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Abstract. We initiate the study of cryptography for parallel RAM
(PRAM) programs. The PRAM model captures modern multi-core archi-
tectures and cluster computing models, where several processors execute
in parallel and make accesses to shared memory, and provides the “best
of both” circuit and RAM models, supporting both cheap random access
and parallelism.

We propose and attain the notion of Oblivious PRAM. We present
a compiler taking any PRAM into one whose distribution of memory
accesses is statistically independent of the data (with negligible error),
while only incurring a polylogarithmic slowdown (in both total and par-
allel complexity). We discuss applications of such a compiler, building
upon recent advances relying on Oblivious (sequential) RAM (Goldreich
Ostrovsky JACM’12). In particular, we demonstrate the construction of
a garbled PRAM compiler based on an OPRAM compiler and secure
identity-based encryption.
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1 Introduction

Completeness results in cryptography provide general transformations from arbi-
trary functionalities described in a particular computational model, to solutions
for executing the functionality securely within a desired adversarial model. Clas-
sic results, stemming from [Yao82,GMW87], modeled computation as boolean
circuits, and showed how to emulate the circuit securely gate by gate.

As the complexity of modern computing tasks scales at tremendous rates,
it has become clear that the circuit model is not appropriate: Converting
“lightweight,” optimized programs first into a circuit in order to obtain secu-
rity is not a viable option. Large effort has recently been focused on enabling
direct support of functionalities modeled as Turing machines or random-access
machines (RAM) (e.g., [OS97,GKK+12,LO13,GKP+13,GHRW14,GHL+14,
GLOS15,CHJV15,BGL+15,KLW15]). This approach avoids several sources of
expensive overhead in converting modern programs into circuit representations.
However, it actually introduces a different dimension of inefficiency. RAM (and
single-tape Turing) machines do not support parallelism: thus, even if an inse-
cure program can be heavily parallelized, its secure version will be inherently
sequential.

Modern computing architectures are better captured by the notion of a Par-
allel RAM (PRAM). In the PRAM model of computation, several (polynomially
many) CPUs are simultaneously running, accessing the same shared “external”
memory. Note that PRAM CPUs can model physical processors within a sin-
gle multicore system, as well as distinct computing entities within a distributed
computing environment. We consider an expressive model where the number of
active CPUs may vary over time (as long as the pattern of activation is fixed
a priori). In this sense, PRAMs capture the “best of both” RAM and the cir-
cuit models: A RAM program handles random access but is entirely sequential,
circuits handle parallelism with variable number of parallel resources (i.e., the
circuit width), but not random access; variable CPU PRAMs capture both ran-
dom access and variable parallel resources. We thus put forth the challenge of
designing cryptographic primitives that directly support PRAM computations,
while preserving computational resources (total computational complexity and
parallel time) up to poly logarithmic, while using the same number of parallel
processors.

Oblivious Parallel RAM (OPRAM). A core step toward this goal is to ensure
that secret information is not leaked via the memory access patterns of the
resulting program execution.

A machine is said to be memory oblivious, or simply oblivious, if the sequences
of memory accesses made by the machine on two inputs with the same run-
ning time are identically (or close to identically) distributed. In the late 1970s,
Pippenger and Fischer [PF79] showed that any Turing Machine Π can be com-
piled into an oblivious one Π ′ (where “memory accesses” correspond to the
movement of the head on the tape) with only a logarithmic slowdown in running-
time. Roughly ten years later, Goldreich and Ostrovsky [Gol87,GO96] proposed
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the notion of Oblivious RAM (ORAM), and showed a similar transformation
result with polylogarithmic slowdown. In recent years, ORAM compilers have
become a central tool in developing cryptography for RAM programs, and a great
deal of research has gone toward improving both the asymptotic and concrete
efficiency of ORAM compilers (e.g., [Ajt10,DMN11,GMOT11,KLO12,CP13,
CLP14,GGH+13,SvDS+13,CLP14,WHC+14,RFK+14,WCS14]). However, for
all such compilers, the resulting program is inherently sequential.

In this work, we propose the notion of Oblivious Parallel RAM (OPRAM).
We present the first OPRAM compiler, converting any PRAM into an oblivious
PRAM, while only inducing a polylogarithmic slowdown to both the total and
parallel complexities of the program.

Theorem 1 (OPRAM – Informally Stated). There exists an OPRAM com-
piler with O(log(m) log3(n)) worst-case overhead in total and parallel computa-
tion, and f(n) memory overhead for any f ∈ ω(1), where n is the memory size
and m is an upper-bound on the number of CPUs in the PRAM.

We emphasize that applying even the most highly optimized ORAM compiler to
an m-processor PRAM program inherently inflicts Ω(m log(n)) overhead in the
parallel runtime, in comparison to our O(log(m)polylog(n)). When restricted to
single-CPU programs, our construction incurs slightly greater logarithmic over-
head than the best optimized ORAM compilers (achieving O(log n) overhead
for optimal block sizes); we leave as an interesting open question how to opti-
mize parameters. (As we will elaborate on shortly, some very interesting results
towards addressing this has been obtained in the follow-up work of [CLT15].)

1.1 Applications of OPRAM

ORAM lies at the base of a wide range of applications. In many cases, we can
directly replace the underlying ORAM with an OPRAM to enable parallelism
within the corresponding secure application. For others, simply replacing ORAM
with OPRAM does not suffice; nevertheless, in this paper, we demontrate one
application (garbling of PRAM programs) where they can be overcome; follow-
up works show further applications (secure computation and obfuscation).

Direct Applications of OPRAM. We briefly describe some direct applications of
OPRAM.

Improved/Parallelized Outsourced Data. Standard ORAM has been shown to
yield effective, practical solutions for securely outsourcing data storage to an
untrusted server (e.g., the ObliviStore system of [SS13]). Efficient OPRAM com-
pilers will enable these systems to support secure efficient parallel accesses to
outsourced data. For example, OPRAM procedures securely aggregate parallel
data requests and resolve conflicts client-side, minimizing expensive client-server
communications (as was explored in [WST12], at a smaller scale). As network
latency is a major bottleneck in ORAM implementations, such parallelization
may yield significant improvements in efficiency.
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Multi-client Outsourced Data. In a similar vein, use of OPRAM further enables
secure access and manipulation of outsourced shared data by multiple (mutu-
ally trusting) clients. Here, each client can simply act as an independent CPU,
and will execute the OPRAM-compiled program corresponding to the parallel
concatenation of their independent tasks.
Secure Multi-processor Architecture. Much recent work has gone toward imple-
menting secure hardware architectures by using ORAM to prevent information
leakage via access patterns of the secure processor to the potentially insecure
memory (e.g., the Ascend project of [FDD12]). Relying instead on OPRAM
opens the door to achieving secure hardware in the multi-processor setting.

Garbled PRAM (GPRAM). Garbled circuits [Yao82] allow a user to convert
a circuit C and input x into garbled versions C̃ and x̃, in such a way that C̃
can be evaluated on x̃ to reveal the output C(x), but without revealing fur-
ther information on C or x. Garbling schemes have found countless applications
in cryptography, ranging from delegation of computation to secure multi-party
protocols (see below). It was recently shown (using ORAM) how to directly gar-
ble RAM programs [GHL+14,GLOS15], where the cost of evaluating a garbled
program P̃ scales with its RAM (and not circuit) complexity.

In the full version of this paper, we show how to employ any OPRAM com-
piler to attain a garbled PRAM (GPRAM), where the time to generate and
evaluate the garbled PRAM program P̃ scales with the parallel time complexity
of P . Our construction is based on one of the construction of [GHL+14] and
extends it using some of the techniques developed for our OPRAM. Plugging in
our (unconditional) OPRAM construction, we obtain:

Theorem 2 (Garbled PRAM – Informally Stated). Assuming identity-
based encryption, there exists a secure garbled PRAM scheme with total and
parallel overhead poly(κ) · polylog(n), where κ is the security parameter of the
IBE and n is the size of the garbled data.

Secure Two-Party and Multi-party Computation of PRAMs. Secure multi-party
computation (MPC) enables mutually distrusting parties to jointly evaluate
functions on their secret inputs, without revealing information on the inputs
beyond the desired function output. ORAM has become a central tool in achiev-
ing efficient MPC protocols for securely evaluating RAM programs. By instead
relying on OPRAM, these protocols can leverage parallelizability of the evalu-
ated programs.

Our garbled PRAM construction mentioned above yields constant-round
secure protocols where the time to execute the protocol scales with the parallel
time of the program being evaluated. In a companion paper [BCP15], we fur-
ther demonstrates how to use OPRAM to obtain efficient protocols for securely
evaluating PRAMs in the multi-party setting; see [BCP15] for further details.

Obfuscation for PRAMs. In a follow-up work, Chen et al. [CCC+15] rely on our
specific OPRAM construction (and show that it satisfies an additional “punc-
turability” property) to achieve obfuscation for PRAMs.
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1.2 Technical Overview

Begin by considering the simplest idea toward memory obliviousness: Suppose
data is stored in random(-looking) shuffled order, and for each data query i, the
lookup is performed to its permuted location, σ(i). One can see this provides some
level of hiding, but clearly does not suffice for general programs. The problem
with the simple solution is in correlated lookups over time—as soon as item i is
queried again, this collision will be directly revealed. Indeed, hiding correlated
lookups while maintaining efficiency is perhaps the core challenge in building
oblivious RAMs. In order to bypass this problem, ORAM compilers heavily
depend on the ability of the CPU to move data around, and to update its secret
state after each memory access.

However, in the parallel setting, we find ourselves back at square one. Suppose
in some time step, a group of processors all wish to access data item i. Having
all processors attempt to perform the lookup directly within a standard ORAM
construction corresponds to running the ORAM several times without moving
data or updating state. This immediately breaks security in all existing ORAM
compiler constructions. On the other hand, we cannot afford for the CPUs to
“take turns,” accessing and updating the data sequentially.

In this overview, we discuss our techniques for overcoming this and fur-
ther challenges. We describe our solution somewhat abstractly, building on a
sequential ORAM compiler with a tree-based structure as introduced by Shi
et al. [SCSL11]. In our formal construction and analysis, we rely on the specific
tree-based ORAM compiler of Chung and Pass [CP13] that enjoys a particularly
clean description and analysis.

Tree-Based ORAM Compilers. We begin by roughly describing the structure of
tree-based ORAMs, originating in the work of [SCSL11]. At a high level, data is
stored in the structure of a binary tree, where each node of the tree corresponds
to a fixed-size bucket that may hold a collection of data items. Each memory
cell addr in the original database is associated with a random path (equivalently,
leaf) within a binary tree, as specified by a position map pathaddr = Pos(addr).

The schemes maintain three invariants: (1) The content of memory cell addr
will be found in one of the buckets along the path pathaddr. (2) Given the view of
the adversary (i.e., memory accesses) up to any point in time, the current map-
ping Pos appears uniformly random. And, (3) with overwhelming probability, no
node in the binary tree will ever “overflow,” in the sense that its corresponding
memory bucket is instructed to store more items than its fixed capacity.

These invariants are maintained by the following general steps:

1. Lookup: To access a memory item addr, the CPU accesses all buckets down
the path pathaddr, and removes it where found.

2. Data “put-back”: At the conclusion of the access, the memory item addr is
assigned a freshly random path Pos(addr) ← path′

addr, and is returned to the
root node of the tree.

3. Data flush: To ensure the root (and any other bucket) does not overflow, data
is “flushed” down the tree via some procedure. For example, in [SCSL11], the
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flush takes place by selecting and emptying two random buckets from each
level into their appropriate children; in [CP13], it takes place by choosing an
independent path in the tree and pushing data items down this path as far
as they will go (see Fig. 1 in Sect. 2.2).

Extending to Parallel RAMs. We must address the following problems with
attempting to access a tree-based ORAM in parallel.

– Parallel Memory Lookups: As discussed, a core challenge is in hiding cor-
relations in parallel CPU accesses. In tree-based ORAMs, if CPUs access dif-
ferent data items in a time step, they will access different paths in the tree,
whereas if they attempt to simultaneously access the same data item, they
will each access the same path in the tree, blatantly revealing a collision.

To solve this problem, before each lookup we insert a CPU-coordination
phase. We observe that in tree-based ORAM schemes, this problem only man-
ifests when CPUs access exactly the same item, otherwise items are associ-
ated with independent leaf nodes, and there are no bad correlations. We thus
resolve this issue by letting the CPUs check—through an oblivious aggrega-
tion operation—whether two (or more) of them wish to access the same data
item; if so, a representative is selected (the CPU with the smallest id) to actu-
ally perform the memory access, and all the others merely perform “dummy”
lookups. Finally, the representative CPU needs to communicate the read value
back to all the other CPUs that wanted to access the same data item; this is
done using an oblivious multi-cast operation.

The challenge is in doing so without introducing too much overhead—
namely, allowing only (per-CPU) memory, computation, and parallel time
polylogarithmic in both the database size and the number of CPUs—and that
itself retains memory obliviousness.

– Parallel “Put-backs”: After a memory cell is accessed, the (possibly
updated) data is assigned a fresh random path and is reinserted to the tree
structure. To maintain the required invariants, the item must be inserted some-
where along its new path, without revealing any information about the path.
In tree-based ORAMs, this is done by reinserting at the root node of the tree.
However, this single node can hold only a small bounded number of elements
(corresponding to the fixed bucket size), whereas the number of processors
m—each with an item to reinsert—may be significantly larger.

To overcome this problem, instead of returning data items to the root, we
directly insert them into level log m of the tree, while ensuring that they are
placed into the correct bucket along their assigned path. Note that level log m
contains m buckets, and since the m items are each assigned to random leaves,
each bucket will in expectation be assigned exactly 1 item.

The challenge in this step is specifying how the m CPUs can insert ele-
ments into the tree while maintaining memory obliviousness. For example, if
each CPU simply inserts their own item into its assigned node, we immedi-
ately leak information about its destination leaf node. To resolve this issue, we
have the CPUs obliviously route items between each other, so that eventually
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the ith CPU holds the items to be insert to the ith node, and all CPUs finally
perform either a real or a dummy write to their corresponding node.

– Preventing Overflows: To ensure that no new overflows are introduced
after inserting m items, we now flush m times instead of once, and all these m
flushes are done in parallel: each CPU simply performs an independent flush.
These parallel flushes may lead to conflicts in nodes accessed (e.g., each flush
operation will likely access the root node). As before, we resolve this issue
by having the CPUs elect some representative to perform the appropriate
operations for each accessed node; note, however, that this step is required
only for correctness, and not for security.

Our construction takes a modular approach. We first specify and analyze our
compiler within a simplified setting, where oblivious communication between
CPUs is “for free.” We then show how to efficiently instantiate the required CPU
communication procedures oblivious routing, oblivious aggregation, and oblivious
multi-cast, and describe the final compiler making use of these procedures. In
this extended abstract, we defer the first step to Appendix 3.1, and focus on the
remaining steps.

1.3 Related Work

Restricted cases of parallelism in Oblivious RAM have appeared in a handful
of prior works. It was observed by Williams, Sion, and Tomescu [WST12] in
their PrivateFS work that existing ORAM compilers can support paralleliza-
tion across data accesses up to the “size of the top level,”1 (in particular, at
most log n), when coordinated through a central trusted entity. We remark
that central coordination is not available in the PRAM model. Goodrich and
Mitzenmacher [GM11] showed that parallel programs in MapReduce format can
be made oblivious by simply replacing the “shuffle” phase (in which data items
with a given key are routed to the corresponding CPU) with a fixed-topology
sorting network. The goal of improving the parallel overhead of ORAM was
studied by Lorch et al. [LPM+13], but does not support compilation of PRAMs
without first sequentializing.

Follow-up Work. As mentioned above, our OPRAM compiler has been used in
the recent works of Boyle, Chung, and Pass [BCP15] and Chen et al. [CCC+15]
to obtain secure multi-party computation for PRAM, and indistinguishabil-
ity obfuscation for PRAM, respectively. A different follow-up work by Nayak
et al. [NWI+15] provides targeted optimizations and an implementation for
secure computation of specific parallel tasks.

Very recently, an exciting follow-up work of Chen, Lin, and Tessaro [CLT15]
builds upon our techniques to obtain two new construction: an OPRAM com-
piler whose overhead in expectation matches that of the best current sequential
ORAM [SvDS+13]; and, a general transformation taking any generic ORAM

1 E.g., for tree-based ORAMs, the size of the root bucket.
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compiler to an OPRAM compiler with log n overhead in expectation. Their
OPRAM constructions, however, only apply to the special case of PRAM with a
fixed number of processors being activated at every step (whereas our notion of
a PRAM requires handling also a variable number of processors2); for the case
of variable CPU PRAMs, the results of [CLT15] incurr an additional multlica-
tive overhead of m in terms of computational complexity, and thus the bounds
obtained are incomparable.

2 Preliminaries

2.1 Parallel RAM (PRAM) Programs

We consider the most general case of Concurrent Read Concurrent Write
(CRCW) PRAMs. An m-processor CRCW parallel random-access machine
(PRAM) with memory size n consists of numbered processors CPU1, . . . , CPUm,
each with local memory registers of size log n, which operate synchronously in
parallel and can make access to shared “external” memory of size n.

A PRAM program Π (given m,n, and some input x stored in shared memory)
provides CPU-specific execution instructions, which can access the shared data
via commands Access(r, v), where r ∈ [n] is an index to a memory location, and
v is a word (of size log n) or ⊥. Each Access(r, v) instruction is executed as:

1. Read from shared memory cell address r; denote value by vold.
2. Write value v �= ⊥ to address r (if v = ⊥, then take no action).
3. Return vold.

In the case that two or more processors simultaneously initiate Access(r, vi) with
the same address r, then all requesting processors receive the previously existing
memory value vold, and the memory is rewritten with the value vi corresponding
to the lowest-numbered CPU i for which vi �= ⊥.

We more generally support PRAM programs with a dynamic number of
processors (i.e., mi processors required for each time step i of the computation),
as long as this sequence of processor numbers m1,m2, . . . is public information.
The complexity of our OPRAM solution will scale with the number of required
processors in each round, instead of the maximum number of required processors.

The (parallel) time complexity of a PRAM program Π is the maximum num-
ber of time steps taken by any processor to evaluate Π, where each Access
execution is charged as a single step. The PRAM complexity of a function f is
defined as the minimal parallel time complexity of any PRAM program which
evaluates f . We remark that the PRAM complexity of any function f is bounded
above by its circuit depth complexity.

2 As previously mentioned, dealing with a variable number of processors is needed to
capture standard circuit models of computation, where the circuit topology may be
of varying width.
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Remark 1 (CPU-to-CPU Communication). It will be sometimes convenient
notationally to assume that CPUs may communicate directly amongst them-
selves. When the identities of sending and receiving CPUs is known a priori
(which will always be the case in our constructions), such communication can be
emulated in the standard PRAM model with constant overhead by communicat-
ing through memory. That is, each action “CPU1 sends message m to CPU2” is
implemented in two time steps: First, CPU1 writes m into a special designated
memory location addrCPU1; in the following time step, CPU2 performs a read
access to addrCPU1 to learn the value m.

2.2 Tree-Based ORAM

Concretely, our solution relies on the ORAM due to Chung and Pass [CP13],
which in turn closely follows the tree-based ORAM construction of Shi
et al. [SCSL11]. We now recall the [CP13] construction in greater detail, in
order to introduce notation for the remainder of the paper.

The [CP13] construction (as with [SCSL11]) proceeds by first presenting
an intermediate solution achieving obliviousness, but in which the CPU must
maintain a large number of registers (specifically, providing a means for securely
storing n data items requiring CPU state size Θ̃(n/α), where α > 1 is any
constant). Then, this solution is recursively applied logα n times to store the
resulting CPU state, until finally reaching a CPU state size polylog(n), while
only blowing up the computational overhead by a factor logα n. The overall
compiler is fully specified by describing one level of this recursion.

Step 1: Basic ORAM with O(n) Registers. The compiler ORAM on input n ∈ N

and a program Π with memory size n outputs a program Π ′ that is identical
to Π but each Read(r) or Write(r, val) is replaced by corresponding commands
ORead(r), OWrite(r, val) to be specified shortly. Π ′ has the same registers as
Π and additionally has n/α registers used to store a position map Pos plus a
polylogarithmic number of additional work registers used by ORead and OWrite.
In its external memory, Π ′ will maintain a complete binary tree Γ of depth

 = log(n/α); we index nodes in the tree by a binary string of length at most 
,
where the root is indexed by the empty string λ, and each node indexed by γ
has left and right children indexed γ0 and γ1, respectively. Each memory cell r
will be associated with a random leaf pos in the tree, specified by the position
map Pos; as we shall see shortly, the memory cell r will be stored at one of the
nodes on the path from the root λ to the leaf pos. To ensure that the position
map is smaller than the memory size, we assign a block of α consecutive memory
cells to the same leaf; thus memory cell r corresponding to block b = �r/α� will
be associated with leaf pos = Pos(b).

Each node in the tree is associated with a bucket which stores (at most) K
tuples (b, pos, v), where v is the content of block b and pos is the leaf associated
with the block b, and K ∈ ω(log n)∩polylog(n) is a parameter that will determine
the security of the ORAM (thus each bucket stores K(α+2) words). We assume
that all registers and memory cells are initialized with a special symbol ⊥.
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λ

0 1

00 01 10 11

000 001 010 011 100 101 110 111

value of memory cell r is found somewhere on path from λ to pos = 011

flush along random path from λ to pos∗ = 110

1 2 3 b = � r
α� n

α
n
α − 1· · ·

· · · · · ·
· · ·

pos =
011

Position Map Pos

ORAM Tree Γ

position of memory cell r is found here

Fig. 1. Illustration of the basic [CP13] ORAM construction.

The following is a specification of the ORead(r) procedure:

Fetch: Let b = �r/α� be the block containing memory cell r (in the original
database), and let i = r mod α be r’s component within the block b. We
first look up the position of the block b using the position map: pos = Pos(b);
if Pos(b) =⊥, set pos ← [n/α] to be a uniformly random leaf.

Next, traverse the data tree from the root to the leaf pos, making exactly
one read and one write operation for the memory bucket associated with each
of the nodes along the path. More precisely, we read the content once, and
then we either write it back (unchanged), or we simply “erase it” (writing
⊥) so as to implement the following task: search for a tuple of the form
(b, pos, v) for the desired b, pos in any of the nodes during the traversal; if
such a tuple is found, remove it from its place in the tree and set v to the
found value, and otherwise take v =⊥. Finally, return the ith component of
v as the output of the ORead(r) operation.

Update Position Map: Pick a uniformly random leak pos′ ← [n/α] and let
Pos(b) = pos′.

Put Back: Add the tuple (b, pos′, v) to the root λ of the tree. If there is not
enough space left in the bucket, abort outputting overflow.

Flush: Pick a uniformly random leaf pos∗ ← [n/α] and traverse the tree from
the roof to the leaf pos∗, making exactly one read and one write operation
for every memory cell associated with the nodes along the path so as to
implement the following task: “push down” each tuple (b′′, pos′′, v′′) read in
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the nodes traversed so far as possible along the path to pos∗ while ensuring
that the tuple is still on the path to its associated leaf pos′′ (that is, the tuple
ends up in the node γ = longest common prefix of pos′′ and pos∗.) Note that
this operation can be performed trivially as long as the CPU has sufficiently
many work registers to load two whole buckets into memory; since the bucket
size is polylogarithmic, this is possible. If at any point some bucket is about
to overflow, abort outputting overflow.

OWrite(r, v) proceeds identically in the same steps as ORead(r), except that in
the “Put Back” steps, we add the tuple (b, pos′, v′), where v′ is the string v
but the ith component is set to v (instead of adding the tuple (b, pos′, v) as
in ORead). (Note that, just as ORead, OWrite also outputs the ordinal memory
content of the memory cell r; this feature will be useful in the “full-fledged”
construction.)

The Full-fledged Construction: ORAM with Polylog Registers. The full-fledged
construction of the CP ORAM proceeds as above, except that instead of storing
the position map in registers in the CPU, we now recursively store them in
another ORAM (which only needs to operate on n/α memory cells, but still
using buckets that store K tuples). Recall that each invocation of ORead and
OWrite requires reading one position in the position map and updating its value
to a random leaf; that is, we need to perform a single recursive OWrite call (recall
that OWrite updates the value in a memory cell, and returns the old value) to
emulate the position map.

At the base of the recursion, when the position map is of constant size, we
use the trivial ORAM construction which simply stores the position map in the
CPU registers.

Theorem 3 ([CP13]). The compiler ORAM described above is a secure Oblivi-
ous RAM compiler with polylog(n) worst-case computation overhead and ω(log n)
memory overhead, where n is the database memory size.

2.3 Sorting Networks

Our protocol will employ an n-wire sorting network, which can be used to sort
values on n wires via a fixed topology of comparisons. A sorting network consists
of a sequence of layers, each layer in turn consisting of one or more comparator
gates, which take two wires as input, and swap the values when in unsorted
order. Formally, given input values x = (x1, . . . , xn) (which we assume to be
integers wlog), a comparator operation compare(i, j,x) for i < j returns x′ where
x = x′ if xi ≤ xj , and otherwise, swaps these values as x′

i = xj and x′
j = xi

(whereas x′
k = xk for all k �= i, j). Formally, a layer in the sorting network is

a set L = {(i1, j1), . . . , (ik, jk)} of pairwise-disjoint pairs of distinct indices of
[n]. A d-depth sorting network is a list SN = (L1, . . . , Ld) of layers, with the
property that for any input vector x, the final output will be in sorted order
xi ≤ xi+1 ∀i < n.
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Ajtai, Komlós, and Szemerédi demonstrated a sorting network with depth
logarithmic in n.

Theorem 4 ([AKS83]). There exists an n-wire sorting network of depth
O(log n) and size O(n log n).

While the AKS sorting network is asymptotically optimal, in practical
scenarios one may wish to use the simpler alternative construction due to
Batcher [Bat68] which achieves significantly smaller linear constants.

3 Oblivious PRAM

The definition of an Oblivious PRAM (OPRAM) compiler mirrors that of stan-
dard ORAM, with the exception that the compiler takes as input and produces as
output a parallel RAM program. Namely, denote the sequence of shared memory
cell accesses made during an execution of a PRAM program Π on input (m,n, x)
as Π̃(m,n, x). And, denote by ActivationPatterns(Π,m, n., x) the (public) CPU
activation patterns (i.e., number of active CPUs per timestep) of program Π on
input (m,n, x). We present a definition of an OPRAM compiler following Chung
and Pass [CP13], which in turn follows Goldreich [Gol87].

Definition 1 (Oblivious Parallel RAM). A polynomial-time algorithm O is
an Oblivious Parallel RAM (OPRAM) compiler with computational overhead
comp(·, ·) and memory overhead mem(·, ·), if O given m,n ∈ N and a determin-
istic m-processor PRAM program Π with memory size n, outputs an m-processor
program Π ′ with memory size mem(m,n) · n such that for any input x, the par-
allel running time of Π ′(m,n, x) is bounded by comp(m,n) · T , where T is the
parallel runtime of Π(m,n, x), and there exists a negligible function μ such that
the following properties hold:

– Correctness: For any m,n ∈ N and any string x ∈ {0, 1}∗, with probability
at least 1 − μ(n), it holds that Π(m,n, x) = Π ′(m,n, x).

– Obliviousness: For any two PRAM programs Π1,Π2, any m,n ∈ N,
and any two inputs x1, x2 ∈ {0, 1}∗, if |Π1(m,n, x1)| = |Π2(m,n, x2)|
and ActivationPatterns(Π1,m, n, x1)) = ActivationPatterns(Π2,m, n, x2), then
Π̃ ′

1(m,n, x1) is μ-close to Π̃ ′
2(m,n, x2) in statistical distance, where Π ′

i ←
O(m,n,Πi) for i ∈ {1, 2}.
We remark that not all m processors may be active in every time step of a

PRAM program Π, and thus its total computation cost may be significantly less
than m·T . We wish to consider OPRAM compilers that also preserve the proces-
sor activation structure (and thus total computation complexity) of the original
program up to polylogarithmic overhead. Of course, we cannot hope to do so if
the processor activation patterns themselves reveal information about the secret
data. We thus consider PRAMs Π whose activation schedules (m1, . . . , mT ) are
a-priori fixed and public.
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Definition 2 (Activation-Preserving). An OPRAM compiler O with com-
putation overhead comp(·, ·) is said to be activation preserving if given m,n ∈ N

and a deterministic PRAM program Π with memory size n and fixed (public)
activation schedule (m1, . . . , mT ) for mi ≤ m, the program Π ′ output by O has
activation schedule

(
(m1)t

i=1, (m2)t
i=1, . . . , (mT )t

i=1

)
, where t = comp(m,n).

It will additionally be useful in applications (e.g., our construction of garbled
PRAMs, and the MPC for PRAMs of [BCP15]) that the resulting oblivious
PRAM is collision free.

Definition 3 (Collision-Free). An OPRAM compiler O is said to be collision
free if given m,n ∈ N and a deterministic PRAM program Π with memory size
n, the program Π ′ output by O has the property that no two processors ever
access the same data address in the same timestep.

We now present our main result, which we construct and prove in the follow-
ing subsections.

Theorem 5 (Main Theorem: OPRAM). There exists an activation-
preserving, collision-free OPRAM compiler with O(log(m) log3(n)) worst-case
computational overhead and f(n) memory overhead, for any f ∈ ω(1), where n
is the memory size and m is the number of CPUs.

3.1 Rudimentary Solution: Requiring Large Bandwidth

We first provide a solution for a simplified case, where we are not concerned
with minimizing communication between CPUs or the size of required CPU local
memory. In such setting, communicating and aggregating information between
all CPUs is “for free.”

Our compiler Heavy-O, on input m,n ∈ N, fixed integer constant α > 1,
and m-processor PRAM program Π with memory size n, outputs a program
Π ′ identical to Π, but with each Access(r, v) operation replaced by the modified
procedure Heavy-OPAccess as defined in Fig. 2. (Here, “broadcast” means to send
the specified message to all other processors).

Note that Heavy-OPAccess operates recursively for t = 0, . . . , �logα n�. This
corresponds analogously to the recursion in the [SCSL11,CP13] ORAM, where
in each step the size of the required “secure database memory” drops by a
constant factor α. We additionally utilize a space optimization due to Gentry
et al. [GGH+13] that applies to [CP13], where the ORAM tree used for storing
data of size n′ has depth log n′/K (and thus n′/K leaves instead of n′), where
K is the bucket size. This enables the overall memory overhead to drop from
ω(log n) (i.e., K) to ω(1) with minimal changes to the analysis.

Lemma 1. For any n,m ∈ N, The compiler Heavy-O is a secure Oblivious
PRAM compiler with parallel time overhead O(log3 n) and memory overhead
ω(1), assuming each CPU has Ω̃(m) local memory.
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Heavy-OPAccess(t, (ri, vi)): The Large Bandwidth Case
To be executed by CPU1, . . . , CPUm w.r.t. (recursive) database size nt := n/(αt),
bucket size K.

Input: Each CPUi holds: recursion level t, instruction pair (ri, vi) with ri ∈ [nt], global
parameter α.

Each CPUi performs the following steps, in parallel

0. Exit Case: If t ≥ logα n, return 0.
This corresponds to requesting the (trivial) position map for a block within a
single-leaf tree.

1. Conflict Resolution
(a) Broadcast the instruction pair (ri, vi) to all CPUs.
(b) Let bi = �ri/α�. Locally aggregate incoming instructions to block bi as

v̄i = v̄i[1] · · · v̄i[α], resolving write conflicts (i.e., ∀s ∈ [α], take v̄i[s] ← vj

for minimal j such that rj = biα + s).
Denote by rep(bi) := min{j : �rj/α� = bi} the smallest index j of any CPU
whose rj is in this block bi. (CPU rep(bi) will actually access bi, while others
perform dummy accesses).

2. Recursive Access to Position Map (Define Lt := 2nt/K, number of leaves in t’th
tree).
If i = rep(bi): Sample fresh leaf id �′

i ← [Lt]. Recurse as �i ← Heavy-OPAccess(t +
1, (bi, �

′
i)) to read the current value �i of Pos(bi) and rewrite it with �′

i.
Else: Recursively initiate dummy access x ← Heavy-OPAccess(t+1, (1, ⊥)) at arbi-
trary address (say 1); ignore the read value x. Sample fresh random leaf id �i ← [Lt]
for a dummy lookup.

3. Look Up Current Memory Values
Read the memory contents of all buckets down the path to leaf node �i defined in
the previous step, copying all buckets into local memory.
If i = rep(bi): locate and store target block triple (bi, v

old
i , �i). Update v̄ from Step

1 with existing data: ∀s ∈ [α], replace any non-written cell values v̄i[s] = ∅ with
v̄i[s] ← vold

i [s]. v̄i now stores the entire data block to be rewritten for block bi.
4. Remove Old Data from ORAM Database

(a) If i = rep(bi): Broadcast (bi, �i) to all CPUs. Otherwise: broadcast (⊥, �i).
(b) Initiate UpdateBuckets nt, (remove-bi, �i), {(remove-bj , �j)}j∈[m]\{i}

)
, as in

Figure 3.
5. Insert New Data into Database in Parallel

(a) If i = rep(bi): Broadcast (bi, v̄i, �
′
i), with updated value v̄i and target leaf �′

i.
(b) Let lev∗ := �log(min{m, Lt})� be the ORAM tree level with number of buck-

ets equal to number of CPUs (the level where data will be inserted). Lo-
cally aggregate all incoming instructions whose path �′

j has lev∗-bit prefix i:

Inserti := {(bj , v̄j , �
′
j) : (�′

j)
(lev∗) = i}.

(c) Access memory bucket i (at level lev∗) and rewrite contents, inserting data
items Inserti. If bucket i exceeds its capacity, abort with overflow.

6. Flush the ORAM Database

(a) Sample a random leaf node �flushi ← [Lt] along which to flush. Broadcast �flushi .
(b) If i ≤ Lt: Initiate UpdateBuckets nt, (flush, �

flush
i ), {(flush, �flushj )}j∈[m]\{i}

)
, in

Figure 3.
Recall that flush means to “push” each encountered triple (b, �, v) down to the
lowest point at which his chosen flush path and � agree.

7. Update CPUs
If i = rep(bi): broadcast the old value vold

i of block bi to all CPUs.

Fig. 2. Pseudocode for oblivious parallel data access procedure Heavy-OPAccess (where
we are temporarily not concerned with per-round bandwidth/memory).
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UpdateBuckets nt, (mycommand,mypath), {(commandj , pathj)}j∈[m]\{i}
)

Let path(0), . . . , path(log Lt) denote the bit prefixes of length 0 (i.e., ∅) to log(Lt) of path.
For each tree level lev = 0 to log Lt, each CPU i does the following at bucket mypath(lev):

1. Define CPUs(mypath(lev)) := {i} ∪ {j : path
(lev)
j = mypath(lev)} to be the set of

CPUs requesting changes to bucket mypath(lev). Let bucket-rep(mypath(lev)) denote
the minimal index in the set.

2. If i �= bucket-rep(mypath(lev)), do nothing. Otherwise:
Case 1: mycommand = remove-bi.

Interpret each commandj = remove-bj as a target block id bj to be removed.
Access memory bucket mypath(lev) and rewrite contents, removing any block
bj for which j ∈ CPUs(mypath(lev)).

Case 2: mycommand = flush.
Define Flush ⊂ {L, R} as {v : ∃ pathj s.t. path

(lev+1)
j = mypath(lev)||v}, associ-

ating L ≡ 0, R ≡ 1. This determines whether data will be flushed left and/or
right from this bucket.
Access memory bucket mypath(lev); denote its collection of stored data blocks
b by ThisBucket. Partition ThisBucket = ThisBucket-L ∪ ThisBucket-R into
those blocks whose associated leaves continue to the left or right (i.e.,

ThisBucket-L := {bj ∈ ThisBucket : �̄
(lev+1)
j = mypath(lev)||0}, and similar for 1).

– If L ∈ Flush, then set ThisBucket ← ThisBucket \ ThisBucket-L, access
memory bucket mypath(lev)||0, and insert data items ThisBucket-L into it.

– If R ∈ Flush, then set ThisBucket ← ThisBucket \ ThisBucket-R, access
memory bucket mypath(lev)||1, and insert data items ThisBucket-R into it.

Rewrite the contents of bucket mypath(lev) with updated value of ThisBucket.
If any bucket exceeds its capacity, abort with overflow.

Fig. 3. Procedure for combining CPUs’ instructions for buckets and implementing
them by a single representative CPU. (Used for correctness, not security). See Fig. 4
for a sample illustration.

We will address the desired claims of correctness, security, and complex-
ity of the Heavy-O compiler by induction on the number of levels of recur-
sion. Namely, for t∗ ∈ [logα n], denote by Heavy-Ot∗ the compiler that acts
on memory size n/(αt∗

) by executing Heavy-O only on recursion levels t =
t∗, (t∗ + 1), . . . , �logα n�. For each such t∗, we define the following property.

Level-t∗ Heavy OPRAM: We say that Heavy-Ot∗ is a valid level-t∗ heavy
OPRAM if the partial-recursion compiler Heavy-Ot∗ is a secure Oblivi-
ous PRAM compiler for memory size n/(αt∗

) with parallel time overhead
O(log2 n · log(n/αt∗

)) and memory overhead ω(1), assuming each CPU has
Ω̃(m) local memory.

Then Lemma 1 follows directly from the following two claims.

Claim. Heavy-Ologα n is valid level-(logα n) heavy OPRAM.

Proof. Note that Heavy-Ologα n, acting on trivial size-1 memory, corresponds
directly to the exit case (Step 0) of Heavy-OPAccess in Fig. 2. Namely, correctness,
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security, and the required efficiency trivially hold, since there is a single data item
in a fixed location to access.

Claim. Suppose Heavy-Ot is a valid level-t heavy OPRAM for t > 0. Then
Heavy-Ot−1 is a valid level-(t − 1) heavy OPRAM.

Proof. We first analyze the correctness, security, and complexity overhead of
Heavy-Ot−1 conditioned on never reaching the event overflow (which may occur
in Step 5(c), or within the call to UpdateBuckets). Then, we prove that the
probability of overflow is negligible in n.

Correctness (w/o overflow). Consider the state of the memory (of the CPUs and
server) in each step of Heavy-OPAccess, assuming no overflow. In Step 1, each
CPU learns the instruction pairs of all other CPUs; thus all CPUs agree on single
representative rep(bi) for each requested block bi, and a correct aggregation of
all instructions to be performed on this block. Step 2 is a recursive execution
of Heavy-OPAccess. By the inductive hypothesis, this access successfully returns
the correct value 
i of Pos(bi) for each bi queried, and rewrites it with the freshly
sampled value 
′

i when specified (i.e., for each rep(bi) access; the dummy accesses
are read-only). We are thus guaranteed that each rep(bi) will find the desired
block bi in Step 3 when accessing the memory buckets in the path down the
tree to leaf 
i (as we assume no overflow was encountered), and so will learn the
current stored data value vold.

In Step 4, each CPU learns the target block bi and associated leaf 
i of every
representative CPU rep(bi). By construction, each requested block bi appears in
some bucket B in the tree along his path, and there will necessarily be some CPU
assigned as bucket-rep(B) in UpdateBuckets, who will then successfully remove

CPU1

CPU2

CPU3
1

2

3

3

2

2

1

1

1

Fig. 4. UpdateBuckets sample illustration. Here, CPUs 1-3 each wish to modify nodes
along their paths as drawn; for each overlapping node, the CPU with lowest id receives
and implements the aggregated commands for the node.
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the block bi from B. At this point, none of the requested blocks bi appear in the
tree.

In Step 5, the CPUs insert each block bi (with updated data value vi) into
the ORAM data tree at level min{logα n/αt, �log2(m)�} along the path to its
(new) leaf 
′

i.
Finally, the flushing procedure in Step 6 maintains the necessary property

that each block bi appears along the path to Pos(bi), and in Step 7 all CPUs
learn the collection of all queried values vold (in particular, including the value
they initially requested).

Thus, assuming no overflow, correctness holds.

Obliviousness (w/o overflow). Consider the access patterns to server-side mem-
ory in each step of Heavy-OPAccess, assuming no overflow. Step 1 is performed
locally without communication to the server. Step 2 is a recursive execution of
Heavy-OPAccess, which thus yields access patterns independent of the vector of
queried data locations (up to statistical distance negligible in n), by the induc-
tion hypothesis. In Step 3, each CPU accesses the buckets along a single path
down the tree, where representative CPUs rep(bi) access along the path given by
Pos(bi) (for distinct bi), and non-representative CPUs each access down an inde-
pendent, random path. Since the adversarial view so far has been independent of
the values of Pos(bi), conditioned on this view all CPU’s paths are independent
and random.

In Step 4, all data access patterns are publicly determinable based on the
accesses in the previous step (that is, the complication in Step 4 is to ensure cor-
rectness without access collisions, but is not needed for security). In Step 5, each
CPU i accesses his corresponding bucket i in the tree. In the flushing procedure
of Step 6, each CPU selects an independent, random path down the tree, and the
communication patterns to the server reveal no information beyond the identi-
ties of these paths. Finally, Step 7 is performed locally without communication
to the server.

Thus, assuming no overflow, obliviousness holds.

Protocol Complexity (w/o overflow). First note that the server-side memory stor-
age requirement is simply that of the [CP13] ORAM construction, together with
the log(2nt/K) tree-depth memory optimization of [GHL+14]; namely, f(n)
memory overhead suffices for any f ∈ ω(1).

Consider the local memory required per CPU. Each CPU must be able to
store: O(log n)-size requests from each CPU (due to the broadcasts in Steps 1(a),
4(a), 5(a), and 7); and the data contents of at most 3 memory buckets (due to
the flushing procedure in UpdateBuckets). Overall, this yields a per-CPU local
memory requirement of Ω̃(m) (where Ω̃ notation hides log n factors).

Consider the parallel complexity of the OPRAM-compiled program Π ′ ←
Heavy-O(m,n,Π). For each parallel memory access in the underlying pro-
gram Π, the processors perform: Conflict resolution (1 local communica-
tion round), Read/writing the position map (which has parallel complexity
O(log2 n · log(n/αt)) by the inductive hypothesis), Looking up current memory
values (sequential steps = depth of level-(t − 1) ORAM tree ∈ O(log(n/αt−1))),
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Removing old data from the ORAM tree (1 local communication round, plus
depth of the ORAM tree ∈ O(log(n/αt−1)) sequential steps), Inserting the new
data in parallel (1 local communication round, plus 1 communication round to
the server), Flushing the ORAM database (1 local communication round, and
2× the depth of the ORAM tree rounds of communication with the server, since
each bucket along a flush path is accessed once to receive new data items and
once to flush its own data items down), and Updating CPUs with the read val-
ues (1 local communication round). Altogether, this yields parallel complexity
overhead O(log2 n · log(n/αt−1)).

It remains to address the probability of encountering overflow.

Claim. There exists a negligible function μ such that for any deterministic m-
processor PRAM program Π, any database size n, and any input x, the probabil-
ity that the Heavy-O-compiled program Π ′(m,n, x) outputs overflow is bounded
by μ(n).

Proof. We consider separately the probability of overflow in each of the level-t
recursive ORAM trees. Since there are �log n� of them, the claim follows by a
straightforward union bound.

Taking inspiration from [CP13], we analyze the ORAM-compiled execution
via an abstract dart game. The game consists of black and white darts. In each
round of the game, m black darts are thrown, followed by m white darts. Each
dart independently hits the bullseye with probability p = 1/m. The game con-
tinues until exactly K darts have hit the bullseye (recall K ∈ ω(log n) is the
bucket size), or after the end of the T th round for some fixed polynomial bound
T = T (n), whichever comes first. The game is “won” (which will correspond to
overflow in a particular bucket) if K darts hit the bullseye, and all of them are
black.

Let us analyze the probability of winning in the above dart game.

Subclaim 1: With overwhelming probability in n, no more than K/2 darts hit the
bullseye in any round. In any single round, associate with each of the 2 ·m darts
thrown an indicator variable Xi for whether the dart strikes the target. The Xi

are independent random variables each equal to 1 with probability p = 1/m.
Thus, the probability that more than K/2 of the darts hit the target is bounded
(via a Chernoff tail bound3) by

Pr

[
2m∑

i=1

Xi > K/2

]

≤ e
2(K/4−1)2

2+(K/4−1) ≤ e−Ω(K) ≤ e−ω(log n).

Since there are at most T = poly(n) distinct rounds of the game, the subclaim
follows by a union bound.

Subclaim 2: Conditioned on no round having more than K/2 bullseyes, the prob-
ability of winning the game is negligible in d. Fix an arbitrary such winning
3 Explicit Chernoff bound used: for X = X1 + · · · X2m (Xi independent) and mean μ,

then for any δ > 0, it holds that Pr[X > (1 + δ)μ] ≤ e−δ2μ/(2+δ).
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sequence s, which terminates sometime during some round r of the game. By
assumption, the final partial round r contains no more than K/2 bullseyes. For
the remaining K/2 bullseyes in rounds 1 through r − 1, we are in a situation
mirroring that of [CP13]: for each such winning sequence s, there exist 2K/2 − 1
distinct other “losing” sequences s′ that each occur with the same probability,
where any non-empty subset of black darts hitting the bullseye are replaced with
their corresponding white darts. Further, every two distinct winning sequences
s1, s2 yield disjoint sets of losing sequences, and all such constructed sequences
have the property that no round has more than K/2 bullseyes (since this number
of total bullseyes per round is preserved). Thus, conditioned on having no round
with more than K/2 bullseyes, the probability of winning the game is bounded
above by 2−K/2 ∈ e−ω(log n).

We now relate the dart game to the analysis of our OPRAM compiler.
We analyze the memory buckets at the nodes in the t-th recursive ORAM

tree, via three sub-cases.
Case 1: Nodes in level lev < log m. Since data items are inserted to the tree

in parallel directly at level log m, these nodes do not receive data, and thus will
not overflow.

Case 2: Consider any internal node (i.e., a node that is not a leaf) γ in the
tree at level log m ≤ lev < log(Lt). (Recall Lt := 2nt/K is the number of leaves
in the t’th tree when applying the [GHL+14] optimization). Note that when
m > Lt, this case is vacuous. For purposes of analysis, consider the contents of γ
as split into two parts: γL containing the data blocks whose leaf path continues
to the left from γ (i.e., leaf γ||0||·), and γR containing the data blocks whose leaf
path continues right (i.e., γ||1||·). For the bucket of node γ to overflow, there
must be K tuples in it. In particular, either γL or γR must have K/2 tuples.

For each parallel memory access in Π(m,n, x), in the t-th recursive ORAM
tree for which nt ≥ m/K, (at most) m data items are inserted, and then m
independent paths in the tree are flushed. By definition, an inserted data item
will enter our bucket γL (respectively, γR) only if its associated leaf has the prefix
γ||0 (resp., γ||1); we will assume the worst case in which all such data items
arrive directly to the bucket. On the other hand, the bucket γL (resp., γR) will
be completely emptied after any flush whose path contains this same prefix γ||0
(resp., γ||1). Since all leaves for inserted data items and data flushes are chosen
randomly and independently, these events correspond directly to the black and
white darts in the game above. Namely, the probability that a randomly chosen
path will have the specific prefix γ||0 of length lev is 2−lev ≤ 1/m (since we
consider lev ≥ log m); this corresponds to the probability of a dart hitting the
bullseye. The bucket can only overflow if K/2 “black darts” (inserts) hit the
bullseye without any “white dart” (flush) hitting the bullseye in between. By
the analysis above, we proved that for any sequence of K/2 bullseye hits, the
probability that all K/2 of them are black is bounded above by 2−K/4, which is
negligible in n. However, since there is a fixed polynomial number T = poly(n)
of parallel memory accesses in the execution of Π(m,n, x) (corresponding to
the number of “rounds” in the dart game), and in particular, T (2m) ∈ poly(n)
total darts thrown, the probability that the sequence of bullseyes contains K/2
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sequential blacks anywhere in the sequence is bounded via a direct union bound
by (T2m)2−K/4 ∈ e−ω(log n), as desired.

Case 3: Consider any leaf node γ. This analysis follows the same argument
as in [CP13] (with slightly tweaked parameters from the [GHL+14] tree-depth
optimization). We refer the reader to the full version of this work for details.

Thus, the total probability of overflow is negligible in n, and the theorem
follows.

3.2 Oblivious Routing, Aggregation, and Multi-cast

Oblivious Parallel Insertion (Oblivious Routing). Recall during the mem-
ory “put-back” phase, each CPU must insert its data item into the bucket at
level log m of the tree lying along a freshly sampled random path, while hiding
the path.

We solve this problem by delivering data items to their target locations via
a fixed-topology routing network. Namely, the m processors CPU1, . . . , CPUm

will first write the relevant m data items msgi (and their corresponding desti-
nation addresses addri) to memory in fixed order, and then rearrange them in
log m sequential rounds to the proper locations via the routing network. At the
conclusion of the routing procedure, each node j will hold all messages msgi for
which addri = j.

For simplicity, assume m = 2� for some 
 ∈ N. The routing network has
depth 
; in each level t = 1, . . . , 
, each node communicates with the correspond-
ing node whose id agrees in all bit locations except for the tth (correspond-
ing to his tth neighbor in the log m-dimensional boolean hypercube). These
nodes exchange messages according to the tth bit of their destination addresses
addri. This is formally described in Fig. 5. After the tth round, each message
msgi is held by a party whose id agrees with the destination address addri in
the first t bits. Thus, at the conclusion of 
 rounds, all messages are properly
delivered.

We demonstrate the case m = 8 = 23 below: first, CPUs exchange infor-
mation along the depicted communication network in 3 sequential rounds (left);
then, each CPU i inserts his resulting collection of items directly into node i of
level 3 of the data tree (right).

CPUs
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
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Parallel Insertion Routing Protocol Route(m, (msgi, addri))
Input: CPUi holds: message msgi with target destination addri, and global threshold K.
Output: CPUi holds {msgj : addrj = i}.

Let lev∗ = log m (assumed ∈ N for simplicity). Each CPUi performs the following.

Initialize Mi,0 ← msgi. For t = 1, . . . , lev∗:
1. Perform the following symmetric message exchange with CPUi⊕2t :

Mi,t+1 ← {msgj ∈ Mi,t ∪ Mi⊕2t,t : (addrj)t = (i)t}.
2. If |Mi,t+1| > K (i.e., memory overflow), then CPUi aborts.

Fig. 5. Fixed-topology routing network for delivering m messages originally held by m
processors to their corresponding destination addresses within [m].

In the full version, we show that if the destination addresses addri are uni-
formly sampled, then with overwhelming probability no node will ever need to
hold too many (the threshold K will be set to ω(log n)) messages at any point
during the routing network execution:

Lemma 2 (Routing Network). If L messages begin with target destination
addresses addri distributed independently and uniformly over [L] in the L-to-L
node routing network in Fig. 5, then with probability bounded by 1−(L log L)2−K ,
no intermediate node will ever hold greater than K messages at any point during
the course of the protocol execution.

Oblivious Aggregation. To perform the “CPU-coordination” phase, the
CPUs efficiently identify a single representative and aggregate relevant CPU
instructions; then, at the conclusion, the representative CPU must be able to
multi-cast the resulting information to all relevant requesting CPUs. Most impor-
tantly, these procedures must be done in an oblivious fashion. We discuss obliv-
ious aggregation first.

Formally, we want to achieve the following aggregation goal, with communi-
cation patterns independent of the inputs, using only O(log(m)polylog(n)) local
memory and communication per CPU, in only O(log(m)) sequential time steps.
An illustrative example to keep in mind is where keyi = bi, datai = vi, and Agg
is the process that combines instructions to data items within the same data
block, resolving conflicts as necessary.

Oblivious aggregation

Input: Each CPU i ∈ [m] holds (keyi, datai). Let K =
⋃{keyi} denote the set of

distinct keys. We assume that any (subset of) data associated with the same
key can be aggregated by an aggregation function Agg to a short digest of
size at most poly(
, log m), where 
 = |datai|.

Goal: Each CPU i outputs outi such that the following holds.
– For every key ∈ K, there exists unique agent i with keyi = key s.t. outi =
(rep, key, aggkey), where aggkey = Agg({dataj : keyj = key}).
– For every remaining agent i, outi = (⊥,⊥).
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At a high level, we achieve this via the following steps. (1) First, the CPUs
sort their data list with respect to the corresponding key values. This can be
achieved via an implementation of a log(m)-depth sorting network, and provides
the useful guarantee that all data pertaining to the same key are necessarily
held by an block of adjacent CPUs. (2) Second, we pass data among CPUs in a
sequence of log(m) steps such that at the conclusion the “left-most” (i.e., lowest
indexed) CPU in each key-block will learn the aggregation of all data pertain-
ing to this key. Explicitly, in each step i, each CPU sends all held information
to the CPU 2i to the “left” of him, and simultaneously accepts any received
information pertaining to his key. (3) Third, each CPU will learn whether he
is the “left-most” representative in each key-block, by simply checking whether
his left-hand neighbor holds the same key. From here, the CPUs have succeeded
in aggregating information for each key at a single representative CPU; (4) in
the fourth step, they now reverse the original sorting procedure to return this
aggregated information to one of the CPUs who originally requested it.

Lemma 3 (Space-Efficient Oblivious Aggregation). Suppose m proces-
sors initiate protocol OblivAgg w.r.t. aggregator Agg, on respective inputs
{(keyi, datai)}i∈[m], each of size 
. Then at the conclusion of execution, each
processor i ∈ [m] outputs a triple (rep′

i, key
′
i, data

′
i) such that the following prop-

erties hold (where asymptotics are w.r.t. m):

1. The protocol terminates in O(log m) rounds.
2. The local memory and computation required per processor is O(log m + 
).
3. (Correctness). For every key key ∈ ⋃{keyi}, there exists a unique proces-

sor i with output key′
i = key. For each such processor, it further holds that

key′
i = keyi, rep′

i = “rep′′, and data′
i = Agg({dataj : keyj = keyi}). For every

remaining processor, the output tuple is (⊥,⊥).
4. (Obliviousness). The inter-CPU communication patterns are independent of

the inputs (keyi, datai).

A full description of our Oblivious Aggregation procedure OblivAgg is given
in Fig. 6. We defer the proof of Lemma3 to the full version of this work and
provide only a high-level sketch.

Proof Sketch of Lemma 3. Property (1): The parallel complexity of OblivAgg
comes from Steps 1 and 4, which execute a sorting network and require O(log m)
communication rounds.

Property (2): At any given time, a processor must only store and/or com-
municate a constant number of CPU id’s (size log m) and data items (size 
),
yielding total O(log m + 
).

Property (3): To show that the Aggregate Left phase in Step 2 is correct, it
is proved (by induction) that for each pair of CPU indices i < j with the same
key, CPUi will learn CPUj ’s data after a number of rounds equal to the highest
index in which the bit representations of i and j disagree.

Property (4): Both sorting network and aggregate-to-left have fixed communi-
cation topologies; thus the induced inter-CPU communications are independent
of the initial CPU inputs.
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Oblivious Multicasting. Our goal for Oblivious Multicasting is dual to that
of the previous section: Namely, a subset of CPUs must deliver information to
(unknown) collections of other CPUs who request it. This is abstractly modeled
as follows, where keyi denotes which data item is requested by each CPU i.

Oblivious Multicasting

Input: Each CPU i holds (keyi, datai) with the following promise. Let K =⋃{keyi} denote the set of distinct keys. For every key ∈ K, there exists a
unique agent i with keyi = key such that datai �= ⊥; let datakey denote such
datai.

Goal: Each agent i outputs outi = (keyi, datakeyi
).

Oblivious Multicast can be solved in an analogous manner. We refer the
reader to the full version of this work for the OblivMCast construction.

3.3 Putting Things Together

We now combine the so-called “Heavy-OPAccess” structure of our OPRAM for-
malized in Sect. 3.1 (Fig. 2) within the simplified “free CPU communication”
setting, together with the (oblivious) Route, OblivAgg, and OblivMCast proce-
dures constructed in the previous subsection. For simplicity, we describe the
case in which the number of CPUs m is fixed; however, it can be modified in
a straightforward fashion to the more general case (as long as the activation
schedule of CPUs is a-priori fixed and public).

Recall the steps in Heavy-OPAccess where large memory/bandwidth are
required.

– In Step 1, each CPUi broadcasts (ri, vi) to all CPUs. Let bi = �ri/α�. This
is used to aggregate instructions to each bi and determine its representative
CPU rep(bi).

– In Step 4, each CPUi broadcasts (bi, 
i) or (⊥, 
i). This is used to aggre-
gate instructions to each buckets along path 
i about which blocks bi’s to be
removed.

– In Step 5, each (representative) CPUi broadcasts (bi, v̄i, 

′
i). This is used to

aggregate blocks to be inserted to each bucket in appropriate level of the tree.
– In Step 6, each CPUi broadcasts 
flushi . This is used to aggregate information

about which buckets the flush operation should perform.
– In Step 7, each (representative) CPUrep(b) broadcasts the old value vold of

block b to all CPUs, so that each CPU receives desired information.

We will use oblivious aggregation procedure to replace broadcasts in Step 1,
4, and 6; the parallel insertion procedure to replace broadcasts in Step 5, and
finally the oblivious multicast procedure to replace broadcasts in Step 7.

Let us first consider the aggregation steps. For Step 1, to invoke the obliv-
ious aggregation procedure, we set keyi = bi and datai = (ri mod α, vi), and
define the output of Agg({(ui, vi)}) to be a vector v̄ = v̄[1] · · · v̄[α] of read/write
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Oblivious Aggregation Procedure OblivAgg (w.r.t. Agg)
Input: Each CPU i ∈ [m] holds a pair (keyi, datai).
Output: Each CPU i ∈ [m] outputs a triple (repi, keyi, aggdatai) corresponding to either
(dummy, ⊥, ⊥) or with aggdatai = Agg({dataj : keyj = keyi}), as further specified in
Section 3.2.
1. Sort on keyi. Each CPUi initializes a triple (sourceidi, keytempi, datatempi) ←

(i, keyi, datai).
For each layer L1, . . . , Ld in the sorting network:
– Let L� = ((i1, j1), . . . , (im/2, jm/2)) be the comparators in the current layer �.
– In parallel, for each t ∈ [m/2], the corresponding pair of CPUs (CPUit , CPUjt)

perform the following pairwise sort w.r.t. key:
If keytempjt

< keytempit
, then

swap (sourceidit , keytempit
, datatempit

) ↔ (sourceidjt , keytempjt
, datatempjt

).
2. Aggregate to left. For t = 0, 1, . . . , log m:

– (Pass to left). Each CPUi for i > 2t sends his current pair
(keytempi, datatempi) to CPUi−2t .

– (Aggregate). Each CPUi for i < m−2t receiving a pair (keytempj , datatempj)
will aggregate it into own pair if the keys match. That is, if keytempi =
keytempj , then set datatempi ← Agg(datatempi, datatempj). In both cases,
the received pair is then erased.

The left-most CPUi with keytempi = key now has Agg({datatempj : keytempj =
key})).

3. Identify representatives. For each value keyj , the left-most CPU i currently
holding keytempi = keyj will identify himself as (temporary) representative.
– Each CPUi for i < m: send keytempi to right-hand neighbor, CPUi+1.
– Each CPUi for i > 1: If the received value keytempi−1 matches his own

keytempi, then set repi ← “dummy” and zero out keytempi ← ⊥, datatempi ←
⊥. Otherwise, set repi ← “rep”. (CPU1 always sets rep1 ← “rep”).

4. Reverse sort (i.e., sort on sourceidi). Return aggregated data to a requesting
CPU.
For each layer L1, . . . , Ld in the sorting network:
– Let L� = ((i1, j1), . . . , (im/2, jm/2)) be the comparators in the current layer �.
– Each CPUi initializes idtemp ← sourceidi. In parallel, for each t ∈ [m/2], the

corresponding pair of CPUs (CPUit , CPUjt) perform the following pairwise
sort w.r.t. sourceid:

If idtempjt
< idtempit

, then
swap (idtempit

, repit
, keytempit

, datatempit
) ↔

(idtempjt
, repjt

, keytempjt
, datatempjt

).
At the conclusion, each CPUi holds a tuple (idtempi, repi, keytempi, datatempi)
with idtempi = i and keytempi = keyi.

5. Output. Each CPUi outputs the triple (repi, keyi, datatempi).

Fig. 6. Space-efficient oblivious data aggregation procedure.

instructions to each memory cell in the block, where conflicts are resolved by
writing the value specified by the smallest CPU: i.e., ∀s ∈ [α], take v̄[s] ← vj for
minimal j such that uj = s and vj �= ⊥. By the functionality of OblivAgg, at the
conclusion of OblivAgg, each block bi is assigned to a unique representative (not
necessarily the smallest CPU), who holds the aggregation of all instructions on
this block.
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Both Step 4 and 6 invoke UpdateBuckets to update buckets along m ran-
dom paths. In our rudimentary solution, the paths (along with instructions)
are broadcast among CPUs, and the buckets are updated level by level. At
each level, each update bucket is assigned to a representative CPU with min-
imal index, who performs aggregated instructions to update the bucket. Here,
to avoid broadcasts, we invoke the oblivious aggregation procedure per level as
follows.

– In Step 4, each CPU i holds a path 
i and a block bi (or ⊥) to be removed. Also
note that the buckets along the path 
i are stored locally by each CPU i, after
the read operation in the previous step (Step 3). At each level lev ∈ [log n],
we invoke the oblivious aggregation procedure with keyi = 


(lev)
i (the lev-bits

prefix of 
i) and datai = bi if bi is in the bucket of node 

(lev)
i , and datai = ⊥

otherwise. We simply define Agg({datai}) = {b : ∃datai = b} to be the union
of blocks (to be removed from this bucket). Since datai �= ⊥ only when datai is
in the bucket, the output size of Agg is upper bounded by the bucket size K.
By the functionality of OblivAgg, at the conclusion of OblivAgg, each bucket


(lev)
i is assigned to a unique representative (not necessarily the smallest CPU)

with aggregated instruction on the bucket. Then the representative CPUs can
update the corresponding buckets accordingly.

– In Step 6, each CPU i samples a path 
flushi to be flushed and the instructions
to each bucket are simply left and right flushes. At each level lev ∈ [log n], we
invoke the oblivious aggregation procedure with keyi = 


flush(lev)
i and datai = L

(resp., R) if the (lev+1)-st bit of 
flushi is 0 (resp., 1). The aggregation function
Agg is again the union function. Since there are only two possible instructions,
the output has O(1) length. By the functionality of OblivAgg, at the conclusion
of OblivAgg, each bucket 


flush(lev)
i is assigned to a unique representative (not

necessarily the smallest CPU) with aggregated instruction on the bucket. To
update a bucket 


flush(lev)
i , the representative CPU loads the bucket and its

two children (if needed) into local memory from the server, performs the flush
operation(s) locally, and writes the buckets back.

Note that since we update m random paths, we do not need to hide the access
pattern, and thus the dummy CPUs do not need to perform dummy operations
during UpdateBuckets. A formal description of full-fledged UpdateBuckets can be
found in Fig. 7.

For Step 5, we rely on the parallel insertion procedure of Sect. 3.2, which
routes blocks to proper destinations within the relevant level of the server-held
data tree in parallel using a simple oblivious routing network. The procedure is
invoked with msgi = bi and addri = 
′

i.
Finally, in Step 7, each representative CPU rep(b) holds information of the

block b, and each dummy CPU i wants to learn the value of a block bi. To do
so, we invoke the oblivious multicast procedure with keyi = bi and datai = vold

i

for representative CPUs and datai = ⊥ for dummy CPUs. By the functionality
of OblivMCast, at the conclusion of OblivMCast, each CPU receives the value of
the block it originally wished to learn.
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The Final Compiler. For convenience, we summarize the complete protocol. Our
OPRAM compiler O, on input m,nt ∈ N and a m-processor PRAM program Π
with memory size nt (which in recursion level t will be nt = n/αt), will output
a program Π ′ that is identical to Π, but where each Access(r, v) operation is
replaced by a sequence of operations defined by subroutine OPAccess(r, v), which
we will construct over the following subsections. The OPAccess procedure begins
with m CPUs, each with a requested data cell ri (within some α-block bi) and
some action to be taken (either ⊥ to denote read, or vi to denote rewriting cell
ri with value vi).

1. Conflict Resolution: Run OblivAgg on inputs {(bi, vi)}i∈[m] to select a
unique representative rep(bi) for each queried block bi and aggregate all CPU
instructions for this bi (denoted v̄i).

2. Recursive Access to Position Map: Each representative CPU rep(bi)
samples a fresh random leaf id 
′

i ← [nt] in the tree and performs a (recursive)

UpdateBuckets (m, (commandi, pathi))
Let path(1), path(2), . . . , path(log n) denote the bit prefixes of length 1 to log n of path.

For each level lev = 1, . . . , log n of the tree:

1. The CPUs invoke the oblivious aggregation procedure OblivAgg as follows.
Case 1: commandi = remove-bi.

Each CPU i sets keyi = path
(lev)
i and datai = bi if bi is in the bucket of node

�
(lev)
i , and datai = ⊥ otherwise. Use the union function Agg({datai}) = {b :

∃datai = b} as the aggregation function.
Case 2: commandi = flush.

Each CPU i sets keyi = path
(lev)
i and datai = L (resp., R) if the (lev+1)-st bit

of pathi is 0 (resp., 1). Use the union function as the aggregation function.

At the conclusion of the protocol, each bucket path
(lev)
i is assigned to a representa-

tive CPU bucket-rep(path
(lev)
i ) with aggregated commands agg-commandi.

2. Each representative CPU performs the updates:
If i �= bucket-rep(path

(lev)
i ), do nothing. Otherwise:

Case 1: commandi = remove-bi.
Remove all blocks b ∈ agg-commandi in the bucket path

(lev)
i by accessing mem-

ory bucket path
(lev)
i and rewriting contents.

Case 2: commandi = flush.
Access memory buckets path

(lev)
i , path

(lev)
i ||0, path

(lev)
i ||1, perform flush opera-

tion locally according to agg-commandi ⊂ {L, R}, and write the contents back.

Specifically, denote the collection of stored data blocks b in path
(lev)
i by

ThisBucket. Partition ThisBucket = ThisBucket-L ∪ ThisBucket-R into those
blocks whose associated leaves continue to the left or right (i.e., {bj ∈
ThisBucket : �̄

(lev+1)
j = mypath(lev)||0}, and similar for 1).

– If L ∈ agg-commandi, then set ThisBucket ← ThisBucket \ ThisBucket-L,

and insert data items ThisBucket-L into bucket path
(lev)
i ||0.

– If R ∈ agg-commandi, then set ThisBucket ← ThisBucket \ ThisBucket-R,

and insert data items ThisBucket-L into bucket path
(lev)
i ||0.

Fig. 7. A space-efficient implementation of the UpdateBuckets procedure.
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Read/Write access command on the position map database 
i ← OPAccess(t+
1, (bi, 


′
i)) to fetch the current position map value 
 for block bi and rewrite

it with the newly sampled value 
′
i. Each dummy CPU performs an arbitrary

dummy access (e.g., garbage ← OPAccess(t + 1, (1, ∅))).
3. Look Up Current Memory Values: Each CPU rep(bi) fetches memory

from the database nodes down the path to leaf 
i; when bi is found, it copies
its value vi into local memory. Each dummy CPU chooses a random path
and make analogous dummy data fetches along it, ignoring all read values.
(Recall that simultaneous data reads do not yield conflicts).

4. Remove Old Data: For each level in the tree,
– Aggregate instructions across CPUs accessing the same “buckets” of mem-

ory (corresponding to nodes of the tree) on the server side. Each repre-
sentative CPU rep(b) begins with the instruction of “remove block b if it
occurs” and dummy CPUs hold the empty instruction. (Aggregation is as
before, but at bucket level instead of the block level).

– For each bucket to be modified, the CPU with the smallest id from those
who wish to modify it executes the aggregated block-removal instructions
for the bucket. Note that this aggregation step is purely for correctness
and not security.

5. Insert Updated Data into Database in Parallel : Run Route on inputs
{(m, (msgi, addri))}i∈[m], where for each rep(bi), msgi = (bi, v̄i, 


′
i) (i.e.,

updated block data) and addri = [
′
i]log m (i.e., level-log m-truncation of 
′

i),
and for each dummy CPU, msgi, addri = ∅.

6. Flush the ORAM Database: In parallel, each CPU initiates an indepen-
dent flush of the ORAM tree. (Recall that this corresponds to selecting a
random path down the tree, and pushing all data blocks in this path as far
as they will go). To implement the simultaneous flush commands, as before,
commands are aggregated across CPUs for each bucket to be modified, and
the CPU with the smallest id performs the corresponding aggregated set of
commands. (For example, all CPUs will wish to access the root node in their
flush; the aggregation of all corresponding commands to the root node data
will be executed by the lowest-numbered CPU who wishes to access this
bucket, in this case CPU 1).

7. Return Output: Run OblivMCast on inputs {(bi, vi)}i∈[m] (where for
dummy CPUs, bi, v̄i := ∅) to communicate the original (pre-updated) value
of each data block bi to the subset of CPUs that originally requested it.

A few remarks regarding our construction.

Remark 2 (Truncating OPRAM for Fixed m). In the case that the number of
CPUs m is fixed and known a priori, the OPRAM construction can be directly
trimmed in two places.

Trimming Tops of Recursive Data Trees: Note that data items are always
inserted into the OPRAM trees at level log m, and flushed down from this level.
Thus, the top levels in the ORAM tree are never utilized. In such case, the data
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buckets in the corresponding tops of the trees, from the root node to level log m
for this bound, can simply be removed without affecting the OPRAM.
Truncating Recursion: In the t-th level of recursion, the corresponding database
size shrinks to nt = n/αt. In recursion level logα n/m (i.e., where nt = m), we
can then achieve oblivious data accesses via local CPU communication (storing
each block i ∈ [nt] = [m] locally at CPU i, and running OblivAgg,OblivMCast
directly) without needing any tree lookups or further recursion.

Remark 3 (Collision-Freeness). In the compiler above, CPUs only access the
same memory address simultaneously in the (read-only) memory lookup in Step
3. However, a simple tweak to the protocol, replacing the direct memory lookups
with an appropriate aggregation and multicast step (formally, the procedure
UpdateBuckets as described in the appendix), yields collision freeness.
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