0.0312 1.0070 0.0358 1.0069 0.0357
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Fig. 8. Validating Theorem 5; (a) mean and standard deviation of ratios of predicted
and observed probabilities; (b) scatter plot of predicted and observed probabilities.

6.2 Comparing ic3par2010

We compared the parallel version of ic3 reported in the original paper [6], which
we refer to as ic3par2010, with our ic3par variants. We first downloaded the
source code1 of ic3par2010. It comes with its own version of ic3 implemented
in Ocaml, which we refer to as ic3ref2010. The parallelization in ic3par2010
is implemented via three Python scripts that invoke the ic3 binary. We modified
these scripts to implement a solver with four copies of ic3 running in parallel.
This was done for a fairer comparison with our ic3par results presented earlier
which also used four copies of ic3 per solver. In addition, we made other changes
to the scripts to make the solver more robust (e.g., replacing hard coded TCP/IP
port numbers with dynamically selected ones). All experiments were done on the
same machine as in Sect. 6.1.

While ic3ref was quite deterministic in its runtime, ic3ref2010 demon-
strated random behavior in this respect. One source of this randomness is that
ic3ref2010 randomizes the backend SAT solver. However, there could be other
sources of randomness due to the management of the priority queue during
strengthen(). We were unable to eliminate the randomness satisfactorily via
command line options. Instead, we accounted for it by running experiments mul-
tiple times and computing the average. We computed the speedup of ic3par2010
using a similar process as for the ic3par variants. Specifically, we performed the
following steps:
1 http://ecee.colorado.edu/∼bradleya/ic3/ic3.tar.gz.

http://ecee.colorado.edu/~bradleya/ic3/ic3.tar.gz
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1. extract all problems from B that are solved by ic3ref2010 in at least 10s;
call this set B+; note that B+ differs from B∗ since the underlying solvers –
ic3ref2010 and ic3ref – have different solving capability.

2. solve each problem in B+ with ic3ref2010 twenty times and compute the
average runtime (call this ts) and also with ic3par2010 twenty times and
compute the average runtime (call this tp); compute the ratio ts

tp
; this is the

speedup with ic3par2010 for that specific problem;
3. compute the mean and max of the speedups over all problems in B+.

Figure 7(b) shows the results obtained. Comparing with Fig. 7(a), we see
that all three of our ic3par invariants provided considerably better speedups
compared to ic3par2010 on the three benchmark groups hwcbug, tipsafe
and tipbug. Indeed, for the tipsafe group as a whole, ic3par2010 does not
provide a speedup. However, for the hwcsafe group, ic3par2010 provided bet-
ter speedups. If we look at all the safe examples, then ic3par2010 edges out
ic3par marginally. In contrast, for unsafe examples ic3par provides much better
speedups. Overall, ic3proof performs best. In summary, portfolios of ic3par
variants appear to be a good complement to ic3par2010, and a better option
for unsafe examples.

6.3 Portfolio Size

These experiments were done on a cluster of 11 machines, each with 16 cores at
2.4 GHz, and between 48 GB and 190 GB of RAM. To validate Theorem 5, we
compared its predictions to empirically observed results as follows (again using
SPSz = 3):

1. Process each problem from Fig. 5 as follows.
2. Solve the problem b (≈ 3000) times using ic3par(4). This gives a set of

runtimes t1, . . . , tb. Fit these runtimes to a Weibull distribution to obtain the
estimated value of k (the same as the second column of Fig. 5).

3. Compute t̃ = mean(t1, . . . , tb). This is the estimated average time for ic3par(4)
to solve the problem.

4. Pick a portfolio size m. Start with m = 1.
5. Divide t1, . . . , tb into blocks of size m. Let B = � b

m�. We now have B blocks of
runtime T1, . . . , TB , each consisting of m elements. Thus, T1 = {t1, . . . , tm},
T2 = {tm+1, . . . , t2m}, and so on. For i = 1, . . . , B, compute μi = min(Ti).
Note that each μi is the runtime of a portfolio of m ic3par(4) solvers.

6. Let n(m) be the number of blocks for which μi ≤ t̃, i.e., n(m) = |
{i ∈ [1, B] | μi ≤ t̃}|. Compute p∗(m) = n(m)

B . Note that p∗(m) is the esti-
mate of p(m) based on our experiments. Compute p(m) = 1 − (α(k))m (use
k from Step 2). Compute ρ(m) = p∗(m)

p(m) . We expect ρ(m) ≈ 1.
7. Repeat steps 5 and 6 with m = 2, . . . , 100 to obtain the sequence ρ =

〈ρ(1), . . . , ρ(100)〉. Compute the mean and standard deviation of ρ.

Figure 8(a) shows the results of the above steps for each ic3par variant.
We see that for each example, the mean of ρ is very close to 1 and its standard
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deviation is very close to 0, indicating that p(m) and p∗(m) agree considerably.
Figure 8(b) shows a scatter plot of all p∗(m) values computed against their cor-
responding p(m). Note that most values are very close to the (red) x = y line,
as expected.

Fig. 9. Heatmap of ic3proof runtimes for three examples. Deeper color of cell (i, s)
indicates that ic3proof(i, s) solves the benchmark faster; n = total number of runs of
ic3proof over all 64 values of (i, s).

6.4 Parameter Sweeping

ic3par has two parameters: number of ic3 threads and SPSz. We write ic3par
(i, s) to mean an instance of ic3par with i ic3 threads and SPSz = s. Thus,
ic3par(4, 3) was used is all previous experiments. We observed in Sect. 6.1 that
different ic3par variants perform the best for different benchmarks. We now
evaluate the performance of ic3proof by varying i and s. These experiments
were also done on our cluster (cf. Sect. 6.3). We begin with a conjecture about
the relationship of runtime and parameter values.

Conjecture 2. The parameter value affects performance of ic3par significantly,
and the best parameter choice is located unpredictably in the input space.

To investigate Conjecture 2, we measured the runtime of ic3proof(i, s) for
each (i, s) ∈ I × S where I = S = {1, . . . , 8}. We selected 16 examples from
B. For each example η, and each (i, s) ∈ I × S, we executed ic3proof(i, s) on
η “around” 3000 times (again, the exact number varied across examples due to
timeouts) and computed the average runtime. This gives us the entry at (i, s) for
the “heatmap” for η. The heatmaps in Fig. 9 summarize our results for three of
the benchmarks that we found to be representative. They support Conjecture 2,
as average runtimes (indicated by the color depth of cells in the heatmaps) across
the parameter space are varied. The depth of cells show no discernable pattern
(e.g., do not increase with i or s), and the deepest cells are significantly more
so than the lightest ones. This implies that: (i) selecting the best parameters for
ic3proof would be quite beneficial; but (ii) this is a non-trivial problem.

As a preliminary step to address this challenge, we ran portfolios of a solver
that uses parameter sweeping [2]. Specifically, the solver (denoted ic3sweep)
executes a randomly selected ic3par variant with a random (i, s) selected from
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Time Speedup
Example ic3ref Sync Async Proof Sweep
6s286 947.6 1.54 1.57 1.66 1.77

intel026 78.33 2.61 2.77 2.85 2.58
6s273 31.06 1.84 1.88 1.90 1.65

intel057 31.33 2.45 2.49 2.49 2.66
intel054 55.89 3.52 3.51 3.52 3.92
Mean 2.39 2.44 2.48 2.52

Time Speedup
Example ic3ref Sync Async Proof Sweep
6s215 12.20 2.47 2.57 2.61 2.36
6s216 67.24 4.33 4.35 4.30 4.29

oski3ub1i 83.64 1.90 1.97 1.94 1.96
oski3ub3i 79.41 1.90 1.94 1.99 1.94
oski3ub5i 127.3 2.66 2.65 2.67 2.76
Mean 2.65 2.70 2.70 2.66

Fig. 10. Parameter sweeping; Sync, Async, Proof, Sweep = average speedups over
ic3ref for portfolios of 20 ic3sync (4,3), ic3async (4,3), ic3proof (4,3), and
ic3sweep, respectively.

I × S. We compared the average speedup (over 50 runs) of a portfolio of 20
ic3sweeps with the average speedup (over 50 runs) of portfolios of 20 of each
of the three ic3par variants with fixed (i, s) = (4, 3). Figure 10 summarizes our
results. We observe that in general ic3sweep is competitive with each of the
ic3par variants (indeed, it performs best for the hardest examples from the safe
and buggy categories). We believe that parameter sweeping shows promise as a
strategy for real-life problems where good parameters would be difficult (if not
impossible) to compute.

7 Conclusion

We present three ways to parallelize ic3. Each variant uses a number of threads
to speed up the computation of an inductive invariant or a CEX, sharing lemmas
to minimize duplicated effort. They differ in the degree of synchronization and
technique to detect if an inductive invariant has been found. The runtime of
these solvers is unpredictable, and varies with thread-interleaving. We explore
the use of portfolios to counteract the runtime variance. Each solver in the
portfolio potentially searches for a different proof/CEX. The first one to succeed
provides the solution. Using the Extreme Value theorem and statistical analysis,
we construct a formula that gives us a portfolio size to solving a problem within
a target time bound with a certain probability. Experiments on HWMCC14
benchmarks show that the combination of parallelization and portfolios yields
an average speedups of 6x over ic3, and in some cases speedups of over 300. We
show that parameter sweeping is a promising approach to implement a solver
that performs well over a wide range of problems of unknown difficulty. An
important area of future work is the effectiveness of parallelization and portfolios
in the context of software verification via a generalization of ic3 [12].
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9. Ditter, A., Ceska, M., Lüttgen, G.: On parallel software verification using boolean
equation systems. In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol.
7385, pp. 80–97. Springer, Heidelberg (2012)

10. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: Proceedings of the 11th International Conference on For-
mal Methods in Computer-Aided Design (FMCAD 2011), pp. 125–134. IEEE Com-
puter Society, Austin, TX, October-November 2011

11. de Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Springer,
New York (2006)

12. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012)

13. Holzmann, G.J.: Parallelizing the spin model checker. In: Donaldson, A., Parker,
D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 155–171. Springer, Heidelberg (2012)

14. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-
rithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp.
454–469. Springer, Heidelberg (2011)

http://www.contrib.andrew.cmu.edu/~schaki/publications/VMCAI-2016-Extended.pdf
http://www.contrib.andrew.cmu.edu/~schaki/publications/VMCAI-2016-Extended.pdf


Model Checking with Multi-threaded IC3 Portfolios 535

15. Lopes, N.P., Rybalchenko, A.: Distributed and predictable software model check-
ing. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 340–355.
Springer, Heidelberg (2011)

16. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Boosting sequen-
tial solver portfolios: knowledge sharing and accuracy prediction. In: Nicosia, G.,
Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 153–167. Springer, Heidelberg
(2013)

17. Melatti, I., Palmer, R., Sawaya, G., Yang, Y., Kirby, R.M., Gopalakrishnan, G.C.:
Parallel and distributed model checking in eddy. In: Valmari, A. (ed.) SPIN 2006.
LNCS, vol. 3925, pp. 108–125. Springer, Heidelberg (2006)

18. Palikareva, H., Cadar, C.: Multi-solver support in symbolic execution. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 53–68. Springer,
Heidelberg (2013)

19. Ppfolio website. http://www.cril.univ-artois.fr/∼roussel/ppfolio
20. Weibull, W.: A statistical distribution function of wide applicability. ASME J.

Appl. Mech. 18(3), 293–297 (1951)
21. Wintersteiger, C.M., Hamadi, Y., de Moura, L.: A concurrent portfolio approach

to SMT solving. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 715–720. Springer, Heidelberg (2009)

22. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. (JAIR) 32, 565–606 (2008)

http://www.cril.univ-artois.fr/~roussel/ppfolio


Automatic Generation of Propagation
Complete SAT Encodings

Martin Brain1, Liana Hadarean1, Daniel Kroening1, and Ruben Martins2(B)

1 Department of Computer Science, University of Oxford, Oxford, UK
{Martin.Brain,Liana.Hadarean,Daniel.Kroening}@cs.ox.ac.uk

2 University of Texas at Austin, Austin, USA
rmartins@cs.utexas.edu

Abstract. Almost all applications of SAT solvers generate Boolean for-
mulae from higher level expression graphs by encoding the semantics of
each operation or relation into propositional logic. All non-trivial rela-
tions have many different possible encodings and the encoding used can
have a major effect on the performance of the system. This paper gives
an abstract satisfaction based formalisation of one aspect of encoding
quality, the propagation strength, and shows that propagation complete
SAT encodings can be modelled by our formalism and automatically
computed for key operations. This allows a more rigorous approach to
designing encodings as well as improved performance.

1 Introduction

Almost all industrial applications of SAT solvers translate from a higher level
language into propositional logic. Many of these translations are modular in the
sense that each sub-expression is encoded into a set of clauses whose structure
is independent of how the expression is used. For example, an SMT solver can
use the same template to generate clauses for every occurrence of a 64-bit mul-
tiplication operation.

For most non-trivial expressions, there are many different encodings available.
For example, there are several ways to encode cardinality constraints [1,4,37].
These may use different clauses and possibly introduce auxiliary variables to sim-
plify and compact the encodings. The choice of encoding can have a significant
impact on the performance of the solver [35]. This difference can be large enough
that identifying a bad encoding from the CNF it generates and then replacing
it with a better one within the SAT solver can give a net improvement in solver
performance [34]. Despite the importance of choosing a good encoding there
remain open questions about why some encodings perform better than others.
A common rule of thumb is that smaller encodings (primarily in terms of number
clauses but also in the number of variables) are preferable. For some kinds of
encoding, for example cardinality constraints, arc consistency [24] is regarded to
be a desirable property. Another desirable property is being propagation com-
plete [11]. Encodings with this property are considered extremely important since
constraint solvers can benefit from the increase in inference power. However, its
use is not yet wide spread in encoding design within the SMT community.
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These issues are particularly relevant in encodings of bit-vector and floating-
point operations. Often the only way to tell if an encoding might be better
than another is to implement it and then compare system level performance
on a ‘representative’ set of benchmarks. Furthermore, the encodings commonly
used are frequently literal translations of circuits designs used to implement
these operations in hardware. These designs were created to minimise signal
propagation delay, to reduce area or for power and layout concerns. It is not
clear why a multiplier hardware design with low cycle count should give a good
encoding from bit-vector logic to CNF.

This paper advances both the theory and practice of the creation of encodings
through the following contributions:

– Section 3 uses and extends the framework of abstract satisfiability [19] to for-
malise one aspect of encoding quality: propagating strength. We show that
propagation complete encodings [11] are modelled by our framework and can
serve as a basis for comparing encodings.

– An algorithm is given in Sect. 4 which can be used to determine if an encoding
is propagation complete, strengthen it if it is not or generate a propagation
complete encoding from scratch with and without auxiliary variables.

– In Sect. 5 we show that using our propagation complete encodings improves
the performance of the CVC4 SMT solver on a wide range of bit-vector bench-
marks.

2 Abstract Satisfaction

The abstract satisfaction framework [19] uses the language of abstract interpre-
tation to characterise and understand the key components in a SAT solver [17].
One advantage of this viewpoint is that it is largely independent of the concrete
domain that is being searched (sets of assignments) or the abstract domain used
to represent information about the search (partial assignments). This allows
the CDCL algorithm to be generalised [18] and applied to a range of other
domains [12,20,27]. Another important feature of the abstract satisfaction frame-
work is that it allows the representation of a problem and the effects of reasoning
to be cleanly formalised. As we show later, this allows us to characterise prop-
agation algorithms, such as unit propagation, as a map from representation to
effect. In this section we recall some background results required to formalise
this idea.

The foundation of abstract interpretation is using an abstract domain to
perform approximate reasoning about a concrete domain. This requires a relation
between the two domains; with Galois connections being one of the simplest and
most popular choices.

Definition 1. Let (C,⊆) and (A,�) be sets with partial orders. The pair (α :
C → A, γ : A → C) form a Galois connection if:

∀c ∈ C, a ∈ A � α(c) � a ⇔ c ⊆ γ(a)
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C is referred to as the concrete domain and A is the abstract domain. It is
sometimes useful to use an equivalent definition of Galois connection: α and γ
are monotone and

∀c ∈ C � c ⊆ γ(α(c)) ∀a ∈ A � α(γ(a)) � a

If, additionally, γ ◦ α = id, then the pair is referred to as a Galois insertion
and each element of the concrete domain has one or more representations in the
abstract domain.

Given the domain that we want to reason about and the abstraction that will
be used to perform the reasoning, the next step is to characterise the reasoning
as transformers.

Definition 2. A concrete transformer is a monotonic function f : C → C.
Many of the transformers of interest are extensive, reductive or idempotent,
respectively defined as:

∀c ∈ C � c ⊆ f(c) ∀c ∈ C � f(c) ⊆ c f ◦ f = f

A function that is extensive, monotonic and idempotent is referred to as an
upper closure while a reductive, monotonic, idempotent function is referred to
as a lower closure.

Finally, we will need a means of approximating the transformer on the
abstract domain using an abstract transformer. This gives a key result: the space
of abstract transformers (for a given concrete transformer) forms a lattice with
a unique best abstract transformer.

Definition 3. Given a transformer f on C, fo : A → A is an (over-
approximate) abstract transformer if:

∀a ∈ A � α(f(γ(a))) ⊆ fo(a)

Proposition 1. Given a reductive transformer f on a lattice (C,⊆), the set of
abstract transformers on lattice (A,�) form a lattice with the bottom element,
referred to as the best abstract transformer, is equal to:

α ◦ f ◦ γ

3 Characterising Propagating Strength

While the framework we introduce in this section generalizes to other domains,
we will focus on CNF encodings targeting CDCL-style SAT solvers [9]. We only
consider unit propagation, but other propagation algorithms, such as generalised
unit propagation [33], can be treated in the same way.

A number of attributes can be used for evaluating encodings. Some of these
are algorithmic such as how much information it can propagate, how it affects



Automatic Generation of Propagation Complete SAT Encodings 539

the quality of learnt clauses, how it interacts with the branching heuristic or
what effect it has on preprocessing. Others are more implementation-oriented:
how many variables it uses, how many clauses it contains and how many are
binary, ternary, how quickly it propagates, etc. In this work we will be charac-
terising one of the major algorithmic properties: the amount of information that
can be propagated.

Informally, this can be thought of as the proportion of facts that are true
(with respect to the current partial assignment and encoding) that can be proven
with unit propagation. If E is an encoding, l is a literal and p is a partial assign-
ment expressed as a conjunct of all of the assigned literals, then it is the degree
to which:

p ∧ E |= l implies p ∧ E 
up l,

where |= represents logical entailment and 
up stands for unit propagation.
We formalise this intuition using the viewpoint of abstract satisfaction.

Figure 1 gives a visual summary of the formalisation; the key steps are:

Σ

∅

∅

Σ+

λv.?

⊥

λp.λv.?

α ◦ modM ◦ γ

AofC

CofA

γ

α

sets of assignments

sets of clauses

partial assignments

abstract transformers

M

M

UP

Fig. 1. A graphical presentation of the results in Sect. 3

a b cin cout s

1 1 1 1 1
1 1 0 1 0
1 0 1 1 0
1 0 0 0 1
0 1 1 1 0
0 1 0 0 1
0 0 1 0 1
0 0 0 0 0

(a) Truth table

a b cin

cout s

(b) A basic adder circuit

Fig. 2. A nest of adders
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1. Present syntax as an abstraction of semantics and define the space of
encodings of a set of assignments as a substructure of the syntax lattice
(Subsect. 3.1).

2. Show that partial assignments, the information about possible models that
is manipulated during the search, is also an abstraction of the semantics
(Subsect. 3.2).

3. Express the effects of reasoning as abstract transformers and characterise
propagation algorithms such as unit propagation as maps from representa-
tions of a problem to the effects of reasoning (Subsect. 3.3).

3.1 Syntax and Semantics

We first fix a set of variable names Σ. This will include the ‘input’ and ‘output’
bits of the encoding, plus any auxiliaries. Let Σ+ be the set of literals constructed
from these variables (i.e. Σ+ = {v|v ∈ Σ} ∪ {¬v|v ∈ Σ}). For simplicity we will
assume double negation is always simplified ¬¬v = v.

A clause is a disjunction of one or more literals. For convenience we will
identify clauses with the set of literals they contain. A clause is a tautology if
it contains a literal and its negation. Let CΣ+ be the set of non-tautological
clauses which can be constructed from Σ+. We identify sets of clauses with their
conjunction. Let 2CΣ+ denote the powerset of CΣ+ and note that it forms a
complete lattice ordered by ⊇. For convenience we will pick ∅ to be the top
element and CΣ+ to be the bottom.

Example 1. We will use a full adder as a running example. Figure 2 shows
one possible circuit that can be used to implement a full adder as well
as the truth table for the input which gives the 8 possible satisfying
assignments of the formula. In this case Σ = {a, b, cin, s, cout} so Σ+ =
{a, b, cin, s, cout,¬a,¬b,¬cin,¬s,¬cout}. Thus {a}, {b,¬a}, {s,¬s} are clauses
and only the last is a tautology. Also CΣ+ = {∅, {a}, {b}, {¬a}, {a, b},
{a,¬b}, . . . }.

An assignment is a map from Σ to {�,⊥} and the set of all assignments is
denoted by AΣ . Similarly 2AΣ forms a powerset lattice. Following usual conven-
tion (and the opposite of the syntax lattice), the top element will be AΣ and ∅
the bottom. With a slight abuse of notation, we use assignments to give literals
values: x(¬a) = ¬x(a).

The models relation, denoted using an infix |=, is a relationship between AΣ

and CΣ+ , defined as follows:

x |= c ⇔ ∃l ∈ c � x(l) = �
An assignment is a model of a set of clauses if the models relation holds for all
of the clauses in the set.

Example 2. An assignment for the full adder example would be:
x = {(a,�), (b,�), (cin,⊥), (cout,�), (s,⊥)}.
From this we can see that x |= {a} and x |= {a,¬cin, cout} but x �|= {¬b,¬a}. So
x is a model of {{a}, {a,¬cin, cout}}.
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This relation gives maps AofC : 2CΣ+ → 2AΣ and CofA : 2AΣ → 2CΣ+ :

AofC(C) = {x ∈ AΣ |∀c ∈ C � x |= c}
CofA(A) = {c ∈ CΣ+ |∀x ∈ A � x |= c}

AofC(C) is the set of assignments which are models of C, while CofA(A) is all
of the clauses that are consistent with all of the assignments in A. Both maps
are monotonic, AofC(CofA(A)) = A and CofA(AofC(C)) ⊇ C so they form a
Galois insertion between 2AΣ and 2CΣ+ . A set of clauses is a representation, or
abstraction, of its set of models.

Example 3. Given C = {{a,¬b}, {¬a}}, the set of all models of C is AofC(C) =
{y : Σ → {�,⊥}|y(a) = ⊥ ∧ y(b) = ⊥}. Conversely, CofA({x}) =
{{a}, {a, b}, {a,¬b}, . . . } is the set containing all of the clauses consistent with
the assignment x from Example 2. When multiple assignments are given this is
all of the clauses that are consistent with all of the assignments.

In the SAT field, similar Galois connections to the one presented in this
section have been studied in [32]. Although we have presented this result with
Boolean valuations (the “concrete” domain) and CNF (the “abstract” domain),
the construction is much more general and can be applied to SMT, CSP, ASP,

{¬a, ¬b, ¬cin, ¬cout, s} {¬a, ¬b, ¬cin, cout, ¬s} {¬a, ¬b, ¬cin, cout, s}
{¬a, ¬b, cin, ¬cout, ¬s} {¬a, ¬b, cin, cout, ¬s} {¬a, ¬b, cin, cout, s}
{¬a, b, ¬cin, ¬cout, ¬s} {¬a, b, ¬cin, cout, ¬s} {¬a, b, ¬cin, cout, s}
{¬a, b, cin, ¬cout, ¬s} {¬a, b, cin, ¬cout, s} {¬a, b, cin, cout, s}
{a, ¬b, ¬cin, ¬cout, ¬s} {a, ¬b, ¬cin, cout, ¬s} {a, ¬b, ¬cin, cout, s}
{a, ¬b, cin, ¬cout, ¬s} {a, ¬b, cin, ¬cout, s} {a, ¬b, cin, cout, s}
{a, b, ¬cin, ¬cout, ¬s} {a, b, ¬cin, ¬cout, s} {a, b, ¬cin, cout, s}
{a, b, cin, ¬cout, ¬s} {a, b, cin, ¬cout, s} {a, b, cin, cout, ¬s}

(a) Naı̈ve truth table encoding

{¬a, ¬b, cin, ¬s} {¬a, b, ¬cin, ¬s} {a, ¬b, ¬cin, ¬s} {a, b, cin, ¬s}
{¬a, ¬b, ¬cin, s} {¬a, b, cin, s} {a, b, ¬cin, s} {a, ¬b, cin, s}
{¬a, ¬b, cout} {¬a, ¬cin, cout} {¬b, ¬cin, cout}
{a, b, ¬cout} {a, cin, ¬cout} {b, cin, ¬cout}

(b) Eén and Sörensson’s basic encoding

{cin, ¬s, ¬cout} {a, ¬s, ¬cout} {b, ¬s, ¬cout} {a, b, cin, ¬s}
{¬a, ¬b, ¬cin, s} {¬cin, s, cout} {¬a, s, cout} {¬b, s, cout}
{¬a, ¬b, cout} {¬a, ¬cin, cout} {¬b, ¬cin, cout}
{a, b, ¬cout} {a, cin, ¬cout} {b, cin, ¬cout}

(c) A propagation complete encoding

Fig. 3. A nest of adder encodings
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etc. For more discussion of the Galois connection between syntax and semantics,
see [21].

Given a set of assignments M ⊂ AΣ , an encoding (of M) is any set of clauses
C ⊂ CΣ+ such that AofC(C) = M . We shall denote the set of encodings of M as
EM = {C ⊂ CΣ+ |AofC(C) = M}. If C and D are both encodings (of the same
set of models), then so is C∪D; this is the basis for redundant encodings in CSP.
It also implies that the encodings of a set of models form a meet semi-lattice
with a minimum element, CofA(M), the most verbose encoding. There can be
multiple, incomparable, least verbose encodings. For example if M = ∅, then
{a,¬a} is a least verbose encoding (as there are no proper subsets which are
encodings), but so is {b,¬b}. This notion of encoding has been studied is the
SAT field (e.g. [23]) and has recently been formalised as a formula that has the
same satisfying assignments as the set of assignments of a given specification [26].

Example 4. Continuing our example of a full adder, let M be the set of eight
models described by the truth table in Fig. 2a. There are many possible encod-
ings, some of which are given in Fig. 3. All of these are subsets of CofA(M), all
the clauses consistent with M , in effect, the ‘theory’ of the full adder. However,
not every subset of CofA(M) is an encoding, as they are required to have the
same models as M . Possible encodings include the naive encoding (Fig. 3a) in
which all full assignments that are not models are removed, the basic encoding
given by [23] (Fig. 3b) and a propagation complete encoding (Fig. 3c). Notice
that the first two encodings are not propagation complete.

To formally define propagation strength, we will need a notion of what kind
of information we are propagating and to relate the encoding to the action of
propagation.

3.2 Representing Information During Search

Some propositional logic tools, such as BDDs, represent sets of models directly.
For solving SAT problems this is not really viable — as soon as you have a model
that you could represent, you have solved the problem. Thus SAT algorithms
need a way of representing partial information about models. For example if an
encoding contains the clause {¬a} then the SAT solver needs a way of recording
“there are no models that assign a to �”. The most common approach is to use
partial assignments.

Following [17] we characterise a partial assignment over Σ (PΣ denotes the
set of all of them) as an abstraction of 2AΣ . Partial assignments are maps from
Σ to {�, ?,⊥}, where ? denotes an unknown or unassigned variable. They can
be ordered by:

p � q ⇔ ∀v ∈ Σ.q(v) �=? ⇒ p(v) = q(v)

Allowing an additional ‘contradiction’ partial assignment, ⊥P , ordered below
all other partial assignments, makes PΣ a complete lattice, where �P = λv.?
is the partial assignment that does not assign any variables. The discussion
below generalises to other abstractions; we use partial assignments as they are
a popular and simple choice.
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Example 5. In our running example, p and q are partial assignments:

p = {(a, ?), (b,⊥), (cin,⊥), (s,�), (cout,�)}
q = {(a, ?), (b, ?), (cin, ?), (s,�), (cout,�)}

with p � q because where q assigns a variable to � or ⊥, p agrees.

To use PΣ as an abstraction of 2AΣ , we need to define a Galois connection
between them. Let α : 2AΣ → PΣ denote the map from models to the most
complete partial assignment that is consistent with all of them and γ : PΣ →
2AΣ denote the map from a partial assignment to the set of models that is
consistent with it:

α(A) =
⊔

x∈A

x γ(p) = {x ∈ AΣ |∀v ∈ Σ � p(v) �=? ⇒ x(v) = p(v)}

Example 6. Let x1, x2, x3 and x4 be (full) assignments:

x1 = {(a,�), (b,�), (cin,⊥), (s,⊥), (cout,�)}
x2 = {(a,�), (b,⊥), (cin,�), (s,⊥), (cout,�)}
x3 = {(a,�), (b,�), (cin,�), (s,⊥), (cout,�)}
x4 = {(a,�), (b,⊥), (cin,⊥), (s,⊥), (cout,�)}

then:

α({x1, x2}) = {(a,�), (b, ?), (cin, ?), (s,⊥), (cout,�)}
γ(α({x1, x2})) = {x1, x2, x3, x4}

3.3 Effects of Reasoning

Having defined partial assignments as the ‘units’ of information that propagation
uses, the next step is to formalize what kind of reasoning we are performing. In a
SAT solver the role of reasoning is to add to a partial assignment p (i.e., reduce
the set of assignments that is being considered) that is consistent with all of the
models in γ(p). Formally, this is expressed in two steps: a models transformer
on the concrete domain, 2AΣ , which captures the kind of reasoning that we
are approximating and abstract transformers on PΣ , which express the actual
changes to the partial assignments.

In slight variation from [18] we define the models transformer, modM : 2AΣ →
2AΣ , as parameterised by a set of assignments rather than a formula:

modM (A) = M ∩ A

This is a downward closure function on 2AΣ and expresses the ideal reasoning,
or, conversely, the limit of what is sound.

Example 7. In the full adder example, let M be the set of assignments described
in the truth table in Fig. 2a. If A = {x1, x2, x3, x4}, then modM (A) = {x1, x2} as
these are the only two assignments in A that are also models of the full adder.
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As 2AΣ is not directly representable for problems of significant size, we
use PΣ . Likewise, we cannot directly implement modM so instead we must use
over-approximate transformers on PΣ . Let TmodM

denote the set of abstract
transformers that over-approximate modM and recall from Proposition 1 that
they can be ordered point-wise to form a lattice with id as the top element and
α ◦ modM ◦ γ as the bottom. The effect of a sound propagator or other form
of reasoning should be an abstract transformer, as they soundly add to partial
assignment.

The final link is to connect the encoding used to the effect of reasoning.
To do this we consider the unit propagation algorithm as a map from UP :
EM → (PΣ → PΣ) that uses a set of clauses to add assignments to a partial
assignment.

Definition 4. Let up : CΣ+ → (PΣ → PΣ) map clauses to functions on partial
assignments.

assign(l) = λk.

⎧
⎪⎨

⎪⎩

� k = l

⊥ k = ¬l

? otherwise

up(c) = λp.

{
p � assign(l) ∃l ∈ c � p(l) =? ∧ ∀k ∈ c � k �= l ⇒ p(k) = ⊥
p otherwise

Define UP as the (greatest) fix-point of applying up(c) for each clause in the
encoding:

UP(C)(p) = GFP

(
λq.p � (

�

c∈C

up(c)(q))

)

Example 8. Given the set C clauses in Fig. 3b we have:

UP(C)({(a,�), (b,�), (cin,�), (s, ?), (cout, ?)}) =
{(a,�), (b,�), (cin,�), (s,�), (cout,�)})

as the clause {¬a,¬b, cout} assigns cout to � and {¬a,¬b,¬cin, s} assigns s to
�.

Formalised in this manner, UP has a number of useful order-theoretic prop-
erties:

Proposition 2. Given C,D ⊂ CΣ+ , UP(Ci) is a closure function as:

UP(C) � id C � D =⇒ UP(C) � UP(D) UP(C) ◦ UP(C) = UP(C)

Note that UP is neither injective (up({{a}, {b}}) = up({{a}, {b}, {¬a, b}})) nor
surjective. Furthermore, UP does not preserve meets (well defined on encodings)
or joins (partially defined on encodings, fully defined on supersets of a given
encoding). A propagation algorithm that preserves joins would give a Galois
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connection between supersets of an encoding and abstract transformers, thus
giving a unique, minimal encoding required to give a certain amount of inference.

The final step is to show that the closure functions given by UP(C) are
abstract transformers and that they include the best abstract transformer.

Theorem 1. Let M ∈ 2AΣ be a set of assignments then:

{UP(C)|C ∈ EM} ⊆ TmodM
UP(CofA(M)) = α ◦ modM ◦ γ

Thus an encoding C ∈ EM is a propagation complete encoding (PCE) [11] when:

UP(C) = α ◦ modM ◦ γ

Propagation complete encodings (PCEs) are not unique and there may be
many, incomparable PCEs. One goal of encoding design can be the creation of
PCEs with other desirable properties, such as using a minimal number of clauses
or auxiliary variables. As with clauses, assignments and partial assignments, the
discussion above is more general than unit propagation alone. Using our abstract
satisfaction framework we can model PCEs. In the next section we present an
algorithm for automatically generating PCEs.

4 Generating Propagation Complete Encodings

The previous section defined the notion of propagation complete encodings
(PCEs) within our framework. Next, we present an algorithm (Algorithm 1) that
can be used to determine if an encoding is propagation complete, strengthen
it if not, and generate a PCE that is equisatisfiable to a reference encoding.
Algorithm 1 takes as input a set of variables Σ that will serve as the encoding
vocabulary, an initial encoding E0 and a reference encoding ERef (over a vocab-
ulary including Σ), such that AofC(ERef) = M . Note that, if E0 = ∅, then the
algorithm will build a PCE over Σ from scratch that is equisatisfiable to ERef .
In practice E0 = ∅, and ERef can be any encoding of the circuit.

The algorithm traverses the fix-points of the best abstract transformer α ◦
modM ◦γ, i.e. partial assignments where no new facts can be deduced. To achieve
this, the algorithm uses a priority queue (PQ) of partial assignments sorted by
partial assignment size. For each element of PQ, we examine the variables v
that unit propagation cannot infer from E and pa (line 5). We then check if the
reference encoding ERef , along with the current partial assignment pa logically
entail either v or ¬v. This check is done via a call to a SAT oracle at line 8 (in our
implementation this is a call to a CDCL SAT solver). If the query returns sat ,
the variable is not entailed and the extended partial assignment is added to the
queue. Otherwise, l was a missed propagation and the encoding is strengthened
by adding a clause that blocks the partial assignment pa.1

1 As an optimization we add the negation of the minimal unsatisfiable core of ¬pa′:
MUS(pa′).
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Algorithm 1. Generating a propagation complete encoding of a CNF for-
mula
Input: 〈Σ,E0,ERef〉

1 E ← E0

2 PQ.push(λv.?)
3 while not PQ.empty() do

// ∀q1, q2 ∈ PQ � UP(E)(q1) 
= UP(E)(q2) and ⊥P 
∈ PQ
4 pa ← PQ.pop()
5 foreach v ∈ {x|x ∈ Σ and UP(E )(pa)(v) =?} do
6 foreach l ∈ {v, ¬v} do
7 pa′ ← pa � assign(l)
8 if SATSolver(ERef , pa

′) = sat then
9 PQ.push(pa′)

10 else
11 E ← E ∪{¬MUS(pa′ )}
12 PQ.compact()

// UP(E)(pa) = (α ◦ modM ◦ γ)(pa)

13 return E

If two partial assignments q1 and q2 unit propagate the same literals
(UP(E)(q1) = UP(E)(q2)) we only need to explore extensions of one of them.
Therefore, the push operation on line 9 only adds pa′ to PQ if ∀q ∈ PQ �
UP(E)(q) �= UP(E)(pa). In other words we cache assignments that become equal
when extended by unit propagation. Because we are potentially strengthening
the encoding E with each iteration of the for-loop the amount of information unit
propagation can infer from E increases. The PQ.compact call on line 12 iterates
over the queue elements and removes queue elements that UP-extend to the same
partial assignment. This ensures the invariant at the beginning of the while-loop.
Furthermore, at the end of the while loop the current encoding E is strong enough
to unit propagate all literals entailed from pa. The continuous strengthening of
E also reduces the number of unassigned variables explored at line 5.

The algorithm is not always guaranteed to generate subset-minimal encod-
ings. The order in which the partial assignments is considered may lead to the
learning of redundant clauses. A clause c is redundant w.r.t. a PCE EPC if for
all literals l ∈ c unit propagation can infer l from EPC \ c assuming the nega-
tion of the other literals ¬(c \ {l}). For example, in the presence of a chain
of implications, v1 ⇒ v2 ⇒ . . . ⇒ vk, the algorithm may learn the redundant
clause c = {¬v1, vk}. Note that c is redundant since v1 ∧ (EPC \ c) 
up vk and
¬vk ∧ (EPC \ c) 
up ¬v1. For this reason, after running Algorithm 1 we use
the minimisation procedure described in [11] to remove redundant clauses while
maintaining propagation completeness.

Auxiliary Variables. The algorithm we described so far only works on a fixed
vocabulary Σ consisting of the input and output variables of the encoding.
For certain operators, there no polynomially-sized CNF encodings if we restrict
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Algorithm 2. Greedy algorithm for introducing auxiliary variables
1 E ← genPCE(E0, Eref , Σ)

2 while Aux 
= ∅ do
3 best ← undef
4 foreach aux ∈ Aux do
5 E′ ← genPCE(E0, Eref ∧ Def(aux ), Σ ∪ {aux})
6 if |E′| < |E| then
7 E ← E′

8 best ← aux

9 if best = undef then return E
10 Σ ← Σ ∪ {best}
11 Eref ← Eref ∧Def(best )
12 Aux ← Aux \{best}
13 return E

ourselves to the input/output variables only. For this reason, we extended our
algorithm to further reduce the size of the encoding while maintaining propa-
gation completeness by heuristically adding auxiliary variables. Given a set of
auxiliary variables Aux, we extend the reference encoding ERef by adding the def-
initional clauses Def(aux) for each auxiliary variable aux ∈ Aux: Def(aux) ∧ ERef .
For example, to introduce an auxiliary variable a ≡ x∧ y for inputs x, y, we add
the clauses corresponding to the formula a ⇔ (x∧y) to ERef and run Algorithm 1
on Σ ∪ {a}.

We implemented a greedy algorithm that iteratively repeats this process as
shown in Algorithm 2. We denote by genPCE the procedure of generating a prop-
agation complete encoding from a reference encoding given in Algorithm 1. We
denote by |E| the size of an encoding as the number of clauses. The algorithm
takes as input a reference encoding ERef , a fixed alphabet Σ as well as a set
of auxiliary variables Aux. It initially computes the PCE over the input/output
variables Σ. For each auxiliary variable aux in the current set of auxiliary vari-
ables, it computes the PCE over the alphabet Σ ∪{aux} from reference encoding
ERef ∧Def(aux), where Def(aux) is the set of definitional clauses for aux. It then
chooses the auxiliary variable best that minimises the encoding the most, and
adds it to the reference encoding. The process is repeated on the remaining aux-
iliary variables Aux \ {aux} until no minimisation is achieved. Note that this is a
greedy algorithm, and does not guarantee finding a minimal size encoding w.r.t.
the given auxiliary variables. For the set of potential auxiliary variables Aux, we
generate Boolean combinations over the input/output variables up to a limited
depth. As a heuristic, we also add to the set Aux the auxiliary variables used by
the reference encoding.

Generating Propagation Complete Encodings. Algorithm 1 solves an inherently
hard problem and may call a SAT solver an exponential number of times. It is
intended to be used as a tool to support encoding design rather than generating
complete encodings.
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Fig. 4. Composition of encoding primitives to build a n-bit less than comparator.

To explore the feasibility of generating PCEs, we analysed the propagation
completeness of encodings used in the CVC4 SMT solver [5]. CVC4 uses small
circuit primitives to build more complex encodings of word-level bit-vector oper-
ators. Figure 4 shows an example of how small circuits for unsigned less than
(a < b) primitives can be composed to build a more complex encoding to com-
pare n-bit bit-vectors. Each unsigned less than comparator (ULT) has three
input bits (a, b, r) and one output bit (o). There are different ways that this
primitive can be encoded into CNF. A possible PCE is: {{o,¬b, a}, {o,¬b,¬r},
{a,¬r, o}, {¬o, b,¬a}, {¬o, r,¬a}, {¬o, r, b}}. If r has value ⊥, then o will be �
iff a < b. Otherwise, if r has value �, then o will be � iff a ≤ b. This structure
allows the ULTs to be chained together to form an n-bit PCE for the ULT com-
parator. A similar construction can be done for other encoding primitives and
is common in circuit design. For example, full-adders can be chained to form a
ripple-carry adder. Note that, if the encoding primitives are not PC, then their
composition will not be PC. However, the converse does not necessarily hold.

Table 1 shows the size of the encodings generated by Algorithm 1 and by
introducing auxiliary variables compared to the size of the reference encoding
ERef , starting with an empty initial encoding E0. As encoding primitives (prim),
we have considered the if-then-else operator (ite-gadget), an unsigned less than
comparator (ult-gadget), a signed less than comparator (slt-gadget), the full-
adder (full-add), adder with base 4 (full-add-base4), bit-count circuits (bc3to2,
bc7to3), 2 x 2 multiplication circuit (mult2), and multiplication by a constant
(mult-const3, mult-const5, mult-const7). These encoding primitives are then com-
posed (comp) to build n-bit bit-vector operators.

These experiments were run on Intel Xeon X5667 processors (3.00 GHz) run-
ning Fedora 20 with a timeout of 3 h and a memory limit of 32 GB. In case of
timeout of the greedy algorithm, we present the smallest encoding found until
the timeout. The reference encodings used were the default implementations in
CVC4. From the encoding primitives presented in Table 1, ite is the only encoding
primitive that is propagation complete in CVC4. This scenario is not restricted
to CVC4, and most state-of-the-art SMT solvers do not build PCEs (see Sect. 5
for further details).

For small primitives our algorithms can easily find PCEs with small size even
when restricting the set of variables to inputs and outputs. For more complex
circuits, as mult-4bit, the PCE can be much larger than the non-PCE. When gen-
erating PCEs with Σ containing auxiliary variables, we can obtain considerably
smaller encodings. For example, for the addition operator add-4bit the number
of clauses decreased from 336 to 43 by only adding 3 auxiliary variables. In this
case, the auxiliary variables that are added by our greedy algorithm correspond
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Table 1. Generation of PCEs for small encoding primitives and their composition

to the carry bits from the chained adders. Note that the PCE for add-4bit formed
by chaining the propagation complete full-adder results in an encoding with 20
variables and 60 clauses, which has a similar size to the PCE found by our greedy
algorithm.

Even though the algorithm can take a considerable amount of time to find
small PCEs with auxiliary variables, our goal is not to apply such algorithm to
large formulae but only to find PCEs of primitives. This process is done once,
offline. Afterwards, the encoding primitives can be chained together to form
larger encodings for any bit-width. We verified with our algorithm that for small
bit-widths the composition of PCEs for adders and comparators is propagation
complete, while for the multiplier is not. We conjecture that the existence of a
reasonably-sized propagation complete multiplier is unlikely, as this would help
to efficiently solve hard factorization problems.

5 Experimental Evaluation

To explore the impact of propagation strength on performance, we implemented
the PCE primitives generated in Sect. 4 in the CVC4 SMT solver [5]. CVC4 is a
competitive solver that ranked 2nd in the 2015 SMT-COMP bit-vector division.
We instrumented the solver’s bit-blasting procedure to use the primitives to
build more complex encodings of word-level bit-vector operators.

We focused on the following bit-vector operators: comparison, addition and
multiplication. The rest of the bit-vector operations were either already propa-
gation complete (e.g. bitwise and), or could be expressed in terms of other opera-
tions. We implemented n-bit circuits using the primitives described in Sect. 4. For
addition, we used the propagation complete full-adder (cvcAO) and for compar-
ison the ult-gadget and slt-gadget (cvcLO). For multiplication we implemented
variants that use PC primitives: shift-add multiplication (cvc vs cvcMO), tree
reduction (cvcT vs cvcTO) and multiplication by blocking (cvcB2 vs cvcB2O).
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(a) Shift-add multiplier (b) Tree reduction multiplier

(c) Blocking multiplier

Fig. 5. The impact of using PC primitives in various kinds of multiplication circuits

We append O to the solver’s name to denote that the propagation complete sub-
circuits are enabled. All implementations of multiplications that use propagation
complete sub-circuits use the PC full-adder for adding the partial products, while
blocking multiplication also uses the propagation complete 2 by 2 multiplication
sub-circuit mult2.

We used 31066 quantifier-free bit-vector benchmarks from SMT-LIB v2.0 [6].
Experiments in this section were run on the StarExec [38] cluster infrastructure
on Intel Xeon E5-2609 processors (2.40 GHz) running Red Hat Enterprise Linux
Workstation release 6.3 (Santiago) with a timeout of 600 s seconds and a memory
limit of 200 GB.

Figure 5 quantifies the impact of the PC components in the various kinds
of multiplication circuits we implemented. The scatter plots are on the entire
31066 set of benchmarks, and are on a log-scale. Each point is a benchmark,
and the x and y-axis represent the time (seconds) taken by CVC4 to solve
the benchmark with the given configuration. Using the propagation complete
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Table 2. Comparison of performance of propagation complete encodings in CVC4

primitives (cvcMO, cvcTO and cvcB2O) consistently improves performance over
their default implementations. Although the performance improvement is not
dramatic, we believe it is consistent enough to show that propagation strength is
an important characteristic of encodings. Since cvcMO had the best performance
between multiplication circuits that use propagation complete sub-circuits, we
considered this encoding for further evaluation.

Table 2 gives the number of problems solved and the time taken to solve them
for CVC4 without propagation complete primitives (cvc) and with propagation
complete primitives, namely: shift-add multiplier (cvcMO); shift-add multiplier
and full-adder (cvcAMO); and shift-add multiplier, full-adder and comparison
(cvcALMO). Due to space constraints we removed rows where the number of
problems solved by all configurations was the same (see Appendix for full table).
Table 2 shows that adding each PC primitives increases performance, with the
configuration using PC primitives for addition, comparison and multiplication
(cvcALMO) solving the most.

We believe this improvement is not limited to CVC4 but will translate to
other solvers as well. We examined the source code of other competitive SMT
solvers, such as boolector [13], stp2 [28], yices2 [22] and z3 [15], and their implemen-
tation of addition is not propagation complete. Therefore, although the notion
of propagation complete encodings is not new, it is not widely applied to solver
encoding design. Preliminary results from implementing the PC full-adder in the
CBMC model-checker [14] also showed an improved performance. The improve-
ment is also not limited to constraint solvers that use CDCL SAT solvers but is
also expected for look-ahead SAT solvers [29]. These solvers are geared towards
propagation and are even more likely to take advantage of the increased inference
power than CDCL SAT solvers.

We have shown that the propagation complete encoding primitives our algo-
rithm generated can be used to build encodings of bit-vector operators in an SMT
solver. The results are promising considering we are only strengthening a small
part of the overall problem. Furthermore the propagation complete encodings
have been automatically generated from scratch, while the existing encodings
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had been optimized by hand. This highlights the importance of propagation
complete encoding in encoding design and that our proposed framework can
help practitioners improve encodings.

6 Related Work

The notion of propagation strength has been explored under various names such
as unit refutation complete [16] and propagation complete encodings (PCEs) [11]
in AI knowledge compilation. A formula is unit refutation complete [16] iff any
of its implicates can be refuted by unit propagation. Here we refer to refutation
as being the process of proving the implication E |= l by proving E ∧ ¬l |= ⊥.
Bordeaux et al. [10] consider variations of unit refutation complete encodings,
such as its disjunctive closure and a superset of unit refutation complete encod-
ings where variables can be existentially quantified and unit refutation concerns
only implications from free variables. Gwynne and Kullmann [25] introduce a
general hierarchy of CNF problems based on “propagation hardness” and gen-
eralise the notion of unit refutation complete encodings.

PCEs are a proper subset of refutation complete encodings [25] and have been
introduced by Bordeaux and Marques-Silva [11] for finding encodings where only
using unit propagation suffices to deduce all the literals that are logically valid.
The authors reduce the problem of generating PCEs to iteratively solving QBF
formulas. We consider PCEs using an abstract satisfaction framework and rely
on a SAT solver’s efficient UP routine to check whether a clause is empower-
ing. Since QBF is a PSPACE-complete problem, it is unclear that the approach
from [11] would scale better than ours. Because [11] has no implementation that
we are aware of, we cannot compare against them. Their framework can also sup-
port adding auxiliary variables to PCEs but this approach was not explored by
the authors. Our approach supports generating encodings over a limited alphabet
of auxiliary variables and includes an implementation and extensive experimen-
tal results that show performance gains. The work in [2] shows that checking
whether a clause is empowering (it is entailed by the given CNF formula and it
increases the propagation power of the formula) is co-NP complete. It also shows
the existence of operations that have only exponential PCEs. This supports our
targeting of small encoding primitives as opposed to n-bit circuits which is likely
intractable.

Propagation completeness has also been considered in CSP (e.g. [3,8])
because of its connection to Domain Consistency, also known as Generalised Arc
Consistency (GAC): when a constraint is encoded into SAT over some Finite-
Domain variables, if the encoding of the constraint is propagation complete, then
unit propagation on the SAT encoding effectively finds the same implications as
Domain Consistency. In CSP it is common to consider GAC over procedural
propagators [3] of specific constraints. Propagators can also be decomposed into
primitive constraints that can be translated to SAT [8]. GAC has been adopted
in SAT [24] and many encodings have this property [1,4,37]. However, GAC is
usually only enforced on input/output variables and not on auxiliary variables.
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PCEs consider a stronger notion of propagation strength since GAC is enforced
on both input/output variables as well as on auxiliary variables.

Trevor Hansen’s PhD [28] (independently) touches on many of the techniques
we have used. He considers both ‘bit-blasting’ encodings and forward propaga-
tors (algorithms that implement abstract transformers directly), but treats these
as independent approaches, omitting the link we show in Sect. 3. Although he
tests the propagators for propagation completeness and even generates clauses
to improve the propagators, he does not use this approach to generate com-
plete encodings, nor does he perform minimisation. The SMT solver Beaver [30]
also computes pre-synthesised templates for bit-vectors operators which are opti-
mised offline using logic synthesis tools such as the ABC logic synthesis engine [7].
However, these templates are only computed for predefined bit-widths and are
not PC. Hansen makes use of Reps’ et al. [36] work on computing best abstract
transformers via a lifted version of Stalmarck’s algorithm. Algorithm 1 similarly
uses breadth-first traversal, but the key difference is in how and when the algo-
rithms are used. In [36] and most applications of their work [31], the result of the
best abstract transformer is computed on-line as part of a search. We compute
an encoding that gives the best abstract transformer off-line as part of solver
development.

7 Conclusion

By using the abstract satisfaction framework we can characterise the space of
encodings, the effects of reasoning and the link between them. Propagation com-
plete encodings allow an increase of inference power that can be exploited by
CDCL SAT solvers. We have showed that these encodings are captured by our
abstract satisfaction formalism which allows us to reason about them and their
extensions (Sect. 3). It is possible to compute subset-minimal propagation com-
plete encodings and for various key operations these are tractably computable
and often smaller than conventional encodings. For more complex encodings,
we have shown that greedily introducing auxiliary variables can generate sig-
nificantly smaller propagation complete encodings (Sect. 4). Implementing these
in the CVC4 SMT solver gives performance improvements across a wide range
of benchmarks (Sect. 5). It is hoped that this work will contribute to a more
theoretically rigorous approach to encoding design.

Linking encodings to abstract transformers has many possible applications.
Abstract transformers are functions on ordered sets and are therefore partially
ordered. This gives a way of comparing the propagation strength of different encod-
ings or investigating the effects of pre and in-processing techniques. This is partic-
ularly important as for certain operators there are no polynomially sized PCEs.
A quantitative measure of propagation strength is a useful practical alternative.
Proof-theoretic measures can be expressed as properties of the syntactic repre-
sentation lattice, for example proof length becomes path length. Likewise solver
run-time is bounded by the length of paths in UP(2CΣ+ ). Finally, the abstract
satisfaction viewpoint provides a means of exploring many interesting questions
about composition of encodings and when they preserve propagation strength.
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