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Abstract
This chapter presents a state-of-the-art review on the available thermal energy
storage (TES) technologies by sensible heat for building applications. After a
brief introduction, the basic principles and the required features for desired
sensible heat storage are summarized. Then, material candidates and recent
advances on sensible heat or cold storage adapted for building application are
discussed, each with its own characteristics, advantages, and limitations. A large
section of the chapter is devoted to the sensible TES technologies for buildings,
both for short-term (daily) and for long-term (seasonal) storage. Each technology
is described in detail including different aspects: basic principle, development
status, performance and costs, potential and barriers, today’s R&D activity focus,
etc. Comparisons on the advantages and limitations between different TES
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technologies are also made. Finally, conclusions and future directions are
summarized.

Keywords
Thermal energy storage (TES) · Sensible · Building · Storage capacity ·
Thermal loss · Stratification

Introduction

Thermal energy storage (TES) means the temporary holding of excessive thermal
energy (in the form of heat or cold) in a storage medium for later use. It helps to
balance the mismatch (both in time and in quantity) between heat supply and heat
demand. As a result, it plays a more and more important role in various sectors from
energy production (e.g., CSP plants) to energy utilization (e.g., buildings), especially
for increasing the ratio of renewable energy sources in different countries and
regions.

Depending on different technologies, thermal energy can be stored at tempera-
tures between �40 �C to more than 400 �C as sensible heat, latent heat, and
thermochemical energy. Sensible heat storage, by its definition, means that thermal
energy (heat or cold) is stored in the form of sensible heat in the storage medium,
which does not undergo any phase change during charging or discharging process.
The single process involved is the temperature variation of the storage medium
within one phase. For building applications, TES systems based on sensible heat are
currently the most developed and commercially available while latent or thermo-
chemical TES systems are relatively underdeveloped.

This chapter will introduce different TES technologies based on sensible heat for
building applications.

Basic Principles

The amount of thermal energy (J) stored or released within a sensible heat storage
process may be expressed by Eq. (1):

Q ¼
ðTf

Ti

mCp Tð ÞdT (1)

where m is the mass of the storage material (kg), Cp the specific heat (J.kg
�1 K�1), Ti

and Tf the initial and final temperature (K) of the storage material, respectively.
The specific heat of certain storage material is usually temperature dependent.

However, a constant value of Cp allows to make an approximate calculation when its
variation is not so big within the temperature range. Equation (1) can then be
rewritten as:
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Q ¼ mCp Tf � Ti

� � ¼ ρVCp Tf � Ti

� �
(2)

Where Cp is the average specific heat of the storage material within the temper-
ature range. Note that constant values of density ρ (kg.m�3) are considered for the
majority of storage materials applied in buildings. For packed bed or porous medium
used for thermal energy storage, however, the porosity of the material should also be
taken into account. Then the energy storage density per unit mass or per unit volume
of certain material may be calculated as Eq. (3) or Eq. (4), respectively.

Q=m ¼ Cp Tf � Ti

� �
(3)

Q=V ¼ ρCp Tf � Ti

� �
(4)

Based on Eqs. 3 and 4, one may observe that high values of Cp render a
corresponding high energy storage density. It is thus a key parameter for the selection
of proper materials for sensible heat storage use.

The required features for desired sensible heat storage may be summarized as
follows.

• High storage density: for a certain storage capacity (J or kWh), higher storage
density requires lower amount of the storage materials (kg) and smaller size of
the storage system (m3), implying lower capacity cost (€/kWh) of the storage
system.

• High energy efficiency: high proportion of energy stored in the system could be
released to the user. This requires reducing the energy loss during the storage
period and the charging/discharging cycle. However, the quantity of energy loss
depends on many factors, such as the temperature difference between the stored
medium and the environment, the storage duration, the insulation, etc.

• Wide operation temperature range: for building application, the working tem-
perature usually ranges between 0–120 �C, except for some specific purposes
(e.g., >120 �C when combined with high temperature solar panels or <0 �C for
ice-making). For a certain application, one often searches for a wide tempera-
ture variation but without phase change or decomposition of the storage
materials.

• Fast charging and discharging: less time is needed to reach the storage capacity.
This often calls for efficient/intensified heat transfers inside the storage medium
(high thermal conductivity, convection effect, etc.) as well as between the storage
medium and the heat transfer fluids (large temperature difference, efficient design
of the flow paths for the storage unit, etc.).

• Good stability of the storage material: for short-term storage (hourly, daily,
weekly), it means low degradation of the storage material under hundreds or
thousands of thermal cycling; for long-term storage (seasonal), it means stable
thermo-physical properties of the storage material during the storage period. On
the whole, long lifetime of the storage material (thus reduced capital cost) is
favorable.
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• Low or noncorrosiveness, environmental friendly, and inflammableness: this
means good compatibility with the construction around and the environment as
a whole, as well as the safety issues.

• Low cost: which refers to either low capacity cost (€/kWh) or low power cost (€/
kW) of the storage system. It depends also on various factors such as the
availability of the storage materials, the capital and operational costs of the
storage unit and accessories, and their lifetime.

It should be noted that the above-mentioned features are usually interdependent.
And most likely, a sensible heat storage system/technique can not necessarily meet
all the requirements. For example, thicker insulation layer could effectively reduce
the heat loss but also augments the size of the storage unit and the capital cost.
Therefore, some trade-offs or compromises should be made when dealing with
specific energy storage issues in buildings. Some multi-objective optimization
methods (e.g., [1, 90]) have also been developed which may be associated with
life cycle analysis (LCA) or techno-economic analysis.

Materials for Sensible Heat or Cold Storage

A great number of materials have been investigated and proposed for the purpose of
sensible heat storage. New materials are also developed every year, which should be
further studied for characterizing their properties. Based on their physical status,
sensible heat storage materials may be categorized by liquid, solid and gaseous
media. Compared to liquid and solid materials, which are widely used for building
applications, gaseous materials are rarely used mainly due to their low density thus
large volume of reservoirs needed. In this section of the chapter, different materials
used for the storage of thermal energy (both heat and cold) in buildings will be
discussed, each with its own characteristics, advantages and limitations.

Liquid Storage Materials

Various liquid materials are used for sensible heat storage in buildings, each having
its proper operational temperature range. Among them, water is the most commonly
used liquid because it meets almost all the aforementioned required features: avail-
ability and accessibility, low cost, relatively high specific heat, environmental
friendly, stable under cycling operations, etc. Moreover, its operational temperature
range (about 20–90 �C) covers a large amount of heating demands for buildings,
such as space heating and hot water production. Under atmospheric pressure, the
storage temperature limit for water should be below 100 �C. Higher storage temper-
ature above 100 �C is still possible but pressurized tanks should be used. Water can
be used in different storage techniques for buildings in terms of storage duration,
such as hot water tanks for short-term storage and aquifer or solar ponds for seasonal
storage.
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Organic oils (e.g., alcobolic or alkane solutions) sometimes appear as alternative
to water, so as to achieve a higher working temperature above 100 �C (e.g., up to
118 �C for butanol; up to 126 �C for octane; up to 148 �C for pentanol; up to 160 �C
for engine oil; etc.). Compared to water, however, they usually have smaller Cp

(typically from 2 to 3 kJ.kg�1 K�1) and lower thermal conductivity k (typically from
0.1–0.2 W.m�1 K�1), implying lower storage density and poorer heat transfer. Other
disadvantages such as the degradation problem and the fire risk when working at
high temperature are also identified. Therefore, their utilization is recommended
only with caution.

Heat transfer fluids (HTFs) can also be used as liquid storage materials (e.g., [2, 3]).
Contrary to the aforementioned pure liquids, they are usually the mixture of
synthetic substances. Some commercialized products exist on the market, such as
XCELTHERM®, THERMINOL®, DURATHERM®, DOWTHERM®, PARA-
THERM®, etc., each having a series of candidates with different thermo-physical
properties. The interesting feature is that their working temperature could generally
exceed 100 �C, so they are mostly used in building-integrated solar energy systems.
However, the relatively high cost (with respect to water) also limits their use only in
small-sized systems.

Molten salts, liquid metals, and liquid glasses can also be used as HTF as well as
sensible storage materials, but for high temperature applications (>150 �C). Hence their
intended use fits more the solar thermal power plants rather than for buildings directly.

Table 1 shows a list of liquid materials used or have the potential to be used in
sensible heat storage systems for buildings.

Solid Storage Materials

Solid materials are also widely used for the storage of sensible heat for buildings.
The building structure itself (concrete, brick, steel, glass, wood, etc.) plays the role as
a thermal buffer to attenuate the interior temperature variation using the building
thermal inertia [8]. Other common uses are the pecked beds of rocks or pebbles
combined with solar energy systems for space heating, the ground and soil storage
(such as Chinese Kang). Generally, these solid materials are structured to provide
heat transfer surfaces (direct contact) for the HTFs during charging or discharging.
Compared to liquid storage materials, solid materials exhibit the advantages like
nontoxic, nonflammable, no leakage problem, and thermally more stable. The major
drawback is their low specific heat capacity (generally about 1 kJ.m�3K�1), imply-
ing low energy density of the storage systems.

Concretes, stones, or sands could usually provide an operating temperature range
between 20 �C to 70 �C. Their cost as storage media is acceptable due to their
abundant availability. Metals such as aluminum, iron, and copper could be used for
high temperature storage applications over 160 �C. They also exhibit good heat
conduction property, two or three orders of magnitude higher (e.g., 73 W.m�1 K�1

for iron, 204W.m�1 K�1 for aluminum, 385W.m�1 K�1 for copper, etc.) than that of
liquid storage materials. Nevertheless, they may be chemically less stable due to the
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possible interactions with the HTFs. In terms of cost, they are not naturally available
thus should be refined, a factor that also prohibits their large-scale use.

During recent years, researches are focused on the potential of using low-cost
alternative materials for solid sensible heat storage (e.g., [9–11]). These recycled
materials are generally solid industrial by-products or wastes: asbestos containing
wastes (ACW), fly ashes, by-products from the salt industry and from the metal
industry, wastes from recycling steel process and from copper refining process and
dross from the aluminum industry, and municipal wastes (glass and nylon) [9]. The
yearly production of these industrial by-products or wastes is sufficiently abundant
to be considered as candidates of storage materials [9]. In terms of thermo-physical

Table 1 Thermo-physical properties of some liquid materials for sensible heat storage in buildings

Material

Temperature
range
(�C)

Density
ρ (kg.
m�3)

Specific heat
Cp (kJ.
Kg�1 K�1)

Thermal
conductivity
k (W.m�1 K�1)
at 20 �C Reference

Water 0–100 1000 4.19 0.58 –

Ethanol Up to 78 790 2.4 0.171 –

Propanol Up to 97 800 2.5 0.161 –

Butanol Up to 118 809 2.4 0.167 –

Isopentanol Up to 148 831 2.2 0.141 –

Octane Up to 126 704 2.4 0.134 –

Engine oil Up to 160 888 1.88 ~0.1 –

XCELTHERM®

XT
�55–272 1000 1.70 0.133 [4]

XCELTHERM®

XTE
�57–270 968 1.63 0.135 [4]

XCELTHERM®

500
�60–260 789 2.16 0.137 [4]

THERMINOL®

VLT
Up to 99 744 1.95 0.112 [5]

THERMINOL®

Lt
Up to 181 862 1.79 0.124 [5]

THERMINOL®

D12
Up to 192 759 2.10 0.109 [5]

DURATHERM®

XLT-50
�45 to 121 820 2.10 0.137 [6]

DURATHERM®

HTO
Up to 315 811 1.89 0.137 [6]

DOWTHERM™
4000

�50–175 1055 3.6 0.442 [7]

DOWTHERM™
SR1

�50–120 1045 3.6 0.442 [7]

DOWFROST™ �45–120 1033 3.8 0.434 [7]

UCARTHERM™ �51–121 n.a. n.a. n.a. [7]

DOWCAL™ 100 �50–175 1047 3.69 0.485 [7]

DOWCAL™ N �45–120 1026 3.88 0.456 [7]
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properties, recycled materials are comparable, sometimes even more performant
than conventional ones, with high thermal and chemical stability and attractive
investment cost [12, 13]. In most of the cases, they are targeted to high temperature
applications such as concentrated solar power (CSP) plants [14, 15] or compressed
air energy storage (CAES), as competitors to molten salts. Recently, it is also
reported that these recycled wastes could be used as thermal mass materials for
low-energy building construction [12, 16] or combined with solar cooling systems
[17], indicating their promising potential as sensible storage materials for buildings.

Table 2 shows indicative thermos-physical properties of some solid materials
used or have the potential to be used in sensible heat storage systems for buildings.

Materials for Cold Storage

Chilled water is the most common liquid material for cold thermal energy storage
(CTES) in buildings. It is usually stored in specially insulated water tank for daily
storage (e.g., [18]) or underground for seasonable storage (e.g., [19]), in connection
with the HVAC system of buildings. Ice, as the solid state of water, is also used as
storage media, to be stored in special ice storage tanks for daily operation (e.g., [20,
21]). In some cases, ice remains solid during charging/or discharging when it
exchanges sensible heat with HTFs (usually air) whereas in other cases phase change
may occur to produce chilled water [22], indicating that both sensible and latent heat
are involved. For seasonal storage of cold energy, ice or snow can be collected in
winter and stored in the form of ice/snow ponds (e.g., [23, 24]). During summer
seasons, the stored cold energy could be then recovered by circulating air through the
ice/snow ponds. It is also reported that pebbles can also be used (in the form of
pebbles bed) for seasonal storage of cold energy [25] in tropical areas (Moroccan).

Short Summary

In summary, the selection of suitable materials with potential for sensible TES in
buildings is not an easy task. It is generally application-oriented in which the
working temperature range should be firstly considered while other selecting param-
eters should also be taken into account. The multi-criteria methodology developed
by Prof. Ashby [26] associated with Cambridge Engineering Selector (CES) soft-
ware could be a practical tool. Some case studies were presented in the literature [12,
27] for evaluating materials for sensible TES with the objective of minimized cost.

Sensible TES Technologies for Building Applications

In this section, various building integrated sensible energy (heat or cold) storage
systems or technologies will be introduced. Many of the technologies already have
their real applications in buildings while some of them are under development
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Table 2 Indicative thermo-physical properties of some solid materials for sensible heat storage in
buildings [8, 9]

Material
Temperature
range (�C)

Density
ρ (kg.m�3)

Specific heat
Cp (kJ.
Kg�1 K�1)

Thermal conductivity
k (W.m�1 K�1) at
20 �C

Brick 20–70 1600 0.84 1.20

Concrete 20–70 2240 1.13 0.9–1.3

Cement sheet 20–70 700 1.05 0.36

Gypsum
plastering

– 1200 0.84 0.42

Granite 20–70 2650 0.90 2.90

Marble 20–70 2500 0.88 2.00

Sandstone 20–70 2200 0.71 1.83

Stone, granite Up to 160 2640 0.82 1.70–3.98

Stone, sandstone Up to 160 2200 0.71 1.83

Clay sheet – 1900 0.84 0.85

Asphalt sheet – 2300 1.70 1.20

Cork board – 160 1.89 0.04

Wood – 800 2.09 0.16

Plastic board – 1050 0.84 0.50

Rubber board – 1600 0.20 0.30

PVC board – 1379 1.00 0.16

Asbestos sheet – 2500 1.05 0.16

Formaldehyde
board

– 30 1.67 0.03

Thermalite board – 753 0.84 0.19

Fiber board – 300 1.00 0.06

Siporex board – 550 1.00 0.12

Polyurethane
board

– 30 0.84 0.03

Light plaster – 600 1.00 0.16

Dense plaster – 1300 1.00 0.50

Aluminum Up to 160 2707 0.90 204

Aluminum oxide Up to 160 3900 0.84 30

Aluminum sulfate Up to 160 2710 0.75 –

Cast iron Up to 160 7900 0.84 29.3

Pure iron Up to 160 7900 0.45 73

Calcium chloride Up to 160 2510 0.67 –

Copper Up to 160 8954 0.38 385

Steel slab 20–70 7800 0.50 50

ACW 0–1000 3120 0.8–1.03 1.4–2.1

Fly ashes 25–1100 2600–2962 0.71–1.3 1.2–1.6

Original NaCl 100–200 1384 0.74 0.33

Water shaped
NaCl

100–200 2050 0.74 2.84

Astrakanite 0–100 – 0.9–1.2 –
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undergoing lab-pilots testing. Each technology will be described in details including
different aspects: basic principle, development status, performance and costs, poten-
tial and barriers, today’s R&D activity focus, etc. For the convenience of description,
these sensible TES technologies are classified into two categories: one for short-term
storage (daily mismatch) while the other for long-term storage (seasonal mismatch).

Short-Term Sensible TES Technologies

Water Tank
Water tank is a well established and may be the most widely accepted technology for
daily TES in buildings. It plays key roles as TES and redistribution. The power
source for the water tank could be variable, the most common case is coupled
or integrated with conventional gas/electric boilers (e.g., [28]), air-water heat
pumps (e.g., [29, 30]), or combined heat & power (CHP) (e.g., [31–35]), as being
used in a large number of existing buildings all over the world. Renewable energies
could also serve as the power source, including solar energy (flat plate, vacuum tube
solar collectors, PV panels, or their hybrid) (e.g., [36–40, 41, 208]), geothermal
energy (e.g., [2, 42]), or fuel cells (e.g., [43, 44]). In this case, fossil/electric backup
directly integrated or coupled to the water tank is usually a necessary complement.
Poly-generations could be another choice (e.g., [45, 46]).

Both hot water and cold water can be stored at water tanks. Hot water tank usually
stores water from about 40 �C to 80 �C depending on the heat source and power,
mainly for the purposes of space heating and domestic hot water (DHW) production.
It should be noted that the stored hot water can also be used for space cooling,
usually by running an absorption chiller (e.g., [39, 40, 47–51]) or thermoelectric
elements (e.g., [52]) at the downstream of water tank. In cold water tank, chilled
water below the room temperature (usually from about 3 �C to 15 �C) is stored, for
the purpose of space cooling.

Water tanks could be located either inside or outside the buildings or even
underground, with different geometries (vertical/horizontal cylindrical or rectangu-
lar) and sizes (from several tens of liters for a single room to a few thousand cubic
meters for a district heating and cooling plant). One example of typical hot water
storage tank to be combined with solar collectors is shown in Fig. 1. They could be
made of a wide variety of materials such as steel, aluminum, or reinforced concrete.
By using fiber/plastic composites, expanded polystyrene (EPS) and encasement
material, the water tank weight could be one third of that of a compatible storage
tank made of steel and is corrosion-free [54]. Generally, they have to be insulated to
avoid thermal losses to the ambient, using conventional materials such as glass wool
[55], mineral wool, eco cotton-wool [28], polyethylene terephthalate (PET)-fiber
fleeces [56], or polystyrene panels [30]. Developing advanced insulation materials
having an extra low thermal loss rate (λ= 0.01 W/m.K) and reasonable thickness for
water storage tanks, such as silica aerogel based [57] or vacuum insulation panels
[58], is one of today’s R&D activities focuses.
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Another R&D focus is how to maintain the temperature stratification (higher
temperature at the top while lower temperature at the bottom) in the water tank
(Fig. 2), a key factor that can effectively improve the performance of the energy
storage. Ghaddar [59] found that the energy storage efficiency and the whole system
may be augmented by up to 6% and 20% by using fully stratified water tank instead of
fully mixed one in many solar water heating systems. Various solutions have been
proposed to inhibit the turbulence generated from the mixing of the hot and the cold
water during charging or discharging. These measures include optimizing the geomet-
rical parameters of the water tank (e.g., tank size; height-to-diameter ratio, etc.) (e.g.,
[18, 60, 61]), better selecting inlet/outlet positions and shapes (e.g., [62–66]), deter-
mining appropriate operating conditions (inlet flow velocity, temperature, cyclic dura-
tion, etc.) (e.g., [67–69]), and adding baffle plate or porous mesh at the inlet of the tank
(e.g., [70–72]). Recent studies also showed that using partition/stratification plates in
the water storage tank could lead to good performance in both energy storage and
thermal stratification [73, 74]. A detailed review on the thermal stratification within the
water tank was provided by [73].

Packed Bed
Packed beds (also known as rock beds or pebble beds) consist of a bed of loosely or
structurally packed solid materials through which the HTF can flow. For buildings
applications, it is usually used in conjunction with air-based solar collectors, either
directly integrated into the solar collector (e.g., [55, 75, 76]) or standing indepen-
dently as a tank and connected to the solar collector via pipes or ducts (e.g., [77, 78]).
During the charging phase, heated air from the solar collector passes the pebbles bed
from the top down to the bottom to release the heat. During the heat-discharging
phase, the air from room enters from the bottom to the top of the bed to absorb the
stored heat and the heated air is then delivered into the building.

Fig. 1 Roth’s Thermotank
Quadroline [53]
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Packed beds are generally considered as the most suitable energy storage unit for
air-based solar systems for buildings (e.g., Fig. 3) owning to the abundant and low-
cost solid storage materials available and the efficient heat transfer through the direct
contact between air and the solid particles. Michelson and Shitzer [79] studied a solar
air heating system designed for a floor of 120 m2 offices in Israel and reported that
adding a rock bed storage could improve the system’s performance. Otherwise, the
increased solar collector area is needed. Singh et al. [78] reported that the heat
retrieval efficiency of a packed bed could reach about 75–77%, better than that of
PCM-based storage system (66.7–72%).

Despite a variety of storage materials available, the shape and size of the
packing materials and void fraction are key factors that determine the thermal
performance and the pressure drop of the storage unit [80]. Sorour [81] investi-
gated small size (several dozen liters) pebbles bed storage units used in many
short-term applications and reported that lower flow-rates of HTF with intermedi-
ate particle diameter of pebbles are advantageous to achieve high efficiencies of the
storage unit. Ammar and Ghoneim [82] reported that particles with smaller
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Fig. 2 Differing degrees of stratification within a storage tank with the same amount of stored heat:
(a) highly stratified, (b) moderately stratified, and (c) showing fully mixed, unstratified storage
[202]
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Fig. 3 Schematic of a packed bed energy storage combined with air-based solar system for
buildings [80]

Energy Storage by Sensible Heat for Buildings 963



diameter, i.e., with higher values of interfacial surface area per unit volume cause a
large degree of thermal stratification in the bed. Nonetheless, Sagara and
Nakahara [83] suggested that a trade-off has to be made between the thermal
performance and pressure drop in designing packed bed storage unit. For example,
a large size material like bricks or concrete blocks may have poorer thermal
performance, but the required power supply to run the fans is also small. An
economic evaluation might become a decisive factor for the design.

Besides conventional concepts for packed beds storage unit, some new configu-
rations were also proposed to intensify the heat transfer. Audi [84] proposed to use a
storage bin with trays to carry the rocks instead of randomly packed rocks. Crandall
and Thacher [85] proposed the arrangement of segmented/cascade storage tank
system instead of a single tank. Other researchers also proposed to use combined
storage systems such as coupled rock bed and water storage unit [86] or combined
rock bed – solar pond storage system [87]. A detailed review on packed bed solar
energy storage systems was presented by [80].

Thermal Mass
Thermal mass of a building is natural thermal storage media. If controlled or managed
appropriately, the use of heavyweight construction materials has various advantages
owning to their high TES capacities including (1) dampen the wide range temperature
fluctuation from the outdoor [88]; (2) reduce the peak heating or cooling power
demands [89]; (3) maintain the indoor thermal comfort [102]; (4) reduce lifecycle
CO2 emissions [91]; and (5) resist to structural damage by severe storms [92].

Akbari et al. [93, 94] reported that the heat storage capacity of the massive
structural materials (both external and internal walls) in buildings is affected by
the convective heat transfer coefficients of air profile. Yam et al. [95] further
developed understanding of the thermal mass effect and found that there is an
optimal amount of thermal mass to be used in building passive design as further
increase of thermal mass would not increase storage effect. Ma and Wang [96] also
found different optimal thicknesses of interior planar thermal mass of various
materials for reaching a maximum value of the heat storage capacity. As a result
for different buildings, this optimal amount of thermal mass should be determined
carefully.

Recent R&D focus on the thermal mass topic lies on the development of optimal
operation strategies for building thermal processes, taking the TES by thermal mass
factor into account. These thermal mass include the building structure (external and
internal walls) [209], earths [92], internal furniture and contents [97, 98], stored
products in warehouses [201], or water-filled containers [99]. Some examples are
shown in Fig. 4. For commercial buildings, Henze et al. [100] studied the impacts of
adaptive comfort criteria and heat waves on optimal building thermal mass control.
A model-based demand-limiting control of building thermal mass was developed by
Lee and Braun [101]. Recently, Li and Malkawi [102] developed a multi-objective
optimization based model predictive control framework that takes both energy
cost and thermal comfort into consideration simultaneously. For residential
buildings, Le Dréau and Heiselberg [103] found that the thermal mass storage
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potential depends largely on the insulation level thus the control strategy should be
designed differently to make use of the flexibility potential without violating the
comfort.

One future direction of thermal mass storage is the development of hybrid
adaptable thermal energy storage approach that usually used PCMs integrated-
lightweight building construction materials [104] or PCMs integrated-internal fur-
niture [105] to improve the thermal comfort.

Ground level 2

z

roof

Tyre & rammed
earth wall

Rammed earth Nest module /
main room

Dimensions are not to scale

Thermal
store

Conservatory /
sun space

Ground
level 1

Plaster finish

Un-rammed earth
behind ‘thermal

wrap’

a

b

Fig. 4 Thermal mass for TES in buildings. (a) Section of Brighton Earthship [92]; (b) water filled
containers in Marsh House Two [99]
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Thermally Activated Building Systems (TABS)
Different from the thermal mass, thermally activated building systems involve
building surfaces or building structures with water pipes or air ducts embedded.
Water or air is used as HTF while the building mass is used as storage media to buffer
the room temperature fluctuation by storing or releasing the heat from the thermal
mass. TABS is a really ancient concept that can be tracked back to Roman hypo-
caust, Korea Ondol, and Chinese Kang, using oven, boiler, or stove as the heat
source. An historical review on TABS research was presented by [106]. These
heating and storage systems in buildings developed by different countries share
similar principles and are now still widely used with some conceptual developments.
Owing to the advantages such as high thermal inertia, big heat transfer surfaces, and
radiative nature, TABS is still applicable in modern buildings.

Hypocaust is a building construction concept originated during ancient Roman in
which the hot gases from the furnace are guided to pass through floors (square
pillars) and cavity walls and to warm the rooms of buildings. The emissions are then
discharged through holes in the roof. In this case, the building structure serves as
thermal mass for the sensible heat storage. Bansal [107] analyzed four hypocaust
constructions in modern Europe (School of Tournai, Belgium; Meteolabor Labora-
tories, Switzerland; Sogeco Office Building, Italy and Schopfloch Kindergarten,
Germany) and concluded that it is a good alternative even in modern concept of
building heating because the heat losses from building walls/floors are first reduced.

In China, the Chinese Kang is a device widely used in cold regions in Northern
China by more than 175 million people [109]. It is actually a multi-functional rural
domestic system that serves cooking, space heating, bed warming, thermal storage,
and natural ventilation purposes. A typical Chinese Kang consists of a stove, a Kang
body (similar to a bed), a chimney, and airflow paths for the smokes. The Kang body/
plate is heated by the hot smoke flow during cooking time. The thermal energy
stored in the thermal mass material of Kang bed (concrete, earth, or stone) can
maintain a heating period of several hours or more for the room by convection and
radiation [109].

The commonly used Kangs today include the traditional grounded Kang and new
elevated Kang. The major difference is that the former is directly built into the floor
while the latter is suspended from the floor. The improvements achieved by the
elevated Kang include the increased heat utilization of smoke, improved temperature
uniformity of the Kang bed, and higher controllability and insulation level [109].
The design of thermal storage by the Kang body is a key factor that affects the indoor
thermal comfort level and the biomass energy saving potential. Zhuang et al. [108]
had developed an elaborate thermal and airflow model and investigated thermal
storage characteristics of a Chinese Kang. A design guide was also proposed to
determine the thickness of a Kang plate (quantity of thermal mass) and firing
distribution. Recent developments of Chinese Kang concern the combination of
solar energy and biomass energy for cooking as the heat source.

Similar architecture also exists in Korea, named as Ondol. Instead of a Kang bed,
it is the whole floor of the building that will be heated by the hot smoke from a
firebox or a stove (Fig. 5). As a result, it is also called radiated floor of Korea style.
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The heated floor, supported by stone piers or baffles to distribute the smoke, is
covered by stone slabs, concreate slabs, clay, or sand layer [110] and an impervious
layer such as oiled paper. The improved modern floor/ceiling technology in general
involves light-weight TABS placed above the floor structure/at the lower surface of
ceilings. It is commonly assumed that the radiant floor/ceiling only exchanges heat
with the internal air for heating or cooling of the room while the external layers are
well insulated.

Modern concepts similar as Hypocaust are also developed in recent years,
including hollow core slabs, concrete core, and pipe-embedded building envelope,
as shown in Fig. 6. They are technically prefabricated heavy-weight building walls
or slabs with water pipes or air ducts embedded in the slab core.

Recent R&D focus of TABS includes several directions. Firstly, adding PCMs in
the building mass is an effective method to increase the heat storage capacity. Some
examples include the use of PCMs as thermal storage material for the Ondol system
[110]; prefabricated concrete slab with encapsulated PCMs [114]; and PCM-con-
crete mixture layers [115, 116]. The second direction involves the coupling of TABS
with low grade energy sources, owing to the efficient heat transfer between HTF and
room air even with small temperature gradient. The investigated low-grade energy
sources include solar air collectors [117, 118], solar-collected walls [119], building-
integrated photovoltaic-thermal (BIPV/T) system [120–122], ground source [123,
124, 205], and natural wind [125, 126]. Finally, the control strategies for TABS
should be carefully determined, which directly affect the comfort conditions and
energy saving potential [127]. Supply temperature control with heating and cooling
curves is common for most TABS. More advanced controls use heating curves as the
base of its control for the determination of the energy to be supplied and the periods

Fig. 5 Schematic view of Korean under-floor heating system Ondol [111]. Similar principles may
also be found in other contraries such as ancient Romaine’s Hypocaust or Chinese Kang
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of activation. Detailed information on the simulation and control strategies of TABS
is provided in the review paper by Romani et al. [127].

Solar Walls
Solar walls, also named as Trombe walls, usually refer to the building envelope walls
which are specially designed to absorb solar rays and store thermal energy, so as to
reduce a building’s energy consumption. If properly installed, a solar wall could be
an important green architectural feature that reduces a building’s energy consump-
tion up to 30% [128].

The basic principle of a classic or standard solar (Trombe) wall can be tracked
back to the Gangway vernacular architecture of the Persian Gulf [129] and was again
popularized in modern buildings by a French engineer Felix Trombe in the late
1950s [130]. It uses high heat storage capacity materials (e.g., concrete, brick,
stones, etc.) as the external wall of a building, which is covered by an exterior
glazing with an air space of several centimeters between both components (Fig. 7).
The black-painted surface of the wall absorbs diffused and direct solar radiation
during the day and transfers the heat to the heavy thermal mass of the wall by
conduction. The stored heat could be released gradually when needed through
radiation and convection. Air flow in the gas produced by natural or forced convec-
tion usually enhances the heat transfer and improves the thermal comfort of the
building.

Standard solar wall can be modified into different configurations depending on
different purposes and environment conditions. The conceptual evolution could
involve natural ventilated or mechanically ventilated [132], vented or unvented
[133], south faced or angled [134], light or dark colored [135, 207], external or
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Fig. 6 Different types of prefabricated TABS. (a) hollow core slab [206]; (b) pipe-embedded
building envelope [112]; (c) concrete core [113]
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internal insulated [136–139; etc.], pure air circulated in the air gap or with fluidized
particles added [140].

One development trend is the solar wall having several different layers, also called
as composite Trombe wall. Besides the thermal mass layer (e.g., concrete), the
combination could include a water layer [141], another concrete layer with forced
air ventilation between two layers [142], PCM plasterboards or bricks [143–145]
(Fig. 8a), PCM layer with delta winglet vortex generators [110], or coupled layer of
PCM and transparent insulation material (silica aerogels) [146]. The main purpose is
to increase the heat storage capacity while reduce the thermal losses. Another
innovative development is the PV-Trompe wall (Fig. 8b), in which the front side of
the glazing is composed of PV panels [147–149]. The use of PV panels instead of
glazing would unfortunately reduce the solar heat gain. However, the cooling of PV
panels will increase its efficiency in electricity generation. This conception is also
referred to as BIPV/T systems.

Further studies in terms of heat storage are suggested on the determination of the
optimal thickness of various materials, such as stone, brick, adobe, concrete, etc., for
different climate regions [130]. The coupling with other renewable heat sources is
also an issue that needs further efforts.

Long-Term Sensible TES Technologies

Sensible TES technologies can not only be used for short-term (daily) storage in
buildings but also for a longer period, i.e., more than several months for inter-
seasonal storage. The main purpose is to store the excessive heat in summer season
for supplementing the heating demands during winter, or vice-versa, to store exces-
sive cold in winter for the space cooling during next summer. In this regard, the heat
source for seasonal TES is in general the solar energy while the cold source is usually
the ice or snow produced in nature due to cold weather. The key issue is then how to
reduce the thermal losses during the long storage period, i.e., to maintain the
temperature of the sensible storage materials. Otherwise, these technologies will

Storage wall Storage wall

a b c

Warm air

Exterior
glazing

Ventilated
air layer

Storage wall

Closed vent

Room air

Exterior
glazing

Ventilated
air layer

Room air

Non-ventilated
air layer

Exterior
glazing

Fig. 7 Various configurations of a solar wall: (a) without ventilation; (b) winter mode with air
thermo-circulation; (c) summer mode with cross ventilation [131]
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have low energy efficiency thus not be profitable. Since increasing the storage size
reduces the loss-to-capacity ratio [151], the development of seasonal TES technol-
ogies has been aimed at large-scale district heating and cooling plants instead of
single house or apartment.

Generally speaking, there are different ways of sensible seasonal TES. The most
common technologies are: water (hot or chilled) tank TES, aquifer TES, borehole
TES, and water-gravel TES, as shown in Fig. 9. Among them, the first three use
liquid (water) as storage material, the last one (borehole) belongs to the type of
sensible solid storage, while water-gravel TES is a combination of liquid and solid
storage.

Water Tank
Water tanks still have the widest range of utilization possibilities for seasonal TES.
They are usually made of stainless steel or reinforced concrete with insulations at
least at the top of the tank and on the vertical walls [153, 154], partially or totally
buried underground [155, 156] or outside of a building [157]. Both hot water and
chilled water [19, 158] may be stored in the tank, for the purpose of heating or

Fig. 8 Hybrid solar wall: (a)
composite Trombe wall with
PCM layers [145]; (b)
combined PV-Trombe wall
[150]
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cooling in the next season. Some demonstration projects for buildings with available
details on seasonal water storage tanks are presented in Table 3.

Maintaining the temperature stratification inside the water tank is again a key
issue for the storage system efficiency. In addition to measures introduced in 4.1.1,
multiple charging/discharging [152] was also proposed instead of conventional two
levels for charging and discharging (on the top and at the bottom). More precisely, a
third charge/discharge device was introduced at variable height in the middle of the
water tank, permitting simultaneous charging and discharging at different tempera-
ture levels without disturbing much the temperature stratification.

Another research of interest in water tank seasonal TES lies in the insulation
materials and methods so as to reduce the heat losses. Some efforts on this point can
also be found in Table 3 and in Fig. 10, in connection with the water tightness issue
and vapor leakage problem. An optimization method has also been proposed by
[160] for determining the optimal amount and distribution of thermal insulation on
the water storage tanks to reduce heat losses and improve the cost-effectiveness. A
life-cycle assessment of a European apartment building using water tank seasonal
TES is performed by [161].

Gravel-Water
The gravel-water seasonal TES concept is similar as the water tank TES but both
water and rock/gravel are used as storage mediums. The pit/tank is usually buried
underground with insulations on the top and on the side walls so as to reduce thermal
losses, as shown in Fig. 11. This type of storage is also named as man-made or
artificial aquifer [169]. Pipes are usually installed in different layers of the store for
the circulation of HTF to release or absorb heat. Since the gravel-water mixture has
lower specific heat than pure water, the volume of the whole basin should be
approximately 50% larger compared to water tank TES to obtain the same storage
capacity [169]. On the contrary, the lower costs of the envelop structure and storage
medium (rock, gravel, sand, etc.) make the gravel-water TES much cheaper. As a

Fig. 9 Different types of sensible seasonal TES [152]
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result, it also finds its place in for large-scale applications in district heating/cooling
plants. Table 4 presents some key parameters of the gravel-water seasonal TES
systems realized in Europe.

Aquifer
An aquifer is a geological formation that contains groundwater and permits signif-
icant amounts of water to move through it (Bear 1979). Different from the artificial
water tank seasonal TES, aquifer TES relies on the natural aquifer layer, avoiding
expensive investments of underground excavation and the construction. It was
considered as a “promising cost-effective option” for seasonal storage [171].

In an aquifer TES system, the groundwater saturation zone is used for heat
storage purposes. It usually consists of at least two thermal wells drilled into the
aquifer – one is called the hot well and the other the cold well. During summer

Fig. 10 Insulating techniques for water tank TES systems in Friedrichshafen (left) and Hannover
(right) [159]
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when space cooling is needed, cold water is extracted from the cold well by pumps,
heated by the chosen heat source and rejected into the warm well. The circulation is
reversed during winter when heating is required, i.e., hot water is extracted from
the warm well, cooled and re-injected into the cold well. Due to the large site
requirements, aquifer TES technology is more suitable for large scale district
heating and cooling plants rather than single family houses or apartments with
small loads.

For aquifer TES, geological conditions at the site are the decisive factors. Some
expected features include: high ground porosity, medium to high hydraulic trans-
mission rate around the boreholes, minimum ground water flow through the reser-
voir, chemical stable for the interactions between ground water and the matrix, etc.
Moreover, a good knowledge of the mineralogy, geochemistry, and microbiology in
the underground is necessary to prevent damage to the system caused by well-
clogging, scaling, etc. [152, 173]. Table 5 presents some key parameters of the
aquifer TES systems realized in Germany.

One of the research focuses lies in the influence of groundwater on the effi-
ciency of aquifer TES. Nagano et al. [175] found that large-scale natural convec-
tion could occur when high-temperature water is injected into the warm well,
which will influence the forced horizontal flow in the saturated porous medium.
Zhou et al. [176] numerically studied the influences of the direction and velocity of
groundwater on the underground temperature field. They concluded that the
groundwater horizontal downstream is favorable to improve the efficiency of
combined heat pump and aquifer storage system. Therefore, rational arrangement
of well groups should be further considered in the future to achieve a more
advantageous effect of groundwater horizontal downstream in practical engineer-
ing. Nevertheless, Yapparova et al. [177] found that ground water does not affect
the storage efficiency significantly when double concrete walls are provided as
thermal insulator.

Fig. 11 Construction of the
gravel-water TES in Steinfurt,
Germany [159]
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Another research hotspot is on the thermal interference between hot and cold
wells in an aquifer or in a number of aquifers in an area on the storage efficiency.
Kim et al. [178] numerically found that thermal interference grows as the borehole
distance decreases, as the hydraulic conductivity increases, and as the pumping/
injection rate increases. Yapparova et al. [177] reported that storage efficiency
increases with the distance between injection and production wells and decreases
with increasing injection temperature. Meanwhile, Bakr et al. [179] investigated 19
aquifer TES systems with a total of 76 functioning wells installed in an area of
3.8 km2 in the Netherlands. They reported that interference among individual wells
of an aquifer TES system and wells of other systems may have a positive impact on
the efficiency of a well/system since it can help in trapping energy (cold or warm)
within the capture zone of all operating aquifer TES systems. Sommer et al. [180]
further developed an optimization method for determining the optimal well dis-
tances/spatial pattern of large-scale aquifer TES, so as to avoid negative thermal
interference and to improve the efficiency of the storage system. A recent numerical
study [181] revealed the negative thermal interference caused by the premature
thermal breakthrough when the thermal front (generated by the thermal injection)
reaches the production well. They also found that permeability of the confining
rocks, well spacing, and injection temperature are important parameters which
influence transient heat transport in the subsurface porous media. It should be
noted that the researches on this topic usually use numerical simulation methods,
while field experimental measurements are still rare.

The most promising direction for the future development of aquifer TES is the
combination with other heat/cold sources/equipment. In essence, heat pump is
usually combined with the aquifer TES in order to reach higher heat source
temperature and maintain the storage water at a relatively lower temperature, as
shown in Fig. 12. Paksoy et al. [203] found a 60% increase in COP of the
combined heat pump and aquifer TES system, when compared to that of a
conventional heat pump using ambient air. Ghaebi et al. [182] revealed that the
combination of the aquifer TES with the heat pump, to meet both cooling and
heating needs of the complex, is an efficient way for building applications. Hill
and DeHouche [183] studied the employment of aquifer TES in combination with
a commercial water to air heat pump in Afghanistan. They predicted that the
annum fuel saving could reach £335,000 with a payback period of less than
2 years. The application of the concept for heating and cooling in buildings is
reported, such as for a hospital in Belgium [184]; an office building in Scarbor-
ough, Canada [185]; residential and commercial buildings in Rastatt, Germany,
with a storage volume of 23,000 m3 [186]; and multi-family houses in Rostock,
Germany, with a storage volume of 20,000 m3 [152]. More details on the heat
pump coupling may be found in the review paper [187]. Recently, Xiao et al. [188]
investigated the feasibility of the combination of an aquifer TES and the cooling
tower of a seasonally running thermal plant. They found that the aquifer TES
system could be optimized by locating the cool water supply well upstream of the
storage well.
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Borehole
Borehole TES uses the ground (rock, sand, soil, etc.) itself as heat storage material,
which usually comprises vertically or horizontally drilled boreholes in the ground. It
is also called as ground/soil storage or duct heat storage in the literature. Tubes are
filled in boreholes (also called borehole heat exchangers) through which the HTFs
(usually water or glycol if necessary) circulate to release into or absorb heat from the
ground. Different types of borehole heat exchangers are used, such as single U-pipe,
concentric-pipe, or double U-pipe, as shown in Fig. 13. The top cover of the
borehole system should be insulated to reduce heat losses while there is no specific
boundaries underground [189]. Due to the small temperature difference between the
ground and the HTF for borehole TES systems, the combination with heat pumps is
usually recommended to improve the efficiency of the whole system [187].

One of the important issues for borehole TES systems is the control of heat
transfer underground: the heat exchange between the HTF inside the tube and the
surrounding ground should be enhanced while the heat conduction away from the
reservoir (thermal losses) should be reduced. The influencing factors could include
the thermal properties of the materials, the arrangement/configuration of tubes, and
the geochemical conditions of the location. Some favorable features for a successful
borehole TES are rock/soil with high specific heat, medium thermal conductivity,
good contact between the tubes and the surrounding soil and favorable groundwater,
etc. Lanini et al. [189] also proposed some design guidelines including the definition
of spatial distribution by a cylindrical volume with a diameter twice its height, the
depth limitation of borehole at 100 m, and a constant distance (5 m) between two

Warm
well

Cold
well

HP
DHW

Collectors

Aquifer

Fig. 12 Aquifer TES combination with a heat pump and solar thermal collectors [187]
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boreholes. The possibility of thermal energy storage in shallow trenches filled with
encapsulated PCMs is also studied by [191].

Some efforts in the literature focused on reducing the contact thermal resistance
between the pipes and the borehole wall by using filling grouting materials with high
thermal conductivity. These grouting materials include bentonite or high solid
composite (such as 9% blast furnace cement, 9% Poland cement, 32% fine silica
sand, and 50% water) [192], water alone [193], and a composite material with
graphite additive [194].

Borehole TES concept has received considerable attention for large-scale sea-
sonal TES plants owing to its adaptive feature (no specific requirements for the
locations) and its possibility for a modular design [152]. Due to its lower energy
storage density than water-based TES concepts, a borehole TES system requires 3–5
times more volume to reach the same amount of stored energy. The payback time
estimated ranges between 5 and 10 years, which is also higher than that of aquifer
TES systems, mainly due to the significantly high initial cost (cost of borehole tubes
and ground work) and the long time to reach typical performance [195]. Table 6
presents the technical data for some typical seasonal TES plants using borehole
technology.

Comparison between Different Sensible Seasonal TES Technologies
Based on the above discussion, it may be seen that different sensible TES technol-
ogies have been already widely applied for seasonal storage, preferentially in large-
scale heating/cooling plants than in single-family houses. This is because the
investment cost (per water equivalent) decreases as the storage volume increases
[159]. The costs of water-tank or gravel-water concepts are relatively higher due to
the construction of water tank/pit and the ground work. Borehole and aquifer TES

Single U-pipe
Pipe diameter = 25-32 mm

Width = 50-70 mm

Simple Coaxial
External diameter = 40-60 mm

Complex Coaxial
Max. width =70-90 mm

Double U-pipe
Pipe diameter = 25-32 mm

Max. Width = 70-80 mm

Fig. 13 Different
configurations of borehole
heat exchangers [190]
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technologies are relatively cheaper in terms of initial cost but depend strongly on the
geological conditions for their installation. Moreover, the influences of the drilled
boreholes or aquifers on the underground hydro-geological and microbiological
situations after yearly usage still need to be further investigated. Table 7 summaries
the characteristics of each sensible seasonal TES technology and gives a comparison
on their advantages and limitations.

Several R&D problems still exist. Firstly, how to adjust the thermal interference
(stratification) when heat or cold is charge into or discharged from the store requires
further efforts of researchers. Secondly, the development of cost-effective insulation
materials to reduce the thermal loss during the storage period is quite important.
Since for seasonal TES, the temperature of heat stored is usually low and not
sufficient to be directly used for space heating or DHW generation. The temperature

Table 6 Technical data on the seasonal borehole TES plants

Plant
Heated living
area (m2)

Solar
collector
area (m2) Borehole storage volume (m3) REF

Neckarsulm
Germany

20,000 5470 63,360 (doubled in U-shape duct
of 30 m deep)

[152]

Attenkirchen
Germany

30 homes 863 500 (hot water) þ
10,500 (borehole) (90 borehole
double-U-loops of 30 m deep)

[196]

Crailsheim
Germany

School and
gymnasium

7300
(vacuum
tubes)

37,500 (double U-pipes, 80
boreholes with a depth of 55 m)

[197]

Anneberg
Sweden

50 residential
units

2400 60,000 (crystalline rock; double
U-pipes; 100 boreholes with a
depth of 65 m)

[195]

Lidköping
Sweden

2500 15,000 (clay) [186]

Kungsbacka
Sweden

School building 1500 85,000 [197]

Drake
landing solar
community
Canada

52 homes 2313 33,657 (144 boreholes with a
depth of 35 m)

[192]

Treviglio
Italy

Residential area 2727 43,000 [186]

Groningen
Netherlands

Residential area 2400 23,000 [186, 197]

Kranebitten
Austria

400 60,000 [198]

Shanghai
China

2304
(greenhouse)

500
(vacuum
tube)

4970 (130 U-pipes at a depth of
10 m)

[204]

Harbin
China

500 (detached
houses)

50 5100 (12 single U-pipes at a
depth of 50 m)

[199]
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Table 7 Comparison between different technologies of sensible seasonal TES [187, 204]

Concept Water tank Gravel-water Aquifer Borehole

Storage
medium

Water Gravel and
water

Water – Sand/
gravel

Soil, rock, sand, etc.

Storage
capacity
(kWh/m3)

60–80 30–50 30–40 15–30

Storage
volume
(1 m3 water
equivalent)

1 1.3–2 2–3 3–5

Geological
requirements

–stable ground conditions
–preferably no ground water
–5–15 m deep

–natural aquifer
layer with high
hydraulic
conductivity
(kf > 1x10�5 m/s)
–confining layers
on top and bottom
–no or low natural
groundwater flow
–suitable water
chemistry at high
temperature
–aquifer thickness
between 20 and
50 m deep

–drillable ground
–groundwater
favorable
–medium to high
thermal conductivity
–high heat capacity
�30–100 m deep

Advantages – Can be
built at
almost any
location
– Most
common
system
– No special
geological
condition
requirements
– High
stratification
– High heat
capacity
– Easy
installation

– Can be built
almost
everywhere
– No special
geological
condition
requirements
– More cost
effective than
water tank
– Leaving
natural aquifer
untouched

– Cost effective
– Can be used for
both heating and
cooling
– Ability to
produce direct
cooling without
using any
supporting device
– Low
maintenance cost
– Much more
efficient heat
transfer compared
to borehole TES

– Can be used for both
heating and cooling
– for vertical borehole
(30–200 m depth with
the spacing of about
2–4 m), less surface
area is needed
– less sensitive to
outdoor climate due to
constant ground
temperature
– For horizontal duct
(at depth of 0.8 to
1.5 m), less excavation
is needed thus lower
cost
– Feasible for very
large and very small
applications

(continued)
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upgrading via the coupling with a heat pump system or a supplementary boiler is
indispensable. Hence, the system integration/regulation and the control strategy
should be carefully designed and optimized.

Conclusions and Future Directions

This chapter presents currently available technologies by sensible heat for both
short-term and long-term TES for buildings. Based on the literature review, the
following conclusions may be achieved:

• Compared to latent or thermochemical TES, sensible technologies are relatively
simple, easy to handle, cost-effective, and have found their positions in building
applications both for short-term and long-term TES storage.

• Commonly used sensible technologies for daily TES in buildings include water
tank, packed bed, thermal mass, thermally activated building system, and solar
wall. They are oriented for both single-family houses and for multiple-family
districts. The most developed and widely used is water tank, whereas others are
good complementary depending on locations, weather conditions, or buildings.
The development of super insulation for water tanks and the methods to maintain
the thermal stratification inside the tank are currently the main R&D focuses.

• Commonly used sensible technologies for seasonal TES in buildings include
water tank, gravel-water, aquifer, and borehole technologies. From the economic
point of view, they are more cost-effective for large-scale applications. The
selection of the technology mainly depends on the hydro-geological conditions
of the sites. The main R&D focuses are the system integration/regulation when
they are coupled with renewable sources or heat pumps.

Table 7 (continued)

Concept Water tank Gravel-water Aquifer Borehole

Limitations – High cost
in buried
water tank
– High
thermal loss
– Corrosion
– Leakage

– High cost
– Low
stratification
due to high
thermal
conductivity
– Leakage
– Needs 1.3–2
times larger
storage volume
compared to
water tank

– Needs special
geological
conditions
– High thermal
loss due to no
thermal insulation
– Needs 2–3 times
larger storage
volume compared
to water tank
– Clogging effects
– Long initial
process due to
extensive
geological
investigation

– Needs 3–5 times
larger storage volume
compared to water tank
– Not suitable for all
locations with ground-
water flow
– Needs drillable
ground
– High initial cost
– 3–4 years needed to
reach typical
performance
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Table 8 provides an estimation of IEA on the current status of development for
sensible TES technologies (Adapted from Ref. [200]).

Several directions for the future development are also identified for sensible TES,
for the purpose of augmenting its market share for building applications.

• Coupling with PCMs (layers, encapsulates, etc.) to improve the energy density.
• Coupling with variable heat sources, especially renewable heat sources.
• Coupling with heat pumps for its temperature up-grading, especially for seasonal

storage.
• System integration, optimized control strategy for best energy savings.
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