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Abstract The mechanical behavior of biological cells is largely determined by
their cytoskeletons; abnormal cellular functions can change cytoskeletons, leading
to variations in cellular mechanical properties. This chapter begins with a summary
of the relationships between cellular mechanical properties and various disease
processes and changes in cell states: (1) changes in stiffness of red blood cells in
cytoskeletal disorders, such as malaria and sickle cell anemia; (2) increased cell
deformability of invasive cancer cells, compared with benign counterparts; (3) in-
creased stiffness of leukocytes in sepsis; and (4) decreased deformability during the
stem cell differentiation process. In the following section, we discuss the
well-established techniques that are being used to measure the mechanical prop-
erties of single cells, including atomic force microscopy and micropipette aspira-
tion. Finally, we describe the microfluidic approaches—including microfluidic
constriction channels, microfluidic optical stretchers, and microfluidic hydrody-
namic stretchers—that are being developed as next-generation, automated, and
high-throughput techniques for characterization of the mechanical properties of
single cells. The advantages and limitations of each technique are compared and
future research opportunities are highlighted.
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1 Introduction

The mechanical behavior and properties of a eukaryotic cell are largely determined
by the characteristics of its cytoskeleton, an elaborate network of fibrous proteins [1,
2]. More specifically, the deformability of nucleated cells is determined by the
membrane, the cytoskeletal network (actin filaments, intermediate filaments, and
microtubules), and its interaction with the nucleus. Incompressible viscoelastic
solids with key parameters of Einstantaneous and Eequilibrium are proposed to model
these nucleated cells. As to the deformability of red blood cells (RBCs), it is
determined by the membrane skeleton network, which is modeled as cortical
shell-liquid core (or liquid drop) models [3]. Abnormal cellular functions can
change cytoskeletons and lead to variations in mechanical properties of cells [4, 5].

This chapter summarizes the relationships between cellular mechanical proper-
ties and various disease processes and changes in cell states, including (1) changes
in stiffness of red blood cells in cytoskeletal disorders, such as malaria and sickle
cell anemia [6, 7]; (2) increased cellular deformability of invasive cancer cells,
compared with benign counterparts [8–10]; (3) increased stiffness of leukocytes in
sepsis [11]; and (4) decreased deformability during the stem cell differentiation
process [12–14].

In the following section, we discuss the well-established techniques that are
being used to measure cellular mechanical properties, including atomic force
microscopy (AFM) [15–24] and micropipette aspiration [25]. In addition, we
describe the emerging microfluidic approaches (e.g., constriction channels, optical
stretchers, hydrodynamic stretchers) for the characterization of cellular mechanical
properties [26–29].

2 Cellular Mechanical Properties with Various Cell States

2.1 Red Blood Cell Disorders

Malaria is currently one of the world’s most threatening diseases, infecting about
200 million people and leading to roughly 2,000 deaths per day [30, 31]. Malaria
infection is caused by a single-cell parasite of the genome of Plasmodium [32]; after
parasite invasion, red blood cells undergo extensive structural and molecular
changes during a 48-h intra-erythrocytic cycle, leading to decreases in cellular
deformability and increases in cellular adhesiveness [4, 5, 33]. The changes in the
mechanical properties of red blood cells after P. falciparum infection have been
probed using micropipette aspiration [34–36], optical tweezers [33, 37, 38], and
microfluidic constriction channels [39–41]. The stiffness of red blood cells with the
P. falciparum infection is approximately nine times that of their healthy counter-
parts [33]; the stiffer infected red blood cells were found to irreversibly block the
passage of normal red blood cells when they were forced to travel through
microfluidic constriction channels [39].
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Sickle cell anemia is a hereditary blood disorder where changes in the molecular
structure of hemoglobin result in stiffer sickle or crescent-shaped red blood cells,
giving rise to circulation problems and depriving tissues and organs of oxygenated
blood [42–45]. Studies of cell mechanics using, for example, micropipette aspira-
tion [46–51], have been performed to probe the changes in mechanical properties of
sickle-shaped red blood cells; red blood cells from sickle cell anemia patients are
stiffer and more viscous when compared with the healthy red blood cells [52, 53].

2.2 Tumor

Cancer is currently one of the leading causes of death worldwide, with roughly 14
million new cases and more than 8 million deaths in 2012 [54]. Cancer is a disease
that results from rapid, unrestricted, and uncontrolled proliferation of abnormal
cells, due to dysregulation of the cellular signaling pathways that control cell
proliferation and apoptosis—generally caused by mutations in genes that express
key proteins involved in these biochemical reactions [55, 56].

Cancer is also accompanied by specific changes in the mechanical properties of
cells [8, 10, 57], which have been probed using micropipette aspiration [58–62],
AFM [63–90], magnetic twisting cytometry [91], microfluidic optical stretchers
[92, 93], microfluidic constriction channels [94–97], and microfluidic hydrody-
namic stretchers [98]. Experimental findings have revealed that cellular stiffness
decreases significantly with malignant transformation in a variety of cancers,
including breast cancer, lung cancer, renal cancer, prostate cancer, oral cancer, and
skin cancer (see Table 1).

2.3 Leukocyte Activation in Sepsis

Sepsis is a progressive, injurious, inflammatory response to overwhelming infection
associated with tissue hypoperfusion and multiorgan dysfunction [99, 100].
Neutrophils are crucial components of the innate immune response during sepsis,
releasing important regulatory cytokines and contributing directly to antimicrobial
killing. In patients with sepsis, reprogramming of neutrophil occurs, manifested by
impaired recruitment of neutrophils to sites of infection, abnormal accumulation of
neutrophils to remote sites, and dysregulation of neutrophil effector responses [11,
101, 102]. Changes in neutrophil rigidity and sequestration during sepsis have also
been reported, leading to neutrophil accumulation in capillary beds, particularly in
the lung and liver sinusoids. The changes in the mechanical properties of neu-
trophils have been probed using polymeric filters [101, 103], micropipette aspira-
tion [104–106], and microfluidic constriction channels [107–109]. The results have
confirmed that leukocyte deformability decreases in patients with sepsis, and that
this change negatively affects the rheological properties of whole blood.
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Table 1 Key developments in the field of mechanical phenotypes of tumor cells

Cell types Techniques and
quantified parameters

Key results

Normal rat embryo fibroblasts
(CREF) and CREF transfected
with T24 ras oncogene (CREF
T24)

Micropipette
aspiration + Einstantaneous

and Eequilibrium

The CREF T24 cells were 50 %
more deformable than CREF
cells [62]

Two normal cells of Hu609 and
HCV29 and two bladder
cancerous cells of T24 and
BC3726

AFM + Eelastic (elastic
modulus)

Values of Eelastic of Hu609,
HCV29, T24, and BC3726 cells
(ca. 20 cells per type) were
12.9 ± 4.8, 10.0 ± 4.6, 1.0 ± 0.5,
and 1.4 ± 1.0 kPa, respectively
[81]

Normal hepatocytes and
hepatocellular carcinoma cells
(HCC)

Micropipette
aspiration + Einstantaneous

and Eequilibrium

Values of Einstantaneous and
Eequilibrium of normal
hepatocyptes (n = 24) were
181 ± 34 and 131 ± 18 Pa,
respectively; for HCC (n = 30)
they were 219 ± 34 and
155 ± 19 Pa, respectively [60]

Breast benign cell line of
MCF-10; malignant tumor cells
of MCF-7, mod-MCF-7,
MDA-MB-231, and
mod-MDA-MB-231

Microfluidic optical
stretcher + optical
deformability

Optical deformabilities of
MCF-10 (n = 36), MCF-7
(n = 26), mod-MCF-7 (n = 21),
MDA-MB-231, and
mod-MDA-MB-231 cells were
10.5 ± 0.8, 21.4 ± 1.1,
30.4 ± 1.8, 33.7 ± 1.4, and
24.4 ± 2.5, respectively [93]

Human benign reactive
mesothelial cells and metastatic
tumor cells in human pleural
fluid samples

AFM + Eelastic Values of Eelastic of tumor cells
(n = 8 for each patient sample)
and benign mesothelial cells
(n = 8 for each patient sample)
were 0.53 ± 0.10 and
1.97 ± 0.70 kPa, respectively
[83]

Prostate tumor cell lines of
LNCaP, PC-3, and BPH

AFM + Eelastic Values of Eelastic of LNCaP
(n = 52), PC-3 (n = 53), and
BPH cells (n = 47) were
287 ± 52, 1401 ± 162, and
2797 ± 491 Pa, respectively [87]

Breast benign cell line of
MCF-10A and malignant tumor
cells of MCF-7

AFM + Eelastic MCF-7 cells had a value of
Eelastic significantly lower
(1.4–1.8 times) than that of
MCF-10A cells [88]

Breast benign cell line of
MCF-10A and malignant tumor
cells of MCF-7

Microfluidic constriction
channel + entry time and
transit velocity

MCF-10A cells had a longer
entry time than MCF-7 cells, but
a comparable transit velocity
[97]

(continued)
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Table 1 (continued)

Cell types Techniques and
quantified parameters

Key results

Breast tumor cell line of MCF-7
and cervical tumor cell line of
HeLa

AFM + Eelastic Values of Eelastic of MCF-7 and
HeLa cells (n > 15) were within
the ranges 20–30 and 100–
200 kPa, respectively [89]

Prostate tumor cell lines of
LNCaP and PC-3

AFM + Eelastic Values of Eelastic of LNCaP and
PC-3 were < 2.0 and 3.0–
4.5 kPa, respectively [85]

Normal squamous, metaplastic,
and dysplastic cell lines of
EPC2, CP-A, and CP-D

AFM + Eelastic Values of Eelastic of EPC2
(n = 18), CP-A (n = 10), and
CP-D (n = 19) cells were 4.7,
3.1, and 2.6 kPa, respectively
[90]

Breast cell lines of MCF-10,
MCF-7, and MDA-MB 231;
lung cell lines of A431 and
A125; skin cell lines of Te354.T
and MeWo; colon cell lines of
Hacat and SW480; cervical cell
lines of Me180 and Ms751

AFM + Eelastic Values of Eelastic of MCF-10
(n = 22), MCF-7 (n = 25),
MDA-MB 231 (n = 35), A431
(n = 26), A125 (n = 26), Te354.
T (n = 23), MeWo (n = 24),
Hacat (n = 23), SW480 (n = 23),
Me180 (n = 23), and Ms751
(n = 23) were 478 ± 69,
425 ± 31, 341 ± 41, 374 ± 64,
265 ± 35, 352 ± 59, 319 ± 53,
384 ± 55, 466 ± 77, 540 ± 75,
and 471 ± 53 Pa, respectively
[77]

Ovarian surface epithelial
(OSE) cells

AFM + Eelastic Values of Eelastic of early and
late-stage OSE cells were
1.097 ± 0.632 and
0.549 ± 0.281 kPa, respectively
[75]

Metastatic B16 melanoma
variants, including B16-F10,
B16-BL6, and B16-F1

AFM + Eelastic Values of Eelastic of B16-F10,
B16-BL6, and B16-F1 cells
were 350.8 ± 4.8, 661.9 ± 16.5,
and 727.2 ± 13.0 Pa,
respectively [72]

Ovarian cell lines of IOSE,
HEY, HEY A8, OVCAR-3, and
OVCAR-4

AFM + Eelastic Values of Eelastic of IOSE
(n = 55), HEY (n = 60), HEY
A8 (n = 59), OVCAR-3
(n = 20), and OVCAR-4
(n = 18) cells were
2.472 ± 2.048, 0.884 ± 0.529,
0.494 ± 0.222, 0.576 ± 0.236,
and 1.120 ± 0.865 kPa,
respectively [71]

Brain normal human glial cells,
tumor cell lines of A172 and
1321N1

Microfluidic constriction
channel + entry time and
transit velocity

Brain tumor cells had shorter
entry time than benign
counterparts [95]
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2.4 Stem Cell Differentiation

Stem cells have unique capacities to regenerate functional tissues continually for the
lifetime of an organism [110, 111]. Realization of the potential of stem cells for
tissue engineering requires characterization of their unique biological, biochemical,
and proteomic properties, which have yet to be fully elucidated [112]. Changes in
mechanical properties of cells have been reported during stem cell differentiation
[13, 14], as probed using micropipette aspiration [113–115], AFM [116–120], and
microfluidic hydrodynamic stretchers [98]. Significant decreases in cellular
deformability have been observed for differentiated stem cells, compared with their
undifferentiated counterparts (see Table 2).

Table 2 Key developments in the field of mechanical phenotypes of stem cells

Cell types Techniques and quantified
parameters

Key results

Human adipose–derived
adult stem cells, bone
marrow–derived
mesenchymal stem cells,
primary chondrocytes, and
osteoblasts

AFM + Einstantaneous and
Eequilibrium

Values of Einstantaneous and
Eequilibrium of osteoblasts
(n = 43), chondrocytes
(n = 50), adult stem cells
(n = 52), and mesenchymal
stem cells (n = 67) were
6.5 ± 2.7 and 4.5 ± 2.3 kPa,
1.8 ± 1.7 and 1.0 ± 1.6 kPa,
2.5 ± 1.2 and 1.7 ± 1.1 kPa,
and 3.2 ± 2.2 and
2.3 ± 2.1 kPa, respectively
[116]

Human bone marrow–
derived mesenchymal stem
cells

Micropipette
aspiration + Einstantaneous and
Eequilibrium

Values of Einstantaneous and
Eequilibrium of human
mesenchymal stem cells
were 518 ± 280 and
126 ± 81 Pa, respectively
[113]

Human embryonic stem cells
with chondrogenical
differentiation; primary
articular chondrocytes

Unconfined creep
cytocompression + Einstantaneous

and Eequilibrium

Values of Einstantaneous and
Eequilibrium of human
embryonic stem cells
(n > 10), chondrogenically
differentiated human
embryonic stem cells
(n > 10), and articular
chondrocytes (n > 10) were
0.53 ± 0.33 and
0.37 ± 0.20 kPa, 1.83 ± 0.75
and 1.09 ± 0.44 kPa, and
1.33 ± 0.37 and
1.14 ± 0.31 kPa, respectively
[121]

(continued)
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Table 2 (continued)

Cell types Techniques and quantified
parameters

Key results

Human mesenchymal stem
cells with adipogenesis or
osteogenesis

Micropipette
aspiration + Einstantaneous and
Eequilibrium

Values of Einstantaneous and
Eequilibrium of
undifferentiated human
mesenchymal stem cells,
stem cells with adipogenesis,
and stem cells with
osteogenesis were 466 ± 87
and 116 ± 15 Pa, 420 ± 52
and 87 ± 23 Pa, and
890 ± 219 and 224 ± 40 Pa,
respectively [114]

Undifferentiated and early
differentiating mouse
embryonic stem cells

AFM + Eelastic Values of Eelastic of
undifferentiated (n > 10) and
early differentiating mouse
embryonic stem cells
(n > 10) were 1.49 ± 0.09
and 16.07 ± 1.48 kPa,
respectively, when using a
pyramidal tip, and
0.2176 ± 0.015 and
0.4473 ± 0.036 kPa,
respectively, when using a
spherical tip [117]

Undifferentiated and early
differentiating mouse and
human embryonic stem cells

Microfluidic hydrodynamic
stretcher + deformability

Deformabilities of
undifferentiated (n = 3535)
and early differentiating
mouse embryonic stem cells
(n = 1046) were 1.68 and
1.54, respectively; for
undifferentiated (n = 2523)
and early differentiating
human embryonic stem cells
(n = 2283), they were 1.82
and 1.59, respectively [98]

Human mesenchymal stem
cells

AFM + Eelastic Values of Eelastic of
mesenchymal stem cells
(n > 10) were 15.4 ± 1.9 kPa
for the cytoplasm and
11.9 ± 2.2 kPa for the
nucleus portions [118]

Human amniotic fluid stem
cells and murine osteoblast
(OB6) cells

AFM + Eelastic Values of Eelastic of human
amniotic fluid stem cells
were 32.9 ± 3.66 kPa for the
cytoskeleton and
13.9 ± 2.25 kPa for the
nucleus portions; for OB6,
they were 42.8 ± 3.44 and
26.9 ± 3.41 kPa, respectively
[119]

(continued)
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3 Established Approaches for Quantifying Cellular
Mechanical Properties

3.1 AFM

Because of increasing interest in the characterization of cellular mechanical prop-
erties, several approaches have been developed (Fig. 1) to quantify the intrinsic
mechanical properties of individual cells [5, 122–124]. Among them, AFM has
been proven to be a valuable tool for probing individual cellular surfaces at specific
locations to measure the localized elasticity (Fig. 1a). Typically, a pyramidal or
spherical probe tip attached to a flexible cantilever is pressed into the cellular
surface for a set distance and then the deflection of the cantilever is measured using
a laser beam, with mathematical models used to estimate the stiffness of the probed
surface [15–24, 125].

Upon changing the external conditions, the change in elasticity of a cell mem-
brane, quantified using AFM, is much greater than the change in the morphology of
the cell, based on the following four factors [74, 88, 126, 127]. The first is the depth
of indentation. For small indentation depths, histograms of the relative values of the
Young’s modulus describe regions rich in the network of actin filaments; for large
indentation depths, however, the modulus represents the stiffness of the whole cell,
typically accompanied by a decrease in its value (see Fig. 2a, b). The second factor
is the effect of the substrate used for cell attachment, potentially leading to different
Young’s moduli for cells originating from the same tumor type (see Fig. 2c). The
third parameter is the load rate, which can lead to significant differences in modulus
after fitting with the Hertz model (see Fig. 2d). The fourth factor is linked to the

Table 2 (continued)

Cell types Techniques and quantified
parameters

Key results

Human adipose–derived
stem cells

AFM + Eelastic Values of Eelastic of live
(n > 10) and dead human
adipose–derived stem cells
(n > 10) were 1.27 and
18.61 kPa, respectively
[120]

Bone marrow–derived
human mesenchymal stem
cells with differentiation
toward smooth muscle cells

Micropipette
aspiration + Einstantaneous and
Eequilibrium

Values of Einstantaneous and
Eequilibrium of differentiating
stem cells toward smooth
muscle cells were
622.9 ± 114.2 and
144.3 ± 11.6 Pa,
respectively—significantly
higher than those values of
undifferentiated stem cells
[115]
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position and time of the cell poking event, because the force curves, recorded at
constant positions, usually manifest a narrow histogram that may not reflect the
stiffness of a whole cell (see Fig. 2e, f).

3.2 Micropipette Aspiration

Micropipette aspiration is a well-established technique that enables determination of
cellular mechanical properties through aspiration of the surface of a cell into a small
glass tube with the leading edge of its surface tracked (see Fig. 1b). Interpretation of
the measured data, using basic continuum models, leads to values for a cell’s elastic
and viscous properties. In particular, based on the equivalent model (e.g., a liquid
surrounded by an elastic cortical shell), neutrophils were found to have a cortical
surface tension of approximately 30 pN/μm and a viscosity on the order of 100 Pa s.
On the other hand, chondrocytes and endothelial cells behave as homogeneous
elastic solids with quantified elastic moduli on the order of 500 Pa [25].

Fig. 1 Techniques enabling characterization of the mechanical properties of single cells. a AFM,
where a sharp tip at the free end of a flexible cantilever generates a local deformation on the cell
surface, an indicator of the cellular mechanical properties. bMicropipette aspiration, where a cell is
deformed by applying suction through a micropipette placed on the surface of the cell to infer the
cellular elastic responses, based on recorded geometrical changes. c A microfluidic constriction
channel, where differences in hydraulic pressure squeeze cells through a channel having a small
cross-sectional area, with the cell’s transit time recorded as an indicator of its mechanical properties.
d A microfluidic optical stretcher, where a two-beam laser trap is formed to serially deform single
suspended cells, under optically induced surface forces, to measure mechanical properties of single
cells. e A microfluidic hydrodynamic stretcher, where the cell under measurement is exposed to
fluid stresses and the corresponding deformations are collected as stiffness indicators
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Fig. 2 Factors influencing the mechanical properties of single cells probed using AFM. a Young’s
moduli determined at tip indentation depths of 100 and 400 nm (nonmalignant HCV29 bladder
cell). b Young’s moduli determined as a function of tip indentation depth [human melanoma cell
lines: WM239 (skin) and WM9 (lymph node metastasis)]. c Influence of surface properties on
Young’s modulus, quantified using AFM (WM35-primary melanoma, and two metastatic cell
lines: WM9 and A375). d Changes in Young’s modulus as a function of the tip scanning rate
(nonmalignant and malignant human bladder cells). e Effect of the relative positions of cell poking
on cellular Young’s modulus (melanoma 1205Lu). f Effect of repeated cell poking on the
quantification of Young’s modulus (nonmalignant and malignant human bladder cells).
Reproduced with permission from ref. [74]. Copyright 2012, Elsevier Ltd
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Compared with AFM, micropipette aspiration deforms a cell in a more global
manner, leading to more accurate characterization of cellular mechanical properties.
Although precise, this technique requires skilled manual operation and proceeds
with very low throughput (<1 cell/10 min) [4]. To address this issue, an automated
micropipette aspiration setup was recently proposed where a micromanipulator, a
motorized translation stage, and a custom-built pressure system to position a
micropipette were controlled with real-time visual feedback to accurately measure
cell deformations online. This system still suffers, however, from the issue of low
throughput, with the mechanical properties reported from only approximately 30
cells for each cell type [128, 129].

4 Emerging Microfluidic Tools for Characterization
of Cellular Mechanical Properties

Microfluidics is a science and technology related to the processing and manipula-
tion of small volumes of fluids (from 10−9 to 10−18 l) in channels having dimen-
sions on the scale of tens of micrometers [130–132]. The micrometer-scale
dimensions of the devices match well with the size of a typical biological cell,
making microfluidics an ideal platform for cell studies [133–137]. More specifi-
cally, microfluidics has been used for characterizing biochemical (e.g., gene and
protein) and/or biophysical (mechanical and electrical) properties of cells at the
single-cell level [138–144].

In the field of microfluidics-based characterization of cellular mechanical
properties, three major approaches have been developed so far [26–29]: micro-
fluidic constriction channels [39–41, 94–97, 145–162] (see Fig. 1d), microfluidic
optical stretchers [92, 93, 163, 164] (see Fig. 1e), and microfluidic hydrodynamic
stretchers [98] (see Fig. 1f). Compared with conventional techniques, these
microfluidic approaches display significantly higher throughput, enabling the col-
lection of data from large numbers of cells.

4.1 Microfluidic Constriction Channel

The microfluidic constriction channel is designed to operate by evaluating the
transition process as cells pass through microchannels having cross-sectional areas
smaller than the dimensions of a single cell (see Fig. 3). An attractive feature of this
technique is the ability to achieve higher throughput than those of conventional
approaches (e.g., micropipette aspiration) for cellular mechanical characterization
(up to ca. 1 cell/s). This technique was first used to evaluate the mechanical
properties of red blood cells [39–41, 145–152, 165], and then further expanded to
study the deformability of white blood cells [153] and tumor cells [94–97, 154].
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Fig. 3 Experimental setup and key application results of microfluidic constriction channels used
for the characterization of cellular mechanical properties. a Schematic and raw experimental
images of a microfluidic constriction channel for the characterization of cellular mechanical
properties, where hydraulic pressure differences squeeze cells through a channel having a small
cross-sectional area, with the cell transit time recorded as an indicator of the mechanical properties.
Reproduced with permission from ref. [157]. Copyright 2014, Elsevier Ltd. b Four sequences of
video images recorded during four stages of malaria-infected red blood cells (early ring stage, early
trophozoite, late trophozoite, schizont) passing through constriction channels. Ring-stage-infected
erythrocytes retained much of the structural characteristics of normal erythrocytes and could pass
through all constricted channels. Early trophozoite and late trophozoite-infected cells passed
through the larger (8 and 6 μm) channels, but eventually blocked the smaller (4 and 2 μm)
channels. Schizont-stage-infected erythrocytes blocked all but the 8 μm channel. The arrows
indicate the direction of flow. Reproduced with permission from ref. [39]. Copyright 2003, the
National Academy of Sciences of the USA. c Models of the cellular entry process into the
constriction channel, enabling quantification of the cortical tensions of blood cells and tumor.
Reproduced with permission from ref. [158]. Copyright 2012, Royal Society of Chemistry.
d Numerical simulations of the cellular entry process into the constriction channel, using a cellular
viscoelastic model, rather than a liquid droplet model, and taking cellular friction with constriction
channel walls into consideration, enabling quantification of the instantaneous Young’s moduli of
single cells. Reproduced with permission from ref. [157]. Copyright 2014, Elsevier Ltd
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Initially, the cellular entry time and transit velocity through the constriction
channel were used as biophysical markers to evaluate the cellular mechanical
properties. These parameters cannot reflect the intrinsic cellular mechanical prop-
erties because they are highly dependent on the cellular sizes. To tackle this issue,
several groups have modeled the cellular entry process into the constriction chan-
nel, with the purpose of translating cell-dependent mechanical biomarkers into
size-independent parameters [155–159].

Lim et al. modeled the cellular entry process into the constriction channel using
numerical simulations, suggesting that the cell entry time depends strongly on the
cortical stiffness [159]. Ma et al. simplified the cellular entry process and quantified
the cortical tension of blood and tumor cells as the first reported use of the con-
striction channel design to characterize size-independent mechanical properties
[158, 160]. Chen et al. used numerical simulations to model the cellular entry
process into the constriction channel, employing a cellular viscoelastic model,
rather than a liquid droplet model, thereby enabling the quantification of the
instantaneous Young’s moduli of single cells [157]. In addition, because small
constriction channels are prone to clogging, constriction channels with adjustable
cross-sectional areas have also been proposed to address the clogging issue to a
certain extent [161, 162].

4.2 Microfluidic Optical Stretcher

In an optical stretcher, a two-beam laser trap is used to serially deform single
suspended cells, through optically induced surface forces, and, thereby, measure the
mechanical properties of single cells (see Fig. 4). This technique has been integrated
with microfluidic channels and operates on spherically symmetrical cells in sus-
pension [92, 93, 163, 164]. It was first used to classify MCF-10, MCF-7, and
mod-MCF-7 cells, revealing a fivefold increase in deformability for cancer cells
relative to benign counterparts [92, 93].

Furthermore, the microfluidic optical stretcher has been used to quantify acute
leukemia cells during differentiation therapy, revealing significant softening of
neutrophils during the differentiation process [163]. In addition, the compliance of
cells from cell lines and primary samples of healthy donors and cancer patients has
been measured using the microfluidic optical stretcher, revealing that cancer cells
were 3.5 times more compliant than cells from healthy donors [164].

The microfluidic optical stretcher does, however, have two significant limita-
tions. First, its throughput remains at approximately 1 cell/min, and it cannot be
improved significantly. This limitation is due to the trade-off between higher optical
forces and increased optical power leading to significant heating of the measured
cells. Second, the quantified cellular deformability is not an intrinsic biomechanical
marker because it depends on the cellular size and the characterization conditions.
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4.3 Microfluidic Hydrodynamic Stretcher

In a microfluidic hydrodynamic stretcher, fluid stresses are generated by elaborately
designing channel geometries, which are used to deform single cells. The rigidity of
RBCs has been investigated using shear flow in narrowing channels [166] and
extensional flow in hyperbolic converging channels [167]. Recently, inertial
focusing is used to deliver cells uniformly to a stretching extensional flow, where
cells are deformed at high strain rates, while a high-speed camera records images
that can be used to extract biophysical parameters (see Fig. 5) [98]. Unlike the
techniques discussed above, this approach is capable of ultrahigh throughput (ca.
1000 cells/s). It has been used to quantify native populations of leukocytes and
malignant cells in pleural effusions; the experimental deformability data can be used
to predict disease states in patients with cancer or immune activation, with a sen-
sitivity of 91 % and a specificity of 86 %.

Fig. 4 Experimental setup of and key results from microfluidic optical stretchers used for the
characterization of cellular mechanical properties. a Schematic representation of a microfluidic
optical stretcher; a two-beam laser trap is used to serially deform a single suspended cell, through
optically induced surface forces, to measure the mechanical properties of the cell. b The optical
deformability of malignantly transformed SV-T2 fibroblasts is significantly higher than that of
normal BALB/3T3 fibroblasts (ODBALB/3T3 = 8.4 ± 1.0; ODSV-T2 = 11.7 ± 1.1). c Optical
deformabilities of three populations of MCF cell lines: ODMCF-10 = 10.5 ± 0.8;
ODMCF-7 = 21.4 ± 1.1; ODmodMCF-7 = 30.4 ± 1.8. d Two populations of MDA-MB-231 cell
lines are clearly distinguishable in the histograms of the measured optical deformability
(ODMDA-MB-231 = 33.7 ± 1.4; ODmodMDA-MB-231 = 24. 4 ± 2.5). Reproduced with permission from
ref. [93]. Copyright 2005, Biophysical Society
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5 Conclusion

Various proof-of-concept approaches have been developed for the characterization
of the mechanical properties of single cells, enabling correlations to be made
between cellular mechanical properties and cellular biophysical statuses.
Nevertheless, to convince the wider cell biology and clinical communities of the
merits of cellular biophysical biomarkers, much research effort remains to be
exerted in the development of both equipment and applications.

For conventional approaches (e.g., AFM and micropipette aspiration) capable of
collecting size-independent intrinsic biophysical markers (e.g., instantaneous and

Fig. 5 Experimental setup of and key results from microfluidic hydrodynamic stretchers used for
characterization of cellular mechanical properties. a Schematic representation, raw experimental
images, and quantified deformability of the microfluidic hydrodynamic stretcher for character-
ization of cellular mechanical properties, where single cells under measurement are exposed to
fluid stresses and the corresponding deformations are collected as stiffness indicators. b,
c Decreased deformability has been correlated with increased stem cell pluripotency for b mouse
embryonic stem cells and c human embryonic stem cells. Reproduced with permission from ref.
[98]. Copyright 2012, the National Academy of Sciences of the USA
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equilibrium Young’s moduli), the issue of low throughout (ca. 1 cell per 10 min)
without the capability of collecting statistically significant data remains problem-
atic. For microfluidic approaches enabling high-throughput characterization of the
biomechanical properties of single cells (ca. 1000 cells/s), the collected parameters
remain dependent on the cell size and experimental conditions (e.g., pressure drop,
channel geometry). Thus, further technical developments remain necessary to
enable characterization of the intrinsic biophysical properties of single cells in a
high-throughput manner.

Furthermore, the correlations between biophysical markers and the biochemical
properties of single cells should be explored further. It is possible to design
experiments to characterize both cellular biophysical (e.g., Young’s modulus) and
biochemical markers, including genetic and protein information, simultaneously,
potentially revealing correlations between these biophysical and biochemical
markers. This process should also provide a comprehensive understanding of cel-
lular status at the single-cell level, paving the foundation for further studies of cell
biology.
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