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Preface

The 13th Theory of Cryptography Conference (TCC 2016-A) was held during January
10-13, 2016, at the Suzanne Dellal Center in Tel Aviv, Israel. It was sponsored by the
International Association for Cryptographic Research (IACR). The general chairs
of the conference were Ran Canetti and Iftach Haitner. We would like to thank them for
their hard work in organizing the conference.

The conference received 112 submissions, of which the Program Committee
(PC) selected 45 for presentation (with three pairs of papers sharing a single presen-
tation slot per pair). Each submission was reviewed by at least three PC members, often
more. The 24 PC members, all top researchers in our field, were helped by 112 external
reviewers, who were consulted when appropriate. These proceedings consist of the
revised version of the 45 accepted papers. The revisions were not reviewed, and the
authors bear full responsibility for the content of their papers.

As in previous years, we used Shai Halevi’s excellent web-review software, and are
extremely grateful to him for writing it, and for providing fast and reliable technical
support whenever we had any questions. Based on the experience from last year, we
again made use of the interaction feature supported by the review software, where PC
members may directly and anonymously interact with authors. This was used to ask
specific technical questions that arise, such as suspected bugs. We felt this was efficient
and successful, and are thankful to last year’s chairs, Yevgeniy Dodis and Jesper Buus
Nielsen, for suggesting this feature, and to Shai Halevi for implementing it.

This was the second year where TCC presented the Test of Time Award to an
outstanding paper that was published at TCC at least eight years ago, making a sig-
nificant contribution to the theory of cryptography, preferably with influence also in
other areas of cryptography, theory, and beyond. This year the Test of Time Award
Committee selected the following paper, published ten years ago at TCC 2006:

“Calibrating Noise to Sensitivity in Private Data Analysis,” by Cynthia Dwork, Frank McSherry,
Kobbi Nissim, and Adam Smith.

This paper was selected for introducing the definition of differential privacy, pro-
viding a solid mathematical foundation for a vast body of subsequent work on private
data analysis. The authors were also invited to deliver a talk at TCC 2016-A. The
conference also featured two other invited events. First, an invited talk by Yael Kalai
and Shafi Goldwasser (delivered by Yael) followed by panel on “cryptographic
assumptions.” Second, an invited talk by Yevgeniy Dodis. Finally, in addition to
regular papers and invited events, the conference also featured a rump session.

We are greatly indebted to many people who were involved in making TCC 2016-A
a success. First of all, a big thanks to the most important contributors: all the authors
who submitted papers to the conference. Next, we would like to thank the PC members
for their hard work, dedication, and diligence in reviewing the papers, verifying the
correctness, and in-depth discussion. We are also thankful to the external reviewers for
their volunteered hard work and investment in reviewing papers and answering



VI Preface

questions, often under time pressure. For running the conference itself, we are very
grateful to the general chairs, Ran Canetti and Iftach Haitner, as well as Galit Herzberg
and the rest of the local Organizing Committee. Finally, we are thankful to the TCC
Steering Committee as well as the entire thriving and vibrant TCC community.

January 2016 Eyal Kushilevitz
Tal Malkin
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Making the Best of a Leaky Situation:
Zero-Knowledge PCPs
from Leakage-Resilient Circuits

Yuval Ishai'2(®) Mor Weiss', and Guang Yang®

! Department of Computer Science, Technion, Haifa, Israel
{yuvali,morw}@cs.technion.ac.il
2 Department of Computer Science, UCLA, Los Angeles, CA, USA
3 Institute for Interdisciplinary Information Sciences, Tsinghua University,
Beijing, China
guang.research@gmail.com

Abstract. A Probabilistically Checkable Proof (PCP) allows a random-
ized verifier, with oracle access to a purported proof, to probabilistically
verify an input statement of the form “x € L” by querying only few
bits of the proof. A zero-knowledge PCP (ZKPCP) is a PCP with the
additional guarantee that the view of any verifier querying a bounded
number of proof bits can be efficiently simulated given the input x alone,
where the simulated and actual views are statistically close.

Originating from the first ZKPCP construction of Kilian et al. [21],
all previous constructions relied on locking schemes, an unconditionally
secure oracle-based commitment primitive. The use of locking schemes
makes the verifier inherently adaptive, namely, it needs to make at least
two rounds of queries to the proof.

Motivated by the goal of constructing non-adaptively verifiable
ZKPCPs, we suggest a new technique for compiling standard PCPs into
ZKPCPs. Our approach is based on leakage-resilient circuits, which are
circuits that withstand certain “side-channel” attacks, in the sense that
these attacks reveal nothing about the (properly encoded) input, other
than the output. We observe that the verifier’s oracle queries constitute
a side-channel attack on the wire-values of the circuit verifying mem-
bership in L, so a PCP constructed from a circuit resilient against such
attacks would be ZK. However, a leakage-resilient circuit evaluates the
desired function only if its input is properly encoded, i.e., has a specific
structure, whereas by generating a “proof” from the wire-values of the
circuit on an ill-formed “encoded” input, one can cause the verification
to accept inputs x ¢ L with probability 1. We overcome this obstacle by
constructing leakage-resilient circuits with the additional guarantee that
ill-formed encoded inputs are detected. Using this approach, we obtain
the following results:

— We construct the first witness-indistinguishable PCPs (WIPCP) for
NP with non-adaptive verification. WIPCPs relax ZKPCPs by only
requiring that different witnesses be indistinguishable. Our construc-
tion combines strong leakage-resilient circuits as above with the PCP
© International Association for Cryptologic Research 2016

E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 3-32, 2016.
DOI: 10.1007/978-3-662-49099-0_1
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of Arora and Safra [2], in which queries correspond to side-channel
attacks by shallow circuits, and with correlation bounds for shallow
circuits due to Lovett and Srivinasan [22].

— Building on these WIPCPs, we construct non-adaptively verifiable
computational ZKPCPs for NP in the common random string model,
assuming that one-way functions exist.

— As an application of the above results, we construct 3-round WI and
ZK proofs for NP in a distributed setting in which the prover and the
verifier interact with multiple servers of which ¢ can be corrupted, and
the total communication involving the verifier consists of poly log(¢)
bits.

1 Introduction

In this work we study probabilistically checkable proofs with zero-knowledge
properties, and establish a connection between such proofs and leakage-resilient
circuits. Before describing our main results, we first give a short overview of
these objects.

Probabilistically Checkable Proof (PCP) systems [1,2] are proof systems that
allow an efficient randomized verifier, with oracle access to a purported proof
generated by an efficient prover (that is also given the witness), to probabilis-
tically verify claims of the form “x € L” (for an NP-language L) by probing
only few bits of the proof. The verifier accepts the proof of a true claim with
probability 1 (the completeness property), and rejects false claims with high
probability (the probability that the verifier accepts a false claim is called the
soundness error). The celebrated PCP theorem [1,2,8] asserts that any NP lan-
guage admits a PCP system with soundness error 1/2 in which the verifier reads
only a constant number of proof bits (soundness can be amplified using repeti-
tion). Moreover, the verifier is non-adaptive, namely its queries are determined
solely by his randomness (a verifier is adaptive if each of his queries may also
depend on the oracle answers to previous queries).

A very different kind of proofs are zero-knowledge (ZK) proofs [14], namely
proofs that carry no extra knowledge other than being convincing. Combining
the advantages of ZK proofs and PCPs, a zero-knowledge PCP (ZKPCP) is
defined similarly to a traditional PCP, except that the proof is also randomized
and there is the additional guarantee that the view of any (possibly malicious)
verifier who makes a bounded number of queries can be efficiently simulated
up to a small statistical distance.

Previous ZKPCP constructions [17,19,21] are obtained from standard (i.e.,
non-ZK) PCPs in two steps. First, the standard PCP is transformed into a PCP
with a weaker “honest-verifier” ZK guarantee (which is much easier to achieve
than full-fledged ZK). Then, this “honest-verifier” ZKPCP is combined with
an unconditionally secure oracle-based commitment primitive called a “locking
scheme” [17,21]. This transformation yields ZKPCPs for NP with statistical ZK
against query-bounded malicious verifiers, namely ones who are only limited to
asking at most p(|z|) queries, for some fized polynomial p that is much smaller
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than the proof length, but can be much bigger than the (polylogarithmic) number
of queries asked by the honest verifier.

A common limitation of all previous ZKPCP constructions is that they
require adaptive verification, even if the underlying non-ZK PCP can be non-
adaptively verified. This raises the natural question of constructing PCPs that
can be non-adaptively verified, and guarantee ZK against malicious verifiers.
We note that the adaptivity of the verifier is inherent to any locking-scheme-
based ZKPCP, since the unconditional security of locking schemes makes their
opening inherently adaptive. Therefore, constructing ZKPCPs that can be veri-
fied non-adaptively requires a new approach towards ZKPCP construction. An
additional advantage of eliminating the use of locking schemes is the possibility
of constructing ZKPCPs preserving the proof length (which is important when
these are used for cryptographic applications as described below), since locking
schemes inherently incur a polynomial blow-up in the PCP length.

Motivated by these goals, we suggest a new approach for the construction
of ZKPCPs. We apply leakage-resilient circuit compilers (LRCCs) to construct
witness-indistinguishable PCPs (WIPCPs) for NP, a weaker variant of ZKPCPs
in which the simulation is not required to be efficient. We then apply the so-
called “FLS technique” [12] to convert these WIPCPs into computational ZKPCPs
(CZKPCPs) in the common random string (CRS) model, based on the existence
of one-way functions (OWFs). In such a CZKPCP, the view of any query-bounded
PPT verifier can be efficiently simulated, in a way which is computationally indis-
tinguishable from the actual view.

Informally, an LRCC compiles any circuit into a new circuit that operates
on encoded inputs, and withstands side-channel attacks in the sense that these
reveal nothing about the (properly encoded) input, other than what follows
from the output. Works on LRCCs obtained information-theoretic security for
different classes of leakage functions [10,11,15,18,23,25].

Other than the theoretical interest in this question, our study of PCPs with
ZK properties is motivated by their usefulness for cryptographic applications. For
instance, ZKPCPs are the underlying combinatorial building blocks of succinct
zero-knowledge arguments, which have been the subject of a large body of recent
work (see, e.g., [3-5] and references therein).

A more direct application of WIPCPs and ZKPCPs is for implementing
efficiently verifiable zero-knowledge proofs in a distributed setting involving a
prover, verifier, and multiple (potentially corrupted) servers. In this setting a
prover can distribute a ZKPCP between the servers, allowing the verifier to
efficiently verify the claim by polling a small random subset of the servers.! In
this and similar situations, ZKPCPs that only offer security against an honest
verifier are not sufficient for protecting against colluding servers. We use our
non-adaptively verifiable WIPCPs and CZKPCPs for NP to construct 3-round
WI and CZK proofs for NP in this distributed setting, in which the total com-
munication with the verifier is sublinear in the input length. The WI proofs are

! Unlike the ZKPCP model, the answers of malicious servers may depend on the
identity of the verifier’s queries, but this can be overcome using techniques of [19].
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unconditional, whereas the CZK proofs are based on the existence of OWFs.
This should be contrasted with standard sublinear ZK arguments, that require
at least 4 rounds of interaction, and require the existence of collision resistant
hash functions. We refer the reader to, e.g., [17] for additional discussion of
ZKPCPs and their applications.

1.1 Our Results and Techniques

We now give a more detailed account of our results, and the underlying tech-
niques.

FroM LRCCs AND PCPs 1o WIPCPs. Let L be an NP-language with a
corresponding NP-relation Rj, and a boolean circuit C verifying R;. Recall
that the prover P in a PCP system for R, is given the input x and a witness y
for the membership of z in L, and outputs a proof 7 that is obtained by applying
some function fp to x,y. For our purposes, it would be more convenient to think
of fp as a function of the entire wire values w of C, when evaluated on z,y. In a
ZKPCP, few bits in the output of fp should reveal essentially nothing about the
wire values w, i.e., C should withstand “leakage” from fp. In general, we cannot
assume that C' has this guarantee, but using an LRCC, C' can be compiled into a
circuit C' with this property. Informally, an LRCC is associated with a function
class £ (the leakage class) and a (randomized) input encoding scheme E, and
compiles a deterministic circuit C' into a deterministic circuit C, that emulates
C, but operates on an encoded input. It is leakage-resilient in the following sense:
for any input z for C, and any ¢ € L, the output of ¢ on the wire values of C,
when evaluated on E (z), reveals nothing other than C'(z). This is formalized
in the simulation-based paradigm (i.e., the wire-values of C can be efficiently
simulated given only C (2)).

We establish a connection between ZKPCPs and LRCCs. Assume the existence
of an LRCC associated with a leakage class £, such that any restriction f of fp
to a “small” subset Z of its outputs satisfies f& € £. Then the oracle answers to
the queries of a query-bounded verifier V' correspond to functions in £, since for
every possible set Z of oracle queries, the answers are fZ (w). Therefore, if w is the
wire values of a leakage-resilient circuit then the system is ZK. This gives a general
method of transforming standard PCPs into ZKPCPs: P,V replace C, = C (z, )
(i.e., C with 2 hard-wired into it) with C,; and P proves that C, is satisfiable by
generating the PCP 7 from the wire values of C,.

This transformation crucially relies on the fact that C, emulates C, (e.g., if
C, always outputs 1 then the resultant PCP system is not sound). However, in
current constructions of LRCCs (e.g., [11,18,23]), this holds only if the encoded
input of C, was honestly generated. Moreover, there always exists a choice of an
ill-formed “encoding” that satisfies Cy (i.e., causes it to output 1). In our case
the prover generates the encoded input of C, (the verifier does not know this
input), so a malicious prover can pick an ill-formed “encoding” that satisfies éx7
causing the verifier to accept with probability 1. Therefore, soundness requires
that if C, is not satisfiable, then there exists no satisfying input for C, (either
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well- or ill-formed), a property which we call SAT-respecting. The main tool
we use are SAT-respecting LRCCs, which we construct based on the LRCC of
Faust et al. [11]. To describe our construction, we first need to delve deeper into
their construction.

The LRCC of [11] transforms a circuit C into a circuit C' that operates on
encodings generated by a linear encoding scheme, and emulates the operations of
C' on these encodings. Leakage-resilience against functions in a restricted func-
tion class L is obtained by “refreshing” the encoded intermediate values of the
computation after every operation, using encodings of 0. (The LRCCs of [18,23]
operate essentially in the same way.) The input of C includes sufficiently many
encodings of 0 to be used for the entire computation.? However, by providing
C also with 1-encodings (i.e., encodings of 1), one can change the functionality
emulated by C. (In particular, if the encoding “refreshing” the output gate is a
1-encoding, the output is flipped.) This is not just an artifact of the construc-
tion, but rather is essential for their leakage-resilience argument. Concretely, to
simulate the wire values of C' without knowing its input, the simulator some-
times uses 1-encodings, which rules out the natural solution of verifying that the
encodings used for “refreshing” are 0-encodings. We observe that if C' were emu-
lated twice, it would suffice to know that at least one copy used only 0-encodings,
since then C is satisfiable only if the honestly-evaluated copy is satisfiable (i.e.,
C' is satisfiable). At first, this may seem as no help at all, but it turns out that
by emulating C' twice, we can construct what we call a relazed LRCC, which is
similar to an LRCC, except that the simulator is not required to be efficient.
Specifically, assume that before compiling C into C , we would replace it with
a circuit C’ that computes C twice, and outputs the AND of both evaluations.
Then C’ would be relaxed leakage-resilient, since an unbounded simulator could
simulate the wire values of C’ by finding a satisfying input zg for C, and hon-
estly evaluating C’ on a pair of encodings of zg. Using a hybrid argument, we
can prove that functions in £ cannot distinguish the simulated wire values Wg
from the actual wire values Wg of C’ when evaluated on a satisfying input zg.
Indeed, we can first replace the input in the first copy from zp to zg (using
the leakage-resilience of the LRCC of [11] to claim that functions in £ cannot
distinguish this hybrid distribution from Wg), then do the same in the second
copy. By replacing the inputs one at a time, we only need to use 1-encodings in
a single copy.> However, holding two copies of the original circuit still does not
guarantee that the evaluation in at least one of them uses only 0-encodings.

The natural solution would again be to add a sub-circuit verifying that the
encodings used are 0-encodings, but this sub-circuit should hide the identity of

2 Actually, [11] consider a model of continuous leakage, in which the circuit is invoked
multiple times on different inputs, and maintains a secret state. Their construction
uses tamper-proof hardware (called opague gates) to generate the encodings of 0
used for refreshing. We consider the simpler model of one-time leakage on circuits
that operated on encoded inputs [18,23], and as a result we can incorporate the
necessary encodings (used for refreshing) into the encoded input.

This technique is reminiscent of the “2-key trick” of [24], used to convert a CPA-
secure encryption scheme into a CCA-secure one.
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the “correctly evaluated” copy. This is because the hybrid argument described
above first uses 1-encodings in the first copy (and 0-encodings in the second),
and then uses 1-encodings in the second copy (and only 0-encodings in the first).
Therefore, if functions in £ could determine which copy uses only 0-encodings,
they could also distinguish between the hybrids. Instead, we describe an “obliv-
ious” checker 7y, which at a high-level operates as follows. To check that either
the first or the second copy use only 0O-encodings, it checks that for every pair
of encodings, one from the first copy, and one from the second, the product of
the encoded values is 0. To guarantee that leakage on 7 reveals no information
regarding which copy uses only 0-encodings, we use the LRCC of [11] to compile
7y into a leakage-resilient circuit 7. This introduces the additional complication
that now we must also verify the encodings used to “refresh” the computation in
7 (otherwise 1-encodings may be used, potentially changing the functionality of
7o and rendering it useless). However, since 7, does not operate directly on the
imputs to ol (it operates only on the encodings used for “refreshing”), we show
that the “refreshing” encodings used in 7y can be checked directly (by decod-
ing the encoded values and verifying that they are 0). Additional technicalities
arise since introducing these additional components prevents us from using the
LRCC of [11] as a black box (see Sect. 3 for additional details on the analysis).
Finally, we note that our circuit-compiler is relaxed-leakage-resilient because in
all hybrids, we need the honestly-evaluated copy to be satisfied, so the simula-
tor needs to find a satisfying input for C. This is also the reason that we get
WIPCPs, and not ZKPCPs. If we had a SAT-respecting LRCC, the transfor-
mation described above would give a ZKPCP. However, we show that known
LRCCs withstanding global leakage [11,18,23] cannot be transformed into SAT-
respecting non-relazed LRCCs (i.e., LRCCs with an efficient simulator), unless
NP C BPP. Intuitively, this is because these constructions admit a simulator
which is universal in the sense that it simulates the wire values of the compiled
circuit without knowing the leakage function, and the simulated values “fool”
all functions in £. Combining such a SAT-respecting LRCC with PCPs for NP
(through the transformation described above) would give a BPP algorithm of
deciding any NP-language.

CoNSTRUCTING WIPCPs FOR NP. Recall that our general transformation
described above relied on fp being in the function class £ that is associated
with the SAT-respecting relaxed-LRCC. We observe that the PCP system of
Arora and Safra [2] has the property that every “small” subset of proof bits can
be generated using a low-depth circuit of polynomial size over the operations
A, V, -, @, with “few” @ gates. We use recent correlation bounds of Lovett and
Srivinasan [22], which roughly state that such circuits have negligible correla-
tion with the boolean function that counts the number of 1’s modulo 3in its
input, to construct a SAT-respecting circuit compiler that is relaxed leakage-
resilient with respect to this function class. Combining this relaxed LRCC with
our general transformation, we prove the following, where NA-WIPCP denotes
the class of all NP-languages that have a PCP system with a negligible sound-
ness error, polynomial-length proofs, a non-adaptive honest verifier that queries
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poly-logarithmically many proof bits, and guarantee W1 against (adaptive) mali-
cious verifiers querying a fixed polynomial number of proof bits.

Theorem 1 (NA-WIPCPs for NP). NP = NA — WIPCP.

CoONSTRUCTING CZKPCPs rOrR NP. Using a general technique of Feige et al.
[12], and assuming the existence of OWFs, we transform our WIPCP into a
CZKPCP in the CRS model, in which the PCP prover and verifier both have
access to a common random string. Concretely, we prove the following result,
where NA-CZKPCP corresponds exactly to the class NA-WIPCP, except that
the WI property is replaced with CZK in the CRS model.

Corollary 1 (NA-CZKPCPs for NP). Assume that OWFs exist. Then
NP = NA — CZKPCP.

In Sect. 4 we describe a simple alternative approach for constructing CZKPCPs
by applying a PCP on top of a standard non-interactive zero-knowledge (NIZK)
proof. This should be contrasted with our main construction that only relies on
a OWF.

2 Preliminaries

Let F be a finite field, and X be a finite alphabet (i.e., a set of symbols). In the
following, function composition is denoted as fog, where (f o g) (z) := f (g (2)).
If F,G are families of functions then Fo G = {fog: f € F,g € G}. Vectors
will be denoted by boldface letters (e.g., a). If D is a distribution then X « D,
or X €r D, denotes sampling X according to the distribution D. Given two
distributions X,Y, SD (X,Y) denotes the statistical distance between X and
Y. For a natural n, negl(n) denotes a function that is negligible in n. For a
function family £, we sometimes use the term “leakage family £”, or “leakage
class £”. In the following, n usually denotes the input length, m usually denotes
the output length, d,s denote depth and size, respectively (e.g., of circuits, as
defined below), t is used to count @ gates, and o is a security parameter. We
assume that standard cryptographic primitives (e.g., OWFSs) are secure against
non-uniform adversaries.

Definition 1 (Leakage-indistinguishability of distributions). Let D, D’
be finite sets, L = {¢ : D — D'} be a family of leakage functions, and € > 0.
We say that two distributions X, Y over D are (L, €)-leakage-indistinguishable,
if for any function £ € L, SD (¢ (X),£(Y)) <e.

Remark 1. In case L consists of functions over different domains, we say that
X,Y over D are (L, €)-leakage-indistinguishable if SD (¢ (X),£(Y")) < e for every
function ¢ € £ with domain D.

ENCODING SCHEMES. An encoding scheme E over alphabet X' is a pair (Enc, Dec)
of algorithms, where the encoding algorithm Enc is a probabilistic polynomial-
time (PPT) algorithm that given a message x € X™ outputs an encoding & € X"
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for some 7 = 7 (n); and the decoding algorithm Dec is a deterministic algorithm,
that given an & of length n in the image of Enc, outputs an « € X". Moreover,
Pr[Dec (Enc(z)) = z] = 1 for every z € X". We say that E is onto, if Dec is
defined for every x € X",

An encoding scheme E = (Enc, Dec) over F is linear if for every n, n divides
fi (n), and there exists a decoding vector (™ € F*(")/™ guch that the follow-
ing holds for every x € TF". First, every encoding y in the support of Enc (z)
can be partitioned into n equal-length parts y = (yl, e y”). Second, Dec (y) =
(™™ y1), ., (x?(™) y™)) (where “(-, )" denotes inner product). Given an encod-
ing scheme E = (Enc, Dec) over F, and n € N, we say that a vector v € F*(") is
well-formed if v € Enc (0™).

PARAMETERIZED ENCODING SCHEMES. We consider encoding schemes in which
the encoding and decoding algorithms are given an additional input 17, which
is used as a security parameter. Concretely, the encoding length depends also
on o (and not only on n), i.e,, i = 2 (n,o), and for every o the resultant
scheme is an encoding scheme (in particular, for every x € X™ and every
o € N, Pr[Dec(Enc(z,17),19) = ] = 1). We call such schemes parameterized.
A parameterized encoding scheme is onto if it is onto for every o. It is linear if
it is linear for every o (in particular, there exist decoding vectors {r™(™?)}). For
n,o € N, a vector v € F*"9) is well-formed if v € Enc (0",17). We will only
consider parameterized encoding schemes, and therefore when we say “encoding
scheme” we mean a parameterized encoding scheme.

Definition 2 (Leakage-indistinguishability of functions and encodings).
Let L be a family of leakage functions, and € > 0. A randomized function f :
X — XY™ s (L, €)-leakage-indistinguishable if for every x,y € X™, the distrib-
utions f (z), f (y) are (L, €)-leakage-indistinguishable.

We say that an encoding scheme E is (L, €)-leakage-indistinguishable if for every
large enough o € N, Enc (+,17) is (L, €)-leakage indistinguishable.

CIirculiTs. We consider arithmetic circuits C' over the field F and the set X =
{z1,...,x,} of variables. C is a directed acyclic graph whose vertices are called
gates and whose edges are called wires. The wires of C' are labled with functions
over X. Every gate in C of in-degree 0 has out-degree 1 and is either labeled
by a variable from X and is referred to as an input gate; or is labeled by a
constant @ € F and is referred to as a const, gate. Following [11], all other
gates are labeled by one of the following functions +, —, X, copy or id, where
+, —, X are the addition, subtraction, and multiplication operations of the field
(i.e., the outcoming wire is labeled with the addition, subtraction, or product
(respectively) of the labels of the incoming wires), and these vertices have fan-in
2 and fan-out 1; copy vertices have fan-in 1 and fan-out 2, where the labels of the
outcoming edges carry the same function as the incoming edge; and id vertices
have fan-in and fan-out 1, and the label of the outcoming edge is the same as
the incoming edge. We write C' : F* — F™ to indicate that C is an arithmetic
circuit over F with n inputs and m outputs. The size of a circuit C, denoted |C|,
is the number of wires in C, together with input and output gates. Shallow (d, s)
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denotes the class of all depth-d, size-s, arithmetic circuits over F. Similarly,
ShallowB (d, s) denotes the class of all depth-d, size-s, boolean circuits with A,V
gates (replacing the 4, —, x gates of arithmetic circuits), id, copy, constg, and
const; gates (with fan-in and fan-out as specified above), and — gates with fan-
in and fan-out 1. Somewhat abusing notation, we use the same notations to
denote the families of functions computable by circuits in the respective class of
circuits. ACY denotes all constant-depth and polynomial-sized boolean circuits
over unbounded fan-in and fan out A,V,—,consty and const; gates.

Definition 3. For F = Fy, a circuit C : F* — F over Fy is satisfiable if there
exists an © € F™ such that C (x) = 1. For F # Fa, C is satisfiable if there exists
an x € F™ such that C (z) = 0.

2.1 Circuit Compilers

We define the notion of a circuit compiler. Informally, it consists of an encoding
scheme and a compiler algorithm, that compiles a given circuit into a circuit
operating on encodings, and emulating the original circuit. Formally,

Definition 4 (Circuit compiler over F). A circuit compiler over F is a pair
(Comp, E) of algorithms with the following syntaz.

~ E = (Enc, Dec) is an encoding scheme, where Enc is a PPT encoding algorithm
that given a vector x € F", and 17, outputs a vector &. We assume that & € F"
for some 1 = (n,o).

— Comp is a polynomial-time algorithm that given an arithmetic circuit C' over
F outputs an arithmetic circuit C.

We require that (Comp, E) satisfy the following correctness requirement. For

any arithmetic circuit C, and any input x for C, we have Pr {CA' (z)y=0C (x)} =1,
where & is the output of Enc (x, 1|C|).
A boolean circuit compiler is a circuit compiler over Fs.

We consider circuit compilers that are also “sound”, meaning that satisfying
(possibly ill formed) inputs for the compiled circuit exist only if the original
circuit is satisfiable.

Definition 5 (SAT-respecting circuit compiler). A circuit compiler
(Comp, E) is SAT-respecting if it satisfies the following soundness requirement
for every circuit C : F™* — F. Ifé’ = Comp(CQ) is satisfiable then C' is satisfiable,
i.e., if C(2*) = 0 for some &* € F", then there exists an © € F" such that
C(z) = 0. (For F = Fq, we require that zfé outputs 1 on some input, then so
does C'.)
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2.2 Leakage-Resilient Circuit Compilers (LRCCs)

We consider circuit compilers whose outputs are leakage resilient for a class £
of functions, in the following sense. For every “not too large” circuit C, and
every input z for C, the wire values of the compiled circuit C , when evaluated
on a random encoding & of z, can be simulated given only the output of C; and
functions in £ cannot distinguish between the actual and simulated wire values.

Notation 2. For a Circuit C, a leakage function € : FI€l — F™ for some natural
m, and an input x for C, [C, x| denotes the wire values of C' when evaluated on
x, and £[C,x] denotes the output of £ on [C,x].

Definition 6 (Relaxed LRCC). Let F be a finite field. For a function class
L, e(n) : N — RY, and a size function S(n) : N — N, we say that (Comp, E)
is (L,e(n),S (n))-relazed leakage-resilient if there exists an algorithm Sim such
that the following holds. For all sufficiently large n’s, every arithmetic circuit
C over F of input length n and size at most S (n), every £ € L of input length

‘C", and every x € F", we have SD (E [Sim (C,C (2))],¢ {C’, iD < e(|z|), where

z «— Enc (J:, 1|C‘).

Definition 6 is relaxed in the sense that (unlike [11,18,23]) Sim is not required
to be efficient.

The error in Definitions 5 and 6 is defined with relation to the input length n.
Both definitions can be naturally extended such that the compiler is also given
a security parameter k, and the error depends on £ (and possibly also n).

3 SAT-Respecting Relaxed LRCC

In this section we construct a SAT-respecting relaxed LRCC. We first describe a
relaxed LRCC over any finite field F # [Fy, then use its instantiation over F3 to
construct a boolean relaxed LRCC (which we later use to construct WIPCPs and
CZKPCPs). Our starting point is the circuit-compiler of Faust et al. [11], which

FRRTV EFRRTV)
b

we denote by (Comp . They present a general circuit-compiler

that guarantees correctness, and a stronger notion of leakage-resilience (infor-
mally, that the wire values of the compiled circuit can be efficiently simulated).
However, the correctness of their construction relies on the assumption that the
inputs to the compiled circuit are honestly encoded. Therefore, their construction
is not SAT-respecting, since by using ill-formed encoded inputs one can cause the
compiled circuit to output arbitrary values, even if other than that the compiler
was honestly applied to the original circuit. We describe a method of generalizing
their construction such that the circuit-compiler is also SAT-respecting. We first
give a high-level overview of the compiler of [11].

GADGETS. On input a circuit C, our compiler, and that of Comp™ ™V replace

every wire of C with a bundle of wires, and every gate in C' with a gadget.
More specifically, a bundle is a string of field elements, encoding a field element
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according to some encoding scheme E; and a gadget is a circuit which operates
on bundles and emulates the operation of the corresponding gate in C'. A gad-
get has both standard inputs, that represent the wires in the original circuit,
and masking inputs, that are used to achieve privacy. More formally, a gadget
emulates a specific boolean or arithmetic operation on the standard inputs, and
outputs a bundle encoding the correct output. Every gadget G is associated with
a set Mg of “well-formed” masking input bundles (e.g., in the circuit compiler
of [11], Mg consists of sets of 0-encodings). For every standard input x, on input
a bundle x encoding x, and any masking input bundles m € Mg, the output of
the gadget G should be consistent with the operation on z. For example, if G
computes the operation X, then for every standard input z = (z1, z2), for every
bundle encoding x = (x1,x3) of x according to E, and for every masking input
bundles m € Mg, G (x,m) is a bundle encoding 7 X x2 according to E. Since
all the encoding schemes that we consider are onto, we may think of the mask-
ing input bundles m as encoding some set mask of values, in which case we say
that G takes |mask| masking inputs. The privacy of the internal computations in
the gadget will be achieved when the masking input bundles of the gadget are
uniformly distributed over Mg, regardless of the actual values encoded by the
masking input bundles.

GADGET-BASED CIRCUIT-COMPILERS. C' = Comp" ™™V () is a circuit in which

every gate is replaced with the corresponding gadget, and output gates are fol-
lowed by decoding sub-circuits (computing the decoding function of E). Recall
that the gadgets also have masking inputs. These are provided as part of the

encoded input of é, in the following way. EFRRTV yses an “inner” encoding

FRRTV

scheme Ei" = (Encin, Decin), where Enc uses Enc™ to encode the inputs

of C, concatenated with 0% for a “sufficiently large” » (these 0-encodings will
be the masking inputs to the gadgets); and DecPBRTV yses Dec™ to decode its
input, and discards the last k symbols.

3.1 The Construction

Let C : F* — F be the circuit to be compiled. In the following, let r = r (o)
denote the number of masking inputs used in a circuit compiled according to
the compiler of [11]. Recall that our compiler, given a circuit C, generates two
copies C1,C> of C (that operate on two copies of the inputs); compiles C1, Co
into circuits Cy,Cy using the circuit-compiler of [11]; generates the circuit ol
that outputs the AND of Cy,Ch; generates a circuit 7 verifying that at least
one of the copies C’l, C» uses well-formed masking inputs (i.e., its masking inputs
are well-formed vectors); compiles 7y into T using the circuit-compiler of [11];
and finally verifies “in the clear” that 7o uses well-formed masking inputs. We
now describe these ingredients in more detail.

Our first ingredient checks the validity of the masking inputs used in the
compiled circuit C’ If m!, m? are masking inputs used in the first and second
copies Cl, Cs in C’ respectlvely (i.e., these copies are given encodings of m! m2)

then we compute v;; = m} x m? for every i,j € [r], and check that all the v;;’s
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are zero. To make this check easier, we will use the following “binarization”
sub-circuit, which outputs 1 if its input is 0, and outputs 0 on all other values.

Construction 3 (“Binarization” sub-circuit 7). 7 : F — F is defined as
T (2) = — [ losaer (2 — @), computed using O (|F|) x and constant gates arranged
in O (log|F|) layers.

Observation 4. 7 (0) =1, and for every 0 # z € F, T (2) =

The sub-circuit 7y described next checks the masking inputs m', m? used in
the copies of C, and outputs 1 if and only if one of m!, m? is the all-zero string.
It computes all products of the form m} x m?, then applies 7 to every product,
and computes the products of all these outputs.

Construction 5 (Oblivious mask-checking sub-circuit 7). 7y : F' xF" —
F is defined as follows. Ty (y,z) = Hi,je[r] T (yi X z;), computed using a multi-
plication tree of size O (r) and depth O (logr) (on top of the multiplication trees
used to compute T ).

Observation 6. Since the outputs of T are in {0,1}, 7o (y,z) = 1 if and only
if for every i,j € [r], T (yi, z;) = 1 (which by Observation 4 happens if and only
if yi X z; = 0), otherwise it outputs 0.

Our final ingredient is a sub-circuit 7y, checking the masking inputs used in
the compiled sub-circuit 7. At a high level, 7y, decodes every masking input;
uses 7 to map the decoded values into {0,1} such that only 0 is mapped to
1; and multiplies all these values, to guarantee that all the masking inputs are
well-formed. In the following, ro = rg (¢0) denotes the number of masking inputs
used in %.

Construction 7 (Non-oblivious mask-checking sub-circuit 7y/). Let n, o,
k€N, n=n(n+k,o0), and {d"} be the decoding vectors of E™. We define

the decoding sub-circuit Dy : F* — F corresponding to d" as follows: Dy (v) =
<dﬁ7v), where (-,-) denotes inner-product. Dy is computed using any correct
decoding circuit with O (7)) gates arranged in O (logn) layers.

We define Ty : (]Fﬁ)ro — T as follows: for R = (74, ..., 7,) where r; € F* for
every 1 < i <rg, Tv (R) = [[;¢; T (Dv (13)). Tv is computed using O (ro) x
gates, arranged in a tree of depth O (logrg) (on top of the sub-circuits T o Dy ).

Observation 8. Let R = (r,...,7,) € (Fﬁ)ro, then for every i € |[rgl,
Dy (r;) = v;, where v; is the value that r; encodes. Since the outputs of T
are in {0,1}, T (Dy (r;)) = 1 if and only if v; =0, so Ty = 1 if and only if all
1;’s are well-formed, otherwise it outputs 0.

Our circuit-compiler (Construction9) uses the ingredients described above.
Comp first compiles 2 copies C1,C5 of C, and 7, into Cl, 02, T (respectlvely)
using the compiler of [11]. Then, it generates a flag bit indicating whether Cy,Co
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have the same output, and the masking inputs used in C’l, C’g, 7, are well-formed.
If so, the output is that of C’l, otherwise it is 1. (Recall that an arithmetic circuit
is satisfied iff its output is 0.) The encodings scheme generates encoded inputs for
both copies C’l, C’g, as well as sufficient masking inputs to be used in C’l, éQ, ’]%.

Construction 9 ((£,e(n),S(n))-LRCC over F). The circuit compiler
(Comp, E = (Enc, Dec)) is defined as follows. Let r = r(o),ro =rp(c) : N - N

be parameters whose value will be set later.

Let E™ = (Encin, Decin) be a linear encoding scheme over F, with encod-
ings of length My = Ny (n,0), and decoding vectors {d"»}. Then Enc(x,1°) =
(&1,%2), where &; « Enc™ ((z,0"),17); and Dec((Z1,Z2),17) computes
Dec™ (%1,17), and discards the last r + rg symbols. We use 1 = n(n,o) to
denote the length of encodings output by Enc, and ny = N4 (0) = n(l,0).
(Notice that fi(n,o) = 2 (n+r+ro,0).) For (£1,42) « Enc(x,17), we
denote &; = (@“, R;, R?), where £ is the encoding of x, and R;, R? are encod-
ings of 0", 0™ respectively. (Rg is not used in the construction, but it is part of
Zo because the same internal encoding scheme Enc™ is used to generate Z1,2.)

Let (CompFRRTV, EFRRTV> be the circuit compiler of [11]. Comp on input a

circuit C : F" — F, outputs the circuit C : F*mIC) defined as follows.

— Let Cy,Cy be two copies of C, C; = Comp" *RTV (C;) fori=1,2, and Ty =
CompFRRTV (76)

- Let f((#F, Ry, RY), (4, Ro, RY)) = T ((3*1 (3, By) = G (3, Ba) )
To ((Rl,Rg) RO) x Ty (RO) f=14 Ch,Cy have the same output, and

in addition the masking inputs used in Ty, and at least one of Cy,Co, are
well-formed. Otherwise, f =0.) Then:

C ((&", R, RY), (25, Ry, RY)) = (1 —f ((21", Ry, RY) , (&5, R, RY)))

+f (&, Ri, RY) , (i, Ro, R)) - C1 (2", Ry, RY)
(Notice that the output is Cy (21", Ry, RY) if f = 1, otherwise it is 1.)

Let f/FRETV denote the mazimal number of masking inputs used in a gadget used
by the compiler of [11], and Sq (r) denote the size of Ty. Thenr (o) = o - FFRETV
and ro (o) = o - Sq (FFRETV),

Next, we briefly analyze the properties of the construction. (The full analysis
appears in the full version.)

SAT-RESPECTING. If the masking inputs of 7, are ill-formed, then 7y, resets the
flag, so the output is 1 (i.e., C' is not satisfied). Conditioned on 7 having well-
formed masking inputs, the correctness of the compiler of [11] (applied to 7)),
guarantees that the flag is reset if the masking inputs of both C1, C, are ill-formed.
Finally, if at least one of C4, Cs has well-formed masking inputs, and C is satisfied
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(in particular, the flag is not reset), then there exists an x € F" that satisfies the
correctly evaluated copy, and therefore also satisfies C'. We note that the encoding
scheme should be onto, otherwise computations in compiled circuits may not cor-
respond to computations in the original circuits (since the “encoded” input may
not correspond to a valid input for the original circuit).

RELAXED LEAKAGE-RESILIENCE. At a high level, on input C : F* — F, and C ()
for z € F", Sim finds a y € F" such that C'(y) = C (z) (this is the reason that
Sim is unbounded); generates C' = Comp (C') and § < Enc (y, 1|C‘); honestly eval-

uates C on 7; and outputs the wire values of C.IfEis leakage-indistinguishable
for a leakage class which is “somewhat stronger” than L, then for every ¢ € L,

SD (E [6’7 :i"} N [C’, g]) < €(n), where & «— Enc (ac, 1|C|). Informally, this follows

from a hybrid argument, where we first replace the input of C, from Z to 7, and
then do the same for Cs. (This is also the reason that we do not explicitly verify
that C’l, C, are evaluated on encodings of the same input.)

To show that each adjacent pair of hybrids is leakage-indistinguishable, we
first use an argument similar to that of [11], where we first replace the bundles
of Cy or Cy (depending on the pair of hybrids in question) that are external to
the gadgets (i.e., bundles that correspond to wires of the original circuit C') with
random encoding of the “correct” values; and then replacing the bundles internal
to the gadgets of el (or C’g) with simulated values. However, our compiled circuit
C consists also of ’ZAI),TV, so the analysis in our case is more complex, and in
particular we cannot use the leakage-resilience analysis of [11] as a black box. To
explain the difficulty in generating these wires values, we need to take a closer
look at their leakage-resilience analysis.

Recall that the leakage-indistinguishability proof for every pair of adjacent
hybrids contains in itself two series of hybrid arguments, one replacing external
bundles, and the other replacing internal bundles. In the first case, leakage-
indistinguishability is reduced to that of the underlying encoding scheme E™,
whereas in the second it is reduced to the leakage-indistinguishability of the
actual and simulated wire values of a single gadget. Specifically, the leakage
function ¢ in the reduction is given either an encoding of a single field element,
or the wire values of a single gadget; uses its input to generate all the wire
values of the compiled circuit; and then evaluates ¢ on these wire values. Thus,
if originally we could withstand leakage from some function class £, and the
additional wires can be generated by a function class Lg, then after the reduction
we can withstand leakage from any function class £ such that £o Lr C L™,
In particular, if £ consists of functions computable by low-depth circuits, and
computing the internal wires of ’ZB,’TV require deep circuits (consequently, Lg
necessarily contains functions whose computation requires deep circuits), then
we have no leakage-resilience. To overcome this, we show how to simulate these
additional wires using shallow circuits. This is possible because (due to the way
in which the hybrids are defined) the masking inputs in at least one copy are well-
formed. Specifically, the structure of To, Ty guarantees that conditioned on the
masking inputs of Cs being well-formed, these wire values can be computed by
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shallow circuits. When the masking inputs of Cs are ill- formed, we are guaranteed
that the masking inputs of Cy are well-formed. Conditioned on this event, we
show an alternative method of computing the internal wires of ’ff), Ty, which can
be done by shallow circuits. Thus, we get the following result.

Proposition 1 (SAT-respecting relaxed LRCC over F). Let £, Lg be fam-
ilies of functions, S(n) : N — N be a size function, and €(n) : N — RT.
Let E™ = (Enc™,Dec™) be a linear, onto, (Lg, e (n))-leakage-indistinguishable
encoding scheme with parameters n = 1, ¢ and 7 = n (o), such that
Lg = Lo Shallow (7,0 (7* (S(n)) - S (n))). Then there exists a SAT-respecting,
(L,8¢(n)-S(n),S (n))-relazed-LRCC over F. Moreover, For every C : F" — T,

the compiled circuit C has size ‘C” =0 <|]F| 7% (S(n)) - \C’|2).

3.2 A SAT-Respecting Relaxed LRCC over F,

In this section we describe arelaxed LRCC over Fy. Our starting point is the circuit-
compiler of Construction 9 over the field F, which we apply to an “arithmetic ver-
sion” of the boolean circuit. At a high-level, we construct our circuit compiler
over Fy as follows: we represent field elements of F using bit-strings; and opera-
tions 4, —, X, id, copy, const,,« € F as functions over [log|F|]-bit strings. (For
now, we assume that there exist gates operating on [log |F|]-bit strings and com-
puting these operations.) We “translate” boolean circuits into arithmetic circuits
with such operations, and apply the circuit-compiler of Construction 9 (where the
field operations are implemented using the boolean operations described in Sect. 2)
to the “translated” circuit. (We note that leakage-resilience deteriorates when an
arithmetic compiler is transformed to a boolean one, but only by a constant factor
in the depth and size of circuits computing the leakage functions.) Concretely, we
set F = Fs.

FROM BOOLEAN CIRCUITS TO ARITHMETIC CIRCUITS. Our boolean circuit-
compiler operates on boolean circuits, but employs an arithmetic circuit-compiler
operating on arithmetic circuits over F. Therefore, we first transform the boolean
circuit into an equivalent arithmetic circuit in the natural manner (i.e., repre-
senting every bit operation as a polynomial over the arithmetic field).

The field elements of F, and the arithmetic operations over F that are used
by the arithmetic relaxed LRCC (Construction9) will be represented using bit
strings and boolean operations, respectively.

REPRESENTING FIELD ELEMENTS AS BIT STRINGS. We can use any 1:1 trans-
formation Ej, : F3 — {0,1}2, such that every bit string is associated with a
field element. This is required for the SAT-respecting property, to guarantee
that whatever values are carried on the wires of the boolean circuit, they can
be “translated” into wires of the arithmetic circuit over F3, and is achieved by
defining a “reverse” mapping £, 1

IMPLEMENTING FIELD OPERATIONS. The compiled arithmetic circuit uses the
field operations +, —, X, and also copy,id and const,, « € F3. These operations
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are represented using bit operations over bit strings generated by Ej. Specifically,
we think of every field operation as a boolean function with 4 inputs (a pair of
2-bit strings representing the pair of input field elements) and 2 outputs (a 2-bit
string representing the output field element). We stress that though an honest
construction over bits uses only 3 of the 4 possible 2-bit strings encoding field
elements (i.e., only the strings in the image of F} as defined, for example, in
Construction 11), the function representing a field operation in Fs should be
defined to output the correct values on all 2-bit strings. The truth table of each
output bit has constant size, and can be represented by a constant-size, depth-3
boolean circuit. copy,id and const, gates are handled similarly. Therefore, the
size (depth) of each gadget (and consequently, of the entire compiled circuit)
increases by a constant multiplicative factor (specifically, by a factor of 3).

Notice that representing boolean circuits using arithmetic circuits introduces
the following obstacle. For a satisfiable circuit C’, we are only guaranteed the
existence of an x € F™ satisfying the original arithmetic circuit, whereas for
boolean circuits we require that « € {0,1}". Therefore, we need an additional
“input checker” sub-circuit that will guarantee that the inputs to the compiled
circuit encode binary strings.

Definition 7 (Input-checker 7). 7™ : F — T is defined as follows:
Thn(2)=T (z2 — z)

Observation 10. For every z € F3, T (z) € {0,1}, and 7™ () = 1 if and
only if z € {0,1}.

Construction 11 (SAT-respecting relaxed LRCC). Let E, : F3 — {0,1}?
such that Ey, (0) = 00, E, (1) = 01, and Ey (2) = 11, and let E; " : {0,1}> — F3
such that E; ' (00) =0, E; 1 (01) = E; ' (10) = 1, and E;, ' (11) = 2. Let T be
an algorithm transforming boolean circuits into arithmetic circuits over F3, and
(Comp, E = (Enc,Dec)) be the circuit compiler over Fs of Construction 9. The

circuit compiler over Fo is (Compb, Eb = (Encb, Decb)>, where:

~ Enc’ = Ep o Enc and Dec” = Dec o E;l
~ Comp® on input C : {0,1}" — {0,1}:

o UsesT' to transform C into an equivalent arithmetic circuit C' : F§ — Fs.

o Constructs the circuit C" : F§ — Fs such that C" (z1,...,2,) = 1 —
(C" (21, ey y) X (X7, T™ (27))). (Notice that C" (x1, ..., xy) outputs 0 if
and only if C' (x1,....,xn) =1 and 1, ...,z, € {0,1}.)

e Computes C"" = Comp (C").

e Replaces every gate in C" with a constant-size, depth-3 boolean circuit
computing the truth table of the gate operation. Compb can use any correct
circuit, as long as these circuits are used consistently (i.e., for every gate
the same circuit is used to replace all appearances of the gate in d”).
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e Denote the output of cr by e € Fs3, represented by the string (e1,e2) €
{0,1}2. Then Compb outputs the circuit Cy obtained from cr by applying
a V gate, followed by a — gate, to the output of cr. (This reduces the
output string of C" to a single bit, and flips the output of C", which is
required due to the negation added in step 2.)
We use C’l’b,é'gﬁb,jf),b,’fv,b to denote the components of C'b corresponding to
Cy,Co, Ty, Ty, respectively.

Observation 12. C, (&) € {0,1} for every &. Moreover, Cy, () = 1 if and only
if C" () = 0. If Comp is SAT-respecting, then this guarantees that C" (z) = 0
for some x € F3. The definition of C”, and the correctness of T', guarantees
that x € {0,1}", and that C' (z) = C'(x) = 1.

In the full version, we prove that if Construction 9 is a SAT-respecting relaxed-
LRCC over F3, then so is Construction 11 (over Fy), against a somewhat-weaker
leakage family. The leakage family is weaker because relaxed leakage-resilience is
proved by reduction to the relaxed leakage-resilience of Construction 9 (the leakage
function in the reduction, given the wire values of the arithmetic compiled circuit,
generate the internal wires emulating these operations using boolean operations).
Formally, we obtained the following.

Proposition 2. Let L, Lg be families of functions, S (n) : N — N be a size func-
tion, and € (n) : N — R*. Let E™ be a linear, onto encoding scheme over Fs with
parameters n =1, o and i = 1 (o), that is (Lg, € (n))-leakage-indistinguishable,

and Le = L o ShallowB (33,0 <ﬁ5 (S(n))-S (n)?
stant ¢ > 0, and a SAT-respecting, (L,c-e(n)-S(
é,,‘ =0 (ff’ (S (n)) \C|2).

—~

. Then there exists a con-
),S (n))-relaxed-LRCC over

N———
N———

3

Fy. Moreover,

Taking E™ to be the parity encoding in the previous proposition, and using a
result of Hastad [16] that ACY circuits (i.e., constant-depth and polynomial-sized
boolean circuits with unbounded fan-in A,V and — gates) cannot distinguish
parity encodings of 0 and 1, we obtain an LRCC against AC"-leakage. (We note
that the compiler can also be made to withstand leakage that outputs more than
one bit, using a result of Dubrov and Ishai [9]. The details of this construction,
and the proof of Corollary 2, are deferred to the full version.)

Corollary 2. There exists a SAT-respecting (ACO,negI (n), poly (n))-relazed-
LRCC over Fs.

3.3 Withstanding Leakage from AC® Circuits with @ Gates

Recall that AC® denotes the class of constant-depth, polynomial-sized boolean
circuits over unbounded fan-in and fan-out A,V,— gates. In this section we
describe a SAT-respecting circuit-compiler withstanding leakage computed by
ACP circuits, augmented with a sublinear number of @ gates of unbounded fan-
in and fan-out. Concretely, we use Construction 11, where the underlying arith-
metic LRCC over F3 is instantiated with the encoding scheme E™ that maps an
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element ~ € F3 into a vector v € {0,1}* (for some natural k), which is random
subject to the constraint that the number of 1’s in v is congruent to v modulo 3.
We show, by reduction to correlation bounds of [22], that AC® circuits, aug-
mented with a sublinear number of & gates, have a negligible advantage in distin-
guishing between random encodings of 0 and 1 according to E™. (This reduction
is non-trivial and appears in Appendix A.) Using the leakage-indistinguishability
of E™, we prove the existence of a circuit compiler withstanding leakage from
AC® circuits that have several output bits and are augmented with a sublinear
number of @ gates. (The proof appears in the full version.)

Theorem 13. For input length parameter n, leakage length bound n = 7 (n),

size bound s = s(n), output length bound m = m(n), parity gate bound
t = t(n), and depth bound d, let L3'; o = Unen Eﬁm(%)d s(n),ot(n): Where

mo o . h
frodo.50,®to denotes the class of boolean circuits of input length ng over —

gates and unbounded fan-in A,V,® gates, whose depth, size, output length,
and number of parity gates are bounded by dy,sg, mg,ty, respectively. Then
for every positive constants d,c, polynomials m,t, and polynomial size bound
s’ = s (n), there exists a polynomial 1(n), such that there exists a SAT-

respecting (E??d,lc,@t, 91 o (n))-relamed LRCC over Fy, which on input a cir-

cuit C = {0,1}" — {0,1} of size |C| < s'(n) outputs a circuit C of size
|IC| <1(n).

4 WIPCPs and CZKPCPs

Given a relation R = R (z,w), we let Lg := {z : Jw, (z,w) € R}. A probabilistic
proof system (P, V) for an NP-relation R = R (x, w) consists of a PPT prover P
that on input (z,w) outputs a proof 7 (in standard probabilistically checkable
proofs the prover is deterministic, but our constructions will crucially rely on
the prover being probabilistic), and a probabilistic verifier V' that given input x
and oracle access to a proof m outputs either accept or reject. We say that V is
q-query-bounded if V makes at most g queries to 7.

WIPCPs. A probabilistic proof system is a WIPCP for an NP-relation R =
R (z,w) if it satisfies the following. First, when given x € L, and oracle access
to an honestly generated proof, the verifier accepts with probability 1 (this is
called completeness). Second, given x ¢ Lg, the verifier rejects except with
some probability eg, regardless of its “proof” oracle (this is called eg-soundness).
Thirdly, for every (possibly malicious, possibly adaptive) ¢*-query bounded ver-
ifier V*, every x € L, and every pair wy,ws of witnesses for x, the view of V*
when verifying an honestly generated proof for (z,w) is ezk-statistically close
to its view when verifying an honestly generated proof for (z,ws) (this is called
(ezx, q*)-WI). A WIPCP is a non-adaptive WIPCP (NA-WIPCP) system for
a relation R = R (z,w), if the honest verifier is non-adaptive. In the follow-
ing, we denote by NA — WIPCP [r, q, ¢*, €5, €zk, ¢] the class of NP-languages that
admit an NP-relation R with a non-adaptive (ezk,¢*)-WIPCP, in which the
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prover outputs proofs of length ¢, the honest verifier tosses O (r) coins, queries
O (q) proof bits, and rejects false claims except with probability at most eg.
We use PCP[r,q,¢,£] to denote the class of NP-languages admitting a stan-
dard (i.e., non-WI) PCP system with the same properties, and write R €
PCP[r,q,€,£] to denote that Lrg € PCP[r,q,¢,¢]. We denote NA — WIPCP :=
NA — WIPCP[poly log n, poly log n, poly (n) , negl (n) , negl (n) , poly (n)].

We describe a transformation from PCPs to NA-WIPCPs, which can be
applied to any PCP system in which the proof is obtained from the witness
through an “easy” function (we formalize this notion below). Recall that a stan-
dard PCP 7 can be generated from the wire values [Cr, (z, w)] of the verification
circuit C'r of the relation, on input z and witness w. If the function f taking
[Cr, (z,w)] to m is in a function class £, then the system can be made WT as fol-
lows. The prover and verifier both compile Cx (z,-) (i.e., Cx with z hard-wired
into it) into a SAT-respecting circuit Cr that is relaxed leakage-resilient against
L. The prover then samples a random encoding @ of w, and generates the PCP

T =f [CA’R,’UA}:|. The verifier probabilistically verifies that Cg is satisfiable by

reading few symbols of 7, which (if the verifier is non-adaptive) correspond to
applying a leakage function from £ to the wire values of C'z. This gives the fol-
lowing result. (The detailed construction, and the proof of Proposition 3, appear
in the full version.)

Proposition 3. Let n be a length parameter, eg,ezx € [0,1], S =S (n) be a size
function, ¢* = ¢* (n) be a query function, and g(-) be a polynomial. Let L be a
family of leakage functions, such that:

— there is a SAT-respecting (L,ezx,S)-relaxed LRCC (Comp,E) satisfying
IComp(C)] < ¢ (IC);

— there is a PCP[r(n),q(n),es,f(n)] system for 3SAT, such that for every
(p, W) € 3SAT, every subset Q of ¢* bits of an honestly-generated proof m =
7 (p, W) is computable from W by a function f, o € L.

Then for every NP-relation R = R (x,w) with verification circuit C™ of size
at most S, we have that R € NA —WIPCP [r (¢),q(t),q*, €s,2ezx, £ (t)], where
t=0 (g (‘C’RD), and WI holds against non-adaptive verifiers.

In the full version we use techniques of [7] to generalize the WI property
of Proposition 3 to adaptive verifiers, while increasing the statistical distance of
the WI by a multiplicative factor of roughly ¢¢° (all other parameters remain
unchanged). Then, we prove that the PCP system of [2] for 3SAT has the prop-
erty that every proof bit is generated from the NP-witness by an ACY circuit,
augmented with “few” @ gates. Theorem 1 follows by combining these two results
with Theorem 13.

CZKPCPs 1N THE CRS MODEL. A probabilistic proof system is a CZKPCP in
the CRS model for an NP-relation R = R (x,w) if the prover and verifier have
access to a common random string s; correctness holds for any s; soundness
holds for a uniformly random s; and there exists a PPT simulator Sim such that
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for every ¢*-query bounded verifier V*, and every x € Lz, Sim (z) is computa-
tionally indistinguishable from the joint distribution of a uniformly random s,
and the view of V* given s and oracle access to an honestly generated proof for
2 (this is called computational ZK (CZK)). Similar to NA-WIPCPs, a CZKPCP
system is non-adaptive (NA-CZKPCP) if the honest verifier is non-adaptive.
Applying the techniques of [12] to Proposition 3, we obtain a general transfor-
mation from NA-WIPCPs to NA-CZKPCPs, and Corollary 1 follows by using
the NA-WIPCP of Theorem 1 (see the full version for details).

We note that a simple alternative construction of CZKPCP for NP can be
obtained by applying a standard PCP on top of a standard NIZK proof [6,13].
Concretely, the CZKPCP prover generates a PCP for the NP-claim “there exists
a NIZK for the claim x € Ly, relative to the CRS s, that would cause the NIZK-
verifier to accept”, where the witness is the NIZK proof string. Since the NIZK
itself is CZK, the resultant PCP is also CZK. However, NIZK proofs for NP are
not known to follow from the existence of one-way functions, and can currently
be based only on much stronger assumptions such as the existence of trapdoor
permutations [12].

THE (IM)POSSIBILITY OF SAT-RESPECTING NON-RELAXED LRCCs. Known
constructions of LRCCs withstanding global leakage [11,18,23] guarantee a uni-
versal simulation property, in the sense that the simulator generates the sim-
ulated wire values without knowing the identity of the leakage function; and
these values are guaranteed to be indistinguishable from the actual wire values,
for every leakage function in the leakage class. Consequently, our construction
(which is based on the LRCC of [11]), also guarantees this universal simulation
property. Our general transformation from SAT-respecting relaxed LRCCs to
WIPCPs can also be applied to a SAT-respecting non-relaxzed LRCC, in which
case we would get ZKPCP for all NP, with a universal PPT simulator that
generates a simulated proof without seeing the queries of the verifier. This simu-
lator can be used to decide the NP-language, so the existence of SAT-respecting
LRCCs with a universal simulator would imply that NP C BPP. (See the full ver-
sion for additional details.) We note that our transformation of Sect.4 does not
require the LRCC simulator to be universal. However, the construction of (SAT-
respecting) non-relaxed LRCCs with a non-universal simulator would require
developing new techniques for constructing LRCCs.

4.1 Distributed ZK and WI Proofs

We use our WIPCPs and CZKPCPs to construct 3-round distributed WI and
CZK proofs (respectively) for NP in a distributed setting, in which the PPT
prover P and verifier V' are aided by m polynomial-time servers Sy, ..., Sp,. We
call such systems m-distributed proof systems. We note that P has input (z,w), V
has input z, and the servers have no input. Our motivation for studying proofs
in a distributed setting is to minimize the round complexity, and underlying
assumptions, of sublinear ZK proofs. Concretely, it is known that assuming the
existence of collision resistant hash functions, there exist 2-party 4-round sublin-
ear ZK arguments for NP [17,20]. (Arguments guarantee soundness only against
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bounded malicious provers.) We show that in the distributed setting, there exist
3-round sublinear CZK (respectively, WI) proofs for NP, assuming the existence
of OWFs (respectively, unconditional). Thus, the distributed setting allows us to
improve previous results in terms of round complexity, underlying assumptions,
and soundness type.

D1sTRIBUTED CZK\WI PROOF SYSTEMS. An m-distributed proof system is
a (t,m)-distributed ZK proof system for an NP-relation R if it satisfies the
following properties. First, if all parties are honest and (z, w) € R then V accepts
x with probability 1 (the correctness property). Second, if x ¢ Lg then V rejects
x except with negligible probability, even if the prover is corrupted and colludes
with at most ¢ corrupted servers (the soundness property). Thirdly, for every
adversary A corrupting V' and ¢’ < t servers there exists a PPT simulator Sim
such that for every © € Lg, Sim (x) is computationally indistinguishable from
the the view of A in the protocol execution, when it has input x. This notion
can be naturally relaxed to WI, or CZK in the CRS model.

We use WIPCPs (respectively, CZKPCPs) to construct a 3-round
distributed-WI proof system (respectively, CZK proof system in the CRS model)
which, at a high level, operates as follows. In the first round the prover dis-
tributes a WIPCP (respectively, a CZKPCP) between the servers, and in the
second and third rounds the verifier and servers emulate the WIPCP (respec-
tively, CZKPCP) verification procedure (the verifier sends the proof queries of
the WIPCP or CZKPCP verifier, and the servers provide the corresponding
proof bits). This overview is an over-simplification of the construction: the veri-
fication procedure of the WIPCP (respectively, CZKPCP) cannot be used as-is
since it only guarantees soundness when the verification is performed with a
proof oracle, whereas corrupted servers can determine their answers after seeing
the queries of the verifier. We overcome this by using techniques of [19] (a more
detailed description and analysis of these distributed proof systems appears in
the full version). Thus, we obtain the following results.

Theorem 14 (Sublinear distributed WI proofs). For every NP-relation R,
and polynomial t (n), there exists a polynomial m (n) > t(n) such that R has a
3-round sublinear (t,m)-distributed WI proof system, where n is the input length.

Theorem 15 (Sublinear distributed CZK proofs in the CRS model).
Assume that OWFs exist. Then for every NP-relation R, and polynomial t (n),
there exists a polynomial m (n) > t(n) such that R has a 3-round sublinear
(t, m)-distributed CZK proof system in the CRS model, where n is the input
length.

These constructions crucially rely on the mnon-adaptivity of the honest
WIPCP (respectively, CZKPCP) verifier (otherwise we would need at least 4
rounds, since rounds cannot be compressed). Moreover, the verifier may collude
with a subset of servers, so the PCP should be WI (respectively, CZK) against
malicious verifiers.
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A A Leakage-Indistinguishable Encoding Scheme

In this section we define the encoding scheme that is used to prove Theorem 13,
and use correlation bounds of [22] to show that it is leakage-indistinguishable
against leakage computable by ACY circuits, augmented with few & gates.

Notation 16. For~ € {0,1,2} andn € N, UZ denotes the uniform distribution
over {v € {0,1}*" : #1 (v) =~ mod 3}; #1 (v) denotes the number of 1’s in v;
and U}y denotes the uniform distribution over{v € {0,1}*" : #; (v) # 0 mod 3}.

Definition 8. We define an encoding scheme Es = (Encs, Decg) over Fs such
that for every e € F3, Encs (e, 1) is distributed according to U™,* and Decs (v)
returns (#1 (v) mod 3). Notice that Ez is linear, with decoding vectors {13"},
and consequently also onto.

The leakage class we consider is “ACY, augmented with few @& gates”:

Definition 9 ([,Zfd,s’@t leakage family). Let n € N be a length parameter,
d € N be a depth parameter, s € N be a size parameter, and t € N be a parity
gate bound. The family L,, 4.5 o+ consists of all functions computable by a boolean
circuit C : {0,1}™ — {0, 1} of size at most s and depth d, with unbounded fan-in
and fan-out A,V,—, @ gates, out of which at most t are & gates. The family
La.s.at of functions is defined as Lg 5,0t = UnenLn,d,s,@t-

For a length parameter m € N, and a function f : {0,1}" — {0,1}™, let
fi(x1,..,xn),i € [m] denote the i’th output bit of f. We use the following
notation: L7 o = {f:{0,1}" = {0,1}" :V1 <i<m, fi € Lpasaet}, and

m o— m
d,s,®t " Unen (£7L,d,s,@t) .

4 Encs can be computed efficiently by repeating the following procedure n? times. Pick
v € {0,1}™ uniformly at random, compute ¢ := #1 (v), and if ¢ = e then return v. If
all iterations fail, return a fixed ve € {0,1}" such that #1 (v) = e. Then the output
of Encs is statistically close to UZ".
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We use a correlation bound of Lovett and Srinivasan [22, Theorem 6] which,
informally, states that AC® circuits, augmented with “few” & gates, have negli-
gible correlation with the boolean function MOD3 where MODs3 (v) = 0 if and
only if #;1 (v) =1 mod 3. (Their result is more general, but we state a weaker
and simpler version that suffices for our needs.) We first define the notion of
correlation.

Definition 10 (Correlation). Let n € N, g, f : {0,1}" — {0,1}, and let D
be a distribution over {0,1}™. The correlation of g and f in relation to D is

Corrp (g, f) = 2|5 — Procp g (z) = f (2)]]-
For a class G of functions, Corrp (G, f) = maxgeg Corrp (g, f) .

We are interested in correlations with the following function:

Notation 17 (MOD; function). Let s € N. The function MODY : {0,1}3" —
{0,1} is defined as MODy (z) = 0 if and only if 2?21 x; =0 mod s. We use
MODy to denote the family of functions U,enMODY.

Theorem 18 ([22], Theorem 6 (rephrased)). For every constant depth para-
meter d € N there exist constants c,e € (0,1), such that for every constant | € N
there exists a minimal length parameter ng € N such that for every n > ng,
Corrpp (Egn’d’nlv@ne, MODZ{) < 27" where DY is the distribution induced by the
following process: first pick a random bit b €g {0,1}; if b = 0 pick x € {0,1}3"
according to the distribution Ug, otherwise pick x € {0,1}*" according to Ut',.

Next, we use Theorem 18 to show that ACY circuits, augmented with “few” &
gates, have a negligible advantage in distinguishing between random encodings
of 0,1, and 2 according to the encoding scheme of Definition 8. Formally:

Corollary 3. For every constant depth parameter d € N there exist constants
c,e € (0,1), such that for every constant | € N there exists a minimal length
parameter ng € N such that for every n > ng the encoding scheme Encs (-, 1) of
Definition 8 is (£3n,d7nz7@ne , 2’”6) -leakage-indistinguishable.

We proceed to prove Corollary 3 in two steps. First, we show that Theorem 18
implies that ACY circuits, augmented with “few” @ gates, cannot distinguish
between random encodings of 0, and random encodings of either 1 or 2. Second,
we show that this implies indistinguishability of encodings of every pair of values
in {0, 1,2}. The first step follows from the next lemma.

Lemma 1. Let ¢ € (0,1), n € N, and G be a class of functions from
{0,1}°™ to {0,1}. If Corrpy (G,MODY) < e then Uy, Uy are (G, €)-leakage-
indistinguishable, where DY is the distribution defined in Theorem 18.

Proof. Let g € G. We first establish the connection between the probability
pg = Prypy [g(x) = MODg (7)] that g computes MOD3 correctly, and the
distinguishing advantage of g:
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ps= Pr [g(x)=MOD] () MOD} (z) = 0] - Pr [MOD] (z) = 0]

z—Dy DY
+ Pr [g(z) =MODE (x) [ MODY (z) =1]- Pr [MODgZ (z) =1]
<Dy Dy

observing that for z « D§, MODY (x) is 0 (or 1) with probability half, and that

Pr lg(z) = MOD3 () [MODj (z) = 0] = Pr [g(x) = 0]

z—Dy z—UR

Pr lg(z) = MOD3 (z) [MODj (z) =1] = Pr [g(z) = 1]

Dy z—Ul"5
we get:
— 45 P g =1~ Pr [g@)=1]
pg o 2 2 5“*1}‘1”,2 g\r) = xH(IJ"(';L g\r) = ’
By the assumption of the lemma,
1 n
2 3 Pg| = Corrpy (9, MOD3) <e.

Therefore, we get:

Pr lg(@)=1- Pr [g(e)=1]|<e

U7, Uy

O

Next, we establish a connection between the distinguishing advantage of cir-
cuits between the following pairs of distributions: Ug", Uty (over 6n-bit vectors);
Uy, Ufy; and Ug', U (over 3n-bit vectors).

Lemma 2. Letd,s,t € N, and c € (0,1) be a constant. If there exists an ng € N
such that for every n > no, Ug', U7y are (Lan,d,s,et, €)-leakage-indistinguishable
for e = 27", and Ugn,Uﬁg are (Len,d+1,25+1,@2t, €)-leakage-indistinguishable,
then there exists an n{, such that for every n > nf, Uy, UL are (Lsp,a,s,01, VTE)-
leakage-indistinguishable.

In the following proofs, we use the following notation, and the following
observation regarding the connection between U7",Us" and UT',.

Notation 19. Let n € N. For v € {0,1,2}, we use S to denote supp (Uf;),
Si'o to denote supp (U{fz), and kY to denote |SZ;|

Observation 20. For every n € N, and every function g : {0,1}*" — {0,1}, by

the law of total probability, and since Pryyp, [x € S7'] = Prycup, [x € ST = %,

Pr o) = 1= (P @) =11+ Py o) =11).

U, 2 \zUp z—UJ
,
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Proof (of Lemma 2). If the lemma does not hold, then there exist infinitely many
n’s, for each of which U, UT* are not (£3n7d7s7@t, \/ﬁ)—leakage—indistinguishable.
Let € = €’ (n) > +/7e denote the maximal distinguishing advantage between
Uy, Up, let D= {ﬁn} be a family of distinguishers obtaining this advantage,
and let A be the infinite set of n’s for which D obtains this advantage. For
v € {0,1,2}, let pJ := Pryynr [ﬁn (z) = 1] Assume first that py > p for
infinitely many n’s in /. There are two possible cases: either for infinitely many
n’sin N, p% < pg; or p2 > pg for infinitely many n’s in M. In the first case, D has

advantage at least & > ‘ﬁ ‘ﬁ ><l ¢ in dlstmgulshlng between U, UT'y,
for every n such that ol > Dy and Pl > pt + €. Indeed, using Observation 20,

1 T T
0 — 5(]91 +py)

Pr [ﬁn(x)zl}— Pr {ﬁn(ac)zl]‘:

n n
U} z=UT,

using the case assumption that pg > p7, p5, this advantage is equal to:

(‘h

(po m)*

n_ ' >
(po pz)— 2

n n 1
5(?0 —p1)+§

N —

Therefore, only the second case remains, and Lemma3 below shows that
there exists an 1y € N such that for every such n which is greater than ng,

7\ 2
Ug”, Uﬁg are distinguishable in Lgy, g41,2541,@2¢ With advantage at least (66) +

2

E(n) > @ + E(n) = e+ E+E("), where E (n) = O (273"). Recall that
€=2"""50 E(n) =o(e), and let n’ € N such that for every n > n’, |E (n)| < e
(notice that E(n) may be negative). Then for every n > max{n’,7o} in N
such that p§ > p2 > pl' + ¢ (there are infinitely many such n’s by the case
assumption), € + E+E( ) > €, meaning that Ug’ﬂUﬁ’% can be distinguished in
Lon,d+1,25+1,02t Wlth advantage more than €, a contradiction to the assumption
of the lemma. Therefore, if pji > pt+¢€ for infinitely many n’s in A, then U}, UT*
are (Lan,d,s,0t, VT€)-distinguishable only for finitely many n’s.

Assume now that pj > p} only for finitely many n’s in NV, ie., pt > p@ for
infinitely many n’s in A If for infinitely many n’s in N, p§ > pg and Py > pi,
then the advantage of D,, in distinguishing between Uy, Uty is at least

~

_PLPb P Ph L P PO

2 2 - 2

™M

ﬁ—ﬂ+w
0 2

>

|

The second case, where py < py < pp for infinitely many n’s, follows from
Lemma 3 in the same manner as before. a

We now prove the lemma used in the proof of Lemma2, for the case py >
py > py (or pt > p§ > pk) for infinitely many n’s. Notice that Lemma 3 uses the
distributions UZ", U 1275 over 6n-bit vectors, and distinguishers over 3n-bit vectors.
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Lemma 3. Let n,d,s,t € N, ¢ > 0, and {Dyn € L3ndsot}pey For 7 €
{0,1,2}, denote ply := Pry—ur [D,, (x) =1]. Then there exist error terms
Et(n),E~(n) = O(273"), and an ny € N, such that the following holds
for every ng < n € N. If p§ > p{ > pT' and p§ — p} > €, then Ug”,Uﬁg
are (L',Gn,d+1725+17@2t, % + Bt (n)) -distinguishable; and if py < py < py and

Py —pi > €, then UZ ,U122 are (Lﬁn’d+1’25+1’@2t, % +E- (n)) -distinguishable.

Proof. Let D!, be the distinguisher that interprets its input as a pair (z,y) of
3n-bit vectors, and outputs D, (z) A D, (y). Notice that if D, € L3, 4.5t
then D] € Lendt12s+1,92t- We now analyze the advantage of D] in dis-
tinguishing between Ug",U7. Using Lemma5, Priy vz (D, (z,y) = 1] =
w + Eo (n) + E{(n) - p§, where Ey (n), E{ (n) are error terms, and
|Eo (n)], |Ey (n)] = 0(2*3”). Using Lemma6, Pr(z’y)HUle D] (z,y)=1] =

n,n

20y +(p1)” HPOP"’HPQ)Q + E1a(n) + Bio(n) - p§ + E{y(n) - (p3)°, Where

Ei, (n),EL2 (n), EY 5 (n) are error terms, and |Ey 2 (n)|, |E] 5 (n | 1a( ‘ =
O (273"). Therefore,
Epr == Pr [D (z,y)=1]- Pr [D (z,y9)=1
b= Br D) =1) = Pr D) () =1
_ 20507 + (97)° + 20605 + (08)° — 2 (p5)” — 4pipS
6

+E(n)+E (n)-py +E" (n) - (p§)°

where E (n),E’' (n),E" (n) are error terms, and |E (n)|,|E’ (n)|,|E"” (n)| =
0] (2’3"). Thinking of £p, as a function of py, there exists an ng such that
for every m > ng, the minimal value of £p: (py) is obtained when py =
%ﬁ’(g)(") ~ 2p7 — pi. Let n > np, and assume first py > pg > pi
2pT —pg —3E’(n)

and py — p!" > €. Then TH6E7(n)

> 2p7 —py —3E’ (n)
Z TA%6E(n)
Eps in this section is obtained when py = pO (since by the case assumption,
Py > p), in which case Ep, [pn—pe = B 4 (n) + B (n) - pi + E" (n) -
(8)" = G + E(n) + E'(n) - p§ + E" (n) - (pf)* =" 5 4 E¥ (n), where
E* (n) = O(27%"), so D], obtaining advantage 61 := % + E* (n) in distin-
guishing between Ug™, U4, where ET (n) = O (27%").

Second, assume that p§ < pj < pi and p — py > €. Then %T,/?’(]i)(m
2pY — p§ > po. Since by the case assumption p§ < p{ then in the domain
z < %@3’(}5;(@ the function is monotonically decreasing, so the minimal
advantage is obtained when pg = p4, and the rest of the analysis follows as in
the previous case. O

~ 2pT — p§ < po, and in the domain

z , Epr s monotonically increasing, so the minimal value of
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We now state and prove the lemmas that were used in the proof of Lemma 3.
We will need the following result about the values of ki, k7, k5. (The proof,
which is by induction and uses Observation 20, appears in the full version.)

Lemma 4. Letn € N. Then k' = k3 = M, and ki = w

Lemma 5. Let D) ,pl,pt,py be as defined in the proof of Lemma3. Then
n\2 n,_n

Priy ) —vzn D] (z,y)=1] = (p6)"+2p7py '221711)2 + Eo(n) + Ej(n) - p3, where

Eqy (n), Ej(n) are error terms, and |Ey (n)|, |E} (n)| = O (273).

Proof. Since
St ={(zy): 2,y {0, 1} A(z,yeS§Vr eSSt yeSyvaeSy,yest)}
then by the law of total probability, Pr(, ,y._yz~ [D;, (z,y) = 1] is equal to:

Pr [D,(z,y)=1z,ye Sy Pr [r,yeSy
(z,y)Hugn[ (z,y) =1] 0] (z’y)%Ugn[ o]

+ Pr[D(zy)=1lzeS,yeS] Pr [reS yeS]]

(z,y)—Ug" (z,y)=Ug"
+ Pr D (z,y) =1z ecSy,yecS'- Pr T €Sy, yest
o P DL @) =l € S5y €SP | Pr 2 € Sy € ST
2 2
1Sz |ST'[ - 185]
_ —1]) - 2 Pr [D(z)=1]- Pr [D(z)=1].1211 1921
(ﬁﬁg (D () 1]) 2 + %[r]?[ (z) =1] %[r];[ () = 1] 52|
If n is even, t?en by Lemmad4: kf = |S§| = 232”; kgr = |Sgn| = 261;*2; and
k=S| =2 2’1. Therefore,
spf C52) mmawmtia 1 oy 1
|S§”| - 267;+2 3 26n 49 3 26n 4 9 T3
) 93n_1 2
splgss _ispe_ (55) PP L (g
SR
Otherwise, n is odd, and by Lemma4: k§ = |SJ| = 2371;2; k3n = }802"’ =
3n. 3n
2° 3+2; and k} = |Sp| = 2 3+1. Similar calculations give:
[Sp* _ 1 ey ISPLISE] 1 3
s =3 0T Ty =)
Consequently,

2
'3 277471
Pr (D () = 1] = PO+ 2iP5

+ Ey(n) + E) (n) - py
(wy) U2 3 o (n) 0 (n) - pj

where Ey, E}) are error terms, and |Eq (n)|,|Ej (n)] = O (2737). O
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The proof of the following lemma is similar to the proof of Lemmab, and
appears in the full version.

Lemma 6. Let D), py,pt,py be as defined in the proof of Lemma 3.

n, n ny2 non o ny2
Then 131‘(:]6’?!)(;[]12,é [D;l (x’y) = ]_} _ 2popy +(p1) -gQP(Jpz +(p3) + ELQ (n) +

ELQ (n) - py + Eil-,Z (n) - (p§)2, where E1’2,E{727E{”2 are error terms, and
|E12 ()], |EL 5 (n)], |EY o (n)| = O (273).

Next, we prove that if Ug,Uj" are leakage-indistinguishable against some
family of leakage functions, then Ej is leakage indistinguishable against a slightly
weaker family of leakage functions.

Lemma 7. Let n,d,s,t € N, and ¢ = ¢(n) > 0. If there exists an ng € N such
that for every n > ng, U, U are (Lsn,d,s.at, €)-leakage-indistinguishable, then
for every n > ng, Es (+,17) is (Lan,d—1,5—3n,0t, 2€)-leakage-indistinguishable.

Proof. We show first that Encs(0,1") ,Encs(2,1") are (Lsnd—1,5—3n6t,€)-
leakage-indistinguishable for every m > ng. Otherwise, there exist infinitely
many n’s and for each a distinguisher D,, € L3, g4—1,5—3n,@¢ that achieves advan-
tage € > e in distinguishing between the distributions Encs (0,1™), Encs (2,1™).
For every such n we define D], to apply negation gates on its inputs, and run
D,,. Then D], € L3y 4.5,0t, and notice that since the encoding length is divis-
ible by 3, and the transformation v — o is 1:1 and onto (where ¢ denotes
the vector obtained by coordinate-wise negating v) then: if v «— Encs (0,1")
then ¥ «— Encs (0,1"); and if v «— Encs (1,1™) then ¥ « Encs(2,1™). There-
fore, for every such n, |Pr[D) (Enc(0,1™)) = 1] — Pr[D) (Enc(1,1™)) =1]| =
|Pr[D,, (Enc(0,1")) = 1] — Pr[D, (Enc(2,1")) =1]| = € > ¢, contradict-
ing the assumption of the lemma. Second, since for every n > ny,
Encs (0,1™), Encs (2,1™) are (L3n,d—1,5—3n,at, €)-leakage-indistinguishable, and
Encs (0,1™) ,Encs (1,1™) are (L3p,4,5,0t, €)-leakage-indistinguishable, then using
the triangle inequality Encg (1,1™) ,Encs (2,1™) are (L3n,d—1,5—3n,at, 2€)-leakage-
indistinguishable. O

We are finally ready to prove Corollary 3.
Proof. (of Corollary 3). Let d' = d+ 2, let ¢, ¢ be the constants for which Theo-

rem 18 holds for depth parameter d’, and we set ¢’ = §, and ¢ = §. Given [, let
" =141, and let ng be the minimal length parameter for which Theorem 18 holds

with parameters d’,l’. Let nj be such that for every n > ny, 2 (nl + 3n) +1<nl,

nc

2ne < n€, and T2 < 2’"(:/. Let n()’ be the minimal length parameter
whose existence is guaranteed in Lemma 2 for the length parameter max{ng,nj},
constant ¢, depth parameter d 4 2, size parameter s = n! + 3n, and parity
gate bound t = n¢. Let 15y = max{ng,nj,n}. We show that the corollary
holds for minimal length parameter 19 and constants ¢/, ¢’. Indeed, for every
n > ng Theorem 18 guarantees that Corrpg (E3n7d+272(n1+3n)+1,@Qnel , MOD?) <

27" (since n > ng and n > n)). By Lemmal, this implies that for
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every n > no, Uy, U7’y are (ﬁgn d1nl43n.@ne s 2_”C)—leakage—indistinguishable,
20 772 e e
and U™, Uis are (£6n,d+2,2(nl+3n)+1,®2ne’a2 " )—1eakage—1nd1stmgulshable. By

Lemma?2, for every n > np, Ug,Uj" are <£3n$d+1’nl+3n’®n€,7\ﬁ.z—%c)_
leakage-indistinguishable (because n > n{). By Lemma?7, Ej(-,1") is
(E3n7d7nz,@ne/,2\ﬁ~ 27%6)—leakage—indistinguishable. Since 79 > ng, Es(-,1")

is ([,%,d,nz@Hg 27 )—leakage—indistinguishable. |
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Abstract. The seminal result that every language having an interactive
proof also has a zero-knowledge interactive proof assumes the existence
of one-way functions. Ostrovsky and Wigderson [33] proved that this
assumption is necessary: if one-way functions do not exist, then only
languages in BPP have zero-knowledge interactive proofs.

Ben-Or et al. [9] proved that, nevertheless, every language hav-
ing a multi-prover interactive proof also has a zero-knowledge multi-
prover interactive proof, unconditionally. Their work led to, among
many other things, a line of work studying zero knowledge without
intractability assumptions. In this line of work, Kilian, Petrank, and
Tardos [28] defined and constructed zero-knowledge probabilistically
checkable proofs (PCPs).

While PCPs with quasilinear-size proof length, but without zero
knowledge, are known, no such result is known for zero knowledge PCPs.
In this work, we show how to construct “2-round” PCPs that are zero
knowledge and of length O(K) where K is the number of queries made by
a malicious polynomial time verifier. Previous solutions required PCPs of
length at least K° to maintain zero knowledge. In this model, which we
call duplex PCP (DPCP), the verifier first receives an oracle string from
the prover, then replies with a message, and then receives another oracle
string from the prover; a malicious verifier can make up to K queries
in total to both oracles.

Deviating from previous works, our constructions do not invoke the
PCP Theorem as a blackbox but instead rely on certain algebraic proper-
ties of a specific family of PCPs. We show that if the PCP has a certain
linear algebraic structure — which many central constructions can be
shown to possess, including [2,4,15] — we can add the zero knowledge
property at virtually no cost (up to additive lower order terms) while
introducing only minor modifications in the algorithms of the prover and
verifier. We believe that our linear-algebraic characterization of PCPs
may be of independent interest, as it gives a simplified way to view pre-
vious well-studied PCP constructions.
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1 Introduction

We continue the study of proof systems that provide soundness and zero knowl-
edge, simultaneously and unconditionally (i.e., no intractability assumptions are
needed to achieve the two), as we now explain.

Interactive Proofs. An interactive proof [6,20] for a language £ is a pair
of interactive algorithms (P, V'), where P is known as the prover and V as the
verifier, that satisfies the following: (i) (completeness) for every instance x in
Z, P(x) can make V(x) accept with probability 1; (ii) (soundness) for every
instance x not in .%, every prover P can make V(x) accept with at most a small
probability e. Shamir [35] showed the expressive power of interactive proofs by
proving that IP = PSPACE, i.e., all and only languages in PSPACE have
interactive proofs.

Zero Knowledge. An interactive proof is zero knowledge [20] if the verifier,
even if malicious, cannot learn any information about an instance x in £, by
interacting with the prover, besides the fact x is in .Z: for any efficient verifier V
there exists an efficient simulator S such that S(x) is “indistinguishable” from
the view of V while interacting with P(x). Depending on the choice of definition
for indistinguishability, one gets different flavors of zero knowledge.

If indistinguishability is required to hold for efficient deciders only, then one
gets computational zero knowledge; CZK denotes the corresponding complex-
ity class. A seminal result in cryptography says that if one-way functions exist
then CZK = IP, i.e., every language having an interactive proof also has a
computational zero-knowledge interactive proof [8,20,23]. If indistinguishability
is required to hold for all deciders, then one gets statistical zero knowledge; if
instead the simulator’s output and the verifier’s view are the same distribution
(and not merely close to each other), then one gets perfect zero knowledge. These
stronger notions determine the corresponding complexity classes SZK and PZK,
both of which are contained in AM N coAM; of course, PZK C SZK C CZK.

Unfortunately, zero knowledge cannot be achieved unconditionally for non-
trivial languages: Ostrovsky and Wigderson [33] proved that if one-way functions
do not exist then CZK equals an average-case variant of BPP.

Other Types of Proof Systems. Due to the limitations of interactive proofs
with respect to zero knowledge that holds unconditionally, researchers have
explored other types of proof systems, as an alternative to interactive proofs.

— MIP. Ben-Or et al. [9] first studied statistical zero knowledge, and proved that
it can be achieved in a new model, multi-prover interactive proof (MIPs),
where the verifier interacts with multiple provers that are not allowed to
communicate while interacting with the verifier (though they may share a
random string before such an interaction begins). More precisely, Ben-Or
et al. prove that every language having a multi-prover interactive proof also
has a perfect zero-knowledge multi-prover interactive proof (again, without
relying on intractability assumptions). The result of [9] was subsequently
improved in a number of papers [5,19,29].
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— PCP. Kilian et al. [28] study statistical zero knowledge in the model of prob-

abilistically checkable proofs (PCPs) [2-4], where the verifier has oracle access
to a string. Essentially, the oracle string can be thought of as a stateless
prover: the answer to a query depends only on the query itself, but not any
other queries that were previously made. Building on results implicit in [19],
Kilian et al. showed two main theorems. First, every language in NEXP has a
PCP that is statistical zero knowledge against verifiers that make at most any
polynomial number of queries to the PCP. Second, every language in NP has,
for every constant ¢ > 0, a PCP that is statistically zero knowledge against
verifiers that make at most k(n) := n¢ queries to the PCP.
Subsequent works [24-26,31] provided simplifications (giving alternative con-
structions or simplifying that of [28]) and limitations (showing that for lan-
guages in NP one cannot efficiently sample the oracle if one seeks statistical
zero knowledge against verifiers that make at most a polynomial number of
queries).

— IPCP. Goyal et al. [21] study statistical zero knowledge in the model of
interactive PCPs (IPCPs) [27], where the verifier interacts with two provers
of which one is restricted to be an oracle. Goyal et al. prove that every language
in NP has a constant-round interactive PCP that is statistical zero knowledge
against verifiers that make at most any polynomial number of queries to the
PCP, and where both provers’ strategies can be implemented efficiently as a
function of the instance and the witness.

A Limitation of Prior Work. PCPs with quasilinear-size proof length, but
without zero knowledge, are known: for every language . in NTIME(T'(n)),
there is a PCP with proof length O(T(n)) and query complexity O(1)
[14,15,17,32]. On the other hand, no such result for statistical zero knowledge
PCPs is known: even when applied to PCPs of length O(T'(n)), [28]’s result and
followup improvements yields a proof length that is polynomial in T'(n) - k(n),
where k(n), known as the knowledge bound, is a bound on the number of queries by
any verifier (see Sect. 4.1 for further discussion). We thus ask the following ques-
tion: are there statistical zero knowledge PCPs with proof length quasilinear in
T(n) 4 k(n)?

1.1 Owur Contributions

We do not answer the above question in the PCP model, but we give a positive
answer in a closely related model that can be thought of as a “2-round PCP”,
which we call duplex PCP (DPCP). At a high level, a DPCP works as follows:
the prover first sends an oracle string g to the verifier, just as in a PCP; then,
the verifier sends a message p to the prover; finally, the prover answers with a
second oracle string 71; the verifier may query both oracles, and then accept or
reject. In other words, a DPCP is merely a 2-round interactive proof in which
the prover sends oracle strings rather than messages. We prove the following
theorem:
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Theorem 1 (see Theorem 4 for formal statement). For every language £
in NTIME(T) N NP and polynomially-bounded knowledge bound k there exists
a DPCP system satisfying the following:

— the proof length (in fact, also the prover running time) is quasilinear in n +
T(n) +k(n);

— the query complexity is polynomial in log(T(n) + k(n));

— the verifier running time is polynomial in n + log(T(n) + k(n));

— perfect zero knowledge holds against any verifier that makes at most k(n)
adaptive queries (in total to both oracles);

~ the soundness error is 1/2 (and can be reduced by repetition to 27 while
preserving perfect zero knowledge, provided that the number of queries does
not exceed k(n)).

Moreover, similarly to the PCPs of [28], the DPCP system that we construct
is in fact not only sound but is also a proof of knowledge [7]; however, in contrast
to [28], the DPCP verifier is non-adaptive, in the sense that the query locations
depend only on the verifier’s random tape.

Perhaps the main difference between our construction and prior work is the
techniques that we use. While previous works use the PCP Theorem as a black
box, compiling a PCP into a zero knowledge PCP by using locking schemes [28],
we use certain algebraic properties of a specific family of PCPs to guarantee zero
knowledge. In comparison to the generic approach, we are more specific, but the
addition of zero knowledge essentially comes “for free” when compared to the
corresponding constructions without zero knowledge. (In contrast, [28] achieves
a proof length of 2(k(n)®-1(n)¢), for some large enough ¢, when starting from a
PCP with proof length I(n).)

DPCP vs IPCP. Duplex PCPs are an alternative to interactive PCPs that
combine PCPs and interaction. In a DPCP, the verifier gets an oracle string
from the prover, replies with a message, and then gets another oracle string
from the prover; in an IPCP, the verifier gets an oracle string from the prover,
and then engages in an interactive proof with him.

Both [21] and our work are similar in that both address aspects that we do
not know how to address in the PCP model, and resort to studying alternative
models, i.e., IPCP and DPCP respectively. The two works however give different
flavors of results: [21] obtain IPCPs that are zero knowledge against verifiers
that ask at most any polynomial number of queries k(n) but their oracle is of
polynomial size in k(n) (actually, of exponential size but with a polynomial-size
circuit describing it); on the other hand, our work obtains DPCPs that are zero
knowledge against verifiers that ask at most a fixed polynomial number of queries
k(n) and our oracles are of quasilinear size in k(n).

Finally, we note that our construction can be also cast as an IPCP, because
the knowledge bound k(n) holds only for the first oracle, i.e., perfect zero knowl-
edge is preserved even if the verifier reads the second oracle in full. This provides
a result on a 2-round IPCP incomparable to [21]’s 4-round IPCP.
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On the Minimal Computational Gap Between Prover and Verifier
Needed for Zero Knowledge. IP and MIP systems assume a computational
gap between prover and verifier. The prover is allowed (and often assumed)
to be computationally unbounded and the verifier is polynomially bounded. An
intriguing corollary of our theorem is that the computational gap between prover
and verifier can be drastically reduced, to a mere polylogarithmic one. Namely,
suppose that we wish to create zero-knowledge systems in which the verifier
runs in time tv(n); in the model above, as long as tp(n) > tv(n) - (logtv(n))®
for an absolute constant ¢, then perfect zero knowledge with a small soundness
error can be obtained under no intractability assumptions. (See Corollary 1 for
a formal statement.)

2 Preliminaries

Functions and Distributions. We use f: D — R to denote a function with
domain D and range R; given a subset D of D, we use flp to denote the
restriction of f to D. Given a distribution D, we write 2 < D to denote that z
is sampled according to D.

Distances. A distance measure is a function A: X" x X" — [0,1] such that
for all x,y,z € X™: (i) A(z,z) = 0, (ii) A(z,y) = A(y,x), and (iii) A(z,y) <
A(z, z)+A(z,y). For example, the relative Hamming distance over alphabet X' is
a distance measure: A% (2, y) := |{i|z; # y;}|/n. We extend A to distances of
strings to sets: given x € X™ and S C X", we define A(z, S) := minyes Az, y)
(or 1 if S is empty). We say that a string z is e-close to another string y if
A(z,y) < ¢, and efar from y if A(z,y) > €; similar terminology applies for a
string x and a set S.

Fields and Polynomials. We denote by F a finite field, by I, the field of size
g, and by .# the set of all finite fields. We denote by F[Xy,..., X,,] the ring
of polynomials in m variables over F; given a polynomial P in F[X7,..., X,,],
degy, (P) is the degree of P in the variable X;; the total degree of P is the sum
of all of these individual degrees.

Linear Spaces. Given n € N, a subset S of F"* is an F-linear space if az+ 0y € S
for all a, 8 € F and z,y € S.

Languages and Relations. We denote by % a relation consisting of pairs
(x,w), where x is the instance and w is the witness. We denote by Lan(%) the
language corresponding to %, and by Z|x the set of witnesses in % for x.

Complexity Classes. We write complexity classes in bold capital letters: NP,
PSPACE, NEXP, and so on. We take a “relation-centric” point of view: we
view NTIME as a class of relations rather than as the class of the correspond-
ing languages; we thus may write things like “let Z be in NP”. If & is in
NTIME(T), we fix an arbitrary machine Mg that decides #Z in time T'(n),
i.e., Mgp(x,w) always halts after T(|x|) steps and Mg(x,w) = 1 if and only
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if (x,w) € #; we then say that Mg decides Z (or Lan(#)). Throughout, we
assume that T'(n) > n.

Codes. An error correcting code C'is a set of functions w: H — X where H, X
are finite sets. The message length of C'is n := logy, |C|, its block length is
¢ :=|H|, its rate is p := n/¢, its (minimum) distance is d := min{A(w, z) |w, z €
C,w # z} when A is the (absolute) Hamming distance, and its (minimum)
relative distance is § := d/¢. Given a code family &, we denote by Rel(%) the
relation that naturally corresponds to %, i.e., {(C,w) | C € €, w € C}. A code
C is linear if ¥ is a finite field and C is a X-linear space in X*; we denote by
dim(C') the dimension of C' when viewed as a linear space. A code C is t-wise
independent if, for every subset I of [¢] with cardinality ¢, the distribution of w|;
(viewed as a string) for a random w € C equals the uniform distribution on 3.

Random Shifts. We later use the following folklore claim about distance preser-
vation for random shifts in linear spaces; for completeness, we include its short
proof.

Claim. Let n be in N, F a finite field, S an F-linear space in F", and z,y € F™.
If o is e-far from S, then az + y is €/2-far from S, with probability 1 — |F|~*
over a random « € F. (Distances are relative Hamming distances.)

Proof. Suppose, by way of contradiction, that there exist a1, as € F and y1,y2 €
S with a; # g such that, for every i € {1,2}, a;z+y is €/2 close to y;. Then, by
the triangle inequality, z := y1 —y2 is e-close to (a1 z+y) — (azz+y) = (01 —2)z.
We conclude that x is e-close to z € S, a contradiction.

Q1 —o2

2.1 Probabilistically Checkable Proofs

A PCP system [2-4] for a relation Z is a tuple PCP = (P, V) that works as
follows.

— The prover P is a probabilistic algorithm that, given as input an instance-
witness pair (x,w) with n := |x|, outputs a proof 7: D(n) — X(n), where
both D(n) and X' (n) are finite sets.

— The werifier V is a probabilistic oracle algorithm that, given as input an
instance x with n := |x| and with oracle access to a proof 7: D(n) — X(n),
queries 7 at a few locations and then outputs a bit.

The system PCP has (perfect) completeness and soundness error e(n) if the
following two conditions hold. (Below, we explicitly denote the prover’s and
verifier’s randomness as rp and ry.)

Completeness: For every instance-witness pair (x,w) in the relation 2,

Pr I:VP(X,WH”P)(X; TV) — 1:| =1.

TP,TV
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Soundness: For every instance x not in the language Lan(#) and proof
m: D(n) — X(n),
PrVT(x;ry) =1] <e(n).
TV

A relation Z belongs to the complexity class PCPa, |, q,e,tp, tv] if there is a
PCP system for % in which:

— the answer alphabet (i.e., X¥(n)) is a(n),

— the proof length over that alphabet (i.e., |D(n)|) is at most I(n),
— the verifier queries the proof in at most q(n) locations,

— the soundness error is e(n),

— the prover runs in time tp(n), and

— the verifier runs in time tv(n).

Finally, we add the symbol na in the square brackets (i.e., we write PCP|. .. na])
if the queries to the proof are non-adaptive (i.e., the queried locations only
depend on the verifier’s inputs).

2.2 Probabilistically Checkable Proofs of Proximity

A PCPP system [12,18] for a relation Z is a tuple PCPP = (P, V) that works
as follows.

— The prover P is a probabilistic algorithm that, given as input an instance-
witness pair (x,w) with n := |x|, outputs a proof 7: D(n) — X(n), where
both D(n) and X (n) are finite sets.

— The verifier V is a probabilistic oracle algorithm that, given as input an
instance x with n := |x| and with oracle access to a witness w and proof
m: D(n) — X(n), queries w and 7 at a few locations and then outputs a bit.

The system PCPP has (perfect) completeness, soundness error e, distance mea-
sure A, and proximity parameter d if the following two conditions hold. (Below,
we explicitly denote the prover’s and verifier’s randomness as rp and ry.)

Completeness: For every instance-witness pair (x,w) in the relation %,

Pr [V(W’P(X’W;TP))(X; ry) = 1} =1.

rTp,r"v
Soundness: For every instance-witness pair (x, w), perhaps not in the language,
such that A(w, Z|x) > d(n) and proof 7: D(n) — X(n),

Pr [V(‘W”T)(x; V) = 1} <e(n).

A%

A relation Z belongs to the complexity class PCPP[a,l,q, A, d, e, tp, tv] if there
is a PCPP system for % in which:

— the answer alphabet (i.e., X'(n)) is a(n),
— the proof length over that alphabet (i.e., |D(n)|) is at most I(n),
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— the verifier queries the two oracles (codeword and proof) in at most q(n)
locations (in total),

— the distance measure is A,

— the proximity parameter is d(n),

— the soundness error is e(n),

— the prover runs in time tp(n), and

— the verifier runs in time tv(n).

Finally, we add the symbol na in the square brackets (i.e., we write
PCPP]|...,nal) if the queries to the oracles are non-adaptive (i.e., the queried
locations only depend on the verifier’s inputs).

2.3 Zero Knowledge PCPs

The notion of zero knowledge for PCPs was first considered in [19,28]. A PCP
system PCP = (P, V) for a relation & has perfect zero knowledge with knowledge
bound k if there exists an expected-polynomial-time probabilistic algorithm S
such that, for every k-query polynomial-time probabilistic oracle algorithm f/,
the following two distribution families are identical:

{S(V7X)}(x,\w)€% and {PCPVIGW(V7P7 X, W)}(x,\w)e% s

where PCPView(V, m,%,w) is the view of V in its execution when given input x
and oracle access to m := P(x, w). The definition of statistical and computational
zero knowledge (with knowledge bound k) are similar: rather than identical, the
two distribution families are required to be statistically and computationally
close (as |x| grows), respectively.

A relation Z belongs to the complexity class PCPp,k[a, |, q, €, tp, tv, k] if there
exists a PCP system for & that (i) puts Z in PCP|a,l,q,e, tp, tv], and (ii) has
perfect zero knowledge with knowledge bound k; as for PCP, we add the symbol
na in the square brackets of PCP,,y if the queries to the proof are non-adaptive.
The complexity classes PCPg,, and PCP,y are similarly defined for statistical
and computational zero knowledge.

The KPT Result. Kilian, Petrank, and Tardos proved the following theorem:

Theorem 2 [28]. For every polynomial time functionT : N — N, polynomial secu-
rity function A\: N — N, and polynomial knowledge bound function k: N — N,

_a = ]F2poly(x)

| = poly(T, k)
q = poly())
NTIME(T) C PCPy |e =27

tp = poly(\, T')
tv = poly (X, T, k)
k

Remark 1. We make two remarks: (i) the symbol na does not appear above
because [28]’s construction relies on adaptively querying the proof; (ii) inspection
of [28]’s construction reveals that I(n) > poly(T'(n)) - k(n)®.
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2.4 Reed—Muller and Reed—Solomon Codes

4

We define Reed—Muller and Reed—Solomon codes, as well as their “vanishing”
variants [15]; all of these are linear codes. We then state a theorem about PCPPs
for certain families of RS codes.

RM Codes. Let F be a finite field, H, V subsets of F, m a positive integer, and o
a constant in (0, 1]; o is called the fractional degree. The Reed—Muller code with
parameters IF, H,m, ¢ is RM[F, H,m, ¢] := {w: H™ — F | max;c[,, degx, (w) <
o|H|}; its message length is n = (o|H|)™, block length is ¢ = |H|™, rate is
p = o™, and relative distance is § = 1 — p. The vanishing Reed—Muller code
with parameters F, H,m, o,V is VRM[F, H,m,o,V] := {w € RM[F, H,m, o] |
w(V™) = {0}}; it is a subcode of RM[F, H, m, g].

RS Codes. Let F be a finite field, H,V subsets of F, and ¢ a constant
in (0,1]. The Reed-Solomon code with parameters F, H, o is RS[F, H, o] :=
RMI[F, H, 1, o]. The vanishing Reed-Solomon code with parameters F, H, o,V
is VRS[F, H, o, V] := {w € RS[F, H, o] | w(V) = {0} }.

Two RS Code Families and Their PCPPs. Given g € (0, 1], we denote by:
(i) RS, the set of Reed-Solomon codes RS[F, H, g] for which F has characteristic
2 and H is an [Fs-affine space; and (ii) VRS, the set of vanishing Reed-Solomon
codes VRS[F, H, o, V] for which F has characteristic 2 and H is an Fy-affine space.
The following theorem is from [10,15] (the prover running time is shown in [10]
and the other parameters in [15]).

Theorem 3. For every security function \: N — N, p € (0,1), and s > 0,

a = ]F25+10gz

I =0()

q = \-polylog(¢)

A = A?am
Rel(RS,), Rel(VRS,) € PCPP |d = Q/%\

e =