
Eyal Kushilevitz · Tal Malkin (Eds.)

 123

LN
CS

 9
56

3

13th International Conference, TCC 2016-A
Tel Aviv, Israel, January 10–13, 2016
Proceedings, Part II

Theory
of Cryptography

Lecture Notes in Computer Science 9563

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Eyal Kushilevitz • Tal Malkin (Eds.)

Theory
of Cryptography
13th International Conference, TCC 2016-A,
Tel Aviv, Israel, January 10–13, 2016
Proceedings, Part II

123

Editors
Eyal Kushilevitz
Department of Computer Science
Technion
Haifa
Israel

Tal Malkin
Department of Computer Science
Columbia University
New York, NY
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-49098-3 ISBN 978-3-662-49099-0 (eBook)
DOI 10.1007/978-3-662-49099-0

Library of Congress Control Number: 2015957796

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

Preface

The 13th Theory of Cryptography Conference (TCC 2016-A) was held during January
10–13, 2016, at the Suzanne Dellal Center in Tel Aviv, Israel. It was sponsored by the
International Association for Cryptographic Research (IACR). The general chairs
of the conference were Ran Canetti and Iftach Haitner. We would like to thank them for
their hard work in organizing the conference.

The conference received 112 submissions, of which the Program Committee
(PC) selected 45 for presentation (with three pairs of papers sharing a single presen-
tation slot per pair). Each submission was reviewed by at least three PC members, often
more. The 24 PC members, all top researchers in our field, were helped by 112 external
reviewers, who were consulted when appropriate. These proceedings consist of the
revised version of the 45 accepted papers. The revisions were not reviewed, and the
authors bear full responsibility for the content of their papers.

As in previous years, we used Shai Halevi’s excellent web-review software, and are
extremely grateful to him for writing it, and for providing fast and reliable technical
support whenever we had any questions. Based on the experience from last year, we
again made use of the interaction feature supported by the review software, where PC
members may directly and anonymously interact with authors. This was used to ask
specific technical questions that arise, such as suspected bugs. We felt this was efficient
and successful, and are thankful to last year’s chairs, Yevgeniy Dodis and Jesper Buus
Nielsen, for suggesting this feature, and to Shai Halevi for implementing it.

This was the second year where TCC presented the Test of Time Award to an
outstanding paper that was published at TCC at least eight years ago, making a sig-
nificant contribution to the theory of cryptography, preferably with influence also in
other areas of cryptography, theory, and beyond. This year the Test of Time Award
Committee selected the following paper, published ten years ago at TCC 2006:

“Calibrating Noise to Sensitivity in Private Data Analysis,” by Cynthia Dwork, Frank McSherry,
Kobbi Nissim, and Adam Smith.

This paper was selected for introducing the definition of differential privacy, pro-
viding a solid mathematical foundation for a vast body of subsequent work on private
data analysis. The authors were also invited to deliver a talk at TCC 2016-A. The
conference also featured two other invited events. First, an invited talk by Yael Kalai
and Shafi Goldwasser (delivered by Yael) followed by panel on “cryptographic
assumptions.” Second, an invited talk by Yevgeniy Dodis. Finally, in addition to
regular papers and invited events, the conference also featured a rump session.

We are greatly indebted to many people who were involved in making TCC 2016-A
a success. First of all, a big thanks to the most important contributors: all the authors
who submitted papers to the conference. Next, we would like to thank the PC members
for their hard work, dedication, and diligence in reviewing the papers, verifying the
correctness, and in-depth discussion. We are also thankful to the external reviewers for
their volunteered hard work and investment in reviewing papers and answering

questions, often under time pressure. For running the conference itself, we are very
grateful to the general chairs, Ran Canetti and Iftach Haitner, as well as Galit Herzberg
and the rest of the local Organizing Committee. Finally, we are thankful to the TCC
Steering Committee as well as the entire thriving and vibrant TCC community.

January 2016 Eyal Kushilevitz
Tal Malkin

VI Preface

TCC 2016-A

The 13th Theory of Cryptography Conference

Suzanne Dellal Center, Tel Aviv, Israel
January 10–13, 2016

Sponsored by the International Association for Cryptographic Research

General Chairs

Ran Canetti Tel Aviv University, Israel
Boston University, USA

Iftach Haitner Tel Aviv University, Israel

Program Chairs

Eyal Kushilevitz Technion, Israel
Tal Malkin Columbia University, USA

Program Commitee

Masayuki Abe NTT, Japan
Amos Beimel Ben-Gurion University, Israel
Nir Bitansky MIT, USA
Andrej Bogdanov Chinese University of Hong Kong, SAR China
Zvika Brakerski Weizmann Institute of Science, Israel
Christina Brzuska Hamburg University of Technology, Germany
Nishanth Chandran MSR India
Melissa Chase MSR Redmond, USA
Dana Dachman-Soled University of Maryland, USA
Yuval Ishai Technion, Israel
Jonathan Katz University of Maryland, USA
Hugo Krawczyk IBM Research, USA
Huijia Lin UC Santa Barbara, USA
Claudio Orlandi Aarhus University, Denmark
Omkant Pandey Drexel University, USA
Valerio Pastro Columbia University, USA
Leonid Reyzin Boston University, USA
Guy Rothblum Samsung Research America, USA
Gil Segev Hebrew University, Israel
Adam Smith Pennsylvania State University, USA
Vinod Vaikuntanathan MIT, USA
Ivan Visconti University of Salerno, Italy
Brent Waters UT Austin, USA
Vassilis Zikas ETH, Switzerland

External Reviewers

Divesh Aggarwal
Prabhanjan Ananth
Daniel Apon
Benny Applebaum
Gilad Asharov
Nuttapong Attrapadung
Pablo Azar
Saikrishna

Badrinarayanan
Allison Bishop
Elette Boyle
Ignacio Cascudo
David Cash
Binyi Chen
Yilei Chen
Mahdi Cheragchi
Kai-Min Chung
Michele Ciampi
Aloni Cohen
Sandro Coretti
Akshay Degwekar
Gregory Demay
Itai Dinur
Yevgeniy Dodis
Nico Döttling
Antonio Faonio
Sebastian Faust
Victoria Fehr
Dario Fiore
Nils Fleischhacker
Eiichiro Fujisaki
Juan Garay
Ran Gelles
Craig Gentry
Niv Gilboa
Alexander Golovnev
Sergey Gorbunov
Rishab Goyal
Jens Groth

Siyao Guo
Shai Halevi
Prahladh Harsha
Carmit Hazay
Brett Hemenway
Ryo Hiromasa
Justin Holmgren
Ai Ishida
Zahra Jafargholi
Abhishek Jain
Stanislaw Jarecki
Daniel Jost
Tomasz Kazana
Carmen Kempka
Dakshita Khurana
Susumu Kiyoshima
Saleet Klein
Ilan Komargodski
Venkata Koppula
Lucas Kowalczyk
Ranjit Kumaresan
Tancrède Lepoint
Feng-Hao Liu
Tianren Liu
Satya Lokam
Steve Lu
Anna Lysyanskaya
Vadim Lyubashevsky
Mohammad Mahmoody
Hemanta K. Maji
Christian Matt
Eric Miles
Arno Mittelbach
Pratyay Mukherjee
Moni Naor
Jesper Buus Nielsen
Ryo Nishimaki
Adam O’Neill
Miyako Ohkubo

Olya Ohrimenko
Omer Paneth
Sunoo Park
Anat Paskin-Cherniavsky
Giuseppe Persiano
Oxana Poburinnaya
Antigoni Polychroniadou
Tal Rabin
Silas Richelson
Mike Rosulek
Ron Rothblum
Yannis Rouselakis
Alessandra Scafuro
Karn Seth
Luisa Siniscalchi
John Steinberger
Stefano Tessaro
Aishwarya

Thiruvengadam
Mehdi Tibouchi
Daniel Tschudi
Jalaj Upadhyay
Prashant Vasudevan
Muthu

Venkitasubramaniam
Daniele Venturi
Dhinakaran

Vinayagamurthy
Thomas Watson
Hoeteck Wee
Mor Weiss
Daniel Wichs
Keita Xagawa
Eylon Yogev
Ching-Hua Yu
Yu Yu
Mark Zhandry
Hong-Sheng Zhou

VIII TCC 2016-A

Contents – Part II

Zero Knowledge and PCP

Making the Best of a Leaky Situation: Zero-Knowledge PCPs
from Leakage-Resilient Circuits . 3

Yuval Ishai, Mor Weiss, and Guang Yang

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs. 33
Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza

From Private Simultaneous Messages to Zero-Information Arthur-Merlin
Protocols and Back . 65

Benny Applebaum and Pavel Raykov

A Transform for NIZK Almost as Efficient and General as the Fiat-Shamir
Transform Without Programmable Random Oracles. 83

Michele Ciampi, Giuseppe Persiano, Luisa Siniscalchi,
and Ivan Visconti

Improved OR-Composition of Sigma-Protocols . 112
Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro,
Luisa Siniscalchi, and Ivan Visconti

Oblivious RAM

Onion ORAM: A Constant Bandwidth Blowup Oblivious RAM 145
Srinivas Devadas, Marten van Dijk, Christopher W. Fletcher, Ling Ren,
Elaine Shi, and Daniel Wichs

Oblivious Parallel RAM and Applications . 175
Elette Boyle, Kai-Min Chung, and Rafael Pass

Oblivious Parallel RAM: Improved Efficiency and Generic Constructions . . . 205
Binyi Chen, Huijia Lin, and Stefano Tessaro

ABE and IBE

Déjà Q: Encore! Un Petit IBE . 237
Hoeteck Wee

A Study of Pair Encodings: Predicate Encryption in Prime Order Groups. . . . 259
Shashank Agrawal and Melissa Chase

http://dx.doi.org/10.1007/978-3-662-49099-0_1
http://dx.doi.org/10.1007/978-3-662-49099-0_1
http://dx.doi.org/10.1007/978-3-662-49099-0_2
http://dx.doi.org/10.1007/978-3-662-49099-0_3
http://dx.doi.org/10.1007/978-3-662-49099-0_3
http://dx.doi.org/10.1007/978-3-662-49099-0_4
http://dx.doi.org/10.1007/978-3-662-49099-0_4
http://dx.doi.org/10.1007/978-3-662-49099-0_5
http://dx.doi.org/10.1007/978-3-662-49099-0_6
http://dx.doi.org/10.1007/978-3-662-49099-0_7
http://dx.doi.org/10.1007/978-3-662-49099-0_8
http://dx.doi.org/10.1007/978-3-662-49099-0_9
http://dx.doi.org/10.1007/978-3-662-49099-0_10

Codes and Interactive Proofs

Optimal Amplification of Noisy Leakages . 291
Stefan Dziembowski, Sebastian Faust, and Maciej Skórski

Rational Sumchecks . 319
Siyao Guo, Pavel Hubáček, Alon Rosen, and Margarita Vald

Interactive Coding for Interactive Proofs . 352
Allison Bishop and Yevgeniy Dodis

Information-Theoretic Local Non-malleable Codes and Their Applications . . . 367
Nishanth Chandran, Bhavana Kanukurthi, and Srinivasan Raghuraman

Optimal Computational Split-state Non-malleable Codes 393
Divesh Aggarwal, Shashank Agrawal, Divya Gupta, Hemanta K. Maji,
Omkant Pandey, and Manoj Prabhakaran

Limitations of Obfuscation and Obfuscation-Avoiding Constructions

How to Avoid Obfuscation Using Witness PRFs. 421
Mark Zhandry

Cutting-Edge Cryptography Through the Lens of Secret Sharing. 449
Ilan Komargodski and Mark Zhandry

Functional Encryption Without Obfuscation . 480
Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry

On Constructing One-Way Permutations from Indistinguishability
Obfuscation . 512

Gilad Asharov and Gil Segev

Contention in Cryptoland: Obfuscation, Leakage and UCE. 542
Mihir Bellare, Igors Stepanovs, and Stefano Tessaro

Point-Function Obfuscation: A Framework and Generic Constructions 565
Mihir Bellare and Igors Stepanovs

Author Index . 595

X Contents – Part II

http://dx.doi.org/10.1007/978-3-662-49099-0_11
http://dx.doi.org/10.1007/978-3-662-49099-0_12
http://dx.doi.org/10.1007/978-3-662-49099-0_13
http://dx.doi.org/10.1007/978-3-662-49099-0_14
http://dx.doi.org/10.1007/978-3-662-49099-0_15
http://dx.doi.org/10.1007/978-3-662-49099-0_16
http://dx.doi.org/10.1007/978-3-662-49099-0_17
http://dx.doi.org/10.1007/978-3-662-49099-0_18
http://dx.doi.org/10.1007/978-3-662-49099-0_19
http://dx.doi.org/10.1007/978-3-662-49099-0_19
http://dx.doi.org/10.1007/978-3-662-49099-0_20
http://dx.doi.org/10.1007/978-3-662-49099-0_21

Contents – Part I

Obfuscation: Impossibility Results and Constructions

Impossibility of VBB Obfuscation with Ideal Constant-Degree Graded
Encodings . 3

Rafael Pass and Abhi Shelat

On the Impossibility of Virtual Black-Box Obfuscation in Idealized Models . . . 18
Mohammad Mahmoody, Ameer Mohammed, and Soheil Nematihaji

Lower Bounds on Assumptions Behind Indistinguishability Obfuscation 49
Mohammad Mahmoody, Ameer Mohammed, Soheil Nematihaji,
Rafael Pass, and Abhi Shelat

Indistinguishability Obfuscation: From Approximate to Exact 67
Nir Bitansky and Vinod Vaikuntanathan

Output-Compressing Randomized Encodings and Applications 96
Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang

Functional Encryption for Turing Machines . 125
Prabhanjan Ananth and Amit Sahai

Differential Privacy

The Complexity of Computing the Optimal Composition of Differential
Privacy . 157

Jack Murtagh and Salil Vadhan

Order-Revealing Encryption and the Hardness of Private Learning 176
Mark Bun and Mark Zhandry

LWR and LPN

On the Hardness of Learning with Rounding over Small Modulus 209
Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson,
and Alon Rosen

Two-Round Man-in-the-Middle Security from LPN. 225
David Cash, Eike Kiltz, and Stefano Tessaro

http://dx.doi.org/10.1007/978-3-662-49096-9_1
http://dx.doi.org/10.1007/978-3-662-49096-9_1
http://dx.doi.org/10.1007/978-3-662-49096-9_2
http://dx.doi.org/10.1007/978-3-662-49096-9_3
http://dx.doi.org/10.1007/978-3-662-49096-9_4
http://dx.doi.org/10.1007/978-3-662-49096-9_5
http://dx.doi.org/10.1007/978-3-662-49096-9_6
http://dx.doi.org/10.1007/978-3-662-49096-9_7
http://dx.doi.org/10.1007/978-3-662-49096-9_7
http://dx.doi.org/10.1007/978-3-662-49096-9_8
http://dx.doi.org/10.1007/978-3-662-49096-9_9
http://dx.doi.org/10.1007/978-3-662-49096-9_10

Public Key Encryption, Signatures, and VRF

Algebraic Partitioning: Fully Compact and (almost) Tightly Secure
Cryptography . 251

Dennis Hofheinz

Standard Security Does Imply Security Against Selective Opening for
Markov Distributions. 282

Georg Fuchsbauer, Felix Heuer, Eike Kiltz, and Krzysztof Pietrzak

Non-Malleable Encryption: Simpler, Shorter, Stronger 306
Sandro Coretti, Yevgeniy Dodis, Björn Tackmann, and Daniele Venturi

Verifiable Random Functions from Standard Assumptions 336
Dennis Hofheinz and Tibor Jager

Complexity of Cryptographic Primitives

Homomorphic Evaluation Requires Depth . 365
Andrej Bogdanov and Chin Ho Lee

On Basing Private Information Retrieval on NP-Hardness 372
Tianren Liu and Vinod Vaikuntanathan

Obfuscation-Based Cryptographic Constructions

On the Correlation Intractability of Obfuscated Pseudorandom Functions 389
Ran Canetti, Yilei Chen, and Leonid Reyzin

Reconfigurable Cryptography: A Flexible Approach to Long-Term Security . . . 416
Julia Hesse, Dennis Hofheinz, and Andy Rupp

Multilinear Maps from Obfuscation . 446
Martin R. Albrecht, Pooya Farshim, Dennis Hofheinz, Enrique Larraia,
and Kenneth G. Paterson

Perfect Structure on the Edge of Chaos: Trapdoor Permutations from
Indistinguishability Obfuscation . 474

Nir Bitansky, Omer Paneth, and Daniel Wichs

Cryptographic Assumptions (Invited Talk followed by Panel)

Cryptographic Assumptions: A Position Paper . 505
Shafi Goldwasser and Yael Tauman Kalai

XII Contents – Part I

http://dx.doi.org/10.1007/978-3-662-49096-9_11
http://dx.doi.org/10.1007/978-3-662-49096-9_11
http://dx.doi.org/10.1007/978-3-662-49096-9_12
http://dx.doi.org/10.1007/978-3-662-49096-9_12
http://dx.doi.org/10.1007/978-3-662-49096-9_13
http://dx.doi.org/10.1007/978-3-662-49096-9_14
http://dx.doi.org/10.1007/978-3-662-49096-9_15
http://dx.doi.org/10.1007/978-3-662-49096-9_16
http://dx.doi.org/10.1007/978-3-662-49096-9_17
http://dx.doi.org/10.1007/978-3-662-49096-9_18
http://dx.doi.org/10.1007/978-3-662-49096-9_19
http://dx.doi.org/10.1007/978-3-662-49096-9_20
http://dx.doi.org/10.1007/978-3-662-49096-9_20
http://dx.doi.org/10.1007/978-3-662-49096-9_21

Multiparty Computation

Adaptive Security with Quasi-Optimal Rate . 525
Brett Hemenway, Rafail Ostrovsky, Silas Richelson, and Alon Rosen

On the Complexity of Additively Homomorphic UC Commitments 542
Tore Kasper Frederiksen, Thomas P. Jakobsen, Jesper Buus Nielsen,
and Roberto Trifiletti

Simplified Universal Composability Framework . 566
Douglas Wikström

Characterization of Secure Multiparty Computation Without Broadcast 596
Ran Cohen, Iftach Haitner, Eran Omri, and Lior Rotem

Author Index . 617

Contents – Part I XIII

http://dx.doi.org/10.1007/978-3-662-49096-9_22
http://dx.doi.org/10.1007/978-3-662-49096-9_23
http://dx.doi.org/10.1007/978-3-662-49096-9_24
http://dx.doi.org/10.1007/978-3-662-49096-9_25

Zero Knowledge and PCP

Making the Best of a Leaky Situation:
Zero-Knowledge PCPs

from Leakage-Resilient Circuits

Yuval Ishai1,2(B), Mor Weiss1, and Guang Yang3

1 Department of Computer Science, Technion, Haifa, Israel
{yuvali,morw}@cs.technion.ac.il

2 Department of Computer Science, UCLA, Los Angeles, CA, USA
3 Institute for Interdisciplinary Information Sciences, Tsinghua University,

Beijing, China
guang.research@gmail.com

Abstract. A Probabilistically Checkable Proof (PCP) allows a random-
ized verifier, with oracle access to a purported proof, to probabilistically
verify an input statement of the form “x ∈ L” by querying only few
bits of the proof. A zero-knowledge PCP (ZKPCP) is a PCP with the
additional guarantee that the view of any verifier querying a bounded
number of proof bits can be efficiently simulated given the input x alone,
where the simulated and actual views are statistically close.

Originating from the first ZKPCP construction of Kilian et al. [21],
all previous constructions relied on locking schemes, an unconditionally
secure oracle-based commitment primitive. The use of locking schemes
makes the verifier inherently adaptive, namely, it needs to make at least
two rounds of queries to the proof.

Motivated by the goal of constructing non-adaptively verifiable
ZKPCPs, we suggest a new technique for compiling standard PCPs into
ZKPCPs. Our approach is based on leakage-resilient circuits, which are
circuits that withstand certain “side-channel” attacks, in the sense that
these attacks reveal nothing about the (properly encoded) input, other
than the output. We observe that the verifier’s oracle queries constitute
a side-channel attack on the wire-values of the circuit verifying mem-
bership in L, so a PCP constructed from a circuit resilient against such
attacks would be ZK. However, a leakage-resilient circuit evaluates the
desired function only if its input is properly encoded, i.e., has a specific
structure, whereas by generating a “proof” from the wire-values of the
circuit on an ill-formed “encoded” input, one can cause the verification
to accept inputs x /∈ L with probability 1. We overcome this obstacle by
constructing leakage-resilient circuits with the additional guarantee that
ill-formed encoded inputs are detected. Using this approach, we obtain
the following results:

– We construct the first witness-indistinguishable PCPs (WIPCP) for
NP with non-adaptive verification. WIPCPs relax ZKPCPs by only
requiring that different witnesses be indistinguishable. Our construc-
tion combines strong leakage-resilient circuits as above with the PCP

c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 3–32, 2016.
DOI: 10.1007/978-3-662-49099-0 1

4 Y. Ishai et al.

of Arora and Safra [2], in which queries correspond to side-channel
attacks by shallow circuits, and with correlation bounds for shallow
circuits due to Lovett and Srivinasan [22].

– Building on these WIPCPs, we construct non-adaptively verifiable
computational ZKPCPs for NP in the common random string model,
assuming that one-way functions exist.

– As an application of the above results, we construct 3-round WI and
ZK proofs for NP in a distributed setting in which the prover and the
verifier interact with multiple servers of which t can be corrupted, and
the total communication involving the verifier consists of poly log(t)
bits.

1 Introduction

In this work we study probabilistically checkable proofs with zero-knowledge
properties, and establish a connection between such proofs and leakage-resilient
circuits. Before describing our main results, we first give a short overview of
these objects.

Probabilistically Checkable Proof (PCP) systems [1,2] are proof systems that
allow an efficient randomized verifier, with oracle access to a purported proof
generated by an efficient prover (that is also given the witness), to probabilis-
tically verify claims of the form “x ∈ L” (for an NP-language L) by probing
only few bits of the proof. The verifier accepts the proof of a true claim with
probability 1 (the completeness property), and rejects false claims with high
probability (the probability that the verifier accepts a false claim is called the
soundness error). The celebrated PCP theorem [1,2,8] asserts that any NP lan-
guage admits a PCP system with soundness error 1/2 in which the verifier reads
only a constant number of proof bits (soundness can be amplified using repeti-
tion). Moreover, the verifier is non-adaptive, namely its queries are determined
solely by his randomness (a verifier is adaptive if each of his queries may also
depend on the oracle answers to previous queries).

A very different kind of proofs are zero-knowledge (ZK) proofs [14], namely
proofs that carry no extra knowledge other than being convincing. Combining
the advantages of ZK proofs and PCPs, a zero-knowledge PCP (ZKPCP) is
defined similarly to a traditional PCP, except that the proof is also randomized
and there is the additional guarantee that the view of any (possibly malicious)
verifier who makes a bounded number of queries can be efficiently simulated
up to a small statistical distance.

Previous ZKPCP constructions [17,19,21] are obtained from standard (i.e.,
non-ZK) PCPs in two steps. First, the standard PCP is transformed into a PCP
with a weaker “honest-verifier” ZK guarantee (which is much easier to achieve
than full-fledged ZK). Then, this “honest-verifier” ZKPCP is combined with
an unconditionally secure oracle-based commitment primitive called a “locking
scheme” [17,21]. This transformation yields ZKPCPs for NP with statistical ZK
against query-bounded malicious verifiers, namely ones who are only limited to
asking at most p(|x|) queries, for some fixed polynomial p that is much smaller

Making the Best of a Leaky Situation: Zero-Knowledge PCPs 5

than the proof length, but can be much bigger than the (polylogarithmic) number
of queries asked by the honest verifier.

A common limitation of all previous ZKPCP constructions is that they
require adaptive verification, even if the underlying non-ZK PCP can be non-
adaptively verified. This raises the natural question of constructing PCPs that
can be non-adaptively verified, and guarantee ZK against malicious verifiers.
We note that the adaptivity of the verifier is inherent to any locking-scheme-
based ZKPCP, since the unconditional security of locking schemes makes their
opening inherently adaptive. Therefore, constructing ZKPCPs that can be veri-
fied non-adaptively requires a new approach towards ZKPCP construction. An
additional advantage of eliminating the use of locking schemes is the possibility
of constructing ZKPCPs preserving the proof length (which is important when
these are used for cryptographic applications as described below), since locking
schemes inherently incur a polynomial blow-up in the PCP length.

Motivated by these goals, we suggest a new approach for the construction
of ZKPCPs. We apply leakage-resilient circuit compilers (LRCCs) to construct
witness-indistinguishable PCPs (WIPCPs) for NP, a weaker variant of ZKPCPs
in which the simulation is not required to be efficient. We then apply the so-
called “FLS technique” [12] to convert these WIPCPs into computational ZKPCPs
(CZKPCPs) in the common random string (CRS) model, based on the existence
of one-way functions (OWFs). In such a CZKPCP, the view of any query-bounded
PPT verifier can be efficiently simulated, in a way which is computationally indis-
tinguishable from the actual view.

Informally, an LRCC compiles any circuit into a new circuit that operates
on encoded inputs, and withstands side-channel attacks in the sense that these
reveal nothing about the (properly encoded) input, other than what follows
from the output. Works on LRCCs obtained information-theoretic security for
different classes of leakage functions [10,11,15,18,23,25].

Other than the theoretical interest in this question, our study of PCPs with
ZK properties is motivated by their usefulness for cryptographic applications. For
instance, ZKPCPs are the underlying combinatorial building blocks of succinct
zero-knowledge arguments, which have been the subject of a large body of recent
work (see, e.g., [3–5] and references therein).

A more direct application of WIPCPs and ZKPCPs is for implementing
efficiently verifiable zero-knowledge proofs in a distributed setting involving a
prover, verifier, and multiple (potentially corrupted) servers. In this setting a
prover can distribute a ZKPCP between the servers, allowing the verifier to
efficiently verify the claim by polling a small random subset of the servers.1 In
this and similar situations, ZKPCPs that only offer security against an honest
verifier are not sufficient for protecting against colluding servers. We use our
non-adaptively verifiable WIPCPs and CZKPCPs for NP to construct 3-round
WI and CZK proofs for NP in this distributed setting, in which the total com-
munication with the verifier is sublinear in the input length. The WI proofs are
1 Unlike the ZKPCP model, the answers of malicious servers may depend on the

identity of the verifier’s queries, but this can be overcome using techniques of [19].

6 Y. Ishai et al.

unconditional, whereas the CZK proofs are based on the existence of OWFs.
This should be contrasted with standard sublinear ZK arguments, that require
at least 4 rounds of interaction, and require the existence of collision resistant
hash functions. We refer the reader to, e.g., [17] for additional discussion of
ZKPCPs and their applications.

1.1 Our Results and Techniques

We now give a more detailed account of our results, and the underlying tech-
niques.

From LRCCs and PCPs to WIPCPs. Let L be an NP-language with a
corresponding NP-relation RL, and a boolean circuit C verifying RL. Recall
that the prover P in a PCP system for RL is given the input x and a witness y
for the membership of x in L, and outputs a proof π that is obtained by applying
some function fP to x, y. For our purposes, it would be more convenient to think
of fP as a function of the entire wire values w of C, when evaluated on x, y. In a
ZKPCP, few bits in the output of fP should reveal essentially nothing about the
wire values w, i.e., C should withstand “leakage” from fP . In general, we cannot
assume that C has this guarantee, but using an LRCC, C can be compiled into a
circuit Ĉ with this property. Informally, an LRCC is associated with a function
class L (the leakage class) and a (randomized) input encoding scheme E, and
compiles a deterministic circuit C into a deterministic circuit Ĉ, that emulates
C, but operates on an encoded input. It is leakage-resilient in the following sense:
for any input z for C, and any � ∈ L, the output of � on the wire values of Ĉ,
when evaluated on E (z), reveals nothing other than C (z). This is formalized
in the simulation-based paradigm (i.e., the wire-values of Ĉ can be efficiently
simulated given only C (z)).

We establish a connection between ZKPCPs and LRCCs. Assume the existence
of an LRCC associated with a leakage class L, such that any restriction fI

P of fP

to a “small” subset I of its outputs satisfies fI
P ∈ L. Then the oracle answers to

the queries of a query-bounded verifier V correspond to functions in L, since for
every possible set I of oracle queries, the answers are fI

P (w). Therefore, if w is the
wire values of a leakage-resilient circuit then the system is ZK. This gives a general
method of transforming standard PCPs into ZKPCPs: P, V replace Cx = C (x, ·)
(i.e., C with x hard-wired into it) with Ĉx; and P proves that Ĉx is satisfiable by
generating the PCP π from the wire values of Ĉx.

This transformation crucially relies on the fact that Ĉx emulates Cx (e.g., if
Ĉx always outputs 1 then the resultant PCP system is not sound). However, in
current constructions of LRCCs (e.g., [11,18,23]), this holds only if the encoded
input of Ĉx was honestly generated. Moreover, there always exists a choice of an
ill-formed “encoding” that satisfies Ĉx (i.e., causes it to output 1). In our case
the prover generates the encoded input of Ĉx (the verifier does not know this
input), so a malicious prover can pick an ill-formed “encoding” that satisfies Ĉx,
causing the verifier to accept with probability 1. Therefore, soundness requires
that if Cx is not satisfiable, then there exists no satisfying input for Ĉx (either

Making the Best of a Leaky Situation: Zero-Knowledge PCPs 7

well- or ill-formed), a property which we call SAT-respecting. The main tool
we use are SAT-respecting LRCCs, which we construct based on the LRCC of
Faust et al. [11]. To describe our construction, we first need to delve deeper into
their construction.

The LRCC of [11] transforms a circuit C into a circuit Ĉ that operates on
encodings generated by a linear encoding scheme, and emulates the operations of
C on these encodings. Leakage-resilience against functions in a restricted func-
tion class L is obtained by “refreshing” the encoded intermediate values of the
computation after every operation, using encodings of 0. (The LRCCs of [18,23]
operate essentially in the same way.) The input of Ĉ includes sufficiently many
encodings of 0 to be used for the entire computation.2 However, by providing
Ĉ also with 1-encodings (i.e., encodings of 1), one can change the functionality
emulated by Ĉ. (In particular, if the encoding “refreshing” the output gate is a
1-encoding, the output is flipped.) This is not just an artifact of the construc-
tion, but rather is essential for their leakage-resilience argument. Concretely, to
simulate the wire values of Ĉ without knowing its input, the simulator some-
times uses 1-encodings, which rules out the natural solution of verifying that the
encodings used for “refreshing” are 0-encodings. We observe that if C were emu-
lated twice, it would suffice to know that at least one copy used only 0-encodings,
since then Ĉ is satisfiable only if the honestly-evaluated copy is satisfiable (i.e.,
C is satisfiable). At first, this may seem as no help at all, but it turns out that
by emulating C twice, we can construct what we call a relaxed LRCC, which is
similar to an LRCC, except that the simulator is not required to be efficient.
Specifically, assume that before compiling C into Ĉ, we would replace it with
a circuit C ′ that computes C twice, and outputs the AND of both evaluations.
Then Ĉ ′ would be relaxed leakage-resilient, since an unbounded simulator could
simulate the wire values of Ĉ ′ by finding a satisfying input zS for C, and hon-
estly evaluating Ĉ ′ on a pair of encodings of zS . Using a hybrid argument, we
can prove that functions in L cannot distinguish the simulated wire values WS

from the actual wire values WR of Ĉ ′ when evaluated on a satisfying input zR.
Indeed, we can first replace the input in the first copy from zR to zS (using
the leakage-resilience of the LRCC of [11] to claim that functions in L cannot
distinguish this hybrid distribution from WR), then do the same in the second
copy. By replacing the inputs one at a time, we only need to use 1-encodings in
a single copy.3 However, holding two copies of the original circuit still does not
guarantee that the evaluation in at least one of them uses only 0-encodings.

The natural solution would again be to add a sub-circuit verifying that the
encodings used are 0-encodings, but this sub-circuit should hide the identity of
2 Actually, [11] consider a model of continuous leakage, in which the circuit is invoked

multiple times on different inputs, and maintains a secret state. Their construction
uses tamper-proof hardware (called opaque gates) to generate the encodings of 0
used for refreshing. We consider the simpler model of one-time leakage on circuits
that operated on encoded inputs [18,23], and as a result we can incorporate the
necessary encodings (used for refreshing) into the encoded input.

3 This technique is reminiscent of the “2-key trick” of [24], used to convert a CPA-
secure encryption scheme into a CCA-secure one.

8 Y. Ishai et al.

the “correctly evaluated” copy. This is because the hybrid argument described
above first uses 1-encodings in the first copy (and 0-encodings in the second),
and then uses 1-encodings in the second copy (and only 0-encodings in the first).
Therefore, if functions in L could determine which copy uses only 0-encodings,
they could also distinguish between the hybrids. Instead, we describe an “obliv-
ious” checker T0, which at a high-level operates as follows. To check that either
the first or the second copy use only 0-encodings, it checks that for every pair
of encodings, one from the first copy, and one from the second, the product of
the encoded values is 0. To guarantee that leakage on T0 reveals no information
regarding which copy uses only 0-encodings, we use the LRCC of [11] to compile
T0 into a leakage-resilient circuit T̂0. This introduces the additional complication
that now we must also verify the encodings used to “refresh” the computation in
T̂0 (otherwise 1-encodings may be used, potentially changing the functionality of
T̂0 and rendering it useless). However, since T̂0 does not operate directly on the
inputs to Ĉ ′ (it operates only on the encodings used for “refreshing”), we show
that the “refreshing” encodings used in T̂0 can be checked directly (by decod-
ing the encoded values and verifying that they are 0). Additional technicalities
arise since introducing these additional components prevents us from using the
LRCC of [11] as a black box (see Sect. 3 for additional details on the analysis).
Finally, we note that our circuit-compiler is relaxed -leakage-resilient because in
all hybrids, we need the honestly-evaluated copy to be satisfied, so the simula-
tor needs to find a satisfying input for C. This is also the reason that we get
WIPCPs, and not ZKPCPs. If we had a SAT-respecting LRCC, the transfor-
mation described above would give a ZKPCP. However, we show that known
LRCCs withstanding global leakage [11,18,23] cannot be transformed into SAT-
respecting non-relaxed LRCCs (i.e., LRCCs with an efficient simulator), unless
NP ⊆ BPP. Intuitively, this is because these constructions admit a simulator
which is universal in the sense that it simulates the wire values of the compiled
circuit without knowing the leakage function, and the simulated values “fool”
all functions in L. Combining such a SAT-respecting LRCC with PCPs for NP
(through the transformation described above) would give a BPP algorithm of
deciding any NP-language.

Constructing WIPCPs for NP. Recall that our general transformation
described above relied on fP being in the function class L that is associated
with the SAT-respecting relaxed-LRCC. We observe that the PCP system of
Arora and Safra [2] has the property that every “small” subset of proof bits can
be generated using a low-depth circuit of polynomial size over the operations
∧,∨,¬,⊕, with “few” ⊕ gates. We use recent correlation bounds of Lovett and
Srivinasan [22], which roughly state that such circuits have negligible correla-
tion with the boolean function that counts the number of 1’s modulo 3 in its
input, to construct a SAT-respecting circuit compiler that is relaxed leakage-
resilient with respect to this function class. Combining this relaxed LRCC with
our general transformation, we prove the following, where NA-WIPCP denotes
the class of all NP-languages that have a PCP system with a negligible sound-
ness error, polynomial-length proofs, a non-adaptive honest verifier that queries

Making the Best of a Leaky Situation: Zero-Knowledge PCPs 9

poly-logarithmically many proof bits, and guarantee WI against (adaptive) mali-
cious verifiers querying a fixed polynomial number of proof bits.

Theorem 1 (NA-WIPCPs for NP). NP = NA − WIPCP.

Constructing CZKPCPs for NP. Using a general technique of Feige et al.
[12], and assuming the existence of OWFs, we transform our WIPCP into a
CZKPCP in the CRS model, in which the PCP prover and verifier both have
access to a common random string. Concretely, we prove the following result,
where NA-CZKPCP corresponds exactly to the class NA-WIPCP, except that
the WI property is replaced with CZK in the CRS model.

Corollary 1 (NA-CZKPCPs for NP). Assume that OWFs exist. Then
NP = NA − CZKPCP.

In Sect. 4 we describe a simple alternative approach for constructing CZKPCPs
by applying a PCP on top of a standard non-interactive zero-knowledge (NIZK)
proof. This should be contrasted with our main construction that only relies on
a OWF.

2 Preliminaries

Let F be a finite field, and Σ be a finite alphabet (i.e., a set of symbols). In the
following, function composition is denoted as f ◦g, where (f ◦ g) (x) := f (g (x)).
If F,G are families of functions then F ◦ G = {f ◦ g : f ∈ F, g ∈ G}. Vectors
will be denoted by boldface letters (e.g., a). If D is a distribution then X ← D,
or X ∈R D, denotes sampling X according to the distribution D. Given two
distributions X,Y , SD (X,Y) denotes the statistical distance between X and
Y . For a natural n, negl (n) denotes a function that is negligible in n. For a
function family L, we sometimes use the term “leakage family L”, or “leakage
class L”. In the following, n usually denotes the input length, m usually denotes
the output length, d, s denote depth and size, respectively (e.g., of circuits, as
defined below), t is used to count ⊕ gates, and σ is a security parameter. We
assume that standard cryptographic primitives (e.g., OWFs) are secure against
non-uniform adversaries.

Definition 1 (Leakage-indistinguishability of distributions). Let D,D′

be finite sets, L = {� : D → D′} be a family of leakage functions, and ε > 0.
We say that two distributions X,Y over D are (L, ε)-leakage-indistinguishable,
if for any function � ∈ L, SD (� (X) , � (Y)) ≤ ε.

Remark 1. In case L consists of functions over different domains, we say that
X,Y over D are (L, ε)-leakage-indistinguishable if SD (� (X) , � (Y)) ≤ ε for every
function � ∈ L with domain D.

Encoding schemes. An encoding scheme E over alphabet Σ is a pair (Enc,Dec)
of algorithms, where the encoding algorithm Enc is a probabilistic polynomial-
time (PPT) algorithm that given a message x ∈ Σn outputs an encoding x̂ ∈ Σn̂

10 Y. Ishai et al.

for some n̂ = n̂ (n); and the decoding algorithm Dec is a deterministic algorithm,
that given an x̂ of length n̂ in the image of Enc, outputs an x ∈ Σn. Moreover,
Pr [Dec (Enc (x)) = x] = 1 for every x ∈ Σn. We say that E is onto, if Dec is
defined for every x ∈ Σn̂(n).

An encoding scheme E = (Enc,Dec) over F is linear if for every n, n divides
n̂ (n), and there exists a decoding vector rn̂(n) ∈ F

n̂(n)/n such that the follow-
ing holds for every x ∈ F

n. First, every encoding y in the support of Enc (x)
can be partitioned into n equal-length parts y =

(
y1, ...,yn

)
. Second, Dec (y) =(

〈rn̂(n),y1〉, ..., 〈rn̂(n),yn〉
)
(where “〈·, ·〉” denotes inner product). Given an encod-

ing scheme E = (Enc,Dec) over F, and n ∈ N, we say that a vector v ∈ F
n̂(n) is

well-formed if v ∈ Enc (0n).

Parameterized encoding schemes. We consider encoding schemes in which
the encoding and decoding algorithms are given an additional input 1σ, which
is used as a security parameter. Concretely, the encoding length depends also
on σ (and not only on n), i.e., n̂ = n̂ (n, σ), and for every σ the resultant
scheme is an encoding scheme (in particular, for every x ∈ Σn and every
σ ∈ N, Pr [Dec (Enc (x, 1σ) , 1σ) = x] = 1). We call such schemes parameterized.
A parameterized encoding scheme is onto if it is onto for every σ. It is linear if
it is linear for every σ (in particular, there exist decoding vectors {rn̂(n,σ)}). For
n, σ ∈ N, a vector v ∈ F

n̂(n,σ) is well-formed if v ∈ Enc (0n, 1σ). We will only
consider parameterized encoding schemes, and therefore when we say “encoding
scheme” we mean a parameterized encoding scheme.

Definition 2 (Leakage-indistinguishability of functions and encodings).
Let L be a family of leakage functions, and ε > 0. A randomized function f :
Σn → Σm is (L, ε)-leakage-indistinguishable if for every x, y ∈ Σn, the distrib-
utions f (x) , f (y) are (L, ε)-leakage-indistinguishable.

We say that an encoding schemeE is (L, ε)-leakage-indistinguishable if for every
large enough σ ∈ N, Enc (·, 1σ) is (L, ε)-leakage indistinguishable.

Circuits. We consider arithmetic circuits C over the field F and the set X =
{x1, ..., xn} of variables. C is a directed acyclic graph whose vertices are called
gates and whose edges are called wires. The wires of C are labled with functions
over X. Every gate in C of in-degree 0 has out-degree 1 and is either labeled
by a variable from X and is referred to as an input gate; or is labeled by a
constant α ∈ F and is referred to as a constα gate. Following [11], all other
gates are labeled by one of the following functions +,−,×, copy or id, where
+,−,× are the addition, subtraction, and multiplication operations of the field
(i.e., the outcoming wire is labeled with the addition, subtraction, or product
(respectively) of the labels of the incoming wires), and these vertices have fan-in
2 and fan-out 1; copy vertices have fan-in 1 and fan-out 2, where the labels of the
outcoming edges carry the same function as the incoming edge; and id vertices
have fan-in and fan-out 1, and the label of the outcoming edge is the same as
the incoming edge. We write C : Fn → F

m to indicate that C is an arithmetic
circuit over F with n inputs and m outputs. The size of a circuit C, denoted |C|,
is the number of wires in C, together with input and output gates. Shallow (d, s)

Making the Best of a Leaky Situation: Zero-Knowledge PCPs 11

denotes the class of all depth-d, size-s, arithmetic circuits over F. Similarly,
ShallowB (d, s) denotes the class of all depth-d, size-s, boolean circuits with ∧,∨
gates (replacing the +,−,× gates of arithmetic circuits), id, copy, const0, and
const1 gates (with fan-in and fan-out as specified above), and ¬ gates with fan-
in and fan-out 1. Somewhat abusing notation, we use the same notations to
denote the families of functions computable by circuits in the respective class of
circuits. AC0 denotes all constant-depth and polynomial-sized boolean circuits
over unbounded fan-in and fan out ∧,∨,¬, const0 and const1 gates.

Definition 3. For F = F2, a circuit C : Fn → F over F2 is satisfiable if there
exists an x ∈ F

n such that C (x) = 1. For F = F2, C is satisfiable if there exists
an x ∈ F

n such that C (x) = 0.

2.1 Circuit Compilers

We define the notion of a circuit compiler. Informally, it consists of an encoding
scheme and a compiler algorithm, that compiles a given circuit into a circuit
operating on encodings, and emulating the original circuit. Formally,

Definition 4 (Circuit compiler over F). A circuit compiler over F is a pair
(Comp,E) of algorithms with the following syntax.

– E = (Enc,Dec) is an encoding scheme, where Enc is a PPT encoding algorithm
that given a vector x ∈ F

n, and 1σ, outputs a vector x̂. We assume that x̂ ∈ F
n̂

for some n̂ = n̂ (n, σ).
– Comp is a polynomial-time algorithm that given an arithmetic circuit C over

F outputs an arithmetic circuit Ĉ.

We require that (Comp,E) satisfy the following correctness requirement. For
any arithmetic circuit C, and any input x for C, we have Pr

[
Ĉ (x̂) = C (x)

]
= 1,

where x̂ is the output of Enc
(
x, 1|C|).

A boolean circuit compiler is a circuit compiler over F2.

We consider circuit compilers that are also “sound”, meaning that satisfying
(possibly ill formed) inputs for the compiled circuit exist only if the original
circuit is satisfiable.

Definition 5 (SAT-respecting circuit compiler). A circuit compiler
(Comp,E) is SAT-respecting if it satisfies the following soundness requirement
for every circuit C : Fn → F. If Ĉ = Comp(C) is satisfiable then C is satisfiable,
i.e., if Ĉ (x̂∗) = 0 for some x̂∗ ∈ F

n̂, then there exists an x ∈ F
n such that

C (x) = 0. (For F = F2, we require that if Ĉ outputs 1 on some input, then so
does C.)

12 Y. Ishai et al.

2.2 Leakage-Resilient Circuit Compilers (LRCCs)

We consider circuit compilers whose outputs are leakage resilient for a class L
of functions, in the following sense. For every “not too large” circuit C, and
every input x for C, the wire values of the compiled circuit Ĉ, when evaluated
on a random encoding x̂ of x, can be simulated given only the output of C; and
functions in L cannot distinguish between the actual and simulated wire values.

Notation 2. For a Circuit C, a leakage function � : F|C| → F
m for some natural

m, and an input x for C, [C, x] denotes the wire values of C when evaluated on
x, and � [C, x] denotes the output of � on [C, x].

Definition 6 (Relaxed LRCC). Let F be a finite field. For a function class
L, ε (n) : N → R

+, and a size function S (n) : N → N, we say that (Comp,E)
is (L, ε (n) ,S (n))-relaxed leakage-resilient if there exists an algorithm Sim such
that the following holds. For all sufficiently large n’s, every arithmetic circuit
C over F of input length n and size at most S (n), every � ∈ L of input length∣
∣
∣Ĉ

∣
∣
∣, and every x ∈ F

n, we have SD
(
� [Sim (C,C (x))] , �

[
Ĉ, x̂

])
≤ ε (|x|), where

x̂ ← Enc
(
x, 1|C|).

Definition 6 is relaxed in the sense that (unlike [11,18,23]) Sim is not required
to be efficient.

The error in Definitions 5 and 6 is defined with relation to the input length n.
Both definitions can be naturally extended such that the compiler is also given
a security parameter κ, and the error depends on κ (and possibly also n).

3 SAT-Respecting Relaxed LRCC

In this section we construct a SAT-respecting relaxed LRCC. We first describe a
relaxed LRCC over any finite field F = F2, then use its instantiation over F3 to
construct a boolean relaxed LRCC (which we later use to construct WIPCPs and
CZKPCPs). Our starting point is the circuit-compiler of Faust et al. [11], which
we denote by

(
CompFRRTV,EFRRTV

)
. They present a general circuit-compiler

that guarantees correctness, and a stronger notion of leakage-resilience (infor-
mally, that the wire values of the compiled circuit can be efficiently simulated).
However, the correctness of their construction relies on the assumption that the
inputs to the compiled circuit are honestly encoded. Therefore, their construction
is not SAT-respecting, since by using ill-formed encoded inputs one can cause the
compiled circuit to output arbitrary values, even if other than that the compiler
was honestly applied to the original circuit. We describe a method of generalizing
their construction such that the circuit-compiler is also SAT-respecting. We first
give a high-level overview of the compiler of [11].

Gadgets. On input a circuit C, our compiler, and that of CompFRRTV, replace
every wire of C with a bundle of wires, and every gate in C with a gadget.
More specifically, a bundle is a string of field elements, encoding a field element

Making the Best of a Leaky Situation: Zero-Knowledge PCPs 13

according to some encoding scheme E; and a gadget is a circuit which operates
on bundles and emulates the operation of the corresponding gate in C. A gad-
get has both standard inputs, that represent the wires in the original circuit,
and masking inputs, that are used to achieve privacy. More formally, a gadget
emulates a specific boolean or arithmetic operation on the standard inputs, and
outputs a bundle encoding the correct output. Every gadget G is associated with
a set MG of “well-formed” masking input bundles (e.g., in the circuit compiler
of [11], MG consists of sets of 0-encodings). For every standard input x, on input
a bundle x encoding x, and any masking input bundles m ∈ MG, the output of
the gadget G should be consistent with the operation on x. For example, if G
computes the operation ×, then for every standard input x = (x1, x2), for every
bundle encoding x = (x1,x2) of x according to E, and for every masking input
bundles m ∈ MG, G (x,m) is a bundle encoding x1 × x2 according to E. Since
all the encoding schemes that we consider are onto, we may think of the mask-
ing input bundles m as encoding some set mask of values, in which case we say
that G takes |mask| masking inputs. The privacy of the internal computations in
the gadget will be achieved when the masking input bundles of the gadget are
uniformly distributed over MG, regardless of the actual values encoded by the
masking input bundles.

Gadget-based circuit-compilers. Ĉ = CompFRRTV (C) is a circuit in which
every gate is replaced with the corresponding gadget, and output gates are fol-
lowed by decoding sub-circuits (computing the decoding function of E). Recall
that the gadgets also have masking inputs. These are provided as part of the
encoded input of Ĉ, in the following way. EFRRTV uses an “inner” encoding
scheme Ein =

(
Encin,Decin

)
, where EncFRRTV uses Encin to encode the inputs

of C, concatenated with 0κ for a “sufficiently large” κ (these 0-encodings will
be the masking inputs to the gadgets); and DecFRRTV uses Decin to decode its
input, and discards the last κ symbols.

3.1 The Construction

Let C : Fn → F be the circuit to be compiled. In the following, let r = r (σ)
denote the number of masking inputs used in a circuit compiled according to
the compiler of [11]. Recall that our compiler, given a circuit C, generates two
copies C1, C2 of C (that operate on two copies of the inputs); compiles C1, C2

into circuits Ĉ1, Ĉ2 using the circuit-compiler of [11]; generates the circuit Ĉ ′
that outputs the AND of Ĉ1, Ĉ2; generates a circuit T0 verifying that at least
one of the copies Ĉ1, Ĉ2 uses well-formed masking inputs (i.e., its masking inputs
are well-formed vectors); compiles T0 into T̂0 using the circuit-compiler of [11];
and finally verifies “in the clear” that T̂0 uses well-formed masking inputs. We
now describe these ingredients in more detail.

Our first ingredient checks the validity of the masking inputs used in the
compiled circuit Ĉ ′. If m1,m2 are masking inputs used in the first and second
copies Ĉ1, Ĉ2 in Ĉ ′, respectively (i.e., these copies are given encodings of m1,m2),
then we compute vij = m1

i × m2
j for every i, j ∈ [r], and check that all the vij ’s

14 Y. Ishai et al.

are zero. To make this check easier, we will use the following “binarization”
sub-circuit, which outputs 1 if its input is 0, and outputs 0 on all other values.

Construction 3 (“Binarization” sub-circuit T). T : F → F is defined as
T (z) = −

∏
0 �=a∈F

(z − a), computed using O (|F|) × and constant gates arranged
in O (log |F|) layers.

Observation 4. T (0) = 1, and for every 0 = z ∈ F, T (z) = 0.

The sub-circuit T0 described next checks the masking inputs m1,m2 used in
the copies of Ĉ, and outputs 1 if and only if one of m1,m2 is the all-zero string.
It computes all products of the form m1

i ×m2
j , then applies T to every product,

and computes the products of all these outputs.

Construction 5 (Oblivious mask-checking sub-circuit T0). T0 : Fr×F
r →

F is defined as follows. T0 (y, z) =
∏

i,j∈[r] T (yi × zj), computed using a multi-
plication tree of size O (r) and depth O (log r) (on top of the multiplication trees
used to compute T).

Observation 6. Since the outputs of T are in {0, 1}, T0 (y, z) = 1 if and only
if for every i, j ∈ [r], T (yi, zj) = 1 (which by Observation 4 happens if and only
if yi × zj = 0), otherwise it outputs 0.

Our final ingredient is a sub-circuit TV checking the masking inputs used in
the compiled sub-circuit T̂0. At a high level, TV decodes every masking input;
uses T to map the decoded values into {0, 1} such that only 0 is mapped to
1; and multiplies all these values, to guarantee that all the masking inputs are
well-formed. In the following, r0 = r0 (σ) denotes the number of masking inputs
used in T̂0.

Construction 7 (Non-oblivious mask-checking sub-circuit TV). Let n, σ,

κ ∈ N, n̂ = n̂ (n + κ, σ), and
{
dn̂

}
be the decoding vectors of Ein. We define

the decoding sub-circuit DV : Fn̂ → F corresponding to dn̂ as follows: DV (v) =
〈dn̂, v〉, where 〈·, ·〉 denotes inner-product. DV is computed using any correct
decoding circuit with O (n̂) gates arranged in O (log n̂) layers.

We define TV :
(
F

n̂
)r0 → F as follows: for R = (r1, ..., rr0) where ri ∈ F

n̂ for
every 1 ≤ i ≤ r0, TV (R) =

∏
i∈[r0]

T (DV (ri)). TV is computed using O (r0) ×
gates, arranged in a tree of depth O (log r0) (on top of the sub-circuits T ◦ DV).

Observation 8. Let R = (r1, ..., rr0) ∈
(
F

n̂
)r0 , then for every i ∈ [r0],

DV (ri) = vi, where vi is the value that ri encodes. Since the outputs of T
are in {0, 1}, T (DV (ri)) = 1 if and only if vi = 0, so TV = 1 if and only if all
ri’s are well-formed, otherwise it outputs 0.

Our circuit-compiler (Construction 9) uses the ingredients described above.
Comp first compiles 2 copies C1, C2 of C, and T0, into Ĉ1, Ĉ2, T̂0 (respectively),
using the compiler of [11]. Then, it generates a flag bit indicating whether Ĉ1, Ĉ2

Making the Best of a Leaky Situation: Zero-Knowledge PCPs 15

have the same output, and the masking inputs used in Ĉ1, Ĉ2, T̂0 are well-formed.
If so, the output is that of Ĉ1, otherwise it is 1. (Recall that an arithmetic circuit
is satisfied iff its output is 0.) The encodings scheme generates encoded inputs for
both copies Ĉ1, Ĉ2, as well as sufficient masking inputs to be used in Ĉ1, Ĉ2, T̂0.

Construction 9 ((L, ε (n) ,S (n))-LRCC over F). The circuit compiler
(Comp,E = (Enc,Dec)) is defined as follows. Let r = r (σ) , r0 = r0 (σ) : N → N

be parameters whose value will be set later.
Let Ein =

(
Encin,Decin

)
be a linear encoding scheme over F, with encod-

ings of length n̂in = n̂in (n, σ), and decoding vectors {dn̂in}. Then Enc (x, 1σ) =
(x̂1, x̂2), where x̂i ← Encin ((x, 0r+r0) , 1σ); and Dec ((x̂1, x̂2) , 1σ) computes
Decin (x̂1, 1σ), and discards the last r + r0 symbols. We use n̂ = n̂ (n, σ) to
denote the length of encodings output by Enc, and n̂1 = n̂1 (σ) := n̂ (1, σ).
(Notice that n̂ (n, σ) = 2n̂in (n + r + r0, σ).) For (x̂1, x̂2) ← Enc (x, 1σ), we
denote x̂i =

(
x̂in

i ,Ri,R
0
i

)
, where x̂in

i is the encoding of x, and Ri,R
0
i are encod-

ings of 0r, 0r0 , respectively. (R0
2 is not used in the construction, but it is part of

x̂2 because the same internal encoding scheme Encin is used to generate x̂1, x̂2.)
Let

(
CompFRRTV,EFRRTV

)
be the circuit compiler of [11]. Comp on input a

circuit C : Fn → F, outputs the circuit Ĉ : Fn̂(n,|C|) → F defined as follows.

– Let C1, C2 be two copies of C, Ĉi = CompFRRTV (Ci) for i = 1, 2, and T̂0 =
CompFRRTV (T0).

– Let f
((

x̂in
1 ,R1,R

0
1

)
,
(
x̂in
2 ,R2,R

0
2

))
:= T

(
Ĉ1

(
x̂in
1 ,R1

)
− Ĉ2

(
x̂in
2 ,R2

))
×

T̂0

(
(R1,R2) ,R0

1

)
× TV

(
R0

1

)
. (f = 1 if Ĉ1, Ĉ2 have the same output, and

in addition the masking inputs used in T̂0, and at least one of Ĉ1, Ĉ2, are
well-formed. Otherwise, f = 0.) Then:

Ĉ
((

x̂in
1 ,R1,R

0
1

)
,
(
x̂in
2 ,R2,R

0
2

))
=

(
1 − f

((
x̂in
1 ,R1,R

0
1

)
,
(
x̂in
2 ,R2,R

0
2

)))

+ f
((

x̂in
1 ,R1,R

0
1

)
,
(
x̂in
2 ,R2,R

0
2

))
· Ĉ1

(
x̂in
1 ,R1,R

0
1

)

(Notice that the output is Ĉ1

(
x̂in
1 ,R1,R

0
1

)
if f = 1, otherwise it is 1.)

Let rFRRTV denote the maximal number of masking inputs used in a gadget used
by the compiler of [11], and S0 (r) denote the size of T0. Then r (σ) = σ · rFRRTV

and r0 (σ) = σ · S0
(
rFRRTV

)
.

Next, we briefly analyze the properties of the construction. (The full analysis
appears in the full version.)

SAT-respecting. If the masking inputs of T̂0 are ill-formed, then TV resets the
flag, so the output is 1 (i.e., Ĉ is not satisfied). Conditioned on T̂0 having well-
formed masking inputs, the correctness of the compiler of [11] (applied to T̂0)),
guarantees that the flag is reset if the masking inputs of both Ĉ1, Ĉ2 are ill-formed.
Finally, if at least one of Ĉ1, Ĉ2 has well-formed masking inputs, and Ĉ is satisfied

16 Y. Ishai et al.

(in particular, the flag is not reset), then there exists an x ∈ F
n that satisfies the

correctly evaluated copy, and therefore also satisfies C. We note that the encoding
scheme should be onto, otherwise computations in compiled circuits may not cor-
respond to computations in the original circuits (since the “encoded” input may
not correspond to a valid input for the original circuit).

Relaxed leakage-resilience. At a high level, on input C : Fn → F, and C (x)
for x ∈ F

n, Sim finds a y ∈ F
n such that C (y) = C (x) (this is the reason that

Sim is unbounded); generates Ĉ = Comp (C) and ŷ ← Enc
(
y, 1|C|); honestly eval-

uates Ĉ on ŷ; and outputs the wire values of Ĉ. If E is leakage-indistinguishable
for a leakage class which is “somewhat stronger” than L, then for every � ∈ L,
SD

(
�
[
Ĉ, x̂

]
, �

[
Ĉ, ŷ

])
≤ ε (n), where x̂ ← Enc

(
x, 1|C|). Informally, this follows

from a hybrid argument, where we first replace the input of Ĉ1 from x̂ to ŷ, and
then do the same for Ĉ2. (This is also the reason that we do not explicitly verify
that Ĉ1, Ĉ2 are evaluated on encodings of the same input.)

To show that each adjacent pair of hybrids is leakage-indistinguishable, we
first use an argument similar to that of [11], where we first replace the bundles
of Ĉ1 or Ĉ2 (depending on the pair of hybrids in question) that are external to
the gadgets (i.e., bundles that correspond to wires of the original circuit C) with
random encoding of the “correct” values; and then replacing the bundles internal
to the gadgets of Ĉ1 (or Ĉ2) with simulated values. However, our compiled circuit
Ĉ consists also of T̂0, TV , so the analysis in our case is more complex, and in
particular we cannot use the leakage-resilience analysis of [11] as a black box. To
explain the difficulty in generating these wires values, we need to take a closer
look at their leakage-resilience analysis.

Recall that the leakage-indistinguishability proof for every pair of adjacent
hybrids contains in itself two series of hybrid arguments, one replacing external
bundles, and the other replacing internal bundles. In the first case, leakage-
indistinguishability is reduced to that of the underlying encoding scheme Ein,
whereas in the second it is reduced to the leakage-indistinguishability of the
actual and simulated wire values of a single gadget. Specifically, the leakage
function �in in the reduction is given either an encoding of a single field element,
or the wire values of a single gadget; uses its input to generate all the wire
values of the compiled circuit ; and then evaluates � on these wire values. Thus,
if originally we could withstand leakage from some function class Lin, and the
additional wires can be generated by a function class LR, then after the reduction
we can withstand leakage from any function class L such that L ◦ LR ⊆ Lin.
In particular, if Lin consists of functions computable by low-depth circuits, and
computing the internal wires of T̂0, TV require deep circuits (consequently, LR

necessarily contains functions whose computation requires deep circuits), then
we have no leakage-resilience. To overcome this, we show how to simulate these
additional wires using shallow circuits. This is possible because (due to the way
in which the hybrids are defined) the masking inputs in at least one copy are well-
formed. Specifically, the structure of T̂0, TV guarantees that conditioned on the
masking inputs of Ĉ2 being well-formed, these wire values can be computed by

Making the Best of a Leaky Situation: Zero-Knowledge PCPs 17

shallow circuits. When the masking inputs of Ĉ2 are ill-formed, we are guaranteed
that the masking inputs of Ĉ1 are well-formed. Conditioned on this event, we
show an alternative method of computing the internal wires of T̂0, TV , which can
be done by shallow circuits. Thus, we get the following result.

Proposition 1 (SAT-respecting relaxed LRCC over F). Let L,LE be fam-
ilies of functions, S (n) : N → N be a size function, and ε (n) : N → R

+.
Let Ein =

(
Encin,Decin

)
be a linear, onto, (LE, ε (n))-leakage-indistinguishable

encoding scheme with parameters n = 1, σ and n̂ = n̂ (σ), such that
LE = L ◦ Shallow

(
7, O

(
n̂4 (S (n)) · S (n)

))
. Then there exists a SAT-respecting,

(L, 8ε (n) · S (n) ,S (n))-relaxed-LRCC over F. Moreover, For every C : Fn → F,
the compiled circuit Ĉ has size

∣
∣
∣Ĉ

∣
∣
∣ = O

(
|F| · n̂5 (S (n)) · |C|2

)
.

3.2 A SAT-Respecting Relaxed LRCC over F2

In this sectionwedescribe a relaxedLRCCoverF2.Our starting point is the circuit-
compiler of Construction 9 over the field F, which we apply to an “arithmetic ver-
sion” of the boolean circuit. At a high-level, we construct our circuit compiler
over F2 as follows: we represent field elements of F using bit-strings; and opera-
tions +,−,×, id, copy, constα, α ∈ F as functions over �log |F|�-bit strings. (For
now, we assume that there exist gates operating on �log |F|�-bit strings and com-
puting these operations.) We “translate” boolean circuits into arithmetic circuits
with such operations, and apply the circuit-compiler of Construction 9 (where the
field operations are implemented using the boolean operations described in Sect. 2)
to the “translated” circuit. (We note that leakage-resilience deteriorates when an
arithmetic compiler is transformed to a boolean one, but only by a constant factor
in the depth and size of circuits computing the leakage functions.) Concretely, we
set F = F3.

From boolean circuits to arithmetic circuits. Our boolean circuit-
compiler operates on boolean circuits, but employs an arithmetic circuit-compiler
operating on arithmetic circuits over F. Therefore, we first transform the boolean
circuit into an equivalent arithmetic circuit in the natural manner (i.e., repre-
senting every bit operation as a polynomial over the arithmetic field).

The field elements of F, and the arithmetic operations over F that are used
by the arithmetic relaxed LRCC (Construction 9) will be represented using bit
strings and boolean operations, respectively.

Representing field elements as bit strings. We can use any 1:1 trans-
formation Eb : F3 → {0, 1}2, such that every bit string is associated with a
field element. This is required for the SAT-respecting property, to guarantee
that whatever values are carried on the wires of the boolean circuit, they can
be “translated” into wires of the arithmetic circuit over F3, and is achieved by
defining a “reverse” mapping E−1

b .

Implementing field operations. The compiled arithmetic circuit uses the
field operations +,−,×, and also copy, id and constα, α ∈ F3. These operations

18 Y. Ishai et al.

are represented using bit operations over bit strings generated by Eb. Specifically,
we think of every field operation as a boolean function with 4 inputs (a pair of
2-bit strings representing the pair of input field elements) and 2 outputs (a 2-bit
string representing the output field element). We stress that though an honest
construction over bits uses only 3 of the 4 possible 2-bit strings encoding field
elements (i.e., only the strings in the image of Eb as defined, for example, in
Construction 11), the function representing a field operation in F3 should be
defined to output the correct values on all 2-bit strings. The truth table of each
output bit has constant size, and can be represented by a constant-size, depth-3
boolean circuit. copy, id and constα gates are handled similarly. Therefore, the
size (depth) of each gadget (and consequently, of the entire compiled circuit)
increases by a constant multiplicative factor (specifically, by a factor of 3).

Notice that representing boolean circuits using arithmetic circuits introduces
the following obstacle. For a satisfiable circuit Ĉ, we are only guaranteed the
existence of an x ∈ F

n satisfying the original arithmetic circuit, whereas for
boolean circuits we require that x ∈ {0, 1}n. Therefore, we need an additional
“input checker” sub-circuit that will guarantee that the inputs to the compiled
circuit encode binary strings.

Definition 7 (Input-checker T in). T in : F → F is defined as follows:
T in (z) = T

(
z2 − z

)
.

Observation 10. For every z ∈ F3, T in (z) ∈ {0, 1}, and T in (z) = 1 if and
only if z ∈ {0, 1}.

Construction 11 (SAT-respecting relaxed LRCC). Let Eb : F3 → {0, 1}2
such that Eb (0) = 00, Eb (1) = 01, and Eb (2) = 11, and let E−1

b : {0, 1}2 → F3

such that E−1
b (00) = 0, E−1

b (01) = E−1
b (10) = 1, and E−1

b (11) = 2. Let T ′ be
an algorithm transforming boolean circuits into arithmetic circuits over F3, and
(Comp,E = (Enc,Dec)) be the circuit compiler over F3 of Construction 9. The
circuit compiler over F2 is

(
Compb,Eb =

(
Encb,Decb

))
, where:

– Encb = Eb ◦ Enc and Decb = Dec ◦ E−1
b

– Compb on input C : {0, 1}n → {0, 1}:

• Uses T ′ to transform C into an equivalent arithmetic circuit C ′ : Fn
3 → F3.

• Constructs the circuit C ′′ : F
n
3 → F3 such that C ′′ (x1, ..., xn) = 1 −(

C ′ (x1, ..., xn) ×
(
×n

i=1T in (xi)
))

. (Notice that C ′′ (x1, ..., xn) outputs 0 if
and only if C ′ (x1, ..., xn) = 1 and x1, ..., xn ∈ {0, 1}.)

• Computes Ĉ ′′ = Comp (C ′′).
• Replaces every gate in Ĉ ′′ with a constant-size, depth-3 boolean circuit

computing the truth table of the gate operation. Compb can use any correct
circuit, as long as these circuits are used consistently (i.e., for every gate
the same circuit is used to replace all appearances of the gate in Ĉ ′′).

Making the Best of a Leaky Situation: Zero-Knowledge PCPs 19

• Denote the output of Ĉ ′′ by e ∈ F3, represented by the string (e1, e2) ∈
{0, 1}2. Then Compb outputs the circuit Ĉb obtained from Ĉ ′′ by applying
a ∨ gate, followed by a ¬ gate, to the output of Ĉ ′′. (This reduces the
output string of Ĉ ′′ to a single bit, and flips the output of Ĉ ′′, which is
required due to the negation added in step 2.)

We use Ĉ1,b, Ĉ2,b, T̂0,b, TV,b to denote the components of Ĉb corresponding to
Ĉ1, Ĉ2, T̂0, TV , respectively.

Observation 12. Ĉb (x̂) ∈ {0, 1} for every x̂. Moreover, Ĉb (x̂) = 1 if and only
if Ĉ ′′ (x̂) = 0. If Comp is SAT-respecting, then this guarantees that C ′′ (x) = 0
for some x ∈ F3. The definition of C ′′, and the correctness of T ′, guarantees
that x ∈ {0, 1}n, and that C ′ (x) = C (x) = 1.

In the full version, we prove that if Construction 9 is a SAT-respecting relaxed-
LRCC over F3, then so is Construction 11 (over F2), against a somewhat-weaker
leakage family. The leakage family is weaker because relaxed leakage-resilience is
proved by reduction to the relaxed leakage-resilience of Construction 9 (the leakage
function in the reduction, given the wire values of the arithmetic compiled circuit,
generate the internal wires emulating these operations using boolean operations).
Formally, we obtained the following.

Proposition 2. Let L,LE be families of functions, S (n) : N → N be a size func-
tion, and ε (n) : N → R

+. Let Ein be a linear, onto encoding scheme over F3 with
parameters n = 1, σ and n̂ = n̂ (σ), that is (LE, ε (n))-leakage-indistinguishable,
and LE = L ◦ ShallowB

(
33, O

(
n̂5 (S (n)) · S (n)2

))
. Then there exists a con-

stant c > 0, and a SAT-respecting, (L, c · ε (n) · S (n) ,S (n))-relaxed-LRCC over
F2. Moreover,

∣
∣
∣Ĉb

∣
∣
∣ = O

(
n̂5 (S (n)) |C|2

)
.

Taking Ein to be the parity encoding in the previous proposition, and using a
result of H̊astad [16] that AC0 circuits (i.e., constant-depth and polynomial-sized
boolean circuits with unbounded fan-in ∧,∨ and ¬ gates) cannot distinguish
parity encodings of 0 and 1, we obtain an LRCC against AC0-leakage. (We note
that the compiler can also be made to withstand leakage that outputs more than
one bit, using a result of Dubrov and Ishai [9]. The details of this construction,
and the proof of Corollary 2, are deferred to the full version.)

Corollary 2. There exists a SAT-respecting
(
AC0, negl (n) , poly (n)

)
-relaxed-

LRCC over F2.

3.3 Withstanding Leakage from AC0 Circuits with ⊕ Gates

Recall that AC0 denotes the class of constant-depth, polynomial-sized boolean
circuits over unbounded fan-in and fan-out ∧,∨,¬ gates. In this section we
describe a SAT-respecting circuit-compiler withstanding leakage computed by
AC0 circuits, augmented with a sublinear number of ⊕ gates of unbounded fan-
in and fan-out. Concretely, we use Construction 11, where the underlying arith-
metic LRCC over F3 is instantiated with the encoding scheme Ein that maps an

20 Y. Ishai et al.

element γ ∈ F3 into a vector v ∈ {0, 1}k (for some natural k), which is random
subject to the constraint that the number of 1’s in v is congruent to γ modulo 3.
We show, by reduction to correlation bounds of [22], that AC0 circuits, aug-
mented with a sublinear number of ⊕ gates, have a negligible advantage in distin-
guishing between random encodings of 0 and 1 according to Ein. (This reduction
is non-trivial and appears in AppendixA.) Using the leakage-indistinguishability
of Ein, we prove the existence of a circuit compiler withstanding leakage from
AC0 circuits that have several output bits and are augmented with a sublinear
number of ⊕ gates. (The proof appears in the full version.)

Theorem 13. For input length parameter n, leakage length bound n̂ = n̂ (n),
size bound s = s (n), output length bound m = m (n), parity gate bound
t = t (n), and depth bound d, let Lm

n̂,d,s,⊕t =
⋃

n∈N
Lm(n)

n̂(n),d,s(n),⊕t(n), where
Lm0

n̂0,d0,s0,⊕t0
denotes the class of boolean circuits of input length n̂0 over ¬

gates and unbounded fan-in ∧,∨,⊕ gates, whose depth, size, output length,
and number of parity gates are bounded by d0, s0,m0, t0, respectively. Then
for every positive constants d, c, polynomials m, t, and polynomial size bound
s′ = s′ (n), there exists a polynomial l (n), such that there exists a SAT-
respecting

(
Lm

l,d,lc,⊕t, 2
−nc

, s′ (n)
)
-relaxed LRCC over F2, which on input a cir-

cuit C : {0, 1}n → {0, 1} of size |C| ≤ s′ (n) outputs a circuit Ĉ of size
|Ĉ| ≤ l (n).

4 WIPCPs and CZKPCPs

Given a relation R = R (x,w), we let LR := {x : ∃w, (x,w) ∈ R}. A probabilistic
proof system (P, V) for an NP-relation R = R (x,w) consists of a PPT prover P
that on input (x,w) outputs a proof π (in standard probabilistically checkable
proofs the prover is deterministic, but our constructions will crucially rely on
the prover being probabilistic), and a probabilistic verifier V that given input x
and oracle access to a proof π outputs either accept or reject. We say that V is
q-query-bounded if V makes at most q queries to π.

WIPCPs. A probabilistic proof system is a WIPCP for an NP-relation R =
R (x,w) if it satisfies the following. First, when given x ∈ LR, and oracle access
to an honestly generated proof, the verifier accepts with probability 1 (this is
called completeness). Second, given x /∈ LR, the verifier rejects except with
some probability εS , regardless of its “proof” oracle (this is called εS-soundness).
Thirdly, for every (possibly malicious, possibly adaptive) q∗-query bounded ver-
ifier V ∗, every x ∈ LR, and every pair w1, w2 of witnesses for x, the view of V ∗

when verifying an honestly generated proof for (x,w1) is εZK-statistically close
to its view when verifying an honestly generated proof for (x,w2) (this is called
(εZK, q∗)-WI). A WIPCP is a non-adaptive WIPCP (NA-WIPCP) system for
a relation R = R (x,w), if the honest verifier is non-adaptive. In the follow-
ing, we denote by NA − WIPCP [r, q, q∗, εS , εZK, �] the class of NP-languages that
admit an NP-relation R with a non-adaptive (εZK, q∗)-WIPCP, in which the

Making the Best of a Leaky Situation: Zero-Knowledge PCPs 21

prover outputs proofs of length �, the honest verifier tosses O (r) coins, queries
O (q) proof bits, and rejects false claims except with probability at most εS .
We use PCP [r, q, ε, �] to denote the class of NP-languages admitting a stan-
dard (i.e., non-WI) PCP system with the same properties, and write R ∈
PCP [r, q, ε, �] to denote that LR ∈ PCP [r, q, ε, �]. We denote NA − WIPCP :=
NA − WIPCP[poly log n, poly log n, poly (n) , negl (n) , negl (n) , poly (n)].

We describe a transformation from PCPs to NA-WIPCPs, which can be
applied to any PCP system in which the proof is obtained from the witness
through an “easy” function (we formalize this notion below). Recall that a stan-
dard PCP π can be generated from the wire values [CR, (x,w)] of the verification
circuit CR of the relation, on input x and witness w. If the function f taking
[CR, (x,w)] to π is in a function class L, then the system can be made WI as fol-
lows. The prover and verifier both compile CR (x, ·) (i.e., CR with x hard-wired
into it) into a SAT-respecting circuit ĈR that is relaxed leakage-resilient against
L. The prover then samples a random encoding ŵ of w, and generates the PCP
π = f

[
ĈR, ŵ

]
. The verifier probabilistically verifies that ĈR is satisfiable by

reading few symbols of π, which (if the verifier is non-adaptive) correspond to
applying a leakage function from L to the wire values of ĈR. This gives the fol-
lowing result. (The detailed construction, and the proof of Proposition 3, appear
in the full version.)

Proposition 3. Let n be a length parameter, εS , εZK ∈ [0, 1], S = S (n) be a size
function, q∗ = q∗ (n) be a query function, and g(·) be a polynomial. Let L be a
family of leakage functions, such that:

– there is a SAT-respecting (L, εZK,S)-relaxed LRCC (Comp,E) satisfying
|Comp(C)| ≤ g (|C|);

– there is a PCP [r (n) , q (n) , εS , � (n)] system for 3SAT, such that for every
(ϕ,W) ∈ 3SAT, every subset Q of q∗ bits of an honestly-generated proof π =
π (ϕ,W) is computable from W by a function fϕ,Q ∈ L.

Then for every NP-relation R = R (x,w) with verification circuit CR of size
at most S, we have that R ∈ NA − WIPCP [r (t) , q (t) , q∗, εS , 2εZK, � (t)], where
t = O

(
g

(∣∣CR∣
∣)), and WI holds against non-adaptive verifiers.

In the full version we use techniques of [7] to generalize the WI property
of Proposition 3 to adaptive verifiers, while increasing the statistical distance of
the WI by a multiplicative factor of roughly �q∗

(all other parameters remain
unchanged). Then, we prove that the PCP system of [2] for 3SAT has the prop-
erty that every proof bit is generated from the NP-witness by an AC0 circuit,
augmented with “few” ⊕ gates. Theorem 1 follows by combining these two results
with Theorem 13.

CZKPCPs in the CRS model. A probabilistic proof system is a CZKPCP in
the CRS model for an NP-relation R = R (x,w) if the prover and verifier have
access to a common random string s; correctness holds for any s; soundness
holds for a uniformly random s; and there exists a PPT simulator Sim such that

22 Y. Ishai et al.

for every q∗-query bounded verifier V ∗, and every x ∈ LR, Sim (x) is computa-
tionally indistinguishable from the joint distribution of a uniformly random s,
and the view of V ∗ given s and oracle access to an honestly generated proof for
x (this is called computational ZK (CZK)). Similar to NA-WIPCPs, a CZKPCP
system is non-adaptive (NA-CZKPCP) if the honest verifier is non-adaptive.
Applying the techniques of [12] to Proposition 3, we obtain a general transfor-
mation from NA-WIPCPs to NA-CZKPCPs, and Corollary 1 follows by using
the NA-WIPCP of Theorem 1 (see the full version for details).

We note that a simple alternative construction of CZKPCP for NP can be
obtained by applying a standard PCP on top of a standard NIZK proof [6,13].
Concretely, the CZKPCP prover generates a PCP for the NP-claim “there exists
a NIZK for the claim x ∈ LR, relative to the CRS s, that would cause the NIZK-
verifier to accept”, where the witness is the NIZK proof string. Since the NIZK
itself is CZK, the resultant PCP is also CZK. However, NIZK proofs for NP are
not known to follow from the existence of one-way functions, and can currently
be based only on much stronger assumptions such as the existence of trapdoor
permutations [12].

The (im)possibility of SAT-respecting non-relaxed LRCCs. Known
constructions of LRCCs withstanding global leakage [11,18,23] guarantee a uni-
versal simulation property, in the sense that the simulator generates the sim-
ulated wire values without knowing the identity of the leakage function; and
these values are guaranteed to be indistinguishable from the actual wire values,
for every leakage function in the leakage class. Consequently, our construction
(which is based on the LRCC of [11]), also guarantees this universal simulation
property. Our general transformation from SAT-respecting relaxed LRCCs to
WIPCPs can also be applied to a SAT-respecting non-relaxed LRCC, in which
case we would get ZKPCP for all NP, with a universal PPT simulator that
generates a simulated proof without seeing the queries of the verifier. This simu-
lator can be used to decide the NP-language, so the existence of SAT-respecting
LRCCs with a universal simulator would imply that NP ⊆ BPP. (See the full ver-
sion for additional details.) We note that our transformation of Sect. 4 does not
require the LRCC simulator to be universal. However, the construction of (SAT-
respecting) non-relaxed LRCCs with a non-universal simulator would require
developing new techniques for constructing LRCCs.

4.1 Distributed ZK and WI Proofs

We use our WIPCPs and CZKPCPs to construct 3-round distributed WI and
CZK proofs (respectively) for NP in a distributed setting, in which the PPT
prover P and verifier V are aided by m polynomial-time servers S1, ..., Sm. We
call such systems m-distributed proof systems. We note that P has input (x,w), V
has input x, and the servers have no input. Our motivation for studying proofs
in a distributed setting is to minimize the round complexity, and underlying
assumptions, of sublinear ZK proofs. Concretely, it is known that assuming the
existence of collision resistant hash functions, there exist 2-party 4-round sublin-
ear ZK arguments for NP [17,20]. (Arguments guarantee soundness only against

Making the Best of a Leaky Situation: Zero-Knowledge PCPs 23

bounded malicious provers.) We show that in the distributed setting, there exist
3-round sublinear CZK (respectively, WI) proofs for NP, assuming the existence
of OWFs (respectively, unconditional). Thus, the distributed setting allows us to
improve previous results in terms of round complexity, underlying assumptions,
and soundness type.

Distributed CZK\WI proof systems. An m-distributed proof system is
a (t,m)-distributed ZK proof system for an NP-relation R if it satisfies the
following properties. First, if all parties are honest and (x,w) ∈ R then V accepts
x with probability 1 (the correctness property). Second, if x /∈ LR then V rejects
x except with negligible probability, even if the prover is corrupted and colludes
with at most t corrupted servers (the soundness property). Thirdly, for every
adversary A corrupting V and t′ ≤ t servers there exists a PPT simulator Sim
such that for every x ∈ LR, Sim (x) is computationally indistinguishable from
the the view of A in the protocol execution, when it has input x. This notion
can be naturally relaxed to WI, or CZK in the CRS model.

We use WIPCPs (respectively, CZKPCPs) to construct a 3-round
distributed-WI proof system (respectively, CZK proof system in the CRS model)
which, at a high level, operates as follows. In the first round the prover dis-
tributes a WIPCP (respectively, a CZKPCP) between the servers, and in the
second and third rounds the verifier and servers emulate the WIPCP (respec-
tively, CZKPCP) verification procedure (the verifier sends the proof queries of
the WIPCP or CZKPCP verifier, and the servers provide the corresponding
proof bits). This overview is an over-simplification of the construction: the veri-
fication procedure of the WIPCP (respectively, CZKPCP) cannot be used as-is
since it only guarantees soundness when the verification is performed with a
proof oracle, whereas corrupted servers can determine their answers after seeing
the queries of the verifier. We overcome this by using techniques of [19] (a more
detailed description and analysis of these distributed proof systems appears in
the full version). Thus, we obtain the following results.

Theorem 14 (Sublinear distributed WI proofs). For every NP-relation R,
and polynomial t (n), there exists a polynomial m (n) > t (n) such that R has a
3-round sublinear (t,m)-distributed WI proof system, where n is the input length.

Theorem 15 (Sublinear distributed CZK proofs in the CRS model).
Assume that OWFs exist. Then for every NP-relation R, and polynomial t (n),
there exists a polynomial m (n) > t (n) such that R has a 3-round sublinear
(t,m)-distributed CZK proof system in the CRS model, where n is the input
length.

These constructions crucially rely on the non-adaptivity of the honest
WIPCP (respectively, CZKPCP) verifier (otherwise we would need at least 4
rounds, since rounds cannot be compressed). Moreover, the verifier may collude
with a subset of servers, so the PCP should be WI (respectively, CZK) against
malicious verifiers.

24 Y. Ishai et al.

Acknowledgements. We thank the anonymous TCC reviewers for helpful comments,
and in particular for pointing out the simple construction of CZKPCP from PCP
and NIZK. The first author was supported by ERC starting grant 259426, ISF grant
1709/14, and BSF grant 2012378. Research done in part while visiting the Simons Insti-
tute for the Theory of Computing, supported by the Simons Foundation and by the
DIMACS/Simons Collaboration in Cryptography through NSF grant #CNS-1523467.
Research also supported in part from a DARPA/ARL SAFEWARE award, NSF Fron-
tier Award 1413955, NSF grants 1228984, 1136174, 1118096, and 1065276. This mate-
rial is based upon work supported by the Defense Advanced Research Projects Agency
through the ARL under Contract W911NF-15-C-0205. The views expressed are those
of the author and do not reflect the official policy or position of the Department
of Defense, the National Science Foundation, or the U.S. Government. The second
author was supported by ERC starting grant 259426 and an IBM PhD Fellowship.
The third author was supported by the National Basic Research Program of China
Grant 2011CBA00300, 2011CBA00301, and the National Natural Science Foundation
of China Grant 61033001, 61350110536, 61361136003.

A A Leakage-Indistinguishable Encoding Scheme

In this section we define the encoding scheme that is used to prove Theorem 13,
and use correlation bounds of [22] to show that it is leakage-indistinguishable
against leakage computable by AC0 circuits, augmented with few ⊕ gates.

Notation 16. For γ ∈ {0, 1, 2} and n ∈ N, Un
γ denotes the uniform distribution

over
{
v ∈ {0, 1}3n : #1 (v) ≡ γ mod 3

}
; #1 (v) denotes the number of 1’s in v;

andUn
1,2 denotes the uniformdistribution over {v ∈ {0, 1}3n : #1 (v) ≡ 0 mod 3}.

Definition 8. We define an encoding scheme E3 = (Enc3,Dec3) over F3 such
that for every e ∈ F3, Enc3 (e, 1n) is distributed according to Un

e ,4 and Dec3 (v)
returns (#1 (v) mod 3). Notice that E3 is linear, with decoding vectors

{
13n

}
,

and consequently also onto.

The leakage class we consider is “AC0, augmented with few ⊕ gates”:

Definition 9 (Lm
n,d,s,⊕t leakage family). Let n ∈ N be a length parameter,

d ∈ N be a depth parameter, s ∈ N be a size parameter, and t ∈ N be a parity
gate bound. The family Ln,d,s,⊕t consists of all functions computable by a boolean
circuit C : {0, 1}n → {0, 1} of size at most s and depth d, with unbounded fan-in
and fan-out ∧,∨,¬,⊕ gates, out of which at most t are ⊕ gates. The family
Ld,s,⊕t of functions is defined as Ld,s,⊕t = ∪n∈NLn,d,s,⊕t.

For a length parameter m ∈ N, and a function f : {0, 1}n → {0, 1}m, let
fi (x1, ..., xn) , i ∈ [m] denote the i’th output bit of f . We use the following
notation: Lm

n,d,s,⊕t = {f : {0, 1}n → {0, 1}m : ∀1 ≤ i ≤ m, fi ∈ Ln,d,s,⊕t}, and

Lm
d,s,⊕t := ∪n∈N

(
Lm

n,d,s,⊕t

)
.

4 Enc3 can be computed efficiently by repeating the following procedure n2 times. Pick
v ∈ {0, 1}n uniformly at random, compute t := #1 (v), and if t = e then return v. If
all iterations fail, return a fixed ve ∈ {0, 1}n such that #1 (v) = e. Then the output
of Enc3 is statistically close to Un

e .

Making the Best of a Leaky Situation: Zero-Knowledge PCPs 25

We use a correlation bound of Lovett and Srinivasan [22, Theorem 6] which,
informally, states that AC0 circuits, augmented with “few” ⊕ gates, have negli-
gible correlation with the boolean function MOD3 where MOD3 (v) = 0 if and
only if #1 (v) ≡ 1 mod 3. (Their result is more general, but we state a weaker
and simpler version that suffices for our needs.) We first define the notion of
correlation.

Definition 10 (Correlation). Let n ∈ N, g, f : {0, 1}n → {0, 1}, and let D
be a distribution over {0, 1}n. The correlation of g and f in relation to D is
CorrD (g, f) = 2

∣
∣ 1
2 − Prx←D [g (x) = f (x)]

∣
∣ .

For a class G of functions, CorrD (G, f) = maxg∈G CorrD (g, f) .

We are interested in correlations with the following function:

Notation 17 (MODs function). Let s ∈ N. The function MODn
s : {0, 1}3n →

{0, 1} is defined as MODs (x) = 0 if and only if
∑3n

i=1 xi ≡ 0 mod s. We use
MODs to denote the family of functions ∪n∈NMODn

s .

Theorem 18 ([22], Theorem 6 (rephrased)). For every constant depth para-
meter d ∈ N there exist constants c, ε ∈ (0, 1), such that for every constant l ∈ N

there exists a minimal length parameter n0 ∈ N such that for every n ≥ n0,
CorrDn

3

(
L3n,d,nl,⊕nε ,MODn

3

)
≤ 2−nc

, where Dn
3 is the distribution induced by the

following process: first pick a random bit b ∈R {0, 1}; if b = 0 pick x ∈ {0, 1}3n

according to the distribution Un
0 , otherwise pick x ∈ {0, 1}3n according to Un

1,2.

Next, we use Theorem 18 to show that AC0 circuits, augmented with “few” ⊕
gates, have a negligible advantage in distinguishing between random encodings
of 0,1, and 2 according to the encoding scheme of Definition 8. Formally:

Corollary 3. For every constant depth parameter d ∈ N there exist constants
c, ε ∈ (0, 1), such that for every constant l ∈ N there exists a minimal length
parameter n0 ∈ N such that for every n ≥ n0 the encoding scheme Enc3 (·, 1n) of
Definition 8 is

(
L3n,d,nl,⊕nε , 2−nc)

-leakage-indistinguishable.

We proceed to prove Corollary 3 in two steps. First, we show that Theorem 18
implies that AC0 circuits, augmented with “few” ⊕ gates, cannot distinguish
between random encodings of 0, and random encodings of either 1 or 2. Second,
we show that this implies indistinguishability of encodings of every pair of values
in {0, 1, 2}. The first step follows from the next lemma.

Lemma 1. Let ε ∈ (0, 1), n ∈ N, and G be a class of functions from
{0, 1}3n to {0, 1}. If CorrDn

3
(G,MODn

3) ≤ ε then Un
0 , Un

1,2 are (G, ε)-leakage-
indistinguishable, where Dn

3 is the distribution defined in Theorem18.

Proof. Let g ∈ G. We first establish the connection between the probability
pg := Prx←Dn

3
[g (x) = MODn

3 (x)] that g computes MODn
3 correctly, and the

distinguishing advantage of g:

26 Y. Ishai et al.

pg = Pr
x←Dn

3

[g (x) = MODn
3 (x) |MODn

3 (x) = 0] · Pr
x←Dn

3

[MODn
3 (x) = 0]

+ Pr
x←Dn

3

[g (x) = MODn
3 (x) |MODn

3 (x) = 1] · Pr
x←Dn

3

[MODn
3 (x) = 1]

observing that for x ← Dn
3 , MODn

3 (x) is 0 (or 1) with probability half, and that

Pr
x←Dn

3

[g (x) = MODn
3 (x) |MODn

3 (x) = 0] = Pr
x←Un

0

[g (x) = 0]

Pr
x←Dn

3

[g (x) = MODn
3 (x) |MODn

3 (x) = 1] = Pr
x←Un

1,2

[g (x) = 1]

we get:

pg =
1
2

+
1
2

(
Pr

x←Un
1,2

[g (x) = 1] − Pr
x←Un

0

[g (x) = 1]
)

.

By the assumption of the lemma,

2
∣
∣
∣
∣
1
2

− pg

∣
∣
∣
∣ = CorrDn

3
(g,MODn

3) ≤ ε.

Therefore, we get:
∣
∣
∣
∣ Pr
x←Un

1,2

[g (x) = 1] − Pr
x←Un

0

[g (x) = 1]
∣
∣
∣
∣ ≤ ε.

��

Next, we establish a connection between the distinguishing advantage of cir-
cuits between the following pairs of distributions: U2n

0 , U2n
1,2 (over 6n-bit vectors);

Un
0 , Un

1,2; and Un
0 , Un

1 (over 3n-bit vectors).

Lemma 2. Let d, s, t ∈ N, and c ∈ (0, 1) be a constant. If there exists an n0 ∈ N

such that for every n ≥ n0, Un
0 , Un

1,2 are (L3n,d,s,⊕t, ε)-leakage-indistinguishable
for ε = 2−nc

, and U2n
0 , U2n

1,2 are (L6n,d+1,2s+1,⊕2t, ε)-leakage-indistinguishable,
then there exists an n′

0 such that for every n ≥ n′
0, Un

0 , Un
1 are

(
L3n,d,s,⊕t,

√
7ε

)
-

leakage-indistinguishable.

In the following proofs, we use the following notation, and the following
observation regarding the connection between Un

1 , Un
2 and Un

1,2.

Notation 19. Let n ∈ N. For γ ∈ {0, 1, 2}, we use Sn
γ to denote supp

(
Un

γ

)
,

Sn
1,2 to denote supp

(
Un
1,2

)
, and kn

γ to denote
∣
∣Sn

γ

∣
∣.

Observation 20. For every n ∈ N, and every function g : {0, 1}3n → {0, 1}, by
the law of total probability, and since Prx←Un

1,2
[x ∈ Sn

1] = Prx←Un
1,2

[x ∈ Sn
2] = 1

2 ,

Pr
x←Un

1,2

[g (x) = 1] =
1
2

(
Pr

x←Un
1

[g (x) = 1] + Pr
x←Un

2

[g (x) = 1]
)

.

Making the Best of a Leaky Situation: Zero-Knowledge PCPs 27

Proof (of Lemma 2). If the lemma does not hold, then there exist infinitely many
n’s, for each of which Un

0 , Un
1 are not

(
L3n,d,s,⊕t,

√
7ε

)
-leakage-indistinguishable.

Let ε′ = ε′ (n) >
√

7ε denote the maximal distinguishing advantage between
Un
0 , Un

1 , let D̂ =
{

D̂n

}
be a family of distinguishers obtaining this advantage,

and let N be the infinite set of n’s for which D̂ obtains this advantage. For
γ ∈ {0, 1, 2}, let pn

γ := Prx←Un
γ

[
D̂n (x) = 1

]
. Assume first that pn

0 > pn
1 for

infinitely many n’s in N . There are two possible cases: either for infinitely many
n’s in N , pn

2 ≤ pn
0 ; or pn

2 > pn
0 for infinitely many n’s in N . In the first case, D̂ has

advantage at least ε′
2 >

√
7ε
2 >

√
4ε
2 ≥ε≤1 ε in distinguishing between Un

0 , Un
1,2,

for every n such that pn
0 ≥ pn

2 and pn
0 ≥ pn

1 + ε′. Indeed, using Observation 20,
∣
∣
∣
∣ Pr
x←Un

0

[
D̂n (x) = 1

]
− Pr

x←Un
1,2

[
D̂n (x) = 1

]∣∣
∣
∣ =

∣
∣
∣
∣p

n
0 − 1

2
(pn

1 + pn
2)

∣
∣
∣
∣

using the case assumption that pn
0 ≥ pn

1 , pn
2 , this advantage is equal to:

1
2

(pn
0 − pn

1) +
1
2

(pn
0 − pn

2) ≥ 1
2

(pn
0 − pn

1) ≥ ε′

2
.

Therefore, only the second case remains, and Lemma 3 below shows that
there exists an n̂0 ∈ N such that for every such n which is greater than n̂0,

U2n
0 , U2n

1,2 are distinguishable in L6n,d+1,2s+1,⊕2t with advantage at least (ε′)2
6 +

E (n) >
(
√
7ε)2
6 + E (n) = ε + ε+E(n)

6 , where E (n) = O
(
2−3n

)
. Recall that

ε = 2−nc

, so E (n) = o (ε), and let n′ ∈ N such that for every n ≥ n′, |E (n)| ≤ ε
(notice that E (n) may be negative). Then for every n ≥ max {n′, n̂0} in N
such that pn

2 > p20 ≥ pn
1 + ε′ (there are infinitely many such n’s by the case

assumption), ε + ε+E(n)
6 ≥ ε, meaning that U2n

0 , U2n
1,2 can be distinguished in

L6n,d+1,2s+1,⊕2t with advantage more than ε, a contradiction to the assumption
of the lemma. Therefore, if pn

0 ≥ pn
1 +ε′ for infinitely many n’s in N , then Un

0 , Un
1

are
(
L3n,d,s,⊕t,

√
7ε

)
-distinguishable only for finitely many n’s.

Assume now that pn
0 ≥ pn

1 only for finitely many n’s in N , i.e., pn
1 ≥ pn

0 for
infinitely many n’s in N . If for infinitely many n’s in N , pn

2 ≥ pn
0 and pn

1 > pn
0 ,

then the advantage of D̂n in distinguishing between Un
0 , Un

1,2 is at least
∣
∣
∣
∣p

n
0 − pn

1 + pn
2

2

∣
∣
∣
∣ =

pn
1 − pn

0

2
+

pn
2 − pn

0

2
≥ pn

1 − pn
0

2
≥ ε′

2
.

The second case, where pn
2 < pn

0 < pn
1 for infinitely many n’s, follows from

Lemma 3 in the same manner as before. ��

We now prove the lemma used in the proof of Lemma2, for the case pn
2 >

pn
0 > pn

1 (or pn
1 > pn

0 > pn
2) for infinitely many n’s. Notice that Lemma 3 uses the

distributions U2n
0 , U2n

1,2 over 6n-bit vectors, and distinguishers over 3n-bit vectors.

28 Y. Ishai et al.

Lemma 3. Let n, d, s, t ∈ N, ε > 0, and {Dn ∈ L3n,d,s,⊕t}n∈N
. For γ ∈

{0, 1, 2}, denote pn
γ := Prx←Un

γ
[Dn (x) = 1]. Then there exist error terms

E+ (n) , E− (n) = O
(
2−3n

)
, and an n0 ∈ N, such that the following holds

for every n0 ≤ n ∈ N. If pn
2 > pn

0 > pn
1 and pn

0 − pn
1 ≥ ε, then U2n

0 , U2n
1,2

are
(
L6n,d+1,2s+1,⊕2t,

ε2

6 + E+ (n)
)
-distinguishable; and if pn

2 < pn
0 < pn

1 and

pn
1 − pn

0 ≥ ε, then U2n
0 , U2n

1,2 are
(
L6n,d+1,2s+1,⊕2t,

ε2

6 + E− (n)
)
-distinguishable.

Proof. Let D′
n be the distinguisher that interprets its input as a pair (x, y) of

3n-bit vectors, and outputs Dn (x) ∧ Dn (y). Notice that if Dn ∈ L3n,d,s,⊕t,
then D′

n ∈ L6n,d+1,2s+1,⊕2t. We now analyze the advantage of D′
n in dis-

tinguishing between U2n
0 , U2n

1,2. Using Lemma 5, Pr(x,y)←U2n
0

[D′
n (x, y) = 1] =

(pn
0)

2+2pn
1 pn

2
3 + E0 (n) + E′

0 (n) · pn
2 , where E0 (n) , E′

0 (n) are error terms, and
|E0 (n)| , |E′

0 (n)| = O
(
2−3n

)
. Using Lemma 6, Pr(x,y)←U2n

1,2
[D′

n (x, y) = 1] =
2pn

0 pn
1 +(pn

1)
2+2pn

0 pn
2 +(pn

2)
2

6 + E1,2 (n) + E′
1,2 (n) · pn

2 + E′′
1,2 (n) · (pn

2)2, where
E1,2 (n) , E′

1,2 (n) , E′′
1,2 (n) are error terms, and |E1,2 (n)| ,

∣
∣E′

1,2 (n)
∣
∣ ,

∣
∣E′′

1,2 (n)
∣
∣ =

O
(
2−3n

)
. Therefore,

ED′
n

:= Pr
x←U2n

1,2

[D′
n (x, y) = 1] − Pr

x←U2n
0

[D′
n (x, y) = 1]

=
2pn

0pn
1 + (pn

1)2 + 2pn
0pn

2 + (pn
2)2 − 2 (pn

0)2 − 4pn
1pn

2

6
+ E (n) + E′ (n) · pn

2 + E′′ (n) · (pn
2)2

where E (n) , E′ (n) , E′′ (n) are error terms, and |E (n)| , |E′ (n)| , |E′′ (n)| =
O

(
2−3n

)
. Thinking of ED′

n
as a function of pn

2 , there exists an n0 such that
for every n ≥ n0, the minimal value of ED′

n
(pn

2) is obtained when pn
2 =

2pn
1 −pn

0 −3E′(n)
1+6E′′(n) ≈ 2pn

1 − pn
0 . Let n ≥ n0, and assume first pn

2 > pn
0 > pn

1

and pn
0 − pn

1 ≥ ε. Then 2pn
1 −pn

0 −3E′(n)
1+6E′′(n) ≈ 2pn

1 − pn
0 < p0, and in the domain

z ≥ 2pn
1 −pn

0 −3E′(n)
1+6E′′(n) , ED′ is monotonically increasing, so the minimal value of

ED′ in this section is obtained when pn
2 = pn

0 (since by the case assumption,
pn
2 ≥ pn

0), in which case ED′
n
|pn

2 =pn
0

= (pn
0 −pn

1)
2

6 + E (n) + E′ (n) · pn
0 + E′′ (n) ·

(pn
0)2 ≥ ε2

6 + E (n) + E′ (n) · pn
0 + E′′ (n) · (pn

0)2 =pn
0 ∈(0,1) ε2

6 + E+ (n), where
E+ (n) = O

(
2−3n

)
, so D′

n obtaining advantage δ+ := ε2

6 + E+ (n) in distin-
guishing between U2n

0 , U2n
1,2, where E+ (n) = O

(
2−3n

)
.

Second, assume that pn
2 < pn

0 < pn
1 and pn

1 − pn
0 ≥ ε. Then 2pn

1 −pn
0 −3E′(n)

1+3E′′(n) ≈
2pn

1 − pn
0 > p0. Since by the case assumption pn

2 < pn
0 then in the domain

z ≤ 2pn
1 −pn

0 −3E′(n)
1+3E′′(n) the function is monotonically decreasing, so the minimal

advantage is obtained when pn
0 = pn

2 , and the rest of the analysis follows as in
the previous case. ��

Making the Best of a Leaky Situation: Zero-Knowledge PCPs 29

We now state and prove the lemmas that were used in the proof of Lemma 3.
We will need the following result about the values of kn

0 , kn
1 , kn

2 . (The proof,
which is by induction and uses Observation 20, appears in the full version.)

Lemma 4. Let n ∈ N. Then kn
1 = kn

2 = 23n+(−1)n−1

3 , and kn
0 = 23n+2·(−1)n

3 .

Lemma 5. Let D′
n, pn

0 , pn
1 , pn

2 be as defined in the proof of Lemma 3. Then
Pr(x,y)←U2n

0
[D′

n (x, y) = 1] = (pn
0)

2+2pn
1 pn

2
3 + E0 (n) + E′

0 (n) · pn
2 , where

E0 (n) , E′
0 (n) are error terms, and |E0 (n)| , |E′

0 (n)| = O
(
2−3n

)
.

Proof. Since

S2n
0 =

{
(x, y) : x, y ∈ {0, 1}3n ∧ (x, y ∈ Sn

0 ∨ x ∈ Sn
1 , y ∈ Sn

2 ∨ x ∈ Sn
2 , y ∈ Sn

1)
}

then by the law of total probability, Pr(x,y)←U2n
0

[D′
n (x, y) = 1] is equal to:

Pr
(x,y)←U2n

0

[D′
n (x, y) = 1|x, y ∈ Sn

0] · Pr
(x,y)←U2n

0

[x, y ∈ Sn
0]

+ Pr
(x,y)←U2n

0

[D′
n (x, y) = 1|x ∈ Sn

1 , y ∈ Sn
2] · Pr

(x,y)←U2n
0

[x ∈ Sn
1 , y ∈ Sn

2]

+ Pr
(x,y)←U2n

0

[D′
n (x, y) = 1|x ∈ Sn

2 , y ∈ Sn
1] · Pr

(x,y)←U2n
0

[x ∈ Sn
2 , y ∈ Sn

1]

=
(

Pr
x←Un

0

[D (x) = 1]
)2

· |S
n
0 |2

|S2n
0 | +2 Pr

x←Un
1

[D (x) = 1]· Pr
x←Un

2

[D (x) = 1]· |S
n
1 | · |Sn

2 |
|S2n

0 |

If n is even, then by Lemma 4: kn
0 = |Sn

0 | = 23n+2
3 ; k2n

0 =
∣
∣S2n

0

∣
∣ = 26n+2

3 ; and
kn
1 = |Sn

1 | = 23n−1
3 . Therefore,

|Sn
0 |2

|S2n
0 | =

(
23n+2

3

)2

26n+2
3

=
1
3

· 2
6n + 23n+2 + 4

26n + 2
=

1
3

·
(

1 +
23n+2 + 2
26n + 2

)
=

1
3

+O
(
2−3n

)

|Sn
1 | · |Sn

2 |
|S2n

0 | =
|Sn

1 |2

|S2n
0 | =

(
23n−1

3

)2

26n+2
3

=
1
3

· 26n − 23n+1 + 1
26n + 2

=
1
3

− O
(
2−3n

)

Otherwise, n is odd, and by Lemma 4: kn
0 = |Sn

0 | = 23n−2
3 ; k2n

0 =
∣
∣S2n

0

∣
∣ =

26n+2
3 ; and kn

1 = |Sn
1 | = 23n+1

3 . Similar calculations give:

|Sn
0 |2

|S2n
0 | =

1
3

− O
(
2−3n

)
,

|Sn
1 | · |Sn

2 |
|S2n

0 | =
1
3

+ O
(
2−3n

)

Consequently,

Pr
(x,y)←U2n

0

[D′
n (x, y) = 1] =

(pn
0)2 + 2pn

1pn
2

3
+ E0 (n) + E′

0 (n) · pn
2

where E0, E
′
0 are error terms, and |E0 (n)| , |E′

0 (n)| = O
(
2−3n

)
. ��

30 Y. Ishai et al.

The proof of the following lemma is similar to the proof of Lemma5, and
appears in the full version.

Lemma 6. Let D′
n, pn

0 , pn
1 , pn

2 be as defined in the proof of Lemma 3.
Then Pr(x,y)←U2n

1,2
[D′

n (x, y) = 1] = 2pn
0 pn

1 +(pn
1)

2+2pn
0 pn

2 +(pn
2)

2

6 + E1,2 (n) +

E′
1,2 (n) · pn

2 + E′′
1,2 (n) · (pn

2)2, where E1,2, E
′
1,2, E

′′
1,2 are error terms, and

|E1,2 (n)| ,
∣
∣E′

1,2 (n)
∣
∣ ,

∣
∣E′′

1,2 (n)
∣
∣ = O

(
2−3n

)
.

Next, we prove that if Un
0 , Un

1 are leakage-indistinguishable against some
family of leakage functions, then E3 is leakage indistinguishable against a slightly
weaker family of leakage functions.

Lemma 7. Let n, d, s, t ∈ N, and ε = ε (n) > 0. If there exists an n0 ∈ N such
that for every n ≥ n0, Un

0 , Un
1 are (L3n,d,s,⊕t, ε)-leakage-indistinguishable, then

for every n ≥ n0, E3 (·, 1n) is (L3n,d−1,s−3n,⊕t, 2ε)-leakage-indistinguishable.

Proof. We show first that Enc3 (0, 1n) ,Enc3 (2, 1n) are (L3n,d−1,s−3n,⊕t, ε)-
leakage-indistinguishable for every n ≥ n0. Otherwise, there exist infinitely
many n’s and for each a distinguisher Dn ∈ L3n,d−1,s−3n,⊕t that achieves advan-
tage ε′ > ε in distinguishing between the distributions Enc3 (0, 1n), Enc3 (2, 1n).
For every such n we define D′

n to apply negation gates on its inputs, and run
Dn. Then D′

n ∈ L3n,d,s,⊕t, and notice that since the encoding length is divis-
ible by 3, and the transformation v → v̄ is 1:1 and onto (where v̄ denotes
the vector obtained by coordinate-wise negating v) then: if v ← Enc3 (0, 1n)
then v̄ ← Enc3 (0, 1n); and if v ← Enc3 (1, 1n) then v̄ ← Enc3 (2, 1n). There-
fore, for every such n, |Pr [D′

n (Enc (0, 1n)) = 1] − Pr [D′
n (Enc (1, 1n)) = 1]| =

|Pr [Dn (Enc (0, 1n)) = 1] − Pr [Dn (Enc (2, 1n)) = 1]| = ε′ > ε, contradict-
ing the assumption of the lemma. Second, since for every n ≥ n0,
Enc3 (0, 1n), Enc3 (2, 1n) are (L3n,d−1,s−3n,⊕t, ε)-leakage-indistinguishable, and
Enc3 (0, 1n) ,Enc3 (1, 1n) are (L3n,d,s,⊕t, ε)-leakage-indistinguishable, then using
the triangle inequality Enc3 (1, 1n) ,Enc3 (2, 1n) are (L3n,d−1,s−3n,⊕t, 2ε)-leakage-
indistinguishable. ��

We are finally ready to prove Corollary 3.

Proof. (of Corollary 3). Let d′ = d + 2, let ε, c be the constants for which Theo-
rem 18 holds for depth parameter d′, and we set c′ = c

2 , and ε′ = ε
2 . Given l, let

l′ = l+1, and let n0 be the minimal length parameter for which Theorem18 holds
with parameters d′, l′. Let n′

0 be such that for every n ≥ n′
0, 2

(
nl + 3n

)
+1 ≤ nl′ ,

2nε′ ≤ nε, and 2
√

7 · 2− nc

2 ≤ 2−nc′
. Let n′′

0 be the minimal length parameter
whose existence is guaranteed in Lemma 2 for the length parameter max{n0, n

′
0},

constant c, depth parameter d + 2, size parameter s = nl + 3n, and parity
gate bound t = nε′

. Let ñ0 = max{n0, n
′
0, n

′′
0}. We show that the corollary

holds for minimal length parameter ñ0 and constants c′, ε′. Indeed, for every
n ≥ ñ0 Theorem 18 guarantees that CorrDn

3

(
L3n,d+2,2(nl+3n)+1,⊕2nε′ ,MODn

3

)
≤

2−nc

(since n ≥ n0 and n ≥ n′
0). By Lemma 1, this implies that for

Making the Best of a Leaky Situation: Zero-Knowledge PCPs 31

every n ≥ ñ0, Un
0 , Un

1,2 are
(
L3n,d+1,nl+3n,⊕nε′ , 2−nc

)
-leakage-indistinguishable,

and U2n
0 , U2n

1,2 are
(
L6n,d+2,2(nl+3n)+1,⊕2nε′ , 2−nc

)
-leakage-indistinguishable. By

Lemma 2, for every n ≥ ñ0, Un
0 , Un

1 are
(
L3n,d+1,nl+3n,⊕nε′ ,

√
7 · 2− nc

2

)
-

leakage-indistinguishable (because n ≥ n′′
0). By Lemma 7, E3 (·, 1n) is(

L3n,d,nl,⊕nε′ , 2
√

7 · 2− nc

2

)
-leakage-indistinguishable. Since ñ0 ≥ n′

0, E3 (·, 1n)

is
(
L3n,d,nl,⊕nε′ , 2−nc′)

-leakage-indistinguishable. ��

References

1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
hardness of approximation problems. In: Proceedings of the 33rd Annual IEEE
Symposium on Foundations of Computer Science, FOCS 1992, pp. 14–23, Pitts-
burgh, Pennsylvania, USA, 24–27 October 1992

2. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP.
In: Proceedings of the 33rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 1992, pp. 2–13, Pittsburgh, Pennsylvania, USA, 24–27 October 1992

3. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer,
Heidelberg (2013)

4. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
II. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014)

5. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a Von Neumann architecture. In: Proceedings of the 23rd USENIX
Security Symposium, pp. 781–796, San Diego, CA, USA, 20–22 August 2014

6. Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge.
SIAM J. Comput. 20(6), 1084–1118 (1991)

7. Canetti, R., Damg̊ard, I., Dziembowski, S., Ishai, Y., Malkin, T.: On adaptive
vs. non-adaptive security of multiparty protocols. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 262–279. Springer, Heidelberg (2001)

8. Dinur, I.: The PCP theorem by gap amplification. In: Proceedings of the 38th
Annual ACM Symposium on Theory of Computing, STOC 2006, pp. 241–250,
Seattle, WA, USA, 21–23 May 2006

9. Dubrov, B., Ishai, Y.: On the randomness complexity of efficient sampling. In:
Proceedings of the 38th Annual ACM Symposium on Theory of Computing, STOC
2006, pp. 711–720, Seattle, WA, USA, 21–23 May 2006

10. Dziembowski, S., Faust, S.: Leakage-resilient circuits without computational
assumptions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 230–247.
Springer, Heidelberg (2012)

11. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(2010)

12. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: 31st Annual Symposium

32 Y. Ishai et al.

on Foundations of Computer Science, vol. I, pp. 308–317. St. Louis, Missouri, USA,
22–24 October 1990

13. Goldreich, O.: The Foundations of Cryptography, vol. 1, Basic Techniques. Cam-
bridge University Press (2001)

14. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: Proceedings of the 17th Annual ACM Sym-
posium on Theory of Computing, STOC 1985, pp. 291–304, Providence, Rhode
Island, USA, 6–8 May 1985

15. Goldwasser, S., Rothblum, G.N.: How to compute in the presence of leakage. In:
Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2012, pp. 31–40, New Brunswick, NJ, USA, 20–23 October 2012

16. H̊astad, J.: Almost optimal lower bounds for small depth circuits. In: Proceedings
of the 18th Annual ACM Symposium on Theory of Computing, STOC 1986, pp.
6–20, Berkeley, California, USA, 28–30 May 1986

17. Ishai, Y., Mahmoody, M., Sahai, A.: On efficient zero-knowledge PCPs. In: Cramer,
R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 151–168. Springer, Heidelberg (2012)

18. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

19. Ishai, Y., Weiss, M.: Probabilistically checkable proofs of proximity with zero-
knowledge. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 121–145. Springer,
Heidelberg (2014)

20. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: Proceedings of the 24th Annual ACM Symposium on Theory of
Computing, STOC 1992, pp. 723–732, Victoria, British Columbia, Canada, 4–6
May 1992

21. Kilian, J., Petrank, E., Tardos, G.: Probabilistically checkable proofs with zero
knowledge. In: Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, STOC 1997, pp. 496–505. El Paso, Texas, USA, 4–6 May 1997

22. Lovett, S., Srinivasan, S.: Correlation bounds for poly-size AC0 circuits with
n1−o(1) symmetric gates. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P.
(eds.) RANDOM 2011 and APPROX 2011. LNCS, vol. 6845, pp. 640–651. Springer,
Heidelberg (2011)

23. Miles, E., Viola, E.: Shielding circuits with groups. In: Proceedings of the 45th
Annual ACM Symposium on Theory of Computing, STOC 2013, pp. 251–260,
Palo Alto, CA, USA, 1–4 June 2013

24. Naor, M.,Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: Proceedings of the 22nd Annual ACM Symposium on The-
ory of Computing, pp. 427–437, Baltimore, Maryland, USA, 13–17 May 1990

25. Rothblum, G.N.: How to compute under AC0 leakage without secure hardware. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 552–569.
Springer, Heidelberg (2012)

Quasi-Linear Size Zero Knowledge
from Linear-Algebraic PCPs

Eli Ben-Sasson2(B), Alessandro Chiesa3, Ariel Gabizon2, and Madars Virza1

1 MIT, Cambridge, USA
2 Technion, Haifa, Israel
eli@cs.technion.ac.il

3 UC Berkeley, Berkeley, USA

Abstract. The seminal result that every language having an interactive
proof also has a zero-knowledge interactive proof assumes the existence
of one-way functions. Ostrovsky and Wigderson [33] proved that this
assumption is necessary: if one-way functions do not exist, then only
languages in BPP have zero-knowledge interactive proofs.

Ben-Or et al. [9] proved that, nevertheless, every language hav-
ing a multi-prover interactive proof also has a zero-knowledge multi-
prover interactive proof, unconditionally. Their work led to, among
many other things, a line of work studying zero knowledge without
intractability assumptions. In this line of work, Kilian, Petrank, and
Tardos [28] defined and constructed zero-knowledge probabilistically
checkable proofs (PCPs).

While PCPs with quasilinear-size proof length, but without zero
knowledge, are known, no such result is known for zero knowledge PCPs.
In this work, we show how to construct “2-round” PCPs that are zero
knowledge and of length Õ(K) where K is the number of queries made by
a malicious polynomial time verifier. Previous solutions required PCPs of
length at least K6 to maintain zero knowledge. In this model, which we
call duplex PCP (DPCP), the verifier first receives an oracle string from
the prover, then replies with a message, and then receives another oracle
string from the prover; a malicious verifier can make up to K queries
in total to both oracles.

Deviating from previous works, our constructions do not invoke the
PCP Theorem as a blackbox but instead rely on certain algebraic proper-
ties of a specific family of PCPs. We show that if the PCP has a certain
linear algebraic structure — which many central constructions can be
shown to possess, including [2,4,15] — we can add the zero knowledge
property at virtually no cost (up to additive lower order terms) while
introducing only minor modifications in the algorithms of the prover and
verifier. We believe that our linear-algebraic characterization of PCPs
may be of independent interest, as it gives a simplified way to view pre-
vious well-studied PCP constructions.

c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 33–64, 2016.
DOI: 10.1007/978-3-662-49099-0 2

34 E. Ben-Sasson et al.

1 Introduction

We continue the study of proof systems that provide soundness and zero knowl-
edge, simultaneously and unconditionally (i.e., no intractability assumptions are
needed to achieve the two), as we now explain.

Interactive Proofs. An interactive proof [6,20] for a language L is a pair
of interactive algorithms (P, V), where P is known as the prover and V as the
verifier, that satisfies the following: (i) (completeness) for every instance x in
L , P (x) can make V (x) accept with probability 1; (ii) (soundness) for every
instance x not in L , every prover P̃ can make V (x) accept with at most a small
probability ε. Shamir [35] showed the expressive power of interactive proofs by
proving that IP = PSPACE, i.e., all and only languages in PSPACE have
interactive proofs.

Zero Knowledge. An interactive proof is zero knowledge [20] if the verifier,
even if malicious, cannot learn any information about an instance x in L , by
interacting with the prover, besides the fact x is in L : for any efficient verifier Ṽ
there exists an efficient simulator S such that S(x) is “indistinguishable” from
the view of Ṽ while interacting with P (x). Depending on the choice of definition
for indistinguishability, one gets different flavors of zero knowledge.

If indistinguishability is required to hold for efficient deciders only, then one
gets computational zero knowledge; CZK denotes the corresponding complex-
ity class. A seminal result in cryptography says that if one-way functions exist
then CZK = IP, i.e., every language having an interactive proof also has a
computational zero-knowledge interactive proof [8,20,23]. If indistinguishability
is required to hold for all deciders, then one gets statistical zero knowledge; if
instead the simulator’s output and the verifier’s view are the same distribution
(and not merely close to each other), then one gets perfect zero knowledge. These
stronger notions determine the corresponding complexity classes SZK and PZK,
both of which are contained in AM ∩ coAM; of course, PZK ⊆ SZK ⊆ CZK.

Unfortunately, zero knowledge cannot be achieved unconditionally for non-
trivial languages: Ostrovsky and Wigderson [33] proved that if one-way functions
do not exist then CZK equals an average-case variant of BPP.

Other Types of Proof Systems. Due to the limitations of interactive proofs
with respect to zero knowledge that holds unconditionally, researchers have
explored other types of proof systems, as an alternative to interactive proofs.

– MIP. Ben-Or et al. [9] first studied statistical zero knowledge, and proved that
it can be achieved in a new model, multi-prover interactive proof (MIPs),
where the verifier interacts with multiple provers that are not allowed to
communicate while interacting with the verifier (though they may share a
random string before such an interaction begins). More precisely, Ben-Or
et al. prove that every language having a multi-prover interactive proof also
has a perfect zero-knowledge multi-prover interactive proof (again, without
relying on intractability assumptions). The result of [9] was subsequently
improved in a number of papers [5,19,29].

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 35

– PCP. Kilian et al. [28] study statistical zero knowledge in the model of prob-
abilistically checkable proofs (PCPs) [2–4], where the verifier has oracle access
to a string. Essentially, the oracle string can be thought of as a stateless
prover: the answer to a query depends only on the query itself, but not any
other queries that were previously made. Building on results implicit in [19],
Kilian et al. showed two main theorems. First, every language in NEXP has a
PCP that is statistical zero knowledge against verifiers that make at most any
polynomial number of queries to the PCP. Second, every language in NP has,
for every constant c > 0, a PCP that is statistically zero knowledge against
verifiers that make at most k(n) := nc queries to the PCP.
Subsequent works [24–26,31] provided simplifications (giving alternative con-
structions or simplifying that of [28]) and limitations (showing that for lan-
guages in NP one cannot efficiently sample the oracle if one seeks statistical
zero knowledge against verifiers that make at most a polynomial number of
queries).

– IPCP. Goyal et al. [21] study statistical zero knowledge in the model of
interactive PCPs (IPCPs) [27], where the verifier interacts with two provers
of which one is restricted to be an oracle. Goyal et al. prove that every language
in NP has a constant-round interactive PCP that is statistical zero knowledge
against verifiers that make at most any polynomial number of queries to the
PCP, and where both provers’ strategies can be implemented efficiently as a
function of the instance and the witness.

A Limitation of Prior Work. PCPs with quasilinear-size proof length, but
without zero knowledge, are known: for every language L in NTIME(T (n)),
there is a PCP with proof length Õ(T (n)) and query complexity O(1)
[14,15,17,32]. On the other hand, no such result for statistical zero knowledge
PCPs is known: even when applied to PCPs of length Õ(T (n)), [28]’s result and
followup improvements yields a proof length that is polynomial in T (n) · k(n),
where k(n), known as the knowledge bound, is a bound on the number of queries by
any verifier (see Sect. 4.1 for further discussion). We thus ask the following ques-
tion: are there statistical zero knowledge PCPs with proof length quasilinear in
T (n) + k(n)?

1.1 Our Contributions

We do not answer the above question in the PCP model, but we give a positive
answer in a closely related model that can be thought of as a “2-round PCP”,
which we call duplex PCP (DPCP). At a high level, a DPCP works as follows:
the prover first sends an oracle string π0 to the verifier, just as in a PCP; then,
the verifier sends a message ρ to the prover; finally, the prover answers with a
second oracle string π1; the verifier may query both oracles, and then accept or
reject. In other words, a DPCP is merely a 2-round interactive proof in which
the prover sends oracle strings rather than messages. We prove the following
theorem:

36 E. Ben-Sasson et al.

Theorem 1 (see Theorem 4 for formal statement). For every language L
in NTIME(T) ∩ NP and polynomially-bounded knowledge bound k there exists
a DPCP system satisfying the following:

– the proof length (in fact, also the prover running time) is quasilinear in n +
T (n) + k(n);

– the query complexity is polynomial in log(T (n) + k(n));
– the verifier running time is polynomial in n + log(T (n) + k(n));
– perfect zero knowledge holds against any verifier that makes at most k(n)

adaptive queries (in total to both oracles);
– the soundness error is 1/2 (and can be reduced by repetition to 2−λ while

preserving perfect zero knowledge, provided that the number of queries does
not exceed k(n)).

Moreover, similarly to the PCPs of [28], the DPCP system that we construct
is in fact not only sound but is also a proof of knowledge [7]; however, in contrast
to [28], the DPCP verifier is non-adaptive, in the sense that the query locations
depend only on the verifier’s random tape.

Perhaps the main difference between our construction and prior work is the
techniques that we use. While previous works use the PCP Theorem as a black
box, compiling a PCP into a zero knowledge PCP by using locking schemes [28],
we use certain algebraic properties of a specific family of PCPs to guarantee zero
knowledge. In comparison to the generic approach, we are more specific, but the
addition of zero knowledge essentially comes “for free” when compared to the
corresponding constructions without zero knowledge. (In contrast, [28] achieves
a proof length of Ω(k(n)6 · l(n)c), for some large enough c, when starting from a
PCP with proof length l(n).)

DPCP vs IPCP. Duplex PCPs are an alternative to interactive PCPs that
combine PCPs and interaction. In a DPCP, the verifier gets an oracle string
from the prover, replies with a message, and then gets another oracle string
from the prover; in an IPCP, the verifier gets an oracle string from the prover,
and then engages in an interactive proof with him.

Both [21] and our work are similar in that both address aspects that we do
not know how to address in the PCP model, and resort to studying alternative
models, i.e., IPCP and DPCP respectively. The two works however give different
flavors of results: [21] obtain IPCPs that are zero knowledge against verifiers
that ask at most any polynomial number of queries k(n) but their oracle is of
polynomial size in k(n) (actually, of exponential size but with a polynomial-size
circuit describing it); on the other hand, our work obtains DPCPs that are zero
knowledge against verifiers that ask at most a fixed polynomial number of queries
k(n) and our oracles are of quasilinear size in k(n).

Finally, we note that our construction can be also cast as an IPCP, because
the knowledge bound k(n) holds only for the first oracle, i.e., perfect zero knowl-
edge is preserved even if the verifier reads the second oracle in full. This provides
a result on a 2-round IPCP incomparable to [21]’s 4-round IPCP.

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 37

On the Minimal Computational Gap Between Prover and Verifier
Needed for Zero Knowledge. IP and MIP systems assume a computational
gap between prover and verifier. The prover is allowed (and often assumed)
to be computationally unbounded and the verifier is polynomially bounded. An
intriguing corollary of our theorem is that the computational gap between prover
and verifier can be drastically reduced, to a mere polylogarithmic one. Namely,
suppose that we wish to create zero-knowledge systems in which the verifier
runs in time tv(n); in the model above, as long as tp(n) > tv(n) · (log tv(n))c

for an absolute constant c, then perfect zero knowledge with a small soundness
error can be obtained under no intractability assumptions. (See Corollary 1 for
a formal statement.)

2 Preliminaries

Functions and Distributions. We use f : D → R to denote a function with
domain D and range R; given a subset D̃ of D, we use f |D̃ to denote the
restriction of f to D̃. Given a distribution D, we write x ← D to denote that x
is sampled according to D.

Distances. A distance measure is a function Δ : Σn × Σn → [0, 1] such that
for all x, y, z ∈ Σn: (i) Δ(x, x) = 0, (ii) Δ(x, y) = Δ(y, x), and (iii) Δ(x, y) ≤
Δ(x, z)+Δ(z, y). For example, the relative Hamming distance over alphabet Σ is
a distance measure: ΔHam

Σ (x, y) := |{i |xi �= yi}|/n. We extend Δ to distances of
strings to sets: given x ∈ Σn and S ⊆ Σn, we define Δ(x, S) := miny∈S Δ(x, y)
(or 1 if S is empty). We say that a string x is ε-close to another string y if
Δ(x, y) ≤ ε, and ε-far from y if Δ(x, y) > ε; similar terminology applies for a
string x and a set S.

Fields and Polynomials. We denote by F a finite field, by Fq the field of size
q, and by F the set of all finite fields. We denote by F[X1, . . . , Xm] the ring
of polynomials in m variables over F; given a polynomial P in F[X1, . . . , Xm],
degXi

(P) is the degree of P in the variable Xi; the total degree of P is the sum
of all of these individual degrees.

Linear Spaces. Given n ∈ N, a subset S of Fn is an F-linear space if αx+βy ∈ S
for all α, β ∈ F and x, y ∈ S.

Languages and Relations. We denote by R a relation consisting of pairs
(x,w), where x is the instance and w is the witness. We denote by Lan(R) the
language corresponding to R, and by R|x the set of witnesses in R for x.

Complexity Classes. We write complexity classes in bold capital letters: NP,
PSPACE, NEXP, and so on. We take a “relation-centric” point of view: we
view NTIME as a class of relations rather than as the class of the correspond-
ing languages; we thus may write things like “let R be in NP”. If R is in
NTIME(T), we fix an arbitrary machine MR that decides R in time T (n),
i.e., MR(x,w) always halts after T (|x|) steps and MR(x,w) = 1 if and only

38 E. Ben-Sasson et al.

if (x,w) ∈ R; we then say that MR decides R (or Lan(R)). Throughout, we
assume that T (n) ≥ n.

Codes. An error correcting code C is a set of functions w : H → Σ, where H,Σ
are finite sets. The message length of C is n := log|Σ| |C|, its block length is

 := |H|, its rate is ρ := n/
, its (minimum) distance is d := min{Δ(w, z) |w, z ∈
C, w �= z} when Δ is the (absolute) Hamming distance, and its (minimum)
relative distance is δ := d/
. Given a code family C , we denote by Rel(C) the
relation that naturally corresponds to C , i.e., {(C,w) | C ∈ C , w ∈ C}. A code
C is linear if Σ is a finite field and C is a Σ-linear space in Σ�; we denote by
dim(C) the dimension of C when viewed as a linear space. A code C is t-wise
independent if, for every subset I of [
] with cardinality t, the distribution of w|I
(viewed as a string) for a random w ∈ C equals the uniform distribution on Σt.

Random Shifts. We later use the following folklore claim about distance preser-
vation for random shifts in linear spaces; for completeness, we include its short
proof.

Claim. Let n be in N, F a finite field, S an F-linear space in F
n, and x, y ∈ F

n.
If x is ε-far from S, then αx + y is ε/2-far from S, with probability 1 − |F|−1

over a random α ∈ F. (Distances are relative Hamming distances.)

Proof. Suppose, by way of contradiction, that there exist α1, α2 ∈ F and y1, y2 ∈
S with α1 �= α2 such that, for every i ∈ {1, 2}, αix+y is ε/2 close to yi. Then, by
the triangle inequality, z := y1−y2 is ε-close to (α1x+y)−(α2x+y) = (α1−α2)x.
We conclude that x is ε-close to 1

α1−α2
z ∈ S, a contradiction.

2.1 Probabilistically Checkable Proofs

A PCP system [2–4] for a relation R is a tuple PCP = (P, V) that works as
follows.

– The prover P is a probabilistic algorithm that, given as input an instance-
witness pair (x,w) with n := |x|, outputs a proof π : D(n) → Σ(n), where
both D(n) and Σ(n) are finite sets.

– The verifier V is a probabilistic oracle algorithm that, given as input an
instance x with n := |x| and with oracle access to a proof π : D(n) → Σ(n),
queries π at a few locations and then outputs a bit.

The system PCP has (perfect) completeness and soundness error e(n) if the
following two conditions hold. (Below, we explicitly denote the prover’s and
verifier’s randomness as rP and rV .)

Completeness: For every instance-witness pair (x,w) in the relation R,

Pr
rP ,rV

[
V P (x,w;rP)(x; rV) = 1

]
= 1 .

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 39

Soundness: For every instance x not in the language Lan(R) and proof
π : D(n) → Σ(n),

Pr
rV

[V π(x; rV) = 1] ≤ e(n) .

A relation R belongs to the complexity class PCP[a, l, q, e, tp, tv] if there is a
PCP system for R in which:

– the answer alphabet (i.e., Σ(n)) is a(n),
– the proof length over that alphabet (i.e., |D(n)|) is at most l(n),
– the verifier queries the proof in at most q(n) locations,
– the soundness error is e(n),
– the prover runs in time tp(n), and
– the verifier runs in time tv(n).

Finally, we add the symbol na in the square brackets (i.e., we write PCP[. . . ,na])
if the queries to the proof are non-adaptive (i.e., the queried locations only
depend on the verifier’s inputs).

2.2 Probabilistically Checkable Proofs of Proximity

A PCPP system [12,18] for a relation R is a tuple PCPP = (P, V) that works
as follows.

– The prover P is a probabilistic algorithm that, given as input an instance-
witness pair (x,w) with n := |x|, outputs a proof π : D(n) → Σ(n), where
both D(n) and Σ(n) are finite sets.

– The verifier V is a probabilistic oracle algorithm that, given as input an
instance x with n := |x| and with oracle access to a witness w and proof
π : D(n) → Σ(n), queries w and π at a few locations and then outputs a bit.

The system PCPP has (perfect) completeness, soundness error e, distance mea-
sure Δ, and proximity parameter d if the following two conditions hold. (Below,
we explicitly denote the prover’s and verifier’s randomness as rP and rV .)

Completeness: For every instance-witness pair (x,w) in the relation R,

Pr
rP ,rV

[
V (w,P (x,w;rP))(x; rV) = 1

]
= 1 .

Soundness: For every instance-witness pair (x,w), perhaps not in the language,
such that Δ(w,R|x) ≥ d(n) and proof π : D(n) → Σ(n),

Pr
rV

[
V (w,π)(x; rV) = 1

]
≤ e(n) .

A relation R belongs to the complexity class PCPP[a, l, q,Δ, d, e, tp, tv] if there
is a PCPP system for R in which:

– the answer alphabet (i.e., Σ(n)) is a(n),
– the proof length over that alphabet (i.e., |D(n)|) is at most l(n),

40 E. Ben-Sasson et al.

– the verifier queries the two oracles (codeword and proof) in at most q(n)
locations (in total),

– the distance measure is Δ,
– the proximity parameter is d(n),
– the soundness error is e(n),
– the prover runs in time tp(n), and
– the verifier runs in time tv(n).

Finally, we add the symbol na in the square brackets (i.e., we write
PCPP[. . . ,na]) if the queries to the oracles are non-adaptive (i.e., the queried
locations only depend on the verifier’s inputs).

2.3 Zero Knowledge PCPs

The notion of zero knowledge for PCPs was first considered in [19,28]. A PCP
system PCP = (P, V) for a relation R has perfect zero knowledge with knowledge
bound k if there exists an expected-polynomial-time probabilistic algorithm S
such that, for every k-query polynomial-time probabilistic oracle algorithm Ṽ ,
the following two distribution families are identical:

{S(Ṽ , x)}(x,w)∈R and {PCPView(Ṽ , P, x,w)}(x,w)∈R ,

where PCPView(Ṽ , π, x,w) is the view of Ṽ in its execution when given input x
and oracle access to π := P (x,w). The definition of statistical and computational
zero knowledge (with knowledge bound k) are similar: rather than identical, the
two distribution families are required to be statistically and computationally
close (as |x| grows), respectively.

A relation R belongs to the complexity class PCPpzk[a, l, q, e, tp, tv, k] if there
exists a PCP system for R that (i) puts R in PCP[a, l, q, e, tp, tv], and (ii) has
perfect zero knowledge with knowledge bound k; as for PCP, we add the symbol
na in the square brackets of PCPpzk if the queries to the proof are non-adaptive.
The complexity classes PCPszk and PCPczk are similarly defined for statistical
and computational zero knowledge.

The KPT Result. Kilian, Petrank, and Tardos proved the following theorem:

Theorem 2 [28].For every polynomial time function T : N → N, polynomial secu-
rity function λ : N → N, and polynomial knowledge bound function k : N → N,

NTIME(T) ⊆ PCPszk

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a = F2poly(λ)

l = poly(T, k)
q = poly(λ)
e = 2−λ

tp = poly(λ, T)
tv = poly(λ, T, k)
k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Remark 1. We make two remarks: (i) the symbol na does not appear above
because [28]’s construction relies on adaptively querying the proof; (ii) inspection
of [28]’s construction reveals that l(n) ≥ poly(T (n)) · k(n)6.

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 41

2.4 Reed–Muller and Reed–Solomon Codes

We define Reed–Muller and Reed–Solomon codes, as well as their “vanishing”
variants [15]; all of these are linear codes. We then state a theorem about PCPPs
for certain families of RS codes.

RM Codes. Let F be a finite field, H,V subsets of F, m a positive integer, and
a constant in (0, 1]; is called the fractional degree. The Reed–Muller code with
parameters F,H,m, is RM[F,H,m,] := {w : Hm → F | maxi∈[m] degXi

(w) <
|H|}; its message length is n = (|H|)m, block length is
 = |H|m, rate is
ρ = m, and relative distance is δ = 1 − . The vanishing Reed–Muller code
with parameters F,H,m, , V is VRM[F,H,m, , V] := {w ∈ RM[F,H,m,] |
w(V m) = {0}}; it is a subcode of RM[F,H,m,].

RS Codes. Let F be a finite field, H,V subsets of F, and a constant
in (0, 1]. The Reed–Solomon code with parameters F,H, is RS[F,H,] :=
RM[F,H, 1,]. The vanishing Reed–Solomon code with parameters F,H, , V
is VRS[F,H, , V] := {w ∈ RS[F,H,] | w(V) = {0}}.

Two RS Code Families and Their PCPPs. Given ∈ (0, 1], we denote by:
(i) RS∗

� the set of Reed–Solomon codes RS[F,H,] for which F has characteristic
2 and H is an F2-affine space; and (ii) VRS∗

� the set of vanishing Reed–Solomon
codes VRS[F,H, , V] for which F has characteristic 2 and H is an F2-affine space.
The following theorem is from [10,15] (the prover running time is shown in [10]
and the other parameters in [15]).

Theorem 3. For every security function λ : N → N, ∈ (0, 1), and s > 0,

Rel(RS∗
�) , Rel(VRS∗

�) ∈ PCPP

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a = F2s+log �

l = Õ(
)
q = λ · polylog(
)
Δ = ΔHam

a

d = /2
e = 2−λ

tp = poly(s) · Õ(
)
tv = λ · poly(s + log
)
na

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We will also require the following folklore claim, whose correctness can be
proved by induction on m:

Claim. Let F be a finite field, H,V subsets of F with H∩V = ∅, m a positive inte-
ger, and t a positive integer not exceeding |H|−|V |. Then VRM[F,H,m, |V |+t

|H| , V]
is t-wise independent.

3 Duplex PCPs

We define duplex PCPs, and then define notions of zero knowledge for this
model. Our main theorem is the construction of a duplex PCP with certain

42 E. Ben-Sasson et al.

parameters; see Sect. 4. The difference between a PCP and a duplex PCP is that
all provers (both honest and malicious) produce two proof oracles rather than
one: the prover produces a proof π0; then the verifier sends a message ρ to the
prover; then the prover produces another proof π1; finally the verifier queries
both π0 and π1 and either accepts or rejects. (Thus, a PCP is a special case of
a duplex PCP, but not vice versa.) More precisely, a duplex PCP system for a
relation R is a tuple DPCP = (P, V) that works as follows.

– The prover P is a pair (P0, P1) of probabilistic algorithms, with shared
randomness, where: (a) given as input an instance-witness pair (x,w) with
n := |x|, P0 outputs a proof π0 : D0(n) → Σ(n); (b) given as input (x,w) and
the verifier’s message ρ (see below), P1 outputs a proof π1 : D1(n) → Σ(n).
Here D0(n),D1(n), Σ(n) are finite sets.

– The verifier V is a pair (V0, V1) of probabilistic algorithms, with shared ran-
domness, where: (a) given as input an instance x with n := |x|, V0 out-
puts a message ρ; (b) given as input x and with oracle access to proofs
π0 : D0(n) → Σ(n) and π1 : D1(n) → Σ(n), V1 queries π0 and π1 at a few
locations and then outputs a bit.

The system DPCP has (perfect) completeness and soundness error e(n) if the
following two conditions hold. (Below, we explicitly denote the prover’s and
verifier’s randomness as rP and rV .)

Completeness: For every instance-witness pair (x,w) in the relation R,

Pr
rP ,rV

⎡

⎣V π0,π1
1 (x; rV) = 1

∣
∣
∣
∣
∣
∣

π0 ← P0(x,w; rP)
ρ ← V0(x; rV)

π1 ← P1(x,w, ρ; rP)

⎤

⎦ = 1 .

Soundness: For every instance x not in the language Lan(R) and pair of algo-
rithms P̃ = (P̃0, P̃1),

Pr
rV

⎡

⎣V π0,π1
1 (x; rV) = 1

∣
∣
∣
∣
∣
∣

π0 ← P̃0

ρ ← V0(x; rV)
π1 ← P̃1(ρ)

⎤

⎦ ≤ e(n) .

A relation R belongs to the complexity class DPCP[a, l, q, e, tp, tv] if there is a
DPCP system for R in which:

– the answer alphabet (i.e., Σ(n)) is a(n),
– the proof length over that alphabet (i.e., (|D0(n)| + |D1(n)|)) is at most l(n),
– the verifier queries the two proofs in at most q(n) locations (in total),
– the soundness error is e(n),
– the prover runs in time tp(n), and
– the verifier runs in time tv(n).

Finally, we add the symbol na in the square brackets (i.e., we write
DPCP[. . . ,na]) if the queries to the proof are non-adaptive (i.e., the queried
locations only depend on the verifier’s inputs).

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 43

Zero Knowledge. A DPCP system DPCP = (P, V) for a relation R has perfect
zero knowledge with knowledge bound k if there exists an expected-polynomial-
time probabilistic algorithm S such that for every pair of polynomial-time prob-
abilistic oracle algorithms Ṽ := (Ṽ0, Ṽ1) the following two distribution families
are identical:

{S(Ṽ , x)}(x,w)∈R and {DPCPView(k, Ṽ , P, x,w)}(x,w)∈R ,

where DPCPView(k, Ṽ , P, x,w) is the view of Ṽ1 in its execution when given
input x and when allowed to make a total of k(n) adaptive queries to π0, π1, where
π0 := P0(x,w) and π1 := P1(x,w, Ṽ π0

0 (x)). (As above, P0, P1 share the same
randomness rP ; ditto for Ṽ0, Ṽ1.) The definition of statistical and computational
zero knowledge (with knowledge bound k) are similar: rather than identical, the
two distribution families are required to be statistically and computationally
close (as |x| grows), respectively.

4 Main Theorem

The main result of this paper is the following.

Theorem 4. For every polynomial time function T : N → N, polynomial knowl-
edge bound function k : N → N,

NTIME(T) ⊆ DPCPpzk

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a = F2O(log(T+k))

l = Õ(T + k)
q = polylog(T + k)
e = 1

2

tp = poly(n) · Õ(T + k)
tv = poly(n + log(T + k))
k
na

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

A Corollary. The theorem above implies that, fixing T , the prover running time
is merely quasilinear in the knowledge bound k, while the verifier running time
increases only polylogarithmically in k. This leads to an intriguing corollary: a
poly-logarithmic computational overhead of the prover over the verifier is all
that is needed to maintain perfect zero knowledge in the duplex PCP model. We
state this formally next.

Corollary 1. For every polynomial time function T : N → N and relation R ∈
NTIME(T), there is a constant c such that, for every function tv : N → N with
tv(n) ≥ n · (log T (n))c, there is a DPCP system with:

– completeness 1 and soundness 2−tv(n)/polylog(T (n));
– perfect zero knowledge;
– the verifier running time is tv(n) and prover running time is tp(n) :=

max{T (n) · (log T (n))c, tv(n) · (log tv(n))c}.
The verifier has no limitations other than a bound on its running time (its query
complexity can be as large as tv(n)).

44 E. Ben-Sasson et al.

4.1 Proof Sketch

Let R be a relation in NP, and let (x,w) be an instance-witness pair in R.
The prover and verifier both know x, while the prover also knows w. The prover
wishes to convince the verifier that he knows a witness w for x, in such a way
that the verifier does not learn anything about w (beyond what can be inferred
from the prover’s claim).

The KPT Approach. We introduce our ideas by contrasting them with those
of [28]. Suppose that the prover wishes to convince the verifier by sending him a
PCP proof π = π(w) such that any k values in π do not reveal anything about w.
Loosely speaking, [28] (building on [19]) provide a probabilistic transformation
that maps the PCP proof π to a new proof π′, in which each bit of π is “hidden”
amongst many bits of π′. The main tool employed in the transformation is a
locking scheme, and its use imposes certain limitations: (i) the new proof π′

is poly(k) larger than the original one (k6 by inspection of [19,28]); (ii) zero
knowledge holds only statistically, but not perfectly, because a malicious verifier
can be “lucky” and obtain information on the bit of π being locked with fewer
queries to π′ than expected.

Our Approach (Ideally). We take a different approach: apply a “local” PCP
to a “random” witness, as we now explain. Suppose that π = π(w) is (t, k)-local,
i.e., any k positions of the PCP proof π jointly depend on at most t positions of
the witness w. Note that, even if π is (t, k)-local, a single bit of π can still leak
information about w. So suppose further that the relation R is t-randomizable:
given (x,w) ∈ R, one can efficiently sample a witness w′ from a t-wise indepen-
dent subset of the set of witnesses for x. In such a case, the prover can produce
a zero-knowledge PCP as follows: (1) sample a witness w′ from the t-wise inde-
pendent subset; then (2) send to the verifier the PCP proof π = π(w′). Indeed,
the locality of π ensures that seeing any k indices of π reveals nothing about
w, because these k indices are a function of t random bits. In sum, if we had a
(t, k)-local PCP for a t-randomizable relation R, then we could obtain a PCP
for R that is zero knowledge against verifiers that ask at most k queries.

Our Approach (in Reality). Unfortunately, we do not know how to obtain
local PCPs for randomizable relations. However, we are able to obtain “par-
tially local” duplex PCPs for certain randomizable relations, and also show that
NTIME can be efficiently reduced to these randomizable relations, as we now
explain.

Our starting point are algebraic PCPs: certain PCPs that prove satisfiability
of algebraic problems (APs) [34]. Numerous known PCP constructions can be
viewed as algebraic PCPs. Informally, in this work we make two basic obser-
vations: (i) algebraic PCPs exist for certain randomizable relations; and (ii) an
algebraic PCP proof can be split in two parts, one part is local, while the other
part is not local but enjoys convenient linear algebraic properties that, neverthe-
less, enable us to hide information about the witness, in the duplex PCP model.
(Recall that, in the duplex PCP model, the prover produces a proof π0; then the

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 45

verifier sends a message ρ to the prover; then the prover produces another proof
π1; finally the verifier queries both π0 and π1 and either accepts or rejects.)

In more detail, from a technical viewpoint, we proceed as follows. First,
we introduce a family of constraint satisfaction problems (CSPs) called linear
algebraic CSPs, and show that NTIME is efficiently reducible to randomizable
linear algebraic CSPs. The reduction consists of two parts: we go through an
intermediary that we call group preserving algebraic problems (GAPs), a spe-
cial case of APs that we believe to be of independent interest for the study of
algebraic PCPs. Second, we construct a duplex PCP system for randomizable
linear algebraic CSPs that is zero knowledge against verifiers that ask at most
a certain number of queries.

A Technical Piece: Zero-Knowledge Duplex PCPP for Low-
Degreeness. Later sections address all of the above steps (see Sect. 4.2 for
a roadmap of these), and for now we only sketch one of these steps. Above we
mention that an algebraic PCP proof has two parts: a local part, and a non-local
part. This latter part of the proof arises from a central component of many PCP
proofs: a PCP of proximity (PCPP) [13,18] that facilitates low-degree testing.
Informally, given a function f : H → F and an integer d, a PCPP for degree d is
a proof π(f) that f is ε-close to an evaluation of a polynomial degree at most
degree d. We explain how to transform a PCPP for low-degreeness into a duplex
PCPP for low-degreeness that is zero knowledge against verifiers that make at
most t queries.

The set C of functions f : H → F that are evaluations of a polynomial of
degree at most d is a subspace of F|H|. The basic idea is that, in order for the
prover to convince the verifier that a function f is close to C, it suffices for
the prover to convince the verifier that a random offset of f is close to C: one
can verify that, for any u : H → F, if f is ε-far from C, then αf + u is ε/2-far
from C, with probability 1 − |F|−1 over a random α ∈ F. Hence, we can let the
duplex PCP work as follows: (i) the prover samples a witness w′ from the t-wise
independent subset, chooses a random u ∈ C, and sends π0 := (w′, u) to the
verifier; (ii) the verifier sends to the prover a random α ∈ F; (iii) the prover
sends π1 = (v, π(v)) to the verifier, where v := αw′ + u and π(v) is a PCPP for
low-degreeness of v; (iv) the verifier runs the PCPP verifier on (v, π) to check
that v is close to C, and then checks that vi = αw′

i +ui for a few random indices
i in {1, . . . , |H|}.

Let us discuss the various properties of the duplex PCPP.

– Completeness: If w ∈ C, then αw′ + u ∈ C; therefore, the prover convinces
the verifier.

– Zero-knowledge: If the verifier asks at most t queries, then he learns noth-
ing about w because: π0 = (w′, u) contains w′ sampled from a t-wise inde-
pendent subset and u random in C; π1 = (v, π(v)) is running the PCPP on a
vector v that is random in C.

– Soundness: If v does equal α · w + u, then the verifier rejects with high
probability because v is far from C (and the PCPP verifier rejects π with
high probability). If instead v does not equal α ·w+ u, then the fact that v is

46 E. Ben-Sasson et al.

close to C does not prove anything about whether w is also close. So, in this
case, we need to reason about the success probability of the verifier’s linearity
tests: if these pass with enough probability, then with high probability v is
close to αw+u, which again suffices for our purpose. Overall, soundness holds.

Next, we discuss how the technical sections are organized, and how they come
together to yield our main theorem.

4.2 Roadmap of the Rest of the Paper

The rest of the paper is dedicated to turn the above intuition into a more formal
proof. To do so, we introduce various intermediate steps, as follows.

– In Sect. 5, we introduce linear algebraic CSPs (a family of constraint satis-
faction problems), and then describe how to obtain a canonical PCP for any
linear algebraic CSP.

– In Sect. 6, we introduce randomizable linear algebraic CSPs, a subfamily of
linear algebraic CSPs; then we show that, for every randomizable linear alge-
braic CSP, we can convert the CSP’s canonical PCP into a corresponding
zero-knowledge duplex PCP, incurring only little overheads.

– In Sect. 7, we show an efficient reduction from NTIME to randomizable linear
algebraic CSPs; along the way, we introduce a family of algebraic problems,
having special symmetry properties, that we believe to be of independent
interest (e.g., for studying other questions about PCPs).

Combining (i) the efficient reduction from NTIME to randomizable linear alge-
braic CSPs together with (ii) the zero-knowledge duplex PCP for such problems
yields Theorem 4. In Sect. 8 we provide details about how these components are
combined.

5 Linear Algebraic CSPs and Their Canonical PCPs

We introduce linear algebraic CSPs, a family of constraint satisfaction problems;
then we describe how to obtain a canonical PCP for any linear algebraic CSP.

5.1 Linear Algebraic Constraint Satisfaction Problems

A constraint satisfaction problem asks whether, for a given “local” function g,
there exists an input α such that g(α) is an “accepting” output. For example, in
the case of 3-SAT with n variables and m clauses, the function g maps {0, 1}n

to {0, 1}m, and g(α) indicates which clauses are satisfied by α ∈ {0, 1}n; hence
α yields an accepting output if (and only if) g(α) = 1m. Below we introduce a
family of constraint satisfaction problems whose domain and range are linear-
algebraic objects, namely, linear error correcting codes.

We begin by providing the notion of locality that we use for g; we also provide
two other notions, one for the efficiency of computing a single coordinate of g’s
output, and another for measuring g’s “pseudorandomness”.

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 47

Definition 1. Let g : Σn → Σm be a function. We say that g is:

– q-local if for every j ∈ [m] there exists Ij ⊆ [n] with |Ij | ≤ q such that g(α)[j]
(the j-th coordinate of g(α)) depends only on α|Ij

(the restriction of α to Ij);
– c-efficient if there is a time c algorithm that, given j and α|Ij

, computes the
set Ij and value g(α)[j];

– (γ, ε)-sampling if Pr[Ij ∩I �= ∅ | j ← [m]] ≤ γ for every I ⊆ [n] with |I|/n ≤ ε.

Next we introduce RLA, the relation of linear algebraic CSPs:

Definition 2 (RLA). Given functions f : N → F ,
, q, c : N → N, and
ρ, δ, γ, ε : N → (0, 1], the relation

RLA[f,
, ρ, δ, q, c, γ, ε]

consists of instance-witness pairs (x,w) satisfying the following.

– The instance x is a tuple (1n, C◦, C•, g) where:
• C◦, C• are linear error correcting codes with block lengths
◦(n),
•(n) at

most
(n), each with rate at most ρ(n) and relative distance at least δ(n)
over the same field f(n);

• g : f(n)�◦(n) → f(n)�•(n) is a q(n)-local, c(n)-efficient, (γ(n), ε(n))-
sampling function;

• C• ∪ g(C◦) has relative distance at least δ(n) (though may not be a linear
space).

– The witness w is a tuple (α◦, α•) where α◦ ∈ f(n)�◦(n) and α• ∈ f(n)�•(n).
– The instance x and witness w jointly satisfy the following: α◦ ∈ C◦, α• ∈ C•,

and g(α◦) = α•.

We prove a simple claim about instances not in the language Lan(RLA), which
we use several times later on.

Claim. For every instance x = (1n, C◦, C•, g) not in the language Lan(RLA) and
(candidate) witness w̃ = (α̃◦, α̃•) ∈ f(n)�◦(n) × f(n)�•(n) at least one of the
following holds:

– at least one of α̃◦ and α̃• is ε-far in relative Hamming distance from C◦ or
C•, respectively; or

– there exist α◦ ∈ C◦ and α• ∈ C• such that α̃◦ and α̃• are ε-close to α◦ and
α•, respectively, but g(α◦) �= α•.

Proof. If neither of the two cases hold, then there exist α◦ ∈ C◦ and α• ∈ C• such
that g(α◦) = α•. But then (α◦, α•) is a satisfying assignment for x, contradicting
our assumption that x is not in the language Lan(RLA).

Finally we need notation for referring to codes appearing in instances of RLA:

Definition 3. Given R ⊆ RLA, we denote by

– CR,◦ the set of codes C for which there is an instance x = (1n, C◦, C•, g) in
the relation R with C = C◦;

– CR,• the set of codes C for which there is an instance x = (1n, C◦, C•, g) in
the relation R with C = C•.

48 E. Ben-Sasson et al.

5.2 A Canonical PCP for Linear Algebraic CSPs

We show how to construct a “canonical” PCP system for instances in RLA (the
relation of linear algebraic CSPs). At a high level, a canonical PCP proof for
a RLA-instance x consists of a witness w = (α◦, α•) concatenated with two
PCPP proofs π◦, π•, showing that α◦, α• are close to C◦, C• respectively. The
canonical PCP verifier first checks the two PCPP proofs and then checks that
g(α◦)[j] = α•[j] for a uniformly random j ∈ [
•].

Definition 4. Given (i) a relation R ⊆ RLA, (ii) a PCPP system PCPP◦ =
(P◦, V◦) for Rel(CR,◦), and (iii) a PCPP system PCPP• = (P•, V•) for
Rel(CR,•), the canonical PCP system for the triple (R,PCPP◦,PCPP•) is the
PCP system PCP = (P, V) constructed as follows.

– Prover. Given (x,w) ∈ RLA, the PCP prover P outputs π := (w, π◦, π•)
where π◦ := P◦(C◦, α◦) and π• := P•(C•, α•). In other words, the PCP prover
outputs a PCP proof that is the concatenation of the witness w = (α◦, α•) and
a pair of PCPP proofs, the first proving that α◦ ∈ C◦ and the second proving
that α• ∈ C•.

– Verifier. Given x and oracle access to a PCP proof π = (w, π◦, π•), the PCP
verifier V works as follows:

• (proximity) check that V
(α◦,π◦)◦ (C◦) and V

(α•,π•)• (C•) both accept;
• (consistency) check that g(α◦)[j] = α•[j] for a uniformly random j ∈ [
•].

The next lemma says that the above construction is a PCP system when
RLA’s parameters are sufficiently “good”.

Lemma 1 (RLA → PCP). Suppose that R is a relation that satisfies the fol-
lowing conditions:

(i) R ⊆ RLA[f1,
1, ρ1, δ1, q1, c1, γ1, ε1] with ε1 < min{ δ1
2 , δ1 − γ1};

(ii) Rel(CR,◦),Rel(CR,•) ∈ PCPP[a2, l2, q2,ΔHam
a2 , d2, e2, tp2, tv2,na?] with a2 =

f1 and d2 ≤ ε1.

Then there is a canonical PCP system for a triple (R,PCPP◦,PCPP•) that yields

R ∈ PCP

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a = f1 (= a2)
l = 2l2(
1) + 2
1
q = 2q2(
1) + q1 + 1
e = max{1 − δ1 + γ1 + ε1, e2}
tp = 2tp2(
1)
tv = 2tv2(
1) + c1 + log
1
na?

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Above, na? denotes the fact that if the PCPP systems are non-adaptive so is the
canonical PCP system.

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 49

Proof (Proof of Lemma 1). First, we show that the canonical PCP system satis-
fies completeness and soundness; afterwards, we discuss the efficiency parameters
achieved by it.

Completeness. Consider an instance-witness pair (x,w) in the relation R.
Parse the instance x as (1n, C◦, C•, g) and the witness w as (α◦, α•). Since
(x,w) ∈ R, we have that α◦ ∈ C◦, α• ∈ C•, and g(α◦) = α•. Therefore,
the PCP proof (w, π◦, π•) generated by the PCP prover is accepted by the PCP
verifier with probability 1: the PCPP verifiers V

(α◦,π◦)◦ (C◦) and V
(α•,π•)• (C•)

always accept and g(α◦)[j] = α•[j] for every j ∈ [
•].

Soundness. Consider an instance x not in the language Lan(R) and a PCP
proof π̃ = (w̃, π̃◦, π̃•). Parse the instance x as (1n, C◦, C•, g) and the wintess w̃,
inside π̃, as (α̃◦, α̃•). We use Claim in Sect. 5.1 to prove that V accepts π̃ with
probability at most max{1 − δ1 + γ + ε1, e2}, by considering the following three
cases.

– Case 1: α̃◦ is ε1-far in relative Hamming distance from C◦. The canonical
PCP verifier’s proximity test fails, because ΔHam

a (α̃◦, C◦) ≥ ε1 ≥ d2, and so
the PCPP verifier V

(α◦,π̃◦)◦ (C◦) accepts with probability at most e2.
– Case 2: α̃• is ε1-far in relative Hamming distance from C•. This case is anal-

ogous to the previous one.
– Case 3: there exist α◦ ∈ C◦ and α• ∈ C• with ΔHam

a (α◦, α̃◦) ≤ ε1 and
ΔHam

a (α•, α̃•) ≤ ε1.
First, since ε1 is less than δ1/2 (the unique decoding radius of C◦ and C•),
the codewords α◦ and α• are unique.
Next, we claim that α′

• := g(α◦) and g(α̃◦) are γ1-close. Indeed, since g is
(γ1, ε1)-sampling, α◦ and α̃◦ differ in at most ε1 ·
◦(n) positions, and so at
most γ1 ·
•(n) positions of g(α̃◦) depend on an index where α◦ and α̃◦ differ.
Next, we claim that ΔHam

a (α•, α′
•) ≥ δ1. Indeed, we have that α• �= α′

• because
otherwise (α◦, α•) would be a satisfying assignment for x (contradicting the
assumption that x �∈ Lan(R)); moreover, we also have that C• ∪ g(C◦) has
relative distance at least δ1.
We now use the triangle inequality, along with the above observations, to
obtain that

δ1Δ
Ham
a (α•, α′

•) ≤ ΔHam
a (α•, α̃•) + ΔHam

a (α̃•, g(α̃◦)) + ΔHam
a (g(α̃◦), α′

•)

≤ ε1 + ΔHam
a (α̃•, g(α̃◦)) + γ1 .

Thus, ΔHam
a (α̃•, g(α̃◦)) ≥ δ1 − (γ1 + ε1), and so the canonical PCP verifier’s

consistency check passes with probability at most 1 − δ1 + γ1 + ε1.

We conclude that V accepts π̃ with probability at most max{1−δ1+γ1+ε1, e2}.

Other Parameters. The remaining parameters are straightforward to estab-
lish. The canonical PCP does not change the alphabet, so a = f1 (which also
equals a2). The proof length, and the running times of the prover and verifier
are the sum of the same measures of the canonical PCP’s components: the PCP

50 E. Ben-Sasson et al.

proof has l = 2l2(
1) + 2
1 symbols, is produced in time tp = 2tp2(
1), and is
verified in time tv = 2tv2(
1)+c1+O(1). The canonical PCP verifier makes q1+1
queries on top of those made by the PCPP verifiers, so its query complexity is
q = 2q2(
1) + q1 + 1. The q1 + 1 additional queries are non-adaptive; so if the
PCPP verifiers are non-adaptive, so is the canonical PCP verifier.

6 Zero-Knowledge Duplex PCPs from Randomizable
Linear Algebraic CSPs

We introduce randomizable linear algebraic CSPs, a subfamily of linear algebraic
CSPs. Then we show that, for every randomizable linear algebraic CSP, we can
convert the CSP’s canonical PCP into a corresponding zero-knowledge duplex
PCP, incurring only little overheads.

6.1 Randomizable Linear Algebraic CSPs

The definition below specifies the notion of randomizability for linear algebraic
CSPs.

Definition 5 (RRLA). The relation RRLA[f,
, ρ, δ, q, c, γ, ε, t, r] is the sub-
relation of RLA[f,
, ρ, δ, q, c, γ, ε] obtained by restricting it to instances that are
t-randomizable in time r. An instance x = (1n, C◦, C•, g) is t(n)-randomizable in
time r(n) if: (i) there exists a t(n)-wise independent subcode C ′ ⊆ C◦ such that
if (w◦, g(w◦)) satisfies x, then, for every w′

◦ in C ′ + w◦ := {w′ + w◦ | w′ ∈ C ′},
the witness (w′

◦, g(w′
◦)) satisfies x; and (ii) one can sample, in time r(n), three

uniformly random elements in C ′, C◦ and C• respectively.

6.2 Construction of Zero-Knowledge Duplex PCPs

We construct a zero-knowledge duplex PCP system for randomizable linear alge-
braic CSPs. The duplex PCP system does little more than invoking, as a subrou-
tine, the canonical PCP system for the linear algebraic CSP; hence, the efficiency
of the duplex PCP and of the canonical PCP system are closely related. The
construction demonstrates that “adding zero knowledge to an algebraic PCP”
is cheap, provided that one moves from the PCP model to the (more general)
duplex PCP model. More precisely, we prove the following theorem.

Theorem 5 (RRLA → DPCPpzk). Suppose that R is a relation that satisfies
the following conditions:

(i) R ⊆ RRLA[f1,
1, ρ1, δ1, q1, c1, γ1, ε1, t1, r1] with ε1 < min{ δ1
2 , δ1 − γ1} and r1

polynomially bounded;
(ii) Rel(CR,◦),Rel(CR,•) ∈ PCPP[a2, l2, q2,ΔHam

a2 , d2, e2, tp2, tv2,na?] with
a2 = f1 and d2 ≤ ε1/4.

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 51

Then there is a duplex PCP system for R that yields

R ∈ DPCPpzk

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a = f1 (= a2)
l = 2l2(�1) + 6�1
q = 2q2(�1) + q1 + 7
e = max{1 − δ1 + γ1 + ε1 , (1 − |f1|−1) · max{e2, ε1/4} + |f1|−1}
tp = 2tp2(�1) + (c1 + 5)�1 + r1
tv = 2tv2(�1) + c1 + log �1
k = t1/q1
na?

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Above, na? denotes the fact that if the PCPP systems are non-adaptive so is
the duplex PCP system.

Proof. We prove the claim by constructing a suitable duplex PCP system
DPCP = (P, V) for the relation R. Recall that: the prover P is a pair of algo-
rithms (P0, P1), and the verifier V is also a pair of algorithms (V0, V1); moreover,
an instance x of R is of the form (1n, C◦, C•, g), while a witness w of R is of
the form (α◦, α•); finally, randomizability implies that there is a t(n)-wise inde-
pendent subcode C ′ ⊆ C◦ such that if (w◦, g(w◦)) satisfies x then so does the
witness (w′

◦, g(w′
◦)), for every w′

◦ in C ′ + w◦.
We now describe the construction of the duplex PCP system DPCP = (P, V):

– P0(x,w) → π0

Sample uniformly random v◦ ∈ C◦, v• ∈ C•, u′ ∈ C ′; compute w◦ := u′ + α◦,
w• := g(w◦) and output π0 := (w◦‖v◦‖w•‖v•).

– V0(x) → ρ
Sample uniformly random ρ◦, ρ• ∈ f1, and output ρ := (ρ◦, ρ•).

– P1(x,w, ρ) → π1

Compute z◦ := ρ◦w◦ + v◦ and z• := ρ•w• + v•; compute π◦ := P◦(C◦, z◦)
and π• = P•(C•, z•); and output π1 := (z◦‖z•‖π◦‖π•). (Essentially, this step
corresponds to running the canonical PCP prover with respect to a uniformly
random pair (z◦, z•) in (C◦, C•).)

– V π0,π1
1 (x) → b

Conduct the following tests (and reject if any of them fails):
• (proximity) check that V

(z◦,π◦)◦ (C◦) and V
(z•,π•)• (C•) both accept;

• (consistency) check that g(w◦)[j] = w•[j] for a random j ∈ [
•];
• (linearity) check that z◦[i] = ρ◦w◦[i] + v◦[i] and z•[k] = ρ•w•[k] + v•[k]

for random i ∈ [
◦(n)] and k ∈ [
•(n)].
(Essentially the first two steps correspond to running the canonical PCP ver-
ifier on modified inputs, while the third step consists of two linearity tests.)

Having described the duplex PCP system, we now show that it satisfies com-
pleteness, soundness and zero-knowledge; afterwards, we discuss the efficiency
parameters achieved by it.

Completeness. Consider an instance-witness pair (x,w) in the relation R.
Since (x,w) ∈ R, we have that α◦ ∈ C◦, α• ∈ C•, and g(α◦) = α•. Since w◦ ∈
C ′ +α◦ and R is randomizable, we have that (w◦, w•) := (w◦, g(w◦)) satisfies x;

52 E. Ben-Sasson et al.

thus V1’s consistency check passes with probability 1. Since the codes C◦ and C•
are linear and w◦, v◦ ∈ C◦, w•, v• ∈ C•, we have that z◦ := ρ◦w◦ + v◦ ∈ C◦ and
z• := ρ•w• + v• ∈ C•; thus the PCPP verifiers V

(z◦,π◦)◦ (C◦) and V
(z•,π•)• (C•)

accept with probability 1. Finally, by construction of z◦ and z•, V1’s linearity
tests also accept with probability 1. We conclude that the duplex PCP system
described above has perfect completeness.

Soundness. Consider an instance x not in the language Lan(R). Fix an
arbitrary proof string π̃0 = (w̃◦‖ṽ◦‖w̃•‖ṽ•), and let the proof string π̃1 =
(z̃◦‖z̃•‖π̃◦‖π̃•) depend arbitrarily on the verifier message ρ = (ρ◦, ρ•). We use
Claim in Sect. 5.1 with respect to the instance x and witness (w̃◦, w̃•) and dis-
tinguish between three cases below.

– Case 1: w̃◦ is ε1-far in relative Hamming distance from C◦.
Claim in Sect. 2 implies that z′

◦ := ρ◦w̃◦ + ṽ◦ is ε1/2-far from C◦, with prob-
ability 1 − |f1|−1 over a random choice of ρ◦. Let θ := ΔHam

a (z′
◦, z̃◦) and

η := ΔHam
a (z̃◦, C◦). By the triangle inequality, θ + η ≥ ΔHam

a (z′
◦, C◦) ≥ ε1/2;

hence, at least one of the inequalities θ ≥ ε1/4 and η ≥ ε1/4 holds. In the
former case, V1’s first linearity test accepts with probability at most 1− ε1/4;
in the latter case, the PCPP verifier V

(z̃◦,π̃◦)◦ (C◦) for V1’s first proximity test
accepts with probability at most e2, as ΔHam

a (z̃◦, C◦) ≥ ε1/4 ≥ d2.
– Case 2: w̃• is ε1-far in relative Hamming distance from C•.

This case is analogous to the previous one.
– Case 3: there exist w◦ ∈ C◦ and w• ∈ C• with ΔHam

a (w◦, w̃◦) ≤ ε1 and
ΔHam

a (w•, w̃•) ≤ ε1.
In this case we follow the very end of the soundness analysis in Lemma1’s
proof, replacing α̃◦, α̃• there with w̃◦, w̃•, and conclude that the verifier
accepts with probability at most 1 − δ1 + γ1 + ε1.

Summing up, in the first case the verifier’s acceptance probability is at most
(1 − |f1|−1) · max{e2, ε1/4} + |f1|−1; similarly for the second case. In the third
case the rejection probability is 1 − δ1 + γ1 + ε1, that of the canonical PCP
consistency verifier. This completes the soundness analysis.

Zero Knowledge. We construct a simulator S that yields perfect zero knowl-
edge with knowledge bound k. Consider an instance-witness pair (x,w) in the
relation R, and a malicious verifier Ṽ = (Ṽ0, Ṽ1) making at most k adaptive
queries. S(Ṽ , x), the output of the simulator S, when given as input Ṽ and x,
has to be identically distributed to DPCPView(k, Ṽ , P, x,w), which is the view of
Ṽ1 in its execution when given input x and when allowed to make a total of k(n)
adaptive queries to π0, π1, where π0 := P0(x,w) and π1 := P1(x,w, Ṽ π0

0 (x)). In
fact, we will prove a stronger statement: the output of the simulator continues to
exactly match the view of the verifier, interacting with the honest prover, even
if the verifier is allowed unbounded access to π1, provided that Ṽ makes at most
k queries to π0.

We now discuss how S works. At a high level, S treats Ṽ as a black box,
running it once without rewinding; along the way, S samples suitable answers

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 53

for each query (as discussed below); when Ṽ halts, S outputs all the answers and
Ṽ ’s randomness (which together form the view of the verifier). The simulator S
runs in strict polynomial time, without ever aborting. We now describe how S
answers each query.

The simulator S maintains a proof string πS that is initially unspecified at
all locations; we write πS [i] = ∗ if the i-th location of this proof string is unspec-
ified. During the simulation, S adaptively specifies locations in πS as a result of
answering Ṽ ’s queries; this specification process is definitive, in the sense that
queries to locations that have been previously specified are answered consistently
with the previously-specified value. We now discuss how S adaptively specifies
locations in πS . We distinguish between two parts of the simulation: before the
point when Ṽ sends his message ρ, and only queries to π0 are possible; and
afterwards, when queries to both π0 and π1 are possible.

– Simulating answers to π0 = (w◦‖v◦‖w•‖v•), before Ṽ outputs ρ̃ = (ρ̃◦, ρ̃•).
1. For a query j ∈ [�◦] to w◦[j]: if unspecified, answer with a random field element.

That is, if wS
◦ [j] = ∗, then sample a random β ∈ f1 and set wS

◦ := β.
2. For a query j ∈ [�◦] to v◦[j]: if unspecified, answer with a random field element.

That is, if vS
◦ [j] = ∗, then sample a random γ ∈ f1 and set vS

◦ [j] = γ. Then
check if there are any unspecified locations of vS

◦ that are determined by the
linear constraint “vS

◦ ∈ C◦” and the currently specified locations of vS
◦ ; if there

are, set these accordingly.
3. For a query j ∈ [�•] to w•[j]: if unspecified, (i) compute the set Ij ⊆ [�◦] of

locations on which g(wS
◦)[j] depends (see Definition 2); (ii) deduce wS

◦ |Ij by

querying each i ∈ Ij according to Step 1; and (iii) set wS
• [j] := g(wS

◦ |Ij).
4. For a query j ∈ [�•] to v•[j]: answer in an analogous way to the case of a query

j ∈ [�◦] to v◦.
– Simulating answers to π0 = (w◦‖v◦‖w•‖v•) and π1 = (z◦‖z•‖π◦‖π•), after Ṽ out-

puts ρ̃ = (ρ̃◦, ρ̃•).
5. After receiving ρ̃ = (ρ̃◦, ρ̃•), immediately do the following:

(a) sample a random zS
◦ ∈ C◦ under the constraint “zS

◦ [i] = ρ̃◦wS
◦ [i] + vS

◦ [i] for
all i s.t. wS

◦ [i] �= ∗ ∧ vS
◦ [i] �= ∗”;

(b) sample a random zS
• ∈ C• under the analogous constraint;

(c) compute πS
◦ := P◦(C◦, zS

◦);
(d) compute πS

• := P•(C•, zS
•).

6. All queries to z◦, z•, π◦, π• are answered according to the values specified in
Step 5.

7. For a query j ∈ [�◦] to w◦[j] or v◦[j]: if both are unspecified, answer with
a random field element; otherwise, the one that is unspecified is determined
according to the constraint zS

◦ [i] = ρ̃◦wS
◦ [i] + vS

◦ [i] (except that, if ρ̃◦ = 0, then
answer according to the constraint zS

◦ [i] = vS
◦ [i] by setting wS [i] to be a random

field element).
8. For a query j ∈ [�•] to w•[j]: answer analogously to Step 3, except that sub-

queries to w◦[j] follow Step 7.
9. For a query j ∈ [�•] to v•[j]: compute wS

• [j] as in Step 8 and set vS
• [j] :=

ρ̃•wS
• [j] − zS

• [j].

We claim that the above simulation achieves perfect zero-knowledge, that
is, S(Ṽ , x) is identically distributed to DPCPView(k, Ṽ , P, x,w). We show that

54 E. Ben-Sasson et al.

the distribution of answers provided by the simulation to Ṽ is the same as the
distribution of answers obtained by Ṽ from the oracles provided by the honest
prover. First, we discuss the answers to queries asked before Ṽ sends ρ̃ = (ρ̃◦, ρ̃•),
which can only be to the oracle π0 = (w◦‖v◦‖w•‖v•):

(i) In an honest proof, v◦ and v• are random in C◦ and C•, respectively. The
simulator answers a query to either of these by selecting a random field ele-
ment and then propagating to other locations the linear constraints imposed
by belonging to the linear code.

(ii) In an honest proof, w◦ is computed as w◦ := u′ +α◦, where u′ is random in
C ′. Any t values from a random codeword in C ′ are distributed identically to
t random field elements, because C ′ is t-wise independent. The queries of Ṽ
determine at most k·q = t locations of w◦. Hence, in an honest proof, Ṽ gets
uniformly random answers for its queries to w◦; this matches the simulated
view where S answers Ṽ ’s queries to w◦ with random fields elements.

(iii) In an honest proof, w• is a deterministic function of w◦: w• := g(w◦). As
described above, the ≤ t positions of w◦ determined by the verifier’s ques-
tions are uniformly random in the honest proof, as well as in the simulated
proof. Therefore the honest and the simulated views of w• are identically dis-
tributed, as deterministic functions of identically distributed random vari-
ables.

Next, we discuss the answers to queries asked after Ṽ sends ρ̃ = (ρ̃◦, ρ̃•); now Ṽ
can query both π0 = (w◦‖v◦‖w•‖v•) and π1 = (z◦‖z•‖π◦‖π•).

In an honest proof, answers to verifiers queries after sending ρ̃ are from an uni-
form distribution of v◦ ∈ C◦, v• ∈ C•, u′ ∈ C ′ (and deterministic functions of
those and α◦), that is further conditioned on the answers given before sending ρ̃.

We conclude the discussion of the simulator by examining the time complex-
ity of the simulation. Most steps of the simulation require (a) sampling a random
field element and, possibly, (b) solving a linear system with a polynomial num-
ber of equations. The only expensive part of the simulation is Step 5, because it
requires sampling random codewords in C◦ and C•, as well as computing PCPP
proofs for these two codewords. Provided that r1 is polynomially bounded, the
entire simulation also runs in polynomial time in the instance size n. (The def-
inition of zero knowledge in Sect. 3 prescribes, as typically done, a simulator
that runs in expected probabilistic polynomial time; our simulator runs in strict
probabilistic polynomial time.)

7 From NTIME to Randomizable Linear Algebraic CSPs

– RAP &RGAP. In Sect. 7.1, we define algebraic problems, implicit in several influ-
ential works on PCPs and IP [2,4,5,30] and explicitly defined in [22,34,37].
Afterward, we define group-preserving algebraic problems, a new “symmetric”
variant of algebraic problems that not only are powerful enough to efficiently
capture NTIME but are also naturally “randomizable”, as discussed below.

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 55

– RAP → RLA. In Sect. 7.2 (see Lemma 2), we show that algebraic problems
are a sublanguage of linear algebraic CSPs. This observation shows that the
techniques of this paper could potentially be applied to many PCP systems
(e.g., those in [2,4,5,11,13–16,22,30,37] to name a few) and also provides a
“warm up” for the next item.

– RGAP → RRLA. In Sect. 7.3 (see Lemma 3), we show an efficient reduction from
group-preserving algebraic problems to randomizable linear algebraic CSPs.
In other words, the property of group preservation allows the corresponding
linear algebraic CSPs to be randomizable.

– NTIME → RGAP. In Sect. 7.4 (see Lemma 4), we show an efficient reduction
from NTIME to group-preserving algebraic problems.

– NTIME → RRLA. In Sect. 7.5 (see Theorem 6), we explain how to combine
the above to obtain the efficient reduction from NTIME to randomizable
linear algebraic CSPs.

7.1 Algebraic Problems and Group Preservation

The definition below of algebraic problems is essentially due to [34] (though
the term “algebraic problem” is from [22]); variants of it appear in later works
such as [10,14–16,22,36,37].

Definition 6 (RAP). Given functions F : N → F , and h,m, η, d, σ : N → N,
the relation

RAP[F, h,m, η, d, σ]

consists of instance-witness pairs (x,w) satisfying the following.

– The instance x is a tuple (1n,H,Q,N) where:
• H is a subset of F (n) with cardinality h(n);
• Q is a polynomial in F (n)[X1, . . . , Xm(n), Y1, . . . , Yη(n)] such that (i) it

has degree less than h(n) in each variable Xi, (ii) it has total degree
at most d(n) when viewed as a polynomial in the variables Y1, . . . , Yη(n)

with coefficients in F (n)[X1, . . . , Xm(n)], (iii) it can be evaluated by an
arithmetic circuit of size σ(n);

• N = (N1, . . . , Nη(n)) and each Ni : F (n)m(n) → F (n)m(n) is an invertible
affine function.

– The witness w is a polynomial A in F (n)[X1, . . . , Xm(n)].
– The instance x and witness w jointly satisfy the following:

for every α ∈ Hm(n), (Q ◦ A ◦ N)(α) = 0 (1)

where
(Q◦A◦N)(X) := Q(X1, . . . , Xm(n), A(N1(X1, . . . , Xm(n))), . . . , A(Nη(n)(X1, . . . , Xm(n)))). (2)

Next, we define group-preserving algebraic problems, a family of alge-
braic problems in which the set H is a subgroup of F (n) and the neighbor
functions act on the product group Hm(n). The additional symmetry enables a
reduction to randomizable linear algebraic CSPs, which give rise to zero knowl-
edge duplex PCPs. We believe that group-preserving algebraic problems may
find applications in the study of PCPs beyond their use in this paper.

56 E. Ben-Sasson et al.

Definition 7 (RGAP). The relation RGAP[F, h,m, η, d, σ] is the sub-relation of
RAP[F, h,m, η, d, σ] obtained via restriction to instances that are group preserv-
ing. An instance x = (1n,H,Q,N) is group preserving if: (i) H is an additive
or a multiplicative subgroup of F (n); (ii) each Ni : F (n)m(n) → F (n)m(n) in N
can be identified with an element χi in Hm(n) such that Ni(x) = χi � x, where
� denotes the group operation of the product group Hm(n).

We also write RGAP[F, h,m, η, d, σ,+] to denote the further restriction to
instances that are additively group preserving (i.e., H is an additive subgroup);
similarly, we write RGAP[F, h,m, η, d, σ,×] to denote the restriction to instances
that are multiplicatively group preserving.

– The degree of x, denoted |x|deg, is degY1,...,Yη(n)
(Q), i.e., the total degree of Q

viewed as a polynomial in the variables Y1, . . . , Yη(n) with coefficients in the
ring F[X1, . . . , Xm(n)].

– The circuit size of x, denoted |x|circ, is the circuit size of Q.

7.2 Algebraic Problems Naturally Reduce to Linear Algebraic
CSPs

Lemma 2 (RAP → RLA). For every F : N → F , h,m, η, d, σ : N → N, ε : N →
(0, 1), and R ⊆ RAP[F, h,m, η, d, σ] there exist a relation R′ and algorithms
inst,wit1,wit2 satisfying the following conditions:

– Efficient reduction. For every instance x, letting x′ := inst(x):
• for every witness w, if (x,w) ∈ R then (x′,wit1(x,w)) ∈ R′;
• for every witness w′, if (x′,w′) ∈ R′ then (x,wit2(x,w′)) ∈ R.

Moreover, inst runs in time poly(|x|), wit1 in time poly(|x|) · Õ(|w| ·η ·σ), and
wit2 in time poly(|x|) · Õ(|w′|).

– Linear algebraic CSP. The relation R′ is a subset of

RLA

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f = F

 = |F |m
ρ = (hd

|F |)
m

δ = 1 − hd
|F |

q = η
c = σ + η
γ = ηε
ε

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

– RM codes. If x = (1n,H,Q,N) then inst(x) = (1n, C◦, C•, g) with
• C◦ = RM

[
F (n), F (n),m(n), h(n)

|F (n)|
]
;

• C• = VRM
[
F (n), F (n),m(n), h(n)d(n)

|F (n)| ,H
]
;

• g is the function that maps F (n)[X1, . . . , Xm(n)] to F (n)F (n)m(n)
as fol-

lows: given A in F (n)[X1, . . . , Xm(n)] and ω ∈ F (n)m(n), the ω-th coordi-
nate of g(A) equals to (Q ◦ A ◦ N)(ω).

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 57

Proof (Proof of Lemma 2). Let x = (1n,H,Q,N) be an instance of
RAP[F, h,m, η, d, σ], and construct x′ := inst(x) = (1n, C◦, C•, g) as above. We
first argue that x′ is an instance of RLA[f,
, ρ, δ, q, c, γ, ε].

First, C◦ and C• are linear error correcting codes with block length at most

 := |F |m, rate at most ρ := max{(h

|F |)
m, (hd

|F |)
m}, and relative distance at least

δ := min{1 − h
|F | , 1 − hd

|F |} over the same field F . (See Sect. 2.4.)
By construction, the function g is q-local with q := η and c-efficient with

c := σ + η; moreover, g is (γ, ε)-sampling with γ := ηε, as we now explain. (See
Definition 1 for definitions of these properties.) For every ω ∈ Fm, Iω denotes
the set of indices in Fm that g(·)[ω] depends on; for the g above, Iω equals
{N1(ω), . . . , Nη(ω)}. For every ω′ ∈ Fm and ω ∈ Fm, if ω′ ∈ Iω then ω ∈
{N−1

1 (ω′), . . . , N−1
η (ω′)}. Hence, the number of ω’s with ω′ ∈ Iω is at most η,

because each Ni is invertible. We deduce that Pr[Iω ∩ I �= ∅ |ω ← Fm] ≤
(η · |I|) /|F |m ≤ ηε.

Finally, C• ∪ g(C◦) has relative distance at least δ because it is a subset of
RM[F, F,m, hd

|F |]. This claim is immediate for C•; for g(C◦), it follows from the
fact that Q◦A◦N has, in each variable, a degree that is at most a multiplicative
factor of d larger than the degree of A.

We conclude the proof by explaining how one obtains the two witness maps
wit1,wit2. For wit1, suppose that w = A ∈ F [X1, . . . , Xm] is a witness for x;
then one can verify that w′ := (α◦, α•), where α◦ := A and α• := Q ◦ A ◦ N , is
a witness for x′; α• can be efficiently obtained by first computing the evaluation
of A on Fm (via an FFT), then computing the evaluation of Q ◦ A ◦ N on Fm

(via point-to-point computation), and finally interpolating (via an inverse FFT).
Conversely, for wit2, suppose that w′ = (α◦, α•) is a witness for x′; then one can
verify that w := α◦ is a witness for x.

7.3 From Group-Preserving Algebraic Problems to Randomizable
Linear Algebraic CSPs

Lemma 3 (RGAP → RRLA). For every F : N → F , h,m, η, d, σ, t : N → N,
δ, ε : N → (0, 1) with |F | ≥ ĥ, where ĥ denotes the smallest integral multiple of h

that is greater than (h+t)d
1−δ , and for any R ⊆ RGAP[F, h,m, η, d, σ] there exist a

relation R′ and algorithms inst,wit1,wit2 satisfying the following conditions:

– Efficient reduction. For every instance x, letting x′ := inst(x):
• for every witness w, if (x,w) ∈ R then (x′,wit1(x,w)) ∈ R′;
• for every witness w′, if (x′,w′) ∈ R′ then (x,wit2(x,w′)) ∈ R.

Moreover, inst runs in time poly(|x|), wit1 in time poly(|x|) · Õ(|w| ·η ·σ), and
wit2 in time poly(|x|) · Õ(|w′|).

58 E. Ben-Sasson et al.

– Randomizable linear algebraic CSP. The relation R′ is a subset of

RRLA

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f = F

 = ĥm

ρ = ((h+t)d

ĥ
)m

δ = 1 − ((h+t)d

ĥ
)

q = η
c = σ + η
γ = ηε
ε
t

r = Õ(ĥm)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Proof (Proof of Lemma 3). Let x = (1n,H,Q,N) be an instance of
RGAP[F, h,m, η, d, σ]. We construct an instance x′ := inst(x) = (1n, C◦, C•, g)
of RRLA[f,
, ρ, δ, q, c, γ, ε, t, r] as follows.

Let Ĥ be a subset of F that is a union of cosets of H with |Ĥ| = ĥ and
Ĥ ∩H = ∅. (This can be done as follows: let S be a subset of the quotient group
F�/H with cardinality |S| = ĥ/h that does not include 1�, where F� denotes
the additive or multiplicative group of F , depending on whether H is additive or
multiplicative, and 1� is the identity in H; then set Ĥ := {x�y |x ∈ S, y ∈ H}.)
Analogously to the proof of Lemma2, we define:

– C◦ := RM
[
F (n), Ĥ,m(n), h(n)+t(n)

ĥ(n)

]
;

– C• := VRM
[
F (n), Ĥ,m(n), (h(n)+t(n))d(n)

ĥ(n)
,H

]
;

– g to be the function that maps F (n)[X1, . . . , Xm(n)] to F (n)Ĥm(n)
as follows:

given A in F (n)[X1, . . . , Xm(n)] and ω ∈ Ĥm(n), the ω-th coordinate of g(A)
equals to (Q ◦ A ◦ N)(ω). Note that g is well-defined, i.e., g(A) is a function
from Ĥm(n) to F (n); this follows from the group preservation property of x
(see Definition 7): for every ω ∈ Ĥm and i ∈ [η], it holds that Ni(ω) ⊆ Ĥm

because Ĥ is a union of cosets of H and Ni multiplies every coordinate of ω
by an element of H.

We first argue that x′ constructed above is an instance of RRLA[f,
, ρ, δ, q, c, γ,
ε, t, r].

First, analogously to the proof of Lemma2, we note that C◦ and C• are
linear error correcting codes with block length at most
 := ĥm, rate at most
ρ := max{(h+t

ĥ
)m, ((h+t)d

ĥ
)m}, and relative distance at least δ := min{1− h+t

ĥ
, 1−

(h+t)d

ĥ
} over the same field F ; also, we deduce that g is q-local with q := η, c-

efficient with c := σ + η, and (γ, ε)-sampling with γ := ηε.
Next, recalling Definition 5, x′ is t-randomizable in time r := Õ(ĥm) because:

(i) C ′ := VRM[F (n), Ĥ,m, h+t
ĥ

,H] is a subcode of C◦ and it is t-wise independent

due to Claim in Sect. 2.4 (C ′ satisfies the hypotheses because H ∩ Ĥ = ∅ and
ĥ − h ≥ (h+t)d

1−δ − h ≥ t); and (ii) one can sample random elements from C ′, C◦

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 59

and C• in time Õ(ĥm) by using the quasilinear FFT algorithms for multipoint
evaluation and interpolation (sampling the random polynomial in necessary basis
is easy for C◦; for vanishing Reed–Muller codes we rely on Alon’s Combinatorial
Nullstelensatz [1] as per Lemma 4.11 of [15]).

We conclude the proof by observing that necessary witness maps wit1,wit2
exist. Just as in Lemma 2, if w = A ∈ F (n)[X1, . . . , Xm(n)] is a witness for x
then wit1(x,w) outputs w′ := (A,Q◦A◦N), which is a witness for x′; conversely,
if w′ = (α◦, α•) is a witness for x′ then wit2(x,w′) outputs w := α◦, which is a
witness for x.

7.4 An Efficient Reduction from NTIME to Group-Preserving
Algebraic Problems

The following lemma gives an efficient reduction from NTIME to group-
preserving algebraic problems in which instances are over fields of characteristic
2 and preserve additive groups.

Lemma 4 (NTIME → RGAP). For every h,m, T : N → N with h(n)m(n) =
Ω(T (n) log T (n)) and R ∈ NTIME(T) there exist a relation R′ and algorithms
inst,wit1,wit2 satisfying the following conditions:

– Efficient reduction. For every instance x, letting x′ := inst(x):
• for every witness w, if (x,w) ∈ R then (x′,wit1(x,w)) ∈ R′;
• for every witness w′, if (x′,w′) ∈ R′ then (x,wit2(x,w′)) ∈ R.

Moreover, inst runs in time poly(n + log h(n) + m(n)) and wit1,wit2 run in
time Õ(T (n)).

– Group preserving algebraic problem. The relation R′ is a subset of

RGAP

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F = F2log T+O(log log T)

h
m
η = polylog(T)
d = O(1)
σ = poly(n + log T)
+

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The proof appears in the full version.

7.5 Combining the Two Reductions

By combining Lemmas 3 and 4, we obtain the following theorem, which gives
the reduction claimed at the beginning of this section.

Theorem 6 (NTIME → RRLA). For every T, t : N → N, δ, ε : N → (0, 1),
and R ∈ NTIME(T) there exist a relation R′ and algorithms inst,wit1,wit2
satisfying the following conditions:

60 E. Ben-Sasson et al.

– Efficient reduction. For every instance x, letting x′ := inst(x):
• for every witness w, if (x,w) ∈ R then (x′,wit1(x,w)) ∈ R′;
• for every witness w′, if (x′,w′) ∈ R′ then (x,wit2(x,w′)) ∈ R.

Moreover, inst runs in time poly(n+log(T (n)+t(n)
1−δ(n))) and wit1,wit2 run in time

poly(n) · Õ(T (n)+t(n)
1−δ(n)).

– Randomizable linear algebraic CSP. The relation R′ is a subset of

RRLA

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f = F2log(T+t)+O(log log(T+t))

 = Õ(T+t
1−δ)

ρ = 1 − δ
δ
q = polylog(T)
c = poly(n + log T)
γ = polylog(T) · ε
ε
t

r = Õ(T+t
1−δ)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

– Affine RS codes over characteristic 2. Both CR′,◦ and CR′,• are sub-
sets of RS∗

ρ ∪ VRS∗
ρ (see Sect. 2.4).

Proof (Proof of Theorem 6). First, we invoke Lemma 4 with h,m, T such that
m(n) = 1 and h(n) = O(T (n) log T (n)); this yields a relation R(1) and algorithms
inst(1),wit

(1)
1 ,wit

(1)
2 such that: (i) inst(1),wit

(1)
1 ,wit

(1)
2 provide a reduction from

R ∈ NTIME(T) toR(1), with inst(1)(x) running in time poly(n+log h(n)+m(n))
and wit

(1)
1 (x,w),wit(1)2 (x,w(1)) in time Õ(T (n)); and (ii) R(1) is a subset of

RGAP

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F = F2log T+O(log log T)

h = O(T (n) log T (n))
m = 1
η = polylog(T)
d = O(1)
σ = poly(n + log T)
+

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Next, we invoke Lemma 3 on R(1), using δ, ε, t from the theorem statement.
Note that the conditions of the theorem are satisfied as |F | ≥ (h+t)d

1−δ + h ≥ ĥ.

Therefore this yields a relation R(2) and algorithms inst(2),wit(2)1 ,wit
(2)
2 such that:

(i) inst(2),wit
(2)
1 ,wit

(2)
2 provide a reduction from R(1) to R(2), with inst(2)(x(1))

running in time poly(|x(1)|), wit(2)1 (x(1),w(1)) in time poly(|x(1)|) · Õ(|w(1)| · η · σ)
and wit

(2)
2 (x(1),w(2)) in time poly(|x(1)|) · Õ(|w(2)|); and (ii) R(2) is a subset of

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 61

RRLA

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f = F

 = O(h+t

1−δ)
ρ = 1 − δ
δ
q = η
c = σ + η
γ = ηε
ε
t

r = Õ(h+t
1−δ)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

One can check that R(2) achieves the parameters specified in the theorem state-
ment.

The desired reduction from R to R(2) is given by the algorithms inst(x) :=
inst(2)(inst(1)(x)), wit1(x,w) := wit

(2)
1 (inst(1)(x),wit(1)1 (x,w)), and wit2(x,w′) :=

wit
(1)
2 (x,wit

(2)
2 (inst(1)(x),w′)). One can verify that inst runs in time poly(n +

log(T (n)+t(n)
1−δ(n))) and wit1,wit2 run in time poly(n) · Õ(T (n)+t(n)

1−δ(n)).

8 Proof of Theorem4

Proof (Proof of Theorem 4). We explain how to combine Theorem 6 and Lemma 5
(and Theorem 3) so to obtain Theorem 4.

Let R be a relation in NTIME(T); we need to construct a duplex PCP sys-
tem for R with the claimed parameters. For now we focus on achieving soundness
of 1

2 , and discuss the general case at the end of the proof.
We first reduce NTIME to randomizable linear algebraic CSPs: invoke The-

orem 6 on R to obtain a relation R′ and algorithms inst,wit1,wit2 such that:
(i) inst,wit1,wit2 provide a reduction from R to R′, with inst running in time
poly(n + log(T (n) + t1(n))) and wit1,wit2 in time Õ(T (n) + t1(n)); and (ii) R′

is a subset of

RRLA

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1 = F2log(T+t1)+O(log log(T+t1))

1 = Õ(T + t1)
ρ1 = 1 − δ1
δ1
q1 = polylog(T)
c1 = poly(n + log T)
γ1 = polylog(T) · ε1
ε1
t1
r1 = Õ(T+t1

1−δ1
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Above, as parameters of Theorem 6, we chose ε1, δ1 and t1 as follows: ε1 such
that γ1 = polylog(T)·ε1 ≤ 2

9 , then δ1 := 1−ε1/4, and t1 := k·q1 = k·polylog(T).
Next we obtain PCPP systems for the relations corresponding to codes

appearing in instances of R′. Theorem 6 guarantees that both CR′,◦ and CR′,•

62 E. Ben-Sasson et al.

are subsets of RS∗
ρ ∪ VRS∗

ρ. We now invoke Theorem 3, choosing λ = 2 and
s such that fields f1 for R′ and a2 for the PCPPs match. That is, we chose
s = Õ(log log(T + t1)) and obtain:

Rel(CR′,◦) , Rel(CR′,•) ∈ PCPP

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a2 = F2s+log �1

l2 = Õ(
1)
q2 = polylog(
1)
Δ2 = ΔHam

a

d2 = ρ1/2
e2 = 1/4
tp2 = poly(s) · Õ(
1)
tv2 = poly(s + log
1)
na

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Finally we invoke Theorem 5 for R′ to obtain a duplex PCP system for R′,
supplying the PCPPs we just obtained from Theorem3. Note that our choices
satisfy the hypothesis of Theorem 5 is satisfied, as the two fields match, r1 is
polynomially bounded, and as we chose γ1, ε1 ≤ 2

9 , δ1 ≥ 17
18 , we also have ε1 <

min{ δ1
2 , δ1 − γ1} and d2 ≤ ε1/4. This establishes our claim that:

R ∈ DPCPpzk

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a = F
2log(T+t1)+O(log log(T+t1))

l = 2l2(�1) + 6�1 = Õ(T + t1)

q = 2q2(�1) + q1 + 7 = polylog(T)

e = 1
2

tp = inst + wit1 + (2tp2(�1) + (c1 + 5)�1 + r1) = poly(n) · Õ(T + k)

tv = inst + (2tv2(�1) + c1 + log �1) = poly(n + log(T + k))

k

na

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The precise expression for soundness error is e := max{1−δ1+γ1+ε1 , (1−|f1|−1)·
max{e2, ε1/4}+|f1|−1}, but it is upper bounded by 1

2 , as for us 1−δ1+γ1+ε1 ≤ 1
2 ,

max{e2, ε1/4} = 1
4 and |f1| ≥ 4.

Acknowledgments. We thank Yuval Ishai and Mor Weiss for helpful discussions.
The research leading to these results has received funding from: the European Commu-
nity’s Seventh Framework Programme (FP7/2007–2013) under grant agreement num-
ber 240258; the Israeli Science Foundation (grant 1501/14); and the Center for Science
of Information (CSoI), an NSF Science and Technology Center, under grant agreement
CCF-0939370.

References

1. Alon, N.: Combinatorial Nullstellensatz. Comb. Probab. Comput. 8, 7–29 (1999)
2. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and

the hardness of approximation problems. JACM 45, 501–555 (1998)
3. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP.

JACM 45, 70–122 (1998)
4. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-

logarithmic time. In: STOC 1991 (1991)

Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs 63

5. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-
prover interactive protocols. Comput. Complex. 1, 3–40 (1991)

6. Babai, L., Moran, S.: Arthur-Merlin games: a randomized proof system, and a
hierarchy of complexity class. J. Comput. Syst. Sci. 36, 254–276 (1988)

7. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

8. Ben-Or, M., Goldreich, O., Goldwasser, S., H̊astad, J., Kilian, J., Micali, S.,
Rogaway, P.: Everything provable is provable in zero-knowledge. In: Goldwasser,
S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, Heidelberg (1990)

9. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive
proofs: how to remove intractability assumptions. In: STOC 1988 (1988)

10. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from RAMs
to delegatable succinct constraint satisfaction problems. In: ITCS 2013 (2013)

11. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete efficiency of
probabilistically-checkable proofs. In: STOC 2013 (2013)

12. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Robust PCPs
of proximity, shorter PCPs and applications to coding. In: STOC 2004 (2004)

13. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Short PCPs
verifiable in polylogarithmic time. In: CCC 2005 (2005)

14. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Robust PCPs
of proximity, shorter PCPs, and applications to coding. SIAM J. Comput. 36,
889–974 (2006)

15. Ben-Sasson, E., Sudan, M.: Short PCPs with polylog query complexity. SIAM J.
Comput. 38, 551–607 (2008)

16. Ben-Sasson, E., Viola, E.: Short PCPs with projection queries. In: Esparza, J.,
Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572,
pp. 163–173. Springer, Heidelberg (2014)

17. Dinur, I.: The PCP theorem by gap amplification. JACM 54, 12:1–12:44 (2007)
18. Dinur, I., Reingold, O.: Assignment testers: towards a combinatorial proof of the

PCP theorem. In: FOCS 2004 (2004)
19. Dwork, C., Feige, U., Kilian, J., Naor, M., Safra, M.: Low communication 2-prover

zero-knowledge proofs for NP. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol.
740, pp. 215–227. Springer, Heidelberg (1993)

20. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: STOC 1985 (1985)

21. Goyal, V., Ishai, Y., Mahmoody, M., Sahai, A.: Interactive locking, zero-knowledge
PCPs, and unconditional cryptography. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 173–190. Springer, Heidelberg (2010)

22. Harsha, P., Sudan, M.: Small PCPs with low query complexity. Comput. Complex.
9, 157–201 (2000)

23. Impagliazzo, R., Yung, M.: Direct minimum knowledge computations. In:
Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 40–51. Springer,
Heidelberg (1988)

24. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput. 39, 1121–1152 (2009)

25. Ishai, Y., Mahmoody, M., Sahai, A.: On efficient zero-knowledge PCPs. In: Cramer,
R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 151–168. Springer, Heidelberg (2012)

26. Ishai, Y., Mahmoody, M., Sahai, A., Xiao, D.: On zero-knowledge PCPs: lim-
itations, simplifications, and applications (2015). http://www.cs.virginia.edu/
mohammad/files/papers/ZKPCPs-Full.pdf

http://www.cs.virginia.edu/mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/mohammad/files/papers/ZKPCPs-Full.pdf

64 E. Ben-Sasson et al.

27. Kalai, Y.T., Raz, R.: Interactive PCP. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 536–547. Springer, Heidelberg (2008)

28. Kilian, J., Petrank, E., Tardos, G.: Probabilistically checkable proofs with zero
knowledge. In: STOC 1997 (1997)

29. Lapidot, D., Shamir, A.: A one-round, two-prover, zero-knowledge protocol for NP.
Combinatorica 15, 204–214 (1995)

30. Lund, C., Fortnow, L., Karloff, H., Noam, N.: Algebraic methods for interactive
proof systems. JACM 39, 859–868 (1992)

31. Mahmoody, M., Xiao, D.: Languages with efficient zero-knowledge PCPs are in
SZK. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 297–314. Springer,
Heidelberg (2013)

32. Mie, T.: Polylogarithmic two-round argument systems. J. Math. Cryptol. 2, 343–
363 (2008)

33. Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-trivial zero-
knowledge. In: ISTCS 1993 (1993)

34. Polishchuk, A., Spielman, D.A.: Nearly-linear size holographic proofs. In: STOC
1994 (1994)

35. Shamir, A.: IP = PSPACE. JACM 39, 869–877 (1992)
36. Spielman, D.: Computationally efficient error-correcting codes and holographic

proofs. Ph.D. thesis, Massachusetts Institute of Technology (1995)
37. Szegedy, M.: Many-valued logics and holographic proofs. In: Wiedermann, J., Van

Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 676–686.
Springer, Heidelberg (1999)

From Private Simultaneous Messages
to Zero-Information Arthur-Merlin

Protocols and Back

Benny Applebaum(B) and Pavel Raykov

School of Electrical Engineering, Tel-Aviv University, Tel Aviv, Israel
{bennyap,pavelraykov}@post.tau.ac.il

Abstract. Göös, Pitassi and Watson (ITCS, 2015) have recently intro-
duced the notion of Zero-Information Arthur-Merlin Protocols (ZAM).
In this model, which can be viewed as a private version of the standard
Arthur-Merlin communication complexity game, Alice and Bob are hold-
ing a pair of inputs x and y respectively, and Merlin, the prover, attempts
to convince them that some public function f evaluates to 1 on (x, y). In
addition to standard completeness and soundness, Göös et al., require a
“zero-knowledge” property which asserts that on each yes-input, the dis-
tribution of Merlin’s proof leaks no information about the inputs (x, y)
to an external observer.

In this paper, we relate this new notion to the well-studied model
of Private Simultaneous Messages (PSM) that was originally suggested
by Feige, Naor and Kilian (STOC, 1994). Roughly speaking, we show
that the randomness complexity of ZAM corresponds to the communi-
cation complexity of PSM, and that the communication complexity of
ZAM corresponds to the randomness complexity of PSM. This relation
works in both directions where different variants of PSM are being used.
Consequently, we derive better upper-bounds on the communication-
complexity of ZAM for arbitrary functions. As a secondary contribution,
we reveal new connections between different variants of PSM protocols
which we believe to be of independent interest.

1 Introduction

In this paper we reveal an intimate connection between two seemingly unrelated
models for non-interactive information-theoretic secure computation. We begin
with some background.

Research supported by the European Union’s Horizon 2020 Programme (ERC-StG-
2014-2020) under grant agreement No. 639813 ERC-CLC, ISF grant 1155/11, GIF
grant 1152/2011, and the Check Point Institute for Information Security. This work
was done in part while the first author was visiting the Simons Institute for the The-
ory of Computing, supported by the Simons Foundation and by the DIMACS/Simons
Collaboration in Cryptography through NSF grant CNS-1523467.

c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 65–82, 2016.
DOI: 10.1007/978-3-662-49099-0 3

66 B. Applebaum and P. Raykov

1.1 Zero-Information Unambiguous Arthur-Merlin Communication
Protocols

Consider a pair of computationally-unbounded (randomized) parties, Alice and
Bob, each holding an n-bit input, x and y respectively, to some public function
f : {0, 1}n × {0, 1}n → {0, 1}. In our first model, a third party, Merlin, wishes
to convince Alice and Bob that their joint input is mapped to 1 (i.e., (x, y) is
in the language f−1(1)). Merlin gets to see the parties’ inputs (x, y) and their
private randomness rA and rB , and is allowed to send a single message (“proof”)
p to both parties. Then, each party decides whether to accept the proof based
on its input and its private randomness. We say that the protocol accepts p if
both parties accept it. The protocol is required to satisfy natural properties of
(perfect) completeness and soundness. Namely, if (x, y) ∈ f−1(1) then there is
always a proof p = p(x, y, rA, rB) that is accepted by both parties, whereas if
(x, y) ∈ f−1(0) then, with probability 1 − δ (over the coins of Alice and Bob),
no such proof exists. As usual in communication-complexity games the goal is
to minimize the communication complexity of the protocol, namely the length
of the proof p.

This model, which is well studied in the communication complexity litera-
ture [BFS86,Kla03,Kla10], is viewed as the communication complexity analogue
of AM protocols [BM88]. Recently, Göös et al. [GPW15] suggested a variant of
this model which requires an additional “zero-knowledge” property defined as
follows: For any 1-input (x, y) ∈ f−1(1), the proof sent by the honest prover
provides no information on the inputs (x, y) to an external viewer. Formally, the
random variable px,y = p(x, y, rA, rB) induced by a random choice of rA and
rB should be distributed according to some universal distribution D which is
independent of the specific 1-input (x, y). Moreover, an additional Unambiguity
property is required: any 1-input (x, y) ∈ f−1(1) and any pair of strings (rA, rB)
uniquely determine a single accepting proof p(x, y, rA, rB).

This modified version of AM protocols (denoted by ZAM) was originally pre-
sented in attempt to explain the lack of explicit nontrivial lower bounds for the
communication required by AM protocols. Indeed, Göös et al., showed that any
function f : {0, 1}n × {0, 1}n → {0, 1} admits a ZAM protocol with at most
exponential communication complexity of O(2n). Since the transcript of a ZAM
protocol carries no information on the inputs, the mere existence of such protocols
forms a “barrier” against “information complexity” based arguments. This sug-
gests that, at least in their standard form, such arguments cannot be used to prove
lower bounds against AM protocols (even with Unambiguous completeness).

Regardless of the original motivation, one may view the ZAM model as
a simple and natural information-theoretic analogue of (non-interactive) zero-
knowledge proofs where instead of restricting the computational power of the
verifier, we split it between two non-communicating parties (just like AM com-
munication games are derived from the computational-complexity notion of AM
protocols). As cryptographers, it is therefore natural to ask:

How does the ZAM model relate to other more standard models of
information-theoretic secure computation?

From PSM to ZAM Protocols and Back 67

As we will later see, answering this question also allows us to make some (modest)
progress in understanding the communication complexity of ZAM protocols.

1.2 Private Simultaneous Message Protocols

Another, much older, notion of information-theoretically secure communication
game was suggested by Feige et al. [FKN94]. As in the previous model, there
are three (computationally-unbounded) parties: Alice, Bob and a Referee. Here
too, an input (x, y) to a public function f : {0, 1}n × {0, 1}n → {0, 1} is split
between Alice and Bob, which, in addition, share a common random string c.
Alice (resp., Bob) should send to the referee a single message a (resp., b) such
that the transcript (a, b) reveals f(x, y) but nothing else. That is, we require two
properties: (Correctness) There exists a decoder algorithm Dec which recovers
f(x, y) from (a, b) with high probability; and (Privacy) There exists a simulator
Sim which, given the value f(x, y), samples the joint distribution of the transcript
(a, b) up to some small deviation error. (See Sect. 4 for formal definitions.)

Following [IK97], we refer to such a protocol as a private simultaneous mes-
sages (PSM) protocol. A PSM protocol for f can be alternatively viewed as a
special type of randomized encoding of f [IK00,AIK04], where the output of
f is encoded by the output of a randomized function F ((x, y), c) such that F
can be written as F ((x, y), c) = (F1(x, c), F2(y, c)). This is referred to as a “2-
decomposable” encoding in [Ish13].

1.3 ZAM vs. PSM

Our goal will be to relate ZAM protocols to PSM protocols. Since the latter
object is well studied and strongly “connected” to other information-theoretic
notions (cf. [BIKK14]), such a connection will allow us to place the new ZAM in
our well-explored world of information-theoretic cryptography.

Observe that ZAM and PSM share some syntactic similarities (illustrated in
Fig. 1). In both cases, the input is shared between Alice and Bob and the third
party holds no input. Furthermore, in both cases the communication pattern
consists of a single message. On the other side, in ZAM the third party (Merlin)
attempts to convince Alice and Bob that the joint input is mapped to 1, and
so the communication goes from Merlin to Alice/Bob who generate the output
(accept/reject). In contrast, in a PSM protocol, the messages are sent in the
other direction: from Alice and Bob to the third party (the Referee) who ends
up with the output. In addition, the privacy guarantee looks somewhat different.
For ZAM, privacy is defined with respect to an external observer and only over 1-
inputs, whereas soundness is defined with respect to the parties (Alice and Bob)
who hold the input (x, y). (Indeed, an external observer cannot even tell whether
the joint input (x, y) is a 0-input.) Accordingly, in the ZAM model, correctness
and privacy are essentially two different concerns that involve different parties.
In contrast, for PSM protocols privacy should hold with respect to the view of
the receiver who should still be able to decode.

68 B. Applebaum and P. Raykov

Alice Bob

Merlin

x, rA y, rB

p = p(x, y, rA, rB)

p p

ZAM

Alice Bob

Referee

x, c y, c

Dec(a, b) = f(x, y)

a b

PSM

Fig. 1. Flow of messages

These differences seem to point to non-trivial gaps between these two notions.
The picture becomes even more confusing when looking at existing construc-
tions. On one hand, the general ZAM constructions presented by [GPW15, The-
orem 6] (which use a reduction to Disjointness) seem more elementary than the
simplest PSM protocols of [FKN94]. On the other hand, there are ZAM con-
structions which share common ingredients with existing PSM protocols. Con-
cretely, the branching-program (BP) representation of the underlying function
have been used both in the context of PSM [FKN94,IK97] and in the context of
ZAM [GPW15, Theorem 1]. (It should be mentioned that there is a quadratic
gap between the complexity of the two constructions.) Finally, both in ZAM and
in PSM, it is known that any function f : {0, 1}n × {0, 1}n → {0, 1} admits a
protocol with exponential complexity, but the best known lower-bound is only
linear in n. Overall, it is not clear whether these relations are coincidental or
point to a deeper connection.1

2 Our Results

We prove that ZAM protocols and PSM protocols are intimately related. Roughly
speaking, we will show that the inverse of ZAM is PSM and vice versa. Therefore,
the randomness complexity of ZAM essentially corresponds to the communica-
tion complexity of PSM and the communication complexity of ZAM essentially
corresponds to the randomness complexity of PSM. This relation works in both
directions where different variants of PSM are being used. We proceed with a
formal statement of our results. See Fig. 2 for an overview of our transformations.

1 The authors of [GPW15] seem to suggest that there is no formal connection between
the two models. Indeed, they explicitly mention PSM as “a different model of pri-
vate two-party computation, [...] where the best upper and lower bounds are also
exponential and linear.”

From PSM to ZAM Protocols and Back 69

pPSM ZAM 1PSM

CDS

PSM

Thm 1 Thm 2

Thm 3

Thm 4

Fig. 2. Overview of the constructions

2.1 From Perfect PSM to ZAM

We begin by showing that a special form of perfect PSM protocols (referred to
pPSM) yields ZAM protocols.

Theorem 1. Let f be a function with a pPSMprotocol that has communication
complexity t and randomness complexity s. Then f has a 1/2-sound ZAM scheme
with randomness complexity of t and communication complexity of s + 1.

A pPSM protocol is a PSM in which both correctness and privacy are required
to be errorless (perfect), and, in addition, the encoding should satisfy some
regularity properties.2

To prove the theorem, we use the combinatorial properties of the perfect
encoding to define a new function g(x, y, p) = (g1(x, p), g2(y, p)) which, when
restricted to a 1-input (x, y), forms a bijection from the randomness space to
the output space, and when (x, y) is a 0-input the restricted function g(x, y, ·)
covers only half of the range. Given such a function, it is not hard to design a
ZAM: Alice (resp., Bob) samples a random point rA in the range of g1 (resp.,
rB in the range of g2), and accepts a proof p = (p1, p2) if p1 is a preimage of
rA under g1 (resp. p2 is a preimage of rB under g2). It is not hard to verify
that the protocol satisfies Unambiguous completeness, 1/2-soundness and zero-
information. (See Sect. 5.)

Although the notion of pPSM looks strong, we note that all known general
PSM protocols are perfect. (See full version for details.) By plugging in the best
known protocol from [BIKK14], we derive the following corollary.
2 Essentially, the range of F = (F1, F2) can be partitioned into two equal sets S0 and
S1 and for every input (x, y) the function Fx,y(c) that maps the randomness c to
the transcript (a, b) forms a bijection from the randomness space to the set Sf(x). In
the context of randomized encoding, this notion was originally referred to as perfect
randomized encoding [AIK04]. See Sect. 4 for formal definitions.

70 B. Applebaum and P. Raykov

Corollary 1. Every function f : {0, 1}n × {0, 1}n → {0, 1} has a ZAM with
communication complexity and randomness complexity of O(2n/2).

Previously, the best known upper-bound for the ZAM complexity of a general
function f was O(2n) [GPW15]. Using known constructions of BP-based pPSM,
we can also re-prove the fact that ZAM complexity is at most polynomial in the
size of the BP that computes f . (Though, our polynomial is worse than the one
achieved by [GPW15].)

2.2 From ZAM to One-Sided PSM

We move on to study the converse relation. Namely, whether ZAM can be used
to derive PSM. For this, we consider a relexation of PSM in which privacy should
hold only with respect to 1-inputs. In the randomized encoding literature, this
notion is referred to as semi-private randomized encoding [AIK04,AIK15]. In the
context of PSM protocols we refer to this variant as 1PSM.

Theorem 2. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function with a δ-complete
ZAM protocol that has communication complexity � and randomness complexity
m. Then, for all k ∈ N, the following hold:

1. f has (22nδk)-correct and 0-private 1PSM with communication complexity of
km and 2km bits of shared randomness.

2. f has (22nδk + 2−�k)-correct and (2−�k)-private 1PSM with communication
complexity of km and 2�k bits of shared randomness.

In particular, if the underlying ZAM protocol has a constant error (e.g., δ =
1/2), we can get a 1PSM with an exponential small error of exp(−Ω(n)) at the
expense of a linear overhead in the complexity, i.e., communication complexity
and randomness complexity of O(nm) and O(�n), respectively.

Both parts of the theorem are proven by “inverting” the ZAM scheme. That
is, as a common randomness Alice and Bob will take a proof p sampled according
to the ZAM’s accepting distribution. Since each proof forms a rectangle, Alice and
Bob can locally sample a random point (rA, rB) from p’s rectangle (Alice samples
rA and Bob samples rB). The 1PSM’s encoding functions output the sampled
point (rA, rB). We show that if (x, y) is a 1-input then (rA, rB) is distributed
uniformly, while in the case of the 0-input the sampled point belongs to some
specific set Z that covers only a small fraction of the point space. Therefore, the
1PSM’s decoder outputs 0 if the sampled point is in Z and 1, otherwise.

The difference between the two parts of Theorem 2 lies in the way that the
common randomness is sampled. In the first part we sample p according to the
exact ZAM’s accepting distribution, whereas in the second part we compromise
on imperfect sampling. This allows us to reduce the length of the shared ran-
domness in 1PSM at the expense of introducing the sampling error in privacy
and correctness. The proof of the theorem appears in Sect. 6.

From PSM to ZAM Protocols and Back 71

2.3 From 1PSM to PSM and CDS

Theorem 2 shows that a ZAM protocol with low randomness complexity implies
communication-efficient 1PSM protocol. However, the latter object is not well-
studied and one may suspect that, for one-sided privacy, such low-communication
1PSM protocols may be easily achievable. The following theorem shows that this
is unlikely by relating the worst-case communication complexity of 1PSM to the
worst-case communication complexity of general PSM (here “worst case” ranges
over all functions of given input length).

Theorem 3. Assume that for all n, each function f : {0, 1}n × {0, 1}n →
{0, 1}has a δ(n)-correct ε(n)-private 1PSM protocol with communication com-
plexity t(n)and randomness complexity s(n).Then, each f has a [δ(n) + δ(t(n))]-
correct max(ε(n), δ(n)+ε(t(n)))-private PSM protocol with communication com-
plexity t(t(n)) and randomness complexity s(n) + s(t(n)). In particular, if every
such f has a 1PSM with polynomial communication and randomness, and neg-
ligible privacy and correctness errors, then every f has a PSM with polynomial
communication and randomness, and negligible privacy and correctness errors.

The existence of a PSM for an arbitrary function f : {0, 1}n×{0, 1}n → {0, 1}
with polynomial communication and randomness and negligible privacy and cor-
rectness errors is considered to be an important open question in information-
theoretic cryptography, and so constructing 1PSM with such parameters would
be considered to be a major breakthrough. Together with Theorem 2, we con-
clude that it will be highly non-trivial to discover randomness-efficient ZAM
protocols for general functions.

Finally, we observe that 1PSM protocols yield (almost) directly protocols for
Conditional Disclosure of Secrets (CDS) [GIKM00]. In this model, Alice holds an
input x and Bob holds an input y, and, in addition, both parties hold a common
secret bit s. The referee, Carol, holds both x and y, but it does not know the
secret s. Similarly to the PSM case, Alice and Bob use shared randomness to
compute the messages m1 and m2 that are sent to Carol. The CDS requires that
Carol can recover s from (m1,m2) iff f(x, y) = 1. Moving to the complement
f = 1 − f of f , one can view the CDS model as a variant of 1PSM, in which the
privacy leakage in case of 0-inputs is full, i.e., given the messages sent by Alice
and Bob, one can recover their input (x, y). Indeed, it is not hard to prove the
following observation (whose proof is deferred to the full version).

Theorem 4. Let f be a function with a δ-complete and ε-private 1PSM that has
communication complexity t and randomness complexity s. Then, the function
f = 1− f has a δ-complete and ε-private CDS scheme with communication com-
plexity t and randomness complexity s.

In the full version we also describe a direct transformation from ZAM to CDS
which does not suffer from the overhead introduced in Theorem 2. We note that
CDS protocols have recently found applications in Attribute-Based Encryption
(see [GKW15]).

72 B. Applebaum and P. Raykov

3 Preliminaries

For an integer n ∈ N, let [n] = {1, . . . , n}. The complement of a bit b is denoted
by b = 1−b. For a set S, we let Sk be the set of all possible k-tuples with entries
in S, and for a distribution D, we let Dk be the probability distribution over
k-tuples such that each tuple’s element is drawn according to D. We let s ←R S
denote an element that is sampled uniformly at random from the finite set S.
The uniform distribution over n-bit strings is denoted by Un. For a boolean
function f : S → {0, 1}, we say that x ∈ S is 0-input if f(x) = 0, and is 1-input
if f(x) = 1. A subset R of a product set A × B is a rectangle if R = A′ × B′ for
some A′ ⊆ X and B′ ⊆ Y .

The statistical distance between two random variables, X and Y , denoted
by Δ(X;Y) is defined by Δ(X;Y) := 1

2

∑
z |Pr[X = z] − Pr[Y = z]|. We will

also use statistical distance for probability distributions, where for a probability
distribution D the value Pr[D = z] is defined to be D(z).

We write Δx1←D1,...,xk←Dk
(F (x1, . . . , xk);G(x1, . . . , xk)) to denote the sta-

tistical distance between two distributions obtained as a result of sampling
xi’s from Di’s and applying the functions F and G to (x1, . . . , xk), respec-
tively. We use the following facts about the statistical distance. For every dis-
tributions X and Y and a function F (possibly randomized), we have that
Δ(F (X), F (Y)) ≤ Δ(X,Y). In particular, for a boolean function F this implies
that Pr[F (X) = 1] ≤ Pr[F (Y) = 1] + Δ(X;Y).

For a sequence of probability distributions (D1, . . . , Dk) and a probability
vector W = (w1, . . . , wk) we let Z =

∑
wiDi denote the “mixture distribution”

obtained by sampling an index i ∈ [k] according to W and then outputting an
element z ← Di.

Lemma 1. For any distribution Z =
∑

wiDi and probability distribution S, it
holds that

Δ(S;M) ≤
k∑

i=1

wi Δ(S;Di).

Proof. By the definition of statistical distance we can write Δ(S;Z) as

1
2

∑

z

∣
∣
∣
∣
∣
S(z) −

k∑

i=1

wiDi(z)

∣
∣
∣
∣
∣
=

1
2

∑

z

∣
∣
∣
∣
∣

k∑

i=1

wi(S(z) − Di(z))

∣
∣
∣
∣
∣

≤ 1
2

∑

z

k∑

i=1

wi |S(z) − Di(z)|

=
1
2

k∑

i=1

wi

∑

z

|S(z) − Di(z)|

=
k∑

i=1

wi Δ(S;Di).

��

From PSM to ZAM Protocols and Back 73

4 Definitions

4.1 PSM-Based Models

Definition 1 (PSM, 1PSM, pPSM). Let f : {0, 1}n × {0, 1}n → {0, 1} be a
boolean function. We say that a pair of (possibly randomized3) encoding algo-
rithms F1, F2 : {0, 1}n × {0, 1}s → {0, 1}t are PSM for f if they satisfy the
following properties:

δ-Correctness: There exists a deterministic algorithm Dec, called decoder,
such that for every input (x, y) we have that

Pr
c←R{0,1}s

[Dec(F1(x, c), F2(y, c)) 	= f(x, y)] ≤ δ.

ε-Privacy: There exists a randomized algorithm (simulator) Sim such that for
any input (x, y) it holds that

Δ
c←R{0,1}s

(Sim(f(x, y)); (F1(x, c), F2(y, c))) ≤ ε,

where we write Δx1←D1,...,xk←Dk
(F (x1, . . . , xk);G(x1, . . . , xk)) to denote the

statistical distance between two distributions obtained as a result of sampling
xi’s from Di’s and applying the functions F and G to (x1, . . . , xk), respec-
tively.

If privacy holds only on 1-inputs then the protocol is referred to as 1PSM. A
pPSM protocol is a PSM which satisfies 0-correctness, (standard) 0-privacy, and,
in addition, satisfies the following properties:

Balance: There exists a 0-private (perfectly private) simulator Sim such that
Sim(U1) ≡ U2t.

Stretch-Preservation: We have that 1 + s = 2t, i.e., the total output length
equals to the randomness complexity plus a single bit.4

The communication complexity of the PSM (resp., 1PSM, pPSM) protocol is
defined as the encoding length t, and the randomness complexity of the protocol
is defined as the length s of the common randomness.

Remark 1 (pPSM– combinatorial view). One can also formulate the pPSM def-
inition combinatorially [AIK04]: For f ’s b-input (x, y), let Fxy(c) denote the
joint output of the encoding (F1(x, c), F2(y, c)). Let Sb := {Fxy(c) | c ∈ {0, 1}s

,

(x, y) ∈ f−1(b)} and let R = {0, 1}t × {0, 1}t denote the joint range of (F1, F2).
Then, (F1, F2) is a pPSM of f if and only if (1) The 0-image S0 and the 1-image
S1 are disjoint; (2) The union of S0 and S1 equals to the range R; and (3) for

3 In the original paper [FKN94], the functions F1, F2 are deterministic. We extend
this model by allowing Alice and Bob to use local randomness that is assumed to be
available freely.

4 Intuitively, this bit carries the outcome of the function.

74 B. Applebaum and P. Raykov

all (x, y) the function Fxy is a bijection on Sf(x,y). One can also consider a case
when F1 and F2 have arbitrary ranges, i.e., Fi : {0, 1}n × {0, 1}s → {0, 1}ti . In
this case we say that (F1, F2) is a pPSM of f if the above conditions hold with
respect to the joint range R = {0, 1}t1 × {0, 1}t2 .

4.2 ZAM

Definition 2 (ZAM). Let f : {0, 1}n × {0, 1}n → {0, 1}. We say that a pair of
deterministic boolean functions A,B : {0, 1}n × {0, 1}m × {0, 1}� → {0, 1} is a
ZAM for f if it satisfies the following properties:

Unambiguous Completeness: For any 1-input (x, y) and any randomness
(rA, rB) ∈ {0, 1}m × {0, 1}m there exists a unique p ∈ {0, 1}� such that
A(x, rA, p) = 1 = B(y, rB , p).

Zero Information: There exists a distribution D on the proof space {0, 1}�

such that for any 1-input (x, y) we have that

∀p ∈ {0, 1}�
D(p) = Pr

rA,rB←R{0,1}m
[A(x, rA, p) = 1 = B(y, rB , p)].

The distribution D is called the accepting distribution.
δ-Soundness: For any 0-input (x, y) it holds that

Pr
rA,rB←R{0,1}m

[∃p ∈ {0, 1}� : A(x, rA, p) = 1 = B(y, rB , p)] ≤ δ.

The communication complexity (resp., randomness complexity) of the ZAM
protocol is defined as the length � of the proof (resp., the length m of the local
randomness).

The Zero Information property asserts that for every accepting input (x, y)
the distribution Dx,y, obtained by sampling rA and rB and outputting the
(unique) proof p which is accepted by Alice and Bob, is identical to a single
universal distribution D.

Following [GPW15], we sometimes refer to the proofs as “rectangles” because
for each (x, y) a proof p naturally corresponds to a set of points {(rA, rB) :
A(x, rA, p) = 1 = B(y, rB , p)} which forms a rectangle in {0, 1}m × {0, 1}m.

5 From pPSM to ZAM

In this section we construct a ZAM scheme from a pPSM protocol. By exploiting
the combinatorial structure of pPSM, for each input (x, y) we construct a function
hxy that is a bijection if (x, y) is a 1-input and is two-to-one if (x, y) is a 0-input.
In the constructed ZAM scheme Alice and Bob use their local randomness to
sample a uniform point in h’s range (Alice samples its x-coordinate rA and Bob
samples its y-coordinate rB). Merlin’s proof is the preimage p for the sampled

From PSM to ZAM Protocols and Back 75

point, i.e., a point p such that hxy(p) = (rA, rB). In order to accept the proof p,
Alice and Bob verify that it is a preimage for the sampled point (rA, rB).

First, the constructed ZAM is unambiguously complete because hxy is a bijec-
tion if (x, y) is a 1-input of f . Second, the constructed ZAM satisfies the zero-
information property because the distribution of the accepted proofs is uniform.
Third, the constructed ZAM is sound, because if (x, y) is a 0-input, then hxy

is two-to-one, implying that with probability at least 1/2 no preimage can be
found.

Theorem 1. Let f be a function with a pPSM protocol that has communication
complexity t and randomness complexity s. Then f has a 1/2-sound ZAM scheme
with randomness complexity of t and communication complexity of s + 1.

Proof. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function with a pPSM F1, F2 :
{0, 1}n ×{0, 1}s → {0, 1}t. We show that there exists a 1/2-sound ZAM protocol
for f with Alice’s and Bob’s local randomness spaces {0, 1}m and proof space
{0, 1}�

, where m = t and � = 2t.
First, we prove some auxiliary statement about pPSM. Let g(x, y, c) :=

(F1(x, c), F2(y, c)). For any (x, y), we define a new function hxy : {0, 1}s ×
{0, 1} → {0, 1}t × {0, 1}t as follows.

hxy(c, b) :=

{
g(x, y, c), if b = 0;
g(x0, y0, c), if b = 1 (where (x0, y0) is a canonical 0 − input forf).

The function h satisfies the following useful properties as follows from the
combinatorial view of pPSM (Remark 1).

Fact 1. If (x, y) is a 1-input for f , then the function hxy is a bijection. Oth-
erwise, if (x, y) is a 0-input for f , then the image of the function hxy covers
exactly half of the range {0, 1}t × {0, 1}t.

We now describe a ZAM protocol for f in which the local randomness of Alice
and Bob is sampled from {0, 1}t, and the proof space is {0, 1}s × {0, 1}. Recall
that (F1, F2) is a pPSM and therefore s + 1 = 2t and {0, 1}s × {0, 1} = {0, 1}2t.
The ZAM’s accepting functions A,B are defined as follows:

A(x,m1, (c, b)) =

⎧
⎪⎨

⎪⎩

1, if (m1 = F1(x, c) and b = 0) or
(m1 = F1(x0, c) and b = 1);

0, otherwise.

B(y,m2, (c, b)) =

⎧
⎪⎨

⎪⎩

1, if (m2 = F2(y, c) and b = 0) or
(m2 = F2(y0, c) and b = 1);

0, otherwise.

Observe that the following equivalence holds.

76 B. Applebaum and P. Raykov

Claim. ∀x, y, c, b,m1,m2

[
hxy(c, b) = (m1,m2)

]
⇔

[
A(x,m1, (c, b)) = 1 =

B(y,m2, (c, b))
]
.

Now we verify that A,B is ZAM for f :

Unambiguous Completeness: Consider any f ’s 1-input (x, y) and take any
(m1,m2) ∈ {0, 1}t × {0, 1}t. Since (x, y) is a 1-input for f , we have that
hxy is a bijection. This means that there exists a unique (c, b) such that
hxy(c, b) = (m1,m2). By Claim 5, this proof (c, b) is the only proof which is
accepted by both Alice and Bob when the randomness is set to m1,m2.

Zero Information: We show that the accepting distribution is uniform, i.e.,
for any 1-input (x, y) and for any p ∈ {0, 1}s × {0, 1} it holds that

Pr
rA,rB←R{0,1}t

[A(x, rA, p) = 1 = B(y, rB , p)] = 2−2t.

Take any 1-input (x, y). Since (x, y) is a 1-input for f , we have that hxy is
a bijection. Hence, there exists a unique (m∗

1,m
∗
2) ∈ {0, 1}n × {0, 1}n such

that hxy(c, b) = (m∗
1,m

∗
2). By Claim 5, this means that Alice and Bob accept

only this (m∗
1,m

∗
2). Hence, for all proofs p we have that

Pr
rA,rB←R{0,1}t

[A(x, rA, p) = 1 = B(y, rB , p)] =

Pr
rA,rB←R{0,1}t

[rA = m∗
1, rB = m∗

2] = 2−2t.

1/2-Soundness: Fix some 0-input (x, y), and recall that the image H of hxy cov-

ers exactly half of the range {0, 1}t ×{0, 1}t, i.e., |H| =
∣
∣
∣{0, 1}t × {0, 1}t

∣
∣
∣ /2.

It follows that, with probability 1/2, the randomness of Alice and Bob
(m1,m2) chosen randomly from {0, 1}t × {0, 1}t lands outside H. In this
case, the set h−1

xy (m1,m2) is empty and so there is no proof (c, b) that will
be accepted.

��

6 From ZAM to 1PSM

In this section we construct 1PSM protocols from a ZAM scheme and prove
Theorem 2 (restated here for convenience).

Theorem 2. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function with a δ-complete
ZAM protocol that has communication complexity � and randomness complexity
m. Then, for all k ∈ N, the following hold:

1. f has (22nδk)-correct and 0-private 1PSM with communication complexity of
km and 2km bits of shared randomness.

2. f has (22nδk + 2−�k)-correct and (2−�k)-private 1PSM with communication
complexity of km and 2�k bits of shared randomness.

From PSM to ZAM Protocols and Back 77

Proof. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function with a δ-sound ZAM
protocol (A,B) with Alice’s and Bob’s local randomness spaces {0, 1}m and the
proof space {0, 1}�. Fix some integer k. We start by constructing the first 1PSM
protocol.

We first define some additional notation and prove auxiliary claims. For a
pair of inputs (x, y) let

Exy := {(rA, rB) ∈ {0, 1}m × {0, 1}m | ∃p : A(x, rA, p) = 1 = B(y, rB , p)}

and Z :=
⋃

(x,y)∈f−1(0) Ek
xy.

Claim. |Z| ≤ 22n(δ22m)k.

Proof. By the soundness property of ZAM, we have that |Exy| ≤ δ22m for any
0-input (x, y). Hence, each |Ek

xy| ≤ (δ22m)k. We conclude that

|Z| =

∣
∣
∣
∣
∣
∣

⋃

(x,y)∈f−1(0)

Ek
xy

∣
∣
∣
∣
∣
∣
≤

∑

(x,y)∈f−1(0)

∣
∣Ek

xy

∣
∣ ≤ 22n(δ22m)k = δk22n+2mk.

��

Let Ax
p := {rA ∈ {0, 1}m | A(x, rA, p) = 1} and By

p := {rB ∈ {0, 1}m |
B(y, rB , p) = 1}.

Claim. Let Dacc be the accepting distribution of ZAM. Then, for any 1-input
(x, y) and p ∈ {0, 1}� we have that Dacc(p) = 2−2m|Ax

p ||By
p |.

Proof. By definition

Dacc(p) =
|{(rA, rB) ∈ {0, 1}m × {0, 1}m | A(x, rA, p) = 1 = B(y, rB , p)}|

|{0, 1}m| · |{0, 1}m| .

In order to derive the claim, it remains to notice that since every proof forms a
“rectangle” [GPW15], we have that

{(rA, rB) ∈ {0, 1}m × {0, 1}m | A(x, rA, p) = 1 = B(y, rB , p)} = Ax
p × By

p .

��

We can now describe the encoding algorithms G1 and G2 and the decoder
Dec. First, G1 and G2 use the shared randomness to sample a proof p according
to the accepting distribution. Then G1 and G2 sample (private) randomness that
can lead to the acceptance of p on their input (x, y), i.e., G1 computes a ←R Ax

p

and G2 computes b ←R By
p . We have that if f(x, y) = 1 then (a, b) is distributed

uniformly, while if f(x, y) = 0 then (a, b) is sampled from the set Z. The task of
the decoder is to verify whether it is likely that a point has been sampled from
Z or uniformly. This is achieved by repeating the protocol k times. Below is the
formal description of the algorithms G1, G2 and decoder.

78 B. Applebaum and P. Raykov

– Shared Randomness. The common randomness c ∈ {0, 1}k·2m is used
for sampling k independent samples (p1, . . . , pk) from Dacc. (Each such
sample can be obtained by sampling r = (rA, rB) ←R {0, 1}2m and
outputting the unique proof p that corresponds to r and to some fixed
1-input (x0, y0).)

– Encoders. The encoder G1(x, c) outputs (a1, . . . , ak) ←R Ax
p1

× · · · ×
Ax

pk
and the encoder G2 outputs (b1, . . . , bk) ←R By

p1
× · · · × Bx

pk
.

– Decoder. Dec((a1, . . . , ak), (b1, . . . , bk))
If ((a1, b1), ..., (ak, bk)) ∈ Z then output 0, otherwise output 1.

Let us verify that the proposed protocol is a 1PSM for f .

(22nδk)-Correctness. Since that the decoder never errs on 0-inputs, it suffices
to analyze the probability that some 1-input (x, y) is incorrectly decoded to 0.
Fix some 1-input (x, y). Below we will show that the message s = ((a1, b1), . . . ,
(ak, bk)) generated by the encoders G1 and G2 is uniformly distributed over
the set ({0, 1}m × {0, 1}m)k. Hence, the probability that s lands in Z (and
decoded incorrectly to 0) is exactly |Z|

|({0,1}m×{0,1}m)k| , which, by Claim 6, is
upper-bounded by 22nδk.

It is left to show that s is uniformly distributed. To see this, consider the
marginalization of (ai, bi)’s probability distribution: For a fixed (rA, rB) we have
that

Pr[(ai, bi) = (rA, rB)] =
∑

p∈{0,1}�

Pr[(ai, bi) = (rA, rB) | pi = p] Pr[pi = p].

Because of the unambiguous completeness property of ZAM, we have that there
exists a single p∗ such that (rA, rB) ∈ Ax

p∗ × By
p∗ . Hence, all probabilities

Pr[(ai, bi) = (rA, rB) | pi = p] are zero, if p 	= p∗. This implies that

Pr[(ai, bi) = (rA, rB)] = Pr[(ai, bi) = (rA, rB) | pi = p∗] Pr[pi = p∗].

We have that Pr[pi = p] = Dacc(p) = 2−2m|Ax
p ||By

p | (due to Claim 6),
and Pr[(ai, bi) = (rA, rB) | pi = p∗] is 1

|Ax
p |·|By

p | by the construction of

the encoding functions. Hence, Pr[(ai, bi) = (rA, rB)] = 2−2m. Because all
pairs (ai, bi) are sampled independently, we get that the combined tuple
s = ((a1, b1), . . . , (ak, bk)) is sampled uniformly from ({0, 1}m × {0, 1}m)k, as
required.

Privacy for 1-inputs. As shown above, if (x, y) is a 1-input, then s is uni-
formly distributed over ({0, 1}m × {0, 1}m)k. Hence, the simulator for prov-
ing the privacy property of PSM can be defined as a uniform sampler from
({0, 1}m × {0, 1}m)k.

From PSM to ZAM Protocols and Back 79

The Second Protocol. The second item of the theorem is proved by using the
first protocol, except that the point p = (p1, . . . , pk) is sampled from a different
distribution D′. For a parameter t, the distribution D′ is simply the distribution
Dk

acc
discretized into 2−(�k+t)-size intervals. Such D′ can be sampled using only

�k + t random bits. Moreover, for each point p, the difference between Dk
acc

(p)
and D′(p) is at most 2−(�k+t). Since the support of Dk

acc
is of size at most 2�k, it

follows that Δ(S(U�k+t);Dk
acc

) ≤ 2−(�k+t) · 2�k = 2−t. As a result, we introduce
an additional error of 2−t in both privacy and correctness. By setting t to �k,
we derive the second 1PSM protocol. ��

7 From 1PSM to PSM

In this section we show how to upgrade a 1PSM protocol into a PSM protocol.
We assume that we have a way of constructing 1PSM for all functions. Our main
idea is to reduce a construction of a PSM scheme for f to two 1PSM schemes.
The first 1PSM scheme computes the function f , and the second 1PSM scheme
computes the function Decf , i.e., the complement of the decoder Decf of the first
scheme. We show how to combine the two schemes such that the first scheme
protects the privacy of 1-inputs and the second scheme protects the privacy of
0-inputs.

Theorem 3. Assume that for all n, each function f : {0, 1}n ×{0, 1}n → {0, 1}
has a δ(n)-correct ε(n)-private 1PSM protocol with communication complexity
t(n) and randomness complexity s(n). Then, each f has a [δ(n)+δ(t(n))]-correct
max(ε(n), δ(n) + ε(t(n))-private PSM protocol with communication complexity
t(t(n)) and randomness complexity s(n) + s(t(n)). In particular, if every such
f has a 1PSM with polynomial communication and randomness, and negligible
privacy and correctness errors, then every f has a PSM with polynomial com-
munication and randomness, and negligible privacy and correctness errors.

Proof. Let f : {0, 1}n × {0, 1}n → {0, 1}. Let F1, F2 : {0, 1}n × {0, 1}s(n) →
{0, 1}t(n) be a δ(n)-correct and ε(n)-private on 1 inputs 1PSM for f with decoder
Decf and simulator Simf . Define a function g : {0, 1}t(n) × {0, 1}t(n) → {0, 1}
to be 1 − Decf (m1,m2). Let G1, G2 : {0, 1}t(n) × {0, 1}s(t(n)) → {0, 1}t(t(n)) be
a δ(t(n))-correct and ε(t(n))-private on 1 inputs 1PSM for g with decoder Decg

and simulator Simg.
We construct a (standard) PSM for f as follows. Let {0, 1}u = {0, 1}s(n) ×

{0, 1}s(t(n)) be the space of shared randomness, let {0, 1}v = {0, 1}t(t(n)) be the
output space and define the encoding functions H1,H2 : {0, 1}n × {0, 1}u →
{0, 1}v, by

H1(x, (c, r)) = G1(F1(x, c), r) and H2(y, (c, r)) = G2(F2(y, c), r).

We show that H1,H2 satisfy the security properties of PSM:

80 B. Applebaum and P. Raykov

δ(n) + δ(t(n))-Correctness: On an input (e1, e2) define the decoding algo-
rithm Dec to output 1 − Decg(e1, e2). The decoding algorithm Dec works
correctly whenever both Decg and Decf succeed. Hence, the error probabil-
ity for decoding can be bounded as follows:

Pr
(c,r)←R{0,1}u

[Dec(H1(x, (c, r)),H2(y, (c, r))) 	= f(x, y)]

= Pr
(c,r)←R{0,1}u

[1 − Decg(G1(F1(x, c), r)), G2(F2(y, c), r))) 	= f(x, y)]

≤ Pr
c←R{0,1}s(n)

[1 − (1 − (Decf (F1(x, c), F2(y, c)))) 	= f(x, y)] + δ(t(n))

= Pr
c←R{0,1}s(n)

[Decf (F1(x, c), F2(y, c)) 	= f(x, y)] + δ(t(n))

≤ δ(n) + δ(t(n)).

ε-Privacy: We define the simulator Sim as follows: on 0-inputs it outputs Simg

and on 1-inputs it computes Simf = (m1,m2), randomly samples r from
{0, 1}s(t(n)), and outputs (G1(m1, r), G2(m2, r)). We verify that the simu-
lator truthfully simulates the randomized encoding (H1,H2) with deviation
error of at most ε.
We begin with the case where (x, y) is a 0-input for f . For any c, let Lc denote
the distribution of the random variable (G1(F1(x, c), r), G2(F2(y, c), r))
where r ←R {0, 1}s(t(n)). Let M denote the “mixture distribution” which
is defined by first sampling c ←R {0, 1}s(n) and then outputting a random
sample from Lc, that is, the distribution M =

∑
c∈{0,1}s(n) Pr[Us(n) = c]Lc.

Due to Lemma 1, we have that

Δ(Simg;M)≤
∑

c∈{0,1}s(n)

Pr[Us(n) = c]Δ(Simg;Lc).

Let C denote a subset of c ∈ {0, 1}s(n) such that (F1(x, c), F2(y, c)) is a
1-input for g. The set C satisfies the following two properties: (1) ∀c ∈
C Δ(Simg;Lc) ≤ ε(t(n)) and (2) |C|/2s(n) ≥ 1 − δ(n). The property (1)
holds because G1, G2 is private on 1-inputs of g. The property (2) holds
because Decf decodes correctly with the probability at least 1 − δ(n). After
splitting the mixture sum in two, we have that

∑

c∈{0,1}s(n)

Pr[Us(n) = c]Δ(Simg;Lc) =
∑

c∈C

2−s(n) Δ(Simg;Lc)

+
∑

c �∈C

2−s(n) Δ(Simg;Lc).

Because of the properties of C, we have that the first sum is upperbounded
by ε(t(n)) and the second one is upperbounded by δ(n). This implies that
Δ(Simg;M)≤δ(n) + ε(t(n)).

From PSM to ZAM Protocols and Back 81

We move on to the case where (x, y) is a 1-input. Then

Δ
c←R{0,1}s(n)

(Simf ; (F1(x, c), F2(y, c))) ≤ ε(n).

Consider the randomized procedure G which, given (m1,m2), samples r ←R

{0, 1}s(t(n)) and outputs the pair (G1(m1, r), G2(m2, r)). Applying G to the
above distributions we get:

Δ
(c,r)←R{0,1}u

(G(Simf ; r); G(F1(x, c), F2(y, c); r)) ≤ ε(n). (1)

Recall that, for a random r ←R {0, 1}s(t(n), it holds that G(Simf ; r) ≡
Sim(1), and for every r, G(F1(x, c), F2(y, c); r) = (H1(x, (c, r)),H2(y, (c, r))).
Hence, Eq. 1 can be written as

Δ
(c,r)←R{0,1}u

(Sim(1); (H1(x, (c, r)),H2(y, (c, r)))) ≤ ε(n).

Since ε(n) ≤ max(ε(n), δ(n) + ε(t(n))), the theorem follows.

��

References

[AIK04] Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: Pro-
ceedings of 45th Symposium on Foundations of Computer Science (FOCS
2004), pp. 166–175. IEEE Computer Society, Rome, Italy, 17–19 October
2004

[AIK15] Applebaum, B., Ishai, Y., Kushilevitz, E.: Minimizing locality of one-way
functions via semi-private randomized encodings. Electron. Colloq. Com-
put. Complex. (ECCC) 22, 45 (2015)

[BFS86] Babai, L., Frankl, P., Simon, J.: Complexity classes in communication
complexity theory (preliminary version). In: 27th Annual Symposium on
Foundations of Computer Science, pp. 337–347. IEEE Computer Society,
Toronto, Canada, 27–29 October 1986

[BIKK14] Beimel, A., Ishai, Y., Kumaresan, R., Kushilevitz, E.: On the cryptographic
complexity of the worst functions. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 317–342. Springer, Heidelberg (2014)

[BM88] Babai, L., Moran, S.: Arthur-merlin games: a randomized proof system,
and a hierarchy of complexity classes. J. Comput. Syst. Sci. 36(2), 254–276
(1988)

[FKN94] Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation
(extended abstract). In: Leighton, F.T., Goodrich, M.T. (eds.) Proceedings
of the Twenty-Sixth Annual ACM Symposium on Theory of Computing,
pp. 554–563. ACM, Montréal, Québec, Canada, 23–25 May 1994

[GIKM00] Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy
in private information retrieval schemes. J. Comput. Syst. Sci. 60(3), 592–
629 (2000)

82 B. Applebaum and P. Raykov

[GKW15] Gay, R., Kerenidis, I., Wee, H.: Communication complexity of conditional
disclosure of secrets and attribute-based encryption. In: Gennaro, R., Rob-
shaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 485–502.
Springer, Heidelberg (2015)

[GPW15] Göös, M., Pitassi, T., Watson, T.: Zero-information protocols and unam-
biguity in arthur-merlin communication. In: Roughgarden, T. (ed.) Pro-
ceedings of the 2015 Conference on Innovations in Theoretical Computer
Science, ITCS 2015, pp. 113–122. ACM, Rehovot, Israel, 11–13 January
2015

[IK97] Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with
applications. In: Proceedings of the 5th Israeli Symposium on Theory of
Computing and Systems, pp. 174–183, June 1997

[IK00] Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation
with applications to round-efficient secure computation. In: 41st Annual
Symposium on Foundations of Computer Science, FOCS 2000, pp. 294–304.
IEEE Computer Society, Redondo Beach, California, USA, 12–14 Novem-
ber 2000

[Ish13] Ishai, Y.: Randomization techniques for secure computation. In: Prab-
hakaran, M., Sahai, A., (eds.) Secure Multi-Party Computation, vol. 10 of
Cryptology and Information Security Series, pp. 222–248. IOS Press (2013)

[Kla03] Klauck, H.: Rectangle size bounds and threshold covers in communication
complexity. In: 18th Annual IEEE Conference on Computational Com-
plexity (Complexity 2003), pp. 118–134. IEEE Computer Society, Aarhus,
Denmark, 7–10 July 2003

[Kla10] Klauck, H.: A strong direct product theorem for disjointness. In: Schulman,
L.J. (ed.) Proceedings of the 42nd ACM Symposium on Theory of Comput-
ing, STOC 2010, pp. 77–86. ACM, Cambridge, Massachusetts, USA, 5–8
June 2010

A Transform for NIZK Almost as Efficient
and General as the Fiat-Shamir Transform
Without Programmable Random Oracles

Michele Ciampi1(B), Giuseppe Persiano2, Luisa Siniscalchi1, and Ivan Visconti1

1 DIEM, University of Salerno, Salerno, Italy
{mciampi,lsiniscalchi,visconti}@unisa.it

2 DISA-MIS, University of Salerno, Salerno, Italy
giuper@gmail.com

Abstract. The Fiat-Shamir (FS) transform is a popular technique for
obtaining practical zero-knowledge argument systems. The FS transform
uses a hash function to generate, without any further overhead, non-
interactive zero-knowledge (NIZK) argument systems from public-coin
honest-verifier zero-knowledge (public-coin HVZK) proof systems. In the
proof of zero knowledge, the hash function is modeled as a programmable
random oracle (PRO).

In TCC 2015, Lindell embarked on the challenging task of obtain-
ing a similar transform with improved heuristic security. Lindell showed
that, for several interesting and practical languages, there exists an effi-
cient transform in the non-programmable random oracle (NPRO) model
that also uses a common reference string (CRS). A major contribution
of Lindell’s transform is that zero knowledge is proved without random
oracles and this is an important step towards achieving efficient NIZK
arguments in the CRS model without random oracles.

In this work, we analyze the efficiency and generality of Lindell’s
transform and notice a significant gap when compared with the FS trans-
form. We then propose a new transform that aims at filling this gap.
Indeed our transform is almost as efficient as the FS transform and can
be applied to a broad class of public-coin HVZK proof systems. Our
transform requires a CRS and an NPRO in the proof of soundness, sim-
ilarly to Lindell’s transform.

1 Introduction

Non-interactive zero-knowledge (NIZK) proofs1 introduced in [5,6,24] are widely
used in Cryptography. Such proofs allow a prover to convince a verifier with just
one message about the membership of an instance x in a language L without
leaking any additional information. NIZK proofs are not possible without a setup
1 When discussing informally we will use the word proof to mean both an uncondi-

tionally sound proof and a computationally sound proof (i.e., an argument). Only
in the more formal part of the paper we will make a distinction between arguments
and proofs.

c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 83–111, 2016.
DOI: 10.1007/978-3-662-49099-0 4

84 M. Ciampi et al.

assumption and the one proposed initially in [5] is the existence of a Common
Reference String (CRS) received as input both by the prover and the verifier.
The CRS model has been the standard setup for NIZK in the last 25 years.
Another setup that has been proposed in literature is the existence of registered
public keys in [2,13,21].

Starting with the breakthrough of [29,30] we know that NIZK proofs in the
CRS model exist for any NP language with the additional appealing feature
of using just one CRS for any polynomial number of proofs. Moreover NIZK
proofs and their stronger variations [23,39,48] have been shown to be not only
interesting for their original goal of being a non-interactive version of classic
zero-knowledge (ZK) proofs [36,37], but also because they are powerful building
blocks in many applications (e.g., for CCA encryption [45], ZAPs [27,28]).

Efficient NIZK. Generic constructions of NIZK proofs are rather inefficient since
they require to first compute an NP reduction and then to apply the NIZK proof
for a given NP-complete language to the instance output by the reduction. A sig-
nificant progress in efficiency has been proposed in [40] where several techniques
have been proposed to obtain efficient NIZK proofs that can be used in bilinear
groups.

The most popular use of NIZK proofs in real-world scenarios consists in
taking an efficient interactive public-coin honest-verifier zero-knowledge (HVZK)
proof system and in making it a NIZK argument through the so called Fiat-
Shamir (FS) transform [31]. The FS transform replaces the verifier by calls to
a hash function on input the transcript so far. In the random oracle [3] (RO)
model the hash function can only be evaluated through calls to an oracle that
answers as a random function. The security proof allows the simulator for HVZK
to program the RO (i.e., the simulator decides how to answer to a query) and
this allows to convert the entire transcript of a public-coin HVZK proof into a
single message that is indistinguishable from the single message computed by a
honest NIZK prover. The efficiency of the FS transform led to many practical
applications. The transform is also a method to obtain signatures of knowledge,
as discussed in [14].

The main disadvantage of the FS transform is the fact that the random
oracle methodology has been proved to be unsound both in general [7] and both
for the specific case [4,35] of turning identification schemes into signatures as
considered in [31]. Nevertheless, the examples of constructions proved secure in
the RO model and insecure for any concrete hash function are seemingly artificial
while no natural construction has been successfully attacked yet. Therefore the
RO methodology remains widely used in practice.

The FS transform applied to 3-round HVZK proofs is one of the major uses
of the RO model for real-world protocols, therefore any progress in this research
direction (either on the security of the transform, or on its efficiency, or on its
generality) is of extreme interest.

In [38] Groth showed an efficient transform for NIZK where soundness is
proved requiring a programmable RO while no random oracle is needed to prove
zero knowledge.

A Transform for NIZK Almost as Efficient 85

Efficient NIZK with Designated/Registered Verifiers. A first attempt to get effi-
cient NIZK arguments from some restricted class of 3-round public-coin HVZK
proofs without ROs was done by [21] (the proof of soundness required complex-
ity leveraging) and later on by [13] that achieved a weaker form of soundness
in the registered public-key model. The limitation of this model is that a NIZK
proof can be verified only by a designated verifier (i.e., the proof requires a secret
known to the verifier). Moreover there is an inconvenient preliminary registration
phase where the verifier has to register her public key.

Lindell’s Transform. Very recently, in [43], Lindell proposed a very interesting
transform that can be seen as an attempt towards obtaining efficient construc-
tions without random oracles. Starting from a Σ-protocol for a language L (i.e.,
a special type of 3-round public-coin HVZK proof used already in several efficient
constructions of zero knowledge [1,10,19,25,44,46,49,51,54]), Lindell shows how
to construct an efficient NIZK2 argument system for L in the CRS model. Two
are the major advantages of Lindell’s transform with respect to the FS trans-
form. First, in Lindell’s transform the proof of ZK does not need the existence
of a random oracle and this allows to avoid some issues due to protocol com-
position [52]. We remark that the proof of ZK for Lindell’s transform needs a
CRS but this is unavoidable as one-round ZK in the plain model is possible
only for trivial languages. Second, the soundness of Lindell’s transform can be
proved by relying on a non-programmable random oracle (NPRO). An NPRO
is a RO that in the protocol and in the security proofs can be used only as a
black box and can not be programmed by a simulator or by the adversary of a
reduction. This is a considerable advantage compared to the FS transform since
replacing a RO by an NPRO is a step towards removing completely the need of
ROs in a cryptographic construction. Indeed the work of Lindell goes precisely
in the direction of solving a major open problem in Cryptography: obtaining an
efficient RO-free transform for NIZK arguments to be used in place of the FS
transform.

The main drawback of Lindell’s transform is that it requires extra compu-
tation on top of the one needed to run the Σ-protocol for the language L. In
contrast, the FS transform does not incur into any overhead on top of a 3-round
public-coin HVZK proof for L. In addition, since 3-round public-coin HVZK
proofs are potentially less demanding than Σ-protocols, we have that requiring
a Σ-protocol as starting protocol for a transform instead of a public-coin HVZK
proof may already result in an efficiency loss.

Lindell’s transform is based on a primitive named dual-mode (DM) commit-
ment scheme (DMCS). A DMCS is based on a membership-hard language Λ
and each specific commitment takes as input an instance ρ of Λ and has the
following property: if ρ �∈ Λ, the DM commitment is perfectly binding; on the
other hand, if ρ ∈ Λ, the DM commitment can be arbitrarily equivocated if a
2 Lindell’s NIZK argument is a not an argument of knowledge in contrast to the NIZK

argument obtained through an FS transform.

86 M. Ciampi et al.

witness for ρ ∈ Λ is known. Moreover, the two modes are indistinguishable3.
Lindell showed that DMCSs can be constructed efficiently from Σ-protocols for
membership-hard languages and also provided a concrete example based on the
language of Diffie-Hellman tuples (DH). Then, Lindell’s transform shows how
to combine DM commitments and Σ-protocols along with a hash function4 to
obtain an efficient NIZK argument.

1.1 Our Results

In this paper, we continue the study of generic and efficient transforms from
3-round public-coin HVZK proofs to NIZK arguments.

We start by studying the generality and efficiency of Lindell’s transform in
terms of the Σ-protocol used for instantiating the DMCS (and in turn instan-
tiating the CRS) and the Σ-protocol to which the transform is applied. As a
result, we point out a significant gap in generality and efficiency of Lindell’s
transform compared to the FS transform.

Then we show an improved transform that is based on weaker require-
ments. Specifically, our transform only requires computational HVZK and opti-
mal soundness instead of perfect special HVZK5 and special soundness. More
interestingly and surprisingly despite being based on weaker requirements, our
transform is also significantly more efficient than Lindell’s transform and very
close to the efficiency of the FS transform. We next discuss our contributions in
more details.

The Classes of Σ-protocols Needed in [43]. Lindell defines Σ-protocols as 3-round
public-coin proofs that enjoy perfect special HVZK and special soundness. The
former property means that the simulator on input any valid statement x and
challenge e can compute (a, z) such that the triple (a, e, z) is perfectly indistin-
guishable from an accepting transcript where the verifier sends e as challenge.
Special soundness instead means that from any two accepting transcripts (a, e, z)
and (a, e′, z′) for the same statement x that share the first message but have dif-
ferent challenges e �= e′, one can efficiently compute a witness w for x ∈ L.
Lindell in [42] shows a construction of a DMCS from any (defined as above)
Σ-protocol for a membership-hard language6.

The Efficiency of Lindell’s Transform. Lindell’s transform uses a DMCS derived
from a Σ-protocol ΠΛ = (PΛ,VΛ) for language Λ whose commitment algorithm
com works by running the simulator of ΠΛ. The CRS contains an instance ρ of
Λ along with the description of a hash function h. The argument produced by
3 A similar notion was introduced in [11,12] and a scheme with similar features was

proposed in [22].
4 In the proof of soundness this function will be modeled as an NPRO.
5 The latest version of Lindell’s transform [42] works by assuming just perfect special

HVZK instead of strong perfect special HVZK needed in [43].
6 The construction in [43] needs an additional property that however is enjoyed by

classic Σ-protocol s as we discuss in Appendix A.

A Transform for NIZK Almost as Efficient 87

the NIZK Π = (P,V) for x ∈ L starting from a Σ-protocol ΠL = (PL,VL) for
L is computed as a tuple (a′, e, z, r) where a′ = com(a, r), e = h(x|a′), and z is
the 3rd round of ΠL answering to the challenge e and having a as first round.
The verifier checks that a′ is a commitment of a with randomness r, that e is
the output of h(x|a′) and that (a, e, z) is accepted by VL.

As an example, in [43] Lindell discussed the use of the Σ-protocol for the
language DH for which the transform produces a very efficient NIZK proof;
indeed the additional cost is of only 8 modular exponentiations: 4 to be executed
by the prover and 4 by the verifier.

In this work we notice however that there is a caveat when analyzing the
efficiency of Lindell’s transform. The caveat is due to the message space of the
DMCS. Indeed, once the CRS is fixed the max length of a message that can be
committed to with only one execution of com is limited to the challenge length
lΛ of ΠΛ. Therefore in case the first round a of ΠL is much longer than lΛ, the
transform of Lindell requires multiple executions of com therefore suffering of a
clear efficiency loss.

We show indeed in Tables 2 and 3 that Lindell’s transform can generate in
the resulting NIZK argument a blow up of the computations compared to what
PL and VL actually do, and therefore compared to the FS transform.

Our Transform. In this paper, we present a different transform that is closer
to the FS transform both on generality and on efficiency.

Our transform can be used to obtain a NIZK for any language L with a
3-round HVZK proofs enjoying optimal soundness (i.e., a weaker soundness
requirement compared to special soundness). The CRS can be instantiated based
on any membership-hard language Λ with a 3-round HVZK proofs enjoying opti-
mal soundness. More specifically, we do not require perfect HVZK nor special
HVZK for the involved Σ-protocols. Moreover, instead of special soundness, we
will just require that, for any false statement and any first round message a,
there is at most one challenge c that can be answered correctly. This is clearly
a weaker requirement than special soundness and was already used by [44].

Essentially we just need that both protocols ΠL and ΠΛ are 3-round public-
coin HVZK proofs with optimal soundness. Our transform produces a NIZK
argument Π = (P,V) that does not require multiple executions of ΠL and ΠΛ

and, therefore, it remains efficient under any scenario without suffering of the
previously discussed issue about challenge spaces in Lindell’s transform.

Techniques. We start by considering the FS transform in the NPRO model and
by noticing that, as already claimed and proved in [53], if the original 3-round
public-coin HVZK proof is witness indistinguishable (WI)7, then the transformed
protocol is still WI, and of course the proof of WI is RO free.

Notice that as in [43], P and V need a common hash function (modeled as
an NPRO in the soundness proof) to run the protocol and this can be enforced
through a setup (i.e., a non-programmable CRS [47], or a global hash function
7 We use WI both to mean witness indistinguishable and witness indistinguishability.

88 M. Ciampi et al.

[9]). The use of the FS transform in the NPRO model is not sufficient for our
purposes. Indeed we want generality and the HVZK proof might not be witness
indistinguishable. Moreover we should make a witness available to the simulator.
We solve this problem by using the OR composition of 3-round perfect HVZK
proofs proposed in [18]. We will let the prover P for NIZK to prove that either
x ∈ L ∨ ρ ∈ Λ. We notice that in [18] the proposed OR composition is proved to
guarantee WI only when applied to two instances of the same language having
a public-coin perfect HVZK proof. We can avoid this limitation using a gener-
alization discussed already in [32,33] that allows the OR composition different
protocols for different languages relying on computational HVZK only.

1.2 Comparison

Here we compare the computational effort, both for the prover and the verifier,
required to execute Lindell’s NIZK argument, our NIZK argument and the FS
one. The properties of the three transforms are summarized in Table 1. The cost
for the prover can be found in Table 2, while the one for the verifier can be found
in Table 3. The comparison of the computational effort is performed with respect
to three Σ-protocols8. Roughly speaking, in the comparisons, we consider the
CRS to contain an instance of the the language DH of Diffie-Hellman triples with
respect to 1024-bit prime pcrs and consider two Σ-protocols: the one to prove
that a triples is Diffie-Hellman9 with respect to a prime p, for which we consider
the cases in which p is 1024-bit and 2048-bit long10, and the Σ-protocol for graph
isomorphism (GI). For the Σ-protocol for graph isomorphism, we count only
the modular exponentiations and do not count other operations (e.g., random
selection of a permutation and generation of the adjacency matrix of permuted
graphs) since they are extremely efficient and clearly dominated by the cost of
modular exponentiations. A detailed description of the Σ-protocols and of the
way we measure the computational effort is found in Sect. 6.

The tables give evidence of the fact that while Lindell’s transform on some
specific cases can replace the FS transform by paying a small overhead, in other
cases there is a significant loss in performance. Our transform instead remains
very close to the FS transform both when considering the amount of computation
and when considering the generality of the protocols that can be given as input
to the transform.

Which Protocols can be Given in Input to the Transform? We stress that our
transform allows for additional proof systems to be used for instantiating the
8 We consider the same Σ-protocol discussed in [43] and in addition we consider the

one for Graph Isomorphism since it has the special property of having a very long
first round that can be computed very efficiently.

9 See Sect. 6 for a formal definition of the polynomial relation and the respective
Σ-protocol s.

10 Clearly, in case p is such that |p| < |pcrs|, then Lindell’s transform has a slightly
smaller number of exponentiations with respect to the number of exponentiations
that we count in the tables.

A Transform for NIZK Almost as Efficient 89

Table 1. Requirements for the proofs in input to the three transforms.

Transform HV ZK for Λ HV ZK for L Soundness Model

Lindell [42] Special + perfect Special + Perfect Special NPRO + CRS

This paper Computational Computational Optimal NPRO + CRS

FS / Computational Classic PRO

Table 2. Efficiency of the three transforms: modular exponentiations for the prover.

Transform DH GI

|p| = 1024 |p| = 2048 n vertices

Lindell [42] 2 mod p + 12 mod pcrs 2 mod p + 20 mod pcrs 4n2 mod pcrs

This paper 2 mod p + 4 mod pcrs 2 mod p + 4 mod pcrs 4 mod pcrs

FS 2 mod p 2 mod p /

Table 3. Efficiency of the three transforms: modular exponentiations for the verifier.

Transform DH GI

|p| = 1024 |p| = 2048 n vertices

Lindell [42] 4 mod p + 12 mod pcrs 4 mod p + 20 mod pcrs 4n2 mod pcrs

This paper 4 mod p + 4 mod pcrs 4 mod p + 4 mod pcrs 4 mod pcrs

FS 4 mod p 4 mod p /

CRS and for obtaining a NIZK argument system. This is not only a theoretical
progress. Indeed there exist efficient constructions such as the one of [51] that is a
variation of the one of [44]. The construction of [51] is an efficient 3-round HVZK
proof system with optimal soundness for a language L and is not a Σ-protocol
for the corresponding relation RL. For further details, see AppendixB.

2 HVZK Proof Systems and Σ-Protocols

We denote the security parameter by n and use “|” as concatenation operator
(i.e., if a and b are two strings then by a|b we denote the concatenation of a and
b). For a finite set S, x ← S denotes the algorithm that chooses x from S with
uniform distribution.

A polynomial-time relation R (or polynomial relation, in short) is a subset
of {0, 1}∗ × {0, 1}∗ such that membership of (x,w) in R can be decided in time
polynomial in |x|. For (x,w) ∈ R, we call x the instance and w a witness for
x. For a polynomial-time relation R, we define the NP-language LR as LR =
{x|∃w : (x,w) ∈ R}. We will model a random oracle as a random function
O : {0, 1}∗ → {0, 1}n. Analogously, unless otherwise specified, for an NP-language
L we denote by RL the corresponding polynomial-time relation (that is, RL is
such that L = LRL

).

90 M. Ciampi et al.

We remark that for simplicity we will omit the modulus in modular arithmetic
calculations.

For two interactive machines A and B, we denote by 〈A(α), B(β)〉(γ) the
distribution of B’s output after running on private input β with A using private
input α, both running on common input γ. Typically, one of the two machines
receives the security parameter 1n as input.

Definition 1. A pair of PPT interactive machines (PL,VL) constitutes a proof
system (resp., an argument system) for NP-language L, if the following condi-
tions hold:

– Completeness. For every x ∈ L and w such that (x,w) ∈ RL, it holds:

Prob [〈PL(w, 1n),VL〉(x) = 1] = 1.

– Soundness. For every interactive (resp., PPT interactive) machine P�
L, there

exists a negligible function ν such that for every x /∈ L and every z:

Prob [〈P�
L(z, 1n),VL〉(x) = 1] ≤ ν(n).

An interactive protocol ΠL = (PL,VL) is public coin if, at every round, VL

simply tosses a predetermined number of coins (random challenge) and sends
the outcome to the prover.

In a 3-round public-coin protocol ΠL = (PL,VL) for an NP-language L, PL

and VL receive the common input x and, additionally, PL receives security para-
meter 1n in unary and w such that (x,w) ∈ RL as private input. The interaction,
with challenge length l, proceeds as follows:

The 3-round public-coin protocol ΠL:

1. PL, on input 1n, x and w, computes message a and sends it to VL.
2. VL chooses a random challenge e ← {0, 1}l and sends it to PL.
3. PL, on input x, w, e, and the randomness used to compute a, computes

message z and sends it to VL.
4. VL decides to accept or reject based on its view (i.e., (x, a, e, z)).

A triple (a, e, z) of messages exchanged during the execution of a 3-round
proof (resp., argument) system is called a 3-round transcript. We say that a 3-
round transcript (a, e, z) is an accepting transcript for x if the argument system
ΠL instructs VL to accept based on the values (x, a, e, z). Two accepting 3-
rounds transcripts (a, e, z) and (a′, e′, z′) for an instance x constitute a collision
if a = a′ and e �= e′.

Definition 2. A 3-round proof or argument system ΠL = (PL,VL) for NP-
language L is Honest-Verifier Zero Knowledge (HVZK) if there exists a PPT
simulator algorithm Sim that takes as input security parameter 1n and instance
x ∈ L and outputs an accepting transcript for x. Moreover, the distribution of
the output of the simulator on input x is computationally indistinguishable from
the distribution of the honest transcript obtained when VL and PL run ΠL on
common input x and any private input w such that (x,w) ∈ RL.

If the transcripts are identically distributed we say that ΠL is perfect HVZK.

A Transform for NIZK Almost as Efficient 91

Definition 3. A 3-round public-coin proof system ΠL = (PL,VL) for language
L with challenge length l enjoys optimal soundness if for every x �∈ L and for
every first-round message a there is at most one challenge e ∈ {0, 1}l for which
there exists a third-round message z such that (a, e, z) is accepting for x.

Note that any 3-round public-coin optimally sound proof system with chal-
lenge length l has soundness error 2−l [44].

Definition 4. A 3-round public-coin proof system ΠL = (PL,VL) with challenge
length l is a Σ-protocol for an NP-language L if it enjoys the following properties:

– Completeness. If (x,w) ∈ RL then all honest 3-round transcripts for (x,w)
are accepting.

– Special Soundness. There exists an efficient algorithm mathsfExtract that,
on input x and a collision for x, outputs a witness w such that (x,w) ∈ RL.

– Special Honest Verifier Zero Knowledge (special HVZK). There exists a PPT
simulator algorithm Sim that takes as input security parameter 1n, x ∈ L
and e ∈ {0, 1}l and outputs an accepting transcript for x where e is the
challenge. Moreover for all l-bit strings e, the distribution of the output of
the simulator on input (x, e) is perfect indistinguishable from the distribution
of the 3-round honest transcript obtained when VL sends e as challenge and
PL runs on common input x and any private input w such that (x,w) ∈ RL.

Sometimes, we will abuse notion and say that a proof system or Σ-protocol is
for a polynomial relation R instead of referring to NP-language LR.

It is easy to see that Σ-protocols enjoy optimal soundness. The converse,
however, is not true. See Appendix B for an example of an optimal-sound 3-
round public-coin proof system that does not enjoy special soundness (and is
special perfect HVZK).

In order not to overburden the descriptions of protocols and simulators, we
will omit the specification of the security parameter when it is clear from the
context.

2.1 3-Round Public-Coin HVZK Proofs and WI

Following [33], for an NP-language L, we define L̂ to be the input language that
includes both L and all false instances that are well formed and can be used by
an adversarial prover in order to prove a false statement. More formally, L ⊆ L̂
and membership in L̂ can be tested in polynomial time. We implicitly assume
that a verifier executes the protocol only if the common input x ∈ L̂; otherwise,
it rejects immediately.

Definition 5. A 3-round public-coin proof system Π = (PL,VL) is Witness
Indistinguishable (WI) for polynomial relation R if, for every malicious verifier
V�

L, there exists a negligible function ν such that for all x, w, w′ with (x,w) ∈ R
and (x,w′) ∈ R, it holds that:

|Prob [〈PL(w, 1n),V�
L〉(x) = 1] − Prob [〈PL(w′, 1n),V�

L〉(x) = 1]| ≤ ν(n).

The notion of a perfect WI 3-round proof system is obtained by requiring that
ν(n) = 0.

92 M. Ciampi et al.

Sometimes we abuse the above definition and say that a proof system is WI for
a NP-language L instead of referring to the associated polynomial relation RL.

We recall the following result.

Theorem 1 ([18]). Every 3-round public-coin proof system with perfect HVZK
for an NP-language L is perfect WI for RL.

2.2 Challenge Lengths of 3-Round HVZK Proofs

Challenge-Length Amplification. The challenge of a 3-round public-coin proof
system with HVZK and optimal soundness can be extended through parallel
repetition.

Lemma 1. Let ΠL be a 3-round public-coin proof system with optimal sound-
ness for NP-language L that enjoys perfect HVZK and has challenge length l.
The protocol Πk

L consisting of k parallel instances of ΠL is a 3-round public-coin
proof system for relation L that enjoys perfect HVZK, has optimal soundness
and has challenge length k · l.

Proof. The HVZK it is preserved by Πk
L for the same arguments of [18]. About

the optimal soundness of Πk
L, it is simple to see that if the protocol Πk

L in not
optimal sound then also ΠL is not optimal sound.

A similar lemma can be proved for a Σ-protocol (as in [15,16,32]) for which
HVZK is not perfect.

Challenge-Length Reduction. We now show that starting from any 3-round
public-coin proof system that enjoys HVZK and has optimal soundness with
challenge length l, one can construct a 3-round public-coin proof system that
still enjoys HVZK, has optimal soundness but works with a shorter challenge.
Moreover perfect HVZK is preserved. A similar transformation was shown in
[20] for the case of Σ-protocol that are special perfect HVZK.

Lemma 2. Let ΠL be a HVZK 3-round public-coin proof system for L with
optimal soundness and challenge length l. Then for every l′ < l, there exists a 3-
round public-coin proof system Π ′

L for L with HVZK and optimal soundness and
challenge length l′. Protocol Π ′

L has the same efficiency as ΠL and, moreover,
if ΠL is perfect HVZK so is Π ′

L.

Proof. Following is a description of Π ′
L.

Common input: instance x for an NP-language L.
Private input of P ′

L: w s.t. (x,w) ∈ RL.
The protocol Π ′

L:

1. P ′
L computes a ← PL(x,w) and sends it to V ′

L;
2. V ′

L randomly chooses challenge e ← {0, 1}l′ and sends it to P ′
L;

3. P ′
L randomly chooses pad ← {0, 1}(l−l′), sets e′ = e|pad, computes z ←

PL(x,w, a, e′) and sends z′ = (z, pad) to V ′
L;

4. V ′
L outputs the output of VL(x, a, e|pad, z).

Completeness follows directly from the completeness of Π.

A Transform for NIZK Almost as Efficient 93

HVZK. We can consider the simulator Sim′, that on input x runs as follows:

1. run (a, e′, z) ← Sim(x);
2. set pad equal to the last l − l′ bits of e′, and set e equal to the fist l′ bits of

e′;
3. output (a, e, (z, pad)).

This concludes the proof.

Optimal soundness follows directly from the optimal soundness of Π.
The following theorem follows from Lemmas 1 and 2,

Theorem 2. Suppose NP-language L admits a HVZK 3-round public-coin proof
system ΠL that has optimal soundness and challenge length l. Then for any
l′ > 0 there exists HVZK 3-round public-coin proof system Π ′

L that has optimal
soundness and challenge length l′. If l′ ≤ l then Π

′
L is as efficient as ΠL. Oth-

erwise the communication and computation complexities of Π
′
L are at most l′/l

times the ones of ΠL. Moreover, perfect HVZK is preserved.

2.3 3-Round Public-Coin HVZK Proofs for or Composition
of Statements

In this section we recall the construction of [18] that starts from a HVZK 3-round
public-coin proof system ΠL for an NP-language L and constructs a HVZK 3-
round public-coin proof system ΠL∨L for the “OR” language of L; that is the
NP-language L∨L = {(x0, x1) : x0 ∈ L∨x1 ∈ L}. Below we give the descriptions
of the prover PL∨L and of the verifier VL∨L of ΠL∨L. In the description, we let
Sim denote the simulator for ΠL and l denote the challenge length of ΠL. We
also let b ∈ {0, 1} be such that w is a witness for xb ∈ L; that is, (xb, w) ∈ RL.

Common input: instances x0, x1 for an NP-language L.
Private input of PL∨L: w s.t (x0, x1, w) ∈ R̂L∨L.
The protocol ΠL∨L:

1. PL∨L computes ab ← PL(xb, w), (a1−b, e1−b, z1−b) ← Sim(x1−b) and sends
(a0, a1) to VL∨L.

2. VL∨L chooses at random challenge e ← {0, 1}l and sends e to PL∨L.
3. PL∨L sets eb = e ⊕ e1−b, computes zb ← PL(xb, w, ab, eb) and outputs(

(e0, e1), (z0, z1)
)
.

4. VL∨L

(
(x0, x1), (a0, a1), e, ((e0, e1), (z0, z1))

)
. VL∨L accepts if and only if e =

e0 ⊕ e1 and VL(x0, a0, e0, z0) = 1 and VL(x1, a1, e1, z1) = 1.

Theorem 3 ([18,33]). If ΠL is a HVZK 3-round public-coin proof system with
optimal soundness for NP-language L then ΠL∨L is a HVZK 3-round public-
coin proof system with optimal soundness for NP-language L ∨ L and is WI for
polynomial-time relation

RL∨L =
{

((x0, x1), w) :
(
(x0, w) ∈ RL ∧ x1 ∈ L

)
∨

(
(x1, w) ∈ RL ∧ x0 ∈ L

)}
.

94 M. Ciampi et al.

Moreover if ΠL is perfect HVZK then ΠL∨L is perfect WI for polynomial-time
relation

R̂L∨L =
{

((x0, x1), w) :
(
(x0, w) ∈ RL ∧ x1 ∈ L̂

)
∨

(
(x1, w) ∈ RL ∧ x0 ∈ L̂

)}
.

We remark that results of [18,33] are known to hold for Σ-protocol s, but in
the proof of WI they use only HVZK. Therefore their results also hold starting
from a HVZK 3-round public-coin proof system with optimal soundness (and not
necessarily special soundness) that we consider in the above theorem. Indeed we
observe that ΠL∨L has optimal soundness for the following reason. Suppose that
ΠL∨L does not enjoy optimal soundness. This means that for a false instance
and the same first round (a0, a1) there are two accepting conversation, namely:

(
(a0, a1), e, ((e0, e1), (z0, z1))

)
,
(
(a0, a1), e′, ((e′

0, e
′
1), (z

′
0, z

′
1))

)

with e �= e′. Then it must be the case that for some b = 0 or b = 1, eb �= e′
b

and then (ab, eb, zb) (ab, e
′
b, z

′
b) are two accepting transcripts with the same first

round for the protocol ΠL, and thus the optimal soundness of ΠL is violated.
It is possible to extend the above construction to handle two different NP-

languages L0, L1 that admit HVZK 3-round public-coin proof system with opti-
mal soundness. Indeed by Theorem2, we can assume, without loss of generality,
that L0 and L1 have 3-round public-coin proof systems ΠL0 and ΠL1 with the
same challenge length. Assuming that L0 and L1 have 3-round public-coin proof
systems ΠL0 and ΠL1 that are HVZK and have optimal soundness with the
same challenge length. We can apply the same construction outlined above to
obtain a 3-round public-coin proof system ΠL0∨L1 that enjoys HVZK and has
optimal soundness for relation

R̂L0∨L1 =
{

((x0, x1), w) :
(
(x0, w) ∈ RL0 ∧ x1 ∈ L̂1

)
∨
(
(x1, w) ∈ RL1 ∧ x0 ∈ L̂0

)}
.

We have the following theorem.

Theorem 4. If ΠL0 and ΠL1 are HVZK 3-round public-coin proof systems with
optimal soundness for NP-languages L0 and L1 then ΠL0∨L1 is a HVZK 3-round
public-coin proof system with optimal soundness for the for NP-language
L0 ∨ L1 = {(x0, x1) : x0 ∈ L0 ∨ x1 ∈ L1} and is WI for polynomial-time relation

RL0∨L1 =

{
((x0, x1), w) :

(
(x0, w) ∈ RL0 ∧ x1 ∈ L1

)
∨
(
(x1, w) ∈ RL1 ∧ x0 ∈ L0

)}
.

Moreover, if ΠL0 and ΠL1 are perfect then ΠL0∨L1 is perfect WI for polynomial-
time relation R̂L∨L.

3 Non-Interactive Argument Systems

Part of the definitions of this section are taken from [43].

Definition 6. A non-interactive argument system for an NP-language L consists
of three PPT machines (CRS,P,V), that have the following properties:

A Transform for NIZK Almost as Efficient 95

– Completeness: for all (x,w) ∈ RL, it holds that:

Prob [σ ← CRS(1n);V(σ, x,P(σ, x, w)) = 1] = 1.

– Adaptive Soundness: for every PPT function f : {0, 1}poly(n) → {0, 1}n \ L
for all PPT prover P�, there exists a negligible function ν, such that for all
n:

Prob
[

σ ← CRS(1n);VO(σ, f(σ),P�O(σ)) = 1
]

≤ ν(n)

where O : {0, 1}∗ → {0, 1}n is a random function.

Definition 7. A non-interactive argument system is adaptive unbounded zero
knowledge (NIZK) for an NP-language L if there exists a probabilistic PPT sim-
ulator S such that for every PPT function

f : {0, 1}poly(n) →
(
{0, 1}n × {0, 1}poly(n)

)
∩ RL,

for every polynomial p(·) and for every PPT malicious verifier V�, there exists
a negligible function ν such that,

∣
∣Prob

[
V�

(
Rf (Pf (n, p))

)
= 1

]
− Prob [V� (Sf (n, p)) = 1]

∣
∣ ≤ ν(n)

where f1 and f2 denote the first and second output of f , respectively, and
Rf (Pf (n, p)) and Sf (n, p) denote the output from the following experiments.

Real proofs Rf (Pf (n, p)):

– σ ← CRS(1n) a common reference string is sampled.
– For i = 1, . . . , p(n) (initially x and π are empty):

• xi ← f1(σ,x,π): the next statement xi to be proven is chosen.
• πi ← P(σ, f1(σ,x,π), f2(σ,x,π)): the ith proof is generated.
• set x = x1 . . . xi and π = π1 . . . πi.

– output (σ,x,π).

Simulation Sf (n, p):

– σ ← S(1n) a common reference string is sampled.
– For i = 1, . . . , p(n) (initially x and π are empty):

• xi ← f1(σ,x,π): the next statement xi to be proven is chosen.
• πi ← S(xi): simulator S generates a simulated proof πi that xi ∈ L.
• set x = x1 . . . xi and π = π1 . . . πi.

– output (σ,x,π).

Definition 8. A non-interactive argument system is adaptive unbounded wit-
ness indistinguishable (NIWI) for an NP-language L if for every PPT adversary
V�, for every PPT function

f : {0, 1}poly(n) →
(
{0, 1}n × {0, 1}poly(n) × {0, 1}poly(n)

)
∩ R∧

L,

96 M. Ciampi et al.

and for every polynomial p(·), there exists a negligible function ν such that
∣
∣
∣Prob

[
V�(RP,f

0 (n, p)) = 1
]

− Prob
[

V�(RP,f
1 (n, p)) = 1

]∣∣
∣ ≤ ν(n),

where R∧
L = {(x,w0, w1) : (x,w0) ∈ RL ∧ (x,w1) ∈ RL} and RP,f

b is the
following experiment. RP,f

b (n, p):

– σ ← CRS(1n).
– For i = 1, . . . , p(n) (initially x and π are empty):

• (xi, w
0
i , w1

i) ← f(σ,x,π):
statement xi to be proven and witnesses w0

i , w1
i for xi are generated.

• πi ← P(σ, xi, w
b
i): the ith proof is generated.

• set x = x1 . . . xi and π = π1 . . . πi.
– output (σ,x,π).

4 NIWI Argument Systems from 3-Round HVZK Proofs

In this section we discuss the FS transform in the NPRO model in order to
obtain a NIWI argument system Π = (P,V) for a polynomial relation RL. We
start from a 3-round public-coin WI HVZK proof system with optimal soundness
ΠL = (PL,VL) for L. P and V have access to an NPRO H : {0, 1}∗ → {0, 1}n.
We describe Π below and we assume that the challenge length of ΠL is the
security parameter n.

Common input: instance x for NP-language L.
Private input to P: w s.t. (x,w) ∈ RL.
Common reference string: CRS samples a key s for a hash function family

H and sets σ = s.

1. P → V: The prover P executes the following steps:
1.1. a ← PL(x,w);
1.2. e ← Hs(x, a);
1.3. z ← PL(x,w, a, e);
1.4. send π = (a, e, z) to V.

2. V ′s output: V outputs 1 if and only if VL(x, a, e, z) = 1 and e = Hs(x, a).

The following theorem was proved by Yung and Zhao in [53] (see Claim 1, page
4). For completeness, we provide a proof of the claim below.

Theorem 5 ([53]). Let ΠL be a 3-round public-coin WI proof system for the
polynomial relation RL. Then Π is adaptive WI for RL in the CRS model.

Proof We show that Π is adaptive WI for RL through the following hybrids.

1. H1 is the experiment RP,f
0 (n, p) (Definition 8), where P for j = 1, . . . , p(n)

executes Π and outputs πj using the first of the two witnesses given in
output by f .

A Transform for NIZK Almost as Efficient 97

2. Hi (with i > 0) differs from H1 in the first i interactions, where P executes Π
using the second witness given in output by f . Namely: P on input (xj , w

1
j)

executes Π and outputs πj using w1
j for all j : 1 ≤ j < i. Instead, for the

interactions i ≤ j < p(n) + 1, P on input (xj , w
0
j) executes Π using w0

j as a
witness and outputs πj .

3. Hp(n)+1 is the experiment RP,f
1 (n, p) (Definition 8), where P for j =

1, . . . , p(n) executes Π and outputs πj using the second witness given in output
by f .

Hi ≈ Hi+1: Suppose there exists a malicious adversary V� that distinguishes
between the experiments Hi and Hi+1 with 1 ≤ i ≤ p(n), then we can show that
there exists an adversary A that breaks the WI property of ΠL. The reduction
works as follows.

1. For j = 1, . . . , i − 1, A on input (xj , w
1
j) executes Π using w1

j to obtain πj .
2. For j = i, A interacts with the WI challenger of ΠL as follows:

(a) A has on input (xj , w
0
j , w1

j) and sends it to the challenger of WI;
(b) the challenger computes and sends the first message aj to A;
(c) A computes ej = Hs(aj) and sends it to the challenger of WI;
(d) the challenger computes and sends zj to A;
(e) A sends πj = (aj , ej , zj) to V�;
(f) A adds to x the theorem xj and to π the proof πj .

3. ∀j = i + 1, . . . , p(n) A on input (xj , w
0
j) executes Π using w0

j to obtain πj .
4. Set x = x1, . . . , xp(n) and π = π1, . . . , πp(n).

A sends x and π to V� and outputs what V� outputs.
We now observe that if the challenger of WI has used the first witness we are

in Hi otherwise we are in Hi+i. It follows that RP,f
0 (n, p) ≡ H1 ≈ · · · ≈ Hp(n) ≈

Hp(n)+1 ≡ RP,f
1 (n, p) to conclude the proof.

Adaptive Soundness. To prove soundness we follow [43] and use the fact that,
for every function g, with a sufficiently large co-domain, relation R = {(x, g(x))}
is evasive [8] in the NPRO model. A relation R is evasive if, given access to a
random oracle O, it is infeasible to find a string x so that the pair (x,O(x)) ∈ R.

Theorem 6 Let ΠL be a 3-round public-coin proof system with optimal sound-
ness for the NP-language L, and let H be a non programmable random oracle.
Then, Π is a non-interactive argument system with (adaptive) soundness for L
in the NPRO model.

Proof Completeness of Π follows from the completeness of ΠL. Let O be an
NPRO. In order to prove the soundness of Π we use the fact that for any function
g, the relation R = {(x, g(x))} is evasive. We define the function g s.t. g(x, a) = e,
where there exists z such that the transcript (a, e, z) is accepting for the instance
x. If x /∈ L by the optimal soundness property we have that for every a there is
a single e for which there is some z so that (a, e, z) is accepting. Therefore g is
a function, as required and it follows that the relation R = {((x, a), g(x, a))} is
evasive. Suppose that there exist a polynomial function f and a malicious prover

98 M. Ciampi et al.

P� such that P� proves a false statement (i.e., VO(σ, f(σ),P�O(σ)) = 1, where
σ ← CRS(1n)) with non-negligible probability, then there is an adversary A that
finds (x, a) s.t. O(x, a) = g(x, a) with non-negligible probability. The adversary
A works as follows. First, it runs σ ← CRS(1n). Then it runs (x, a, e, z) ← P�(σ).
Finally it outputs (x,O(x, a)). From the contradicting assumption we know that
VO(σ, f(σ), (a, e, z)) = 1 with non-negligible probability. This implies that the
transcript (a,O(x, a), z) is accepting with non-negligible probability. Since x /∈ L
there exists only one e for which (a,O(x, a), z) is accepting. Therefore we have
that with non-negligible probability it holds that O(x, a) = e (i.e., O(x, a) =
g(x, a)) and this contradicts the fact that any function g is evasive for an NPRO.

5 Our Transform: NIZK from HVZK

From the previous section we know that if we have a 3-round HVZK proof system
with optimal soundness ΠL∨Λ = (PL∨Λ,VL∨Λ) for polynomial relation

R̂L∨Λ = {((x, ρ), w) : ((x,w) ∈ RL ∧ ρ ∈ Λ̂) ∨ ((ρ, ω) ∈ RΛ ∧ x ∈ L̂)}

that is also WI for polynomial relation

RL∨Λ = {((x, ρ), w) : ((x,w) ∈ RL ∧ ρ ∈ Λ) ∨ ((ρ, ω) ∈ RΛ ∧ x ∈ L)}

we can apply the FS transform to make it non-interactive still preserving WI
and soundness. To run the protocol a common hash function is needed and such
a function is modeled as an NPRO in the proof of soundness.

Here we make use of the above result in order to transform a 3-round HVZK
proof system with optimal soundness for an NP-language L into a NIZK argu-
ment for L in the CRS model using an NPRO in the proof of soundness. The
transformed NIZK argument Π = (P,V) is described below.

Common input: instance x for an NP-language L.
Private input of P: w s.t (x,w) ∈ RL.
Common reference string: CRS on input 1n runs ρ ← SΛ(1, 1n) where Λ is

an membership-hard language and samples a key s for a hash function family
H. Then it sets σ = (ρ, s).

P → V: P executes the following steps:
1. a ← PL∨Λ((x, ρ), w);
2. e ← Hs(x, a);
3. z ← PL∨Λ((x, ρ), w, a, e);
4. send π = (a, e, z) to V.

V ′s output: V accepts if and only if VL∨Λ((x, ρ), a, e, z) = 1 and e = Hs(x, a).

In our construction we suppose that the challenge length of ΠΛ is n, where
n denotes the security parameter. Therefore to use the OR composition of [18]
we need to consider a 3-round public-coin proof system with HVZK and opti-
mal soundness ΠL for RL that has challenge length n and therefore soundness

A Transform for NIZK Almost as Efficient 99

error 2−n). This is not a problem because we can use Theorem 2 to transform
every 3-round public-coin proof system with HVZK and optimal soundness with
challenge n′ (where n′ �= n) to another one with challenge length n. More pre-
cisely, if n′ > n we can use Lemma 2 to reduce n′ to n almost for free. If n′ < n
we need to use Lemma 1, therefore we have to run multiple executions of ΠL

to apply the OR composition of [18]. Notice that this potential computational
effort is implicit also for the FS transform and for Lindell’s transform. Indeed if
the original 3-round public-coin proof system with HVZK and optimal sound-
ness has just a one-bit (or in general a short) challenge then clearly the resulting
NIZK is not sound. Therefore the parallel repetition of the 3-round public-coin
proof system with HVZK and optimal soundness is required before applying the
transform in order to reduce the soundness error (see Sect. 2.2).

Theorem 7. Let ΠL∨Λ be a 3-round public-coin proof system for polynomial
relation R̂L∨Λ that is WI for polynomial relation RL∨Λ. Then Π is zero knowl-
edge for RL in the CRS model.

Proof. The simulator S works as follows:

1. S on input 1n, runs (ρ, ω) ← SΛ(0, 1n); samples a key s for a hash function
and sets σ = {ρ, s} and outputs σ.

2. S on input σ, ω and xi (for every i = 1, . . . , p(n)) computes a ←
PL∨Λ((xi, ρ), ω), e ← Hs(xi, a) and z ← PL∨Λ((xi, ρ), ω, a, e). It outputs
πi = (a, e, z).

We show that the output of S is computationally indistinguishable from a real
transcript given in output by P in a real execution of Π through the following
hybrids games.

1. H0 is the experiment Rf (Pf (n, p)) (Definition 7).
2. H1 differs from H0 in the way that ρ is generated. Indeed in H1 we have

that σ is computed by running SΛ(0, 1n). The second output ω of SΛ is not
used. Clearly H0 and H1 are indistinguishable otherwise the membership-
hard property of Λ would be contradicted. More details on this reduction will
be given below.

3. H2 differs from H1 just on the witness used by PL∨Λ. Indeed now ω is used
as witness. The WI property of ΠL∨Λ guarantees that H2 can not be distin-
guished from H1. More details on this reduction will be given below. Notice
that H2 corresponds to the simulation.

H0 ≈ H1: If there exists a malicious verifier V� that distinguishes between H0

and H1, then there exists an adversary A that breaks the membership-hard
property of Λ. The reduction works as follows.

1. A queries the challenger of SΛ that sends back ρ.
2. A samples a key s for a hash function family H and sets σ = {ρ, s}.
3. A on input (xi, wi) ∈ RL for i = 1, . . . , p(n) computes the following steps:

3.1. compute ai ← PL∨Λ((xi, ρ), wi);
3.2. compute ei ← Hs(xi, ai);

100 M. Ciampi et al.

3.3. compute zi ← PL∨Λ((xi, ρ), wi, ai, ei);
3.4. set πi = (ai, ei, zi);
3.5. set x = x1, . . . , xi and π = π1, . . . , πi.

4. A sends σ,x,π to V�.
5. A outputs the output of V�.

We now observe that if the challenger of a sampling algorithm SΛ sends ρ /∈ Λ
we are in H0 otherwise we are in H1. This implies that H0 ≈ H1.

H1 ≈ H2: If there exists a distinguisher V� that distinguishes between H1 and
H2, then there exists an adversary A against the adaptive NIWI property of
ΠL∨Λ, therefore contradicting Theorem 5. The reduction works as follows.

1. A runs (ρ, ω) ← SΛ(0, 1n), samples a key s for a hash function and sets
σ = {ρ, s}.

2. A has on input a PPT function f = (f1, f2) and defines f ′ = (f ′
1, f

′
2) as follows:

f ′(σ, t,π) on input a CRS σ, a vector of theorems t = (x1, ρ), . . . , (xp(n), ρ) and
a vector of proofs π = π1, . . . , πp(n) returns (f1(σ,x,π), ρ), (f2(σ,x,π), ω).

3. A interacts with the challenger of adaptive NIWI, using f ′, in order to obtain
xi, πi = {ai, ei, zi}, for i = 1, . . . , p(n).

4. A sets x = x1, . . . , xp(n) and π = π1, . . . , πp(n).
5. A sends σ,x,π to V� and outputs the output of V�.

We now observe that if the challenger of NIWI chooses the first witness wi

we are in H1 otherwise we are in H2. This implies that H1 ≈ H2. We can thus
conclude that H0 ≈ H1 ≈ H2 and therefore the output of S is computational
indistinguishable from a real transcript.

Theorem 8. Let ΠL∨Λ be a 3-round public-coin HVZK proof system with opti-
mal soundness for relation RL∨Λ, and WI for relation R̂L∨Λ, and let H be an
NPRO. Then, Π is a non-interactive argument system with adaptive soundness
for the relation RL in the CRS model using the NPRO model for soundness.

Proof. The completeness of Π follows from the completeness of ΠL∨Λ. In order
to prove adaptive soundness we notice that an adversarial prover proving a false
statement x ∈ L can be directly reduced to an adversarial prover proving a false
statement for ΠL∨Λ in the NPRO model. This contradicts Theorem6. Indeed
the only subtlety that is worthy to note is that when the adversarial prover runs
the protocol, we have that the statement “ρ ∈ Λ” stored in the CRS is false,
therefore if also the instance “x ∈ L” proved by the prover is false then the OR
composition of the two statements is also false.

6 Details on Some Σ-Protocols

First of all we need to briefly introduce two Σ-protocols, one to prove that a
tuple is a DH tuple (ΠDH [41]), and the other one to prove that two graphs
are isomorphic (ΠGH [34]). Our comparison assumes that the CRS is a DH

A Transform for NIZK Almost as Efficient 101

tuple ((Gcrs, qcrs, pcrs, gcrs), Acrs, Bcrs, Ccrs) with pcrs and qcrs primes such that
pcrs = 2qcrs + 1 and |pcrs| = 1024. We distinguish two cases. In the first one
the prover wants to prove that a tuple ((G, q, p, g), A,B,C) is a DH tuple, and
in the other one the prover tries to convince the verifier that two graphs G0 and
G1 with n vertices each are isomorphic.
A Σ-protocol for Diffie-Hellman tuples. We consider the following polynomial-
time relation RDH = {(((G, q, g), A = gr, B = h,C = hr), r) : Br = C} over
cyclic groups Gq of prime-order q. Typically, G is the subgroup of quadratic
residues of Zp for prime p = 2q + 1. We next briefly describe Σ-protocol ΠDH =
(PDH,VDH) for RDH.

Common input: instance x and language DH.
Private input of PDH: r.
The protocol ΠDH:

1. PDH picks t ∈ Zq at random, computes and sends a = gt , b = ht to VDH;
2. VDH chooses a random challenge e ∈ Zq and sends it to PDH;
3. PDH computes and sends z = t + er to VDH;
4. VDH checks gz = a · Ae AND hz = b · Ce accepts if and only if it is the case.

We show the special HVZK simulator Sim for ΠDH. Sim, on input x and a
challenge e of length |q| − 1 executes the following steps:

1. randomly chooses z ∈ Zq;
2. computes a = gz · A−e;
3. computes b = hz · C−e.

Graph Isomorphism. We show a Σ-protocol ΠGH = (PGH,VGH) to prove that
two graphs are isomorphic. Given two graphs G0 and G1, prover PGH wants to
convince verifier VGH that he knows a permutation φ such that φ(G0) = G1.

Common input: theorem x = (G0, G1).
Private input of PGH: φ.
The protocol ΠGH:

1. PGH randomly chooses a permutation ψ and a bit b ∈ {0, 1}, computes and
sends P = ψ(Gb);

2. VGH chooses and sends a random bit b′ ∈ {0, 1} PGH;
3. PGH sends the permutation τ to VGH, where

τ =

⎧
⎪⎨

⎪⎩

ψ if b = b′

ψφ−1 if b = 0, b′ = 1
ψφ if b = 1, b′ = 0

4. VGH accepts if and only if P = τ(Gb′).

102 M. Ciampi et al.

Computational Effort: Two Cases. We show a summary of the comparison among
our transform and Lindell’s transform in Tables 2 and 3. The cost is measured
by considering the computations in terms of number of exponentiations made
by P and of V. In our comparison we consider that a CRS contains a DH tuple
((Gcrs, qcrs, pcrs, gcrs), Acrs, Bcrs, Ccrs) with |pcrs| = n = 1024, with security
parameter n (therefore |qcrs| = 1023). We consider two cases. In the first one we
use the NIZK argument to prove that a tuple ((G, q, p, g), A,B,C) is a DH tuple;
in particular we take in account two sub-cases: when p = 1024 and when p = 2048.
In the second case we use the NIZK argument to prove the isomorphism between
two graphs G0 and G1, and we assume that k = n2 bits are needed to represent
a graph with n vertices. We stress that Lindell’s transform needs to commit the
first round of a Σ-protocol (plus the instance to be proved, but for our compari-
son we ignore that the instance has to be committed) associated to the language
that we take into account (the language of the DH tuples or the language of the
isomorphic graphs). Therefore, using the described CRS, to commit to a string
of 1023 bit, 4 exponentiations are required. This is a consequence of the fact that
the commitment is made by executing the simulator associated with ΠDH (with
|qcrs| = 1023).

Case 1: proving that a tuple is a DH tuple.

– [43]. When the instance to be proved is ((G, q, p, g), A,B,C) with p = 1024,
the prover P needs to compute a = gt, b = ht (as describe before) and
needs to commit to them. The total size of a and b is 2048 bits, therefore
to commit to 2048 bits we need to execute the DM commitment 3 times.
This implies that the prover needs to compute 3 ·4 exponentiations mod pcrs
and 2 exponentiations mod p. The verifier Vneeds to checks if open of the
DM commitments was correct, and also needs to compute gz = a · Aep and
hz = b ·Ce. For this reason the verifier needs to compute 3 ·4 exponentiations
mod pcrs plus 4 exponentiations mod p. With the same arguments we can
count the amount of exponentiations needed to prove that the instance is a
DH tuple with p = 2048.

– Our transform. When |p| = 1024 (resp., |p| = 2048) the prover need to run
the simulator Sim of ΠDH with the instance ((Gcrs, qcrs, pcrs, gcrs), Acrs,
Bcrs, Ccrs) (this costs 4 exponentiations), also we need to compute a = gt ,
b = ht. The total number of exponentiations is 6 (2 exponentiations mod p,
and 4 exponentiations mod pcrs). The verifier needs to perform two times the
verifier’s algorithm for ΠDH, one with the instance ((Gcrs, qcrs, pcrs, gcrs),
Acrs, Bcrs, Ccrs), the other one with the instance
((G, q, p, g), A,B,C), for a total amount of 4 exponentiations mod pcrs, and
4 exponentiations mod p.

Case 2: Graph isomorphism.

– [43]. We consider that the instance to be proved is composed by two graphs
(G0, G1). Also we assume that to represent one graph with n vertices k = n2

bits are necessary. In this case we remark that because the security parameter
is n = 1024 we need to execute n times the protocol ΠGH described before.

A Transform for NIZK Almost as Efficient 103

For the described assumptions we have that the first round of ΠGH is P =
σ(Gb) and |P | = n2. Therefore the prover needs to run n executions of
the DM commitment function to commit to P , where each of them costs 4
exponentiations. Also we need to execute n iteration of this process, for a
total amount of 4n2 exponentiations mod pcrs. Even in this case the verifier
needs to checks if all opens with respect to the n commitments are correctly
computed for a total amount of 4n2 exponentiations mod pcrs.

– Our transform. In this case the prover Pcomputes only 2 exponentiations
mod p to compute the first round of ΠDH. The verifier runs the verifier’s
algorithm of ΠDH that costs 4 exponentiations mod p.

Acknowledgments. We thank Alessandra Scafuro and Berry Schoenmakers for vari-
ous useful discussions on Σ-protocols. An updated version of this work appears in [17].

A Dual Mode Commitments and the Need for Strong
Σ-protocols

The following definition of a dual-mode commitment scheme (DMCS, in short)
is from [43].

Definition 9 ([43]). A dual-mode commitment scheme (DMCS) is a tuple of
PPT algorithms (GenCRS,Com,Scom) such that:

– GenCRS(1n) outputs a common reference string, denoted by ρ.
– (GenCRS,Com): when ρ ← GenCRS(1n) and m ∈ {0, 1}n, algorithm

Comρ(m; r) with randomness r is a non-interactive perfectly-binding commit-
ment scheme.

– (Com,Scom): For every PPT adversary A and every polynomial p(·), the out-
put of the following two experiments is computationally indistinguishable:

RealCom,A(1n) SimulationScom(1n)

– ρ ← GenCRS(1n) – ρ ← Scom(1n)

– For i = 1, . . . , p(n): – For i = 1, . . . , p(n):

1. mi ← A(ρ, c, r) 1. ci ← Scom

2. ri ← {0, 1}poly(n) 2. mi ← A(ρ, c, r)

3. ci = Comρ(mi; ri) 3. ri ← Scom(mi)

4. Set c = c1, . . . , ci and
r = r1, . . . , ri

4. Set c = c1, . . . , ci and
r = r1, . . . , ri

– Output
A(ρ, m1, r1, . . . , mp(n), rp(n))

– Output
A(ρ, m1, r1, . . . , mp(n), rp(n))

Membership-Hard Languages with Efficient Sampling. Lindell defines a
membership-hard language Λ as a language such that one can efficiently sam-
pleboth instances that belong to the language and instances that do not belong

104 M. Ciampi et al.

to the language. Still distinguishing among these two types of instances is hard.
This is formalized through a sampling algorithm SΛ that on input a bit b outputs
an instance ρ ∈ Λ along with a witness ω when b = 0, and outputs an instance
ρ �∈ Λ otherwise. No polynomial-time distinguisher on input ρ can guess b with
probability non-negligibly better than 1/2. Let Sρ

Λ denote the instance part of
the output (i.e., without the witness when b is 0).

Definition 10 ([43]). Let Λ be a language. We say that Λ is membership-hard
with efficient sampling if there exists a PPT sampler SΛ such that for every PPT
distinguisher D there exists a negligible function μ such that:

|Prob [D(Sρ
Λ(0, 1n), 1n) = 1] − Prob [D(SΛ(1, 1n), 1n) = 1] | ≤ μ(n).

There are several popular membership-hard languages in literature. We will
in particular consider the one considered by Lindell in [43]: the language DH of
Diffie-Hellman triples.

Lindell’s construction of a DMCS from Σ-protocols. Let us describe Lindell’s
construction of a DMCS from any membership-hard language Λ admitting a
Σ-protocol ΠΛ = (PΛ,VΛ) with simulator SimΛ for perfect special HVZK.

Regular ρ generation: Run sampler SΛ for Λ with input (1, 1n) and receive
back ρ (recall that ρ /∈ Λ).

Commitment: To commit to a value m ∈ {0, 1}n with randomness r, Com sets
e = m, runs SimΛ(ρ, e) with randomness r and obtains (a, z). The output of
Com is the commitment c = a and the decommitment information (e, r).

Decommitment: To decommit, provide e, z and the receiver checks that
VΛ(ρ, a, e, z) = 1.

Simulator Scom:
– On input 1n, Scom runs the sampler SΛ with input (0, 1n), and receives

back (ρ, ω) (recall that ρ ∈ Λ and ω is a witness to this fact). Then,
Scom computes a = PΛ(ρ, ω), sets c = a and outputs (c, ρ).

– On input m ∈ {0, 1}n, Scom sets e = m and outputs z = PΛ(ρ, ω, a, e).

A.1 A Subtlety in Lindell’s Construction: The Need of Strong
Σ-protocols

We now discuss a subtlety in the construction of a DMCS from any Σ-protocol
for a membership-hard language given in [43]. We stress that the content of this
section does not apply when considering [42].

We observe that the construction of a DMCS from any Σ-protocol for a
membership-hard language given in [43] works when the Σ-protocol is equipped
with a simulator such that when the simulator gets as randomness the 3rd round
of the prover, then the simulator is able to output the same first round of the
prover. This special property has been investigated in [26] where it was called
strong perfect special HVZK. In more details, a Σ-protocol is strong perfect
special HVZK if it admits a simulator Sim that on input any challenge e outputs

A Transform for NIZK Almost as Efficient 105

a transcript (a, e, z) that is perfectly indistinguishable from the distribution of
the transcript generated by the prover when the challenge is e, but in addition it
is required that the transcript is computed by sampling the 3rd round uniformly
at random. The strong perfect special HVZK property is formalized below.

Definition 11 ([26]). The special perfect HVZK property is strong if there
exists a PPT simulator Sim for the special perfect HVZK property that on input
x ∈ LR and a challenge “e” works by sampling the 3rd round “z” uniformly
at random and then computing the 1st round “a” deterministically from “x, e”
and “z”.

Lindell’s construction of a DMCS showed in [43] requires a simulator for
strong perfect special HVZK.
A Σ-protocol ,ΠDH for DH. Now we show an artificial but useful example that
shows a Σ-protocol with a simulator Sim for perfect special HVZK that however
does not works if strong perfect special HVZK is desired.

The most widely used Σ-protocol ΠDH = (PDH ,VDH) for the language DH
consists in running in parallel two instances of a Σ-protocol for DLog each
proving knowledge a discrete logarithm. The two instances are linked together
by having the verifier send the same challenge and expecting to receive the same
third-round message. Schnorr’s protocol [50] constitutes a natural choice for a
Σ-protocol for DLog.

Consider instead instantiating the Σ-protocol for DH with the following
Σ-protocol ΠDLog = (PDLog,VDLog) for proving knowledge of the discrete loga-
rithm w of x with base g. PDLog first selects another random group element x′

along with its discrete logarithm w′ to the base g and then sends x′ to VDLog.
Then PDLog and VDLog run two instances of Schnorr’s Σ-protocol using the
same challenge so that PDLog proves to VDLog knowledge of both w and w′.
Clearly, ΠDLog is a Σ-protocol for DLog (this comes from the fact that the
AND of two Σ-protocols is still a Σ-protocol and from the fact that knowledge
of a pair (w,w′) implies knowledge of w) and, consequently, ΠDH instantiated
with ΠDLog is a Σ-protocol for DH. Moreover notice that ΠDLog admits a simu-
lator Sim�

DLog for perfect HVZK that uses the simulator of Schnorr’s protocol to
compute the transcript of the first instance, while it uses the prover of Schnorr’s
protocol for producing the transcript associated to x′, after having selected x′

along with a witness w′ when the protocol starts. We now provide a formal
description of this Σ-protocol.

More precisely we show a Σ-protocol ΠDLog = (PDLog,VDLog) for relation
RDLog = {((G, g, q, x), w) : x = gw} that is special perfect HVZK and such
that there exists a simulator for special perfect HVZK that does not satisfy the
requirement of strong perfect special HVZK of ΠDLog (see Definition 11).

Common Input: (G, g, q, x) and relation RDLog.
Input of PDLog: w t.c ((G, g, q, x), w) ∈ RDLog.
The protocol ΠDLog:

1. PDLog chooses r0, r1, w1 at random from Zq, and g1 at random from G. Then
it computes (a0, a1) = (gr0 , gr1

1), and x1 = gw1
1 . PDLog sends (a0, g1, x1, a1)

to VDLog.

106 M. Ciampi et al.

2. VDLog chooses a random challenge e ← {0, 1}l (where 2l < q) and sends e
to PDLog.

3. PDLog computes z0 = r0 + ew and z1 = r1 + ew1 it sends (z0, z1) to VDLog.
4. VDLog checks gz0 = a0x

e and gz1
1 = a1x

e
1 accepts if and only if it is the case.

Special HVZK The simulator Sim of ΠDLog on input the theorem (G, g, q, x) and
challenge e works as follows:

1. pick z0, r1, w1 at random from Zq and g1 at random from G.
2. compute a0 = gz0x−e and a1 = gr1

1 .
3. compute x1 = gw1

1 and z1 = r1 + ew1.
4. return (a0, g1, x1, a1, z0, z1).

Completeness. In order to see that completeness holds, observe that when PDLog

runs the protocol honestly we have:

gz0 = gr0+we = gr0 · gwe = a0 · xe and gz1
1 = gr1+w1e

1 = gr1
1 · gw1e

1 = a1 · xe
1.

Special Soundness. Let (a0, g1, x1, a1, e, z0, z1) (a0, g1, x1, a1, e
′, z′

0, z
′
1) be a colli-

sion. We have that gz0 = a0x
e and gz′

0 = a0x
e′

, and thus we have gz0−z′
0 = xe−e′

that implies that x = g
z0−z′

0
e−e′ , therefore w = z0−z′

0
e−e′ .

Special Perfect HVZK. We now check that the transcript returned by Sim, on
input the theorem (G, g, q, x) and challenge e, is identically distributed w.r.t. the
transcript obtained from the interaction between PDLog and VDLog, when the
challenge is e. The transcript differs only in the computation of a0 and z0. In
the case of the PDLog a0 = gr0 where r0 is chosen uniformly at random and
z0 = r0 + ew. Instead, Sim chooses z0 uniformly at random and r0 = z0 − ew,
therefore clearly Sim and PDLog produce a0 and z0 with the same distribution.

ΠDH does not produce a DMCS. We observe that Lindell’s construction of a
DMCS from any Σ-protocol for a membership-hard language [43] does not
seem to work when ΠDH is used as Σ-protocol. Indeed consider the steps of
experiments RealCom,A(1n) and SimulationScom(1n) in which A obtains as input
(ρ, c, r) and consider iteration with i = 2 of the loop.

In RealCom,A(1n), A’s view includes (m1, r1, c1) and thus A can check that
indeed c1 is the output of Com(m1; r1). This means that in the above construc-
tion, c1 is the first component of the pair given in output by SimΛ(ρ, e) when
running with randomness r1, and this is precisely the way in which c1 was pro-
duced in Step 3 when i = 1. Therefore the check of A succeeds in RealCom,A(1n).

In SimulationScom(1n), A’s view includes (m1, r1, c1) and thus A can still
perform the check that c1 is the output of Com(m1; r1) by running SimΛ(ρ, e)
with randomness r1. However, in this case it is not true that c1 is computed
by running Com(m1; r1). Indeed, in the execution of SimulationScom(1n), c1
is computed by running c1 ← Scom and then r1 is computed by running r1 ←
Scom(m1). In the above construction Scom computes c1 and r1 as the 1st and 3rd

A Transform for NIZK Almost as Efficient 107

messages that are computed by PΛ when the challenge is m1. Therefore whenever
the 3rd round r1 computed by PΛ does not correspond to a randomness that
can be given as input to SimΛ(ρ,m1) to get the same c1 computed by PΛ, we
have that the check of A fails.

By noticing that the 3rd round r1 of PDH in ΠDH does not give any infor-
mation about the random instance x′ of DLog that P ′

DH would compute and
that would be part of c1, we have that there exists a simulator for DH, using
internally Sim�

DLog, that on input (ρ,m1) and running with randomness r1 com-
putes c1 only with negligible probability and thus the above A is a successful
distinguisher of experiments RealCom,A(1n) and SimulationScom(1n).

B An Optimal-Sound (and Not Special Sound) 3-Round
Perfect Special HVZK Proof

In this section we show a 3-round public-coin perfect special HVZK proof system
that is optimal sound and not special sound. First of all we briefly describe the
Σ-protocol of [44] to prove that, given a commitment and a message m, m is
committed in com. Then we show the protocol of [51] that is a modification of
[44] and given a commitment com and a value Ψ , allows to prove that the discrete
logarithm of Ψ is committed in com.

In order to describe the protocol of [44] and [51] we consider two prime p and
q s.t. p = 2q + 1, a group of order G of order q such that the DDH assumption
is hard. Also we consider two random elements, g and h, taken from G. We next
describe Σ-protocol ΠCom = (PCom,VCom) of [44] for relation

RCom =
{((

(G, q, g, h), v, com = (ĝ, ĥ)
)

, w
)

: ĝ = gw, ĥ = hw+v
}

.

Common Input: (G, g, v, h, com = (ĝ, ĥ), q) and relation RCom.
Input of PCom: w s.t. ((G, v, g, h, com = (ĝ, ĥ), q), w) ∈ RCom.
The protocol ΠCom:

1. The prover PCom chooses r from Zq and sends (g̃ = gr, h̃ = hr) to VCom;
2. The verifier VCom chooses a random challenge e ← Zq and sends e to PCom;
3. PCom sends z = ew + r to VCom;
4. VCom checks that ĝeg̃ = gz and

(
ĥ
hv

)e

h̃ = hz accepts if and only if the
checks are successful.

In [51] a similar protocol was used to prove that com is a commitment of the
discrete logarithm of a value Ψ ∈ G with hψ = Ψ . Formally the protocol is for
the NP language

L =
{(

Ψ = hψ, com = (ĝ = gw, ĥ = hw+ψ)
)

: g, h ← G, ψ ∈ Zq, w ∈ Zq

}

and for the corresponding relation

RL =
{(

(Ψ = hψ, com = (ĝ = gw, ĥ = hw+ψ)), (w,ψ)
)

: g, h ← G, ψ ∈ Zq, w ∈ Zq

}

108 M. Ciampi et al.

The protocol follows ΠCom with the differences that the common input is
(G, q, g, Ψ = hψ, h, com = (ĝ, ĥ) and that the verifier decide whether to accept

or not checking if it holds that ĝeg̃ = gz and
(

ĥ
Ψ

)e

h̃ = hz. While this protocol
preserves the perfect special HVZK property, it is not a proof of knowledge for
RL and neither special sound even though it still enjoys optimal soundness. We
now proceed more formally.

Optimal soundness. We now consider an instance that is not in the NP language
L, and show that, once the first round of the protocol is fixed, there exists only
one challenge e s.t. the prover can answer successfully computing the third round
z of the protocol. Consider the instance

(
Ψ = hψ, com = (ĝ = gw, ĥ = hw+ψ′)

)
/∈

L (with ψ �= ψ′). Assume by contradiction that given the fist round of the
protocol (g̃, h̃) there exist two distinct challenges e0 and e1 for which the prover
can make the verifier accept with answers z0, z1 respectively. In the end we prove
that ψ = ψ′.
Proof Since the verifier accepts, it must be that for all i ∈ {0, 1}, the following

checks are successful: ĝei g̃ = gzi and
(

ĥ
Ψ

)ei

h̃ = hzi . It follows that ĝe0−e1 =

gz0−z1 and
(

ĥ
Ψ

)e0−e1

= hz0−z1 . Suppose that h = gω, we get

gwω(e0−e1) = ĝ(e0−e1)ω = g(z0−z1)ω = h(z0−z1) = (ĥ · Ψ−1)e0−e1

= hz0−z1 = gω(w+ψ′−ψ)(e0−e1).

Therefore, if e0 �= e1 we get the contradiction that ψ = ψ′.

The Protocol is not Special Sound for RL. To argue that the protocol of [51] is
not special sound, we note that in order to compute a commitment of the discrete
logarithm of Ψ , knowledge of this discrete logarithm is not necessary since it is
possible to compute com = (ĝ, hw · Ψ) with w ∈ Zq. Indeed, notice that the
discrete logarithm ψ of Ψ is never used in the proof. Formally, we suppose that
the protocol is special sound for the polynomial relation RL and then construct
an adversary A that, given Y = gy ∈ G, returns the discrete logarithm y of Y .

We have shown that there exist 3-round public-coin proof systems that are
optimal sound and not special sound. It also easy to observe that special sound-
ness implies optimal soundness. Indeed, consider an NP-Language L and a cor-
responding relation RL. All Σ-protocols for RL must also be 3-round HVZK
proofs for L with optimal soundness. If not, than the violation of optimal sound-
ness (P� for a false statement can generate (a, c, z) and (a, c′, z′) with c′ different
from c and both accepting) implies directly also a violation of special soundness.

References

1. Almeida, J.B., Bangerter, E., Barbosa, M., Krenn, S., Sadeghi, A.-R., Schneider,
T.: A certifying compiler for zero-knowledge proofs of knowledge based on sigma-
protocols. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010.
LNCS, vol. 6345, pp. 151–167. Springer, Heidelberg (2010)

A Transform for NIZK Almost as Efficient 109

2. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: 45th Symposium on Foundations of Computer
Science (FOCS 2004), Rome, Italy, 17–19 October 2004

3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for design-
ing efficient protocols. In: CCS 1993, Proceedings of the 1st ACM Conference on
Computer and Communications Security, Fairfax, Virginia, USA, pp. 62–73, 3–5
November 1993

4. Bitansky, N., Dachman-Soled, D., Garg, S., Jain, A., Kalai, Y.T., López-Alt, A.,
Wichs, D.: Why “fiat-shamir for proofs” lacks a proof. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 182–201. Springer, Heidelberg (2013)

5. Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge.
SIAM J. Comput. 20(6), 1084–1118 (1991)

6. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: Proceedings of the 20th Annual ACM Symposium on Theory of Com-
puting, Chicago, Illinois, USA, pp. 103–112, 2–4 May 1988

7. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
In: Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Com-
puting, Dallas, Texas, USA, pp. 209–218, 23–26 May 1998

8. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

9. Canetti, R., Lin, H., Paneth, O.: Public-coin concurrent zero-knowledge in the
global hash model. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 80–99.
Springer, Heidelberg (2013)

10. Catalano, D., Dodis, Y., Visconti, I.: Mercurial commitments: minimal assumptions
and efficient constructions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol.
3876, pp. 120–144. Springer, Heidelberg (2006)

11. Catalano, D., Visconti, I.: Hybrid trapdoor commitments and their applications.
In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 298–310. Springer, Heidelberg (2005)

12. Catalano, D., Visconti, I.: Hybrid commitments and their applications to zero-
knowledge proof systems. Theor. Comput. Sci. 374(1–3), 229–260 (2007)

13. Chaidos, P., Groth, J.: Making sigma-protocols non-interactive without random
oracles. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 650–670. Springer,
Heidelberg (2015)

14. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006)

15. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved OR
composition of Sigma-protocols. IACR Cryptology ePrint Archive 2015, 810 (2015).
http://eprint.iacr.org/2015/810

16. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved OR
composition of sigma-protocols. In: Theory of Cryptography - 13th Theory of Cryp-
tography Conference, TCC 2016-A, Tel Aviv, Israel, 10–13 January 2016

17. Ciampi, M., Persiano, G., Siniscalchi, L., Visconti, I.: A transform for NIZK almost
as efficient and general as the Fiat-Shamir transform without programmable ran-
dom oracles. IACR Cryptology ePrint Archive, 770 (2015). http://eprint.iacr.org/
2015/770

18. Cramer, R., Damg̊ard, I.B., Schoenmakers, B.: Proof of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

http://eprint.iacr.org/2015/810
http://eprint.iacr.org/2015/770
http://eprint.iacr.org/2015/770

110 M. Ciampi et al.

19. Damg̊ard, I.B.: Efficient concurrent zero-knowledge in the auxiliary string model.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000)

20. Damg̊ard, I.: On Σ-protocol (2010). http://www.cs.au.dk/ivan/Sigma.pdf
21. Damg̊ard, I.B., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homo-

morphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 41–59. Springer, Heidelberg (2006)

22. Damg̊ard, I., Groth, J.: Non-interactive and reusable non-malleable commitment
schemes. In: Proceedings of the 35th Annual ACM Symposium on Theory of Com-
puting, San Diego, CA, USA, pp. 426–437, 9–11 June 2003

23. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust
non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol.
2139, pp. 566–598. Springer, Heidelberg (2001)

24. De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge proof sys-
tems. In: Advances in Cryptology - CRYPTO 1987, A Conference on the The-
ory and Applications of Cryptographic Techniques, Proceedings, Santa Barbara,
California, USA, pp. 52–72, 16–20 August 1987

25. Di Crescenzo, G., Visconti, I.: Concurrent zero knowledge in the public-key model.
In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 816–827. Springer, Heidelberg (2005)

26. Dodis, Y.: G22.3220-001/g63.2180 Advanced Cryptography - Lecture 3 (Fall 2009)
27. Dwork, C., Naor, M.: Zaps and their applications. In: 41st Annual Symposium on

Foundations of Computer Science, FOCS 2000, Redondo Beach, California, USA,
pp. 283–293, 12–14 November 2000

28. Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6), 1513–
1543 (2007)

29. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string. In: 31st Annual Symposium on Foundations of
Computer Science, St. Louis, Missouri, USA, vol. I, pp. 308–317, 22–24 October
1990

30. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

31. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

32. Garay, J.A., MacKenzie, P., Yang, K.: Strengthening zero-knowledge protocols
using signatures. J. Cryptology 19(2), 169–209 (2006)

33. Garay, J.A., MacKenzie, P.D., Yang, K.: Strengthening zero-knowledge protocols.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 177–194. Springer,
Heidelberg (2003)

34. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their valid-
ity and a methodology of cryptographic protocol design. In: 27th Annual Sympo-
sium on Foundations of Computer Science, Toronto, Canada, pp. 174–187, 27–29
October 1986

35. Goldwasser, S., Kalai, Y.T.: On the (in)security of the fiat-shamir paradigm. In:
44th Symposium on Foundations of Computer Science (FOCS 2003), Proceedings,
Cambridge, MA, USA, pp. 102–113, 11–14 October 2003

36. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: Proceedings of the 17th Annual ACM Symposium on Theory of
Computing, Providence, Rhode Island, USA, pp. 291–304, 6–8 May 1985

http://www.cs.au.dk/ ivan/Sigma.pdf

A Transform for NIZK Almost as Efficient 111

37. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

38. Groth, J.: Honest verifier zero-knowledge arguments applied. Dissertation Series
DS-04-3, BRICS. PhD thesis, xii+119 (2004)

39. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006)

40. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

41. Lindell, Y.: An efficient transform from Sigma Protocols to NIZK with a
CRS andnon-programmable random oracle. Cryptology ePrint Archive, Report
2014/710 (2014). http://eprint.iacr.org/2014/710/20150906:203011

42. Lindell, Y.: An efficient transform from Sigma Protocols to NIZK with a CRS and
non-programmable random oracle. Cryptology ePrint Archive, Report 2014/710
(2014). http://eprint.iacr.org/2014/710/20150906:203011

43. Lindell, Y.: An efficient transform from sigma protocols to NIZK with a CRS and
non-programmable random oracle. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part I. LNCS, vol. 9014, pp. 93–109. Springer, Heidelberg (2015)

44. Micciancio, D., Petrank, E.: Simulatable commitments and efficient concurrent
zero-knowledge. In: Biham, Eli (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
140–159. Springer, Heidelberg (2003)

45. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: Proceedings of the 22nd Annual ACM Symposium on The-
ory of Computing, Baltimore, Maryland, USA, pp. 427–437, 13–17 May 1990

46. Ostrovsky, R., Pandey, O., Visconti, I.: Efficiency preserving transformations for
concurrent non-malleable zero knowledge. In: Micciancio, D. (ed.) TCC 2010.
LNCS, vol. 5978, pp. 535–552. Springer, Heidelberg (2010)

47. Pass, R.: On deniability in the common reference string and random oracle model.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer,
Heidelberg (2003)

48. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th Annual Symposium on Foundations of Computer Sci-
ence, FOCS 1999, New York, NY, USA, pp. 543–553, 17–18 October 1999

49. Scafuro, A., Visconti, I.: On round-optimal zero knowledge in the bare public-key
model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 153–171. Springer, Heidelberg (2012)

50. Schnorr, C.-P.: Efficient Identification and Signatures for Smart Cards. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer,
Heidelberg (1990)

51. Visconti, I.: Efficient zero knowledge on the internet. In: Bugliesi, M., Preneel, B.,
Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 22–33. Springer,
Heidelberg (2006)

52. Wee, H.: Zero knowledge in the random oracle model, revisited. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 417–434. Springer, Heidelberg (2009)

53. Yung, M., Zhao, Y.: Interactive zero-knowledge with restricted random oracles.
In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 21–40. Springer,
Heidelberg (2006)

54. Yung, M., Zhao, Y.: Generic and practical resettable zero-knowledge in the bare
public-key model. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp.
129–147. Springer, Heidelberg (2007)

http://eprint.iacr.org/2014/710/20150906:203011
http://eprint.iacr.org/2014/710/20150906:203011

Improved OR-Composition of Sigma-Protocols

Michele Ciampi1(B), Giuseppe Persiano2, Alessandra Scafuro3,
Luisa Siniscalchi1, and Ivan Visconti1

1 DIEM, University of Salerno, Salerno, Italy
{mciampi,lsiniscalchi,visconti}@unisa.it

2 DISA-MIS, University of Salerno, Salerno, Italy
giuper@gmail.com

3 Boston University and Northeastern University, Boston, USA
scafuro@bu.edu

In [18] Cramer, Damg̊ard and Schoenmakers (CDS) devise an OR-composition
technique for Σ-protocols that allows to construct highly-efficient proofs for com-
pound statements. Since then, such technique has found countless applications
as building block for designing efficient protocols.

Unfortunately, the CDS OR-composition technique works only if both state-
ments are fixed before the proof starts. This limitation restricts its usability in
those protocols where the theorems to be proved are defined at different stages
of the protocol, but, in order to save rounds of communication, the proof must
start even if not all theorems are available. Many round-optimal protocols ([21,
30,41,44]) crucially need such property to achieve round-optimality, and, due to
the inapplicability of CDS’s technique, are currently implemented using proof sys-
tems that requires expensive NP reductions, but that allow the proof to start even
if no statement is defined (a.k.a., LS proofs from Lapidot-Shamir [31]).

In this paper we show an improved OR-composition technique for Σ-protocols,
that requires only one statement to be fixed when the proof starts, while the other
statement can be defined in the last round. This seemingly weaker property is suf-
ficient for the applications, where typically one of the theorems is fixed before the
proof starts. Concretely, we show how our new OR-composition technique can
directly improve the round complexity of the efficient perfect quasi-polynomial
time simulatable argument system of Pass [38] (from four to three rounds) and
of efficient resettable WI arguments (from five to four rounds).

1 Introduction

Witness-Indistinguishable (WI) Proofs. WI1 proofs are fundamental for the
design of cryptographic protocols, particularly when they are also proofs of
knowledge (PoK). In a WIPoK the prover P proves knowledge of a witness
certifying the veracity of a statement x ∈ L to a verifier V. WIPoKs can be used
directly in some applications (e.g., in identification schemes) or can be a building
block for stronger security notions (e.g., for zero-knowledge proofs using the FLS
[24] paradigm or for round-optimal secure computation [30]).
1 We will use WI to mean both “witness indistinguishability” and “witness indistin-

guishable”.

c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 112–141, 2016.
DOI: 10.1007/978-3-662-49099-0 5

Improved OR-Composition of Sigma-Protocols 113

Round complexity of cryptographic protocols has been extensively studied
both for its practical relevance and for its natural and conceptual interest.
Regarding WIPoKs, we know from Blum’s protocol [5] that 3-round WIPoKs
exist for all NP languages under the sole assumptions that one-way permutations
exist. This result is obtained by designing a WIPoK for the language of Hamil-
tonian graphs and then by leveraging on the NP-completeness of the language
of Hamiltonian graphs. Under stronger cryptographic assumptions, 2-round WI
proofs, called ZAPs, and non-interactive WI (NIWI) proofs have been shown in
[4,23,28]. Neither ZAPs nor NIWI proofs are PoKs.

Since NPreductions are extremely expensive, several practical interactive
PoKs have been designed for languages that are used in real-world cryptographic
protocols (e.g., for proving knowledge of a discrete logarithm (DLog)). The study
of such ad-hoc protocols mainly concentrates on a standardized form of a 3-round
PoK referred to as Σ-protocol [19,42].

Σ-protocols. A Σ-protocol for an NPlanguage L with witness relation RL is
a 3-round proof system jointly run by a prover P and a verifier V in which P
proves knowledge of a witness w for x ∈ L. In a Σ-protocol the only message
sent by V is a random string. Such proof systems have two very useful proper-
ties: special soundness, which is a strong form of proof of knowledge, and spe-
cial honest-verifier zero knowledge (SHVZK). The latter property basically says
the following: if the challenge is known in advance, then by just knowing also
the theorem, it is possible to generate an accepting transcript without using the
witness. This is formalized through the existence of a special simulator, called
the SHVZK simulator that, on input a theorem x and a challenge c, will output
(a, z) such that (a, c, z) is an accepting 3-message transcript for x and is indistin-
guishable from the transcript produced by the honest prover when the challenge
is c. Blum’s protocol for Graph Hamiltonicity is an example of a Σ-protocol.
Another popular example of Σ-protocols is Schnorr’s protocol [42] for proving
knowledge of a discrete logarithm.

The security provided by the SHVZK property is clearly insufficient as it
gives no immediate guarantees against verifiers who deviates from the protocol.
Despite of this, the success of Σ-protocols and their impact in various con-
structions [1,2,6,9–12,14,15,20,22,25,27,32,33,36,37,40,41,43] is a fact. This
is due to a breakthrough of Cramer et al. [18] that adds WI to the security of
Σ-protocol.

OR Composition of Σ-Protocols. Let L be a language that admits a Σ-
protocol ΠL. In [18] it is shown how to use ΠL and its properties to construct a
new Σ-protocol, ΠOR

L , for proving the OR composition of theorems in L avoid-
ing the NPreduction by crucially exploiting the honest-verifier zero-knowledge
(HVZK2) property of ΠL. The rationale behind the transformation can be infor-
mally explained as follows. The prover wishes to prove a statement of the form
((x0 ∈ L) ∨ (x1 ∈ L)). The näıve idea of simply running ΠL twice in parallel

2 HVZK requires the existence of a simulator that by receiving in input the theorem
gives in output an accepting triple (a, c, z). Clearly HVZK is implied by SHVZK.

114 M. Ciampi et al.

would not work because the prover knows only one of the witnesses, say wb,
and cannot compute two accepting transcripts without knowing w1−b. However,
due to the HVZK property, the prover can generate an accepting transcript for
x1−b ∈ L even without knowing w1−b, by running the HVZK simulator Sim asso-
ciated with ΠL. Indeed, Sim “only” needs in input the theorem x1−b and will
output the entire transcript, challenge included. The trick is then to generate
the challenges for the two executions of ΠL, in such a way that the prover can
control the challenge of exactly one of them (but not both), and set it to the
value generated by Sim. Note that, if running the algorithm of Sim is as efficient
as running the algorithm of P, then the composed protocol is efficient. We stress
that this OR-composition technique preserves SHVZK and will refer to it as the
CDS-OR technique.

A very interesting property of this transformation, besides the fact that it
does not need NPreduction, is that if Sim is a simulator for perfect HVZK
then ΠOR

L is WI (this was shown in [18]). This result was further extended by
Garay et al. [25] that noted that the CDS-OR technique can be used also for
Σ-protocols that are computational HVZK. In this case the relation proved is
slightly different, namely, starting with a relation RL and instances x0 and x1,
the resulting ΠOR

L protocol is computational WI for the relation

ROR
L = {((x0, x1), w) : ((x0, w) ∈ RL ∧ (x1 ∈ L)) ∨ ((x1, w) ∈ RL ∧ (x0 ∈ L))}.

Input-Delayed Proofs. Often in cryptographic protocols there is a preamble
phase that has the purpose of establishing, at least in part, a statement to
be proven with a WI proof. In such cases, since one of the statements is fully
specified only when the preamble is completed, the WI proof can start only after
the preamble ends. Hence, the overall round complexity of protocols that follow
this paradigm amounts to the sum of the round complexity of the preamble and
of the WI proof.

In [31], Lapidot and Shamir (and later on Feige et al. in [24]) show a 3-round
proof of knowledge for Hamiltonian Graphs which has the special property that
a prover can compute the first round of the proof, without knowing the theorem
to be proved (that is, the graph) but only needs to know its size (that is, the
number of vertices). Such a 3-round protocol is a Σ-protocol (and thus satisfies
the SHVZK property) and is a WI proof. We will refer to this protocol as LS.
Also, we will call input delayed a Σ-protocol where the prover computes the first
message without knowledge of the statement to be proved.

The input-delayed property directly improves the round complexity of all the
cryptographic protocols that follow the paradigm described above. The reason
is that now the WI proof can start even if the preamble that generates the
statement is not completed yet. It is worthy to note that in many applications the
preamble serves as a mean to generate some trapdoor theorem, that is used only
in the security proof. The “honest” theorem instead is typically known already
at the beginning of the protocol. This technique has been used extensively and,
most notably, it led to the celebrated FLS paradigm that upgrades any WI proof
system into a zero-knowledge (ZK) proof system.

Improved OR-Composition of Sigma-Protocols 115

The input-delayed property of LS has been instrumental to provide round-
efficient constructions from general assumptions, such as: 4-round (optimal)
secure 2PC where only one player gets the output (5 rounds when both players
get the output) [30], 4-round resettable WI arguments [41,44], 4-round (optimal)
resettable ZK for NP in the BPK model [41,44].

Despite being so influential to achieve round efficiency for cryptographic pro-
tocols, the power of LS unfortunately vanishes as soon as practical constructions
are desired. Indeed, similarly to Blum’s protocol, LS is crucially based on specific
properties of Hamiltonian graphs. Thus, when used to prove more natural lan-
guages, which is the case of most of the applications using WI proofs, it requires
to perform rather inefficient NP reductions.

Efficient Protocols and Limits of the CDS-OR Technique. A natural
question is what happens if we want to avoid the NP reduction and we try to
use the CDS-OR technique to construct input-delayed adaptive WI proofs. A bit
more specifically, we know that there exist Σ-protocols that are input delayed.
Schnorr’s protocol [42] for DLog is such an example since the first message can be
computed without knowing the instance, but only a group generator. Thus the
question is what happens if we apply the CDS-OR technique to an input-delayed
Σ-protocol. Do we obtain a WI Σ-protocol that is input delayed as well?

Unfortunately, the answer is negative. The CDS-OR technique does not
preserve the input-delayed property, not even when used to compose two Σ-
protocols that are both input delayed. To see why, recall that the CDS-OR
composition technique when applied to Σ-protocol ΠL for language L requires
the prover to compute two accepting transcripts, one of which is computed by
running the HVZK simulator Sim. Recall that Sim needs in input the theorem
to be proved. Hence, to prove knowledge of a witness for the compound theorem
(x0 ∈ L ∨ x1 ∈ L), the prover, who knows one witness, say wb, needs to know
also x1−b already at the first round to be able to run the simulator. Thus, in
the CDS-OR technique the prover can successfully complete the protocol if and
only if both3 instances are specified already at the first round.

Because of this missing feature, the CDS-OR technique has limited power
in allowing one to obtain round-efficient/optimal cryptographic protocols, com-
pared to the number of rounds obtained by using LS. As such, in some cases
when focusing on efficient constructions, the best round-complexity that we can
achieve using efficient Σ-protocols and avoiding NP reductions needs at least
one additional round, therefore requiring at least 5-round if one wants to match
the previously mentioned applications (e.g., 5-round resettable ZK for NP in the
BPK model [41,44] and 5-round resettable WI [41,44]) argument systems.

Additionally, we note that the CDS-OR technique is the bottleneck in
the round-complexity of the 4-round straight-line perfect simulatable in quasi-
polynomial time argument shown by Pass in [38]. This argument uses quasi-
polynomial time simulation and, potentially, it would only need three rounds
as any Σ-protocol. The additional first round is required precisely to define the
3 Note that the WI property requires that the prover would be able to prove any of

the two theorems, and thus potentially use the simulator on either x0 or x1.

116 M. Ciampi et al.

trapdoor theorem. Hence, the following natural question arises: Given a lan-
guage L with an input-delayed Σ-protocol ΠL, is it possible to design an efficient
Witness Indistinguishable Σ-protocol ΠL

OR for proving knowledge of a witness
certifying that (x0 ∈ L ∨ x1 ∈ L) that does not require knowledge of both x0 and
x1 to play the first round?

1.1 Our Contribution

In this paper we answer the above question positively for a large class of Σ-
protocols that includes all Σ-protocols used in efficient constructions. Specifi-
cally, we propose a new OR-composition technique for Σ-protocols that relaxes
the need of having both instances fixed before the Σ-protocol starts. Our tech-
nique allows the composition of Σ-protocols for different languages and leads
to improved round complexity in previous efficient constructions based on CDS-
OR technique. Namely, we describe the following two results that we obtain by
making use of our new OR-composition technique:

– Efficient 3-round straight-line perfect quasi-polynomial time simulatable argu-
ment system for a large class of useful languages. The previous construction
required four rounds [38].

– Efficient 4-round rWI argument system. Previous constructions required five
rounds [41,44].

Our new technique can also be used to replace LS towards obtaining efficient
round-optimal resettable zero-knowledge arguments in the BPK model (using the
constructions of [41,44]), round-optimal secure two-party computation (using
the construction of [30]) and 4-round non-malleable commitments (using the
construction of [26]).

Finally, we provide a precise classification of the Σ-protocols that can be
used in our new OR-composition technique. In the following paragraphs we first
provide a high-level description our OR-composition technique, then we discuss
the applications in more details.

1.2 Our Techniques

Overview. We start by defining the setting we are considering. Let L0 and L1 be
any pair of languages admitting Σ-protocols Π0 and Π1. We want to construct a
Σ-protocol ΠOR

L for the language L = L0∨L1. An instance of L is a pair (x0, x1)
and we want only x0 to be specified before ΠOR

L starts while x1 is specified
only upon the last round of the protocol4. We assume that Π1 is an input-
delayed Σ-protocol and thus the first prover message of Π1 can be computed
without knowing x1. As mentioned earlier this property is satisfied by popular
Σ-protocols such as the ones for Discrete Log, Diffie-Hellman triples, and of
course, LS itself.
4 Like LS, we will just need the size of x1 to be known when ΠOR

L starts.

Improved OR-Composition of Sigma-Protocols 117

Now, recall that the problem with the CDS-OR technique was that a prover
needs to run Sim to compute the first round of the protocol, and this necessarily
requires knowledge of both theorems before the protocol starts. We want instead
that the prover uses only knowledge of x0.

We solve this problem by introducing a new OR-composition technique that
does not require the prover to run Sim on x1 already in the first round. Instead,
our technique allows the prover to wait and take action only in the third round
when x1 is finally defined.

Our starting point is the well known fact that given any Σ-protocol there
exists an instance-dependent trapdoor commitment (IDTC) scheme where the
witness for the membership of the instance in the language can be used as a
trapdoor to open a committed message as any desired message, as in [20]. Our
next observation is that, instead of having the prover send the first round for
protocol Π1 in the clear, we can have him send a commitment to it, and such
commitment can be computed using an instance-dependent trapdoor commit-
ment based on Π0 with respect to instance x0. Recall that this is possible, as in
our setting we assume that Π1 is an input-delayed Σ-protocol, so the prover can
honestly compute the first message of Π1 without knowing x1. Therefore, the
first round of our ΠOR

L protocol, is simply an IDTC of a honest Π1’s first round.
Later on, upon receiving the challenge c from the verifier, and after the

theorem x1 is defined, the prover computes the third round as follows. If she has
received a witness for x0, then she will run Sim on input (x1, c) to compute an
accepting transcript of Π1 for x1. Then, using the witness w0 she will equivocate
the commitment sent in the first round, according to the message output by
Sim. Otherwise, if she has received a witness for x1 then she does not need to
equivocate: she will honestly open the commitment, and honestly compute the
third message of Π1. Therefore, the third round of ΠOR

L , simply consists of an
opening of the IDTC together with the third message of Π1.

Now note that this idea works only if we have a special IDTC scheme that
has the following strong trapdoor property: a sender can equivocate even a com-
mitment that has been computed honestly. Unfortunately, this property is not
satisfied in general by any trapdoor commitment based on Σ-protocols, but only
for some. This would restrict the class of Σ-protocols that we can use as L0 in
our technique. For example, this class would not contain Blum’s protocol.

Our next contribution is the construction of IDTC schemes that satisfy this
strong trapdoor property, for a large class of Σ-protocols. Towards this goal, we
define the notion of a t-IDTC scheme which are IDTCs for which the ability to
open a commitment in t ways implies knowledge of a witness for the instance
associated with the commitment. Next, we construct 2-IDTC and 3-IDTC schemes
based on two different classes of Σ-protocols, the union of which includes all the
Σ-protocols that are commonly used in cryptographic protocols. Finally, we
provide a general OR-composition technique for any pair of languages L0 and
L1 such that L0 has a t-IDTC scheme and L1 has an input-delayed Σ-protocol.

t-Instance-Dependent Trapdoor Commitment Scheme. For integer t ≥ 2,
a t-IDTC scheme for a polynomial-time relation R admitting Σ-protocol ΠR

118 M. Ciampi et al.

is a triple (TCom,TDec,TFake) where TCom, TDec are the honest commit-
ment/decommitment procedures and TFake is the equivocation procedure that,
given a witness for an instance x, equivocates any commitment with respect to
x computed by TCom. The crucial differences between a t-IDTC scheme and a
regular trapdoor commitment scheme are: (a) the trapdoor property is strong
in the sense that knowledge of the trapdoor (that is, the witness of the instance
x) allows to equivocate even commitments that have been honestly computed;
(b) the binding property is relaxed: in a t-IDTC scheme, the sender can open
the same commitment in t − 1 different ways, even without the trapdoor. This
relaxation allows us to build an IDTC scheme from a wider class of Σ-protocols,
which will cover all the Σ-protocols that have been used in literature.

Constructing a 2-IDTC Scheme. A 2-IDTC scheme can be directly constructed
from any Σ-protocol Π0 that has the following property: even if the first message
a0 was computed by the SHVZK simulator Sim, an accepting z0 can be efficiently
computed, for every challenge c0, by using knowledge of the witness and of the
randomness used by Sim to produce a0. We call the Σ-protocols that satisfy
this property, chameleon Σ-protocols, and we denote by Psim the special prover
strategy that can answer any challenge even starting from a simulated a0.

More precisely, given a chameleon Σ-protocol Π0 for a language L0, one can
construct a 2-IDTC scheme as follows. Let x0 ∈ L0. To commit to a message m,
the sender runs Sim(x0,m; r0) and obtains a0, z0. The commitment is the value
a0. The opening is the pair m, z0. The commitment is accepted iff (x0, a0,m, z0)
is accepting. To equivocate a0, as a message m′, run the special prover algorithm
Psim((x0,m, r0), w0,m

′) and obtain an accepting z0.

Constructing a 3-IDTC Scheme. We now discuss a different committing strat-
egy that works for Σ-protocols in which the simulated first message a0 can only
be continued for the challenge specified by Sim, even if a witness is made avail-
able. Blum’s protocol for Hamiltonicity is an example of such Σ-protocol.

To commit to m, the sender sends a pair (a0, a
′
0) where, with probability

1/2, a0 is obtained by running Sim(x0,m) while a′
0 is computed by running the

prover of Π0, and with probability 1/2 the above order is inverted. One can think
of a commitment as composed of two threads: a simulated thread and a honest
thread. To open the commitment, the prover sends m and z∗, and the verifier
accepts the decommitment if m, z∗ are accepting for one of the threads; namely,
the verifier checks that either (a0,m, z∗) or (a′

0,m, z∗) is accepting for x0 ∈ L0.
To equivocate (a0, a

′
0) to a message m′, the sender simply continues the thread

of the honest prover, using m′ as challenge and computes z∗ using the witness.
Clearly, a malicious sender can open in two different ways even when x0 �∈ L.
Nevertheless, three openings allow the extraction of the witness for x0.

When our OR-composition technique is instantiated with a 3-IDTC scheme
we have that the resulting protocol is still WI since no power is added to the
verifier. However the protocol is not a Σ-protocol since the special-soundness
property is not guaranteed. The reason is that, in a 3-IDTC scheme the sender
can open the commitment in two different ways even without having the trapdoor
(i.e., the witness for x0 ∈ L0). Therefore, for any challenge c sent by V, the fact

Improved OR-Composition of Sigma-Protocols 119

that the commitment of a1 can be opened in two ways gives a malicious prover
P∗ two chances (a1, c, z1) and (a′

1, c, z
′
1) to successfully complete the protocol for

a false statement x1. Nevertheless, this extra freedom does not hurt soundness
as both openings (i.e., a1 and a′

1) are fixed in advance, and thus when x1 is not
an instance of the language there exist only two challenges c′ and c′′ that would
allow P∗ to succeed. When the challenge is long enough the success probability
of P∗ is therefore negligible.

Our construction when starting from a 3-IDTC scheme is 3-special sound
(i.e., answering to 3 challenges allows one to compute a witness efficiently), and
therefore it is a proof of knowledge when the challenge is long enough.

1.3 Discussion

What Really Matters. Our new OR-composition technique works only when the
theorem that has not been defined yet (i.e., x1), admits an input-delayed Σ-
protocol). We stress that this is not a limitation for the applications that we
have in mind. In fact, in all efficient protocols that make use of input-delayed
proofs that we are aware of, the preamble has always the purpose of generating
the trapdoor theorem. In practical scenarios5 L1 usually corresponds to DLog or
DDH. The fact that we can not have Blum’s Σ-protocol for L1 when L1 is the
language of Hamiltonian graphs, is therefore not relevant as the actual language
of interest is L0.

Comparison with the CDS-OR Technique. We remark that even in the
extremely simplified case where:

1. the two instances x0 and x1 are for the same language L,
2. L admits an input-delayed Σ-protocol ΠL which is also special HVZK,
3. ΠL is chameleon and thus one can compute the first message using Sim and

then continue with the prover to answer to arbitrary challenges,
4. the prover knows in advance the witness w and instance xb for which she will

be able to honestly complete the protocol,

the CDS-OR technique fails in obtaining a Σ-protocol (or a WIPoK) for the OR
composition of instances of L if any one of the instances is not known when the
protocol starts.

Beyond Schnorr’s Protocol. The works of Cramer [16], Cramer and Damg̊ard
[17], and Maurer [34,35] showed that a protocol (referred to as the Pre-Image
Protocol) for proving knowledge of a pre-image of a group homomorphism unifies
and generalizes a large number of protocols in the literature. Classic Σ-protocols,
such as Schnorr’s protocol [42] and the Guillou-Quisquater protocol [29], are
particular cases of this abstraction. We show that the Pre-Image Protocol is a
chameleon Σ-protocol and can thus be used in our construction.
5 These are the only scenarios of interest for our work since if practicality is not desired

than one can just rely on the LS Σ-protocol and use NPreductions.

120 M. Ciampi et al.

What Is In and What Is Out. As mentioned previously, the Σ-protocol for
L1 can be any input-delayed Σ-protocol. We now discuss which Σ-protocols can
be used to instantiate L0 in our OR transform. For this purpose, we identify
four classes of Σ-protocols and we prove that any Σ-protocol that falls in any of
the first three classes can be used in our OR transform (by instantiating either
a 2-IDTC, or a 3-IDTC scheme).

We also identify a class of Σ-protocols that is not suitable for any of our
techniques. Luckily, we have no example of natural Σ-protocols that fall in this
class, and in order to prove the separation we had to construct a very contrived
scheme. The four classes are listed below.

– (Class 1) Σ-protocols that are Chameleon and do not require the witness to
compute the first round. This class of Σ-protocols can be used to construct
both 2-IDTC and 3-IDTC schemes.

– (Class 2) Σ-protocols that are Chameleonand require the prover to use the
witness already to compute the first round. This class of Σ-protocols can be
used to construct a 2-IDTC scheme.

– (Class 3) Σ-protocols that are not Chameleon but do not require the prover
to use the witness in the first round. This class of Σ-protocols can be used to
construct a 3-IDTC scheme.

– (Class 4) Σ-protocols that are not Chameleon and require the witness to be
used already in the first round. This class of Σ-protocols can not be used in
our techniques.

The Input-Delayed Features. We stress here that our techniques allow to
start and complete an efficient OR composition of two Σ-protocols (with the
discussed restrictions) provided that one instance is known and another one will
be known later. Having a witness for the first or the second instance always allows
P to convince V. This contrasts with the CDS-OR technique where knowing a
witness for x0 would block P immediately since P would need immediately x1

to continue, but x1 will not be available until the third round.

1.4 Applications

Our new OR-composition technique does not provide the full power of LS
because it needs one theorem to be known before the protocol starts. How-
ever, as we show below, this seemingly weaker property suffices to improve the
round-complexity of some of the previous constructions based on the CDS-OR
technique. Such constructions aim to efficiently6 transform a Σ-protocol for a
relation R into a round-efficient argument with more appealing features.

Efficient 3-Round Straight-Line Perfect Quasi-Polynomial Time Simu-
latable Argument System. We achieve this result directly, using the construc-
tion of Pass [38] and replacing the CDS-OR technique with our technique. As a
6 By efficiently we mean that no NPreduction is needed and only a constant number

of modular exponentiations are added. We do not discuss the practicality of the
resulting constructions.

Improved OR-Composition of Sigma-Protocols 121

result the first round of the verifier of [38] can be postponed, therefore reducing
the round complexity from four to three rounds. Our construction works for all
languages admitting a perfect chameleon Σ-protocol.

Efficient 4-Round Resettable WI Arguments. It is well known [8] how to
transform a Σ-protocol into a resettable WI protocol: the verifier commits to
the challenge c using a perfectly hiding commitment scheme and sends it to the
prover in the first round; the prover then computes its messages with random-
ness derived by applying a pseudo-random function (PRF) on the commitment
received. Soundness follows directly from the soundness of the Σ-protocol due to
the perfect hiding of the commitment. WI follows from the fact that the protocol
is zero knowledge against a stand-alone verifier and thus concurrent WI. Then
the use of the PRF and the fact that all messages of the verifier are committed
in advance upgrades concurrent WI to resettable WI. This approach, however,
generates a 5-round protocol.

Achieving the same result efficiently, namely, avoiding NP reductions, in
only four rounds is non-trivial. The reason is that if we attempt to replace
the 2-round perfectly hiding commitment with a non-interactive commitment,
we lose the unconditional soundness property, and then it is not clear how to
argue about computational soundness. More specifically, black-box extraction
of the witness is not possible (black-box extraction and resettable WI can not
coexist) and the adversarial prover could try to maul the commitment of the
verifier and adaptively generate the first round of the Σ-protocol. In fact, even
allowing complexity-leveraging arguments (and thus, straight-line extraction),
constructing a 4-round WI argument system that avoids NP reductions and adds
only a few modular exponentiations to the underlying Σ-protocol has remained
so far an open problem.

We solve this problem by using our new OR-composition technique. We have
the verifier commit to the challenge in the first round, but then later, instead of
sending the decommitment, she will directly send the challenge and prove that
either the challenge is the correct opening of the commitment or she solved some
hard puzzle (in our construction, computing the Discrete Log of a random group
element chosen by the prover). The puzzle is sent by the prover in the second
round and it will be solved by the reduction in super-polynomial time in the
proof of soundness.

This trick has been proposed in literature in various forms [21,38] and we are
using the form used in [21] where the puzzle is sent only in the second round.
[21] must use the LS transform and therefore needs NP-reduction. As explained
earlier, going through LS was necessary as the CDS-OR transform can be applied
only if both statements are fixed at the beginning.

Our new OR transform solves precisely this problem, and it allows the ver-
ifier to start the proof before the puzzle is defined, and this proof can be done
efficiently without NP reductions.

Resettable WI follows from the CGGM transformation and the WI property
of the proof generated by the prover. The groups used for the commitment of the
challenge and for the puzzle sent by the prover, will be chosen appropriately so

122 M. Ciampi et al.

that the hardness of computing discrete logarithms are different and guarantee
that our reductions work (i.e., we make use of complexity leveraging).

Further Applications. Our new OR-composition technique can find various other
applications. Indeed, wherever there is a round-efficient (but otherwise ineffi-
cient) construction based on the use of LS without a corresponding efficient
construction with the same round complexity, then our technique constitutes
a powerful tool towards achieving computationally efficient and round-efficient
constructions. For instance, the 4-round (optimal) resettable ZK argument sys-
tems in the BPK model provided in [41,44], consists (roughly) of the parallel
execution of a (resettable) WI protocol from the prover to the verifier, where
the prover proves that either x ∈ L or he knows the secret key associated to
the public identity of the verifier, and a 3-round (resettably-sound) WI proto-
col from the verifier to the prover, where V proves knowledge of the secret key
associate to its public key, or knowledge of the solution of a puzzle computed
by the prover. When instantiated with efficient Σ-protocols, such construction
requires 5-rounds, where the additional round, from the prover to the verifier,
is used to send the puzzle necessary for the verifier to start a proof using the
CDS-OR technique. We observe that this setting closely resembles the setting of
the 4-round resettable WI (rWI) protocol that we provide in this paper. As such,
one could directly instantiate the proof provided by the prover of the BPK model,
with our 4-round rWI protocol, and have the verifier just prove knowledge of its
secret keys, thus avoiding the need of the additional first round.

Our OR-composition technique could also be useful in replacing the use of
LS in the 4-round non-malleable commitment scheme of [26], and in the round-
optimal secure two-party computation protocol of [30].

1.5 Open Problems

Our OR-composition technique relaxes the requirement of CDS-OR of requiring
knowledge of all instances already at the beginning of the protocol. However
still our result does not match the power of LS where no theorem is required for
the protocol to start. An immediate open question is whether one can improve
our OR transform so that the first round can be run without the knowledge of
any theorem. Perhaps a first step in this direction would be to answer a related
relaxed question, which is to design an OR transform for proving (still preserving
WI) knowledge of 1 out of n theorems and that requires knowledge of (at least
some) theorems only after the second round. It would also be interesting to
extend our technique in order to make it applicable to all Σ-protocols.

2 Definitions

In this section we set-up our notation and give some useful definitions. More
definitions can be found in the full version.

Improved OR-Composition of Sigma-Protocols 123

We denote the security parameter by λ. If A is a probabilistic algorithm then
A(x) denotes the probability distribution of the output of A when it receives x as
input. By A(x;R) instead we denote the output of A on input x when coin tosses
R are used as randomness.

A polynomial-time relation R (or, simply, a relation) is a subset of {0, 1}� ×
{0, 1}� for which membership of (x,w) to R can be decided in time polynomial in
|x|. We define the NP-language LR as LR = {x|∃w : (x,w) ∈ R}. If (x,w) ∈ R,
we say that w is a witness for instance x. Following [25], we define L̂R to be
the input language that includes both LR and all well formed instances that do
not have a witness. More formally, LR ⊆ L̂R and membership in L̂R can be
tested in polynomial time. We implicitly assume that the verifier of a protocol
for relation R executes the protocol only if the common input x belongs to L̂R
and rejects immediately common inputs not in L̂R.

Number-Theoretic Assumptions. We define group generator algorithms to be
probabilistic polynomial-time algorithms that take as input security parameter
1λ and output (G, q, g), where G is (the description of) a cyclic group of order
q and g is a generator of G. We assume that membership in G and its group
operations can be performed in time polynomial in the length of q and that there
is an efficient procedure to randomly select elements from G. Moreover, with a
slight abuse of notation, we will use G to denote the group and its description.

We consider the sub-exponential versions of the DLog and of the DDH
assumptions that posit the hardness of the computation of discrete logarithms
and of breaking the Decisional Diffie-Hellman assumption with respect to the
group generator algorithm IG that, on input λ, randomly selects a λ-bit prime
q such that p = 2q + 1 is also prime and outputs the order q group G of the
quadratic residues modulo p along with a random generator g of G. The strong
versions of the two assumptions posit the hardness of the same problems even if
p (and q) and generator g are chosen adversarially.

3 Σ-Protocols

We consider 3-move protocols Π for a polynomial-time relation R. Protocol Π is
played by a prover P and a verifier V that receive a common input x. P receives
as an additional private input a witness w for x and the security parameter 1λ

in unary. The protocol Π has the following form:

1. P runs algorithm P1 on common input x, private input w, security parameter
1λ and randomness R obtaining a = P1(x,w, 1λ;R) and sends a to V.

2. V, after receiving a from P, chooses a random challenge c ← {0, 1}l and sends
c to P.

3. P runs algorithm P2 on input x,w,R, c and sends z ← P2(x,w,R, c) to V.
4. V outputs V(x, a, c, z) (i.e., V’s decision to accept (b = 1) or reject (b = 0)).

We call (P1,P2,V) the algorithms associated with Π and l the challenge
length such that, wlog, the challenge space {0, 1}l is composed of 2l different
challenges.

124 M. Ciampi et al.

The triple (a, c, z) of messages exchanged is called a 3-move transcript.
A 3-move transcript is honest if a, z correspond to the messages computed
running the honest algorithms, respectively, of P1 and P2, and c is a random
string, in {0, 1}l. A 3-move transcript (a, c, z) is accepting for x if and only if
V(x, a, c, z) = 1. Two accepting 3-move transcripts (a, c, z) and (a′, c′, z′) for an
instance x constitute a collision if a = a′ and c �= c′.

Definition 1 (Σ-protocol [18]). A 3-move protocol Π with challenge length l
is a Σ-protocol for a relation R if it enjoys the following properties:

1. Completeness. If (x,w) ∈ R then all honest 3-move transcripts for (x,w)
are accepting.

2. Special Soundness. There exists an efficient algorithm Extract that, on
input x and a collision for x, outputs a witness w such that (x,w) ∈ R.

3. Special Honest-Verifier Zero Knowledge (SHVZK). There exists a
PPT simulator algorithm Sim that takes as input x ∈ LR, security parameter
1λ and c ∈ {0, 1}l and outputs an accepting transcript for x where c is the
challenge. Moreover, for all l-bit strings c, the distribution of the output of the
simulator on input (x, c) is computationally indistinguishable from the distri-
bution of the 3-move honest transcript obtained when V sends c as challenge
and P runs on common input x and any private input w such that (x,w) ∈ R.
We say that Π is Perfect when the two distributions are identical.

Not to overburden the descriptions of protocols and simulators, we will omit the
specification of the security parameter when it is clear from the context.

In the rest of the paper, we will call a 3-move protocol that enjoys Com-
pleteness, Special Soundness and Honest-Verifier Zero Knowledge (HVZK7) a
Σ̃-protocol. The next theorem shows that SHVZK can be added to a 3-move
protocol with HVZK without any significant penalty in terms of efficiency.

Theorem 1 [19]. Suppose relation R admits a 3-move protocol Π ′ that is
HVZK (resp., perfect HVZK). Then R admits a 3-move protocol Π that is
SHVZK (resp., perfect SHVZK) and has the same efficiency.

Proof. Let l be the challenge length of Π ′, let (P′
1,P

′
2,V

′) be the algorithms
associated with Π ′ and let Sim′ be the simulator for Π ′. Consider the following
algorithms.

1. P1, on input (x,w) ∈ R, security parameter 1λ and randomness R1, parses
R1 as (r1, c′′) where |c′′| = l, computes a′ ← P′

1(x,w, 1λ; r1), and outputs
a = (a′, c′′).

2. P2, on input (x,w) ∈ R, R1 and randomness R2 parses R1 as (r1, c′′), c, sets
c′ = c ⊕ c′′, computes z′ ← P′

2(x,w, r1, c
′;R2), and sends it to V.

3. V, on input x, a = (a′, c′′), c and z′, returns the output of V′(x, a′, c ⊕ c′′, z′)
to decide whether to accept or not.

7 Recall that HVZK requires the existence of a simulator that generates a full tran-
script. This is a seemingly weaker requirement than SHVZK where the challenge is
an input for the simulator.

Improved OR-Composition of Sigma-Protocols 125

Consider the following PPT simulator Sim that, on input an instance x and a
challenge c, runs Sim′ on input x and obtains (a′, c′, z′). Then Sim sets c′′ = c⊕c′

and a = (a′, c′′) and outputs (a, c, z′). It is easy to see that if Sim′ is a HVZK
(resp. perfect HVZK) simulator for Π ′ then Sim is a SHVZK (resp. perfect
SHVZK) simulator for Π.

We will use the definition of proof of knowledge given in [3,19].

Theorem 2 [19]. Let Π be a Σ-protocol for a relation R with challenge length l.
Then Π is a proof of knowledge with knowledge error 2−l.

Definition 2 (Input-Delayed Σ-protocol). A Σ-protocol Π = (P,V) with
P running PPT algorithms (P1,P2) is an input-delayed Σ-protocol if P1 takes as
input only the length of the common instance and P2 takes as input the common
instance x, the witness w, the randomness R1 used by P1 and the challenge c
received from the verifier.

Definition 3 (Witness-Delayed Σ-protocol). A Σ-protocol Π = (P,V) for
a relation R with associated algorithms (P1,P2,V) is a witness-delayed Σ-
protocol if P1 takes as input only the common instance x.

In a ChamelonΣ-protocol, the prover can compute the first message by
using the simulator and thus knowing only the input but not the witness. Once
the challenge has been received, the prover can compute the last message (thus
completing the interaction) by using the witness w (which is thus used only to
compute the last message) and the coin tosses used by the simulator to compute
the first message.

Definition 4 (Chameleon Σ-protocol). A Σ-protocol Π for polynomial-time
relation R is a Chameleon Σ-protocol if there exists an SHVZK simulator Sim
and an algorithm Psim satisfying the following property:

Delayed Indistinguishability: for all pairs of challenges c0 and c1 and for all
(x,w) ∈ R, the following two distributions

{
R ← {0, 1}|x|d ; (a, z0) ← Sim(x, c0;R); z1 ← Psim((x, c0, R), w, c1) :

(x, a, c1, z1)
}

and {
(a, z1) ← Sim(x, c1) : (x, a, c1, z1)

}

are indistinguishable, where Sim is the Special HVZK simulator and d is such
that Sim, on input an λ-bit instance, uses at most λd random coin tosses. If
the two distributions above are identical then we say that delayed indistin-
guishability is perfect, and Π is a Perfect Chameleon Σ-protocol.

126 M. Ciampi et al.

We remark that a chameleon Σ-protocol Π has two modes of operations:
the standard mode when P runs P1 and P2, and a delayed mode when P uses
Sim and Psim. Moreover, observe that since Sim is a simulator for Π, it follows
from the delayed-indistinguishability property that, for all challenges c and c̃
and common inputs x, distribution

{R ← {0, 1}|x|d ; (a, z̃) ← Sim(x, c̃;R); z ← Psim((x, c̃, R), w, c) : (a, c, z)}

is indistinguishable from

{R ← {0, 1}|x|d ; a ← P1(x,w;R); z ← P2(x,w,R, c) : (a, c, z)}.

That is, the two modes of operations of Π are indistinguishable. This property
make us able to claim that if Π is WI when a WI challenger interacts with an
adversary using (P1,P2), then Π is WI even when the pair (Sim,Psim) is used.
Finally, we observe that Chameleon Σ-protocols do exist and Schnorr’s protocol
[42] is one example. When considering the algorithms associated to a Chameleon
Σ-protocol, we will add Psim.

3.1 Σ-protocols and Witness Indistinguishability

Definition 5. A 3-move protocol Π = (P,V) is Witness Indistinguishable (WI)
for a relation R if, for every malicious verifier V�, there exists a negligible func-
tion ν such that for all x,w,w′ such that (x,w) ∈ RL and (x,w′) ∈ RL

∣
∣
∣Prob

[
〈P(w, 1λ),V�〉(x) = 1

]
− Prob

[
〈P(w′, 1λ),V�〉(x) = 1

] ∣
∣
∣ ≤ ν(λ).

The notion of a perfect WI 3-move protocol is obtained by requiring the two
distributions to be identical. We start by recalling the following result.

Theorem 3 [18]. Every Perfect Σ̃-protocol8 is Perfect WI.

For completeness, in the full version we show a Σ̃-protocol that it is not WI.

3.2 Or Composition of Σ̃-protocols: the CDS-OR Transform

In this section we describe the CDS-OR [18] transform in details. Let Π be a
Σ̃-protocol for polynomial-time relation R with challenge length l, associated
algorithms (P1,P2,V) and HVZK simulator Sim. The CDS-OR transform con-
structs a Σ̃-protocol ΠOR with associated algorithms (POR

1 ,POR
2 ,VOR

Σ) for the
relation

ROR =
{

((x0, x1), w) :
(
(x0, w) ∈ R ∧ x1 ∈ L̂R

)
OR

(
(x1, w) ∈ R ∧ x0 ∈ L̂R

)}
.

8 We remind the reader that we call a 3-move protocol that enjoys Completeness,
Special Soundness and Honest-Verifier Zero Knowledge (HVZK) a Σ̃-protocol.

Improved OR-Composition of Sigma-Protocols 127

Protocol 1. CDS-OR Transform.
Common input: (x0, x1).
P ′s private input: (b, w) with b ∈ {0, 1} and (xb, w) ∈ R.

POR
1 ((x0, x1), (b, w);R1). Set ab = P1(xb, w;R1). Compute (a1−b, c1−b, z1−b) ←
Sim(x1−b). Output (a0, a1).

POR
2 ((x0, x1), (b, w), c, R1). Set cb = c ⊕ c1−b. Compute zb ← P2(xb, w, cb, R1).

Output ((c0, c1), (z0, z1)).
VOR

Σ ((x0, x1), (a0, a1), c, ((c0, c1), (z0, z1))). VOR
Σ accepts if and only if c = c0⊕c1

and V(x0, a0, c0, z0) = 1 and V(x1, a1, c1, z1) = 1.

Theorem 4 [18,25]. If Π is a Σ̃-protocolfor R then ΠOR is a Σ̃-protocol for
ROR and is WI for relation

R′
OR = {((x0, x1), w) : ((x0, w) ∈ R ∧ x1 ∈ LR)OR ((x1, w) ∈ R ∧ x0 ∈ LR)} .

Moreover, if Π is a Perfect Σ̃-protocol for R then ΠOR is WI for ROR.

It is possible to extend the above construction to handle two different rela-
tions R0 and R1 that admit Σ̃-protocols. Indeed we can assume, wlog, that R0

and R1 have Σ̃-protocols Π0 and Π1 with the same challenge length (details
are available in the full version). Hence, the construction outlined above can be
used to construct Σ̃-protocol ΠR0,R1

OR for relation

ROR =
{

((x0, x1), w) :
(
(x0, w) ∈ R0 ∧ x1 ∈ L̂R1

)
OR
(
(x1, w) ∈ R1 ∧ x0 ∈ L̂R0

)}
.

Theorem 5. If Π0 and Π1 are Σ̃-protocols for R0 and R1, respectively, then
ΠR0,R1

OR is a Σ̃-protocol for relation ROR and is WI for relation

R′
OR = {((x0, x1), w) : ((x0, w) ∈ R0 ∧ x1 ∈ LR1)OR ((x1, w) ∈ R1 ∧ x0 ∈ LR0)} .

Moreover, if Π0 and Π1 are Perfect Σ̃-protocols for R0 and R1 then ΠOR is
WI for ROR.

We remark that if Π0 and Π1 are Σ-protocols then the CDS-OR transform
yields a Σ-protocol for ROR and Theorems 4 and 5 still hold.

4 t-Instance-Dependent Trapdoor Commitment Schemes

In this section, for integer t ≥ 2, we define the notion of a t-Instance-Dependent
Trapdoor Commitmentscheme associated with a polynomial-time relation R and
show constructions for t = 2 and t = 3.

Definition 6 (t-Instance-Dependent Trapdoor Commitment Scheme).
Let t ≥ 2 be an integer and let R be a polynomial-time relation. A
t-Instance-Dependent Trapdoor Commitment (a t-IDTC, in short) scheme for R
with message space M is a triple of PPT algorithms (TCom,TDec,TFake) where

128 M. Ciampi et al.

TCom is the randomized commitment algorithm that takes as input security para-
meter 1λ, an instance x ∈ L̂R (with |x| = poly(λ)) and a message m ∈ M and
outputs commitment com, decommitment dec, and auxiliary information rand;
TDec is the verification algorithm that takes as input (x, com, dec,m) and decides
whether m is the decommitment of com; TFake is the randomized equivocation
algorithm that takes as input (x,w) ∈ R, messages m1 and m2 in M , commit-
ment com of m1 with respect to instance x and associated auxiliary information
rand and produces decommitment information dec2 such that TDec, on input
(x, com, dec2,m2), outputs 1.

A t-Instance-Dependent Trapdoor Commitment enjoys:

– Correctness: for all x ∈ L̂R, all m ∈ M , it holds that

Prob
[

(com, dec, rand) ← TCom(1λ, x,m) : TDec(x, com, dec,m) = 1
]

= 1.

– t-Special Extract: there exists an efficient algorithm ExtractTCom that, on
input x, commitment com, pairs (deci,mi)t

i=1 of openings and messages such
that
• for 1 ≤ i < j ≤ t we have that mi �= mj;
• TDec(x, com, deci,mi) = 1, for i = 1, . . . , t;
outputs w such that (x,w) ∈ R.

– Hiding (resp., Perfect Hiding): for every PPT (resp., unbounded) adver-
sary A there exists a negligible function ν (resp., ν(·) = 0) such that, for all
x ∈ LR and all m0,m1 ∈ M , it holds that

Prob
[
b ← {0, 1}; (com, dec, rand) ← TCom(1λ, x,mb) :

b = A(x, com,m0,m1)
]

≤ 1
2

+ ν(λ).

– Trapdoorness: the following two families of probability distributions are
indistinguishable:

{(com, dec1, rand) ← TCom(1λ, x,m1);
dec2 ← TFake(x,w,m1,m2, com, rand) : (com, dec2)}

and {(com, dec2, rand) ← TCom(1λ, x,m2) : (com, dec2)} over all families
{(x,w,m1,m2)} such that (x,w) ∈ R and m1,m2 ∈ M .
The perfect trapdoorness property requires the two probability distributions to
coincide for all (x,w,m1,m2) such that (x,w) ∈ R and m1,m2 ∈ M .

Constructing a 2-IDTC scheme from a Chameleon Σ -protocol . Let Π = (P,V)
with associated algorithms (P1,P2,V,Psim) be a Chameleon Σ-protocol for
polynomial-time relation R with a security parameter 1λ. Let l be the chal-
lenge length of Π and let Sim be a SHVZK simulator associated to Π. We con-
struct a t-IDTC scheme (TComΠ ,TDecΠ ,TFakeΠ) for R with messages space
M = {0, 1}l for x ∈ L̂R as follows.

Improved OR-Composition of Sigma-Protocols 129

Protocol 2. 2-IDTC scheme from Chameleon Σ-protocol Π.

– TComΠ(1λ, x,m1): On input x and m1 ∈ M , pick randomness R and compute
(a, z) ← Sim(x,m1;R). Output com = a, dec = z and rand = R;

– TDecΠ(x, com, dec,m1): On input x, com, dec and m1, run b = V(x, com,
m1, dec) and accept m1 as the decommitted message iff b = 1.

– TFakeΠ : On input (x,w) ∈ R, messages m1,m2 ∈ M , for m2 and rand for
com, output z = Psim((x,m1, rand), w,m2).

Theorem 6. If Π is a Chameleon Σ-protocol for R then Protocol 2 is a 2-IDTC
scheme for R. Moreover, if Π is Perfect then so is Protocol 2.

Proof. Correctness follows directly from the Completeness property of Π.

2-Special-Extract. Suppose com is a commitment with respect to instance x and
let dec1 and dec2 be two openings of com as messages m1 �= m2, respectively.
Then, triplets (com,m1, dec1) and (com,m2, dec2) are accepting transcripts for
Π on common input x with the same first round; that is, they constitute a
collision for Π. Therefore, we define algorithm ExtractTCom to be the algorithm
that runs algorithm Extract (that exists by the special soundness of Π) on input
the collision. ExtractTCom returns the witness for x computed by Extract.

(Perfect) Trapdoorness. It follows from the Perfect Delayed-Indistinguishability
property of Π as well as the (perfect) Hiding property.

Constructing a3-IDTC Scheme. Let R be a polynomial-time relation as above
admitting a witness-delayed Σ-protocol Π with associated algorithms (P1,P2,V)
and security parameter 1λ. Let l denote the challenge length of Π. We construct
a 3-IDTC scheme for message space M = {0, 1}l for x ∈ L̂R, as follows.

Protocol 3. 3-IDTC scheme.

– TComΠ : On input 1λ, x and m1 ∈ M , pick randomness R and compute
(a0, z) ← Sim(x,m1) and a1 ← P1(x;R). Let com0 = a0 and com1 = a1.
Output com = (comb, com1−b) for a randomly selected bit b, dec = z and
rand = R.

– TDecΠ : On input x, com = (com0, com1), dec and m1, accept m1 if and only if
either V(x, com0,m1, dec) = 1 or V(x, com1,m1, dec) = 1.

– TFakeΠ : On input (x,w) ∈ R, messages m1,m2 ∈ M , commitment com for
m1 and rand for com, output z ← P2(x,w, rand,m2).

Theorem 7. If Π is a witness-delayed Σ-protocol for R, with the associated
algorithms (P1,P2,V), then Protocol 3 is a 3-IDTC scheme for R. Moreover, if
Π is Perfect then so is Protocol 3.

Proof. Correctness follows from the completeness of Π.

3-Special Extract. It follows from the special soundness of Π. Assume that the
committer generates 3 accepting openings dec1, dec2 and dec3, for distinct

130 M. Ciampi et al.

messages m1, m2 and m3, for the same commitment com computed w.r.t. x.
In this case, we have three accepting transcript for Π and therefore at least two
of them must share the same first message, i.e., it is a collision. Thus we can run
the extractor Extract for Π on the collision and obtain a witness for x.

Trapdoorness. It follows from the SHVZK property of Π. We prove this property
via hybrid arguments.

The first hybrid, H1 is the real execution, where a honest prover commits
to a message following the honest commitment and decommitment procedure,
without using the trapdoor. More formally, in the hybrid H1 the prover performs
the following steps:

– On input x and m1,m2 ∈ M , the prover selects random coin tosses R and
computes (a0, z) ← Sim(x,m2), a1 ← P1(x;R). It picks b ← {0, 1} and sends
com = (ab, a1−b), dec = z, m2.

The second hybrid H2 is equal to H1 with the difference that a0 is computed
using the algorithm P1 and z using P2. Formally:

– On input x and m1,m2 ∈ M , the prover selects random coin tosses R =
(r1, r2) and computes a0 ← P1(x; r1), z ← P2(x,w, r1,m2) and a1 ←
P1(x; r2). It picks b ← {0, 1} and sends com = (ab, a1−b), dec = z, m2.

Due to the SHVZK property of Π, H1 is indistinguishable from H2. Now we
consider the hybrid H3 in which a1 is computed using Sim(x,m2). Formally:

– On input x and m1,m2 ∈ M , the prover selects random coin tosses R and
computes a0 ← P1(x;R), z ← P2(x,w,R,m2) and (a1, z) ← Sim(x,m1). It
picks b ← {0, 1} and sends com = (ab, a1−b), dec = z, m2.

Even in this case, we can claim that H3 is indistinguishable from H2 because of
the SHVZK of Π. The proof ends with the observation that H3 is the experiment
in which a sender commits to a message m1 and opens to m2 using the trapdoor.

If Π is a perfect SHVZK protocol, then the sequence of hybrids produces
identical distributions.

5 Our New OR-Composition Technique

In this section we formally describe our new OR transform. Let R0 be a relation
admitting a t-IDTC scheme, I = (TComΠ0 ,TDecΠ0 ,TFakeΠ0), with t = 2 or t =
3, and R1 a relation admitting an input-delayed Σ-protocol Π1 with associated
algorithms (P1

1,P
1
2,V

1) and simulator Sim1. We show a Σ-protocol ΠOR for the
OR relation:

ROR = {((x0, x1), w) : ((x0, w) ∈ R0∧x1 ∈ L̂R1) OR ((x1, w) ∈ R1∧x0 ∈ L̂R0)}.

We denote by (POR
1 ,POR

2 ,VOR) the algorithms associated with ΠOR. We
assume that the initial common input is x0. The other input x1 and the wit-
ness w for (x0, x1) are made available to the prover only after the challenge has

Improved OR-Composition of Sigma-Protocols 131

been received. We let b ∈ {0, 1} be such that (xb, w) ∈ Rb and assume that the
message space of the t-IDTC scheme I includes all possible first-round messages
of Π1. Note that for the constructions of the t-IDTC scheme we provide, the
message space coincides with the set of challenges of the underlying Σ-protocol
and, in the full version we show that the challenge length of a Σ-protocol can
be easily expanded/reduced.

We remind that prover algorithm POR
2 receives as further input the random-

ness (R1, rand1) used by POR
1 to produce the first-round message.

Protocol 4. Protocol ΠOR for ROR.
Common input: (x0, 1λ), where 1λ is the security parameter.

1. POR
1 (x0, 1λ). Pick random R1 and compute a1 ← P1

1(1
λ;R1). Then commit to

a1 by running (com, dec1, rand1) ← TComΠ0(1
λ, x0, a1). Output com.

2. POR
2 ((x0, x1), c, (w, b), (rand1, R1)) (with (xb, w) ∈ Rb).

If b = 1, compute z1 ← P1
2(x1, w,R1, c) and output (dec1, a1, z1).

If b = 0, compute (a2, z2) ← Sim1(x1, c), dec2 ← TFakeΠ0 (x0, w, a1, a2,
com, rand1) and output (dec2, a2, z2).

3. VOR, on input (x0, x1), com, c, and (dec, a, z)) received from ΠOR, outputs 1
iff

TDecΠ0(x0, com, dec, a) = 1 and V1(x1, a, c, z) = 1;

Theorem 8. If R0 admits a 2-IDTC (resp., 3-IDTC) scheme and if R1 admits
an input-delayed Σ-protocol, then ΠOR is a Σ-protocol (resp., is a 3-round public-
coin SHVZK PoK) for relation ROR.

Proof. Completeness follows by inspection. We next prove the properties of
Protocol 4 when instantiated with a 2-IDTC and 3-IDTC schemes.

Proof for the construction based on the 2-IDTC scheme. Special Soundness.
It follows from the special soundness of the underlying Σ-protocol Π1 and
the 2-Special Extract of the 2-IDTC scheme. More formally, consider a colli-
sion (com, c, (dec, a, z)) and (com, c′, (dec′, a′, z′)) for input (x0, x1). We observe
that:

– if a = a′ then (a, c, z) and (a′, c′, z′) is a collision for Π1 for input x1; then we
can obtain a witness w1 for x1 by the Special Soundness property of Π1;

– if a �= a′, then dec and dec′ are two openings of com with respect to x0 for
messages a �= a′; then we can obtain a witness w0 by the 2-Special Extract of
the 2-IDTC scheme.

SHVZK Property. Consider simulator SimOR that, on input (x0, x1) and chal-
lenge c, sets (a, c, z) ← Sim1(x1, c) and (com, dec) ← TComx0(a), and outputs
(com, c, (dec, a, z)). Next, we show that the transcript generated by SimOR is
indistinguishable from the one generated by a honest prover.

Let us first consider the case in which the prover of ΠOR receives a witness
for x1. In this case, if we sample a random distribution (com, c, (dec, a, z)) of
ΠOR on input (x0, x1) constrained to c being the challenge we have that (a, c, z)

132 M. Ciampi et al.

has the same distribution as in random transcript of Π1 on input x1 constrained
to c being the challenge; moreover, (com, dec) is a pair of commitment and
decommitment of a with respect to x0. By the property of Sim1, this distribution
is indistinguishable from (a, c, z) computed as Sim1(x1, c) which is exactly as in
the output SimOR.

Let us now consider the case in which the prover of ΠOR receives a witness
for x0. If we sample a random distribution (com, c, (dec, a, z)) of ΠOR on input
(x0, x1) constrained to c being the challenge we have that (a, c, z) are distributed
exactly as in the output of SimOR (that is by running Sim1 on input x1 and c). In
addition, in the output of SimOR, (com, dec) are commitment and decommitment
of a whereas in the view of ΠOR they are computed by means of TFake algorithm.
However, the two distributions are indistinguishable by the trapdoorness of the
Instance-Dependent Trapdoor Commitment.

Proof for the construction based on the 3-IDTC scheme. 3-Special Soundness.
This property ensures that there exists an efficient algorithm that, given three
accepting transcripts, (a, c0, z0), (a, c1, z1), (a, c2, z2) with ci �= cj for 1 ≤ i <
j ≤ 3, for the same common input, outputs a witness for x.

Consider three accepting transcripts for ΠOR and input (x0, x1): (com, c1,
(dec1, a1, z1)), (com, c2, (dec2, a2, z2)) and (com, c3, (dec3, a3, z3)).

We observe that:

– if ai = aj for some i �= j then (ai, ci, zi) and (aj , cj , zj) is a collision for Π1

for input x1; thus we can obtain a witness w1 for x1 by the Special Soundness
property of Π1;

– if ai �= aj for all i �= j, then, dec1 and dec2 and dec3 are three openings of the
same com with respect to x0 for messages a1, a2 and a3; then we can obtain
a witness w0 for x0 by the 3-Special Extract of the 3-IDTC scheme.

We stress that having a long enough challenge, 3-special soundness implies the
proof of knowledge property.

SHVZK Property. This is similar to the proof for the construction based on
2-IDTC.

5.1 Witness Indistinguishability of Our Transform

In this section we discuss the adaptive WI property of ΠOR. Roughly speaking,
adaptive WI means that in the WI experiment the adversary A is not forced to
choose both theorems x0 and x1 at the onset of the experiment. Rather, she can
choose theorem x1 and witnesses w0, w1 adaptively, after seeing the first message
of ΠOR played by the prover on input x0. After x1, w0, w1 have been selected by
A, the experiment randomly selects b ← {0, 1}. The prover then receives x1 and
wb and proceeds to complete the protocol. The adversary wins the game if she
can guess b with probability non-negligibly greater than 1/2. More formally, we
consider adaptive WIfor polynomial-time relation

Rp
OR =

{
((x0, x1), w) :

(
(x0, w) ∈ R0 ∧ x1 ∈ L̂R1

)
OR
(
(x1, w) ∈ R1 ∧ x0 ∈ L̂R0

)}

Improved OR-Composition of Sigma-Protocols 133

and for the weaker relation

Rc
OR =

{
((x0, x1), w) :

(
(x0, w) ∈ R0 ∧ x1 ∈ LR1

)
OR
(
(x1, w) ∈ R1 ∧ x0 ∈ LR0

)}
.

The adaptive WI experiment, ExpWIδA(x0, λ, aux) with δ ∈ {c, p}, is parameter-
ized by PPT adversary A and has three inputs: instance x0, security parameter
λ, and auxiliary information aux for A.
ExpWIδA(x0, λ, aux):

1. a = POR
1 (x0, 1λ;R1), for random coin tosses R1;

2. A(x0, a, aux) outputs ((x1, w0, w1), c, state)
such that ((x0, x1), w0), ((x0, x1), w1) ∈ Rδ

OR;
3. b ← {0, 1};
4. z ← POR

2 ((x0, x1), wb, R1, c);
5. b′ ← A(z, state);
6. If b = b′ then output 1 else output 0.

We set Advδ
A(x0, λ, aux) =

∣
∣
∣Prob

[
ExpWIδA(x0, λ, aux) = 1

]
− 1

2

∣
∣
∣ .

Definition 7. ΠOR is Adaptive Witness Indistinguishable (resp., Adaptive Per-
fect Witness Indistinguishable) if for every adversary A there exists a negligible
function ν such that for all aux and x0 it holds that Advc

A(x0, λ, aux) ≤ ν(λ)
(resp., Advp

A(x0, λ, aux) = 0).

Next, in Theorem 9, we prove the Adaptive Perfect WI of ΠOR when both Π0

and Π1 are perfect SHVZK. When one of Π0 and Π1 is not perfect, we would
like to prove that ΠOR is Adaptive WI. In Theorem10 we prove a weaker form
of Adaptive WI in which the adversary is restricted in his choice of witnesses
(w0, w1) for relation Rc

OR. We leave open the problem of an OR-composition
technique that gives Adaptive WI when the Σ-protocol composed are not both
perfect SHVZK.

Theorem 9. If Π0 and Π1 are perfect SHVZK then ΠOR is Adaptive Perfect
Witness Indistinguishable.

Proof. The proof considers the following three cases:

Case 1. (x0, w0) ∈ R0 and (x1, w1) ∈ R1;
Case 2. (x0, w0) ∈ R0 and (x0, w1) ∈ R0;
Case 3. (x1, w0) ∈ R1 and (x1, w1) ∈ R1.

For each case we present a sequence of hybrids and prove that pairs of consecutive
hybrids are perfectly indistinguishable.

Case 1. The first hybrid experiment H1(x0, λ, aux) is the original experiment
ExpWIpA(x0, λ, aux) in which b = 1 (and thus P uses witness w1). That is,

134 M. Ciampi et al.

– In Step 1 of ExpWIpA(x0, λ, aux), the following steps are executed:
1. a = P1

1(1
λ;R1), for random coin tosses R1;

2. (com, dec, rand) ← TComΠ0(x0, 1λ, a) and outputs com.
– In Step 4 of ExpWIpA(x0, λ, aux), the following steps are executed:

1. set a′ = a;
2. z ← P1

2(x1, w1, c, R1);
3. set dec′ = dec;
4. output (dec′, a′, z).

The second hybrid experiment H2(x0, λ, aux) differs from H1(x0, λ, aux) in the
way a′ and dec′ are computed. More specifically,

– Step 1 of ExpWIpA(x0, λ, aux) stays the same.
1. a = P1

1(1
λ;R1), for random coin tosses R1;

2. (com, dec, rand) ← TComΠ0(x0, 1λ, a) and outputs com.
– In Step 4 of ExpWIpA(x0, λ, aux), the following steps are executed:

1. a′ = P1
1(1

λ;R′
1), for random coin tosses R′

1;
2. z ← P1

2(x1, w1, c, R
′
1);

3. dec′ ← TFakeΠ0(x0, w0, a, a′, com, rand);
4. (dec′, a′, z).

The trapdoorness of the instance-dependent trapdoor commitment scheme based
on Π0 guarantees that H1(x0, λ, aux) and H2(x0, λ, aux) are perfectly indistin-
guishable for all λ.

The third hybrid experiment H3(x0, λ, aux) differs from H2(x0, λ, aux) in the
way a′ and z are computed. More specifically,

– Step 1 of ExpWIpA(x0, λ, aux) stays the same.
1. a = P1

1(1
λ;R1), for random coin tosses R1;

2. (com, dec, rand) ← TComΠ0(x0, 1λ, a) and outputs com.
– In Step 4 of ExpWIpA(x0, λ, aux), the following steps are executed:

1. (a′, z) ← Sim1(x1, c);
2. dec′ ← TFakeΠ0(x0, w0, a, a′, com, rand);
3. (dec′, a′, z).

By the perfect SHVZK of Π1, we have that H2(x0, λ, aux) and H3(x0, λ, aux) are
perfectly indistinguishable for all λ. The proof ends with the observation that
H3(x0, λ, aux) is exactly experiment ExpWIpA(x0, λ, aux) when b = 0.

Case 2. The first hybrid experiment H1(x0, λ, aux) is again the original exper-
iment ExpWIpA(x0, λ, aux) in which b = 1 (and thus P uses witness w1). The
second hybrid experiment H2(x0, λ, aux) differs from H1(x0, λ, aux) in the way
TFake is executed (namely, using as input w0 instead of w1). More specifically,

– Step 1 of ExpWIpA(x0, λ, aux) stays the same.
1. a = P1

1(1
λ;R1), for random coin tosses R1;

2. (com, dec, rand) ← TComΠ0(x0, 1λ, a) and outputs com.
– In Step 4 of ExpWIpA(x0, λ, aux), the following steps are executed:

Improved OR-Composition of Sigma-Protocols 135

1. (a′, z) = Sim1(x1, c);
2. dec′ ← TFakeΠ0(x0, w0, a, a′, com, rand);
3. (dec′, a′, z).

The trapdoorness of the instance-dependent trapdoor commitment scheme based
on Π0 implies that H1(x0, λaux) is perfectly indistinguishable from H2(x0, λaux)
for all λ. The proof ends with the observation that H2(x0, λ, aux) is exactly
experiment ExpWIpA(x0, λ, aux) when b = 0.

Case 3. The first hybrid experiment H1(x0, λ, aux) is again the original experi-
ment ExpWIpA(x0, aux) in which b = 1 (and thus P uses witness w1). The second
hybrid experiment H2(x0, λ, aux) differs from H1(x0, λ, aux) in the way z is com-
puted (using as input w1 instead of w0 when P2 is executed). More specifically,

– In Step 1 of ExpWIpA(x0, λ, aux), the following steps are executed:
1. a = P1

1(1
λ;R1), for random coin tosses R1;

2. (com, dec, rand) ← TComΠ0(x0, 1λ, a) and outputs com.
– In Step 4 of ExpWIpA(x0, λ, aux), the following steps are executed:

1. z ← P1
2(x1, w0, c, R1);

2. output (dec, a, z)

The Perfect WI property of Π1 implies that H1(x0, λ, aux) is perfectly indis-
tinguishable from H2(x0, λ, aux). The proof ends with the observation that
H2(x0, λ, aux) is exactly the experiment ExpWIpA(x0, λ, aux) when b = 0.

Next we consider the computational case in which one of Π0 and Π1 is not
Perfect SHVZK (but they are still both SHVZK).

Theorem 10. If Π0 and Π1 are SHVZK then ΠOR is Adaptive Witness Indis-
tinguishable with respect to adversaries that output (x1, w0, w1) such that at least
one of w0 and w1 is a witness for x1 ∈ LR1 .

Proof. We prove this theorem by considering the following two cases:
(1) (x0, w0) ∈ R0 and (x1, w1) ∈ R1;
(2) (x1, w0) ∈ R1 and (x1, w1) ∈ R1.

Case 1. In this case the proof follows closely the one of Case 1 of Theorem 9,
with the difference that hybrids here are only computationally indistinguishable.

Case 2. In this case we show that there exists A′ for Case 1 that has the same
success probability of A. Suppose indeed that both w0 and w1 are witnesses for
x1 and that A breaks the adaptive WI property of ΠOR. Then, by definition of
Rc

OR and by Definition 7, there exists A′ that has in his description a witness w2

for x0. Indeed, the output of A interacting with P((x0, x1), w2) would necessarily
be distinguishable from the output of the interaction with either P((x0, x1), w0)
or P((x0, x1), w1). Therefore A′ would contradict Case 1 and thus there exists
no successful A for Case 2.

136 M. Ciampi et al.

6 Applications

In this section, we describe the application of our new OR-composition technique
for constructing a 3-round straight-line perfect quasi-polynomial time simulat-
able argument system. In the full version we also show an efficient 4-round reset-
table WI argument system and an efficient 4-round resettable zero knowledge
with concurrent soundness argument system in the BPK model.

A 3-Round Efficient Perfect Quasi-Polynomial Time Simulatable Argument Sys-
tem. In [38], Pass introduced relaxed notions of zero knowledge and knowledge
extraction in which the simulator and the extractor are allowed to run in quasi-
polynomial time. Allowing the simulator to run in quasi-polynomial time typi-
cally dispenses with the need of rewinding the verifier; that is, the simulator is
straight-line. In [38], Pass first describes the following 2-round perfect ZK argu-
ment for any language L: the verifier V sends a value Y = f(y) for a randomly
chosen y where f is a sub-exponentially hard OWF and the first round of a
ZAP protocol. The prover P then sends a commitment to (y′|w′) and uses the
second round of the ZAP to prove that either y′ = f−1(y) or w′ is a witness for
x ∈ L. If language L admits a Σ-protocol ΠL then the above construction can
be implemented as an efficient 4-round argument with quasi-polynomial time
simulation: the function f is concretely instantiated to be an exponentiation in
a group in which the Discrete Log problem is hard and the ZAP is replaced with
the CDS-OR composition of ΠL and Schnorr’s Σ-protocol for the Discrete Log.

Note that Schnorr’s Σ-protocol is input delayed and thus we can use it as Σ-
protocol Π1 in our OR transform in conjunction with any Chameleon Σ-protocol
Π0. One drawback of reducing to 3 rounds the result of [38] is that we can use
only a perfect Σ-protocol since the goal is to obtain perfect WI in 3 rounds.

Simulation in Quasi-Polynomial Time. Since the verifier in an interactive argu-
ment is often modeled as a PPT machine, the classical zero-knowledge definition
requires that the simulator runs also in (expected) polynomial time. In [38], the
simulator is allowed to run in time λpoly(log(λ)). Loosely speaking, we say that an
interactive argument is λpoly(log(λ))-perfectly simulatable if for any adversarial
verifier there exists a simulator running in time λpoly(log(λ)), where λ is the size
of the statement being proved, whose output is identically distributed to the
output of the adversarial verifier.

Definition 8 (One-way functions for sub-exponential circuits [38]). A
function f : {0, 1}∗ → {0, 1}∗ is called one-way for sub-exponential circuits if
there exists a constant α such that the following two condition holds:

– there exist a deterministic polynomial-time algorithm that on input y outputs
f(y);

– for every probabilistic algorithm A with running time bounded by 2λα

, all
sufficiently large λ’s, and every auxiliary input z ∈ {0, 1}poly(λ)

Improved OR-Composition of Sigma-Protocols 137

Prob
[

y
R← {0, 1}∗ : A(f(y), z) ∈ f−1(f(y))

]
<

1
poly(2λα)

.

Now we define straight-line T (λ)-perfectly simulatable interactive arguments.
For our result we consider a one-way functions for sub-exponential circuits

that is also one-to-one.

Definition 9 (straight-line T (λ) simulatability, Definition 31 of [39]). Let
T (λ) be a class of functions that is closed under composition with any polynomial.
We say that an interactive argument (proof) (P,V) for the language L ∈ NP,
with the witness relation RL, is straight-line T (λ)-simulatable if for every PPT
machine V� there exists a probabilistic simulator S with running time bounded by
T (λ) such that the following two ensembles are computationally indistinguishable
(when the distinguish gap is a function in λ = |x|)

– {(〈P(w),V�(z)〉(x))}z∈{0,1}∗,x∈L for arbitrary w s.t. (x,w) ∈ RL

– {(〈S,V�(z)〉(x))}z∈{0,1}∗,x∈L

We note that the above definition is very restrictive. In fact, the simulator is
supposed to act as a cheating prover, with its only advantage being the possibility
of running in time T (λ), instead of in polynomial time. Trivially, it do not exist
a straight-line T (λ)-simulatable proof for non-trivial languages (this should be con-
trastedwith straight-line simulatable interactive arguments, which instead do exist).

For any NP-language L we consider the perfect chameleon Σ-protocol ΠL for
the relation RL. Also we consider the Schnorr Σ-protocol ΠDLOG the following
relation DLOG = {((G, q, g, Y), y) : gy = Y } with the associated NP-language
LDLOG, over groups G of prime-order q, and use our OR-composition technique
to obtain a new Σ-protocol ΠOR = (POR,VOR) for the relation

ROR =
{

((xL, xDLOG), w) :
(
(xL, w) ∈ RL ∧ xDLOG ∈ L̂DLOG

)
OR

(
(xDLOG, w) ∈ DLOG ∧ xL ∈ L̂RL

)}

with challenge length l = λ and associated algorithms POR
1 , POR

2 and VOR.
Let f be a sub-exponentially hard one-to-one one-way function implemented

using DLog as described before, with the only change that for some constant α,
f is one-way w.r.t circuits of size 2λα

. Let L ∈NP and k = 1
α + 1. Our 3-round

straight-line quasi-polynomial time simulatable argument system for x ∈ L is
the following.

Protocol 5. A 3-round straight-line quasi-polynomial time simulatable argu-
ment system.

Common input: An instance x of a language L ∈NP with witness relation RL

with a perfect chameleon Σ-protocol, and 1λ as security parameter.

Private input: P has w as a private input, s.t. (x,w) ∈ RL.

138 M. Ciampi et al.

Round 1. P → V:

1. On input a randomness R1, Puniformly chooses (p, q, g) where p = 2q + 1 is
a safe prime and g is a generator of a group Gq of size q. We remark that
(p, q, g) are parameters selected so that the function f(y) = gy is a one-to-one
one-way function for some constant α w.r.t circuits of size 2λα

.
2. Pcomputes a ← POR

1 ((x, 1λα

);R1).
3. Psends (p, q, g) and a to V.

Round 2. V → P:

1. V chooses y ← Zq and computes Y = gy.
2. V chooses c ← {0, 1}l.
3. V sends c and Y to P.

Round 3. P → V:

1. P computes z ← POR
2 ((x, ((p, q, g), Y)) , w, c, R1).

2. P sends z to V.
3. V accepts if and only if VOR((x, ((p, q, g), Y)) , a, c, z) = 1.

We remark that we are using the same assumption of [7] that allows the
adversary of DLog to generate the DLog parameters while the challenger selects
the random element of the group.

Theorem 11. If ΠOR is a perfect Σ-protocol for OR composition of RL and
DLOG, then Protocol 5 is a 3-round straight-line perfectly λO(logk λ)-simulatable
argument of knowledge.

Proof. Completeness follows directly from the completeness of ΠOR.

Soundness/Knowledge Extraction. We show that Π is an argument of knowledge;
this directly implies soundness. The claim follows from the fact that the argument
system ΠOR used is a proof of knowledge when the challenge is long enough. and
from the fact that a PPT adversary only finds a pre-image to Y (for f) with
negligible probability. More formally, we construct a polynomial-time extractor
E for every polynomial-time P� for protocol Π. E internally incorporates P�

and each time ΠOR proves a new theorem it proceeds as follows. E invokes the
extractor EOR for ΠOR. E outputs whatever EOR outputs. By the proof knowledge
property of ΠOR, the output of E will either be a witness w for the statement
proved, or the pre-image of Y . If E outputs w, we are done. Otherwise, if it
outputs y with non-negligible probability, then we can construct a reduction
that breaks the DLog assumption (still in the form proposed by [7]).

Quasi-Polynomial Time Perfect Simulation. Consider a straight-line simulator
Sim that computes the first round as the honest prover. This is possible because
ΠOR does not need any witness to computes the first round. After the simulator
receives Y it checks that Y has a pre-image. Sim thereafter performs an exhaus-
tive search to find a pre-image y of a value Y for the function f . To perform this

Improved OR-Composition of Sigma-Protocols 139

task Sim tries all possible values y′ ∈ {0, 1}logk λ and checks if f(y′) = Y . This
thus takes time poly(2log

k λ), since the time it takes to evaluate the function f is
a polynomial in λ. After having found a value y such that f(y) = Y , Sim uses y
as witness to complete the execution of ΠOR (instead of using a real witness for
x, as the honest prover would do). Clearly the running time of Sim is bounded
by λO(logk λ). We proceed to show that the output of the simulator is identically
distributed to the output of any adversarial verifier in a real execution with
an honest prover. Note that the only difference between a real execution and
a simulated execution is in the choice of the witness used in the last stage of
the protocol. Therefore, from the adaptive WI property of ΠOR we have that
the output of the simulated execution is identically distributed to the output
of the real execution.

Acknowledgments. We thank Berry Schoenmakers for various useful discussions on
Σ-protocols.

The work of the third author was supported by the MACS project under NSF
Frontier grant CNS-1414119 and by NSF grant 1012798. This work was done in part
while the third author was visiting the Simons Institute for the Theory of Computing,
supported by the Simons Foundation and by the DIMACS/Simons Collaboration in
Cryptography through NSF grant CNS-1523467.

For the full version of this work see [13].

References

1. Abe, M., Okamoto, T., Suzuki, K.: Message recovery signature schemes from sigma-
protocols. IEICE Trans. 96–A(1), 92–100 (2013)

2. Bellare, M., Fischlin, M., Goldwasser, S., Micali, S.: Identification protocols secure
against reset attacks. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 495–511. Springer, Heidelberg (2001)

3. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

4. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part II. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015)

5. Blum, M.: How to prove a theorem so no one else can claim it. In: International
Congress of Mathematicians, p. 1444 (1986)

6. Blundo, C., Persiano, G., Sadeghi, A.-R., Visconti, I.: Improved security notions
and protocols for non-transferable identification. In: Jajodia, S., Lopez, J. (eds.)
ESORICS 2008. LNCS, vol. 5283, pp. 364–378. Springer, Heidelberg (2008)

7. Canetti, R., Dakdouk, R.R.: Extractable perfectly one-way functions. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 449–460. Springer, Heidelberg
(2008)

8. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: STOC, pp. 235–244 (2000)

9. Catalano, D., Dodis, Y., Visconti, I.: Mercurial commitments: minimal assumptions
and efficient constructions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol.
3876, pp. 120–144. Springer, Heidelberg (2006)

140 M. Ciampi et al.

10. Catalano, D., Visconti, I.: Hybrid trapdoor commitments and their applications.
In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 298–310. Springer, Heidelberg (2005)

11. Catalano, D., Visconti, I.: Hybrid commitments and their applications to zero-
knowledge proof systems. Theor. Comput. Sci. 374(1–3), 229–260 (2007)

12. Chaidos, P., Groth, J.: Making sigma-protocols non-interactive without random
oracles. PKC 2015, 650–670 (2015)

13. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved OR
composition of Sigma-protocols. IACR Cryptology ePrint Archive 2015, vol. 810
(2015). http://eprint.iacr.org/2015/810

14. Ciampi, M., Persiano, G., Siniscalchi, L., Visconti, I.: A transform for NIZK almost
as efficient and general as the Fiat-Shamir transform without programmable ran-
dom oracles. IACR Cryptology ePrint Archive, vol. 770 (2015). http://eprint.iacr.
org/2015/770

15. Ciampi, M., Persiano, G., Siniscalchi, L., Visconti, I.: A transform for NIZK almost
as efficient and general as the Fiat-Shamir transform without programmable ran-
dom oracles. In: Theory of Cryptography - 13th Theory of Cryptography Confer-
ence, TCC 2016-A, Tel Aviv, Israel, 10–13 January 2016

16. Cramer, R.: Modular design of secure yet practical cryptographic protocols. Ph.D.
thesis, University of Amsterdam (1996)

17. Cramer, R., Damg̊ard, I.B.: Zero-knowledge proofs for finite field arithmetic or:
can zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 424–441. Springer, Heidelberg (1998)

18. Cramer, R., Damg̊ard, I.B., Schoenmakers, B.: Proof of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

19. Damg̊ard, I.: On Σ-protocol (2010). http://www.cs.au.dk/∼ivan/Sigma.pdf
20. Damg̊ard, I., Groth, J.: Non-interactive and reusable non-malleable commitment

schemes. In: STOC 2003, pp. 426–437 (2003)
21. Di Crescenzo, G., Persiano, G., Visconti, I.: Constant-round resettable zero knowl-

edge with concurrent soundness in the bare public-key model. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 237–253. Springer, Heidelberg (2004)

22. Di Crescenzo, G., Visconti, I.: Concurrent zero knowledge in the public-key model.
In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 816–827. Springer, Heidelberg (2005)

23. Dwork, C., Naor, M.: Zaps and their applications. FOCS 2000, 283–293 (2000)
24. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs

based on a single random string (extended abstract). In: FOCS 1990, pp. 308–317.
IEEE Computer Society (1990)

25. Garay, J.A., MacKenzie, P., Yang, K.: Strengthening zero-knowledge protocols
using signatures. J. Cryptology 19(2), 169–209 (2006)

26. Goyal, V., Richelson, S., Rosen, A., Vald, M.: An algebraic approach to non-
malleability. In: 55th FOCS 2014, pp. 41–50, Philadelphia, PA, USA. IEEE Com-
puter Society, 18–21 October 2014

27. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 253–280. Springer, Heidelberg (2015)

28. Groth, J., Ostrovsky, R., Sahai, A.: Perfect Non-interactive Zero Knowledge for
NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358.
Springer, Heidelberg (2006)

http://eprint.iacr.org/2015/810
http://eprint.iacr.org/2015/770
http://eprint.iacr.org/2015/770
http://www.cs.au.dk/~ivan/Sigma.pdf

Improved OR-Composition of Sigma-Protocols 141

29. Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to
security microprocessor minimizing both transmission and memory. In: Günther,
C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg
(1988)

30. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Hei-
delberg (2004)

31. Lapidot, D., Shamir, A.: Publicly Verifiable Non-interactive Zero-Knowledge
Proofs. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537,
pp. 353–365. Springer, Heidelberg (1991)

32. Lindell, Y.: An efficient transform from sigma protocols to NIZK with a CRS and
non-programmable random oracle. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part I. LNCS, vol. 9014, pp. 93–109. Springer, Heidelberg (2015)

33. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in
the presence of malicious adversaries. J. Cryptology 28(2), 312–350 (2015)

34. Maurer, U.: Zero-knowledge proofs of knowledge for group homomorphisms. Des.
Codes Crypt. 77, 663–676 (2015)

35. Maurer, U.: Unifying zero-knowledge proofs of knowledge. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 272–286. Springer, Heidelberg (2009)

36. Ostrovsky, R., Pandey, O., Visconti, I.: Efficiency preserving transformations for
concurrent non-malleable zero knowledge. In: Micciancio, D. (ed.) TCC 2010.
LNCS, vol. 5978, pp. 535–552. Springer, Heidelberg (2010)

37. Ostrovsky, R., Rao, V., Visconti, I.: On selective-opening attacks against encryp-
tion schemes. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642,
pp. 578–597. Springer, Heidelberg (2014)

38. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176.
Springer, Heidelberg (2003)

39. Pass, R.: Alternative Variants of Zero-Knowledge Proofs. Master’s thesis, Kungliga
Tekniska Högskolan, licentiate Thesis Stockholm, Sweden (2004)

40. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996)

41. Scafuro, A., Visconti, I.: On round-optimal zero knowledge in the bare public-key
model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 153–171. Springer, Heidelberg (2012)

42. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

43. Visconti, I.: Efficient zero knowledge on the internet. In: Bugliesi, M., Preneel, B.,
Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 22–33. Springer,
Heidelberg (2006)

44. Yung, M., Zhao, Y.: Generic and practical resettable zero-knowledge in the bare
public-key model. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp.
129–147. Springer, Heidelberg (2007)

Oblivious RAM

Onion ORAM: A Constant Bandwidth Blowup
Oblivious RAM

Srinivas Devadas1, Marten van Dijk2, Christopher W. Fletcher1(B),
Ling Ren1(B), Elaine Shi3, and Daniel Wichs4

1 Massachusetts Institute of Technology, Cambridge, USA
{devadas,cwfletch,renling}@mit.edu

2 University of Connecticut, Storrs, USA
vandijk@engr.uconn.edu

3 Cornell University, Ithaca, USA
elaine@cs.cornell.edu

4 Northeastern University, Boston, USA
wichs@ccs.neu.edu

Abstract. We present Onion ORAM, an Oblivious RAM (ORAM) with
constant worst-case bandwidth blowup that leverages poly-logarithmic
server computation to circumvent the logarithmic lower bound on ORAM
bandwidth blowup. Our construction does not require fully homomorphic
encryption, but employs an additively homomorphic encryption scheme
such as the Damg̊ard-Jurik cryptosystem, or alternatively a BGV-style
somewhat homomorphic encryption scheme without bootstrapping. At
the core of our construction is an ORAM scheme that has “shallow circuit
depth” over the entire history of ORAM accesses. We also propose novel
techniques to achieve security against a malicious server, without resort-
ing to expensive and non-standard techniques such as SNARKs. To the
best of our knowledge, Onion ORAM is the first concrete instantiation of
a constant bandwidth blowup ORAM under standard assumptions (even
for the semi-honest setting).

1 Introduction

Oblivious RAM (ORAM), initially proposed by Goldreich and Ostrovsky
[19,20,36], is a cryptographic primitive that allows a client to store private data on
an untrusted server and maintain obliviousness while accessing that data — i.e.,
guarantee that the server or any other observer learns nothing about the data or
the client’s access pattern (the sequence of addresses or operations) to that data.
Since its initial proposal, ORAM has been studied in theory [21,25,39,41,45,49],
or in various application settings including secure outsourced storage [8,29,32,
42,43,50], secure processors [10–12,31,38,40,51] and secure multi-party compu-
tation [13,14,24,28,47,48].

1.1 Server Computation in ORAM

The ORAM model considered historically, starting with the work of Goldreich and
Ostrovsky [19,20,36], assumed that the server acts as a simple storage device that
c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 145–174, 2016.
DOI: 10.1007/978-3-662-49099-0 6

146 S. Devadas et al.

allows the client to read and write data to it, but does not perform any compu-
tation otherwise. However, in many scenarios investigated by subsequent works
[8,32,42,50] (e.g., the setting of remote oblivious file servers), the untrusted server
has significant computational power, possibly even much greater than that of the
client. Therefore, it is natural to extend the ORAM model to allow for server com-
putation, and to distinguish between the amount of computation performed by the
server and the amount of communication with the client.

Indeed, many recent ORAM schemes have implicitly or explicitly leveraged
some amount of server computation to either reduce bandwidth cost [1,7,13,14,
29,32,39,43,52], or reduce the number of online roundtrips [49]. We remark that
some prior works [1,32] call themselves oblivious storage (or oblivious outsourced
storage) to distinguish from the standard ORAM model where there is no server
computation. We will simply apply the term ORAM to both models, and refer
to ORAM with/without server computation to distinguish between the two.

At first, many works implicitly used server computation in ORAM construc-
tions [13,14,32,39,43,49,52], without making a clear definitional distinction from
standard ORAM. Apon et al. were the first to observe that such a distinction is
warranted [1], not only for the extra rigor, but also because the definition renders
the important Goldreich-Ostrovsky ORAM lower bound [20] inapplicable to the
server computation setting — as we discuss below.

1.2 Attempts to “Break” the Goldreich-Ostrovsky Lower Bound

Traditionally, ORAM constructions are evaluated by their bandwidth, client stor-
age and server storage. Bandwidth is the amount of communication (in bits)
between client/server to serve a client request, including the communication in
the background to maintain the ORAM (i.e., ORAM evictions). We also define
bandwidth blowup to be bandwidth measured in the number of blocks (i.e.,
blowup compared to a normal RAM). Client storage is the amount of trusted
local memory required at the client side to manage the ORAM protocol and
server storage is the amount of storage needed at the server to store all data
blocks.

In their seminal work [20], Goldreich and Ostrovsky showed that an ORAM
of N blocks must incur a O(log N) lower bound in bandwidth blowup, under
O(1) blocks of client storage. If we allow the server to perform computation,
however, the Goldreich-Ostrovsky lower bound no longer applies with respect to
client-server bandwidth [1]. The reason is that the Goldreich-Ostrovsky bound
is in terms of the number of operations that must be performed. With server
computation, though the number of operations is still subject to the bound,
most operations can be performed on the server-side without client intervention,
making it possible to break the bound in terms of bandwidth between client and
server. Since historically bandwidth has been the most important metric and the
bottleneck for ORAM, breaking the bound in terms of bandwidth constitutes a
significant advance.

However, it turns out that this is not easy. Indeed, two prior works [1,32]
have made endeavors towards this direction using homomorphic encryption.

Onion ORAM: A Constant Bandwidth Blowup Oblivious RAM 147

Path-PIR [32] leverages additively homomorphic encryption (AHE) to improve
ORAM online bandwidth, but its overall bandwidth blowup is still poly-
logarithmic. On the other hand, Apon et al. [1] showed that using a fully homo-
morphic encryption (FHE) scheme with constant ciphertext expansion, one can
construct an ORAM scheme with constant bandwidth blowup. The main idea is
that, instead of having the client move data around on the server “manually” by
reading and writing to the server, the client can instruct the server to perform
ORAM request and eviction operations under an FHE scheme without revealing
any data and its movement. While this is a very promising direction, it suffers
from the following drawbacks:

– First, ORAM keeps access patterns private by continuously shuffling memory
as data is accessed. This means the ORAM circuit depth that has to be
evaluated under FHE depends on the number of ORAM accesses made and
can grow unbounded (which we say to mean any polynomial amount in N).
Therefore, Apon et al. [1] needs FHE bootstrapping, which not only requires
circular security but also incurs a large performance penalty in practice.1

– Second, with the server performing homomorphic operations on encrypted
data, achieving malicious security is difficult. Consequently, most existing
works either only guarantee semi-honest security [32,52], or leveraged power-
ful tools such as SNARKs to ensure malicious security [1]. However, SNARKs
not only require non-standard assumptions [18], but also incur prohibitive
cost in practice.

1.3 Our Contributions

With the above observation, the goal of this work is to construct constant band-
width blowup ORAM schemes from standard assumptions that have practical
efficiency and verifiability in the malicious setting. Specifically, we give proofs
by construction for the following theorems. Let B be the block size in bits and
N the number of blocks in the ORAM.

Theorem 1 (Semi-honest Security Construction). Under the Decisional
Composite Residuosity assumption (DCR) or Learning With Errors (LWE)
assumption, there exists an ORAM scheme with semi-honest security, O(B)
bandwidth, O(BN) server storage and O(B) client storage. To achieve negli-
gible in N probability of ORAM failure and success from best known attacks, our
schemes require poly-logarithmic in N block size and server computation.

We use negligible in N security following prior ORAM work but also give asymp-
totics needed for exact exponential security in Sect. 6.
1 While bootstrapping performance has been made asymptotically efficient by recent

works [17], the cost in practice is still substantial, on the order of tens of seconds
to minutes (amortized), whereas other homomorphic operations are on the order of
milliseconds to seconds [22].

148 S. Devadas et al.

Looking at the big picture, our DCR-based scheme is the first demonstration of
a constant bandwidth blowup ORAM using any additively homomorphic encryp-
tion scheme (AHE), as opposed to FHE. Our LWE-based scheme (detailed in the
online version [9]) is the first time ORAM has been combined with SWHE/FHE in
a way that does not require Gentry’s bootstrapping procedure.

Our next goal is to extend our semi-honest constructions to the malicious
setting. In Sect. 5, we will introduce the concept of “abstract server-computation
ORAM” which both of our constructions satisfy. Then, we can achieve malicious
security due to the following theorem:

Theorem 2 (Malicious Security Construction). With the additional
assumption of collision-resistant hash functions, any “abstract server-
computation ORAM” scheme with semi-honest security can be compiled into
a “verified server-computation ORAM” scheme which has malicious security.

We stress that these are the only required assumptions. We do not need
the circular security common in FHE schemes and do not rely on SNARKs for
malicious security. We defer formal definitions of server-computation ORAM and
malicious security to Appendix A.

Main Ideas. The key technical contributions enabling the above results are:

– (Sect. 3) An ORAM that, when combined with server computation, has shal-
low circuit depth, i.e., O(log N) over the entire history of all ORAM accesses.
This is a necessity for our constructions based on AHE or SWHE, and removes
the need for FHE (Gentry’s bootstrapping operations). We view this technique
as an important step towards practical constant bandwidth blowup ORAM
schemes.

– (Sect. 5) A novel technique that combines a cut and choose-like idea with an
error-correcting code to amplify soundness.

Table 1 summarizes our contributions and compares our schemes with some
of the state-of-the-art ORAM constructions.

Practical Efficiency. To show how our results translate to practice, Sect. 6.4
compares our semi-honest AHE-based construction against Path PIR [32] and
Circuit ORAM [47]—the best prior schemes with and without server computa-
tion that match our scheme in client/server storage. The top order bit is that
as block size increases, our construction’s bandwidth approaches 2B. When all
three schemes use an 8 MB block size (a proxy for modern image file size), Onion
ORAM improves over Circuit ORAM and Path-PIR’s bandwidth (in bits) by
35× and 22×, respectively. For larger block sizes, our improvement increases.
We note that in many cases, block size is an application constraint: for applica-
tions asking for a large block size (e.g., image sharing), all ORAM schemes will
use that block size.

1.4 Related Work

Recent non-server-computation ORAMs are approaching the Goldreich-
Ostrovsky lower bound under O(1) blocks of client storage. Goodrich et al. [21]

Onion ORAM: A Constant Bandwidth Blowup Oblivious RAM 149

Table 1. Our Contribution. N is the number of blocks. The optimal block size is
the data block size needed to achieve the stated bandwidth, and is measured in bits.
All schemes have O(B) client storage and O(BN) server storage (both asymptotically
optimal) and negligible failure probability in N . Computation measures the number
of two-input plaintext gates evaluated per ORAM access. “M” stands for malicious
security, and “SH” stands for semi-honest. We set parameters for AHE/SWHE (the
Damg̊ard-Jurik and Ring-LWE cryptosystems [3,6], respectively) to get super-poly in
N defense to best known attacks [26,27]. For derivation of parameters for the SWHE
schemes, see the extended version [9].

Scheme Optimal block

size B

Bandwidth Server compu-

tation

Client computation Security

Circuit ORAM [47] Ω(log2 N) ω(B log N) N/A N/A M

Path-PIR [32] ω(log5 N) O(B log N) ω̃(B log5 N) ˜O(B log4 N) SH

AHE Onion ORAM ˜Ω(log5 N) O(B) ω̃(B log4 N) ˜O(B log4 N) SH

ω̃(log6 N) O(B) ω̃(B log4 N) ˜O(B log4 N) M

SWHE Onion ORAM ω̃(log2 N) O(B) ω̃(B log2 N) ω̃(B) SH

ω̃(log4 N) O(B) ω̃(B log2 N) ω̃(B + log2 N) M

and Kushilevitz et al. [25] demonstrated O(log2 N) and O(log2 N/ log log N)
bandwidth blowup schemes, respectively. Recently, Wang et al. constructed Cir-
cuit ORAM [47], which achieves ω(log N) bandwidth blowup.

Many state-of-the-art ORAM schemes or implementations make use of server
computation. For example, the SSS construction [42,43], Burst ORAM [8] and
Ring ORAM [39] assumed the server is able to perform matrix multiplication or
XOR operations. Path-PIR [32] and subsequent work [7,52] increased the allowed
computation to additively homomorphic encryption. Apon et al. [1] and Gentry
et al. [13,14] further augmented ORAM with Fully Homomorphic Encryption
(FHE). Williams and Sion rely on server computation to achieve a single online
roundtrip [49]. We remark that the techniques of Gentry et al. [13] and Wang
et al. [46], for improving data structure performance on top of ORAM, can be
combined with our techniques.

Recent works on Garbled RAM [15,30] can also be seen as generalizing the
notion of server-computation ORAM. However, existing Garbled RAM con-
structions incur poly(λ) · polylog(N) client work and bandwidth blowup, and
therefore Garbled RAM does not give a server-computation RAM with constant
bandwidth blowup. Reusable Garbled RAM [16] achieves constant client work
and bandwidth blowup, but known reusable garbled RAM constructions rely on
non-standard assumptions (indistinguishability obfuscation, or more) and are
prohibitive in practice.

The mechanics of running our shallow depth ORAM over a homomorphic
encryption scheme are similar to those used to evaluate encrypted branching
programs [23]. (One may think of our contribution as formulating ORAM as a
shallow enough circuit so that the techniques of [23] apply.)

150 S. Devadas et al.

2 Overview of Techniques

In our schemes, the client “guides” the server to perform ORAM accesses and
evictions homomorphically by sending the server some “helper values”. With
these helper values, the server’s main job will be to run a sub-routine called
the “homomorphic select” operation (select operation for short), which can be
implemented using either AHE or SWHE – resulting in two different construc-
tions. We can achieve constant bandwidth blowup because helper value size is
independent of data block size: when the block size sufficiently large, sending
helper values does not affect the asymptotic bandwidth blowup. We now explain
these ideas along with pitfalls and solutions in more detail. For the rest of the
section, we focus on the AHE-based scheme but note that the story with SWHE
is very similar.

Building Block: Homomorphic Select Operation. The select operation,
which resembles techniques from private information retrieval (PIR) [27], takes
as input m plaintext data blocks pt1, . . . , ptm and encrypted helper values which
represent a user-chosen index i∗. The output is an encryption of block pti∗ .
Obviously, the helper values should not reveal i∗.

Our ORAM protocol will need select operations to be performed over the
outputs of prior select operations. For this, we require a sequence of AHE schemes
E� with plaintext space L� and ciphertext space L�+1 where L�+1 is again in the
plaintext space of E�+1. Each scheme E� is additively homomorphic meaning
E�(x) ⊕ E�(y) = E�(x + y). We denote an �-layer onion encryption of a message
x by E�(x) := E�(E�−1(. . . E1(x))).

Suppose the inputs to a select operation are encrypted with � layers of onion
encryption, i.e., cti = E�(pti). To select block i∗, the client sends an encrypted
select vector (select vector for short), E�+1(b1), . . . , E�+1(bm) where bi∗ = 1 and
bi = 0 for all other i �= i∗. Using this select vector, the server can homomor-
phically compute ct∗ =

⊕
i E�+1 (bi) · cti = E�+1 (

∑
i bi · cti) = E�+1(cti∗) =

E�+1(pti∗). The result is the selected data block pti∗ , with � + 1 layers of onion
encryption. Notice that the result has one more layer than the input.

All ORAM Operations can be Implemented Using Homomorphic
Select Operations. In our schemes, for each ORAM operation, the client
read/writes per-block metadata and creates a select vector(s) based on that
metadata. The client then sends the encrypted select vector(s) to the server,
who does the heavy work of performing actual computation over block contents.

Specifically, we will build on top of tree-based ORAMs [41,45], a standard
type of ORAM without server computation. Metadata for each block includes
its logical address and the path it is mapped to. To request a data block, the
client first reads the logic addresses of all blocks along the read path. After
this step, the client knows which block to select and can run the homomorphic
select protocol with the server. ORAM eviction operations require that the client
sends encrypted select vectors to indicate how blocks should percolate down the
ORAM tree. As explained above, each select operation adds an encryption layer
to the selected block.

Onion ORAM: A Constant Bandwidth Blowup Oblivious RAM 151

Achieving Constant Bandwidth Blowup. To get constant bandwidth
blowup, we must ensure that select vector bandwidth is smaller than the data
block size. For this, we need several techniques. First, we will split each plaintext
data block into C chunks pti = (pti[1], . . . , pti[C]), where each chunk is encrypted
separately, i.e., cti = (cti[1], . . . , cti[C]) where cti[j] is an encryption of pti[j].
Crucially, each select vector can be reused for all the C chunks. By increasing C,
we can increase the data block size to decrease the relative bandwidth of select
vectors.

Second, we require that each encryption layer adds a small additive ciphertext
expansion (even a constant multiplicative expansion would be too large). Fortu-
nately, we do have well established additively homomorphic encryption schemes
that meet this requirement, such as the Damg̊ard-Jurik cryptosystem [6]. Third,
the “depth” of the homomorphic select operations has to be bounded and shal-
low. This requirement is the most technically challenging to satisfy, and we will
now discuss it in more detail.

Bounding the Select Operation Depth. We address this issue by construct-
ing a new tree-based ORAM, which we call a “bounded feedback ORAM ”.2 By
“feedback”, we refer to the situation where during an eviction some block a gets
stuck in its current bucket b. When this happens, an eviction into b needs select
operations that take both incoming blocks and block a as input, resulting in an
extra layer on bucket b (on top of the layers bucket b already has). The result
is that buckets will accumulate layers (with AHE) or ciphertext noise (with
SWHE) on each eviction, which grows unbounded over time.

Our bounded feedback ORAM breaks the feedback loop by guaranteeing that
bucket b will be empty at public times, which allows upstream blocks to move
into b without feedback from blocks already in b. It turns out that breaking
this feedback is not trivial: in all existing tree-based ORAM schemes [39,41,
45,47], blocks can get stuck in buckets during evictions which means there is
no guarantee on when buckets are empty.3 We remark that cutting feedback is
equivalent to our claim of shallow circuit depth in Sect. 1.3: Without cutting
feedback, the depth of the ORAM circuit keeps growing with the number of
ORAM accesses.

Techniques for Malicious Security. We are also interested in achieving
malicious security, i.e., enforcing honest behaviors of the server, while avoiding
SNARKs. Our idea is to rely on probabilistic checking, and to leverage an error-
correcting code to amplify the probability of detection. As mentioned before,
each block is divided into C chunks. We will have the client randomly sample
security parameter λ � C chunks per block (the same random choice for all
blocks), referred to as verification chunks, and use standard memory checking
2 Previous versions of this report used the term “steady progress” which has been cited

in subsequent works, but we feel bounded feedback is more accurate.
3 We remark that some hierarchical ORAM schemes (e.g., [20]) also have bounded

feedback, but achieve worse results in different respects relative our construction
(e.g., worse server storage, deeper select circuits), when combined with server com-
putation.

152 S. Devadas et al.

to ensure their authenticity and freshness. On each step, the server will perform
homomorphic select operations on all C chunks in a block, and the client will
perform the same homomorphic select operations on the λ verification chunks. In
this way, whenever the server returns the client some encrypted block, the client
can check whether the λ corresponding chunks match the verification chunks.

Unfortunately, the above scheme does not guarantee negligible failure of
detection. For example, the server can simply tamper with a random chunk
and hope that it’s not one of the verification chunks. Clearly, the server succeeds
with non-negligible probability. The fix is to leverage an error-correcting code to
encode the original C chunks of each block into C ′ = 2C chunks, and ensure that
as long as 3

4C ′ chunks are correct, the block can be correctly decoded. Therefore,
the server knows a priori that it will have to tamper with at least 1

4C ′ chunks to
cause any damage at all, in which case it will get caught except with negligible
probability.

3 Bounded Feedback ORAM

We now present the bounded feedback ORAM, a traditional ORAM scheme
without server computation, to illustrate its important features. All notation
used throughout the rest of the paper is summarized in Table 2.

3.1 Bounded Feedback ORAM Basics

We build on the tree-based ORAM framework of Shi et al. [41], which organizes
server storage as a binary tree of nodes. The binary tree has L + 1 levels, where
the root is at level 0 and the leaves are at level L. Each node in the binary tree
is called a bucket and can contain up to Z data blocks. The leaves are numbered

Table 2. ORAM parameters and notations.

Notation Meaning

N Number of real data blocks in ORAM

B Data block size in bits

C The number of chunks in each data block

BC Chunk size in bits (B = C · BC)

L Depth of the ORAM tree

Z Maximum number of real blocks per bucket

A Eviction frequency (larger means less frequent)

P(l) The path from the root to leaf l

P(l, i) The i-th bucket (towards the root) on P(l)

G Eviction counter

S The set of chunk indices corresponding to verification chunks

Onion ORAM: A Constant Bandwidth Blowup Oblivious RAM 153

0, 1, . . . , 2L − 1 in the natural manner. Pseudo-code for our algorithm is given in
Fig. 1 and described below.

Note that many parts of our algorithm refer to paths down the tree where a
path is a contiguous sequence of buckets from the root to a leaf. For a leaf bucket
l, we refer to the path to l as path l or P(l). P(l, k) denotes the bucket at level
k ∈ [0..L] on P(l). Specifically, P(l, 0) denotes the root, and P(l, L) denotes the
leaf bucket on P(l).

Main Invariant. Like all tree-based ORAMs, each block is associated with a
random path and we say that each block can only live in a bucket along that
path at any time. In a local position map, the client stores the path associated
to each block.

Recursion. To avoid incurring a large amount of client storage, the position
map should be recursively stored in other smaller ORAMs [41]. When the data
block size is Ω(log2 N) for an N element ORAM—which will be the case for
all of our final parameterizations—the asymptotic costs of recursion (in terms
of server storage or bandwidth blowup) are insignificant relative to the main
ORAM [44]. Thus, for the remainder of the paper, we no longer consider the
bandwidth cost of recursion.

Metadata. To enable all ORAM operations, each block of data in the ORAM
tree is stored alongside its address and leaf label (the path the block is mapped
to). This metadata is encrypted using a semantically secure encryption scheme.

ORAM Request. Requesting a block with address a (ReadPath in Fig. 1) is
similar to most tree-based ORAMs: look up the position map to obtain the
path block a is currently mapped to, read all blocks on that path to find block
a, invalidate block a, remap it to a new random path and add it to the root
bucket. This involves decrypting the address metadata of every block on the
path (Line 13) and setting one address to ⊥ (Line 15). All addresses must be
then re-encrypted to hide which block was invalidated.

ORAM Eviction. The goal of eviction is to percolate blocks towards the leaves
to avoid bucket overflows and it is this procedure where we differ from existing
tree-based ORAMs [13,39,41,45,47]. We now describe our eviction procedure in
detail.

3.2 New Triplet Eviction Procedure

We combine techniques from [13,39,41] to design a novel eviction procedure
(Evict in Fig. 1) that enables us to break select operation feedback.

Triplet Eviction on a Path. Similar to other Tree ORAMs, eviction is per-
formed along a path. To perform an eviction: For every bucket P(le, k) (k from
0 to L, i.e., from root to leaf), we move blocks from P(le, k) to its two children.
Specifically, each block in P(le, k) moves to either the left or right child bucket
depending on which move keeps the block on the path to its leaf (this can be

154 S. Devadas et al.

1: function Access(a, op, data′)

2: l′ ← UniformRandom(0, 2L − 1)
3: l ← PositionMap[a]
4: PositionMap[a] ← l′

5: data ← ReadPath(l, a)
6: if op = read then
7: return data to client
8: if op = write then
9: data ← data′

10: P(l, 0, cnt) ← (a, l′, data)

11: Evict()

12: function ReadPath(l, a)
13: Read all blocks on path P(l)
14: Select and return the block with address a
15: Invalidate the block with address a

16: function Evict()
17: Persistent variables cnt and G, initialized to 0
18: cnt ← cnt + 1 mod A

19: if cnt
?
= 0 then

20: le ← bitreverse(G)
21: EvictAlongPath(le)
22: G ← G + 1 mod 2L

23: function EvictAlongPath(le)
24: for k ← 0 to L − 1 do
25: Read all blocks in P(le, k) and its two children
26: Move all blocks in P(le, k) to its two children
27: � P(le, k) is empty at this point (Observation 1)

Fig. 1. Bounded Feedback ORAM (no server computation). Note that our construction
differs from the original tree ORAM [41] only in the Evict procedure. We split Evict
into EvictAlongPath to simplify the presentation later.

determined by comparing the block’s leaf label to le). We call this process a
bucket-triplet eviction.

In each of these bucket-triplet evictions, we call P(le, k) the source bucket,
the child bucket also on P(le) the destination bucket, and the other child the
sibling bucket. A crucial change that we make to the eviction procedure of the
original binary-tree ORAM [41] is that we move all the blocks in the source
bucket to its two children.

Eviction Frequency and Order. For every A (a parameter proposed in [39],
which we will set later) ORAM requests, we select the next path to evict based
on the reverse lexicographical order of paths (proposed in [13] and illustrated in
Fig. 2). The reverse lexicographical order eviction most evenly and determinis-
tically spreads out the eviction on all paths in the tree. Specifically, a bucket at
level k will get evicted exactly every A · 2k ORAM requests.

Onion ORAM: A Constant Bandwidth Blowup Oblivious RAM 155

Fig. 2. The reverse lexicographical eviction order. Black buckets indicate those on
each eviction path and G is the eviction count from Fig. 1. As indicated in Fig. 1, the
eviction paths corresponding to G = 4 and G = 0 are equal: the exact eviction sequence
shown above cycles forever. We mark the eviction path edges as 0/1 (goto left child
= 0, right child = 1) to illustrate that the eviction path equals G in reverse binary
representation.

Setting Parameters for Bounded Feedback. As mentioned, we require that
during a bucket-triplet eviction, all blocks in the source bucket move to the two
child buckets. The last step to achieve bounded feedback is to show that child
buckets will have enough room to receive the incoming blocks, i.e., no child
bucket should ever overflow except with negligible probability. (If any bucket
overflows, we have experienced ORAM failure.) We guarantee this property by
setting the bucket size Z and the eviction frequency A properly. According to
the following lemma, if we simply set Z = A = Θ(λ), the probability that a
bucket overflows is 2−Θ(λ), exponentially small.

Lemma 1 (No Bucket Overflows). If Z ≥ A and N ≤ A · 2L−1, the proba-

bility that a bucket overflows after an eviction operation is bounded by e− (2Z−A)2

6A .

The proof of Lemma 1 relies on a careful analysis of the stochastic process
stipulated by the reverse lexicographic ordering of eviction, and boils down to a
Chernoff bound. We defer the full proof to Appendix B.1. Now, Lemma 1 with
Z = A = Θ(λ) immediately implies the following key observation.

Observation 1 (Empty Source Bucket). After a bucket-triplet eviction, the
source bucket is empty.

Furthermore, straightforwardly from the definition of reverse lexicographical
order, we have,

Observation 2. In reverse-lexicographic order eviction, each bucket rotates
between the following roles in the following order: source, sibling, and destination.

These observations together guarantee that buckets are empty at public and
pre-determined times, as illustrated in Fig. 3.

Towards Bounded Feedback. The above two observations are the keys to
achieving bounded feedback. An empty source bucket b will be a sibling bucket
the next time it is involved in a triplet eviction. So select operations that move

156 S. Devadas et al.

Fig. 3. ORAM tree state immediately after each of a sequence of four evictions. After
an eviction, the buckets on the eviction path (excluding the leaves) are guaranteed to
be empty. Further, at the start of each eviction, each sibling bucket for that eviction
is guaranteed to be empty. Notations: Assume the ORAM tree has more levels (not
shown for simplicity). The eviction path is marked with arrows. The dotted boxes
indicate bucket triplets during each eviction.

blocks into b do not get feedback from b itself. Thus, the number of encryption
layers (with AHE) or ciphertext noise (SWHE) becomes a function of previous
levels in the tree only, which we can tightly bound later in Lemma 2 in Sect. 4.3.

Constant Server Storage Blowup. We note that under our parameter setting
N ≤ A · 2L−1 and Z = A, our bounded feedback ORAM’s server storage is
O(2L+1 · Z · B) = O(BN), a constant blowup.

4 Semi-honest Onion ORAM with an Additively
Homomorphic Encryption

In this section, we describe how to leverage an AHE scheme with additive cipher-
text expansion to transform our bounded feedback ORAM into our semi-honest
secure Onion ORAM scheme. First, we detail the homomorphic select operation
that we introduced in Sect. 2.

4.1 Additively Homomorphic Select Sub-protocol

Suppose the client wishes to select the i∗-th block from m blocks denoted
ct1, . . . , ctm, each with �1, . . . , �m layers of encryption respectively. The sub-
protocol works as follows:

1. Let � := max(�1, . . . , �m). The client creates and sends to the server the follow-
ing encrypted select vector 〈E�+1(b1), E�+1(b2), . . . E�+1(bm)〉, where bi∗ = 1
and bi = 0 for i �= i∗.

2. The server “lifts” each block to �-layer ciphertexts, simply by continually
re-encrypting a block until it has � layers ct′i[j] = E�(E�−1(. . . E�i(cti[j]))).

Onion ORAM: A Constant Bandwidth Blowup Oblivious RAM 157

3. The server evaluates the homomorphic select operation on the lifted blocks:
ctout[j] :=

⊕
i (E�+1(bi) ⊗ ct′i[j]) = E�+1(ct′i∗). The outcome is the selected

block cti∗ with � + 1 layers of encryption.

As mentioned in Sect. 2, we divide each block into C chunks. Each chunk
is encrypted separately. All C chunks share the same select vector—therefore,
encrypting each element in the select vector only incurs the chunk size (instead
of the block size).

We stress again that every time a homomorphic select operation is performed,
the output block gains an extra layer of encryption, on top of � = max(�1, . . . , �m)
onion layers. This poses the challenge of bounding onion encryption layers, which
we address in Sect. 4.3.

4.2 Detailed Protocol

We now describe the detailed protocol. Recall that each block is tagged with the
following metadata: the block’s logical address and the leaf it is mapped to, and
that the size of the metadata is independent of the block size.

Initialization. The client runs a key generation routine for all layers of encryp-
tion, and gives all public keys to the server.

Read Path. ReadPath(l, a) from Sect. 3.1 can be done with the following steps:

1. Client downloads and decrypts the addresses of all blocks on path l, locates
the block of interest a, and creates a corresponding select vector b ∈
{0, 1}Z(L+1).

2. Client and server run the homomorphic select sub-protocol with client’s input
being encryptions of each element in b and server’s input being all encrypted
blocks on path l. The outcome of the sub-protocol—block a—is sent to the
client.

3. Client re-encrypts and writes back the addresses of all blocks on path l, with
block a now invalidated. This removes block a from the path without revealing
its location. Then, the client re-encrypts block a (possibly modified) under 1
layer, and appends it to the root bucket.

Eviction. To perform EvictAlongPath(le), do the following for each level k from
0 to L − 1:

1. Client downloads all the metadata (addresses and leaf labels) of the bucket
triplet. Based on the metadata, the client determines each block’s location
after the bucket-triplet eviction.

2. For each slot to be written in the two child buckets:
– Client creates a corresponding select vector b ∈ {0, 1}2Z .
– Client and server run the homomorphic select sub-protocol with the

client’s input being encryptions of each element in b, and the server’s
input being the child bucket (being written to) and its parent bucket.
Note that if the child bucket is empty due to Observation 1 (which is pub-
lic information to the server), it conceptually has zero encryption layers.

158 S. Devadas et al.

– Server overwrites the slot with the outcome of the homomorphic select
sub-protocol.

4.3 Bounding Layers

Given the above protocol, we bound layers with the following lemma:

Lemma 2. Any block at level k ∈ [0..L] has at most 2k + 1 encryption layers.

The proof of Lemma 2 is deferred to Appendix B.2. The key intuition for the
proof is that due to the reverse-lexicographic eviction order, each bucket will be
written to exactly twice (i.e., be a destination or sibling bucket) before being
emptied (as a source bucket). Also in Appendix B.2, we introduce a further
optimization called the “copy-to-sibling” optimization, which yields a tighter
bound: blocks at level k ∈ [0..L] will have only k + 1 layers.

Eviction Post-processing—Peel off Layers in Leaf. The proof only applies
to non-leaf buckets: blocks can stay inside a leaf bucket for an unbounded amount
of time. Therefore, we need the following post-processing step for leaf nodes.
After EvictAlongPath(le), the client downloads all blocks from the leaf node,
peels off the encryption layers, and writes them back to the leaves as layer-Θ(L)
re-encrypted ciphertexts (meeting the same layer bound as other levels). Since
the client performs an eviction every A ORAM requests, and each leaf bucket
has size Z = A, this incurs only O(1) amortized bandwidth blowup.

4.4 Remarks on Cryptosystem Requirements

Let L′ be the layer bound (derived in Sect. 4.3). For efficiency (in bandwidth
for the overall protocol) we require the output of an arbitrary select operation
performed during an ORAM request (note that � = L′ in this case) to be a
constant times larger than the block size B. Since L′ = ω(1), this implies we
need additive blowup per encryption layer, independent of L′. One cryptosystem
that satisfies the above requirement, for appropriate parameters, is the Damg̊ard-
Jurik cryptosystem (Sect. 6.2). We use this scheme to derive final parameters for
the AHE construction in Sect. 6.

5 Security Against Fully Malicious Server

So far, we have seen an ORAM scheme that achieves security against an honest-
but-curious server who follows the protocol correctly. We now show how to
extend this to get a scheme that is secure against a fully malicious server who
can deviate arbitrarily from the protocol.

Onion ORAM: A Constant Bandwidth Blowup Oblivious RAM 159

5.1 Abstract Server-Computation ORAM

We start by describing several abstract properties of the Onion ORAM scheme
from the previous section. We will call any server-computation ORAM scheme
satisfying these properties an abstract server-computation ORAM.

Data Blocks and Metadata. The server storage consists of two types of data:
data blocks and metadata. The server performs computation on data blocks, but
never on metadata. The client reads and writes the metadata directly, so the
metadata can be encrypted under any semantically secure encryption scheme.

Operations on Data Blocks. Following the notations in Sect. 2, each plain-
text data block is divided into C chunks, and each chunk is separately encrypted
cti = (cti[1], . . . , cti[C]). The client operates on the data blocks either by:
(1) directly reading/writing an encrypted data block, or (2) instructing the server
to apply a function f to form a new data block cti, where cti[j] only depends
on the j-th chunk of other data blocks, i.e., cti[j] = f(ct1[j], . . . , ctm[j]) for all
j ∈ [1..C].

It is easy to check that the two Onion ORAM schemes are instances of the
above abstraction. The metadata consists of the encrypted addresses and leaf
labels of each data block, as well as additional space needed to implement ORAM
recursion. The data blocks are encrypted under either a layered AHE scheme or
a SWHE scheme. Function f is a “homomorphic select operation”, and is applied
to each chunk.

5.2 Semi-honest to Malicious Compiler

We now describe a generic compiler that takes any “abstract server-computation
ORAM” that satisfies honest-but-curious security and compiles it into a “verified
server-computation ORAM” which is secure in the fully malicious setting.

VerifyingMetadata.Wecanuse standard “memory checking” [2] schemes based
on Merkle trees [33] to ensure that the client always gets the correct metadata, or
aborts if the malicious server ever sends an incorrect value. A generic use of Merkle
tree would add an O(log N) multiplicative overhead to the process of accessing
metadata [29], which is good enough for us. This O(log N) overhead can also be
avoided by aligning the Merkle tree with the ORAM tree [38], or using generic
authenticated data structures [34]. In any case, verifying metadata is basically free
in Onion ORAM.

Challenge of Verifying Data Blocks. Unfortunately, we cannot rely on stan-
dard memory checking to protect the encrypted data blocks when the client
doesn’t read/write them directly but rather instructs the server to compute on
them. The problem is that a malicious server that learns some information about
the client’s access pattern based on whether the client aborts or not.

Consider Onion ORAM for example. The malicious server wants to learn
if, during the homomorphic select operation of a ORAM request, the location
being selected is i. The server can perform the operation correctly except that

160 S. Devadas et al.

it would replace the ciphertext at position i with some incorrect value. In this
case, if the location being selected was indeed i then the client will abort since
the data it receives will be incorrect, but otherwise the client will accept. This
violates ORAM’s privacy requirement.

A more general way to see the problem is to notice that the client’s abort
decision above depends on the decrypted value, which depends on the secret key
of the homomorphic encryption scheme. Therefore, we can no longer rely on the
semantic security of the encryption scheme if the abort decision is revealed to
the server. To fix this problem, we need to ensure that the client’s abort decision
only depends on ciphertext and not on the plaintext data.

Verifying Data Blocks. For our solution, the client selects a random subset
S consisting of λ chunk positions. This set S is kept secret from the server.
The subset of chunks in positions {j : j ∈ S} of every encrypted data block
are treated as additional metadata, which we call the “verification chunks”.
Verification chunks are encrypted and memory checked in the same way as the
other metadata. Whenever the client instructs the server to update an encrypted
data block, the client performs the same operation himself on the verification
chunks. Then, when the client reads an encrypted data block from the server,
he can check the chunks in S against the ciphertexts of verification chunks. This
check ensures that the server cannot modify too many chunks without getting
caught. To ensure that this check is sufficient, we apply an error-correcting code
which guarantees that the server has to modify a large fraction of chunks to
affect the plaintext. In more detail:

– Every plaintext data block pt = (pt[1], . . . , pt[C]) is first encoded via
an error-correcting code into a codeword block pt ecc = ECC(pt) =
(pt ecc[1], . . . , pt ecc[C ′]). The error-correcting code ECC has a rate C/C ′ =
α < 1 and can efficiently recover the plaintext block if at most a δ-fraction
of the codeword chunks are erroneous. For concreteness, we can use a Reed-
Solomon code, and set α = 1

2 , δ = (1 − α)/2 = 1
4 . The client then uses

the “abstract server-computation ORAM” over the codeword blocks pt ecc
(instead of pt).

– During initialization, the client selects a secret random set S = {s1, . . . , sλ} ⊆
[C ′]. Each ciphertext data block cti has verification chunks verChi =
(verChi[1], . . . , verChi[λ]). We ensure the invariant that, during an honest exe-
cution, verChi[j] = cti[sj] for j ∈ [1..λ].

– The client uses a memory checking scheme to ensure the authenticity and
freshness of the metadata including the verification chunks. If the client detects
a violation in metadata at any point, the client aborts (we call this abort0).

– Whenever the client directly updates or instructs the server to apply the
aforementioned function f on an encrypted data block cti, it also updates or
applies the same function f on the corresponding verification chunks verChi[j]
for j ∈ [1..λ], which possibly involves reading other verification chunks that
are input to f .

– When the client reads an encrypted data block cti, it also reads verChi and
checks that verChi[j] = cti[sj] for each j ∈ [1..λ] and aborts if this is not the

Onion ORAM: A Constant Bandwidth Blowup Oblivious RAM 161

case (we call this abort1). Otherwise the client decrypts cti to get pt ecci and
performs error-correction to recover pti. If the error-correction fails, the client
aborts (we call this abort2).

If the client ever aborts during any operation with abort0, abort1 or abort2, it
refuses to perform any future operations. This completes the compiler which
gives us Theorem 2.

Security Intuition. Notice that in the above scheme, the decision whether
abort1 occurs does not depend on any secret state of the abstract server-
computation ORAM scheme, and therefore can be revealed to the server without
sacrificing privacy. We will argue that, if abort1 does not occur, then the client
retrieves the correct data (so abort2 will not occur) with overwhelming proba-
bility. Intuitively, the only way that a malicious server can cause the client to
either retrieve the incorrect data or trigger abort2 without triggering abort1 is to
modify at least a δ (by default, δ = 1/4) fraction of the chunks in an encrypted
data block, but avoid modifying any of the λ chunks corresponding to the secret
set S. This happens with probability at most (1− δ)λ over the random choice of
S, which is negligible. The complete proof is given in Appendix B.3.

6 Optimizations and Analysis

In this section we present two optimizations, an asymptotic analysis and a con-
crete (with constants) analysis for our AHE-based protocol.

6.1 Optimizations

Hierarchical Select Operation and Sorting Networks. For simplicity, we
have discussed select operations as inner products between the data vector and
the coefficient vector. As an optimization, we may use the Lipmaa construc-
tion [27] to implement select hierarchically as a tree of d-to-1 select operations
for a constant d (say d = 2). In that case, for a given 1 out of Z selection,
bhier ∈ {0, 1}log Z . Eviction along a path requires O(log N) bucket-triplet opera-
tions, each of which is a Z-to-Z permutation. To implement an arbitrary Z-to-Z
permutation, we can use the Beneš sorting network, which consists of a total of
O(Z log Z) 2-to-1 select operations per triplet.

At the same time, both the hierarchical select and the Beneš network add
Θ(log Z) layers to the output as opposed to a single layer. Clearly, this makes the
layer bound from Lemma 2 increase to Θ(log Z log N). But we can set related
parameters larger to compensate.

Permuted Buckets. Observe that on a request operation, the client and the
server need to run a homomorphic select protocol among O(λ log N) blocks. We
can reduce this number to O(λ) using the permuted bucket technique from Ring
ORAM [39] (similar ideas were used in hierarchical ORAMs [20]). Instead of
reading all slots along the tree path during each read, we can randomly permute

162 S. Devadas et al.

blocks in each bucket and only read/remove a block at a random looking slot (out
of Z = Θ(λ) slots) per bucket. Each random-looking location will either contain
the block of interest or a dummy block. We must ensure that no bucket runs
out of dummies before the next eviction refills that bucket’s dummies. Given our
reverse-lexicographic eviction order, a simple Chernoff bound shows that adding
Θ(A) = Θ(λ) dummies, which increases bucket size by a constant factor, is
sufficient to ensure that dummies do not run out except with probability 2−Θ(λ).
We do not permute the root bucket since it will require additional techniques
(and does not give much benefit). Therefore, a read path selects among O(Z +
log N) = O(λ + log N) = O(λ) blocks.

6.2 Damg̊ard-Jurik Cryptosystem

We implement our AHE-based protocol over the Damg̊ard-Jurik cryptosystem [6],
a generalization of Paillier’s cryptosystem [37]. Both schemes are based on the
hardness of the decisional composite residuosity assumption. In this system, the
public key pk = n = pq is an RSA modulus (p and q are two large, random primes)
and the secret key sk = lcm(p−1, q−1). In the terminology from our onion encryp-
tions, ski, pki = Gi() for i ≥ 0.

We denote the integers mod n as Zn. The plaintext space for the i-th layer of
the Damg̊ard-Jurik cryptosystem encryption, Li, is Zns0+i for some user specified
choice of s0. The ciphertext space for this layer is Zns0+i+1 . Thus, we clearly
have the property that ciphertexts are valid plaintexts in the next layer. An
interesting property that immediately follows is that if s0 = Θ(i), then |Li|/|L0|
is a constant. In other words, by setting s0 appropriately the ciphertext blowup
after i layers of encryption is a constant.

We further have that ⊕ (the primitive for homomorphic addition) is integer
multiplication and ⊗ (for scalar multiplication) is modular exponentiation. If
these operations are performed on ciphertexts in Li, operations are mod Zns0+i .

6.3 Asymptotic Analysis

We first perform the asymptotic analysis for exact exponential security. The
results for negligible in N security in Table 1 is derived by setting λ = ω(log N)
and γ = Θ(log3 N) according to best known attacks [27].

Semi-honest Case

Chunk Size. The Damg̊ard-Jurik cryptosystem encrypts a message of length
γs0 bits to a ciphertext of length γ(s0+1) bits, where γ is a parameter dependent
on the security parameter λ, and s0 is a user-chosen parameter. Using Beneš
network, each ciphertext chunk accumulates O(log λ log N) layers of encryp-
tion at the maximum. Suppose the plaintext chunk size is Bc := γs0, then at
the maximum onion layer, the ciphertext size would be γ(s0 + O(log λ log N)).
Therefore, to ensure constant ciphertext expansion at all layers, it suffices to set
s0 := Ω(log λ log N) and chunk size Bc := Ω(γ log λ log N). This means cipher-
text chunks and homomorphic select vectors are also Ω(γ log λ log N) bits.

Onion ORAM: A Constant Bandwidth Blowup Oblivious RAM 163

Then we want our block size to be asymptotically larger than the select
vectors at each step of our protocol (other metadata are much smaller).

Size of Select Vectors. Each read requires O(log λ) encrypted coefficients
of O(Bc) bits each. Eviction along a path requires O(log N) Beneš network
(bucket-triplet operations), a total of O(λ log λ log N) encrypted coefficients.
Also recall that one eviction happens per A = Θ(λ) accesses. Therefore, the
select vector size per ORAM access (amortized) is dominated by evictions, and
is Θ(Bc log λ log N) bits.

Setting the Block Size. Clearly, if we set the block size to be B :=
Ω(Bc log λ log N), the cost of homomorphic select vectors could be asymptot-
ically absorbed, thereby achieving constant bandwidth blowup. Since the chunk
size Bc = Ω(γ log λ log N), we have B = Ω(γ log2 λ log2 N) bits.

Server Computation. The bottleneck of server computation is to homomor-
phically multiple a block with a encrypted select coefficient. In Damg̊ard-Jurik,
this is a modular exponentiation operation, which has Õ(γ2) computational com-
plexity for γ-bit ciphertexts. This means the per-bit computational overhead is
Õ(γ). The server needs to perform this operation on O(λ) blocks of size B, and
therefore has a computational overhead of Õ(γ)O(Bλ).

Client Computation. Client needs to decrypt O(log λ log N) layers to
get the plaintext block, and therefore has a computational overhead of
Õ(γ)O(B log λ log N).

Malicious Case

Setting the Block Size. The main difference from semi-honest case is that
on a read, the client must additionally download Θ(λ) verification chunks from
each of the Θ(λ) blocks (assuming permuted buckets). Select vector size stays
the same, and the error-correcting code increases block size by only a constant
factor. Thus, the block size we need to achieve constant bandwidth over the
entire protocol is B = Ω(Bcλ

2) = Ω(γλ2 log λ log N).

Client Computation. Another difference is that the client now needs to emu-
late the server’s homomorphic select operation on the verification chunks. But a
simple analysis will show that the bottleneck of client computation is still onion
decryption, and therefore remains the same asymptotically.

6.4 Concrete Analysis (Semi-honest Case Only)

Figure 4 shows bandwidth as a function of block size for our optimized semi-
honest construction, taking into account all constant factors (including the extra
bandwidth cost to recursively look up the position map). Other scheme variants
in this paper have the same general trend. We compare to Path PIR and Circuit
ORAM, the most bandwidth-efficient constructions with/without server compu-
tation that match our server/client storage asymptotics.

164 S. Devadas et al.

Takeaway. The high order bit is that as block size increases, Onion ORAM’s
bandwidth approaches 2B. Note that 2B is the inherent lower bound in band-
width since every ORAM access must at least the block of interest from the
server and send it back after possibly modifying it. Given an 8 MB block size,
which is approximately the size of an image file, we improve in bandwidth over
Circuit ORAM by 35× and improve over Path PIR by 22×. For very large
block sizes, our improvement continues to increase but Circuit ORAM and Path
PIR improve less dramatically because their asymptotic bandwidth blowup has
a log N factor. Note that for sufficiently small block sizes, both Path PIR and
Circuit ORAM beat our bandwidth because our select vector bandwidth domi-
nates. Yet, this crossover point is around 128 KB, which is reasonable in many
settings.

1

10

100

1000

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

B
an

dw
id

th
 m

ul
tip

lie
r

log B (in bits)

Path PIR
Onion ORAM
Circuit ORAM

Fig. 4. Plots the bandwidth multiplier (i.e., the hidden constant for O(B)) for semi-
honest Onion ORAM and two prior proposals. We fix the ORAM capacity to NB = 250

and give each scheme the same block size across different block sizes (hence as B
increases, N decreases).

Constant Factor Optimization: Less Frequent Leaf Post-processing. In
the above evaluation, we apply an additional constant factor optimization. Since
Z = A = Θ(λ), we must send and receive one additional data block (amortized)
per ORAM request to post-process leaf buckets during evictions (Sect. 4.3). To
save bandwidth, we can perform this post-processing on a particular leaf bucket
every p evictions to that leaf (p is a free variable). The consequence is that the
number of layers that accumulate on leaf buckets increases by p which makes
each ORAM read path more expensive by the corresponding amount. In practice,
p ≥ 8 yields the best bandwidth.

Parameterization Details. For both schemes, we set acceptable ORAM failure
probability to 2−80 which results in Z = A ≈ 300 for Onion ORAM, Z = 120
for Path PIR [41] and a stash size (stored on the server) of 50 blocks for Circuit
ORAM [47]. For Onion ORAM and Path PIR we set γ = 2048 bits. For Circuit
ORAM, we use the reverse lexicographic eviction order as described in that work,

Onion ORAM: A Constant Bandwidth Blowup Oblivious RAM 165

which gives 2 evictions per access and Z = 2. For Path PIR, we set the eviction
frequency v = 2 [41].

6.5 Other Optimizations and Remarks

De-Amortization. We remark that it is easy to de-amortize the above algo-
rithm so that the worst-case bandwidth equals amortized bandwidth and over-
all bandwidth doesn’t increase. First, it is trivial to de-amortize the leaf bucket
post-processing (Sect. 4.3) over the A read path operations because A = Z and
post-processing doesn’t change the underlying plaintext contents of that bucket.
Second, the standard de-amortization trick of Williams et al. [50] can be applied
directly to our EvictAlongPath operation. We remark that it is easy to de-amortize
evictions over the next A read operations because moving blocks from buckets
(possibly on the eviction path) to the root bucket does not impact our eviction
algorithm.

Online Roundtrips. The standard recursion technique [44] uses a small block
size for position map ORAMs (to save bandwidth) and requires O(log N)
roundtrips. In Onion ORAM, the block in the main ORAM is large B =
Ω(λ log N). We can use Onion ORAM with the same large block size for posi-
tion map ORAMs. This achieves a constant number of recursive levels if N is
polynomial in λ, and therefore maintains the constant bandwidth blowup.

7 Conclusion and Open Problems

This paper proposes Onion ORAM, the first concrete ORAM scheme with opti-
mal asymptotics in worst-case bandwidth blowup, server storage and client stor-
age in the single-server setting. We have shown that FHE or SWHE are not
necessary in constructing constant bandwidth ORAMs, which instead can be
constructed using only an additively homomorphic scheme such as the Damg̊ard-
Jurik cryptosystem. Yet combining SWHE with Onion ORAM improves the
computational efficiency of the scheme. We further extend Onion ORAM to be
secure in the fully malicious setting using standard assumptions. Due to the
known efficiency of SWHE schemes like BGV, we think of our work as an impor-
tant step towards practical constant bandwidth blowup ORAM schemes.

We do note that while our block size is poly-logarithmic, the exponent is
rather large (especially for our malicious construction). Subsequent to our pro-
posal of Onion ORAM, Moataz et al. [35] combined our bounded feedback
ORAM with an optimized merge procedure for evictions which reduces server
computation and block size for the semi-honest construction. We applaud this
effort and argue that semi-honest constant bandwidth blowup ORAM is practi-
cal (or nearly practical). We leave tightening up poly-logarithmic factors for our
malicious security construction as future work.

Beyond tightening parameters, an open problem is whether constant band-
width blowup ORAMs can be constructed from non-homomorphic encryption
schemes. The computational complexity of the Damg̊ard-Jurik cryptosystem

166 S. Devadas et al.

(which relies on modular exponentiation for homomorphic operations), or even
more efficient SWHE schemes may be a bottleneck in practice. Can we con-
struct constant bandwidth ORAM using simple computation such as XOR and
any semantically secure encryption scheme with small ciphertext blowup? A
partial result in this direction comes from Burst ORAM [8]: simple computation
on ciphertexts (mod 2 XOR) enables a family of schemes (e.g., [39]) to achieve
constant online bandwidth blowup on a request. Whether similar ideas can lead
to constant bandwidth blowup on eviction is unclear.

Acknowledgements. We thank Vinod Vaikuntanathan for helpful discussion on this
work.

A Definitions of Server-Computation ORAM

We directly adopt the definitions and notations used by Apon et al. [1] who
are the first to define server-computation ORAM as a reactive two-party pro-
tocol between the client and the server, and define its security in the Universal
Composability model [5]. We use the notation

((c out, c state), (s out, s state)) ← protocol((c in, c state), (s in, s state))

to denote a (stateful) protocol between a client and server, where c in and c out
are the client’s input and output; s in and s out are the server’s input and
output; and c state and s state are the client and server’s states before and after
the protocol.

We now define the notion of a server-computation ORAM, where a client
outsources the storage of data to a server, and performs subsequent read and
write operations on the data.

Definition 1 (Server-Computation ORAM). A server-computation
ORAM scheme consists of the following interactive protocols between a client
and a server.

((⊥, z), (⊥, Z)) ← Setup(1λ, (D,⊥), (⊥,⊥)): An interactive protocol where the
client’s input is a memory array D[1..n] where each memory block has bit-
length β; and the server’s input is ⊥. At the end of the Setup protocol, the
client has secret state z, and server’s state is Z (which typically encodes the
memory array D).

((data, z′), (⊥, Z ′)) ← Access((op, z), (⊥, Z)): To access data, the client starts in
state z, with an input op where op := (read, ind) or op := (write, ind , data);
the server starts in state Z, and has no input. In a correct execution of
the protocol, the client’s output data is the current value of the memory D
at location ind (for writes, the output is the old value of D[ind] before the
write takes place). The client and server also update their states to z′ and Z ′

respectively. The client outputs data := ⊥ if the protocol execution aborted.

Onion ORAM: A Constant Bandwidth Blowup Oblivious RAM 167

We say that a server-computation ORAM scheme is correct, if for any initial
memory D ∈ {0, 1}βn, for any operation sequence op1, op2, . . ., opm where m =
poly(λ), an op := (read, ind) operation would always return the last value written
to the logical location ind (except with negligible probability).

A.1 Security Definition

We adopt a standard simulation-based definition of secure computation [4],
requiring that a real-world execution “simulate” an ideal-world (reactive) func-
tionality F .

Ideal World. We define an ideal functionality F that maintains an up-to-date
version of the data D on behalf of the client, and answers the client’s access
queries.

– Setup. An environment Z gives an initial database D to the client. The client
sends D to an ideal functionality F . F notifies the ideal-world adversary S of
the fact that the setup operation occurred as well as the size of the database
N = |D|, but not of the data contents D. The ideal-world adversary S says
ok or abort to F . F then says ok or ⊥ to the client accordingly.

– Access. In each time step, the environment Z specifies an operation op :=
(read, ind) or op := (write, ind , data) as the client’s input. The client sends
op to F . F notifies the ideal-world adversary S (without revealing to S the
operation op). If S says ok to F , F sends D[ind] to the client, and updates
D[ind] := data accordingly if this is a write operation. The client then forwards
D[ind] to the environment Z. If S says abort to F , F sends ⊥ to the client.

Real World. In the real world, an environment Z gives an honest client a
database D. The honest client runs the Setup protocol with the server A. Then
at each time step, Z specifies an input op := (read, ind) or op := (write, ind , data)
to the client. The client then runs the Access protocol with the server. The
environment Z gets the view of the adversary A after every operation. The
client outputs to the environment the data fetched or ⊥ (indicating abort).

Definition 2 (Simulation-Based Security: Privacy + Verifiability). We
say that a protocol ΠF securely computes the ideal functionality F if for any
probabilistic polynomial-time real-world adversary (i.e., server) A, there exists
an ideal-world adversary S, such that for all non-uniform, polynomial-time envi-
ronment Z, there exists a negligible function negl such that

|Pr [RealΠF ,A,Z(λ) = 1] − Pr [IdealF,S,Z(λ) = 1]| ≤ negl(λ)

At an intuitive level, our definition captures the privacy and verifiability require-
ments for an honest client (the client is never malicious in our setting), in the
presence of a malicious server. The definition simultaneously captures privacy
and verifiability. Privacy ensures that the server cannot observe the data con-
tents or the access pattern. Verifiability ensures that the client is guaranteed to
read the correct data from the server — if the server cheats, the client can detect
it and abort the protocol.

168 S. Devadas et al.

B Proofs

B.1 Bounded Feedback ORAM: Bounding Overflows

We now give formal proofs to show that buckets do not overflow in bounded
feedback ORAM except with negligible probability.

Proof. (of Lemma 1). First of all, notice that when Z ≥ A, the root bucket will
never overflow. So we will only consider non-root buckets. Let b be a non-root
bucket, and Y (b) be the number of blocks in it after an eviction operation. We will
first assume all buckets have infinite capacity and show that E[Y (b)] ≤ A/2, i.e.,
the expected number of blocks in a non-root bucket after an eviction operation
is no more than A/2 at any time. Then, we bound the overflow probability given
a finite capacity.

If b is a leaf bucket, each of the N blocks in the system has a probability of
2−L to be mapped to b independently. Thus E[Y (b)] ≤ N · 2−L ≤ A/2.

If b is a non-leaf (and non-root) bucket, we define two variables m1 and
m2: the last EvictAlongPath operation where b is on the eviction path is the
m1-th EvictAlongPath operation, and the EvictAlongPath operation where b is
a sibling bucket is the m2-th EvictAlongPath operation. If m1 > m2, then
Y (b) = 0, because b becomes empty when it is the source bucket in the m1-
th EvictAlongPath operation. (Recall that buckets have infinite capacity so this
outcome is guaranteed.) If m1 < m2, there will be some blocks in b and we now
analyze what blocks will end up in b. We time-stamp the blocks as follows. When
a block is accessed and remapped, it gets time stamp m∗, which is the number
of EvictAlongPath operations that have happened. Blocks with m∗ ≤ m1 will not
be in b as they will go to either the left child or the right child of b. Blocks with
m∗ > m2 will not be in b as the last eviction operation that touches b (m2-th)
has already passed. Therefore, only blocks with time stamp m1 < m∗ ≤ m2 can
be in b. There are at most d = A|m1 −m2| such blocks. Such a block goes to b if
and only if it is mapped to a path containing b. Thus, each block goes to b inde-
pendently with a probability of 2−i, where i is the level of b. The deterministic
order of EvictAlongPath makes it easy to see4 that |m1 − m2| = 2i−1. Therefore,
E[Y (b)] ≤ d · 2−i = A/2 for any non-leaf bucket as well.

Now that we have independence and the bound on expectation, a simple
Chernoff bound completes the proof.

B.2 Onion ORAM: Bounding Layers of Encryption

To bound the layers of onion encryption, we consider the following abstraction.
Suppose all buckets in the tree have a layer associated with it.

– The root bucket contains layer-1 ciphertexts.
4 One way to see this is that a bucket b at level i will be on the evicted path every

2i EvictAlongPath operations, and its sibling will be on the evicted path halfway in
that period.

Onion ORAM: A Constant Bandwidth Blowup Oblivious RAM 169

– For a bucket known to be empty, we define bucket.layer := 0.
– Each bucket-triplet operation moves data from parent to child buckets. After

the operation, child.layer := max{parent.layer, child.layer} + 1.

Recall that we use the following terminology. The bucket being evicted from
is called the source, its child bucket on the eviction path is called the destination,
and its other child forking off the path is called the sibling.

Proof. (of Lemma 2). We prove by induction.

Base case. The lemma holds obviously for the root bucket.

Inductive step. Suppose that this holds for all levels � < k. We now show that
this holds for level k. Let bucket denote a bucket at level k. We focus on this
particular bucket, and examine bucket.layer after each bucket-triplet operation
that involves bucket. It suffices to show that after each bucket-triplet opera-
tion involving bucket, it must be that bucket.layer ≤ 2k + 1. If a bucket-triplet
operation involves bucket as a source, we call it a source operation (from the
perspective of bucket). Similarly, if a bucket-triplet operation involves bucket as
a destination or sibling, we call it a destination operation or a sibling operation
respectively.

Based on Observation 1,

bucket.layer = 0 (after each source operation)

Since a sibling operation must be preceded by a source operation (if there is
any preceding operation), bucket must be empty at the beginning of each sibling
operation. By induction hypothesis, after each sibling operation, it must be that

bucket.layer ≤ 2(k − 1) + 1 + 1 = 2k (after each sibling operation)

Since a destination operation must be preceded by a sibling operation (if there
is any preceding operation), from the above we know that at the beginning of
a destination operation bucket.layer must be bounded by 2k. Now, by induction
hypothesis, it holds that

bucket.layer ≤ 2k + 1 (after each destination operation)

Finally, our post-processing on leaves where the client peels of the onion
layers extends this lemma to all levels including leaves.

Copy-to-Sibling Optimization and a Tighter Layer Bound. An immedi-
ate implication of Observation 1 plus Observation 2 is that whenever a source
evicts into a sibling, the sibling bucket is empty to start with because it was a
source bucket in the last operation it was involved in. This motivates the follow-
ing optimization: the server can simply copy blocks from the source bucket into
the sibling. The client would read the metadata corresponding to blocks in the
source bucket, invalidate blocks that do not belong to the sibling, before writing
the (re-encrypted) metadata to the sibling.

170 S. Devadas et al.

This copy-to-sibling optimization avoids accumulating an extra onion layer
upon writes into a sibling bucket. With this optimization and using a similar
inductive proof, it is not hard to show a bucket at level k in the tree have at
most k + 1 layers.

B.3 Malicious Security Proof

The Simulator. To simulate the setup protocol with some data of size N , the
simulator chooses a dummy database D′ of size N consisting of all 0s. It then
follows the honest setup procedure on behalf of the client with database D′.
To simulate each access operation, the simulator follows the honest protocol for
reading a dummy index, say, ind′ = 0, on behalf of the client.

During each operation, if the client protocol that’s being executed by the
simulator aborts then the simulator sends abort to F and stops responding to
future commands on behalf of the client, else it gives ok to F .

Sequence of Hybrids. We now follow a sequence of hybrid games to show that
the real world and the simulation are indistinguishable:

|Pr [RealΠF ,A,Z(λ) = 1] − Pr [IdealF,S,Z(λ) = 1]| ≤ negl(λ)

Game 0. Let this be the real game RealΠF ,A,Z with an adversarial server A
and an environment Z.

Game 1. In this game, the client also keeps a local copy of the correct metadata
and data-blocks (in plaintext) that should be stored on the server. Whenever
the client reads any (encrypted) metadata from the server during any oper-
ation, if the memory checking does not abort, then instead of decrypting the
read metadata, the client simply uses the locally stored plaintext copy.

The only difference between Game 0 and Game 1 occurs if in Game 0
the memory checking does not abort, but the client retrieves the incorrect
encrypted metadata, which happens with negligible probability by the secu-
rity of memory checking. Therefore Game 0 and Game 1 are indistinguishable.

Game 2. In this game the client doesn’t store the correct values of verChi with
the encrypted metadata on the server, but instead replaces these with dummy
values. The client still stores the correct values of verChi in the plaintext
metadata stored locally, which it uses to do all of the actual computations.
Game 1 and Game 2 are indistinguishable by the CPA security of the
symmetric-key encryption scheme used to encrypt metadata. We only need
CPA security since, in Games 1 and 2, the client never decrypts any of the
metadata ciphertexts.

Game 3. In this game, whenever the client reads an encrypted data block cti
from the server, if abort1 does not occur, instead of decrypting and decoding
the encrypted data-block, the client simply uses local copy of the plaintext
data-block.

The only difference between Game 2 and Game 3 occurs if at some point
in time the client reads an encrypted data block cti from the server such that
at least a δ fraction of the ciphertext chunks {cti[j]} in the block have been

Onion ORAM: A Constant Bandwidth Blowup Oblivious RAM 171

modified (so that decoding either fails with abort2 or returns an incorrect
value) but none of the chunks in locations i ∈ S have been modified (so that
abort1 does not occur).

We claim that Game 2 and Game 3 are statistically indistinguishable,
with statistical distance at most q(1 − δ)λ, where q is the total number of
operations performed by the client. To see this, note that in both games the
set S is initially completely random and unknown to the adversarial server.
In each operation i that the client reads an encrypted data-block, the server
can choose some set S′

i ⊆ [C ′] of positions in which the ciphertext chunks are
modified, and if S′

i ∩S = ∅ the server learns this information about the set S
and the game continues, else the client aborts and the game stops. The server
never gets any other information about S throughout the game. The games
2 and 3 only diverge if at some point the adversarial server guesses a set S′

i

of size |S′
i| ≥ δC ′ such that S ∩ S′

i = ∅. We call this the “bad event”. Notice
that the sets S′

i can be thought of as being chosen non-adaptively at the
beginning of the game prior to the adversary learning any knowledge about
S (this is because we know in advance that the server will learn S′

i ∩ S = ∅
for all i prior to the game ending). Therefore, the probability that the bad
event happens in the j’th operation is

Pr
S

[S′
j ∩ S = ∅] ≤

(
(1 − δ)C ′

λ

)
/

(
C ′

λ

)
≤ (1 − δ)λ

where S ⊆ [C ′] is a random subset of size |S| = λ. By the union bound, the
probability that the bad event happens during some operation j ∈ {1, . . . , q}
is at most q(1 − δ)λ.

Game’ 3. In this game, the client runs the setup procedure using the dummy
database D′ (as in the simulation) instead of the one given by the environ-
ment. Furthermore, for each access operation, the client just runs a dummy
operation consisting of a read with the index ind′ = 0 instead of the opera-
tion chosen by the environment. (We also introduce an ideal functionality F
in this world which is given the correct database D at setup and the correct
access operations as chosen by the environment. Whenever the client doesn’t
abort, it forwards the outputs of F to the environment.)

Games 3 and Game’ 3 are indistinguishable by the semi-honest Onion
ORAM scheme. In particular, in both games whenever the client doesn’t
abort, the client reads the correct metadata and data blocks as when inter-
acting with an honest server, and therefore follows the same protocols as
when interacting with an honest server. Furthermore, the decision whether
or not the client aborts in these games (with abort0 or abort1; there is no
more abort2) only depends on the secret set S and the internal state of the
memory checking scheme, but is independent of any of the secret state or
decryption keys of the underlying semi-honest Onion ORAM scheme. There-
fore, the view of the adversarial server in these games can be simulated given
the view of the honest server.

Game’ 2,1,0. We define Game’ i for i = 0, 1, 2 the same way as Game i except
that the client uses the dummy database D′ and the dummy operations

172 S. Devadas et al.

(reads with index idx′ = 0) instead of those specified by the environment.
The arguments that Game’ i + 1 and Game’ i are indistinguishable as the

same as those for Game i + 1 and Game i. Finally, we notice that Game 0 is
the ideal game IdealF,S,Z with the simulator S.

Putting everything together, we see that the real and ideal games
RealΠF ,A,Z and IdealF,S,Z are indistinguishable as we wanted to show.

References

1. Apon, D., Katz, J., Shi, E., Thiruvengadam, A.: Verifiable oblivious storage. In:
Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 131–148. Springer, Heidelberg
(2014)

2. Blum, M., Evans, W.S., Gemmell, P., Kannan, S., Naor, M.: Checking the correct-
ness of memories. In: FOCS (1991)

3. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

4. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13, 143–202 (2000)

5. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS (2001)

6. Damgard, I., Jurik, M.: A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol.
1992, pp. 119–136. Springer, Heidelberg (2001)

7. Dautrich, J., Ravishankar, C.: Combining ORAM with PIR to minimize bandwidth
costs. In: CODASPY (2015)

8. Dautrich, J., Stefanov, E., Shi, E.: Burst ORAM: Minimizing ORAM response
times for bursty access patterns. In: USENIX Security (2014)

9. Devadas, S., van Dijk, M., Fletcher, C.W., Ren, L., Shi, E., Wichs, D.: Onion
ORAM: a constant bandwidth blowup oblivious RAM. Cryptology ePrint Archive,
Report 2015/005 (2015)

10. Fletcher, C., Ren, L., Kwon, A., van Dijk, M., Devadas, S.: Freecursive ORAM:
[nearly] free recursion and integrity verification for position-based oblivious RAM.
In: ASPLOS (2015)

11. Fletcher, C., Ren, L., Kwon, A., Van Dijk, M., Stefanov, E., Serpanos, D., Devadas,
S.: A low-latency, low-area hardware oblivious RAM controller. In: FCCM (2015)

12. Fletcher, C., van Dijk, M., Devadas, S.: Secure processor architecture for encrypted
computation on untrusted programs. In: STC (2012)

13. Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Opti-
mizing ORAM and using it efficiently for secure computation. In: De Cristofaro,
E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 1–18. Springer, Heidelberg
(2013)

14. Gentry, C., Halevi, S., Jutla, C., Raykova, M.: Private database access with he-
over-oram architecture. Cryptology ePrint Archive, Report 2014/345

15. Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled
RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 405–422. Springer, Heidelberg (2014)

Onion ORAM: A Constant Bandwidth Blowup Oblivious RAM 173

16. Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private RAM compu-
tation. In: FOCS (2014)

17. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) Public Key Cryp-
tography – PKC 2012. LNCS, vol. 7293. Springer, Heidelberg (2012)

18. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: STOC (2011)

19. Goldreich, O.: Towards a theory of software protection and simulation on Oblivious
RAMs. In: STOC (1987)

20. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43, 431–473 (1996)

21. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-
preserving group data access via stateless oblivious RAM simulation. In: SODA
(2012)

22. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015)

23. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg
(2007)

24. Keller, M., Scholl, P.: Efficient, Oblivious data structures for MPC. Cryptology
ePrint Archive, Report 2014/137 (2014)

25. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in) security of hash-based oblivious
RAM and a new balancing scheme. In: SODA (2012)

26. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

27. Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In:
Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp.
314–328. Springer, Heidelberg (2005)

28. Liu, Y. Huang, E. Shi, J. Katz, and M. Hicks. Automating efficient RAM-model
secure computation. In: Oakland (2014)

29. Lorch, J.R., Parno, B., Mickens, J. W., Raykova, M., Schiffman, J.: Shroud: ensur-
ing private access to large-scale data in the data center. In: FAST (2013)

30. Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidel-
berg (2013)

31. Maas, M., Love, E., Stefanov, E., Tiwari, M., Shi, E., Asanovic, K., Kubiatowicz,
J., Song, D.: Phantom: practical oblivious computation in a secure processor. In:
CCS (2013)

32. Mayberry, T., Blass, E.-O., Chan, A. H.: Efficient private file retrieval by combining
ORAM and PIR. In: NDSS (2014)

33. Merkle, R.C.: Protocols for public key cryptography. In: Oakland (1980)
34. Miller, A., Hicks, M., Katz, J., Shi, E.: Authenticated data structures, generically.

In: POPL (2014)
35. Moataz, T., Mayberry, T., Blass, E.-O.: Constant communication oblivious RAM.

Cryptology ePrint Archive, Report 2015/570 (2015)
36. Ostrovsky, R.: Efficient computation on oblivious RAMs. In: STOC (1990)
37. Paillier, P.: Public-key cryptosystems based on composite degree residuosity

classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592. Springer, Hei-
delberg (1999)

174 S. Devadas et al.

38. Ren, L., Fletcher, C., Yu, X., van Dijk, M., Devadas, S.: Integrity verification for
path oblivious-RAM. In: HPEC (2013)

39. Ren, L., Fletcher, C.W., Kwon, A., Stefanov, E., Shi, E., Dijk, M.V., Devadas, S.:
Constants count: practical improvements to oblivious RAM. In: USENIX Security
(2015)

40. Ren, L., Yu, X., Fletcher, C., van Dijk, M., Devadas, S.: Design space exploration
and optimization of path oblivious RAM in secure processors. In: ISCA (2013)

41. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3)
Worst-Case Cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 197–214. Springer, Heidelberg (2011)

42. Stefanov, E., Shi, E.: Oblivistore: high performance oblivious cloud storage. In:
S&P (2013)

43. Stefanov, E., Shi, E., Song, D.: Towards practical oblivious RAM. In: NDSS (2012)
44. Stefanov, E., van Dijk, M., Shi, E., Chan, T.-H.H., Fletcher, C., Ren, L., Yu, X.,

Devadas, S.: Path ORAM: an extremely simple oblivious RAM protocol. Cryptol-
ogy ePrint Archive, Report 2013/280

45. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.: Path
ORAM: an extremely simple oblivious RAM protocol. In: CCS (2013)

46. Wang, X., Nayak, K., Liu, C., Shi, E., Stefanov, E., Huang, Y.: Oblivious data
structures. In: IACR (2014)

47. Wang, X.S., Chan, T.-H.H., Shi, E.: Circuit ORAM: On tightness of the Goldreich-
Ostrovsky lower bound. Cryptology ePrint Archive, Report 2014/672

48. Wang, X.S., Huang, Y., Chan, T.-H.H., Shelat, A., Shi, E.: Scoram: oblivious ram
for secure computation. In: CCS (2014)

49. Williams, P., Sion, R.: Single round access privacy on outsourced storage. In: CCS
(2012)

50. Williams, P., Sion, R., Tomescu, A.: Privatefs: a parallel oblivious file system. In:
CCS (2012)

51. Yu, X., Fletcher, C.W., Ren, L., van Dijk, M., Devadas, S.: Generalized external
interaction with tamper-resistant hardware with bounded information leakage. In:
CCSW (2013)

52. Zhang, J., Ma, Q., Zhang, W., Qiao, D.: Kt-oram: a bandwidth-efficient ORAM
built on k-ary tree of pir nodes. Cryptology ePrint Archive, Report 2014/624 (2014)

Oblivious Parallel RAM and Applications

Elette Boyle1(B), Kai-Min Chung2, and Rafael Pass3

1 IDC Herzliya, Herzliya, Israel
eboyle@alum.mit.edu

2 Academica Sinica, Taipei, Taiwan
kmchung@iis.sinica.edu.tw

3 Cornell University, Ithaca, USA
rafael@cs.cornell.edu

Abstract. We initiate the study of cryptography for parallel RAM
(PRAM) programs. The PRAM model captures modern multi-core archi-
tectures and cluster computing models, where several processors execute
in parallel and make accesses to shared memory, and provides the “best
of both” circuit and RAM models, supporting both cheap random access
and parallelism.

We propose and attain the notion of Oblivious PRAM. We present
a compiler taking any PRAM into one whose distribution of memory
accesses is statistically independent of the data (with negligible error),
while only incurring a polylogarithmic slowdown (in both total and par-
allel complexity). We discuss applications of such a compiler, building
upon recent advances relying on Oblivious (sequential) RAM (Goldreich
Ostrovsky JACM’12). In particular, we demonstrate the construction of
a garbled PRAM compiler based on an OPRAM compiler and secure
identity-based encryption.

E. Boyle—The research of the first author has received funding from the European
Union’s Tenth Framework Programme (FP10/ 2010-2016) under grant agreement
no. 259426 ERC-CaC, and ISF grant 1709/14. Supported by the ERC under the
EU’s Seventh Framework Programme (FP/2007-2013) ERC Grant Agreement n.
307952.
K.-M. Chung—supported in part by Ministry of Science and Technology, Taiwan,
under Grant no. MOST 103-2221-E-001-022-MY3.
R. Pass—Work supported in part by a Microsoft Faculty Fellowship, Google Fac-
ulty Award, NSF Award CNS-1217821, NSF Award CCF-1214844, AFOSR Award
FA9550-15-1-0262 and DARPA and AFRL under contract FA8750-11-2-0211. The
views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the US Government.
R. Pass—This work was done in part while the authors were visiting the Simons
Institute for the Theory of Computing, supported by the Simons Foundation and
by the DIMACS/Simons Collaboration in Cryptography through NSF grant #CNS-
1523467.

c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 175–204, 2016.
DOI: 10.1007/978-3-662-49099-0 7

176 E. Boyle et al.

1 Introduction

Completeness results in cryptography provide general transformations from arbi-
trary functionalities described in a particular computational model, to solutions
for executing the functionality securely within a desired adversarial model. Clas-
sic results, stemming from [Yao82,GMW87], modeled computation as boolean
circuits, and showed how to emulate the circuit securely gate by gate.

As the complexity of modern computing tasks scales at tremendous rates,
it has become clear that the circuit model is not appropriate: Converting
“lightweight,” optimized programs first into a circuit in order to obtain secu-
rity is not a viable option. Large effort has recently been focused on enabling
direct support of functionalities modeled as Turing machines or random-access
machines (RAM) (e.g., [OS97,GKK+12,LO13,GKP+13,GHRW14,GHL+14,
GLOS15,CHJV15,BGL+15,KLW15]). This approach avoids several sources of
expensive overhead in converting modern programs into circuit representations.
However, it actually introduces a different dimension of inefficiency. RAM (and
single-tape Turing) machines do not support parallelism: thus, even if an inse-
cure program can be heavily parallelized, its secure version will be inherently
sequential.

Modern computing architectures are better captured by the notion of a Par-
allel RAM (PRAM). In the PRAM model of computation, several (polynomially
many) CPUs are simultaneously running, accessing the same shared “external”
memory. Note that PRAM CPUs can model physical processors within a sin-
gle multicore system, as well as distinct computing entities within a distributed
computing environment. We consider an expressive model where the number of
active CPUs may vary over time (as long as the pattern of activation is fixed
a priori). In this sense, PRAMs capture the “best of both” RAM and the cir-
cuit models: A RAM program handles random access but is entirely sequential,
circuits handle parallelism with variable number of parallel resources (i.e., the
circuit width), but not random access; variable CPU PRAMs capture both ran-
dom access and variable parallel resources. We thus put forth the challenge of
designing cryptographic primitives that directly support PRAM computations,
while preserving computational resources (total computational complexity and
parallel time) up to poly logarithmic, while using the same number of parallel
processors.

Oblivious Parallel RAM (OPRAM). A core step toward this goal is to ensure
that secret information is not leaked via the memory access patterns of the
resulting program execution.

A machine is said to be memory oblivious, or simply oblivious, if the sequences
of memory accesses made by the machine on two inputs with the same run-
ning time are identically (or close to identically) distributed. In the late 1970s,
Pippenger and Fischer [PF79] showed that any Turing Machine Π can be com-
piled into an oblivious one Π ′ (where “memory accesses” correspond to the
movement of the head on the tape) with only a logarithmic slowdown in running-
time. Roughly ten years later, Goldreich and Ostrovsky [Gol87,GO96] proposed

Oblivious Parallel RAM and Applications 177

the notion of Oblivious RAM (ORAM), and showed a similar transformation
result with polylogarithmic slowdown. In recent years, ORAM compilers have
become a central tool in developing cryptography for RAM programs, and a great
deal of research has gone toward improving both the asymptotic and concrete
efficiency of ORAM compilers (e.g., [Ajt10,DMN11,GMOT11,KLO12,CP13,
CLP14,GGH+13,SvDS+13,CLP14,WHC+14,RFK+14,WCS14]). However, for
all such compilers, the resulting program is inherently sequential.

In this work, we propose the notion of Oblivious Parallel RAM (OPRAM).
We present the first OPRAM compiler, converting any PRAM into an oblivious
PRAM, while only inducing a polylogarithmic slowdown to both the total and
parallel complexities of the program.

Theorem 1 (OPRAM – Informally Stated). There exists an OPRAM com-
piler with O(log(m) log3(n)) worst-case overhead in total and parallel computa-
tion, and f(n) memory overhead for any f ∈ ω(1), where n is the memory size
and m is an upper-bound on the number of CPUs in the PRAM.

We emphasize that applying even the most highly optimized ORAM compiler to
an m-processor PRAM program inherently inflicts Ω(m log(n)) overhead in the
parallel runtime, in comparison to our O(log(m)polylog(n)). When restricted to
single-CPU programs, our construction incurs slightly greater logarithmic over-
head than the best optimized ORAM compilers (achieving O(log n) overhead
for optimal block sizes); we leave as an interesting open question how to opti-
mize parameters. (As we will elaborate on shortly, some very interesting results
towards addressing this has been obtained in the follow-up work of [CLT15].)

1.1 Applications of OPRAM

ORAM lies at the base of a wide range of applications. In many cases, we can
directly replace the underlying ORAM with an OPRAM to enable parallelism
within the corresponding secure application. For others, simply replacing ORAM
with OPRAM does not suffice; nevertheless, in this paper, we demontrate one
application (garbling of PRAM programs) where they can be overcome; follow-
up works show further applications (secure computation and obfuscation).

Direct Applications of OPRAM. We briefly describe some direct applications of
OPRAM.

Improved/Parallelized Outsourced Data. Standard ORAM has been shown to
yield effective, practical solutions for securely outsourcing data storage to an
untrusted server (e.g., the ObliviStore system of [SS13]). Efficient OPRAM com-
pilers will enable these systems to support secure efficient parallel accesses to
outsourced data. For example, OPRAM procedures securely aggregate parallel
data requests and resolve conflicts client-side, minimizing expensive client-server
communications (as was explored in [WST12], at a smaller scale). As network
latency is a major bottleneck in ORAM implementations, such parallelization
may yield significant improvements in efficiency.

178 E. Boyle et al.

Multi-client Outsourced Data. In a similar vein, use of OPRAM further enables
secure access and manipulation of outsourced shared data by multiple (mutu-
ally trusting) clients. Here, each client can simply act as an independent CPU,
and will execute the OPRAM-compiled program corresponding to the parallel
concatenation of their independent tasks.
Secure Multi-processor Architecture. Much recent work has gone toward imple-
menting secure hardware architectures by using ORAM to prevent information
leakage via access patterns of the secure processor to the potentially insecure
memory (e.g., the Ascend project of [FDD12]). Relying instead on OPRAM
opens the door to achieving secure hardware in the multi-processor setting.

Garbled PRAM (GPRAM). Garbled circuits [Yao82] allow a user to convert
a circuit C and input x into garbled versions C̃ and x̃, in such a way that C̃
can be evaluated on x̃ to reveal the output C(x), but without revealing fur-
ther information on C or x. Garbling schemes have found countless applications
in cryptography, ranging from delegation of computation to secure multi-party
protocols (see below). It was recently shown (using ORAM) how to directly gar-
ble RAM programs [GHL+14,GLOS15], where the cost of evaluating a garbled
program P̃ scales with its RAM (and not circuit) complexity.

In the full version of this paper, we show how to employ any OPRAM com-
piler to attain a garbled PRAM (GPRAM), where the time to generate and
evaluate the garbled PRAM program P̃ scales with the parallel time complexity
of P . Our construction is based on one of the construction of [GHL+14] and
extends it using some of the techniques developed for our OPRAM. Plugging in
our (unconditional) OPRAM construction, we obtain:

Theorem 2 (Garbled PRAM – Informally Stated). Assuming identity-
based encryption, there exists a secure garbled PRAM scheme with total and
parallel overhead poly(κ) · polylog(n), where κ is the security parameter of the
IBE and n is the size of the garbled data.

Secure Two-Party and Multi-party Computation of PRAMs. Secure multi-party
computation (MPC) enables mutually distrusting parties to jointly evaluate
functions on their secret inputs, without revealing information on the inputs
beyond the desired function output. ORAM has become a central tool in achiev-
ing efficient MPC protocols for securely evaluating RAM programs. By instead
relying on OPRAM, these protocols can leverage parallelizability of the evalu-
ated programs.

Our garbled PRAM construction mentioned above yields constant-round
secure protocols where the time to execute the protocol scales with the parallel
time of the program being evaluated. In a companion paper [BCP15], we fur-
ther demonstrates how to use OPRAM to obtain efficient protocols for securely
evaluating PRAMs in the multi-party setting; see [BCP15] for further details.

Obfuscation for PRAMs. In a follow-up work, Chen et al. [CCC+15] rely on our
specific OPRAM construction (and show that it satisfies an additional “punc-
turability” property) to achieve obfuscation for PRAMs.

Oblivious Parallel RAM and Applications 179

1.2 Technical Overview

Begin by considering the simplest idea toward memory obliviousness: Suppose
data is stored in random(-looking) shuffled order, and for each data query i, the
lookup is performed to its permuted location, σ(i). One can see this provides some
level of hiding, but clearly does not suffice for general programs. The problem
with the simple solution is in correlated lookups over time—as soon as item i is
queried again, this collision will be directly revealed. Indeed, hiding correlated
lookups while maintaining efficiency is perhaps the core challenge in building
oblivious RAMs. In order to bypass this problem, ORAM compilers heavily
depend on the ability of the CPU to move data around, and to update its secret
state after each memory access.

However, in the parallel setting, we find ourselves back at square one. Suppose
in some time step, a group of processors all wish to access data item i. Having
all processors attempt to perform the lookup directly within a standard ORAM
construction corresponds to running the ORAM several times without moving
data or updating state. This immediately breaks security in all existing ORAM
compiler constructions. On the other hand, we cannot afford for the CPUs to
“take turns,” accessing and updating the data sequentially.

In this overview, we discuss our techniques for overcoming this and fur-
ther challenges. We describe our solution somewhat abstractly, building on a
sequential ORAM compiler with a tree-based structure as introduced by Shi
et al. [SCSL11]. In our formal construction and analysis, we rely on the specific
tree-based ORAM compiler of Chung and Pass [CP13] that enjoys a particularly
clean description and analysis.

Tree-Based ORAM Compilers. We begin by roughly describing the structure of
tree-based ORAMs, originating in the work of [SCSL11]. At a high level, data is
stored in the structure of a binary tree, where each node of the tree corresponds
to a fixed-size bucket that may hold a collection of data items. Each memory
cell addr in the original database is associated with a random path (equivalently,
leaf) within a binary tree, as specified by a position map pathaddr = Pos(addr).

The schemes maintain three invariants: (1) The content of memory cell addr
will be found in one of the buckets along the path pathaddr. (2) Given the view of
the adversary (i.e., memory accesses) up to any point in time, the current map-
ping Pos appears uniformly random. And, (3) with overwhelming probability, no
node in the binary tree will ever “overflow,” in the sense that its corresponding
memory bucket is instructed to store more items than its fixed capacity.

These invariants are maintained by the following general steps:

1. Lookup: To access a memory item addr, the CPU accesses all buckets down
the path pathaddr, and removes it where found.

2. Data “put-back”: At the conclusion of the access, the memory item addr is
assigned a freshly random path Pos(addr) ← path′

addr, and is returned to the
root node of the tree.

3. Data flush: To ensure the root (and any other bucket) does not overflow, data
is “flushed” down the tree via some procedure. For example, in [SCSL11], the

180 E. Boyle et al.

flush takes place by selecting and emptying two random buckets from each
level into their appropriate children; in [CP13], it takes place by choosing an
independent path in the tree and pushing data items down this path as far
as they will go (see Fig. 1 in Sect. 2.2).

Extending to Parallel RAMs. We must address the following problems with
attempting to access a tree-based ORAM in parallel.

– Parallel Memory Lookups: As discussed, a core challenge is in hiding cor-
relations in parallel CPU accesses. In tree-based ORAMs, if CPUs access dif-
ferent data items in a time step, they will access different paths in the tree,
whereas if they attempt to simultaneously access the same data item, they
will each access the same path in the tree, blatantly revealing a collision.

To solve this problem, before each lookup we insert a CPU-coordination
phase. We observe that in tree-based ORAM schemes, this problem only man-
ifests when CPUs access exactly the same item, otherwise items are associ-
ated with independent leaf nodes, and there are no bad correlations. We thus
resolve this issue by letting the CPUs check—through an oblivious aggrega-
tion operation—whether two (or more) of them wish to access the same data
item; if so, a representative is selected (the CPU with the smallest id) to actu-
ally perform the memory access, and all the others merely perform “dummy”
lookups. Finally, the representative CPU needs to communicate the read value
back to all the other CPUs that wanted to access the same data item; this is
done using an oblivious multi-cast operation.

The challenge is in doing so without introducing too much overhead—
namely, allowing only (per-CPU) memory, computation, and parallel time
polylogarithmic in both the database size and the number of CPUs—and that
itself retains memory obliviousness.

– Parallel “Put-backs”: After a memory cell is accessed, the (possibly
updated) data is assigned a fresh random path and is reinserted to the tree
structure. To maintain the required invariants, the item must be inserted some-
where along its new path, without revealing any information about the path.
In tree-based ORAMs, this is done by reinserting at the root node of the tree.
However, this single node can hold only a small bounded number of elements
(corresponding to the fixed bucket size), whereas the number of processors
m—each with an item to reinsert—may be significantly larger.

To overcome this problem, instead of returning data items to the root, we
directly insert them into level log m of the tree, while ensuring that they are
placed into the correct bucket along their assigned path. Note that level log m
contains m buckets, and since the m items are each assigned to random leaves,
each bucket will in expectation be assigned exactly 1 item.

The challenge in this step is specifying how the m CPUs can insert ele-
ments into the tree while maintaining memory obliviousness. For example, if
each CPU simply inserts their own item into its assigned node, we immedi-
ately leak information about its destination leaf node. To resolve this issue, we
have the CPUs obliviously route items between each other, so that eventually

Oblivious Parallel RAM and Applications 181

the ith CPU holds the items to be insert to the ith node, and all CPUs finally
perform either a real or a dummy write to their corresponding node.

– Preventing Overflows: To ensure that no new overflows are introduced
after inserting m items, we now flush m times instead of once, and all these m
flushes are done in parallel: each CPU simply performs an independent flush.
These parallel flushes may lead to conflicts in nodes accessed (e.g., each flush
operation will likely access the root node). As before, we resolve this issue
by having the CPUs elect some representative to perform the appropriate
operations for each accessed node; note, however, that this step is required
only for correctness, and not for security.

Our construction takes a modular approach. We first specify and analyze our
compiler within a simplified setting, where oblivious communication between
CPUs is “for free.” We then show how to efficiently instantiate the required CPU
communication procedures oblivious routing, oblivious aggregation, and oblivious
multi-cast, and describe the final compiler making use of these procedures. In
this extended abstract, we defer the first step to Appendix 3.1, and focus on the
remaining steps.

1.3 Related Work

Restricted cases of parallelism in Oblivious RAM have appeared in a handful
of prior works. It was observed by Williams, Sion, and Tomescu [WST12] in
their PrivateFS work that existing ORAM compilers can support paralleliza-
tion across data accesses up to the “size of the top level,”1 (in particular, at
most log n), when coordinated through a central trusted entity. We remark
that central coordination is not available in the PRAM model. Goodrich and
Mitzenmacher [GM11] showed that parallel programs in MapReduce format can
be made oblivious by simply replacing the “shuffle” phase (in which data items
with a given key are routed to the corresponding CPU) with a fixed-topology
sorting network. The goal of improving the parallel overhead of ORAM was
studied by Lorch et al. [LPM+13], but does not support compilation of PRAMs
without first sequentializing.

Follow-up Work. As mentioned above, our OPRAM compiler has been used in
the recent works of Boyle, Chung, and Pass [BCP15] and Chen et al. [CCC+15]
to obtain secure multi-party computation for PRAM, and indistinguishabil-
ity obfuscation for PRAM, respectively. A different follow-up work by Nayak
et al. [NWI+15] provides targeted optimizations and an implementation for
secure computation of specific parallel tasks.

Very recently, an exciting follow-up work of Chen, Lin, and Tessaro [CLT15]
builds upon our techniques to obtain two new construction: an OPRAM com-
piler whose overhead in expectation matches that of the best current sequential
ORAM [SvDS+13]; and, a general transformation taking any generic ORAM

1 E.g., for tree-based ORAMs, the size of the root bucket.

182 E. Boyle et al.

compiler to an OPRAM compiler with log n overhead in expectation. Their
OPRAM constructions, however, only apply to the special case of PRAM with a
fixed number of processors being activated at every step (whereas our notion of
a PRAM requires handling also a variable number of processors2); for the case
of variable CPU PRAMs, the results of [CLT15] incurr an additional multlica-
tive overhead of m in terms of computational complexity, and thus the bounds
obtained are incomparable.

2 Preliminaries

2.1 Parallel RAM (PRAM) Programs

We consider the most general case of Concurrent Read Concurrent Write
(CRCW) PRAMs. An m-processor CRCW parallel random-access machine
(PRAM) with memory size n consists of numbered processors CPU1, . . . , CPUm,
each with local memory registers of size log n, which operate synchronously in
parallel and can make access to shared “external” memory of size n.

A PRAM program Π (given m,n, and some input x stored in shared memory)
provides CPU-specific execution instructions, which can access the shared data
via commands Access(r, v), where r ∈ [n] is an index to a memory location, and
v is a word (of size log n) or ⊥. Each Access(r, v) instruction is executed as:

1. Read from shared memory cell address r; denote value by vold.
2. Write value v �= ⊥ to address r (if v = ⊥, then take no action).
3. Return vold.

In the case that two or more processors simultaneously initiate Access(r, vi) with
the same address r, then all requesting processors receive the previously existing
memory value vold, and the memory is rewritten with the value vi corresponding
to the lowest-numbered CPU i for which vi �= ⊥.

We more generally support PRAM programs with a dynamic number of
processors (i.e., mi processors required for each time step i of the computation),
as long as this sequence of processor numbers m1,m2, . . . is public information.
The complexity of our OPRAM solution will scale with the number of required
processors in each round, instead of the maximum number of required processors.

The (parallel) time complexity of a PRAM program Π is the maximum num-
ber of time steps taken by any processor to evaluate Π, where each Access
execution is charged as a single step. The PRAM complexity of a function f is
defined as the minimal parallel time complexity of any PRAM program which
evaluates f . We remark that the PRAM complexity of any function f is bounded
above by its circuit depth complexity.

2 As previously mentioned, dealing with a variable number of processors is needed to
capture standard circuit models of computation, where the circuit topology may be
of varying width.

Oblivious Parallel RAM and Applications 183

Remark 1 (CPU-to-CPU Communication). It will be sometimes convenient
notationally to assume that CPUs may communicate directly amongst them-
selves. When the identities of sending and receiving CPUs is known a priori
(which will always be the case in our constructions), such communication can be
emulated in the standard PRAM model with constant overhead by communicat-
ing through memory. That is, each action “CPU1 sends message m to CPU2” is
implemented in two time steps: First, CPU1 writes m into a special designated
memory location addrCPU1; in the following time step, CPU2 performs a read
access to addrCPU1 to learn the value m.

2.2 Tree-Based ORAM

Concretely, our solution relies on the ORAM due to Chung and Pass [CP13],
which in turn closely follows the tree-based ORAM construction of Shi
et al. [SCSL11]. We now recall the [CP13] construction in greater detail, in
order to introduce notation for the remainder of the paper.

The [CP13] construction (as with [SCSL11]) proceeds by first presenting
an intermediate solution achieving obliviousness, but in which the CPU must
maintain a large number of registers (specifically, providing a means for securely
storing n data items requiring CPU state size Θ̃(n/α), where α > 1 is any
constant). Then, this solution is recursively applied logα n times to store the
resulting CPU state, until finally reaching a CPU state size polylog(n), while
only blowing up the computational overhead by a factor logα n. The overall
compiler is fully specified by describing one level of this recursion.

Step 1: Basic ORAM with O(n) Registers. The compiler ORAM on input n ∈ N

and a program Π with memory size n outputs a program Π ′ that is identical
to Π but each Read(r) or Write(r, val) is replaced by corresponding commands
ORead(r), OWrite(r, val) to be specified shortly. Π ′ has the same registers as
Π and additionally has n/α registers used to store a position map Pos plus a
polylogarithmic number of additional work registers used by ORead and OWrite.
In its external memory, Π ′ will maintain a complete binary tree Γ of depth

 = log(n/α); we index nodes in the tree by a binary string of length at most
,
where the root is indexed by the empty string λ, and each node indexed by γ
has left and right children indexed γ0 and γ1, respectively. Each memory cell r
will be associated with a random leaf pos in the tree, specified by the position
map Pos; as we shall see shortly, the memory cell r will be stored at one of the
nodes on the path from the root λ to the leaf pos. To ensure that the position
map is smaller than the memory size, we assign a block of α consecutive memory
cells to the same leaf; thus memory cell r corresponding to block b = �r/α� will
be associated with leaf pos = Pos(b).

Each node in the tree is associated with a bucket which stores (at most) K
tuples (b, pos, v), where v is the content of block b and pos is the leaf associated
with the block b, and K ∈ ω(log n)∩polylog(n) is a parameter that will determine
the security of the ORAM (thus each bucket stores K(α+2) words). We assume
that all registers and memory cells are initialized with a special symbol ⊥.

184 E. Boyle et al.

λ

0 1

00 01 10 11

000 001 010 011 100 101 110 111

value of memory cell r is found somewhere on path from λ to pos = 011

flush along random path from λ to pos∗ = 110

1 2 3 b = � r
α� n

α
n
α − 1· · ·

· · · · · ·

· · ·
pos =
011

Position Map Pos

ORAM Tree Γ

position of memory cell r is found here

Fig. 1. Illustration of the basic [CP13] ORAM construction.

The following is a specification of the ORead(r) procedure:

Fetch: Let b = �r/α� be the block containing memory cell r (in the original
database), and let i = r mod α be r’s component within the block b. We
first look up the position of the block b using the position map: pos = Pos(b);
if Pos(b) =⊥, set pos ← [n/α] to be a uniformly random leaf.

Next, traverse the data tree from the root to the leaf pos, making exactly
one read and one write operation for the memory bucket associated with each
of the nodes along the path. More precisely, we read the content once, and
then we either write it back (unchanged), or we simply “erase it” (writing
⊥) so as to implement the following task: search for a tuple of the form
(b, pos, v) for the desired b, pos in any of the nodes during the traversal; if
such a tuple is found, remove it from its place in the tree and set v to the
found value, and otherwise take v =⊥. Finally, return the ith component of
v as the output of the ORead(r) operation.

Update Position Map: Pick a uniformly random leak pos′ ← [n/α] and let
Pos(b) = pos′.

Put Back: Add the tuple (b, pos′, v) to the root λ of the tree. If there is not
enough space left in the bucket, abort outputting overflow.

Flush: Pick a uniformly random leaf pos∗ ← [n/α] and traverse the tree from
the roof to the leaf pos∗, making exactly one read and one write operation
for every memory cell associated with the nodes along the path so as to
implement the following task: “push down” each tuple (b′′, pos′′, v′′) read in

Oblivious Parallel RAM and Applications 185

the nodes traversed so far as possible along the path to pos∗ while ensuring
that the tuple is still on the path to its associated leaf pos′′ (that is, the tuple
ends up in the node γ = longest common prefix of pos′′ and pos∗.) Note that
this operation can be performed trivially as long as the CPU has sufficiently
many work registers to load two whole buckets into memory; since the bucket
size is polylogarithmic, this is possible. If at any point some bucket is about
to overflow, abort outputting overflow.

OWrite(r, v) proceeds identically in the same steps as ORead(r), except that in
the “Put Back” steps, we add the tuple (b, pos′, v′), where v′ is the string v
but the ith component is set to v (instead of adding the tuple (b, pos′, v) as
in ORead). (Note that, just as ORead, OWrite also outputs the ordinal memory
content of the memory cell r; this feature will be useful in the “full-fledged”
construction.)

The Full-fledged Construction: ORAM with Polylog Registers. The full-fledged
construction of the CP ORAM proceeds as above, except that instead of storing
the position map in registers in the CPU, we now recursively store them in
another ORAM (which only needs to operate on n/α memory cells, but still
using buckets that store K tuples). Recall that each invocation of ORead and
OWrite requires reading one position in the position map and updating its value
to a random leaf; that is, we need to perform a single recursive OWrite call (recall
that OWrite updates the value in a memory cell, and returns the old value) to
emulate the position map.

At the base of the recursion, when the position map is of constant size, we
use the trivial ORAM construction which simply stores the position map in the
CPU registers.

Theorem 3 ([CP13]). The compiler ORAM described above is a secure Oblivi-
ous RAM compiler with polylog(n) worst-case computation overhead and ω(log n)
memory overhead, where n is the database memory size.

2.3 Sorting Networks

Our protocol will employ an n-wire sorting network, which can be used to sort
values on n wires via a fixed topology of comparisons. A sorting network consists
of a sequence of layers, each layer in turn consisting of one or more comparator
gates, which take two wires as input, and swap the values when in unsorted
order. Formally, given input values x = (x1, . . . , xn) (which we assume to be
integers wlog), a comparator operation compare(i, j,x) for i < j returns x′ where
x = x′ if xi ≤ xj , and otherwise, swaps these values as x′

i = xj and x′
j = xi

(whereas x′
k = xk for all k �= i, j). Formally, a layer in the sorting network is

a set L = {(i1, j1), . . . , (ik, jk)} of pairwise-disjoint pairs of distinct indices of
[n]. A d-depth sorting network is a list SN = (L1, . . . , Ld) of layers, with the
property that for any input vector x, the final output will be in sorted order
xi ≤ xi+1 ∀i < n.

186 E. Boyle et al.

Ajtai, Komlós, and Szemerédi demonstrated a sorting network with depth
logarithmic in n.

Theorem 4 ([AKS83]). There exists an n-wire sorting network of depth
O(log n) and size O(n log n).

While the AKS sorting network is asymptotically optimal, in practical
scenarios one may wish to use the simpler alternative construction due to
Batcher [Bat68] which achieves significantly smaller linear constants.

3 Oblivious PRAM

The definition of an Oblivious PRAM (OPRAM) compiler mirrors that of stan-
dard ORAM, with the exception that the compiler takes as input and produces as
output a parallel RAM program. Namely, denote the sequence of shared memory
cell accesses made during an execution of a PRAM program Π on input (m,n, x)
as Π̃(m,n, x). And, denote by ActivationPatterns(Π,m, n., x) the (public) CPU
activation patterns (i.e., number of active CPUs per timestep) of program Π on
input (m,n, x). We present a definition of an OPRAM compiler following Chung
and Pass [CP13], which in turn follows Goldreich [Gol87].

Definition 1 (Oblivious Parallel RAM). A polynomial-time algorithm O is
an Oblivious Parallel RAM (OPRAM) compiler with computational overhead
comp(·, ·) and memory overhead mem(·, ·), if O given m,n ∈ N and a determin-
istic m-processor PRAM program Π with memory size n, outputs an m-processor
program Π ′ with memory size mem(m,n) · n such that for any input x, the par-
allel running time of Π ′(m,n, x) is bounded by comp(m,n) · T , where T is the
parallel runtime of Π(m,n, x), and there exists a negligible function μ such that
the following properties hold:

– Correctness: For any m,n ∈ N and any string x ∈ {0, 1}∗, with probability
at least 1 − μ(n), it holds that Π(m,n, x) = Π ′(m,n, x).

– Obliviousness: For any two PRAM programs Π1,Π2, any m,n ∈ N,
and any two inputs x1, x2 ∈ {0, 1}∗, if |Π1(m,n, x1)| = |Π2(m,n, x2)|
and ActivationPatterns(Π1,m, n, x1)) = ActivationPatterns(Π2,m, n, x2), then
Π̃ ′

1(m,n, x1) is μ-close to Π̃ ′
2(m,n, x2) in statistical distance, where Π ′

i ←
O(m,n,Πi) for i ∈ {1, 2}.

We remark that not all m processors may be active in every time step of a
PRAM program Π, and thus its total computation cost may be significantly less
than m·T . We wish to consider OPRAM compilers that also preserve the proces-
sor activation structure (and thus total computation complexity) of the original
program up to polylogarithmic overhead. Of course, we cannot hope to do so if
the processor activation patterns themselves reveal information about the secret
data. We thus consider PRAMs Π whose activation schedules (m1, . . . , mT) are
a-priori fixed and public.

Oblivious Parallel RAM and Applications 187

Definition 2 (Activation-Preserving). An OPRAM compiler O with com-
putation overhead comp(·, ·) is said to be activation preserving if given m,n ∈ N

and a deterministic PRAM program Π with memory size n and fixed (public)
activation schedule (m1, . . . , mT) for mi ≤ m, the program Π ′ output by O has
activation schedule

(
(m1)t

i=1, (m2)t
i=1, . . . , (mT)t

i=1

)
, where t = comp(m,n).

It will additionally be useful in applications (e.g., our construction of garbled
PRAMs, and the MPC for PRAMs of [BCP15]) that the resulting oblivious
PRAM is collision free.

Definition 3 (Collision-Free). An OPRAM compiler O is said to be collision
free if given m,n ∈ N and a deterministic PRAM program Π with memory size
n, the program Π ′ output by O has the property that no two processors ever
access the same data address in the same timestep.

We now present our main result, which we construct and prove in the follow-
ing subsections.

Theorem 5 (Main Theorem: OPRAM). There exists an activation-
preserving, collision-free OPRAM compiler with O(log(m) log3(n)) worst-case
computational overhead and f(n) memory overhead, for any f ∈ ω(1), where n
is the memory size and m is the number of CPUs.

3.1 Rudimentary Solution: Requiring Large Bandwidth

We first provide a solution for a simplified case, where we are not concerned
with minimizing communication between CPUs or the size of required CPU local
memory. In such setting, communicating and aggregating information between
all CPUs is “for free.”

Our compiler Heavy-O, on input m,n ∈ N, fixed integer constant α > 1,
and m-processor PRAM program Π with memory size n, outputs a program
Π ′ identical to Π, but with each Access(r, v) operation replaced by the modified
procedure Heavy-OPAccess as defined in Fig. 2. (Here, “broadcast” means to send
the specified message to all other processors).

Note that Heavy-OPAccess operates recursively for t = 0, . . . , �logα n�. This
corresponds analogously to the recursion in the [SCSL11,CP13] ORAM, where
in each step the size of the required “secure database memory” drops by a
constant factor α. We additionally utilize a space optimization due to Gentry
et al. [GGH+13] that applies to [CP13], where the ORAM tree used for storing
data of size n′ has depth log n′/K (and thus n′/K leaves instead of n′), where
K is the bucket size. This enables the overall memory overhead to drop from
ω(log n) (i.e., K) to ω(1) with minimal changes to the analysis.

Lemma 1. For any n,m ∈ N, The compiler Heavy-O is a secure Oblivious
PRAM compiler with parallel time overhead O(log3 n) and memory overhead
ω(1), assuming each CPU has Ω̃(m) local memory.

188 E. Boyle et al.

Heavy-OPAccess(t, (ri, vi)): The Large Bandwidth Case
To be executed by CPU1, . . . , CPUm w.r.t. (recursive) database size nt := n/(αt),
bucket size K.

Input: Each CPUi holds: recursion level t, instruction pair (ri, vi) with ri ∈ [nt], global
parameter α.

Each CPUi performs the following steps, in parallel

0. Exit Case: If t ≥ logα n, return 0.
This corresponds to requesting the (trivial) position map for a block within a
single-leaf tree.

1. Conflict Resolution
(a) Broadcast the instruction pair (ri, vi) to all CPUs.
(b) Let bi = �ri/α�. Locally aggregate incoming instructions to block bi as

v̄i = v̄i[1] · · · v̄i[α], resolving write conflicts (i.e., ∀s ∈ [α], take v̄i[s] ← vj

for minimal j such that rj = biα + s).
Denote by rep(bi) := min{j : �rj/α� = bi} the smallest index j of any CPU
whose rj is in this block bi. (CPU rep(bi) will actually access bi, while others
perform dummy accesses).

2. Recursive Access to Position Map (Define Lt := 2nt/K, number of leaves in t’th
tree).
If i = rep(bi): Sample fresh leaf id �′

i ← [Lt]. Recurse as �i ← Heavy-OPAccess(t +
1, (bi, �

′
i)) to read the current value �i of Pos(bi) and rewrite it with �′

i.
Else: Recursively initiate dummy access x ← Heavy-OPAccess(t+1, (1, ⊥)) at arbi-
trary address (say 1); ignore the read value x. Sample fresh random leaf id �i ← [Lt]
for a dummy lookup.

3. Look Up Current Memory Values
Read the memory contents of all buckets down the path to leaf node �i defined in
the previous step, copying all buckets into local memory.
If i = rep(bi): locate and store target block triple (bi, v

old
i , �i). Update v̄ from Step

1 with existing data: ∀s ∈ [α], replace any non-written cell values v̄i[s] = ∅ with
v̄i[s] ← vold

i [s]. v̄i now stores the entire data block to be rewritten for block bi.
4. Remove Old Data from ORAM Database

(a) If i = rep(bi): Broadcast (bi, �i) to all CPUs. Otherwise: broadcast (⊥, �i).
(b) Initiate UpdateBuckets nt, (remove-bi, �i), {(remove-bj , �j)}j∈[m]\{i}

)
, as in

Figure 3.
5. Insert New Data into Database in Parallel

(a) If i = rep(bi): Broadcast (bi, v̄i, �
′
i), with updated value v̄i and target leaf �′

i.
(b) Let lev∗ := �log(min{m, Lt})� be the ORAM tree level with number of buck-

ets equal to number of CPUs (the level where data will be inserted). Lo-
cally aggregate all incoming instructions whose path �′

j has lev∗-bit prefix i:

Inserti := {(bj , v̄j , �
′
j) : (�′

j)
(lev∗) = i}.

(c) Access memory bucket i (at level lev∗) and rewrite contents, inserting data
items Inserti. If bucket i exceeds its capacity, abort with overflow.

6. Flush the ORAM Database

(a) Sample a random leaf node �flushi ← [Lt] along which to flush. Broadcast �flushi .
(b) If i ≤ Lt: Initiate UpdateBuckets nt, (flush, �

flush
i), {(flush, �flushj)}j∈[m]\{i}

)
, in

Figure 3.
Recall that flush means to “push” each encountered triple (b, �, v) down to the
lowest point at which his chosen flush path and � agree.

7. Update CPUs
If i = rep(bi): broadcast the old value vold

i of block bi to all CPUs.

Fig. 2. Pseudocode for oblivious parallel data access procedure Heavy-OPAccess (where
we are temporarily not concerned with per-round bandwidth/memory).

Oblivious Parallel RAM and Applications 189

UpdateBuckets nt, (mycommand,mypath), {(commandj , pathj)}j∈[m]\{i}
)

Let path(0), . . . , path(log Lt) denote the bit prefixes of length 0 (i.e., ∅) to log(Lt) of path.
For each tree level lev = 0 to log Lt, each CPU i does the following at bucket mypath(lev):

1. Define CPUs(mypath(lev)) := {i} ∪ {j : path
(lev)
j = mypath(lev)} to be the set of

CPUs requesting changes to bucket mypath(lev). Let bucket-rep(mypath(lev)) denote
the minimal index in the set.

2. If i �= bucket-rep(mypath(lev)), do nothing. Otherwise:
Case 1: mycommand = remove-bi.

Interpret each commandj = remove-bj as a target block id bj to be removed.
Access memory bucket mypath(lev) and rewrite contents, removing any block
bj for which j ∈ CPUs(mypath(lev)).

Case 2: mycommand = flush.
Define Flush ⊂ {L, R} as {v : ∃ pathj s.t. path

(lev+1)
j = mypath(lev)||v}, associ-

ating L ≡ 0, R ≡ 1. This determines whether data will be flushed left and/or
right from this bucket.
Access memory bucket mypath(lev); denote its collection of stored data blocks
b by ThisBucket. Partition ThisBucket = ThisBucket-L ∪ ThisBucket-R into
those blocks whose associated leaves continue to the left or right (i.e.,

ThisBucket-L := {bj ∈ ThisBucket : �̄
(lev+1)
j = mypath(lev)||0}, and similar for 1).

– If L ∈ Flush, then set ThisBucket ← ThisBucket \ ThisBucket-L, access
memory bucket mypath(lev)||0, and insert data items ThisBucket-L into it.

– If R ∈ Flush, then set ThisBucket ← ThisBucket \ ThisBucket-R, access
memory bucket mypath(lev)||1, and insert data items ThisBucket-R into it.

Rewrite the contents of bucket mypath(lev) with updated value of ThisBucket.
If any bucket exceeds its capacity, abort with overflow.

Fig. 3. Procedure for combining CPUs’ instructions for buckets and implementing
them by a single representative CPU. (Used for correctness, not security). See Fig. 4
for a sample illustration.

We will address the desired claims of correctness, security, and complex-
ity of the Heavy-O compiler by induction on the number of levels of recur-
sion. Namely, for t∗ ∈ [logα n], denote by Heavy-Ot∗ the compiler that acts
on memory size n/(αt∗

) by executing Heavy-O only on recursion levels t =
t∗, (t∗ + 1), . . . , �logα n�. For each such t∗, we define the following property.

Level-t∗ Heavy OPRAM: We say that Heavy-Ot∗ is a valid level-t∗ heavy
OPRAM if the partial-recursion compiler Heavy-Ot∗ is a secure Oblivi-
ous PRAM compiler for memory size n/(αt∗

) with parallel time overhead
O(log2 n · log(n/αt∗

)) and memory overhead ω(1), assuming each CPU has
Ω̃(m) local memory.

Then Lemma 1 follows directly from the following two claims.

Claim. Heavy-Ologα n is valid level-(logα n) heavy OPRAM.

Proof. Note that Heavy-Ologα n, acting on trivial size-1 memory, corresponds
directly to the exit case (Step 0) of Heavy-OPAccess in Fig. 2. Namely, correctness,

190 E. Boyle et al.

security, and the required efficiency trivially hold, since there is a single data item
in a fixed location to access.

Claim. Suppose Heavy-Ot is a valid level-t heavy OPRAM for t > 0. Then
Heavy-Ot−1 is a valid level-(t − 1) heavy OPRAM.

Proof. We first analyze the correctness, security, and complexity overhead of
Heavy-Ot−1 conditioned on never reaching the event overflow (which may occur
in Step 5(c), or within the call to UpdateBuckets). Then, we prove that the
probability of overflow is negligible in n.

Correctness (w/o overflow). Consider the state of the memory (of the CPUs and
server) in each step of Heavy-OPAccess, assuming no overflow. In Step 1, each
CPU learns the instruction pairs of all other CPUs; thus all CPUs agree on single
representative rep(bi) for each requested block bi, and a correct aggregation of
all instructions to be performed on this block. Step 2 is a recursive execution
of Heavy-OPAccess. By the inductive hypothesis, this access successfully returns
the correct value
i of Pos(bi) for each bi queried, and rewrites it with the freshly
sampled value
′

i when specified (i.e., for each rep(bi) access; the dummy accesses
are read-only). We are thus guaranteed that each rep(bi) will find the desired
block bi in Step 3 when accessing the memory buckets in the path down the
tree to leaf
i (as we assume no overflow was encountered), and so will learn the
current stored data value vold.

In Step 4, each CPU learns the target block bi and associated leaf
i of every
representative CPU rep(bi). By construction, each requested block bi appears in
some bucket B in the tree along his path, and there will necessarily be some CPU
assigned as bucket-rep(B) in UpdateBuckets, who will then successfully remove

CPU1

CPU2

CPU3
1

2

3

3

2

2

1

1

1

Fig. 4. UpdateBuckets sample illustration. Here, CPUs 1-3 each wish to modify nodes
along their paths as drawn; for each overlapping node, the CPU with lowest id receives
and implements the aggregated commands for the node.

Oblivious Parallel RAM and Applications 191

the block bi from B. At this point, none of the requested blocks bi appear in the
tree.

In Step 5, the CPUs insert each block bi (with updated data value vi) into
the ORAM data tree at level min{logα n/αt, �log2(m)�} along the path to its
(new) leaf
′

i.
Finally, the flushing procedure in Step 6 maintains the necessary property

that each block bi appears along the path to Pos(bi), and in Step 7 all CPUs
learn the collection of all queried values vold (in particular, including the value
they initially requested).

Thus, assuming no overflow, correctness holds.

Obliviousness (w/o overflow). Consider the access patterns to server-side mem-
ory in each step of Heavy-OPAccess, assuming no overflow. Step 1 is performed
locally without communication to the server. Step 2 is a recursive execution of
Heavy-OPAccess, which thus yields access patterns independent of the vector of
queried data locations (up to statistical distance negligible in n), by the induc-
tion hypothesis. In Step 3, each CPU accesses the buckets along a single path
down the tree, where representative CPUs rep(bi) access along the path given by
Pos(bi) (for distinct bi), and non-representative CPUs each access down an inde-
pendent, random path. Since the adversarial view so far has been independent of
the values of Pos(bi), conditioned on this view all CPU’s paths are independent
and random.

In Step 4, all data access patterns are publicly determinable based on the
accesses in the previous step (that is, the complication in Step 4 is to ensure cor-
rectness without access collisions, but is not needed for security). In Step 5, each
CPU i accesses his corresponding bucket i in the tree. In the flushing procedure
of Step 6, each CPU selects an independent, random path down the tree, and the
communication patterns to the server reveal no information beyond the identi-
ties of these paths. Finally, Step 7 is performed locally without communication
to the server.

Thus, assuming no overflow, obliviousness holds.

Protocol Complexity (w/o overflow). First note that the server-side memory stor-
age requirement is simply that of the [CP13] ORAM construction, together with
the log(2nt/K) tree-depth memory optimization of [GHL+14]; namely, f(n)
memory overhead suffices for any f ∈ ω(1).

Consider the local memory required per CPU. Each CPU must be able to
store: O(log n)-size requests from each CPU (due to the broadcasts in Steps 1(a),
4(a), 5(a), and 7); and the data contents of at most 3 memory buckets (due to
the flushing procedure in UpdateBuckets). Overall, this yields a per-CPU local
memory requirement of Ω̃(m) (where Ω̃ notation hides log n factors).

Consider the parallel complexity of the OPRAM-compiled program Π ′ ←
Heavy-O(m,n,Π). For each parallel memory access in the underlying pro-
gram Π, the processors perform: Conflict resolution (1 local communica-
tion round), Read/writing the position map (which has parallel complexity
O(log2 n · log(n/αt)) by the inductive hypothesis), Looking up current memory
values (sequential steps = depth of level-(t − 1) ORAM tree ∈ O(log(n/αt−1))),

192 E. Boyle et al.

Removing old data from the ORAM tree (1 local communication round, plus
depth of the ORAM tree ∈ O(log(n/αt−1)) sequential steps), Inserting the new
data in parallel (1 local communication round, plus 1 communication round to
the server), Flushing the ORAM database (1 local communication round, and
2× the depth of the ORAM tree rounds of communication with the server, since
each bucket along a flush path is accessed once to receive new data items and
once to flush its own data items down), and Updating CPUs with the read val-
ues (1 local communication round). Altogether, this yields parallel complexity
overhead O(log2 n · log(n/αt−1)).

It remains to address the probability of encountering overflow.

Claim. There exists a negligible function μ such that for any deterministic m-
processor PRAM program Π, any database size n, and any input x, the probabil-
ity that the Heavy-O-compiled program Π ′(m,n, x) outputs overflow is bounded
by μ(n).

Proof. We consider separately the probability of overflow in each of the level-t
recursive ORAM trees. Since there are �log n� of them, the claim follows by a
straightforward union bound.

Taking inspiration from [CP13], we analyze the ORAM-compiled execution
via an abstract dart game. The game consists of black and white darts. In each
round of the game, m black darts are thrown, followed by m white darts. Each
dart independently hits the bullseye with probability p = 1/m. The game con-
tinues until exactly K darts have hit the bullseye (recall K ∈ ω(log n) is the
bucket size), or after the end of the T th round for some fixed polynomial bound
T = T (n), whichever comes first. The game is “won” (which will correspond to
overflow in a particular bucket) if K darts hit the bullseye, and all of them are
black.

Let us analyze the probability of winning in the above dart game.

Subclaim 1: With overwhelming probability in n, no more than K/2 darts hit the
bullseye in any round. In any single round, associate with each of the 2 ·m darts
thrown an indicator variable Xi for whether the dart strikes the target. The Xi

are independent random variables each equal to 1 with probability p = 1/m.
Thus, the probability that more than K/2 of the darts hit the target is bounded
(via a Chernoff tail bound3) by

Pr

[
2m∑

i=1

Xi > K/2

]

≤ e
2(K/4−1)2

2+(K/4−1) ≤ e−Ω(K) ≤ e−ω(log n).

Since there are at most T = poly(n) distinct rounds of the game, the subclaim
follows by a union bound.

Subclaim 2: Conditioned on no round having more than K/2 bullseyes, the prob-
ability of winning the game is negligible in d. Fix an arbitrary such winning
3 Explicit Chernoff bound used: for X = X1 + · · · X2m (Xi independent) and mean μ,

then for any δ > 0, it holds that Pr[X > (1 + δ)μ] ≤ e−δ2μ/(2+δ).

Oblivious Parallel RAM and Applications 193

sequence s, which terminates sometime during some round r of the game. By
assumption, the final partial round r contains no more than K/2 bullseyes. For
the remaining K/2 bullseyes in rounds 1 through r − 1, we are in a situation
mirroring that of [CP13]: for each such winning sequence s, there exist 2K/2 − 1
distinct other “losing” sequences s′ that each occur with the same probability,
where any non-empty subset of black darts hitting the bullseye are replaced with
their corresponding white darts. Further, every two distinct winning sequences
s1, s2 yield disjoint sets of losing sequences, and all such constructed sequences
have the property that no round has more than K/2 bullseyes (since this number
of total bullseyes per round is preserved). Thus, conditioned on having no round
with more than K/2 bullseyes, the probability of winning the game is bounded
above by 2−K/2 ∈ e−ω(log n).

We now relate the dart game to the analysis of our OPRAM compiler.
We analyze the memory buckets at the nodes in the t-th recursive ORAM

tree, via three sub-cases.
Case 1: Nodes in level lev < log m. Since data items are inserted to the tree

in parallel directly at level log m, these nodes do not receive data, and thus will
not overflow.

Case 2: Consider any internal node (i.e., a node that is not a leaf) γ in the
tree at level log m ≤ lev < log(Lt). (Recall Lt := 2nt/K is the number of leaves
in the t’th tree when applying the [GHL+14] optimization). Note that when
m > Lt, this case is vacuous. For purposes of analysis, consider the contents of γ
as split into two parts: γL containing the data blocks whose leaf path continues
to the left from γ (i.e., leaf γ||0||·), and γR containing the data blocks whose leaf
path continues right (i.e., γ||1||·). For the bucket of node γ to overflow, there
must be K tuples in it. In particular, either γL or γR must have K/2 tuples.

For each parallel memory access in Π(m,n, x), in the t-th recursive ORAM
tree for which nt ≥ m/K, (at most) m data items are inserted, and then m
independent paths in the tree are flushed. By definition, an inserted data item
will enter our bucket γL (respectively, γR) only if its associated leaf has the prefix
γ||0 (resp., γ||1); we will assume the worst case in which all such data items
arrive directly to the bucket. On the other hand, the bucket γL (resp., γR) will
be completely emptied after any flush whose path contains this same prefix γ||0
(resp., γ||1). Since all leaves for inserted data items and data flushes are chosen
randomly and independently, these events correspond directly to the black and
white darts in the game above. Namely, the probability that a randomly chosen
path will have the specific prefix γ||0 of length lev is 2−lev ≤ 1/m (since we
consider lev ≥ log m); this corresponds to the probability of a dart hitting the
bullseye. The bucket can only overflow if K/2 “black darts” (inserts) hit the
bullseye without any “white dart” (flush) hitting the bullseye in between. By
the analysis above, we proved that for any sequence of K/2 bullseye hits, the
probability that all K/2 of them are black is bounded above by 2−K/4, which is
negligible in n. However, since there is a fixed polynomial number T = poly(n)
of parallel memory accesses in the execution of Π(m,n, x) (corresponding to
the number of “rounds” in the dart game), and in particular, T (2m) ∈ poly(n)
total darts thrown, the probability that the sequence of bullseyes contains K/2

194 E. Boyle et al.

sequential blacks anywhere in the sequence is bounded via a direct union bound
by (T2m)2−K/4 ∈ e−ω(log n), as desired.

Case 3: Consider any leaf node γ. This analysis follows the same argument
as in [CP13] (with slightly tweaked parameters from the [GHL+14] tree-depth
optimization). We refer the reader to the full version of this work for details.

Thus, the total probability of overflow is negligible in n, and the theorem
follows.

3.2 Oblivious Routing, Aggregation, and Multi-cast

Oblivious Parallel Insertion (Oblivious Routing). Recall during the mem-
ory “put-back” phase, each CPU must insert its data item into the bucket at
level log m of the tree lying along a freshly sampled random path, while hiding
the path.

We solve this problem by delivering data items to their target locations via
a fixed-topology routing network. Namely, the m processors CPU1, . . . , CPUm

will first write the relevant m data items msgi (and their corresponding desti-
nation addresses addri) to memory in fixed order, and then rearrange them in
log m sequential rounds to the proper locations via the routing network. At the
conclusion of the routing procedure, each node j will hold all messages msgi for
which addri = j.

For simplicity, assume m = 2� for some
 ∈ N. The routing network has
depth
; in each level t = 1, . . . ,
, each node communicates with the correspond-
ing node whose id agrees in all bit locations except for the tth (correspond-
ing to his tth neighbor in the log m-dimensional boolean hypercube). These
nodes exchange messages according to the tth bit of their destination addresses
addri. This is formally described in Fig. 5. After the tth round, each message
msgi is held by a party whose id agrees with the destination address addri in
the first t bits. Thus, at the conclusion of
 rounds, all messages are properly
delivered.

We demonstrate the case m = 8 = 23 below: first, CPUs exchange infor-
mation along the depicted communication network in 3 sequential rounds (left);
then, each CPU i inserts his resulting collection of items directly into node i of
level 3 of the data tree (right).

CPUs
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Oblivious Parallel RAM and Applications 195

Parallel Insertion Routing Protocol Route(m, (msgi, addri))
Input: CPUi holds: message msgi with target destination addri, and global threshold K.
Output: CPUi holds {msgj : addrj = i}.

Let lev∗ = log m (assumed ∈ N for simplicity). Each CPUi performs the following.

Initialize Mi,0 ← msgi. For t = 1, . . . , lev∗:
1. Perform the following symmetric message exchange with CPUi⊕2t :

Mi,t+1 ← {msgj ∈ Mi,t ∪ Mi⊕2t,t : (addrj)t = (i)t}.
2. If |Mi,t+1| > K (i.e., memory overflow), then CPUi aborts.

Fig. 5. Fixed-topology routing network for delivering m messages originally held by m
processors to their corresponding destination addresses within [m].

In the full version, we show that if the destination addresses addri are uni-
formly sampled, then with overwhelming probability no node will ever need to
hold too many (the threshold K will be set to ω(log n)) messages at any point
during the routing network execution:

Lemma 2 (Routing Network). If L messages begin with target destination
addresses addri distributed independently and uniformly over [L] in the L-to-L
node routing network in Fig. 5, then with probability bounded by 1−(L log L)2−K ,
no intermediate node will ever hold greater than K messages at any point during
the course of the protocol execution.

Oblivious Aggregation. To perform the “CPU-coordination” phase, the
CPUs efficiently identify a single representative and aggregate relevant CPU
instructions; then, at the conclusion, the representative CPU must be able to
multi-cast the resulting information to all relevant requesting CPUs. Most impor-
tantly, these procedures must be done in an oblivious fashion. We discuss obliv-
ious aggregation first.

Formally, we want to achieve the following aggregation goal, with communi-
cation patterns independent of the inputs, using only O(log(m)polylog(n)) local
memory and communication per CPU, in only O(log(m)) sequential time steps.
An illustrative example to keep in mind is where keyi = bi, datai = vi, and Agg
is the process that combines instructions to data items within the same data
block, resolving conflicts as necessary.

Oblivious aggregation

Input: Each CPU i ∈ [m] holds (keyi, datai). Let K =
⋃

{keyi} denote the set of
distinct keys. We assume that any (subset of) data associated with the same
key can be aggregated by an aggregation function Agg to a short digest of
size at most poly(
, log m), where
 = |datai|.

Goal: Each CPU i outputs outi such that the following holds.
– For every key ∈ K, there exists unique agent i with keyi = key s.t. outi =
(rep, key, aggkey), where aggkey = Agg({dataj : keyj = key}).
– For every remaining agent i, outi = (⊥,⊥).

196 E. Boyle et al.

At a high level, we achieve this via the following steps. (1) First, the CPUs
sort their data list with respect to the corresponding key values. This can be
achieved via an implementation of a log(m)-depth sorting network, and provides
the useful guarantee that all data pertaining to the same key are necessarily
held by an block of adjacent CPUs. (2) Second, we pass data among CPUs in a
sequence of log(m) steps such that at the conclusion the “left-most” (i.e., lowest
indexed) CPU in each key-block will learn the aggregation of all data pertain-
ing to this key. Explicitly, in each step i, each CPU sends all held information
to the CPU 2i to the “left” of him, and simultaneously accepts any received
information pertaining to his key. (3) Third, each CPU will learn whether he
is the “left-most” representative in each key-block, by simply checking whether
his left-hand neighbor holds the same key. From here, the CPUs have succeeded
in aggregating information for each key at a single representative CPU; (4) in
the fourth step, they now reverse the original sorting procedure to return this
aggregated information to one of the CPUs who originally requested it.

Lemma 3 (Space-Efficient Oblivious Aggregation). Suppose m proces-
sors initiate protocol OblivAgg w.r.t. aggregator Agg, on respective inputs
{(keyi, datai)}i∈[m], each of size
. Then at the conclusion of execution, each
processor i ∈ [m] outputs a triple (rep′

i, key
′
i, data

′
i) such that the following prop-

erties hold (where asymptotics are w.r.t. m):

1. The protocol terminates in O(log m) rounds.
2. The local memory and computation required per processor is O(log m +
).
3. (Correctness). For every key key ∈

⋃
{keyi}, there exists a unique proces-

sor i with output key′
i = key. For each such processor, it further holds that

key′
i = keyi, rep′

i = “rep′′, and data′
i = Agg({dataj : keyj = keyi}). For every

remaining processor, the output tuple is (⊥,⊥).
4. (Obliviousness). The inter-CPU communication patterns are independent of

the inputs (keyi, datai).

A full description of our Oblivious Aggregation procedure OblivAgg is given
in Fig. 6. We defer the proof of Lemma3 to the full version of this work and
provide only a high-level sketch.

Proof Sketch of Lemma 3. Property (1): The parallel complexity of OblivAgg
comes from Steps 1 and 4, which execute a sorting network and require O(log m)
communication rounds.

Property (2): At any given time, a processor must only store and/or com-
municate a constant number of CPU id’s (size log m) and data items (size
),
yielding total O(log m +
).

Property (3): To show that the Aggregate Left phase in Step 2 is correct, it
is proved (by induction) that for each pair of CPU indices i < j with the same
key, CPUi will learn CPUj ’s data after a number of rounds equal to the highest
index in which the bit representations of i and j disagree.

Property (4): Both sorting network and aggregate-to-left have fixed communi-
cation topologies; thus the induced inter-CPU communications are independent
of the initial CPU inputs.

Oblivious Parallel RAM and Applications 197

Oblivious Multicasting. Our goal for Oblivious Multicasting is dual to that
of the previous section: Namely, a subset of CPUs must deliver information to
(unknown) collections of other CPUs who request it. This is abstractly modeled
as follows, where keyi denotes which data item is requested by each CPU i.

Oblivious Multicasting

Input: Each CPU i holds (keyi, datai) with the following promise. Let K =⋃
{keyi} denote the set of distinct keys. For every key ∈ K, there exists a

unique agent i with keyi = key such that datai �= ⊥; let datakey denote such
datai.

Goal: Each agent i outputs outi = (keyi, datakeyi
).

Oblivious Multicast can be solved in an analogous manner. We refer the
reader to the full version of this work for the OblivMCast construction.

3.3 Putting Things Together

We now combine the so-called “Heavy-OPAccess” structure of our OPRAM for-
malized in Sect. 3.1 (Fig. 2) within the simplified “free CPU communication”
setting, together with the (oblivious) Route, OblivAgg, and OblivMCast proce-
dures constructed in the previous subsection. For simplicity, we describe the
case in which the number of CPUs m is fixed; however, it can be modified in
a straightforward fashion to the more general case (as long as the activation
schedule of CPUs is a-priori fixed and public).

Recall the steps in Heavy-OPAccess where large memory/bandwidth are
required.

– In Step 1, each CPUi broadcasts (ri, vi) to all CPUs. Let bi = �ri/α�. This
is used to aggregate instructions to each bi and determine its representative
CPU rep(bi).

– In Step 4, each CPUi broadcasts (bi,
i) or (⊥,
i). This is used to aggre-
gate instructions to each buckets along path
i about which blocks bi’s to be
removed.

– In Step 5, each (representative) CPUi broadcasts (bi, v̄i,

′
i). This is used to

aggregate blocks to be inserted to each bucket in appropriate level of the tree.
– In Step 6, each CPUi broadcasts
flushi . This is used to aggregate information

about which buckets the flush operation should perform.
– In Step 7, each (representative) CPUrep(b) broadcasts the old value vold of

block b to all CPUs, so that each CPU receives desired information.

We will use oblivious aggregation procedure to replace broadcasts in Step 1,
4, and 6; the parallel insertion procedure to replace broadcasts in Step 5, and
finally the oblivious multicast procedure to replace broadcasts in Step 7.

Let us first consider the aggregation steps. For Step 1, to invoke the obliv-
ious aggregation procedure, we set keyi = bi and datai = (ri mod α, vi), and
define the output of Agg({(ui, vi)}) to be a vector v̄ = v̄[1] · · · v̄[α] of read/write

198 E. Boyle et al.

Oblivious Aggregation Procedure OblivAgg (w.r.t. Agg)
Input: Each CPU i ∈ [m] holds a pair (keyi, datai).
Output: Each CPU i ∈ [m] outputs a triple (repi, keyi, aggdatai) corresponding to either
(dummy, ⊥, ⊥) or with aggdatai = Agg({dataj : keyj = keyi}), as further specified in
Section 3.2.
1. Sort on keyi. Each CPUi initializes a triple (sourceidi, keytempi, datatempi) ←

(i, keyi, datai).
For each layer L1, . . . , Ld in the sorting network:
– Let L� = ((i1, j1), . . . , (im/2, jm/2)) be the comparators in the current layer �.
– In parallel, for each t ∈ [m/2], the corresponding pair of CPUs (CPUit , CPUjt)

perform the following pairwise sort w.r.t. key:
If keytempjt

< keytempit
, then

swap (sourceidit , keytempit
, datatempit

) ↔ (sourceidjt , keytempjt
, datatempjt

).
2. Aggregate to left. For t = 0, 1, . . . , log m:

– (Pass to left). Each CPUi for i > 2t sends his current pair
(keytempi, datatempi) to CPUi−2t .

– (Aggregate). Each CPUi for i < m−2t receiving a pair (keytempj , datatempj)
will aggregate it into own pair if the keys match. That is, if keytempi =
keytempj , then set datatempi ← Agg(datatempi, datatempj). In both cases,
the received pair is then erased.

The left-most CPUi with keytempi = key now has Agg({datatempj : keytempj =
key})).

3. Identify representatives. For each value keyj , the left-most CPU i currently
holding keytempi = keyj will identify himself as (temporary) representative.
– Each CPUi for i < m: send keytempi to right-hand neighbor, CPUi+1.
– Each CPUi for i > 1: If the received value keytempi−1 matches his own

keytempi, then set repi ← “dummy” and zero out keytempi ← ⊥, datatempi ←
⊥. Otherwise, set repi ← “rep”. (CPU1 always sets rep1 ← “rep”).

4. Reverse sort (i.e., sort on sourceidi). Return aggregated data to a requesting
CPU.
For each layer L1, . . . , Ld in the sorting network:
– Let L� = ((i1, j1), . . . , (im/2, jm/2)) be the comparators in the current layer �.
– Each CPUi initializes idtemp ← sourceidi. In parallel, for each t ∈ [m/2], the

corresponding pair of CPUs (CPUit , CPUjt) perform the following pairwise
sort w.r.t. sourceid:

If idtempjt
< idtempit

, then
swap (idtempit

, repit
, keytempit

, datatempit
) ↔

(idtempjt
, repjt

, keytempjt
, datatempjt

).
At the conclusion, each CPUi holds a tuple (idtempi, repi, keytempi, datatempi)
with idtempi = i and keytempi = keyi.

5. Output. Each CPUi outputs the triple (repi, keyi, datatempi).

Fig. 6. Space-efficient oblivious data aggregation procedure.

instructions to each memory cell in the block, where conflicts are resolved by
writing the value specified by the smallest CPU: i.e., ∀s ∈ [α], take v̄[s] ← vj for
minimal j such that uj = s and vj �= ⊥. By the functionality of OblivAgg, at the
conclusion of OblivAgg, each block bi is assigned to a unique representative (not
necessarily the smallest CPU), who holds the aggregation of all instructions on
this block.

Oblivious Parallel RAM and Applications 199

Both Step 4 and 6 invoke UpdateBuckets to update buckets along m ran-
dom paths. In our rudimentary solution, the paths (along with instructions)
are broadcast among CPUs, and the buckets are updated level by level. At
each level, each update bucket is assigned to a representative CPU with min-
imal index, who performs aggregated instructions to update the bucket. Here,
to avoid broadcasts, we invoke the oblivious aggregation procedure per level as
follows.

– In Step 4, each CPU i holds a path
i and a block bi (or ⊥) to be removed. Also
note that the buckets along the path
i are stored locally by each CPU i, after
the read operation in the previous step (Step 3). At each level lev ∈ [log n],
we invoke the oblivious aggregation procedure with keyi =

(lev)
i (the lev-bits

prefix of
i) and datai = bi if bi is in the bucket of node

(lev)
i , and datai = ⊥

otherwise. We simply define Agg({datai}) = {b : ∃datai = b} to be the union
of blocks (to be removed from this bucket). Since datai �= ⊥ only when datai is
in the bucket, the output size of Agg is upper bounded by the bucket size K.
By the functionality of OblivAgg, at the conclusion of OblivAgg, each bucket

(lev)
i is assigned to a unique representative (not necessarily the smallest CPU)

with aggregated instruction on the bucket. Then the representative CPUs can
update the corresponding buckets accordingly.

– In Step 6, each CPU i samples a path
flushi to be flushed and the instructions
to each bucket are simply left and right flushes. At each level lev ∈ [log n], we
invoke the oblivious aggregation procedure with keyi =

flush(lev)
i and datai = L

(resp., R) if the (lev+1)-st bit of
flushi is 0 (resp., 1). The aggregation function
Agg is again the union function. Since there are only two possible instructions,
the output has O(1) length. By the functionality of OblivAgg, at the conclusion
of OblivAgg, each bucket

flush(lev)
i is assigned to a unique representative (not

necessarily the smallest CPU) with aggregated instruction on the bucket. To
update a bucket

flush(lev)
i , the representative CPU loads the bucket and its

two children (if needed) into local memory from the server, performs the flush
operation(s) locally, and writes the buckets back.

Note that since we update m random paths, we do not need to hide the access
pattern, and thus the dummy CPUs do not need to perform dummy operations
during UpdateBuckets. A formal description of full-fledged UpdateBuckets can be
found in Fig. 7.

For Step 5, we rely on the parallel insertion procedure of Sect. 3.2, which
routes blocks to proper destinations within the relevant level of the server-held
data tree in parallel using a simple oblivious routing network. The procedure is
invoked with msgi = bi and addri =
′

i.
Finally, in Step 7, each representative CPU rep(b) holds information of the

block b, and each dummy CPU i wants to learn the value of a block bi. To do
so, we invoke the oblivious multicast procedure with keyi = bi and datai = vold

i

for representative CPUs and datai = ⊥ for dummy CPUs. By the functionality
of OblivMCast, at the conclusion of OblivMCast, each CPU receives the value of
the block it originally wished to learn.

200 E. Boyle et al.

The Final Compiler. For convenience, we summarize the complete protocol. Our
OPRAM compiler O, on input m,nt ∈ N and a m-processor PRAM program Π
with memory size nt (which in recursion level t will be nt = n/αt), will output
a program Π ′ that is identical to Π, but where each Access(r, v) operation is
replaced by a sequence of operations defined by subroutine OPAccess(r, v), which
we will construct over the following subsections. The OPAccess procedure begins
with m CPUs, each with a requested data cell ri (within some α-block bi) and
some action to be taken (either ⊥ to denote read, or vi to denote rewriting cell
ri with value vi).

1. Conflict Resolution: Run OblivAgg on inputs {(bi, vi)}i∈[m] to select a
unique representative rep(bi) for each queried block bi and aggregate all CPU
instructions for this bi (denoted v̄i).

2. Recursive Access to Position Map: Each representative CPU rep(bi)
samples a fresh random leaf id
′

i ← [nt] in the tree and performs a (recursive)

UpdateBuckets (m, (commandi, pathi))
Let path(1), path(2), . . . , path(log n) denote the bit prefixes of length 1 to log n of path.

For each level lev = 1, . . . , log n of the tree:

1. The CPUs invoke the oblivious aggregation procedure OblivAgg as follows.
Case 1: commandi = remove-bi.

Each CPU i sets keyi = path
(lev)
i and datai = bi if bi is in the bucket of node

�
(lev)
i , and datai = ⊥ otherwise. Use the union function Agg({datai}) = {b :

∃datai = b} as the aggregation function.
Case 2: commandi = flush.

Each CPU i sets keyi = path
(lev)
i and datai = L (resp., R) if the (lev+1)-st bit

of pathi is 0 (resp., 1). Use the union function as the aggregation function.

At the conclusion of the protocol, each bucket path
(lev)
i is assigned to a representa-

tive CPU bucket-rep(path
(lev)
i) with aggregated commands agg-commandi.

2. Each representative CPU performs the updates:
If i �= bucket-rep(path

(lev)
i), do nothing. Otherwise:

Case 1: commandi = remove-bi.
Remove all blocks b ∈ agg-commandi in the bucket path

(lev)
i by accessing mem-

ory bucket path
(lev)
i and rewriting contents.

Case 2: commandi = flush.
Access memory buckets path

(lev)
i , path

(lev)
i ||0, path

(lev)
i ||1, perform flush opera-

tion locally according to agg-commandi ⊂ {L, R}, and write the contents back.

Specifically, denote the collection of stored data blocks b in path
(lev)
i by

ThisBucket. Partition ThisBucket = ThisBucket-L ∪ ThisBucket-R into those
blocks whose associated leaves continue to the left or right (i.e., {bj ∈
ThisBucket : �̄

(lev+1)
j = mypath(lev)||0}, and similar for 1).

– If L ∈ agg-commandi, then set ThisBucket ← ThisBucket \ ThisBucket-L,

and insert data items ThisBucket-L into bucket path
(lev)
i ||0.

– If R ∈ agg-commandi, then set ThisBucket ← ThisBucket \ ThisBucket-R,

and insert data items ThisBucket-L into bucket path
(lev)
i ||0.

Fig. 7. A space-efficient implementation of the UpdateBuckets procedure.

Oblivious Parallel RAM and Applications 201

Read/Write access command on the position map database
i ← OPAccess(t+
1, (bi,

′
i)) to fetch the current position map value
 for block bi and rewrite

it with the newly sampled value
′
i. Each dummy CPU performs an arbitrary

dummy access (e.g., garbage ← OPAccess(t + 1, (1, ∅))).
3. Look Up Current Memory Values: Each CPU rep(bi) fetches memory

from the database nodes down the path to leaf
i; when bi is found, it copies
its value vi into local memory. Each dummy CPU chooses a random path
and make analogous dummy data fetches along it, ignoring all read values.
(Recall that simultaneous data reads do not yield conflicts).

4. Remove Old Data: For each level in the tree,
– Aggregate instructions across CPUs accessing the same “buckets” of mem-

ory (corresponding to nodes of the tree) on the server side. Each repre-
sentative CPU rep(b) begins with the instruction of “remove block b if it
occurs” and dummy CPUs hold the empty instruction. (Aggregation is as
before, but at bucket level instead of the block level).

– For each bucket to be modified, the CPU with the smallest id from those
who wish to modify it executes the aggregated block-removal instructions
for the bucket. Note that this aggregation step is purely for correctness
and not security.

5. Insert Updated Data into Database in Parallel : Run Route on inputs
{(m, (msgi, addri))}i∈[m], where for each rep(bi), msgi = (bi, v̄i,

′
i) (i.e.,

updated block data) and addri = [
′
i]log m (i.e., level-log m-truncation of
′

i),
and for each dummy CPU, msgi, addri = ∅.

6. Flush the ORAM Database: In parallel, each CPU initiates an indepen-
dent flush of the ORAM tree. (Recall that this corresponds to selecting a
random path down the tree, and pushing all data blocks in this path as far
as they will go). To implement the simultaneous flush commands, as before,
commands are aggregated across CPUs for each bucket to be modified, and
the CPU with the smallest id performs the corresponding aggregated set of
commands. (For example, all CPUs will wish to access the root node in their
flush; the aggregation of all corresponding commands to the root node data
will be executed by the lowest-numbered CPU who wishes to access this
bucket, in this case CPU 1).

7. Return Output: Run OblivMCast on inputs {(bi, vi)}i∈[m] (where for
dummy CPUs, bi, v̄i := ∅) to communicate the original (pre-updated) value
of each data block bi to the subset of CPUs that originally requested it.

A few remarks regarding our construction.

Remark 2 (Truncating OPRAM for Fixed m). In the case that the number of
CPUs m is fixed and known a priori, the OPRAM construction can be directly
trimmed in two places.

Trimming Tops of Recursive Data Trees: Note that data items are always
inserted into the OPRAM trees at level log m, and flushed down from this level.
Thus, the top levels in the ORAM tree are never utilized. In such case, the data

202 E. Boyle et al.

buckets in the corresponding tops of the trees, from the root node to level log m
for this bound, can simply be removed without affecting the OPRAM.
Truncating Recursion: In the t-th level of recursion, the corresponding database
size shrinks to nt = n/αt. In recursion level logα n/m (i.e., where nt = m), we
can then achieve oblivious data accesses via local CPU communication (storing
each block i ∈ [nt] = [m] locally at CPU i, and running OblivAgg,OblivMCast
directly) without needing any tree lookups or further recursion.

Remark 3 (Collision-Freeness). In the compiler above, CPUs only access the
same memory address simultaneously in the (read-only) memory lookup in Step
3. However, a simple tweak to the protocol, replacing the direct memory lookups
with an appropriate aggregation and multicast step (formally, the procedure
UpdateBuckets as described in the appendix), yields collision freeness.

References

[Ajt10] Ajtai, M.: Oblivious rams without cryptogarphic assumptions. In: STOC,
pp. 181–190 (2010)

[AKS83] Ajtai, M., Komlós, J., Szemerédi, E.: An 0(n log n) sorting network. In:
Proceedings of the Fifteenth Annual ACM Symposium on Theory of Com-
puting, STOC 1983, pp. 1–9 (1983)

[Bat68] Batcher, K.E.: Sorting networks and their applications. In: Proceedings of
the Spring Joint Computer Conference, AFIPS 1968 (Spring), New York,
NY, USA, 30 April–2 May 1968, pp. 307–314. ACM (1968)

[BCP15] Boyle, E., Chung, K.-M., Pass, R.: Large-scale secure computation:
multi-party computation for (parallel) RAM programs. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 742–762.
Springer, Heidelberg (2015)

[BGL+15] Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct random-
ized encodings and their applications. In: Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, pp.
439–448 (2015)

[CCC+15] Chen, Y.-C., Chow, S.S.M., Chung, K.-M., Lai, R.W.F., Lin, W.-K., Zhou,
H.-S.: Computation-trace indistinguishability obfuscation and its applica-
tions. Cryptology ePrint Archive, Report 2015/406 (2015)

[CHJV15] Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Succinct garbling
and indistinguishability obfuscation for RAM programs. In: Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC 2015, pp. 429–437 (2015)

Oblivious Parallel RAM and Applications 203

[CLP14] Chung, K.-M., Liu, Z., Pass, R.: Statistically-secure ORAM with Õ(log2 n)
overhead. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II.
LNCS, vol. 8874, pp. 62–81. Springer, Heidelberg (2014)

[CLT15] Chen, B., Lin, H., Tessaro, S.: Oblivious parallel RAM: improved efficiency
and generic constructions. Cryptology ePrint Archive (2015)

[CP13] Chung, K.-M., Pass, R.: A simple ORAM. Cryptology ePrint Archive,
Report 2013/243 (2013)

[DMN11] Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM
without random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597,
pp. 144–163. Springer, Heidelberg (2011)

[FDD12] Fletcher, C.W., van Dijk, M., Devadas, S.: A secure processor architecture
for encrypted computation on untrusted programs. In: Proceedings of the
Seventh ACM Workshop on Scalable Trusted Computing, STC 2012, pp.
3–8 (2012)

[GGH+13] Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.:
Optimizing ORAM and using it efficiently for secure computation. In: De
Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 1–18.
Springer, Heidelberg (2013)

[GHL+14] Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.:
Garbled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014)

[GHRW14] Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private RAM
computation. In: Symposium on Foundations of Computer Science, FOCS
2014, pp. 404–413 (2014)

[GKK+12] Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M.,
Vahlis, Y.: Secure two-party computation in sublinear (amortized) time. In:
The ACM Conference on Computer and Communications Security, CCS
2012, Raleigh, NC, USA, 16–18 October 2012, pp. 513–524 (2012)

[GKP+13] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: How to run turing machines on encrypted data. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer,
Heidelberg (2013)

[GLOS15] Garg, S., Steve, L., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way
functions. In: Proceedings of the Forty-Seventh Annual ACM on Sympo-
sium on Theory of Computing, STOC 2015, pp. 449–458 (2015)

[GM11] Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of out-
sourced data via oblivious RAM simulation. In: Aceto, L., Henzinger,
M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 576–587.
Springer, Heidelberg (2011)

[GMOT11] Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Obliv-
ious ram simulation with efficient worst-case access overhead. In: CCSW,
pp. 95–100 (2011)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
a completeness theorem for protocols with honest majority. In: STOC, pp.
218–229 (1987)

[GO96] Goldreich, O., Ostrovsky, R.: Software protection and simulation on obliv-
ious RAMs. J. ACM 43(3), 431–473 (1996)

[Gol87] Goldreich, O.: Towards a theory of software protection and simulation by
oblivious RAMs. In: STOC, pp. 182–194 (1987)

[KLO12] Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based
oblivious ram and a new balancing scheme. In: SODA, pp. 143–156 (2012)

204 E. Boyle et al.

[KLW15] Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for
turing machines with unbounded memory. In: Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC,
pp. 419–428 (2015)

[LO13] Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party
computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 377–396.
Springer, Heidelberg (2013)

[LPM+13] Lorch, J.R., Parno, B., Mickens, J.W., Raykova, M., Schiffman, J.: Shroud:
ensuring private access to large-scale data in the data center. In: FAST,
pp. 199–214 (2013)

[NWI+15] Nayak, K., Wang, X.S., Ioannidis, S., Weinsberg, U., Taft, N., Shi, E.:
GraphSC: parallel secure computation made easy. In: IEEE Symposium
on Security and Privacy (S&P) (2015)

[OS97] Ostrovsky, R., Shoup, V.: Private information storage (extended abstract).
In: STOC, pp. 294–303 (1997)

[PF79] Pippenger, N., Fischer, M.J.: Relations among complexity measures. J.
ACM 26(2), 361–381 (1979)

[RFK+14] Ren, L., Fletcher, C.W., Kwon, A., Stefanov, E., Shi, E., van Dijk, M.,
Devadas, S.: Ring ORAM: closing the gap between small and large client
storage oblivious RAM. IACR Cryptology ePrint Archive 2014:997 (2014)

[SCSL11] Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with
O((logN)3) worst-case cost. In: Wang, X., Lee, D.H. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 197–214. Springer, Heidelberg (2011)

[SS13] Stefanov, E., Shi, E.: ObliviStore: high performance oblivious cloud stor-
age. In: IEEE Symposium on Security and Privacy, pp. 253–267 (2013)

[SvDS+13] Stefanov, E., van Dijk, M., Shi, E., Fletcher, C.W., Ren, L., Yu, X.,
Devadas, S.: Path ORAM: an extremely simple oblivious RAM protocol.
In: ACM Conference on Computer and Communications Security, pp. 299–
310 (2013)

[WCS14] Wang, X.S., Hubert Chan, T.-H., Shi, E.: Circuit ORAM: on tightness
of the goldreich-ostrovsky lower bound. IACR Cryptology ePrint Archive
2014:672 (2014)

[WHC+14] Wang, X.S., Huang, Y., Hubert Chan, T.-H., Shelat, A., Shi, E.: SCORAM:
oblivious RAM for secure computation. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pp. 191–
202 (2014)

[WST12] Williams, P., Sion, R., Tomescu, A.: PrivateFS: a parallel oblivious file
system. In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS 2012, pp. 977–988 (2012)

[Yao82] Yao, A.C.-C.: Protocols for secure computations (extended abstract). In:
23rd Annual Symposium on Foundations of Computer Science (FOCS),
pp. 160–164 (1982)

Oblivious Parallel RAM: Improved Efficiency
and Generic Constructions

Binyi Chen(B), Huijia Lin, and Stefano Tessaro

Department of Computer Science, University of California, Santa Barbara, USA
{binyichen,rachel.lin,tessaro}@cs.ucsb.edu

Abstract. Oblivious RAM (ORAM) garbles read/write operations by
a client (to access a remote storage server or a random-access memory)
so that an adversary observing the garbled access sequence cannot infer
any information about the original operations, other than their overall
number. This paper considers the natural setting of Oblivious Parallel
RAM (OPRAM) recently introduced by Boyle, Chung, and Pass (TCC
2016A), where m clients simultaneously access in parallel the storage
server. The clients are additionally connected via point-to-point links to
coordinate their accesses. However, this additional inter-client commu-
nication must also remain oblivious.

The main contribution of this paper is twofold: We construct the first
OPRAM scheme that (nearly) matches the storage and server-client
communication complexities of the most efficient single-client ORAM
schemes. Our scheme is based on an extension of Path-ORAM by
Stefanov et al. [18]. Moreover, we present a generic transformation turn-
ing any (single-client) ORAM scheme into an OPRAM scheme.

1 Introduction

This paper considers the problem of hiding access patterns when reading from
and writing to an untrusted memory or storage server. This is a fundamental
problem in both in the context of software protection, as well as for secure
outsourcing to a third-party storage provider.

The basic cryptographic method to hide access patterns is Oblivious RAM
(ORAM) [8,9]. It compiles logical access sequences (from a client) into garbled
ones (to a storage space, or server) so that a curious observer seeing the lat-
ter only (as well as the server contents) cannot infer anything other than the
overall number of logical accesses—we say that such garbled access sequences
are oblivious. Since its proposal, ORAM and its applications have been exten-
sively studied (cf e.g. [1,3–7,9,11–21,24–28,30]). The state-of-the-art construc-
tions [16,26] have a Õ(log2 N) computation (and communication) overhead (per
logical access),1 where N is the size of the storage, i.e., the number of data bocks
(of a certain bit size) it can store.
1 The ORAM scheme of [16] has only O(log2 N/ log log N) overhead, while that of [26]

has O(log2 N) overhead. However, the latter construction is simpler and achieves
better practical efficiency [26].

c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 205–234, 2016.
DOI: 10.1007/978-3-662-49099-0 8

206 B. Chen et al.

Parallel Oblivious Accesses. Existing ORAM schemes only support a single
client, and in particular do not deal with parallel accesses from multiple clients.
However, enabling such parallelism is important, e.g., to achieve scalable cloud
storage services for multiple users, or to secure multi-processor architectures.
To overcome this barrier, a few systems-oriented works [15,24,30] suggested to
either use a trusted proxy shared by multiple clients to act as the “sole client”
of ORAM, or to adapt known ORAM schemes (such as [7,9,29]) to support a
limited, O(log N), number of parallel accesses.

Recently, Boyle, Chung, and Pass (BCP) [2] proposed the notion of Oblivi-
ous Parallel RAM (OPRAM), which compiles synchronous parallel logical access
sequences by m clients into, parallel, garbled sequences and inter-client messages,
which together still reveal no information other than the total number of logical
accesses. They also provided the first – and so far, the only – OPRAM scheme.
Their construction is simple and elegant, but, has a server-client communica-
tion overhead of ω(log3 N)—a factor of Ω̃(log N) higher than state-of-the-art
ORAM schemes [16,26]. Their approach seems not to extend directly to use the
techniques behind existing communication-efficient ORAM schemes.

Hence, the natural question that arises is: “Can we design an OPRAM
scheme with the same per-client efficiency as the state-of-the-art ORAM
schemes?”

Our Contributions, in a Nutshell. Our first contribution answers this ques-
tion affirmatively. In particular, we prove:

Theorem 1 (Informal): There is an OPRAM scheme with O(log2 N)
(amortized) server-client communication overhead, and constant storage
overhead.

Going beyond, an even more fundamental question concerns the basic relation
between ORAM and OPRAM. We show that the two problems are related at a
far more generic level:

Theorem 2 (Informal): There is a generic transformation that turns
any ORAM scheme into an OPRAM scheme, with additional O(log N)
(amortized) server-client communication overhead with respect to the
original ORAM scheme.

While the above results are in the amortized case, we note that in the worst case,
the above complexity statements are true with O replaced by ω. Moreover, our
OPRAM schemes all require client-to-client communication. Their inter-client
communication is ω(log N) log m(log m+ log N)B bits. We note that this also is
an improvement by a factor O(log N) over BCP.

We stress that our approach is substantially different from that of BCP: One
key idea is the use of partitioning, i.e., the fact that each client is responsible for
a designated portion of the server storage. This eliminates much of the coordina-
tion necessary in BCP. Next, we move to explaining the high-level ideas behind
our constructions in greater detail.

Oblivious Parallel RAM: Improved Efficiency and Generic Constructions 207

1.1 Subtree-OPRAM

We provide an overview of our scheme Subtree-OPRAM. Our construction of an
m-client OPRAM scheme can be seen as consisting of two steps.

(1) First, we construct an ORAM scheme, called Subtree-ORAM, that enables
a single client to batch-process m logical accesses at a time in parallel.
Our Subtree-ORAM scheme is a generalization of Path-ORAM [26] to the
setting with large client memory and parallel processing. We believe that
this generalization is of independent interest.

(2) In a second step, we exploit the batch-processing structure of Subtree-ORAM
to adapt it to the multiple-client setting, and derive our Subtree-OPRAM
scheme by distributing its computation across multiple clients.

In the following, we explain all of this in more detail.

Review of Path-ORAM. Let us first give an overview of the tree-based
ORAM approach by Shi et al. [23]. In particular, we review Path-ORAM [26],
as it will serve as our starting point. (A more detailed review is given in
Appendix B.)

To implement a storage space for N data blocks, basic (i.e., non-recursive)
Path-ORAM organizes the storage space (virtually) as a complete binary tree
with depth O(log N), where each node is a “bucket” that contains a fixed num-
ber Z = O(1) of encrypted blocks (some of which may be dummies). To hide
access patterns, each data block is assigned to a random path � (from a leaf
� to the root, and we use � to identify both the leaf and the associated path
interchangeably) and stored in some bucket on path �; after each access, the
assignment is “refreshed” to a new random path �′. The client keeps track of the
current path assigned to each block using a position map. The client also keeps
an additional (small) memory for overflowing blocks, called the stash. For each
logical access to a certain block with address a ∈ [N], Path-ORAM takes the
two following steps:

(1) Fetching a path. Retrieve the path � currently associated with block a in
the position map, and find block a on the path or in the local stash. Then,
assign the block a to a new random path �′ and update the position map
accordingly.

(2) Flushing along a path. Iterate over every block a′ in the fetched path �
and in the stash (this includes the block a we just retrieved and possibly
updated, and which was assigned to the new path �′), and re-insert each
block a′ into the lowest possible bucket on � that is also on the path assigned
to a′ according to the position map. If no suitable place is found (as each
bucket can only contain at most Z blocks), the block is placed into the stash.
The contents of the path are re-encrypted when being written back to the
server (including dummy blocks).

The analysis of Path-ORAM [26] shows that the stash size is bounded by
ω(log N) with probability roughly poly(λ)2−ω(log N). To avoid keeping a large

208 B. Chen et al.

position map, Path-ORAM recursively stores the position map at the server. The
final scheme has a recursion depth of O(log N)—each logical access is translated
to O(log N) actual accesses, each consisting of retrieving a path. Overall, the
communication overhead is O(log2 N). Also, the overall storage complexity at
the server can be kept to O(N) despite the recursion.

Subtree-ORAM. As our first contribution, we generalize Path-ORAM to
process m ≥ 1 logical accesses at a time. As the recursion step in Path-ORAM
is rather generic, we focus on the non-recursive scheme, ignoring the costs of
storing the position map.

The natural approach to achieve this is to retrieve a subtree of m paths, i.e.,
for every m logical accesses to blocks a1, . . . , am, we can do the following:

(1) Fetching subtree. Retrieve the subtree ST composed of the paths
�1, . . . , �m assigned to the m blocks and find the blocks of interest in the
subtree or in the stash, and possibly update their values.

(2) Path-by-path flushing. Execute the flushing procedure from Path-ORAM
on the m paths in ST sequentially as in Path-ORAM, with each ai assigned
to a new random path �′

i.

Unfortunately, there are two problems with this approach. First, if a1, . . . , am

are not all distinct, the accesses are not oblivious, as the same path would be
retrieved multiple times. To avoid this, the final Subtree-ORAM scheme perform
some pre-processing: For accesses to the same block, replace all but the first one
with ⊥ in the logical sequence to obtain a′

1, . . . , a
′
m, and for each repetition

a′
i = ⊥, assign random path to be retrieved from the server — this is called a

fake read.2

The second drawback is that repeating the flushing procedure of Path-ORAM
m times in Step 2 is inherently sequential. To use Subtree-ORAM within Subtree-
OPRAM below, we instead target a parallelizable flushing procedure. To this
end, we introduce the following new flushing procedure, which we refer to as
subtree flushing:

(2) Subtree flushing: Iterate over every block in ST and in the stash and place
each block into the lowest node in the entire subtree ST that is still on its
assigned path, and not yet full. The order in which blocks are processed can
be arbitrary, and the process can be parallelized (subject to maintaining the
size constraint of each node).

Security and correctness of Subtree-ORAM follow similar arguments as Path-
ORAM. Furthermore, we bound the stash size of Subtree-ORAM by generalizing
aspects of the analysis of Path-ORAM – we believe this to be of independent
interest.

Subtree-OPRAM. Our end goal is to design an interactive protocol that
enables m clients to access (and possibly alter) blocks a1, . . . , am in parallel,
2 Note that this random path may well collide with one of the other paths. Still, the

key point is that it is chosen independently of the actual blocks. The use of such fake
read has appeared in many previous works, such as, [2,24].

Oblivious Parallel RAM: Improved Efficiency and Generic Constructions 209

where client Ci is requesting in particular block ai; both the access patterns to
the server, as well as inter-client communication, must be oblivious.

We can think of our Subtree-OPRAM protocol as having the m clients collec-
tively emulate the single Subtree-ORAM client. To this end, we use inter-client
oblivious communication protocols based on tools developed in [2] to let clients
interact with each other. Here, we focus our description on how to “distribute”
Step 1 and Step 2 of Subtree-ORAM for the special cases that the requested
blocks a1, . . . , am are distinct. (Handling colliding requests in an oblivious way
will require extra work.) For simplicity, we assume that all clients have access to
the position map and all messages are implicitly encrypted (with a key shared
by all clients). In particular, everything is re-encrypted before being written to
the server.

Assume for simplicity that m = 2l. We can think of the server storage in
Subtree-OPRAM in terms of a tree of buckets, as in Path-ORAM and Subtree-
ORAM. However, we remove the top l levels, effectively turning the tree into a
forest of m trees T1, . . . , Tm; client Ci manages all read/write from/to Ti, and
all blocks assigned to (a path in) Ti that do not fit in one of the buckets on the
server remain in a local stash managed locally by Ci. More precisely:

(1) In parallel, each Ci finds the path �i assigned to ai (using the position map)
and delegates the job of reading path �i to the client Cj responsible for the
tree Tj containing �i, to which it sends a request. Each Cj retrieves all paths
for which it has received a request (again in parallel), which form a subtree
STj of Tj ; it then finds the blocks of interest in STj and its local stash, and
sends them back to the respective clients who requested them.

(2) Each Ci assigns ai a new path �′
i, and delegates the job of writing back

(Bi, �
′
i) to the client Cj responsible for the tree Tj containing �′

i. To ensure
obliviousness, the clients achieve this by running collectively the oblivious
routing protocol of [2], which hides the destination of messages. Next, each
Ci runs the subtree-flushing procedure locally on the retrieved subtree STi

and its own stash, and finally writes the entire subtree STi back.

We will show that the m clients indeed collectively emulate the execution of the
single client of Subtree-ORAM. In particular, parallel flushing on the individual
subtrees emulates the effect of a global flushing over the union of these subtrees,
but keeping the top l levels of the tree locally at the clients; also, the union of the
stashes of all clients contains exactly the contents of the stash of the Subtree-
ORAM client, as well as the contents of the top of the tree. This gives a bound
on the overall sizes of the stashes.

In expectation, each client reads and writes one path per round, and thus the
amortized client-server communication overhead is O(log N), and the final recur-
sive Subtree-OPRAM has amortized overhead of O(log2 N), with overwhelming
probability. In fact, we prove that the worst-case overhead is not much higher,
and is of the order of ω(log2 N), e.g., O((log2 N) · log log N), much smaller than
BCP’s ω(log3 N). We improve over BCP also in terms of inter-client communi-
cation complexity by a factor of log N .

210 B. Chen et al.

1.2 The Generic Transformation

Subtree-OPRAM is tailored at achieving the same overhead as Path-ORAM, and
not surprisingly, the former heavily relies on the latter. Our second contribution
is a generic transformation that converts any ORAM scheme into an OPRAM
protocol. When applied to Path-ORAM, the resulting scheme is less efficient
than Subtree-OPRAM – still, the main benefit here is generality.

Our approach generalizes ideas from partition-based ORAM [25]. Specifically,
we split the server storage into m partitions each storing (roughly) N/m blocks,
and let the m clients run each a copy of the basic ORAM algorithm (call them
O1, . . . ,Om). Each client Ci thus manages the i-th partition independently using
Oi. Every block a is randomly assigned to one of the m partitions P ∈ [m],
and it is re-assigned to a new random partition after each access. The current
assignment of blocks to the m partitions is recorded in a partition map, which we
assume (for now) to be accessible by all clients. (In the end, it will be shared using
recursion techniques.) Then, when m clients request the m blocks a1, . . . , am in
parallel, the clients simply find the respective partitions P1, . . . , Pm containing
these blocks, and let the corresponding clients retrieve the desired blocks and
delete them from their partitions (if a block is accessed for multiple times, then
“fake reads” are performed to a random partition). The actual access pattern so
far is oblivious since all Pi’s are random, and the basic ORAM scheme ensures
that retrieving blocks from each partition is done obliviously.

However, writing these blocks back to new random partitions without reveal-
ing their destinations turns out to be non-trivial, even if we can deliver the blocks
obliviously to the clients responsible for the new partitions. Indeed, naively invok-
ing the corresponding ORAM copies to insert would reveal how many blocks are
assigned to each partition. To hide this information, in our protocol each client
inserts the same number κ of blocks to its partition, and keeps a queue of blocks
to be inserted. We use a stochastic analysis to show that for any R = ω(log λ),
it is sufficient to insert only κ = 2 blocks to each partition each time (and in par-
ticular, perform fake “insertions” if less than 2 blocks need to be inserted), and
at most R “overflowing” blocks ever remain in the queue (except with negligible
probability).

A challenge we have not addressed is how to use an ORAM for a partition
of size O(N/m) to store the blocks associated with it in an efficient way, i.e.,
without using the whole space of [N] addresses. We will solve this by using an
appropriate ORAM-based oblivious dictionary data structure.

As the expected number of read and write operations each client performs is
3 (one read and two writes), the non-recursive version has the same (amortized)
computation and communication overhead as the underlying ORAM scheme. To
obtain the final OPRAM scheme, we apply recursive techniques to outsource the
partition map to the server.

Notation. Throughout this paper, we let [n] denote the set {1, 2, ..., n}. We
denote by Δ(X,Y) the statistical distance between distributions (or random
variables) X and Y , i.e. Δ(X,Y) =

∑
x |Pr[X = x] − Pr[Y = x]|. Also, we say

Oblivious Parallel RAM: Improved Efficiency and Generic Constructions 211

that a function μ is negligible if for every polynomial p there exists a sufficiently
large integer n0, such that μ(n) ≤ 1/p(n) for all n > n0.

2 Oblivious (Parallel) RAM

We start by reviewing the notion of Oblivious RAM and its parallel extensions.
We present definitions different from (yet essentially equivalent to) the ones
by Goldreich and Ostrovsky [8,9] and BCP [2], considering clients and servers,
instead of RAM compilers, which we consider to lead to more compact and
natural descriptions, and are more in line with the applied ORAM literature.

Basic ORAM Setting. The basic ORAM setting considers two parties, a client
and a server: The server S(M,B) has a large storage space consisting of M cells,
each of size B bits, whereas the client has a much smaller memory. The client can
access the storage space at the server using read and write commands, denoted as
Acc(read, a,⊥) and Acc(write, a, v), where a ∈ [M] and v ∈ {0, 1}B . (We assume
that all cells on the server are initialized to some fixed string, i.e., 0B .) Both
operations return the current value stored in cell a, in particular for the latter
operation this is the value before the cell is overwritten with v.

An oblivious RAM (ORAM) scheme consists of an ORAM client O (or simply,
an ORAM O), which is a stateful interactive PPT machine which on initial input
the security parameter λ, block size B, and storage size N , processes logical
commands Acc(opi, ai, vi), opi ∈ {read,write}, ai ∈ [N], vi ∈ {0, 1}B ∪ {⊥}, by
interacting with a server S(M,B) (for values M = M(N) and B = B(B, λ)
explicitly defined by the scheme), via sequence of actual (read/write) accesses
Acc(opi,1, ai,1, vi,1), . . . ,Acc(opi,qi

, ai,qi
, vi,qi

), and finally outputs a value vali
and updates its local state depending on the answers of these accesses.

An ORAM scheme hides the sequence of logical commands from an untrusted
(honest-but-curious) server, who observes the actual sequence of accesses. The
actual values written to the server can be hidden using semantically-secure
encryption. Indeed, all known ORAM solutions have server cells hold each the
encryption of a block, i.e., in general one has B = B +O(λ). For this reason, we
abstract away from the usage of encryption by dealing only with access-pattern
security and tacitly assuming that all cells are going to be stored encrypted in
the final scheme with a semantically secure encryption scheme, and that every
write access to the server will be in form of a fresh re-encryption of the value. In
this case, it makes sense to think of B = B, and an adversary who cannot see
the value written to/read from the server.

We defer a definition of security and correctness for single-client ORAM in
Appendix A, and here rather focus on generalizing above to the multi-client
setting.

Multi-Client Setting. We now consider the setting of oblivious parallel ORAM
(or OPRAM for short) with m clients. An m-client OPRAM is a set3 of stateful
3 For notational simplicity, we give definitions for the case where the number of clients

m is fixed and independent of the security parameter. However, one can easily extend
these definitions to the case where m = m(λ) with some (straightforward) notational
effort.

212 B. Chen et al.

interactive PPT machines PO = {Oi}i∈[m] which all on initial input the security
parameter λ, the storage size parameter N , and the block size B, proceed in
rounds, interacting with the server S(M(N), B) (where M is a parameter of
the scheme4) and with each other through point-to-point connections. At each
round r the following steps happen: First, every client Oi receives as input a
logical operation Acc(opi,r, ai,r, vi,r) where opi,r ∈ {read,write}, ai,r ∈ [N] and
vi,r ∈ {0, 1}B ∪{⊥}. Then, the clients engage in an interactive protocol where at
any time each client Oi can (1) Send messages to other clients, and (2) Perform
one or more accesses to the server S(M,B). Finally, every Oi outputs some value
vali,r.

Correctness and Obliviousness. We assume without loss of generality than
the honest-but-curious adversary learns only the access and communication pat-
terns. To this end, let us fix a sequence of logical access operations that are issued
to the m clients in T successive rounds. First off, for all i ∈ [m], we denote by
y i =

(
Acc(opi,r, ai,r, vi,r)

)
r∈[T]

the sequence of logical operations issued to Oi

in the T rounds, and let y = (y1, . . . ,ym) .
Now, for an execution of an OPRAM scheme PO for logical sequence of

accesses y as above, we let ACPi be the round-i communication pattern, i.e., the
transcript of the communication among clients and between each client and the
server in round i ∈ [T], except that actual contents of the messages sent among
clients, as well as the values vi in server accesses by the clients, are removed. We
define

ACPPO(λ,N,B,y) = (ACP1, . . . ,ACPT).

Finally, we also denote the outputs client i as val i = (vali,1, . . . , vali,T) and

OutPO(λ,N,B,y) = (val1, . . . , valm).

The outputs z = OutPO(λ,N,B,y) of PO are correct w.r.t. the parallel accesses
sequence y , if it satisfies that for each command Acc(opi,t, ai,t, vi,t) in y , the
corresponding output vali,t in z is either the most recently written value on
address ai, or ⊥ if ai has not yet been written. Moreover, we assume that if two
write operations occur in the same round for the same address, issued by clients
Oi and Oj , for i < j, then the value written by Oi is the one that takes effect.
Let Correct be the predicate that on input (y , z) returns whether z is correct
w.r.t. y .

Definition 1 (Correctness and Security). An OPRAM scheme PO
achieves correctness and obliviousness if or all N,B, T = poly(λ), there exists a
negligible function μ such that, for every λ, every two parallel sequences y and
y’ of the same length T (λ), the following are satisfied:

(i) Correctness. Pr [Correct (y,OutPO(λ,N,B,y)) = 1] ≥ 1 − μ(λ).
(ii) Obliviousness. Δ (ACPPO(λ,N,B,y),ACPPO(λ,N,B,y’)) ≤ μ(λ).

4 As in the single-client case above, we simply assume that server blocks and logical
blocks have the same size for simplicity, as we only consider the unencrypted case.

Oblivious Parallel RAM: Improved Efficiency and Generic Constructions 213

Usually, the values λ, N , B are understood from the context, and we thus often
use ACP(y) = ACPPO(λ,N,B,y) for notational simplicity.

OPRAM Complexity. The server-communication overhead and inter-client
communication overhead of an OPRAM scheme PO are respectively the number
of bits sent/received per client to/from the server, and to/from other clients, per
logical access command, divided by the block size B. Finally, the server storage
overhead of PO is the number of blocks stored at the server divided by N , and
client storage overhead is the number of blocks stored at each client after each
parallel access.

3 OPRAM with O(log2 N) Server Communication
Overhead

In this section, we present our first OPRAM scheme, called Subtree-OPRAM.

Theorem 1 (Subtree-OPRAM). For every m, there is a m-client OPRAM
scheme with the following properties: Let λ, N , and B denote the security para-
meter, the size of the logical space, and block size satisfying B ≥ 2 log N .

– Client Storage Overhead. Every client keeps a local stash consisting of
R = (ω(log λ) + O(log m)) log N blocks.

– Server Storage Overhead. O(1).
– Server Communication Overhead. The amortized overhead is O(log2 N)

and the worst case overhead is ω(log λ log N) + O(log2 N) with overwhelming
probability.

– Inter-Client Communication Overhead. The amortized and worst-case
overheads are both ω(log λ) log m(log m+log N) with overwhelming probability.

In particular, when the security parameter λ is set to N , the server communica-
tion complexity is ω(log2 N) in the worst case, and O(log2 N) amortized.

To prove the theorem, as discussed in the introduction, we first present a
single-client ORAM scheme, Subtree-ORAM, that supports parallel accesses in
Sect. 3.1, and then adapt it to the multiple-client setting to obtain Subtree-
OPRAM in Sect. 3.3. We analyze these two schemes in Appendixes C and D.
Additional helper protocols needed by Subtree-OPRAM are given in Sect. 3.2.

3.1 Subtree-ORAM

In this section, we describe the non-recursive version of Subtree-ORAM, where
the client keeps a large position map of size O(N log N); the same recursive
technique as in Path-ORAM can be applied to reduce the client memory size.

The Subtree-ORAM client, ST-O, keeps a logical space of N blocks of size B
using M(N) = O(N) blocks on the server. The server storage space is organized
(virtually) as a complete binary tree T of depth D = log N (we assume for

214 B. Chen et al.

simplicity that N is a power of two), where each node is a bucket capable of
storing Z blocks. In particular, we associate leaves (and paths leading to them
from the root) with elements of [2D] = [N]. Additionally, ST-O locally maintains
a position map pos.map and a stash stash of size respectively O(N log N) bits
and R(λ) ∈ ω(log λ) blocks.

In each iteration r, the Subtree-ORAM client ST-O processes a batch of m
logical access operations {Acc(opi, ai, vi)}i∈[m] as follows:

1. Pre-process. Remove repetitive block accesses by producing a new m-
component vector Q as follows: The i-th entry is set to Qi = (opi, ai) if
the following condition holds, otherwise Qi = ⊥.
– Either, there are (one or many) write requests to block ai, and the i-th

operation Acc(opi, ai, vi) is the one with the minimal index among them.
– Or, there are only read requests to block ai, and the i-th operation

Acc(opi, ai, vi) is the one with the minimal index among them.
2. Read paths in parallel. Determine a set S = {�1, . . . , �m} of m paths to

read, where each path is of one of the following two types:
– Real-read. For each Qi = (opi, ai) �= ⊥, set �i = pos.map(ai) and imme-

diately refresh pos.map(ai) to �′
i

$←[N].

– Fake-read. For each entry Qi = ⊥, sample a random path �i
$←[N].

Then, retrieve all paths in S from the server, forming a subtree TS of buckets
with (at most) Z decrypted blocks in them.

3. Post-process. Answer each logical access Acc(opi, ai, vi) as follows: Find
block ai in subtree TS or stash, and returns the value of the block. Next,
for each Qi �= ⊥ if the corresponding logical access is a write operation
Acc(write, ai, vi �= ⊥), update block ai to value vi.

4. Flush subtree and write-back. Let Treal be the subtree consisting of only
real-read paths in TS . Before (re-encrypting and) writing TS back to the
server, re-arrange the contents of Treal and stash to fit as many blocks from
stash into the subtree as follows:

Subtree-flushing. Move all blocks in Treal and stash to a temporary
set Λ. Traverse through all blocks in Λ in an arbitrary order: Insert
each block with address a from Λ, either into the lowest non-full
bucket in Treal that lies on the path pos.map(a) (if such bucket exists),
or into stash. If at any point, the stash contains more than R blocks,
output overflow and abort.

In Appendix C, we briefly discuss the analysis of Subtree-ORAM, noting the
bulk of it (proving that the overflow probability is small) is deferred to the full
version for lack of space.

3.2 Oblivious Inter-client Communication Protocols

Subtree-OPRAM, which we introduce in the next section, will use as compo-
nents a few oblivious inter-client communication sub-protocols which will allow

Oblivious Parallel RAM: Improved Efficiency and Generic Constructions 215

to emulate Subtree-ORAM in a distributed fashion. These are variants of simi-
lar protocols proposed in [2]. Their communication patterns are statically fixed,
independent of inputs (and thus are oblivious in a very strong sense), and the
communication and computation complexities of each protocol participant is
small, i.e., roughly polylog(m) where m is the number of participants. We only
describe the interfaces of these protocols; their implementations are based on
log(m)-depth sorting networks, and we refer the reader to [2] for further low-
level details.

Oblivious Aggregation. Our first component protocol is used to aggre-
gate data held by multiple users, and is parameterized by an aggre-
gation function agg which can combine an arbitrary number of data
items d1, d2, . . . (from a given data set) into an element agg(d1, d2, . . .).
The function agg is associative, i.e., agg(agg(d1, d2, . . . , dk), dk+1, . . . dk+r)
and agg(d1, d2, . . . , dk, agg(dk+1, . . . dk+r)) both give us the same value as
agg(d1, . . . , dk+r). Each party i ∈ [m] starts the protocol with an input pair
consisting of a pair (keyi, di). At the end of the execution, each party i obtains
an output with one of two forms: (1) (rep, d∗), where d∗ is the output of the
aggregation function applied to {dj : keyj = keyi}, or (2) (⊥,⊥). Moreover, for
every key which appears among the {keyi}i∈[m], there exists exactly one party i
with keyi = key receiving an output of type (1). We refer to each such party as
the representative for keyi.

An aggregation protocol with fixed communication patterns, called OblivAgg,
is given in [2]. When the bit length of the data items and of the key values is
at most � bits, the protocol from [2] proceeds in O(log m) rounds, and in each
round, every client sends O(1) messages of size O(log m + �) bits.

Oblivious Routing. Another protocol we will use is the Oblivious Routing
protocol OblivRoute from [2]. This m-party sub-protocol allows each party to
send a message to another party; since the communication patterns are fixed,
the recipients of the messages are hidden from an observer.

Protocol OblivRoute:

– Input of party i: (idi, mi) where mi is the message of client i and idi is the
index of the recipient of the messages.

– Output of party i: {(idj , mj) | idj = i} the set of messages sent to party i.

We note that the implementation of OblivRoute is tailored at the case where
each idi is drawn independently and uniformly at random from [m]. (And this
will be the case of our application below.) For a parameter K ≥ 0, their protocol
proceeds in O(log m) rounds, and in every round, a client sends a message of size
O(K · (� + log m)) bits to another client, where � is the size of the inputs. Then,
the probability that the protocol aborts is roughly O(m log m2−K), and thus one
can set K = ω(log λ) for this probability to be negligible in λ, or K = ω(log N)
in our ORAM applications where N becomes the security parameter.

Oblivious Election. We will need a variant of the above OblivAgg protocol with
stronger guarantees. In particular, we need a protocol OblivElect that allows

216 B. Chen et al.

m parties with requests {(opi, ai)}i∈[m] to elect a unique representative party
for each unique address that appears among the m requests. This representa-
tive will be the party with the smallest identity i ∈ [m] wanting to write to
that address (if it exists), or otherwise the one with the smallest identity want-
ing to read from it. Formally, the protocol provides the following interface.

Protocol OblivElect:

– Input of party i: (opi, ai), where opi ∈ {read,write} and ai ∈ [N].
– Output of party i: a value oi = {rep, ⊥}, which is defined as fol-

lows. For each address a, define Sa = {i | ai = a} and Wa =
{i | ai = a ∧ opi = write}, and let i∗(a) = min(Wa) if Wa is non-empty, or
i∗(a) = min(Sa) otherwise. Then, we let oi = rep if and only if i = i∗(ai),
and oi = ⊥ otherwise.

OblivElect can be implemented by modifying OblivAgg. At the high level,
OblivAgg proceeds as follows (we refer to [2] for further details):

– Initially, every client i inputs a pair (keyi, di), and these inputs are re-
shuffled across clients and sorted according to the first component. That
is, at the end of the first phase, any two clients j < j′ are going to hold
a triple (i(j), keyi(j), di(j)) and (i(j′), keyi(j′), di(j′)), respectively, such that
keyi(j) ≤ keyi(j′) and i(j) �= i(j′). This is achieved via a sorting network, where
each client i initially holds (i, keyi, di), and then such triples are swapped
between pairs of clients (defined by the sorting network), according the key
values.

– This guarantees that for every key which was initially input by m′ ≥ 1
clients, at the end of the first phase there exist m′ consecutive clients
j, j + 1, . . . , j + m′ − 1 (for some j) holding triples with keyi(j) = · · · =
keyi(j+m′−1) = key. Then, client j is going to aggregate di(j), . . . , di(j+m′−1),
and the final representative for key is client i(j). The aggregate information is
sent back to the representatives by using once again a sorting network, sorting
with respect to the i(j)’s.

We can easily modify OblivAgg to achieve OblivElect as follows. We run OblivAgg
with client i inputting keyi = ai and di = (opi, i). However, the sorting network
is not going to sort solely according to the key value, but also according to the
associated d entry. In particular, we say that (a, op, i) < (a′, op′, i′) iff (1) a < a′,
or (2) a = a′, op = write and op′ = read, or (3) a = a′, op = op′, and i < i′.
The sorting now will ensure that the left-most client j holding a value for some
key = a will be such that i(j) is our intended representative.

The complexity of OblivElect is the same as that of OblivAgg, setting � =
O(log m + log N). Thus we have O(log m) rounds, where each client sends O(1)
messages of size O(log m + log N) bits.

Oblivious Multicasting. The oblivious multicast protocol OblivMCast is a
m-party subprotocol that allows a subset of the parties, called the senders, to
multicast values to others, called the receivers. More precisely:

Oblivious Parallel RAM: Improved Efficiency and Generic Constructions 217

Protocol OblivMCast:

– Input of party i: Input is either (ai, vi �= ⊥) (where ai ∈ [N]) indicating
that party i is a sender with value vi indexed by address ai, or (ai, ⊥)
indicating that it is a receiver fetching the value indexed by ai. For every
possible a, there is at most one party with ai = a and vi �= ⊥.

– Output of party i: If party i is a sender, its output is vi. If party i is a
receiver, its output is vj , the value sent by party j with index aj = ai.

The protocol is in essence the reversal of our OblivElect protocol above. It
can be built using similar techniques, achieving round complexity O(log m), and
every client sends in each round O(1) messages of size O(B+log N +log m) bits,
where B is the bit size of the values vi.

3.3 Subtree-OPRAM

Non-Recursive Subtree-OPRAM. We first describe the non-recursive ver-
sion of Subtree-OPRAM, where multiple clients share access to a global position
map, which can be eliminated using recursive techniques as we explain fur-
ther below. (Due to the constraints of coordinating access to the same items in
OPRAM, our recursive techniques are somewhat more involved than in the basic
ORAM case.)

Let m be the number of clients; assume for simplicity that it is a power of
2, i.e., log(m) is an integer. The Subtree-OPRAM protocol ST-PO = {Oi}i∈[m],
on common input (λ,N,B,m), organizes the server storage as a forest of m
complete binary trees T1, . . . , Tm, each of depth log N − log(m), where every
node in each tree is a bucket of Z = O(1) blocks of B bits. In other words,
the union of Ti is the complete tree T in Subtree-ORAM, but with the top
log(m) levels removed. Again, we identify paths with leaves in the tree, and
we say that a path � “belongs to” Ti, if the leaf � is in Ti. Each client Oi is
responsible for managing the portion of the storage space corresponding to Ti,
meaning that it reads/writes all paths belonging to Ti, and maintains a local
stash stashi for storing all “overflowing” blocks whose assigned path belongs to
Ti. The Subtree-ORAM analysis will carry over, and imply that the size of each
local stash is bounded by any function R(λ,m) ∈ ω(log λ) + O(log m), where
the extra O(log m) is to store blocks that in the original Subtree-ORAM scheme
would have belonged to the upper log(m) levels. The clients also share a global
size-N position map pos.map. (Recall that we are looking at the non-recursive
version here.)

Recall that the m clients share a secret key for a semantically secure encryp-
tion scheme. In each iteration, each client i processes a logical access request
Acc(opi, addri, vi). The m clients then proceed in parallel to process jointly the
m logical requests from this iteration:

218 B. Chen et al.

1. Select block representatives. The m clients run sub-protocol OblivElect,
where client i uses input (opi, ai) and receives either output rep or ⊥; in the
former case client i knows it is the representative for accessing block ai.5

2. Forward read-path requests. Each client i determines the path �i it wants
to fetch, and there are two possibilities:
– Real read. If it is a representative, set path �i = pos.map(ai) and a′

i = ai,

and immediately refresh pos.map(ai) to �′
i

$←[N];
– Fake read. If it is not a representative for ai choose a random path

�i
$←[N] and set a′

i = ⊥.
If path �i belongs to tree Tj , client i sends an encrypted message (i, a′

i, �i) to
client j.

3. Read paths. Each client j ∈ [m] retrieves collects a set Sj of all paths
contained in the messages {(i, a′

i, �i)} received in the previous step, and then
proceeds as follows:
(1) Retrieve all paths in Sj , which form a subtree denoted TSj

.
(2) For each i ∈ [m] such that a request (i,⊥, �i) was received, send the

encryption of a dummy block ⊥ to client i
(3) For each i ∈ [m] such that a request (i, a′

i �=⊥, �i) was received, find block
a′

i in TSj
or in stash, delete it, and send the encryption of the value vi of

the block to client i.
4. Answer client requests and update. At the end of the previous step, each

client holds a value vi which is �= ⊥ if and only if i is the representative for ai.
Next, the m clients run sub-protocol OblivMCast to allow each representative
to multicast the value it holds to other clients requesting the same block:
Concretely, each client i uses input (ai, vi) (recall a non-representative has
vi = ⊥) and receives output v′

i, which is guaranteed to be the value of block
ai it requests. Each client i answers its logical request with v′

i.
Next, each representative i that has a write operation Acc(write, ai, vi) locally
updates the value of block ai to vi = vi.

5. Re-route blocks with newly assigned paths. Each representative i send
its block (ai, vi) to the appropriate client for insertion according to the newly
assigned path �′

i (Step 1) as follows: Let ji be the tree that path �′
i belongs to;

the m clients run sub-protocol OblivRoute where each representative i uses
input (ji, (�′

i, ai, vi)), and other clients use input (ji,⊥) for a randomly drawn

ji
$←[m]. 6

As the output of OblivRoute, each client j receives a set of blocks {(�′
i, ai, vi)}

whose path �′
i belong to Tj ; it stores each (ai, vi) in its local stash stashj .

6. Flush subtree and write-back. For each client j, let Trealj be the subtree
consisting of only real-read paths in TSj

. Before writing subtree TSj
back

to the server (re-encrypting all of its contents), client j runs the Subtree

5 Note that the representatives are chosen consistently with how repetition is removed
in Subtree-ORAM.

6 Note that the destination addresses of OblivRoute here are all uniformly chosen, and
thus we can use the implementation from [2].

Oblivious Parallel RAM: Improved Efficiency and Generic Constructions 219

Flushing Procedure on Trealj and stashj (recall that if at any point, stashj

contains more than R blocks, the procedure output overflow).

Recursive Version. We can apply recursion to eliminate the use of the shared
global position map in the above scheme. Observe that in each iteration, each
client read/write the position map at most once in Step 2. In other words, the
m clients, in order to answer a batch of m accesses, one per client, to a logical
space of size N ×B bits, clients need to first make a batch of at most m accesses,
one per client, to the position map of size N × log N bits. Since B ≥ α log N for
some constant α > 1 (for simplicity, N is a power of two), by recursively storing
the shared position map to the server in O(log N) trees, the clients no longer
need to share any position map. At the end of recursion, the size of the position
map decreases to O(1) and can be stored in the local memory of say, the first
client. Other clients can access and update this position map using oblivious
sub-protocols OblivAgg and OblivMCast.

This high-level strategy goes through almost identically as in Path-ORAM,
except from the following caveat. Recall that in Step 2 of Subtree-OPRAM, if a
client i is a representative, then it reads entry �i = pos.map(ai) of the position
map and updates it to a new random address �′

i, and otherwise, it does not
access the position map. Since B ≥ α log N , the entire position map fits into a
logical space of N/α blocks, where the block with address ã contains α position
map entries, pos.map(αã+1)|| · · · ||pos.map(α(ã+1)). This means, when applying
recursion and storing the position map at the server, client i needs to make the
following logical access:

Acc(õpi, ãi, ṽi) =

{
Acc(write, 	ai/α
, �′

i) if i is a representative
Acc(read, 0,⊥) otherwise

We assume without loss of generality above that clients who are not represen-
tatives simply make a read access to the block with address 0. By construction,
different representatives i and j access different entries in the position map
ai �= aj . However, it is possible that two representatives i and j need to access
the same logical address ã = ãi = ãj , in order to update different entries of posi-
tion map located in the same block ã—call this a write-collision; since each block
contains at most α position map entries, there are at most α write collisions for
the same logical address. Recall that in Subtree-OPRAM, when multiple clients
write to the same logical address, only the write operation with the smallest
index is executed. Hence, naively applying recursion on Subtree-OPRAM means
when write-collision occurs, only one position map entry would be updated.

This problem can be addressed by slightly modifying the interface of Subtree-
OPRAM, so that, under the constraint that there are at most α writes to dif-
ferent parts of the same block, all writes are executed. In recursion, the mod-
ified scheme is invoked, to ensure that position maps are updated correctly,
whereas at the top level, the original Subtree-OPRAM is used. To accommodate
α write collisions, the only change appears in Step 1: In Subtree-OPRAM, the
sub-protocol OblivElect is used, which ensures that for each address a, only the

220 B. Chen et al.

minimal indexed write is executed. We now modify this step to run the sub-
protocol OblivAgg (with appropriate key, data and aggregate function specified
shortly), so that, a unique representative is elected for each a, who receives all
the write requests to that a, and executing all of them (note that while the write
request are for the same block, they will concern different portions of the block
corresponding to distinct position map entries, and thus “executing all of them”
has a well-defined meaning):

1. Select block representatives, modified. The m clients run sub-protocol
OblivAgg, where client i uses input (keyi = ai, di = vi), and aggregate function
agg(d1, d2, · · ·) = d1||d2, · · · = V . OblivAgg ensures that for each address ai,
a unique client j accessing that address ai receives output (rep, Vi), and all
other clients receive output (⊥,⊥). In the former case, client j knows it is the
representative for accessing block ai, and Vi determines the new value of the
block vi.

The rest of the protocol proceeds identically as before. Since there are at most
α write collision for each address, the length of the output of agg is bounded by
� = αB. Thus the protocol proceeds in O(log m) rounds, where in each round
every client sends O(1) messages of size O(log N + log m + B) bits.

4 Generic OPRAM Scheme

In this section, we generalize the ideas from Subtree-OPRAM to obtain a generic
transformation transforming an arbitrary single-client ORAM to an OPRAM
scheme, incurring only in a O(log N) factor of efficiency loss. Overall, we are
going to prove the following general theorem.

Theorem 2 (Generic-OPRAM). There exists a generic transformation that
turns any ORAM scheme O into an m-client OPRAM scheme Generic-OPRAM
such that, for any R = ω(log λ), the following are satisfied, as long as the block
length satisfied B ≥ 2 log m, and moreover N/m ≥ R:

– Server Communication Overhead. The amortized communication over-
head is O(log N · α(N/m)) and the worst-case communication overhead is
O((log N + ω(log λ)) · α(N/m)), where α(N ′) is the communication overhead
of ORAM scheme O with logical address space [N ′].

– Inter-Client Communication Overhead. The amortized and worst-case
overheads are both ω(log λ) log m(log m+log N) with overwhelming probability.

– Server and Client Storage. The sever stores O(m·M(N/m)) blocks, where
M(N ′) is the number of blocks stored by O for logical address space N ′. More-
over, the client’s local storage overhead is R + polylog(N).

Our presentation will avoid taking the detour of introducing a single-client
ORAM scheme allowing for parallel processing of batches of m access operations,
as we have done above with Subtree-OPRAM. A direct description of Generic-
OPRAM is conceptually simpler. Before we turn to discussing Generic-OPRAM,
however, we discuss a basic building block behind our protocol.

Oblivious Parallel RAM: Improved Efficiency and Generic Constructions 221

4.1 Oblivious Dictionaries

In our construction below, every client will be responsible for a partition holding
roughly N/m blocks. One of the challenges is to store these blocks obliviously
using space which is roughly equivalent to that of storing N/m blocks. Ideally,
we want to implement this using an ORAM with logical address space for N/m
blocks, as this would result in constant storage overhead when the ORAM has
also constant overhead. In particular, the elements assigned to a certain parti-
tion have addresses spread around the whole of [N], and we have to map them
efficiently to be stored into some block in [N/m] in a way which is (a) storage
efficient for the client, and (b) only requires accessing a small (i.e., constant)
number of blocks to fetch or insert a new block. We going to solve this via an
oblivious data structure implementing a dictionary interface and able to store
roughly N/m blocks into a not-much-larger amount of memory.

The Data Structure. We want an oblivious implementation OD of a dictionary
data structure holding at most n pairs (a, v), where v corresponds to a data block
in our ORAM scheme, and a ∈ [N]. (For our purposes, think of n ≈ N/m.) At
any point in time, OD stores at most one pair (a, v) for every a. It allows us to
perform two operations:

– OD(I, a, v) inserts an item (a, v), where a ∈ [N], if the data structure contains
less than n elements. Otherwise, if n elements are stored, it does not add an
element, and returns an error symbol ⊥.

– OD(R&D, a) retrieves and deletes an item (a, v) stored in the data structure
(if it exists), returning v, and otherwise returns an error ⊥ if the element is
not contained.

Moreover, OD enables two additional “dummy” operations OD(R&D,⊥) and
OD(I,⊥,⊥) which are meant to have no effect on the data structure. Infor-
mally, for security, we demant that the access patterns resulting from any two
equally long sequences of operations of type OD(I, ∗, ∗) and OD(R&D, ∗) are
(statistically) indistinguishable.7

The Implementation. We can easily obtain the above OD data structure using
for instance any Cuckoo-hashing based dictionary data structure with constant
worst-case access complexity.8

Theorem 3 (Efficient Cuckoo-Hashing Based Dictionary [10]). There
exists an implementation of a dictionary data structure holding at most n blocks
with the following properties: (1) It stores n′ = O(n) blocks in the memory.
(2) Every insert, delete, and lookup operation, requires c = O(1) accesses to
blocks in memory. (3) The client stores polylog(n) blocks in local memory.

7 In fact, for our purposes, we could leak which operations are of which type, but it
will be easy enough to achieve this even stronger notion.

8 We think of a data structure as being in a simliar model as our ORAM scheme,
namely consisting of a client interface, using a small amount of local memory, and
the actual data being stored externally on the server.

222 B. Chen et al.

(4) The failure probability is negligible (in n) for any poly(n)-long sequence of
lookups, insertions, and deletions which guarantees that at most n elements are
ever stored in the data structure.

From any ORAM scheme O with address space n′, it is easy to implement
the oblivious data-structure OD: The client simply implements the dictionary
data structure from Theorem 3 on top of the ORAM’s logical address space,
and uses additional polylog(n) local memory for managing this data structure.
Dummy accesses can be performed by simply issuing c arbitrary read requests
to the ORAM storage. We omit a formal analysis of this construction, which is
immediate.

4.2 The Generic OPRAM Protocol

We finally show how to obtain our main generic construction of an oblivious
parallel RAM: The server storage consists of m partitions, and the i-th client
manages the i-th partition. In particular, client i runs the oblivious dictionary
scheme OD presented above (we refer to its interface as ODi) on the i-th parti-
tion. Here, we assume that the clients have access to the partition map, mapping
each address a ∈ [N] to some partition partition[a]. (We will discuss in the analy-
sis how to eliminate this sharing using recursion.) Besides, Generic-OPRAM
further takes care of the communication among clients using the algorithms
OblivElect, OblivMCast, OblivRoute from Sect. 3.2.

We postpone a complexity, correctness, and security analysis to Appendix E,
as well as a discussion of the recursion version.

Data Structures. The non-recursive version of Generic-OPRAM keeps a parti-
tion map with N entries that maps block addresses a to their currently assigned
partition partition[a], and that can be accessed by all clients obviously (i.e., access
to the partition map are secret). Every client additionally keeps a stash SSi which
contains at most R items to be inserted into ODi. For our analysis to work out,
we need R = ω(log λ). Also let κ ≥ 2 be a constant.

Generic OPRAM Protocol. In each iteration, given the logical access
requests (Acc(opi, addri, vi))i∈[m] input to the client, the m clients go through
the following steps (all messages are tacitly encrypted with fresh random coins):

1. Select block representatives. Run OblivElect between clients with inputs
(ai, opi)i∈[m]. In the end, each client i knows whether it has been selected as
the representative to get the block value ai, or not.

2. Query blocks. Clients do one of two things:
– Real requests. Each representative client i gets the partition index pi =

partition[ai], and sends a request ai to client pi. Moreover, it reassigns

partition[ai]
$←[m].

– Fake requests. Every non-representative client i generates a random
qi

$←[m] and sends a request ⊥ to client qi.

Oblivious Parallel RAM: Improved Efficiency and Generic Constructions 223

3. Retrieve the blocks. Each client p ∈ [m] processes the received requests
according to some random ordering: For each request ai �= ⊥ received from
client i, client p executes ODp(R&D, ai) and denote the retrieved block value
vi. If vi = ⊥, then there must be some entry (ai, v

′
i) in the SSp. Then, client

p deletes this entry, and sets vi = v′
i. Finally, it sends vi back to i. For every

⊥ request received from some client i, client p executes the fake read access
ODp(R&D,⊥), and returns vi = ⊥ to i.

4. Representatives inform. At the end of the previous step, each client holds
a value vi which is �= ⊥ if and only if i is the representative for ai. Next, the m
clients run sub-protocol OblivMCast to allow each representative to multicast
the value it holds to other clients requesting the same block: Concretely, each
client i uses input (ai, vi) (recall a non-representative has vi = ⊥) and receives
output v′

i, which is guaranteed to be the value of block ai it requests. Each
client i answers its logical request with v′

i.
5. Send updated values. For each representative i such that Acc(opi, ai, vi) is

a write command, let idi = partition[ai] and msgi = (ai, vi). Otherwise, if it
is not a write command (but still, i a representative), it sets msgi = (ai, vi)

instead. Non-representative clients set msgi = ⊥ and idi
$←[m]. Then, the

clients run OblivRoute with respective inputs (idi,msgi).
6. Write back. Each client p ∈ [m] adds all pairs (a, v) received through

OblivRoute to SSp. Then, client p picks the first κ elements from SSp, and
for each such element (a, v), executes ODi(I, ai, v). If κ′ < κ elements are
in SSi, then the last κ − κ′ insertions are dummy insertions ODi(I,⊥,⊥).
Anytime when stash SSi needs to store more than R blocks or the partition
holds more then 2N/m + R blocks, output “overflow” and halt.

Acknowledgments. The authors wish to thank Elette Boyle, Kai-Min Chung, and
Mariana Raykova for insightful discussions.

Binyi Chen was partially supported by NSF grants CNS-1423566 and CNS-1514526,
and a gift from the Gareatis Foundation. Huijia Lin was partially supported by NSF
grants CNS-1528178 and CNS-1514526. Stefano Tessaro was partially supported by
NSF grants CNS-1423566, CNS-1528178, and the Glen and Susanne Culler Chair. This
work was done in part while the authors were visiting the Simons Institute for the The-
ory of Computing, supported by the Simons Foundation and by the DIMACS/Simons
Collaboration in Cryptography through NSF grant CNS-1523467.

A Correctness and Obliviousness of ORAM

For an access sequence y we let APi = APi(y) be the access pattern of its i-
th operation – i.e., the sequence of pairs (opi,1, ai,1), . . . , (opi,qi

, ai,qi
) describing

the client’s server accesses (without the actual values) when processing the i-th
operation – and denote by vali the answer of this operation. Then, we let

OutO(λ,N,B,y) = (val1, val2, ..., valT) , APO(λ,N,B,y) = (AP1, ...,APT).

We say that the sequence of outputs z = OutO(λ,N,B,y) of O is correct w.r.t.
the sequence of logical accesses y , if for each logical command Acc(opi, ai, vi) in

224 B. Chen et al.

y , the corresponding output vali in z is either the most recently written value
on address ai, or ⊥ if ai has not yet been written to. Let Correct be the predicate
that on input (y , z) returns whether z is correct w.r.t. y .

Definition 2 (ORAM Correctness and Security). An ORAM O achieves
correctness and obliviousness if for all N,T,B = poly(λ), there exists a negligible
function μ, such that, for every λ, every two sequences y and y′ of T (λ) access
operations, the following are satisfied:

1. Correctness: Pr [Correct (y,OutO(λ,N,B,y)) = 1] ≥ 1 − μ(λ).
2. Obliviousness: Δ (APO(λ,N,B,y),APO(λ,N,B,y’)) ≤ μ(λ).

We note that the above definition considers statistical obliviousness. This
is generally achieved by tree-based ORAM schemes, but it can be relaxed to
computational obliviousness, where the statistical distance is replaced by the
best distinguishing advantage of a PPT distinguisher.

B Review of Path-ORAM

In this section, we review the Path-ORAM scheme in detail, as it is used as a
starting point for Subtree-ORAM and Subtree-OPRAM.

Overview. Path-ORAM is a tree-based ORAM that works for the single client
setting. To implement a logical storage space for N data blocks, Path-ORAM
organizes the storage space (virtually) as a complete binary tree with depth
D = log N�. Each node of the tree is a bucket capable of storing Z blocks of
size B (bits). Here Z is a constant, thus the server storage overhead is O(1). To
hide the logical access patterns, each data block a is assigned to a random path
� from root to leaf in the tree and stored at some node of the path; in order to
hide the repetitive accesses to the same block, the assignment is updated to a
new independent random path after each access.

In [26], Path-ORAM is constructed in two steps; first, a non-recursive version
is proposed and analyzed, in which the client keeps a local position map with
N log N bits; then the position map is recursively outsourced to the server,
reducing the client storage to only polylog(N) bits. Below we describe the non-
recursive version first, and then show how to apply the recursive transformation.

Non-Recursive Version. The client maintains a position map that maps each
block a to a path pos.map(a). Since each path can be specified using D (the
depth of the tree) bits, the size of the position map is ND = Nlog N� bits.
Additionally, the client keeps a small local storage stash used for storing blocks
that do not fit in the assigned path (due to limited space at each tree node). The
capacity of the stash is bounded by R = R(λ) for any function R(λ) = ω(log λ),
except with negligible probability in λ.

Given the i-th logical access Acc(opi, ai, vi), Path-ORAM proceeds in two
phases:

Oblivious Parallel RAM: Improved Efficiency and Generic Constructions 225

– Phase 1: Processing the query. Path-ORAM retrieves the path �i =
pos.map(ai) assigned to block ai, and finds the block ai on the path or in
the stash. After returning the block value and potentially updating the block,
Path-ORAM re-assigns block a to a new independent random path �′ $←[N]
and updates pos.map(ai) = �′

i. It then moves the block to the stash.
– Phase 2: Flushing and write-back. Before re-encrypting and writing the

path back to the server, in order to avoid the stash from “overflowing”, Path-
ORAM re-arranges path �i, to fit as many blocks from the stash into the path.
More specifically, for each block aj in the stash and on the path, Path-ORAM
places it at the lowest non-full node pj that intersects with its assigned path
�j = pos.map(aj). If no such node is found, the block remains in the stash.
If at any point, the stash contains more than R blocks, Path-ORAM outputs
“overflow” and aborts.

Recursive Version. In the above non-recursive version, the client keeps a large
N log N -bit position map. To reduce the client storage, Path-ORAM recursively
outsources the position map to the server by adding extra O(log N) trees. More
specifically, if the cell size B ≥ αlog N� for some integer α > 1, the position
map can be stored in N

α � cells. This means, to answer an access to a logical
storage space of size N , the non-recursive version only needs to make a query to
another logical storage space (i.e. the position map) of size N

α �. Therefore, if the
client further outsources the position map to the server, its local storage would
be reduced to N

α2 �. This idea can be applied recursively until the client storage
becomes polylog(N). In the final scheme, at the server, besides tree T0 that stores
data blocks, there are additional trees rT1, rT2, ..., rTl for position map queries,
where l = logα N�. Tree rTi has size Õ(N

αi �B) bits, and maintains the position
map corresponding to tree rTi−1 which contains N

αi−1 � cells. The position map
corresponding to tree rTl is stored in local storage. Now, to access a block a, the
client needs to query pos.map(a) in T0 by looking up the position in tree rT1. In
order to query the position map corresponding to tree rT1, similarly, the client
looks up in rT2, so on and so forth. Finally the position map value of tree rTl is
stored in local storage.

Complexity. The storage overhead is O(1) both in the non-recursive version
and the recursive version. In the non-recursive version, for each logical access,
Path-ORAM reads and writes a path with log N nodes, each of which contains Z
cells, therefore the communication overhead is O(log N) per access. The compu-
tation overhead is O(log2 N), since the flushing procedure takes time O(log2 N)
per access. After the recursive transformation is applied, to answer each logical
access, the client needs to query l = logα N� number of trees, and hence the
communication/computation overhead blow by a factor of log N .

226 B. Chen et al.

C Analysis of Subtree-ORAM

In the full version, we show that the overflow probability of Subtree-ORAM is
negligible given any sequence of logical access requests. In particular, we prove
the following proposition, which generalizes the analysis of Path-ORAM.

Proposition 1. Fix the stash size to any R(λ) ∈ ω(log λ). For every polynomial
m, N , T , B, there exists a negligible function μ, such that, for every λ, and
sequence y of T batches of m access requests, the probability that Subtree-ORAM
outputs overflow is at most μ(λ).

From Proposition 1, it is easy to show that Subtree-ORAM satisfies correct-
ness and obliviousness.

– Correctness: Since the stash overflows with negligible probability, and
Subtree-ORAM maintains the block-path invariance (as in Path-ORAM) –
at any moment, each block can be found either on the path currently assigned
to it or in the stash; by construction, Subtree-ORAM answers logical accesses
correctly according to the correctness condition of ORAM.

– Obliviousness: Conditioned on no overflowing: (1) In each iteration,
Subtree-ORAM always reads m independent and random paths from the
server. (2) After each iteration, every requested block is assigned to a new
random path, which is hidden from the adversary (as in Path-ORAM). Thus
the construction is oblivious.

D Analysis of Subtree-OPRAM

In this section, we give a high-level overview of why Subtree-OPRAM is correct
and satisfies obliviousness. Also we discuss below the complexity of the protocol.

We discuss correctness and obliviousness for the non-recursive version only.
The same properties are then also easily shown to be true for the recursive
version. The first key observation is that the m clients of Subtree-OPRAM can
be seen as collectively emulating the operations of the single client of Subtree-
ORAM. Compare an execution of Subtree-OPRAM with a sequence y of T
batches of m parallel logical accesses with the execution of Subtree-ORAM with
the same sequence.9 Then, we observe the following:

1. The ORAM tree T of Subtree-ORAM is stored in parts in Subtree-OPRAM:
All but the top log m levels is stored as the m-tree forest T1, · · · , Tm at the
server, while the top log m levels are stored in a distributed way by the indi-
vidual clients in their respective stashes — namely, if a block is stored at
client j, its assigned path belongs to Tj . Therefore, the union of {stashi} con-
tains the same blocks as the stash of Subtree-ORAM, as well as all blocks in
the top of the tree T of Subtree-ORAM.

9 We are being somewhat informal here – one would have to define precisely what
it means to “compare” in terms of executing both protocols with the same random
choices. As it is somewhat tedious, we keep this on a more informal high level, hoping
to convey the main ideas.

Oblivious Parallel RAM: Improved Efficiency and Generic Constructions 227

2. Subtree-OPRAM answers a batch of m requests (in each iteration) as Subtree-
ORAM does: The m clients of Subtree-OPRAM choose a representative for
each requested block (in Step 1) with the exactly same rule Subtree-ORAM
uses to remove repetitive accesses, and to only keep one access per block.
Later (in Step 4), Subtree-OPRAM first answers requests using the most
recently written value from previous iterations and then executes the write
operations; in particular, due to the way representatives are chosen, the write
operation with the minimal index always takes effect.

3. Subtree-OPRAM maintains the block-path invariant as Subtree-ORAM. This
is because each time a block is assigned to a new path �′, it is sent (using the
OblivRoute sub-protocol) to client j managing the tree Tj the path �′ belongs
to. Therefore, at any moment, a block is either on its assigned path or in the
local stash of the client responsible for the tree its assigned path belongs to.

4. Subtree-OPRAM emulates the flushing procedure of Subtree-ORAM: Recall
that Subtree-ORAM flushes along the subtree Treal of paths assigned to all
requested blocks. Removing the top log m levels of Treal gives a set of m sub-
trees Treal1 , · · · , Trealm . Note that Treali is exactly the subtree that client i in
Subtree-OPRAM performs flushing on (in Step 6). Indeed, by the design of the
subtree flushing procedure, blocks that land in different subtrees Treali �= Trealj

can be operated on independently. Moreover, blocks that would land in the top
log m levels of Treal or stash in Subtree-ORAM are naturally divided into the
m local stashes according to which tree Tj their assigned path belongs to.

Correctness and Stash Analysis. By the above, if we fix any sequence y
of parallel accesses, and consider the executions of (non-recursive) Subtree-
OPRAM and (non-recursive) Subtree-ORAM with the same input sequence y ,
since Subtree-ORAM answers every request correctly as long as it does not over-
flow, so does Subtree-OPRAM.

To argue that Subtree-OPRAM only overflows with negligible probability,
recall that by Proposition 1, when the stash size of Subtree-ORAM is set to
any R′(λ) ∈ ω(log(λ)), the probability of overflowing is negligible. We can thus
bound the size of each local stash stashi in Subtree-OPRAM, using the bound
on the stash size of Subtree-ORAM. As noted above, after each iteration, the
local stash stashi of client i stores two types of blocks:

1. Blocks in the stash of Subtree-ORAM with an assigned path belonging to Ti,
and

2. Blocks in the top log m levels of the ORAM tree T of Subtree-ORAM, again
with an assigned path belonging to Ti.

By Proposition 1, the number of blocks of the first type is bounded by ω(log λ)
with overwhelming probability. Moreover, it is easy to see that the number of
blocks of the second type is bounded by O(log m). Therefore, the size of stashi is
bounded by any R(λ,m) ∈ ω(log λ) + O(log m) with overwhelming probability.
This is summarized by the following lemma.

228 B. Chen et al.

Lemma 1. Fix the stash size to any R(λ,m) ∈ ω(log λ) + O(log m). For every
polynomial m, N , T , B, there is a negligible function μ, such that, for every
λ, and sequence y of T (λ) accesses, the probability that any client of the non-
recursive Subtree-OPRAM outputs overflow is at most μ(λ).

Complexity. The storage overhead of Subtree-OPRAM is the same as that of
Path-ORAM, which is O(1). The only contents stored at each client are the
stashes, one per recursion level. Since each stash is of size R(λ,m)B, and the
recursion depth is bounded by O(log N), the total client storage overhead is
O(log N)R(λ,m) ∈ ω(log N log λ) + O(log N log m).

Next, we analyze the communication and computation overheads (per client
per access) of the recursive Subtree-OPRAM. In each iteration, to process m
logical accesses (one per client), the m clients first recursively look up the position
maps for O(log N) times using the non-recursive Subtree-OPRAM, and then
process their requests using again the non-recursive Subtree-OPRAM. Fix any
client i, we analyze its communication and computation complexities as follows:

– Server communication overhead: In each invocation of non-recursive
Subtree-OPRAM, client i reads/writes a subtree of paths delegated to it by
other clients. Since these paths are all chosen at random, in expectation client
i read/write only 1 path in each invocation. Furthermore, across all O(log N)
invocations of non-recursive Subtree-OPRAM, the probability that client i
is delegated to read/write ω(log λ) + O(log N) paths is negligible. (Consider
tossing O(log N) × m balls (read/write path requests) randomly into m bins
(clients); the probability that any bin has more than O(log N) + ω(log λ)
balls is negligible in λ.) Since each path contains O(log N) blocks, the server
communication overhead is bounded by ω(log λ log N)+O(log2 N) in the worst
case, with overwhelming probability.

– Inter-client communication overhead: In each invocation of the non-
recursive Subtree-OPRAM protocol, client i communicates with other clients
in two ways: (1) using the oblivious sub-protocols (Steps 1, 4 and 5) and
(2) sending the requests for reading certain block and path (i, a′

i, �i) (Step 2)
and sending back the retrieved block (Step 3). The maximum communicating
complexity of the oblivious sub-protocols is O(K log m(log m+log N+B)) bits,
where K is in ω(log λ). Therefore, across O(log N) invocations of non-recursive
Subtree-OPRAM, the first type of inter-client communication involves send-
ing/receiving at most O(log NK log m(log m + log N +B)) bits. On the other
hand, by a similar argument as above, across O(log N) recursive invocations,
with overwhelming probability, each client receives at most O(log N)+ω(log λ)
requests of form (i, a′

i, �i), and hence the second type of communication
involves sending/receiving (ω(log λ) + O(log N)) × O(log m + log N + B) bits
with overwhelming probability. Thus, in total, the inter-client communication
is ω(log λ) log m log N(log m+log N +B) bits. Since B ≥ α log N for an α > 1,
the inter-client communication overhead is ω(log λ) log m(log m + log N).

Finally, we observe that when considering the communication overhead averaged
over a sufficiently large number T of parallel accesses, the server communication

Oblivious Parallel RAM: Improved Efficiency and Generic Constructions 229

overhead is bounded by O(log2 N) with overwhelming probability. The inter-
client communication complexity stays the same.

Obliviousness. The obliviousness of recursive Subtree-OPRAM follows from
that of the non-recursive version. Conditioned on that the stash does not over-
flow, the latter follows from three observations: (i) In each iteration, the paths
{�i} read/write from/to the server (in Steps 3 and 6) are all independent and
random, (ii) the communication between different clients is either through one of
the oblivious sub-protocols (in Steps 1, 4, and 5), which has fixed communication
pattern, or depends on the random paths {�i} (in Steps 2 and 3), and (iii) the
new assignment of paths {�′

i} to blocks accessed are hidden using OblivRoute (in
Step 5). Combining these observations, we conclude that the access and commu-
nication patterns of Subtree-OPRAM is oblivious of the logical access pattern.

E Analysis of Generic-OPRAM

Recursive Version. The above protocol assumes that every client has (private)
access to the partition map to be accessed and updated throughout the execution
of the protocol. This is of course not realistic. But similar to the case of the
position map in Subtree-OPRAM, we can use O(log N)-deep recursion. For this
to work, we need block size to be at least, say, B = 2 log m, since each entry in
the partition map can be represented by log m bits.

Complexity Analysis. We now analyze the complexity of the Generic-
OPRAM. We assume that ODi is implemented from some ORAM scheme Oi

which has communication overhead α(N ′) when using address space N ′, and
that the same scheme stores M(N ′) blocks on the server for the same address
space. We make some assumptions in the following that appear reasonable,
namely that α(O(N ′)) = O(α(N ′)) and M(O(N ′)) = O(M(N ′)) (this is true
because these functions are polynomial). Moreover, we can also assume also that
M(N ′/c) ≤ M(N ′)/c for any constant c. (Note that the scheme is meaningful
without these assumptions, but the resulting complexity statement would be
somewhat more cumbersome.)

– Server and Client Storage. Let us start with the non-recursive case.
Note that each partition needs enough blocks to implement a dynamic
data structure to store 2N/m + R blocks. This will require an ORAM for
N ′ = O(N/m + R) blocks, which thus requires O(M(N/m + R)) blocks.
Thus, the overall server storage complexity is of O(m · M(N/m + R)) blocks.
If M(N ′) = O(N ′), in particular this implies that the overall storage com-
plexity is O(N + mR), and thus linear if m · R ∈ O(N).
For the recursive case, note that the storage space is going to at least halve
after each recursion level by our assumption on M . So if we assume that
N/m > R, we see that the storage complexity remains O(m · M(N/m + R)).
Every client needs to store R blocks, and moreover, it needs polylog(N) mem-
ory for implementing OD and the underlying ORAM scheme O, which we
assume to have polylog(N) client storage overhead.

230 B. Chen et al.

– Server Communication. In contrast to Subtree-OPRAM above, a generic
construction does not necessarily allow us to parallelize accesses to the data
structure. The number of ODi(R&D, ·) operations a client performs can thus
vary in each round, but we can apply the same analysis as for Subtree-OPRAM
above. Namely, given we are using log N levels of recursion, the per-client
server communication is O(log N · α(N/m + R)) in the amortized case, and
O((log N + ω(log λ)) · α(N/m + R)) in the worst case.

– Inter-Client Communication. The analysis is the same as the one for
Subtree-OPRAM.

Correctness. We analyze our scheme and show that it is indeed a valid OPRAM
scheme.

Lemma 2. Generic-OPRAM satisfies correctness, and in particular only over-
flows with negligible probability, as long as OD is also correct and only fails with
negligible probability.

We omit part of the correctness proof, and restrict ourselves to the more
involved part of the analysis, proving that none of the stashes SSi ever overflows,
and that none of the partition is supposed to hold more than 2N/m+R elements.
Conditioned on no overflows, correctness can then be verified by inspection.

The final result on the overflow probability summarized by the following
lemma.

Lemma 3. For every constant κ ≥ 2, every T = T (λ), and every logical access
sequence y of T batches of m parallel logical instructions,

Pr[The protocol outputs “overflow′′] ≤ T · m · e−Θ(R),

where the randomness is taken over the partition assignment, and the constant
in the exponent depends on κ only.

We split the proof of the lemma into two propositions – the first pertain-
ing to SSi overflowing, the second to partition load. We stress that the proof
first proposition relies on some interesting (and non-elementary) fact from basic
queueing theory to ensure that a constant outflow of (at most) two blocks is
sufficient to avoid an overflow.

Proposition 2. For every constant κ ≥ 2, every T = T (λ), and every logical
access sequence y of T batches of m logical instructions,

Pr[One of the stashesSSi overflows] ≤ T · m · e−Θ(R),

where the randomness is taken over the partition assignment, and the constant
in the exponent depends on κ only.

Proof. We prove the lemma for κ = 2. It will be clear that the bound only
improve for larger κ > 2. Let us look at what happens with one particular stash
SSi for some i ∈ [m] over time, and compute the probability that it ever contains
more than R elements. We model this via the following process:

Oblivious Parallel RAM: Improved Efficiency and Generic Constructions 231

Single-bin process: In each iteration, m balls are thrown into one out of m
bins independently, and each one lands in the single bin we are looking at
with probability 1/m. Then, κ = 2 balls are taken out of the bin (if the bin
contains at least κ = 2 balls), and otherwise the bin is emptied.

Note that in the actual protocol execution, less than m balls may be thrown into
bins at each round because of possible repetition patterns, but it is clear that by
always assuming that up to potential m balls can be thrown in the bin can only
increase the probability of overflowing, and thus this will be assumed without
loss of generality.

To analyze the probability that the bin overflows at some point in time (i.e., it
contains more than R balls), we use the stochastic process proposed in Example
23 of [22], with a = 0, b = +∞. There, it is shown that the number of balls in
the bin at iteration T is distributed as the random variable

XT = max
0≤i≤T

Zi

where Z0 = 0 and
Zi =

∑

j≤i

(Vj − Uj),

with Vj denoting the number of balls going to the bin in iteration j and Uj

denoting the potential number of balls taken out from the bin in iteration j.
Here Uj = 2 for every j, thus

Zi = Ti − 2i,

where Ti =
∑

j≤i Vj . Note that Vj can be seen as the sum of m independent
Bernoulli random variables, each being one with probability 1/m. Therefore, Ti

is the sum of m · i Bernoulli random variables with expected value i. We want
to show now that with very high probability, Ti ≤ 2i + R. We can simply use
the Chernoff bound, and consider two cases. First, if R/i ≥ 1, then

Pr [Ti ≥ 2i + R] ≤ Pr[Ti ≥ i · (1 + R/i)] ≤ e− ε2
2+ε i,

where ε = R/i. Note that

ε2

2 + ε
i = R · 1

1 + 2i/R
≥ R/3.

Thus Pr [Ti ≥ 2i + R] ≤ e−R/3. The second case is that R/i ≤ 1. Then,

Pr [Ti ≥ 2i + R] ≤ Pr[Ti ≥ i · (1 + 1)] ≤ e−i/3 ≤ e−R/3.

Therefore, by the union bound, the probability that there exists some i such that
Zi ≥ R is at most T · e−R/3, i.e., XT ≤ R, except with probability T · e−R/3. To
conclude, once again by the union bound, we obtain the bound on the probability
that one of the m stashes overflows. ��

232 B. Chen et al.

We also need to analyze the probability that too many elements are assigned
to one partition, as otherwise our protocol would also fail.

Lemma 4. For a given partition map partition : [N] → [m], denote by L the
maximum numbers of addresses a ∈ [N] assigned to the same partition p. Then,
for any sequence of T batches of m operations and any R ≥ 2, the probability
that any point in time, L ≥ 2N/m + R ist at most T · m · e−R/2.

Proof. Take the partition map contents at some fixed point in time, and fix some
partition i ∈ [m]. The entire contants of the partition map are N independent
random variables, and each one of them is equal to i with probability 1/m. Let
Li be the number of addresses assigned to this given i, and let L = maxi Li.
Note that Li is a sum of Bernoulli random variables with expectation N/m. We
can then use the Chernoff bound to see that

Pr
[
Li ≥ 2N/m + R

]
= Pr [S ≥ N/m(1 + 1 + ε)] ≤ e−R/2,

for ε = Rm/N . By the union bound,

Pr [L ≥ N/m + R] ≤ m · e−R/2.

And finally, note that there are at most T different “assignments” of position
maps due to the structure of the protocol, and thus the overall bound on the
probability follows – once again – by the union bound. ��

Obliviousness. Generic-OPRAM also satisfies the obliviousness property. The
formal proof (which we omit) relies on the obliviousness of the ODi’s and the
fact that whenever processing a batch of m logical accesses, the above scheme
accesses first m randomly chosen partitions, and moreover, in the second phase,
each partition is accessed exactly twice.

References

1. Boneh, D., Mazieres, D., Popa, R.: Remote oblivious storage: making oblivious
ram practical. MIT Tech-report: MIT-CSAIL-TR-2011-018 (2011)

2. Boyle, E., Chung, K.-M., Pass, R.: Oblivious parallel RAM. In: Kushilevitz, E.,
Malkin, T. (eds.), TCC 2016A, LNCS (2016, To appear). http://eprint.iacr.org/
2014/594

3. Chung, K.-M., Liu, Z., Pass, R.: Statistically-secure ORAM with Õ(log2 n) over-
head. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874,
pp. 62–81. Springer, Heidelberg (2014)

4. Chung, K.-M., Pass, R.: A simple ORAM. Cryptology ePrint Archive, Report
2013/243 (2013). http://eprint.iacr.org/2013/243

5. Fletcher, C.W., van Dijk, M., Devadas, S.: Towards an interpreter for efficient
encrypted computation. In: Proceedings of the 2012 ACM Workshop on Cloud
Computing Security, CCSW 2012, Raleigh, NC, USA, October 19, 2012, pp. 83–94
(2012)

http://eprint.iacr.org/2014/594
http://eprint.iacr.org/2014/594
http://eprint.iacr.org/2013/243

Oblivious Parallel RAM: Improved Efficiency and Generic Constructions 233

6. Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Opti-
mizing ORAM and using it efficiently for secure computation. In: De Cristofaro,
E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 1–18. Springer, Heidelberg
(2013)

7. Goldreich, O.: Towards a theory of software protection. In: Odlyzko, A.M. (ed.)
CRYPTO 1986. LNCS, vol. 263, pp. 426–439. Springer, Heidelberg (1987)

8. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: Aho, A. (ed.) 19th ACM STOC, pp. 182–194. ACM Press, New York
City, New York, USA (25–27 May 1987)

9. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

10. Goodrich, M.T., Hirschberg, D.S., Mitzenmacher, M., Thaler, J.: Cache-oblivious
dictionaries and multimaps with negligible failure probability. In: Even, G., Rawitz,
D. (eds.) MedAlg 2012. LNCS, vol. 7659, pp. 203–218. Springer, Heidelberg (2012)

11. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data
via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part II. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011)

12. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Oblivious RAM
simulation with efficient worst-case access overhead. In: Proceedings of the 3rd
ACM Cloud Computing Security Workshop, CCSW 2011, Chicago, IL, USA,
October 21, 2011, pp. 95–100 (2011)

13. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Oblivious stor-
age with low I/O overhead. CoRR, abs/1110.1851 (2011)

14. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-
preserving group data access via stateless oblivious RAM simulation. In: Rabani,
Y. (ed.) 23rd SODA, pp. 157–167. ACM-SIAM, Kyoto, Japan (17–19 January
2012)

15. Dautrich, J.L. Jr., Stefanov, E., Shi, E.: Burst ORAM: minimizing ORAM response
times for bursty access patterns. In: Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20–22, 2014, pp. 749–764 (2014)

16. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious
RAM and a new balancing scheme. In: Rabani, Y. (ed.) 23rd SODA, pp. 143–156.
ACM-SIAM, Kyoto, Japan (17–19 January 2012)

17. Lorch, J.R., Parno, B., Mickens, J.W., Raykova, M., Schiffman, J.: Shroud: ensur-
ing private access to large-scale data in the data center. In: Proceedings of the 11th
USENIX Conference on File and Storage Technologies, FAST 2013, San Jose, CA,
USA, February 12–15, 2013, pp. 199–214 (2013)

18. Maas, M., Love, E., Stefanov, E., Tiwari, M., Shi, E., Asanovic, K., Kubiatowicz,
J., Song, D.: PHANTOM: practical oblivious computation in a secure processor.
In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 311–324.
ACM Press, Berlin, Germany (4–8 November 2013)

19. Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg (2010)

20. Ren, L., Fletcher, C.W., Kwon, A., Stefanov, E., Shi, E., van Dijk, M., Devadas,
S.: Constants count: practical improvements to oblivious RAM. In: Proceedings of
the 24th USENIX Security Symposium (SECURITY 2015), pp. 415–430 (2015)

21. Ren, L., Yu, X., Fletcher, C.W., van Dijk, M., Devadas, S.: Design space exploration
and optimization of path oblivious RAM in secure processors. In: The 40th Annual
International Symposium on Computer Architecture, ISCA 2013, Tel-Aviv, Israel,
June 23–27, 2013, pp. 571–582 (2013)

234 B. Chen et al.

22. Serfozo, R.: Basics of Applied Stochastic Processes. Springer Science &
Business Media, Berlin (2009). http://www.stat.yale.edu/∼jtc5/251/readings/
Basics%20of%20Applied%20Stochastic%20Processes Serfozo.pdf

23. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 197–214. Springer, Heidelberg (2011)

24. Stefanov, E., Shi, E.: Oblivistore: high performance oblivious cloud storage. In:
2013 IEEE Symposium on Security and Privacy (SP), pp. 253–267. IEEE (2013)

25. Stefanov, E., Shi, E., Song, D.: Towards practical oblivious ram. In: NDSS (2012)
26. Stefanov E., van Dijk, M., Shi, E., Fletcher, C.W., Ren, L., Yu, X., Devadas, S.:

Path ORAM: an extremely simple oblivious RAM protocol. In: Sadeghi, A.-R.,
Gligor, V.D., Yung, M. (eds.) ACM CCS 13, pp. 299–310. ACM Press, Berlin,
Germany, (4–8 November 2013)

27. Wang, S., Ding, X., Deng, R.H., Bao, F.: Private information retrieval using trusted
hardware. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS,
vol. 4189, pp. 49–64. Springer, Heidelberg (2006)

28. Wang, X., Hubert Chan, T.-H., Shi, E.: Circuit ORAM: on tightness of the
goldreich-ostrovsky lower bound. In: Ray, I., Li, N., Kruegel, C. (eds.) Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, Denver, CO, USA, October 12–6, 2015, pp. 850–861 (2015)

29. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: practical access
pattern privacy and correctness on untrusted storage. In: Ning, P., Syverson, P.F.,
Jha, S. (eds.) ACM CCS 2008, pp. 139–148. ACM Press, Alexandria, Virginia,
USA (27–31 October 2008)

30. Williams, P., Sion, R., Tomescu, A.: PrivateFS: a parallel oblivious file system. In:
Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 977–988. ACM Press,
Raleigh, NC, USA (16–18 October 2012)

http://www.stat.yale.edu/~jtc5/251/readings/Basics%20of%20Applied%20Stochastic%20Processes_Serfozo.pdf
http://www.stat.yale.edu/~jtc5/251/readings/Basics%20of%20Applied%20Stochastic%20Processes_Serfozo.pdf

ABE and IBE

Déjà Q: Encore! Un Petit IBE

Hoeteck Wee(B)

ENS, Paris, France
wee@di.ens.fr

Abstract. We present an identity-based encryption (IBE) scheme in
composite-order bilinear groups with essentially optimal parameters: the
ciphertext overhead and the secret key are one group element each and
decryption requires only one pairing. Our scheme achieves adaptive secu-
rity and anonymity under standard decisional subgroup assumptions
as used in Lewko and Waters (TCC ’10). Our construction relies on
a novel extension to the Déjà Q framework of Chase and Meiklejohn
(Eurocrypt ’14).

1 Introduction

In identity-based encryption (IBE) [5,27], ciphertexts and secret keys are asso-
ciated with identities, and decryption is possible only when the identities match.
IBE has been studied extensively over the last decade, with a major focus on
obtaining constructions that simultanously achieve short parameters and full
adaptive security under static assumptions in the standard model. This was first
achieved in the works of Lewko and Waters [23,29], which also introduced the
powerful dual system encryption methodology. The design of the Lewko-Waters
IBE and the underlying proof techniques have since had a profound impact on
both attribute-based encryption and pairing-based cryptography.

1.1 Our Contributions

In this work, we obtain the first efficiency improvement to the Lewko-Waters IBE
in composite-order bilinear groups. We present an adaptively secure and anony-
mous identity-based encryption (IBE) scheme with essentially optimal parame-
ters: the ciphertext overhead and the secret key are one group element each, and
decryption only requires one pairing; this improves upon the Lewko-Waters IBE
[23] in three ways: shorter parameters, faster decryption, and anonymity. Via
Naor’s transformation, we obtain a fully secure signature scheme where the sig-
nature is again only one group element. We stress that we achieve all of these
improvements while relying on the same computational subgroup assumptions as
in the Lewko-Waters IBE, notably in composite-order groups whose order is the
product of three primes. We refer to Fig. 1 for a comparison with prior works.

CNRS (UMR 8548), INRIA and Columbia University. Supported in part by ERC
Project aSCEND (639554) and NSF Award CNS-1445424.

c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 237–258, 2016.
DOI: 10.1007/978-3-662-49099-0 9

238 H. Wee

The Lewko-Waters IBE has played a foundational role in recent developments
of IBE and more generally attribute-based encryption (ABE). Indeed, virtually
all of the state-of-the-art prime-order IBE schemes in [2,22] —along with the
subsequent extensions to ABE [1,12,24,30]— follow the basic design and proof
strategy introduced in the Lewko-Waters IBE. For this reason, we are optimistic
that our improvement to the Lewko-Waters IBE will lead to further advances in
IBE and ABE. In fact, our improved composite-order IBE already hints at the
potential of a more efficient prime-order IBE that subsumes all known schemes;
we defer further discussion to Sect. 1.3.

We also present a selectively secure broadcast encryption scheme for n users
where the ciphertext overhead is two group elements (independent of the number
of recipients) and the user private key is a single group element.1 To the best of
our knowledge, this is the first broadcast encryption scheme to achieve constant-
size ciphertext overhead, constant-size user private keys and linear-size public
parameters under static assumptions; previously, such schemes were only known
under q-type assumptions [6].

1.2 Our Techniques

The starting point of our constructions is the Déjà Q framework introduced by
Chase and Meiklejohn [10]; this is an extension of Waters’ dual system tech-
niques to eliminate the use of q-type assumptions in settings beyond the reach
of previous techniques. These settings include deterministic primitives such as
pseudo-random functions (PRF) and —quite remarkably— schemes based on the
inversion framework [4,8,26]. However, the Déjà Q framework is also limited in
that it cannot be applied to advanced encryption systems such as identity-based
and broadcast encryption, where certain secret exponents appear in both cipher-
texts and secret keys on both sides of the pairing. We show how to overcome
this limitation using several simple ideas.

IBE Overview. We describe our IBE scheme and the security proof next.
We present a simplified variant of the constructions, suppressing many details
pertaining to randomization and subgroups. Following the Lewko-Waters IBE
[23], we rely on composite-order bilinear groups whose order N is the product of
three primes p1, p2, p3. We will use the subgroup Gp1 of order p1 for functionality,
and the subgroup Gp2 of order p2 in the proof of security. The third subgroup
corresponding to p3 is used for additional randomization.

Recall that the Lewko-Waters IBE has the following form:

mpk := (g, gβ , gγ , e(g, u)), ctid := (gs, g(β+γid)s, e(g, u)s · m), skid := (u · g(β+γid)r, gr))

1 Here, we ignore the additional overhead from specifying the set of recipients in
the ciphertext, which requires n bits; decrypting also requires knowing some public
parameters, which are not considered part of the user private keys.

Déjà Q: Encore! Un Petit IBE 239

Scheme |mpk| | sk| | ct| decryption anonymous no. of primes

LW10 [23] 3|GN | + | GT | 2|GN | 2|GN | + | GT | 2 pairings no 3

DIP10 [9] 3|GN | + | GT | 2|GN | 2|GN | + | GT | 2 pairings � 4

YCZY14 [31] 3|GN | + | GT | 2|GN | 2|GN | + | GT | 2 pairings � 4

this work (Fig 2) 2|GN | + | GT | |GN | |GN | + | GT | 1 pairing � 3

Fig. 1. Comparison amongst adaptively secure IBEs in composite-order bilinear groups
e : GN × GN → GT .

Our IBE scheme has the following form:

mpk := (g, gα, e(g, u)), ctid := (g(α+id)s, e(g, u)s · m), skid := (u
1

α+id)

Note that our scheme uses the “exponent inversion” framework [8], which
has traditionally eluded a proof of security under static assumptions. In both
schemes, g, u are random group elements of order p1, and α, β, γ are random
exponents over ZN . It is easy to see that decryption in our scheme only requires
a single pairing to compute e(g(α+id)s, u

1
α+id) = e(g, u)s.

IBE Security Proof. We rely on the same assumption as the Lewko-Waters
IBE in [23], namely the (p1 �→ p1p2)-subgroup assumption, which asserts that
random elements of order p1 and those of order p1p2 are computationally indis-
tinguishable. In the proof of security, we rely on the assumption to introduce
random Gp2 -components to the ciphertext and the secret keys.

We begin with the secret keys. We introduce a random Gp2 -component to
the secret key skid following the Déjà Q framework [10] as follows:

skid = u
1

α+id
subgroup−→ u

1
α+id g

r1
α+id

2
CRT−→ u

1
α+id g

r1
α1+id

2 , (1)

where α1 ← ZN . In the first transition, we use the (p1 �→ p1p2)-subgroup assump-
tion which says that u ≈c ugr1

2 , r1 ←R ZN , where g2 is a generator of order p2.
In the second transition, we use the Chinese Reminder Theorem (CRT), which
tell us α mod p1 and α mod p2 are independently random values, so we may
replace α mod p2 with α1 mod p2 for a fresh α1 ←R ZN ; this is fine as long as
the challenge ciphertext and mpk reveal no information about α mod p2, as is
the case here. We may then repeat this transition q more times:

u
1

α+id
subgroup−→ u

1
α+id g

r1
α+id

2
CRT−→ u

1
α+id g

r1
α1+id

2
subgroup−→ u

1
α+id g

r2
α+id

2 g
r1

α1+id

2
CRT−→ u

1
α+id g

r2
α2+id+

r1
α1+id

2

−→ · · · CRT−→ u
1

α+id g

rq+1
αq+1+id+···+ r2

α2+id+
r1

α1+id

2

where r1, . . . , rq+1, α1, . . . , αq+1 ←R ZN , and q is an upper bound on the number
of key queries made by the adversary.2

2 We use q + 1 values to account for the q key queries plus the challenge identity.

240 H. Wee

Next, we show that for distinct x1, . . . , xq, the following matrix

⎛

⎜
⎝

1
α1+x1

1
α1+x2

· · · 1
α1+xq

...
...

. . .
...

1
αq+x1

1
αq+x2

· · · 1
αq+xq

⎞

⎟
⎠ (2)

is invertible with overwhelming probability over α1, . . . , αq ←R Zp. We provide
an explicit formula for the determinant of this matrix in Sect. 3.1; this is the only
place in the proof where we crucially exploit the “exponent inversion” structure.
We can then replace

id �→ rq+1

αq+1 + id
+ · · · +

r2

α2 + id
+

r1

α1 + id

by a truly random function RF(·). Indeed, skid can now be written as u
1

α+id g
RF(id)
2 ,

which have independently random Gp2 -components.
So far, what we have done is the same as the use of Déjà Q framework for

showing that x �→ u
1

x+α yields a PRF [10] (the explicit formula for the matrix
determinant is new), and this is where the similarity ends. At this point, we still
need to hide the message m in the ciphertext (g(α+id)s, e(g, u)s · m). Towards
this goal, we want to introduce a Gp2 -component into the ciphertext, which
will then interact with newly random Gp2 -component in the keys to generate
extra statistical entropy to hide m. At the same time, we need to ensure that
the ciphertext still hides α mod p2 so that we may carry out the transition
of the secret keys in (1). Indeed, naively applying the (p1 �→ p1p2)-subgroup
assumption to gs in the ciphertext would leak α mod p2.

To circumvent this difficulty, note that we can rewrite the ciphertext in terms
of skid as

ctid = (g(α+id)s, e(g(α+id)s, skid) · m)

Moreover, as long as α+ id �= 0, we can replace (α+ id)s with s without changing
the distribution, which allows us to rewrite the challenge ciphertext as

ctid = (gs, e(gs, skid) · m).

This means that the challenge ciphertext leaks no information about α except
through skid. In addition, the challenge ciphertext also leaks no information
about id, which allows us to prove anonymity. In contrast, the Lewko-Waters
IBE is not anonymous, and anonymous variants there-of in [9,31] requires the
use of 4 primes and additional assumptions.

We can now apply the (p1 �→ p1p2)-subgroup assumption to the ciphertext to
replace gs with gsgr′

2 . Now, the ciphertext distribution is completely independent
of α except what is leaked through skid, so we can apply the secret key transitions
as before, at the end of which the challenge ciphertext is given by:

(gsgr′
2 , e(gsgr′

2 , u
1

α+id g
RF(id)
2) · m) = (gsgr′

2 , e(gs, u
1

α+id) · e(gr′
2 , g

RF(id)
2) · m)

Déjà Q: Encore! Un Petit IBE 241

Recall that we only allow the adversary to request for secret keys corresponding
to identities different from id, which means those keys leak no information about
RF(id). We can then use the log p2 bits of entropy from RF(id) over Gp2 to hide m;
this requires modifying the original scheme so that an encryption of m is given
by (g(α+id)s,H(e(g, u)s) · m), where H denotes a strong randomness extractor
whose seed is specified in mpk.

Broadcast Encryption. By rewriting the challenge ciphertext in terms of skid
in order to hide α, our technique for IBE seems inherently limited to IBE. We
show how to extend our techniques to broadcast encryption in Sect. 4; how-
ever, we only achieve selective and not adaptive security. We briefly note that
our broadcast encryption scheme is derived from Boneh-Gentry-Waters (BGW)
scheme [6] based on the q-DBDHE assumption. This is the first scheme to asymp-
totically match the parameters of the BGW broadcast encryption scheme under
static assumptions.

1.3 Discussion

Comparison with Déjà Q Framework [10]. The core of the Déjà Q frame-
work is a beautiful technique which translates linear independence (and thus
computational independence in the generic group model) amongst a set of mono-
mials “in the exponent” into statistical independence, upon which security can
be established using a purely information-theoretic argument. There are how-
ever three caveats to the prior instantiation in [10]: first, these monomials must
appear on the same side of the pairing, which means the techniques cannot be
applied to advanced encryption primitives where the same term often appears in
the ciphertext and the secret key on both sides of the pairing; second, the statis-
tical independence only holds within certain subgroups, and another subgroup
assumption was used to spread this localized entropy over the entire group; third,
the prior instantiation is limited to asymmetric composite-order groups. In this
work, we showed how to overcome all of these three caveats.

In particular, we rely only on the (p1 �→ p1p2)-subgroup assumption and
eliminated the additional use of the (p2 �→ p1p2)-subgroup assumption. This
technique can also be applied to the PRF in [10]. We note that while sim-
ulating subgroup decisional assumptions in composite-order groups using the
k-LIN assumption in prime-order groups, we can simulate the (p1 �→ p1p2)-
subgroup assumption using k + 1 group elements whereas simulating both sub-
group assumption requires 2k group elements.

Candidate Prime-Order IBE. As noted earlier, our composite-order IBE
scheme constitutes the first evidence for an adaptively IBE based on SXDH
with two group elements in the ciphertext and in the secret keys and constant-
size public parameters, which would be a significant improvement over the state
of the art, subsuming a long series of incomparable constructions, and giving
us adaptive security at essentially the same cost as selective security! Moreover,

242 H. Wee

such a IBE would in turn also yield a fully secure signature scheme based on
SXDH with two group elements in the signature and constant-size public key.
The optimism comes from combining our composite-order IBE scheme with the
huge success we have had in converting composite-order schemes to prime-order
ones [12,15,22,25]. In fact, we present a concrete candidate for a prime-order IBE
in Sect. 3.3; we stress that we do not have a security proof for the scheme. We
note that an improved SXDH-based signature scheme would likely yield further
improvements to other related primitives, such as group signatures and structure-
preserving signatures. These applications further motivate the open problem
highlighted in [10] of finding prime-order analogues for the Déjà Q framework.

Perspective. We presented new constructions of “optimal” IBE and signatures
and new IBE candidates that improve upon a long line of work; moreover, we
achieve these via an extended Déjà Q framework which avoid the limitations
of widely used techniques. We are optimistic and excited about challenges and
possibilities that lie ahead.

2 Preliminaries

Notation. We denote by s ←R S the fact that s is picked uniformly at ran-
dom from a finite set S. By PPT, we denote a probabilistic polynomial-time
algorithm. Throughout, we use 1λ as the security parameter.

2.1 Composite-Order Bilinear Groups and Cryptographic
Assumptions

We instantiate our system in composite-order bilinear groups, which were intro-
duced in [7] and used in [21,23,24]. A generator G takes as input a security
parameter λ and outputs a description G := (N,G,GT , e), where N is prod-
uct of distinct primes of Θ(λ) bits, G and GT are cyclic groups of order N ,
and e : G × G → GT is a non-degenerate bilinear map. We require that the
group operations in G and GT as well the bilinear map e are computable in
deterministic polynomial time. We consider bilinear groups whose orders N are
products of three distinct primes p1, p2, p3 (that is, N = p1p2p3). We can write
G = Gp1Gp2Gp3 where Gp1 , Gp2 , Gp3 are subgroups of G of order p1, p2 and p3

respectively. In addition, we use G∗
pi

to denote Gpi
\ {1}. We will often write

g1, g2, g3 to denote random generators for the subgroups Gp1 , Gp2 , Gp3 .

Cryptographic Assumptions. Our construction relies on the following two
decisional subgroup assumptions (also known as subgroup hiding assumptions).

Déjà Q: Encore! Un Petit IBE 243

We define the following two advantage functions:

Advsd1G,A(λ) :=
∣

∣Pr[A(D, T0) = 1] − Pr[A(D, T1) = 1]
∣

∣

where G ← G, T0 ← Gp1 , T1 ←R Gp1Gp2 (p1 �→ p1p2)

and D := (g1, g3, g{1,2}), g1 ←R G
∗
p1

, g3 ←R G
∗
p3

, g{1,2} ←R Gp1Gp2

Advsd2G,A(λ) :=
∣

∣Pr[A(D, T0) = 1] − Pr[A(D, T1) = 1]
∣

∣

where G ← G, T0 ← Gp1Gp3 , T1 ←R Gp1Gp2Gp3 (p1p3 �→ N)

and D := (g1, g3, g{1,2}, g{2,3}), g1 ←R G
∗
p1

, g3 ←R G
∗
p3

, g{1,2} ←R Gp1Gp2 , g{2,3} ←R Gp2Gp3

The decisional subgroup assumptions assert that that for all PPT adversaries
A, the advantages Advsd1G,A(λ) and Advsd2G,A(λ) are negligible functions in λ.

2.2 Anonymous Identity-Based Encryption

We define identity-based encryption (IBE) in the framework of key encapsula-
tion. An identity-based encryption scheme consists of four algorithms (Setup,
Enc,KeyGen,Dec):

Setup(1λ) → (mpk,msk). The setup algorithm gets as input the security para-
meter λ and outputs the public parameter mpk, and the master key msk. All
the other algorithms get mpk as part of its input.

Enc(mpk, id) → (ct, κ). The encryption algorithm gets as input mpk and an
identity id ∈ {0, 1}λ. It outputs a ciphertext ct and a symmetric key κ ∈
{0, 1}λ.

KeyGen(msk, id) → skid. The key generation algorithm gets as input msk and an
identity id ∈ {0, 1}λ. It outputs a secret key skid.

Dec(skid, ct) → κ. The decryption algorithm gets as input skid and ct. It outputs
a symmetric key κ.

Correctness. We require that for all id ∈ {0, 1}λ,

Pr[(ct, κ) ← Enc(mpk, id); Dec(skid, ct) = κ)] = 1,

where the probability is taken over (mpk,msk) ← Setup(1λ) and the coins of Enc.

Security Definition. We require pseudorandom ciphertexts against adaptively
chosen plaintext and identity attacks, which implies both anonymity and adap-
tive security. For a stateful adversary A, we define the advantage function

Adva-ibeA (λ) := Pr

⎡

⎢
⎢
⎢
⎢
⎣

b = b′ :

(mpk,msk) ← Setup(1λ);
id∗ ← AKeyGen(msk,·)(mpk);
b ←R {0, 1}; ct1 ←R C;κ1 ←R {0, 1}λ;
(ct0, κ0) ← Enc(mpk, id∗);
b′ ← AKeyGen(msk,·)(ctb, κb)

⎤

⎥
⎥
⎥
⎥
⎦

− 1
2

244 H. Wee

with the restriction that all queries id that A makes to KeyGen(msk, ·) satisfies
id �= id∗, and where ct1 ←R C denotes a random element from the cipher-
text space.3 An identity-based encryption (IBE) scheme is adaptively secure and
anonymous if for all PPT adversaries A, the advantage Adva-ibeA (λ) is a negligible
function in λ.

2.3 Broadcast Encryption

A broadcast encryption scheme consists of three algorithms (Setup,Enc,Dec):

Setup(1λ, 1n) → (mpk, (sk1, . . . , skn)). The setup algorithm gets as input the
security parameter λ and 1n specifying the number of users and outputs the
public parameter mpk, and secret keys sk1, . . . , skn.

Enc(mpk,Γ) → (ctΓ, κ). The encryption algorithm gets as input mpk and a
subset Γ ⊆ [n]. It outputs a ciphertext ctΓ and a symmetric key κ ∈ {0, 1}λ.
Here, Γ is public given ctΓ.

Dec(mpk, sky, ctΓ) → κ. The decryption algorithm gets as input mpk, sky and
ctΓ. It outputs a symmetric key κ.

Correctness. We require that for all Γ ⊆ [n] and all y ∈ [n] for which y ∈ Γ,

Pr[(ctΓ, κ) ← Enc(mpk,Γ); Dec(mpk, sky, ctΓ) = κ)] = 1,

where the probability is taken over (mpk, (sk1, . . . , skn)) ← Setup(1λ, 1n) and the
coins of Enc.

Security Definition. For a stateful adversary A, we define the advantage func-
tion

Advs-bceA (λ) := Pr

⎡

⎢
⎢
⎢
⎢
⎣

b = b′ :

Γ∗ ← A(1λ);
(mpk, (sk1, . . . , skn)) ← Setup(1λ);
b ←R {0, 1};κ1 ←R {0, 1}λ;
(ctΓ∗ , κ0) ← Enc(mpk,Γ∗);
b′ ← A(ctΓ∗ , κb, {sky : y /∈ Γ∗})

⎤

⎥
⎥
⎥
⎥
⎦

− 1
2

A broadcast encryption scheme is selectively secure if for all PPT adversaries A,
the advantage Advs-bceA (λ) is a negligible function in λ.

3 Identity-Based Encryption

We present an adaptively secure and anonymous IBE scheme in Fig. 2, and a fully
secure signature scheme in Fig. 3. The schemes here refer to symmetric composite-
order bilinear groups; we present the variant for asymmetric composite-bilinear
groups in Sect.A. The schemes and the proofs are the same as in the overview in
the introduction (Sect. 1.2), except the secret keys in both the scheme and the proof
have an extra random Gp3 -component and we will use the (p1p3 �→ N)-subgroup
assumption to switch the secret keys.
3 This means that the distribution of ct1 is independent of id∗, which implies

anonymity.

Déjà Q: Encore! Un Petit IBE 245

Comparison with Prior Schemes. We recall several IBE and signature
schemes in the inversion framework which share a similar structure to our IBE
and signature scheme. All of these schemes require an additional scalar in the
key/signature, and both of the IBE schemes require an additional group element
in the ciphertext.

BB2 IBE [4]. The BB2 IBE is selectively secure under the q-DBDHI assumption:

ctid := (g(α+id)s, gβs, e(g, u)s · m), skid := (u
1

α+id+βr , r)

Gentry’s IBE [18]. Gentry’s IBE is adaptively secure and anonymous under
the q-ADBDHE assumption:

ctid := (g(α+id)s, e(g, g)s, e(g, u)s · m), skid := ((u · g−r)
1

α+id , r)

Boneh-Boyen Signatures [3,10]. The Déjà Q analogue [10] of the Boneh-
Boyen signatures is given by:

pk := (g, gα, gβ , e(g, u)), σ := (u
1

α+M+βr , r) ∈ GN × ZN .

Our signature scheme in Fig. 3 is simpler and shorter, and the scheme can
be also be instantiated in symmetric composite-order groups. In fact, our
signature scheme may be viewed as applying the Déjà Q framework to the
Boneh-Boyen weak signatures, which both “upgrades” the security from weak
to full, and removes the use of q-type assumptions.

3.1 Core Lemma

The following lemma is implicit in the analysis of the PRF in [10, Theorem 4.2,
Eq. 8].

Lemma 1. Fix a prime p and define Fq
r1,...,rq,α1,...,αq

: Zp → Zp to be

Fq
r1,...,rq,α1,...,αq

(x) :=
q∑

i=1

ri

αi + x

Then, for any (possibly unbounded) adversary A that makes at most q queries,
we have
∣
∣
∣ Pr
r1,...,rq,α1,...,αq←RZp

[
AFq

r1,...,rq,α1,...,αq
(·)(1q) = 1

]
− Pr

[
ARF(·)(1q) = 1

]∣∣
∣ ≤ q2

p

where RF : Zp → Zp is a truly random function.

The proof in [10] directly rewrites the function Fq
r1,...,rq,α1,...,αq

with a common
denominator and then relates the numerator to the Lagrange interpolating poly-
nomial for an appropriate choice of q points. We sketch an alternative proof which
better explains the choice of the function (α, id) �→ 1

α+id . We first consider the

246 H. Wee

case where the queries x1, . . . , xq made by A are chosen non-adaptively. WLOG,
we may assume that these queries are distinct. Then, it suffices to show that the
following matrix

⎛

⎜
⎝

1
α1+x1

1
α1+x2

· · · 1
α1+xq

...
...

. . .
...

1
αq+x1

1
αq+x2

· · · 1
αq+xq

⎞

⎟
⎠

is invertible with overwhelming probability over α1, . . . , αq ←R Zp. (Such a
statement follows from the proof in [10] but was not pointed out explicitly.) As
it turns out, we can write the determinant of this matrix explicitly as:

Π1≤i<j≤q(xi − xj)(αi − αj)
Π1≤i,j≤q(αi + xj)

which is non-zero as long as α1, . . . , αq are distinct, x1, . . . , xq are distinct, and
the αi + xj ’s are all non-zero.

That is, we want to show that

Π1≤i,j≤q(αi + xj) · det

⎛

⎜
⎝

1
α1+x1

1
α1+x2

· · · 1
α1+xq

...
...

. . .
...

1
αq+x1

1
αq+x2

· · · 1
αq+xq

⎞

⎟
⎠ = Π1≤i<j≤q(xi − xj)(αi − αj)

Using the standard formula for the determinant of the matrix, we can write
the determinant above as a sum of inverses of homogenous polynomials of
degree q in x1, . . . , xq, α1, . . . , αq. Upon multiplying by Π1≤i,j≤q(αi + xj), we
would “clear the denominators” to obtain a homogeneous polynomial P in
x1, . . . , xq, α1, . . . , αq of degree q2 − q. Moreover, the matrix has two equal rows
(resp. columns) whenever we have αi = αj (resp. xi = xj); when this happens,
the matrix has determinant 0 and thus P vanishes. Therefore, the polynomial P
must be a multiple of Π1≤i<j≤q(xi − xj)(αi − αj), which also has degree q2 − q.
This means that P must be a constant multiple of Π1≤i<j≤q(xi − xj)(αi − αj),
and it is easy to check that the constant is 1.

To handle adaptive queries, observe that this corresponds to building the
matrix one column at a time. As long as the partial selection of columns have
full rank, the output of F is uniformly random, which then completely hides
α1, . . . , αq. Therefore, the probability that α1, . . . , αq are distinct, and that αi +
xj ’s are all non-zero is at least 1 − q2/p, even for adaptive choices of distinct
x1, . . . , xq.

3.2 Our IBE Scheme

Theorem 1. The scheme in Fig. 2 is an adaptively secure anonymous IBE
under the decisional subgroup assumption in G.

Déjà Q: Encore! Un Petit IBE 247

Fig. 2. Adaptively secure anonymous IBE w.r.t. a composite-order bilinear group G.
Here, H : GT → {0, 1}λ is drawn from a family of pairwise-independent hash functions.
In asymmetric groups, randomization with R3 in KeyGen is not necessary (i.e., KeyGen
is deterministic).

Fig. 3. Fully secure signature scheme, obtained by applying Naor’s transformation to
the IBE scheme in Fig. 2. In asymmetric groups, randomization with R3 in sign is not
necessary (i.e., sign is deterministic).

Proof. Correctness follows readily from the equation

e(g(α+id)s
1 , u

1
α+id R3) = e(g1, u)s.

We show that for any adversary A that makes at most q queries against the IBE,
there exist adversaries A1,A2 whose running times are essentially the same as
that of A, such that

Adva-ibeA (λ) ≤ Advsd1G,A1
(λ) + (q + 1) · Advsd2G,A2

(λ) + 2−Ω(λ)

We proceed via a series of games and we use Advi to denote the advantage of A
in Game i.

Game 0. This is the real experiment as defined in Sect. 2.2. We will also make
the following simplifying assumptions:
– We never encounter an identity id such that id = α mod p1; such an iden-

tity constitutes the discrete log of gα
1 and trivially breaks the subgroup

assumption.
– The adversary’s queries id1, . . . , idq ∈ ZN are distinct, since we can per-

fectly randomize the secret key skid = u
1

α+id R3 given g3 (we can add g3

to mpk without affecting the security proof).

248 H. Wee

– id1, . . . , idq are distinct mod p2; given idi �= idj ∈ ZN such that idi = idj

mod p2, computing gcd(idi − idj , N) would allow us to factor N .
We can incorporate these simplifying assumptions by introducing an extra
hybrid before Game 1 that aborts if the first or third condition is violated,
and that uses randomization to handle repeated key queries.

Game 1. We change (ct0, κ0) ←R Enc(mpk, id∗) as follows: pick C ←R Gp1 ,
output

(ct0, κ0) := (C,H(e(C, skid∗))).

We claim that Adv0 = Adv1. This follows readily from the following two
observations:

i. for all id, e(g1, u)s = e(g(α+id)s
1 , u

1
α+id) = e(g(α+id)s

1 , skid);
ii. if α + id �= 0, g

(α+id)s
1 and C are identically distributed.

Game 2. We change the distribution of C in (ct0, κ0) from C ←R Gp1 to
C ←R Gp1Gp2 . We now construct A1 for which

Adv0 − Adv1 ≤ Advsd1G,A1
(λ).

A1 on input (g1, g3, C) where either C ←R Gp1 or C ←R Gp1Gp2 , simulates
the experiment in Game 1 with the adversary A as follows: runs Setup(G)
honestly to obtain (α, u), then uses (α, u) to answer all key queries honestly
and to compute (ct, κ0) as (C,H(e(C, skid∗))).

Game 3. We change the distribution of skid from u
1

α+id R3 to u
1

α+id g

∑q+1
i=1

ri
αi+id

2 R3,
where r1, . . . , rq+1, α1, . . . , αq+1 ←R ZN , as outlined in Sect. 1.1. We proceed
via a series of sub-games 3.j.0 and 3.j.1 for j = 1, 2, . . . , q + 1, where

– In Sub-Game 3.j.0, skid is given by u
1

α+id g
rj

α+id+
∑j−1

i=1
ri

αi+id

2 R3;

– In Sub-Game 3.j.1, skid is given by u
1

α+id g

∑j
i=1

ri
αi+id

2 R3. Game 2 corresponds
to Sub-Game 3.0.1, and Game 3 corresponds to Sub-Game 3.q + 1.1.

First, observe that Adv3.j.0 = Adv3.j.1. This follows readily from the fact
that α mod p2 is completely hidden given mpk and the challenge ciphertext,
and therefore we may replace α mod p2 with αj mod p2. Next, for j =
1, . . . , q + 1, we construct A2 for which

Adv3.(j−1).1 − Adv3.j.0 ≤ Advsd2G,A2
(λ).

A2 on input (G, g1, g{2,3}, g3, C, T) where C ←R Gp1Gp2 and either T =
uR3 ←R Gp1Gp3 or T = ug

rj

2 R3 ←R Gp1Gp2Gp3 , simulates the experiment
in Game 3 with the adversary A as follows:
– picks α ←R ZN and publishes mpk := (g1, g

α
1 , e(g1, T),H), where

e(g1, T) = e(g1, u);
– picks α1, . . . , αj−1, r1, . . . , rj−1 ←R ZN ;
– simulates KeyGen on input id by choosing R′

3 ←R Gp3 and outputting

T
1

α+id g

∑j−1
i=1

ri
αi+id

2,3 R′
3

– uses C to compute (ct0, κ0);

Déjà Q: Encore! Un Petit IBE 249

Observe that if T = uR3, then this is exactly Game 3.j − 1.1, and if T =
ug

rj

2 R3, then this is exactly Game 3.j.0. It follows readily that

Adv2 − Adv3 ≤ (q + 1) · Advsd2G,A2
(λ).

Game 4. We replace
∑q+1

i=1
ri

αi+id in skid with RF(id) where RF : ZN → Zp2 is a

truly random function; that is, skid is now given by u
1

α+id g
RF(id)
2 R3. It follows

readily from Lemma 1 that

Adv3 − Adv4 ≤ O(q2/p2).

Game 5. We replace κ0 = H(e(C, skid∗)) with κ0 ←R {0, 1}λ. Observe that the
quantity (from which κ0 is derived)

e(C, skid∗) = e(C, u
1

α+id∗ g
RF(id∗)
2) = e(C, u

1
α+id∗) · e(C, g

RF(id∗)
2)

has log p2 = Θ(λ) bits of min-entropy coming from RF(id∗), since id∗ /∈
{id1, . . . , idq}; this holds as long as the Gp2 -component of C is not 1, which
happens with probability 1 − 1/p2. Then, by the left-over hash lemma, κ0 =
H(e(C, skid∗)) is 2−Ω(λ)-close to the uniform distribution over {0, 1}λ, even
given ct0 = C.

In Game 5, the joint distribution of (κ0, ct0) is uniformly random over {0, 1}λ ×
C, where C := Gp1Gp2 . Therefore, the view of the adversary A is statistically
independent of the challenge bit b. Hence, Adv5 = 0. This completes the proof.

�

Fig. 4. Candidate IBE in prime-order bilinear groups under the k-LIN assumption,
following the Diffie-Hellman framework and notation in [13]. Here, A,B ∈ Z

k×(k+1)
p

denote the matrices for the k-LIN assumptions in G1 and G2 respectively. Both the
keys and the ciphertext contain k + 1 group elements, i.e. 2 elements under SXDH =
1-LIN.

250 H. Wee

3.3 A Candidate Prime-Order Scheme

In Fig. 4, we present a candidate prime-order scheme obtained by applying the
transformation in [12] to our composite-order IBE scheme; concretely, the trans-
formation was used to obtain prime-order dual-system ABE schemes starting
from composite-order ones based on the same decisional subgroup assumptions
as used in this work. The ciphertext and secret keys in the candidate scheme
contain k+1 group elements, which is a substantial improvement over the state-
of-the-art, c.f. Fig. 5. Applying Naor’s transformation then yields a signature
scheme with signature size k +1 group elements. In contrast, a scheme that uses
both the (p1 �→ p1p2)-subgroup and (p2 �→ p1p2)-subgroup assumptions as in
[10] would likely require at least 2k group elements, which is another reason to
eliminate the use of the (p2 �→ p1p2)-subgroup assumption.

We stress that we do not have a proof of security for this scheme. The main
technical difficulties arise from having to understand the matrix inverse (W +
idIk+1)−1 for general matrices W. For this specific scheme, it appears that we
can completely recover W ∈ Z

k×k
p given (W+idIk+1)−1B ∈ Z

k
p for many choices

of id, which ruins parameter-hiding in the secret key space. On the other hand,
in the composite-order scheme, given 1

α+id mod p1 for an unbounded number
of id still completely hides α mod p2. Nonetheless, we conjecture that a more
judicious choice of a matrix distribution for W would yield a variant of this
scheme which is adaptively secure under the k-linear assumption. We quickly
point out here that diagonal matrices don’t work.

Fig. 5. Comparison amongst adaptively secure IBEs from standard assumptions in
prime-order bilinear groups. We refer to both groups of prime order p with pairing
e : G1 ×G2 → GT . We included the candidate scheme in Fig. 4 for comparison, and we
stress that we do not have a proof of security for the scheme.

4 Broadcast Encryption

In broadcast encryption [14], a sender broadcasts encrypted content in such a
way that only a specified set of authorized receivers may decrypt the message.
In this section, we present a selectively secure broadcast encryption scheme for n
users, where the ciphertext overhead and the secret keys are a constant number

Déjà Q: Encore! Un Petit IBE 251

of group elements, and security is based on the decisional subgroup assumption
in composite-order groups. Previous dual-system broadcast encryption schemes
[16,19,29] achieve adaptive security under static assumptions, but never better
than a (t, n/t)-type trade-off between ciphertext overhead and key size [17].

4.1 Overview

We begin with an informal description of the scheme, ignoring randomization in
the Gp3 -subgroup. The scheme is derived from the Boneh-Gentry-Waters (BGW)
broadcast encryption scheme [6], which is also selectively secure under the q-
DBDHE assumption. The public parameters in our scheme are given by

mpk := (gγ
1 , gα

1 , gα2

1 , . . . , gαn

1 , uα, uα2
, . . . , uαn

, uαn+2
, . . . , uα2n

)

The ciphertext for a subset Γ ⊆ [n] and the key for a user y ∈ [n] are given by

ctΓ := (gs
1, g

(γ+
∑

k∈Γ αk)s

1 , e(g1, u
αn+1

)s · m), sky := uαn−y+1γ

Decryption proceeds analogously to the BGW scheme, and requires a judicious
choice of pairing-product equation to recover e(g1, u

αn+1
)s. We note that uαn+1

is omitted from mpk. Indeed, given gs
1 and mpk, it is easy to compute e(g1, u

αk

)s

for any k �= n + 1. We also note that the BGW scheme uses u = g1.
To establish security, we will introduce random Gp2 -components to the 2n

terms uα, uα2
, . . . , uα2n

(including uαn+1
), and the extra entropy from uαn+1

will
be used to hide the message m. That is, we apply the Déjà Q framework to the
set of 2n linearly independent monomials {α, α2, . . . , α2n}, as encoded “in the
exponent of u” in the secret keys. To achieve this, we proceed as follows:

uαk subgroup−→ uαk

gr1αk

2
CRT−→ uαk

g
r1αk

1
2

subgroup−→ uαk

gr2αk

2 g
r1αk

1
2

CRT−→ uαk

g
r2αk

2+r1αk
1

2

−→ · · · CRT−→ uαk

g
r2nαk

2n+···+r2αk
2+r1αk

1
2

where r1, . . . , r2n, α1, . . . , α2n ←R ZN . We can then replace

k �→ r2nαk
2n + · · · + r2α

k
2 + r1α

k
1

by a truly random function RF(·). As with the IBE scheme, we need to avoid
leaking α mod p2 in the ciphertext in order to carry out the transformation to
the secret keys above. That is, we need to eliminate all occurrences of α in the
polynomial γ +

∑
k∈Γ αk which shows up in the ciphertext. Unfortunately, we do

not know a transformation to the ciphertext distribution analogous to that for
the IBE. Instead, we will need to settle for selective security where the adversary
announces the subset Γ at the very beginning, so that we can use γ as a one-time
pad. We will then select γ̃ at random (which is treated as a known scalar) and

252 H. Wee

program γ so that γ̃ = γ +
∑

k∈Γ αk. We can then rewrite the ciphertext and
key as

ctΓ := (gs, gγ̃s, e(g, uαn+1
)s · m), sky := (uαn−y+1γ̃−∑k∈Γ αn+1−y+k

)

Now, the monomials in α only show up on the same side of the pairing in both
the ciphertext and the secret keys in the exponents of u. As in the security proof
for the BGW scheme, we will later use the fact that the monomial αn+1 does
not show up in any sky for which y /∈ Γ. We note that in the proof of security,
the distribution of mpk changes, which is quite unusual for a proof based on the
dual system methodology.

Fig. 6. Broadcast encryption w.r.t. a composite-order bilinear group G. Here, H : GT →
{0, 1}λ is drawn from a family of pairwise-independent hash functions.

4.2 Our Broadcast Encryption Scheme

Theorem 2. The scheme in Fig. 6 is a selectively secure broadcast encryption
scheme under the decisional subgroup assumption in G.

Proof. Correctness follows readily from the fact that for all y ∈ Γ,

e
(
g
(γ+
∑

k∈Γ αk)s

1 , uαn−y+1) · e
(
gs
1, u

αn−y+1γ
∏

k∈Γ,k �=y

uαn+1+(k−y))
= e(g1, u

αn+1
)s.

Note that for all k �= y, n + 1 + (k − y) ∈ {2, . . . , n, n + 2, . . . , 2n}, which means
we can compute uαn+1+(k−y)

given mpk. Next, we show that for any adversary A
against the broadcast encryption scheme, there exist adversaries A1,A2 whose
running times are essentially the same as that of A, such that

Advs-bceA (λ) ≤ Advsd1G,A1
(λ) + 2n · Advsd2G,A2

(λ) + 2−Ω(λ)

We proceed via a series of games and we use Advi to denote the advantage of A
in Game i.

Déjà Q: Encore! Un Petit IBE 253

Game 0. This is the real experiment as defined in Sect. 2.3.
Game 1. Pick (α, γ̃, u) ←R Z

2
N × Gp1 and set γ := γ̃ −

∑
k∈Γ∗ αk, where Γ∗ is

the selective challenge output by A. Then,
– compute u′

1, . . . , u
′
2n as in the honest Setup;

– compute mpk as in the honest Setup.
– compute ctΓ∗ = (gs

1, (g
s
1)

γ̃) and κ0 = H(e(gs
1, u

′
n+1));

– simulate {sky : y /∈ Γ∗} using γ̃ and (u′
1, . . . , u

′
n, u′

n+2, . . . , u
′
2n), by com-

puting
sky = (u′

n−y+1)
γ̃ ·

(∏

k∈Γ∗,k �=y

u′
n+1+(k−y)

)−1 · R3,y

Clearly, Game 0 and 1 are identically distributed, so Adv0 = Adv1.
Game 2. We change the distribution of (ctΓ∗ , κ0) by replacing gs

1 with C ←R

Gp1Gp2 , that is
(ctΓ∗ , κ0) := ((C,C γ̃), H(e(C, u′

n+1))

It is straight-forward to construct A1 (following the proof for Theorem 1) for
which

Adv1 − Adv2 ≤ Advsd1G,A1
(λ).

Game 3. We change the distribution of u′
1, . . . , u

′
2n from uαk

R′
3,k to

uαk

g
∑2n

i=1 riα
k
i

2 R′
3,k, where r1, . . . , r2n, α1, . . . , α2n ←R ZN , as outlined in

Sect. 4.1; this in turn affects the distribution of mpk, κ0 and {sky : y /∈ Γ∗}.
We proceed via a series of sub-games 3.j.0 and 3.j.1 for j = 1, 2, . . . , 2n,
where
– In Sub-Game 3.j.0, u′

k is given by uαk

g
rjαk+

∑j−1
i=1 riα

k
i

2 R′
3,k for k = 1, . . . , 2n;

– In Sub-Game 3.j.1, u′
k is given by uαk

g
∑j

i=1 riα
k
i

2 R′
3,k for k = 1, . . . , 2n.

Game 2 corresponds to Sub-Game 3.0.1, and Game 3 corresponds to
Sub-Game 3.2n.1.

First, observe that Adv3.j.0 = Adv3.j.1 as before. Next, for j = 1, . . . , 2n, we
construct A2 for which

Adv3.(j−1).1 − Adv3.j.0 ≤ Advsd2G,A2
(λ).

A2 on input (g1, g{2,3}, g3, C, T) where C ←R Gp1Gp2 and either T =
uR′

3,k ←R Gp1Gp3 or T = ug
rj

2 R′
3,k ←R Gp1Gp2Gp3 , simulates the exper-

iment in Game 2 with the adversary A as follows:
– picks α, α1, . . . , αj−1, r1, . . . , rj−1 ←R ZN ;
– for k = 1, . . . , 2n, computes u′

k by choosing R′
3,k ←R Gp3 and outputting

Tαk

g
∑j−1

i=1 riα
k
i

2,3 R′
3,k

– proceed as in Game 2 using α, u′
1, . . . , u

′
2n as computed above to compute

mpk and {sky : y /∈ Γ∗}, and using C as provided and u′
n1

as computed
above to compute (ctΓ∗ , κ0).

Observe that if T = uR′
3,k, then this is exactly Game 3.j − 1.1, and if T =

ug
rj

2 R′
3,k, then this is exactly Game 3.j.0. It follows readily that

Adv2 − Adv3 ≤ 2n · Advsd2G,A2
(λ).

254 H. Wee

Game 4. We replace
∑2n

i=1 riα
k
i in u′

k with RF(k) where RF : [2n] → Zp2 is a
truly random function; that is, u′

k is now given by uαk

g
RF(k)
2 R′

3,k, for k =
1, . . . , 2n. Now, we exploit the fact that the Vandermonde matrix

⎛

⎜
⎝

α1 α2 · · · α2n

...
...

. . .
...

α2n
1 α2n

2 · · · α2n
2n

⎞

⎟
⎠

is invertible as long as α1, . . . , α2n mod p2 are distinct, which happens with
overwhelming probability over α1, . . . , α2n ←R ZN . It follows readily that

Adv3 − Adv4 ≤ O(n2/p2).

Game 5. We replace κ0 = H(e(C, u′
n+1)) with κ0 ←R {0, 1}λ. First, recall

from Game 1 that {sky : y /∈ Γ∗} only depend on u′
1, . . . , u

′
n, u′

n+2, . . . , u
′
2n;

therefore, they only depend on RF(1), . . . ,RF(n),RF(n + 2), . . . ,RF(2n) and
do not reveal any information about RF(n + 1). Then, the quantity (from
which κ0 is derived)

e(C, u′
n+1) = e(C, uαn+1

g
RF(n+1)
2) = e(C, uαn+1

) · e(C, g
RF(n+1)
2)

has log p2 = Θ(λ) bits of min-entropy coming from RF(n + 1); this holds as
long as the Gp2 -component of C is not 1, which happens with probability
1 − 1/p2. Then, by the left-over hash lemma, κ0 = H(e(C, u′

n+1)) is 2−Ω(λ)-
close to the uniform distribution over {0, 1}λ.

In Game 5, both κ0, κ1 are uniformly random over {0, 1}λ. Therefore, the view
of the adversary A is statistically independent of the challenge bit b. Hence,
Adv5 = 0. This completes the proof.
�

Acknowledgments. I would like to thank Allison Bishop, Dan Boneh, Melissa Chase,
Jie Chen, Sarah Meiklejohn and Alain Passelègue for helpful discussions.

A Asymmetric Composite-Order Bilinear Groups

In this section, we outline the extension of our result to asymmetric composite-
order bilinear groups. Here, we can work with groups whose group order is
the product of two primes, and we obtain IBE and signature schemes (shown in
Figs. 7 and 8) where the key generation and signing algorithms are deterministic.
We state the underlying decisional subgroup assumptions, and the proofs are
exactly analogous to the ones from before.

Asymmetric Composite-Order Bilinear Groups. The generator G takes as
input a security parameter λ and outputs a description G := (N,G,H,GT , e),
where N is product of distinct primes of Θ(λ) bits, G,H and GT are cyclic

Déjà Q: Encore! Un Petit IBE 255

groups of order N , and e : G × H → GT is a non-degenerate bilinear map. We
consider bilinear groups where N is the product of two distinct primes p1, p2

(that is, N = p1p2). We can write G = Gp1Gp2 where Gp1 , Gp2 are subgroups of
G of order p1 and p2 respectively. In addition, we use G∗

pi
to denote Gpi

\{1}. We
will often write g1, g2 to denote random generators for the subgroups Gp1 , Gp2 .
We can also write H = Hp1Hp2 , where Hp1 ,Hp2 , h1, h2 are defined analogously.

Cryptographic Assumptions. Our construction relies on the following two
subgroup decisional assumptions. We define the following two advantage func-
tions:

Advsd1G,A(λ) :=
∣
∣Pr[A(D,T0) = 1] − Pr[A(D,T1) = 1]

∣
∣

where G ← G, T0 ← Gp1 , T1 ←R Gp1Gp2

and D := (g1, g{1,2}, h1, h{1,2}), g1 ←R G∗
p1

, g{1,2} ←R Gp1Gp2 ,

h1 ←R H∗
p1

, h{1,2} ←R Hp1Hp2

Advsd2G,A(λ) :=
∣
∣Pr[A(D,T0) = 1] − Pr[A(D,T1) = 1]

∣
∣

where G ← G, T0 ← Hp1 , T1 ←R Hp1Hp2

and D := (h1, h2, h{1,2}, g1, g{1,2}), h1 ←R H∗
p1

, h2 ←R H∗
p2

,

h{1,2} ←R Hp1Hp2 , g1 ←R G∗
p1

, g{1,2} ←R Gp1Gp2

The decisional subgroup assumptions assert that that for all PPT adversaries
A, the advantages Advsd1G,A(λ) and Advsd2G,A(λ) are negligible functions in λ.

Fig. 7. Adaptively secure anonymous IBE w.r.t. an asymmetric composite-order bilin-
ear group G. Here, H : GT → {0, 1}λ is drawn from a family of pairwise-independent
hash functions.

256 H. Wee

Fig. 8. Fully secure signature scheme w.r.t. an asymmetric composite-order bilinear
group G.

Remark 1. Note that Assumption 2 is false if the pairing is symmetric (i.e., there
exists an efficiently computable isomorphism between G and H) since we can
pair with h2 to distinguish between T0 and T1. The term h2 will play the role of
g2,3 in the transitions from Game 3.(j −1).1 to 3.j.0 in the proofs of Theorems 1
and 2.

References

1. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014)

2. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
I. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014)

3. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

4. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

5. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

6. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 258–275. Springer, Heidelberg (2005)

7. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

8. Boyen, X.: General Ad Hoc encryption from exponent inversion IBE. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 394–411. Springer, Heidelberg
(2007)

9. De Caro, A., Iovino, V., Persiano, G.: Fully secure anonymous HIBE and Secret-
key anonymous IBE with short ciphertexts. In: Joye, M., Miyaji, A., Otsuka, A.
(eds.) Pairing 2010. LNCS, vol. 6487, pp. 347–366. Springer, Heidelberg (2010)

Déjà Q: Encore! Un Petit IBE 257

10. Chase, M., Meiklejohn, S.: Déjà Q: using dual systems to revisit q-type assump-
tions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 622–639. Springer, Heidelberg (2014). (Cryptology ePrint Archive, Report
2014/570.)

11. Chen, J., Lim, H.W., Ling, S., Wang, H., Wee, H.: Shorter IBE and signatures via
asymmetric pairings. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol.
7708, pp. 122–140. Springer, Heidelberg (2013)

12. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015)

13. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)

14. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

15. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

16. Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building efficient fully
collusion-resilient traitor tracing and revocation schemes. In: ACM Conference on
Computer and Communications Security, pp. 121–130 (2010)

17. Gay, R., Kerenidis, I., Wee, H.: Communication complexity of conditional disclo-
sure of secrets and attribute-based encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 485–502. Springer, Heidelberg (2015)

18. Gentry, C.: Practical identity-based encryption without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

19. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with
short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
171–188. Springer, Heidelberg (2009)

20. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013)

21. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

22. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

23. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

24. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010)

25. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer,
Heidelberg (2009)

26. Sakai, R., Kasahara, M.: ID based cryptosystems with pairing on elliptic curve.
Cryptology ePrint Archive, Report 2003/054 (2003)

258 H. Wee

27. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

28. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

29. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009)

30. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014)

31. Yuen, T.H., Chow, S.S., Zhang, C., Yiu, S.M.: Exponent-inversion signatures and
IBE under static assumptions. Cryptology ePrint Archive, Report 2014/311 (2014)

A Study of Pair Encodings: Predicate
Encryption in Prime Order Groups

Shashank Agrawal1(B) and Melissa Chase2

1 University of Illinois Urbana-Champaign, Champaign, USA
sagrawl2@illinois.edu

2 Microsoft Research, Redmond, USA
melissac@microsoft.com

Abstract. Pair encodings and predicate encodings, recently introduced
by Attrapadung [2] and Wee [36] respectively, greatly simplify the process
of designing and analyzing predicate and attribute-based encryption
schemes. However, they are still somewhat limited in that they are
restricted to composite order groups, and the information theoretic prop-
erties are not sufficient to argue about many of the schemes. Here we
focus on pair encodings, as the more general of the two. We first study
the structure of these objects, then propose a new relaxed but still infor-
mation theoretic security property. Next we show a generic construction
for predicate encryption in prime order groups from our new property; it
results in either semi-adaptive or full security depending on the encoding,
and gives security under SXDH or DLIN. Finally, we demonstrate the
range of our new property by using it to design the first semi-adaptively
secure CP-ABE scheme with constant size ciphertexts.

Keywords: Predicate encryption · Attribute-based encryption · Pair
encoding schemes · Dual system technique · Short ciphertexts

1 Introduction

In traditional public key encryption systems, a message is encrypted under a
particular public key, with the guarantee that it can only be decrypted by the
party holding the corresponding secret key. Attribute based encryption (ABE),
introduced in [30], instead allows us to use attributes to determine who has
the power to decrypt. In these systems, there is a single entity which publishes
system parameters and distributes the appropriate decryption keys to various
parties. In key-policy ABE (KP-ABE) [18], a message is encrypted under a set
of attributes describing that message, and each decryption key is associated with
a policy describing which ciphertexts it can decrypt. Conversely, in ciphertext-
policy ABE (CP-ABE) [8] each user is given a decryption key that depends on his
attributes, and ciphertexts are encrypted with policies describing which users can
decrypt them. ABE has been proposed for a variety of applications, from social

S. Agrawal—Part of this work was done when the author was at Microsoft Research.

c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 259–288, 2016.
DOI: 10.1007/978-3-662-49099-0 10

260 S. Agrawal and M. Chase

network privacy to pay-per-view broadcasting to health record access-control to
cloud security (see e.g. [1,6,28,31,34]).

Recently there has been a lot of progress in terms of both security and func-
tionality. Using the dual system framework introduced by Waters [35], several
works [23,25] have designed ABE schemes that satisfy the natural security defin-
ition, avoiding the restrictions of selective security1. Other works consider extra
features like short ciphertexts whose length is independent of the size of the
associated attribute set and policy [5,37], or “unbounded” schemes that place
no bounds on the space of possible attributes or the number of attributes that
can be tied to a ciphertext or key [24,27,29]. Predicate encryption [10] generalizes
the concept to require only that the ciphertext and key are associated with values
x, y, and decryption succeeds iff some predicate P (x, y) holds. Note that in this
work we assume that x and y are revealed by the ciphertext and key respectively;
we do not consider attribute-hiding [11,21] or predicate-hiding [9,32].

As these schemes have progressed, however, constructions and proofs have
become increasingly complex. Many of the proposed schemes require composite
order pairings, in which the order of the pairing groups is a product of two
or more primes; since these schemes require that factoring the group order is
hard, this in practice means that these groups must be at least an order of
magnitude larger than prime order groups of comparable security level, and
according to [19] composite order pairing computations are at least 2 orders of
magnitude slower. This has prompted efforts to design schemes in prime order
groups [17,20,22,26,27], but many of these schemes still have fairly high cost as
compared to their selectively secure counterparts, and designing and analyzing
security of such schemes can be quite challenging.

Two very recent works, by Wee [36] and Attrapadung [2] make significant
progress in simplifying the design and analysis of new constructions. These works
introduce simple new objects, called predicate encodings and pair encodings
respectively in the two works, which can be used to construct ABE and other
predicate encryption schemes. Essentially, they consider one decryption key and
one ciphertext, and focus on what happens in the exponent space. Both for-
malisms introduce simple information theoretic properties on these objects and
show that if these properties are met, they can be extended into fully secure
ABE/predicate encryption schemes. The major advantage of this approach is
that instead of having to design and prove security of a complex scheme, now all
one has to do is design and analyze an appropriate encoding, which is a much
simpler task. This vastly simplifies the design of new schemes, and in fact, both
works resulted in new constructions and more efficient variants of previously
known schemes.

Currently these works have two primary limitations. First, they both result in
ABE schemes that rely on composite order pairings, which as explained above is

1 The original construction of Sahai and Waters [30], and much of the following work,
considers what is referred to as the selective security model, in which the adver-
sary must commit to the attributes/policy used in the challenge ciphertext before
requesting any decryption keys.

A Study of Pair Encodings: Predicate Encryption in Prime Order Groups 261

very undesirable from an efficiency standpoint. The second drawback is that the
strict information theoretic properties they require from the underlying objects
mean that there are many constructions that they cannot capture in their model.
Attrapadung [2] addresses this by introducing a computational security notion,
which allows several more interesting constructions to be captured in the frame-
work. However, this security notion is much harder to analyze - it involves not
only the encodings in the exponent space, but also elements in the composite
order group in which it is embedded, and the proofs that the encodings satisfy
this notion are not only computational (rather than information theoretic) but
are based on much stronger assumptions.

Still these encodings seem extremely promising as a way to simplify the design
and analysis of predicate encryption schemes. In our work we further study these
objects, with the aim of understanding them better and beginning to address
these limitations. In particular we focus on the pair encodings from [2], as they
seem to be able to capture more constructions.
Our Contributions. First, we study the structure of pair encodings. Attra-
padung’s pair encodings have only limited structural requirements. This means
that he is able to capture many existing constructions in his framework, although
as mentioned above, in many cases the information theoretic security property
he defines does not hold for these schemes. A better understanding of the natural
structure of these schemes may help to design new schemes, by providing better
intuition for what is important and simply by limiting the search space.

Here we consider two structural properties. First we assume a simple property
that describes where the public parameters appear in the key and ciphertext.
This seems to reflect some basic structure, as all the pair encodings in [2] have
this property. Looking ahead, this property allows us to instantiate these schemes
efficiently in prime order groups. We then show that this implies a second, seem-
ingly unrelated property involving the use of random variables in the key and
ciphertexts. We can use this second property to simplify our security definitions
and analyses.

Using this understanding, we propose a relaxation of the information
theoretic security property proposed in [2]. This property essentially allows
us to consider the scheme at smaller granularity than an entire key or ciphertext.
It is still information theoretic, and it does not depend on the group in which
it will be used; this means it is still easy to analyze whether a given encoding
satisfies this property. We consider two flavors of this property and show that
the stronger of the two is implied by the security properties in [2]. However,
we will see that our new property is indeed a relaxation in that it allows us to
consider encodings that did not satisfy the original property. Thus, we make a
first step towards addressing the limitations of the strict information theoretic
property of previous work.

Next we present a generic construction of predicate encryption from pair
encodings.Herewemakeuse of the dual systemgroups introducedby [13]; although
we must modify their properties slightly, we show that their instantiations are

262 S. Agrawal and M. Chase

still sufficient2. We show that pair encodings which satisfy the stronger flavor of
our new property result in fully secure predicate encryption schemes, while pair
encodings which satisfy the weaker flavor result in schemes which can still be shown
to be semi-adaptively secure3. While full security is preferable, we will see that this
second result allows us to design schemes in areas in which even selectively secure
constructions are hard to construct.

This approach has two advantages. First, this means that we can transform
any pair encoding scheme which satisfies the information theoretic security prop-
erties in [2] into a fully secure ABE or predicate encryption scheme in a prime
order group based only on the SXDH or DLIN assumption. This results in
schemes which are of practical efficiency, with strong security guarantees based
on mild assumptions. Moreover, the advantage of this approach is that while
proof of our generic construction is fairly involved, analyzing a given pair encod-
ing scheme to verify the necessary property is still quite straightforward.

Finally, to demonstrate how our relaxed security property allows us to con-
sider additional functionalities, we present a new pair encoding for CP-ABE
with constant-size ciphertext . When used in our generic construction, this
results in a CP-ABE with constant size-ciphertext which is semi-adaptively
secure and can be instantiated under either SXDH or DLIN. To the best of
our knowledge, prior to our work there were no known schemes for constant-size
CP-ABE, even considering only selectively security and allowing for very strong
assumptions.4 This shows then that our new techniques allow us to consider a
strictly greater range of schemes; we hope that they will continue to prove useful
and lead to other interesting constructions.
Other Related Work. As mentioned above, the original works of [2,36] gave
constructions only in composite order groups. In a recent work, however, Chen,
Gay, and Wee [12] proposed a transformation to go from pair encodings to prime
order predicate encryption schemes, requiring the same strong information the-
oretic property on the underlying pair encoding as in [36]. However, they also
require strict restrictions on the structure of pair encodings, which are not sat-
isfied by most of the encodings which had previously been proposed; essentially
this requires that there be only one unit of randomness in each ciphertext or
key. They show that the previous encodings which satisfy the information the-
oretic property from [2] (the basic KP- and CP-ABE schemes) have counter-
parts which satisfy these stricter requirements. This results in the most efficient
known constructions for a number of problems. As mentioned above, our generic

2 Since we use these groups in a black box way, any improvement in the underlying
instantiation will translate directly into an improvement in our generic construction.
In particular we believe that the simplified new dual system groups proposed in [12]
satisfy our modified definitions as well, so they could be used to simplify our construc-
tion.

3 Unlike selective security, in semi-adaptive security an adversary is not forced to commit
to the challenge before seeing the public parameters.

4 Here we discount threshold access policies because when only threshold policies are
considered, CP-ABE and KP-ABE are equivalent.

A Study of Pair Encodings: Predicate Encryption in Prime Order Groups 263

construction can be applied directly to the original pair encodings [2]; this will
yield similar constructions, with slightly different tradeoffs (generally smaller
public parameters but slower decryption). Interestingly, our relaxed perfect secu-
rity property is designed to leverage exactly the kind of structure they pro-
hibit, so perhaps it suggests another way forward for predicates that cannot be
addressed under their model.

In concurrent work, Attrapadung [3] proposed a generic construction that
compiles any secure (computational or information-theoretic) pair encoding
scheme for a predicate R to a fully secure FE scheme for the same predicate
in prime-order groups under Matrix Diffie-Hellman assumption [16] (of which
DLIN is a special case) with an additional q-type assumption in the case of
pair encodings that only satisfy the computational security definition from [2].
This then also gives prime order group constructions for any predicate encoding
scheme satisfying the strong information theoretic property under DLIN, and
for KP-ABE with short ciphertext (as well as unbounded KP-ABE and ABE
for regular languages) under a q-type assumption. However, as compared to this
work, our results have the following advantages: First, we use dual system groups
in a black box way, which simplifies the transformation, unifies prime and com-
posite order group constructions, and means that any new construction of dual
system groups directly gives new constructions for ABE. Moreover, our relaxed
perfect security property allows us to show semi-adaptive security for the short
ciphertext schemes based only on SXDH or DLIN, without any q-type assump-
tions; in addition to giving us the new results on CP-ABE, we can also give a
much simpler proof of semi-adaptive security for Attrapadung’s KP-ABE with
short ciphertexts, and this proof does not require q-type assumptions. (See the
full version of the paper.)

Finally, we mention the concurrent work of Attrapadung, Hanaoka, and
Yamada [4]. This work presents various conversions among pair encoding
schemes. Among other things, they show that if one starts with the KP-ABE
scheme with constant-size ciphertexts recently proposed by Takashima [33], then
by applying the conversion one gets a CP-ABE scheme with constant-size cipher-
texts, which is selectively secure under the DLIN assumption. On the other hand,
we get a semi-adaptive scheme secure under any assumption which can be used
to construct dual system groups (which includes SXDH, DLIN, etc.). Moreover,
since Takashima’s construction does not use any abstractions, our construction
is significantly more modular, easier to analyze and easier to extend. As we view
the CP-ABE more as a test-case for the utility of our new definition and trans-
formation, having an approach that can extend easily to other types of ABE
schemes seems particularly valuable.

2 Preliminaries

We use ∼=,≡ and ≈ to denote statistical, perfect and computational indistin-
guishability respectively. Security parameter is denoted by λ, and negl(λ) denotes
a negligible function in λ.

264 S. Agrawal and M. Chase

We normally use lower case letters in bold to denote vectors; but if a
vector’s elements are themselves vectors, we use upper case. For two vectors
u = (u1, . . . , un) and v = (v1, . . . , vn), we use u · v to denote the entry-
wise product, i.e., (u1v1, . . . , unvn), and 〈u, v〉 to denote the inner-product, i.e.,∑n

i=1 uivi. The · operator naturally extends to vectors of vectors (or matrices):
if U = (u1, . . . ,um) and V = (v1, . . . ,vm), then U ·V = (u1 · v1, . . . ,um · um).
gu should be interpreted as the vector (gu1 , . . . , gun). gA, where A is a matrix,
should be interpreted in an analogous way.

We use u1, . . . ,um ← SampAlg(·) to denote that the algorithm SampAlg is
run m times with independent coin tosses to generate samples u1, . . . ,um. Since
the output of this algorithm is a vector, we also use (u1, . . . , un) ← SampAlg(·) to
denote that a single sample with co-ordinates u1, . . . , un is drawn from SampAlg
(this should not be confused with the previous notation). Finally, a ←R S
denotes drawing an element a uniformly at random from the set S.

Bilinear Pairings: Let G,H and GT be three multiplicative groups. A pairing
e : G × H → GT is bilinear if for all g ∈ G, h ∈ H and a, b ∈ Z, e(ga, hb) =
e(g, h)ab. This pairing is non-degenerate if whenever e(g, h) = 1GT

, then either
g = 1G or h = 1H (where 1G, for instance, denotes the identity element of G.)
We will only be interested in bilinear pairings that are efficiently computable.

The order of an element g of a group G is the smallest positive integer a such
that ga = 1G. The exponent of a group is defined as the least common multiple
of the orders of all elements of the group. One can show that if a non-degenerate
bilinear pairing e : G×H → GT can be defined over three groups G,H and GT ,
then they all have the same exponent. We use exp(G) to denote the exponent of
a group G.

Homomorphism: A homomorphism from a group 〈G, ·〉 to a group 〈H,⊕〉 is a
function ψ : G → H such that for all g1, g2 ∈ G, ψ(g1 · g2) = ψ(g1) ⊕ ψ(g2). We
define two sets with respect to a homomorphism: Image(ψ) = {ψ(g) | g ∈ G}
and Kernel(ψ) = {g ∈ G | ψ(g) = 1H}.

2.1 Predicate Encryption (PE)

An encryption scheme for a predicate family P = {Pκ}κ∈Nc over a message space
M = {Mλ}λ∈N consists of four PPT algorithms which satisfy a correctness
condition defined below.

– Setup(1λ, par) → (mpk,msk). The Setup algorithm takes as input the unary
representation of the security parameter λ and some additional parameters
par. It outputs a master public key mpk and a master secret key msk. The
output of Setup defines a number N ∈ N (perhaps implicitly), and κ is set to
(N, par).

– Encrypt(mpk, x,m) → ct. The encryption algorithm takes public parameters
mpk, an x ∈ Xκ and an m ∈ Mλ as inputs, and outputs a ciphertext ct.

– KeyGen(mpk,msk, y) → sk. The key generation algorithm takes as input the
public parameters mpk, the master secret key msk and a y ∈ Yκ, and outputs
a secret key sk.

A Study of Pair Encodings: Predicate Encryption in Prime Order Groups 265

– Decrypt(mpk, sk,ct) → m′. The decryption algorithm takes as input the
public parameters mpk, a secret key sk and a ciphertext ct, and outputs a
message m′ ∈ Mλ.

Correctness: For all λ and par, mpk and msk output by Setup(1λ, par), m ∈
Mλ, x ∈ Xκ and y ∈ Yκ such that Pκ(x, y) = 1, if

ct ← Encrypt(mpk, x,m) sk ← KeyGen(mpk,msk, y),

then
Pr[Decrypt(mpk,ct, sk) �= m] ≤ negl(λ),

where the probability is over the random coin tosses of Encrypt,KeyGen and
Decrypt.

Security: Let Π be an encryption scheme for a predicate family P = {Pκ}κ∈Nc

over a message space M = {Mλ}λ∈N. Consider the following experiment
Expt

(b)
A,Π (λ, par) between an adversary A and a challenger Chl for b ∈ {0, 1}

when both are given input 1λ and par:

1. Setup: Chl runs Setup(1λ, par) to obtain mpk and msk. It gives mpk to A.
2. Query: A issues a key query by sending y ∈ Yκ to Chl, and obtains sk ←

KeyGen(mpk, msk, y) in response. This step can be repeated any number of
times A desires.

3. Challenge: A sends two messages m0,m1 ∈ Mλ and an x ∈ Xκ to Chl, and
gets ct ← Encrypt(mpk, x,mb) as the challenge ciphertext.

4. Query: This step is identical to step 2.

At the end of the experiment, A outputs a bit which is defined to be the
output of the experiment. We call an adversary admissible if for every y ∈ Yκ

queried in steps 2 and 4, Pκ(x, y) = 0. This prevents A from succeeding in the
experiment simply by decrypting ct.

Definition 1. An encryption scheme Π is adaptively or fully secure for a predi-
cate family P = {Pκ}κ∈Nc if for every PPT admissible adversary A and every par,

|Pr[Expt(0)A,Π(λ, par) = 1] − Pr[Expt(1)A,Π(λ, par) = 1]| ≤ negl(λ),

where the probabilities are taken over the coin tosses of A and Chl. On the other
hand, Π is semi-adaptively secure if the above condition is satisfied w.r.t. to a
modified experiment where A provides x ∈ Xκ to Chl right after the setup phase
(instead of the challenge phase), i.e., before it starts querying [15].

3 Pair Encoding Schemes

The notion of pair encoding schemes (PES) was introduced by Attrapadung
[2]. Our definition of this scheme is slightly different from the one given by [2]
in that we place a restriction on the structure. Though the latter definition is

266 S. Agrawal and M. Chase

more general, we believe that our formulation mirrors the concrete design of
such schemes more closely. In particular, all the constructions of pair encoding
schemes given in [2] fit into our framework without any changes.

We first present the definition given by Attrapadung and discuss the restric-
tions we impose afterwards. A pair encoding scheme for a predicate family
Pκ : Xκ × Yκ → {0, 1} indexed by κ = (N, par) consists of four polynomial-
time deterministic algorithms which satisfy a correctness condition as defined
below.

– Param(par) → n. The Param algorithm takes the parameters par as input,
and outputs a positive integer n ∈ N which specifies the number of common
variables shared by the following two algorithms. Let b := (b1, b2, . . . , bn)
denote the common variables.

– EncC(x,N) → (c := (c1, c2, . . . , cw1);w2). The EncC algorithm takes an N ∈ N

and an x ∈ X(N,par) as inputs, and outputs a sequence of w1 polynomials
c1, c2, . . . , cw1 with coefficients in ZN and a w2 ∈ N. Every polynomial c�

is a linear combination of monomials of the form s, si, sbj , sibj in variables
s, s1, s2, . . . , sw2 and b1, . . . , bn. More formally, for � ∈ [1, w1],

c� := ζ�s +
∑

i∈[1,w2]

η�,isi +
∑

j∈[1,n]

θ�,jsbj +
∑

i∈[1,w2],j∈[1,n]

ϑ�,i,jsibj ,

where ζ�, η�,i, θ�,j , ϑ�,i,j ∈ ZN are constants which define c�.
– EncK(y,N) → (k := (k1, k2, . . . , km1);m2). The EncK algorithm takes an

N ∈ N and a y ∈ Y(N,par) as inputs, and outputs a sequence of m1 polynomials
k1, k2, . . . , km1 with coefficients in ZN and an m2 ∈ N. Every polynomial
kt is a linear combination of monomials of the form α, ri′ , ri′bj in variables
α, r1, r2, . . . , rm2 and b1, . . . , bn. More formally, for t ∈ [1,m1],

kt := τtα +
∑

i′∈[1,m2]

υt,i′ri′ +
∑

i′∈[1,m2],j∈[1,n]

φt,i′,jri′bj ,

where τt, υt,i′ , φt,i′,j ∈ ZN are constants which define kt.
– Pair(x, y,N) → E. The EncC algorithm takes an N ∈ N, an x ∈ X(N,par) and

a y ∈ Y(N,par) as inputs, and outputs a matrix E ∈ Z
m1×w1
N .

Correctness: A pair encoding scheme is correct if for every κ = (N, par), x ∈ Xκ

and y ∈ Yκ such that Pκ(x, y) = 1, the following holds symbolically

kEcT =
∑

t∈[1,m1],
�∈[1,w1]

Et,�ktc� = αs.

Structural Restrictions. We impose an additional restriction on the form of
E. Essentially this says that if kt has a monomial of the form ri′bj′ and a c� has
a monomial of the form sbj or sibj then Et,� must be 0. One can easily verify
that every pair encoding scheme given in [2] (as well as the new one we propose)

A Study of Pair Encodings: Predicate Encryption in Prime Order Groups 267

satisfies this. We also assume that the variable s is explicitly given out in the
encoding of x, i.e., s ∈ c.

Moreover, we can show that given the constraint on E, we can assume w.l.o.g.
that the set of polynomials output by EncC and EncK have a fairly restricted
structure. In simple words, if a polynomial contains the monomial sbj (or sibj ,
ri′bj), then there must exist a polynomial which only contains the monomial s
(resp. si, ri′). More precisely, we show that for any pair encoding which satisfies
the restriction on E, there is a corresponding one in which EncC and EncK have
this structure, and this correspondence preserves all of the security properties
defined in [2].

For formal statements see the full version. For the rest of this work, we will
assume that all pair encodings satisfy the properties listed above.

3.1 Security

Attrapadung provided two security notions for pair encoding schemes: perfect
and computational. As discussed in Sect. 1, in this paper we focus on per-
fect security, which is the information theoretic property, for which we pro-
pose a relaxation. First, we restate here the original security definition given by
Attrapadung (which is referred to as perfectly master-key hiding in his paper).

Definition 2 (Perfect Security [2]). A pair encoding scheme (Param,EncC,
EncK,Pair) for a predicate family Pκ is perfectly secure if for every κ = (N, par),
x ∈ Xκ and y ∈ Yκ such that Pκ(x, y) = 0,

(
c(s,b),k(0, r,b)

)
≡

(
c(s,b),k(α, r,b)

)
, (1)

where s ←R Z
w2+1
N , b ←R Z

n
N , r ←R Z

m2
N and α ←R ZN .

We propose a new relaxed notion of perfect security that allows more flex-
ibility in the design of pair encoding schemes. Very roughly, this property will
allow us to add noise gradually to the parameters used in the key, as long as this
noise is not detectable given the relevant part of the key and the ciphertext. The
goal is to eventually add sufficient noise to completely hide the master secret.
Towards this, we define a new randomized polynomial-time sampling algorithm
for pair encoding schemes. While the algorithms above are used in the generic
construction, the Samp algorithm described below will be used in the security
proof.

– Samp(d, x, y,N) → (bd := (bd,1, bd,2, . . . , bd,n)). This algorithm takes a d ∈
[1,m2], an N ∈ N, an x ∈ X(N,par), and a y ∈ Y(N,par) as inputs, and outputs a
sequence of n numbers in ZN . We require that the probability of this algorithm
producing (u · bd,1, u · bd,2, . . . , u · bd,n) as output is equal to the probability
that it produces (bd,1, bd,2, . . . , bd,n) as output, for any u ∈ Z

∗
N .

Jumping ahead, the dependence of Samp on its inputs will play a crucial role
in the proof of security of our generic construction. We will see that if Samp

268 S. Agrawal and M. Chase

doesn’t depend on x, then we can prove our construction to be fully secure. But
in case it does, we can only prove semi-adaptive security.

Recall that EncK on input y and N produces a sequence of polynomials
k(α, r,b) with coefficients in ZN , where every polynomial is a linear combination
of monomials of the form α, ri′ , ri′bj in variables α, r1, r2, . . . , rm2 and b1, . . . , bn.
In the following we use kd(α, rd,b), for d ∈ [1,m2], to denote the polynomials
in k obtained by setting all the variables in {r1, r2, . . . , rm2} except rd to 0. We
are now ready to define our new notion of perfect security.

Definition 3 (Relaxed Perfect Security). A pair encoding scheme Γ =
(Param, EncC,EncK,Pair) for a predicate family Pκ is relaxed perfectly secure
if there exists a PPT algorithm Samp (as defined above) such that for every par,
x ∈ Xκ and y ∈ Yκ such that Pκ(x, y) = 0, and every d ∈ [1,m2]:

{c(s,b),kd(0, rd,b)}N∈N
∼= {c(s,b),kd(0, rd,b + bd)}N∈N, (2)

where s ←R Z
w2+1
N , b ←R Z

n
N , rd ←R ZN ,bd ← Samp(d, x, y,N). Furthermore,

{
c(s,b),

∑
d∈[1,m2]

kd(0, rd,b+bd)

}

N∈N

∼=
{
c(s,b),

∑
d∈[1,m2]

kd(α, rd,b+bd)

}

N∈N

, (3)

where s ←R Z
w2+1
N , b ←R Z

n
N , r1, r2, . . . , rm2 ←R ZN , α ←R ZN , bd ←

Samp(d, x, y,N) for d ∈ [1,m2], and ∼= denotes statistical indistinguishability.
We say Γ satisfies strong relaxed perfect security if Samp does not depend on x.

Note that in Eqs. (2) and (3), we have distribution ensembles indexed by
N , unlike the definition of perfect security where we are dealing with only one
distribution. We require that the ensembles are statistically indistinguishable
from each other, which means that for large enough values of N , the statistical
distance between the distributions is negligible.

We now show that any pair encoding scheme that is perfectly secure under
the original definition is also secure under the stronger flavor of the relaxed
definition.

Lemma 1. Let Γ = (Param,EncC,EncK,Pair) be a pair encoding scheme. If Γ
is prefectly secure (Definition 2), then Γ is also relaxed perfectly secure (Defin-
ition 3). Moreover, we can define a Samp algorithm for Γ that does not depend
on the input x.

Proof. For any pair encoding scheme Γ , define Samp to output a vector of zeroes
on any input. With this definition, (2) is trivially satisfied for every d ∈ [1,m2],
and the two distributions in (3) reduce to

⎧
⎨

⎩
c(s,b),

∑

d∈[1,m2]

kd(0, rd,b)

⎫
⎬

⎭
and

⎧
⎨

⎩
c(s,b),

∑

d∈[1,m2]

kd(α, rd,b)

⎫
⎬

⎭
. (4)

A Study of Pair Encodings: Predicate Encryption in Prime Order Groups 269

Since Γ is perfectly secure, we know that if s ←R Z
w2+1
N , b ←R Z

n
N , r ←R Z

m2
N

and α ←R ZN , then

{c(s,b),k(0, r,b)} ≡ {c(s,b),k(α, r,b)}.

We can replace k(α, r,b) with k(m2α, r,b) in the above without changing the
joint distribution. Now, observe that k(0, r,b) =

∑
d∈[1,m2]

kd(0, rd, b) and
k(m2α, r,b) =

∑
d∈[1,m2]

kd(α, rd,b) symbolically. Therefore, the two distrib-
utions in (4) are identical. �

4 Dual System Groups

Our construction of predicate encryption schemes from pair encodings is based
on dual system groups (DSG), introduced by Chen and Wee [14] in a recent work.
Our formulation of DSG, given below, can be seen as a generalization of theirs.
However, as we will show, both their instantiations satisfy the new properties
without making any changes.

A dual system group is parameterized by a security parameter λ and a num-
ber n. It consists of six PPT algorithms as described below.

4.1 Syntax

– SampP(1λ, 1n): On input 1λ and 1n, SampP outputs public parameters pp and
secret parameters sp, which have the following properties:
• pp contains a triple of groups (G,H,GT) and a non-degenerate bilinear

map e : G × H → GT , a homomorphism μ from H to GT , along with
some additional parameters used by SampG, SampH. Given pp, we know the
exponent of group H and how to sample uniformly from it. Let N = exp(H)
(see Sect. 2). We require that N is a product of distinct primes of Θ(λ) bits.

• sp contains h̃ ∈ H (where h̃ �= 1H) along with additional parameters used
by SampG and SampH.

– SampGT takes an element in the image of μ and outputs another element from
GT .

– SampG and SampH take pp as input and output a vector of n + 1 elements
from G and H respectively.

– SampG and SampH take both pp and sp as inputs and output a vector of n+1
elements from G and H respectively.

4.2 Properties

We require that all the properties below hold for every pp and sp output by
SampP. Let SampG0 be the algorithm that outputs only the first element of
SampG. Analogously, SampH0, SampG0 and SampH0 can be defined. A dual
system group is correct if it satisfies the following two properties5:
5 Note that we have omitted the H-subgroup property. It is required to construct

encryption schemes with key delegation like HIBE. We do not use this property in
our constructions.

270 S. Agrawal and M. Chase

Projective: For all h ∈ H and coin tosses σ, SampGT(μ(h);σ) = e(SampG0

(pp;σ), h).

Associative: If (g0, g1, . . . , gn) and (h0, h1, . . . , hn) are samples from SampG(pp)
and SampH(pp) respectively, then for all i ∈ [1, n], e(g0, hi) = e(gi, h0).

For security we require the following three properties to hold:

Orthogonality: h̃ ∈ Kernel(μ), i.e., μ(h̃) = 1GT
.

Non-degeneracy:

1. SampH0(pp, sp) ∼= h̃δ, where δ ←R ZN .
2. ∃ g̃ ∈ G s.t. SampG0(pp, sp) ∼= g̃α, where α ←R ZN .
3. For all ĝ0 ← SampG0(pp, sp), e(ĝ0, h̃)β is uniformly distributed over GT ,

where β ←R ZN .

(Here ∼= denotes statistical indistinguishability.)

Remark 1. In [14], the non-degeneracy property is defined in a slightly different
way. First, they require that for all ĥ0 ← SampH0(pp, sp), h̃ lies in the group
generated by ĥ0, instead of the first point above. And secondly, they do not have
any constraint on the output of SampG0(pp, sp) like in the second point above.
The third property, though, is also present in their definition6.

Indistinguishability. For two (positive) polynomials poly1(·) and poly2(·),
define G,H, Ĝ, Ĥ, Ĝ′, Ĥ′ as follows:

(pp, sp) ← SampP(1λ, 1n); γ1, γ2, . . . , γn ←R ZN ;

g1,g2, . . . ,gpoly1(λ)
← SampG(pp);G := (g1,g2, . . . ,gpoly1(λ)

);

h1,h2, . . . ,hpoly2(λ)
← SampH(pp);H := (h1,h2, . . . ,hpoly2(λ)

);

∀i ∈ [1, poly1(λ)], ĝi := (ĝi,0, . . .) ← SampG(pp, sp); ĝ′
i := (1, ĝγ1

i,0, ĝ
γ2
i,0, . . . , ĝ

γn
i,0)

∀j ∈ [1, poly2(λ)], ĥj := (ĥj,0, . . .) ← SampH(pp, sp); ĥ′
j := (1, ĥγ1

j,0, ĥ
γ2
j,0, . . . , ĥ

γn
j,0)

Ĝ := (ĝ1, ĝ2, . . . , ĝpoly1(λ)
); Ĥ := (ĥ1, ĥ2, . . . , ĥpoly2(λ)

);

Ĝ′ := (ĝ′
1, ĝ

′
2, . . . , ĝ

′
poly1(λ)

); Ĥ′ := (ĥ′
1, ĥ

′
2, . . . , ĥ

′
poly2(λ)

).

We call a dual system group Left Subgroup Indistinguishable (LSI), Right Sub-
group Indistinguishable (RSI) and Parameter hiding (PH) if for all polynomials
poly1(·) and poly2(·),

{pp,G} ≈ {pp,G · Ĝ}, (5)

{pp, h̃,G · Ĝ,H} ≈ {pp, h̃,G · Ĝ,H · Ĥ}, and (6)

{pp, h̃, Ĝ, Ĥ} ≡ {pp, h̃, Ĝ · Ĝ′, Ĥ · Ĥ′} (7)

6 In the composite-order instantiation of [14], this property holds only in a computa-
tional sense.

A Study of Pair Encodings: Predicate Encryption in Prime Order Groups 271

hold respectively. Observe that the two distributions in (5) and (6) are compu-
tationally indistinguishable, while the two distributions in (7) are identical.

Instantiations of DSG. The three indistinguishability properties defined above
are generalizations of the corresponding ones in Chen and Wee [14]. In the full
version we show that the two instantiations of DSG – in composite-order groups
under the subgroup decision assumption and in prime-order groups under the
decisional linear assumption (d-LIN) – given by [14] satisfy our generalized indis-
tinguishability properties as well as our new definition of non-degeneracy.

Remark 2. In the prime-order instantiation of dual system groups under the
d-LIN assumption given by [14], an element from groups G or H is represented by
d+1 elements from a source prime-order group (an element from GT is mapped
to just one element of a target prime-order group). Now, suppose we have an
encryption scheme in dual system groups where the ciphertext/key consists of
elements from G or H (and possibly an element from GT). Then, a concrete
instantiation in prime-order groups would only double the size of ciphertext/key,
if we make the SXDH assumption (special case of d-LIN with d = 1), and only
triple it if we make the DLIN assumption (special case of d-LIN with d = 2).

5 Predicate Encryption from Pair Encodings

In this section, we show how to construct a predicate encryption scheme ΠP =
(Setup,Encrypt, KeyGen,Decrypt) for any predicate family P = {Pκ}κ∈Nc for
which we have a pair encoding scheme ΓP = (Param,EncC,EncK,Pair), using
dual system groups. The message space for ΠP would be the target group in DSG.
Recall that κ specifies a number N ∈ N and some additional parameters par.

– Setup(1λ, par): First run Param(par) to obtain n, then run SampP(1λ, 1n) to
obtain pp and sp. Recall that given pp, we know the exponent of group H

and can sample uniformly from it. Output

msk ←R H mpk := (pp, μ(msk)).

Set N = exp(H) and κ = (N, par).
– Encrypt(mpk, x,m): On input an x ∈ Xκ and an m ∈ GT , run EncC(x,N)

to obtain a sequence of w1 polynomials (c1, c2, . . . , cw1) and a w2 ∈ N. Draw
w2 + 1 samples from SampG:

(g0,0, . . . , g0,n) ← SampG(pp;σ)

(g1,0, . . . , g1,n) ← SampG(pp), . . . , (gw2,0, . . . , gw2,n) ← SampG(pp),

where σ denotes the coin tosses used in drawing the first sample from SampG.
Recall that the polynomial c� is given by

ζ�s +
∑

i∈[1,w2]

η�,isi +
∑

j∈[1,n]

θ�,jsbj +
∑

i∈[1,w2],j∈[1,n]

ϑ�,i,jsibj ,

272 S. Agrawal and M. Chase

where ζ�, η�,i, θ�,j , ϑ�,i,j ∈ ZN are constants. Output ct := (ct1, . . . ,ctw1 ,
ctw1+1) as the encryption of m under x where

ct� := gζ�

0,0 ·
∏

i∈[1,w2]

g
η�,i

i,0 ·
∏

j∈[1,n]

g
θ�,j

0,j ·
∏

i∈[1,w2],j∈[1,n]

g
ϑ�,i,j

i,j

for � ∈ [1, w1] and ctw1+1 := m · SampGT(μ(msk);σ). Notice that the mono-
mials s, si, sbj , and sibj are mapped to group elements g0,0, gi,0, g0,j , and gi,j ,
respectively.

– KeyGen(mpk,msk, y): On input a y ∈ Yκ, run EncK(y,N) to obtain a sequence
of m1 polynomials (k1, k2, . . . , km1) and an m2 ∈ N. Draw m2 samples from
SampH:

(h1,0, . . . , h1,n) ← SampH(pp), . . . , (hm2,0, . . . , hm2,n) ← SampH(pp).

Output the key as sk := (sk1, sk2, . . . , skm1) where for t ∈ [1,m1]

skt := mskτt ·
∏

i′∈[1,m2]

h
υt,i′
i′,0 ·

∏

i′∈[1,m2],j∈[1,n]

h
φt,i′,j

i′,j .

In this case, the variables α, ri′ , and ri′bj are mapped to msk, hi′,0, and hi′,j ,
respectively.

– Decrypt(mpk, sky,ctx): On input sky := (sk1, sk2, . . . , skm1) and ctx :=
(ct1, . . . ,ctw1+1), run Pair(x, y,N) to obtain an m1 × w1 matrix E. Output

ctw1+1 ·

⎡

⎣
∏

t∈[1,m1],�∈[1,w1]

e(ct�, sk
Et,�

t)

⎤

⎦

−1

.

Correctness (Sketch). We know that if Pκ(x, y) = 1, then
∑

t∈[1,m1],�∈[1,w1]

Et,�ktc� = αs. Consider two polynomials kt and c�. When these polynomials are
multiplied together, no two monomials – one from kt and one from c� – combine
to give the same monomial in the product polynomial ktc�, except when

– s is multiplied with ri′bj and sbj is multiplied with ri′ , or
– si is multiplied with ri′bj and sibj is multiplied with ri′ ,

because of the restriction on the form of E. Now, s is mapped to g0,0, ri′bj is
mapped to hi′,j , sbj is mapped to g0,j and ri′ is mapped to hi′,0. By the associa-
tivity property of dual system groups, we know that e(g0,0, hi′,j) = e(g0,j , hi′,0).
Further, we mapped si to gi,0 and sibj to gi,j , and associativity guarantees that
e(gi,0, hi′,j) = e(gi,j , hi′,0). Therefore, from the observations above, it follows
that ∏

t∈[1,m1],�∈[1,w1]

e(ct�, sk
Et,�

t) = e(g0,0,msk).

Finally, by projective property we know that e(g0,0,msk) = SampGT(μ(msk);σ).

A Study of Pair Encodings: Predicate Encryption in Prime Order Groups 273

Remark 3 (Preserving Size). Observe that the output of Encrypt consists of w1+
1 elements, w1 from G and 1 from GT , where w1 is the number of polynomials
output by EncC. Further, any key has the same number of elements from H as
the number of polynomials output by EncK. Hence, in particular, if w1 (resp.
m1) is a constant then ciphertexts (resp. keys) are also of constant size, in terms
of dual system group elements. Further, if we instantiate dual system groups
in prime-order groups under SXDH or DLIN assumption, then the ciphertexts
(resp. keys) would still be of constant size (see Remark 2.)

6 Proof of Security

In this section, we show that the encryption scheme ΠP constructed for a pred-
icate family P = {Pκ}κ∈Nc in the previous section is secure using the properties
of dual system groups and relaxed perfect security of pair encoding schemes.
More formally, we prove the following theorem.

Theorem 1. For any predicate family P = {Pκ}κ∈Nc , if ΓP = (Param,EncC,
EncK,Pair) is a relaxed perfectly secure pair encoding scheme, then the
encryption scheme ΠP = (Setup,Encrypt, KeyGen,Decrypt) constructed in Sect. 5
(using ΓP) is semi-adaptively secure. Furthermore, if the algorithm Samp does
not depend on input x, then ΠP is fully secure (see Definition 1).

Using Lemma 1, a corollary of the above theorem is that:

Corollary 1. For any predicate family P = {Pκ}κ∈Nc , if ΓP = (Param,EncC,
EncK, Pair,Samp) is a perfectly secure pair encoding scheme, then the encryp-
tion scheme ΠP = (Setup,Encrypt, KeyGen,Decrypt) constructed in Sect. 5
(using ΓP) is fully secure.

Recall that dual system groups can be instantiated in prime-order groups under
the d-LIN assumption. Together with the above corollary, this gives a useful and
interesting result:

Corollary 2. Every perfectly secure pair encoding scheme proposed by
Attrapadung [2] has a fully secure predicate encryption scheme in prime order
groups under the d-LIN assumption.

The rest of this section is devoted to the proof of Theorem 1. We first define
auxiliary algorithms for encryption and key generation.

– Encrypt(pp, x,m; (g′
0,g

′
1, . . . ,g

′
w2

),msk): This algorithm is the same as
Encrypt except that it uses the input g′

i ∈ G
n+1 instead of choosing sam-

ples gi from SampG for i ∈ [0, w2], and sets ctw1+1 := m · e(g′
0,0,msk), where

g′
0,0 if the first element of the vector g′

0.
– KeyGen(pp,msk, y; (h′

1, . . . ,h
′
m2

)): This algorithm is the same as KeyGen
except that it uses h′

i instead of the samples hi from SampH for i ∈ [1,m2].

274 S. Agrawal and M. Chase

Using these algorithms, we define alternate forms for the ciphertext and
master secret key:

– Semi-functional master secret key is defined to be msk := msk · h̃β where
β ←R ZN .

– Semi-functional ciphertext is given by Encrypt(pp, x,m;G · Ĝ,msk)
where g1,g2, . . . ,gw2 ← SampG(pp), ĝ1, ĝ2, . . . , ĝw2 ← SampG(pp, sp),
G := (g1,g2, . . . ,gw2), and Ĝ := (ĝ1, ĝ2, . . . , ĝw2). Observe that
Encrypt(pp, x,m;G,msk) is identically distributed to Encrypt(mpk, x,m) –
the normal ciphertext – by the projective property of dual system groups.

Table 1 defines various forms of keys for ρ ∈ [1,m2] and the inputs that
need to be passed to KeyGen (besides pp and y) in order to generate them.
Intermediate-3 and SF-intermediate-3 keys are also defined for ρ = 0 (SF stands
for semi-functional). In the table, h1, . . . ,hm2 ← SampH(pp), ĥ1, . . . , ĥm2 ←
SampH(pp, sp), and zd := (1, zd,1, . . . , zd,n), where (zd,1, . . . , zd,n) ← Samp(d, x,
y,N) for all d ∈ [1,m2]. For convenience in the following, we define a slightly
modified form of Samp, called Samp, which just prepends 1 to the output of
Samp. Note that 0-Intermediate-3 is distributed identically to a normal key and
0-SF-intermediate-3 is distributed identically to a SF noisy key. Since we have
many forms of keys, (where appropriate) we use a box to highlight the part of a
key which is different from the previous key.

Table 1. Various types of keys

Type of key Inputs to KeyGen (besides pp and y)

Normal msk; (h1, . . . ,hm2)

ρ-Intermediate-1 msk; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ · ĥρ,hρ+1, . . . ,hm2)

ρ-Intermediate-2 msk; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 , hρ · ĥρ · h̃zρ ,hρ+1, . . . ,hm2)

ρ-Intermediate-3 msk; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 , hρ · h̃zρ ,hρ+1, . . . ,hm2)

Pseudo-normal noisy msk; (h1 · ĥ1 · h̃z1 , . . . ,hm2 · ĥm2 · h̃zm2)

Pseudo-SF noisy msk ; (h1 · ĥ1 · h̃z1 , . . . ,hm2 · ĥm2 · h̃zm2)

SF noisy msk; (h1 · h̃z1 , . . . ,hm2 · h̃zm2)

ρ-SF-intermediate-1 msk; (h1, . . . ,hρ−1,hρ · ĥρ · h̃zρ ,hρ+1 · h̃zρ+1 , . . . ,hm2 · h̃zm2)

ρ-SF-intermediate-2 msk; (h1, . . . ,hρ−1, hρ · ĥρ ,hρ+1 · h̃zρ+1 , . . . ,hm2 · h̃zm2)

ρ-SF-intermediate-3 msk; (h1, . . . ,hρ−1, hρ ,hρ+1 · h̃zρ+1 , . . . ,hm2 · h̃zm2)

SF msk; (h1, . . . ,hm2)

Proof Structure: The novelty in our proof is that instead of working at the
level of a key, we work at the level of samples that form the key. Let ξ denote
the number of queries made by the adversary, and let yϕ denote the ϕth query
for ϕ ∈ [1, ξ]. Further, let m2,ϕ be the second output of EncK(yϕ, N). We define
the following hybrids for ϕ ∈ [1, ξ] and ρ ∈ [1,m2,ϕ] (fix any b ∈ {0, 1}).

A Study of Pair Encodings: Predicate Encryption in Prime Order Groups 275

– Hyb0: This is the real security game Expt
(b)
A,ΠP

(λ, par) described in Sect. 2.1.
– Hyb1: This game is same as the above except that the ciphertext is semi-

functional.
– Hyb2,ϕ,i,ρ for i ∈ {1, 2, 3}: This game is same as the above except that the

first ϕ − 1 keys are semi-functional, ϕth key is of the form ρ-intermediate-i,
and rest of the keys are normal.

– Hyb2,ϕ,4: This game is same as the above except that the ϕth key is Pseudo-
normal noisy.

– Hyb2,ϕ,5: This game is same as the above except that the ϕth key is Pseudo-SF
noisy.

– Hyb2,ϕ,6: This game is same as the above except that the ϕth key is SF noisy.
– Hyb2,ϕ,i,ρ for i ∈ {7, 8, 9}: This game is same as the above except that the ϕth

key is of the form ρ-SF-intermediate-(i − 6).
– Hyb3: This game is same as Hyb2,ξ,9,m2,ξ

except that the ciphertext is a semi-
functional encryption of a random message in GT .

Table 2. An outline of the proof structure.

Indistinguishability Properties needed

Hyb0 ≈ Hyb1 left subgroup indistinguishability

Hyb2,ϕ,3,ρ−1 ≈ Hyb2,ϕ,1,ρ right subgroup indistinguishability

Hyb2,ϕ,1,ρ
∼= Hyb2,ϕ,2,ρ non-degeneracy, parameter-hiding, relaxed perfect

security (2)

Hyb2,ϕ,2,ρ ≈ Hyb2,ϕ,3,ρ right subgroup indistinguishability

Hyb2,ϕ,3,m2,ϕ
≈ Hyb2,ϕ,4 right subgroup indistinguishability

Hyb2,ϕ,4
∼= Hyb2,ϕ,5 non-degeneracy, parameter-hiding, relaxed perfect

security (3)

Hyb2,ϕ,5 ≈ Hyb2,ϕ,6 right subgroup indistinguishability

Hyb2,ϕ,9,ρ−1 ≈ Hyb2,ϕ,7,ρ right subgroup indistinguishability

Hyb2,ϕ,7,ρ
∼= Hyb2,ϕ,8,ρ non-degeneracy, parameter-hiding, relaxed perfect

security (2)

Hyb2,ϕ,8,ρ ≈ Hyb2,ϕ,9,ρ right subgroup indistinguishability

Hyb2,ξ,9,m2,ξ
∼= Hyb3 projective, orthogonality, non-degeneracy

Our goal is to show that Hyb0 and Hyb3 are computationally indistinguishable
from each other, for both values of the bit b used by Chl in the security game
Expt

(b)
A,ΠP

(λ, par). Since Chl encrypts a random message in Hyb3, there would be
no way for a PPT adversary to tell whether m0 or m1 was encrypted. This would
imply that ΠP is a secure encryption scheme.

Our proof proceeds as follows. We first show that Hyb0 and Hyb1 are com-
putationally indistinguishable due to the left subgroup indistinguishability (LSI)
property of dual system groups; this takes the ciphertext from normal to semi-
functional space (the form of the ciphertext doesn’t change after this step).

276 S. Agrawal and M. Chase

After that, we take the keys one by one from normal to semi-functional space
by going through a series of hybrids. We show that Hyb2,1,3,0 (or, equivalently,
Hyb1) is computationally indistinguishable from Hyb2,1,9,m2,1

by following the
steps shown in Table 2 for ϕ = 1; this makes the first key semi-functional while
keeping the rest of the keys unchanged. Then, we show that Hyb2,2,3,0 (or, equiv-
alently, Hyb2,1,9,m2,1

) is computationally indistinguishable from Hyb2,2,9,m2,2
by

once again following the steps shown in Table 2, but now for ϕ = 2; as a result,
the second key also moves into the semi-functional space. We continue in the
same fashion till all the keys are in the semi-functional space, i.e., we are in the
hybrid Hyb2,ξ,9,m2,ξ

. The last step of the proof is to show that Hyb2,ξ,9,m2,ξ
and

Hyb3 are statistically close to each other.
We formally prove the indistinguishability of hybrids that require relaxed

perfect security, our new information-theoretic notion of security, in Lemmas 2
and 3 below, but defer the other proofs to the full version because they follow
directly from the properties of dual system groups in a manner similar to Chen
and Wee’s security proof for HIBE [14].

Remark 4 (Full vs. Semi-adaptive Security.). In transitioning from Hyb2,ϕ,1,ρ to
Hyb2,ϕ,2,ρ in Lemma 2, we add randomness using the algorithm Samp to the
ρ-th sample of the ϕ-th key. Observe that if Samp depends on input x, then this
transition can only take place if x is known before any key queries are issued.
Therefore, in this case, we can prove semi-adaptive security. On the other hand, if
Samp does not depend on x, then we get full security (and as shown in Lemma 1,
this is the case for all of the perfectly secure pair encoding schemes of [2]).

Remark 5 (Perfectly Secure Encodings). Recall from the proof of Lemma 1 that
for any perfectly secure pair encoding scheme, we can define a dummy sampling
algorithm that always outputs a vector of 0s. When this is the case, the security
proof can be considerably simplified: we could directly go from Hyb1 to Hyb2,ϕ,4

and also from Hyb2,ϕ,5 to Hyb2,ϕ,9,m2,ϕ
using right subgroup indistinguishability.

Remark 6 (Cost of Our Reduction). There are many complex predicates for
which we do not know any perfectly secure pair encoding schemes. But if one can
design a scheme that is relaxed perfectly secure, then we show that an encryp-
tion scheme can be derived from it, which is secure under standard assumptions.
The reduction cost of our security proof, however, is higher than usual: if an
adversary makes ξ queries and m2 is the maximum number of samples used in
any key, then the cost is O(ξ · m2). For instance, this cost only depends on the
number of pre-challenge queries in the case of Attrapadung’s computationally
secure encodings (Theorem 1 in [2]). Note, however, that computational security
of the encoding itself is proved under q-type assumptions.

Lemma 2. For every ϕ ∈ [1, ξ] and ρ ∈ [1,m2,ϕ], Hyb2,ϕ,1,ρ
∼= Hyb2,ϕ,2,ρ.

Proof. Given pp,msk and h̃, one can generate mpk and every key except the ϕth
(because in order to generate this key and the ciphertext, we need to be able to
sample from SampH and SampG, for which secret parameters sp are required).

A Study of Pair Encodings: Predicate Encryption in Prime Order Groups 277

Hence, it suffices to show that the following two distributions are statistically
close (for clarity, we omit ϕ in the following):

{pp,msk, h̃,Encrypt(pp, x,m;G · Ĝ,msk),

KeyGen(pp,msk, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ · ĥρ,hρ+1, . . . ,hm2))},

{pp,msk, h̃,Encrypt(pp, x,m;G · Ĝ,msk),

KeyGen(pp,msk, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ · ĥρ · h̃zρ ,hρ+1, . . . ,hm2))}.

But observe that:

Encrypt(pp, x, m;G · Ĝ,msk) = Encrypt(pp, x, m;G,msk) · Encrypt(pp, x, 1; Ĝ,msk),

KeyGen(pp,msk, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ · ĥρ,hρ+1, . . . ,hm2))

= KeyGen(pp,msk, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ,hρ+1, . . . ,hm2))·
KeyGen(pp, 1, y; (1, . . . , 1, ĥρ, 1, . . . , 1)),

KeyGen(pp,msk, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ · ĥρ · h̃zρ ,hρ+1, . . . ,hm2))

= KeyGen(pp,msk, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ,hρ+1, . . . ,hm2))·
KeyGen(pp, 1, y; (1, . . . , 1, ĥρ · h̃zρ , 1, . . . , 1)),

because of the way Encrypt and KeyGen are defined and bilinearity of e (see the
construction in Sect. 5). The first component on the right hand side of each of
the above equations can be generated given pp,msk and h̃. Hence, we only need
to focus on the second components, i.e., it is enough to show that the following
two distributions are statistically close:

{pp,msk, h̃,Encrypt(pp, x, 1; Ĝ,msk),KeyGen(pp, 1, y; (1, . . . , 1, ĥρ, 1, . . . , 1))},
(8)

{pp,msk, h̃,Encrypt(pp, x, 1; Ĝ,msk),KeyGen(pp, 1, y; (1, . . . , 1, ĥρ · h̃zρ , 1, . . . , 1))}.
(9)

Let us focus on the first distribution between the two above. By the
parameter-hiding property of dual system groups we know that {pp, h̃, Ĝ, ĥρ}
and {pp, h̃, Ĝ · Ĝ′, ĥρ · ĥ′

ρ} are identically distributed. Hence (8) is identically
distributed to

{pp,msk, h̃,Encrypt(pp, x, 1; Ĝ · Ĝ′,msk),KeyGen(pp, 1, y; (1, . . . , 1, ĥρ · ĥ′
ρ, 1, . . . , 1))}.

(10)
Let ĉt := (ĉt1, . . . , ĉtw1+1) and ŝk := (ŝk1, . . . , ŝkm1) denote the output of

Encrypt and KeyGen respectively. We know that for � ∈ [1, w1],

ĉt� = ĝ
ζ�
0,0 ·

∏
i∈[1,w2]

ĝ
η�,i

i,0 ·
∏

j∈[1,n]

(ĝ0,j ·ĝγj

0,0)
θ�,j ·

∏
i∈[1,w2],j∈[1,n]

(ĝi,j ·ĝγj

i,0)
ϑ�,i,j ,

278 S. Agrawal and M. Chase

where (ĝi,0, . . . , ĝi,n) ← SampG(pp, sp) for i ∈ [0, w2] and γ1, . . . , γn ←R ZN .
Also, ĉtw1+1 = e(ĝ0,0,msk). Using the non-degeneracy property of dual system
groups, we can write ĝ0,0 and ĝi,0 as g̃δ and g̃δi respectively, for i ∈ [1, w2],
where δ, δ1, . . . , δw2 ←R ZN . Then we consider ĝ0,j (and ĝi,j) for j = 1, . . . , n
to be values sampled from SampG conditioned on the value of ĝ0,0 (resp. ĝi,0).
(These values may not be efficiently sampleable.) Therefore, we have

ĉt� = g̃ζ�δ+
∑

i∈[1,w2] η�,iδi+
∑

j∈[1,n] θ�,jδγj+
∑

i∈[1,w2],j∈[1,n] ϑ�,i,jδiγj · (11)
∏

j∈[1,n]

ĝ
θ�,j

0,j ·
∏

i∈[1,w2],j∈[1,n]

ĝ
ϑ�,i,j

i,j

Shifting our focus to the key, we know that its tth component is given by

ŝkt = ĥ
υt,ρ

ρ,0 ·
∏

j∈[1,n]

(ĥρ,j · ĥ
γj

ρ,0)
φt,ρ,j ,

for t ∈ [1,m1], where (ĥρ,0, . . . , ĥρ,n) ← SampH(pp, sp). Using non-degeneracy
once again, we can write ĥρ,0 as h̃ω for an ω ←R ZN , and consider ĥρ,j for
j = 1, . . . , n to be sampled from SampH conditioned on the value of ĥρ,0. Hence,

ŝkt = h̃υt,ρω+
∑

j∈[1,n] φt,ρ,jωγj ·
∏

j∈[1,n]

ĥ
φt,ρ,j

ρ,j . (12)

Now, observe the superscripts of g̃ and h̃ in (11) and (12) respectively (over
� ∈ [1, w1] and t ∈ [1,m1]). We know that δ, δ1, . . . , δw2 , γ1, . . . , γn and ω are
randomly chosen from ZN . Hence, we can use the first property (2) of relaxed
perfect security to add noise to the ρ-th sample used in the key. But the problem
is that in any sample drawn from SampG and SampH, elements of the sample
may depend on each other. In particular ĝ0,j may reveal some information about
δ, and similarly for ĝi,j and for ĥρ,j , so we must ensure that (2) applies even
given this information. Recall the discussion on structural restrictions after the
definition of pair encoding schemes. We know that if ϑ�,i,j �= 0 for any � ∈ [1, w1]
and j ∈ [1, n] (otherwise, we don’t need to worry about ĝi,j), then δi is an explicit
part of the encoding output by EncC. Similarly, if φt,ρ,j �= 0 for any t ∈ [1,m1]
and j ∈ [1, n], then ω is an explicit part of the encoding output by EncK. Further,
δ is always explicit. Therefore, given a sample from either of the distributions in
(2), one can compute the first element of the samples from SampG and SampH,
and then draw rest of the elements conditioned on the first ones.

In a nutshell, we can apply (2) to conclude that the distribution

{pp,msk, h̃, (ĉt1, . . . , ĉtw1+1), (ŝk1, . . . , ŝkm1)}

is statistically close to

{pp,msk, h̃, (ĉt1, . . . , ĉtw1+1), (s̃k1, . . . , s̃km1)},

A Study of Pair Encodings: Predicate Encryption in Prime Order Groups 279

where

s̃kt := h̃υt,ρω+
∑

j∈[1,n] φt,ρ,jω(γj+zj) ·
∏

j∈[1,n]

ĥ
φt,ρ,j

ρ,j

= h̃υt,ρω+
∑

j∈[1,n] φt,ρ,jωγj ·
∏

j∈[1,n]

(ĥρ,j · h̃ωzj)φt,ρ,j ,

for t ∈ [1,m1], and zρ = (z1, . . . , zn) ← Samp(ρ, x, y,N). We use the fact that δ
is always explicit to generate the w1 + 1th component of the ciphertext.

Observe that the only difference between ŝkt and s̃kt is that an extra h̃ωzj

is multiplied with ĥρ,j in the latter case. Hence, the key (s̃k1, . . . , s̃km1) can be
generated by giving ĥρ · ĥ′

ρ · h̃zρ as the ρ-th sample to KeyGen (zρ has the same
distribution as ω · zρ since ω ∈ Z

∗
N with high probability). Therefore, (10) is

statistically close to

{pp,msk, h̃,Encrypt(pp, x, 1; Ĝ · Ĝ′,msk),KeyGen(pp, 1, y; (1, . . . ,1, ĥρ · ĥ′
ρ · h̃zρ ,

1, . . . , 1)).

Using parameter-hiding once again, we can show that the above distribution is
identical to

{pp,msk, h̃,Encrypt(pp, x, 1; Ĝ,msk),KeyGen(pp, 1, y; (1, . . . , 1, ĥρ · h̃zρ , 1, . . . , 1)),

which completes the proof. �

The above proof can be easily adapted to show that Hyb2,ϕ,7,ρ
∼= Hyb2,ϕ,8,ρ.

In this case, we want that the two distributions

{pp,msk, h̃,Encrypt(pp, x,m;G · Ĝ,msk),

KeyGen(pp,msk, y; (h1, . . . ,hρ−1,hρ · ĥρ · h̃zρ ,hρ+1 · h̃zρ+1 , . . . ,hm2 · h̃zm2))},

{pp,msk, h̃,Encrypt(pp, x,m;G · Ĝ,msk),

KeyGen(pp,msk, y; (h1, . . . ,hρ−1,hρ · ĥρ,hρ+1 · h̃zρ+1 , . . . ,hm2 · h̃zm2))}.

are indistinguishable from each other. Observe that the only difference now is
that we have msk instead of msk, and noise is present in the samples ρ+1, . . . , n
instead of 1, . . . , ρ − 1. So, we can split Encrypt and KeyGen in a way similar to
the above proof, and once again it suffices to show that exactly the distributions
in (8) and (9) are indistinguishable.

Lemma 3. For every ϕ ∈ [1, ξ], Hyb2,ϕ,4
∼= Hyb2,ϕ,5.

Proof. This proof proceeds in a manner similar to the proof of Lemma2. To
begin with, we observe as before that given pp,msk and h̃, one can generate

280 S. Agrawal and M. Chase

mpk and every key except the ϕth (for clarity, we omit ϕ below). Hence, it
suffices to show that the distribution

{pp,msk, h̃,Encrypt(pp, x,m;G · Ĝ,msk),KeyGen(pp,msk, y; (h1 · ĥ1 · h̃z1 , . . . ,

hm2 · ĥm2 · h̃zm2))},

is statistically close to a distribution where msk is replaced by msk, the semi-
functional master secret key. Further,

Encrypt(pp, x, m;G · Ĝ,msk) = Encrypt(pp, x, m;G,msk) · Encrypt(pp, x, 1; Ĝ,msk),

KeyGen(pp,msk, y; (h1 · ĥ1 · h̃z1 , . . . ,hm2 · ĥm2 · h̃zm2))

=KeyGen(pp,msk, y; (h1, . . . ,hm2)) · KeyGen(pp, 1, y; (ĥ1 · h̃z1 , . . . , ĥm2 · h̃zm2)),

KeyGen(pp,msk, y; (h1 · ĥ1 · h̃z1 , . . . ,hm2 · ĥm2 · h̃zm2))

=KeyGen(pp,msk, y; (h1, . . . ,hm2)) · KeyGen(pp, h̃β , y; (ĥ1 · h̃z1 , . . . , ĥm2 · h̃zm2)),

where β ←R ZN . The first component on the right hand side of each of the
above equations can be generated given pp,msk and h̃. Hence, it is enough to
show that the following two distributions are statistically close:

{pp,msk, h̃,Encrypt(pp, x, 1; Ĝ,msk),KeyGen(pp, 1, y; (ĥ1·h̃z1 , . . . , ĥm2 ·h̃zm2))},
(13)

{pp,msk, h̃,Encrypt(pp, x, 1; Ĝ,msk),KeyGen(pp, h̃β , y; (ĥ1 · h̃z1 , . . . , ĥm2 · h̃zm2))}.
(14)

Let us focus on the first distribution between the two above. By the
parameter-hiding property of dual system groups, it is identically distributed to

{pp,msk, h̃,Encrypt(pp, x, 1; Ĝ · Ĝ′,msk),KeyGen(pp, 1, y; (ĥ1 · ĥ′
1 · h̃z1 , . . . ,

(15)

ĥm2 · ĥ′
m2

· h̃zm2))}.

Let ĉt := (ĉt1, . . . , ĉtw1+1) and ŝk := (ŝk1, . . . , ŝkm1) denote the output of
Encrypt and KeyGen respectively. We know that for � ∈ [1, w1],

ĉt� = ĝ
ζ�
0,0 ·

∏
i∈[1,w2]

ĝ
η�,i

i,0 ·
∏

j∈[1,n]

(ĝ0,j ·ĝγj

0,0)
θ�,j ·

∏
i∈[1,w2],j∈[1,n]

(ĝi,j ·ĝγj

i,0)
ϑ�,i,j ,

where (ĝi,0, . . . , ĝi,n) ← SampG(pp, sp) for i ∈ [0, w2] and γ1, . . . , γn ←R ZN .
Using non-degeneracy property of dual system groups, we can write ĝ0,0 and ĝi,0

as g̃δ and g̃δi respectively, for i ∈ [1, w2], where δ, δ1, . . . , δw2 ←R ZN . Therefore,
we have

ĉt� = g̃ζ�δ+
∑

i∈[1,w2] η�,iδi+
∑

j∈[1,n] θ�,jδγj+
∑

i∈[1,w2],j∈[1,n] ϑ�,i,jδiγj · (16)
∏

j∈[1,n]

ĝ
θ�,j

0,j ·
∏

i∈[1,w2],j∈[1,n]

ĝ
ϑ�,i,j

i,j

A Study of Pair Encodings: Predicate Encryption in Prime Order Groups 281

Shifting our focus to the key, we know that its tth component is given by

ŝkt =
∏

i′∈[1,m2]

ĥ
υt,i′
i′,0 ·

∏

i′∈[1,m2],j∈[1,n]

(ĥi′,j · ĥ
γj

i′,0 · h̃zi′,j)φt,i′,j ,

for t ∈ [1,m1], where (ĥi′,0, . . . , ĥi′,n) ← SampH(pp, sp) and (zi′,1, . . . , zi′,n) ←
Samp(i′, x, y,N) for i′ ∈ [1,m2]. Using non-degeneracy once again, we can write
ĥi′,0 as h̃ωi′ for an ωi′ ←R ZN . Hence,

ŝkt = h̃
∑

i′∈[1,m2][υt,i′ ωi′+
∑

j∈[1,n](φt,i′,jωi′ γj+φt,i′,jzi′,j)] ·
∏

i′∈[1,m2],j∈[1,n]

ĥ
φt,i′,j

i′,j

= h̃
∑

i′∈[1,m2][υt,i′ ωi′+
∑

j∈[1,n](φt,i′,jωi′ (γj+zi′,j))] ·
∏

i′∈[1,m2],j∈[1,n]

ĥ
φt,i′,j

i′,j ,

(17)

since the distribution of (zi′,1, . . . , zi′,n) is statistically close to (ωi′zi′,1, . . . ,
ωi′zi′,n) (with high probability ωi′ ∈ Z

∗
N) for all i′ ∈ [1,m2].

Now, observe the superscripts of g̃ and h̃ in (16) and (17) respectively
(over � ∈ [1, w1] and t ∈ [1,m1]). We know that δ, δ1, . . . , δw2 , γ1, . . . , γn and
ω1, . . . , ωm2 are randomly chosen from ZN . Hence, we can use the second prop-
erty (3) of relaxed perfect security to add noise to the master secret key. (The
dependencies between the elements of the samples drawn from SampG and
SampH can be handled as in the previous proof.) Therefore, we have that the
distribution

{pp,msk, h̃, (ĉt1, . . . , ĉtw1+1), (ŝk1, . . . , ŝkm1)}

is statistically close to

{pp,msk, h̃, (ĉt1, . . . , ĉtw1+1), (s̃k1, . . . , s̃km1)},

where

s̃kt := h̃
τtβ+

∑

i′∈[1,m2]

[

υt,i′ ωi′+
∑

j∈[1,n]

(

φt,i′,jωi′ (γj+zi′,j)
)]

·
∏

i′∈[1,m2],j∈[1,n]

ĥ
φt,i′,j

i′,j ,

for t ∈ [1,m1], and β ←R ZN . Observe that the only difference between ŝkt

and s̃kt is that an extra τtβ is begin added to the exponent of h̃ in the latter
case. Hence, the key (s̃k1, . . . , s̃km1) can be generated by providing h̃β as master
secret key to KeyGen. Therefore, (15) is statistically close to

{pp,msk, h̃,Encrypt(pp, x, 1; Ĝ · Ĝ′,msk),KeyGen(pp,h̃β , y; (ĥ1 · ĥ′
1 · h̃z1 , . . . ,

ĥm2 · ĥ′
m2

· h̃zm2))}.

Using parameter-hiding once again, we can show that the above distribution is
identical to

{pp,msk, h̃,Encrypt(pp, x, 1; Ĝ,msk),KeyGen(pp, h̃β , y; (ĥ1 · h̃z1 , . . . , ĥm2 · h̃zm2))},

which completes the proof. �

282 S. Agrawal and M. Chase

7 Ciphertext-Policy ABE

In this section, we design a relaxed perfectly secure pair encoding scheme for
Ciphertext-Policy Attribute Based Encryption (CP-ABE). The access policy is
represented by a linear secret sharing (LSS) scheme (A, π), where A is a matrix
of size n1 × n2 with entries in ZN and π is a mapping from [1, n1] to a universe
of attributes U . Let ai denote the ith row of A for i ∈ [1, n1]. Let S ⊆ U be a
set of attributes and Υ = {i | i ∈ [1, n1], π(i) ∈ S} be the indices of rows in A
associated with S.

We say that the LSS scheme (A, π) accepts S if e = (1, 0, . . . , 0) lies in the
span of rows associated with S (otherwise the scheme rejects S). In other words,
if S is acceptable, there exists constants {εi}i∈Υ such that

∑
i∈Υ εiai = e. (This

set of constants can be easily computed given S.) An interesting property of LSS
schemes that will be useful to us later in the proofs is that if (A, π) rejects S,
then there must exist a vector w = (w1, . . . , wn2) such that 〈w,ai〉 = 0 for all
i ∈ Υ but 〈w, e〉 = 1. This, in particular, implies that w1 = 1. (See [7], Claim 2,
for a proof of this and other properties below about secret sharing schemes.)

In order to share a secret s ∈ ZN , one picks v2, v3, . . . , vn1 ←R ZN , and
outputs 〈ai,v〉 as the ith share for i ∈ [1, n1], where v = (s, v2, v3, . . . , vn1). This
way of sharing a secret leads to two useful properties:

– Correctness: For every S accepted by (A, π), every secret s ∈ ZN and any
v2, v3, . . . , vn1 ∈ ZN ,

∑
i∈Υ εi〈ai,v〉 = 〈v,

∑
i∈Υ εiai〉 = s.

– Privacy: For every S rejected by (A, π), the distribution of {〈ai,v〉}i∈Υ is
independent of the secret s being shared.

The predicate family for CP-ABE is indexed by κ = (N,n1, n2,U , T). Xκ is
the set of all LSS schemes where the matrix is of size n1 ×n2 with entries in ZN

and the mapping is from [1, n1] to U . Yκ is given by the set {S | S ⊆ U , |S| ≤ T}.
For all x ∈ Xκ and y ∈ Yκ, Pκ(x, y) = 1 if and only if x accepts y. It is clear from
our definition of predicate family that there is a bound on the size of matrices
and the number of attributes associated with a key. But there are no other
restrictions: the size of attribute universe U could be arbitrary and π need not
be injective. Without loss of generality, we assume U to be ZN .

We are now ready to design a relaxed perfectly secure pair encoding scheme
Φcp-abe = (Param, EncC,EncK,Pair) for the CP-ABE predicate family.

7.1 Pair Encoding Scheme

– Param(par) → n1(n2 + T + 1). Let b = ({bi,j}i∈[1,n1],j∈[1,n2],
{b′

i,t}i∈[1,n1],t∈[0,T]).
– EncC((A, π), N) → c(s,b) := (c1, c2) where

c1 = s c2 = s

⎛

⎜
⎜
⎝

∑

i∈[1,n1]
j∈[1,n2]

ai,jbi,j +
∑

i∈[1,n1]
t∈[0,T]

π(i)tb′
i,t

⎞

⎟
⎟
⎠,

A Study of Pair Encodings: Predicate Encryption in Prime Order Groups 283

and s = (s), and ai,j denotes the entry in the ith row and jth column of A.
– EncK(S,N) → k(α, r,b) := ({k1,i, k2,i,j k3,i,�,j , k4,i,y k5,i,�,t}

i,�∈[1,n1],i �=�,j∈[1,n2],y∈S,t∈[0,T]) where

k1,i = ri k2,i,j = ribi,j − vj k3,i,�,j = rib�,j

k4,i,y = ri

∑

t∈[0,T]

ytb′
i,t k5,i,�,t = rib

′
�,t

and r = (r1, r2, . . . , rn1 , v2, . . . , vn2) and v1 = α.

We informally discuss how to recover αs by combining the polynomials gen-
erated by EncC and EncK, with an intent to provide some intuition about
the scheme, and defer a formal proof to the full version. We can think of
v2, v3, . . . , vn1 as the randomness picked in order to share v1 = α according
to the scheme (A, π). Hence, if we find 〈ai,v〉 for all i ∈ Υ , we can recover α
(ignore s for now). One could start out by multiplying ai,j by k2,i,j and summing
over j, for an i ∈ Υ . This does give

∑
j ai,jvj but also produces an extra term

ri

∑
j ai,jbi,j (ignore ri for now). We could try to get rid of this term by using

c2 but the product ai,jbi,j there is also summed over i (since we want EncC to
produce a constant number of polynomials, we are forced to pack as much into
one polynomial as possible). Fortunately, we have the polynomials k3,i,�,j for
� �= i. We can multiply these by a�,j and remove the unwanted ai,jbi,j terms.
But we are not done yet: we must also remove the term

∑
i,t π(i)tb′

i,t left in the
mix because we used c2. If π(i) ∈ S, then this is easy: use k4,i,π(i) to remove∑

t π(i)tb′
i,t, and k5,i,�,t · π(�)t to remove the rest. However, if π(i) /∈ S, there is

no way to do this.

7.2 Relaxed Perfect Security

We now prove that the pair encoding scheme Φcp-abe designed above is relaxed
perfectly secure (Definition 3). Towards this, we first define a sampling algorithm
Samp as follows. On input an i ∈ [1, n1], (A, π) ∈ Xκ, S ∈ Yκ and N , Samp checks
whether π(i) /∈ S. If yes, it picks elements b̂i,1, b̂i,2, . . . , b̂i,n2 independently and
uniformly from ZN ; otherwise it picks them uniformly but with the constraint
that

∑
j∈[1,n2]

ai,j b̂i,j = 0. Samp outputs

b̂i := (0, . . . , . . . , . . . , 0
︸ ︷︷ ︸

(i−1)n2

, b̂i,1, b̂i,2, . . . , b̂i,n2 , 0, . . . , . . . , . . . , . . . , 0
︸ ︷︷ ︸

(n1−i)n2+n1(T+1)

). (18)

Observe that the output of Samp depends on (A, π), the input to EncC. Hence,
this sampling algorithm would lead to a semi-adaptively secure scheme.

We consider only those N ∈ N which are a product of distinct primes of
Θ(λ) bits. This is sufficient for our purposes because the Setup algorithm of the
generic construction in Sect. 5 defines N of exactly this form. We first show that
for all i ∈ [1, n1] and N ∈ N,

(
c(s,b),ki(0, ri,b)

)
≡

(
c(s,b),ki(0, ri,b + b̂i)

)
, (19)

284 S. Agrawal and M. Chase

where s ←R Z
1
N , b ←R Z

n
N , ri ←R ZN , b̂i ← Samp(i, (A, π), S,N). Recall

that ki denotes the polynomials in k obtained by setting all the variables in
r = (r1, r2, . . . , rn1 , v2, . . . , vn2) except the ith to 0. For i ∈ [n1 + 1, n1 + n2 −
1], the only polynomial in ki is −vi−n1+1, or, more importantly, there is no
monomial with any b. Hence, the equation above trivially holds for i in this
range irrespective of what Samp outputs. (That is why we don’t care about
defining Samp’s behavior on such inputs.)

Let us refer to the left and right distributions in Eq. (19) as ΔL and ΔR

respectively. Fix an arbitrary i∗ ∈ [1, n1]. By the definition of ki∗ , we know
that in these two distributions only those components of the key survive which
have subscript i∗. Further, in the components k2,i∗,1, . . . , k2,i∗,n2 , the variables
v1, . . . , vn2 are all set to 0. Now, focus on the distribution ΔR. It is clear
from Eq. (18) that the added randomness b̂i∗ affects only k2,i∗,1, . . . , k2,i∗,n2

components. For i ∈ [1, n1] and j ∈ [1, n2], let δi,j := bi,j if i �= i∗ and
δi∗,j := bi∗,j +b̂i∗,j . Since bi,j are uniformly and independently distributed, so are
δi,j . The second component of ciphertext encoding, c2, can now be rewritten as

s

⎛

⎜
⎜
⎝

∑

i∈[1,n1]
j∈[1,n2]

ai,jδi,j −
∑

j∈[1,n2]

ai∗,j b̂i∗,j +
∑

t∈[0,T]

π(i∗)tb′
i∗,t +

∑

i∈[1,n1],i �=i∗

t∈[0,T]

π(i)tb′
i,t

⎞

⎟
⎟
⎠.

Observe that the only difference between ΔL and ΔR is that in the latter case
there is an additional term rand :=

∑
j∈[1,n2]

ai∗,j b̂i∗,j in c2. If π(i∗) ∈ S, then
this term is 0 by our choice of Samp. On the other hand when π(i∗) /∈ S, we show
that

∑
t∈[0,T] π(i∗)tb′

i∗,t is an independent uniform random variable over ZN , and
therefore, the additional term rand does not matter. Towards this, consider the
polynomial f(x) = b′

i∗,T ·xT +b′
i∗,T−1 ·xT−1 + . . .+b′

i∗,0. Since b′
i∗,T , . . . , b′

i∗,0 are
chosen at random, any T + 1 distinct points on f(x) are uniformly distributed
over Z

T+1
N . The only components of the key which depend on b′

i∗,T , . . . , b′
i∗,0

are {k4,i∗,y}y∈S , which could also be rewritten as {ri∗f(y)}y∈S . There could be
at most T such components because |S| ≤ T . Therefore,

∑
t∈[0,T] π(i∗)tb′

i∗,t =
f(π(i∗)) is independently and uniformly distributed.

The second and last step in proving relaxed perfect security is to show that
when (A, π) does not accept S, Eq. (3) holds, i.e., for large enough values of N ,
the statistical distance between the distributions,
⎛
⎝c(s,b),

∑
i∈[1,n1+n2−1]

ki(0, ri,b + b̂i)

⎞
⎠ and

⎛
⎝c(s,b),

∑
i∈[1,n1+n2−1]

ki(α, ri,b + b̂i)

⎞
⎠ ,

(20)
is negligible, where s ←R Z

1
N , b ←R Z

n
N , r ←R Z

n1+n2−1
N , α ←R ZN , and

b̂i ← Samp(i, (A, π), S,N) for i ∈ [1, n1 + n2 − 1]. Let us denote the left and
right distributions in Eq. (20) above by ΓL and ΓR respectively. The second
component of the key in these two distributions is given by

k2,i,j = ribi,j + rib̂i,j − vj

A Study of Pair Encodings: Predicate Encryption in Prime Order Groups 285

for i ∈ [1, n1] and j ∈ [1, n2]. The only difference between the distributions is in
the components k2,1,1, . . . , k2,n1,1. In the case of ΓL, v1 = (n1 + n2 − 1)α = 0,
while in the case of ΓR, it is chosen independently and uniformly from ZN .

Let us focus on the distribution ΓL. Recall that there exists a vector w =
(w1, . . . , wn2) orthogonal to all the rows associated with S such that w1 = 1. We
claim that if we replace the variables b̂i,j by b̂i,j −r−1

i wjα, where α ←R ZN , then
ΓL is not affected. (With high probability ri ∈ Z

∗
N , so r−1

i exists.) If π(i) /∈ S, we
know that b̂i,1, b̂i,2, . . . , b̂i,n2 are independently and uniformly distributed. Hence
adding −r−1

i wjα has no effect on their joint distribution. On the other hand
when π(i) ∈ S, b̂i,1, b̂i,2, . . . , b̂i,n2 are uniformly chosen with the constraint that∑

j∈[1,n2]
ai,j b̂i,j = 0. Now, when −r−1

i wjα is added,

∑

j∈[1,n2]

ai,j(b̂i,j−r−1
i wjα) =

∑

j∈[1,n2]

ai,j b̂i,j − r−1
i α

∑

j∈[1,n2]

ai,jwj = 0

because w is orthogonal to every ai such that π(i) ∈ S. Hence, the variables
b̂i,1, b̂i,2, . . . , b̂i,n2 still satisfy the constraint they did before.

After replacing b̂i,j by b̂i,j − r−1
i wjα, we have that k2,i,j = ribi,j + rib̂i,j −

wjα − vj (where v1 = 0). The final step in the proof is to replace the variables
w1α,w2α+ v2, . . . , wn2α+ vn2 by α, v2, . . . , vn2 . This does not affect ΓL because
v2, . . . , vn2 are picked independently and uniformly from ZN (and w1 = 1). But
now ΓL is exactly the distribution ΓR.

7.3 Instantiation: Constant-Size Ciphertext

We briefly comment about instantiating the pair encoding scheme Φcp-abe =
(Param,EncC,EncK,Pair). Using the generic method in Sect. 5, one can construct
a predicate encryption scheme Πcp-abe = (Setup, Encrypt,KeyGen,Decrypt) for
CP-ABE using Φcp-abe. According to Theorem 1, Πcp-abe is semi-adaptively secure
because the Samp algorithm we defined in the previous sub-section depends
on the access structure. However, since EncC outputs only two polynomials,
Encrypt outputs only two elements from G (and one element from GT). Now,
from Remark 2, it follows that one can design a concrete scheme for CP-ABE in
prime-order groups where the ciphertext contains only 4 group elements under
the SXDH assumption, and only 6 elements under the DLIN assumption (plus an
additional element from the target group). Furthermore, only a constant number
of pairing operations would be required to decrypt a ciphertext.

References

1. Akinyele, J.A., Pagano, M.W., Green, M.D., Lehmann, C.U., Peterson, Z.N.J.,
Rubin, A.D.: Securing electronic medical records using attribute-based encryption
on mobile devices. In: SPSM 2011, ACM Workshop Security and Privacy in Smart-
phones and Mobile Devices 2011, pp. 75–86 (2011)

286 S. Agrawal and M. Chase

2. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014)

3. Attrapadung, N.: Dual system encryption framework in prime-order groups. Cryp-
tology ePrint Archive, Report 2015/390 (2015). http://eprint.iacr.org/2015/390

4. Attrapadung, N., Hanaoka, G., Yamada, S.: Conversions among several classes of
predicate encryption and their applications. Cryptology ePrint Archive, Report
2015/431 (2015). http://eprint.iacr.org/2015/431

5. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011)

6. Baden, R., Bender, A., Spring, N., Bhattacharjee, B., Starin, D.: Persona: an online
social network with user-defined privacy. In: ACM SIGCOMM 2009 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communi-
cations, pp. 135–146 (2009)

7. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S.,
Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp.
11–46. Springer, Heidelberg (2011)

8. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Com-
puter Society Press (2007)

9. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: hiding the function in functional encryption. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg
(2013)

10. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

11. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

12. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015)

13. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
435–460. Springer, Heidelberg (2013)

14. Chen, J., Wee, H.: Dual system groups and its applications – compact HIBE and
more. Cryptology ePrint Archive, Report 2014/265 (2014). http://eprint.iacr.org/
2014/265

15. Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delega-
tion for Boolean formula. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS,
vol. 8642, pp. 277–297. Springer, Heidelberg (2014)

16. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)

17. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

http://eprint.iacr.org/2015/390
http://eprint.iacr.org/2015/431
http://eprint.iacr.org/2014/265
http://eprint.iacr.org/2014/265

A Study of Pair Encodings: Predicate Encryption in Prime Order Groups 287

18. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., Vimercati,
S. (eds.) ACM CCS 2006, pp. 89–98. ACM Press (2006). Available as Cryptology
ePrint Archive Report 2006/309

19. Guillevic, A.: Comparing the pairing efficiency over composite-order and prime-
order elliptic curves. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R.
(eds.) ACNS 2013. LNCS, vol. 7954, pp. 357–372. Springer, Heidelberg (2013)

20. Herold, G., Hesse, J., Hofheinz, D., Ràfols, C., Rupp, A.: Polynomial spaces:
a new framework for composite-to-prime-order transformations. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 261–279. Springer,
Heidelberg (2014)

21. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

22. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

23. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010)

24. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011)

25. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

26. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

27. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012)

28. Pirretti, M., Traynor, P., McDaniel, P., Waters, B.: Secure attribute-based systems.
In: Juels, A., Wright, R.N., Vimercati, S. (eds.) ACM CCS 2006, pp. 99–112. ACM
Press (2006)

29. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: Sadeghi, A.R., Gligor, V.D., Yung,
M. (eds.) ACM CCS 2013, pp. 463–474. ACM Press (2013)

30. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

31. Santos, N., Rodrigues, R., Gummadi, K.P., Saroiu, S.: Policy-sealed data: a new
abstraction for building trusted cloud services. In: USENIX Security Symposium
2012, pp. 175–188 (2012)

32. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)

33. Takashima, K.: Expressive attribute-based encryption with constant-size cipher-
texts from the decisional linear assumption. In: Abdalla, M., De Prisco, R. (eds.)
SCN 2014. LNCS, vol. 8642, pp. 298–317. Springer, Heidelberg (2014)

288 S. Agrawal and M. Chase

34. Traynor, P., Butler, K.R.B., Enck, W., McDaniel, P.: Realizing massive-scale con-
ditional access systems through attribute-based cryptosystems. In: NDSS 2008.
The Internet Society (2008)

35. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009)

36. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014)

37. Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: A framework and com-
pact constructions for non-monotonic attribute-based encryption. In: Krawczyk,
H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 275–292. Springer, Heidelberg (2014)

Codes and Interactive Proofs

Optimal Amplification of Noisy Leakages

Stefan Dziembowski1(B), Sebastian Faust2, and Maciej Skórski1

1 University of Warsaw, Warsaw, Poland
s.dziembowski@crypto.edu.pl, maciej.skorski@gmail.com

2 Ruhr University Bochum, Bochum, Germany
sebastian.faust@gmail.com

Abstract. During the last 15 years there have been intensive research
efforts in constructing cryptographic algorithms resilient to the side-
channel leakage. The most fundamental part of every such construction
are the leakage-resilient encoding schemes. Usually the cryptographic
secrets encoded by them are assumed to belong to some finite group
(G, +). The most common encoding scheme is the n-out-of-n addi-
tive secret sharing: a secret X is encoded as (X1, . . . , Xn) such that
X1 + · · · Xn = X. Intuitively, if an adversary receives only small par-
tial independent information about each Xi then his information about
X should be even smaller, and should decrease (i.e. the noise should
amplify) when n grows. However, of course, the concrete parameters
(the amount of leakage that can be tolerated, and the number of shares
needed to achieve a given level of security) depend on the exact model
that is used.

One of the most prominent models used in this area is the so-called
noisy-leakage model (Chari et al., CRYPTO’99, and Prouff and Rivain,
EUROCRYPT’13), which is believed to correspond well to the real-life
engineering experience, where the information that the adversary receives
is always “noisy”. In the Prouff and Rivain model the amount of infor-
mation that the noise provides is measured using a parameter δ that is
equal to 0 when the noise is “full”, and equal to 1 when there is no noise.
It is natural to ask how small δ needs to be to achieve the amplification
of noise (in the additive encoding scheme described above). Until now it
was known that such amplification can be achieved for δ < 1/16. In this
paper we show that:

– in the prime order groups G it suffices that δ < 1 − 1/|G|,
– in general it suffices that δ < 1/2.

We also prove that these bounds are optimal. We then analyze the num-
ber n of shares needed to achieve security ε of the encoded value X
(where ε is also defined in terms of “noisy information” that the adver-
sary obtains about X). We give close lower and upper bounds on this
value (that differ only in factor polylogarithmic in |G|). We achieve our
results using techniques from the additive combinatorics, the harmonic
analysis, and the convex optimization.

The first and the last author were partly supported by the WELCOME/2010-4/2
grant founded within the framework of the EU Innovative Economy Operational
Programme.

c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 291–318, 2016.
DOI: 10.1007/978-3-662-49099-0 11

292 S. Dziembowski et al.

1 Introduction

Leakage-resilient cryptography [1–3,5,6,9,11,12,14,15,19,20,24] aims at con-
structing cryptographic schemes that are secure against side-channel leakages
of secret information Leakage-resilient encoding schemes are important building
blocks for constructing such algorithms. They allow to encode a secret message
X with a randomized encoding function Enc(X) = (X1, . . . , Xn) such that leak-
age from the codeword does not help the adversary to recover the secret message
X. The simplest encoding function Enc(.) uses an additive secret sharing scheme,
where the shares Xi are chosen uniformly at random from a group G such that
X := X1 + . . . + Xn. Of course, the leakage from Enc(X) cannot be arbitrary
as otherwise no security is possible. A common assumption that has been stud-
ied both in theoretical and practical works [4,8,12,22,24] is to assume that the
leakage from the encoding is a “noisy” function. It has been shown in the work
of Chari et al. [4] that the encoding scheme described above amplifies security
when the leakage is “sufficiently” noisy. While several recent works improve the
quantitative bounds on the amount of noise needed [10,22], the current best
bounds require the leakage to be very noisy – in particular far away from the
level of noise that is typically available in physical measurements [8]. The main
contribution of our work is to give an optimal characterization of the noisy leak-
age model. We develop optimal bounds for the amount of noise that is needed
to amplify security, and give matching upper bounds by showing that above this
threshold amplification is impossible. Our results are particular important for
the security analysis of masking schemes, which we further describe below.

Leakage resilient encodings for masking schemes. Leakage resilient encodings are
prominently used to build masking schemes [4,15]. Masking schemes are widely
used in practice to protect cryptographic implementations against side-channel
leakage – in particular against leakage from the power consumption [16]. The
basic idea of a masking scheme is simple: instead of computing directly on the
sensitive information (e.g., the secret key), a cryptographic algorithm protected
with the masking countermeasure computes on encoded values thereby conceal-
ing sensitive information, which makes it harder to extract relevant information
from the leakage. The simplest and most widely used masking scheme is the
Boolean masking scheme. The Boolean masking scheme introduced in the impor-
tant work of Ishai et al. [15] uses the simple encoding function from above when
G = GF(2), but can easily be extended to work in larger groups. For instance, to
protect an implementation of the AES algorithm we typically use G = GF(28)
as the AES algorithm can be implemented in a particular efficient way using
operations in the Galois field. Another example is a protected implementation
of discrete-log based crypto schemes that work in prime-order fields.

The noisy leakage model. While there are several variants of the “noisy leakage
model” [12,20,22] most works that consider the security of masking schemes use
the model of Chari et al. [4] and its generalization by Prouff and Rivain [22].
Informally, a noisy leakage function f : G → Y is called δ-noisy if the statistical

Optimal Amplification of Noisy Leakages 293

distance between the uniform distribution X over G and the conditional distri-
bution of X given f(X) is bounded by a parameter δ ∈ [0, 1 − 1/|G|]. Here, Y
is the domain of the leakage, which in general can be an infinite set. To better
understand the Prouff-Rivain noise model, let us consider the two extreme cases.
First, when δ is close to 0 then f is assumed to be very noisy, and hence the noisy
leakage reveals little about the underlying sensitive information. On the other
extreme, when δ is close to 1−1/|G| then there is almost no noise in the leakage
(i.e., the function f is “almost” deterministic). The Prouff-Rivain noise model
is believed to model well real-world physical side-channel leakages. Moreover, as
shown in [7,10] it is also a robust noise measure as it is equivalent to various
other ways of describing the noise present in a leakage function.

Masking schemes in the noisy leakage model. A masking function is said to be
secure in the noisy leakage model if for any X,Y ∈ G, we have that noisy leakage
from an encoding of (X1, . . . Xn) ← Enc(X) is statistically close to noisy leakage
from (Y1, . . . , Yn) ← Enc(Y). As discussed above recent works have significantly
improved the Prouff-Rivain δ-bias for which security of the encoding function can
be shown. While initial works [7,22] require that δ = O(1/|G|), the recent work of
Dziembowski et al. [10] show that noise amplifies security already when δ < 1/16
(and, hence in particular independent of the size of the underlying group G). In
this work, we can show that for prime-order groups masking amplifies the noise
for δ ≤ 1 − 1/p. Notice that in case when p is super-polynomial in the security
parameter (as in discrete-log based cryptosystems), then we achieve security
under the optimal assumption of 1 − negl(n). For general groups (in particular,
groups with small factorization) we show that amplification is possible when
δ < 1/2. We also show that both our bounds are optimal as for values above
the threshold amplification is not possible. We provide further details on our
contributions and techniques in the next two sections.

1.1 Our Contributions

We analyze the amplification of noisy leakage for the simple additive encoding
function Enc. The quality of the amplification is measured by the ε-security
of the encoding. We say that an encoding is ε-secure if the statistical distance
between the δ-noisy leakage of Enc(x) and Enc(x′) for two elements x, x′ ∈ G

is upper bounded by ε. We characterize how many shares n we need in order
to amplify the noise available in the leakage from the shares. To this end we
derive a value δmax which is the maximal value for δ until which we can still
amplify the noise for sufficiently large n. Of course, as we show the number of
share n needs to increase the closer we set δ to δmax. One interesting observation
arising from our analysis is that the value of δmax depends on the structure of
the underlying group G. We summarize our results regarding the upper bound
until which amplification is possible in the following informal theorem.

Theorem (Noise amplification, informal version of Theorem 1). Let G
be a group (either prime order, or arbitrary) and let the adversary obtain δ-noisy

294 S. Dziembowski et al.

leakage from the shares of the encoding. Define the maximal noise parameter
δmax as

δmax =
{

1 − 1
p , when G is of prime order
1
2 , when G is arbitrary.

(1)

Then for any δ < δmax and any ε > 0 we have that the encoding Enc is ε-secure
for

n = poly
(
log |G|, log(ε−1), (δmax − δ)−1

)
(2)

(where poly is some polynomial).

Let us explain the interplay of the parameters used in the above theorem. The
number of shares grows polynomially with two parameters: (a) the logarithm of
ε−1, i.e., the target security we aim for, and (b) the gap θ = δmax−δ between the
maximal possible noise value and the actual chosen noise level δ. The dependency
on (a) is as expected: if we aim for better security meaning a smaller value of ε
we require a larger security parameter n. The reason for the dependency stated
in (b) is more technical, and essentially comes from a bias convergence in the
harmonic analysis (when G has prime order), or in the XOR Lemma (when G

has non-prime order), see Sect. 3 for details.1

Dependence on the group order. As already noted, our Theorem 1 distinguishes
between two cases. In the first case the group G is of prime order. Interestingly,
in this case it turns out that arbitrarily small noise (i.e. δ close to 1) can be
amplified. Informally, this is thanks to the fact that prime-order groups have no
non-trivial sub-groups. On the other hand, if a group has a non-prime order, i.e.,
it contains non-trivial subgroups, then we require a higher noise (more precisely:
δ < 1/2). On a practical level this means that in some sense the prime order
groups “provide a better leakage resilience” than the general groups. This may
be useful for discrete-log based cryptosystems that typically work in such groups.

Lower bounds on the necessary noisy level via homomorphic attacks. We show
that the maximal noise parameter δmax, as defined in Eq. (1), is optimal in the
following sense. We show in Proposition 1 that δ has to be less than 1− |H|

|G| , where
H is the largest proper subgroup of G. An intuitive explanation for why the group
structure is relevant here, is the existence of “homomorphic attacks”, when given
X1, . . . , Xn being shares of X and their evaluations φ(X1), . . . , φ(Xn) under a
homomorphism φ : G → H, we can compute φ(X) = φ(X1) + . . . + φ(Xn).

The implications of Proposition 1 are two-fold. Firstly, as long as the general
groups are considered (and hence no assumptions on the order can be made),
then we prove that one needs to assume that the δ is less than 1/2. This is
because, since the largest proper subgroup H of G can be of size |G|/2, thus

1 We show also that the dependency on θ is necessary as otherwise we can provide
attacks against the encoding.

Optimal Amplification of Noisy Leakages 295

1 − |H|/|G| can be as small as 1/2. Secondly, is G has prime order then |H| = 1
and therefore 1−|H|/|G| = 1−1/p. Hence in this case the lower bound matches
the upper bound from Theorem 1.

It is natural to ask if our results can be more fine-grained, and fully charac-
terize the noise requirements in terms of |H|/|G|. We conjecture that in fact the
upper bound 1−|H|/|G| can also be always achieved (not only in the cases when
|H| = |G|/2 and H = |1|). We leave proving it as an open problem. We summarize
the upper bounds and the relation to the number of shares in Table 1 below.

Table 1. Matching bounds for the necessary noise amount and the necessary number
of shares

Group Necessary noise The gap Necessary number of shares

|G| is even δ < δmax = 1
2

θ = 1
2

− δ n = poly
(
log(ε−1), θ−1

)

G = Zp δ < δmax = 1 − 1
p

θ = 1 − 1
p

− δ

Applications of our techniques outside of masking schemes. We show that our
techniques also have applications outside of the domain of leakage resilient cryp-
tography. In particular, using our results we can extend the following product
theorem, due to Maurer et al. [17].

Lemma 1 (Product Theorem [17]). Let G be a group, d(·) denote the distance
from uniform and X1,X2 be arbitrary independent random variables on G. Then
we have

d(X1 + X2) � 2 · d(X1) · d(X2)

We give a different proof and calculate optimal constants for any group.

Theorem (Product Theorem with optimal constants, informal version
of Theorem 2). Let G be a group, d(·) denote the distance from uniform and
X1,X2 be arbitrary independent random variables on G. Then we have

d(X1 + X2) � c(G) · d(X1) · d(X2)

where c(G) ≤ 2 is a constant depending on the structure of the underlying
group G.

For the exact value of c(G) we refer the reader to Appendix A.6.

Comparing our results to previous works. Our work improves the previous state-
of-the-art in the following aspects:

(a) For general groups the best upper bound was given in [10], where it was
shown that δ < 1/16. We improve this bound to δ < 1/2, which is optimal
for groups with even order. Moreover, for groups of prime-order p we give

296 S. Dziembowski et al.

a novel bound of 1 − 1
p . Notice that for primes that are super-polynomial

in the security parameter we achieve security for δ arbitrary close to 1. We
notice that in contrast to earlier works our proof techniques also have the
advantage of being more modular.

(b) We provide matching lower bounds showing that the noise threshold as well
as the growth rate of the number of shares are optimal, which was not known
before.

(c) Our proof techniques may be of independent interest and have not been used
previously for analyzing the security of noisy leakages. In particular, our
analysis uses techniques from convex optimization, additive combinatorics
and harmonic analysis.

In Table 2 below we compare our results with related works.

Table 2. The initial amount of noise needed for the security of Enc.

Proof techniques Sufficient noise Minimal Noise Sufficient n Minimal n

[22]
direct information
theoretic analysis

O |G|−1
)

not discussed

poly log(|G|), log(ε−1), (δmax − δ)−1
)[7]

reduction to random
probing

O |G|−1
)

not discussed

[10]
reduction to random
walks, amplifying in-
distinguishability

1
16

here

optimal reduction to
random walks, har-
monic analysis, ad-
ditive combinatorics,
convex optimization

1
2

for any G

1 − 1
p

for Zp

1
2

if |G| even
1 − 1

p
for Zp

poly log(|G|), log(ε−1), (δmax − δ)−1
)

poly log(ε−1), (δmax − δ)−1
)

Comparison with the binomial noise model and the XOR lemma. We stress
that the noise model of Prouff and Rivain [22] we consider is significantly more
general than the binomial noise model considered by Faust et al. in [12] (even in
the binary case) and considers many other types of noisy functions. In particular,
our noisy function f maps elements from the group G to a possibly infinite set Y .

If we restrict in Theorem 1 the noise model to the special case of binomial
noise (i.e., the leakage function f is the binomial noise function), then we obtain
comparable parameters with e.g., in [12] (cf. Lemma 4 in [12]).2

1.2 A High-Level Proof Outline

We now give an overview of our proof techniques (the details appear in Sect. 3).
We prove our result in five steps illustrated on Fig. 1. We first show that it is

2 The main restriction when comparing our result with a direct application of the
XOR Lemma, is that we require the probability p of flipping the shares to be > 1/4
(in contrast to [12] where p > 0 is sufficient). The later restriction stems from the
fact that leakages in the binomial noise model with parameter p are transformed in
our noise model to a requirement of delta = 1 − 2p noisy-function. We emphasize
that for the general type of “noisy leakage” we consider, our bounds are optimal as
shown by our lower bounds.

Optimal Amplification of Noisy Leakages 297

enough to consider uniform secrets X. The proof appears in Sect. 3.1.1. The
cryptographic interpretation of this claim is that it suffices to consider only
random-plaintext attacks, instead of chosen-plaintext attacks.

Then, in Sect. 3.1.2, we consider the distance between a uniform secret X
given δ-noisy leakages f1(X1), . . . , fn(Xn) from its encoding and a uniformly
and independently chosen X ′. We show that bounding this distance is equivalent
to bounding the distance of a random sum of the form Z =

∑n
i=1 Zi with

independent summands Zi, conditioned on noisy information {fi(Zi)}n
i=1, from

the uniform distribution U . Here we use the fact that X is uniform (guaranteed
by Step 1). The fact that leakage functions are δ-noisy guarantees that Zi is
δ-close to uniform given fi(Zi), for i = 1, . . . , n. Intuitively it is clear that if
independent random variables on a group are close to the uniform distribution,
then their sum is even closer to uniform (cf. XOR-lemmas [13], see also Appendix
A.8). The main issue here is that our summands are conditional distributions,
which means that Zi is close to U only in average conditioned on concrete values
of the leakage fi(Zi) = yi.

Next in Sect. 3.1.3 we get rid of the conditional part {f1(Z1), . . . , fn(Zn)}.
This step is accomplished by considering concrete leakage values f1(Zi) = yi for
i = 1, . . . , n and noticing that for most of them the distance from uniform is
not much bigger than δ, which we conclude by the Chernoff Bound. This step
results into an error term, which is exponential in nθ2 where θ = δmax − δ is
the gap-parameter defined above. Informally speaking, the gap θ is what allows
to further reduce the problem to study only the distance of sums of the form
Z = Z1 + . . . + Zn from the uniform distribution.

Later, in Sect. 3.1.4, we characterize the distributions Zi for which the dis-
tance between Z = Z1 + . . . + Zn and U is maximal. It turns out that they
have a simple shape: they are a combination of a mass-point and a distribution
uniform over a set of size (1− δ)|G|−1. A description of how these “worst-case”
distributions look like, enables us to come up with concrete estimates for the
statistical distance in the next step.

Finally, in Sect. 3.1.5 we prove concrete facts about the convergence speed of
cumulative sums of random variables that are sufficiently close to the uniform
distribution. Depending on the technique used and the assumption on the group
structure imposed, we obtain different bounds in Theorem 1.

We note that for the case when we make no assumptions on the structure of
G, steps from Sects. 3.1.4 and 3.1.5 (but not from Sects. 3.1.1—3.1.3) could be
replaced by a product theorem due to Maurer et al. [18]. Our technique allow us
to extend this theorem, taking the group structure into account. In the last step
we split the proof depending on the technique and the assumption about G. The
quantitative comparison of different bounds we get is given in Table 3. Note that
the number n of shares is asymptotically larger when the additive combinatorics
is used (second row of Table 3) than when the harmonic analysis is used (the
third row). Nevertheless we think it is instructive the present both results since
the proof techniques are different, and both can be of independent interest.

298 S. Dziembowski et al.

noise in shares,
arbitrary secret

noise in shares,
uniform secret

random walk convergence,
given extra information

random walk convergence,
no extra information

random walk convergence,
worst-case summands identified

computing simple convolutions
arbitrary group

estimating exponential sums
prime-order group

counting multiciplities in sumsets
prime-order group

Theorem 1, point(i)

Theorem 1, point(iii)

Theorem 1, point(ii)

proof: Section 3.1.1
techniques: uniform secrets lowerbound noise (Lemma 2)

proof: Section 3.1.2
techniques: definitions,properties of uniform distributions

proof: Section 3.1.3
techniques: independence of summands, Chernoff Bounds

proof: Section 3.1.4 (Corollary 2)
techniques: extreme points (convex optimization)

proof: Section 3.1.5
techniques: Pollard’s theorem
(additive combinatorics)proof: Section 3.1.5

techniques: XOR lemma,
exponential sums

proof: Section 3.1.5
techniques: indistinguishability amplification

Fig. 1. An overview of the proof of Theorem 1 and applied techniques.

Table 3. The amount of shares needed to mask the secret state below the advantage
ε, depending on the assumed group structure and proof technique. In the last column,
θ is an arbitrarily small positive number.

Domain Proof technique Number n of shares Assumption

G arbitrary amplifying indistinguishability O log(|G|/ε)/θ2
)

δ � 1
2

− θ

G = Zp additive combinatorics O
(
log(|G|/ε) · 212 log(1/θ)/θ2

)
δ � 1 − 1

p
− θ

G = Zp harmonic analysis O θ−4 log(|G|/ε) log(1/θ)
)

δ � 1 − 1
p

− θ

1.3 Our Techniques

In this section we summarize our main techniques used in the proof of Theorem 1.

Convex analysis. We use the convex analysis in Sect. 3.1.4 to deal with the
problem of determining how fast the sum of independent components Z1 + . . .+
Zn on a group G converges towards the uniform distribution. Our assumption
on the noise guarantees that Zi are at most δ-close to the uniform distribution
with some parameter δ. Since we can think of distributions over G as vectors in
R

|G|, we observe that the mapping

Optimal Amplification of Noisy Leakages 299

(Z1, . . . , Zn) −→ SD (Z1 + . . . + Zn;U)

is a convex mapping, with respect to the distribution of any Zi when the remain-
ing components are fixed. Since the restrictions on the distance of Zi’s from
uniform are also convex, we conclude that the maximum is achieved for one of
the extreme points from the set of feasible Zi. As a consequence we observe that
they have a surprisingly simple shape (see Lemma 5). That simple structure will
play an important role in the very last step of the proof. Also, it allows us to
derive a general product theorem for groups, with an explicit expression with
tight constants.

Additive combinatorics. In Sect. 3.1.5, when studying the convergence of random
sums over a general group G, we can find a proper subgroup A � G which is by
definition an additive set, that is

A + A = A.

Such a set may constitute a trap for our random walk Z1 + . . . + Zn. If Zi ∈ A
for all i, then Z1 + . . . + Zn ∈ A. When G = Zp such a trap does not exist,
so intuitively the sum takes all the elements with similar probability when n is
large (because even one non-zero point generates the group when added multiple
times). This is where we use some basic facts from additive combinatorics. The
first result of this sort is the Cauchy-Davenport theorem which states that the
sumset A + B, where A,B are arbitrary subsets of Zp must be substantially
bigger than A and B alone. More precisely

|A + B| � |A| + |B| − 1.

This result does not help us much because it gives no estimate on repetitions in
the sumset A+B, that is how many of the expressions a+ b where a ∈ A, b ∈ B
hit the same place. To get more information about the distribution of repetitions
in the sumset we use a more refined result due to Pollard. Combining it with
the explicit form of Zi (developed in the previous steps) we obtain a non-trivial
upper bound on SD(Z1 +Z2;U) in terms of SD(Z1;U),SD(Z2;U), which is then
extended to the sum of n elements.

Harmonic analysis. Also, in Sect. 3.1.5, having reduced our problem to the con-
vergence of a random walk with independent increments, we can use techniques
from Fourier analysis. Recall that a character is a complex-valued function φ
which is additive on G, that is φ(x + y) = φ(x) · φ(y). The expectations of
characters on independent sums are especially easy to evaluate, because

E [φ (Z1 + . . . + Zn)] =
n∏

i=1

E [φ(Zi)] .

For Zp expectations are easier to calculate, because any character φ is of the
simple form φ(x) = exp(2πki/p) for some k. Since we know the shape of the
worst Zi, we can obtain a concrete estimate for a nontrivial character φ, namely,

300 S. Dziembowski et al.

|E [φ (Zi)]| < c � 1.

Intuitively, this comes from the fact that Zi “contains” a large uniform compo-
nent which doesn’t allow the mass to concentrate at one point. Using a bound
on geometric sums over unity roots, we conclude that E [φ (Z1 + . . . + Zn)] < c.
Finally we apply the XOR lemma which states that characters are “represen-
tative” distinguishers: if two distributions have close expectations under every
character, they indeed are statistically close. In our case we apply this claim to
Z = Z1+ . . .+Zn and U and the result follows since we have shown that E[φ(Z)]
is small and trivially we have E[φ(U)] = 0 (for non-trivial φ).

2 Preliminaries

If X and Y are random variables over the same set X then the statistical dis-
tance between X and Y is denoted as SD(X;Y), and defined as SD(X;Y) =
1
2

∑
x∈X |Pr[X = x]−Pr[Y = x]|. If Z is a random variable then by SD(X;Y |Z)

we mean SD((X,Z); (Y,Z)), i.e., the statistical distance of the two joint distrib-
utions. If two distributions X and Y are equivalent, then we write X

d=Y . Below
we formally define the encoding and decoding of a secret X ∈ G.

Definition 1 (Encoding and Decoding). Let (G,+) be a fixed group and
n > 1 be a fixed natural number. For any X ∈ G, we define the encoding function
Enc by

Encn
G
(X) = (X1, . . . , Xn−1,X − (X1 + . . . + Xn−1))

where X1, . . . , Xn−1 are independent and uniform over G, and the decoding func-
tion Dec by

Decn
G
(X1, . . . , Xn) = X1 + . . . + Xn.

We will typically omit n and G and simply write (Enc,Dec) when clear from the
context.

Noisy leakages. The noise in the observed version Y of a real distribution X,
denoted by β(X|Y), is measured by comparing how close is the product distri-
bution PX · PY to the joint distribution P(X,Y). More formally, we have the
following definition, which comes from [22] (see also [7]), where it was argued
that it models physical noise in a realistic way.

Definition 2 (Noisy observations and noisy functions). A random vari-
able Y ∈ X is called a δ-noisy observation of X if

β(X|Y)
def
= SD(X ′;X|Y) � δ

where X ′ is an independent copy of X. A function f is called δ-noisy if f(U) is
a δ-noisy version of U , where U is uniform over U .

Optimal Amplification of Noisy Leakages 301

Notice that [22] defined the noisy function as the
∑

y Pr[Y = y] ·SD(X ′; (X|Y =
y)). This is equivalent to the above when X and X ′ are independent and Y is
the leakage from X. Note that this definition may seem a bit counterintuitive as
more noise means a bias value closer to 0, while a value closer to 1 means that
less noise is present in the leakage observations.

3 Our Main Result

We are now ready to present our main result that was already informally
described in Sect. 1.1.

Theorem 1. Let X be a random variable on a group G and let Enc(X) =
(X1, . . . , Xn) be its encoding. Suppose that fi for i = 1, . . . , n are all δ-noisy
functions, i.e. β(Xi|fi(Xi)) � δ. Then we have the following bounds

(i) For arbitrary G, if δ � 1
2 − θ, then β(X|fi(X1), . . . , fi(Xn)) � ε provided

that
n > 8θ−2 log(5|G|ε−1)

(ii) If G = Zp and δ � 1 − 1
p − θ then β(X|fi(X1), . . . , fi(Xn)) � ε, provided

that
n > log(3|G|ε−1) · 212 log(1/θ)/12θ

(iii) If G = Zp and δ � 1 − 1
p − θ then β(X|fi(X1), . . . , fi(Xn)) � ε, provided

that
n > 2θ−4 log(|G|ε−1)

3.1 Proof of Theorem 1

The proof of Theorem 1 was already outlined in Sect. 1.2. In the next sections
we describe it in more detail. The final proof appears in Sect. 3.1.5.

3.1.1 Reducing to Uniform Secrets
Below we show that it sufficient to consider only uniform secrets X.

Lemma 2. Suppose that X is uniform over G with the encoding Enc(X) =
(X1, . . . , Xn). Let X ′ be an arbitrary distribution over G with the encoding
Enc(X ′) = (X ′

1, . . . , X
′
n). Then for arbitrary functions f1, . . . , fn we have

β(X ′|f1(X ′
1), . . . , fn(X ′

n)) � 3|G| · β(X|f1(X1), . . . , fn(Xn)) (3)

The proof appears in Appendix A.3. Note that we lose a factor of |G| in this
transformation. However this does not actually affect the bound we want to
prove, because we show that the main part β(X|f1(X1), . . . , fn(Xn)) converges
to 0 exponentially fast with n.

302 S. Dziembowski et al.

3.1.2 Reducing to RandomWalks Conditioned on Noisy Information.
We now show that the noise in a uniform secret X given δ-noisy leakages
f1(X1), . . . , fn(Xn) is equal to the distance of a random sum of the form
Z =

∑n
i=1 Zi with independent summands Zi, conditioned on noisy informa-

tion {fi(Zi)}n
i=1, from the uniform distribution U .

Lemma 3. For X uniform on a set X and any functions fi the following equal-
ity holds

β(X|(fi(Xi))n
i=1) = SD

(
n∑

i=1

Zi; U

∣
∣
∣
∣
∣
(fi(Zi))n

i=1

)

(4)

where U and Zi for i = 1, . . . , n are uniform and independent over X .

The proof appears in Appendix A.4. Justifying the title, we note that we can
think of the sum

∑n
i=1 Zi as a random walk which starts at 0, with increments

Zi.

3.1.3 Reducing to Unconditional Random Walks
The following lemma is an easy consequence of the Chernoff Bound.

Lemma 4. Let (Zi, Yi)i for i = 1, . . . , n be independent random variables such
that Δ(Zi;U |Yi) � δ. Then, for any γ > 0, δ′ = δ + 2γ and n′ = γn

SD

(
n∑

i=1

Zi;U

∣
∣
∣
∣
∣
(Yi)i

)

� max
(Z′

i)i: SD(Z′
i;U)�δ′

SD

⎛

⎝
n′

∑

i=1

Z ′
i;U

⎞

⎠ + e−2nγ2
(5)

where the maximum is taken over all independent random variables Z ′
i.

The proof appears in Appendix A.5. The immediate corollary below shows that
we can get rid of the conditinal part in the right-hand side of Eq. (4) in Lemma 3.

Corollary 1. For n′ = θ
4 · n we have

β(X|(fi(Xi))n
i=1) � max

(Z′
i)i: SD(Z′

i;U)�δ+ θ
2

SD

⎛

⎝
n′

∑

i=1

Z ′
i;U

⎞

⎠ + e− 1
8nθ2

where the maximum is taken over all independent random variables Z ′
i.

Note that by combining Step 1, Step 2 and Step 3 with Lemma 1 we can already
conclude part (i) of Theorem 1 (see Sect. 3.1.5).

3.1.4 Worst-Case Summands
We prove the following geometrical fact:

Optimal Amplification of Noisy Leakages 303

Lemma 5 (Shape of extreme points of distributions close to uniform).
Let X be a finite set and U be uniform over X . Any distribution X ∈ X such that
SD(X;U) � δ can be written as a convex combination of “extreme” distributions
X ′ of the following form: with probability p = δ+ |X |−1 the distribution X ′ takes
a value a and with probability q = 1 − p the distribution X ′ is uniform over a
set A, where a �∈ A, of size |A| = (1 − δ)|X | − 13. Equivalently, each of these
distributions X ′ is of the following form:

μX′ = μU + δμb − δμB (6)

for some B such that |B| = δ|G| and b �∈ B.

Note that we always have (1−δ)|X |−1 � 0, as the range of the noise parameter
is 0 � δ � 1 − 1

X , when we consider secrets over X .

Corollary 2. Let Zi, for i = 1, . . . , n be independent random variables such
that SD(Zi;U) � δ for every i. Then SD (

∑
i Zi;U) is maximized for Zi as in

Lemma 5

Proof (of Corollary 2). Note that the distribution of
∑

i Zi is a convolution of
individual distributions PZi

, and therefore it is multilinear in PZi
. It follows

that SD (
∑

i Zi;U) = 1
2

∥
∥P∑

i Zi
− PU

∥
∥
1

is convex in PZi
and the claim follows

by the extreme point principle.

Using Lemma 5 we derive the following generalization of Lemma 1

Theorem 2. Let Z1, Z2 be independent random variables on a group G. Then
we have

SD(Z1 + Z2;U) � cmax(G) · SD(Z1;U) · SD(Z2;U) (7)

where the constant is given by

cmax(G) =
1
2

max
A,B:|A|=δ1|G|,|B|=δ2|G|

‖μB + μA − μA ∗ μB − μ0‖�1(G) (8)

where μ0 is the point mass at 0, δi = SD(Zi;U), and μA, μB are uniform over
the sets A and B. Moreover, the sharp constant is achieved for the following
random variables: Zi is constant with probability δi + 1

|G| and with probability
1 − δi − 1

|G| is uniform on some set of size (1 − δi)|G| − 1.

Lemma 5 is a corollary from Theorem 2, whose proof appears in Appendix A.6.
Note that Lemma 1 follows from Theorem 2, since cmax(G) � 2 trivially, since

‖μB + μA − μA ∗ μB − μ0‖1 � ‖μB‖1 + ‖μB‖1 + ‖μA ∗ μB‖1 + ‖μ0‖1 = 4

by the triangle inequality and the fact that the total mass of a probability
measure is 1.
3 If δ|X | is not an integer, then instead of a uniform distribution we consider the

distribution flat over a set A such that |A| = �(1 − δ)|X | − 1�, which assigns the

mass of 1
(1−δ)|X|−1

to all but one points, and the mass of �(1−δ)|X|−1�−((1−δ)|X|−1)
(1−δ)|X|−1

to the ramining point.

304 S. Dziembowski et al.

3.1.5 Concrete Bounds
In view of Corollary 1 it remains to give an upper bound on the distance between
sums of independent random variables which are not too far from uniform and
the uniform distribution, i.e., on:

SD

(
n∑

i=1

Zi;U

)

.

To this end, we split our analysis depending on the structure of G and chosen
technique.

Case: G is arbitrary. From Corollary 1 and Lemma 1 applied (n − 1) times it
follows that

β(X|(fi(Xi))n
i=1) � 1

2
(2δ + θ)

θ
4 n + e− 1

8nθ2
.

From the assumption δ < 1
2 − θ and the elementary inequality 1 − u � e−u we

obtain (2δ + θ)
θ
4 n � e− 1

4 θ2n, which gives us

β(X|(fi(Xi))n
i=1) <

3
2

· e− 1
8nθ2

for uniform X. Taking into account Step 1, we finally obtain

β(X|(fi(Xi))n
i=1) < 5|G| · e− 1

8nθ2
.

for any X, which is equivalent to part (i) of Theorem 1.

Case: G = Zp, for p prime (by additive combinatorics). When G = Zp, we
improve Lemma 1 in the following way, using Corollary 2 and some tools from
additive combinatorics (see Appendix A.7 for a proof).

Lemma 6. Let Z1, Z2 be independent random variables on Zp such that
SD(Zi;U) � δi. Then

SD(Z1 + Z2, UG) � h(δ1, δ2) (9)

where

h(δ1, δ2) =
{

2δ1δ2, φ(δ1, δ2) � 0
2δ1δ2 − 1

4φ(δ1, δ2)2 + 1
4p2 , φ(δ1, δ2) > 0 (10)

and φ(δ1, δ2)
def
= δ1 + δ2 + min(max(δ1, δ2), 1 − |δ1 − δ2|) − 1.

We will use only the following consequence of Lemma 6.

Corollary 3. Let Z1, Z2 be independent random variables on Zp such that
SD(Zi;U) � δi � δ. Suppose that δ > 1

3 . Then we have

SD(Z1 + Z2;UG) � 2δ2 − (3δ − 1)2

4
+

1
4p2

(11)

Optimal Amplification of Noisy Leakages 305

Using recursively Corollary 3 and applying Corollary 1 we obtain the following
bound for uniform X

β (X|(fi(Xi))n
i=1) � 2−n/(216/θ·12θ) + e− 1

8nθ2

which, by Step 1, implies part (ii) of Theorem 1. For a detailed derivation, see
Lemma 8 in Appendix A.7.

Case G = Zp, for a prime number p (by harmonic analysis). We start by
obtaining the following auxiliary estimate on trigonometric sums, valid for any
A ⊂ Zp such that |A| = θp and k ∈ {1, 2, . . . , p − 1}:

∣
∣
∣
∣
∣

∑

x∈A

exp
(

2kπix

p

)∣
∣
∣
∣
∣
� sin πθ

p sin π
p

The proof uses a geometrical argument and some trigonometric identities and is
given inside the proof of Lemma 10 in Appendix A.8. Based on Corollary 2 and
the XOR lemma (see Lemma 9 in Appendix A.8), we prove that

β (X|(fi(Xi))n
i=1) � 3|G| 3

2 · e− 1
8 θ3

+ e− 1
8nθ2

for uniform X, which by Step 1 implies part (iii) of Theorem 1; the details are
given in Lemma 10 in Appendix A.8.

4 Lower Bounds

Proposition 1 (The noise threshold (1) is optimal). For any group G,
there exist a δ-noisy function f where

δ = 1 − |H|
|G| ,

H being the biggest proper subgroup of G, such that for every n we have

β (X|f(X1), . . . , f(Xn)) � δ.

The proof appears in Appendix A.1.

Proposition 2 (The growth rate in (2) is optimal). For G = Z2, X being
uniform on G, and any θ < 1

2 there exists a
(
1
2 − θ

)
-noisy leakage function f

such that for every n satisfying

n < log
(
(2ε)−1

)
/ log

(
(1 − 2θ)−1

)
(12)

we have
β (f(X)|f(X1), . . . , f(Xn)) � ε.

306 S. Dziembowski et al.

In turn, for G = Zp where p is prime, X being uniform on G, and any θ <

1 − 1
p there exists a

(
1 − 1

p − θ
)
-noisy leakage function f such that for every n

satisfying

n < log(2ε−1)/ log(1 − θ) (13)

we have
β (f(X)|f(X1), . . . , f(Xn)) � ε.

The proof appears in Appendix A.2. Note that for θ < 1
4 we have log((1 −

2θ)−1) < 1
4θ−1, and then Eq. (12) can be replaced by

n < 4θ−1 log
(
(2ε)−1

)

Similarly, for θ < 1
2 we have log((1 − θ)−1) < 1

2θ−1, and then Eq. (13) can be
replaced by

n < 2 log(2ε−1) · θ−1 (14)

A Proofs

A.1 Proof of Proposition 1

Proof. Let X be uniform over the set G and let φ be the canonical quotient
homomorphism, that is φ(g) = g + H. For n shares X1, . . . , Xn of X we have
that Xi|φ(Xi) and X are

(
1 − |H|

|G|
)
-far, because Xi|φ(Xi) = yi is uniform over a

set of |G|/|H| elements, for every choice of yi. Similarly, X =
∑

i Xi is
(
1 − |H|

|G|
)
-

far from uniform given φ(Xi) for all i, because φ(X) =
∑

i=1 φ(Xi) =
∑

i yi. To
see this, note that for independent uniform U we have

SD (X, φ(X1), . . . , φ(Xn); U, φ(X1), . . . , φ(Xn)) � SD

(
X,
∑

i

φ(Xi); U,
∑

i

φ(Xi)

)

= SD (X, φ(X); U, φ(X))

= SD (X; U | φ(X))

where the first line follows from the fact that applying a function to two random
variables only decreases the statistical distance, and the second line uses the
homomorphic property of φ. The last expression is at least

(
1 − |H|

|G|
)

as already
observed for uniform X.

A.2 Proof of Proposition 2

Proof. Fix G = Z2 and consider a uniform secret X, its shares X1, . . . , Xn, and
leakage functions fi = f for i = 1, . . . , n where f(x) flips the bit x with prob-
ability θ < 1

2 . It is easy to see that these functions are
(
1
2 − θ

)
-noisy, that is

Optimal Amplification of Noisy Leakages 307

SD (Xi;U | f(Xi)) = 1
2 − θ where U is an independent uniform random vari-

able. Note that for uniform X (and any functions fi) we have the equality of
distributions

(f1(X1), . . . , fn(Xn),X) d= (f1(Z1), . . . , fn(Zn), Z1 + . . . + Zn) .

where {Zi}n
i=1 are independent and uniform on G (see Sect. 3.1.2). As a conse-

quence we get

SD (X;U | f(X1), . . . , f(Xn)) = SD (Z1 + . . . + Zn;U | f1(Z1), . . . , fn(Zn))

One can check that every X ′
i has bias δ = 1

2 −θ (it outputs a bit with probability
1
2 ± δ) conditioned on f(X ′

i) = y for every y ∈ {0, 1}. Since the xor-sum Y1 +
Y2 + . . .+Yn of δ-biased independent bits Y1, Y2, . . . , Yn has bias exactly 2n−1δn,
we conclude that SD (X ′

1 + . . . + X ′
n;U | f1(X ′

1), . . . , fn(X ′
n)) = 2n−1δn. To go

below ε, we need (1 − 2θ)n < 2ε or

n > ln
(
(2ε)−1

)
/ ln

(
(1 − 2θ)−1

)
.

Finally, consider the case G = Zp. We proceed as in the previous case, achieving

SD (X;U | f(X1), . . . , f(Xn)) = SD (Z1 + . . . + Zn;U | f1(Z1), . . . , fn(Zn))

for arbitrary functions. We take the functions fi so that the distribution of Zi

given f(Zi) = yi for every i has the following form:

μZi|f(Zi)=yi
= μG + δμa − δμA

where a is a point and A is a set such that a �∈ A, |A| = δ|G|. As it fol-
lows from the proof of Lemma 10 in Appendix A.8, we can choose A so that
|Eφ(Vi)| � 1 − θ for some character φ, where Vi is the distribution of Zi condi-
tioned on f(Zi). This means that the Fourier transform V̂i of Vi is at least 1 − θ
in the supremum norm, that is ‖V̂i‖∞ � 1 − θ. Since the Fourier transform is
multiplicative under convolution (summing independent variables) we see that
we can prepare functions fi so that ‖V̂ ‖∞ � (1 − θ)n, where V = V1 + . . . + Vn.
The Parseval identity gives us ‖V̂ ‖2 = ‖μZ − μU‖2. Since ‖Ẑ‖∞ � ‖V̂ ‖2 and
‖μV − μU‖2 � ‖μV − μU‖1 we finally obtain

(1 − θ)n � ‖μV − μU‖1 = SD(Z1 + . . . + Zn;U | f(Z1) = y1, . . . , f(Zn) = yn)

The claim follows now by averaging over different values of y1, . . . , yn, exactly
as in the previous case.

A.3 Proof of Lemma 2

We prove the following version, from which we conclude Lemma 2.

308 S. Dziembowski et al.

Suppose that X is uniform and Xi be the encoding of X. Let g be a
probabilistic function, (Gi)i be the encoding of G = g(X) and let fi be
noisy leakage functions. Then we have

β(X|(fi(Gi))i) � 3|G| · β(X|(fi(Xi))i) (15)

Proof. Let V be uniform and (Vi)i be the encoding of V and let X ′, V ′ be
independent copies of X,V . Note that X, (fi(Gi))i is identically distributed as
X, (fi(Vi))i|V = g(X). Therefore

Pr[X = x|(fi(Gi))i = (yi)i] = Pr[X = x|(fi(Vi))i = (yi)i, V = g(X)]

=
Pr[X = x, (fi(Vi))i = (yi)i, V = g(x)]

Pr[(fi(Vi))i = (yi)i, V = g(X)]

=
Pr[X = x] Pr[(fi(Vi))i = (yi)i, V = g(x)]

∑

x′
Pr[X = x′] Pr[(fi(Vi))i = (yi)i, V = g(x′)]

=
Pr[V = g(x)|(fi(Vi))i = (yi)i]∑

x′
Pr[V = g(x′)|(fi(Vi))i = (yi)i]

(16)

Let ε(x) = Pr[V = x|(fi(Vi))i = (yi)i]− 1
|G| . Suppose first, that g is deterministic.

We have

Pr[X = x|(fi(Gi))i = (yi)i] − 1
|G| =

1
|G| + ε(g(x))

1 +
∑

x′
ε(g(x′))

− 1
|G|

=
|G|ε(g(x)) −

∑

x′
ε(x′)

|G|(1 +
∑

x′
ε(g(x′)))

(17)

and

∑

x

∣
∣
∣
∣Pr[X = x|(fi(Gi))i = (yi)i] − 1

|G|

∣
∣
∣
∣ =

1
|G|

∑

x

∣
∣
∣
∣ε(g(x)) − 1

|G|
∑

x′
ε(g(x′))

∣
∣
∣
∣

1
|G| + 1

|G|
∑

x′
ε(g(x′))

(18)

Note that
∣
∣
∣ε(g(x)) − 1

|G|
∑

x′ ε(g(x′))
∣
∣
∣ �

∑
x′ |ε(x′)| and 1

|G|
∑

x′ ε(g(x′)) �
∑

x′ ε(x′). If
∑

x′ ε(x′) � 1
3
2 |G| then we obtain

∑

x

∣
∣
∣
∣Pr[X = x|(fi(Gi))i = (yi)i] − 1

|G|

∣
∣
∣
∣ �

∑

x′
|ε(x′)|

1
|G| − 1

3
2 |G|

= 3|G|
∑

x′
ε(x′) (19)

Optimal Amplification of Noisy Leakages 309

otherwise

∑

x

∣
∣
∣
∣Pr[X = x|(fi(Gi))i = (yi)i] − 1

|G|

∣
∣
∣
∣ � 2 � 3|G|

∑

x′
ε(x′) (20)

This way, we have shown

Δ (X;X ′|(fi(Gi))i = (yi)i) � 3|G|Δ (V ;V ′|(fi(Vi))i = (yi)i) (21)

and by taking the average the result follows. If g is randomized, the proof is the
same but ε(g(x)) is replaced by Egε(g(x)) (note that we have β(X|(fi(Gi))i) �
β(g(X)|(fi(Gi))i).

A.4 Proof of Lemma 3

We start with the following observation: suppose that Xi for i = 1, . . . , n are
shares of the uniform secret X. Let X ′

i for i = 1, . . . , n be all uniform and
independent. Then we have the following equality of distributions

(X, (X1, . . . , Xn)) d=

(
n∑

i=1

X ′
i, (X ′

1, . . . , X
′
n)

)

(22)

Therefore,

(X, (fi(Xi))n
i=1)

d=

(
n∑

i=1

X ′
i, (fi(X ′

i))
n
i=1

)

. (23)

As a consequence we obtain the following equality

β(X|(fi(Xi))n
i=1) = Δ

(
n∑

i=1

X ′
i; U

∣
∣
∣
∣
∣
(fi(X ′

i))
n
i=1

)

(24)

Thus, our problem reduces to investigate the random walk on G defined as∑n
i=1 X ′

i|fi(X ′
i). We need to show that it (under some restrictions) eventually

approaches the uniform distribution as n increases, and estimate the convergence
speed.

A.5 Proof of Lemma 4

Proof. We can assume that δ +2γ < 1. We start with the following observation:
Claim.Suppose that δ1, . . . , δn are independent random variables with expected
value at most δ < 1. Then with probability 1 − exp(−2nγ2), at least n′ = γn of
them is smaller than δ + 2γ.

Proof (Proof of Claim). With probability 1−exp(−2nγ2) we have 1
n

∑
i δi < δ+γ.

Let n′ be the number of i’s for which δi < δ + 2γ. Since we have
∑

i δi >
(n − n′)(δ + 2γ), with probability 1 − exp(−2nγ2) it holds that n(δ + θ) >
(n − n′)(δ + 2γ) or n′ > γ

δ+2γ · n > γn.

310 S. Dziembowski et al.

By applying the claim we see that with probability 1 − exp(−2nθ2) over (yi) ←
(Yi)i, there always exists a set I ⊂ {1, . . . , n} such that |I| � n′ (possibly
depending on (yi)i) such that SD (Zi;U | Yi = yi) � δ + 2θ for i ∈ I ′. Since
the distributions (Zi, Yi)i are independent for different i’s and since U + Z

d= U
for any independent random variable Z, from the elementary properties of the
statistical distance we obtain

SD

(
n∑

i=1

Zi; U

∣∣∣∣∣ (Yi)i = (yi)i

)
= SD

⎛
⎝∑

i∈I

Zi +
∑
i�∈I

Zi; U +
∑
i�∈I

Zi

∣∣∣∣∣∣
(Yi)i = (yi)i

⎞
⎠

= SD

(∑
i∈I

Zi; U

∣∣∣∣∣ (Yi)i = (yi)i

)
. (25)

The lemma now easily follows, as for every I as above we have

SD

(
∑

i∈I

Zi; U

∣
∣
∣
∣
∣
(Yi)i = (yi)i

)

� max
(Z′

i)i: SD(Z′
i;U)�δ′

Δ

⎛

⎝
n′

∑

i=1

Z ′
i;U

⎞

⎠ . (26)

A.6 Proof of Theorem 2

Proof. Let μi be a distribution of Zi for i = 1, 2 and let μU denotes the uniform
measure. Let Δ(μi, μU) = δi. Note that we can decompose μi = μU +δiμ

+
i −δiμ

−
i .

Therefore

μ1 ∗ μ2 =
(
μU + δ1μ

+
1 − δ1μ

−
1

)
∗

(
μU + δ2μ

+
2 − δ2μ

−
2

)

= μU + δ1δ2
(
μ+
1 ∗ μ+

2 + μ−
1 ∗ μ−

2 − μ+
1 ∗ μ−

2 − μ−
1 ∗ μ+

2

)
(27)

where we have made use of the fact that μU ∗ ν = μU for any distribution ν.
Now we have

SD(μ1 ∗ μ2;μU) =
1
2

∥
∥μ+

1 ∗ μ+
2 + μ−

1 ∗ μ−
2 − μ+

1 ∗ μ−
2 − μ−

1 ∗ μ+
2

∥
∥

�1(G)
(28)

This is clearly at most 2. To identify the worst case choice of μi that maximizes
this quantity, observe that we have to bound the last expression with respect to
the constraints ∥

∥μ−
i

∥
∥

�∞(G)
� 1

δi|G| i = 1, 2 (29)

which come from the fact that μi, as decomposed, has to be positive. There
is no restriction on μ+

i . Note now that the form μ+
1 ∗ μ+

2 + μ−
1 ∗ μ−

2 − μ+
1 ∗

μ−
2 − μ−

1 ∗ μ+
2 is bilinear with respect to measures μ+

i , μ−
i and the real-valued

function μ → ‖μ‖�1(G) defined on signed measures is convex. It follows that∥
∥μ+

1 ∗ μ+
2 + μ−

1 ∗ μ−
2 − μ+

1 ∗ μ−
2 − μ−

1 ∗ μ+
2

∥
∥

�1(G)
attains its maximal value for

measures that are extreme points of their domain. Looking at the restrictions

Optimal Amplification of Noisy Leakages 311

in (29) we see that this is the case where μ+
i are a point mass and μ−

i are uni-
form over the subset of cardinality δi|G|4. Thus we can assume that μ+

1 = μa,
μ+
2 = μb are point mass at a, b and μ−

1 = μA, μ−
2 = μB are uniform over A,B

where |A| = δ1|G| and |B| = δ2|G|. This way our quantity simplifies to

‖µa ∗ µb − µa ∗ µB − µb ∗ µA + µA ∗ µB‖�1(G) = ‖µa+b − µB+a − µb+A + µA ∗ µB‖�1(G)

= ‖µ0 − µB−b − µA−a + µA−a ∗ µB−b‖�1(G)

(30)
where we have used the fact that the norm �1(G) is shift invariant and that a
point mass act as shifts under the convolution.

From this we easily derive the following result

Lemma 7 (Mixing time for a sum of random variables on a group).
Let {Zi}i=1,...,n be independent random variables on an abelian group G, such
that Δ(Zi;U) = δi where δi � 1

2 − θ and θ > 0. Then for n � log(1/ε)/(2θ) it
holds that

SD

(
n∑

i=1

Zi;U

)

� ε (31)

A.7 Proof of Lemma 6

We will show that the constant given by (8) could be much better estimated
when G = Zp. The trivial estimate is 2, however this is possible only if A + B is
disjoint with A and B. Here we remind the following result due to Cauchy and
Davenport

Theorem (Cauchy-Davenport Theorem). For any A,B ⊂ Zp, where p is
prime, we have |A + B| � min(|A| + |B| − 1, p).

In view of this result, a better estimate is impossible if only δ1+δ2+max(δ1, δ2) >
1+1/p. From this we know that the estimate (7) is not sharp for δ1+δ2 � 2

3 + 2
3p .

Therefore we expect to improve the estimate for sufficiently big values of δ1 + δ2
whereas for the smaller we can still use the general result. To this end, we will
need a result stronger than the Cauchy-Davenport Theorem

Theorem (Pollard’s Theorem [21]). For any A,B ⊂ Zp, where p is prime,
we have

∑

x∈Zp

rA,B(x)1{rA,B(x)>t}(x) � |A||B| − t(|A| + |B| − t) (32)

where rA,B(x) counts in how many different ways can we represent x as a sum
a + b with a ∈ A, b ∈ B.
4 Otherwise we could decompose either the positive part μ+ into a combination of two

distributions (when μ+ is supported on more than one point) or the negative part
μ− (when the constraint Equation (29) is not binding at some point in the support).

312 S. Dziembowski et al.

Intuitively, Pollard’s theorem says that the distribution of rA,B(x) cannot be too
“heavy tailed”.

Proof (of Lemma 6). In fact, we will show that μA ∗ μB always puts some large
mass on every sufficiently big set C, essentially on A or B. Observe first that

μA ∗ μB(x) =
rA,B(x)
|A||B| (33)

where rA,B(x) counts for how many different ways can we represent x as a sum
a+ b with a ∈ A, b ∈ B. By trivial estimates rA,B(x) � min(|A|, |B|) we see that

μA ∗ μB(x) � min(μA(x), μB(x)), x ∈ A ∪ B (34)

Using this we can estimate the expression in (8) as follows

1

2
‖μA + μB − μA ∗ μB − μ0‖�1(G) = max

S⊂G
(μA(S) + μB(S) − μA ∗ μB(S) − μ0(S))

� max
S⊂G

(μA(S) + μB(S) − μA ∗ μB(S))

= (μA(A ∪ B) + μB(A ∪ B) − μA ∗ μB(A ∪ B))

= 2 − 1

|A||B|
∑

x∈A∪B

rA,B(x) (35)

From Pollard’s theorem, for every set C we obtain
∑

x

rA,B(x)1C(x) �
∑

x

rA,B(x)1rA,B(x)�t(x) − t(|G| − |C|) (36)

� t(|A| + |B| − t) − t(p − |C|) = t(|A| + |B| + |C| − p − t)
(37)

the maximum is for tmax = |A|+|B|+|C|−p
2 provided that |A| + |B| + |C| − p � 0.

We check that the required inequality |A| + |B| − p � tmax � min(|A|, |B|) is
true if only the set C satisfies

|A| + |B| − p � |C| � p − ||B| − |A||. (38)

Note that if tmax �∈ Z then the conditions above are still sufficient provided
that we replace tmax with �tmax or �tmax�. Considering the function f(t) =
t(|A| + |B| + |C| − p − t) by the mean-value theorem we see that

|f(�tmax) − f(�tmax�)| � max
ξ∈[�tmax�,�tmax]

f ′(ξ)

= max
ξ∈[�tmax�,�tmax]

(−2ξ + |A| + |B| + |C| − p)

� −2
(

tmax +
1
2

)
+ |A| + |B| + |C| − p = 1. (39)

Optimal Amplification of Noisy Leakages 313

Therefore, we obtain

∑

x

rA,B(x)1C(x) �
⌊

(|A| + |B| + |C| − p)2

4

⌋

(40)

Setting C ⊂ A∪B such that |C| = min (max(|A|, |B|), p − ||A| − |B||) we see that
the condition |C| � |A|+ |B|−p is satisfied. Provided that |A|+ |B|+ |C|−p � 0
we obtain

2 − 1

|A||B|
∑

x∈A∪B

rA,B(x) � 2 − (δ1 + δ2 + min(max(δ1, δ2), 1 − |δ1 − δ2|) − 1)2 + p−2

4δ1δ2

(41)
and the result follows by (8).

From this result we obtain the following result, from which we conclude the part
(ii) of Theorem 1 by replacing θ by θ

4 and combining with Corollary 1 in the
same way as in the derivation of part (ii).

Lemma 8 (Mixing time for a sum of random variables on Zp). Let
{Zi}i=1,...,n be independent random variables on G = Zp, such that SD(Zi;U) �
δi where δi � 1 − p−1 − θ and θ > 0. Then for n � 3 · 24/θ log(1/ε)/θ it holds
that

SD

(
n∑

i=1

Zi;U

)

� ε (42)

Proof. First, using Corollary 3, we show that every sufficiently long sum has
distance at most 1

3 . Once we have that, it is enough to split the entire sum
into sufficiently many blocks and then apply Theorem 2. Consider n0 = 2m. By
applying Lemma 6 several times we see that

SD

(
n0∑

i=1

Zi; U

)

� Bm (43)

where Bi are numbers defined by the following recursion

B0 = 1 − p−1 − θ, Bi = h(Bi−1, Bi−1) for i � 1 (44)

We will prove that 1−p−1 is the repelling point : if we start from any B0 satisfying
1
3 � B0 < 1 − p−1 then Bi decreases below 1

3 . Let Ci = 1 − Bi. If Bi−1 � 1
3 ,

then by Corollary 3 we get

Ci =1 − Bi = 1 − h(Bi−1, Bi−1)

= 2B2
i−1 − (3Bi−1 − 1)2

4
− 1

4p2

= Ci−1 +
C2

i−1

4
− 1

4p2

= Ci−1

(
1 +

Ci−1

4

(
1 − 1

C2
i−1p

2

))
(45)

314 S. Dziembowski et al.

From this we conclude that if 1
3 � Bi−1 < 1 − p−1 then Ci−1 > p−1 and hence

Ci > Ci−1 or equivalently Bi < Bi−1. Moreover, if Ci−1 � p−1 + θ, we get

Ci � Ci−1

(
1 + θ · 2 + pθ

4 + 4pθ

)

� Ci−1

(
1 +

θ

4

)
(46)

Since Ci � 1 and C0 � p−1+θ > θ, for some j � 4
θ log

(
1
θ

)
we must have Bj < 1

3 .
Thus for m = � 4

θ log
(
1
θ

)
 we have

SD

(
2m
∑

i=1

Zi;U

)

� 1
3

(47)

Consider � = log(1/ε) blocks of random variables {(Z2mj+1, . . . , (Z2mj+2m)}j for
j = 0, . . . , N − 1. For every such a 2m-element block from the last observation
it follows that

SD

(
2m
∑

i=1

Z2mj+i; U

)

� 1
3

(48)

Applying � times Lemma 2 yields the estimate

SD

(
�2m
∑

i=1

Zi;U

)

�
(

2
3

)�

(49)

which finishes the proof.

A.8 Harmonic Analysis

We need the following lemma, being a generalization of Vazirani’s XOR lemma.

Lemma 9 (XOR lemma for abelian groups, [23]). Let Z be a distribu-
tion over a finite abelian group G, such that |Eφ(Z)| � ε for every non-trivial
character φ on G. Then X is ε

√
|G|-close to uniform.

Lemma 10 (Mixing times of random sums over Zp). Let {Zi}i=1,...,n be
independent random variables on G = Zp, such that SD(Zi;U) � 1 − p−1 − θ
and θ > 0. Then for n � 8 · log(|G|/ε)/θ3 it holds that

SD

(
n∑

i=1

Zi;U

)

� ε (50)

Proof. We apply some facts from harmonic analysis. Let Zi be the worst-case

distributions that maximize SD(
n∑

i=1

Xi, U) under the constraints SD(Zi, U) �

1 − p−1 − θ. By Eq. (6) that

μZi
=

(
1 − |A|

p

)
· μ0 +

|A|
p

· 1
|A|μA, |A| = pθ (51)

Optimal Amplification of Noisy Leakages 315

Consider a non-trivial character φ(x) = exp(2kπi/p) on Zp. Since A �= ∅ we have
θ � 1

p . We will show an upper bound on Eφ(Xi). First, observe that

|Eφ(Xi)| =

∣
∣
∣
∣
∣
1 − |A|

p
+

|A|
p

· 1
|A|

∑

x∈A

exp
(

2kπix

p

)∣
∣
∣
∣
∣

(52)

is maximized exactly when kA =
{

− |A|−1
2 , . . . , 0, . . . , |A|−1

2

}
. Indeed, we have

Claim. For any subset A of Zp and any non-trivial character φ over Zp we have
the following estimate

|Eφ(Xi)| =

∣
∣
∣
∣
∣
1 − |A|

p
+

|A|
p

· 1
|A|

∑

x∈A

exp(2kπix/p)

∣
∣
∣
∣
∣
� 1 − θ +

sin πθ

p sin π
p

Proof. Note that every non-trivial character is of the form φ(x) = exp(2kπix/p)
where k ∈ {1, 2, . . . , p−1}. Next, we can assume that k = 1, by replacing A with
A′ = k ·A, which doesn’t change the set size. Now, by the triangle inequality we
have

∣
∣
∣
∣
∣
1 − |A|

p
+

1
p

∑

x∈A

φ(x)

∣
∣
∣
∣
∣
� 1 − |A|

p
+

|A|
p

·
∣
∣
∣
∣
∣

1
|A|

∑

x∈A

φ(x)

∣
∣
∣
∣
∣

It remains to estimate |mA| where

mA =
1

|A|
∑

x∈A

φ(x)

is the mass center of the set φ(A) = {φ(x) : x ∈ A}. Note that φ(A) may be
any arbitrary |A|-element subset of the set of all p-th roots of unity (because φ
is a bijection), see Fig. 2 for an illustration. Our task is therefore to maximize
the length of mA which happens when A is the set of subsequent unity roots. In
particular

|Eφ(Xi)| �
∣
∣
∣
∣1 − |A|

p

∣
∣
∣
∣ +

1
p

∣
∣
∣
∣
∣
∣
∣

∑

|x|� |A|−1
2

exp(2πix)

∣
∣
∣
∣
∣
∣
∣
= 1 − θ +

∣
∣
∣
∣
∣
sin πθ

p sin π
p

∣
∣
∣
∣
∣
, (53)

where the last equality follows by known trigonometric identities. Since θ < 1
we can omit the absolute value here, and this finishes the proof.

We will prove the following inequality

Claim. For any θ < 1 and any c � 4
3 − π2

18 , we have 1 − θ + sinπθ
p sin π

p
� 1 − cθ3

316 S. Dziembowski et al.

Fig. 2. The mass center of the set φ(A) should be as close to the circle as possible.

Proof. We want to prove that f(θ) = cθ3 − θ + sinπθ
p sin π

p
� 0. We have f(0) = 0

and ∂f(θ)
∂θ = −1 + 3cθ2 + π cosπθ

p sin π
p

Since for t ∈
[
0, π

2

]
it holds that cos t � 1 − 4t2

π2

and sin t � t − t3

6 , we obtain

∂f(θ)
∂θ

� −1 + 3cθ2 +
1 − 4θ2

1 − π2

6p2

=
π2

6p2 − θ2
(
4 − 3c + 3cπ2

6p2

)

1 − π2

6p2

(54)

and since θ � 1
p , the result follows.

From the last claim it follows that we can put c = 1
2 and thus

|Eφ(X)| =

∣
∣
∣
∣
∣
Eφ

(
n∑

i=1

Xi

)∣
∣
∣
∣
∣

=
n∏

i=1

|Eφ(Xi)|

�
(
1 − θ3/2

)n
. (55)

Now the result follows by Lemma 9.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

2. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009)

Optimal Amplification of Noisy Leakages 317

3. Brakerski, Z., Kalai, Y. T., Katz, J., Vaikuntanathan, V.: Overcoming the hole
in the bucket: public-key cryptography resilient to continual memory leakage. In:
51st FOCS, Las Vegas, Nevada, USA, pp. 501–510. IEEE Computer Society Press,
October 23–26, 2010

4. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 398–412. Springer, Heidelberg (1999)

5. Dav̀ı, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg
(2010)

6. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: 51st FOCS, Las Vegas, Nevada, USA, pp. 511–520.
IEEE Computer Society Press, 23–26 October, 2010

7. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014)

8. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429.
Springer, Heidelberg (2015)

9. Dziembowski, S., Faust, S.: Leakage-resilient circuits without computational
assumptions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 230–247.
Springer, Heidelberg (2012)

10. Dziembowski, S., Faust, S., Skorski, M.: Noisy leakage revisited. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 159–188. Springer,
Heidelberg (2015)

11. Dziembowski S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th FOCS,
Philadelphia, Pennsylvania, USA, pp. 293–302. IEEE Computer Society Press,
25–28 October, 2008

12. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(2010)

13. Goldreich, O.: Three XOR-lemmas — an exposition. In: Goldreich, O. (ed.) Studies
in Complexity and Cryptography. LNCS, vol. 6650, pp. 248–272. Springer, Heidel-
berg (2011)

14. Goldwasser S., Rothblum, G.N.: How to compute in the presence of leakage. In:
53rd FOCS, New Brunswick, NJ, USA, pp. 31–40. IEEE Computer Society Press,
20–23 October, 2012

15. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

16. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

17. Maurer, U.M., Pietrzak, K., Renner, R.S.: Indistinguishability amplification. IACR
Cryptology ePrint Archive, 2006:456 (2006)

18. Maurer, U.M., Pietrzak, K., Renner, R.S.: Indistinguishability amplification. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130–149. Springer, Heidel-
berg (2007)

19. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

318 S. Dziembowski et al.

20. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

21. Pollard, J.M.: A generalisation of the theorem of cauchy and davenport. J. Lond.
Math. Soc. s2–8(3), 460–462 (1974)

22. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013)

23. Rao, A.: An exposition of bourgain’s 2-source extractor. In: Electronic Colloquium
on Computational Complexity (ECCC), vol. 14, p. 034 (2007)

24. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

Rational Sumchecks

Siyao Guo1(B), Pavel Hubáček2, Alon Rosen3, and Margarita Vald4

1 Chinese University of Hong Kong, Hong Kong, China
syguo@cse.cuhk.edu.hk

2 Weizmann Institute of Science, Rehovot, Israel
pavel.hubacek@weizmann.ac.il
3 IDC Herzliya, Herzliya, Israel

alon.rosen@idc.ac.il
4 Tel Aviv University, Tel Aviv, Israel

margarita.vald@cs.tau.ac.il

Abstract. Rational proofs, introduced by Azar and Micali (STOC
2012) are a variant of interactive proofs in which the prover is nei-
ther honest nor malicious, but rather rational. The advantage of rational
proofs over their classical counterparts is that they allow for extremely
low communication and verification time. In recent work, Guo et al.
(ITCS 2014) demonstrated their relevance to delegation of computation
by showing that, if the rational prover is additionally restricted to being
computationally bounded, then every language in NC1 admits a single-
round delegation scheme that can be verified in sublinear time.

We extend the Guo et al. result by constructing a single-round delega-
tion scheme with sublinear verification for all languages in P. Our main
contribution is the introduction of rational sumcheck protocols, which are
a relaxation of classical sumchecks, a crucial building block for interac-
tive proofs. Unlike their classical counterparts, rational sumchecks retain
their (rational) soundness properties, even if the polynomial being verified
is of high degree (in particular, they do not rely on the Schwartz-Zippel
lemma). This enables us to bypass the main efficiency bottleneck in clas-
sical delegation schemes, which is a result of sumcheck protocols being
inapplicable to the verification of the computation’s input level.

Part of this work done while authors were visiting IDC Herzliya, supported by the
European Research Council under the European Union’s Seventh Framework Pro-
gramme (FP 2007-2013), ERC Grant Agreement No. 307952.
S. Guo—Work partially supported by RGC GRF grants CUHK410112 and
CUHK410113.
P. Hubáček—Supported by the I-CORE Program of the Planning and Budgeting
Committee and The Israel Science Foundation (Grant No. 4/11).
A. Rosen—Supported by ISF Grant No. 1255/12 and by the ERC under the EU’s
Seventh Framework Programme (FP/2007-2013) ERC Grant Agreement No. 307952.
Work in part done while the author was visiting the Simons Institute for the Theory
of Computing, supported by the Simons Foundation and by the DIMACS/Simons
Collaboration in Cryptography through NSF Grant #CNS-1523467.
M. Vald—Work supported by the Check Point Institute for Information Security
and by ISF Grant No. 1255/12.

c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 319–351, 2016.
DOI: 10.1007/978-3-662-49099-0 12

320 S. Guo et al.

As an additional contribution we study the possibility of using rational
proofs as efficient blocks within classical interactive proofs. Specifically,
we show a composition theorem for substituting oracle calls in an inter-
active proof by a rational protocol.

1 Introduction

The availability of on-demand computational power and the ubiquitous connec-
tivity of small devices are some of the main driving forces behind the move to
the model of cloud computing. In this model a client faces a computationally
demanding task and relies on the assistance of an external server with sufficient
computational power, e.g. a cluster of machines. When the weak client asks the
powerful server to perform a computation on its behalf it would like to have some
guarantees on the correctness of the provided result. This scenario is addressed
by the model of verifiable delegation of computation. In this setting, the server
provides the client with the result of the computation together with a proof of its
correctness. Since the client must be able to verify the proof despite its limited
computational resources, the verification should be much easier than running
the computation itself, or else there is no point in outsourcing it.

Interactive Proofs and Arguments. A setting where an all-powerful entity
aims to convince a computationally bounded one of the correctness of a computa-
tional statement was studied in the context of interactive proof systems. In this
model interaction and randomization enable the prover to efficiently convince
the verifier. The IP = PSPACE theorem [22,28] showed that it is possible for
the prover to convince the verifier about large classes of languages, in particular
any language computable in polynomial time. However, this result is not effi-
cient enough to be practically applicable to the problem of verifiable delegation.
In this context, one aims to minimize multiple complexity measures at once,
such as communication complexity (both in the number and size of exchanged
messages), running time of the verifier and prover efficiency.

For higher complexity classes, the round-complexity/prover-efficiency of
interactive proofs is a limiting factor to their use in practice. The notion of
interactive arguments considers a setting where the prover is computationally
bounded, allowing to circumvent these efficiency shortcomings. The work of
Kilian [20] gave four round interactive arguments for all languages in NP.
Micali [23], relying on random oracles proposed a non-interactive version of
this protocol. More recently, there has been significant effort to obtain more
efficient non-interactive arguments for NP (see e.g. [5,10] and the references
therein). One limitation of all such known constructions is that they are based on
non-standard assumptions (cf. [24]). The problem of constructing efficient non-
interactive arguments for NP under standard assumptions is still open, though
there is some evidence that non-standard assumptions are unavoidable [13].

Unlike in the case of arguments for non-deterministic computation, the sit-
uation for tractable languages (which actually correspond to problems common

Rational Sumchecks 321

in real-life delegation scenarios) is significantly better. The first evidence that
one can attain delegation schemes for restricted complexity classes is the work
of Goldwasser et al. [14], who gave a single-round argument that allows to ver-
ifiably delegate any bounded depth computation with quasi-linear verification
time. Recently, the work of Kalai et al. [18] achieved a single-round argument
(under standard assumptions) with quasi-linear verification time for any lan-
guage in P.

In some scenarios quasi-linear verification time may not be good enough. For
instance, if the input x ∈ {0, 1}n is a large database and the output f(x) of the
outsourced computation is a concise aggregation of its statistics, then it is desir-
able if the verifier does not need to read the whole database to verify correctness.
In such cases one would prefer to have a delegation scheme with verification time
sublinear in the input size n, preferably even as low as polylog(n). As was pointed
out in the literature, delegation schemes with sublinear verification are in general
not achievable with respect to the standard notion of soundness (cf. Rothblum
et al. [27]), which led to introduction of alternative relaxed models that would
enable sublinear verification time.

Rational Proofs and Arguments. One recent notion that opens the door for
sublinear verification is that of rational arguments [15]. This model follows the
paradigm of rational proofs introduced by Azar and Micali [2], who relax the
prover in interactive proof systems to be rational. In rational proofs the veri-
fier pays the prover according to the quality of the provided answer, and the
reward is set up so that it is irrational for the prover to report an incorrect
result of the computation. Azar and Micali [2] illustrated the power of rational
proofs by giving a single-round rational proof for any problem in #P and in
general a constant round rational proof for any level of the counting hierarchy.
In subsequent work, Azar and Micali [3] gave a “scaled-down” version of their
#P-protocol that leads to constant round rational interactive proof with sublin-
ear (O(log n) time) verification for the class of log-time uniform TC0, i.e., the
class of constant-depth, log-time uniform polynomial-size circuits with threshold
gates. They also argue that such efficient rational proofs capture precisely the
class of log-time uniform TC0.

More recently, Guo et al. [15] put forward the notion of rational arguments,
by further restricting the rational prover to be computationally bounded. They
then showed how to construct single-round rational arguments with sublinear
(polylog(n) time) verification for the class NC1, of search problems computable
by log-time uniform Boolean circuits of O(log n)-depth.

1.1 Our Results

We extend the results of Guo et al. [15] and give a single-round rational argument
with sublinear (polylog(n) time) verification for any language in P. Our initial
observation is that both the non-interactive arguments for NC of Goldwasser
et al. [14] and the non-interactive arguments for P of Kalai et al. [18] have
for the most part sublinear verification time, with the exception of a single

322 S. Guo et al.

heavy verification step that ultimately induces quasi-linear running time for the
verifier. If we could substitute this step by a more efficient procedure that does
not dominate the rest of the protocol then we would achieve sublinear verification
time.

Our proposal is to use a rational proof with sublinear verification for the
heavy step and get a rational version of the original protocol which enjoys sub-
linear verification time. There are two main issues that we will need to address:
(1) construct sublinear rational proofs for the heavy step; (2) argue how the
rationality can be preserved under composition.

Our main contribution is the introduction of rational sumcheck protocols,
which are a relaxation of classical sumchecks, a crucial building block for inter-
active proofs. To show that our approach yields the desired result, we pin down
sufficient conditions for our transformation to work and prove that the protocol
of Goldwasser et al. [14] (respectively Kalai et al. [18]), with the rational sum-
check replacing the heavy step, yields the sought after rational argument for NC
(respectively for P).

It should be noted that our main efficiency gains are not due to the fact
that rational sumcheck protocols are more efficient than their classical counter-
parts (though we do gain some efficiency by making sumcheck protocols non-
interactive). Indeed, one of the key observations behind the works on efficient
delegation [14,18] is that one could verify correctness of computation via very
efficient sumcheck protocols. The one place where rational sumcheck protocols
turn out to be more useful than classical ones is at the input layer, where usage
of the latter would entail a total break-down of soundness.

We show that a rational version of sumcheck protocols is in fact sufficient to
carry out verification, even without reading the entire input. This is something
that was not possible to achieve using classical sumcheck protocols, since the
input layer does not satisfy the structural properties (low-degree) that would
guarantee soundness when verifying via classical sumchecks. Our (equally effi-
cient) rational sumcheck protocols, on the other hand, give a meaningful sound-
ness guarantee even when such structural properties are absent.

Sumcheck Protocols. At a high level, a classical sumcheck protocol allows the
verifier to check a sum of evaluations of a given low-degree polynomial h : F

m
q →

Fq on a certain subset S ⊂ F
m
q of its domain (e.g. S = {0, 1}m). The source of

the protocol’s power is that it makes it sufficient for the verifier to evaluate h on
a single randomly chosen point p ∈ F

m
q , rather than on the entire subset S. This

results in significant efficiency gains, since instead of requiring the evaluation
of h on |S| points it reduces the problem of verification to the evaluation on a
single point (at the cost of m = log(|S|) rounds of communication).

Previous works on delegation [14,18] make extensive use of sumcheck pro-
tocols in order to efficiently verify the low degree extensions W̃ of intermediate

Rational Sumchecks 323

levels of computation.1 Specifically, it is possible to write W̃ (z) =∑
p∈S βz(p)W (p), where βz(p) is a low-degree function and W (p) is an appro-

priate encoding of the corresponding level. This reduces the task of verifying
the correctness of evaluating W̃ on z to the problem of performing a sumcheck
on individual inner summands βz(p)W (p). In intermediate levels of the compu-
tation, we are guaranteed that W is of low degree, and hence so is βz(p)W (p).
However, at the input level the function W (p) = Wx(p) corresponds to a straight-
forward bit-wise representation of the input x ∈ {0, 1}n. The problem is that
this representation might result in a high-degree polynomial. Not being of low
degree, βz(p)Wx(p) cannot be verified by a classical sumcheck protocol. This
means that the input x needs to be read in its entirety, or else the protocol is
not sound.

Rational Sumcheck Protocols. To circumvent the above issue, we leverage
the power of rational proofs, in which soundness relies on rationality of the
prover. We give a rational sumcheck protocol that allows to efficiently verify
summation of any function over a fixed set, as long as evaluating the function on
a single point can be performed efficiently (see Sect. 3 for details). Not only that
our rational sumcheck protocol preserves the efficiency of classical sumchecks,
but it can also be performed without any communication overhead (it is in
fact non-interactive). The main feature of rational sumchecks, however, is that
they give a meaningful (rational) soundness guarantee even if the degree of the
polynomial is high, which implies that unlike their classical counterparts they
are also applicable at the input layer.

Technically speaking, the reason for which the new rational protocols work
regardless of the polynomial’s degree is because the soundness analysis does not
necessitate invoking the Schwartz-Zippel lemma. Instead, we rely on a specially-
tailored reward function that is designed to translate sums of finite field elements
to numerical values that are used to determine the reward. The challenge in
designing the reward function originates from the fact that modular sums lose
information about the summands, whereas the reward is required to reflect this
information in its entirety.

Composition of Classical and Rational Interactive Proofs. To make the
above fit into a general purpose protocol, we need to carefully show how to plug
a rational subprotocol into a larger one while retaining rational soundness. To
this end, we show a composition theorem for substituting oracle calls in an inter-
active proof by a rational protocol. This allows us to use the classical interactive
proofs almost as a black-box. This approach may turn out to be useful elsewhere.

Putting the Pieces Together. At a high level, the structure of our construc-
tion of single-round rational arguments for P follows the delegation scheme of
1 In Goldwasser et al. [14] this is performed layer by layer over the circuit computing

the function, whereas in Kalai et al. [18] the reduction to sumchecks is done via a
global encoding of the transcript of the computation.

324 S. Guo et al.

Kalai et al. [18]. In particular, we define and construct δ-no-signaling rational
multi-prover proofs (RMIPs) by using our composition theorem and relying on
rational sumchecks as a subprotocol. We then show a general efficient transfor-
mation that uses any sub-exponentially secure Fully Homomorphic Encryption
(FHE) scheme to transform no-signaling RMIPs into single-round rational argu-
ments (in a manner similar to Kalai et al. [18]). Crucial to our transformation
is the reward gap of the underlying rational protocol, which roughly captures
the utility loss of the prover as a result of misreporting the function’s value.
Unlike early rational proofs of Azar and Micali [2] and akin to Guo et al. [15],
both our sumchecks and the overall composed protocol enjoy noticeable reward
gap. This is sufficient for the overall transformation to go through (enabling a
reduction from the security of the FHE scheme), and results in the sought-after
single-round rational argument for P with sublinear verification time.

Beyond being of importance in the transformation from rational proofs to
non-interactive rational arguments, noticeable reward gap is also crucial for
incentivizing the prover to report the correct value of the computation, as oth-
erwise he might be tempted to avoid performing the work while risking very
little penalty (see Sect. 2 and Guo et al. [15] for an extended discussion of the
subject).

1.2 Comparison to Alternative Delegation Schemes

The classical interactive proof for NC of Goldwasser et al. [14] has quasi-linear
verification time. The running time of the verifier in their protocol appears to
be optimal in the standard model, in the sense that achieving sublinear verifica-
tion time with standard soundness guarantee seems unlikely without reading the
whole input (even for a simple function such as parity). To circumvent this limita-
tion Rothblum et al. [27] considered interactive proofs of proximity, a relaxation
of interactive proofs motivated by property testing, and show that it is possible
to achieve sublinear verification for NC in this new model (since the protocol
does not need to provide soundness guarantee for all instances).

An alternative relaxation was studied by Azar and Micali [3] and Guo et al. [15].
These works considered delegation in the setting of rational proofs and proposed
schemes whith both sublinear verification (as small as polylogarithmic) and (ratio-
nal) soundness guarantees, which in contrast to proofs of proximity hold for all
instances. Whereas their protocols work only for NC1, our new rational proof,
which is a combination of classical and rational proofs, works for the entirety of NC
while preserving the desired properties of sublinear verification and rational sound-
ness (see Table 1 for a detailed comparison). By composing classical and ratio-
nal proofs, we obtain a rational multi-prover proof (secure against no-signaling
provers) with sublinear verification for any deterministic computation akin to the
classical proof of Kalai et al. [18] (see Table 2 for a detailed comparison). We remark
it is possible to transform the above classical proofs and rational proofs into one-
round classical and rational arguments.

Rational Sumchecks 325

Table 1. Efficiency comparison of results for NC

Queriesa Rounds Communication Verification time Depth

Goldwasser et al. [14]

(interactive proofs)

n Õ(d) Õ(d) Õ(n) d=polylog(n)

Rothblum et al. [27]

(proofs of

D-proximity)

(n
D
)1+o(1) Õ(d) D

(n
D
)o(1) ·Õ(d)

(n
D +D

)1+o(1)Õ(d) d=polylog(n)

Azar and Micali [3]

(rational proofs)

1 d Õ(d) Õ(d) d = O(log n)

Guo et al. [15] (rational

proofs)

1 d d Õ(d) d = O(log n)

This work (rational

proofs)

1 Õ(d) Õ(d) Õ(d) d=polylog(n)

aBy queries we denote the number of input bits read by the verifier.

Table 2. Efficiency comparison of results for P

Queries Number of provers Communication Verification time Remarks

Kalai et al. [18] (MIP) n polylog(t) polylog(t) n · polylog(t) DTIME(t)

This work (rational MIP) polylog(t) polylog(t) polylog(t) polylog(t) DTIME(t)

1.3 Other Related Work

To give a complete overview of works on verifiable delegation of computation is
out of the scope of this paper, an interested reader can find many related results
in the recent survey by Blumberg and Walfish [6].

An alternative approach for interactive proofs with sublinear verification was
given in Rothblum et al. [27] who introduced interactive proofs of proximity and
Gur and Rothblum [16] who considered their non-interactive analogues. Since
both works studied a protocol analogue of property testing, their protocols pro-
vide guarantees only for instances that are either in the language or far from
being in the language. Independently an in parallel to our work, Kalai and
Rothblum [19] studied proofs of proximity with computationally bounded
provers and introduced arguments of proximity.

Besides the mentioned works in the context of rational proofs, Zheng and
Blanton [29] study the specific problem of delegating matrix multiplication and
give also a rational argument for this task. The work of Chen et al. [9] introduces
the model of rational interactive proofs with multiple provers.

Alternative approaches for incentivizing correct computation can be found in
the work of Bentov and Kumaresan [21] who consider a model for incentivizing
computation over Bitcoin. Alternatively, Belenkiy et al. [4] or Pham et al. [25]
study a model where the verifier infrequently performs the whole computation
to verify the correctness of prover’s output.

The treatise of general composition of rational protocols in scientific literature
is limited. The work of Garay et al. [12] provides some insights on composition of
protocols secure in the presence of a single central rational adversary. The frame-
work of Canetti and Vald [8] studies a notion sufficient for preserving rationality

326 S. Guo et al.

under composition by imposing strong restrictions on the information available
to distinct adversarial entities.

2 Preliminaries

Throughout the rest of the paper we use the following notation and definitions.
For n ∈ N, let [n] denote the set {1, . . . , n}. A function g : N → R

+ is negligible
if it tends to 0 faster than any inverse polynomial, i.e., for all c ∈ N there exists
kc ∈ N such that for every k > kc it holds that g(k) < k−c. We use negl(·) to
talk about negligible function if we do not need to specify its name.

Rational Proofs. In a rational proof, Arthur pays Merlin a randomized reward
according to the transcript of the communication, and the communication con-
stitutes a rational Merlin Arthur game if the correct evaluation y = f(x) can be
derived from a transcript that maximizes the expected reward.

For a pair of interactive Turing machines, P and V , we denote by (P, V)(x)
the random variable representing the transcript between P and V when interact-
ing on common input x. Let reward(·) denote a randomized function computed
by V that given a transcript calculates a reward for P , and by output((P, V)(x))
the output of V after interacting with P on common input x. In this setting, the
goal of a rational P is to maximize the expected value of reward(·), while the
goal of V is to learn (and output) the true evaluation of the desired function f
on x. We consider the setting where a rational prover first declares his answer
to f(x), and only then tries to prove the correctness of the reported value.

Definition 1. [Functional Rational Merlin Arthur]. Let C, T : N → R be some
functions. A function f : {0, 1}∗ → {0, 1}∗ is in FRMA [r, C, T] if there exists an
r-round public-coin protocol (P, V), referred as rational proof, and a randomized
reward function reward : {0, 1}∗ → R≥0 such that for all inputs x ∈ {0, 1}∗:

(a) Pr[output((P, V)(x)) = f(x)] = 1.
(b) For every round i and for any prover P ∗ that misreports f(x) and behaves

as P up to round i and differs on round i’th message it holds that:
E[reward((P, V)(x))] > E[reward((P ∗, V)(x))], where the expectation is taken
over the random coins of the verifier and the prover.

(c) The communication complexity of P is C (|x|).
(d) The running time of V is T (|x|).

No-Signaling Provers. In this work we use the heuristic suggested by Aiello
et al. [1] for transforming a multi-prover proof into a single round argument using
an efficient Private Information Retrieval (PIR) scheme (or alternatively a Fully
Homomorpic Encryption scheme), though in the rational setting. As pointed
out in the work of Dwork et al. [11], the bottleneck when proving soundness of
the resulting argument is the possibility for the prover to correlate the answers
in an undetectable way. Such no-signaling strategies (introduced as “spooky
interactions” in the work of Dwork et al. [11]) need to be accounted for in the
proof of soundness, as shown in Kalai et al. [17].

Rational Sumchecks 327

Thus, we extend Definition 1 to the setting with multiple provers restricted to
δ-no-signaling strategies. In contrast to the classical multi-prover setting, where
each prover strategy is completely independent of other provers’ queries, δ-no-
signaling strategies can be correlated as long as for any subset of provers their
answers do not contain information about the queries of provers outside the
subset.

Definition 2 (Statistically No-Signaling Distributions). Let D be a query
alphabet and let Σ be an answer alphabet. For every q = (q1, . . . , qk) ∈ Dk, let
Aq be a distribution over Σk. We think of Aq as the distribution of the answers
for queries q. We say that the family of distributions {Aq}q∈Dk is δ-no-signaling
if for every subset S ⊂ [k] and every two sequences of queries q, q′ ∈ Dk, such
that qS = q′

S, the following two random variables are δ-close: {aS : a ← Aq} and
{a′

S : a′ ← Aq′}.

The rational no-signaling multi-prover proof consists of only one round. Given
an input, the verifier generates queries, one for each prover, and sends them to
the k provers. Each prover responds with an answer that might depend on all the
queries, as long as the provers’ strategies are no-signaling. Finally, the verifier
computes the reward based on the received answers (as well as the input and
the randomness used).

Definition 3 (One-Round Rational Multi-prover Interactive Proof).
Let C, T : N → R be some functions. A function f : {0, 1}∗ → {0, 1}∗ is
in FRMIP [k, δ, C, T] if there exists a one-round public-coin protocol (

−→
P , V) =

(P1, . . . , Pk, V), referred as multi-prover rational proof, and a randomized reward
function reward : {0, 1}∗ → R≥0 such that for all inputs x ∈ {0, 1}∗:

(a) Pr[output((
−→
P , V)(x)) = f(x)] = 1.

(b) For every set of provers P ∗
1 , . . . , P ∗

k with δ-no-signaling distributions
that misreport f(x) it holds that: E[reward((P1, . . . , Pk, V)(x))] >
E[reward((P ∗

1 , . . . , P ∗
k , V)(x))], where the expectation is taken over the ran-

dom coins of the verifier and the provers.
(c) The communication complexity from any of the provers to V is at most is

C (|x|).
(d) The running time of V is T (|x|).

Reward Gap. We note that once computation incurs some cost to the prover
the Definitions 1 and 3 of rational proofs do not rule out a “lazy behavior”
of the prover corresponding to outputting a fixed default value. Having this in
mind, Guo et al. [15] proposes the notion of reward gap that measures how big
is the loss of a prover that always reports f(x) incorrectly. A noticeable gap
in expectation between such a prover and the prescribed behavior then assures
that it is beneficial for the prover to perform the computation to significantly
increase its expectation.

328 S. Guo et al.

Definition 4 (Reward Gap). Let f ∈ FRMA [r, C, T] be some function and
let (P, V) and reward(·) be the guaranteed protocol and reward function. The
reward gap of reward(·) is a function Δreward : N → R, such that for every n ∈ N,

Δreward(n) = min
x∈{0,1}n

min
P ∗∈S

(
E[reward((P, V)(x))] − E[reward((P ∗, V)(x))]

)
,

where the expectation is taken over the random coins of the verifier and the
prover, and S is the set of all P ∗ such that Pr[output((P ∗, V)(x)) �= f(x)] = 1.

We emphasize that scaling the reward does not imply a real improvement in
the reward gap. In order to have a robust notion we always work with a nor-
malized reward gap, i.e., reward gap divided by the maximal value of the reward
function. An alternative approach (taken for example in Azar and Micali [3])
that prevents the use of scaling to improve the reward gap might be to assume
that the verifier has a fixed budget. We use the natural extension of reward gap
to rational multi-prover interactive proofs.

Rational Arguments. Rational arguments were defined by Guo et al. [15]
to capture the behavior of a rational prover that is computationally bounded.
The definition of rational arguments allows negligible gains over the reward
guaranteed by the prescribed behavior (but not more), since the rational prover
might not follow the prescribed strategy, and it would try to solve the underlying
hard problems (see item (b) in Definition 5).

Another important issue needed to be addressed in the computational setting
is the cost of computing f(x). As in the unbounded setting, it must rule out
a prover that always gives some default (possibly incorrect) output, without
performing any computation, while getting just slightly less than the expectation
of the prescribed behavior. To address this shortcoming the definition of rational
arguments “pins down” the profitability of deviation explicitly by appropriately
adapting the notion of reward gap to the computationally bounded setting (see
item (c) in Definition 5).

Definition 5 (Rational Argument). A function f : {0, 1}∗ → {0, 1}∗ admits
a rational argument with security parameter κ : N → N if there exists a protocol
(P, V) and a randomized reward function reward : {0, 1}∗ → R≥0 such that for
any input x ∈ {0, 1}∗ and any prover P ∗ of size ≤ poly(2κ(|x|)) the following
hold:

(a) Pr[output((P, V)(x)) = f(x)] = 1.
(b) There exists a negligible function ε(·) such that E[reward((P, V)(x))] +

ε (|x|) ≥ E[reward((P ∗, V)(x))].
(c) If there exists a polynomial p(·) such that Pr[output((P ∗, V)(x)) �= f(x)] ≥

p(|x|)−1 then there exists a polynomial q(·) such that E[reward((P ∗, V)(x))]+
q(|x|)−1 ≤ E[reward((P, V)(x))].

The expectations and the probabilities are taken over the random coins of the
respective prover and verifier. We say that the rational argument is efficient if
the running time of V is o(|x|) for every x ∈ {0, 1}∗.

Rational Sumchecks 329

3 Rational Sumcheck Protocols

Sumcheck protocols are an important building block in many classical interactive
proofs. In particular, they play a crucial role in the IP = PSPACE theorem
[22,28]. Informally, a sumcheck protocol allows a verifier to efficiently check that
a summation of evaluations of a polynomial of low degree on a given set of
points is equal to a certain value (e.g. zero). In this section we show how to
construct a rational sumcheck protocol that is sound (against a rational prover)
even when applied on a polynomial of high degree. An important property of
rational proofs is the reward gap, that captures the minimal loss in reward of
the prover that always misreports the value of the function (formal definitions
of rational proofs and reward gap are provided in Sect. 2). All of our rational
proofs achieve noticeable reward gap.

Before describing our rational sumchecks, we show how to solve a simpler
related problem: the verifier is given a bound M and n integers x1, . . . , xn ∈
{0, . . . , M − 1}, the verifier’s goal is to learn the sum of x1, . . . , xn. In the even
more restricted case when x1, . . . , xn are bits (i.e., M = 2), one could solve this
binary counting problem using an analogue of the rational proof of Azar and
Micali [2]. In particular, the verifier can use a strictly proper scoring rule (e.g.
the Brier’s score [7]) to reward the quality of the prover’s answer y =

∑n
i=1 xi as

a prediction of the binary random variable b defined by outputting a uniformly
random xi. The intuition behind such protocol is that the Boolean random
variable b encodes the information about the number of ones within x1, . . . , xn;
specifically, the probability of b = 1 is exactly the number of ones divided by
n. Since the reward is defined according to a strictly proper scoring rule, a
rational prover will uniquely maximize its expected reward by reporting the
correct y =

∑n
i=1 xi (it describes the true distribution of b) as long as it is

possible to efficiently sample b.
When M > 2, the mean of the random variable defined by outputting a

uniformly random xi still encodes the sum of x1, . . . , xn. However, b is not nec-
essarily Boolean and, unlike in the case when x1 . . . , xn are bits, the problem can
no longer be solved by the protocol of Azar and Micali [2]. In order to use the
Brier’s score, it is necessary to appropriately modify the procedure of sampling
b. Our more general protocol is given in Fig. 1. The verifier picks a random i from
{1, . . . , n}, and sets b = 1 with probability xi/M and otherwise sets b = 0. After
this normalization the probability of b = 1 is

∑n
i=1 xi/(nM) which still encodes

the sum of x1, . . . , xn, and since b is a Boolean variable it is possible to use the
same reward function to incentivize any rational prover to report correct descrip-
tion of b. Therefore, the protocol in Fig. 1 is a non-interactive rational proof for
the simplified problem of summation of n bounded non-negative values.

Lemma 1 (Rational Proof for Summation). For any integer M ≥ 2, let
f(x1, . . . , xn) =

∑n
i=1 xi be the function that computes the sum of any n-tuple

of integers x1, . . . , xn ∈ {0, . . . , M − 1}. Then f ∈ FRMA[1, log(nM),
O(polylog(nM))] with reward gap at least 1

(nM)2 .

330 S. Guo et al.

Fig. 1. Rational proof for summation of n non-negative integers.

Proof. Consider the protocol in Fig. 1. The expected reward when prover sends
y is

E[R(y)] = −2
(

y

nM
−

∑n
i=1 xi

nM

)2

+ 2
(∑n

i=1 xi

nM

)2

− 2
(∑n

i=1 xi

nM

)
+ 2 ,

therefore the expected reward of the prover is uniquely maximized when y =∑n
i=1 xi.
For any integer y∗ �=

∑n
i=1 xi,

E [R (
∑n

i=1 xi)] − E[R(y∗)] = 2
(

y∗

nM
−

∑n
i=1 xi

nM

)2

≥ 2
(nM)2

,

where the equality holds when y∗ =
∑n

i=1 xi ± 1. The reward function has
maximal value 2, hence the (normalized) reward gap is 1

(nM)2 . Because y =
∑n

i=1 xi ≤ nM , y can be represented using log (nM) bits which upper bounds
the total communication. The verifier only needs to access a single xi where i
is chosen uniformly and randomly from {1, . . . , n}. After accessing to xi, the
computation of the reward can be done in O(polylog(nM)) time. 	

Note that for any polynomially bounded M , the protocol in Fig. 1 achieves sub-
linear verification (the verifier only needs to access a single value) and noticeable
reward gap. Moreover, based on the protocol in Fig. 1, we can construct an effi-
cient rational proof for any problem which can be reduced to summation of
several bounded values. For example, we immediately obtain a rational proof
for addition of n elements over a finite field Zp of prime characteristic p. Given
x1, . . . , xn ∈ Zp:

1. The prover sends to the verifier the sum s =
∑n

i=1 xi over Z (i.e., without
performing the modulo operation) together with y = (s mod p), where s
serves as the proof of correctness of y.

2. If y �= (s mod p) then the verifier pays reward 0, and otherwise the verifier
computes the reward for s as in the rational proof for summation of x1, . . . , xn

with M = p (as described in Fig. 1).

Rational Sumchecks 331

To deal with general summation over a finite field Fq of prime power charac-
teristic q = pm, we leverage the fact that the additive group of Fpm is isomorphic
to (Zp,+ mod p)m, where + mod p denotes addition over Zp. Thus, we can work
with the representation of elements in Fpm as vectors over Z

m
p , i.e., we repre-

sent any x ∈ Fpm as (x1, . . . , xm) ∈ Z
m
p . This allows us to get a rational proof

for the function
∑n

i=1 xi that computes the sum of any n-tuple of elements
x1, . . . , xn ∈ Fpm over Fpm simply by applying the rational protocol for sum-
mation over Zp on a randomly chosen coordinate of the vector representation
(y1, . . . , ym) ∈ Z

m
p of the output y ∈ Fpm declared by the prover. The protocol

is given in Fig. 2.

Fig. 2. Rational proof for summation of n elements over a finite field.

Corollary 1 (Rational Proof for Addition over Finite Fields). For any
integer m ≥ 1 and any prime p ∈ N. Let f(x1, . . . , xn) =

∑n
i=1 xi be the function

that computes the sum of any n-tuple of elements x1, . . . , xn ∈ Fpm over the field
Fpm . Then f ∈ FRMA [1, log (npm), O(m · polylog(np))] with reward gap at least

1
m(np)2 .

Proof. Consider the protocol in Fig. 2. Let y and s denote the vectors sent by
the prover when he tells the truth. It is easy to check the expected reward of
the prover is maximized at y, s. When prover answers ỹ �= y and s̃, if ỹ �= (s̃
mod pm) then the prover gets reward 0, otherwise s and s̃ must differ in at least
one entry and the expected reward of the prover is

Ej [R(s̃j)] = Ej

[

−2
(

s̃j

np
− sj

np

)2

+ 2
(

sj

np

)2

− 2
(

sj

np

)
+ 2

]

≤ Ej

[

2
(

sj

np

)2

− 2
(

sj

np

)
+ 2

]

− 2
m(np)2

.

332 S. Guo et al.

Note the reward function has maximal value 2 therefore the reward gap is at
least 1

m(np)2 . 	

Note that a sumcheck protocol is used to verify a sum of evaluations of a poly-
nomial on a given set of points. Corollary 1 immediatelly gives rise to a non-
interactive rational sumcheck protocol, where the verifier needs to evaluate the
polynomial on a single point from the subset.

Corollary 2 (Rational Sumcheck Protocol). For any finite field F and inte-
ger m ≥ 1. Let S ⊆ F

m be a non-empty subset of F
m. Let

∑
z∈S f(z) be the

function that sums evaluations of a given polynomial f : F
m → F (of arbitrary

degree) on S. Then f ∈ FRMA[1, log(|S||F|), O(t + polylog(|S||F|))], where t is
the time it takes to evaluate f on any z ∈ F

m. The rational proof has reward
gap at least 1/(log(|F|) · (|S||F|)2).

Proof. Using the protocol in Fig. 2 with field F and setting n = |S|, we obtain a
rational proof for

∑
z∈S f(z) with reward gap 1

log (|F|)·(|S||F|)2 , verification time

O(t + polylog(|S||F|)), and communication log(|S||F|) bits. 	

4 Composition of Classical and Rational Interactive
Proofs

In this section we investigate on the possibility of composition of classical interac-
tive proofs with rational interactive proofs. In particular, we show a composition
theorem for replacing oracle calls in a certain type of classical interactive proofs
by a rational proof implementing the oracle. The composition is presented for
both interactive proofs and δ-no-signaling multi-prover interactive proofs (for
formal definition see Definition 3 in Sect. 2) resulting in their respective rational
counterparts. The obtained rational proof has minimal loss in the reward gap
that is proportional to the soundness of the classical interactive proof.

4.1 Substituting Oracle by Rational Proof in Interactive Proof

Let f : {0, 1}∗ → {0, 1}∗ be a function implicitly defining language Lf =
{(x, y)|y = f(x)}. Let πg = (Pπ, V g

π) be an interactive proof for Lf where the
verifier has oracle access to function g : {0, 1}∗ → {0, 1}∗. Let ϕ = (Pϕ, Vϕ) be
a rational interactive proof for g with reward function rewardϕ. We denote by
πϕ = (P, V) with a reward function R the protocol between the prover P and
verifier V given in Fig. 3. We define the reward in the resulting protocol as the
average of the rewards obtained for each rational proof implementing an oracle
query, though we note that this is not crucial for our results. The new reward
function can be defined in other natural ways depending on the application.

We concentrate on a class of query independent interactive proofs in which
the queries to the oracle can depend only on the input and the randomness of
the verifier. Aditionally, once a query is submitted to the oracle the prover also
recives the query.

Rational Sumchecks 333

Fig. 3. Rational proof πϕ = (P, V) resulting from interactive proof πg = (Pπ, V g
π) with

oracle calls to g substituted by a rational proof ϕ = (Pϕ, Vϕ).

Definition 6 (Query Independent Interactive Proofs). Let f : {0, 1}∗ →
{0, 1}∗ be a function and let πg = (Pπ, V g

π) be an interactive proof for Lf =
{(x, y)|y = f(x)} with V g

π having oracle access to some function g : {0, 1}∗ →
{0, 1}∗. We say that πg is a query independent interactive proof if for any input
x the following holds:

1. Only one query is issued by V g
π to g and it depends only on the input x and

on the randomness of V g
π .

2. The query issued by V g
π is send to Pπ in the next round.

Theorem 1 (Oracle Substitution in IP). Let f : {0, 1}∗ → {0, 1}∗ be a
function and let πg = (Pπ, V g

π) be a query independent interactive proof for Lf =
{(x, y)|y = f(x)} with V g

π having oracle access to some function g : {0, 1}∗ →
{0, 1}∗. If πg has perfect completeness and soundness s then for any rational
interactive proof ϕ = (Pϕ, Vϕ) for g with reward gap Δ, the composed protocol
πϕ = (P, V) is a rational proof for f with reward gap Δ(1 − s).

Proof. The reward in the rational protocol πϕ (defined in Fig. 3) is equal to
the reward in the rational proof ϕ for evaluating the oracle query if the verifier
accepts and zero otherwise. In order to show that πϕ is a rational proof with the
claimed reward gap, we show that for every x the expectation of any prover P ∗

that reports y′ �= f(x) (i.e., (x, y′) is not in Lf) can be bound. To simplify the
notation, we define three events that might happen during the execution of the
protocol πϕ:

334 S. Guo et al.

– E0 corresponds to the event when V g
π (simulated by V) accepts and P ∗

supplies a correct answer to the oracle query q (i.e., (P ∗, V g
π)(x) = 1 ∧

output(P ∗, Vϕ)(q) = g(q)).
– E1 corresponds to the event when V g

π (simulated by V) accepts and P ∗

supplies an incorrect answer to the oracle query q (i.e., (P ∗, V g
π)(x) =

1 ∧ output(P ∗, Vϕ)(q) �= g(q)).
– E2 corresponds to the event when V g

π (simulated by V) rejects.

We can express the expectation of P ∗ as

E[reward(P ∗, V)(x)] = Pr[E0] · E[reward(P ∗, V)(x)|E0]

+ Pr[E1] · E[reward(P ∗, V)(x)|E1] + Pr[E2] · E[reward(P ∗, V)(x)|E2].

Since the expected reward is zero in case of event E2 (the verifier V g
π rejects),

the above is equal to

Pr[E0] · E[reward(P ∗, V)(x)|E0] + Pr[E1] · E[reward(P ∗, V)(x)|E1].

We can bound Pr[E1] by 1 − Pr[E0], so

E[reward(P ∗, V)(x)] ≤ Pr[E0]· E[reward(P ∗, V)(x)|E0]
+ (1 − Pr[E0]) · E[reward(P ∗, V)(x)|E1].

We use the following two claims to conclude the proof.

Claim 1. Pr[E0] ≤ s.

Proof (of Claim 1). The interactive protocol with oracle access (Pπ, V g
π) is query

independent in the sense of Definition 6, hence the prover in the composed
protocol πϕ does not gain any additional information from the verifier’s query
to the oracle for g. It follows that in the case when the prover P ∗ supplies a
correct answer to the oracle query the verifier accepts at most with the same
probability as in the interactive proof with an oracle access, and the claim follows
from the soundness of the interactive proof (Pπ, V g

π). 	

Claim 2. E[reward(P ∗, V)(x)|E1] ≤ Eq[reward(Pϕ, Vϕ)(q)] − Δ.

Proof (of Claim 2). Assume that the claim does not hold, then the prover P ∗

achieves for some q a higher reward than E[reward(Pϕ, Vϕ)(q)] − Δ. P ∗ can be
used in the rational proof (Pϕ, Vϕ) for evaluating the oracle in order to achieve
a higher reward than what is guaranteed by the reward gap of (Pϕ, Vϕ), since
the oracle query is completely independent of the transcript. 	

We use Claim 2 to bound the expectation as:

E[reward(P ∗, V)(x)] ≤ Pr[E0]· E[reward(P ∗, V)(x)|E0]
+ (1 − Pr[E0]) · (Eq[reward(Pϕ, Vφ)(q)] − Δ) .

Rational Sumchecks 335

Notice that the expectation when event E0 materializes is equal to
Eq[reward(Pϕ, Vφ)(q)], and hence we can rewrite the right side of the above
inequality:

E[reward(P ∗, V)(x)] ≤ Pr[E0]· Eq[reward(Pϕ, Vφ)(q)]
+ (1 − Pr[E0]) · (Eq[reward(Pϕ, Vφ)(q)] − Δ).

The distribution of oracle queries q is independent of the communication between
the prover and the verifier and we can merge the expressions on the right side
of the inequality.

E[reward(P ∗, V)(x)] ≤ Eq[reward(Pϕ, Vϕ)(q)] − (1 − Pr[E0]) · Δ,

Finally, by Claim 1:

E[reward(P ∗, V)(x)] ≤ Eq[reward(Pϕ, Vϕ)(q)] − (1 − s) · Δ .

By observing that for all x it holds that Eq[reward(Pϕ, Vϕ)(q)]=E[reward(P, V)(x)]
(since the distribution of queries produced by V is independent of x), we get the
sought after bound on the reward gap of the resulting rational proof. 	

4.2 Substituting Oracle by Rational Multi-prover Proof
in Multi-prover Proof

The composition theorem holds for oracle substitution also in the setting of δ-no-
signaling multi-prover proofs. Given a k-prover interactive proof πg = (

−→
Pπ, V g

π)
for function f with an oracle access to a function g and a “rational” k′-prover
implementation ϕ = (

−→
Pϕ, Vϕ) of the function g, a new rational protocol πϕ =

(
−→
P , V) with (k + k′) provers can be obtained by executing the rational protocol

ϕ instead of the oracle call with a new set of k′ provers, as defined in Fig. 4.
We define the reward in the resulting protocol analogously to the single prover
setting and take the average of the rewards.

Similarly to the previous setting we require the oracle queries to depend only
on the input and the randomness of the verifier and the queries to the provers to
be independent of the answers of the oracle. Definition 6 of query independent
interactive proofs naturally extends to multi-prover interactive proofs and we
refer to multi-prover interactive proofs with this analogous property as query
independent. Note that item 1 in Definition 6 is no longer required since we only
deal with no-signaling strategies. In order to enable submission of all queries at
once in the composed protocol, we must require independence of the queries to
the provers from the oracle answers.

Definition 7 (Query Independent Multi-prover Proofs). Let f : {0, 1}∗

→ {0, 1}∗ be a function and let πg = (
−→
Pπ, V g

π) be a multi-prover proof for
Lf = {(x, y)|y = f(x)} with V g

π having oracle access to some function g :
{0, 1}∗ → {0, 1}∗. We say that πg is a query independent multi-prover proof
if for any input x the following holds:

336 S. Guo et al.

Fig. 4. Rational multi-prover proof πϕ = (
−→
P , V) resulting from multi-prover proof

πg = (
−→
Pπ, V g

π) with oracle calls to g substituted by a (multi-prover) rational proof

ϕ = (
−→
Pϕ, Vϕ) for evaluating g.

1. Only a single query q is issued by V g
π to g and it depends only on the input x

and on the randomness of V g
π .

2. The queries of V g
π to

−→
Pπ are independent of the oracle answer to the query q.

We show that the composition theorem holds also for oracle substitution in
the setting of query independent multi-prover proofs. Note that our composition
theorem shows that when dealing with δ-no-signaling strategies, a loss in the
reward gap proportional to δ is incurred in the resulting composed protocol.

Theorem 2 (Oracle Substitution in MIP). Let f : {0, 1}∗ → {0, 1}∗

be a function and let πg = (
−→
Pπ, V g

π) be a query independent k-prover MIP
for Lf = {(x, y)|y = f(x)} with V g

π having oracle access to some function
g : {0, 1}∗ → {0, 1}∗. If πg has perfect completeness and soundness s against
δ-statistically no-signaling strategies then for any rational k′-prover RMIP ϕ =
(
−→
Pϕ, Vϕ) for evaluating g with reward gap Δ in presence of δ′-statistically no-

signaling strategies, the composed protocol πϕ = (
−→
P , V) is a (k + k′)-prover

RMIP for evaluating f with reward gap Δ(1 − s − δ′′) against δ′′-no-signaling
strategies, where δ′′ = min{δ, δ′}.

Proof. The reward in the rational protocol πϕ (defined in Fig. 4) is equal to
the reward in the rational proof ϕ for evaluating the oracle query if the verifier

Rational Sumchecks 337

accepts and zero otherwise. In order to show that πϕ is a multi-prover rational
proof for evaluating f with the claimed reward gap, we show that for every x

the expectation of any set of provers
−→
P ∗ that report y′ �= f(x) (i.e., (x, y′) is not

in Lf) can be bounded. To simplify the notation, we define three events that
might happen during the course of the protocol πϕ:

– E0 corresponds to the event when V g
π (simulated by V) accepts and

−→
P ∗

supply a correct answer to the oracle query q∗ (i.e., (
−→
P ∗, V g

π)(x) = 1 ∧
output(

−→
P ∗, Vϕ)(q∗) = g(q∗)).

– E1 corresponds to the event when V g
π (simulated by V) accepts and

−→
P ∗

supply an incorrect answer to the oracle query q∗ (i.e., (
−→
P ∗, V g

π)(x) =
1 ∧ output(

−→
P ∗, Vϕ)(q∗) �= g(q∗)).

– E2 corresponds to the event when V g
π (simulated by V) rejects.

We can express the expectation of
−→
P ∗,

E[reward(
−→
P ∗, V)(x)] = Pr[E0] · E[reward(

−→
P ∗, V)(x)|E0]

+ Pr[E1] · E[reward(
−→
P ∗, V)(x)|E1] + Pr[E2] · E[reward(

−→
P ∗, V)(x)|E2].

Since the expected reward in case of event E2 is zero, the above is equal to

Pr[E0] · E[reward(
−→
P ∗, V)(x)|E0] + Pr[E1] · E[reward(

−→
P ∗, V)(x)|E1].

We can bound the Pr[E1] by 1 − Pr[E0], so

E[reward(
−→
P ∗, V)(x)] ≤ Pr[E0]· E[reward(

−→
P ∗, V)(x)|E0]

+ (1 − Pr[E0]) · E[reward(
−→
P ∗, V)(x)|E1].

We use the two following claims to complete the proof.

Claim 3. Pr[E0] ≤ s + δ′′.

Proof (of Claim 3). For any q∗, an oracle query of V g
π , define ω(q∗) to be the

queries to
−→
Pϕ generated by Vϕ on input q∗. Let A = {Aq,ω(q∗)} denote the δ′′-no-

signaling family of distributions, where Aq,ω(q∗) is the distribution of answers of
−→
P ∗ given queries (q, ω(q∗)). We fix an arbitrary set of queries w of Vϕ to

−→
Pϕ and

consider the family of distributions B = {Bq}, where Bq is defined by sampling
uniformly and randomly (a, z) ← Aq,w and outputting a.

First, we show that B is δ-no-signaling. Let S be an arbitrary subset of [k]
and q,q′ be two arbitrary queries such that qS = q′

S . Since the projections
of Aq,w and Aq′,w on the coordinates in S are δ′′-close (by the fact that A is
δ′′-no-signaling), the statistical distance between Bq and Bq′ when projected on
S is

1

2

∑
β

∣∣∣∣∣ Pr
a←Bq

[aS = β] − Pr
a′←Bq′

[a′
S = β]

∣∣∣∣∣ =
1

2

∑
β

∣∣∣∣∣ Pr
a←Aq,w

[aS = β] − Pr
a′←Aq′,w

[a′
S = β]

∣∣∣∣∣
≤ δ′′

≤ δ ,

338 S. Guo et al.

where the last inequality follows from δ′′ being defined as min{δ, δ′}. Hence, B
is δ-no-signaling.

Let
−→
P ∗

π be the set of provers in πg that follow the δ-no-signaling strate-
gies B. By the soundness of πg in the presence of δ-no-signaling strategies,
Pr[(

−→
P ∗

π , V g
π)(x) = 1] ≤ s. Assume that the claim does not hold, then

δ′′ < Pr[E0] − Pr[(
−→
P ∗

π , V g
π)(x) = 1]

= Pr
(a,z)←Aq,ω(q∗)

[V g
π (x,a, z1) = 1 ∧ z1 = g(q∗)] − Pr

(a,z)←Aq,w

[V g
π (x,a, g(q∗))=1]

A contradiction to A being δ′′-no-signaling. 	

Claim 4. For all x it holds that E[reward(
−→
P ∗, V)(x)|E1] ≤ Eq∗ [reward(

−→
Pϕ,

Vϕ)(q∗)] − Δ.

Proof (of Claim 4). Assume that the claim does not hold. By an averaging
argument over the randomness of the verifier V for generating queries to the
provers

−→
P , there exists an x and a fixed choice of randomness for generating the

queries such that

E[reward(
−→
P ∗, V)(x)|E1, (q, ω(q∗))] > E[reward(

−→
Pϕ, Vϕ)(q∗)] − Δ ,

where q and q∗ are fixed. Let Aq,ω(q∗) denote the δ′′-no-signaling distribution
of answers of

−→
P ∗ to the queries (q, ω(q∗)). Consider the family of distributions

B = {Bω(q∗)}, where Bω(q∗) is defined by sampling uniformly and randomly
(a, z) ← Aq,ω(q∗) and outputting z.

First, we show that B is δ′-no-signaling. Let S be an arbitrary subset of [k′]
and w,w′ be two sets of queries such that wS = w′

S . Since the projections of
Aq,w and Aq,w′ on the coordinates S′ = {k+i : i ∈ S} are δ′′-close, the statistical
distance between Bw and Bw′ is

1

2

∑
β

∣∣∣∣ Pr
z←Bw

[zS = β] − Pr
z′←Bw′

[z′
S = β]

∣∣∣∣ =
1

2

∑
β

∣∣∣∣∣ Pr
z←Aq,w

[zS = β] − Pr
z′←Aq,w′

[z′
S = β]

∣∣∣∣∣
≤ δ′′

≤ δ′ .

where the last inequality follows from δ′′ being defined as min{δ, δ′}, and hence
B is δ′-no-signaling.

Let
−→
P ∗

ϕ behave according to B, then on input q∗,

E[reward(
−→
P ∗

ϕ, Vϕ)(q∗)] = E[reward(
−→
P ∗, V)(x)|E1, (q, ω(q∗))]

> E[reward(
−→
Pϕ, Vϕ)(q∗)] − Δ .

Therefore,
−→
P ∗

ϕ is a set of δ′-no-signaling provers that break the reward gap guar-
antee of ϕ, a contradiction. 	

Rational Sumchecks 339

We use Claim 4 to bound the expectation as:

E[reward(
−→
P ∗, V)(x)] ≤ Pr[E0]· E[reward(

−→
P ∗, V)(x)|E0]

+ (1 − Pr[E0]) · (Eq∗ [reward(
−→
Pϕ, Vϕ)(q∗)] − Δ) .

Notice that due to the query independence of the protocol πg the expectation
when event E0 materializes is equal to Eq∗ [reward(

−→
Pϕ, Vϕ)(q∗)]. Hence, we can

rewrite the right side of the above inequality as

Pr[E0] · Eq∗ [reward(
−→
Pϕ, Vϕ)(q∗)] + (1 − Pr[E0]) · (Eq∗ [reward(

−→
Pϕ, Vϕ)(q∗)] − Δ)

= Eq∗ [reward(
−→
Pϕ, Vϕ)(q∗)] − (1 − Pr[E0]) · Δ .

Finally, by Claim 3:

Eq∗ [reward(
−→
P ∗, V)(q∗)] ≤ Eq∗ [reward(

−→
Pϕ, Vϕ)(q∗)] − (1 − s − δ′′) · Δ .

Therefore, we get the sought after bound on the reward gap of the multi-prover
rational proof πϕ resulting from the composition of πg and ϕ. 	

5 Rational Delegation for NC

The work of Guo et al. [15] showed how to efficiently delegate computation
performed by low-depth circuits in the rational setting, and in particular con-
structed a rational proof with noticeable reward gap for any language in NC1.
However, the reward gap in their construction is proportional to the depth of
the evaluated circuit (the reward is scaled proportionally to the depth) and this
prevents to use their rational proof with meaningful (noticeable) reward gap
beyond the class NC1. In this section we give a rational proof with sublinear
verification time for any function computable by log-space uniform NC by com-
posing the rational sumcheck protocol from Sect. 3 with the classical protocol of
Goldwasser et al. [14].

5.1 The Protocol of Goldwasser, Kalai and Rothblum [15]

In their work Goldwasser et al. [14] gave a protocol that allows to delegate com-
putation of any function computable by log-space uniform circuits via an inter-
active proof with a polynomial prover and a quasi-linear verifier. In particular,
they showed the following theorem:

Theorem 3 (Theorem 1.1.1. in [26]). Let L be a language computable by a
family of O (log (S(n)))-space uniform boolean circuits of size S(n) and depth
d(n). L has an interactive proof where:

1. The prover runs in time poly(S(n)). The verifier runs in time n ·
poly(d(n), log(S(n))) and space O(log(S(n))). Moreover, if the verifier is
given oracle access to the low degree extension of its input, then its running
time is only poly(d(n), log(S(n))).

340 S. Guo et al.

2. The protocol has perfect completeness and soundness 1/2.
3. The protocol is public-coin, with communication complexity d(n) ·

polylog(S(n)).
4. Each message of the prover depends only on O(log(n)) random bits sent by

the verifier.

Their interactive proof builds on arithmetization techniques and employs effi-
cient sumcheck protocols in order to establish correctness of the output. The
sumcheck is run on multivariate polynomials of low degree that encode the val-
ues of intermediate layers of computation to allow the verifier to efficiently check
consistency of the prover’s answers.

Let w = (w1, . . . , wk) be k bits. The vector w defines a function W :
{1, . . . , k} → {0, 1} such that W (i) = wi for all i ∈ {1, . . . , n}. Let H be an
extension field of GF[2], m be an integer such that k ≤ |H|m, and let F be an
extension field of H. The low degree extension of w is the unique m-variate poly-
nomial W̃ : F

m → F of degree at most |H| − 1 in each variable that agrees with
W on H

m. It is a useful fact that the low degree extension can be expressed
as sum over H

m, where each term is efficiently computable (for the details see
Appendix A).

Here we provide a high-level overview of the protocol (for the full exposition
see e.g. [26]):

1. The prover P evaluates the circuit C on input x received from the verifier V ,
and computes a low degree extension W̃i for every layer i of the circuit C.

2. For 1 ≤ i ≤ d, in each phase i the prover initiates an interactive sumcheck
protocol to convince the verifier that W̃i−1(zi−1) = ri−1. In the first phase
z0 = (0, . . . , 0) and r0 = (C(x), 0, . . . , 0). To complete the i-th sumcheck
protocol the verifier would need to evaluate W̃i on two random points ω1, ω2,
but to avoid the related computational burden this task is reduced to another
sumcheck performed in phase i + 1. In particular, the prover and the verifier
run an interactive procedure using ω1, ω2, the verifier picks a random zi and
the prover reports a corresponding value ri = W̃i(zi). The protocol proceeds
to phase i + 1.

3. In phase d + 1 the verifier evaluates the low degree extension W̃d (of the
input x) on the random point zd and checks that it is equal to rd reported
by the prover. This is the final phase and the only point at which the verifier
evaluates a low degree extension.

The running time of the verifier in the first d phases is poly(d(n), log(S(n))),
and it is the evaluation of the low degree extension of the input in the last step that
induces the overall quasi-linear overhead of n·poly(d(n), log(S(n))) for the verifier.
Hence, given oracle access to the low degree extension of the input the verification
can be performed in sublinear time. Moreover, the protocol of Goldwasser et al. [14]
is query independent in the sense of Definition 6, i.e., after receiving the answer to
its query the verifier can send the query (the random point zd) to the prover and

Rational Sumchecks 341

the soundness is preserved. This allows us to use our composition framework from
Sect. 4 in order to substitute the oracle call with our rational sumcheck protocol.

Substituting the Low Degree Extension Oracle with a Rational Proof.
First, we show that our rational sumcheck protocol from Sect. 3 can evaluate an
arbitrary low degree extension.

Proposition 1 (Rational Protocol for Evaluating Low Degree Exten-
sion). The low degree extension W̃ : F

m → F of (w1, . . . , wk) ∈ {0, 1}k admits
a rational proof with verification time poly(|H|,m), assuming oracle access to
(w1, . . . , wk), with reward gap 1/4(log |F|)|Hm|2.

Proof. By Proposition 2 (given in Appendix A), for any z ∈ F
m, W̃ (z) is a

summation of |H|m terms of the form
∑

p∈Hm β̃(z, p) · W (p), where the addition
is over F and F is a extension field of GF[2]. Moreover, for every (z, p), β̃(z, p)
can be computed in time poly(|H|,m), therefore β̃(z, p) ·W (p) can be computed
in time poly(|H|,m). By Corollary 2, W̃ (z) admits rational proof with reward
gap 1/(log |F|)(2|Hm|)2 = 1/4(log |F|)|Hm|2 and verification time poly(|H|,m).

	

Finally, we use the above efficient rational proof in the protocol of Goldwasser
et al. [14] to allow the verifier to avoid reading the whole input when evaluating
the low degree extension of the input.

Theorem 4 (Rational Interactive Proof for NC). For any function f :
{0, 1}∗ → {0, 1}, if Lf = {(x, y)|y = f(x)} is computable by a family of
O(log(S(n)))-space uniform Boolean circuits of size S(n) and depth
d(n) = O(polylog(n)) then f ∈ FRMA[d(n) · polylog(n), d(n) · polylog(S(n)),
poly(d(n), log(S(n)))] with a public-coin rational interactive proof with a notice-
able reward gap, where the prover runs in time poly(S(n)) and the verifier runs in
space O(log(S(n))).

Proof. For f ∈ NC, we let πg = (Pπ, V g
π) be the interactive proof for Lf =

{(x, y)|y = f(x)} defined in Theorem 3 where g is the low degree extension
of x with |F| = poly(n, d) and |Hm| = poly(n), the soundness is 1/2 and the
completeness is 1. Let ϕ = (Pϕ, Vϕ) be the rational proof for g as defined in
Proposition 1 with reward gap Δ = 1/(4 log |F |)(|H|2m). Note that V g

π only
issues a single query and for all x the communication between Pπ and V g

π is
independent of (q, g(q)). By Theorem 1, πϕ is a rational proof for f with regard
gap Δ(1 − s) = Δ/2 = 1/poly(n).

The running time of the prover or verifier is at most the sum of the running
time of Pπ in Theorem 3 and the running time of Pϕ. The total running time is
poly(S(n)). The verifier runs in at most V g

π and the running time of Vϕ. Therefore
the running time of verifier is upper bounded by poly(d(n), log (S(n))). The total
communication is the communication of ϕ and the communication of π which is
upper bounded by d(n) · poly(S(n)). 	

342 S. Guo et al.

5.2 Single-Round Rational Arguments for NC

Guo et al. [15] gave an efficient transformation from any rational proof with
noticeable reward gap to single-round rational argument. The transformation
uses an efficient Private Information Retrieval (PIR) scheme (for formal defini-
tion see the full version) in order to submit all the round queries to the prover
at once.

Theorem 5 (Theorem 6 in [15]). Let f : {0, 1}n → {0, 1} be a function
in FRMA [r, C, T]. Assume the existence of a PIR scheme with communication
complexity poly(κ) and receiver work poly(κ), where κ ≥ max {C(n), log n} is the
security parameter. If f has an admissible rational proof with noticeable reward
gap Δ, then f admits single-round rational argument which has the following
properties:

(a) The verifier runs in time C(n) · poly(κ) + O(T (n)).
(b) The communication complexity is r·poly(κ, λ) where λ is the longest message

sent by the prover.

By applying the above transformation of Guo et al. [15] on the rational
interactive proofs in Theorem 4, we obtain single-round rational arguments for
NC with sublinear verification.

Corollary 3 (Rational Argument for NC). Let f : {0, 1}n → {0, 1} be a
function computable by log-space uniform NC of size S(n) = poly(n) and depth
d(n) = O(polylog(n)). Assume the existence of a PIR scheme with communica-
tion complexity poly(κ) and receiver work poly(κ), where κ ≥ d(n)·polylog(S(n))
is the security parameter. Then f admits single-round efficient rational argument
which has the following properties:

1. The verifier runs in poly(κ, d(n), log(S(n))) and the prover runs in
poly(κ, S(n)).

2. The length of the prover’s message and the verifier’s challenge is d(n) ·
poly(κ, log(S(n))). The verifier’s challenge depends only on his random coins
and is independent of the input x.

6 Rational Delegation for P

Recently, Kalai et al. [18] gave a single-round delegation scheme for every
language computable in time t(n), where the running time of the verifier is
n · polylog(t(n)). For languages in P where t(n) = poly(n), the verification time
is O(n ·polylog(n)). The efficiency bottleneck for achieving sublinear verification
for P in Kalai et al. [18] (similarly to the protocol for NC of Goldwasser et al. [14])
is that the verifier needs to evaluate a low degree extension of the input which
takes quasi-linear time. We show that it is possible to improve the verification
time to be sublinear in the rational setting.

Rational Sumchecks 343

6.1 The Protocol of Kalai, Raz and Rothblum [19]

Recently, Kalai et al. [18] gave an MIP secure against no-signaling provers for
any deterministic computation.

Theorem 6 (Theorem 4 in [18]). Suppose that L ∈ DTIME(t(n)), where t =
t(n) satisfies poly(n) ≤ t ≤ exp(n). Then, for any integer (log t)c ≤ k ≤ poly(n),
where c is some (sufficiently large) universal constant, there exists an MIP for
L with k · polylog(t) provers where:

1. The verifier runs in time n · k2 · polylog(t) and the provers run in time
poly(t, k). Moreover, if the verifier is given oracle access to the low degree
extension of its input, then its running time is only t′ · k2 · polylog(t), where
t′ is the cost of the oracle access.

2. The protocol has perfect completeness and soundness 2−k against
2−k·polylog(t)-no-signaling strategies.

3. Each query and answer is of length k · polylog(t).

Here we give a high level overview of the MIP construction of Kalai et al. [18].
It is obtained in three steps:

1. No-signaling PCP with Oracle. They first construct a Probabilisticaly Check-
able Proof (PCP) with oracle access to a function which makes at most k
queries and is secure against no-signaling provers. The construction of the
PCP is the most technical part of their work and we refer to Kalai et al. [18] for
the construction and analysis of this PCP. The total number of oracle queries
is at most k · polylog(t) and the running time of the verifier is k · polylog(n).

2. No-signaling MIP with Oracle. Based on the PCP, they construct in a
straightforward way an MIP with kmax ≤ k ·polylog(t) provers secure against
no-signaling strategies given oracle access to the same function as for the
PCP. In this MIP, the verifier simulates the PCP verifier, and the i-th prover
prepares the PCP proof and answers the i-th query according to the PCP.
The running time of the verifier is O(k · polylog(t)).

3. No-signaling MIP without Oracle. In order to remove the oracle, they employ
an MIP for the oracle which is secure against no-signaling provers. They
replace the number of queries to the oracle one by one, each time reducing
one query to the oracle by letting the verifier run the MIP for the oracle with
additional provers. At the end, they obtain an MIP without oracle access
which is secure against no-signaling provers. To construct the MIP for the
oracle, they observe that any interactive proof gives rise to an MIP secure
against no-signaling provers by sending the first i messages to the i-th prover
and letting the i-th prover answer the message in the i-th round. Observed
that the oracle is computable by linear space, we have IP for this oracle so
that we can obtain an MIP against no-signaling provers. The running time
of the verifier is k ·polylog(t)+n · k2 ·polylog(t). Moreover, if the verifier can
compute the low degree extension of the input in time t′, then the running
time can be further improved into k · polylog(n) + t′ · k2 · polylog(t).

344 S. Guo et al.

Note that for languages in P where t = poly(n), we can let k = polylog(t) so
that the verifier runs in time n · polylog(n). Moreover, the running time can be
improved to t′ ·polylog(n) when the verifier is given oracle access to evaluate the
low degree extension and t′ is the cost of the oracle access. Therefore, the task of
constructing delegation scheme for P with sublinear verification can be reduced
to constructing a delegation scheme for low degree extension with sublinear
verification.

6.2 No-Signaling Rational Multi-prover Proofs for Deterministic
Computations

In this section, we present our RMIPs for deterministic computations which
are secure against no-signaling provers. Recall from the previous section that
the efficiency bottleneck for achieving sublinear verification for P is that the
evaluation of low degree extension runs in quasi-linear time. To overcome the
efficiency bottleneck we combine the no-signaling MIP of Kalai et al. [18] with
our sublinear rational proofs for evaluating the low degree extension of the input
(Proposition 1). Unlike the oracle simulation mentioned in the third step of the
work of Kalai et al. [18], we reduce all queries to the low degree extension oracle
at once and only increase the number of provers by 1. To do this, we view the
queries to the oracle as a single query consisting of many points to a larger oracle
that evaluates the low degree extension of inputs on all the points and returns
the answers at once.

For a function g : F
n → F, we let gl : (Fn)l → (F)l be the function that

on any l-tuple (x1, . . . , xl) ∈ (Fn)l outputs (g(x1), . . . , g(xl)). For a rational
proof ϕ = (Vϕ, Pϕ) for g with input x ∈ F

n, we define another rational proof
ϕl = (Vϕl , Pϕl) for gl with input (x1, . . . , xl) ∈ (Fn)l, where the verifier Vϕl

simulates Vϕ on xi for all i ∈ {1, . . . , l} and pays the average reward outputted
by Vφ on the l inputs and Pϕl simulates Pϕ on xi for all i ∈ {1, . . . , l}. It is easy
to see that if g admits rational proof ϕ with reward gap Δ, then gl admits a
rational proof ϕl with reward gap Δ/l.

Theorem 7. Suppose that f : {0, 1}n → {0, 1} is a function computable by
deterministic Turing machine in time t(n), where t = t(n) satisfies poly(n) ≤
t ≤ exp(n). Then, for any integer (log t)c ≤ k ≤ poly(n), where c is some (suffi-
ciently large) universal constant, there exists an RMIP for f with k·polylog(t)+1
provers where:

1. The provers run in time poly(t, k) and the verifier runs in time k2 ·polylog(t).
2. The protocol has reward gap 1/k · poly(log(t), n) against 2−k·polylog(t)-no-

signaling strategies.
3. Each query and answer is of length k · polylog(t).

Proof. Let πg = (
−→
Pπ, V g

π) be the MIP for Lf = {(x, y)|y = f(x)} from Theo-
rem 6, which has soundness s = 2−k against δ = 2−k·polylog(t)-no-signaling strate-
gies and perfect completeness, where g : F

m → F is the low degree extension of
inputs with parameters F, H,m such that |H| ≤ |F| ≤ polylog(t), |Hm| = poly(n).

Rational Sumchecks 345

As noted in [18], the total number of the queries to g is l ≤ k · polylog(t). We con-
sider πgl

= (
−→
Pπ, V gl

π) where V gl

π behaves exactly as V g except that V gl

only makes
a single query which consists all the queries of V g to the oracle for g. Because the
queries made by V g

π are independent of each other, it is possible to query them at
once and conclude that πgl

is also an MIP for Lf with the same guarantee.
By Proposition 1, g admits a rational proof ϕ = (Pϕ, Vϕ) with reward gap

Δ = 1/(4 log |F|)(|Hm|2). Therefore gl admits a rational proof ϕl with reward
gap Δ′ = Δ/l. Note that ϕl is also an RMIP with reward gap Δ in presence of
δ′ = 1-no-signaling strategies.

Note that V gl

π only issues a single query and for all x the communication
between

−→
Pπ and V gl

π is independent of (q, g(q)). By Theorem 2, πϕl

is an RMIP
for f with reward gap Δ′(1 − s − min(δ, δ′)) = Ω(Δ/l) = 1/k · poly(log(t), n), in
presence of δ′′ = δ-no-signaling strategies.

The running time of the prover is at most the sum of the running time of
−→
Pπ

in Theorem 6 and the running time of Pϕm which is upper bounded by poly(t, k).
The verifier runs in at most t′ · k2 · polylog(t) where the t′ is the running time
of Vϕ upper bounded by poly(H,m) ≤ polylog(t). Therefore the running time
of verifier is k2 · polylog(t). The maximal length of queries and answers in πgl

is
k · polylog(t) by Theorem 6, and the maximal length of queries and answers in
πgl

is (m log F) · l ≤ k · polylog(t). Therefore the maximal length of queries and
answers in πgl

is bounded by k · polylog(t). 	

6.3 Single-Round Rational Arguments for P

We show how to transform any RMIP secure against no-signaling provers into
a single-round rational argument using a sub-exponentially secure Fully Homo-
morphic Encryption (see Definition 8), and as a result obtain a single-round
rational argument with sublinear verification for any language in P. For that we
extend the transformation of Guo et al. [15] to the multi-prover setting.

Theorem 8. Let f : {0, 1}n → {0, 1} be a function in FRMIP [k, δ, C, T].
Assume f has a RMIP with noticeable reward gap Δ and negligible no-signaling
parameter δ, and let λ denote the length of the longest message sent by the ver-
ifier. If there exists a secure FHE scheme, where κ ≥ max {polylog(n), λ, C} is
the security parameter, then f admits single-round rational argument which has
the following properties:

1. The verifier runs in time poly(κ) + O(T (n)).
2. The prover runs in time poly

(
κ, n, T−−−−→

PMIP

)
, where T−−−−→

PMIP
is the sum of the

running times of the provers in the RMIP.
3. The length of prover’s message and the verifier’s challenge is � · poly(κ).

The proof of Theorem 8 follows by the following lemma (due to space restric-
tions, we provide the proof of Lemma 2 in the full version).

346 S. Guo et al.

Lemma 2. Let (
−−−→
PMIP , VMIP) be a δ-no signaling RMIP protocol for a function

f with � provers. Let λ be the longest query size and C be the answer size.
Let reward(·) and Δ be the reward function and the corresponding reward gap.
Assume the existence of a (Z, δ′)-secure FHE with correctness 1 − γ (where γ
is some negligible function), and let γ0 = γ · �. If δ′ ≤ δ/� and the security
parameter κ = κ (n) ≥ max {poly log(n), λ, C} and Z = Z(κ) ≥ κ such that
Z ≥ max

{
n, 2�·C}

, then there exists a one-round protocol (PA, VA) with the
following properties:

(a) Pr[output((PA, VA)(x)) = f(x)] = 1.

(b) E[reward((PA, VA)(x))]≥E[reward((
−−−→
PMIP , VMIP)(x))] · (1 − γ0)).

(c) The length of PA’s message and the VA’s challenge is � · poly(κ).
(d) The verifier VA runs in time poly(κ)+O(TVMIP

), where TVMIP
is the running

time of VMIP .
(e) The prover PA runs in time poly

(
κ, n, T−−−−→

PMIP

)
, where T−−−−→

PMIP
is the sum of

the running times of the provers in
−−−→
PMIP .

(f) For any prover P ∗ of size ≤ poly(Z(κ)) that achieves

E[reward((P ∗, VA)(x))] = E[reward((PA, VA)(x))] + δ∗ ,

let μ = Pr[output((P ∗, VA)(x)) �= f (x)]. It holds that
(a) (Utility gain) δ∗ ≤ γ0, and
(b) (Utility loss) (−δ∗) ≥ μΔ − γ0.

From Interactive Rational Proofs to Rational Arguments. Let
(
−−−→
PMIP , VMIP) be a δ-no-signaling rational MIP with � provers P 1

MIP , . . . , P �
MIP

for evaluating some function f , as in the statement of the Lemma 2. Recall that
λ denotes length of the longest message sent by VMIP in (

−−−→
PMIP , VMIP). For

simplicity of exposition (and without loss of generality) we assume that the first
prover P 1

MIP sends f(x), and all queries are of size exactly λ.
Fix any security parameter κ ≥ max {polylog(n), λ, C} and let

(Gen,Enc,Eval,Dec) be a (Z, δ′)-secure FHE scheme, with respect to security
parameter κ. The one-round rational argument (PA, VA) is constructed as fol-
lows:

1. On common input x ∈ {0, 1}n, the verifier VA proceeds as follows:
(a) Emulate the verifier VMIP and obtain queries m1, . . . , m� ∈ {0, 1}λ to be

sent by VMIP .2

(b) Compute key-pairs (pki, ski) ← Gen(1κ) and encryptions qi ←
Enc(pki,mi) for 1 ≤ i ≤ �.
Send pk = (pk1, . . . , pk�) and q = (q1, . . . , q�) to PA.

2. Upon receiving keys pk = (pk1, . . . , pk�) and queries q = (q1, . . . , q�) from VA,
the prover PA operates as follows:

2 These queries can be computed in advance since in the protocol (
−−−→
PMIP , VMIP) all

the messages sent by VMIP depend only on VMIP ’s random coin tosses.

Rational Sumchecks 347

(a) Emulate provers
−−−→
PMIP to obtain f(x).

(b) For each 1 ≤ i ≤ �, compute Px,i, a Boolean circuit that on input query
m computes the function P i

MIP (x,m).
(c) For each 1 ≤ i ≤ �, compute ai ← Eval(pki, Px,i, qi) and send the message

(f(x), a1, . . . , a�) to VA.
3. Upon receiving the message (f(x), a1, . . . , a�) from PA, the verifier VA oper-

ates as follows:
(a) For every 1 ≤ i ≤ �, compute b′

i ← Dec(ski, ai).
(b) Emulate VMIP on (f(x), b′

1, . . . , b
′
�), as if each b′

i is P i
MIP ’s response.

(c) Output whatever VMIP outputs (i.e., f(x) and ‘1’ with probability of
the computed reward).

Proof (of Theorem 8). The running time of the verifier, the communication com-
plexity, and property (a) of Definition 5 of rational arguments are all explicitly
provided by Lemma 2. It remains to show property (b) and property (c) of
definition of rational arguments.

The utility gain is δ∗ ≤ γ0 ≤ κ ·negl(κ) = negl(n). By the definition of δ∗ we
have, negl(n) + E[reward((PA, VA)(x))] ≥ δ∗ + E[reward((PA, VA)(x))] which is
equal to E[reward((P ∗, VA)(x))]. Hence, the property (a) of rational arguments
holds.

To show property (c) of Definition 5, we assume that μ ≥ p−1(|x|) for some
polynomial p(·). Due to the noticeable Δ, we know that μΔ ≥ q−1

1 (|x|) for some
polynomial q1(·). From the utility loss bound we obtain that

(−δ∗) ≥ μΔ − γ0 = μΔ − negl(n) ≥ q−1
1 (|x|) − negl(n) ≥ q−1

1 (|x|)/2 .

By defining polynomial q(·) to be q(|x|) = 2q1(|x|) we get

E[reward((PA, VA)(x))] = E[reward((P ∗, VA)(x))] − δ∗

≥ E[reward((P ∗, VA)(x))] + q−1(|x|) ,

as desired. 	

By applying the above transformation on the no-signaling RMIP protocol
presented in Theorem 7, we obtain the following single-round rational arguments
for P with sublinear verification.

Corollary 4 (Rational Argument for P). Let f : {0, 1}n → {0, 1} be a
function computable by deterministic Turing machine in time poly(n) ≤ T (n) ≤
exp(n) and let k = polylog(T (n)). Let κ ≥ polylog(T (n)) · k be a security para-
meter and let Z = Z(κ) be such that 2(log T (n))c ≤ Z ≤ 2κ for sufficiently large
constant c. If there exists (Z, 2−k2·polylog(T (n)))-secure FHE scheme then f admits
single-round efficient rational argument which has the following properties:

1. The verifier runs in time poly(κ, log(T (n))) and the prover runs in
poly(κ, T (n)).

348 S. Guo et al.

2. The length of prover’s message and the verifier’s challenge is k ·
poly(κ, log(T (n))). The verifier’s challenge depends only on his random coins
and is independent of the input x.

Proof. Suppose that f ∈ DTIME(T), where T = T (n) satisfies poly(n) ≤ T ≤
exp(n) and set k = polylog(T). Let κ = κ(n) be a security parameter such that
k·polylog(T) ≤ κ. Let Z = Z(κ) such that 2(log T)c ≤ Z ≤ 2κ for sufficiently large
universal constant c satisfying Z ≥ max{n, 2k2·polylog(T)}. Let δ′ = 2−k2polylog(T).
By applying Theorem 7 (with respect to the parameter k) to the function f ,
we obtain an RMIP for f with k · polylog(T) provers and reward gap 1/k ·
poly(log(T), n) against 2−k·polylog(T)-no-signaling strategies. The verifier of the
RMIP runs in time k2 · polylog(T) and the provers run in time poly(T, k). Each
query and answer is of length k ·polylog(T). Assume that there exists an (Z, δ′)-
secure FHE.

By Theorem 8, we obtain that f has a 1-round rational argument. The
running time of the verifier is poly(κ, log(T) and the running time of the
prover is poly(κ, T). The message of the prover and the verifier is of length
k · poly(κ, log T). 	

We remark that Corollary 3 could be alternatively obtained using our new
transformation presented in Theorem 8. This is done by first transforming the
rational interactive proof for NC to RMIP (with only negligible loss in the reward
gap) and then applying Theorem 8 on the resulted RMIP.

A Building Blocks

Here we provide only the main claim about efficiency of evaluation of a low
degree extension. For an in-depth exposition see e.g. Rothblum [26].

Proposition 2 ([26]). There exists a Turing machine that takes as input an
extension field H of GF[2], an extension field F of H, an integer m, and
w = (w0, . . . , wm−1) ∈ H

m. The machine runs in time poly(|H|,m) and
space O(log |H| + log m), and it outputs the unique 2m-variate polynomial
β̃ : F

m × F
m → F of degree at most |H| − 1 in each variable (represented as

an arithmetic circuit of degree at most |H| − 1 in each variable), such that for
every z ∈ F

m, it holds for the unique low degree extension W̃ : F
m → F of w

that W̃ (z) =
∑

p∈Hm β̃(z, p) · W (p), where W : H
m → F is the function corre-

sponding to (w0, . . . , wn−1) defined using the lexicographic ordering α of H
m as

W (p) = wα(p) if α(p) ≤ n − 1 and otherwise 0. Moreover, β̃ can be evaluated
in time poly(|H|,m) and space O(log |H| + log m). Namely, there exists a Tur-
ing machine with above time and space bounds, that takes an input parameters
H, F,m and a pair (z, p) ∈ F

m × F
m and outputs β̃(z, p).

Fully Homomorphic Encryption. A public-key fully homomorphic encryp-
tion scheme consists of four probabilistic polynomial-time algorithms (Gen,Enc,

Rational Sumchecks 349

Eval,Dec). The key generation algorithmGen, when given as input a security para-
meter 1κ, outputs a pair (pk, sk) of public and secret keys. The encryption algo-
rithm, Enc, on input a public key pk and a message m ∈ {0, 1}poly(κ), outputs a
ciphertext q, The homomorphic evaluation algorithm,Eval, on input the public-key
pk, a circuit C : {0, 1}a → {0, 1}b, where a, b ≤ poly(κ), and a ciphertext q that is
an encryption of a message m ∈ {0, 1}a with respect to pk, outputs a ciphertext q̃
of length poly(κ, a, b) that is an evaluation of C over q. The decryption algorithm,
Dec, when given a ciphertext q and the secret key sk, outputs the original mes-
sage m. We allow the decryption process to fail with negligible probability (over
the randomness of all algorithms).

Definition 8 (Fully Homomorphic Encryption). A public-key fully homo-
morphic encryption scheme (Gen,Enc,Eval,Dec), satisfies the following proper-
ties.

Completeness. For every security parameter κ, for every message m ∈
{0, 1}poly(κ) and for every circuit C taking inputs of length |m|,

Pr
(pk,sk)←Gen(1κ)

[
C(m) = Dec(sk, q̃)

∣
∣
∣
∣

q ← Enc(pk,m)
q̃ ← Eval(pk,C, q)

]
= 1 − negl(κ).

Security. For every polynomial p(·) and every polynomial size distinguisher D,
there exists a negligible function negl(·) such that for every sufficiently large
security parameter κ and every pair of messages m0,m1 ∈ {0, 1}p(κ)

∣
∣
∣
∣
∣
∣
∣

Pr
(pk,sk)←Gen(1κ)

b←{0,1}
[D(pk,Enc(pk,mb)) = b] − 1

2

∣
∣
∣
∣
∣
∣
∣
< negl(κ)

where the probability is also over the random coin tosses of Enc.

We say that the encryption scheme is (S, δ)-secure, for a function S : N → N

and a negligible function δ : N → [0, 1], if the security property holds for every
adversary of size poly(S(κ)), with distinguishing gap at most δ(κ).

References

1. Aiello, W., Bhatt, S., Ostrovsky, R., Rajagopalan, S.R.: Fast verification of any
remote procedure call: short witness-indistinguishable one-round proofs for NP. In:
Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp.
463–474. Springer, Heidelberg (2000)

2. Azar, P.D., Micali, S.: Rational proofs. In: Karloff, H.J., Pitassi, T. (eds.) STOC,
pp. 1017–1028. ACM (2012)

3. Azar, P.D., Micali, S.: Super-efficient rational proofs. In: Kearns, M., Preston
McAfee, R., Tardos, É. (eds.) ACM Conference on Electronic Commerce, pp. 29–
30. ACM (2013)

350 S. Guo et al.

4. Belenkiy, M., Chase, M., Erway, C.C., Jannotti, J., Küpçü, A., Lysyanskaya, A.:
Incentivizing outsourced computation. In: Proceedings of the ACM SIGCOMM
2008 Workshop on Economics of Networked Systems, NetEcon 2008, Seattle, WA,
USA, 22 August 2008, pp. 85–90 (2008)

5. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013)

6. Blumberg, A.J., Walfish, M.: Verifying computations without reexecuting them.
Commun. ACM 58(2), 74–84 (2015)

7. Brier, G.W.: Verification of forecasts expressed in terms of probability. Mon.
Weather Rev. 78(1), 1–3 (1950)

8. Canetti, R., Vald, M.: Universally composable security with local adversaries. In:
Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 281–301. Springer,
Heidelberg (2012)

9. Chen, J., McCauley, S., Singh, S.: Rational proofs with multiple provers. CoRR,
abs/1504.08361 (2015)

10. Damg̊ard, I., Faust, S., Hazay, C.: Secure two-party computation with low com-
munication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–74. Springer,
Heidelberg (2012)

11. Dwork, C., Langberg, M., Naor, M., Nissim, K., Reingold, O.: Succinct NP proofs
and spooky interactions (2004). www.openu.ac.il/home/mikel/papers/spooky.ps

12. Garay, J.A., Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Rational protocol
design: cryptography against incentive-driven adversaries. In: 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2013, 26–29 October 2013,
Berkeley, CA, USA, pp. 648–657. IEEE Computer Society (2013)

13. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) STOC, pp. 99–108. ACM
(2011)

14. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: Interactive
proofs for muggles. J. ACM 62(4), 27 (2015)

15. Guo, S., Hubáček, P., Rosen, A., Vald, M.: Rational arguments: single round del-
egation with sublinear verification. In: Naor, M. (ed.) Innovations in Theoretical
Computer Science, ITCS 2014, Princeton, NJ, USA, 12–14 January 2014, pp. 523–
540. ACM (2014)

16. Gur, T., Rothblum, R.D.: Non-interactive proofs of proximity. In: Roughgarden,
T. (ed.) Innovations in Theoretical Computer Science, ITCS 2015, Rehovot, Israel,
11–13 January 2015, pp. 133–142. ACM (2015)

17. Kalai, Y.T., Raz, R., Rothblum, R.D.: Delegation for bounded space. In: Boneh,
D., Roughgarden, T., Feigenbaum, J. (eds.) Symposium on Theory of Computing
Conference, STOC 2013, Palo Alto, CA, USA, 1–4 June 2013, pp. 565–574. ACM
(2013)

18. Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the power of
no-signaling proofs. In: Shmoys, D.B. (ed.) Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, 31 May–03 June 2014, pp. 485–494. ACM (2014)

19. Kalai, Y.T., Rothblum, R.D.: Arguments of proximity. In: Gennaro, R., Robshaw,
M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 422–442. Springer, Heidelberg
(2015)

20. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: Rao Kosaraju, S., Fellows, M., Wigderson, A., Ellis, J.A. (eds.)
STOC, pp. 723–732. ACM (1992)

www.openu.ac.il/home/mikel/papers/spooky.ps

Rational Sumchecks 351

21. Kumaresan, R., Bentov, I.: How to use bitcoin to incentivize correct computations.
In: Ahn, G.-J., Yung, M., Li, N. (eds.) Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, Scottsdale, AZ, USA, 3–7
November 2014, pp. 30–41. ACM (2014)

22. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (1992)

23. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000)

24. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)

25. Pham, V., Khouzani, M.H.R., Cid, C.: Optimal contracts for outsourced compu-
tation. In: Poovendran, R., Saad, W. (eds.) GameSec 2014. LNCS, vol. 8840, pp.
79–98. Springer, Heidelberg (2014)

26. Rothblum, G.N.: Delegating computation reliably: paradigms and constructions.
Ph.D. thesis, Massachusetts Institute of Technology (2009)

27. Rothblum, G.N., Vadhan, S.P., Wigderson, A.: Interactive proofs of proximity: del-
egating computation in sublinear time. In: Boneh, D., Roughgarden, T., Feigen-
baum, J. (eds.) Symposium on Theory of Computing Conference, STOC 2013, Palo
Alto, CA, USA, 1–4 June 2013, pp. 793–802. ACM (2013)

28. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992)
29. Zhang, Y., Blanton, M.: Efficient secure and verifiable outsourcing of matrix mul-

tiplications. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC
2014. LNCS, vol. 8783, pp. 158–178. Springer, Heidelberg (2014)

Interactive Coding for Interactive Proofs

Allison Bishop1(B) and Yevgeniy Dodis2

1 Columbia University, New York, USA
allison@cs.columbia.edu

2 New York University, New York, USA
dodis@cs.nyu.edu

Abstract. We consider interactive proof systems over adversarial com-
munication channels. We show that the seminal result that IP =
PSPACE still holds when the communication channel is malicious,
allowing even a constant fraction of the communication to be arbitrarily
corrupted.

1 Introduction

Interactive proofs are fundamental objects in both cryptography and complexity
theory, and come with a rich history of exciting developments, such as the sur-
prising characterization that IP = PSPACE [25]. This characterization assumes
that a prover and a verifier communicate over a perfect communication channel,
and crucially relies upon the fact that the number of rounds of the interaction
can be polynomially long.

Recently, the study of interactive coding (pioneered by Schulman [22,23])
has emerged as a promising way to extend results involving lengthy interactions
over perfect channels to analogous results over adversarial channels - even with
a constant relative error rate. This high level of robustness cannot be achieved
by simply applying an error correcting code to each message, a method which
is limited to an error rate proportional to 1

r , where r is the number of rounds.
There has been much success in obtaining interactive coding protocols capable
of performing any two party communication tasks over a noisy or adversarial
channel [1,4–7,11,13,14,17,19,22,23]. However, all of these works assume that
the task is described as a function of two inputs, and only correctness of the
computation is required.

In the case of interactive proofs, it is not enough to ensure that an honest
party “eventually” learns the real message the other party was attempting to
send. Instead, we must ensure that the interference of the channel cannot prevent
an honest prover from convincing a verifier of a true statement, and also cannot
help a malicious prover convince a verifier of a false statement. This appears
to be problematic if we consider the techniques employed by interactive coding

A. Bishop—Supported in part by NSF CNS 1413971 and NSF CCF 1423306.
Y. Dodis—Partially supported by gifts from VMware Labs and Google, and NSF
Grants 1319051, 1314568, 1065288, 1017471.

c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 352–366, 2016.
DOI: 10.1007/978-3-662-49099-0 13

Interactive Coding for Interactive Proofs 353

protocols, which enable parties to “replay” and “revise” their messages as the
interactive coding mechanism runs. We must worry, then, that a malicious prover
may use the excuse of potential channel errors to change its responses adaptively
after peeking ahead at the verifier’s future challenges. For this reason, it does
not suffice to simply take an interactive proof system designed for an error-free
channel and compile it blindly using an off-the-shelf interactive coding method.

An undaunted optimist might then ask for strong interactive coding mecha-
nism, one that could provably compose with a wide variety of security properties,
such as soundness for interactive proof systems or input privacy for multiparty
computation. The most general version of this would achieve a notion ensuring
that the participants in the error-resilient version of the protocol “do not learn”
anything more than they would learn from executing the error-free protocol.
A formalization of this called “knowledge-preserving interactive coding” was
introduced and studied by Chung et al. [9], who showed that under this strong
requirement, applying an error-correcting code in each round is essentially opti-
mal. This means no error rate beyond 1

r is possible without making computa-
tional assumptions. Similarly, the work of Gelles et al. [12] proves an impossibility
result for error-resilient secure multiparty computation.

In contrast, we show that for interactive proofs a constant relative error rate
can be achieved. In other words, while positive results in traditional interac-
tive coding only (successfully) handle correctness, and negative results rule out
(strong forms of) zero-knowledge/privacy, we show that ensuring soundness is
still feasible in the presence of adversarial communication noise. This is per-
haps a bit counterintuitive, as the negative results proceed by proving that some
amount of backtracking and replaying messages is inherent for this level of error-
correction. Nonetheless, using amplification techniques, we can preprocess our
interactive proofs to withstand a certain amount of backtracking, since the ver-
ifier is aware of the backtracking, and can sample fresh randomness to mitigate
the potential advantage gained by a malicious prover as a consequence.

One additional challengewe face is that the verifiermust remain efficient,mean-
ing that the encoding and decoding for the interactive coding mechanism must be
computable in polynomial time. Many of the interactive coding results are exis-
tential rather than efficient (e.g. [7,22,23]), but the recent work of Brakerski and
Kalai [4] managed to obtain computationally efficient interactive coding protocols,
even for constant rate adversarial errors. We employ a simplified version of their
techniques, obtaining our simplifications due to the fact that the individual mes-
sages of our protocols can be taken to be not too short. This allows us to avoid the
use of expensive “tree codes” that are needed in [4], and results in much easier to
understand protocols.

Our Techniques. It is well-known how to design an interactive proof system for
PSPACE that has both perfect completeness (an honest prover can convince a
verifier of a true statement with probability 1) and very small soundness error
(a malicious prover can only convince a verifier of a false statement with
very small probability). Starting from such a system, we observe that even
if a malicious prover could make a verifier re-sample a particular challenge

354 A. Bishop and Y. Dodis

polynomially many times, the chance of obtaining a value that would allow
“cheating” remains reasonably small. We can thus hope to withstand a certain
fraction of channel errors by allowing the protocol to “backtrack” when errors
occur, while having the verifier resample its randomness to control the poten-
tial gain for a malicious prover. Our coding techniques will prevent a malicious
prover from changing its answer to a previous challenge, instead requiring it to
answer a new challenge if it uses the potential errors as an excuse to backtrack.

We organize our proof into two separate tasks: first obtaining an IP system
that still works over perfect channels, but allows parties to arbitrarily signal that
they want to back up one round of interaction at a time. We call such a system
“backtracking-resilient.” We then design a compilation procedure that takes any
backtracking-resilient IP system and produces a new proof system that works
over adversarial channels, allowing a constant error rate. This compilation relies
upon hashing techniques that are reminiscent of the efficient compiler in [4].
In particular, we have both parties hash their current simulated transcripts with
freshly chosen keys at each exchange, so that they can detect any disagreements
whenever the channel does not introduce too many errors.

There are two noteworthy features of our compiler. First, since the
backtracking-resilient IP system we use anyway has reasonably large individ-
ual messages, we can avoid the use of expensive tree codes that are needed in [4]
to protect the “simulation units between the hash stages”. Second, we give an
explicit reduction between the soundness of our compiled protocol and the notion
of backtracking resilience. This formalizes the intuition that the hashing tech-
niques essentially limit a malicious prover impersonating an adversarial channel
to choosing when to backtrack the protocol, and could be useful for future work.

2 Resilient Interactive Protocols

Interactive Protocols. We recall the notion of an r-round interactive protocol
Π between a deterministic prover P and a probabilistic verifier V (who share
some common input x which we omit, when clear). We view the verifier V as
an algorithm that takes in a partial transcript and some fresh randomness and
outputs a next message.1 More formally, V : T × Rand → {0, 1}∗, where T is
the set of partial transcripts and Rand is the set of random values. We view
the prover P as a deterministic algorithm that takes in a partial transcript and
outputs a next message: P : T → {0, 1}∗.

In the typical (error-free) setting, the protocol proceeds in some number of
rounds, r, where in each round i the verifier sends a challenge Ci and the prover
sends a response Ri. If we let τi−1 denote the transcript after i − 1 rounds,
the ith round consists of the verifier sampling a fresh random value ci ∈ Rand
and sending the challenge Ci := V(τi−1, ci). The prover then sends the response
Ri := P(τi−1||Ci). We then have τi = τi−1||Ci||Ri.
1 This view is without loss of generality, since it is known that private-coin protocols

can be simulated by public-coin ones [16], meaning that V never needs to keep any
state beyond its partial transcript so far.

Interactive Coding for Interactive Proofs 355

We assume each party locally stores its own copy of the partial transcript.
We let τp denote the prover’s (evolving) copy and τv denote the verifier’s (evolv-
ing) copy of the transcript. (Note, in the error-free settings these values are
always consistent; however, once we are allowing channel errors, these two par-
tial transcripts may temporarily diverge.) At the end of round r, V either accepts
or rejects the final transcript τv, and we denote the random variable (over the
coins of V) indicating this decision by (P,V).

Given a language L, we say that Π is (perfectly) complete on L, if for any
x ∈ L, we have Pr[(V(x),P(x)) → accept] = 1. Similarly, Π is ε-sound on L, if
for any x �∈ L and any potentially cheating prover P̃, we have Pr[(V(x), P̃(x)) →
accept] ≤ ε.

Definition 1. We say that L belongs to the class IP (Interactive Protocols), if
there exist polynomial r = r(n) and t = t(n) and an r-round interactive protocol
(P,V) where the running time of V on n-bit inputs x is at most t(n) and: (a) Π
is (perfectly) complete; (b) Π is (1/2)-sound.

Of course, repeating Π in parallel λ times, we can reduce the soundness error
to ε = 2−λ, for any polynomial λ = λ(n). It is known [25] that IP = PSPACE,
the class of languages decided with polynomial space.

Error-Resilient Protocols. To define error-resilient protocols, we must specify
the power of an adversarial channel. We will model an adversarial channel as
an algorithm A that intercepts messages as they are sent and may modify them
arbitrarily in transit. We make no restrictions on the computational power of A
(it may be unbounded) and also allow it to know the entire state of the prover,
the verifier, and the partial transcript at any point during the execution. It does
not know, however, the future randomness to be selected by the verifier.

Definition 2 (Completeness with Adversarial Channel Error). Given a language
L, we say that a T -round protocol Π is (α, δ)-error-complete on L, if the following
condition holds for any x ∈ L. For any (unbounded) adversary A that can cause
at most an α-fraction of errors throughout the entire communication, the honest
prover Pα will convince the honest verifier Vα with probability > δ.

For soundness in the presence of adversarial noise, we observe that we can
always “merge” the adversarial prover P̃ with our channel adversary A, simply
resulting in a different adversarial prover P̃ ′. In other words, soundness with
adversarial channel error is equivalent to traditional soundness!

Definition 3. We say that L belongs to the class ERIP (Error-Resilient IP), if
there exists a constant α > 0, polynomials T = T (n) and t = t(n), and a T -round
interactive protocol Π = (Pα,Vα) where the running time of Vα on n-bit inputs
x is at most t(n) and: (a) Π is (α, 2

3)-error-complete; (b) Π is (1/3)-sound.

Just like for (imperfect completeness) IP, the completeness and soundness
constants 2/3 and 1/3 of ERIP can be amplified to (1 − 2−Ω(p)) and 2−Ω(p),

356 A. Bishop and Y. Dodis

respectively, by doing p parallel repetitions Π1, . . . , Πp, and taking the majority
vote. A small subtlety in this (otherwise immediate) argument comes from ana-
lyzing completeness in the presence of errors (soundness is the same as for IP).
This is because the attacker A can split his errors non-uniformly across the p
repetitions Πi, causing failures with high probability for repetitions where more
than α-fraction of errors were introduced. Fortunately, by setting the robustness
threshold α′ of the new parallel protocol Π∗ to be α′ = α/10, we can apply
Markov’s inequality to conclude that A can cause more than α-fraction of errors
on at most p/10 sub-protocols Πi, meaning that A would still need to break
(α, 2/3)-error-completeness for at least p/2 − p/10 = 2p/5 protocols Πi in order
to break the error-completeness of Π∗. However, since in any of the p protocols
A’s success of doing so is at most 1/3, the honest verifier acts independently
across the p runs, and 2p/5 > p/3, we can use the Chernoff bound to conclude
that A’s overall success probability will be 2−Ω(p).

Main Result. Our main result can then be stated as:

Theorem 1. (Main Result) ERIP = IP = PSPACE.

We will prove this over the course of the next three sections.

3 Backtracking-Resilient Protocols

As an intermediary step in achieving error-resilient proof systems, we will define
proof systems that retain their completeness and soundness properties under
a milder disruption we call “backtracking.” In other words, we augment usual
error-free protocols with an additional mechanism for backtracking. In addition
to sending a challenge or response, either party may at any time transmit a
special symbol B instead. Upon sending or receiving a B, the parties each remove
the latest complete round from their partial transcripts. For example, suppose
τp = τv = τi at the time a B is sent/received. Then both parties revert to
τi−1 and will start again with the verifier choosing fresh randomness to send a
(potentially) new challenge to P for round i (it is as if the old version of round
i never happened).

We let U be the maximal number of backtracking steps (i.e., the “budget”)
allowed by each party. Given any standard interactive protocol Π and any such
budget U , we obtain U -backtracking extension of Π, ΠU , where the modified
prover PU (resp. verifier VU) is identical to the honest prover P (resp. verifier
V), except allowing allow up to U backtracking steps to the communicating
partner, as described above. In particular, VU will output the same decision as
V when the transcript τv reaches the last round (for the first time), but also
VU will reject if more than U backtracking steps are attempted by the (possibly
malicious) prover. Thus, if Π has r rounds, without loss of generality we can
cap the number of rounds of ΠU by T = r + 4U , as each of the (at most 2U)
backtracking steps requires one extra “normal step” to get back, meaning that
in at most r + 4U rounds the transcript τv is guaranteed to reach the decision
point for V.

Interactive Coding for Interactive Proofs 357

Of course, when playing against themselves, PU and VU will not use back
backtracking steps, and the protocol will terminate in r rounds. However, we
would like to extend completeness of soundness condition to hold even if (possibly
malicious) backtracking is allowed. For the former, we will assume that PU and
VU are honest, except for the adversarial backtracking steps (see below); for
the latter, we will assume that the verifier VU is honest, but the prover P̃U

is malicious, including (wlog, up to U) backtracking steps. This is formalized
below.

Definition 4 (Perfect Completeness with U -Backtracking). Given a language
L, we say that an r-round protocol Π is (perfectly) U -backtracking-complete
on L, if the following condition holds with probability 1, for any x ∈ L. Let
T = r + 4U and Cp, Cv ∈ {⊥, B}T be two strings of length T containing at
most U occurrences of the symbol B. We let Cp(i) denote the ith symbol of Cp,
and same for Cv(i). We require that if an honest prover PU and verifier VU run
the protocol for a true statement, except with the prover sending B in round i
whenever Cp(i) = B and the verifier sending B in round i whenever Cv(i) = B,
then the verifier accepts after at most T rounds with probability 1.

Definition 5 (Soundness with U -Backtracking). Given a language L, we say
that an r-round protocol Π is (U, ε)-backtracking-sound on L, if for x �∈ L, and
any malicious prover P̃U for the U -backtracking extension ΠU of Π,
Pr[(VU (x), P̃U (x)) → accept] ≤ ε.

Lemma 1. Assume Π is an r-round interactive protocol which is complete and
ε-sound for some langueage L. Then, for any U , Π is U -backtracking-complete
and (U, ε′)-backtracking-sound, where

ε′ ≤ ε · 2r+4U

Proof. Every final transcript produced with non-zero probability in ΠU must
also occur with non-zero probability without backtracking, using the original
algorithms. Thus, perfect completeness for the underlying algorithms implies
perfect completeness with backtracking.

To prove soundness, we fix a false statement x and an arbitrary malicious
prover P̃U for ΠU . Let ε′ be the probability that P̃U (x) convinces VU (x). Given
any fixed sequence C ∈ {⊥, B}r+4U of possible backtracking steps of P̃U contain-
ing at most U occurrences of the symbol B, we let ε′

C be the probability that
P̃U (x) succeeds and precisely respects the backtracking sequence C. Clearly,
since all such events are disjoint, we have ε′ =

∑
C ε′

C . To complete the proof,
it suffices to show that ε′

C ≤ ε, for any fixed C, as the number of C’s is at most
2r+4U .

To show that ε′
C ≤ ε, we define a malicious prover P̃C of the original (non-

backtracking) protocol Π whose success probability is at precisely ε′
C , which

implies that ε′
C ≤ ε, by standard ε-soundness. Given C, P̃C can pre-compute all

the r rounds 1 ≤ i1, . . . , ir ≤ r + 4U which will not be “erased” from the final
transcript of VU assuming that P̃U follows C. Then P̃C(x) emulates P̃U (x) as

358 A. Bishop and Y. Dodis

follows: (a) the challenges for all the “non-erased” rounds i1, . . . , ir are obtained
from the honest verifier V; (b) the challenges from the remaining “erased” rounds
are honestly generated by P̃C himself; (c) if at any point P̃U generates a back-
tracking step inconsistent with C, P̃C aborts. Since the above emulation is iden-
tical to the real run of P̃U when consistent with C, P̃C succeeds with probability
ε′

C ≤ ε, as claimed.

Definition 6. We say that L belongs to the class BRIP (Backtracking-Resilient
IP), if there exist polynomial r = r(n) such that for any polynomial U = U(n)
there exists a polynomial t = t(n) and an r-round interactive protocol Π = (P,V)
where the running time of V on n-bit inputs x is at most t(n) and: (a) Π is
(perfectly) U -backtracking-complete; (b) Π is (U, 1/2)-backtracking-sound.

Using Lemma 1, we observe that the class of interactive protocols is
backtracking-resilient.

Corollary 1. BRIP = IP = PSPACE.

Proof. Take any L ∈ IP. This means L has an r-round, 1/2-sound interactive
protocol Π for some polynomial r. Now take any polynomial U for the back-
tracking budget. By repeating Π in parallel r + 4U + 1 times, we get protocol
Π ′ for L which still has r rounds, polynomial-time verifier, is complete and ε-
sound, where ε = 2−r−4U−1. By Lemma 1, Π ′ is U -backtracking-complete and
(U, 1/2)-backtracking-sound, completing the proof.

Remark 1. We can easily reduce the soundness error 1/2 to be exponentially
small, either by directly adjusting the proof of Corollary 1, or by doing parallel
repetition on any BRIP protocol.

4 Compiling Backtracking-Resilient Protocols Against
Adversarial Channel Errors

We now present a method for taking a backtracking-resilient interactive proof
system and compiling it into one that can resist a constant rate of adversarial
channel errors. Intuitively, the prover and verifier will attempt to simulate the
backtracking-resilient protocol over the adversarial channel. They will use hash
functions with freshly chosen keys each time to check if they are in agreement
on the partial transcript simulated so far. Every message and hash key will be
encoded with an error correcting code, to ensure that the adversary must invest
a high amount of errors to cause confusion between the parties. Of course, some-
times channel errors will still prevent the parties from detecting an inconsistency
in the simulated transcript. But the adversary cannot afford to keep up this high
error investment indefinitely, and eventually the parties will detect the problem
and backtrack to fix it. This will result in a simulated transcript that mimics an
execution of the backtracking-resilient protocol, and hence appropriate analogs
of completeness and soundness for this compiled protocol can be reduced to
backtracking-resilience of the underlying protocol.

Interactive Coding for Interactive Proofs 359

We prove the following result, which, by Corollary 1, suffices to establish our
main result in Theorem 1.

Theorem 2. ERIP = BRIP.

Since ERIP ⊆ IP = BRIP, we only need to show that BRIP ⊆ ERIP.
Before proving this result, we need some standard tools from hashing and coding.

Hashing and Coding. We will use a family of hash functions indexed by keys
k ∈ {0, 1}γ . More precisely, we invoke the following theorem also used in [4]:

Theorem 3 [2,20]. There exists a constant q > 0 and an ensemble of hash fami-
lies {HN}N∈N such that for every N ∈ N and for every h ∈ HN , h : {0, 1}≤2N →
{0, 1}qN is poly-time computable, it is efficient to sample h ← HN using only
qN random bits, and for all y �= z ∈ {0, 1}≤2N it holds that

Pr
h→HN

[h(y) = h(z)] ≤ 2−N .

We let γ = qN = O(N) and write hk : {0, 1}≤2N → {0, 1}γ to denote the
element of HN sampled with the random string k ∈ {0, 1}γ . We also let Encode
and Decode denote the encoding and decoding algorithms of an error-correcting
code with a constant rate and a constant relative distance β.

Our Compiler. Take any L ∈ BRIP which means that L has an r-round
backtracking-resilient protocol Π, for any polynomially bounded budget U . (As
we will see shortly, we will only use U = O(r).) To show L ∈ ERIP, we set
α = Ω(β) to be the constant error rate we will tolerate on the channel, and
show how to build an error-resilient proof system for L tolerating an α-fraction
of adversarial errors. Our new protocol Π̃ will run for T̃ rounds, where we define
T̃ such that T̃ (1− 18αβ−1) = r. In particular, when α is chosen to be a suitably
small constant fraction of β (e.g., α = β/36), this is possible with T̃ = O(r)
(e.g., T̃ = 2r).

We define the backtracking budget U of our original protocol Π = (P,V) by
U = 9αβ−1T̃ = O(r) (e.g., for α = β/36, we have U = r/2), and assume that Π
is (U, 1

3)-backtracking sound and perfectly U -backtracking complete (guaranteed
possible by Lemma 1). We also denote by T = r+4U = O(r) (e.g., T = 3r when
α = β/36) the maximal number of rounds of the U -backtracking extension ΠU

of Π, by � the length of the challenges to be sent by the verifier V in each round,
and assume that the hashing parameters γ,N = Ω(log r). Finally, we will use
Encode and Decode for encoding/decoding messages of length � + 2γ + log(T).

We can now describe the new algorithms P̃ and Ṽ for an interactive proof
system that can resist adversarial channel errors at a constant rate α. These
algorithms will run for T̃ message exchanges, where each exchange will still
consist of a message sent by the verifier and then a response sent by the prover,
and will require only black-box access to P and V.

360 A. Bishop and Y. Dodis

P̃ will maintain internal variables τ̃p and ĩp. These will function as the
prover’s internal views of the simulated transcript and round number respec-
tively. Ṽ will similarly maintain internal variables τ̃v, ĩv, and C̃. These will
function as the verifier’s internal views of the simulated transcript, the round
number, and the pending challenge. We initialize τ̃p, τ̃v and C̃ to ∅, which denotes
the empty string. We initialize ĩp and ĩv to 1.

The First Round: Ṽ will start a run of V to obtain a first challenge C. It sets
C̃ = C. It also samples a uniformly random hash key k1 ∈ {0, 1}γ . It will send
to the prover: Encode(C||k1||hk1(τ̃v)||̃iv).

The Prover’s Algorithm: In any round, when the prover receives a message from
the verifier, it decodes it as a challenge C, a key k, a hash value h, and a round
index i. It then performs the following steps to update its internal variables and
produce a response:

– If hk(τ̃p) �= h and i ≤ ĩp, then decrement ĩp, erase a round from τ̃p, and set R
equal to the last prover response now reflected in τ̃p.

– If hk(τ̃p) �= h and i > ĩp, then keep ĩp, τ̃p the same, and set R equal to the
last prover response reflected in τ̃p.

– If hk(τ̃p) = h, then set R = P(τ̃p||C), concatenate C||R onto τ̃p, and
increment ĩp.

The prover then chooses a new uniformly random key k′ and sends

Encode(R||k′||hk′(τ̃p)||̃ip).

The Verifier’s Algorithm: When the verifier receives a message from the prover,
it decodes it as a response R, a key k, a hash value h, and a round index i. It
then performs the following steps to update its internal variables and produce a
response:

– If hk(τ̃v||C̃||R) �= h and i ≤ ĩv, then decrement ĩv, erase a round from τ̃v, and
set C̃ = V(τ̃v, rand), for a freshly chosen random value rand.

– If hk(τ̃v||C̃||R) �= h and i > ĩv, then keep ĩv, τ̃v, C̃ the same.
– If hk(τ̃v||C̃||R) = h, then concatenate C̃||R onto τ̃v, increment ĩv, and then

set C̃ = V(τ̃v, rand) for a freshly chosen random value rand.

The verifier then chooses a new uniformly random key k′ and sends

Encode(C̃||k′||hk′(τ̃v)||̃iv).

At the end of the T̃ message exchanges, the verifier outputs the decision
of V(τ̃v).

Efficiency. Using any efficient hashing and coding scheme, our new prover and
verifier algorithms are efficient given oracle access to the (next message function)
of the original prover and verifier.

Interactive Coding for Interactive Proofs 361

5 Analysis of the Compiled Algorithms

We now prove that the algorithms P̃ , Ṽ presented in the previous section satisfy
completeness and soundness despite adversarial channel error.

5.1 Completeness

We first seek to prove completeness. For this, we assume an honest prover and
an adversarial channel that can cause at most an α-fraction of errors throughout
the entire communication. We prove:

Lemma 2. If P,V is perfectly U -backtracking complete, then P̃, Ṽ is (α, 2
3)-

error-complete.

Proof. We will define a measure of progress, M , that will potentially oscillate
as the protocol runs. At the beginning of any particular exchange (just before
the verifier sends its next message), we can determine the value of M as follows.
First, we let m be the maximal number of rounds such that τ̃p and τ̃v agree on
a prefix of m rounds. We then set

M := m − (̃ip − m) − (̃iv − m).

We define a good exchange as follows. First, we require that the verifier has
correctly decoded the previous message sent by the prover. Additionally, we
require that the two messages sent during the exchange (by the verifier and then
by the prover) are also decoded correctly. We refer to any other exchange as a
bad exchange.

Lemma 3. A bad exchange decreases M by at most 3.

Proof. In any exchange, the value of m can decrease by at most 1, since at most
one round of the simulated transcripts is erased at a time. Since each of ĩp, ĩv
can be incremented by at most 1 in any exchange, we then have that the total
decrement in M is bounded by 3.

Lemma 4. Conditioned on the event that there are no hash collisions, a good
exchange increases M by at least 1.

Proof. Suppose at the beginning of a good exchange, the verifier has calculated
that the current hash value agrees, and has just incremented ĩv. Since we are
assuming no hash collisions have occurred, this implies that τ̃v = τ̃p and ĩv = ĩp
at this point. V will choose a new challenge C̃, send this to P, who will form a
response R, and both V, P will concatenate C̃||R onto their transcripts. In this
case, m will increase by 1, and ĩp − m, ĩv − m will both remain 0. Hence M will
increase by 1.

Now suppose instead that at the beginning of a good exchange, the verifier
has detected a disagreement in the hash values. In the case that ĩv ≥ ĩp, the
verifier will erase a round from τ̃v and decrement ĩv. This will lead to a decrease

362 A. Bishop and Y. Dodis

in ĩv − m but no decrease in m. When P correctly decodes the next message
from V, a decrease in m is impossible since an agreed upon round cannot be
erased when ĩp = ĩv (since the hash values will agree in this case) and when ĩp
remains less than ĩv, the prover will not erase a round from τ̃p. Also an increase
in ĩp − m is impossible, since ĩp will only be incremented if a new agreed upon
round is being added to the simulated transcript. Thus M will also increase in
this case.

We next consider the case where the verifier has detected a disagreement in
the hash values and ĩv < ĩp. The verifier will then leave τ̃v, ĩv unchanged, but
the prover will decrement ĩp and erase a round from τ̃p, leading to a decrease in
ĩp − m, and hence an increase in M .

We now observe that a bad exchange can be extended to a bad interval
containing three transmitted encodings - the previous message from the prover
to the verifier, and the two messages in the bad exchange itself. At least one
of these messages must have been corrupted beyond its capacity, resulting in a
relative error rate within this interval of > β

3 .
We note the following lemma stated in [24]:

Lemma 5 (Lemma 7 in [24]). In any finite set of intervals on the real line
whose union is of total length s, there is a subset of disjoint intervals whose
union is of total length at least s

2 .

We suppose there are s bad exchanges during a run of T̃ total exchanges.
Then there are at least s

2 bad exchanges whose corresponding bad intervals
are disjoint. This results in a total relative error rate of sβ

6˜T
. We must have:

s ≤ 6αβ−1T̃ .
Thus, after T̃ exchanges if no hash collisions have occurred, the value of our

progress measure M satisfies M ≥ T̃ − 18αβ−1T̃ , which we can rewrite as M ≥
T̃ (1 − 18αβ−1). Recall that this is ≥ r by our choice of T̃ . This implies that the
simulated transcript will be a full r rounds of a transcript that occurs with non-
zero probability in the backtracking resilient algorithms over clear channels. We
also observe that if Ũ is the number of backtracks occurring during a particular
execution, then T̃ − 2Ũ ≥ M , so because we set U := 9αβ−1T̃ , we have ensured
that at most U backtracks occur. Thus, completeness follows from the perfect
completeness of the underlying backtracking resilient algorithms if we choose
parameters that make the probability of a hash collision < 1

3 .
To bound the probability of hash collisions, we employ Theorem 3 and a

union bound to conclude that the probability of a hash collision occurring at
any time throughout the protocol simulation is O(T̃2−N) = O(r2−N). Thus it
suffices to set N proportional to log(r) to achieve a bound < 1

3 .
Putting this all together, we have proven Lemma 2.

5.2 Soundness

Next, we show that soundness is preserved by our compiler, irrespective of the
value U .

Interactive Coding for Interactive Proofs 363

Lemma 6. If P,V is (U, 1
3)-backtracking-sound, then P̃, Ṽ is

(
1
3

)
-sound.

Proof. We are considering a perfect channel and a malicious prover who seeks
to convince the verifier of a false statement. The verifier, of course, does not
know the errors are not coming from the channel. We fix a false statement and a
malicious prover P̃ who manages to convince Ṽ to accept with probability > 1

3 .
From this, we will create a malicious prover P for the underlying back-tracking
resilient algorithm that contradicts soundness with backtracking.

The Malicious P: The malicious prover P for the backtracking-resilient proof
system behaves as follows. It will run the malicious prover P̃ internally, simu-
lating the messages from V. It initializes P̃ with the same false statement to be
proved, and initializes internal variables τ̃v, ĩv, C̃.

When V submits a challenge C, P chooses a random hash key k and sends
Encode(C||k||Hk(τ̃v)||̃iv). It updates C̃ = C. Upon receiving a response from
P̃, it decodes it and parses the result as a tuple (R, k, h, i). It then internally
performs the algorithm of Ṽ. If the result is a decrement to ĩv and the erasure
of round from τ̃v, then P sends B to V. If the result is an increment to ĩv, it
sends R to V. If the result is no change, it simulates the next message to P̃. It
continues simulating Ṽ in this way.

By construction, Ṽ will accept in this simulation only when V accepts. Hence
this malicious prover P can falsely convince V with probability > 1

3 .

We observe that Lemmas 2 and 6 imply Theorem 2. Taken together,
Theorem 2 and Corollary 1 imply Theorem 1.

6 Conclusions and Open Problems

We showed the feasibility of interactive coding for interactive protocols, tol-
erating a constant fraction of adversarial communication errors. Additionally,
our compiled error-resilient protocol is within a constant factor from optimal
in its round complexity, and has an honest prover/verifier which is efficient
given oracle access to the original prover/verifier. We also believe that our result
should “scale down” to the setting of “interactive proofs for muggles” consid-
ered by Goldwasser et al. [15], who showed how to achieve polynomial-time,
communication-efficient interactive proofs with O(n·polylog(n)) verification time
for any language in NC (class of uniform, polynomial size and polylogarithmic
depth circuits).

We now list several interesting open problems for future work.

Better Communication Complexity. Unlike its asymptotically optimal round
complexity and error rate, our compiler incurs an O(r) overhead in communica-
tion complexity, as compared to the error-free setting (where r is the number of
rounds in the error-free setting). This is due to the O(r) parallel repetition used
to amplify the soundness of the original protocol Π in Corollary 1. We chose to
consider communication complexity as a secondary constraint, as compared to

364 A. Bishop and Y. Dodis

achieving constant error-resiliency α. This is customary in the interactive cod-
ing literature, as, for example, Ghaffari et al. [14] show how to achieve optimal
α = 2/7 for traditional (“completeness-only”) interactive coding, at the expense
of quadratic blow-up in communication complexity. We could also use a more
randomness efficient parallel repetition for public-coin IP due to Bellare et al. [3].
This would reduce the communication complexity from the verifier to the prover,
but not from the prover to the verifier (hence only saving us a constant factor
in communication complexity).

In our view, the seemingly large (but polynomial) communication complexity
blow-up is largely a matter of a rather arbitrary historical tradition defining the
class IP as having a constant soundness error. Traditionally, this was always
justified by the parallel repetition, even though such repetition only reduces
the soundness error at the expense of the communication complexity! To see
this more clearly, imagine an alternative definition of IP, where the soundness
error is 2−Ω(r) (where r is the round complexity). While quantitatively different,
it clearly does not change the resulting class IP (due to parallel repetition).
Yet, with this (qualitatively equivalent) definition we only need to run parallel
repetition a constant number of times to gain the extra factor 2−Ω(r) needed to
make our protocol backtracking-resilient. This means that our compiler would
suddenly become “asymptotically optimal” even for communication complexity,
even though nothing really changed from the conceptual point of view.

Hence, compared to the goal of achieving constant error-rate α, the question
of achieving better communication complexity blow-up seems to be less well
motivated and largely dependent on rather arbitrary definitional choices. Still,
once constant α is achieved by our work, it is an interesting open problem if
O(r) communication overhead is inherent using the specific (constant soundness)
variant of IP that we utilized following a historical tradition.

Error-Resilient Arguments. Another interesting direction is to add error-
resilience to arguments, where the soundness condition only holds against a
computationally sound prover. At first glance, this appears trivial, since our com-
piled protocol has honest prover/verifier which are efficient relative to the origi-
nal prover/verifier. The subtlety comes from the fact our compiler must amplify
the computational soundness of the original argument from 1/2 to 2−Ω(r). For
proofs, such amplification is trivial via parallel repetition. In contrast, hardness
amplification for arguments must involve an explicit reduction. And although
many such reductions exist [8,18,21] for public-coin arguments, all of them come
at the expense of a horrible degradation in the running time of the malicious
prover. In particular, for polynomially bounded provers these reductions can
“only” amplify soundness to become negligible in the security parameter, which
is not enough to absorb a factor 2O(r) we need, when the number of rounds r
is polynomial in the security parameter. Moreover, Dodis et al. [10] gave strong
evidence that hardness amplification “beyond negligible” is false in general, sug-
gesting that a radically new approach is required for adding error-resilience to
arguments.

Interactive Coding for Interactive Proofs 365

Other Security Properties? Finally, given the negative results of [9,12] for zero-
knowledge/privacy in the presence of adversarial noise, coupled with our positive
results for soundness, it is interesting to characterize which other security prop-
erties can withstand adversarial errors, and at what cost.

References

1. Agrawal, S., Gelles, R., Sahai, A.: Adaptive protocols for interactive communica-
tion, manuscript (2013). http://arxiv.org/abs/1312.4182

2. Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple construction of almost
k-wise independent random variables. Random Struct. Algorithms 3(3), 289–304
(1992)

3. Bellare, M., Goldreich, O., Goldwasser, S.: Randomness in interactive proofs. Com-
put. Complex. 3(4), 319–354 (1993)

4. Brakerski, Z., Kalai, Y.T.: Efficient interactive coding against adversarial noise.
In: FOCS, pp. 160–166 (2012)

5. Braverman, M.: Towards deterministic tree code constructions. In: ITCS, pp. 161–
167 (2012)

6. Braverman, M., Efremenko, K.: List and unique coding for interactive communi-
cation in the presence of adversarial noise. In: FOCS (2014)

7. Braverman, M., Rao, A.: Towards coding for maximum errors in interactive com-
munication. In: STOC, pp. 159–166 (2011)

8. Chung, K.-M., Liu, F.-H.: Parallel repetition theorems for interactive argu-
ments. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 19–36. Springer,
Heidelberg (2010)

9. Chung, K.-M., Pass, R., Telang, S.: Knowledge-preserving interactive coding. In:
FOCS (2013)

10. Dodis, Y., Jain, A., Moran, T., Wichs, D.: Parallel repetition theorems for inter-
active arguments. In: TCC, pp. 467–493 (2012)

11. Gelles, R., Moitra, A., Sahai, A.: Efficient and explicit coding for interactive com-
munication. In: FOCS, pp. 768–777 (2011)

12. Gelles, R., Sahai, A., Wadia, A.: Private interactive communication across an
adversarial channel. In: ITCS, pp. 135–144 (2014)

13. Ghaffari, M., Haeupler, B.: Optimal error rates for interactive coding ii: efficiency
and list decoding. In: FOCS (2014)

14. Ghaffari, M., Haeupler, B., Sudan, M.: Optimal error rates for interactive coding:
adaptivity and other settings. In: STOC (2014)

15. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: STOC, pp. 113–122 (2008)

16. Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive proof
systems. In: STOC, pp. 59–68 (1986)

17. Haeupler, B.: Interactive channel capacity revisited. In: FOCS (2014)
18. H̊astad, J., Pass, R., Wikström, D., Pietrzak, K.: An efficient parallel repetition

theorem. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 1–18. Springer,
Heidelberg (2010)

19. Moore, C., Schulman, L.J.: Tree codes and a conjecture on exponential sums.
CoRR, abs/1308.6007 (2013)

20. Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and appli-
cations. SIAM J. Comput. 22(4), 838–856 (1993)

http://arxiv.org/abs/http://arxiv.org/abs/1312.4182

366 A. Bishop and Y. Dodis

21. Pass, R., Venkitasubramaniam, M.: An efficient parallel repetition theorem for
arthur-merlin games. In: STOC, pp. 420–429 (2007)

22. Schulman, L.J.: Communication on noisy channels: a coding theorem for compu-
tation. In: FOCS, pp. 724–733 (1992)

23. Schulman, L.J.: Deterministic coding for interactive communication. In: STOC,
pp. 747–756 (1993)

24. Schulman, L.J.: Coding for interactive communication. IEEE Trans. Inf. Theory
42(6), 1745–1756 (1996)

25. Shamir, A.: Ip = pspace. In: FOCS, pp. 11–15 (1990)

Information-Theoretic Local Non-malleable
Codes and Their Applications

Nishanth Chandran1(B), Bhavana Kanukurthi2, and Srinivasan Raghuraman3

1 Microsoft Research, Bengaluru, India
nichandr@microsoft.com

2 Department of Computer Science and Automation, Indian Institute of Science,
Bengaluru, India

bhavana@csa.iisc.ernet.in
3 Massachusetts Institute of Technology, Cambridge, USA

srirag@mit.edu

Abstract. Error correcting codes, though powerful, are only applica-
ble in scenarios where the adversarial channel does not introduce “too
many” errors into the codewords. Yet, the question of having guaran-
tees even in the face of many errors is well-motivated. Non-malleable
codes, introduced by Dziembowski et al. (ICS 2010), address precisely
this question. Such codes guarantee that even if an adversary completely
over-writes the codeword, he cannot transform it into a codeword for
a related message. Not only is this a creative solution to the problem
mentioned above, it is also a very meaningful one. Indeed, non-malleable
codes have inspired a rich body of theoretical constructions as well as
applications to tamper-resilient cryptography, CCA2 encryption schemes
and so on.

Another remarkable variant of error correcting codes were introduced
by Katz and Trevisan (STOC 2000) when they explored the question of
decoding “locally”. Locally decodable codes are coding schemes which
have an additional “local decode” procedure: in order to decode a bit
of the message, this procedure accesses only a few bits of the codeword.
These codes too have received tremendous attention from researchers
and have applications to various primitives in cryptography such as pri-
vate information retrieval. More recently, Chandran et al. (TCC 2014)
explored the converse problem of making the “re-encoding” process local.
Locally updatable codes have an additional “local update” procedure: in
order to update a bit of the message, this procedure accesses/rewrites
only a few bits of the codeword.

At TCC 2015, Dachman-Soled et al. initiated the study of locally
decodable and updatable non-malleable codes, thereby combining all the
important properties mentioned above into one tool. Achieving locality
and non-malleability is non-trivial. Yet, Dachman-Soled et al. provide a

B. Kanukurthi—Research supported in part by a start-up grant from the Indian
Institute of Science and in part by a grant from the Ministry of Communications
and Information Technology, Government of India.
S. Raghuraman—Research done while this author was at Indian Institute of Science
and Microsoft Research, India.

c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 367–392, 2016.
DOI: 10.1007/978-3-662-49099-0 14

368 N. Chandran et al.

meaningful definition of local non-malleability and provide a construc-
tion that satisfies it. Unfortunately, their construction is secure only in
the computational setting.

In this work, we construct information-theoretic non-malleable codes
which are locally updatable and decodable. Our codes are non-malleable
against Fhalf, the class of tampering functions where each function is arbi-
trary but acts (independently) on two separate parts of the codeword.
This is one of the strongest adversarial models for which explicit con-
structions of standard non-malleable codes (without locality) are known.
Our codes have O(1) rate and locality O(λ), where λ is the security para-
meter. We also show a rate 1 code with locality ω(1) that is non-malleable
against bit-wise tampering functions. Finally, similar to Dachman-Soled
et al., our work finds applications to information-theoretic secure RAM
computation.

1 Introduction

Non-malleable Codes. The notion of error correcting codes allow a sender to
encode a message s ∈ {0, 1}k into a codeword C ∈ {0, 1}n such that a receiver
can then decode the original message s from a tampered codeword C̃ = f(C).
Naturally, s cannot be recovered from arbitrarily tampered codewords, and hence
traditional error correcting codes (for the Hamming distance metric) require that
the tampering function f be such that C̃ = C + Δ, with Δ ∈ {0, 1}n and the
Hamming weight of Δ is ≤ δn (for some constant 0 < δ < 1). While power-
ful, error correcting codes provide no guarantees for larger classes of tamper-
ing functions. In light of this, Dziembowski et al. [19], introduced the notion
of non-malleable codes. Informally, non-malleable codes are codes such that for
all messages s ∈ {0, 1}, and for all f in the class of tampering functions F ,
Dec(f(Enc(s))) is either s or is unrelated to s. A little thought reveals that even
in this case, F cannot be arbitrary – for example, if F includes the function
Enc(Dec(·) + 1), then the output of Dec(f(Enc(s))) would be s + 1 and clearly
related to s. A rich line of work has explored the largest possible class of tamper-
ing functions F for which non-malleable codes can be constructed. Existential
results [12,19,22], are known for large classes of tampering functions (essentially
any function family whose size is less than Fall, the class of all functions). The
works of [4,5,13] construct explicit non-malleable codes against the class of tam-
pering functions Fbit (i.e., functions that operate on every bit of the codeword
separately) and Fpertperm (i.e., functions that can perturb or permute bits of the
codeword), while the works of [1,2,10,18] construct such codes against the class
of tampering functions Fhalf (i.e., functions that operate independently on two
halves of the codeword). Non-malleable codes have found many applications in
cryptography, such as in tamper resilient cryptography [3,26] and in constructing
CCA secure encryption schemes [15].

Codes with Locality. Locally decodable codes (introduced formally by Katz and
Trevisan [25]), are a class of error correcting codes, where every bit of the message

Information-Theoretic Local Non-malleable Codes and Their Applications 369

can be decoded by reading only a few bits of the corrupted codeword. These
codes have a wide range of applications and several constructions of such codes
are known (see Yekhanin’s survey [32] for further details). Locally updatable
codes (introduced by Chandran et al. [8]) are error correcting codes with the
property that in order to obtain a codeword of message s′ from a codeword of
message s (where s and s′ differ only in one bit), one only needs to modify a few
bits of the codeword.

Locally Updatable/Decodable Non-malleable Codes. A natural question to ask is
whether we can construct non-malleable codes that can be locally decoded and
updated. Indeed, Dachman-Soled et al. [16] consider the above question and show
how to construct locally updatable/decodable non-malleable codes. Combining
local decodability with non-malleability is challenging: indeed, local decodability
gives us a way to read a bit of the message by only reading a few bits of the
codeword. If these bits were precisely the ones which are tampered, then how
can non-malleability be guaranteed? In particular, it is likely that these bits are
not accessed while decoding some other bits of the message. At its core, the
challenge is that the adversary could tamper the codeword in such a manner
that decoding some of the bits of the message could return ⊥, while the others
may not. While this can be detected via a “global” decode, locally it will be
undetected, thus resulting in a weak form of malleability. Dachman-Soled et al.
capture these challenges by requiring that this weak form of malleability is all
that the adversary will be able to accomplish. To be more specific, they show
that their construction satisfies a (slightly) weaker form of non-malleability – in
this, given a codeword C = Enc(s), s ∈ {0, 1}k, an adversary may come up with
a mauled codeword C̃ such that Dec(i, C̃) = si for i ∈ [I], for some [I] ⊆ [k] and
Dec(i, C̃) = ⊥ for i /∈ [I]. Otherwise, the standard definition of non-malleability
holds.

Dachman-Soled et al. present a construction that is non-malleable in the
split-state adversarial model and requires the adversary to be computationally
bounded. Given the rich body of work in constructing information-theoretic
non-malleable codes and local codes (individually), we believe the question of
building local, non-malleable codes in the information-theoretic setting is very
well motivated. This is the question which we investigate in this work.

1.1 Results

1. We construct a locally updatable and locally decodable non-malleable code
that is non-malleable against the tampering class Fhalf, which denotes the class
of tampering functions that operate independently on two different parts of
the codeword, but can otherwise be arbitrary. Our code has constant rate and
a decode/update locality of O(λ), where λ is the security parameter.

2. We can also obtain such non-malleable codes against the tampering class Fbit.
In this case, our code has rate 1 and decode/update locality ω(1).

3. The work of Dachman-Soled et al. [16] showed how to use a local non-
malleable code that is also leakage-resilient [26] to construct a protocol for

370 N. Chandran et al.

secure RAM computation that remains secure when the adversary can tamper
and leak from memory. In a similar way, we show how to use a leakage-resilient
version of our code to construct an information-theoretic protocol for secure
RAM computation that remains secure when the adversary can tamper and
leak from memory1.

1.2 Techniques

Overview of [16]. Before we describe our techniques, we begin with a description
of how Dachman-Soled et al. [16] construct their locally decodable/updatable
non-malleable code. The idea is as follows: to encode a message s ∈ {0, 1}k, pick
a key key to a symmetric key encryption scheme and compute the codeword as
(EncNM(key),AEnckey(1, s1), · · · ,AEnckey(1, s1)), where EncNM(·) denotes a stan-
dard non-malleable code, AEnckey(·) denotes an authenticated encryption with
key key, and si denotes the ith bit of s (i ∈ [k]). Now, suppose EncNM is a non-
malleable code against a tampering function class FNM, then the claim is that
the above construction is non-malleable against the tampering function class F
of the form (f1, f2), where f1 ∈ FNM and f2 is any polynomial-time computable
function. To see why this is true, consider the following two cases: (a) the tam-
pering function f ∈ F is such that f does not tamper with EncNM(key); (b)
the tampering function f ∈ F is such that f tampers with EncNM(key). In the
first case, note that the function f2 does not have any information about the
key key, and hence by the security of the authenticated encryption scheme, we
have that any polynomial-time computable f2 cannot tamper the authenticated
encryptions of the si values to any related message2. In the second case, note
that by the non-malleability of EncNM(·), we have that f1 can only compute an
encoding of key’ such that key’ is unrelated to key. Since key’ will be used to
authenticate and decrypt the ciphertexts in the other part of the codeword, this
essentially means that the output of the decode algorithm will be unrelated to
s. Choosing EncNM to be the non-malleable code of Aggarwal et al. [1], gives
a local non-malleable code that is secure against F3

split+poly, which denotes the
class of tampering functions that operate independently on three parts of the
codeword, and additionally constrains the third function to be polynomial-time
computable.

Challenges. A first attempt to convert the above code into an information-
theoretically secure one is to use an information-theoretic authenticated encryp-
tion ITAEncitkey instead of AEnckey above. We could follow a similar idea – encode
itkey using a non-malleable encoding and encrypt+authenticate every bit of the
1 Of course, in the case of single party RAM computation, our protocol is information-

theoretic modulo the encryption that is used in the underlying oblivious RAM
(ORAM) protocol; in the case of secure multi-party computation, we obtain a tamper
and leakage resilient information-theoretic secure computation protocol.

2 Of course, the adversary can always copy certain ciphertexts and have them decode
to si and maul other indices to decode to ⊥, but as noted earlier, this is allowed by
their definition of non-malleability.

Information-Theoretic Local Non-malleable Codes and Their Applications 371

message. Unfortunately, this idea quickly runs into trouble – for the information-
theoretic authenticated encryption to be secure, we require the size of itkey to
be proportional to the message and hence |itkey| must be proportional to k3.
Now, if we encode itkey as a whole using a non-malleable code, we have lost all
locality (since we would require locality of k to even decode the code and retrieve
itkey). On the other hand, if we encode every part of itkey separately, then an
adversary can always replace one of these parts with a (sub)key of his choice
and appropriately replace the ciphertext to obtain a codeword that decodes to
si in a few indices and decodes to (independent) s̃j in other indices (this violates
the non-malleability definition from [16]). It seems that, in order to succeed,
we must use an information-theoretic locally decodable code to encode itkey,
thereby running into a circular problem!

Another approach that one might consider is to start with an information-
theoretic non-malleable code and somehow make that code “local”. Typical con-
structions of non-malleable codes make use of error-correcting codes with certain
independence guarantees “across states”. This independence is exploited to get
non-malleability. Unfortunately, this approach doesn’t yield any benefit as the
locality of an error correcting code is orthogonal to its independence. Indeed,
it is easy to see that a locally decodable code with locality r, necessarily has
independence less than r.

Construction of Local Non-malleable Codes. To explain how we overcome these
challenges, we explore the construction using (information-theoretic) authenti-
cated encryption in more detail. The construction non-malleably encodes a itkey
and uses it to authentically encrypt the message block-wise. Non-malleability
dictates that |itkey| ≥ k and this ruins locality. This tradeoff between non-
malleability and locality is our main challenge. Our main observation is that
this approach of using authenticated encryption is an overkill. In particular, we
have existing constructions of non-malleable codes in the split-state model which
we could use as a building block, except that it is unclear how to use them.

Consider this (insecure) construction: split the message s into k/t
blocks each of size t, for some parameter t. Encode the message s as
(EncNM(s1, · · · , st), · · · ,EncNM(sk−t+1, · · · , sk)). To decode a bit si, decode
EncNM(s� i

t �, · · · , s� i
t �+t) and recover si appropriately. Let each block of the

encoding be stored on separate states i.e., increase the number of states to 2k/t.
It is easy to see that this construction is not secure against F2k/t

split . Indeed, an
adversary can always replace one block, say the first block, with an encoding
of a known message, say all zeroes. Even though EncNM(0t) is independent of
s1, · · · , st, the new message is related to the underlying message as a whole.
The main problem is that an adversary is allowed to tamper certain parts of the
encoding independently and still create a “globally related” codeword.
3 One might think that we only require authentication and hence could use a shorter

key; however non-malleable codes inherently imply that the underlying message be
hidden, thus forcing us to use a key as long as the message.

372 N. Chandran et al.

This brings us to the following question: how can we combine non-malleable
encodings of different blocks of messages, so that the resulting construction is
non-malleable? The answer lies in preventing such isolated tampering or at least
detecting it when it happens. To do this, we simply tie together all the encodings
by using itkey to provide consistency across blocks. If an adversary changes one
block independently, either it is detected or he needs to change all blocks to
something independent. This use of itkey, as randomness that allows for consis-
tency checks across blocks, and not as an encryption key, allows us to keep itkey
short and achieve locality.

In retrospect, all our constructions are remarkably simple. We first give an
overview of our non-malleable construction that is secure against F2k/t+2

split (i.e.,
the class of tampering functions that operate independently on 2k/t + 2 parts
of the codeword, for some chosen parameter t and message length k). We will
discuss how to reduce the number of states later. The idea is as follows: to
authenticate a part of the message, we will pick a random value r and encode it
twice in 2 different states – once on its own and once with a message. In other
words, to encode a message s ∈ {0, 1}k, split s into k

t parts, each of length t,
as before. Now, pick k

t random ri values (each ri being of length λ). These ri

values correspond to the key itkey above.
Encode the message s as (EncNM(r1, · · · , r k

t
),EncNM(r1, s1, · · · , st),

· · · ,EncNM(r k
t
, sk−t+1, · · · , sk)). To decode a bit si, decode EncNM(r1, · · · , r k

t
)

to obtain r� i
t �; then decode EncNM(r� i

t �, s� i
t �, · · · , s� i

t �+t). Now, check if the r
values encoded in both these codewords match and if so, output si. The claim
then is that if EncNM(·) is non-malleable against a tampering function class FNM,
then the above construction is non-malleable against a tampering function class
F of the form (f0, f1, · · · , fk), where fi ∈ FNM, 0 ≤ i ≤ k. At a very high level, to
see why this is true, again consider two cases: (a) if the adversary does not maul
the first component of the codeword, then if he mauls any other component of
the codeword, the decode algorithm will output ⊥ (except with probability 2−λ)
as he must get “guess” an ri value encoded in a different state; (b) if the adver-
sary mauls the first component of the codeword, then he must maul all other
components of the codeword (as otherwise the decode algorithm will output ⊥)
and by the non-malleability of the underlying code, the new codeword will be
independent of the si values. We note that the r in our construction plays a role
similar to the one played by the secret label L in the leakage and tamper-resilient
RAM computation construction of Faust et al. [21]. While this indeed gives us
a construction of a locally decodable/encodable non-malleable code, the locality
of the code is t + k

t (and is thus minimized with t =
√

k); also, using the Fhalf

code from Aggarwal et al. [1] this gives us a construction that is non-malleable
against F

√
k

split.
We now show how to reduce the number of states. Suppose EncNM(·) is non-

malleable against the tampering class Fhalf, then EncNM(·) has the form (L,R)
and hence our above construction has the form (L0, R0, L1, R1, · · · , Lt, Rt). In
such a case, we show that the codeword can be written as (C1, C2, C3, C4) =
([L0], [R0], [L1, · · · , Lt], [R1, · · · , Rt]) and that this construction is non-malleable

Information-Theoretic Local Non-malleable Codes and Their Applications 373

against F4
split. While this code is secure against a larger class of tampering

function, it still has locality t + k
t . However, we then show that a single r

value can be reused across the encodings (instead of k
t different ri values) as

long as we encode the si values with indices, and moreover that this r value
does not even have to be encoded using a non-malleable code (as long as it
is hidden). This can be accomplished by simply secret sharing r into rL, rR

and storing them separately. In other words, our final construction has the
form ([rL, L1, · · · , Lk], [rR, R1, · · · , Rk]), where (Li, Ri) = EncNM(r, i, si) and
rL ⊕ rR = r. Instantiating the EncNM(·) with the code of [1] gives us our first
result, while instantiating it with the code of [13] gives us our second result.

Tamper and Leakage-Resilient RAM Computation. In order to obtain a pro-
tocol for secure RAM computation that is tamper and leakage resilient,
Dachman-Soled et al. [16] require the local non-malleable code to tolerate many-
time leakage (i.e., the adversary can obtain an unbounded amount of leakage
throughout the course of the protocol, but is bounded by the amount of leakage
that can be obtained in between successive updates to the memory that will
“refresh” the encoding). The challenge is to obtain such a construction even
though the update algorithm is local and only updates a small part of the code-
word. In their work, [16] do this by computing a Merkle hash of the ciphertexts
and by encoding this Merkle hash along with the symmetric key key and by
computing a fresh encoding of key together with the root of the Merkle Hash
everytime. However, intuitively, obtaining such a guarantee seems a contradic-
tary task for us – information theoretically, if we do not bound the total amount
of leakage, and only refresh a part of the encoding, then the adversary over time
can learn information about the various parts of the codeword (and hence the
message itself, thereby defeating non-malleability). We show that by compro-
mising on the leakage bound tolerated, and by using the information-theoretic
leakage-resilient non-malleable codes of Aggarwal et al. [3], we can achieve both
information-theoretic leakage/tamper-resilience along with locality, by periodi-
cally refreshing “different” parts of the codeword. We note here, that leakage and
tamper-resilient RAM computation has also been studied by Faust et al. [21] in
a model different from Dachman-Soled et al. [16] (and our work). In the model of
Faust et al. [21], they allow an adversary to obtain and store past codewords and
use that to tamper with the later encodings; on the other hand, they assume a
tamper and leak-free component. Faust et al. [21] use continuous non-malleable
codes [20], to obtain their construction. They show that if the underlying
continuous non-malleable code is information-theoretic, then their final construc-
tion is also information-theoretic; however, no information-theoretic construction
of continuous non-malleable codes are known. Furthermore, that construction
would require a tamper/leak free component; in our case, as in [16], the memory
of the RAM can be completely subjected to leakage and tampering.

374 N. Chandran et al.

1.3 Organization of the Paper

In Sect. 2, we present the formal definition of non-malleable coding schemes
with locality. As a stepping stone towards our main construction, in Sect. 3, we
present a construction of a non-malleable coding scheme with Õ(

√
k) locality

against F4
split adversaries. We present our main result namely, a constant rate

non-malleable coding scheme with O(λ) locality against Fhalf, in Sect. 4. Section 5
contains our constructions which are also locally updatable and leakage-resilient.
Finally, Sect. 6 presents the application of our non-malleable codes to secure
RAM computation.

2 Preliminaries

2.1 Notation

We say that two probability distributions X and Y are ε-close if their statistical
distance is ≤ ε and this is denoted by X ≈ε Y. The formal definition is given
below.

Definition 1. Let X ,Y be two probability distributions over some set S. Their
statistical distance is

SD (X ,Y) def= max
T⊆S

{Pr[X ∈ T] − Pr[Y ∈ T]} =
1
2

∑

s∈S

∣
∣
∣
∣Pr

X
[s] − Pr

Y
[s]

∣
∣
∣
∣ .

We say that X and Y are ε-close if SD (X ,Y) ≤ ε and this is denoted by X ≈ε Y.

For a sequence x = (x1, . . . , xn) and set S ⊆ [n], we use x|S to denote the
subsequence of xi values where i ∈ S. For any string y and i ∈ [|y|], we use yi to
denote the ith bit of y. The security parameter is denoted by λ. We use Õ (·) to
denote asymptotic estimates that hide poly-logarithmic factors in the involved
parameter.

2.2 Definitions

Definition 2 (Coding schemes). A coding scheme consists of a pair of functions
Enc : {0, 1}k → {0, 1}n and Dec : {0, 1}n → {0, 1}k ∪{⊥} where k is the message
length, n is the block length and k < n.

1. The encoder Enc takes as input a message s ∈ {0, 1}k and outputs a codeword
c = Enc(s).

2. The decoder Dec when given a correct (untampered) codeword as input, out-
puts the corresponding message. The correctness requirement is that for all
s ∈ {0, 1}k,Dec(Enc(s)) = s, with probability 1.

The rate of the coding scheme is the ratio k/n. A coding scheme is said to
have relative distance δ (or minimum distance δn), for some δ ∈ [0, 1), if for every
s ∈ {0, 1}k the following holds. Let X := Enc (s). Then, for any Δ ∈ {0, 1}n of

Information-Theoretic Local Non-malleable Codes and Their Applications 375

Hamming weight at most δn, Dec (X + Δ) = s with probability 1. Standard
error correcting codes, as defined above, are only applicable in settings where
the adversarial channel cannot make too many (i.e., more than δn) errors. Non-
malleable codes, introduced by Dziembowski et al. [19], provide a meaningful
guarantee in situations where the adversarial channel may completely overwrite
the codeword. Informally, a coding scheme is said to be non-malleable if an
adversary cannot transform the codeword of a message s into a codeword of a
related message s′. Note that such codes do not focus on error-tolerance and,
therefore, the parameter δ is set to 0.

Definition 3 (Non-malleable codes [19]). A coding scheme (Enc,Dec) with mes-
sage length k and block length n is said to be non-malleable with error ε (also
called exact security) with respect to a family F of tampering functions acting
on {0, 1}n (i.e., each f ∈ F maps {0, 1}n to {0, 1}n) if for every f ∈ F there is
a simulator S such that for all s ∈ {0, 1}k, we have

Tamperf
s ≈ε IdealS,s ≡

{
s̃ ← Sf(·), where s̃ ∈ {0, 1}k ∪ {⊥, same}
Output s if s̃ = same, and s̃ otherwise

}

where Tamperf
s is the output of the tampering experiment defined by

Tamperf
s ≡

{
C ← Enc (s) ; C̃ ← f (C) ; s̃ ← Dec

(
C̃

)

Output s̃

}

In this work, we focus on information-theoretic non-malleable codes i.e., the
≈ε is measured by statistical distance. Our goal is to design information-theoretic
non-malleable codes which are also local. Locally decodable codes (LDCs), intro-
duced by Katz and Trevisan [25] are a class of error correcting codes, where every
bit of the message can be probabilistically decoded by reading only a few bits of
the (possibly corrupted) codeword. We now state the formal definition.

Definition 4 (Local Decodability [25]). A coding scheme (Enc,Dec) with mes-
sage length k and block length n is said to be (r, δ, ε)-locally decodable if there
exists a randomized decoding algorithm Dec such that the following properties
hold.

1. For all s ∈ {0, 1}k, i ∈ [k] and all vectors y ∈ {0, 1}n such that the Hamming
distance between Enc (s) and y is not more than δn,

Pr[Dec (y, i) = si] ≥ 1 − ε,

where the probability is taken over the random coin tosses of the
algorithm Dec.

2. Dec reads at most r coordinates of y.

Dachman-Soled et al. [16] introduced and designed codes which combine
non-malleability and locality. While their coding scheme is in the computational
setting, their definition is applicable even for the information-theoretic setting
by simply using the appropriate notion of “closeness”.

376 N. Chandran et al.

Definition 5 (Local Decodability and Non-malleability, LDNMC [16]). A cod-
ing scheme (Enc,Dec) with message length k and block length n is said to be a
(r, ε1, ε2)-locally decodable non-malleable coding scheme with respect to a family
F of tampering functions acting on {0, 1}n if it is (r, 0, ε1)-locally decodable and
if for every f ∈ F there is a simulator S such that for all s ∈ {0, 1}k, we have

Tamperf
s ≈ε2 IdealS,s

where Tamperf
s is the output of the tampering experiment defined by

Tamperf
s ≡

{
C ← Enc (s) ; C̃ ← f (C) ;∀i, s̃i ← Dec

(
C̃, i

)

Output s̃ = s̃1, · · · , s̃k

}

and IdealS,s is defined as

1. (I, s∗) ← Sf(·) (
1λ

)
, where I ⊆ [k] and s∗ ∈ {0, 1,⊥}k.

2. If I = [k], then s̃ = s∗. Otherwise, s̃|I = ⊥ and s̃|I = s|I , where I denotes
the complement of the set I.

3. Output s̃.

Dachman-Soled et al. apply local NMCs to the problem of secure RAM com-
putation. Towards this end, they require NMCs that are also locally updatable.
Locally updatable and decodable error correcting codes were formalized in the
work of Chandran et al. [8]. Informally, such codes allow for a bit of the under-
lying message to be updated by rewriting just a few bits of the codeword. In the
context of non-malleable codes, which do not require error-tolerance, a weaker
definition [16] of local updatability suffices, which we present next.

Definition 6 (Local Decodability and Updatability [8,16]). A coding scheme
(Enc,Dec,Update) with message length k and block length n is said to be
(r1, r2, δ, ε)-locally decodable and updatable if it is (r1, δ, ε)-locally decodable and
there exists a randomized algorithm Update such that:

1. For all s ∈ {0, 1}k, i ∈ [k], s′
i ∈ {0, 1,⊥} and all vectors y ∈ {0, 1}n such

that the Hamming distance between UpdateC (i, s′
i) and y is not more than

δn, where C = Enc (s),

Pr[Dec (y, i) = s′
i] ≥ 1 − ε,

where the probability is taken over the random coin tosses of the algorithm
Dec.

2. Update reads and changes at most r2 coordinates of y.

Remarks. We note that the above definition can be extended in a straight-
forward manner to account for the decoding of a codeword which has been
updated multiple times as opposed to once (as above). Additionally, although
we focus on the case of correcting zero errors in the codeword, we can modify our
construction to get a construction that tolerates errors and is also non-malleable,

Information-Theoretic Local Non-malleable Codes and Their Applications 377

by simply encoding each “state” of our non-malleable codeword using an LDC.
This would reduce the error-tolerance of the code (by a fraction equal to the
number of states) and the rate of the obtained code would now depend on the
rate of the LDC. It suffices however here to discuss the case of correcting zero
errors in the codeword.

Similar to [16], we also construct locally decodable/updatable leakage
resilient non-malleable codes and use them to construct information-theoretic
tamper and leakage resilient RAM computation. We refer the reader to the full
version of this paper for details on these primitives.

3 Non-malleable Codes with Õ(
√

k) Locality
Against F4

split

In this section, we describe a construction of a locally updatable/decodable non-
malleable code that is non-malleable against the tampering function class F4

split

(i.e., the tampering function class that operates independently on 4 parts of
the codeword), with locality Õ(

√
k), where k is the length of the message being

encoded. The motivation for presenting this construction is two-fold: first, it has
ideas which will lead to our main construction described in Sect. 4; second, this
construction will be used to achieve the application to secure RAM computation.
We remark that the four parts of the codeword seen by a 4-state adversary
from the class F4

split need not be of equal sizes (in fact, they are not in this
construction). We specify how a codeword is broken into 4 parts in the proof of
Theorem 2. If one is so particular on requiring all parts to be of equal length, we
note that it is trivial to achieve this via padding, although this would affect the
rate of the final coding scheme (by at most a constant factor).

Recall that λ denotes the security parameter; t denotes a parameter that will
be set appropriately later on. Let NMC = (EncNM,DecNM) be a non-malleable
coding scheme on strings of length λk/t and NMC′ =

(
Enc′

NM,Dec′
NM

)
be a non-

malleable coding scheme on strings of length λ + t. We assume without loss of
generality that t divides k. We define the following coding scheme:

1. Enc (s): On input s ∈ {0, 1}k, the algorithm splits s into k/t blocks, say
s1, . . . , sk/t of size t each. Then, the algorithm chooses k/t random strings
r1, . . . , rk/t ∈ {0, 1}λ, and computes c = EncNM

(
r1‖ . . . ‖rk/t

)
and ei =

Enc′
NM (ri‖si) for i ∈ [k/t]. The algorithm finally outputs the codeword

C =
(
c, e1, . . . , ek/t

)
.

2. Dec (C, i): On input i ∈ [k], the algorithm reads the first and (�i/t� + 1)th
block of C, retrieving c, e�i/t�. Then it runs r1‖ . . . ‖rk/t := DecNM (c). If the
decoding algorithm outputs ⊥, the algorithm outputs ⊥. Otherwise, it com-
putes r∗

�i/t�‖s�i/t� = Dec′
NM

(
e�i/t�

)
. If the decoding algorithm outputs ⊥, the

algorithm outputs ⊥. If r∗
�i/t� �= r�i/t�, the algorithm outputs ⊥. Otherwise,

the algorithm outputs si from s�i/t�.

We instantiate this construction by instantiating the non-malleable codes
NMC and NMC′. A natural and strong class of functions which we may assume

378 N. Chandran et al.

the schemes are non-malleable against is the class of split-state adversaries, Fhalf,
that tamper two parts4 of the codeword independently, that is, f ∈ Fhalf iff
f : {0, 1}n can be written as f (c1, c2) = (f1 (c1) , f2 (c2)) for f1, f2 : {0, 1}n/2 →
{0, 1}n/2. The following result is known.

Theorem 1 [1]. Let Fhalf be the function family of split-state adversaries over
{0, 1}n. Let ε > 0 be an arbitrary value and k, n > 0 be integers such that
k/n ≤ γ, for some constant γ. Then there exists a non-malleable code with respect
to Fhalf, with k-bit source-messages and n-bit codewords, and exact security ε.

We now show the local-decodability and non-malleability of the above scheme
instantiated using the non-malleable code in Lemma1.

Theorem 2. Assume that NMC, NMC′ be non-malleable coding schemes of rate
1/γ, and exact security ε > 0, which is non-malleable against split-state adver-
saries. Then the above coding scheme is a

(
(λ (1 + k/t) + t) γ, 0, k

(
ε + 2−λ

)
/t

)
-

locally decodable non-malleable coding scheme which is non-malleable against
the tampering class F4

split, for any t ≤ k. The rate of the code is 1/γ′, where
γ′ = λγ/t + (1 + λ/t) γ.

Proof. Clearly the decoding algorithm reads (λ (1 + k/t) + t) γ positions of the
codeword since |c| = λγk/t and |ei| = (λ + t) γ. Also, since the decoding algo-
rithm is deterministic, the error probability in the local decoding procedure is
0. This justifies the first two parameters of the coding scheme.

The underlying non-malleable codes NMC and NMC′ are non-malleable
against split-state adversaries and let L0, R0 be the parts of c viewed by the
two states corresponding to the split-state adversary for c, and let Li, Ri be the
parts of ei viewed by the two states corresponding to the split-state adversary
for ei, for all i ∈ [k/t]. We define how a codeword is split into four parts –
the four-state adversaries against which the above scheme is non-malleable con-
sists of adversaries which are arbitrary functions over L0, R0, L1‖ . . . ‖Lk/t and
R1‖ . . . ‖Rk/t.

To show the theorem, for any suitable four-state adversary f = (f1, f2, f3, f4)
as described above, which we denote as f1 (L0), f2 (R0), f3

(
L1, . . . , Lk/t

)
and

f4
(
R1, . . . , Rk/t

)
, we need to construct a simulator S. We describe the simulator

with oracle access to f .

1. Let S ′ be the simulator for the non-malleable code NMC, and S ′′ for NMC′.
Now Sf(·) simulates S ′ once and S ′′ k/t times to obtain simulated codewords
c and ei for all i ∈ [k/t]. Note that the simulator described for the code instan-
tiated from Lemma 1 does not need oracle access to the tampering function
to produce simulated codewords assuming a super-polynomial message space,
which is the case since the messages are of length λk/t and λ+ t respectively,
where 0 ≤ t ≤ k. Let C =

(
c, e1, . . . , ek/t

)
.

2. Sf(·) then computes C̃ = f (C), where C̃ =
(
c̃, ẽ1, . . . , ẽk/t

)
.

4 While we define these two parts to be of equal length, as remarked earlier, there is
no such requirement.

Information-Theoretic Local Non-malleable Codes and Their Applications 379

3. Let Li, Ri be the parts of ẽi viewed by the two states corresponding to the
split-state adversary for ei, for all i ∈ [k/t]. Let f ′

i = f3
(
L1, . . . , Li−1, ·,

Li+1, . . . , Lk/t

)
and f ′′

i = f4
(
R1, . . . , Ri−1, ·, Ri+1, . . . , Rk/t

)
for all i ∈ [k/t].

Now Sf(·) simulates S ′f1(·),f2(·) with c̃ and S ′′f ′
i(·),f ′′

i (·) with ẽi for each i ∈
[k/t] internally. S ′ returns an output r′ = r′

1‖ . . . ‖r′
k/t, where r′ ∈ {0, 1}λk/t ∪

{⊥, same} and S ′′ returns an output r′′
i ‖s′i ∈ {0, 1}λ+t ∪ {⊥, same} for each

i ∈ [k/t].
4. Set I = ∅.

(a) If r′ = ⊥, then set I = [k] and s∗
i = ⊥ for all i ∈ [k].

(b) If r′ = same, then, for each i ∈ [k], check if r′′
�i/t�‖s′�i/t� �= same. If so,

set I = I ∪ {j : (i − 1) t + 1 ≤ j ≤ it} and s∗
j = ⊥ for all j such that

(i − 1) t + 1 ≤ j ≤ it.
(c) Otherwise, if r′ �∈ {⊥, same}, set I = [k]. Let s′ = s′1‖ . . . ‖s′k/t. For each

i ∈ [k],
i. If r′′

�i/t�‖s′�i/t� = ⊥ or r′′
�i/t�‖s′�i/t� = same, then set s∗

i = ⊥.
ii. Otherwise, check if r′

�i/t� = r′′
�i/t�. If so, set s∗

i = s′
i, otherwise set

s∗
i = ⊥.

5. Output (I, s∗).

The above simulator now defines IdealS,s. We must now show that
Tamperf

s ≈ε′ IdealS,s for some negligible ε′. We proceed through a series of
hybrids of the form IdealSj ,s for j ∈ [k/t], which is the same as IdealSj−1,s

except that it randomly chooses an ri ∈ {0, 1}λ, and generates ei = Enc′
NM (ri‖si)

for i = j and obtains r′′
i ‖s′i = Dec′

NM (gi (ei)) for i = j, where gi = (f ′
i , f

′′
i); if

r′′
i ‖s′i = ri‖si, it outputs same. This is to say that it obtains codewords and

performs decoding as in the real experiment for index j (as well). Note that
IdealS,s ≡ IdealS0,s.

Lemma 1. For all j ∈ [k/t], IdealSj−1,s ≈ε IdealSj ,s.

Proof. Let A = (A1,A2,A3,A4) be a four-state adversary that can distin-
guish between the outputs of the experiments IdealSj−1,s and IdealSj ,s for
some j ∈ [k/t], with an advantage of α. We describe a split-state adversary
B = (B1,B2) (where B1 and B2 operate independently on two halves of the
underlying codeword) that can break the non-malleability of the scheme NMC′

with the same advantage α. However, since NMC′ is non-malleable against split-
state adversaries with exact security ε, α ≤ ε, which completes the proof.

Let C be the challenger for the scheme NMC′. B, using A, executes as follows.
First, A chooses a message s ∈ {0, 1}k on which he will distinguish between the
outputs of the experiments IdealSj−1,s and IdealSj ,s, and sends it to B1, which
then splits s into k/t blocks, say s1, . . . , sk/t of size t each. B1 randomly chooses
ri ∈ {0, 1}λ, where λ is the security parameter, for all i ∈ [j]. It then generates
ei = Enc′

NM (ri‖si) for i ∈ [j − 1]. Let S ′ be the simulator for the non-malleable
code NMC, and S ′′ for NMC′ (on all indices but j). Now, B1 simulates S ′ once and
S ′′ k/t−j times to obtain simulated codewords c and ei for all i ∈ {j+1, . . . , k/t}.
B1 then sends the message rj‖sj to the challenger C.

380 N. Chandran et al.

C then either computes ej = Enc′
NM (rj‖sj), or uses the simulator S ′′ to obtain

a simulated codeword ej . It then splits ej into two parts Lj , Rj and sends Lj

to B1 and Rj to B2 respectively. B1 splits c into two parts, L0 and R0, and ei

into two parts, Li and Ri, for each i ∈ [k/t]\{j}. B1 then sends across L0 to A1,
R0 to A2, Li, for all i ∈ [k/t], to A3, and Ri, for all i ∈ [k/t]\{j}, to A4, and
B2 sends across Rj to A4. A then chooses its four-state tampering function f =
(f1, f2, f3, f4), and computes L̃0 = f1 (L0), R̃0 = f2 (R0), L̃ = f3

(
L1, . . . , Lk/t

)

and R̃ = f4
(
R1, . . . , Rk/t

)
. It then parses L̃ as L̃ =

(
L̃1, . . . , L̃k/t

)
and R̃

as R̃ =
(
R̃1, . . . , R̃k/t

)
. A1, A2, A3 and A4 also determine the descriptions

of the functions f1, f2, f ′
i = f3

(
L1, . . . , Li−1, ·, Li+1, . . . , Lk/t

)
and f ′′

i =
f4

(
R1, . . . , Ri−1, ·, Ri+1, . . . , Rk/t

)
, respectively, for all i ∈ {j + 1, . . . , k/t}.

Then, A1 sends across L̃0 and the description of the function f1 to B1, A2 sends
across R̃0 and the description of the function f2 to B1, A3 sends across L̃i, for
all i ∈ [k/t], and the descriptions of the functions f ′

i , for all i ∈ {j + 1, . . . , k/t},
to B1, and A4 sends across R̃i, for all i ∈ [k/t]\{j}, and the descriptions of the
functions f ′′

i , for all i ∈ {j + 1, . . . , k/t}, to B1, and R̃j to B2.

B1 then computes r′′
i ‖s′i = Dec′

NM

(
L̃i, R̃i

)
for i ∈ [j − 1]; if r′′

i ‖s′i = ri‖si,
it renames the output r′′

i ‖s′i as same. B1 then simulates S ′f1(·),f2(·) with c̃ =(
L̃0, R̃0

)
and S ′′f ′

i(·),f ′′
i (·) with ẽi =

(
L̃i, R̃i

)
for each i ∈ {j + 1, . . . , k/t}, to

obtain r′ = r′
1‖ . . . ‖r′

k/t, where r′ ∈ {0, 1}λk/t∪{⊥, same} and r′′
i ‖s′i ∈ {0, 1}λ+t∪

{⊥, same} for each i ∈ {j + 1, . . . , k/t}. B1 and B2 then send across L̃j and R̃j

respectively to C. C then responds back with r′′
j ‖s′j ∈ {0, 1}λ+t ∪ {⊥, same} to

B1, by either running the real decode algorithm or by simulation (in coherence
with the way it generated the codeword to begin with).

B1 then defines variables I and s∗, and sets I = ∅.

1. If r′ = ⊥, then it sets I = [k] and s∗
i = ⊥ for all i ∈ [k].

2. If r′ = same, then, for each i ∈ [k], it checks if r′′
�i/t�‖s′�i/t� �= same. If so,

it sets I = I ∪ {β : (i − 1) t + 1 ≤ β ≤ it} and s∗
β = ⊥ for all β such that

(i − 1) t + 1 ≤ β ≤ it.
3. Otherwise, if r′ �∈ {⊥, same}, it sets I = [k]. Let s′ = s′1‖ . . . ‖s′k/t. For each

i ∈ [k],
(a) If r′′

�i/t�‖s′�i/t� = ⊥ or r′′
�i/t�‖s′�i/t� = same, then it sets s∗

i = ⊥.
(b) Otherwise, it checks if r′

�i/t� = r′′
�i/t�. If so, it sets s∗

i = s′
i, otherwise it

sets s∗
i = ⊥.

Finally, B1 defines s̃ as follows. If I = [k], then it sets s̃ = s∗. Otherwise, it sets
s̃|I = ⊥ and s̃|I = s|I , where I denotes the complement of the set I. Then, B1

sends across s̃ to A. A then replies back with a bit b to B1, where b = 0 denotes
that the experiment run was IdealSj ,s, and b = 1 denotes that the experiment
run was IdealSj−1,s, which B1 forwards to C.

Note that if the challenger C sent across a simulated codeword for ej ,
then the experiment is identical to IdealSj−1,s, while if C sent across a

Information-Theoretic Local Non-malleable Codes and Their Applications 381

real codeword for the message rj‖sj for ej , then the experiment is iden-
tical to IdealSj ,s. Hence, since A is able to distinguish between the out-
puts of the two experiments with advantage α, so can B between the

outputs of the experiments Tamper(
f ′

j ,f ′′
j)

rj‖sj and IdealS′′,rj‖sj as defined
in Definition 3, where f ′

j = f3
(
L1, . . . , Lj−1, ·, Lj+1, . . . , Lk/t

)
and f ′′

j =
f4

(
R1, . . . , Rj−1, ·, Rj+1, . . . , Rk/t

)
. Since B is a valid split-state adversary for

the scheme NMC′, as mentioned before, α ≤ ε, which completes the proof. ��

We define IdealS†,s, which is the same as IdealSk/t,s except that the first
two components of the codeword are generated using an actual encoding (i.e.,
EncNM

(
r1‖ . . . ‖rk/t

)
) and the decoding is done using the real decoding algo-

rithm; i.e., r′ = DecNM
(
(f1, f2)

(
EncNM

(
r1‖ . . . ‖rk/t

)))
. If r′ = r1‖ . . . ‖rk/t, it

outputs same.

Lemma 2. IdealSk/t,s ≈ε IdealS†,s.

Proof. Let A = (A1,A2,A3,A4) be a four-state adversary who can distinguish
between the outputs of the experiments IdealSk/t,s and IdealS†,s with an advan-
tage of α. We describe a split-state adversary B = (B1,B2) (where B1 and B2 do
not communicate with each other) who can break the non-malleability of the the
scheme NMC with the same advantage α. However, since NMC is non-malleable
against split-state adversaries with exact security ε, α ≤ ε, which completes the
proof.

Let C be the challenger for the scheme NMC. B, using A, executes as follows.
First, A chooses a message s ∈ {0, 1}k on which he will distinguish between the
outputs of the experiments IdealSk/t,s and IdealS†,s, and sends it to B1, which
then splits s into k/t blocks, say s1, . . . , sk/t of size t each. B1 randomly chooses
ri ∈ {0, 1}λ, where λ is the security parameter, for all i ∈ [k/t]. It then generates
ei = Enc′

NM (ri‖si) for i ∈ [k/t]. B1 then sends the message r1‖ . . . ‖rk/t to the
challenger C.

C then either computes c = EncNM
(
r1‖ . . . ‖rk/t

)
, or uses the simulator

S ′ to obtain a simulated codeword c, where S ′ is the simulator for the non-
malleable code NMC. It then splits c into two parts L0, R0 and sends L0 to
B1 and R0 to B2 respectively. B1 splits ei into two parts, Li and Ri, for each
i ∈ [k/t]. B1 then sends across L0 to A1, Li, for all i ∈ [k/t], to A3, and Ri,
for all i ∈ [k/t], to A4, and B2 sends across R0 to A2. A then chooses its
four-state tampering function f = (f1, f2, f3, f4), and computes L̃0 = f1 (L0),
R̃0 = f2 (R0), L̃ = f3

(
L1, . . . , Lk/t

)
and R̃ = f4

(
R1, . . . , Rk/t

)
. It then parses

L̃ as L̃ =
(
L̃1, . . . , L̃k/t

)
and R̃ as R̃ =

(
R̃1, . . . , R̃k/t

)
. Then, A1 sends across

L̃0 to B1, A2 sends across R̃0 to B2, A3 sends across L̃i, for all i ∈ [k/t], to B1,
and A4 sends across R̃i, for all i ∈ [k/t], to B1.

B1 then computes r′′
i ‖s′i = Dec′

NM

(
L̃i, R̃i

)
for i ∈ [k/t]; if r′′

i ‖s′i = ri‖si, it

renames the output r′′
i ‖s′i as same. B1 and B2 then send across L̃0 and R̃0 respec-

tively to C. C then responds back with r′ = r′
1‖ . . . ‖r′

k/t ∈ {0, 1}λk/t ∪ {⊥, same}

382 N. Chandran et al.

to B1, by either running the real decode algorithm or by simulation (in coherence
with the way it generated the codeword to begin with).

B1 then defines variables I and s∗, and sets I = ∅.

1. If r′ = ⊥, then it sets I = [k] and s∗
i = ⊥ for all i ∈ [k].

2. If r′ = same, then, for each i ∈ [k], it checks if r′′
�i/t�‖s′�i/t� �= same. If so,

it sets I = I ∪ {β : (i − 1) t + 1 ≤ β ≤ it} and s∗
β = ⊥ for all β such that

(i − 1) t + 1 ≤ β ≤ it.
3. Otherwise, if r′ �∈ {⊥, same}, it sets I = [k]. Let s′ = s′1‖ . . . ‖s′k/t. For each

i ∈ [k],
(a) If r′′

�i/t�‖s′�i/t� = ⊥ or r′′
�i/t�‖s′�i/t� = same, then it sets s∗

i = ⊥.
(b) Otherwise, it checks if r′

�i/t� = r′′
�i/t�. If so, it sets s∗

i = s′
i, otherwise it

sets s∗
i = ⊥.

Finally, B1 defines s̃ as follows. If I = [k], then it sets s̃ = s∗. Otherwise, it sets
s̃|I = ⊥ and s̃|I = s|I , where I denotes the complement of the set I. Then, B1

sends across s̃ to A. A then replies back with a bit b to B1, where b = 0 denotes
that the experiment run was IdealS†,s, and b = 1 denotes that the experiment
run was IdealSk/t,s, which B1 forwards to C.

Note that if the challenger C sent across a simulated codeword for c, then
the experiment is identical to IdealSk/t,s, while if C sent across a real codeword
for the message r1‖ . . . ‖rk/t for c, then the experiment is identical to IdealS†,s.
Hence, since A is able to distinguish between the outputs of the two exper-
iments with advantage α, so can B between the outputs of the experiments
Tamper(f1,f2)

r1‖...‖rk/t
and IdealS′,r1‖...‖rk/t

as defined in Definition 3. Since B is a
valid split-state adversary for the scheme NMC, as mentioned before, α ≤ ε,
which completes the proof. ��

Lemma 3. IdealS†,s ≈k(ε+2−λ)/t Tamperf
s .

Proof. The only difference between the two experiments is step 4 of the simula-
tor, which is the decoding step. In particular, differences only lie in steps 4(b)
and 4(c)i where r′′

i ‖s′
i = same.

In step 4(b), r′ = same while r′′
i ‖s′i �= same. By the non-malleability of NMC′,

r′′
i ‖s′i is independent of ri‖si, in particular, r′′

i is independent of ri. Further, the
split state adversaries see nothing else which has information about ri (since the
ri’s are all random). Hence, the probability that r′′

i = ri is atmost 2−λ, and with
probability 1−2−λ, even the real decoding algorithm outputs ⊥. Hence, for each
i ∈ [k/t], the output distributions of the two experiments differ only by ε + 2−λ.

In step 4(c)i. when r′′
i ‖s′i = same, r′ �= same. By the non-malleability of NMC,

r′
i is independent of ri and the split state adversaries see nothing else which has

information about ri (since the r’s are all different and random). Hence, the
probability that r′′

i = r′
i is atmost 2−λ, and with probability 1 − 2−λ, even

the real decoding algorithm outputs ⊥. Hence, for each i ∈ [k/t], the output
distributions of the two experiments differ only by ε + 2−λ. ��

Information-Theoretic Local Non-malleable Codes and Their Applications 383

Combining all the hybrids, we see that Tamperf
s ≈ε′ IdealS,s for

ε′ = O
(
k

(
ε + 2−λ

)
/t

)
. This completes the proof of non-malleability of the

scheme. ��

Corollary 1. For all k, there exists an explicit construction of a
(
Õ

(√
k
)
, 0,

ν
(
λ
))

-locally decodable non-malleable coding scheme over k-bit messages with
constant rate (for some negligible function ν (·)) which is non-malleable against
four-state adversaries.

Proof. This follows by choosing t =
√

k and using constant-rate non-malleable
codes non-malleable against split state adversaries (from [1]) in Theorem 2. ��

4 Non-malleable Codes with O(λ) Locality Against Fhalf

We now present our construction of LDNMC with O(λ) locality and against Fhalf.
The key behind this improvement in locality is that we use just one random string
r across all encodings instead of multiple r’s as in the previous construction.
Somewhat surprisingly, not only are we able to use this idea to build a non-
malleable code, we are also able to secure it against a stronger adversarial model,
i.e., Fhalf. Before we present this construction, for ease of exposition, we present
a construction that is non-malleable against F3

split (and then show how to reduce
the number of states to 2). Let NMC = (EncNM,DecNM) be a non-malleable
coding scheme on strings of length log k+λ+1, where λ is the security parameter.
The construction works as follows:

1. Enc (s): On input s ∈ {0, 1}k, the algorithm chooses a random string r ∈
{0, 1}λ and computes ei = EncNM (i, r‖si) for i ∈ [k]. The algorithm finally
outputs the codeword C = (r, e1, . . . , ek).

2. Dec (C, i): On input i ∈ [k], the algorithm reads the first and (i + 1)th block of
C, retrieving r, ei. Then it computes i∗, r∗‖si = DecNM (ei). If the decoding
algorithm outputs ⊥, the algorithm outputs ⊥. If r∗ �= r or i∗ �= i, the
algorithm outputs ⊥. Otherwise, the algorithm outputs si.

In order to prove the security of this construction, we digress and consider
a modified construction which ignores r and merely encodes each bit of s along
with its index i.e., Enc(s) = {ei = EncNM (i, si)}i∈[k]. A quick inspection reveals
that this does not satisfy our definition of non-malleability. Indeed, an adversary
could replace e1 with an encoding of a bit s′

1 of his choosing and leave all other eis
the same. In other words, he can copy some bits of the encoding and replace the
rest with encodings of bits chosen independently by him. While this construction
is not non-malleable in the standard sense, we can show that the above mauling
really is all that the adversary can do.

4.1 Quoted Non-malleability

To formalize this intuition, we introduce a new notion of non-malleability which
we call “Quoted Non-malleability.” This definition is similar in spirit to the
definition “unquoted” CCA security (UCCA) defined in Myers and Shelat [27].

384 N. Chandran et al.

Definition 7 (Quoted-non-malleability, QNMC). A coding scheme (Enc,Dec)
with message length k and block length n is said to be quoted-non-malleable with
error ε with respect to a family F of tampering functions acting on {0, 1}n if for
every f ∈ F there is a simulator S such that for all s ∈ {0, 1}k, we have

QTamperf
s ≈ε QIdealS,s

where QTamperf
s is the output of the tampering experiment defined5 by

QTamperf
s ≡

{
C ← Enc (s) ; C̃ ← f (C) ;∀i, s̃i ← Dec

(
C̃, i

)

Output s̃ = s̃1, · · · , s̃k

}

and QIdealS,s is defined by

QIdealS,s ≡

⎧
⎨

⎩

s ← Sf(·) (
1λ

)
, where s ∈ ({0, 1} ∪ {⊥, same})k

∀i ∈ [k], if si = same, set s̃i = si, otherwise set s̃i = si

Output s̃ = s̃1, · · · , s̃k

⎫
⎬

⎭

We now prove that the construction with the randomness r, i.e. C =(
r, {ei = EncNM (i, r‖si)}i∈[k]

)
is quoted non-malleable.

Theorem 3. Assume that NMC is a non-malleable coding scheme of exact secu-
rity ε, which is non-malleable against split-state adversaries. Then the above cod-
ing scheme is a quoted-non-malleable coding scheme with exact security kε which
is non-malleable against three-state adversaries.

Proof. The underlying non-malleable code NMC is non-malleable against split-
state adversaries and let Li, Ri be the parts of ei viewed by the two states
corresponding to the split-state adversary for ei, for all i ∈ [k]. The three-
state adversaries against which the above scheme is non-malleable consists of
adversaries which are arbitrary functions over r, L1‖ . . . ‖Lk and R1‖ . . . ‖Rk.

To show the theorem, for any function suitable three-state adversary f =
(f1, f2, f3) as described above, which we denote as f1 (r), f2 (L1, . . . , Lk) and
f3 (R1, . . . , Rk), we need to construct a simulator S. We describe the simulator
with oracle access to f .

1. Sf(·) first chooses a random string r ∈ {0, 1}λ.
2. Let S ′ be the simulator for the non-malleable code NMC. Now Sf(·) sim-

ulates S ′ k times to obtain simulated codewords ei for all i ∈ [k]. Let
C = (r, e1, . . . , ek).

3. Next Sf(·) obtains r′ = f1 (r), where r′ ∈ {0, 1}λ.

5 Note that in this definition, we abuse notation mildly by allowing Dec to take the
index i as input, in addition to C̃. The output of Dec(·, i) is in {0, 1}⋃⊥. Since the
definition of quoted non-malleability makes sense without locality, one can think of
Dec(·, ·) as simply running the actual decode algorithm and simply outputting the
ith bit (or ⊥ if the decoding fails).

Information-Theoretic Local Non-malleable Codes and Their Applications 385

4. Let Li, Ri be the parts of ei viewed by the two states correspond-
ing to the split-state adversary for ei, for all i ∈ [k]. Let f ′

i =
f2 (L1, . . . , Li−1, ·, Li+1, . . . , Lk) and f ′′

i = f3 (R1, . . . , Ri−1, ·, Ri+1, . . . , Rk)
for all i ∈ [k]. Now Sf(·) simulates S ′f ′

i(·),f ′′
i (·) internally. At some point, S ′

returns an output (i′, r′′
i ‖s′

i) ∈ {0, 1}log k+λ+1 ∪ {⊥, same}.
5. For each i ∈ [k],

(a) if (i′, r′′
i ‖s′

i) = ⊥, then set si = ⊥.
(b) if (i′, r′′

i ‖s′
i) = same,

i. if r′ �= r, then set si = ⊥.
ii. otherwise, set si = same.

(c) otherwise,
i. if r′ = r′′

i and i′ = i, then set si = s′
i.

ii. otherwise, set si = ⊥.
6. Output s.

The above simulator defines QIdealS,s. We must now show that
QTamperf

s ≈ε′ QIdealS,s for some ε′. We proceed through a series of hybrids of
the form QIdealSj ,s for j ∈ [k], which is the same as QIdealSj−1,s except that it
generates ei = EncNM (i, r‖si) for i = j and it obtains (i′, r′′

i ‖s′
i) = DecNM (gi (ei))

for i = j, where gi = (f ′
i , f

′′
i). If (i′, r′′

i ‖s′
i) = (i, r‖si), it outputs same. Note that

QIdealS,s ≡ QIdealS0,s and QTamperf
s ≡ IdealSk,s.

Lemma 4. For all j ∈ [k], QIdealSj−1,s ≈ε QIdealSj ,s.

Proof. Let A = (A1,A2,A3) be a three-state adversary who can distinguish
between the outputs of the experiments QIdealSj−1,s and QIdealSj ,s for some
j ∈ [k], with an advantage of α. We describe a split-state adversary B = (B1,B2)
(where B1 and B2 do not communicate with each other) who can break the
non-malleability of the the scheme NMC with the same advantage α. However,
since NMC is non-malleable against split-state adversaries with exact security ε,
α ≤ ε, which completes the proof.

Let C be the challenger for the scheme NMC. B, using A, executes as follows.
First, A chooses a message s ∈ {0, 1}k on which he will distinguish between
the outputs of the experiments QIdealSj−1,s and QIdealSj ,s, and sends it to
B1. B1 randomly chooses r ∈ {0, 1}λ, where λ is the security parameter. It then
generates ei = EncNM (i, r‖si) for i ∈ [j − 1]. Let S ′ be the simulator for the
non-malleable code NMC (on all indices but j). Now, B1 simulates S ′ k−j times
to obtain simulated codewords ei for all i ∈ {j + 1, . . . , k}. B1 then sends the
message (j, r‖sj) to the challenger C.

C then either computes ej = EncNM (j, r‖sj), or uses the simulator S ′ to
obtain a simulated codeword ej . It then splits ej into two parts Lj , Rj and
sends Lj to B1 and Rj to B2 respectively. B1 splits ei into two parts, Li and
Ri, for each i ∈ [k]\{j}. B1 then sends across r to A1, Li, for all i ∈ [k],
to A2, and Ri, for all i ∈ [k]\{j}, to A3, and B2 sends across Rj to A3. A
then chooses its three-state tampering function f = (f1, f2, f3), and computes
r̃ = f1 (r), L̃ = f2 (L1, . . . , Lk) and R̃ = f3 (R1, . . . , Rk). It then parses L̃ as

386 N. Chandran et al.

L̃ =
(
L̃1, . . . , L̃k

)
and R̃ as R̃ =

(
R̃1, . . . , R̃k

)
. A2 and A3 also determine the

descriptions of the functions f ′
i = f2 (L1, . . . , Li−1, ·, Li+1, . . . , Lk) and f ′′

i =
f3 (R1, . . . , Ri−1, ·, Ri+1, . . . , Rk), respectively, for all i ∈ {j + 1, . . . , k}. Then,
A1 sends across r̃ to B1, A2 sends across L̃i, for all i ∈ [k], and the descriptions
of the functions f ′

i , for all i ∈ {j + 1, . . . , k}, to B1, and A3 sends across R̃i, for
all i ∈ [k]\{j}, and the descriptions of the functions f ′′

i , for all i ∈ {j +1, . . . , k},
to B1, and R̃j to B2.

B1 then computes (i′, r′′
i ‖s′

i) = DecNM
(
L̃i, R̃i

)
for i ∈ [j − 1]; if (i′, r′′

i ‖s′
i) =

(i, r‖si), it renames the output (i′, r′′
i ‖s′

i) as same. B1 then simulates S ′f ′
i(·),f ′′

i (·)

with ẽi =
(
L̃i, R̃i

)
for each i ∈ {j + 1, . . . , k}, to obtain (i′, r′′

i ‖s′
i) ∈ {0, 1}λ+t ∪

{⊥, same} for each i ∈ {j + 1, . . . , k}. B1 and B2 then send across L̃j and R̃j

respectively to C. C then responds back with
(
j′, r′′

j ‖s′
j

)
∈ {0, 1}λ+t ∪ {⊥, same}

to B1, by either running the real decode algorithm or by simulation (in coherence
with the way it generated the codeword to begin with).

B1 then defines the variable s. For each i ∈ [k],

1. if (i′, r′′
i ‖s′

i) = ⊥, then it sets si = ⊥.
2. if (i′, r′′

i ‖s′
i) = same,

(a) if r̃ �= r, then it sets si = ⊥.
(b) otherwise, it sets si = same.

3. otherwise,
(a) if r̃ = r′′

i and i′ = i, then it sets si = s′
i.

(b) otherwise, it sets si = ⊥.

Finally, B1 defines s̃ as follows. For each i ∈ [k], if si = same, set s̃i = si,
otherwise set s̃i = si. Then, B1 sends across s̃ to A. A then replies back with a
bit b to B1, where b = 0 denotes that the experiment run was QIdealSj ,s, and
b = 1 denotes that the experiment run was QIdealSj−1,s, which B1 forwards to
C.

Note that if the challenger C sent across a simulated codeword for ej ,
then the experiment is identical to QIdealSj−1,s, while if C sent across a real
codeword for the message (j, r‖sj) for ej , then the experiment is identical to
QIdealSj ,s. Hence, since A is able to distinguish between the outputs of the
two experiments with advantage α, so can B between the outputs of the experi-

ments Tamper(
f ′

j ,f ′′
j)

(j,r‖sj)
and IdealS′,(j,r‖sj) as defined in Definition 3, where f ′

j =
f2 (L1, . . . , Lj−1, ·, Lj+1, . . . , Lk) and f ′′

j = f3 (R1, . . . , Rj−1, ·, Rj+1, . . . , Rk).
Since B is a valid split-state adversary for the scheme NMC, as mentioned before,
α ≤ ε, which completes the proof. ��

Combining all the hybrids, we see that QTamperf
s ≈ε′ QIdealS,s for ε′ = kε.

This completes the proof of quoted-non-malleability of the scheme. ��

4.2 Achieving Full Non-malleability

Recall that our ultimate goal is to construct a coding scheme which is non-
malleable against split-state adversaries. As the theorem below states, we can

Information-Theoretic Local Non-malleable Codes and Their Applications 387

show that the quoted non-malleable construction from the previous subsection
is itself fully non-malleable. As a careful reader may have observed, the proof
of quoted non-malleability does not use the randomness of r at all. Indeed, the
construction, as we alluded to earlier, is quoted non-malleable even without
using r in the encoding. Yet this randomness is precisely what makes the con-
struction (fully) non-malleable. We first show how the construction from Sect. 4
is non-malleable against 3-state adversaries and then show how to modify the
construction to achieve security against Fhalf.

Theorem 4. Assume that NMC is a non-malleable coding scheme of rate 1/γ
and exact security ε, which is non-malleable against split-state adversaries. Then
the coding scheme from Sect. 4 is a

(
λ + (λ + log k + 1) γ, 0, k

(
ε + 2−λ

))
-locally

decodable non-malleable coding scheme which is non-malleable against three-state
adversaries. The rate of the code is 1/γ′, where γ′ = λ/k + (λ + log k + 1) γ.

Proof. Clearly the decoding algorithm reads λ + (λ + log k + 1) γ positions of
the codeword since |r| = λ and |ei| = (λ + log k + 1) γ. Also, since the decoding
algorithm is deterministic, the error probability in the local decoding procedure
is 0. This justifies the first two parameters of the coding scheme.

The underlying non-malleable code NMC is non-malleable against split-state
adversaries and let Li, Ri be the parts of ei viewed by the two states correspond-
ing to the split-state adversary for ei, for all i ∈ [k]. The three-state adversaries
against which the above scheme is non-malleable consists of adversaries which
are arbitrary functions over r, L1‖ . . . ‖Lk and R1‖ . . . ‖Rk.

To show the theorem, for any function suitable three-state adversary f =
(f1, f2, f3) as described above, which we denote as f1 (r), f2 (L1, . . . , Lk) and
f3 (R1, . . . , Rk), we need to construct a simulator S. We describe the simulator
with oracle access to f .

1. Sf(·) first chooses a random string r ∈ {0, 1}λ.
2. Let S ′ be the simulator for the non-malleable code NMC. Now Sf(·) simulates

S ′ k times to obtain simulated codewords ei for all i ∈ [k]. Note that the sim-
ulator described for the code instantiated from Lemma 1 does not need oracle
access to the tampering function to produce simulated codewords assuming
a super-polynomial message space, which is the case since the messages are
of length log k + λ + 1. Let C = (r, e1, . . . , ek).

3. Next Sf(·) obtains r′ = f1 (r), where r′ ∈ {0, 1}λ.
4. Let Li, Ri be the parts of ei viewed by the two states correspond-

ing to the split-state adversary for ei, for all i ∈ [k]. Let f ′
i =

f2 (L1, . . . , Li−1, ·, Li+1, . . . , Lk) and f ′′
i = f3 (R1, . . . , Ri−1, ·, Ri+1, . . . , Rk)

for all i ∈ [k]. Now Sf(·) simulates S ′f ′
i(·),f ′′

i (·) internally. At some point, S ′

returns an output (i′, r′′
i ‖s′

i) ∈ {0, 1}log k+λ+1 ∪ {⊥, same}.
5. Set I = ∅.

(a) If r′ = r, then, for each i ∈ [k],
i. if (i′, r′′

i ‖s′
i) = ⊥, then set I = I ∪ {i} and s∗

i = ⊥.
ii. otherwise, if (i′, r′′

i ‖s′
i) �= same, then set I = I ∪ {i} and s∗

i = ⊥.

388 N. Chandran et al.

(b) Otherwise, set I = [k]. For each i ∈ [k],
i. if (i′, r′′

i ‖s′
i) = ⊥ or (i′, r′′

i ‖s′
i) = same, then set s∗

i = ⊥.
ii. otherwise,

A. if r′ = r′′
i and i′ = i, then set s∗

i = s′
i.

B. otherwise, set s∗
i = ⊥.

6. Output (I, s∗).

We first note that for the construction in Sect. 4, QTamperf
s ≡ Tamperf

s ,
by definition. Hence, we only need to show the indistinguishability of QIdealS,s

and IdealS,s, where S is the simulator described above and S is the simulator
described in the proof of Theorem 3.

Lemma 5. QIdealS,s ≈2−λk IdealS,s.

Proof. The only difference between the two experiments is step 5, which is the
decoding step. In particular, differences only lies in step 5(a)ii of the simulator S.

In step 4(a)ii, r′′
i ‖s′

i �= same, and note that r′′
i is generated by the simulator S ′

without any knowledge of r. Hence, r′′
i is independent of r. Hence, the probability

that r′′
i = r is atmost 2−λ, and with probability 1− 2−λ, even the decoding step

in the simulator S in the proof of Theorem 3 outputs ⊥. Hence, for each i ∈ [k],
the output distributions of the two experiments differ only by 2−λ. ��

Combining this hybrid with the proof of Theorem3, we see that
Tamperf

s ≈ε′ IdealS,s for ε′ = k
(
ε + 2−λ

)
. This completes the proof of non-

malleability of the scheme. ��

Reducing States to 2. The proof of Theorem 4 crucially relies on the secrecy of r
(from the adversaries in states 2 and 3 above). This contributes to making the
number of states to be 3. However, secrecy of r can also be preserved by simply
secret sharing r into r = rL ⊕ rR. The final encoding is as follows: Enc (s) =
([rL, L1, · · · , Lk], [rR, R1, · · · , Rk]), where rL ⊕ rR = r for a random r ∈ {0, 1}λ

and ei = EncNM (i, r‖si) = (Li, Ri) for i ∈ [k]. This gives us a construction that
is non-malleable against Fhalf. Additionally, note that it is straight-forward to
modify the construction to split s into blocks of size t as opposed to single bits
(similar to the construction in Sect. 3) to obtain the following theorem, the proof
of which is given in the full version of this paper.

Theorem 5. Assume that NMC is a non-malleable coding scheme of rate 1/γ
and exact security ε, which is non-malleable against split-state adversaries. Then
there is an efficient

(
λ + (λ + log (k/t) + t) γ, 0, k

(
ε + 2−λ

)
/t

)
-locally decodable

non-malleable coding scheme which is non-malleable against Fhalf. The rate of
the code is 1/γ′, where γ′ = λ/k + (1 + λ/t + log (k/t) /t) γ.

Corollary 2. Assuming λ ≥ log k, there exists an explicit construction of a
(O (λ) , 0, ν (λ))-locally decodable non-malleable coding scheme over k-bit mes-
sages with constant rate (for some negligible function ν(·)) which is non-malleable
against Fhalf.

Information-Theoretic Local Non-malleable Codes and Their Applications 389

Proof. This follows by choosing t = λ and using constant-rate non-malleable
codes non-malleable against Fhalf (from the work of Aggarwal et al. [1]) in
Theorem 5. ��

Corollary 3. There exists an explicit construction of a (ω(1), 0, ν(λ))-locally
decodable non-malleable coding scheme with rate 1 (for a negligible function ν(·))
which is non-malleable against the tampering function class Fbit.

Proof. The proof of this corollary follows by instantiating EncNM in Theorem 4
with the rate 1 non-malleable coding scheme from [13] that is non-malleable
against Fbit and by splitting the k-bit input message into blocks of size ω(1)
each and encoding these bits together. ��

5 Updatability and Security Against Continual Attacks

We now show how to modify the construction from Sect. 3 to get a code that is
leakage and tamper-resilient against continual attacks. Note that if codewords
are not periodically refreshed, then an adversary that obtains leakage that is
unbounded, can, over time, leak one codeword completely and then tamper the
codeword based on this codeword. At a high level, to prevent this, we must
refresh codewords periodically (even if they are not updated). We do this, by
cycling through the codewords that encode all si values one-by-one and “refresh”
them. Of course, if the encoder and decoder maintain state, they can perform
this refreshing in a cyclic manner. However, in order to perform this refresh in
a stateless manner, we maintain a counter that is encoded along with all the
ri values. This ensures that we refresh all codewords periodically. Additionally,
for technical reasons (that we describe later), we refresh codewords everytime
we decode a particular index. By lowering the threshold of leakage tolerated in
every “round”, we ensure that our construction remains secure. We describe our
construction (and the security) in more detail in the full version [9] of this paper.

6 Applications of Local Non-malleable Codes

Similar to the work of Dachman-Soled et al. [16], our locally updata-
ble/decodable leakage-resilient non-malleable codes can be used in the construc-
tion of secure RAM computation protocols. At a very high level, if the memory
and program code are encoded using a local leakage-resilient non-malleable code
(that is resilient to tampering from the family F and leakage from the fam-
ily G) and the resulting codeword is then accessed through an oblivious RAM
(ORAM) [23,24,28,29] protocol, one can show that the resulting protocol is a
protocol for secure RAM computation that is secure against tampering of the
memory from the same tampering family F and leakage from the same family
G. Now, if we instantiate the non-malleable code with our information-theoretic
non-malleable code from Sect. 5, and instantiate the ORAM protocol with an
ORAM that has information-theoretic guarantees [6,14,17,31], then one can

390 N. Chandran et al.

show that the resulting RAM computation protocol has information-theoretic
security. Of course, information-theoretic RAM protocols assume the existence
of ideal encryption and our final compiler will make the same assumption. How-
ever, if the compiler is applied in the context of information-theoretic secure
multi-party computation [7,11], then one can obtain an information-theoretic
secure RAM computation protocol that is resilient to tampering from the class
F and leakage from the class G (by replacing the ideal encryption with secret
sharing [30]).

For further details of ORAM compilers, tamper/leakage resilient
(information-theoretic) RAM computation, our construction and results, we refer
the reader to the full version of this paper.

References

1. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and
applications. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on
Theory of Computing, STOC 2015, Portland, OR, USA, 14–17 June 2015, pp.
459–468 (2015)

2. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In: Symposium on Theory of Computing, STOC 2014, New York, NY, USA,
31 May–03 June 2014, pp. 774–783 (2014)

3. Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-
malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol.
9014, pp. 398–426. Springer, Heidelberg (2015)

4. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-
malleable codes against bit-wise tampering and permutations. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 538–557. Springer,
Heidelberg (2015)

5. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and per-
mutations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014,
pp. 375–397. Springer, Heidelberg (2015)

6. Ajtai, M.: Oblivious RAMs without cryptographic assumptions. In: Proceedings
of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge,
Massachusetts, USA, 5–8 June 2010, pp. 181–190 (2010)

7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, Chicago,
Illinois, USA, 2–4 May 1988, pp. 1–10 (1988)

8. Chandran, N., Kanukurthi, B., Ostrovsky, R.: Locally updatable and locally decod-
able codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 489–514. Springer,
Heidelberg (2014)

9. Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic local non-
malleable codes and their applications. Cryptology ePrint Archive, Report 2015
(2015). http://eprint.iacr.org/

10. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-
state tampering. In: 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, 18–21 October 2014, pp. 306–315
(2014)

http://eprint.iacr.org/

Information-Theoretic Local Non-malleable Codes and Their Applications 391

11. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, Chicago, Illinois, USA, 2–4 May 1988, pp. 11–19 (1988)

12. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: Innovations
in Theoretical Computer Science, ITCS 2014, Princeton, NJ, USA, 12–14 January
2014, pp. 155–168 (2014)

13. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464.
Springer, Heidelberg (2014)

14. Chung, K.-M., Liu, Z., Pass, R.: Statistically-secure ORAM with Õ(log2 n) over-
head. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874,
pp. 62–81. Springer, Heidelberg (2014)

15. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015, Part I. LNCS, vol. 9014, pp. 532–560. Springer, Heidelberg (2015)

16. Dachman-Soled, D., Liu, F.-H., Shi, E., Zhou, H.-S.: Locally decodable and updat-
able non-malleable codes and their applications. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015, Part I. LNCS, vol. 9014, pp. 427–450. Springer, Heidelberg (2015)

17. Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM with-
out random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163.
Springer, Heidelberg (2011)

18. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol.
8043, pp. 239–257. Springer, Heidelberg (2013)

19. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Innovations
in Computer Science, ICS 2010, Tsinghua University, Beijing, China, 5–7 January
2010, pp. 434–452 (2010)

20. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014)

21. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage resilient
von Neumann architecture. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp.
579–603. Springer, Heidelberg (2015)

22. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014)

23. Goldreich, O.: Towards a theory of software protection and simulation by obliv-
ious RAMs. In: Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, New York, USA, pp. 182–194 (1987)

24. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

25. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-
correcting codes. In: Proceedings of the Thirty-Second Annual ACM Symposium
on Theory of Computing, Portland, OR, USA, 21–23 May 2000, pp. 80–86 (2000)

26. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012)

27. Myers, S., Shelat, A.: Bit encryption is complete. In: 50th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2009, Atlanta, Georgia, USA, 25–27
October 2009, pp. 607–616 (2009)

392 N. Chandran et al.

28. Ostrovsky, R.: An efficient software protection scheme. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 610–611. Springer, Heidelberg (1990)

29. Ostrovsky, R.: Efficient computation on oblivious RAMs. In: Proceedings of the
22nd Annual ACM Symposium on Theory of Computing, Baltimore, Maryland,
USA, 13–17 May 1990, pp. 514–523 (1990)

30. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
31. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C.W., Ren, L., Yu, X., Devadas, S.:

Path ORAM: an extremely simple oblivious RAM protocol. In: 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2013, Berlin,
Germany, 4–8 November 2013, pp. 299–310 (2013)

32. Yekhanin, S.: Locally decodable codes. Found. Trends Theoret. Comput. Sci. 6(3),
139–255 (2012)

Optimal Computational Split-state
Non-malleable Codes

Divesh Aggarwal1(B), Shashank Agrawal2, Divya Gupta3, Hemanta K. Maji4,
Omkant Pandey5, and Manoj Prabhakaran2

1 EPFL, Lausanne, Switzerland
Divesh.Aggarwal@epfl.ch

2 University of Illinois at Urbana-Champaign, Champaign, USA
{sagrawl2,mmp}@illinois.edu

3 University of California at Los Angeles, Los Angeles, USA
divyag@cs.ucla.edu

4 Purdue University, West Lafayette, USA
hmaji@purdue.edu

5 University of California at Berkeley, Berkeley, USA
omkant@gmail.com

Abstract. Non-malleable codes are a generalization of classical error-
correcting codes where the act of “corrupting” a codeword is replaced by
a “tampering” adversary. Non-malleable codes guarantee that the mes-
sage contained in the tampered codeword is either the original message
m, or a completely unrelated one. In the common split-state model, the
codeword consists of multiple blocks (or states) and each block is tam-
pered with independently.

The central goal in the split-state model is to construct high rate
non-malleable codes against all functions with only two states (which
are necessary). Following a series of long and impressive line of work,
constant rate, two-state, non-malleable codes against all functions were
recently achieved by Aggarwal et al. [2]. Though constant, the rate of
all known constructions in the split state model is very far from optimal
(even with more than two states).

In this work, we consider the question of improving the rate of split-
state non-malleable codes. In the “information theoretic” setting, it is not

S. Agrawal and M. Prabhakaran—Research supported in part by NSF grant 1228856.
D. Gupta and H.K. Maji—Research supported in part from a DARPA/ONR PRO-
CEED award, NSF Frontier Award 1413955, NSF grants 1228984, 1136174, 1118096,
and 1065276, a Xerox Faculty Research Award, a Google Faculty Research Award,
an equipment grant from Intel, and an Okawa Foundation Research Grant. This
material is based upon work supported by the Defense Advanced Research Projects
Agency through the U.S. Office of Naval Research under Contract N00014-11- 1-
0389. The views expressed are those of the author and do not reflect the official
policy or position of the Department of Defense, the National Science Foundation,
or the U.S. Government.
D. Gupta, O. Pandey and M. Prabhakaran—This work was done in part while the
author was visiting the Simons Institute for the Theory of Computing, supported by
the Simons Foundation and by the DIMACS/Simons Collaboration in Cryptography
through NSF grant #CNS-1523467.

c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 393–417, 2016.
DOI: 10.1007/978-3-662-49099-0 15

394 D. Aggarwal et al.

possible to go beyond rate 1/2. We therefore focus on the standard com-
putational setting. In this setting, each tampering function is required
to be efficiently computable, and the message in the tampered codeword
is required to be either the original message m or a “computationally”
independent one.

In this setting, assuming only the existence of one-way functions, we
present a compiler which converts any poor rate, two-state, (sufficiently
strong) non-malleable code into a rate-1, two-state, computational non-
malleable code. These parameters are asymptotically optimal. Further-
more, for the qualitative optimality of our result, we generalize the result
of Cheraghchi and Guruswami [10] to show that the existence of one-way
functions is necessary to achieve rate > 1/2 for such codes.

Our compiler requires a stronger form of non-malleability, called aug-
mented non-malleability. This notion requires a stronger simulation guar-
antee for non-malleable codes and simplifies their modular usage in cryp-
tographic settings where composition occurs. Unfortunately, this form
of non-malleability is neither straightforward nor generally guaranteed
by known results. Nevertheless, we prove this stronger form of non-
malleability for the two-state construction of Aggarwal et al. [3]. This
result is of independent interest.

Keywords: Non-malleable codes · Split-state · Explicit construction ·
Computational setting · One-way functions · Pseudorandom generators ·
Authenticated encryption schemes · Rate 1

1 Introduction

Non-Malleable Codes, introduced by Dziembowski, Pietrzak, and Wichs [18],
are a generalization of the classical notion of error detection. Informally, a code
is non-malleable if the message contained in a codeword that has been tam-
pered with is either the original message, or a completely unrelated value. Non-
Malleable Codes have emerged as a fundamental object at the intersection of
coding theory and cryptography.

There are two main directions in this area: design explicit codes that can
tolerate a large class of tampering functions, and achieve high rate1 for such
constructions.

Ideally, we would like to tolerate the class of all tampering functions that
can be implemented in P/poly. However, this is impossible if the adversary has
unrestricted access to the full codeword2. Therefore, one must either consider

1 Rate refers to the asymptotic ratio of the length of a message to the length of its
encoding (in bits), as the message length increases to infinity. The best rate possible
is 1; if the length of the encoding is super-linear in the length of the message, the
rate is 0.

2 This is because a non-malleable code has efficient encoding and decoding procedures;
an adversary can simply decode the message and encode a related value.

Optimal Computational Split-state Non-malleable Codes 395

a (much weaker) class of tampering functions, or move to alternative models
where the adversary has only restricted access to the codeword.

The most common model for tolerating arbitrary tampering functions is
the split state model. In this model, the codeword is “split” into two or more
states c = (c1, . . . , ck); a tampering function f is viewed as a list of k functions
(f1, . . . , fk) fixed before c is sampled, where each function fi tampers with the
corresponding component ci of the codeword independently, i.e., the tampered
codeword is c′ = (f1(c1), . . . , fk(ck)). Ideally, we would like to achieve codewords
with minimum number of states k = 2 while tolerating all possible tampering
functions and achieving high-rate3.

In a break-through result, Aggarwal et al. [3] presented an explicit non-
malleable code for k = 2 states for messages of arbitrary length (significantly
improving upon [17] which only encodes a single bit). However, their work only
achieves rate Ω(n−6/7) (or rate 0, asymptotically) where n is the block length
of the codeword. Chattopadhyay and Zuckerman [9] present an encoding which
has constant rate by increasing the number of states to k = 10. Very recently,
Aggarwal et al. [2] show that constant rate for such codes can in fact be achieved
with only k = 2 states4.

Though constant, the rate of codes in [2,9] is very far from optimal. A nat-
ural question is if we can achieve the best parameters, i.e.:

Can we construct explicit, 2-state, non-malleable codes of rate 1 tolerating all
tampering functions in P/poly?

In the “information theoretic” setting it is impossible to go beyond rate 1/2.
Recall that in the “information theoretic” setting, the tampering function is of the
form (f1, f2) (restricting ourselves to 2 states), the component functions are not
necessarily of polynomial size, andwe require that the tampered codeword contains
either the original message m or a message statistically independent of m.

We must therefore consider the “computational setting” which is a natural
relaxation of the information theoretic setting. More specifically, we make two
changes: first, we require that f1, f2 are both in P/poly; and second the tam-
pered codeword either contains the original message m or a message that is only
“computationally independent” of m5.

In this work, we show that it is indeed possible to construct rate 1 non-
malleable codes in the computational setting with only k = 2 states under the
standard assumption that one-way functions exist. Our code is explicit and tol-
erates all tampering functions (in P/poly). Furthermore, we complement this

3 We note that in this model, one can even tolerate tampering functions beyond
P/poly. This is the so called “information theoretic” setting.

4 Sometimes, the setting where k = 2 is commonly referred to as the split state setting;
and when k > 2 it is explicitly mentioned and often called multiple split state setting.

5 This is precisely defined by requiring a simulator whose output, in the case where
the tampered message is not m, is computationally indistinguishable from a message
in the (real) tampered codeword.

396 D. Aggarwal et al.

result by proving that the existence of non-malleable codes of rate better than
1/2 (in the information theoretic setting) implies one-way functions. Our moti-
vation to rely on the computational setting to go beyond rate 1/2 comes from
similar previous works [27,29] on classical error correcting codes where a com-
putationally bounded channel is considered to correct more than 1/4th fraction
of the errors.

Our approach actually yields a compiler which converts any 2-state, poor
rate (potentially rate 0), non-malleable code into a rate-1 computational non-
malleable code. However, this reduction requires the underlying code to have a
stronger form of non-malleability: at a high level, it requires a stronger simula-
tion guarantee where the simulator can not only simulate the distribution of the
message in the tampered codeword, but also one of the states of the original code-
word (say the second state). We formalize this stronger simulation requirement
and call the resulting notion augmented non-malleability. Given this stronger
form of non-malleability, we can prove the computational non-malleability of
our 2-state construction. Augmented non-malleability simplifies the design of
non-malleable codes by allowing us to compose them with other cryptographic
constructs.

Unfortunately, augmented non-malleability is neither straightforward nor
generally guaranteed to hold for known constructions [3,9]. Nevertheless, we
prove this stronger form of non-malleability for the two-state construction of [3].
This gives an explicit code with the desired properties, i.e.:

Informal Theorem 1. Assuming the existence of one-way functions, there
exists a rate-1 split-state non-malleable code against computationally efficient
tampering functions.

We note that these parameters are asymptotically optimal in the computa-
tional setting. In addition, our extension of [3] to augmented non-malleability is
of independent interest — it is particularly useful in settings where composition
occurs. This is captured in the following theorem:

Informal Theorem 2. For any k and ε, there exists an efficient (in k and
log(1ε)) information-theoretically secure ε-augmented-non-malleable code for
encoding k-bit messages in the (two-partition) split-state model.

We now present a technical overview of our approach.

1.1 Technical Overview

Improving Rate via Hybrid Encoding. The starting point of our work is to con-
sider the standard “hybrid” approach where we first encode a short crypto-
graphic key K using a low rate 2-state non-malleable code, and then use K
along with an appropriate cryptographic object such as a “good rate” encryp-
tion scheme.

We note that this hybrid approach has been used in many different works
to improve efficiency or the rate. For example, the most well-known example of

Optimal Computational Split-state Non-malleable Codes 397

this approach in cryptography is that of “hybrid encryption,” which improves
the efficiency of a (non-malleable) public-key encryption scheme by using it to
encrypt a short key for a symmetric-key encryption scheme, and then using
the latter to encrypt the actual message (e.g., see [16,26]). In the context of
error-correcting codes and non-malleable codes, this approach has been used to
improve the rate in [11,18,22], and even by [5] (who obtain information theoretic
non-malleability).

In our setting, let us start by considering the following construction: encode
a fresh key K using a 2-state information-theoretic non-malleable code of low
(potentially 0) rate to obtain the two states say (c1, c2), and then generate a third
component c3 which is an encryption of the message m to be encoded, under the
key K, using a “high rate” symmetric authenticated encryption scheme. Such
encryption schemes can be constructed from pseudorandom functions (implied
by one-way functions).

At first, suppose that we can keep more than two states. Then, we can output
c = (c1, c2, c3) as our three-state codeword. We argue that this is already a
3-state computational non-malleable code of rate 1. To see this, fix a tampering
function f = (f1, f2, f3) and recall that each state of the codeword is tampered
independently. Let c′ = (c′

1, c
′
2, c

′
3) be the tampered codeword where c′

i = fi(ci);
let K ′ denote the “tampered” key in (c′

1, c
′
2) and m′ denote the tampered message

defined by decryption of c′
3 using K ′. Then, intuitively, if K ′ = K then m′ must

also be equal to m by the security of authenticated encryption. On the other
hand, if K ′ �= K yet m′ is not computationally independent of m, then it must be
that K ′ is also not computationally independent of K. This will violate the non-
malleability of the underlying 2-state code for K. This approach is reminiscent
of the technique introduced by [18] for rate amplification for the restrictive class
of bit-wise tampering functions.

To achieve a 2-state solution, we propose that c2 and c3 be kept in a single
state and the resulting codeword is (c1, c2‖c3). However, this creates a difficult
situation: since c2‖c3 are now available together, adversary might be able to
generate c′

2‖c′
3 such that (c′

1, c
′
2) encodes a key K ′ �= K, K ′ stays independent

of K by itself, yet decryption of c′
3 yields a message that depends on m. Unlike

the case of 3-states where c′
3 was generated independently of c′

2, in this setting,
(c′

2‖c′
3) now depends on both c2 and c3. Therefore, we need a stronger guarantee

from non-malleability where not only the distribution of K ′, but the distribution
of K ′ along with state c2 must be simulatable (and computationally independent
of K).

We formalize this stronger simulation requirement and call the resulting
notion augmented non-malleability. Given this stronger form of non-malleability,
we can prove the computational non-malleability of our 2-state construction. We
emphasize that the novelty of this augmented non-malleability is highlighted by
the fact that our whole construction only uses one-way functions (in a fully
black-box manner) while previous non-malleable code constructions by [19,28]
use CRS and extremely strong cryptographic primitives.

398 D. Aggarwal et al.

Achieving Augmented Non-malleability. As noted earlier, it is not clear if existing
non-malleable codes also satisfy the augmented non-malleability property. In
fact, we do not know if this is true in general for all non-malleable codes. We
prove in Informal Theorem 2 that augmented non-malleability can be achieved
from the 2-state code of [3]. We now describe how we achieve augmented non-
malleability.

The main technical ingredient to prove Informal Theorem2 is the following
result.

Informal Theorem 3. Assume Fp is a finite field of prime order, n �
poly(log p)), L is uniformly random over Fn

p , and f, g : Fn
p → F

n
p are two arbitrary

functions. Then, for almost all r ∈ F
n
p , the joint distribution (〈L, r〉, 〈f(L), g(r)〉) is

“close” to a convex combination (that depends on r) of affinedistributions {(U, aU+
b) | a, b ∈ Fp}, where U is uniformly random over Fp.

The formal statement appears in Theorem3. A similar but weaker statement
was shown in [3]. They showed that the above mentioned joint distribution is
on average (over r ∈ F

n
p) close to a convex combination of affine-distributions,

while we show that this holds individually for almost all r ∈ F
n
p .

The proof follows a similar structure as [3] where the ambient space F
n
p ×F

n
p

is partitioned into subsets depending on f, g, and then the joint distribution is
analyzed over each of these subsets. One crucial difference from [3] is that several
steps in their proof relied on the fact that the inner-product is a strong extractor,
i.e., 〈L,R〉 is close to uniform conditioned on L. While this is sufficient to prove
the result for R uniform in F

n
p , we needed to be more careful since we needed to

show the result for almost all r ∈ F
n
p , and we cannot claim that 〈L,R〉 is close to

uniform conditioned on both L,R. Fortunately, however, we could show (refer
to Lemmas 3 and 4) that it is sufficient to show that 〈L,R〉 is close to uniform
conditioned on R and h(L) for some function h : Fn

p �→ Fp and this holds since
L has sufficient entropy conditioned on h(L).

The proof of Informal Theorem2 is relatively immediate from Informal The-
orem 3 using affine-evasive sets [1,3].

Necessity of One-Way Functions. We sketch, at a very high level, how we extend
the result of Cheraghchi and Guruswami [10] to show the existence of distribu-
tional one-way functions if 2-state (information theoretic) non-malleable codes
of rate large than 1/2 exist. See Sect. 5 for more details.

The following negative result is shown in [10]: Consider the set of tampering
functions which depend only on the first αn bits of the code and tampers it
arbitrarily. Then a non-malleable code which protects against this tampering
class can have rate at most 1 − α.

In particular, k-split-state non-malleable code can have at most 1−1/k rate.
Otherwise, one can use the same attack in [10] to tamper only the first state
appropriately and violate the non-malleability condition.

The result in [10] uses the following idea. If the rate is higher than 1 − α
then there exists two messages s0 and s1, and a set X ⊆ {0, 1}αn such that

Optimal Computational Split-state Non-malleable Codes 399

the following condition holds: The first αn bits of an encoding of s0 has higher
probability to be in X than for an encoding of s1. So, the tampering function
just writes a dummy string w if the first αn bits belong in X; otherwise it
keeps it intact. The decoding of the tampered code is, therefore, identical to
the original message or it is an invalid string. Due to the property of X, the
tampering function ensures that the decoding is ⊥ with higher probability when
the message is s0.

Now consider the following function: f(b, r) = Enc(sb; r)|αn, i.e. the func-
tion which outputs the first αn bits of the encoding of message sb (using ran-
domness r in the encoding procedure). Let y be any string in the domain of
f(·, ·). Suppose B is an oracle which, when queried with y, provides a uniformly
reverse sampled pre-image of y. Then we make t calls to B to create a set
Sy = {(b1, r1), . . . , (bt, rt)}. Counting the number of occurrences of b = 0 in Sy

we can test whether y ∈ X or not; when t is sufficiently large we have y ∈ X
implies maj{b1, . . . , bt} = 0 w.h.p. (by Chernoff bounds). Given access to the
oracle B, we can emulate the tampering function which performs the tampering
of [10] (except with negl(n) error).

Now, consider a setting where distributionally one-way functions do not exist.
In this case, for f(·, ·) and suitably large p(·) (as a function of t), there exists
an efficient inverter A which can simulate every call of B, except with error
(at most) 1/p(n). Now, we can replace calls to algorithm B in the previous
paragraph, with calls to A while incurring an error of at most t(n)/p(n). By
suitably choosing t(n) and p(n), we can construct an efficient tampering on the
first αn bits of the encoding which emulates the tampering of [10] with error
t(n)/p(n).

1.2 Prior Work

Cramer et al. [14] introduced the notion of arithmetic manipulation detection
(AMD) codes, which is a special case of non-malleable codes against tampering
functions with a simple algebraic structure; explicit AMD codes with optimal (sec-
ond order) parameters have been recently provided by [15]. Dziembowski et al.
motivated and formalized the more general notion of non-malleable codes in [18].
They showed existence of a constant rate non-malleable code against the class of
all bit-wise independent tampering functions (which are essentially multi-state
codes with a large, non-constant, value of k).

The existence of rate-1 non-malleable codes against various classes of tam-
pering functions is now known. For example, existence of such codes with rate
(1 − α) was shown against any tampering function family of size 22

αn

; but this
scheme has inefficient encoding and decoding [10]. For tampering functions of
size 2poly(n), rate-1 codes (with efficient encoding and decoding) exist, and can
be obtained efficiently with overwhelming probability [20].

Very recently, an explicit rate-0 code against a more powerful class of tam-
pering functions, which in addition to tampering with each bit of the codeword
independently can also permute the bits of the resulting codeword after tamper-
ing, was achieved in [4]. This was further improved to rate 1 by [5].

400 D. Aggarwal et al.

In the “split state” setting where the codeword is partitioned into k sepa-
rate blocks and each block can be tampered arbitrarily but independently, an
encoding scheme was proposed in [12]. For the case of only two states, an explicit
non-malleable code for encoding a single bit was proposed by [17]. Recently, in a
break-through result, an explicit scheme (of rate 0) was proposed for arbitrary
length messages by [3]. A constant rate construction for 10 states was provided
in [9] (and later in [3]). Very recently, Aggarwal et al. [2] show that constant rate
for such codes can in fact be achieved with only k = 2 states. We note that in this
setting it is not possible to go beyond rate 1/2 if one insists upon information
theoretic non-malleability. Our present work shows that by relying on compu-
tational definition of non-malleability, we can achieve rate 1 with only 2 states
(which are necessary). Asymptotically, these are the best possible parameters.

In the computational setting, there has been a sequence of works on improv-
ing the rate of error-correcting codes [8,22,23,27,29,30] as well as constructing
non-malleable codes and its variants [19,28]. We also note that for the case of
bit-wise tampering functions, a hybrid approach was suggested in [18] by rely-
ing on authenticated encryption. It is not clear if this approach works for a
general class of functions. Chandran et al. [7] also rely on the computational
setting in defining their new notion of blockwise non-malleable codes. Blockwise
non-malleable codes are a generalization of the split-state model (and the recent
lookahead model of [2]) where the adversary tampers with one state at a time.

Non-malleable codes have found interesting cryptographic applications like
domain extension of self-destruct CCA-secure public-key encryption [13] and
non-malleable commitments [4].

2 Preliminaries

Notation. We denote the security parameter by λ. Probability distributions are
represented by capital letters. Given a distribution X, x ∼ X represents that
x is sampled according to the distribution X. For a function f(·), the random
variable Y = f(X) represents the following distribution: sample x ∼ X and
output f(x).

For a randomized algorithm A, we write A(z) to denote the distribution of
the output of A on an input z. A function f : N → R

+ is negligible if for
every positive polynomial poly(·) and all sufficiently large n, f(n) � 1/poly(n).
We use negl(M) to denote an (unspecified) negligible function in M . Lastly, all
logarithms in this paper are to the base 2.

For two variables X,X ′ their statistical distance is Δ(X;X ′) =
1
2

∑
x |Pr[X = x] − Pr[X ′ = x]|.

The min-entropy of a distribution is H∞(D) = minx log(D[x]−1). For a finite
set S, we denote by US the uniform distribution over S. Note that H∞(US) =
log |S|. Moreover, if X is a distribution with min-entropy k then X is a convex
combination of distributions uniform over sets of size 2k.

Let E be an event. We denote by X|E the conditional random variable,
conditioned on E holding. For a set S we shorthand X|S = X|[X ∈ S].

Optimal Computational Split-state Non-malleable Codes 401

2.1 Non-malleable Codes in the Split-State Model

In this section, we give a stronger definition of non-malleable codes in the split-
state model (than what is considered in literature [2,3,18]). We call these aug-
mented non-malleable codes, denoted my Aug-NMC. We define Aug-NMC both
in the information theoretic setting as well as computational setting.

Let λ be the security parameter. Let N1(λ) and N2(λ) be some fixed polyno-
mials in λ. These will denote the size of the states in the split state setting. We
begin by defining the real tampering and ideal simulation experiments against
any generic tampering class F in Fig. 1. We also define the advantage between
the real and simulated experiments w.r.t. a class of distinguishers D in Fig. 1.

Let Dall and Fall denote the class of all distinguishers and all split-state
tampering functions, respectively, as in Fig. 1. Similarly, let Deff and Feff denote
the class of efficient distinguishers and efficient split-state tampering functions,
respectively, as in Fig. 1. That is, there exists polynomials p, q such that for
all λ ∈ N, the running time of fλ, gλ is at most p(λ) and running time of all
D ∈ Deff,λ is at most q(λ). Next, we define Aug-NMC w.r.t. experiments defined
in Fig. 1.

Definition 1 (Standard [(N1, N2),M, ν]-Aug-NMC). Suppose Enc : {0, 1}M

→ {0, 1}N1 ×{0, 1}N2 and Dec : {0, 1}N1 ×{0, 1}N2 → {0, 1}M ∪{⊥} are (possibly
randomized) mappings. Then (Enc,Dec) is a (standard) [(N1, N2),M, ν]-Aug-
NMC if the following conditions hold:

◦ Correctness: ∀s ∈ {0, 1}M , Pr[Dec(Enc(s)) = s] = 1.
◦ Non-Malleability: advEnc,Dec

Fall,Dall
� ν(λ). (See Fig. 1 for description.)

We say that the coding scheme is efficient if (Enc,Dec) run in time bounded by
a polynomial in M and λ.

Definition 2 (Computational [(N1, N2),M, ν]-Aug-NMC). Suppose Enc :
{0, 1}M → {0, 1}N1 × {0, 1}N2 and Dec : {0, 1}N1 × {0, 1}N2 → {0, 1}M ∪
{⊥} are (possibly randomized) mappings. Then (Enc,Dec) is a computational
[(N1, N2),M, ν]-Aug-NMC if the following conditions hold:

◦ Correctness: ∀s ∈ {0, 1}M , Pr[Dec(Enc(s)) = s] = 1.
◦ Non-Malleability: advEnc,Dec

Feff ,Deff
� ν(λ). (See Fig. 1 for description.)

We say that the coding scheme is efficient if (Enc,Dec) run in time bounded by
a polynomial in M and λ.

Remark 1. Note that the only difference between the two definitions is the class
of tampering functions and class of distinguishers.

Remark 2. Note that the notion of non-malleable codes considered in literature
is implied by our notion of Aug-NMC. In the original notion, the tampering and
simulated experiments only output the result of decoding the tampered codeword
(without outputting one of the original states).

402 D. Aggarwal et al.

Fig. 1. Tampering and Simulation Experiments

2.2 Building Blocks

Our construction will build upon two ingredients. We describe these next.

Authenticated Encryption. We describe the notion of a secret key authenti-
cated encryption scheme (AEnc,ADec). Later we will describe how such a scheme
can be constructed using a secret key encryption scheme and a message authen-
tication code, both of which can be based on one-way functions. Let Kλ, Mλ and
Cλ denote the key, message, and ciphertext space for the authenticated encryp-
tion scheme, respectively. The scheme should satisfy the following properties. In
each of the following the probability is over the randomness of AEnc,ADec and
coins of the adversary.

1. Perfect Correctness: For every k ∈ Kλ, m ∈ Mλ, Pr[ADec(k, (AEnc(k,m)) =
m] = 1.

2. Semantic Security: For all PPT adversaries A, for all messages m,m′ ∈ Mλ,
over a random choice of k

$← Kλ, {AEnc(k,m)} ≈c {AEnc(k,m′)}.

Optimal Computational Split-state Non-malleable Codes 403

3. Unforgeability: For every PPT adversary A = (A1,A2),

Pr
[
c′ �= c ∧ ADec(k, c′) �= ⊥

∣
∣
∣
∣
k

$← Kλ; (m, st) ← A1(1λ);
c ∼ AEnc(k,m); c′ ← A2(st, c)

]
� negl(λ)

We call the above authenticated encryption scheme an [M,K,C] scheme if
M = {0, 1}M , K ⊆ {0, 1}K and C ⊆ {0, 1}C .

The scheme described above can be instantiated as follows: Let
(Encrypt,Decrypt) be a semantically-secure secret key encryption scheme with
perfect correctness. Let K(1)

λ ,M(1)

λ , C(1)

λ be the key, message and ciphertext
space, respectively, for the encryption scheme. Let (Tag,Verify) be a message
authentication scheme satisfying perfect correctness and unforgeability. Let K(2)

λ ,
M(2)

λ = C(1)

λ and T (2)

λ be the key, message and tag space, respectively. Then we
can define an authenticated encryption naturally as follows: The key space will
be Kλ = K(1)

λ × K(2)

λ , message space is Mλ = M(1)

λ and the ciphertext space is
Cλ = C(1)

λ ×T (2)

λ . For a key k = (k1, k2)
$←Kλ, and m ∈ Mλ, AEnc(k,m) = (c1, c2)

such that c1 ∼ Encrypt(k1,m) and c2 ∼ Tag(k2, c1).
It is easy to see that the described authenticated encryption scheme will

satisfy the three desired properties. Moreover, such a scheme can be designed
assuming only one-way functions. We describe one such construction in our proof
of Corollary 1.

[(N1, N2),M, ν]-Aug-NMC with 1/poly rate Based on [3] we prove the follow-
ing theorem.

Theorem 1. There exists a fixed polynomial p, such that for all M ∈ N, there
exists an efficient [(N1, N2),M, ν]-Aug-NMC (Enc+,Dec+) for the message space
{0, 1}M satisfying Definiion 1 such that N1+N2 � p(M,λ) and ν(λ) = exp(−λ).

For the proof of the above theorem, refer to Sect. 4.

3 Our Construction

In this section, we give a construction for rate-1 computational non-malleable
codes in the split-state model and prove the following theorem.

Theorem 2. Suppose there exists an [M,K,C] authenticated encryption scheme
and a standard or computational [(N ′

1, N
′
2),K, ν′]-Aug-NMC satisfying Theorem1.

Then there exists a computational [(N1, N2),M, ν]-Aug-NMC such that N1 +N2 =
N ′

1 + (N ′
2 + C) and ν = negl(λ).

Before we describe our construction, here is a corollary of the above theorem,
which is our main result.

Corollary 1. Assuming the existence of one-way functions, there exists a com-
putational [(N1, N2),M, ν]-Aug-NMC such that N1 + N2 = M + poly(λ).

404 D. Aggarwal et al.

Proof. The corollary can be obtained from Theorem 2 by using an [M,K,C]
authenticated scheme where K = 2λ and C = M + poly(λ). Consider M = q(λ)
for a fixed polynomial q. Consider a polynomial stretch PRG G : {0, 1}λ →
{0, 1}M and a pseudorandom function PRF : {0, 1}λ × {0, 1}M → {0, 1}λ.
Then the authenticated encryption scheme is as follows: K = {0, 1}2λ and
C = {0, 1}M+λ. For a key (k1, k2) ∈ {0, 1}2λ, AEnc((k1, k2),m) = (c1, c2) such
that c1 = G(k1) ⊕ m and c2 = PRF(k2, c1). It can be seen that this is a valid
authenticated encryption scheme.

Using this scheme in Theorem 2, we get that N ′
1+N ′

2 = p(2λ) and N1+N2 =
p(2λ)+(M +λ) = M + r(λ), where r is some fixed polynomial in λ. The scheme
is rate-1 if q is an asymptotically faster growing polynomial than r.

Construction. Let λ be the security parameter and Mλ = {0, 1}M be the mes-
sage space. Let (AEnc,ADec) be an authenticated encryption scheme for message
space Mλ with key space Kλ ⊆ {0, 1}K and ciphertext space Cλ ⊆ {0, 1}C . Let
(Enc+,Dec+) be a [(N ′

1, N
′
2),K, ν′] augmented non-malleable encoding scheme

for message space {0, 1}K guaranteed by Theorem1. Given these two ingredients,
our scheme is as follows.

To encode a message s ∈ {0, 1}M , sample a key k for authenticated encryption
scheme and encode it using Enc+ as (�, r). Next, encrypt the message s using
AEnc under key k, i.e. c ∼ AEnc(k, s). Now, the encodings in two states are L = �
and R = (r, c). The decoding function is natural, which first uses Dec+(�, r) to
obtain a key k, which is used to decrypt the ciphertext c using ADec.

A formal description of the scheme is provided in Fig. 2.
It is easy to see that the scheme is perfectly correct if the underlying authen-

ticated encryption and augmented non-malleable codes are perfectly correct. In
the next section, we prove its non-malleability.

3.1 Proof of Non-malleability

In this section, we prove that the construction in Fig. 2 is a [(N1, N2),M, ν]
computational non-malleable code such that ν = negl(λ) against the tampering
functions F (N1,N2)

eff according to Definition 2.
We begin by describing our simulator Sim required by the definition and then

argue via a sequence of hybrids that for any s ∈ {0, 1}M and any (F,G) ∈ Feff ,
for any efficient distinguisher D ∈ Deff ,

∣
∣
∣Pr

[
D

(
Tamper+(F,G, s)

)
= 1

]
− Pr

[
D

(
Copy

(s)

Sim+(F,G)

)
= 1

]∣∣
∣ � ν(λ).

The simulator Sim is defined formally in Fig. 3. At a high level, Sim does the
following: It samples a key k

$← Kλ and generates a ciphertext for message 0M ,
i.e., c = AEnc(k, 0M). It defines a new tampering function gc for the underlying
augmented non-malleable code by hard-coding the value of c in tampering func-
tion G. Next, it runs the simulator Sim+(F, gc) to get (r, ans). Then, it computes

Optimal Computational Split-state Non-malleable Codes 405

Fig. 2. Construction for rate-1 non-malleable code in the split state model.

Fig. 3. Description of Sim.

R̃ = G(r, c) = (r̃, c̃). Finally, if ans = same∗ and c̃ = c, it outputs same∗. Else, if
ans = k∗, it outputs ADec(k∗, c̃). Otherwise, it outputs ⊥.

For ease of description of hybrids, below we first describe Hyb0 which is same
as Tamper

(s)
F,G.

Hyb0: This is same as Tamper
(s)
F,G, where we also open up the description of Enc

and Dec.

1. Sample k
$← Kλ.

2. Sample c ∼ AEnc(k, s).
3. Sample (�, r) ∼ Enc+(k).

406 D. Aggarwal et al.

4. Define L = � and R = (r, c).
5. Define tampered codeword as: L̃ := F (L) and R̃ = (r̃, c̃) := G(R) = G(r, c).
6. Let k̃ = Dec+(L̃, r̃).
7. If k̃ = ⊥, output ((r, c),⊥). Else, output ((r, c),ADec(k̃, c̃)).

Hyb1: This hybrid is just a re-write of the previous experiment using
Tamper+(F, gc, k). Hence, the outputs of the two experiments are identical.

1. Sample k
$← Kλ.

2. Sample c ∼ AEnc(k, s).
3. Define a function gc : {0, 1}N ′

2 → {0, 1}N ′
2 such that gc(x) = x̃ if G(x, c) =

(x̃, c̃).
4. Define (r, k̃) ∼ Tamper+(F, gc, k).
5. Define (r̃, c̃) = G(r, c).
6. If k̃ = ⊥, output ((r, c),⊥). Else, output ((r, c),ADec(k̃, c̃)).

Hyb2: In this hybrid, we use Copy(k)
Sim+(F,gc)

instead of Tamper
(s)
F,G. The two hybrids

are statistically close by Theorem 1.

1. Sample k
$← Kλ.

2. Sample c ∼ AEnc(k, s).
3. Define a function gc : {0, 1}N ′

2 → {0, 1}N ′
2 such that gc(x) = x̃ if G(x, c) =

(x̃, c̃).
4. Define (r, ans) ∼ Sim+(F, gc). Define (r, k̃) = Copy

(k)

Sim+(F,gc)
.

5. Define (r̃, c̃) = G(r, c).
6. If k̃ = ⊥, output ((r, c),⊥). Else, output ((r, c),ADec(k̃, c̃)).

Hyb3: In this hybrid, we change last step of how we compute the output for the
case when ans = same∗.

1. Sample k
$← Kλ.

2. Sample c ∼ AEnc(k, s).
3. Define a function gc : {0, 1}N ′

2 → {0, 1}N ′
2 such that gc(x) = x̃ if G(x, c) =

(x̃, c̃).
4. Define (r, ans) ∼ Sim+(F, gc).
5. Define (r̃, c̃) = G(r, c).
6. We have the following cases for ans:

◦ Case(a) ans = ⊥, output ((r, c),⊥).
◦ Case(b) ans = same∗: If c̃ = c, output ((r, c), s). Else, output ((r, c),⊥).
◦ Case(c) ans = k∗, output ((r, c),ADec(k∗, c̃)).

First note that the cases (a) and (c) are identical in Hyb2 and Hyb3. By the
unforgeability property of authenticated encryption scheme, case(b) in Hyb3 is
close to Hyb2 for all efficient tampering functions.
Hyb4: In this hybrid, we change how we compute the ciphertext c. Instead of
computing an encryption of s, we start computing encryption of 0M .

Optimal Computational Split-state Non-malleable Codes 407

1. Sample k
$← Kλ.

2. Sample c ∼ AEnc(k, 0M).

3. Define a function gc : {0, 1}N ′
2 → {0, 1}N ′

2 such that gc(x) = x̃ if G(x, c) =
(x̃, c̃).

4. Define (r, ans) ∼ Sim+(F, gc).
5. Define (r̃, c̃) = G(r, c).
6. We have the following cases for ans:

◦ Case(a) ans = ⊥, output ((r, c),⊥).
◦ Case(b) ans = same∗: If c̃ = c, output ((r, c), s). Else, output ((r, c),⊥).
◦ Case(c) ans = k∗, output ((r, c),ADec(k∗, c̃)).

By semantic security of the authenticated encryption scheme, hybrid Hyb3 is
computationally close to Hyb4.

Finally, note that Hyb4 is identical to Copy
(s)

Sim+(F,G)
, where Sim is the simu-

lator described in Fig. 3.

4 Proof of Theorem 1

For proving Theorem1, we will need the following which is a stronger version of
Theorem 3 from [3]. In particular, the proof structure of our result is similar.

Let Fp be a finite field of prime order. Let L be uniform in F
n
p and let r ∈ F

n
p .

Let f, g : Fn
p → F

n
p be a pair of functions. We consider the following family of

distributions
ϕf,g(L, r) := (〈L, r〉, 〈f(L), g(r)〉) ∈ F

2
p

Theorem 3. There exists absolute constants c, c′ > 0 such that the following
holds. For any finite field Fp of prime order, and any n > c′ log6 p, let L ∈ F

n
p be

uniform, and fix f, g : Fn
p → F

n
p . Then there exists a set R ⊂ F

n
p of cardinality

at least pn · (1 − 2−cn1/6
) such that for all r ∈ R, there exist random variables

A,B ∈ Fp, and U uniform in Fp and independent of A,B such that

Δ(ϕf,g(L, r) ; (U,A · U + B)) � 2−cn1/6
.

To prove Theorem 3, we will need the following results from [3].

Claim. Let X = (X1,X2) ∈ Fp × Fp be a random variable. Assume that for all
a, b ∈ Fp not both zero, Δ(aX1+bX2 ; UFp

) � ε. Then Δ((X1,X2) ; UF2
p
) � εp2.

Claim. Let X ∈ Fp be a random variable. Assume that Δ(X ; UFp
) � ε. Then

if X ′ is an independent and i.i.d copy of X then

Pr[X = X ′] � 1 + ε2

p
.

The following is a reformulation of the statement that the inner-product is a
strong two-source extractor.

408 D. Aggarwal et al.

Lemma 1. Let L be a random variable over F
n
p , and let ε > 0. Then the number

of r ∈ F
n
p such that Δ(〈L, r〉 ; UFp

) > ε is at most pn+1

2H∞(L)·ε2 .

We now prove Theorem 3. Let us fix functions f, g : Fn
p → F

n
p and shorthand

ϕ(L, r) = ϕf,g(L, r). We will use the following notation: for set P ⊂ F
n
p let

ϕ(L, r)|P denote the conditional distribution of ϕ(L, r) conditioned on L ∈ P.
Equivalently, it is the distribution of ϕ(L, r) for uniformly chosen L ∈ P.

The following is a reformulation of Lemma5 from [3].

Lemma 2. Let U be uniformly random in Fp. Let P ⊆ F
n
p , and let r ∈ F

n
p . Let

P1, . . . ,Pk be a partition of P. Assume that for all 1 � i � k there exist random
variables Ai, Bi ∈ Fp independent of U such that,

Δ (ϕ(L, r)|L∈Pi
; (U,Ai · U + Bi)) � εi.

Then there exist random variables A,B ∈ Fp independent of U such that

Δ (ϕ(L, r)|L∈P ; (U,AU + B)) �
∑

εi
|Pi|
|P| .

Let s = � n
10�, and t = � s1/6

c1 log p�, where c1 is some constant that will be chosen
later. Note that s � t. We choose the constant c′ in the statement of Theorem 3
such that t � 3.

We call r ∈ F
n
p (P, α)-bad if for every pair of random variables A,B ∈ Fp,

and U uniform in Fp and independent of A,B

Δ(ϕf,g(L, r)|P ; (U,A · U + B)) > α.

We consider a partition of Fn
p based on g to elements whose output is too

popular; and the rest. For y ∈ F
n
p let g−1(y) = {x ∈ F

n
p : g(x) = y} be the set of

pre-images of y. Define

R0 := {x ∈ F
n
p : |g−1(g(x))| � pt}.

and set R1 := F
n
p \ R0.

g is close to a constant. We now bound the number of r ∈ R0 such that there
ϕ(L, r) is not close to affine.

Lemma 3. The number of r ∈ R0 that are (Fn
p , p−t/4)-bad is at most p−t/3·|R0|.

Proof. Let Y = {y ∈ F
n
p : |g−1(y)| � pt}. We can decompose R0 as the disjoint

union over y ∈ Y of g−1(y). Fix such a y ∈ Y and let R� = {r ∈ F
n
p : g(r) = y}.

Since the min-entropy of L conditioned on 〈f(L), y〉 is at least (n−1) log p, using
Lemma 1, we have that for all but at most pt/2+2 different r ∈ R�

Δ(ϕf,g(L, r) ; (U, 〈f(L), y〉)) > p−t/4 .

Thus the total number of p−t/4-bad r ∈ R0 is at most pt/2+2 · |Y | which is upper
bounded by pt/2+2 · |R0| · p−t � p−t/3 · |R0|.

Optimal Computational Split-state Non-malleable Codes 409

f is close to linear. We now define a partition L1, . . . ,La of F
n
p based on f .

Intuitively, Li for 1 � i < a will correspond to inputs on which f agrees with a
popular linear function; and La will be the remaining elements.

We define L1, . . . ,La iteratively. For i � 1, given L1, . . . ,Li−1, if there exists
a linear map Ai : Fn

p → F
n
p for which

∣
∣{x ∈ F

n
p : f(x) = Aix} \ (L1 ∪ . . . ∪ Li−1)

∣
∣ � pn−s,

then set Li to be {x ∈ F
n
p : f(x) = Aix} \ (L1 ∪ . . . ∪ Li−1). If no such linear

map exists, set a := i, La := F
n
p \ (L0 ∪ . . . ∪ La−1) and complete the process.

Note we obtained a partition L1, . . . ,La of Fn
p with a � ps + 1.

Lemma 4. Fix 1 � i < a. The number of r ∈ R1 that are (Li, p
−s)-bad is at

most p7s.

Proof. Let R� be the set of all r ∈ R1 such that (〈L′, r〉, 〈f(L′), g(r)〉) is p−s-
close to UF2

p
. Clearly, no r ∈ R� is (Li, p

−s)-bad.
Let L′ be uniform in Li. Note that for any r ∈ R1 \ R�,

〈f(L′), g(r)〉 = 〈AL′, g(r)〉 = 〈L′, AT g(r)〉.

If (〈L′, r〉, 〈f(L′), g(r)〉) is not p−s-close to UF2
p

then by Claim 4 there exist
a, b ∈ Fp, not both zero, such that

Δ(〈L′, ar + bAT g(r)〉 ; UFp
) > p−2−s.

Now, by assumption, L′ is uniform over a set of size at least pn−s. By
Lemma 1, this implies that ar+ bAT g(r) can take at most p3s+4 different values.
Let Ya,b ∈ F

n
p be the set of distinct values taken by ar + bAT g(r).

Fix a, b and y ∈ Ya,b and let R′ ⊂ R1 \ R� be such that

ar + bAT g(r) = y ∀r ∈ R′.

We will upper bound the number of r ∈ R′ that are (Li, p
−s)-bad. If b = 0,

then clearly |R′| = 1. If b �= 0, we can rewrite (and rename the constants for
convenience) as

AT g(r) = a1r + y1 ∀r ∈ R′.

We know that for any r ∈ R′, 〈f(L′), g(r)〉 = 〈L′, AT g(r)〉 = a1〈L′, r〉 +
〈L′, y1〉.

We know that the min-entropy of L′ given 〈L′, y1〉 is at least (n−s−1) log p.
Thus, by Lemma 1, the number of r ∈ R′ that are (Li, p

−s)-bad is at most p3s+2.
Enumerating over various possible values of a, b, y, we get that the number

of r ∈ R1 that are (Li, p
−s)-bad is at most p3s+2 · p3s+4 · p2 � p7s.

f is far from linear and g is far from constant. The last partition we need to
analyze is La × R1, corresponding to the case where f is far from linear and g
is far from constant. For this, we need the following result that can be seen as a
generalization of the linearity test from [31] that was proved in [3] using results
from [6,21,32].

410 D. Aggarwal et al.

Theorem 4. Let p be a prime, and n ∈ N. For any ε = ε(n, p) > 0, γ1 =
γ1(n, p) � 1, γ2 = γ2(n, p) � 1, the following is true. For any function f : Fn

p �→
F

n
p , let A ⊆ {(x, f(x)) : x ∈ F

n
p} ⊆ F

2n
p . If |A| � γ1 · |Fn

p | and there exists some
set B such that |B| � γ2 · pn, and

Pr
a,a′∈A

[a − a′ ∈ B] � ε,

then there exists a linear map M : Fn
p → F

n
p such that

Pr
(x,f(x))∈A

[f(x) = Mx] � p−O(log6(
γ2

γ1ε)) .

We will now show that, ϕ(L, r)|La
is close to uniform over Fp × Fp for most

r ∈ R1.

Lemma 5. If |La| � pn−t then the number of r ∈ R1 that are (La, p−t)-bad is
at most pn−t.

Proof. Let L′ ∈ La be uniform. Let R′ be the set of r ∈ R1 such that ϕ(L′, r) is
not p−t-close to UFp×Fp

. Assume that the cardinality of R′ is more than pn−t,
and we will show a contradiction.

For any r ∈ R′, by Claim 4 there exist a, b ∈ Fp, not both zero, so that
Δ(a〈L′, r〉 + b〈f(L′), g(r)〉 ; UFp

) � p−t−2. Define functions F,G : Fn
p → F

2n
p as

follows
F (x) = (x, f(x)), G(y) = (ay, bg(y)).

We have that Δ(〈F (L′), G(r)〉 ; UFp
) � p−t−2. Applying Claim 4, we get that

for L′′ i.i.d to L′ we have

Pr[〈F (L′), G(r)〉 = 〈F (L′′), G(r)〉] � 1
p

+
1

p2t+5
.

This implies that for all r ∈ R′

Pr[〈F (L′) − F (L′′), G(r)〉 = 0] � 1
p

+
1

p2t+5
.

Let R′ be uniform in R′ and define

B :=
{

α ∈ F
2n
p : Pr[〈α,G(R′)〉 = 0] � 1

p
+

1
p2t+6

}
.

Let B ∈ B be uniform. Then Δ(〈B,G(R′)〉, UFp
) � 1

p2t+6 . Also, since g(y) has at
most pt preimages for any y ∈ F

n
p , G(R′) has min-entropy at least log(|R′|p−t) �

(n − 2t) log p. Hence, by Lemma 1, we have H∞(B) � (n+6t+13) · log p, which
implies |B| � pn+6t+13. Furthermore, we have that

Pr[〈F (L′) − F (L′′), G(R′)〉 = 0] � Pr[F (L′) − F (L′′) ∈ B] +
1
p

+
1

p2t+6
.

Optimal Computational Split-state Non-malleable Codes 411

So we must have that

Pr[F (L′) − F (L′′) ∈ B] � 1
p2t+5

− 1
p2t+6

� 1
p2t+6

.

Thus, using Theorem 4, we get that there exists a linear map M : Fn
p → F

n
p

for which
Pr

x∈Fn
p

[Mx = f(x)] � p−O(t6 log6 p).

This violates the definition of La whenever s � C(t6 log6 p) for a big enough
constant C6.

To conclude the proof of Theorem 3, note that from Lemmas 3, 4 and 5, and
applying Lemma2, we have that apart from pn−t/3 + p7s · ps + pn−t � pn−t/4

different elements in F
n
p , for every other r ∈ F

n
p , there exist random variables

A,B ∈ Fp, and U uniform in Fp and independent of A,B, such that the statistical
distance of ϕ(L, r) and (U,AU + B) is at most

max

(

p−t/4,

a−1∑

i=1

p−s · |Li|
pn

+
pn−t

pn
· 1

)

� p−t/4 .

To complete the proof of Theorem 1, we will need the notion of an affine-
evasive set modulo p and the following result from [1].

Definition 3. A surjective function h : Fp �→ M ∪ {⊥} is called (γ, δ)-affine-
evasive if for any a, b ∈ Fp such that a �= 0, and (a, b) �= (1, 0), and for any
m ∈ M,

1. PrU←Fp
(h(aU + b) �= ⊥) � γ

2. PrU←Fp
(h(aU + b) �= ⊥ | h(U) = m) � δ

3. A uniformly random X such that h(X) = m is efficiently samplable.

Lemma 6 ([1, Lemma 2]). There exists an efficiently computable (p−3/4, Θ(K
log p · p−1/4))-affine-evasive function h : Fp �→ M ∪ {⊥}.

Additionally, we will need the following from [3].

Claim. Let X1,X2, Y1, Y2 ∈ A be random variables such that Δ((X1,X2);
(Y1, Y2)) � ε. Then, for any non-empty set A1 ⊆ A, we have

Δ(X2 | X1 ∈ A1 ; Y2 | Y1 ∈ A1) � 2ε

Pr(X1 ∈ A1)
.

Proof (Proof of Theorem 1). We construct a ν-augmented-non-malleable encod-
ing scheme from M = {1, . . . , K} to F

n
p × F

n
p , where Fp is a finite field of

6 The constant C here determines the choice of the constant c1 used while defining
the parameter t.

412 D. Aggarwal et al.

prime order p such that p � (2K
ν)8, and n chosen as

(
� 2 log p

c �
)6

(i.e., such that

2cn1/6 � p2), where c is the constant from Theorem 3.
The decoding function Dec+ : F

n
p × F

n
p �→ M ∪ {⊥} is defined using the

affine-evasive function h from Lemma 6 as:

Dec+(L,R) := h(〈L,R〉) .

The encoding function is defined as Enc+(m) := (L,R) where L,R are chosen
uniformly at random from F

n
p × F

n
p conditioned on the fact that h(〈L,R〉) = m.

We will show that our scheme is ν-non-malleable with respect to the family
of all functions (f, g) : Fn

p × F
n
p �→ F

n
p × F

n
p , where f and g are functions from

F
n
p �→ F

n
p , and (f, g)(x, y) = (f(x), g(y)), for all x, y ∈ F

n
p .

Simulator. For any functions f, g : Fn
p �→ F

n
p , we define the distribution Df,g

over M ∪ {⊥, same∗} as the output of the following sampling procedure:

1. Choose L,R ← F
n
p .

2. If 〈f(L), g(R)〉 = 〈L,R〉, then output (R, same∗), else output
(R, h(〈f(L), g(R)〉)).

Note that this distribution is efficiently samplable given oracle access to f and g.
The distribution Df,g can also be expressed as:

Df,g =

⎧
⎪⎨

⎪⎩

(r, same∗) with prob. 1
pn · PrL←Fn

p
(〈f(L), g(r)〉 = 〈L, r〉)

(r,m′) with prob. PrL←Fn
p

(h(〈f(L), g(r)〉) = m′, and
〈f(L), g(r)〉 �= 〈L, r〉) ,

where m′ ∈ M ∪ {⊥}.

Security Proof. The random variable corresponding to the tampering experiment
Tamper+(f, g,m) has the following distribution for all m′ ∈ M ∪ {⊥}.

Pr(Tamper+(f, g,m) = (r,m′)) =
1

pn
·Pr
(
h(〈f(L), g(r)〉) = m′ | h(〈L, r〉) = m

)
. (1)

The random variable corresponding to the simulator Copy
(m)

Sim+(f,g)
has the fol-

lowing distribution for all m′ ∈ M ∪ {⊥}.

Pr(Copy
(m)
Sim+(f,g)

= (r, m
′
)) =

⎧

⎨

⎩

1
pn · Pr

(

h(〈f(L), g(r)〉) = m′ ∧ E
)

if m′ �= m

1
pn · Pr

(

E ∨
(

h(〈f(L), g(r)〉) = m ∧ E
))

if m′ = m
, (2)

where E is the event 〈f(L), g(r)〉 = 〈L, r〉
From Theorem 3, we get that for all but at most pn−2 different r ∈ F

n
p (call

these Rbad), there exists random variables A,B ∈ Fp and U uniform in Fp and
independent of A,B such that

Δ (〈L, r〉, 〈f(L), g(r)〉 ; U,AU + B) � 1
p2

.

Optimal Computational Split-state Non-malleable Codes 413

At the cost of an additional error of at most 1
p2 , we assume that r /∈ Rbad for

the remainder of the proof.
Using Claim 4 and that Δ (〈L, r〉, 〈f(L), g(r)〉 ; U, aU + b) � 1

p2 , we get that

Δ(Tamper+(f, g,m) ; T) � 2
p

and Δ(Copy(m)

Sim+(f,g)
; S) � 1

p2
,

where S and T are defined as follows for all m′ ∈ M ∪ {⊥}:

Pr(T = (r,m′)) =
1
pn

· Pr (h(AU + B) = m′ | h(U) = m)

Pr(S = (r, m
′
)) =

{

1
pn · Pr

(

h(AU + B) = m′ ∧ AU + B �= U
)

if m′ �= m
1

pn · Pr (AU + B = U ∨ (h(AU + B) = m ∧ U �= AU + B)) if m′ = m
.

Note that if (A,B) = (1, 0), then for all m′ ∈ M, Pr(T = (r,m′)) = Pr(S =
(r,m′)). Thus, we have that

Δ(S, T) =
∑

m′∈M,r∈Fn
p

|Pr(T = (r,m′)) − Pr(S = (r,m′)|

� 1
p

+ p−3/4 + Θ(K log p · p−1/4)

� ν/4 ,

where the first inequality uses Lemma 6.
Therefore, using the triangle inequality, and including the error 1

p2 that occurs
due to r ∈ Rbad, we have that

Δ
(
Tamper+(f, g,m) ; Copy

(m)

Sim+(f,g)

)
� Δ

(
Tamper+(f, g,m) ; T

)
+ Δ (T ;S)

+Δ
(
S ; Copy

(m)

Sim+(f,g)

)

� ν

4
+

1
p2

+
2
p

+
1
p2

� ν ,

thus completing the proof.

5 Necessity of One-Way Functions

We start by recalling the definition of distributional one-way functions.

Definition 4 (Distributionally One-way Functions [24,25]). A function
f : {0, 1}∗ → {0, 1}∗ is a distributionally one-way function if there exists a pos-
itive polynomial p(·) such that for every probabilistic polynomial-time algorithm
A and all sufficiently large n’s we have:

SD ((Un, f(Un)), (A(1n, f(Un)), f(Un))) � 1
p(n)

.

414 D. Aggarwal et al.

Intuitively, it says that if f is a distributionally one-way function, then
there exists an associated (fixed) polynomial p(·) such that no algorithm can
uniformly reverse-sample from the pre-image set on average with at most
1/p(n) error. It was shown that if one-way functions do not exist, then dis-
tributionally one-way functions also do not exist [25]. If distributionally one-
way functions do not exist, then for every function f and polynomial p(·),
there exists an algorithm A such that (for large enough n) it can ensure:
SD ((Un, f(Un)), (A(1n, f(Un)), f(Un))) < 1

p(n) .
We briefly recall the overview of our result (already presented in Sect. 1.1).
Cheraghchi and Guruswami [10] show the following negative result. Consider

the set of tampering functions which depend only on the first αn bits of the code
and tampers it arbitrarily. Then a non-malleable code which protects against
this tampering class can have rate at most 1 − α. In particular, k-split-state
non-malleable code can have at most 1 − 1/k rate. Otherwise, one can use the
attack of [10] to show that one can tamper only the first state appropriately to
violate the non-malleability condition.

The result in [10] uses the following idea. If the rate is higher than 1 − α
then there exists two messages s0 and s1, and a set X ⊆ {0, 1}αn such that
the following condition holds: The first αn bits of encoding of s0 has higher
probability to be in X than for an encoding of s1. So, the tampering function
just writes a dummy string w if the first αn bits belong in X; otherwise it
keeps it intact. The decoding of the tampered code is, therefore, identical to
the original message or it is an invalid string. Due to the property of X, the
tampering function ensures that the decoding is ⊥ with higher probability when
the message is s0.

Now consider the following function: f(b, r) = Enc(sb; r)|αn, i.e. the func-
tion which outputs the first αn bits of the encoding of message sb (using ran-
domness r in the encoding procedure). Let y be any string in the domain of
f(·, ·). Suppose B is an oracle which, when queried with y, provides a uniformly
reverse sampled pre-image of y. Then we make t calls to B to create a set
Sy = {(b1, r1), . . . , (bt, rt)}. Counting the number of occurrences of b = 0 in Sy

we can test whether y ∈ X or not; when t is sufficiently large we have y ∈ X
implies maj{b1, . . . , bt} = 0 w.h.p. (by Chernoff bounds). Given access to the
oracle B, we can emulate the tampering function which performs the tampering
of [10] (except with negl(n) error).

Now, consider a setting where distributionally one-way functions do not exist.
In this case, for f(·, ·) and suitably large p(·) (as a function of t), there exists an
efficient inverter A which can simulate every call of B, except with error (at most)
1/p(n). Now, we can replace calls to algorithm B in the previous paragraph with
calls to A while incurring an error of at most t(n)/p(n). By suitably choosing
t(n) and p(n), we can construct an efficient tampering on the first αn bits of the
encoding which emulates the tampering of [10] with error t(n)/p(n).

Formally, this proves the following theorem:

Theorem 5. Let k ∈ N and suppose there exists a k-split-state non-malleable
code with rate � 1 − (1/k) + δ(n) and simulation error ε(n). Then there exists

Optimal Computational Split-state Non-malleable Codes 415

δ0(n) = Θ(log n/n) such that if δ(n) ∈ [δ0(n), 1/k] and ε(n) < kδ/96 − n−c (for
some c � 1) then one-way functions exist.

Proof. Suppose one-way functions do not exist, δ(n) ∈ [δ0(n), 1/k] and ε(n) <
kδ/96 − n−c. Set η = kδ/4 and f(b, r) = Enc(sb; r)|αn. Cheraghchi and
Guruswami [10] proved that there exists a w ∈ {0, 1}αn such that there is no
valid codeword which is consistent with w. Let y be the αn bits in the encod-
ing. Given y in the image of f(·, ·), the tampering functions does the following:
Consider t(n) = nc uniformly sampled pre-images such that their image under
f(·, ·) is y. To reverse sample, set p(n) = t(n)2 to obtain a corresponding efficient
reverse sampler A. Let the obtained samples be Sy = {(b1, r1), . . . , (bt(n), rt(n))}.
Let n0 and n1 be the, respective, number of samples with bi = 0 and bi = 1. If
n0/n1 � 3/2 − n2/3, then write w otherwise leave it untampered.

Cheraghchi and Guruswami [10] show that there exists a set Xη ⊆ {0, 1}αn

and inputs s0 and s1 such that

1. Pr[f(0, U) ∈ Xη] � η,
2. Pr[f(1, U) ∈ Xη] � η/2,

and therefore, there exists a set Yη ⊆ Xη (by pigeon hole principle) such that

1. Pr[f(0, U) ∈ Yη] � (3/2) · Pr[f(1, U) ∈ Yη], and
2. Pr[f(0, U) ∈ Yη] � η/4.

Note that Pr[f(0, U) ∈ Yη]−Pr[f(1, U) ∈ Yη] � η/12. Instead of Xη, using Yη in
the argument of [10] we get a contradiction because ε(n) � kδ/(16·(12/2))−n−c.
Hence, we get the theorem.

References

1. Aggarwal, D.: Affine-evasive sets modulo a prime. Inf. Process. Lett. 115(2), 382–
385 (2015). http://dx.doi.org/10.1016/j.ipl.2014.10.015

2. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and
applications. In: Servedio, R.A., Rubinfeld, R. (eds.) Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Port-
land, OR, USA, 14–17 June 2015, pp. 459–468. ACM (2015). http://doi.acm.org/
10.1145/2746539.2746544

3. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In: STOC, pp. 774–783 (2014)

4. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-
malleable codes against bit-wise tampering and permutations. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 538–557. Springer,
Heidelberg (2015)

5. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A
rate-optimizing compiler for non-malleable codes against bit-wise tam-
pering and permutations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part I. LNCS, vol. 9014, pp. 375–397. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-662-46494-6 16

http://dx.doi.org/10.1016/j.ipl.2014.10.015
http://doi.acm.org/10.1145/2746539.2746544
http://doi.acm.org/10.1145/2746539.2746544
http://dx.doi.org/10.1007/978-3-662-46494-6_16

416 D. Aggarwal et al.

6. Balog, A., Szemeredi, E.: A statistical theorem for set addition. Combinatorica
14(3), 263–268 (1994)

7. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise
non-malleable codes. Cryptology ePrint Archive, Report 2015/129 (2015). http://
eprint.iacr.org

8. Chandran, N., Kanukurthi, B., Ostrovsky, R.: Locally updatable and locally decod-
able codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 489–514. Springer,
Heidelberg (2014)

9. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-
state tampering. In: 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, 18–21 October 2014, pp. 306–315.
IEEE Computer Society (2014). http://dx.doi.org/10.1109/FOCS.2014.40

10. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: Naor, M.
(ed.) ITCS, pp. 155–168. ACM (2014)

11. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464.
Springer, Heidelberg (2014)

12. Choi, S.G., Kiayias, A., Malkin, T.: BiTR: built-in tamper resilience. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 740–758. Springer,
Heidelberg (2011)

13. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015, Part I. LNCS, vol. 9014, pp. 532–560. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-662-46494-6 22

14. Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manip-
ulation with applications to robust secret sharing and fuzzy extractors. In: Smart,
N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg
(2008)

15. Cramer, R., Padró, C., Xing, C.: Optimal algebraic manipulation detection codes
(2014). http://eprint.iacr.org/2014/116

16. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003). http://dx.doi.org/10.1137/S0097539702403773

17. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol.
8043, pp. 239–257. Springer, Heidelberg (2013)

18. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C.C.
(ed.) ICS, pp. 434–452. Tsinghua University Press (2010)

19. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014)

20. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014)

21. Gowers, T.: A new proof of Szemeredi’s theorem for arithmetic progression of
length four. Geom. Func. Anal. 8(3), 529–551 (1998)

22. Guruswami, V., Smith, A.: Codes for computationally simple channels: explicit
constructions with optimal rate. In: FOCS, pp. 723–732. IEEE Computer Society
(2010)

23. Hemenway, B., Ostrovsky, R.: Public-key locally-decodable codes. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 126–143. Springer, Heidelberg (2008)

http://eprint.iacr.org
http://eprint.iacr.org
http://dx.doi.org/10.1109/FOCS.2014.40
http://dx.doi.org/10.1007/978-3-662-46494-6_22
http://eprint.iacr.org/2014/116
http://dx.doi.org/10.1137/S0097539702403773

Optimal Computational Split-state Non-malleable Codes 417

24. Impagliazzo, R.: Pseudo-random generators for cryptography and for randomized
algorithms. Ph.D. thesis, University of California at Berkeley (1989)

25. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way
functions (extended abstracts). In: Johnson, D.S. (ed.) STOC, pp. 12–24. ACM
(1989)

26. Kurosawa, K.: Hybrid encryption. In: Encyclopedia of Cryptography and Security,
2nd edn., pp. 570–572 (2011). http://dx.doi.org/10.1007/978-1-4419-5906-5 321

27. Lipton, R.J.: A new approach to information theory. In: STACS, pp. 699–708
(1994)

28. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012)

29. Micali, S., Peikert, C., Sudan, M., Wilson, D.A.: Optimal error correction against
computationally bounded noise. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378,
pp. 1–16. Springer, Heidelberg (2005)

30. Ostrovsky, R., Pandey, O., Sahai, A.: Private locally decodable codes. In: Arge, L.,
Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp.
387–398. Springer, Heidelberg (2007)

31. Samorodnitsky, A.: Low-degree tests at large distances. In: ACM Symposium on
Theory of Computing, pp. 506–515. ACM (2007)

32. Sanders, T.: On the Bogolyubov-Ruzsa lemma. Anal. PDE 5, 627–655 (2012)

http://dx.doi.org/10.1007/978-1-4419-5906-5_321

Limitations of Obfuscation and
Obfuscation-Avoiding Constructions

How to Avoid Obfuscation Using Witness PRFs

Mark Zhandry(B)

Massachusetts Institute of Technology, Cambridge, MA, USA
mzhandry@gmail.com

Abstract. We propose a new cryptographic primitive called witness
pseudorandom functions (witness PRFs). Witness PRFs are related to
witness encryption, but appear strictly stronger: we show that witness
PRFs can be used for applications such as multi-party key exchange
without trusted setup, polynomially-many hardcore bits for any one-way
function, and several others that were previously only possible using
obfuscation. Thus we improve the minimal assumptions required for
these applications. Moreover, current candidate obfuscators are far from
practical and typically rely on unnatural hardness assumptions about
multilinear maps. We give a construction of witness PRFs from multilin-
ear maps that is simpler and much more efficient than current obfusca-
tion candidates, thus bringing several applications of obfuscation closer
to practice. Our construction relies on new but very natural hardness
assumptions about the underlying maps that appear to be resistant to a
recent line of attacks.

Keywords: Witness PRFs · Multilinear maps · Multiparty key
exchange

1 Introduction

Program obfuscation is the act of “scrambling” a program such that the func-
tionality is preserved, but the inner workings of the program are completely hid-
den even given the scrambled code. Recently, Garg et al. [GGH+13b] proposed
the first construction of a general purpose program obfuscator [GGH+13b],
which has sparked significant advances in cryptographic capabilities. Obfusca-
tion has been used to construct a plethora of surprising and powerful cryp-
tographic applications, including functional encryption [GGH+13b], deniable
encryption [SW14], multiparty non-interactive key agreement [BZ14], multiparty
computation in very few rounds [GGHR14], and much more. Thus, obfuscation
is a “heavy hammer” by which, it seems, most of cryptography can be built.
This leads to a natural question:

To what extent is obfuscation actually needed for various applications?

M. Zhandry—Work done while the author was a graduate student at Stanford Uni-
versity. Supported by the DARPA PROCEED program.

c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 421–448, 2016.
DOI: 10.1007/978-3-662-49099-0 16

422 M. Zhandry

This is a very important question, as using obfuscation for appli-
cations has some major drawbacks. For one, current candidate obfusca-
tors [GGH+13b,BR14,BGK+14,PST14,AGIS14,GLSW14,SZ14,Zim15,AB15]
are incredibly inefficient, to the point that they are utterly unimplementable
for all except the simplest of functionalities. This is even despite significant
improvements in efficiency obtained by several recent works. Second, we do not
know how to base the security of obfuscation on any traditional assumptions,
but must instead make strong new assumptions on multilinear maps.

Therefore, obfuscation is likely too general of a tool for practical protocols
with reasonable underlying security assumptions. Instead, obfuscation serves as
a proof of concept, showing that a particular application is plausible. Then, more
application-specific tools and techniques are required to actually obtain a usable
protocol.

This Work. In this work, we make progress toward answering the above question
by showing that obfuscation is not necessary for several applications. We do
this by introducing a new technical tool called witness pseudorandom functions
(witness PRFs) that abstracts an obfuscation technique used by several recent
applications. We show that witness PRFs maintains enough of the power of
obfuscation that it can still be used for these tasks, which were only previously
possible using obfuscation. We also give a very simple construction of witness
PRFs using multilinear maps that is significantly more efficient that current
obfuscators. For security, our construction relies on new assumptions on the
underlying maps. Our assumptions are very simple, and we argue that they are
in some ways “better” than the assumptions on which obfuscation is based.

While applications of our witness PRFs remain impractical and security is
still based on relatively untested multilinear map assumptions, our work pro-
vides a significant step towards improving the efficiency of some applications of
obfuscation, and potentially towards basing applications on better assumptions.
Moreover, our work provides a more refined view of the cryptographic landscape
by showing that weaker primitives suffice for some applications.

1.1 Motivating Example: Non-interactive Key Exchange Without
Setup

We motivate the following discussion using a specific application of obfuscation:
multiparty non-interactive key exchange (NIKE) without trusted setup. In such
a protocol protocol, n users each generate a secret and public value and simulta-
neously publishes their public values to a public bulletin board. All of the users
then read off the values from the bulletin board and are each able to derive
the same shared key with no further interaction. Non-interaction is crucial to
obtaining a re-usable protocol: N � n users can each publish their public value,
and then at a later point any subset of n of them can establish a shared secret
key without any additional interaction. In contrast, in an interactive scheme, the
protocol needs to be carried out once for every subset of users that wishes to
derive a key.

How to Avoid Obfuscation Using Witness PRFs 423

The first key exchange protocol for n = 2 users is the celebrated Diffie-
Hellman protocol. Joux [Jou04] shows how to use pairings to extend this to n = 3
users. Boneh and Silverberg [BS02] generalize Joux’s work to obtain multiparty
NIKE for arbitrary n from (symmetric) multilinear maps as follows. Recall that
a symmetric n-linear map consists of a source group G with generator g of order
p, a target group GT with generator gT of order p, and a multilinear “pairing”
operation e : Gn → GT with the property that e(ga1 , ga2 , . . . , gan) = ga1a2...an

T .
We call n the multilinearity of the map. Ideally any operation except the group
and pairing operations should be computationally infeasible. Using an n-linear
map, the Boneh-Silverberg protocol for n+1 users is as follows: user i chooses a
random ai ∈ Zp, and publishes hi = gai . The shared secret is K = g

a1a2...an+1
T .

User i can compute K as e(h1, h2, . . . , hi−1, hi+1, . . . , hn+1)ai by pairing the
other n public values, and then exponentiating by her secret value. However, an
eavesdropper that only sees the hi would have to pair all n + 1 of the public
values to obtain K, but the pairing operation only supports pairing n elements
together. Security can be proved based on the multilinear DDH assumption, a
natural generalization of the DDH assumption to the multilinear setting, and
one of the most basic assumptions made on multilinear maps.

Garg, Gentry, and Halevi [GGH13a] give the first candidate multilinear map
construction, thus giving the first multiparty NIKE protocol. However, in their
construction, generating g and e requires secrets, knowledge of which completely
breaks any security of the maps. The protocol is therefore only non-interactive
in a trusted setup model, where setup must be performed by a central authority,
and the authority will also be able to learn the shared key. Moreover, since g is
needed for users to compute their public value, the setup must take place before
the protocol is carried out. The need for a trusted central authority is a serious
limitation of the protocol, and also for all protocols for n > 3 users prior to the
obfuscation-based protocol we explain next.

Multiparty NIKE Without Setup. Boneh and Zhandry [BZ14] show how to use
obfuscation to remove the setup phase entirely. In their protocol, each party
generates a seed si of length λ for a pseudorandom generator G with output
size 2λ, and publishes the corresponding output xi. In addition, a designated
master party (say, party 1) chooses a random key fk for a PRF F, and builds the
following program P :

– On input x1, . . . , xn, s, i, check that G(s) = xi.
– If the check fails, output ⊥. Otherwise, output F(fk, x1, . . . , xn).

The master party then publishes an obfuscation of P along with their public xi.
Each party i can now compute K = F(fk, x1, . . . , xn) by feeding x1, . . . , xn, si, i
into the obfuscation of P . Thus, all parties establish the same shared key K. An
eavesdropper meanwhile only gets to see the obfuscation of P and the xi, and
tries to determine K. He can do so in one of two ways: either run the obfuscation
of P on inputs of his choice, hoping that one of the outputs is K, or inspect the
obfuscated code of P to try to learn K.

424 M. Zhandry

The one-wayness of G means the first approach is not viable. Boneh and
Zhandry show that when using an “indistinguishability” obfuscator and “punc-
turable” PRF, the value of K is still hidden, even if the adversary inspects the
obfuscated code for P . The proof works roughly as follows: first, all of the public
values xi are replaced with truly random strings. The security of G shows that
this change is undetectable. Then, since G is expanding, with high probability,
none of the xi have pre-images under G. This means there is no input to the
program P that causes it to pass the check and output K = F(fk, x1, . . . , xn).
Then, using indistinguishability obfuscation and the puncturing property of F,
it is possible to show the adversary learns no information about K.

Implementing the Boneh Zhandry Protocol. There are two ways to instantiate
the obfuscator in the protocol above using multilinear maps:

– Directly on a “core obfuscator” for shallow circuits. The multilinearity required
for the underlying map will be approximately 2d for input circuit of depth d.
This presents a serious implementation barrier, as parameters in current mul-
tilinear maps grow polynomially with the multilinearity. In an asymptotic
sense, using circuits of logarithmic depth will result in polynomial-sized pro-
grams. In the case of the Boneh-Zhandry protocol, the bottleneck is clearly the
PRF. While there exist puncturable PRFs that are computable in log-depth
(for example, it is folklore that the Naor-Reignold PRF is puncturable), the
constant term is moderate. Thus, if the depth of the PRF is, say c log(2nλ)
(2nλ being roughly the input size to the PRF), the resulting program requires
multilinearity at least (2nλ)c, a polynomial. However, for even moderate c,
this polynomial becomes extremely large.

– By boosting the “core obfuscator” to a general obfuscator for all cir-
cuits. Depending on the conversion used, this at best requires obfuscat-
ing a low-depth PRF [App13] with the core obfuscator anyway, and at
worst obfuscating the decryption function of a fully homomorphic encryption
scheme [GGH+13b]. Therefore, this approach seems unlikely to yield signifi-
cant improvements.

In terms of security, current obfuscators can be separated into two categories:

– Schemes with heuristic security. This includes the first candidate scheme of
Garg et al. [GGH+13b] as well as several subsequent constructions [BR14,
BGK+14,PST14,AGIS14,SZ14,Zim15,AB15]. Some of these schemes can be
proven secure in idealized models of computation [BR14,BGK+14,AGIS14,
SZ14,Zim15,AB15], but such a proof does not translate into a standard
model proof under any assumptions. Thus for these constructions, the secu-
rity assumption is “tautological” and basically matches the scheme. While
there has been significant progress towards simplifying obfuscation, these can-
didates still are complicated and require several techniques (straddling sets,
Kilian randomization, etc.) that yield unnatural security assumptions.

– Schemes with security proved relative to a “nice” assumption. There are
basically two examples. The first is a construction due to Pass, Seth, and

How to Avoid Obfuscation Using Witness PRFs 425

Telang [PST14], based on the “semantic security” assumption on multilinear
maps. Unfortunately, this conjectured assumption is an “uber assumption”
that is so general that it comes close assuming the scheme itself is secure.
The second is a construction of Gentry et al. [GLSW14] based on a single
assumption, the multilinear subgroup elimination (MSE) assumption. While
this is a significant advance in terms of basing the security of obfuscation on
better assumptions, there are some notable drawbacks. First, the assumption
requires introducing subgroups, which complicates the scheme and makes it
less efficient. Second, the MSE assumption is a “source group” assumption on
multilinear maps, which has proven very problematic on current map candi-
dates. In particular, the MSE assumption is broken on all other multilinear
maps due to a recent line of attacks [CHL+14,GHMS14,BWZ14b,CLT14]1.
Finally, the proof uses complexity leveraging, which seems inherent to basing
obfuscation on simple assumptions [GGSW13]. This means that, for the proof
to hold, the security parameter must be set quite large, compounding the effi-
ciency issues above. Thus the most efficient obfuscators are likely to require
complicated “tautological” security assumptions.

Thus, we pay a very steep price for eliminating the setup, both in terms of effi-
ciency and in terms of assumptions. Using multilinearity as a proxy for efficiency,
we see that the multilinearity for an n-user protocol increases from n−1 to (2nλ)c

for a moderate constant c. Moreover, whereas the security of the basic multilin-
ear map protocol is based on the very simple MDDH assumption, the setupless
protocol requires somewhat more complicated assumptions. Outside of this work,
all setupless key exchange protocols (even in subsequent work [HJK+14,Rao14])
require obfuscation, and therefore suffer from these weaknesses.

1.2 Our Contributions: Witness PRFs

Abstracting the Needed Functionality. We now ask, what features of obfuscation
are needed for setupless key exchange? Observe that we do not need to hide
the entire program P in the protocol: for example, the entire computation up
until the PRF can be leaked. Thus, we do not necessarily need the full power of
obfuscation. In fact, obfuscation is used in a very particular way:

– First, the input is separated into two parts. The first part, the “instance”,
consists of the y1, . . . , yn. The second part, the “witness” or “token”, consists
of s, i.

– The program has the following structure: check some relation between the
instance and witness and then apply a PRF to the instance (but not the
witness) if the check passes.

1 These assumptions are only broken on these maps if certain “re-randomization”
terms are published, and it is possible to state the MSE assumption without these
terms in which case the assumption may hold on all candidate multilinear maps.
The obfuscator of [GLSW14] does not rely on such re-randomization parameters,
but the security proof does need the parameters. Hence, the form of the assumption
needed to prove security is broken.

426 M. Zhandry

– The security we desire is that if the instance has no witness, no information
about the output of the PRF value at that input is revealed.

Thus, obfuscation is acting as an access control to the PRF, only allowing
evaluation at a point if the user can supply a valid token.

Witness PRFs. We now define our new primitive called witness pseudorandom
functions (witness PRFs) that captures the functionality and security properties
needed above. Informally, a witness PRF for an NP language L is a PRF F such
that anyone with a valid witness that x ∈ L can compute F(x) without the
secret key, but for all x /∈ L, F(x) is computationally hidden without knowledge
of the secret key. More precisely, a witness PRF consists of the following three
algorithms:

– Gen(L, n) takes as input (a description of) an NP language L and instance
length n (and implicitly a security parameter), and outputs a secret function
key fk and public evaluation key ek.

– F(fk, x) takes as input the function key fk, an instance x ∈ {0, 1}n, and pro-
duces an output y.

– Eval(ek, x, w) takes the evaluation key ek, and instance x, and a witness w
that x ∈ L, and outputs F(fk, x) if w is a valid witness, ⊥ otherwise.

For security, we require that for any x ∈ {0, 1}n \ L, the value F(fk, x) is
pseudorandom even given ek. In Sect. 3, we also consider many variants of this
definition. For example, an interactive variant allows the adversary to make
polynomially many PRF queries to F(fk, ·), and still requires that F(fk, x) is
indistinguishable from random (conditioned, of course, on x not being one of
the PRF queries). We also define an extractable variant that allows x ∈ L, but
if the adversary can distinguish F(fk, x) from random, then the adversary must
“know” a witness that x ∈ L.

Witness PRFs are closely related to the concept of smooth projective hash
functions (a comparison is given in Sect. 1.5), and can be seen as a generalization
of constrained PRFs [BW13,KPTZ13,BGI14] to arbitrary NP languages2.

We first show how to replace obfuscation with witness PRFs for certain appli-
cations, including a no-setup multiparty key exchange protocol. We then show
how to build witness PRFs from multilinear maps. Our witness PRFs are more
efficient than current obfuscation candidates, and rely on very natural, though
new, assumptions about the underlying maps. We stress that all of our applica-
tions can be instantiated using obfuscation, and the applications are therefore
not “new.” However, instantiating the applications with witness PRFs result in
significant efficiency improvements compared to obfuscation. Our witness PRFs
2 This is not strictly true, as constrained PRFs generate the secret function key inde-

pendent of any language and multiple evaluation keys can be generated for multiple
languages. Witness PRFs, on the other hand, only permit one evaluation key, and
the language for the key must be known when the function key is generated. In the
full version [Zha14b], we discuss how to obtain multi-relation witness PRFs which
get around these issues.

How to Avoid Obfuscation Using Witness PRFs 427

rely on assumptions that appear to be weaker than those needed for obfuscation,
and are qualitatively better in several ways. Our assumptions are very natural
and simple, and while they essentially match the security of a component of our
scheme, that component is much simpler than current obfuscation candidates.
Our assumptions are also a very restricted case of the semantic security [PST14]
assumption on multilinear maps, and do not seem general enough to imply obfus-
cation. Lastly, our assumption is a “target group” assumption, which appear to
be more resilient to recent attacks on multilinear maps, whereas all assumptions
required for obfuscation are “source group” assumptions (more details below).

Therefore, our work can be seen as (1) improving the minimal assumption
under which several applications are possible and (2) providing significant effi-
ciency improvements for those applications.

Our Results. Below, we list our main results:

– We show how to realize the following primitives from witness PRFs
• Multiparty Non-Interactive Key Exchange (NIKE) Without a
Trusted Setup (Sect. 5.2). We give a construction closely related to the
Boneh-Zhandry [BZ14] protocol, where the obfuscator is replaced with a
witness PRF, and prove that security still holds.

• Poly-Many Hardcore Bits. Bellare, Stepanovs, and Tessaro [BST14]
construct a hardcore function of arbitrary output size for any one-way func-
tion. They require differing inputs obfuscation [BGI+01,BCP14,ABG+13],
which is a form of knowledge assumption for obfuscators. In the full ver-
sion [Zha14b], we show how to replace the obfuscator with a witness PRF
that satisfies our extractable notion of security.

• Reusable Witness Encryption. In witness encryption, messages are
encrypted to instances x of some NP language L, and any user that knows a
witness that x ∈ L can decrypt the ciphertext. Security says that if x /∈ L,
the ciphertext reveals no information about the plaintext. Garg, Gentry,
Sahai, and Waters [GGSW13] define and build the first witness encryption
scheme from multilinear maps. Later, Garg et al. [GGH+13b] show that
indistinguishability obfuscation implies witness encryption. In the full ver-
sion [Zha14b], we show that witness PRFs are actually sufficient, showing
that witness PRFs are essentially a generalization of witness encryption.
We also define a notion of re-usability for witness encryption, and give
a construction from witness PRFs. Our re-usable witness encryption
scheme has very short ciphertexts: namely proportional to the security
parameter and independent of the size of the relation. Combining with
the witness encryption-to-attribute-based encryption conversion of Garg
et al. [GGSW13], this allows us to build attribute-based encryption (ABE)
for circuits with similarly short ciphertexts (namely independent of the size
of the access policy). No other ABE construction with such succinct cipher-
texts is known without using obfuscation; it is not known how to construct
such an ABE scheme from the (non-reusable) witness encryption scheme
of [GGSW13].

428 M. Zhandry

• Rudich Secret Sharing for mNP. Rudich secret sharing is a general-
ization of secret sharing to the case where the sets of “qualified” users
correspond to instances of a monotone NP (mNP) language L. In other
words, n users are each given a share of a secret s. Any set S ⊆ [n] of
users corresponds to an instance x ∈ {0, 1}n, and if the users in S know
a witness that x ∈ L, they can collectively reconstruct the secret using
their shares. However, if x /∈ L, the secret remains hidden. Monotonicity
implies that adding users to a qualified set S does not affect the ability
of S to compute the secret. Komargodski, Naor, and Yogev [KNY14] give
the first construction for all of mNP using witness encryption3. In the full
version [Zha14b], we give a related protocol using witness PRFs that is
reusable, which results in much shorter shares than in [KNY14].

• Fully Distributed Broadcast Encryption. In broadcast encryption, n
users each have a user-specific secret key, and anyone can encrypt a message
to an arbitrary subset S ⊆ [n] of users. Each user in S can decrypt using
their individual secret, but users outside of S, even if they all collude, learn
nothing about the message. The measures of interest for broadcast encryp-
tion are the sizes of the ciphertext, user secret keys, and public broadcast
key as a function of the number of users n. Boneh and Zhandry [BZ14]
observe that multiparty NIKE protocols with small messages give rise to
broadcast encryption with constant-size ciphertexts and secret keys, but
with large public keys. The resulting scheme has the novel property of
being distributed, where users generate their own secret keys. In Boneh and
Zhandry’s notion of distributed broadcast encryption, the large public keys
are inherent because there is a component of the public key corresponding
to each user. In the full version [Zha14b], we put forward a new notion of
fully distributed broadcast encryption which does not suffer from this issue,
and give a construction from our extractable notion of witness PRFs where
secret keys, public keys, and ciphertexts are all poly-logarithmic in n. Our
scheme even obtains the strong notion of adaptive security4. We note that
our construction could have been instantiated using (extractable) witness
encryption, but witness PRFs give a protocol with better parameters.

– Next, we show how to build witness PRFs from multilinear maps. We first
define an intermediate notion of a subset-sum encoding, and construct such
encodings from multilinear maps. Our construction is very simple, and we
argue security based on new assumptions on multilinear maps. While our
assumptions basically match the security of the subset-sum encodings, the
assumptions are very simple and natural due to the simplicity of our scheme.
Our full construction is given in Sect. 4.

3 Originally, [KNY14] used obfuscation, but in a later update showed that witness
encryption was sufficient.

4 Of course, obtaining adaptive security from an interactive assumption is not that
interesting. However, our construction relies only on a non-interactive variant. There-
fore, obtaining adaptive security is non-trivial.

How to Avoid Obfuscation Using Witness PRFs 429

In the full version [Zha14b], we then show how to build witness PRFs from
subset-sum encodings. The resulting construction is much more efficient that
what is currently possible with obfuscation. In particular, we can build wit-
ness PRFs for arbitrary relations directly without the costly boosting step
required for obfuscation. The multilinearity required for the underlying mul-
tilinear maps is roughly equal to the size of the circuit defining the relation,
rather than exponential in the depth, as in current obfuscators. While imple-
menting our construction is still impractical for all except the most basic
relations, future research in improving the efficiency of multilinear maps will
bring our construction closer to practice.

– Finally, in the full version [Zha14b] we discuss how to obtain a multi-language
variant of witness PRFs, where multiple evaluation keys ekLi

corresponding
to multiple language Li can be produced. A witness for x relative to any of
the Li can be used to evaluate the PRF on x, and if x /∈ Li for any i, then
the value of the PRF on x is pseudorandom. We do not need such multi-
language witness PRFs for any of our applications, but we believe they are an
interesting object, and may be useful in other situations.

1.3 Techniques

Secure Subset-Sum Encodings. As a first step to building witness PRFs, we
construct a primitive called a subset-sum encoding. Roughly, such an encoding
corresponds to a (multi-)set S of n integers, and consists of a secret encoding
function which maps integers t into encodings t̂. Additionally, there is a public
evaluation function which takes as input a subset T ⊆ S, and can compute the
encoding t̂ of the sum of the elements in T : t =

∑
i∈T i. For security, we ask

that for any t that does not correspond to a subset-sum of elements of S, the
encoding t̂ is indistinguishable from a random element.

We provide a simple candidate subset-sum encoding from asymmetric crypto-
graphic multilinear maps. We use asymmetric maps, though it is straightforward
to adapt our protocol to the symmetric setting. Recall that in an asymmetric
n-linear map, instead of a single source group G, there are n source groups
G1, . . . ,Gn with generators g1, . . . , gn, and the pairing operation only allows for
one element from each group. That is, e : G1 × · · · × Gn → GT where5

e(ga1
1 , ga2

2 , . . . , gan
n) = ga1a2...an

T .

To generate a subset-sum encoding for a collection S = {v1, . . . , vn} of n integers,
choose a random α

R←−Zp, and compute Vi = gαvi

i for i = 1, . . . , n. Publish each
Vi, while α is kept secret.

5 This is the asymmetric variant of the multilinear map notion proposed by Boneh
and Silverberg [BS02]. Current multilinear map candidates actually support a much
richer set of operations, but our construction does not require this additional
structure.

430 M. Zhandry

The encoding of a target integer t is t̂ = gαt

T . Given the secret α it is easy
to compute t̂6. Moreover, if t =

∑
i∈T i for some subset T ⊆ S, then given the

public values Vi, it is also easy to compute t̂ using the multilinear operation:
define Vi,1 = Vi and Vi,0 = gi so that Vi,b = gαbvi

i . Then set bi to be the indicator
function for i ∈ T (so that t =

∑
i∈[n] bivi) and compute

t̂ = e(V1,b1 , . . . , Vn,bn) = e(gαb1v1

1 , . . . , gαbnvn

n) = g

(
α
∑

i∈[n] bivi

)

T = gαt

T

However, if t cannot be represented as a subset-sum of elements in S, then
the multilinear map operations do not allow for computing t̂: there is no way
to pair or multiply the Vi and gi together so that the result is t̂. We conjecture
that in this case, t̂ is hard to compute. This gives rise to a new complexity
assumption on multilinear maps: we say that the multilinear subset-sum Diffie-
Hellman assumption holds for a multilinear map if, for any set of integers S =
{v1, . . . , vn} and any target t that cannot be represented as a subset-sum of
elements in S, that gαt

T is indistinguishable from a random group element, even
given the elements {gαvi

i }i∈[n]
7. In the full version [Zha14b], we show that this

assumption holds in a generic model of multilinear maps, the same model that
has been used to argue the security of current obfuscators [BR14,BGK+14]. We
leave for future work the problem of proving security in the more refined generic
model of Gentry et al. [GHMS14], which captures the recent line of “zero-izing”
attacks. However, while we do not prove security in the zero-izing model, we
stress that these attacks do not appear to apply to our assumptions.

Our assumption can be seen as an “uber-assumption”, containing
exponentially-many assumptions, one per SubsetSum instance (S, t). For exam-
ple, setting S to be {1, 2, 3} and t to be −1, our assumption states that gα−1

T is
indistinguishable from random, given the elements {gα1

1 , gα2

2 , gα3

3 }. The assump-
tions in this family have the flavor of several existing assumptions on bilinear
and multilinear maps, such as the Diffie-Hellman inversion and Diffie-Hellman
Exponent assumptions.

Notice that the element that must be distinguished from random, namely gαt

T ,
is in the target group GT . Therefore, our assumption is a target-group assump-
tion, which appear more plausible on currently multilinear map candidates than
source-group assumptions involving only elements in the groups G1, . . . ,Gn.
Indeed, the focus of recent attacks [CHL+14,GHMS14,BWZ14b,CLT14] is usu-
ally the source-group assumptions. For all current obfuscators, the assumption
6 Current multilinear map candidates do not allow all users to perform exponenti-

ation by arbitrary elements of Zp, which makes computing Vi and t̂ potentially
problematic. However, whomever sets up the subset-sum encoding will also set up
the multilinear map, and will thus have a trapdoor that does allow computing Vi

and t̂. Therefore, the secret key should also include this trapdoor along with α.
7 We can also use an even stronger assumption that also allows the adversary to

adaptively ask for values gαt′
T for t′ �= t. This will result in a stronger security

guarantee for the subset-sum encodings and our derived witness PRFs.

How to Avoid Obfuscation Using Witness PRFs 431

that the scheme itself is secure is a source-group assumption, so while the recent
line of attacks does not appear to break current obfuscators, the attacks do
decrease our confidence in their security. Target-group assumptions, on the other
hand, appear much more resistant to attack.

Application to Witness Encryption. Recall that in a witness encryption scheme
as defined by Garg et al. [GGSW13], a message m is encrypted to an instance
x, which may or may not be in some NP language L. Given a witness w that
x ∈ L, it is possible to decrypt the ciphertext and recover m. However, if x /∈ L,
m should be computationally hidden.

Our subset-sum encodings immediately give us witness encryption for the
language L of SubsetSum instances. Let (S, t) be a SubsetSum instance. To
encrypt a message m to (S, t), generate a subset-sum encoding for set S. Then,
using the secret encoding algorithm, compute t̂. The ciphertext is the public
evaluation function, together with c = t̂ ⊕ m. To decrypt using a witness subset
T ⊆ S, use the public evaluation procedure on T to obtain t̂, and then XOR
with c to obtain m. If (S, T) /∈ SubsetSum, then the security of our subset-sum
encoding implies that t̂, and hence m, is hidden from the adversary.

Since SubsetSum is NP-complete, we can use NP reductions to obtain wit-
ness encryption for any NP language L. Our scheme may be more efficient
than [GGSW13] for languages L that have simpler reductions to SubsetSum
than to the ExactCover problem used by [GGSW13]. For example, the lan-
guage LLWE of learning-with-errors instances admits a very simple algebraic
reductions to SubsetSum. Also, while our assumptions are new, they are no
more or less plausible than the assumptions used in [GGSW13].

We can also obtain a special case of Rudich secret sharing. Given a Subset-
Sum instance (S, t), compute the elements Vi, t̂ as above, and compute c = t̂ ⊕ s
where s is the secret. Hand out share (Vi, c) to user i. Notice that a set U of
users can learn s if they know a subset T ⊆ U such that

∑
j∈T j = t. If no such

subset exists, then our subset-sum Diffie-Hellman assumption implies that s is
hidden from the group U of users.

Witness PRFs for NP. As defined above, witness PRFs are PRFs that can be
evaluated on any input x for which the user knows a witness w that x ∈ L.
For any x /∈ L, the value of the PRF remains computationally hidden. Notice
that subset-sum encodings almost give us witness PRFs for the SubsetSum
problem. Indeed, the setup algorithm for a subset-sum encoding only depends
on the subset S of integers, and not the target value t. Thus, a subset-sum
encoding for a set S gives us a witness PRF for the language LS of all integers
t that are subset-sums of the integers in S.

To turn a subset-sum encoding into a witness PRF for an arbitrary language,
we give a reduction from any NP language L to SubsetSum with the following
property: the set S is independent of the instance x itself, but is instead deter-
mined entirely by the NP relation defining L (and the instance length). The
instance x instead only affects the target t. Therefore, to build a witness PRF

432 M. Zhandry

for any fixed NP relation R, run our reduction algorithm to obtain a set SR, and
then build a subset-sum encoding for SR.

A notable feature of our resulting witness PRF is that its efficiency is com-
parable to that of existing witness encryption schemes for general relations R. In
particular, the level of multilinearity required and the number of group elements
in the evaluation key are equal to the size of the set SR, which is roughly equal
to the number of gates in R. The original witness encryption scheme of Garg
et al. [GGSW13] required the level of multilinearity and the number of cipher-
text group elements to roughly correspond to the ExactCover instance size,
which similarly grows linearly with R. Therefore, we get the added functionality
of witness PRFs essentially “for free” in terms of efficiency.

Replacing Obfuscation with Witness PRFs. We return to attention to multiparty
non-interactive key exchange without setup to demonstrate how witness PRFs
can be used in place of obfuscation.

We now explain how witness PRFs actually suffice for this application. As in
the Boneh-Zhandry protocol, each user chooses a random seed si for the PRG
G, and publishes the output xi. Simultaneously, we define an NP language L
consisting of all tuples (x1, . . . , xn) where at least one of the xi has a pre-image
under G. Instead of obfuscating a program, the master party can simply produce
a witness PRF F for the language L, and publishes the corresponding evaluation
key ek. All users then set the shared key to be F(fk, x1, . . . , xn), which all the
honest parties can compute using ek since they know a witness.

To argue security, as in the Boneh-Zhandry protocol we replace the xi with
random elements, and rely on the security of G to show that this change is
undetectable. Then with overwhelming probability none of the xi have pre-
images under G. This means that with overwhelming probability (x1, . . . , xn)
is no longer in L. Therefore, the security of the witness PRF shows that the
value K = F(fk, x1, . . . , xn) is computationally indistinguishable from a random
string, as desired.

Notice that the master party does not know the instance (x1, . . . , xn) until
after all parties have published their values; in particular, he does not know the
instance when setting up the witness PRF. This is crucial to obtaining a non-
interactive scheme. Witness encryption, on the other hand, requires knowing the
instance when generating the ciphertext, and therefore appears insufficient for
non-interactive key exchange.

Efficiency Comparison. Let p(λ) be the circuit size for computing G. It is
straightforward to implement a relation for L with circuits of size 8nλ + O(λ) +
p(λ) (the bottleneck is the muxing operation to select one of the inputs to check).
Using fast PRGs, we can take p(λ) = O(λ). Thus, our witness PRF uses multi-
linear maps with linearity 8nλ + O(λ). While this is somewhat worse than the
multilinearity n − 1 required for the direct protocol with trusted setup, it is
many orders of magnitude better than the (2nλ)c multilinearity required for the
obfuscation-based construction, and only about two orders of magnitude away

How to Avoid Obfuscation Using Witness PRFs 433

from what is currently achievable [ACLL14]. We note that, using knowledge
variants of obfuscation as in [ABG+13], it is possible to reduce the multilin-
earity required for the obfuscation construction to (λ log n)c′

for a larger con-
stant c′. Using our knowledge variant of witness PRFs, we can similarly reduce
the multilinearity of our protocol to O(λ log n). In either case (using knowledge
assumptions or not), our witness PRFs are currently (by far) the most efficient
multiparty key exchange protocols that do not require a trusted setup.

The reasons for the efficiency gains are two-fold:

– Our witness PRF construction grows polynomially with circuit size, rather
than exponentially in the depth as in current obfuscators. Thus we will get
immediate improvements for all except the shallowest circuits.

– For the applications discussed in this work, the original constructions required
obfuscating a PRF. This translates to using the underlying multilinear map
operations to simulate the evaluation of the PRF, which is quite costly. In
contrast, our witness PRFs use the multilinear map elements themselves as
the PRF outputs, eliminating the need for a separate PRF computation. Thus
only the relation checking needs to be carried out with multilinear operations.
For cases such as key exchange where the PRF evaluation is the bottleneck,
this results in significant additional efficiency gains.

1.4 Directions for Future Work

Our work raises several intriguing open questions:

– We give several applications of witness PRFs that previously required the full
power of obfuscation. For what other applications of obfuscation do witness
PRFs suffice?

– Witness PRFs do not appear sufficient for many applications of obfuscation,
including some that seem well-suited for witness PRFs on the surface. For
example, obfuscation plays a similar role of gatekeeper to a PRF in the traitor
tracing scheme of Boneh and Zhandry [BZ14]. However, in there scheme, the
underlying relation must actually be kept secret for security to hold. In our
notion of witness PRFs, the relation is not a secret, and our construction
explicitly requires the relation to be public. A natural goal is to devise a
stronger notion of witness PRFs that would suffice for these applications (say,
by hiding some information about the relation) but yet has efficiency similar
to that of witness PRFs and witness encryption.

– While our assumptions are natural, they are instance dependent, meaning
that the assumption depends on the challenge instance. This means our
scheme relies on an exponential number of assumptions, one per instance. An
important goal is therefore to construct witness PRFs from simple instance
independent assumptions. We note that the since witness PRFs imply wit-
ness encryption, the arguments of Garg et al. [GGSW13] indicate that such a
construction would likely involve complexity leveraging.

434 M. Zhandry

Indistinguishability obfuscation (iO) can be used to build witness PRFs8, and
iO can in turn be based on simple assumptions following the work of Gentry
et al. [GLSW14]. However, such an approach defeats the efficiency gains of
building witness PRFs directly. A natural starting point to look for a con-
struction would be the witness encryption scheme of Gentry et al. [GLW14],
which is also based on instance independent assumptions.

– How do Witness PRFs relate to other advanced cryptographic primitives? For
instance, are witness PRFs indeed weaker than obfuscation, and can witness
encryption be used generically to build witness PRFs? In a subsequent work,
Komargodski and Zhandry [KZ15] make progress in this direction by showing
that witness PRFs are equivalent to a notion of secret sharing called distributed
secret sharing. An interesting direction for future work would be to find more
equivalences, or to give black box separations between witness PRFs and other
primitives.

1.5 Other Related Work

Removing Obfuscation. Very recently, a few works have shown how to remove
obfuscation from certain applications. Garg et al. [GGHZ14] build the first
many-key functional encryption schemes that do not rely on obfuscation, though
their construction is obfuscation-inspired. Boneh et al. [BLR+14] build a near-
practical order revealing encryption scheme; the only other known construction
requires obfuscation and is therefore far from practical.

Smooth Projective Hash Functions and Functional PRFs. Cramer and
Shoup [CS02] define the notion of smooth projective hash functions (SPHFs),
a concept similar to that of witness PRFs. Concurrently and independently of
our work, Chen and Zhang [CZ14] define the notion of publicly evaluable PRFs
(PEPRFs), which are again similar in concept to witness PRFs. The main dif-
ferences between SPHFs and PEPRFs and our witness PRFs are that existing
constructions of SPHFs and PEPRFs are only for certain classes of languages,
such as certain group-theoretic languages. Witness PRFs on the other hand, can
handle arbitrary NP languages, and such flexibility is required for the applica-
tions in this work. The trade-off is that witness PRFs are much less efficient and
require much stronger assumptions. There are also minor differences in security
notions.

Boyle et al. [BGI14] define functional PRFs, where the evaluation key cor-
responds to a function f , and given the evaluation key it is possible to compute
F(f(x)), but F(y) is pseudorandom for y not in the image of f . Functional PRFs

8 To see this, start with any “puncturable” PRF, and obufscate the program that takes
an input and a witness, checks the witness relation, and outputs the PRF evaluated
on the input. The resulting obfuscated program is the evaluation key, and the PRF
key is the secret key. Correctness is straightforward to verify, and the static security
definition described above can be shown easily through the punctured programming
technique of Sahai and Waters [SW14].

How to Avoid Obfuscation Using Witness PRFs 435

in their full generality equivalent to witness PRFs. In one direction, we can set
f((x,w)) = x if R(x,w) = 1 and f((x,w)) = ⊥ otherwise. In the other, we
can set R(y;x) = 1 if f(x) = y and R(y;x) = 0 otherwise. We note, however,
that [BGI14] only construct functional PRFs for very limited functions f related
to prefix matching, which are insufficient for our applications. In particular, the
functions f considered all correspond to languages that are in P (and so cor-
respond exactly to constrained PRFs), where our construction supports general
NP relations, as needed by our applications.

Witness Encryption. Garg et al. [GGSW13] define witness encryption and give
the first candidate construction for the NP-Complete ExactCover problem,
whose security is based on the multilinear no-exact-cover problem. Goldwasser
et al. [GKP+13] define a stronger notion, called extractable witness encryption,
which stipulates that anyone who can distinguish the encryption of two messages
relative to an instance x must actually be able to produce a witness for x.
Our extractable notion for witness PRFs can be seen as a generalization of
extractable witness encryption. Subsequently, Garg et al. [GGHW14] cast doubt
on the plausibility of the most general forms of extractable witness encryption
(and thus extractable witness PRFs), though their results do not apply to most
potential applications of the primitives.

Hard-Core Bits. The Goldreich-Levin theorem [GL89] shows how to build a
single hard-core bit for any one-way function. This result can be extended to
logarithmically-many bits, and polynomially-many hard-core bits have been con-
structed for specific one-way functions [CGH01]. Bellare et al. [BST14] give poly-
many hard-core bits for any one-way function using obfuscation, which is the
only construction prior to this work.

Broadcast Encryption. There has been an enormous body of work on broadcast
encryption, and we only mention a few specific works. Boneh et al. [BGW05]
use bilinear maps to give a broadcast scheme with short ciphertexts and secret
keys, though public broadcast keys grew linearly with the number of users. Some
subsequent schemes based on bilinear maps were able to achieve adaptive secu-
rity [GW09], but the public parameters always grew linearly with the number
of recipients. Boneh and Zhandry [BZ14] give a broadcast scheme from indis-
tinguishability obfuscation which achieves similarly short ciphertexts and secret
keys. Their broadcast scheme has the novel property of being distributed, where
every user chooses their own secret key. However, their public keys are obfus-
cated programs, and are quite large (namely, linear in the number of users), and
security is proved in a weaker static model. Ananth et al. [ABG+13] show how to
shrink the public key (while maintaining secret key and ciphertext size), though
they lose the distributed property. Boneh et al. [BWZ14a] give several broadcast
schemes whose concrete parameter sizes are much better directly from multilin-
ear maps, and very recently Zhandry [Zha14a] gives a variant that is adaptively
secure. However, these schemes are not distributed.

436 M. Zhandry

Secret Sharing. The first secret sharing schemes due to Blakely [Bla79] and
Shamir [Sha79] are for the threshold access structure, where any set of users of
size at least some threshold t can recover the secret, and no set of size less than t
can learn anything about the secret. In an unpublished work, Yao shows how to
perform (computational) secret sharing where the allowable sets are decided by a
polynomial-sized monotone circuit. Komargodski, Naor and Yogev [KNY14] use
witness encryption to build the first protocol for arbitrary NP access structures,
answering a question of Rudich.

2 Preliminaries

2.1 Subset-Sum

Let A ∈ Z
m×n be an integer matrix, and t ∈ Z

m be an integer vector. The
subset-sum search problem is to find an w ∈ {0, 1}n such that t = A · w. The
decision problem is to decide if such an w exists.

We define several quantities related to a subset-sum instance. Given a matrix
A ∈ Z

m×n, let SubSums(A) be the set of all subset-sums of columns of A. That
is, SubSums(A) = {A · w : w ∈ {0, 1}n}. Define Span(A) as the convex hull
of SubSums(A). Equivalently, Span(A) = {A · w : w ∈ [0, 1]n}. We define the
integer range of A, or IntRange(A), as Span(A)

⋂
Z

m. We note that given an
instance (A, t) of the subset-sum problem, it is efficiently decidable whether
t ∈ IntRange(A). Moreover, t /∈ IntRange(A) implies that (A, t) is unsatisfiable.
The only “interesting” instances of the subset sum problem therefore have t ∈
IntRange(A). From this point forward, we only consider (A, t) a valid subset
sum instance if t ∈ IntRange(A).

2.2 Multilinear Maps

An asymmetric multilinear map [BS02] is defined by an algorithm Setup which
takes as input a security parameter λ, a multilinearity n, and a minimum group
order pmin

9. It outputs (the description of) n + 1 groups G1, . . . ,Gn,GT of
prime order p ≥ max(2λ, pmin), corresponding generators g1, . . . , gn, gT , and a
map e : G1 × · · · × Gn → GT satisfying

e(ga1
1 , . . . , gan

n) = ga1...an

T

Cryptographic multilinear maps are multilinear maps where certain computa-
tions not expressly allowed by the map are computationally difficult. For exam-
ple, it should at a minimum be computationally infeasible to compute a ∈ Zp

given ga
i for a random a. An example of the type of computational assumption

we make in this work is that the following problem is hard: given gabi

i for i ∈ [n],
distinguish ga

T from a random element of GT .
Another requirement we make on multilinear maps is that a random element

of GT is statistically indistinguishable from a uniform random bit string.
9 It is easy to adapt multilinear map constructions [GGH13a,CLT13] to allow setting

a minimum group order.

How to Avoid Obfuscation Using Witness PRFs 437

Approximate Multilinear Maps. Current candidate multilinear maps [GGH13a,
CLT13] are only approximate and do not satisfy the ideal model outlined above.
In particular, the maps are noisy, resulting in several implications. First, repre-
sentations of group elements are not unique. Current map candidates provide an
extraction procedure that takes a representation of a group element in the the
target group GT and outputs a canonical representation. This allows multiple
users with different representations of the same element to arrive at the same
value. The extraction procedure satisfies the requirement that, when applied to a
random element of the target group, the result is statistically close to a uniform
random bit string.

A more significant limitation is that noise grows with the number of multi-
plications and pairing operations. If the noise term grows too large, then there
will be errors in the sense that the extraction procedure above will fail to output
the canonical representation. In our application, the number of multiplications
is equal to the multilinearity, which current candidates natively support without
needing to adjust the parameter settings10.

Lastly, and most importantly for our use, current map candidates do not
allow regular users to compute gα

i for any α ∈ Zp of the user’s choice. Instead,
the user computes a “level-0 encoding” of a random (unknown) α ∈ Zp, and
then pairs the “level-0 encoding” with gi, which amounts computing the expo-
nentiation gα

i . To compute terms like gαk

i would require repeating this operation
k times, resulting in a large blowup in the error. Thus, for large k, computing
terms like gαk

i is infeasible for regular users. However, whomever sets up the map
knows secret parameters about the map and can compute gα

i for any α ∈ Zp

without blowing up the error. Thus, the user who sets up the map can pick α,
compute αk in Zp, and then compute gαk

i using the map secrets. This will be
critical for our construction.

3 Witness PRFs

Informally, a witness PRF is a generalization of constrained PRFs [BW13,
KPTZ13,BGI14] to arbitrary NP relations. That is, for an NP language L, a
user can evaluate the function F at an instance x only if x ∈ L and the user can
provide a witness w that x ∈ L. More formally, a witness PRF is the following:

Definition 1. A witness PRF is a triple of algorithms (Gen,F,Eval) such that:

– Gen is a randomized algorithm that takes as input a security parameter λ and
a circuit R : X × W → {0, 1}11, and produces a secret function key fk and a
public evaluation key ek.

10 In fact, the parameters can be set more aggressively since our application does not
need to support re-randomization. Re-randomizing elements adds significant noise
in current encodings, and the native parameter settings support this noise growth.

11 By accepting relations as circuits, our notion of witness PRFs only handles instances
of a fixed size. It is also possible to consider witness PRFs for instances of arbitrary
size, in which case R would be a Turing machine.

438 M. Zhandry

– F is a deterministic algorithm that takes as input the function key fk and an
input x ∈ X , and produces some output y ∈ Y for some set Y.

– Eval is a deterministic algorithm that takes as input the evaluation key ek and
input x ∈ X , and a witness w ∈ W, and produces an output y ∈ Y or ⊥.

– For correctness, we require Eval(ek, x, w) =

{
F(fk, x) if R(x,w) = 1
⊥ if R(x,w) = 0

for all

x ∈ X , w ∈ W.

We note one significant way in which our notion of witness PRFs is weaker
than constrained PRFs: our notion only allows a single evaluation key ek for a
relation R that must be chosen at setup time. In contrast, constrained PRFs
allow arbitrarily-many ek for different circuits, and the circuits can be chosen
after setup. This limitation will be inherent to our construction: the function
defined by F(fk, ·) will depend on the relation R. Nonetheless, this definition
will be sufficient for our applications. In the full version [Zha14b], we define a
multi-relation variant, discuss a possible approach to building such enhanced
primitives.

3.1 Security

The simplest and most natural security notion we consider is a direct generaliza-
tion of the security notion for constrained PRFs, which we call adaptive instance
interactive security. Consider the following experiment EXPR

A(b, λ) between an
adversary A and challenger, parameterized by a relation R : X × W → {0, 1}, a
bit b and security parameter λ.

– Run (fk, ek) R←−Gen(λ,R) and give ek to A.
– A can adaptively make queries on instances xi ∈ X , to which the challenger

response with F(fk, xi).
– A can make a single challenge query on an instance x∗ ∈ X . The challenger

computes y0 ← F(fk, x∗) and y1
R←−Y, and responds with yb.

– After making additional F queries, A produces a bit b′. The challenger checks
that x∗ /∈ {xi}, and that there is no witness w ∈ W such that R(x,w) = 1 (in
other words, x /∈ L)12. If either check fails, the challenger outputs a random
bit. Otherwise, it outputs b′.

Define Wb as the event the challenger outputs 1 in experiment b. Let

WPRF.AdvR
A(λ) = |Pr[W0] − Pr[W1]|

Definition 2. WPRF = (Gen,F,Eval) is adaptive instance interactively secure
for a relation R if, for all PPT adversaries A, there is a negligible function negl
such that.

12 This check in general cannot be implemented in polynomial time, meaning our chal-
lenger is not efficient.

How to Avoid Obfuscation Using Witness PRFs 439

We can also define a weaker notion of static instance security where A com-
mits to x∗ before seeing ek or making any F queries. Independently, we can also
define non-interactive security where the adversary is not allowed any F queries.
In the full version [Zha14b], we also consider more fine-grained security notions,
similar to the obfuscation-based notions of [BST14]. In the full version, we also
consider extractability notions of witness PRFs, where pseudorandomness holds
even for x∗ in the language, as long as the adversary does not “know” a witness
for x.

4 An Abstraction: Subset-Sum Encoding

Now that we have seen many applications of witness PRFs, we begin our con-
struction. In this section, we give an abstraction of functionality we need from
multilinear maps. Our abstraction is called a subset-sum encoding. Roughly, a
subset sum encoding is a way to encode vectors t such that (1) the encoding of
t = A ·w for w ∈ {0, 1}n is efficiently computable given w and (2) the encoding
of t /∈ SubSums(A) is indistinguishable from a random string. More formally, a
subset-sum encoding is the following:

Definition 3. A subset-sum encoding is a triple of efficient algorithms (Gen,
Encode,Eval) where:

– Gen takes as input a security parameter λ and an integer matrix A ∈ Z
m×n,

and outputs an encoding key sk and an evaluation key ek.
– Encode takes as input the secret key sk and a vector t ∈ Z

m, and produces an
encoding t̂ ∈ Y. Encode is deterministic.

– Eval takes as input the encoding key ek and a bit vector w ∈ {0, 1}n, and
outputs a value t̂ satisfying t̂ = Encode(sk, t) where t = A · w.

Security Notions. The security notions we define for subset-sum encodings
are very similar to those for witness PRFs. Consider the following experiment
EXPAA(b, λ) between an adversar A and challenger, parameterized by a matrix
A ∈ Z

m×n, a bit b, and a security parameters λ:

– Run (sk, ek) R←−Gen(λ,A), and give ek to A
– A can adaptively make queries on targets ti ∈ {0, 1}m, to which the challenger

responds with t̂i ← Encode(sk, ti) ∈ Y.
– A can make a single challenge query on a target t∗. The challenger computes

y0 = t̂∗ ← Encode(sk, t∗) and y1
R←−Y, and responds with yb.

– After making additional Encode queries, A produces a bit b′. The challenger
checks that t∗ /∈ {ti} and t∗ /∈ SubSums(A). If either check fails, the challenger
outputs a random bit. Otherwise, it outputs b′.

Define Wb as the event the challenger outputs 1 in experiment b. Let

SS.AdvAA(λ) = |Pr[W0] − Pr[W1]|

440 M. Zhandry

Definition 4. (Gen,Encode,Eval) is adaptive target interactively secure for a
matrix A if, for all adversaries A, there is a negligible function negl such that
SS.AdvAA (λ) < negl(λ).

We can also define a weaker notion of static target security where A commits
to t∗ before seeing ek or making any Encode queries. Independently, we can also
define non-interactive security where the adversary is not allowed to make any
Encode queries.

4.1 A Simple Instantiation from Multilinear Maps

We now construct subset-sum encodings from asymmetric multilinear maps.

Construction 1. Let Setup be the generation algorithm for an asymmetric mul-
tilinear map. We build the following subset-sum encoding:

– Gen(λ,A): on input a matrix A ∈ Z
m×n, let B = ‖A‖∞, and pmin = 2nB+1.

Run params
R←−Setup(λ, n, pmin) to get the description of a multilinear map

e : G1 × · · · × Gn → GT on groups of prime order p, together with gener-
ators g1, . . . , gm, gT . Choose random α ∈ (Z∗

p)
m. Denote by αv the product∏

i∈[m] α
vi
i (since each component of α is non-zero, this operation is well-

defined for all integer vectors vi). Let Vi = gαvi

i where vi are the columns of
A. Publish ek = (params, {Vi}i∈[n]) as the public parameters and sk = α

– Encode(sk, t) = gαt

T , where t ∈ IntRange(A).
– Eval(ek,w): define Vi,1 = Vi and Vi,0 = gi. Then output

e(V1,w1 , V2,w2 , . . . , Vn,wn
)

For correctness, observe that Vi,wi
= gαviwi

i , and therefore

e(V1,w1 , V2,w2 , . . . , Vn,wn
) = e(gαv1w1

1 , . . . , gαvnwn

n) = gα
∑

i∈[n] viwi

T = gαA·w
T

= Encode(sk,A · w)

Security. We assume the security of our subset-sum encodings, which translates
to a new security assumption on multilinear maps, which we call the (adaptive
target interactive) multilinear subset-sum Diffie Hellman assumption. For com-
pleteness, we formally define the assumption as follows. Let EXPAA(b, λ) be the
following experiment between an adversary A and challenger, parameterized by
a matrix A ∈ Z

m×n, a bit b, and a security parameter λ:

– Let B = ‖A‖∞, and pmin = 2nB + 1. Run params
R←−Setup(λ, n, pmin).

– Choose a random α ∈ Z
m
p , and let Vi = gαvi

i where vi are the columns of A.
Give (params, {Vi}i∈[n]) to A.

– A can make oracle queries on targets ti ∈ IntRange(A), to which the challenger
responds with gαti

T .

How to Avoid Obfuscation Using Witness PRFs 441

– A can make a single challenge query on a target t∗ ∈ IntRange(A). The chal-
lenger computes y0 = gαt∗

T and y1 = gr
T for a random r

R←−Zp, and responds
with yb.

– After making additional Encode queries, A produces a bit b′. The challenger
checks that t∗ /∈ {ti} and t∗ /∈ SubSums(A). If either check fails, the challenger
outputs a random bit. Otherwise, it outputs b′.

Define Wb as the event that the challenger outputs 1 in experiment b. Let
SSDH.AdvAA(λ) = |Pr[W0] − Pr[W1]|.
Definition 5. The adaptive target interactive multilinear subset-sum Diffie
Hellman (SSDH) assumption holds relative to Setup if, for all adversaries A,
there is a negligible function negl such that SSDH.AdvAA(λ) < negl(λ).

Security of our subset-sum encodings immediately follows from the
assumption:

Fact 2. If the adaptive target interactive multilinear SSDH assumptions holds
for Setup, the Construction 1 is an adaptive target interactively secure subset-
sum encoding.

Flattening the Encodings. We can convert any subset-sum encoding for m = 1
into a subsetsum encoding for any m. Let A ∈ Z

m×n and define B = ‖A‖∞.
Then, for any w ∈ {0, 1}n, ‖A ·w‖∞ ≤ nB. Therefore, we can let A′ = (1, nB +
1, (nB + 1)2, . . . , (nB + 1)m−1) · A be a single row, and run Gen(λ,A′) to get
(sk, ek). To encode an element t, compute t′ = (1, nB, (nB)2, . . . , (nB)m−1) · t,
and encode t′. Finally, to evaluate on vector w, simply run Eval(ek,w).

Security translates since left-multiplying by (1, nB, (nB)2, . . . , (nB)m−1)
does not introduce any collisions. Therefore, we can always rely on subset-sum
encodings, and thus the subset-sum Diffie-Hellman assumption, for m = 1. How-
ever, we recommend not using this conversion for two reasons:

– To prevent the exponent from “wrapping” mod p− 1, p− 1 needs to be larger
than the maximum L1-norm of the rows of A. In this conversion, we are
multiplying rows by exponential factors, meaning p needs to correspondingly
be set much larger.

– In the full version [Zha14b], we prove the security of our encodings in the
generic multilinear map model. Generic security is only guaranteed if ‖A‖∞/p
is negligible. This means for security, p will have to be substantially larger after
applying the conversion.

4.2 Witness PRFs from Subset-Sum Encodings

We note that subset-sum encodings immediately give us witness PRFs for
restricted classes. In particular, for a matrix A, a subset-sum encoding is a wit-
ness PRF for the language SubSums(A). The various security notions for subset-
sum encodings correspond exactly to the security notions for witness PRFs. In
the full version [Zha14b], we show how to extend this to witness PRFs for any
NP language, obtaining the following theorem:

442 M. Zhandry

Theorem 3. If adaptive/static target interactively/non-interactively secure
subset-sum encodings exist, then adaptive/static instance interactively/non-
interactively secure witness PRFs exist.

Roughly, we prove this Theorem 3 by providing a reduction from an instance
x of any NP language L to subset-sum instance (A, t), where the matrix A is
determined entirely by the language L, and is independent of x (except for its
length). Thus, SubSums(A) corresponds exactly with L.

Our witness PRF for a language L is then a subset-sum encoding for the
corresponding matrix A. The value of the PRF on instance x is the encoding
of the corresponding target t. Given a witness w for x, the reduction gives a
corresponding subset S of columns of A that sum to t. This allows anyone with
a witness to evaluate the PRF at x.

5 Applications

In this section, we show that for several applications of obfuscation, the obfus-
cator can be replaced with witness PRFs.

5.1 CCA-secure Public Key Encryption

We demonstrate that witness PRFs give a simple construction of CCA-secure
public key encryption that is similar to the obfuscation-based construction of
Sahai and Waters [SW14]. Given the similarities of witness PRFs to smooth
projective hash functions (SPHFs) [CS02], and that the original motivation
for SPHFs was CCA-secure public key encryption, this result is not surpris-
ing. Instead, we present the construction as a warm-up for the more interesting
applications that follow.

Construction 4. Let WPRF = (WPRF.Gen,F,Eval) be a witness PRF, and let
G : S → Z be a pseudorandom generator with |S|/|Z| < negl. Build the following
key encapsulation mechanism (Enc.Gen,Enc,Dec):

– Enc.Gen(λ): Let R(z, s) = 1 if and only if G(s) = z. In other words, R defines
the language L of strings z ∈ Z that are images of G, and witnesses are the
corresponding pre-images. Run (fk, ek) R←−WPRF.Gen(λ,R). Set fk to be the
secret key and ek to be the public key.

– Enc(ek): sample s
R←−S and set z ← G(s). Output z as the header and k ←

Eval(ek, z, s) ∈ Y as the message encryption key.
– Dec(fk, z): run k ← F(fk, z).

Correctness is immediate. For security, we have the following:

Theorem 5. If WPRF is interactively secure, then Construction 4 is a
CCA secure key encapsulation mechanism. If WPRF is static instance non-
interactively secure, then Construction 4 is CPA secure.

How to Avoid Obfuscation Using Witness PRFs 443

Proof. We prove the CCA case, the CPA case being almost identical. Let B be a
CCA adversary with non-negligible advantage ε. Define Game 0 as the standard
CCA game, and define Game 1 as the modification where the challenge header
z∗ is chosen uniformly at random in Z. The security of G implies that B still has
advantage negligibly-close to ε. Let Game 2 be the game where z∗ is chosen at
random, but the game outputs a random bit and aborts if z∗ is in the image space
of G. Since Z is much larger than S, the abort condition occurs with negligible
probability. Thus B still has advantage negligibly close to ε in Game 2. Now
we construct an adversary A for WPRF. A chooses a random z∗, and makes a
challenge query on z∗, obtaining k. Then it simulates B, answering decryption
queries using its F oracle. When B makes a challenge query, and A responds
with z∗ as the header and k as the encapsulated key. When B outputs a bit b′,
A outputs the same bit. A has advantage equal to that of B in Game 2, which
is non-negligible, thus contradicting the security of WPRF.

5.2 Non-interactive Multiparty Key Exchange

A multiparty key exchange protocol allows a group of g users to simultaneously
post a message to a public bulletin board, retaining some user-dependent secret.
After reading off the contents of the bulletin board, all the users establish the
same shared secret key. Meanwhile, and adversary who sees the entire contents
of the bulletin board should not be able to learn the group key. More precisely,
a multiparty key exchange protocol consists of:

– Publish(λ, g) takes as input the security parameter and the group order, and
outputs a user secret s and public value pv. pv is posted to the bulletin board.

– KeyGen({pvj}j∈[g], si, i) takes as input g public values, plus the corresponding
user secret si for the ith value. It outputs a group key k ∈ Y.

For correctness, we require that all users generate the same key:

KeyGen({pvj}j∈[g], si, i) = KeyGen({pvj}j∈[g], si′ , i′)

for all (sj , pvj)
R←−Publish(λ, g) and i, i′ ∈ [g]. For security, we have the following:

Definition 6. A non-interactive multiparty key exchange protocol is statically
secure if the following distributions are indistinguishable:

{pvj}j∈[g], k where (sj , pvj)
R←−Publish(λ, g)∀j ∈ [g], k R←−Y and

{pvj}j∈[g], k where (sj , pvj)
R←−Publish(λ, g)∀j ∈ [g], k←KeyGen({pvj}j∈[g], s1, 1)

Notice that our syntax does not allow a trusted setup, as constructions based
on multilinear maps [BS02,GGH13a,CLT13] require. Boneh and Zhandry [BZ14]
give the first multiparty key exchange protocol without trusted setup, based on
obfuscation. We now give a very similar protocol using witness PRFs.

444 M. Zhandry

Construction 6. Let G : S → Z be a pseudorandom generator with |S|/|Z| <
negl. Let WPRF = (Gen,F,Eval) be a witness PRF. Let Rg : Zg × (S × [g]) →
{0, 1} be a relation that outputs 1 on input ((z1, . . . , zg), (s, i)) if and only if
zi = G(s). We build the following key exchange protocol:

– Publish(λ, g): compute (fk, ek) R←−Gen(λ,Rg). Also pick a random seed s
R←−S

and compute z ← G(s). Keep s as the secret and publish (z, ek).
– KeyGen({(zi, eki)}i∈[g], s). Each user sorts the pairs (zi, eki) by zi, and deter-

mines their index i in the ordering. Let ek = ek1, and compute k =
Eval(ek, (z1, . . . , zg), (s, i))

Correctness is immediate. For security, we have the following:

Theorem 7. If WPRF is static witness non-interactively secure, the Construc-
tion 6 is statically secure.

Proof. Let B be an adversary for the key exchange protocol with non-negligible
advantage. Then B sees {(zi, eki)}i∈[g] where zi ← G(si) for a random si

R←−S,
as well as a key k ∈ Y, and outputs a guess b′ for whether k = F(ek1, {(zi)}i∈[g]

or k
R←−Y. Call this Game 0. Define Game 1 as the modification where zi

R←−Z.
The security of G implies that Game 0 and Game 1 are indistinguishable. Next
define Game 2 as identical to Game 1, except that the challenger outputs a
random bit and aborts if any of the zi are in the range of G. Since |S|/|Z| < negl,
this abort condition occurs with negligible probability, meaning B still has non-
negligible advantage in Game 2. We construct an adversary A for WPRF as
follows: A choses random zi ∈ Z for i ∈ [g], sorts the zi, and makes a challenge
query on (z1, . . . , zg), obtaining key k. Then after receiving ek, it sets ek1 = ek.

For i > 1, A runs (fki, eki)
R←−Gen(λ,Rg). It then gives A {(zi, eki)}i∈[g], k. Note

that for key generation, ek1 = ek is chosen. Also, (z1, . . . , zg) is chosen at random
in Zg, and A’s challenger aborts if any of the zg are in the range of G (that is,
if (z1, . . . , zg) has a witness under Rg). Therefore, the view of B as a subroutine
of A and the view of B in Game 2 are identical. Therefore, the advantage of A
is also non-negligible, a contradiction.

Adaptive Security. In semi-static or active security (defined by Boneh and
Zhandry [BZ14]), the same published values pvj are used in many key exchanges,
some involving the adversary. Obtaining semi-static or adaptive security from
even the strongest forms of witness PRFs is not immediate. The issue, as noted
by Boneh and Zhandry in the case of obfuscation, is that, even in the semi-static
setting, the adversary may see the output of Eval on honest secrets, but using
a malicious key ek. It may be possible for a malformed key to leak the hon-
est secrets, thereby allowing the scheme to be broken. In more detail, consider
an adversary A playing the role of user i, and suppose the maximum number
of users in any group is 2. A generates and publishes paramsi in a potentially
malicious way (and also generates and publishes some zi). Meanwhile, an honest
user j publishes an honest ekj and zj = G(sj). Now, if zi < zj , user j computes

How to Avoid Obfuscation Using Witness PRFs 445

the shared key for the group {i, j} as Eval(eki, (zi, zj), sj , 2). While an honest
eki would cause Eval to be independent of the witness, it may be possible for a
dishonest eki to cause Eval to leak information about the witness.

Boneh and Zhandry circumvent this issue by using a special type of signature
scheme, which they call a puncturable signature scheme, and only inputting sig-
natures into Eval. Even if the entire signature leaks, it will not help the adversary
produce the necessary signature to break the scheme. Such signature schemes
can be built from witness indistinguishable proofs. It is straightforward to adapt
Boneh and Zhandry’s construction to use witness PRFs instead of obfuscation.
We omit the details.

References

[AB15] Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order
graded encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 528–556. Springer, Heidelberg (2015)

[ABG+13] Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs
obfuscation and applications. Cryptology ePrint Archive, Report 2013/689
(2013). http://eprint.iacr.org/2013/689

[ACLL14] Albrecht, M.R., Cocis, C., Laguillaumie, F., Langlois, A.: Implementing
candidate graded encoding schemes from ideal lattices. Cryptology ePrint
Archive, Report 2014/928 (2014). http://eprint.iacr.org/2014/928

[AGIS14] Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation:
avoiding Barrington’s theorem. In Ahn, G.-J., Yung, M., Li, M. (eds.)
ACM CCS 14: 21st Conference on Computer and Communications Secu-
rity, Scottsdale, AZ, USA, 3–7 November 2014, pp. 646–658. ACM Press
(2014)

[App13] Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom func-
tions. Cryptology ePrint Archive, Report 2013/699 (2013). http://eprint.
iacr.org/2013/699

[BCP14] Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lin-
dell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg
(2014)

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001)

[BGI14] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudoran-
dom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
501–519. Springer, Heidelberg (2014)

[BGK+14] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfusca-
tion against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EURO-
CRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

[BGW05] Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption
with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

[Bla79] Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of AFIPS
1979 National Computer Conference, vol. 48, pp. 313–317 (1979)

http://eprint.iacr.org/2013/689
http://eprint.iacr.org/2014/928
http://eprint.iacr.org/2013/699
http://eprint.iacr.org/2013/699

446 M. Zhandry

[BLR+14] Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M.,
Zimmerman, J.: Semantically secure order-revealing encryption: multi-
input functional encryption without obfuscation. Cryptology ePrint
Archive, Report 2014/834 (2014). http://eprint.iacr.org/2014/834

[BR14] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 1–25. Springer, Heidelberg (2014)

[BS02] Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptog-
raphy. Cryptology ePrint Archive, Report 2002/080 (2002). http://eprint.
iacr.org/2002/080

[BST14] Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any one-
way function and a framework for differing-inputs obfuscation. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 102–
121. Springer, Heidelberg (2014)

[BW13] Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013)

[BWZ14a] Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption
from multilinear maps. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 206–223. Springer, Heidelberg (2014)

[BWZ14b] Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against
zeroizing attacks. Cryptology ePrint Archive, Report 2014/930 (2014).
http://eprint.iacr.org/2014/930

[BZ14] Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro,
R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer,
Heidelberg (2014)

[CGH01] Catalano, D., Gennaro, R., Howgrave-Graham, N.: The bit security of
Paillier’s encryption scheme and its applications. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 229–243. Springer, Heidelberg
(2001)

[CHL+14] Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of
the multilinear map over the integers. Cryptology ePrint Archive, Report
2014/906 (2014). http://eprint.iacr.org/2014/906

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over
the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013)

[CLT14] Coron, J.-S., Lepoint, T., Tibouchi, M.: Cryptanalysis of two candidate
fixes of multilinear maps over the integers. Cryptology ePrint Archive,
Report 2014/975 (2014). http://eprint.iacr.org/2014/975

[CS02] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg
(2002)

[CZ14] Chen, Y., Zhang, Z.: Publicly evaluable pseudorandom functions and their
applications. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol.
8642, pp. 115–134. Springer, Heidelberg (2014)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

http://eprint.iacr.org/2014/834
http://eprint.iacr.org/2002/080
http://eprint.iacr.org/2002/080
http://eprint.iacr.org/2014/930
http://eprint.iacr.org/2014/906
http://eprint.iacr.org/2014/975

How to Avoid Obfuscation Using Witness PRFs 447

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: 54th Annual Symposium on Foundations of Computer Sci-
ence, Berkeley, CA, USA, 26–29 October 2013, pp. 40–49. IEEE Computer
Society Press (2013)

[GGHR14] Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from
indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol.
8349, pp. 74–94. Springer, Heidelberg (2014)

[GGHW14] Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of
differing-inputs obfuscation and extractable witness encryption with aux-
iliary input. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 518–535. Springer, Heidelberg (2014)

[GGHZ14] Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure func-
tional encryption without obfuscation. Cryptology ePrint Archive, Report
2014/666 (2014). http://eprint.iacr.org/2014/666

[GGSW13] Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its
applications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
Annual ACM Symposium on Theory of Computing, Palo Alto, CA, USA,
1–4 June 2013, pp. 467–476. ACM Press (2013)

[GHMS14] Gentry, C., Halevi, S., Maji, H.K., Sahai, A.: Zeroizing without zeroes:
cryptanalyzing multilinear maps without encodings of zero. Cryptology
ePrint Archive, Report 2014/929 (2014). http://eprint.iacr.org/2014/929

[GKP+13] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: How to run turing machines on encrypted data. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer,
Heidelberg (2013)

[GL89] Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way func-
tions. In: 21st Annual ACM Symposium on Theory of Computing, Seattle,
Washington, USA, 15–17 May 1989, pp. 25–32. ACM Press (1989)

[GLSW14] Gentry, C., Lewko, A., Sahai, A., Waters, B.: Indistinguishability obfus-
cation from the multilinear subgroup elimination assumption. Cryptology
ePrint Archive, Report 2014/309 (2014). http://eprint.iacr.org/2014/309

[GLW14] Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance inde-
pendent assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 426–443. Springer, Heidelberg (2014)

[GW09] Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems
(with short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 171–188. Springer, Heidelberg (2009)

[HJK+14] Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.:
How to generate and use universal samplers. Cryptology ePrint Archive,
Report 2014/507 (2014). http://eprint.iacr.org/2014/507

[Jou04] Joux, A.: A one round protocol for tripartite Diffie-Hellman. J. Cryptol.
17(4), 263–276 (2004)

[KNY14] Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for NP. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 254–273.
Springer, Heidelberg (2014)

[KPTZ13] Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegat-
able pseudorandom functions and applications. In: Sadeghi, A.-Z., Gligor,
V.D., Yung, M. (eds.) ACM CCS 2013: 20th Conference on Computer
and Communications Security, Berlin, Germany, 4–8 November 2013 pp.
669–684. ACM Press (2013)

http://eprint.iacr.org/2014/666
http://eprint.iacr.org/2014/929
http://eprint.iacr.org/2014/309
http://eprint.iacr.org/2014/507

448 M. Zhandry

[KZ15] Komargodski, I., Zhandry, M.: Modern cryptography through the lens of
secret sharing. Cryptology ePrint Archive, Report 2015/735 (2015). http://
eprint.iacr.org/2015/735

[PST14] Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from
semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 500–517. Springer,
Heidelberg (2014)

[Rao14] Rao, V.: Adaptive multiparty non-interactive key exchange without setup
in the standard model. Cryptology ePrint Archive, Report 2014/910
(2014). http://eprint.iacr.org/2014/910

[Sha79] Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach.
22(11), 612–613 (1979)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable
encryption, and more. In: Shmoys, D.B. (ed.) 46th Annual ACM Sympo-
sium on Theory of Computing, 31 May– 3 June 2014, pp. 475–484. ACM
Press, New York (2014)

[SZ14] Sahai, A., Zhandry, M.: Obfuscating low-rank matrix branching programs.
Cryptology ePrint Archive, Report 2014/773 (2014). http://eprint.iacr.
org/2014/773

[Zha14a] Zhandry, M.: Adaptively secure broadcast encryption with small system
parameters. Cryptology ePrint Archive, Report 2014/757 (2014). http://
eprint.iacr.org/2014/757

[Zha14b] Zhandry, M.: How to avoid obfuscation using witness PRFs. Cryptology
ePrint Archive, Report 2014/301 (2014). http://eprint.iacr.org/2014/301

[Zim15] Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467.
Springer, Heidelberg (2015)

http://eprint.iacr.org/2015/735
http://eprint.iacr.org/2015/735
http://eprint.iacr.org/2014/910
http://eprint.iacr.org/2014/773
http://eprint.iacr.org/2014/773
http://eprint.iacr.org/2014/757
http://eprint.iacr.org/2014/757
http://eprint.iacr.org/2014/301

Cutting-Edge Cryptography Through the Lens
of Secret Sharing

Ilan Komargodski1(B) and Mark Zhandry2

1 Weizmann Institute of Science, Rehovot, Israel
ilan.komargodski@weizmann.ac.il

2 MIT, Cambridge, USA
mzhandry@gmail.com

Abstract. Secret sharing is a mechanism by which a trusted dealer
holding a secret “splits” the secret into many “shares” and distributes
the shares to a collection of parties. Associated with the sharing is a
monotone access structure, that specifies which parties are “qualified”
and which are not: any qualified subset of parties can (efficiently) recon-
struct the secret, but no unqualified subset can learn anything about the
secret. In the most general form of secret sharing, the access structure
can be any monotone NP language.

In this work, we consider two very natural extensions of secret sharing.
In the first, which we call distributed secret sharing, there is no trusted
dealer at all, and instead the role of the dealer is distributed amongst
the parties themselves. Distributed secret sharing can be thought of as
combining the features of multiparty non-interactive key exchange and
standard secret sharing, and may be useful in settings where the secret is
so sensitive that no one individual dealer can be trusted with the secret.
Our second notion is called functional secret sharing, which incorporates
some of the features of functional encryption into secret sharing by pro-
viding more fine-grained access to the secret. Qualified subsets of parties
do not learn the secret, but instead learn some function applied to the
secret, with each set of parties potentially learning a different function.

Our main result is that both of the extensions above are equivalent
to several recent cutting-edge primitives. In particular, general-purpose
distributed secret sharing is equivalent to witness PRFs, and general-
purpose functional secret sharing is equivalent to indistinguishability
obfuscation. Thus, our work shows that it is possible to view some of
the recent developments in cryptography through a secret sharing lens,
yielding new insights about both these cutting-edge primitives and secret
sharing.

I. Komargodski—Supported in part by a grant from the Israel Science Foundation,
the I-CORE Program of the Planning and Budgeting Committee, BSF and the Israeli
Ministry of Science and Technology.
M. Zhandry—Supported by NSF.

c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 449–479, 2016.
DOI: 10.1007/978-3-662-49099-0 17

450 I. Komargodski and M. Zhandry

1 Introduction

Secret sharing is a mechanism by which a trusted dealer holding a secret “splits”
the secret into many “shares” and distributes the shares to a collections of par-
ties. Associated with the sharing is a monotone access structure, that specifies
which parties are “qualified” and which are not: any qualified subset of parties
can (efficiently) reconstruct the secret, but no unqualified subset can learn any-
thing about the secret.1 The first secret sharing schemes, due to Shamir [33]
and Blakley [7], were for the threshold access structure, where the subsets that
can reconstruct the secret are all the sets whose cardinality is at least a certain
threshold. Such secret sharing schemes provide a digital analog of the “two-man
rule”, and are useful for splitting a sensitive key among several individuals so
that no single individual knows the key. Secret sharing schemes, even for the sim-
ple threshold access structure, have found numerous applications in computer
science (see [4] for a thorough survey).2

Since their introduction, it has been a major open problem to determine which
access structures can secret sharing be realized for. Benaloh and Leichter [6] con-
structed a secret sharing scheme for any access structure that can be computed
by a monotone formula. This result was generalized and improved by Karchmer
and Wigderson [23] for access structures that can be computed by a monotone
span program. In an unpublished work, Andrew Yao constructed a secret sharing
scheme for any access structure that can be computed by a monotone circuit (see
[4,28]), assuming any one-way function. Recently, Komargodski, Naor and Yogev
[25] constructed secret sharing schemes for all of monotone NP (denoted mNP),3

assuming one-way functions and a recent new primitive called witness encryp-
tion [18].4 Monotone NP is essentially the largest class of access structures that
we can hope for: if we cannot even efficiently identify a qualified set, we cannot
hope to have qualified sets reconstruct the secret.

In this work we take secret sharing even further, by pursuing two very natural
directions. First, we ask if the trusted dealer is required, or whether it is possible
to distribute the role of the dealer amongst the parties themselves. Second, we
ask if we can provide more fine-grained access mechanism to the shared secret,
whereby qualified sets of parties only learn some function of the secret, each set
of parties learning a possibly different function. Surprisingly, in both cases we

1 In secret sharing, we always restrict our attention to monotone access structures,
where a superset of a qualified set must be qualified. This is necessary because, if a
set of parties contains a qualified subset, they can always “pretend” to be the smaller
subset, discard the shares outside that subset, and reconstruct the secret.

2 Most of the literature on secret sharing treats it as an information-theoretic primitive
and insists on perfect security. In this work we consider the computational analog
in which we only require security against computationally bounded adversaries. The
survey of Beimel [4] discusses extensively both notions.

3 For access structures in mNP, a qualified set of parties needs to know an NP witness
that they are qualified.

4 We note that the schemes of [6,23] are unconditionally secure, while the schemes of
Yao and [25] are only secure against adversaries that run in polynomial-time.

Cutting-Edge Cryptography Through the Lens of Secret Sharing 451

show equivalences between these natural extensions of secret sharing and several
cutting-edge cryptographic primitives that have recently been developed.

Distributed Secret Sharing. The usefulness of secret sharing schemes, as
defined above, is limited to settings in which there exists a trusted dealer who
knows the secret. What if we do not want any one individual to know the secret
outright? What if our secret is so sensitive that we cannot afford anybody to
know it? In this paper, we study the necessity of the trusted dealer in the setting
of secret sharing and ask the question:

Is it possible to secret share a secret without anybody knowing it?

To address this question, we introduce the concept of distributed secret sharing
schemes. Specifically, given an access structure, each party can generate for itself
a public share (which is published) and a secret share (which is kept private).
Then, there is a string S such that every qualified subset of parties can compute
S (using their private shares and all public shares), whereas for every unqualified
subset the secret S remains hidden.5 Similarly to standard secret sharing schemes
for mNP, for an access structure M in mNP, a qualified subset X should also
provide a witness for the statements X ∈ M . Intuitively, one can view distributed
secret sharing schemes as a hybrid of secret sharing schemes and non-interactive
key-exchange: Indeed, non-interactive key-exchange is exactly the special case
where M is set to be the threshold access structure with threshold t = 1.

In this paper we construct and explore distributed secret sharing schemes.
Our main result is that distributed secret sharing schemes for access struc-
tures in mNP are equivalent to witness pseudorandom functions (witness PRFs)
for NP. A witness PRF for a language L ∈ NP is a function F such that anyone
with a valid witness that x ∈ L can compute F (x) without the secret key, but
for all x /∈ L, F (x) is computationally hidden to anybody that does not know the
secret key. Witness PRFs were recently introduced by Zhandry [34] and shown to
be very useful in constructing several important cryptographic primitives (includ-
ing non-interactive multi-party key exchange without setup) that were previously
only known to exist assuming seemingly much stronger assumptions.

In addition, we explore the possibility of distributed secret sharing for
restricted classes of access structures based on weaker assumptions. To start, we
consider the possibility of information-theoretic security for distributed secret
sharing scheme (that is, security against unbounded adversaries). We show that
such information-theoretic security is typically impossible: we prove that a distrib-
uted secret sharing scheme for any non-trivial access structure implies the exis-
tence of one-way functions.6

5 We note that we do not assume secure point-to-point channels, a standard PKI
or additional rounds of interaction (beyond publishing a public key) between the
parties. With any of these assumptions the problem can be reduced to standard
secret sharing.

6 We call an access structure M trivial if M is empty or if there exists a subset of parties
X ∈ M which is contained in any qualified set. For trivial access structures, we show
that there is a simple perfectly-secure distributed secret sharing scheme.

452 I. Komargodski and M. Zhandry

Next, we present a distributed secret sharing scheme for the threshold access
structure, and prove its security based on the multilinear decisional Diffie-
Hellman (MDDH) assumption. As an interesting application, we show that dis-
tributed secret sharing schemes for threshold access structures imply constrained
PRFs that can be constrained to a Hamming ball around an arbitrary point and
are secure for adversaries that obtain a single constrained key. Even though it
is known that the MDDH assumption implies constrained PRFs for all circuits
which are secure with respect to arbitrary collusions [10], our transformation is
generic and applies to any threshold distributed secret sharing scheme, which
perhaps can be based on simpler assumptions than multilinear maps.

Functional Secret Sharing. Traditional secret sharing schemes offer an all-or-
nothing guarantee when reconstructing a shared secret — a qualified subset of
parties can learn the entire secret, while unqualified subsets learn nothing about
the secret. For many applications, especially in a distributed setting common
to secret sharing, this notion is insufficient. Concretely, standard secret sharing
schemes will not help in scenarios in which a dealer wants to share a secret
such that every qualified subset of parties will learn a specific function of the
secret (and nothing else). For example, a dealer holding a secret S, may want
to distribute it such that any qualified subset X will be able to learn only the
inner product of X and S, while making sure S remains computationally hidden
for unqualified subsets.

A related issue has appeared in the context of encryption schemes, giving
rise to the concept of functional encryption and a very fruitful line of work (see
e.g., [8,30]). We study whether secret sharing schemes can be extended in an
analogous way to support such functionalities: Given an efficiently computable
two-input function F (that can be thought of as a family of functions indexed
by the first input), we ask the question:

Is it possible to secret share a secret S such that any qualified subset of parties
X can compute only F(X,S), but for unqualified subsets, S will be

computationally hidden?

To study this question, we introduce the concept of functional secret sharing
schemes. Informally, such a scheme allows to secret share a secret S with respect
to a function F and an access structure M , such that any qualified subset of
parties X can pool their shares together and compute F (X,S). Security is for-
malized by requiring that for any function F , any subset of parties X and any
two secrets S0 and S1, as long as either M(X) = 0 or F (X ′, S0) = F (X ′, S1) for
any X ′ ⊆ X, secret shares corresponding to F,X and S0 cannot be distinguished
from secret shares corresponding to F,X and S1. Notice that the condition that
F (X ′, S0) = F (X ′, S1) for any X ′ ⊆ X in the case that M(X) = 1 is necessary,
as otherwise, by evaluating F (X ′, Sb) an adversary can distinguish between the
case that b = 0 and b = 1.

Our main result is that functional secret sharing schemes for access structures
in mNP and functions in P are equivalent to indistinguishability obfuscation (iO)

Cutting-Edge Cryptography Through the Lens of Secret Sharing 453

for P.7 An indistinguishability obfuscator [3,17] guarantees that if two circuits
compute the same function, then their obfuscated version are computationally
indistinguishable. This primitive was introduced by Barak et al. [3] and later
proven to be extremely useful for construction of cryptographic primitives some
of which were unknown before (see e.g., [11,17,31]). To complement this, several
candidate constructions of indistinguishability obfuscators were recently pro-
posed [1,2,13,17,19,29].

Note that when the function F is defined to be the identity function over
its second input parameter (i.e., F (·, S) = S) we get the standard definition of
secret sharing for mNP of [25]. Moreover, when the access structure is the set
of all subsets, the secret S is a description of a function and F is the universal
circuit (i.e., F (X,S) = S(X)), we obtain a definition of a function secret sharing
scheme. In such a scheme, the goal is to split a function (and not a secret) into
shares that hide the function under some conditions. Our construction gives a
way to split a function F into shares such that any subset of parties X can
compute F (X ′) for every X ′ ⊆ X and “nothing” else. We note that other forms
of function secret sharing have been studied in the literature (cf. [5,12,15,32]).
However, our notion is quite different from (and incomparable to) these other
notions. In particular, our notion is the first to allow for fine-grained access
control to the secret by guaranteeing that any qualified set learns a possibly
different function of the secret. Moreover, previous notions were mostly studied
in the context of threshold access structures, only with very specific function
classes or insisted on schemes with additional properties.8

Conclusions. Recent advances in cryptography, including the first construc-
tions of multilinear maps [16] and obfuscation [17], have lead to the development
of many incredible new cryptographic objects. Applications include functional
encryption, witness encryption, witness PRFs, deniable encryption, multi-party
computation in very few rounds, traitor-tracing schemes with very short mes-
sages, and many more. Our work can thus be seen as establishing a close con-
nection between several of these advanced cryptographic capabilities and types
of secret sharing, which at first appear totally unrelated. The known relation-
ships, including our work, are depicted and summarized in Fig. 1. Our hope is
that the connections we develop can help shed light on the relationships between
advanced primitives, or between types of secret sharing: which are equivalent,
why do some tasks appear difficult, and so on.

For example, our results indicate why witness PRFs, which are closely related
to witness encryption, may be the “right” primitive for building non-interactive

7 To show that iO implies functional secret sharing schemes, we also assume the exis-
tence of one-way functions. By a result of [25] we can actually only assume iO and
NP �⊆ io-BPP. Moreover, we note that in this paper we assume functions are repre-
sented as circuits, so we actually work with functions in P/poly (and not P).

8 For example, the functional secret sharing notion of [12] is similar to ours but requires
an additional homomorphic property for the reconstruction procedure. Our scheme
does not have this extra property, however, our construction relies on iO while their
construction relies on subexponentially-secure iO.

454 I. Komargodski and M. Zhandry

key exchange, and why witness encryption may be insufficient. Indeed, dis-
tributed secret sharing essentially combines the features of secret sharing for
mNP (which is equivalent to witness encryption [25]) with non-interactive key
exchange. If these non-interactive key exchange features could be obtained from
witness encryption, then perhaps witness encryption could also imply witness
PRFs. In addition, at first it may not be obvious what is the relationship between
functional secret sharing and distributed secret sharing. Our results and the sim-
ple observation that indistinguishability obfuscation implies witness PRFs, show
that functional secret sharing implies distributed secret sharing (assuming one-
way functions).

Indistinguishability
obfuscation for P

One-way functions
Secret sharing for

monotone P

Secret sharing for
monotone NP

Witness encryption
for NP

Secret sharing for
monotone circuits

in P

Distributed secret
sharing for

monotone NP

Functional secret
sharing for monotone
NP and functions in P

Witness PRFs for NP

(1)

(2)

(3)

(4)

(5) (6)

(7)

(8)

(9)

(11)

(10)

Fig. 1. The secret sharing zoo. (1) Holds assuming that NP �⊆ io-BPP [24]. (2) Holds
assuming one-way functions. (3) [34]. (4) Holds assuming the existence of a hard-on-
average NP-problem [24]. (5) Yao’s unpublished work. (6) By definition. (7) This work;
the left-to-right arrow assumes one-way functions. (8) This work. (9) [25]; the left-to-
right arrow assumes one-way functions. (10) By definition. (11) By definition.

1.1 Overview of Our Techniques

Distributed Secret Sharing and Witness PRFs. Here, we provide a high-
level overview of our technique for transforming distributed secret sharing
schemes into witness PRFs. At first, this seems like a difficult task. Indeed,
distributed secret sharing only specifies a single secret: the shared secret for the
groups of qualified parties. In contrast, in a witness PRF each instance corre-
sponds to a secret, namely the output of the PRF on this instance. How can we
obtain many secrets out of one?

Our main observation is that distributed secret sharing schemes are reusable.
Suppose a set P1 of n parties runs the distributed secret sharing protocol, each

Cutting-Edge Cryptography Through the Lens of Secret Sharing 455

party in P1 generating a secret/public share pair, and publishing the public share.
Now, suppose a second set of n parties P2 wishes to run the distributed secret shar-
ing protocol, and that there is some party i that is in both P1 and P2. Distributed
secret sharing is reusable in the sense that party i does not need to generate a
fresh secret/public share pair for the second invocation of the protocol, but can
instead reuse the shares he already has. Thus, party i does not need to publish
any additional material to take part in the second sharing. Taking this a step fur-
ther, N � n parties can each generate secret/public shares and publish the public
shares. Then, various sets of n of them can engage in the distributed secret shar-
ing protocol without any additional setup or interaction. This observation can be
seen as a generalization of the fact that non-interactive key exchange (both in the
two-party and multi-party setting) is reusable.

Since distributed secret sharing schemes are reusable, there are really many
implicit secrets, one for every possible subset of the N parties of size n. This will
be the source of our many secrets for our witness PRFs. To show how we use this
idea of reusability, we sketch our approach for a simpler task: using threshold
distributed secret sharing to build Hamming ball constrained PRFs.

Threshold Distributed Sharing Schemes to Hamming Ball Con-
strained PRFs. Recall that a constrained PRF (as defined by Boneh and
Waters [10]) is a normal PRF with some additional requirements: First, given
the secret key k, and a subset T ⊂ X where X is the domain of the PRF, it is
possible to constrain the key k to the set T , producing a constrained key kT .
Next, given kT and a point x ∈ T , it is possible to compute PRFk(x). For secu-
rity, we require that, even given kT , for all x /∈ T , PRFk(x) is pseudorandom. For
this exposition, we will consider Hamming ball constraints, where X = {0, 1}n,
and the possible sets T consist of all points withing Hamming distance r of some
center point c.

Suppose that r is fixed a priori (this is assumed here for simplicity – our
actual scheme handles the case in which r is not fixed a priori). Our Hamming
ball constrained PRF is defined as follows. Let N = 2n be the total number of
parties, and label each party by a pair (i, b) ∈ [n]×{0, 1}. Generate secret/public
shares (Πi,b, Pi,b) for each of the N parties for the threshold distributed secret
sharing scheme on n parties and threshold n − r. The secret key consists of all
the public and secret shares. For every input x ∈ {0, 1}n, let Px be the subset of
n parties labeled by (i, xi) for i ∈ [n]. PRF(x) is defined to be the shared secret
S for the set of parties Px defined by x. Since the secret key consists of n ≥ n−r
of the secret shares for Px, the secret key allows for computing PRF(x).

The constrained key kT for the Hamming ball T of radius r around center
c consists of all of the public shares, as well as the secret shares for the set Pc.
For any input x with Hamming distance at most r from c, kT contains at least
n − r of the secret shares for Px, and so PRF(x) can be computed. For x at
distance more than r away, kT contains fewer than n − r secret shares for Px,
so the security of the threshold distributed secret sharing scheme implies that
PRF(x) is hidden.

For the general distributed secret sharing to witness PRF construction, we
will make use of a similar strategy, defining the output of the PRF to be the

456 I. Komargodski and M. Zhandry

shared secret S corresponding to a subset of parties. However, the construction
becomes somewhat more complicated. For starters, the class of Hamming balls
is very simple, and moreover has a lot of symmetry. In contrast, the general NP
languages are much more complex and have no simple structural properties we
can use. Additionally, we will need to allow the parties to be able to input a
witness. We refer to Sect. 3.4 for the full details.

Functional Secret Sharing and iO. The fact that general-purpose functional
secret sharing implies iO is rather straight-forward. Indeed, as we mentioned,
function secret sharing is a special case of functional secret sharing, and thus, an
obfuscation of a circuit is just the shares generated by the function secret sharing.
Security of the obfuscator follows directly from the security of the function secret
sharing scheme.

The other direction (namely, from iO to functional secret sharing) is more
complicated. To this end, we rely on ideas developed by [25] in order to show that
witness encryption implies (standard) secret sharing for mNP. Specifically, when
sharing the secret S with respect to a function F and an access structure M , the
share of party i will be an opening of a commitment and the iO of a circuit that
given as input the secret openings of a subset of parties X verifies the openings,
verifies the validity of the instance (together with a witness) with respect to M ,
and if all tests pass, it outputs the value F (X,S). The security of this scheme
relies on the perfect binding of the commitments and the indistinguishability
guarantee of the obfuscator.

We note that multi-input functional encryption (MIFE) [20] provides another
natural path to functional secret sharing. In an MIFE scheme, a secret key SKG

corresponds to an k-input function G, and message can be encrypted to any one
of the k inputs to G. Denote the encryption of a message m to the ith input as
Enci(m). With the secret key and ciphertexts Enci(mi) for i = 1, . . . , k, it is pos-
sible to compute f(m1, . . . , mk), but impossible to learn anything else the plain-
texts. For simplicity, we will sketch the construction of functional secret sharing
where both access structure M and function F are in P, the case of more gen-
eral access structures being a straightforward extension. Let G(x1, . . . , xn, S) =
M(x1, . . . , xn) ∧ F (x1, . . . , xn, S). The secret share for party i ∈ [n] consists
of SKG,Enc1(0), · · · ,Encn(0),Encn+1(S),Enci(1). Then, any subset X of parties
can use SKG together with ciphertexts {Enci(Xi)}i∈[n],Encn+1(S) to compute
M(X)∧F (X,S). If X is qualified, this will give F (X,S), whereas if X is unqual-
ified, this will give 0. Since iO and MIFE are equivalent for general-purpose func-
tionalities (assuming one-way functions), this construction gives an alternative
way to build functional secret sharing from iO.9

2 Preliminaries

In this section we present the notation and basic definitions that are used in this
work. For a distribution X we denote by x ← X the process of sampling a value

9 We thank a reviewer for pointing out this alternative solution.

Cutting-Edge Cryptography Through the Lens of Secret Sharing 457

x from the distribution X. Similarly, for a set X we denote by x ← X the process
of sampling a value x from the uniform distribution over X . For a randomized
function f and an input x ∈ X , we denote by y ← f(x) the process of sampling
a value y from the distribution f(x). For an integer n ∈ N we denote by [n] the
set {1, . . . , n}. A function neg : N → R is negligible if for every constant c > 0
there exists an integer Nc such that neg(λ) < λ−c for all λ > Nc. Throughout
this paper we denote by λ the security parameter.

Two sequences of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are
computationally indistinguishable if for any probabilistic polynomial-time algo-
rithm A there exists a negligible function neg(·) such that for all λ ∈ N it holds
that

∣
∣Pr[A(1λ,Xλ) = 1] − Pr[A(1λ, Yλ) = 1]

∣
∣ ≤ neg(λ).

2.1 Monotone-NP and Access Structures

A function f : 2[n] → {0, 1} is said to be monotone if for every X ⊆ [n] such
that f(X) = 1 it also holds that ∀Y ⊆ [n] such that X ⊆ Y it holds that
f(Y) = 1. Given a potentially non-monotone function f : 2[n] → {0, 1}, we
define the monotone closure of f , denoted f , such that f(Y) = 1 if and only if
there is some X ⊂ Y such that f(X) = 1.

A monotone Boolean circuits is a Boolean circuit with AND and OR gates
(without negations). A non-deterministic circuit is a Boolean circuit whose
inputs are divided into two parts: standard inputs and non-deterministic inputs.
A non-deterministic circuit accepts a standard input if and only if there is some
setting of the non-deterministic input that causes the circuit to evaluate to 1.
A monotone non-deterministic circuit is a non-deterministic circuit where the
monotonicity requirement applies only to the standard inputs, that is, every
path from a standard input wire to the output wire does not have a negation
gate.

Definition 1 ([21]). A function L is in mNP if there exists a uniform family of
polynomial-size monotone non-deterministic circuit that computes L.

Lemma 1 ([21, Theorem 2.2]). mNP = NP ∩ mono, where mono is the set of
all monotone functions.

A computational secret-sharing scheme involves a dealer who has a secret,
a set of n parties, and a collection A of qualified subsets of parties called the
access structure. A computational secret-sharing scheme for A is a method by
which the dealer efficiently distributes shares to the parties such that (1) any
subset in A can efficiently reconstruct the secret from its shares, and (2) any
subset not in A cannot efficiently reveal any partial information on the secret.
For more information on secret-sharing schemes we refer to [4] and references
therein.

Throughout this paper we deal with secret-sharing schemes for access struc-
tures over n parties P = Pn = {p1, . . . , pn}.

458 I. Komargodski and M. Zhandry

Definition 2 (Access structure). An access structure M on P is a monotone
set of subsets of P. That is, for all X ∈ M it holds that X ⊆ P and for all
X ∈ M and X ′ such that X ⊆ X ′ ⊆ P it holds that X ′ ∈ M .

2.2 Commitment Schemes

In some of our constructions we need a non-interactive commitment scheme such
that commitments of different strings has disjoint support. Jumping ahead, since
the dealer in the setup phase of a secret-sharing scheme is not controlled by an
adversary (i.e., it is honest), we can relax the foregoing requirement and use
non-interactive commitment schemes that work in the CRS (common random
string) model (for ease of notation, we usually ignore the CRS).

Definition 3 (Commitment scheme in the CRS model). Let λ ≥ 0 be a
parameter. Let Com : {0, 1} × {0, 1}λ × {0, 1}λ → {0, 1}q(λ) be polynomial-time
computable function. We say that Com is a (non-interactive perfectly binding)
commitment scheme in the CRS model if the following two conditions hold:

1. Computational Hiding: Let CRS ← {0, 1}λ be chosen uniformly at random.
The random variables Com(0,Uλ,CRS) and Com(1,Uλ,CRS) are computa-
tionally indistinguishable (given CRS).

2. Perfect Binding: With all but negligible fraction of the CRSs, the supports
of the above random variables are disjoint.

As usual, the above definition can be generalized to commitments of strings
of polynomial size (rather than bits) by commiting to each bit separately.

Commitment schemes that satisfy the above definition, in the CRS model,
can be constructed based on any pseudorandom generator [27] (which can
be based on any one-way functions [22]). For simplicity, throghout the paper
we ignore the CRS and simply write Com(·, ·). We say that Com(x, r) is the
commitment to the value x with the opening r.

2.3 Multilinear Maps

Definition 4 (Multilinear maps). We say that a map e : Gn
1 → G2 is an

n-multilinear map if it is satisfies the following:

1. G1 and G2 are groups of the same prime order.
2. If a1, . . . ,∈ Z and x1, . . . , xn ∈ G1, then

e(xa1
1 , . . . , xan

n) = e(x1, . . . , xn)
∏n

i=1 ai .

3. The map e is non-degenerate in the following sense: if g ∈ G1 is a generator
of G1, then e(g, . . . , g) is a generator of G2.

Cutting-Edge Cryptography Through the Lens of Secret Sharing 459

We say that e is an efficient n-multilinear map if it is effiently computable,
namely, there exists a polynomial-time algorithm that computes e(xa1

1 , . . . , xan
n)

for any a1, . . . , an ∈ Z and x1, . . . , xn ∈ G1.
An efficient mulilinear map generator MMap.Gen(1λ, n) is a probabilistic

polynomial-time algorithms that gets as input two inputs 1λ and n, and out-
puts a tuple (Γ, g, �), where Γ is the description of an efficient n-multlilinear
map e : Gn

1 → G2, g is a generator of G1, and � is the order of the groups G1

and G2.
Next, we define the multilinear Diffie-Hellman assumption. Roughly, the

assumption is that given g, ga1 , . . . , gan , it is hard to compute e(g, . . . , g)
∏n

i=1 ai ,
or even distinguish it from a random value.

Definition 5 (Multilinear decisional Diffie-Hellman assumption [9]).
We say that an efficient n-multilinear map generator MMap.Gen satisfies the
multilinear decisional Diffie-Hellman (MDDH) assumption if for every polyno-
mial time algorithm A there exists a negligible function neg(·) such that for λ ∈ N

it holds that

AdvmDH
MMap.Gen,A,n,λ =

∣
∣
∣ Pr

[
A

(
g, ga0 , . . . , gan , e(g, . . . , g)

∏n
i=0 ai

)
= 1

]
−

Pr [A (g, ga0 , . . . , gan ,K)] = 1]
∣
∣
∣ ≤ neg(λ),

where the probability is over the execution of (Γ, g, �) ← MMap.Gen(1λ, n), the
choice of a0, . . . , an ← (Z/�Z)n+1, K ← G2, and the internal randomness of A.

We note that we do not know of any “ideal” multilinear maps as described
above that plausibly support the MDDH assumption. Instead, current candidates
are “noisy” [14,16]. In particular, the group elements have some noise, and only
a certain number of group operations are allowed before the multilinear identity
fails. Moreover, each group element actually has many representations, and a
special extraction procedure is required to obtain a unique “canonical” repre-
sentation for a particular element. The extraction is only allowed in G2. Despite
this departure from the ideal notion described above, it is usually straightfor-
ward (though often tedious) to use current candidate maps in place of the ideal
maps. Therefore, for ease of exposition, we will describe our applications of mul-
tilinear maps in terms of the ideal abstraction, noting that the applications can
be adapted to use the noisy candidate multilinear maps from the literature.

2.4 Witness Pseudorandom Functions

Witness pseudorandom functions (witness-PRFs) were recently introduced by
Zhandry [34]. He showed that several important primitives, that were previ-
ously only known from iO (see Definition 7), follow from this seemingly weaker
assumption. We note that witness-PRFs are related to witness encryption [18],
but seem to be stronger.

Definition 6 (Witness-PRFs [34]). A witness pseudorandom function is a
tuple (Gen,PRF,Eval) where:

460 I. Komargodski and M. Zhandry

1. Gen(1λ, R) is a polynomial-time randomized procedure that takes as input a
security parameter and a relation R : {0, 1}n × {0, 1}m → {0, 1} represented
as a circuit, and outputs a private function key fk and a public evaluation key
ek. The relation R defines an NP language L.

2. PRF(fk, x) is a polynomial-time deterministic procedure that takes as input
the function key fk and an instance x ∈ {0, 1}n.

3. Eval(ek, x, w) is a polynomial-time deterministic procedure that takes as input
the evaluation key ek, an instance x ∈ {0, 1}n, and a witness w ∈ {0, 1}m.

4. Correctness: If x ∈ L, and moreover w is a valid witness for x (that is,
R(x,w) = 1), then

Pr[Eval(ek, x, w) = PRF(fk, x)] = 1,

where (fk, ek) ← Gen(1λ, R) and the probability is taken over the randomness
Gen.

5. Security: For any relation R and any probabilistic polynomial-time algorithm
D, there exists a negligible function neg(·) such that for any λ ∈ N and any
x /∈ L, it holds that

|Pr[D(ek,PRF(fk, x)) = 1] − Pr[D(ek, y) = 1]| < neg(λ),

where (fk, ek) ← Gen(1λ, R), y is chosen uniformly over the codomain of PRF,
and the probabilities are taken over the randomness of Gen, D, and the choice
of y.

2.5 Indistinguishability Obfuscation

We say that two circuits C and C ′ are equivalent and denote it by C ≡ C ′ if
they compute the same function (i.e., ∀x : C(x) = C ′(x)).

Definition 7 (Indistinguishability obfuscation [3]). Let C = {Cn}n∈N be a
class of polynomial-size circuits, where Cn is a set of circuits operating on inputs
of length n. A uniform polynomial-time algorithm iO is called an indistinguisha-
bility obfuscator for the class C if it takes as input a security parameter and a
circuit in C and outputs a new circuit so that following properties are satisfied:

1. Preserving functionality: There exists a negligible function α such that
for any input length n ∈ N, any λ and any C ∈ Cn it holds that

Pr
iO

[
C ≡ iO(1λ, C)

]
= 1,

where the probability is over the internal randomness of iO.
2. Polynomial slowdown: There exists a polynomial p(·) such that: For any

input length n ∈ N, any λ and any circuit C ∈ Cn it holds that
∣
∣iO(1λ, C)

∣
∣ ≤

p(|C|).

Cutting-Edge Cryptography Through the Lens of Secret Sharing 461

3. Indistinguishable obfuscation: For any probabilistic polynomial-time algo-
rithm D and any polynomial p(·), there exists a negligible function neg(·), such
that for any λ, n ∈ N, any two equivalent circuits C1, C2 ∈ Cn of size p(λ), it
holds that

∣
∣Pr

[
D

(
iO

(
1λ, C1

))
= 1

]
− Pr

[
D

(
iO

(
1λ, C2

))
= 1

]∣∣ ≤ neg(λ),

where the probabilities are over the internal randomness of iO and D.

3 Distributed Secret Sharing

In this section we define the notion of distributed secret sharing schemes.

Definition 8 (Distributed secret sharing). A distributed secret sharing
(DSS) scheme consists of a probabilistic setup procedure SETUP, a probabilistic
sharing procedure SHARE and a deterministic reconstruction procedure RECON
that satisfy the following requirements:

– SETUP(1λ, 1n, VM) takes as input a security parameter λ (in unary repre-
sentation) the number n of parties (also in unary), the verification procedure
VM for an mNP access structure M on n parties. SETUP outputs a common
reference string CRS.

– SHARE(1λ, 1n,CRS, VM , i) takes as input λ, n, the common reference string
CRS, the verification procedure VM for an mNP language M , and a party
index i ∈ [n]. It outputs a public share P (i) and a secret share Π(i). For
X ⊆ Pn we denote by Π(X) the random variable that corresponds to the set
of secret shares of parties in X. We denote by P the random variable that
corresponds to the set of public shares of parties in Pn.

– RECON(1λ, 1n,CRS, VM , P,Π(X), w) gets as input λ, n,CRS, VM , the public
shares P of all n parties, the secret shares Π(X) of a subset of parties X ⊆
Pn, and a witness w, and outputs a shared secret. We will sometimes abuse
notation, and also write X ⊆ [n] to refer to the subset of the party indices
appearing in X.

– Correctness: For every set of parties Pn with corresponding public shares P ,
there is a string S such that any set of qualified parties X ⊆ Pn with valid
witness w (i.e., VM (X,w) = 1) can recover S. That is,

Pr[RECON(1λ, 1n,CRS, VM , P,Π(X), w) = S] = 1,

where the probability is taken over the generation of the shares — namely,
over (P (i),Π(i)) ← SHARE(1λ, 1n,CRS, VM , i) for i ∈ [n] — and the choice
of S (which will typically be information-theoretically determined by P). We
will sometimes refer to S as the shared secret.

– Pseudorandomness of the secret: For any language M ∈ mNP and any
probabilistic polynomial-time algorithm D, there exists a negligible function

462 I. Komargodski and M. Zhandry

neg(·) such that for any λ ∈ N and any unqualified set X ⊆ Pn (that is,
X /∈ M), it holds that

|Pr[D(P,Π(X), S) = 1] − Pr[D(P,Π(X),K) = 1]| ≤ neg(λ),

where the probability is taken over the generation of the shares, namely, over
(P (i),Π(i)) ← SHARE(1λ, 1n,CRS, VM , i) for i ∈ [n], K is sampled uniformly
at random, and S is the shared secret defined above.

The Shared Secret S. Suppose M is non-empty, which is true for any inter-
esting access structure M . In this case, by the monotonicity of M , Pn ∈
M and there exists a witness w attesting to this fact. Then, the shared
secret S is well defined and information-theoretically determined, as we can
use the correctness requirement for the set Pn as the definition of S: S =
RECON(1λ, 1n,CRS, VM , P,Π,w).10

In the case where M is empty, correctness is trivially satisfied for any definition
of S. We can therefore take S to be a uniformly random variable that is completely
independent of the scheme, and unconditional security will be trivially satisfied as
well. Interestingly, this means that, when analyzing schemes, it is only necessary
to analyze correctness and security for non-empty access structures M , as any
scheme will automatically be correct and secure for empty M .

In Sect. 3.2, we show how to obtain unconditional security for a slightly wider
class of access structures, which we call trivial access structures.

Reusability. In this work, it will be useful to distinguish between party and
index. A party is an entity that has run SHARE, and obtained a secret and
public share. That party’s index is the input i that was fed into SHARE. Multiple
parties may share the same index. We will say a set X of parties is complete if,
for every index i, there is exactly one party. Complete sets of parties are those for
which RECON can be run, and therefore there is a shared secret SX associated
with every complete set of parties. In this sense, a DSS scheme is reuseable:
an individual party with index i can take part in multiple sharings as part of
different complete sets of parties, while only running SHARE once and publishing
a single public share. This observation generalizes the fact that non-interactive
key exchange (in the 2-party or multi-party setting) is reusable. This reusability
property will be crucial for building witness PRFs from DSS.

Restricted Access Structures. The above definition requires that the DSS
algorithms work for any access structure M recognized by a polynomial-sized
verification circuit VM . It is also possible to consider weaker versions where M
is required to have a specific structure. For example, it is possible to consider M
that are recognized by polynomial-size circuits (that is, M ∈ P). In Sect. 3.3, we
consider an even more restricted setting where M is just a threshold function:
X ∈ M if and only if |X| ≥ t for some threshold t. We call these restrictions

10 We note that to compute S we need to know w which may be computationally hard
for some languages.

Cutting-Edge Cryptography Through the Lens of Secret Sharing 463

DSS for P or DSS for threshold, respectively. When distinguishing DSS for these
limited classes from the standard definition above, we call the standard definition
DSS for mNP. Finally, one can consider DSS for a specific, fixed access structure
M , which we call DSS for M . For example, if M consists of all non-empty subsets
(a special case of threshold where t = 1), then DSS for M is exactly multiparty
non-interactive key exchange with trusted setup [9].

3.1 Alternative Definitions

We introduce several alternative definitions for distributed secret sharing. We
first give a strong variant in which the sharing procedure is independent of
the access structure VM and of the party index i. Our second alternative is a
witnessless version in which qualified sets are defined by an arbitrary circuit
(possibly a non-monotone one). Our last variant is a definition of distributed
secret sharing that has no setup (also known as no common reference string).

Definition 9 (Strong distributed secret sharing). A strong distributed
secret sharing scheme is a special case of a regular distributed secret sharing
scheme (as in Definition 8) with the following differences:

– SETUP(1λ, 1n, VM) = SETUP(1λ, 1n, 1|VM |). That is, SETUP does not depend
on VM , except through the size of the circuit for VM , but is otherwise inde-
pendent of VM or the language M .

– SHARE(1λ, 1n,CRS, VM , i) = SHARE(1λ, 1n,CRS, 1|VM |). That is, SHARE
does not depend on VM except for its size, and also does not depend on the
party index i.

– RECON(1λ, 1n,CRS, VM , P,Π(X), w) now interprets P as a being ordered, and
uses the order to determine the party index corresponding to each public share.
From this information and Π(X), RECON can determine the subset X ⊆ [n]
of indices for which secret shares are provided.

– For each verification circuit VM and set of n parties Pn, correctness is defined
using an associated secret SVM ,Pn

that potentially varies for different VM and
Pn pairs. Notice that since a party is not assigned an index at sharing time,
the only restriction we place on Pn is its size (i.e., |Pn| = n), but we do not
need Pn to be a complete set.

The advantage of a strong DSS scheme is that the access structure does
not need to be specified at sharing time. This allows parties to play multiple
roles in different sharing executions without having to generate new shares, and
allows a single sharing to be used for many different access structures. This
will result in significant communication savings if many sharings with different
access structures are being executed. When differentiating between the strong
and regular variants, we will call the regular distributed secret sharing variant a
weak scheme.

Definition 10 (Witnessless distributed secret sharing). A witnessless dis-
tributed secret sharing is the following modification to (weak) distributed secret

464 I. Komargodski and M. Zhandry

sharing, where the access structure M is set to be the monotone closure C
of some (potentially non-monotone) function C.11 In addition, we make the
following modifications to the algorithms of the scheme:

– SETUP(1λ, 1n, C), instead of taking as input the verification circuit VM , now
takes as input a circuit for the function C, which is potentially non-monotone.
For the strong variant, SETUP takes as input |C| instead of |VM |.

– SHARE(1λ, 1n,CRS, C, i) also takes as input C instead of VM . For the strong
variant, SHARE takes as input |C| instead of |VM |, and does not take i as
input.

– RECON(1λ, 1n,CRS, C, P,Π(X)) similarly takes as input C instead of VM .
Also, RECON does not take as input a witnesses, hence the term witnessless.

– Correctness is modified so that Pr[RECON(1λ, 1n,CRS, C, P,Π(X)) = S] = 1
for any X ⊆ Pn such that C(X) = 1.

A set X of qualified parties in M = C cannot simply feed in all of the secret
shares Π(X) into RECON to obtain the secret, as C(X) may not be 1. Instead,
if they know a subset X ′ ⊆ X such that C(X ′) = 1 (which must exist since X is
qualified), they may simply feed the subset of their secret shares corresponding
to X ′, namely Π(X ′), into RECON, and correctness guarantees that they will
learn the secret. Thus, even though the algorithms in a witnessless distributed
secret sharing scheme do not take a witness as input, reconstructing the secret
still requires knowing a witness, namely the subset X ′.

We note that the access structure M is monotone, and is clearly in NP.
Therefore, Lemma 1 shows that M is recognized by a monotone nondeterministic
verification procedure VM . Thus, the above formulation of distributed secret
sharing is equivalent to regular DSS (with witnesses) where we restrict to access
structures of this form. Therefore, this notion is no stronger than regular DSS.

We note that many NP languages naturally are represented using a circuit
C, such as Hamiltonian Cycle (where C checks that the set of edges forms a
Hamiltonian cycle) and Subset Sum (where C checks that the subset of integers
sums to 0).

Definition 11 (Distributed secret sharing without setup). In a distrib-
uted secret sharing scheme without setup, there is no SETUP algorithm, and
SHARE and RECON do not take CRS as input. When distinguishing between
schemes with and without setup, we call the standard notion (Definition 8) dis-
tributed secret sharing with trusted setup.

Immediate Relations Between Definitions. All of the above variations are
orthogonal, giving us 8 variants of distributed secret sharing. We make the fol-
lowing observation:

– Any of the 4 variants of strong distributed secret sharing imply the corre-
sponding variant of weak distributed secret sharing. This is because being a
strong scheme just imposes constraints on the form of the algorithms.

11 Recall that the monotone closure C of a function C includes all sets X such that
some subset X ′ ⊆ X satisfies C(X ′) = 1 (see Sect. 2.1).

Cutting-Edge Cryptography Through the Lens of Secret Sharing 465

– Any of the 4 variants of distributed secret sharing with witnesses imply the
corresponding witnessless variant, since the witnessless condition imposes a
restriction on the languages allowed.

– Any of the 4 variants of distributed secret sharing without trusted setup imply
the corresponding variant with trusted setup, where SETUP outputs an empty
string.

In Sect. 3.4, we will show that all of the above notions are equivalent, and
moreover that they are equivalent to witness PRFs.

3.2 Distributed Secret Sharing Implies One-Way Functions

Witness PRFs trivially imply one-way functions, and therefore by our equiva-
lence in Sect. 3.4, information-theoretic distributed secret sharing is impossible
for general access structures.

In this section, we consider DSS for specific access structures, and ask: for
what access structures M is information-theoretic DSS possible? To answer this
question we first define trivial access structures, and then in Theorem 1 we show
that a DSS scheme for any non-trivial access structures implies one-way func-
tions. DSS for trivial access structures, on the other hand, are shown to have a
very simple information-theoretically secure construction.

Definition 12 (Trivial access structures). We say that an access structure
M for a set of parties P is trivial if either M is empty, or there exists a subset
X ⊆ P such that Y ∈ M if and only if X ⊆ Y .

We call such access structures trivial due to the following reasons:

– Parties outside of X are irrelevant to the access structure, as they can be
added or removed from a set of parties without changing the set’s qualified
status. Therefore, such a protocol is morally equivalent to the case where
X = P.

– When X = P, all parties must get together to reconstruct the shared secret.
In this case, there appears to be no reason to engage in the protocol in the first
place, as the parties can just choose the group secret when they all coordinate
at reconstruction time.

Note that trivial access structures are in P, so there is no distinction between
standard DSS and witnessless DSS.

Theorem 1. For an access structure M , the following hold:

– If M is trivial, then there exists a perfectly-secure DSS for M in the strongest
possible sense (that is, strong DSS without setup)

– If M is non-trivial, then the existence of any DSS for M in the weakest possible
sense (that is, weak DSS with trusted setup) implies the existence of one-way
functions.

466 I. Komargodski and M. Zhandry

Proof. Let M be trivial, with subset X such that Y ∈ M if and only if X ⊆ Y .
We then get the following strong DSS scheme for M without setup that has
single-bit shared secrets:

– SHARE(): sample a random Π(i) ← {0, 1}, and publish an empty string as
the public share P (i) = ∅.

– RECON(P,Π(Y)): if X ⊂ Y , simply XOR and output the shares for parties
in X, namely S ← XORi∈XΠ(i). If X is not a subset of Y , abort.

The correctness of the protocol is trivial. For security, note that for any set Y
that does not contain X, there is some party i ∈ X \Y such that the set of shares
for Y does not contain the secret share Π(i). Therefore, Π(i) is independent of
the shares Π(Y). Thus, S is independent of Π(Y). Perfect security follows.

The proof of the other case (in which M is a non-trivial access structure) can
be found in the full version [26]. �

3.3 Distributed Secret Sharing for Threshold

In this section we present a distributed secret sharing scheme for the threshold
access structure. The proof of security relies on the multilinear decisional Diffie-
Hellman assumption (see Definition 5). This construction works in the trusted
setup model (which is used for the setup of the multilinear map). Assume there
are n parties and the threshold condition says that any t of them should be able
to reconstruct the secret.

Lemma 2. Assuming an (n − t)-multilinear map that satisfied the MDDH
assumption, there is a t-out-of-n (weak) distributed secret sharing scheme (with
trusted setup).12

Proof. We start with the description of the scheme. The trusted setup will
consists of an n−t multilinear map. For the sharing, party pi generates a random
si and published hi = gsi . The shared secret key is S = e(g, . . . , g)

∏n
i=1 si . With

t of the si’s one can easily compute S by pairing the other hi’s, and then raising
the result by each of the si’s. Security in the case of fewer than t shares follows
from the security of the multilinear DH assumption.

More precisely, in the trusted setup we run MMap.Gen(1λ, n) to get (Γ, g, �)
which we set as the public parameters. The sharing procedure of party pi samples
a random si ← Z (which is kept secret) and outputs hi = gsi . The shared
secret key is S = e(g, . . . , g)

∏n
i=1 si . For correctness, we observe that given the

secret shares of any subset of the t parties one can compute S. Indeed, given
hi1 , . . . , hin−t

one can compute

e(hi1 , . . . , hin−t
) = e(g, . . . , g)

∏n−t
j=1 sij

12 Since threshold is in P, there are no witnessness, so there is no distinction between
the standard and witnessless notions of DSS.

Cutting-Edge Cryptography Through the Lens of Secret Sharing 467

and then, by raising the right-hand side to the powers sin−t+1 , . . . , sin , compute
(
e(g, . . . , g)

∏n−t
j=1 sij

)∏n
j=n−t+1 sij

= S

The proof of security can be found in the full version [26]. �

Hamming Ball Constrained PRFs. We show that any distributed secret
sharing scheme for threshold implies constrained PRFs that can be constrained
to a Hamming ball around an arbitrary point. One limitation of our construction
is that the PRF only allows a single collusion: an adversary that sees the PRF
constrained to two Hamming balls can potentially recover the entire secret key.

Of course, our construction of DSS for threshold relies on the multilinear
Diffie-Hellman assumption, which already implies constrained PRFs for all cir-
cuits with arbitrary collusions [10]. However, our conversion here is generic and
applies to any threshold DSS scheme, which perhaps can be based on simpler
assumptions than multilinear maps. Perhaps more importantly, the ideas pre-
sented here will be used in Sect. 3.4 to show the equivalence of general DSS and
witness PRFs. Thus, this construction can be viewed as a warm-up to Theorem 3.

Definition 13 (One-time constrained PRFs for Hamming balls).
A constrained PRFs for Hamming balls is a tuple of algorithms (Gen,PRF,
Constrain,Eval) where:

– Gen(1λ, 1n) is a polynomial-time randomized procedure that takes as input a
security parameter λ and a bit length n, and outputs a function key fk.

– PRF(fk, x) is a polynomial-time deterministic procedure that takes as input the
function key fk and a bit string x ∈ {0, 1}n.

– Constrain(fk, c, r) is a polynomial-time (potentially randomized) procedure that
takes as input the function key fk, a point c ∈ {0, 1}n, and a radius r ∈ [0, n],
and outputs the constrained evaluation key ek corresponding to the Hamming
ball of radius r centered at c.

– Eval(ek, x) is a polynomial-time deterministic procedure that takes as input the
evaluation key ek and a bit string x ∈ {0, 1}n.

– Correctness: If x and c differ on at most r bits, then

Pr[Eval(ek, x) = PRF(fk, x)] = 1,

where fk ← Gen(1λ, 1n), ek ← Constrain(fk, c, r) and the probability is taken
over the randomness of Gen,Constrain.

– One-time security: For any probabilistic polynomial time algorithm D, there
exists a negligible function neg(·) such that for any λ ∈ N and any r ∈ [0, n],
x ∈ {0, 1}n and c ∈ {0, 1}n such that x and c differ in strictly more than r
points, it holds that

|Pr[D(ek,PRF(fk, x)) = 1] − Pr[D(ek, y) = 1]| < neg(λ),

where the probabilities are taken over the choice of fk ← Gen(1λ, 1n), ek ←
Constrain(fk, c, r), and y which is chosen uniformly at random over the co-
domain of PRF.

468 I. Komargodski and M. Zhandry

Theorem 2. If secure distributed secret sharing for threshold access structures
exists, then secure one-time constrained PRFs for Hamming balls exists.

At first glance, building a Hamming ball constrained PRFs from threshold
DSS appears to be a difficult task. Indeed, the natural approach to constructing
witness PRFs would be have the public evaluation key be the set of public shares
P , and perhaps some subset of secret shares Π(X) for X ⊆ P; the secret function
key would naturally be the complete set of secret shares Π(P). However, it is
unclear how to define the PRF PRF(·). One possibility is to try to set the outputs
of the PRF to be the shared secret S. However, our threshold DSS only explicitly
has a single S. Yet, we need many secret outputs, one for each possible input.

To get around these limitations, we make use of the fact that distributed
secret sharing is reusable, as discussed in the beginning of Sect. 3. For example,
suppose two distinct sets of parties P0 �= P1 wish to carry out the protocol,
and there is some party i that is a member of both sets. Then, party i could
reuse his public share for both runs of the protocol. More generally, for a large
collection C of parties with |C| � n, all parties can run SHARE exactly once, and
then any subset P ⊆ C of n parties can then run the distributed secret sharing
protocol without any interaction (assuming that P is complete, meaning every
party index is present exactly once).

Our idea, then, is to have the PRF value be the shared secret for a subset of
C, and the input to the PRF selects which subset to use. We need to be careful,
though, as we need to ensure that the subset is complete and contains every
party index exactly once. We show that such valid subsets can still be used to
construct witness PRFs.

Proof of Theorem 2. Let (SETUP,SHARE,RECON) be a distributed secret shar-
ing scheme for threshold. We start with the construction of the constrained PRF.

– Gen(1λ, 1n): First, run CRS ← SETUP(1λ, 12n, thr = n). That is, initialize
the setup procedure for the threshold DSS scheme with 2n parties and thresh-
old n. Next, we will define a set P = {(i, b)}i∈[n] ∪ [n+1, 2n] of parties, where
party (i, b) for i ∈ [n] has index i, and party i for i ∈ [n + 1, 2n] has index i.
Now run SHARE for each party. That is, run

(Pi,b,Πi,b) ← SHARE(1λ, 12n,CRS, thr = n, i) for i ∈ [n],

(Pi,Πi) ← SHARE(1λ, 12n,CRS, thr = n, i) for i ∈ [n + 1, 2n].

Let Π = {Πi,b}i∈[n] ∪ {Πi}i∈[n+1,2n] be the set of secret shares, and P the
corresponding set of public shares. Output the function key fk = (CRS,Π, P).

– PRF(fk, x): Define Px to be the collection of parties (i, xi) for i ∈ [n], together
with parties i for i ∈ [n + 1, 2n]. Define

P (Px) = {Pi,xi}i∈[n] ∪ {Pi}i∈[n+1,2n] and Π(Px) = {Πi,xi}i∈[n] ∪ {Πi}i∈[n+1,2n].

Notice that Px is complete, in that each party index is present. Now, use the secret
shares to reconstruct the shared secret for Px:

S ← RECON(1λ, 12n,CRS, thr = n, P (Px), Π(Px))

and output S.

Cutting-Edge Cryptography Through the Lens of Secret Sharing 469

– Constrain(fk, c, r): Let

ek = (c, r, P, {Πi,ci}i∈[n] ∪ {Πi}i∈[n+1,n+r])

be the set of secret shares Πi,ci for parties (i, ci), i ∈ [n], as well as r of the
secret shares Πi for for parties i ∈ [n + 1, 2n]. Output ek.

– Eval(ek, x): Check that x and c differ in at most r points, and otherwise
abort. Let T ⊆ [n] be the set of indices where x and c agree. Then, the set
of parties X = {(i, xi)}i∈T ∪ [n + 1, n + r] forms a subset of Px. Moreover, X
consists of |T |+r ≥ n = t parties (since x and c agree on at least n−r points),
and ek contains the secret shares Π(X) for all of these parties. Therefore, run

K ← RECON(1λ, 12n,CRS, thr = n, P (Px),Π(X))

and output K.

An example of our construction for the case n = 5 is given in Fig. 2.

Fig. 2. Example instantiation for n = 5. The underlying threshold DSS scheme is
instantiated with 10 indices and threshold t = 5. For indices 1 through 5, SHARE is run
twice, returning two sets of secret/public pairs for each index 1 through 5. For indices
6 through 10, SHARE is run once. The secret key fk consists of all public shares and
secret shares. The shares highlighted in green correspond to the evaluation key ek for
the Hamming ball centered at c = 00101 with radius r = 3. The public shares outlined
in bold purple indicate the public shares whose shared secret S is PRF(fk, x = 10001).
Notice that x and c have a Hamming distance 2 ≤ r, so S should be computable from
ek. Indeed ek contains 6 ≥ t of the corresponding secret shares (also outlined in bold
purple), meaning that it is possible to construct S = PRF(fk, x) from ek.

Correctness follows immediately from the observations above. Indeed, given
x and r that differ on at most r coordinates, one can generate the secret shares
for the set of parties X defined above. Now, the correctness of the distributed
secret sharing scheme implies that K must be equal to S, where K and S are
as defined in the scheme above. For security, we have the following claim whose
proof can be found in the full version [26]:

Claim. If (SETUP,SHARE,RECON) is a secure distributed secret sharing scheme
for threshold, then (Gen,PRF,Constrain,Eval) is a one-time secure constrained
PRF for Hamming balls.

This completes the proof of the theorem.

470 I. Komargodski and M. Zhandry

3.4 Distributed Secret Sharing Is Equivalent to Witness PRFs

In this section, we prove that all variants of distributed secret sharing are actually
equivalent to witness PRFs. Together with Zhandry’s construction of witness
PRFs [34], this gives a construction of distributed secret sharing from simple
assumptions on multilinear maps.

Theorem 3. The existence of the following are equivalent:

– Witness PRFs for NP.
– Any of the 8 variants of distributed secret sharing for mNP.

Proof. To prove the theorem, it suffices to prove the following:

1. Weak distributed secret sharing without witnesses and with trusted setup
implies witness PRFs.

2. Witness PRFs imply strong distributed secret sharing with witnesses and
without trusted setup.

Distributed Secret Sharing Implies Witness PRFs. We first give the con-
struction of witness PRFs from weak witnessless DSS with a trusted setup. Our
construction and proof leverage the reusability of distributed secret sharing, and
is based on the threshold DSS to Hamming ball PRF conversion presented in
Sect. 3.3.

Let (SETUP,SHARE,RECON) be a witnessless weak distributed secret
sharing scheme with trusted setup. We build the following witness PRF
(Gen,PRF,Eval):

– Gen(R): Let n be the instance size and m the witness size. We will use a DSS
scheme over a set of parties P with 2n + m party indices. We will generally
think of the index set as containing 2n pairs (i, b) ∈ [n] × {0, 1}, as well as m
integers j ∈ [m]. The set of pairs [n] × {0, 1} we will call the “instance set”,
and the set of integers [m] we will call the “witness set”.
Define a circuit C : 2P → {0, 1} that operates, given an input S ⊆ P, as
follows. If S = P, output 1. For any i, if either both (i, 0), (i, 1) from the
instance set are in S or neither are in S, then C outputs 0. Otherwise if
(i, b) ∈ S (and therefore (i, 1 − b) /∈ S), set xi = b. Let x be the bit string
x1x2 . . . xn. Let wj be 1 if j ∈ S and let w be the bit string w1w2 . . . wn. Then,
C outputs R(x,w). Recall that the monotone closure of C, M = C, satisfies
X ∈ M if some subset X ′ ⊆ X causes C to accept.
First, we generate the CRS by running

CRS ← SETUP(1λ, 12n+m, C).

Now, we define the set P to consist of the following parties: for each index
(i, b) in the instance set, we will associate two parties {(i, b, c)}c∈{0,1}, and for
each index j ∈ [m] in the witness set, we will associate a party j. Next, we

Cutting-Edge Cryptography Through the Lens of Secret Sharing 471

run SHARE for each party. That is, for each i ∈ [n], b ∈ {0, 1} and c ∈ {0, 1},
run

(Pi,b,c,Πi,b,c) ← SHARE(1λ, 12n+m,CRS, C, (i, b))

and for each j ∈ [m], run

(Pj ,Πj) ← SHARE(1λ, 12n+m,CRS, C, j).

Let P = {Pi,b,c}i∈[n],b,c∈{0,1} ∪ {Pj}j∈[m] and Π = {Πi,b,c}i∈[n],b,c∈{0,1} ∪
{Πj}j∈[m] be the set of public and secret shares, respectively. Output the
function key

fk = (CRS, P,Π)

and the evaluation key

ek = (CRS, P, {Πi,b,b}i∈[n],b∈{0,1}, {Πj}j∈[m]).

That is, the evaluation key consists of all of the public shares, all of the secret
shares for indices in the witness set, and one of the secret shares for each
index (i, b) in the instance set (recall that for each index in the instance set,
we have two parties).

– PRF(fk, x): Let

Px = {(i, b, xi)}i∈[n],b∈{0,1} ∪ [m]

so that P (Px) = {Pi,b,xi
}i∈[n],b∈{0,1} ∪ {Pj}j∈[m] and

Π(Px) = {Πi,b,xi
}i∈[n],b∈{0,1} ∪ {Πj}j∈[m].

Notice that Px is complete, in the sense that each index is represented exactly
once. Therefore, run

K ← RECON(1λ, 12n+m,CRS, C, P (Px),Π(Px))

and output K.
That is, out of the entire collection of 4n+m parties, use the input x to select
the appropriate set of parties Px of size 2n + m. Then, compute the shared
key for that set of parties.

– Eval(ek, x, w): Let Px and P (Px) be as above. Let Sx,w = {(i, xi, xi)}i∈[n] ∪
{j}j:wj=1 and Π(Sx,w) = {Πi,xi,xi

}i∈[n] ∪ {Πj}j:wj=1. Run

K ← RECON(1λ, 12n+m,CRS, C, P (Px),Π(Sx,w))

and output K.

To show correctness, we need to argue that Eval(ek, x, w) = PRF(fk, x) for all
w such that R(x,w) = 1. Indeed, Eval(ek, x, w) attempts to compute the shared
secret for the set of parties Px. Notice that the set Sx,w is a subset of the set Px,
and consists of the parties in Px with indices in Tx,w = {(i, xi)}i∈[n] ∪{j}j:wj=1.

472 I. Komargodski and M. Zhandry

Fig. 3. Example instantiation for instance size n = 3 and witness size m = 4. The
underlying threshold DSS scheme is instantiated with 10 indices, 6 for the instance set
having the form (i, b), and 4 for the witness set having the form j. For each instance
set index (i, b), SHARE is run twice, returning two sets of secret/public pairs for parties
(i, b, 0), (i, b, 1). For witness set indices, SHARE is run once. The secret key fk consists
of all public keys and secret shares, and the evaluation key consists of the green high-
lighted shares. An example evaluation on x = 100 is given. The instance x selects the
subset Px, whose public shares are bolded in purple. For these shares, there is a shared
secret S, and the value of PRF on x is defined to be S. Suppose w = 1010 is a valid
witness for x. Then, the secret shares for parties in Sx,w are boxed in bold purple and
represent the set of secret shares inside ek that can be fed into RECON to yield S.
Notice that, among the instance set of indices, ek only contains secret shares for the
parties in Px that have indices (i, xi).

Now notice that C(Tx,w) computes exactly R(x,w) = 1. Thus, the set of secret
shares Π(Sx,w) is sufficient to reconstruct the shares secret S for Px. Notice that
S is also the value outputted by PRF(fk, x). Therefore, Eval(ek, x, w) = PRF(fk, x)
as desired. An example instantiation is given in Fig. 3.

It remains to prove that the scheme is secure. The proof of the following
claim can be found in the full version [26].

Claim. If (SETUP,SHARE,RECON) is a secure weak distributed secret sharing
scheme without witnesses and with trusted setup, then (Gen,PRF,Eval) is a
secure witness PRF.

Witness PRFs Imply Distributed Secret Sharing. Given a Witness PRF
(Gen,PRF,Eval), we can easily obtain a one-way function, and from this we can
obtain a pseudorandom generator f [22]. We construct the following strong dis-
tributed secret sharing scheme (SHARE,RECON) without trusted setup.

– SHARE(1λ, 1n, 1k): Run (fk, ek) ← Gen(R) where R is the following NP cir-
cuit. R takes as input an instance (VM , {yi}i∈Pn

), where VM is the description
of an mNP circuit of size at most k, and witness w′ = (w, {si}i∈X) for some
subset X ⊆ Pn. It outputs 1 if (1) VM (X,w) = 1 and (2) yi = f(si) for each
i ∈ X. Otherwise, R outputs 0.
Let s ← S where S is the domain of f , and y = f(s). Output public share
P (i) = (ek, y) and secret share Π(i) = s.

Cutting-Edge Cryptography Through the Lens of Secret Sharing 473

– RECON(1λ, 1n, VM , P, Π(X), w): Write Π(X) = {si}i∈X and P = {(eki,
yi)}i∈P . Let x be the instance (VM , {yi}i∈P), and let w′ = (w, {si}i∈X) be a
witness. For each i, compute

Si = Eval(eki, x, w′),

and then compute S = S1 ⊕ S2 ⊕ · · · ⊕ Sn. Output S.

The correctness of the scheme follows immediately from the correctness of the
underlying witness PRF. The security of the scheme follows from the following
claim whose proof can be found in the full version [26].

Claim. If (Gen,PRF,Eval) is a secure witness PRF and f is a secure PRG, then
(SHARE,RECON) is a secure strong distributed secret sharing scheme with wit-
nesses and without trusted setup.

We have shown that the weakest variant of distributed secret sharing implies
witness PRFs, which in turn imply the strongest variant of distributed secret
sharing. Thus, all variants of DSS and witness PRFs are equivalent, completing
the proof.

4 Functional Secret Sharing

We start this section with a definition of functional secret sharing. Later, in
Theorem 4, we show that general-purpose functional secret sharing is equivalent
to indistinguishability obfuscation for polynomial-size circuits.

Definition 14 (Functional secret sharing). Let F = {F : 2Pn → {0, 1}∗} be
a class of functions. Let M : 2Pn → {0, 1} be an access structure corresponding
to a language L ∈ mNP and let VM be a verifier for L. A functional secret sharing
scheme for M and F consists of a setup procedure SETUP and a reconstruction
procedure RECON that satisfy the following requirements:

1. SETUP(1λ, F, S) gets as input an efficiently computable function F : 2Pn ×
{0, 1}∗ → {0, 1}∗ and a secret S ∈ {0, 1}∗, and distributes a share for each
party. For i ∈ [n] denote by Π(F, S, i) the random variable that corresponds
to the share of party pi. Furthermore, for X ⊆ Pn we denote by Π(F, S,X)
the random variable that corresponds to the set of shares of parties in X.

2. Completeness: If RECON(1λ,Π(F, S,X), w) gets as input the shares of a
“qualified” subset of parties and a valid witness, and outputs the value of F
on X and the shared secret. Namely, for X ⊆ Pn such that M(X) = 1 and
any valid witness w such that VM (X,w) = 1, it holds that:

Pr
[
RECON(1λ,Π(F, S,X), w) = F (X,S)

]
= 1,

where the probability is over the internal randomness of the scheme and of
RECON.

474 I. Komargodski and M. Zhandry

3. Indistinguishability of the Secret: For every probabilistic polynomial-time
algorithm D, every function F ∈ F , every subset of parties X ⊆ Pn and every
pair of secrets S0, S1, as long as either M(X) = 0 or F (X ′, S0) = F (X ′, S1)
for every X ′ ⊆ X, there exists a negligible function neg(·) such that for λ ∈ N

it holds that
∣
∣
∣
∣Pr

[
D(1λ,Π(F, Sb,X)) = b

]
− 1

2

∣
∣
∣
∣ ≤ neg(λ),

where the probability is over the internal randomness of the scheme, the inter-
nal randomness of D and b ← {0, 1} chosen uniformly at random.

A Remark on the Condition in the Security Definition. We note that
in Definition 14, given a set of shares Π(F, S,X), it is possible to derive for any
X ′ ⊆ X the set of shares Π(F, S,X ′) simply by removing the shares for parties
not in X ′. Feeding Π(F, S,X ′) into RECON then gives F (X ′, S) for any X ′ ⊆ X.
Thus, in the security definition above, the condition that F (X ′, S0) = F (X ′, S1)
for all X ′ ⊆ X is required to have a satisfiable assumption. Our definition states
that this is the only requirement.

Two Relaxations of Definition 14. We remark that when the function F is
defined to be the identity function over its second input parameter (i.e., F (·, S) =
S) we get the definition of Rudich secret sharing for NP of [25].13 Moreover, when
M = 2Pn (i.e., the access structure includes all subsets of parties), the secret S is
a description of a function and F is the universal circuit (i.e., F (X,S) = S(X)),
then Definition 14 boils down to the definition of function secret sharing which we
formalize next.

Definition 15 (Function secret sharing). Let F = {F : 2Pn → {0, 1}∗} be
a class of functions. A functional secret sharing scheme for F consists of a
setup procedure SETUP and a reconstruction procedure RECON that satisfy the
following requirements:

1. SETUP(1λ, F) gets as input a function F ∈ F , and distributes a share for each
party. For i ∈ [n] denote by Π(F, i) the random variable that corresponds to
the share of party pi. Furthermore, for X ⊆ Pn, we denote by Π(F,X) the
random variable that corresponds to the set of shares of parties in X.

2. Completeness: RECON(1λ,Π(F,X)) gets as input the shares of some subset
X of parties, and outputs F (X). More precisely,

Pr[RECON(1λ,Π(F,X)) = F (X)] = 1,

where the probability is over the internal randomness of the scheme and of
RECON.

13 [25] considered a uniform version of the above definition. We remark that our defini-
tions from above can also be given in a uniform version and our results also apply to
them (using ideas from [25]). For simplicity, we focus on the non-uniform versions.

Cutting-Edge Cryptography Through the Lens of Secret Sharing 475

3. Indistinguishability of the function: For every probabilistic polynomial-
time algorithm D, every equal size F0, F1 ∈ F and X ⊆ 2Pn such that
F0(X ′) = F1(X ′) for all X ′ ⊆ X, there exists a negligible function neg(·)
such that for λ ∈ N it holds that

∣
∣
∣
∣Pr[D

(
1λ,Π(Fb,X)

)
= b] − 1

2

∣
∣
∣
∣ ≤ neg(λ),

where the probability is over the internal randomness of the scheme, the inter-
nal randomness of D and b ← {0, 1} chosen uniformly at random.

4.1 Functional Secret Sharing Is Equivalent to iO

In this section we state and prove our main result.

Theorem 4. The following holds:

1. Function secret sharing (Definition 15) for polynomial-size circuits implies iO
for polynomial-size circuits.

2. iO for polynomial-size circuits and one-way functions imply functional secret
sharing (Definition 14) for access structures in mNP and functions computed
by polynomial-size circuits.

Recall that Definition 14 is a generalization of Definition 15. Thus, Theorem 4
implies that functional secret sharing is equivalent to function secret sharing
and is equivalent to iO.14

Next, we provide a proof for each of the items in Theorem4 separately.

Proof of Item 1 in Theorem 4. Given a circuit C with n inputs the indis-
tinguishability obfuscator works as follows. We first run the SETUP(1λ, C)
procedure with the circuit C as input and get back a list of n shares
Π(C, 1), . . . ,Π(C, n). The obfuscation consists of these n shares.

To evaluate an obfuscated circuit at a point x ∈ {0, 1}n, we run
RECON(1λ,Π(C, x)) and get a value y that we output. By the correctness of
the functional secret sharing scheme, we have that y = C(x), as required.

To prove security consider two equal size functionally equivalent circuits
C1 and C2 and an adversary A that can distinguish their obfuscations with
noticeable probability. Hence, A can distinguish secret shares corresponding to
SETUP(1λ, C1) from secret shares corresponding to SETUP(1λ, C2). Since the
circuits are equal size and functionally equivalent, this is a contradiction to the
security guarantee of the function secret sharing scheme. �

Proof of Item 2 in Theorem 4. We start with the description of the functional
secret sharing scheme. For every i ∈ [n], the share of party pi is composed of
2 components: (1) ri ∈ {0, 1}λ, an opening of a commitment to the value i,
14 One of the directions requires one-way functions which can be relaxed to require a

worst-case hardness assumption by [24].

476 I. Komargodski and M. Zhandry

and (2) an obfuscated circuit iO(C). The circuit C to be obfuscated has the
following hardwired: the function F , the secret S and the commitments of all
parties (i.e., ci = Com(i, ri) for i ∈ [n]). We stress that the openings r1, . . . , rn

of the commitments are not hardwired into the circuit. The input to the circuit
C consists of alleged k openings r′

i1
, . . . , r′

ik
corresponding to a set of parties

X ∈ 2Pn denoted pi1 , . . . , pik where k, i1, . . . , ik ∈ [n] and an alleged witness w.
The circuit C first checks that the openings are valid, i.e., verifies that for every
j ∈ [k] : cij = Com(ij , r′

ij
). Then, it verifies that the given w is a valid witness,

i.e., that VM (X,w) = 1. If all the tests pass, C outputs F (X,S); otherwise, if
any of the tests fail, the circuit C outputs NUL. The secret sharing scheme is
formally described next.

Let iO be an efficient indistinguishability obfuscator (see Definition 7). Let
Com : [2n] × {0, 1}λ → {0, 1}q(λ) be a string commitment scheme where q(·) is a
polynomial (see Definition 3). Let M ∈ NP be an access structure.

The SETUP(1λ, F, S) procedure. Gets as input a function F represented as a
polynomial-size circuits, a secret S and does the following:

1. For i ∈ [n]:
(a) Sample uniformly at random an opening ri ∈ {0, 1}λ.
(b) Compute the commitment ci = Com(i, ri).

2. Compute the circuit C from Fig. 4, where C = CF,S,c1,...,cn has the function
F , the secret S and the list of commitments c1, . . . , cn hardwired.

3. Set the share of party pi to be Π(S, i) = 〈ri, iO(C)〉.

The RECON(X,w) procedure. Gets as input a non-empty subset of parties
X ⊆ Pn together with their shares and a witness w of X for M .

The Circuit CF,S,c1,...,cn(r′
1, . . . , r

′
n, w)

Hardwired : The function F , the secret S and the commitments of all parties c1, . . . , cn.

Input : Secret shares corresponding to a subset of parties X and an alleged witness w.
The secret shares are a sequence of n values r′

1, . . . , r
′
n ∈ {0, 1}λ∪NUL such that for any

i ∈ [n] if pi ∈ X, then r′
i is the alleged opening of party pi, and otherwise r′

i = NUL.

Algorithm:

1. Execute the following tests:
(a) For every i ∈ [n] such that ri �= NUL, verify that the opening r′

i is valid. That
is, verify that ci = Com(i, r′

i).
(b) Verify that the given alleged witness w is a valid one. That is, verify that

VM (X,w) = 1.
2. If any of the above tests fails, output NUL; otherwise, output F (X,S).

Fig. 4. The circuit to be obfuscated as part of the secret shares.

Cutting-Edge Cryptography Through the Lens of Secret Sharing 477

1. Let iO(C) be the obfuscated circuit in the shares of X.
2. Evaluate the circuit iO(C) with the shares of X and w and return its output.

Observe that if iO and Com are both probabilistic polynomial-time algo-
rithms, then the scheme is efficient (i.e., SETUP and RECON are probabilistic
polynomial-time algorithms). SETUP generates n commitments and an obfus-
cated circuit of polynomial-size. RECON only evaluates this polynomial-size
obfuscated circuit once.

Security. Fix two secrets S0, S1, a subset of parties X, and a function F such
that F (X ′, S0) = F (X ′, S1) for every X ′ ⊆ X. The proof of security follows by
a sequence of hybrid experiments that can be found in the full version [26]. �

Acknowledgments. We thank Moni Naor and the anonymous reviewers of TCC
2016A for helpful remarks.

References

1. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015,
pp. 528–556. Springer, Heidelberg (2015)

2. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

4. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S.,
Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp.
11–46. Springer, Heidelberg (2011)

5. Beimel, A., Burmester, M., Desmedt, Y., Kushilevitz, E.: Computing functions of
a shared secret. SIAM J. Discrete Math. 13(3), 324–345 (2000)

6. Benaloh, J.C., Leichter, J.: Generalized secret sharing and monotone functions.
In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer,
Heidelberg (1990)

7. Blakley, G.R.: Safeguarding cryptographic keys. Proc. AFIPS Natl. Comput. Conf.
48, 313–317 (1979)

8. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

9. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. IACR
Cryptology ePrint Archive, p. 80 (2002)

10. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (2013)

11. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014)

478 I. Komargodski and M. Zhandry

12. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015)

13. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014)

14. Coron, J., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 267–286.
Springer, Heidelberg (2015)

15. Desmedt, Y.G., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

16. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)

17. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 40–49
(2013)

18. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Symposium on Theory of Computing Conference, STOC, pp. 467–476 (2013)

19. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. IACR Cryptology ePrint
Archive p. 309 (2014), to appear in FOCS 2015

20. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A.,
Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014)

21. Grigni, M., Sipser, M.: Monotone complexity. In: Proceedings of LMS Workshop
on Boolean Function Complexity. pp. 57–75 (1992)

22. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

23. Karchmer, M., Wigderson, A.: On span programs. In: 8th Annual Structure in
Complexity Theory Conference, pp. 102–111 (1993)

24. Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-way
functions and (im)perfect obfuscation. In: 55th Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS, pp. 374–383 (2014)

25. Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for NP. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 254–273. Springer,
Heidelberg (2014)

26. Komargodski, I., Zhandry, M.: Cutting-edge cryptography through the lens of
secret sharing. IACR Cryptology ePrint Archive p. 735 (2015)

27. Naor, M.: J. Cryptol. Bit commitment using pseudorandomness 4(2), 151–158
(1991)

28. Naor, M.: Secret sharing for access structures beyond P (2006), slides: http://www.
wisdom.weizmann.ac.il/∼naor/PAPERS/minicrypt.html

29. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014)

30. Sahai, A., Waters, B.: Slides on functional encryption (2008). http://www.cs.
utexas.edu/∼bwaters/presentations/files/functional.ppt

http://www.wisdom.weizmann.ac.il/~naor/PAPERS/minicrypt.html
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/minicrypt.html
http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt
http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt

Cutting-Edge Cryptography Through the Lens of Secret Sharing 479

31. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Symposium on Theory of Computing, STOC, pp. 475–484
(2014)

32. Santis, A.D., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely.
In: Symposium on Theory of Computing, STOC, pp. 522–533 (1994)

33. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
34. Zhandry, M.: How to avoid obfuscation using witness PRFs. IACR Cryptology

ePrint Archive p. 301 (2014). To appear. In: Kushilevitz, E., Malkin, T. (eds.)
TCC 2016-A, Part II, LNCS 9563, pp. 421–448 (2016)

Functional Encryption Without Obfuscation

Sanjam Garg1(B), Craig Gentry2, Shai Halevi2, and Mark Zhandry3

1 UC Berkeley, Berkeley, USA
sanjamg@berkeley.edu

2 IBM Research, New York, USA
craigbgentry@gmail.com, shaih@alum.mit.edu

3 MIT, Cambridge, USA
mzhandry@gmail.com

Abstract. Previously known functional encryption (FE) schemes for
general circuits relied on indistinguishability obfuscation, which in turn
either relies on an exponential number of assumptions (basically, one per
circuit), or a polynomial set of assumptions, but with an exponential loss
in the security reduction. Additionally most of these schemes are proved
in the weaker selective security model, where the adversary is forced to
specify its target before seeing the public parameters. For these construc-
tions, full security can be obtained but at the cost of an exponential loss
in the security reduction.

In this work, we overcome the above limitations and realize an adap-
tively secure functional encryption scheme without using indistinguisha-
bility obfuscation. Specifically the security of our scheme relies only on
the polynomial hardness of simple assumptions on composite order mul-
tilinear maps. Though we do not currently have secure instantiations
for these assumptions, we expect that multilinear maps supporting these
assumptions will discovered in the future. Alternatively, follow up results
may yield constructions which can be securely instantiated.

As a separate technical contribution of independent interest, we show
how to add to existing graded encoding schemes a new extension func-
tion, that can be thought of as dynamically introducing new encoding
levels.

1 Introduction

In traditional encryption schemes, decryption control is all or nothing: the sender
encrypts its message under a particular key, and anyone with the correspond-
ing secret key can recover the message. In contrast, functional encryption (FE)
schemes [BSW11,O’N10] allow the sender to embed sophisticated functions into

S. Garg—Work supported in part from a DARPA/ARL SAFEWARE award, AFOSR
Award FA9550-15-1-0274, and NSF CRII Award 1464397. The views expressed are
those of the authors and do not reflect the official policy or position of the Depart-
ment of Defense, the National Science Foundation, or the U.S. Government.
M. Zhandry—Work done while the author was a graduate student at Stanford Uni-
versity. Supported by the DARPA PROCEED program.

c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 480–511, 2016.
DOI: 10.1007/978-3-662-49099-0 18

Functional Encryption Without Obfuscation 481

secret keys. More specifically, an FE scheme includes an authority, which holds
a master secret key and publishes public system parameters. The sender uses
the public parameters to encrypt its message m to obtain a ciphertext ct. A
user may obtain a secret key skf for the function f from the authority (if the
authority deems that the user is entitled). This key skf can be used to decrypt
ct to recover f(m); and nothing more. In a recent result, Garg et al. constructed
the first FE scheme for general circuits using indistinguishability obfuscation
(iO) [GGH+13b].

While tremendous progress has been made on justifying the security of iO
[BR14,BGK+14,PST14,GLW14,GLSW14], ultimately the security of the result-
ing constructions still either relies on an exponential number of assump-
tions [BR14,BGK+14,PST14] (basically, one per circuit), or a polynomial set
of assumptions, but with an exponential loss in the security reduction [GLW14,
GLSW14]. For example, the recent iO scheme based on the MSE assumption
[GLSW14] crucially uses complexity leveraging in its proof — specifically, the
number of hybrids in the proof is proportional to 2|x| where x is the input, and
each hybrid “examines” a particular input x and implicitly “verifies” that the
circuits C0, C1 in question satisfy C0(x) = C1(x). Garg et al. [GGSW13] pro-
vide an intuitive argument suggesting that either of these shortcoming might be
inherent when realizing indistinguishability obfuscation,1 though this argument
is not applicable to FE schemes. In this work we ask the following fundamental
question:

Can we construct a functional encryption scheme for general circuits assuming
only polynomial hardness of simple computational assumptions?

Another limitation of the Garg et al. [GGH+13b] scheme is that it is only
selectively secure – that is, they have been proved secure only in a weaker model
in which the adversary is required to specify the message m for its challenge
ciphertext before it sees the public parameters of the FE scheme. We would like
FE for circuits that is fully secure — i.e., that allows the adversary to choose m∗

adaptively after seeing the public parameters and even responses to some of its
private key queries. In general, one can trivially reduce full security to selectively
security via complexity leveraging – essentially the reduction tries to guess the
adversary’s chosen m, and succeeds with probability 2−|m| – but complexity
leveraging loses a 2|m| factor in the reduction to the underlying hard problem
that we would like to avoid.

Can we construct a fully secure functional encryption scheme for general
circuits without an exponential loss in the security reduction?

Achieving full security without the lossiness of complexity leveraging is just
as important for FE for circuits as it was for identity-based encryption (IBE)
ten years ago [Wat05,Gen06,Wat09], for both efficiency and conceptual reasons.

1 Garg et al. [GGSW13] only provide the intuition for witness encryption but it extends
to iO.

482 S. Garg et al.

1.1 Our Results

In this work, we give positive answers to both questions above. Specifi-
cally we construct the first fully secure FE scheme for circuits without using
indistinguishability obfuscation or any exponential loss in security reductions.
Our scheme uses composite order multilinear maps in the asymmetric set-
tings [BS02,GGH13a,CLT13,CLT15a] and security is based on polynomial hard-
ness of fixed, relatively simple assumptions on a variant of the new CLT [CLT15a]
maps.

We extend the existing graded encoding schemes [GGH13a,CLT13,CLT15a]
with a new extension function that serves as a crucial ingredient in our con-
struction. This extension function serves a role similar to that of the straddling
set systems of [BGK+14], binding various encodings so that only certain subsets
can be paired together. The important difference is that the extension function
allows the binding to happen dynamically and publicly. This allows, for exam-
ple, an encrypter to bind ciphertext encodings together so that encodings from
different ciphertexts cannot be “mixed and matched.” We believe that this new
technique will be useful in other contexts as well. We provide details on this in
the full version [GGHZ14b].

Theorem 1 (informal). Assuming (1) simple polynomial assumptions on
extendable composite order graded encodings and (2) the existence of PRFs that
are both puncturable (in the sense of [BW13,BGI14,KPTZ13]) and can be eval-
uated in NC1, then fully secure functional encryption for all polynomial-sized
circuits exists.

An immediate consequence of our scheme is a traitor tracing scheme where
ciphertexts, secret keys, and public keys are short, namely logarithmic in the
number of users. Previous such schemes [GGH+13b,BZ14] all relied on iO. Our
scheme is therefore the first traitor tracing scheme with small parameters whose
security does not rely on iO or an exponential loss in the security reductions.

As an important intermediate step in our construction, we introduce the
notion of slotted functional encryption, which allows for multiple independent
execution paths, or slots, in functional encryption. We believe slotted FE may
be of independent interest; in particular, several recent works [BS15,ABSV14]
implicitly construct variations of slotted FE as an intermediate step.

1.2 Overview of Our Techniques

In this section we describe the high-level ideas behind our construction. We start
by providing general intuition on how we avoid obfuscation. Subsequently, we
will elaborate on our methodology and the intermediate abstraction of slotted
FE that we use.

Though the final aim of this work is to avoid the use of obfuscation in real-
izing functional encryption, we build upon techniques that have previously been
used to realize indistinguishability obfuscation. We start by recalling some of
these tools. An indistinguishability obfuscator iO guarantees that given two

Functional Encryption Without Obfuscation 483

functionally equivalent circuits C1 and C2, i.e. for every input x we require that
C1(x) = C2(x), the two distributions of obfuscations iO(C1) and iO(C2) are
computationally indistinguishable. Known constructions of obfuscation build on
the information theoretic argument of Kilian [Kil88] which provides security
only when evaluation on a single input is allowed. In more detail, consider a
circuit C that takes n bits as input. Kilian provides a mechanism for garbling C
into garbled components {C̃i,b}i∈[n],b∈{0,1}, such that access to the components
{C̃i,xi

}i∈[n] allow computation of C(x) while simultaneously preserving perfect
secrecy of the circuit C. Note that here for each i ∈ [n] only one of the two
values C̃i,0 and C̃i,1 is disclosed. This is similar to Yao’s [Yao82] garbled circuits
construction except that Kilian’s construction is limited to log depth circuits but
achieves a stronger information theoretic security. However, obfuscation schemes
need to enable secure evaluation on potentially any input and not just on one
pre-specified input. All known constructions of obfuscation achieve this addi-
tional functionality as follows: the obfuscation of a circuit C consists of the
terms {Ĉi,b}i∈[n],b∈{0,1} where all these values are simultaneous disclosed. Just
like Kilian, terms {Ĉi,xi

}i∈[n] allow for evaluation of C(x). This new garbling
method, denoted by notation Ĉ, has the additional property that it hides the
circuit C in the sense of indistinguishability obfuscation.

Intuition behind previous constructions of Functional Encryption. Typical obfus-
cation based functional encryption schemes are constructed as follows. The setup
procedure of the functional encryption scheme generates a public-secret key pair
(pk, sk) of a public key encryption scheme and sets the public parameters for
the functional encryption scheme to be pk. A message m is encrypted under the
functional encryption scheme by just encrypting it to pk. Finally a private key
for a function f is set to be the obfuscation of a circuit that outputs the eval-
uation of the function f on the message obtained by decrypting the ciphertext
provided to it as input. The secret key sk is embedded inside this circuit for
enabling decryption.

Our Starting Idea. Our starting idea in trying to avoid the use of obfuscation
in realizing functional encryption is that even though a private key (which is an
obfuscation) should work for arbitrary ciphertexts, the security requirement is
much weaker — specifically, security is required only for the challenge ciphertext.
We build on this observation; isolating the specific input for which security is
desired and using the Kilian’s information theoretic argument just for this input.
Doing this isolation and enabling the Kilian’s information theoretic argument
is technically quiet challenging and requires us to build new techniques. We
elaborate on this next.

As described earlier obfuscation of a circuit C consists of {Ĉi,b}i∈[n],b∈{0,1}
and knowledge of {Ĉi,xi

}i∈[n] allow for evaluation of C(x). The starting point
for our new functional encryption scheme is to split these components of garbled
C being generated as part of the obfuscation between the ciphertext and the

484 S. Garg et al.

private key. In other words the ciphertext and secret key provide parts of the
obfuscation, that when put together allow for computation.

We interpret the input x to consist of two parts m and f and the circuit
C to be universal circuit that evaluates and outputs f(m). Here m is the mes-
sage being encrypted and the encrypter is expected to provide the components
corresponding to these parts. The components for the private key are provided
by the trusted authority. More concretely, denoting Im = {0, 1, . . . , |m| − 1} and
If = {m,m+1, . . . , |m|+ |f |−1}, the public key consists of {Ĉi,b}i∈Im,b∈{0,1}. In
order to encrypt a message m the encrypter chooses the components {Ĉi,mi

}i∈Im

and further randomizes and bundles them (using an extension function that is
explained later) to obtain the ciphertext {Ci,mi

}i∈Im
. The trusted authority

generates the private keys analogously by randomizing and bundling together
appropriate components, namely {Ĉi,fi

}i∈If
and obtaining {Ci,fi

}i∈If
as the

secret key. Additional private keys can be generated in an analogous manner.
Note that {Ci,mi

}i∈Im
and {Ci,fi

}i∈If
together form a whole program that is

executable on one input alone, bringing us closer to Kilian for arguing security.
Making this idea work involves a careful hybrid argument, isolating one secret

key and a ciphertext at a time in order to apply Kilian’s information theoretic
argument. We specifically achieve this via a primitive that we call slotted FE :

Slotted FE. In a slotted FE scheme, ciphertexts and secret keys contain multiple
slots, and each slot i can either be “active” (i.e., contain an actual message or
function) or “inactive” (empty). Decryption is defined by taking all slots that
are active in both the ciphertext and secret key, and computing fi(mi) for those
slots. If all slots agree on the result, that result is the output of decryption. If
the slots do not agree, the output is unspecified. Ciphertexts and secret keys are
generated by the following procedures:

– Slotted encryption is a procedure requiring the master secret, and it can
produce an arbitrary ciphertext, containing any number of active slots with
any messages in those slots.

– Unslotted encryption is a public procedure that can produce a ciphertext
where a special slot 0 contains an arbitrary message, and the rest of the slots
are inactive.

– Slotted key generation is a procedure requiring the master secret, and it
can produce an arbitrary secret key containing any number of active slots
with any functions in those slots.

– Unslotted key generation is a convenient shorthand for the special case of
slotted key generation, producing a secret key with active slot 0 and the rest
of the slots inactive.

Clearly, slotted FE is a strict generalization of standard FE, we can recover the
standard notion by only using slot 0 and the unslotted procedures. However the
new primitive lets us consider more refined security properties. Specifically, we
define a small set of “local security properties” that can be mapped to simple
assumptions on the underlying graded-encoding scheme, and prove that they

Functional Encryption Without Obfuscation 485

imply our desired security notion for the induced FE scheme. Importantly, these
properties should be strong enough to yield adaptive security, but not too strong
so as to imply function-hiding (and thus obfuscation). This is somewhat similar
on a high level to the approach from [GLW14,GLSW14] (e.g., the notion of
“tribes schemes”), but the technical details are very different.

Our security properties for slotted FE are defined in Sects. 4.1 and 4.2. They
all follow the standard indistinguishability game between the FE adversary and
a challenger, but limit the types of queries that the adversary can use. For
example, one such notion requires indistinguishability only when each key-pair-
query that the adversary makes contains two identical sets of slots, the two
challenge plaintexts only differ in a single pair of slots in which one plaintext has
(x∗,⊥) and the other has (⊥, x∗), and moreover all the secret-key queries have
the same function between these two slots. (We call this property “Ciphertext
moving,” see Sect. 4.1.)

Another advantage of using slotted FE is that it allows us to “bootstrap” the
construction from NC1 to all circuits. Our basic slotted FE scheme in Sect. 5
can only handle log-depth circuits (NC1), and unfortunately it was previously
unknown how to securely boost FE for NC1 into FE for all circuits in a black-
box way without requiring function hiding (and thus obfuscation)2. However,
we show that the “local properties” of our slotted FE can be used for this
“bootstrapping” transformation. In this sense, slotted FE seems to be “the right
level of abstraction” for this construction.

Our Slotted FE for NC1. Our slotted FE for NC1 is related to current construc-
tions of iO for NC1 [GGH+13b,BR14,BGK+14,PST14,GLSW14]. Roughly, we
choose a universal NC1 circuit U(f,m) = f(m), and convert U into a branching
program BP . We then randomize BP using Kilian randomization, and place the
resulting matrices “in the exponent” of an asymmetric graded encoding roughly
as follows:

– In order to implement slots, we use a composite-order graded encoding, where
each slot corresponds to a subgroup.

– The setup procedure generates the public parameters by taking the matrices
corresponding to the m input, projecting them down into the first subgroup
(corresponding to slot 0), and publishing encodings of these matrices in the
appropriate levels.

– The key generation procedure takes as input a vector (f0, . . . , fn−1), where
some of the fi = ⊥. For all fi �= ⊥, it selects the matrices corresponding to
fi, and projects them down to the ith subgroup, and encodes these matrices
in the appropriate levels. Then it adds the encodings for different fi together,

2 We note that Gorbunov et al. [GVW12] show a general transformation from NC1 to
poly-size circuits, but the security proof relies on the underlying FE scheme being
simulation secure. Such security is impossible in the setting where the number of
secret key queries in unbounded [AGVW13], which is the setting studied in this
work. Subsequent to our work, Ananth et al. [ABSV14] show that FE for NC1 can
be boosted to FE for all circuit.

486 S. Garg et al.

and outputs the resulting encodings. By the Chinese Remainder Theorem, the
ith subgroup of the resulting encoding will contain the matrices for function
fi. The result is that the secret key encodes function fi in slot i.

– The slotted encryption procedure is analogous to the slotted key generation
procedure, except that it operates on the matrices corresponding to the mes-
sage input.

– The unslotted encryption procedure on input m takes the public parameters,
selects the matrices corresponding to m, and re-randomizes and outputs those
matrices.

– Finally, the decryption procedure multiplies the matrices for a secret key and
ciphertext together, and then performs a zero test on one entry of the resulting
matrix. Each of the subgroups act independently, and the result of multipli-
cation will be a matrix where subgroup i contains the matrix corresponding
to fi(mi) (or the subgroup is empty if either ciphertext or secret key are inac-
tive). If all of the fi(mi) = 0, the zero test gives 0. If all of the fi(mi) = 1,
then the zero test gives 1.

Using subgroup-decision assumptions on multilinear graded encodings, we are
able to prove various security properties for our scheme, such as the “ciphertext
moving” property mentioned above. These properties allow us to move messages
and secret keys between slots. However, for the application to (un-slotted) func-
tional encryption, we actually want the ability to change the values of messages.
To accomplish this, we first use the existing properties to isolate the cipher-
text and one secret key in their own slot. At this point, we can invoke Kilian’s
information-theoretic argument in the corresponding subgroup, since the matri-
ces given out all correspond to a single input. We prove a new property called
“single-use hiding” which allows us to arbitrarily change the ciphertext and
secret key in this slot, provided decryption is unaffected. By carefully repeating
this process for each secret key, we are ultimately able to change the message
encrypted, thus proving the security of the derived un-slotted functional encryp-
tion scheme.

Extending graded encodings. A major issue with the above sketch is that matrices
from different ciphertexts can be “mixed and matched” (in particular, a target
matrix can be mixed with a ciphertext generated from the public parameters)
which may allow the adversary to learn more than he should. Different secret
keys can be mixed and matched as well. Similar problems arose in the obfus-
cation setting, and one way it was solved was by using so-called straddling set
systems [BGK+14].

In our setting, this would involve assigning a different set of levels to each
ciphertext, and requiring that the levels assigned to two different ciphertext are
incompatible. However, ciphertext generation is a public procedure, meaning the
public parameters must include enough information to encrypt into any possible
level that a ciphertext component will be in. But then the adversary can always
generate a ciphertext in levels matching the target ciphertext, which then allows
mixing the ciphertexts together. Roughly, the problem is that access control to

Functional Encryption Without Obfuscation 487

levels is all or nothing: either anyone can generate encodings in a level, or no
one except the master party can.

We solve this problem by developing a new extension procedure on graded
encodings, which lets any user extend the graded encoding by generating new
levels. The user that ran the extension procedure will have to ability to map
components from existing levels to the new level, but other users will not. If we
apply the procedure to ciphertext components, the components will effectively
be bound together in the new extended levels, since the adversary cannot move
other ciphertexts into these levels.

In order to allow decryption, the new levels need to be mapped back to the
original set of levels. However, the extension procedure publishes just enough
information to map back to the original levels only after all the ciphertext com-
ponents have been combined. Once the ciphertext components are all combined,
it is impossible to mix the ciphertext with another ciphertext.

While the extension procedure falls outside of the traditional graded encod-
ing abstraction, we point out that most graded encoding candidates [GGH13a,
CLT13,CLT15b] support this procedure. We provide details in the full ver-
sion [GGHZ14b].

Using our new notion of extendable graded encodings, we prove the following:

Lemma 1 (informal). Assuming simple polynomial assumptions on extendable
graded encodings, then fully secure slotted functional encryption exists for NC1

circuits.

Boosting to FE for all circuits. In order to boost to functional encryption for
all circuits, we proceed in two steps.

– We first build functional encryption for NC1 randomized functionalities from
our slotted functional encryption scheme. This is accomplished by including a
secret key k for a PRF in the ciphertext, and generating the randomness for
the functionality by applying the PRF to a seed s contained in the secret key.
In order to prove security, we will need to puncture the key k at s, so we need
puncturable PRFs that can be evaluated in NC1 [BLMR13]3. The conversion
is very similar to the bootstapping technique of Gorbunov et al. [GVW12],
but we need the slotted property of our FE scheme in order to prove security
in our setting.

– Next, we boost to FE for all circuits. Basically, a secret key for a function
f will output not f(m), but instead a randomized encoding [IK00] f̂(m),
from which f(m) can be computed, but m itself is hidden. Notably, f̂(m) can
be computed in log-depth, so our randomized functional encryption for NC1

suffices.

3 This observation that [BLMR13] is puncturable appears in the full version of the
paper: http://theory.stanford.edu/∼klewi/papers/homprf-full.pdf. It is also folklore
that the Naor-Reingold PRF is puncturable while maintaining NC1 evaluation.

http://theory.stanford.edu/~klewi/papers/homprf-full.pdf

488 S. Garg et al.

Lemma 2 (informal). Assuming fully secure slotted functional encryption for
NC1 and PRFs that are both puncturable and can be evaluated in NC1, then
fully secure functional encryption for all polynomial-sized circuits exists.

1.3 Instantiating Our Assumptions

Unfortunately, several recent attacks on multilinear maps [CHL+15,BWZ14,
CGH+15] have broken many assumptions on known multilinear maps; the
assumptions broken include our own, as well as all simple assumptions that have
been used to build obfuscation. Nonetheless, constructing functional encryption
from simple assumptions, without obfuscation, and without complexity lever-
aging remains an important problem. Fortunately, our assumptions are generic
in the sense that they can be instantiated on any expressive-enough multilinear
maps. It seems plausible that candidates satisfying these assumptions will be
found in the future, either by modifying current candidates or by completely dif-
ferent means. Our work shows that any multilinear map supporting our assump-
tions and functionality requirements yields secure functional encryption, thereby
motivating the search for and study of such maps.

1.4 Independent Work

In a very recent independent work, Waters [Wat14] constructs a fully
secure functional encryption (FE) scheme using indistinguishability obfuscation
(iO) [GGH+13b] and one-way functions. Water’s result has the advantage of
being generic: any indistinguishability obfuscator or one-way function will suffice
for his construction, whereas we require multilinear maps with specific proper-
ties. However, the focus of this work is to avoid indistinguishability obfuscation
altogether and to build fully secure functional encryption using simpler, though
less generic tools (multilinear maps and simple assumptions involving them).

One may try to combine Waters [Wat14] fully secure FE scheme with the
indistinguishability obfuscator of Gentry et al. [GLSW14], whose security is
based on simple assumptions on multilinear maps. The result would be a fully
secure functional encryption scheme whose security is based on simple assump-
tions on multilinear maps. However, the reduction in [GLSW14] involves an
exponential loss of security, meaning complexity leveraging is required and
the assumptions on multilinear maps must be assumed secure against sub-
exponential time adversaries. In this setting, static security and full adaptive
security are equivalent, and so a fully secure scheme can be obtained by com-
bining [GLSW14] with any selectively secure FE scheme, such as the original
scheme of Garg et al. [GGH+13b].

In contrast, all reductions for our scheme are polynomial, meaning we only
require polynomial hardness of the underlying multilinear map assumptions.
Ours is the first scheme to obtain security in this setting, even among selectively
secure schemes.

Functional Encryption Without Obfuscation 489

1.5 Subsequent Work

Subsequent to our work, there have been several developments regarding func-
tional encryption. First, a few works [BV15,AJ15] show how to build obfusca-
tion from sub-exponentially secure functional encryption, thus showing that in
some sense obfuscation and functional encryption are equivalent. However, these
results require complexity leveraging, and therefore only apply in the setting of
sub-exponential hardness assumptions and exponential reductions. They do not
apply to the polynomial security setting, which is the focus of this work. More-
over, their results require compact FE. Our construction is not compact, and it
is currently still unknown how to obtain compact functional encryption without
using obfuscation.

Second, Ananth et al. [ABSV14] show how to both obtain adaptive security
from selective security for functional encryption, and also “bootstrap” functional
encryption for NC1 to functional encryption to all circuits. Their conversions
need only regular functional encryption, whereas our bootstrapping requires the
seemingly stronger notion of slotted functional encryption. While their tech-
niques are quite different than ours, at a high level their proof can be seen as (1)
implicitly showing how to add slots to regular (unslotted) functional encryption,
and then (2) using slotted functional encryption for bootstrapping. This shows
that our notion of slotted functional encryption serves as a useful abstraction in
the context of functional encryption.

2 Preliminaries: Graded Encoding Schemes

In Sect. 3, we recall the basic definitions of functional encryption and branching
programs. Here we describe the graded encoding scheme abstraction that will be
needed in our context, mostly following [GGH13a,CLT13,GLW14]. To instanti-
ate the abstraction, we can use Gentry et al.’s variant [GLW14] of the Coron-
Lepoint-Tibouchi (CLT) graded encodings [CLT13]. This variant is designed
to emulate multilinear groups of composite order, and to allow assumptions
regarding subgroups of the multilinear groups. One key difference in our abstrac-
tion is a new extension function that we add to the GGH graded encoding
abstraction. This new functionality will be crucial in our scheme. In the full
version [GGHZ14b], we briefly recall the CLT graded encodings and show how
they can be adapted to also support this extension functionality.4

Definition 1 (U-Graded Encoding System). A U-Graded Encoding System
consists of a ring R and a system of sets S = {S

(α)
T ⊂ {0, 1}∗ : α ∈ R, T ⊆ U},

with the following properties:

1. For every fixed set T , the sets {S
(α)
T : α ∈ R} are disjoint (hence they form a

partition of ST
def=

⋃
α S

(α)
T).

4 We note that the GGH encodings can also be extended to deal with this functionality
as well but here we provide this only for the CLT encodings.

490 S. Garg et al.

2. There is an associative binary operation ‘+’ and a self-inverse unary operation
‘−’ (on {0, 1}∗) such that for every α1, α2 ∈ R, every set T ⊆ U, and every
u1 ∈ S

(α1)
T and u2 ∈ S

(α2)
T , it holds that u1+u2 ∈ S

(α1+α2)
T and −u1 ∈ S

(−α1)
T

where α1 + α2 and −α1 are addition and negation in R.
3. There is an associative binary operation ‘×’ (on {0, 1}∗) such that for every

α1, α2 ∈ R, every T1, T2 with T1 ∪ T2 ⊆ U, and every u1 ∈ S
(α1)
T1

and u2 ∈
S
(α2)
T2

, it holds that u1 × u2 ∈ S
(α1·α2)
T1∪T2

. Here α1 · α2 is multiplication in R,
and T1 ∪ T2 is set union.

CLT (and GGH) encodings do not quite meet the definition of graded encod-
ing systems above, since the homomorphisms required in the definition eventually
fail when the “noise” in the encodings becomes too large, analogously to how the
homomorphisms may eventually fail in lattice-based homomorphic encryption.
However, these noise issues are relatively straightforward (though tedious) to
deal with.

Now, we define some procedures for graded encoding schemes. We start with
the procedures standard in the graded encoding literature [GGH13a,CLT13].

Instance Generation. The randomized InstGen(1λ,U, r) takes as inputs the
parameters λ,U, r, and outputs params, where params is a description of a
U-Graded Encoding System as above for a ring R = R1×. . .×Rr. We assume
R is chosen such that the density of zero divisors in each Ri is negligible.
Note that setting r = 1 corresponds to the prime order setting, while r > 1
corresponds to the composite-order setting.

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding”
a ∈ S

(α)
φ for a nearly uniform element α ∈R R. (Note that we require that the

“plaintext” α ∈ R is nearly uniform, but not that the encoding a is uniform
in S

(α)
φ .)

Encoding. The (possibly randomized) enc(params, T, a) takes a “level-zero”
encoding a ∈ S

(α)
φ for some α ∈ R and index T ⊆ U, and outputs the

“level-T” encoding u ∈ S
(α)
T for the same α.

Re-Randomization. The randomized reRand(params, T, u) re-randomizes
encodings relative to the same index. Specifically, for an index T ⊆ U and
encoding u ∈ S

(α)
T , it outputs another encoding u′ ∈ S

(α)
T . Moreover for

any two u1, u2 ∈ S
(α)
T , the output distributions of reRand(params, T, u1) and

reRand(params, T, u2) are statistically indistinguishable.
Addition and negation. Given params and two encodings relative to the

same index, u1 ∈ S
(α1)
T and u2 ∈ S

(α2)
T , we have an addition function

add(params, T, u1, u2) = u1 + u2 ∈ S
(α1+α2)
T , and a negation function

neg(params, T, u1) = −u1 ∈ S
(−α1)
T .

Multiplication. For u1 ∈ S
(α1)
T1

, u2 ∈ S
(α2)
T2

such that T1 ∪ T2 ⊆ U and T1 ∩
T2 = ∅, we have a multiplication function mul(params, T1, u1, T2, u2) = u1 ×
u2 ∈ S

(α1·α2)
T1∪T2

.

Functional Encryption Without Obfuscation 491

Zero-test. The procedure isZero(params, u) outputs 1 if u ∈ S
(0)
U and 0 other-

wise. Note that in conjunction with the subtraction procedure, this lets us
test if u1, u2 ∈ SU encode the same element α ∈ R.

Next, we define two new extension procedures on graded encodings that we
will use. Informally, these procedures allow the creation of new levels, using
only the public parameters of the graded encoding. In particular, they take as
input a subset of levels V of the universe U, and create a new “clone” V

′ of the
levels in V that is disjoint from U. Since the levels lie outside U, they cannot
be zero-tested. Instead, the procedures output a function fV′→V which maps
the level V′ back to V, but does not allow mapping levels corresponding to any
subsets of V

′. Thus, the entire set V
′ must be “filled out” before zero testing

can happen. In particular, it is impossible to multiply an element encoded at
a subset of V

′ with an element encoded at a subset of V and still be able to
perform zero-testing. In effect, this binds the encodings in V

′ together, similar
to how straddling sets [BGK+14] where used in obfuscation.

Extension. This procedure allows extending the graded encoding system by
fresh asymmetric levels. Specifically, extend(params,V, {ei}i) takes as input
a set V ⊆ U and a sequence of encodings ei each at level vi ⊆ V and outputs
a new set V

′ where V
′ ∩ U = ∅ and encodings e′

i each at level v′
i ⊆ V

′ along
with a public transformation function fV′→V such that:-
– Addition and multiplication procedures from above can be applied to

encodings at these new levels as well. Thus, given u1 ∈ S
(α1)
T and

u2 ∈ S
(α2)
T where T ⊆ (U \ V) ∪ V

′, we have add(params, T, u1, u2) =
u1 + u2 ∈ S

(α1+α2)
T , and neg(params, T, u1) = −u1 ∈ S

(−α1)
T . Similarly,

given u1 ∈ S
(α1)
T1

and u2 ∈ S
(α2)
T2

such that T1 ∪ T2 ⊆ (U \ V) ∪ V
′ and

T1∩T2 = ∅, we have a multiplication function mul(params, T1, u1, T2, u2) =
u1 × u2 ∈ S

(α1·α2)
T1∪T2

. Notice that we do not need to support adding or mul-
tiplying elements if the final level is some W such that both W ∩ V �= ∅
and W ∩ V

′ �= ∅.
– The new levels v′

i are obtained by mapping the old levels vi into the clone
V

′. Specifically, let V = {j1, . . . jt} and V
′ = {j′

1, . . . j
′
t}. For each i we

have that if vi = {jk1 , . . . jk�
} then v′

i = {j′
k1

, . . . j′
k�

}
– fV′→V(e′,W′) takes as input a set W

′ such that V
′ ⊆ W

′ ⊆ (U \ V) ∪
V

′ and an element e′ ∈ S
(α)
W′ . It outputs an encoding e ∈ S

(α)
V∪(W′\V′)

obtained by mapping each element in V
′ back to V. Specifically, if W′ =

X ∪ {j′
k1

, . . . j′
k�

} where j′
k ∈ V

′ as above and X ⊆ U \ V, then the output
will be an element e encoded relative to set W = X ∪ {jk1 , . . . , jk�

} ⊆ U,
which will be in the original universe U.

Extension†. This function extend† is the same as the previous function
extend(params,V, {ei}i) except that it also outputs additionally randomiz-
ers (encodings of 0) for each level it outputs an encoding at.

In the full version [GGHZ14b], we demonstrate how to obtain the above
extension procedures from the new CLT encodings. We stress that, except for

492 S. Garg et al.

the new extension procedures, all the procedures above are exactly the same
as an optimized variant in [CLT15b]. The extension functions are built on top
of the underlying graded encoding without any modifications to the existing
procedures — in particular, no extra terms are needed in the public parameters.
The extension functions can also be applied to any multilinear map that has a
similar form to the GGH or CLT maps. For that reason, while the complexity
assumptions we will be making currently do not hold on any multilinear map
candidate, it is very likely that future maps which may support our assumptions
will also support this extension procedure.

In order to simplify notation, we will denote encodings as [α]iT where T
denotes the level of the encoding, and i denotes that only the Ri component of
α is preserved and the Rj components for j �= i are zeroed out. Similarly, we
use [α]i1,i2,i3

T to denote that the Ri1 ×Ri2 ×Ri3 component is preserved and all
other components are zeroed out. This notation is due to [GGHZ14a].

Our complexity assumptions. We now describe the complexity assumptions we
will be making in this work. Fix a universe U, a dimension d, and a partition of
U into subsets V,W. For the assumptions below we will assume that randomizers
(encodings of zero) are provided for each index in U.

For our first assumption, the adversary is given elements in every level and in
every subring except subring R0. The adversary is additionally given challenge
elements in every level that either lie in the subring R1, or lie in the subring
R0 ×R1, and is asked to distinguish the two cases. Using only multilinear oper-
ations, distinguishing those cases is impossible: pairing either challenge element
with anything in R1 results in an element in R1, while pairing either with any-
thing in Ri for i > 1 results in 0. Thus, only pairing with an element in R0 will
allow for distinguishing the two cases, and such elements are not given to the
adversary.

Definition 2 (Assumption 1). The following distributions are indistinguish-
able:
((

[si,j]
j
{i}

)

i∈U,j>0
,
(
[ti]1{i}

)

i∈U

)
and

((
[si,j]

j
{i}

)

i∈U,j>0
,
(
[ti]

0,1
{i}

)

i∈U

)

In our second assumption, the universe U is split into two disjoint sets: V and
W. For levels in V, the adversary is given elements encoded in each Ri for i > 1,
as well as elements in R0×R1. No elements are provided in V that are encoded in
R0 but not R1, or vice versa. For levels in W, the adversary is given elements in
all of the subrings. Additionally, a clone set of levels W′ is created disjoint from
U using the extension function. The adversary is given the function fW′→W, also
outputted by the extension procedure, which allows him to translate elements
from the entire W

′ into W. For each level in W
′, the adversary is given encodings

in Ri for i > 1, as well as challenge encodings that are either all in R0 or all in
R1. The adversary is then asked to distinguish the two cases. To distinguish the
two cases, the adversary has to first “fill up” the set W′ so that it can be mapped
back into the universe U. If he pairs a challenge element with any non-challenge

Functional Encryption Without Obfuscation 493

element in W
′, the result will always be an encoding of zero since the challenge

elements and non-challenge elements in W
′ lie in different subrings. Therefore,

his only choice it to pair all of the challenge elements together and map back to
U, obtaining an element at level W encoded in either subring R0 or R1. At this
point, he can only pair with elements in V, and crucially, all the elements in V

are either encoded in R0 ×R1, or are disjoint from R0 and R1. Therefore, there
is no way to distinguish the two cases using only the multilinear operations.

In the following, let [d] denote the set {0, 1, . . . , d − 1}.

Definition 3 (Assumption 2). The following two distributions are indistin-
guishable:

((
[si,j]

j
{i}

)

i∈V,j>1
,
(
[si]

j
{i}

)

i∈W,j∈[d]
,
(
[ti]

0,1
{i}

)

i∈V

,

extend†
(
params,W,

{(
[ui,j]

j
{i}

)

i∈W,j>1
,
(
[vi]0{i}

)

i∈W

}))
and

((
[si,j]

j
{i}

)

i∈V,j>1
,
(
[si]

j
{i}

)

i∈W,j∈[d]
,
(
[ti]

0,1
{i}

)

i∈V

,

extend†
(
params,W,

{(
[ui,j]

j
{i}

)

i∈W,j>1
,
(
[vi]1{i}

)

i∈W

}))

3 Additional Background

In this section, we start by providing the definition of adaptively secure FE for
general circuits. Then we recall the notions of branching programs and develop
notation that will be needed in our context.

3.1 Adaptively Secure FE

A functional encryption system consists of four algorithms:
Setup,KeyGen,Encrypt, and Decrypt.

- Setup(λ): The setup algorithm takes in the security parameter λ as input and
outputs the public parameters MPK and a master secret key MSK.

- KeyGen(MSK, y): The key generation algorithm takes in the master secret
key MSK, and an attribute string y as input. It outputs a private key SKy

for y. y is included as part of the secret key.
- Encrypt(MPK,x): The encryption algorithm takes the public parameters

MPK and a message x as input. It outputs a ciphertext C.
- Decrypt(SKy, C): The decryption algorithm takes a private key SKy for

attribute string y and a ciphertext C (encrypting say the message x) as input
and outputs the value C(x, y), where C is a fixed universal circuit.

494 S. Garg et al.

Correctness of the scheme requires that for correctly generated private keys
for y and correctly generated ciphertexts encrypting x, decryption yields C(x, y)
except with negligible probability.

We will now give the security definition for adaptive FE. This is described by
a security game between a challenger and an attacker that proceeds as follows.

- Setup: The challenger runs the Setup algorithm and gives the public parame-
ters MPK to the attacker.
- Query Phase I: The attacker queries the challenger for private keys corre-
sponding to attribute strings y1, . . . , yq1 , which the challenger provides.
- Challenge: The attacker declares two messages x0, x1. We require that ∀i ∈
[q1] we have that C(x1, yi) = C(x0, yi). The challenger flips a random coin β ∈
{0, 1} and runs C ← Encrypt(MPK,xβ). The challenger gives the ciphertext
C to the adversary.
- Query Phase II: The attacker queries the challenger for private keys corre-
sponding to the attribute strings yq1+1, . . . , yq, with the added restriction that
∀i ∈ {q1, . . . , q} we have C(x1, yi) = C(x0, yi).
- Guess: The attacker outputs a guess β′ for β.

The advantage of an attacker in this game is defined to be Pr[β = β′] − 1
2 .

3.2 Branching Programs

A branching program consists of a sequence of steps, where each step is defined
by a pair of permutations. In each step the program examines one input bit,
and depending on its value the program chooses one of the permutations. The
program outputs 1 if and only if the multiplications of the permutations chosen
in all steps is the identity permutation. In our setting, just like in previous work
it will be easier to work with matrix branching programs that we define next.

Definition 4 (Matrix Branching Program). A branching program of width
w and length � on n-bit inputs is given by two 0/1 permutation matrices
M0,M1 ∈ {0, 1}w×w, M0 �= M1 and by a sequence:

BP =
(
inp(i), Bi,0, Bi,1

)�

i=1
,

where each Bi,b is a permutation matrix in {0, 1}w×w, and inp(i) ∈ [n] is the
input bit position examined in step i. We require that, for all inputs x ∈ {0, 1}n,

�∏

i=1

Bi,xinp(i) ∈ {M0,M1}

Let (α, β) be a position where M1[α, β] = 1 and M0[α, β] = 0. Call (α, β)
a distinguishing coordinate. The output of the branching program on input x ∈
{0, 1}n is as follows:

BP (x) =

(
�∏

i=1

Bi,xinp(i)

)

[α, β]

Functional Encryption Without Obfuscation 495

Theorem 2 [Bar86]. For any depth-d fan-in-2 boolean circuit C, there exists an
oblivious branching program of width 5 and length at most 4d that computes the
same function as the circuit C.

Remark 1. In our functional encryption construction we do not require that the
branching program is of constant width. In particular we can use any reductions
that result in a polynomial size branching program.

For simplicity of notation, it will be convenient to consider two-input branch-
ing programs.5 Here, the input x ∈ {0, 1}2n is split into two inputs (x[0], x[1]).
We then split inp into two functions:

– inp′ : [�] → {0, 1} where inp′(i) = inp(i)/n� − 1. Basically, inp′ chooses which
of the inputs x[0] and x[1] inp points to.

– bit : [�] → [n] where bit(i) = inp(i) mod n. Basically, bit chooses which bit of
x[b] inp points to, where b is the bit chosen by inp′.

Then we can write the branching program evaluation as

BP (x) =

(
�∏

i=1

Bi,x[inp′(i)]bit(i)

)

[α, β]

Remark 2. It is also straightforward to consider two-input branching programs
where x[0] and x[1] have different sizes. We treat them as the same size for
convenience.

Kilian Randomization of Branching Programs. Let BP be a branching program
as above. Fix a ring R. Choose random invertible matrices R1, . . . , R�−1, and
define a new branching program BP ′ which is identical to BP , except that
the matrices Bi,b are replaced with B̃i,b = Ri−1 · Bi,b · R−1

i , where we take
R0 = R� = Iw. We observe that

�∏

i=1

B̃i,xinp(i) =
�∏

i=1

Bi,xinp(i)

so that for every x we have that BP ′(x) = BP (x). Moreover, we have the
following:

Theorem 3 [Kil88]. Fix any input x ∈ {0, 1}�, and let b = BP (x) = BP ′(x).
Then the set of matrices multiplied together to evaluate BP ′(x), namely the set

{
B̃i,xinp(i)

}

i∈[�]

are distributed as uniform random w×w invertible matrices over R, conditioned
on their product being Mb.
5 Not to be confused with dual-input branching programs from [BGK+14].

496 S. Garg et al.

4 Slotted Functional Encryption

In this section, we define the notion of slotted functional encryption. Later we will
show how this scheme can be used to realize a functional encryption scheme for
general circuits. A slotted functional encryption scheme, is roughly a functional
encryption with multiple “slots,” where each slot roughly serves as an indepen-
dent copy of the functional encryption scheme. For any ciphertext or secret key,
each slot is either active or inactive, and active slots will contain some bit string
that potentially varies from slot to slot. Decryption is well-defined only if all slots
that are active in both the ciphertext and the secret key agree on the output,
in which case the result of decryption is the agreed-upon output. Otherwise, the
output is undefined. Slot 0 is a special slot and where the public parameters rest.
This is the slot that anyone can encrypt a message to; all the other slots require
secret parameters.

- Setup(λ, d,C): The setup algorithm takes in the security parameter λ, a num-
ber d of slots, and a fixed universal circuit description C as inputs and outputs
the public parameters MPK and a master secret key MSK.

- KeyGenS(MSK,y): The slotted key generation algorithm takes in the master
secret key MSK, and a vector of attribute strings y ∈ {{0, 1}n ∪⊥}d as input.
It outputs a private key SK for y.

- KeyGen(MSK, y): The unslotted version of the key generation is just a con-
venient shorthand, it runs KeyGen(MSK,y) where y = (y,⊥, . . .).

- EncryptS(MSK,x): A private slotted encryption algorithm takes in the secret
parameters MSK, and a vector of messages x ∈ {{0, 1}n ∪ ⊥}d as input. It
outputs a ciphertext C.

- Encrypt(MPK,x): a public unslotted encryption algorithm takes in the pub-
lic parameters MPK, and a single message x ∈ {0, 1}n as input. It outputs
an encryption of the message vector (x,⊥,⊥, ...)

- Decrypt(SK,C): The decryption algorithm takes a private key SK for
attribute string y and a ciphertext C (encrypting say the messages x). Let
S ⊆ [d] be the set of active indices, namely those i ∈ [d] where x[j] �= ⊥ and
y[j] �= ⊥. If C(x[j], y[j]) = b for all active indices i ∈ S, it outputs b. Otherwise,
the output is undefined.

We note that a slotted functional encryption scheme yields in particular
a functional encryption using only the unslotted versions of the KeyGen and
Encrypt procedures. Our goal will be to prove security of the derived (unslotted)
functional encryption scheme, using various security properties of the full slotted
scheme.

For security of slotted FE, consider the following general security game, para-
meterized by a predicate P (which encodes the security property that we want
to capture).

- Setup: The challenger runs the Setup algorithm and gives the public parame-
ters MPK to the attacker. The challenger also flips a random coin β ∈ {0, 1},
which it keeps secret.

Functional Encryption Without Obfuscation 497

- Query Phase I: The attacker adaptively queries the challenger for private
keys corresponding to attribute vectors pairs y(0)

i ,y(1)
i ∈ {{0, 1}n ∪ ⊥}d for

i = 1, ..., q1. The challenger responds with the secret keys for y(β)
i .

- Challenge: The attacker declares two message s vector x(0),x(1) ∈
{{0, 1}n ∪ ⊥}d. The challenger responds with the ciphertext C ←
EncryptS(MSK,x(β)).

- Query Phase II: The attacker continues to adaptively queries the challenger
for private keys corresponding to attribute vectors pairs y(0)

i ,y(1)
i ∈ {{0, 1}n ∪

⊥}d for i = q1 +1, ..., q. The challenger responds with the secret keys for y(β)
i .

- Guess: The attacker outputs a guess β′ for β.
- Check: The challenger evaluates a predicate P on the secret-key and challenge

queries: c = P ({y(b)
i }i∈[q],b∈{0,1},x(0),x(1)). If the predicate holds (c = 1) then

the challenger outputs β′′ = β′. Otherwise the challenger outputs a random
independent bit β′′.

The advantage of an attacker in this game is defined to be Pr[β = β′′] − 1
2 (and

note that if c = 0 then the advantage is 0). The scheme is secure relative to the
given predicate if feasible adversaries can only have a negligible advantage.

The predicate P. The security game varies depending on the predicate P , with
more permissive predicates yielding stronger notions of security. At a minimum,
we need P to exclude queries that let the adversary trivially distinguish the
left and right sides by applying the decryption procedure on the secret keys and
ciphertext received. Similarly, P must also exclude queries that let the adversary
distinguish the left and right sides by generating its own ciphertexts.

However, it is not hard to see that using a permissive predicate P that only
excludes these trivial attacks results in a security notion that is too strong: such
permissive P would allow arbitrary secret-key queries (y, y′) so long as C(x, y) =
C(x, y′) for all x ∈ {0, 1}n, which means that we directly get indistinguishability
obfuscation. Specifically, for a universal circuit U , we obfuscate a function f(x) =
U(f, x) by publishing the FE secret key SKf . This lets anyone evaluate f(x) for
any x by encrypting x under the scheme, and then using SKf to decrypt f(x),
and the security notion would say that any two functionally equivalent f and f ′

are indistinguishable.
Next, we therefore describe some simple predicates which are more restrictive,

and hence they correspond to weaker notions of security (which are still strong
enough for our purposes). Very roughly speaking, they all require that most of
the time we have y(0)

i = y(1)
i and/or x(0) = x(1), and they differ only in a handful

of slots and/or a handful of queries.

4.1 Core Predicates

We begin by describing some simple core predicates that our slotted FE scheme
should satisfy. In the next section we show that the corresponding security prop-
erties imply also stronger properties, including adaptively security of the induced
unslotted FE scheme.

498 S. Garg et al.

0. Slot Symmetry. P checks that there are two distinct non-special slots
α �= β, α, β �= 0 such that:
– x(0),x(1) are equal in all the slots other than α, β, and they swap the

content of these two slots. Namely x(0)[j] = x(1)[j] := x[j] for all j /∈
{α, β}, and x(b)[α] = x(1−b)[β] := x(b∗) for b = 0, 1.

– Similarly for all i y(0)
i ,y(1)

i are equal in all the slots other than α, β, and
they swap the content of these two slots. Namely y(0)

i [j] = y(1)
i [j] := yi[j]

for all j /∈ {α, β}, and y(b)
i [α] = y(1−b)

i [β] := y
(b∗)
i for b = 0, 1.

b = 0
x(0)[j] y(0)

i [j]
j = α x(0∗) y

(0∗)
i

j = β x(1∗) y
(1∗)
i

j �= α, β x[j] yi[j]

b = 1
x(1)[j] y(1)

i [j]
j = α x(1∗) y

(1∗)
i

j = β x(0∗) y
(0∗)
i

j �= α, β x[j] yi[j]

Intuitively, this allows us to permute the contents of different slots without
the adversary’s notice.

1. Single-Use Message and Function Hiding. P checks that there is a non-
special slot α �= 0 and a secret key query γ ∈ [q] such that:
– All key-queries other than γ contain two identical functions, y(0)

i = y(1)
i :=

yi ∀i �= γ.
– Key-query γ has two keys that differ only in slot α, y(0)

γ [j] = y(1)
γ [j] :=

yγ [j] ∀j �= α.
– The challenge query has two plaintexts that differ only in slot α, x(0)[j] =

x(1)[j] := x[j] ∀j �= α.
– We have either the same functionality C(x(0)[α],y(0)

γ [α]) = C(x(1)[α],
y(1)[α]), or the two plaintext slots are inactive x(0)[α] = x(1)[α] = ⊥,
or the two key slots are inactive y(0)

γ [α] = y(1)
γ [α] = ⊥.

b = 0

x(0)[j]
y(0)

i [j]
i = γ i �= γ

j = α x(0∗) y(0∗) yi[α]
j �= α x[j] yi[j]

b = 1

x(1)[j]
y(1)

i [j]
i = γ i �= γ

j = α x(1∗) y(1∗) yi[α]
j �= α x[j] yi[j]

Requirements:
C(x(0∗), y(0∗)) =

C(x(1∗), y(1∗)) or
x(0∗) = x(1∗) = ⊥ or
y(0∗) = y(1∗) = ⊥

This allows us to argue both message and function hiding for one slot in one
query, as long as that slot is not the special slot that the public parameters
can encrypt to.

2. Slot Duplication. P checks that there are distinct slots α �= β with β �= 0
such that:

Functional Encryption Without Obfuscation 499

– All the slots other than β are the same between left and right, x(0)[j] =
x(1)[j] := x[j] for all j �= β, and y(0)

i [j] = y(1)
i [j] := yi[j] for all i and all

j �= β.
– Slots β on the left are inactive, x(0)[β] = ⊥ and y(0)

i [β] = ⊥ for all i
– Slots β on the right are either inactive or equal to slots α, x(0)[β] ∈

{x[α],⊥} and y(0)
i [β] ∈ {yi[α],⊥} for all i.

b = 0
x(0)[j] y(0)

i [j]
j = α x∗ y∗

i

j = β ⊥ ⊥
j �= α, β x[j] yi[j]

b = 1
x(1)[j] y(1)

i [j]
j = α x∗ y∗

i

j = β x∗ or ⊥ y∗
i or ⊥

j �= α, β x[j] yi[j]

We stress that slot duplication can duplicate the slots of the ciphertext and
secret keys simultaneously. We can choose to duplicate the slots of all keys
and the ciphertext, or any subset of them.

3. Ciphertext Moving. P checks that there are two distinct slots α �= β such
that:

– For each secret key, all slots (including α and β) are the same on the left
and right: y(0)

i [j] = y(1)
i [j] := yi[j] for all i and j.

– For each secret key, slot α is identical to slot β on both the left and right:
yi[α] = yi[β] := y∗

i (y∗
i is potentially ⊥).

– For the challenge ciphertext, all slots other than α, β are the same
between left and right: x(0)[j] = x(1)[j] := x[j] for all j /∈ {α, β}.

– For the challenge ciphertext, slot β on the left and slot α on the right
are inactive: x(0)[β] = x(1)[α] = ⊥.

– For the challenge ciphertext, slot α on the left is equal to slot β on the
right: x(0)[α] = x(1)[β] = x∗.

b = 0
x(0)[j] y(0)

i [j]
j = α x∗ y∗

i

j = β ⊥ y∗
i

j �= α, β x[j] yi[j]

b = 1
x(1)[j] y(1)

i [j]
j = α ⊥ y∗

i

j = β x∗ y∗
i

j �= α, β x[j] yi[j]

This lets us rearrange the slots of the challenge ciphertext, as long as each
secret keys is identical among the affected slots. We stress that ciphertext
moving allows one of the slots being rearranged to be the special slot.

4. Weak key moving. P checks that there are two distinct non-special slots
α �= β, α, β �= 0 and secret-key query γ such that:
– For the challenge ciphertext, all slots (including α and β) are the same

between left and right: x(0)[j] = x(1)[j] := x[j] for all j.
– For the challenge ciphertext, slot α is identical to slot β on both the left

and right: x[α] = x[β] := x∗

– For each secret key query other than γ, all slots (including α and β) are
the same on the left and right: y(0)

i [j] = y(1)
i [j] := yi[j] for all i �= γ and

all j.

500 S. Garg et al.

– For secret key query γ, all slots other than α, β are the same on the left
and right: y(0)

γ [j] = y(1)
γ [j] := yγ [j] for all j /∈ {α, β}.

– For secret key query γ, slot β on the left and slot α on the right are
inactive: y(0)

γ [β] = y(1)
γ [α] = ⊥.

– For secret key query γ, slot α on the left is identical to slot β on the right:
y(0)

γ [α] = y(1)
γ [β] = y∗

γ := y∗.

b = 0

x(0)[j]
y(0)

i [j]
i = γ i �= γ

j = α x∗ y∗

yi[j]j = β x∗ ⊥
j �= α x[j] yγ [j]

b = 1

x(1)[j]
y(1)

i [j]
i = γ i �= γ

j = α x∗ ⊥
yi[j]j = β x∗ y∗

j �= α x[j] yγ [j]

This is the secret key version of ciphertext moving, allowing us to rearrange
the slots of a secret key, as long as the challenge ciphertext is identical among
the affected slots. The main difference from ciphertext moving is that weak
key moving does not allow us to modify the special slot 0.

We observe that the above properties, even in combination, will never allow
the changing of a secret key in slot 0. Thus, we will not be able to obtain any
form of function hiding for the derived unslotted functional encryption scheme
just from the properties above. This serves as a sanity check that the above
properties are not too strong, and might be obtainable from simple assumptions,
and indeed we give a construction meeting these in Sect. 5.

In the following sections, we present several other more complex predicates,
and show that security relative to the complex predicates is implied by the
security relative only to the predicates above. The proofs “consume” some slots,
so extra slots are needed to obtain security for the more complex predicates.

One of the predicates we prove security for corresponds exactly to regular
functional encryption. The total number of slots consumed in the proof from the
basic predicates is 3. Combining with our slotted FE construction in Sect. 5 for 4
slots, we obtain adaptively secure functional encryption for NC1 functionalities.

In the full version [GGHZ14b], we show how to use our predicates, together
with puncturable PRFs and randomized encodings (defined in Sect. 3) to obtain
functional encryption for all circuits. The total number of slots consumed is 5,
meaning we need a 6-slotted FE. In particular, the number of slots is constant,
which translates to a constant number (namely 6) of subgroups in the underlying
composite-order multilinear maps.

4.2 Additional Derivable Predicates

Now we describe several additional properties that can be derived from the core
properties above, potentially “using up” several additional slots.

5. New Slot. P checks that there are distinct slots α �= β with α not being the
special 0 slot (but β may be), such that:

Functional Encryption Without Obfuscation 501

– For each secret key, all slots (including α and β) are the same on the left
and right: y(0)

i [j] = y(1)
i [j] for all i and j.

– For each secret key, slot α is inactive on both the left and the right:
y(0)

i [α] = y(1)
i [α] = ⊥ for all i

– For the challenge ciphertext, all slots other than slot α are the same on
the left and right: x(0)[j] = x(1)[j] for all j �= α.

– For the challenge ciphertext, slot β is active on both the left and the right:
x(0)[β] = x(1)[β] �= ⊥.

– For the challenge ciphertext, slot α is inactive on the left: x(0)[α] = ⊥
b = 0
x(0)[j] y(0)

i [j]
j = α ⊥ ⊥
j = β x[β] �= ⊥

yi[j]j �= α, β x[j]

b = 1
x(1)[j] y(1)

i [j]
j = α x∗ ⊥
j = β x[β] �= ⊥

yi[j]j �= α, β x[j]

Notice that there is no restriction to the value in slot α of the ciphertext on
the right. Thus, the allows us to take a slot that is inactive for all secret keys
and the challenge ciphertext, and place an arbitrary value in the slot for the
ciphertext.

6. Strong key moving. P checks that there are distinct non-special slots α �= β,
α, β �= 0, and secret key query γ such that:
– For the challenge ciphertext, all slots (including α and β) are the same

between left and right: x(0)[j] = x(1)[j] := x[j] for all j.
– For each secret key query other than γ, all slots (including α and β) are

the same on the left and right: y(0)
i [j] = y(1)

i [j] := yi[j] for all i �= γ and
all j.

– For secret key query γ, all slots other than α, β are the same on the left
and right: y(0)

γ [j] = y(1)
γ [j] := yγ [j] for all j /∈ {α, β}.

– For secret key query γ, slot β on the left and slot α on the right are
inactive: y(0)

γ [β] = y(1)
γ [α] = ⊥.

– For secret key query γ, slot α on the left is identical to slot β on the right:
y(0)

γ [α] = y(1)
γ [β] := y∗

γ .
– When decrypting the challenge with secret key γ, slot α on the left and

slot β on the right give the same result. In other words, C(x[α],y∗
γ) =

C(x[β],y∗
γ)

b = 0

x(0)[j]
y(0)

i [j]
i = γ i �= γ

j = α x∗
0 y∗

yi[j]j = β x∗
1 ⊥

j �= α x[j] yγ [j]

b = 1

x(1)[j]
y(1)

i [j]
i = γ i �= γ

j = α x∗
0 ⊥

yi[j]j = β x∗
1 y∗

j �= α x[j] yγ [j]

Requirements:
C(x∗

0, y
∗) =

C(x∗
1, y

∗)

This is a stronger form of secret key moving where we can actually rearrange
secret key slots even if the challenge ciphertext differs in those slots, as long
as decryption is unaffected.

502 S. Garg et al.

7. Weak ciphertext indistinguishability. P checks that there is a non-
special slot α �= 0 such that:
– For each secret key, all slots (including slot α) are the same on the left

and right: y(0)
i [j] = y(1)

i [j] := yi[j] for all i and j.
– For the challenge ciphertext, all slots except slot α are the same on the

left and right: x(0)
i [j] = x(1)

i [j] := x[j] for all j �= α.
– For the challenge ciphertext, slot α decrypts to the same result for each

secret key query: C(x(0)[α],yi[α]) = C(x(1)[α],yi[α]).

b = 0
x(0)[j] y(0)

i [j]
j = α x∗

0 y∗
i

j �= α x[j] yi[j]

b = 0
x(1)[j] y(1)

i [j]
j = α x∗

1 y∗
i

j �= α x[j] yi[j]

Requirements:
C(x∗

0, y
∗
i) = C(x∗

1, y
∗
i)∀i

In other words, we can change the value of the ciphertext in any slot other
than the special 0 slot as long as decryption is unaffected. This almost gives
us functional encryption, except for the requirement that the slot is not the
special slot.

8. Strong ciphertext indistinguishability. Same as above, except α can
be 0.

4.3 Reductions

Now we describe several reductions showing that core properties described above
are sufficient for obtaining the additional derivable properties also described
above, at the cost of “using up” several additional slots. We note that in all of
the reductions below, any existing property, whether core or derived, is preserved
in the reduction.

Lemma 3. (1) Single-use hiding and (2) slot duplication imply (5) new slot.

Proof. Use slot duplication to duplicate contents of the β slot into the originally
empty α slot of the ciphertext (don’t duplicate the secret keys), and then use
single-use message and function hiding to change the message to x∗, which is
possible since there are no secret keys components in the α slot.

Lemma 4. (1) Single-use hiding, (2) slot duplication, (3) and weak key moving
for d + 1 slots implies (6) strong key moving for d slots (all existing properties
being preserved).

Proof. We prove for α = 1, β = 2, the other cases being identical. We will move
secret key γ ∈ [q]. Let slot d+1 be a “scratch” slot, that is unused by the normal
scheme. We will use slot d+1 in the security proof. Below is the table of hybrids.
For secret keys i ∈ [q], i �= γ not included in the table, slot d + 1 is inactive,
and the rest of the slots remain the same throughout all hybrids. Similarly, slots
j �= 1, 2, d + 1 remain the same for the ciphertext and the γth secret key.

Functional Encryption Without Obfuscation 503

Hybrid
x[j] yγ [j]

comments
j = 1 j = 2 j = d + 1 j = 1 j = 2 j = d + 1

H0 x∗
0 x∗

1 ⊥ y∗ ⊥ ⊥
H1 x∗

0 x∗
1 x∗

0 y∗ ⊥ ⊥ Slot duplication

H2 x∗
0 x∗

1 x∗
0 ⊥ ⊥ y∗ Weak secret key moving

H3 x∗
0 x∗

1 x∗
1 ⊥ ⊥ y∗ Single-use message hiding

H4 x∗
0 x∗

1 x∗
1 ⊥ y∗ ⊥ Weak secret key moving

H5 x∗
0 x∗

1 ⊥ ⊥ y∗ ⊥ Slot duplication

Lemma 5. (0) Slot symmetry, (5) new slot, and (6) strong key moving for d+1
slots implies weak (7) weak ciphertext indistinguishability for d slots (all existing
properties being preserved).

Proof. We prove for α = 1, the other cases being identical. The slot d+1 will be
the “scratch” slot, that is unused by the normal scheme but used in the security
proof. In the hybrids below we will use the strong key moving property. Note
that the strong key moving only allows for changing one key at a time, while
in the hybrids below we will need to change all the keys. This can be done by
changing one key at a time.

Hybrid x[j] ∀γ ∈ [q], yγ [j] comments
j = 1 j = d + 1 j = 1 j = d + 1

H0 x∗
0 ⊥ y∗ ⊥

H1 x∗
0 x∗

1 y∗ ⊥ New slot
H2 x∗

0 x∗
1 ⊥ y∗ Strong key moving (×q)

H3 ⊥ x∗
1 ⊥ y∗ New slot

H4 x∗
1 ⊥ y∗ ⊥ Slot Symmetry

Lemma 6. (2) Slot duplication, (3) weak ciphertext moving, and (7) weak
ciphertext indistinguishability for d + 1 slots implies (8) strong ciphertext indis-
tinguishability for d slots (all existing properties preserved).

Proof. Only need to add the case for slot 0. Just as before, the slot d+1 will be
the “scratch” slot, that is unused by the normal scheme but used in the security
proof.

Hybrid
x[j] yi[j] Comments

j = 0 j = d + 1 j = 0 j = d + 1

H0 x∗
0 ⊥ y∗

i ⊥
H1 x∗

0 ⊥ y∗
i y∗

i Slot duplication

H2 ⊥ x∗
0 y∗

i y∗
i Weak ciphertext moving

H3 ⊥ x∗
1 y∗

i y∗
i Weak ciphertext indistinguishability

H4 x∗
1 ⊥ y∗

i y∗
i Weak ciphertext moving

H5 x∗
1 ⊥ y∗

i ⊥ Slot duplication

504 S. Garg et al.

5 Slotted Functional Encryption for NC1

We now give our slotted FE scheme for NC1. We will describe our scheme in
terms of matrix branching programs, using Barrington’s Theorem (Theorem 2)
to realize slotted FE for NC1 circuits. We describe our scheme for single bit
outputs — it can easily be extended to multi-bit outputs by running multiple
instances of the scheme in parallel.

Setup(λ,BP, d): Given a universal 2-input matrix branching program

BP =
(
bit, inp, (Bi,b)i∈[�],b∈{0,1}

)

run params ← InstGen(1λ, {1, . . . , �}, d). Then, choose random matrices Ri ∈ R
for i ∈ [�− 1], as well as random αi,b for i ∈ [�], b ∈ {0, 1}. Let B̃i,b = αi,b ·Ri−1 ·
Bi,b ·R−1

i for i ∈ [2, �−1], and B̃1,b = α1,b ·B1,b ·R−1
1 and B̃�,b = α�,b ·R�−1 ·B�,b

6.
Compute Aj

i,b = [B̃i,b]
j
{i} for j ∈ [d]. (Here R0 and R� are set to identity.)

Let V be the subset of [�] that corresponds to the secret key: V = {i ∈
[�] : inp(i) = 0}, and W be the subset of [�] that corresponds to the ciphertext:
W = {i ∈ [�] : inp(i) = 1}. Then the universe U = V ∪ W.

The master public key is MPK = (params, (A0
i,b)i∈W,b∈{0,1})

The master secret key consists of the Aj
i,b for i ∈ V ∪ W.

KeyGenS(MSK,y): Given an attribute y ∈ {{0, 1}n ∪ ⊥}d, choose random
βi ∈ R for i ∈ V, b ∈ {0, 1}, and output the secret key

SKy = extend

⎛

⎝params,V,

⎛

⎝βi ·

⎛

⎝
∑

j:y[j] �=⊥
Aj

i,y[j]bit(i)

⎞

⎠

⎞

⎠

i∈V

⎞

⎠

EncryptS(MSK,x): Given an attribute x ∈ {{0, 1}n ∪ ⊥}d, choose random
βi ∈ R for i ∈ W, b ∈ {0, 1}, and output the ciphertext

C = extend

⎛

⎝params,W,

⎛

⎝βi ·

⎛

⎝
∑

j:x[j] �=⊥
Aj

i,x[j]bit(i)

⎞

⎠

⎞

⎠

i∈W

⎞

⎠

Encrypt(MPK,m): Given a message m ∈ {0, 1}n, choose random βi ∈ R for
i ∈ W, and output the ciphertext

C = extend

(
params,W,

(
βi · A0

i,mbit(i)

)

i∈W

)

6 Using current graded encodings, it is not possible to publicly compute matrix inverses
since users do not have direct access to the underlying ring. However, the setup pro-
cedure would know a trapdoor for the graded encodings that does allow computing
the matrix inverse. Alternatively, we can replace R−1

i with the adjugate matrix Radj
i ,

encodings of which can be computed publicly. The adjugate and matrix inverse
only differ by a scalar multiple (namely, the determinant), and since we multiply
everything by a random scalar anyway, the distributions of encodings obtained are
identical in both approaches.

Functional Encryption Without Obfuscation 505

Remark 3. Note that all the encodings given out in the ciphertext can be re-
randomized (to noise σ′) using the randomizer provided in the public parame-
ters. We do not mention the re-randomization above explicitly, for the sake of
simplicity of notation.

Decrypt(MPK,SK,C): Given a secret key SK = fV′→V, (Ki)i∈V′ and a cipher-

text C = fW′→W, (Ci)i∈W′ , let Di =

{
Ki if i ∈ V

′

Ci if i ∈ W
′ , and compute the product

D = fV′→V

(

fW′→W

(
∏

i∈U

Di

))

Then run the zero-test procedure on a distinguishing coordinate of D.

Correctness. Evaluation is carried out slot by slot. In slot j, if either K
or C is inactive, then the corresponding ring will be empty. Therefore,
the result of the computation is 0 in slot j. In a slot j where K and C
are both active, then write Ki[j] = [βiαi,y[j]bit(i)

B̃i,ybit(i)]
j
{i′} and Ci[j] =

[βiαi,mbit(i)B̃i,mbit(i)]
j
{i′} for some index elements i′ to be the components of

K,C in the ring Rj . Let d[j] = (y[j],m[j]) ∈ {0, 1}2n. Then we can write
Di[j] = [βiαi,d[j]inp(i),bit(i)

B̃i,d[j]inp(i),bit(i)
]j{i}.

Therefore, the product D′[j] =
∏

i∈U Di[j] is equal to

D′[j] =

[
∏

i∈U

(
βiαi,d[j]inp(i),bit(i)

) ∏

i∈U

B̃i,d[j]inp(i),bit(i)

]j

U′

=

[
∏

i∈U

(
βiαi,d[j]inp(i),bit(i)

) ∏

i∈U

Bi,d[j]inp(i),bit(i)

]j

U′

where U′ = V
′ ∪W

′. Applying fW′→W to this encoding gives an encoding of the
same product, but relative to the set V′ ∪W, and then applying fV′→V gives the
encoding relative to U. Therefore, D = fV′→V(fW′→W(D′)) satisfies

D[j] =

[
∏

i∈U

(
βiαi,d[j]inp(i),bit(i)

) ∏

i∈U

Bi,d[j]inp(i),bit(i)

]j

U

=

[
∏

i∈U

(
βiαi,d[j]inp(i),bit(i)

)
MBP (d[j])

]j

U

We only care about ciphertexts and secret keys where the branching program
evaluates the same in every slot, so BP (d[j]) is the same for all active slots j;
call the result b. Define γ[j] = βiαi,d[j]inp(i),bit(i)

projected down to ring Rj , and
γ =

∑
j∈S γ[j] where S is the set of active slots. Note that we only care about

506 S. Garg et al.

secret keys and ciphertext where there is at least one active slot. Therefore with
overwhelming probability γ �= 0.

We can now write D = [γMb]U. Then when we zero test a distinguishing
coordinate of D, with overwhelming probability, the result will match b.

5.1 Security Proof

Theorem 4. Assuming Assumptions 1 and 2, the scheme described above sat-
isfies the core properties of the slotted FE scheme.

Slot Symmetry. Our scheme satisfies perfect slot symmetry, where the advantage
of an even infinitely powerful adversary is 0. This follows from the fact that slots
correspond to sub-rings in our scheme, and our subrings are generated in a totally
symmetric manner.

Single-use Message and Function hiding. In our scheme, the matrices are just the
matrices from Kilian-randomized branching programs, where the randomization
in each sub-ring is independent. In the single slot j where changes are made,
only the ciphertext and a single public key are active. Let z = (x0, y0) be the
ciphertext and secret key values active on the left side, and z′ = (x1, y1) be the
values on the right side. Then on the left side, only the matrices B̃i,z[inp(i)]bit(i)

are
handed out in ring Rj , and by Theorem 3, these matrices are uniform random
matrices subject to their product being MC(x0,y0). Similarly, on the left size, the
matrices handed out are uniform random matrices subject their product being
MC(x1,y1). Since C(x0, y0) = C(x1, y1), these distributions are identical, so our
scheme satisfies perfect single use hiding.

Slot duplication. We will prove slot duplication from Assumption 1. Let α ∈ [d]
and β �= α, 0. Obtain the challenge for assumption 1, and re-order the rings
so that the challenge has the form

(
Si,j = [si,j]

j
{i}

)

i∈U,j �=β
, (Ti)i∈U where Ti =

[ti]α{i} or Ti = [ti]
α,β
{i} . We now simulate the view of the adversary as follows.

Given a 0/1 matrix B and an encoding e, let e · B be the matrix of encodings,
where e · B has e in any position where B has a 1, and an encoding of 0 in any
position where B has a 0 (note that we will be multipling e ·B by other matrices
of encodings, so the encodings of 0 do not actually have to be computed, but
merely serve as placeholders in the computation).

Choose random matrices Ri ∈ R for i ∈ [� − 1], as well as random α′
i,b,

and set Aj
i,b = α′

i,b · Ri−1 · (Si,j · Bi,b) · R−1
i for j �= β7. This formally sets

αi,b = α′
i,bsi,j in ring Rj , which leaves αi,b in ring β undetermined. Define

Dj
i,b = α′

i,b · Ri−1 · (Ti · Bi,b) · R−1
i .

7 We actually cannot compute the quantities R−1
i since we do not have access to the

trapdoor for the encodings. Therefore, we must actually compute Radj
i instead of

R−1
i . However, since we multiply by a random scalar anyway, the distribution of

encodings is exactly the same as if we had computed the matrix inverse.

Functional Encryption Without Obfuscation 507

Using the Aj
i,b, we can simulate the public paramters as in the scheme. To

answer the challenge ciphertext query, there are two cases. If slot β is empty,
then we can answer the challenge ciphertext query as in the slotted FE scheme
with the Aj

i,b (since β is empty, we do not need Aβ
i,b). If slot β is not a copy

of slot α on either side of the challenge, then we answer the challenge query by
choosing a random β′

i ∈ R for i ∈ W, b ∈ {0, 1}, and output the ciphertext

C = extend

⎛

⎝params,W,

⎛

⎝β′
i ·

⎛

⎝
∑

j:x[j] �=⊥,j /∈{α,β}
Aj

i,x[j]bit(i)
+ Dj

i,x[α]bit(i)

⎞

⎠

⎞

⎠

i∈W

⎞

⎠

If the Ti are only encodings in ring Rα, then this correctly simulates the
ciphertext when slot β empty, formally setting βi = βi in rings other that Rα,Rβ ,
and setting βi = β′

iti in rings Rα,Rβ (the value in Rβ is irrelevant in this case).
If the Ti are encodings in Rα ×Rβ , then this correctly simulates the ciphertext
when slot β is a copy of slot α, with the same formal settings of variables as
before.

We can perform a similar procedure to simulate the secret key queries. In the
end, if Ti are only encodings in Rα, then this correctly simulates the left side in
slot duplication, where slot β is empty. If Ti are encodings in Rα ×Rβ , then this
correctly simulates the right side of slot duplication, where slot β is sometimes a
copy of slot α. Thus, if Assumption 1 holds, the two cases are indistinguishable.

Ciphertext moving. We will prove ciphertext moving from Assumption 2. Let
α �= β, where α is the slot the ciphertext is in, and β is the slot we wish to move
the ciphertext to. Obtain the challenge for assumption 2, and re-order the rings
so that the challenge has the form

(
Si,j = [si,j]

j
{i}

)

i∈V,j /∈{α,β}
,
(
Si,j = [si,j]

j
{i}

)

i∈W,j∈[d]
,
(
Ti = [ti]

α,β
{i}

)

i∈V

,

E = extend†
(
params,W,

{(
Ui,j = [ui,j]

j
{i}

)

i∈W,j>1
,
(
Vi = [vi]

γ
{i}

)

i∈W

})

where γ = α or γ = β.
We now simulate the view of the adversary. Choose random matrices Ri ∈ R

for i ∈ [� − 1], random α′
i,b, and set Aj

i,b = α′
i,b · Ri−1 · (Si,j · Bi,b) · R−1

i for
i ∈ V, j /∈ {α, β}, and all i ∈ W, j ∈ [d]. This formally sets αi,b = α′

i,bsi,j

in ring Rj , which leaves αi,b in rings α and β undetermined for i ∈ V. Define
Aα

i,b+Aβ
i,b = α′

i,b ·Ri−1 ·(Ti ·Bi,b)·R−1
i for i ∈ V, which formally sets αi,b = α′

i,bTi

in rings Rα and Rβ .
Now using the Aj

i,b values, we can simulate the public parameters (since we
have all the values for i ∈ W, j = 0), as well as all the secret key queries (since all
the secret key queries are identical in slots α and β, meaning we will always have
Aα

i,b + Aβ
i,b together, neither being used separately). To generate the challenge

ciphertext, we use the result E of extension. Let U ′
i,j be the components in E

corresponding to the Ui,j , and V ′
i the components corresponding to the Vi. Then

the challenge ciphertext is set as

508 S. Garg et al.

C =fW′→W,
⎛

⎝βi · Ri−1 ·

⎛

⎝(V ′
i · Bi,x∗

bit(i)
) +

∑

j:x[j] �=⊥,j /∈{α,β}
(U ′

i,j · Bi,x[j]bit(i)
)

⎞

⎠ · R−1
i

⎞

⎠

i∈W

Note that the randomization terms given in E must be used to randomize
the components above.

Where x∗ is the ciphertext term that is either in slot α or slot β. It is
straightforward to show that if the Vi are encodings in Rα, then this simulates
the challenge ciphertext with x∗ in slot α, and similarly if Vi are encodings
in Rβ , the challenge ciphertext has x∗ in slot β. Therefore, the two cases are
indistinguishable and ciphertext moving follows.

Weak key moving. This is basically the same as ciphertext moving, except that we
swap the roles of W and V. The main difference is that, because now the public
parameters lie in V, and we are not given terms in V containing α separate from β,
we must have α, β �= 0 so that we can still generate the public parameters in R0.

5.2 Adaptively Secure FE for NC1

Our slotted FE scheme easily gives adaptively secure FE for NC1:

Theorem 5. If assumptions 1 and 2 above hold, then adaptively secure FE for
NC1 exists.

Proof. Set d = 4 in our slotted FE scheme. Then Lemmas 3, 4, 5, and 6 gives a
slotted scheme with d = 1 that satisfies strong ciphertext indistinguishability,
which implies adaptive FE security.

References

[ABSV14] Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective
to adaptive security in functional encryption. Cryptology ePrint Archive,
Report 2014/917 (2014). http://eprint.iacr.org/2014/917

[AGVW13] Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional
encryption: new perspectives and lower bounds. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 500–518.
Springer, Heidelberg (2013)

[AJ15] Ananth, P., Jain, A.: Indistinguishability obfuscation from compact func-
tional encryption. Cryptology ePrint Archive, Report 2015/173 (2015).
http://eprint.iacr.org/2015/173

[Bar86] Barrington, D.A.: Bounded-width polynomial-size branching programs
recognize exactly those languages in nc1. In: STOC (1986)

[BGI14] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudoran-
dom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
501–519. Springer, Heidelberg (2014)

http://eprint.iacr.org/2014/917
http://eprint.iacr.org/2015/173

Functional Encryption Without Obfuscation 509

[BGK+14] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfusca-
tion against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EURO-
CRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

[BLMR13] Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomor-
phic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 410–428. Springer, Heidel-
berg (2013)

[BR14] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 1–25. Springer, Heidelberg (2014)

[BS02] Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptogra-
phy. Cryptology ePrint Archive, Report 2002/080 (2002). http://eprint.
iacr.org/2002/080

[BS15] Brakerski, Z., Segev, G.: Function-private functional encryption in the
private-key setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 306–324. Springer, Heidelberg (2015)

[BSW11] Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and
challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273.
Springer, Heidelberg (2011)

[BV15] Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from
functional encryption. Cryptology ePrint Archive, Report 2015/163
(2015). http://eprint.iacr.org/2015/163

[BW13] Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013)

[BWZ14] Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps
against zeroizing attacks. Cryptology ePrint Archive, Report 2014/930
(2014). http://eprint.iacr.org/2014/930

[BZ14] Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro,
R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer,
Heidelberg (2014)

[CGH+15] Coron, J.-S., et al.: Zeroizing without low-level zeroes: New MMAP attacks
and their limitations. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO
2015, Part I. LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015)

[CHL+15] Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the
multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg
(2015)

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over
the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013)

[CLT15a] Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the
integers. Cryptology ePrint Archive, Report 2015/162 (2015). http://
eprint.iacr.org/2015/162

[CLT15b] Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the
integers. In: Gennaro, R., Robshaw, J.B. (eds.) CRYPTO 2015, Part I.
LNCS, vol. 9215, pp. 267–286. Springer, Heidelberg (2015)

[Gen06] Gentry, C.: Practical identity-based encryption without random oracles.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464.
Springer, Heidelberg (2006)

http://eprint.iacr.org/2002/080
http://eprint.iacr.org/2002/080
http://eprint.iacr.org/2015/163
http://eprint.iacr.org/2014/930
http://eprint.iacr.org/2015/162
http://eprint.iacr.org/2015/162

510 S. Garg et al.

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lat-
tices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: 54th Annual Symposium on Foundations of Computer
Science, pp. 40–49. IEEE Computer Society Press, Berkeley, CA, USA,
26–29 October 2013

[GGHZ14a] Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure attribute based
encryption from multilinear maps. Cryptology ePrint Archive, Report
2014/622 (2014). http://eprint.iacr.org/2014/622

[GGHZ14b] Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure func-
tional encryption without obfuscation. Cryptology ePrint Archive, Report
2014/666 (2014). http://eprint.iacr.org/2014/666

[GGSW13] Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its
applications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
Annual ACM Symposium on Theory of Computing, pp. 467–476. ACM
Press, Palo Alto (2013)

[GLSW14] Gentry, C., Lewko, A., Sahai, A., Waters, B.: Indistinguishability obfus-
cation from the multilinear subgroup elimination assumption. Cryptology
ePrint Archive, Report 2014/309 (2014). http://eprint.iacr.org/2014/309

[GLW14] Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance inde-
pendent assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 426–443. Springer, Heidelberg (2014)

[GVW12] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with
bounded collusions via multi-party computation. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer,
Heidelberg (2012)

[IK00] Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation
with applications to round-efficient secure computation. In: 41st Annual
Symposium on Foundations of Computer Science, pp. 294–304. IEEE
Computer Society Press, Redondo Beach, California, USA, 12–14 Novem-
ber 2000

[Kil88] Kilian, J.: Founding cryptography on oblivious transfer. In: 20th Annual
ACM Symposium on Theory of Computing, pp. 20–31. ACM Press,
Chicago, Illinois, USA, 2–4 May 1988

[KPTZ13] Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegat-
able pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 2013: 20th Conference on Computer and
Communications Security, pp. 669–684. ACM Press, Berlin, Germany, 4–8
November 2013

[O’N10] O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556 (2010). http://eprint.iacr.org/2010/556

[PST14] Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from
semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 500–517. Springer,
Heidelberg (2014)

[Wat05] Waters, B.: Efficient identity-based encryption without random oracles.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127.
Springer, Heidelberg (2005)

http://eprint.iacr.org/2014/622
http://eprint.iacr.org/2014/666
http://eprint.iacr.org/2014/309
http://eprint.iacr.org/2010/556

Functional Encryption Without Obfuscation 511

[Wat09] Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE
under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol.
5677, pp. 619–636. Springer, Heidelberg (2009)

[Wat14] Waters, B.: A punctured programming approach to adaptively secure func-
tional encryption. Cryptology ePrint Archive, Report 2014/588 (2014).
http://eprint.iacr.org/

[Yao82] Yao, A.C.-C.: Protocols for secure computations (extended abstract). In:
23rd Annual Symposium on Foundations of Computer Science, pp. 160–
164. IEEE Computer Society Press, Chicago, Illinois, 3–5 November 1982

http://eprint.iacr.org/

On Constructing One-Way Permutations
from Indistinguishability Obfuscation

Gilad Asharov(B) and Gil Segev

Hebrew University of Jerusalem, 91904 Jerusalem, Israel
{asharov,segev}@cs.huji.ac.il

Abstract. We prove that there is no black-box construction of a one-
way permutation family from a one-way function and an indistinguisha-
bility obfuscator for the class of all oracle-aided circuits, where the
construction is “domain invariant” (i.e., where each permutation may
have its own domain, but these domains are independent of the under-
lying building blocks).

Following the framework of Asharov and Segev (FOCS ’15), by
considering indistinguishability obfuscation for oracle-aided circuits we
capture the common techniques that have been used so far in construc-
tions based on indistinguishability obfuscation. These include, in par-
ticular, non-black-box techniques such as the punctured programming
approach of Sahai and Waters (STOC ’14) and its variants, as well as
sub-exponential security assumptions. For example, we fully capture the
construction of a trapdoor permutation family from a one-way func-
tion and an indistinguishability obfuscator due to Bitansky, Paneth and
Wichs (TCC ’16). Their construction is not domain invariant and our
result shows that this, somewhat undesirable property, is unavoidable
using the common techniques.

In fact, we observe that constructions which are not domain invariant
circumvent all known negative results for constructing one-way permu-
tations based on one-way functions, starting with Rudich’s seminal work
(PhD thesis ’88). We revisit this classic and fundamental problem, and
resolve this somewhat surprising gap by ruling out all such black-box
constructions – even those that are not domain invariant.

1 Introduction

One-way permutations are among the most fundamental primitives in cryptog-
raphy, enabling elegant constructions of a wide variety of central cryptographic
primitives. Although various primitives, such as universal one-way hash func-
tions and pseudorandom generators, can be constructed based on any one-way

This work was supported by the European Union’s 7th Framework Program (FP7)
via a Marie Curie Career Integration Grant, by the Israel Science Foundation (Grant
No. 483/13), by the Israeli Centers of Research Excellence (I-CORE) Program (Cen-
ter No. 4/11), by the US-Israel Binational Science Foundation (Grant No. 2014632),
and by a Google Faculty Research Award.

c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 512–541, 2016.
DOI: 10.1007/978-3-662-49099-0 19

On Constructing OWPs from Indistinguishability Obfuscation 513

function [40,56], their constructions based on one-way permutations are much
simpler and significantly more efficient [15,51].

Despite the key role of one-way permutations in the foundations of cryptog-
raphy, only very few candidates have been suggested over the years. Whereas
one-way functions can be based on an extremely wide variety of assumptions,
candidate one-way permutation families are significantly more scarce. Up until
recently, one-way permutation families were known to exist only based on the
hardness of problems related to discrete logarithms and factoring [53,55]. More-
over, the seminal work by Rudich [57], within the framework of Impagliazzo and
Rudich [43], initiated a line of research showing that a one-way permutation
cannot be constructed in a black-box manner from a one-way function or from
various other cryptographic primitives [24,44,49,50].

Very recently, a one-way (trapdoor!) permutation family was constructed by
Bitansky, Paneth and Wichs [13] based on indistinguishability obfuscation [6,31]
and one-way functions. Their breakthrough result provides the first trapdoor
permutation family that is not based on the hardness of factoring, and motivates
the task of studying the extent to which indistinguishability obfuscation can
be used for constructing one-way permutations. Specifically, their work leaves
completely unresolved the following question, representing to a large extent the
“holy grail” of constructing one-way permutations:

Is there a construction of a one-way permutation over {0, 1}n

based on indistinguishability obfuscation and one-way functions?

While exploring this intriguing question, one immediately identifies two some-
what undesirable properties in the construction of Bitansky, Paneth and Wichs:

– Even when not aiming for trapdoor invertibility, their approach seems limited
to providing a family of permutations instead of a single permutation1.

– Their construction provides permutations that are defined over domains which
both depend on the underlying building blocks and are extremely sparse2.

From the theoretical perspective, one-way permutation families with these two
properties are typically still useful for most constructions that are based on one-
way permutations. However, such families lack the elegant structure that makes
constructions based on one-way permutations more simple and significantly more
efficient when compared to constructions based on one-way functions.

1 Moreover, Bitansky et al. note that their permutations do not seem certifiable. That
is, they were not able to provide an efficient method for certifying that a key is
well-formed and describes a valid permutation. In contrast, a single permutation is
certifiable by its nature.

2 Each permutation in their construction is defined over a domain of elements of the
form (x,PRFK(x)), where PRF is a pseudorandom function, and each permutation is
associated with a different key K. This domain depends on the underlying building
block, i.e., the pseudorandom function (equivalently, one-way function).

514 G. Asharov and G. Segev

1.1 Our Contributions

Motivated by the recent construction of Bitansky et al. [13], we study the
limitations of using indistinguishability obfuscation for constructing one-way
permutations. Following the framework of Asharov and Segev [3], we consider
indistinguishability obfuscation for oracle-aided circuits, and thus capture the
common techniques that have been used so far in constructions based on indistin-
guishability obfuscation. These include, in particular, non-black-box techniques
such as the punctured programming approach of Sahai and Waters [58] and
its variants, as well as sub-exponential security assumptions. For example, we
fully capture the construction of a trapdoor permutation family from a one-way
function and an indistinguishability obfuscator due to Bitansky et al. [13]. We
refer the reader to Sect. 1.3 for an overview of our framework and of the type of
constructions that it captures.

Our work considers three progressively weaker one-way permutation primi-
tives: (1) a domain-invariant one-way permutation, (2) a domain-invariant one-
way permutation family, and (3) a one-way permutation family (which may or
may not be domain invariant). Roughly speaking, we say that a construction of
a one-way permutation (or a one-way permutation family) is domain invariant if
the domain of the permutation is independent of the underlying building blocks
(in the case of a permutation family we allow each permutation to have its own
domain, but these domains have to be independent of the underlying building
blocks).

Within our framework we prove the following two impossibility results, pro-
viding a tight characterization of the feasibility of constructing these three pro-
gressively weaker one-way permutation primitives based on one-way functions
and indistinguishability obfuscation using the common techniques (we summa-
rize this characterization in Fig. 1).

iO+OWF �⇒ Domain-Invariant OWP Family. Bitansky et al. [13] showed
that any sub-exponentially-secure indistinguishability obfuscator and one-way
function imply a one-way permutation family which is not domain invariant. We
show that using the common techniques (as discussed above) one cannot con-
struct the stronger primitive of a domain-invariant one-way permutation fam-
ily (even when assuming sub-exponential security). In particular, we show that
the above-described undesirable properties of their construction are unavoidable
unless new non-black-box techniques are introduced.3

Theorem 1.1. There is no fully black-box construction of a domain-invariant
one-way permutation family from a one-way function f and an indistinguisha-
bility obfuscator for the class of all oracle-aided circuits Cf .

OWF �⇒ OWP Family. In fact, we observe that constructions which are not
domain invariant circumvent the known negative results for constructing one-way
3 In addition to the above-described undesirable properties, our impossibility result

holds even for constructions of one-way permutation families that have a “pseudo”
input-sampling procedure instead of an “exact” input-sampling procedure (as in
[13]), as well as to constructions that are not necessarily certifiable (again, as in [13]).

On Constructing OWPs from Indistinguishability Obfuscation 515

permutations based on one-way functions, starting with Rudich’s seminal work
[44,50,52,57]. We revisit this classic and fundamental problem, and resolve this
surprising gap by ruling out all black-box constructions of one-way permutation
families from one-way functions – even those that are not domain invariant.

Theorem 1.2. There is no fully black-box construction of a one-way permuta-
tion family (even a non-domain-invariant one) from a one-way function.

OWF iO + OWF

Domain-invariant
OWP

Domain-invariant
OWP family OWP family

[BPW15][Rud88,…] Thm. 1.1Thm. 1.2

Fig. 1. A dashed arrow from a primitive A to a primitive B indicates that A implies
B by definition. Bitansky et al. [13] showed that any sub-exponentially-secure indis-
tinguishability obfuscator and one-way function imply a one-way permutation family
(which is not domain invariant), and we show that one cannot construct the stronger
primitive of a domain-invariant one-way permutation family unless new non-black-box
techniques are introduced (even when assuming sub-exponential security). The line of
research starting with Rudich [57] showed that one cannot construct a domain-invariant
one-way permutation from a one-way function in a black-box manner. We improve this
result, showing that one cannot construct the weaker primitive of a one-way permu-
tation family (even one that is not domain invariant) from a one-way function in a
black-box manner (again, even when assuming sub-exponential security).

1.2 Related Work

The recent line of research focusing on new constructions based on indistin-
guishability obfuscation has been extremely fruitful so far (e.g., [1,2,8–14,17,
19,21–23,26,27,30–32,38,41,45,58,60] and the references therein). However, the
extent to which indistinguishability obfuscation can be used as a building block
has been insufficiently explored. Our approach for proving meaningful impossi-
bility results for constructions based on indistinguishability obfuscation is based
on that of Asharov and Segev [3] (which, in turn, was inspired by that of
Brakerski, Katz, Segev and Yerukhimovich [18]). They showed that the com-
mon techniques (including non-black-box ones) that are used in constructions
based on indistinguishability obfuscation can be captured by considering the
stronger notion of indistinguishability obfuscation for oracle-aided circuits (see
Sect. 1.3 for an elaborate discussion). Generalizing the work of Simon [59] and

516 G. Asharov and G. Segev

Haitner et al. [39], they showed that using these common techniques one can-
not construct a collision-resistant hash function family from a general-purpose
indistinguishability obfuscator (even when assuming sub-exponential security).
In addition, generalizing the work of Impagliazzo and Rudich [43] and Brakerski
et al. [18], they showed a similar result from constructing a perfectly-complete
key-agreement protocol from a private-key functional encryption scheme (again,
even when assuming sub-exponential security).

It is far beyond the scope of this paper to provide an overview of the
lines of research on black-box impossibility results in cryptography (see, for
example, [5,7,16,20,25,28,29,33–35,42,43,47,48,54,59,61] and the references
therein). Impossibility results for constructing one-way permutations start with
the seminal work of Rudich [57]. This line of research has successfully shown
that one-way permutations cannot be based on a variety of fundamental cryp-
tographic primitives (e.g., [24,44,49,50]). However, these impossibility results
capture only constructions of a single permutation that is domain invariant,
and do not seem to capture more general constructions (such as the construc-
tion of Bitansky et al. [13] producing a permutation family which is not domain
invariant).

The notion of “domain invariance” that we consider in this work for black-
box constructions is somewhat related to that of “function obliviousness” that
was introduced by Dachman-Soled, Mahmoody and Malkin [29] for coin-flipping
protocols. They proved an impossibility result for constructing an optimally-fair
coin-flipping protocol based on any one-way function, as long as the outcome
of the protocol is completely independent of the specific one-way function that
is used.

1.3 Overview of Our Results

In this section we provide a high-level overview of our two results. First, we
describe the framework that enables us to prove a meaningful impossibility result
for constructions that are based on indistinguishability obfuscation. Next, we
describe Rudich’s attack for inverting any domain-invariant permutation relative
to a random oracle. Extending Rudich’s approach, we then discuss the main tech-
nical ideas underlying our results: We present an attack on any domain-invariant
permutation family relative to our, significantly more structured, oracle, and we
generalize Rudich’s attack to non-domain-invariant permutation families in the
random-oracle model.

Capturing Non-Black-Box Constructions via iO for Oracle-Aided
Circuits. The fact that constructions that are based on indistinguishability
obfuscation are almost always non-black-box makes it extremely challenging to
prove any impossibility results. For example, a typical such construction would
apply the obfuscator to a function that uses the evaluation circuit of a pseudo-
random generator or a pseudorandom function, and this requires specific imple-
mentations of its underlying building blocks.

On Constructing OWPs from Indistinguishability Obfuscation 517

However, as observed by Asharov and Segev [3], most of the non-black-box
techniques that are used on such constructions have essentially the same fla-
vor: The obfuscator is applied to functions that can be constructed in a fully
black-box manner from a low-level primitive, such as a one-way function. In
particular, the vast majority of constructions rely on the obfuscator itself in a
black-box manner. By considering the stronger primitive of an indistinguishabil-
ity obfuscator for oracle-aided circuits (see Definition 2.4), Asharov and Segev
showed that such non-black-box techniques in fact directly translate into black-
box ones. These include, in particular, non-black-box techniques such as the
punctured programming approach of Sahai and Waters [58] and its variants
(as well as sub-exponential security assumptions – which are already captured
by most frameworks for black-box impossibility results).

Example: The Sahai-Waters Approach. Consider, for example, the con-
struction of a public-key encryption scheme from a one-way function and a
general-purpose indistinguishability obfuscator by Sahai and Waters [58]. Their
construction relies on the underlying one-way function in a non-black-box man-
ner. However, relative to an oracle that allows the existence of a one-way function
f and indistinguishability obfuscation iO for oracle-aided circuits, it is in fact a
fully black-box construction. Specifically, Sahai and Waters use the underlying
indistinguishability obfuscator for obfuscating a circuit that invokes a punc-
turable pseudorandom function and a pseudorandom generator as sub-routines.
Given that puncturable pseudorandom functions and pseudorandom generators
can be based on any one-way function in a fully black-box manner, from our
perspective such a circuit is a polynomial-size oracle-aided circuit Cf – which
can be obfuscated using iO (we refer to reader to [3, Sec. 4.6] for an in-depth
technical treatment).

This reasoning extends to various variants of the punctured programming
approach by Sahai and Waters [58], and in particular fully captures the con-
struction of a trapdoor permutation family from a one-way function and an
indistinguishability obfuscator due to Bitansky, Paneth and Wichs [13]. As noted
in [3], this approach does not capture constructions that rely on the obfuscator
itself in a non-black-box manner (e.g., [11])4, or constructions that rely on zero-
knowledge techniques and require using NP reductions5.

The Oracle. Our first result is obtained by presenting an oracle Γ relative to
which the following two properties hold: (1) there is no domain-invariant one-
way permutation family, and (2) there exist an exponentially-secure one-way
function f and an exponentially-secure indistinguishability obfuscator iO for the
4 With the exception of obfuscating a function that may invoke an indistinguisha-

bility obfuscator in a black-box manner. This is captured by our approach – see
[3, Sec. 3.1].

5 Such techniques are captured by the work of Brakerski et al. [18], and we leave
it as an intriguing open problem to see whether the two approaches for capturing
non-black-box techniques can be unified.

518 G. Asharov and G. Segev

class of all polynomial-size oracle-aided circuits Cf . Our oracle is quite intuitive
and consists of three functions: (1) a random function f that will serve as the
one-way function, (2) a random injective length-increasing function O that will
serve as the obfuscator (an obfuscation of an oracle-aided circuit C is a “handle”
O(C, r) for a uniformly-chosen string r), and (3) a function Eval that enables
evaluations of obfuscated circuits (Eval has access to both f and O): Given a
handle O(C, r) and an input x, it “finds” C and returns Cf (x). We refer the
reader to Sect. 3.2 for more details.

The vast majority of our effort is in showing that relative to Γ there is
no domain-invariant one-way permutation family. Specifically, as for the second
part, our oracle Γ is somewhat similar to the oracle introduced by [3], relative
to which they proved the existence of an exponentially-secure one-way function
and an exponentially-secure indistinguishability obfuscator (see Sect. 3.2 for the
differences between the oracles).

In the remainder of this section we first provide a high-level overview of
Rudich’s attack on any single domain-invariant permutation in the random-
oracle model. Inspired by this attack, we explain the main challenges in extending
Rudich’s attack to domain invariant constructions relative to our oracle, and
to non-domain invariant constructions in the random-oracle model. We again
refer the reader to Fig. 1 which summarizes our characterization of the feasible
constructions.

Warm-up: Rudich’s Attack in the Random-Oracle Model. Following
[44,50,57] we show that for any oracle-aided polynomial-time algorithm P , if
P f implements a permutation over the same domain D for all functions f (i.e.,
P is domain invariant), then there exists an oracle-aided algorithm A that for
any function f inverts P f with probability 1 by querying f for only a polynomial
number of times. The algorithm A is given some string y∗ ∈ D and oracle access
to f , and is required to find the unique x∗ ∈ D such that P f (x∗) = y∗. It first
initializes a set of queries/answers Q, which will contain the actual queries made
by A to the true oracle f . It repeats the following steps polynomially many
times:

1. Simulation: A finds an input x′ ∈ D and a set of oracle queries/answers
f ′ that is consistent with Q (i.e., f ′(w) = f(w) for every w ∈ Q) such that
P f ′

(x′) = y∗.
2. Evaluation: A evaluates P f (x′) (i.e., evaluation with respect to the true

oracle f). If the output is y∗, it terminates and outputs x′.
3. Update: A asks f for all queries in f ′ that are not in Q, and updates the

set Q.

The proof relies on the following observation: In each iteration, either (1)
A finds the pre-image x∗ such that P f (x∗) = y∗ or (2) in the update phase,
A queries f with at least one new query that is also made by P during the
computation of P f (x∗) = y∗.

Intuitively, if neither of the above holds, then we can construct a “hybrid”
oracle f̃ that behaves like f in the evaluation of P f (x∗) = y∗ and behaves like

On Constructing OWPs from Indistinguishability Obfuscation 519

f ′ in the evaluation of P f ′
(x′) = y∗. This hybrid oracle can be constructed since

the two evaluations P f ′
(x′) and P f (x∗) have no further intersection queries

rather than the queries which are already in Q. According to this hybrid oracle
f̃ it holds that P

˜f (x′) = P
˜f (x∗) = y∗ but yet x∗ �=x′, and thus relative to

f̃ the value y∗ has two pre-images, in contradiction to the fact that P always
implements a permutation. Using this claim, since there are only polynomially
many f -queries in the evaluation of P f (x∗) = y∗, the algorithm A must output
x∗ after a polynomial number of iterations (more specifically, after at most q +1
iterations, where q is the number of oracle gates in the circuit P).

Attacking Domain-Invariant Permutation Families Relative to Our
Oracle. We extend the attack described above in two different aspects. First,
we rule out constructions of domain-invariant permutation families and not just
a single permutation. Second, we extend the attack to work relative to our ora-
cle, which is a significantly more structured oracle than a random oracle and
therefore raises new technical challenges. Indeed, by the discussion in Sect. 1.3,
relative to our oracle there exists a non-domain-invariant construction of one-
way permutation family [13]. This mere fact represents the subtleties we have to
deal with in our setting. In the following overview we focus our attention on the
challenges that arise due to the structure of our oracle, as these are the most
important and technically challenging ones.

Recall that our oracle Γ consists of three oracles: A length-preserving func-
tion f , an injective length-increasing function O, and an “evaluation” oracle
Eval that depends on both f and O. We now sketch the challenges that these
oracles introduce. The first challenge is that the evaluation oracle Eval is not
just a “simple” function. This oracle performs (by definition) exponential time
computations (e.g., an exponential number of queries to f and O) which may
give immense power to the construction P . Specifically, unlike in Rudich’s case,
here it is no longer true that the computation PΓ (x∗) performs a polynomial
number of oracle queries (although P itself is of polynomial size). The second
challenge is that since the oracle Eval depends on both f and O, each query
to Eval determines many other queries to f and O implicitly, which we need to
make sure that they are considered in the attack. Specifically, given the struc-
tured dependencies between f , O and Eval, in some cases it may not be possi-
ble to construct a hybrid oracle even if there are no more intersection queries
(in Rudich’s case a hybrid oracle always exists).

Finally, the third challenge is the fact that O is injective, which causes the fol-
lowing problem (somewhat similar to [50]). In our case, we are forced to assume
that PΓ is a permutation only when O is an injective length-increasing function
and not just any arbitrary function as in Rudich’s case (as otherwise our obfus-
cator may not preserve functionality). Therefore, when constructing the hybrid
oracle Õ, we must ensure that it is also injective in order to reach a contradic-
tion. However, the hybrid oracle Õ might be non-injective when there is some
overlap between the images of the true oracle O and the sampled oracle O′ on
elements that are not in Q.

520 G. Asharov and G. Segev

We revise the attack and its analysis to deal with the above obstacles. As in
Rudich’s attack, the algorithm A considers the collection of all oracles that are
consistent with Q. However, for dealing with the third challenge, it then chooses
one of these oracles uniformly at random and does not pick just an arbitrarily
one as in Rudich’s attack. We then show that with all but an exponentially-
small probability, there is no overlap between the range of the sampled oracle
O′ and the true oracle O, and therefore the hybrid oracle Õ can almost always
be constructed in an injective manner. Then, dealing with the first challenge,
we show that Eval does not give P a significant capability as one may imagine.
Intuitively, this is due to the fact that O is length increasing, and therefore its
range is very sparse. As a result, it is hard to sample a valid image of O without
first querying it, and almost any Eval query can be simulated by the construction
P itself. Finally, due to the dependencies between the oracles, for dealing with
the second challenge, the algorithm A will have to sample additional, carefully-
chosen, queries that do not necessarily appear in the evaluations PΓ (x∗) = y∗

or PΓ ′
(x′) = y∗, but are related to the set of queries that appears in these

evaluations. This results in a rather involved proof, where we carefully define
this set of queries, and extend the analysis accordingly.

As expected, our proof does not extend to constructions that are not domain
invariant. For example, in such constructions for two distinct (injective) functions
Γ and Γ ′, the domain of the permutations PΓ and PΓ ′

may be completely
distinct, and this forces additional restrictions on the number of oracles Γ ′ that
are “valid” (i.e., can be used to construct the hybrid oracle Γ̃ as above). As
a result, while in the original proof of Rudich all of the oracles Γ ′ that the
adversary may pick are valid, and while in our case all but some exponentially-
small amount of oracles Γ ′ are valid, here the number of valid oracles may be
significantly smaller and therefore the attack may succeed with only a negligibly
small probability.

Attacking Non-Domain-Invariant Permutation Families in the
Random-Oracle Model. At a first sight, it seems that a natural approach
towards ruling out non-domain-invariant families relative to a random oracle,
is to reduce them to the case of a single permutation. That is, the adversary
receives some index α of some permutation in the family, together with the
challenge element y∗ ∈ Df

α which it needs to invert (note that now the respec-
tive domain Df

α may depend on both f and α). A natural approach is to apply
Rudich’s attack to the single permutation P f (α, ·).

However, this approach seems somewhat insufficient due to the following
reasons. First, since the construction is not domain invariant, the set of valid
indices depends on the underlying primitive, and the set of valid indices for the
true oracle f may be completely different than the set of valid indices for the
oracle f ′ that will be sampled by A in each iteration (e.g., α might even not be
a valid index with respect to the sampled f ′).

Second, when A inverts y∗ relative to f ′, it may be that the pre-image x′

that it finds is not even in the domain Df
α of the permutation P f (α, ·) that it

On Constructing OWPs from Indistinguishability Obfuscation 521

needs to invert. That is, it may be that even when the index α is valid relatively
to both f and f ′, the domain of the permutation indexed by α relative to f is
completely different than the domain relative to f ′. One can try restricting A to
sampling x′ from the domain Df

α, but conditioning on P f ′
(α, x′) = y∗ it is not

clear that such an x′ even exists (and, even if it exists, A would typically need
an exponential number of queries to f for finding it – since A has no “simple”
representation of the sets Df

α and Df ′
α).

Finally, even when x′ is the pre-image of y∗ relative to f ′ and x∗ is the pre-
image of y∗ relative to f , we have no guarantee that neither x′ or x∗ are even
in the domain of the permutation indexed by α when considering the hybrid
oracle f̃ . Therefore, the fact that P f (α, x∗) = P f ′

(α, x′) and x∗ �= x′ may not
indicate any contradiction.

In Sect. 4 we show how to overcome these obstacles. Intuitively, when sam-
pling some function f ′ and the element x′, the algorithm A samples in addition
two “certificates” that ensure that α is a valid index relative to f ′, and that x′

is in the respective domain. These certificates include the randomness used by
the index sampling and input sampling procedures of the permutation family, as
well as all oracle queries and answers that are involved in the execution of these
two procedures. We later use these certificates when defining the hybrid func-
tion f̃ , and thus ensure that α is a valid index relative to f̃ and that x′ is in the
respective domain. Similarly, relative to the true oracle f , there exist some other
certificates (which are unknown to A), that ensure that α and x∗ are valid, and
are considered as well when defining the hybrid f̃ . Only then we can conclude the
existence of a hybrid oracle f̃ relative to which there exist an index α and two
distinct inputs x∗ and x′ in the domain of α such that P

˜f (α, x∗) = P
˜f (α, x′).

1.4 Paper Organization

The remainder of this paper is organized as follows. In Sect. 2 we introduce
the cryptographic primitives under consideration in this paper, oracle-aided
one-way permutation families and indistinguishability obfuscation for oracle-
aided circuits, as well as some standard notation. In Sect. 3 we present our
negative result for constructing domain-invariant one-way permutation families
from indistinguishability obfuscation and one-way functions. Then, in Sect. 4 we
present our negative result for constructing one-way permutation families from
one-way functions.

2 Preliminaries

In this section we present the notation and basic definitions that are used in this
work. For a distribution X we denote by x ← X the process of sampling a value
x from the distribution X. Similarly, for a set X we denote by x ← X the process
of sampling a value x from the uniform distribution over X . For an integer n ∈ N

we denote by [n] the set {1, . . . , n}. A function negl : N → R
+ is negligible if for

every constant c > 0 there exists an integer Nc such that negl(n) < n−c for all
n > Nc. Throughout the paper, we denote by n the security parameter.

522 G. Asharov and G. Segev

2.1 Oracle-Aided One-Way Permutation Families

We consider the standard notion of a one-way permutation family (see, for exam-
ple, [37]) when naturally generalized to the setting of oracle-aided algorithms
(as required within the context of black-box reductions [43,54]). We start by
formalizing the notion of an oracle-aided permutation family, and then intro-
duce the standard one-wayness requirement.

Definition 2.1. Let (Gen,Samp,P) be a triplet of oracle-aided polynomial-time
algorithms. We say that (Gen,Samp,P) is an oracle-aided permutation family rel-
ative to an oracle Γ if the following properties are satisfied:

– Index Sampling: GenΓ (·) is a probabilistic algorithm that takes as input the
security parameter 1n and produces a distribution over indices α. For every
n ∈ N we denote by IΓ

n the support of the distribution GenΓ (1n), and we let
IΓ def=

⋃
n∈N

IΓ
n .

– Input Sampling: SampΓ (·) is a probabilistic algorithm that takes as input
an index α ∈ IΓ , and produces a uniform distribution over a set denoted DΓ

α .
– Permutation Evaluation: For any index α ∈ IΓ , PΓ (α, ·) is a deterministic

algorithm that computes a permutation over the set DΓ
α .

Definition 2.2. An oracle-aided permutation family (Gen,Samp,P) is one way
relative to an oracle Γ if for any probabilistic polynomial-time algorithm A there
exists a negligible function negl(·) such that

Pr
[
AΓ (α,PΓ (α, x)) = x

]
≤ negl(n)

for all sufficiently large n ∈ N, where the probability is taken over the choice of
α ← GenΓ (1n), x ← SampΓ (α), and over the internal randomness of A.

2.2 Indistinguishability Obfuscation for Oracle-Aided Circuits

We consider the standard notion of indistinguishability obfuscation [6,31] when
naturally generalized to oracle-aided circuits (i.e., circuits that may contain ora-
cle gates in addition to standard gates). We first define the notion of functional
equivalence relative to a specific function (provided as an oracle), and then we
define the notion of an indistinguishability obfuscation for a class of oracle-aided
circuits. In what follows, when considering a class C = {Cn}n∈N of oracle-aided
circuits, we assume that each Cn consists of circuits of size at most n.

Definition 2.3. Let C0 and C1 be two oracle-aided circuits, and let f be a
function. We say that C0 and C1 are functionally equivalent relative to f , denoted
Cf

0 ≡ Cf
1 , if for any input x it holds that Cf

0 (x) = Cf
1 (x).

Definition 2.4. A probabilistic polynomial-time algorithm iO is an indisting-
uishability obfuscator relative to an oracle Γ for a class C = {Cn}n∈N of oracle-
aided circuits if the following conditions are satisfied:

On Constructing OWPs from Indistinguishability Obfuscation 523

– Functionality. For all n ∈ N and for all C ∈ Cn it holds that

Pr
[
CΓ ≡ ĈΓ : Ĉ ← iOΓ (1n, C)

]
= 1.

– Indistinguishability. For any probabilistic polynomial-time distinguisher
D = (D1,D2) there exists a negligible function negl(·) such that

AdviOΓ,iO,D,C(n) def=
∣
∣
∣
∣Pr

[
ExpiOΓ,iO,D,C(n) = 1

]
− 1

2

∣
∣
∣
∣ ≤ negl(n)

for all sufficiently large n ∈ N, where the random variable ExpiOΓ,iO,D,C(n) is
defined via the following experiment:
1. b ← {0, 1}.
2. (C0, C1, ,) ← DΓ

1 (1n) where C0, C1 ∈ Cn and CΓ
0 ≡ CΓ

1 .
3. Ĉ ← iOΓ (1n, Cb).
4. b′ ← DΓ

2 (, , Ĉ).
5. If b′ = b then output 1, and otherwise output 0.

3 Impossibility for Constructions Based on iO
and One-Way Functions

In this section we present our negative result for domain-invariant constructions
of a one-way permutation family from from a one-way function and an indistin-
guishability obfuscator. In Sect. 3.1 we formally define the class of constructions
to which our negative result applies. Then, in Sect. 3.2 we present the structure
of our proof, which is provided in Sects. 3.3–3.4.

3.1 The Class of Constructions

We consider fully black-box constructions of a one-way permutation family from
a one-way function f and an indistinguishability obfuscator for all oracle-aided
circuits Cf . Following [3], we model these primitives as two independent building
blocks due to the following reasons. First, although indistinguishability obfus-
cation is known to imply one-way functions under reasonable assumptions [45],
this enables us to prove an unconditional result. Second, and more importantly,
this enables us to capture the common techniques that have been used so far in
constructions based on indistinguishability obfuscation. As discussed in Sect. 1.3,
these include, in particular, non-black-box techniques such as the punctured pro-
gramming approach of Sahai and Waters [58] and its variants.

We now formally define the class of constructions considered in this section,
tailoring our definitions to the specific primitives under consideration. We remind
the reader that two oracle-aided circuits, C0 and C1, are functionally equivalent
relative to a function f , denoted Cf

0 ≡ Cf
1 , if for any input x it holds that

Cf
0 (x) = Cf

1 (x) (see Definition 2.3). The following definition is based on those of
[3] (which, in turn, are motivated by [36,46,54]).

524 G. Asharov and G. Segev

Definition 3.1. A fully black-box construction of a one-way permutation fam-
ily from a one-way function and an indistinguishability obfuscator for the class
C = {Cn}n∈N of all polynomial-size oracle-aided circuits, consists of a triplet of
oracle-aided probabilistic polynomial-time algorithms (Gen,Samp,P), an oracle-
aided algorithm M that runs in time TM (·), and functions εM,1(·) and εM,2(·),
such that the following conditions hold:

– Correctness: For any functions f iO such that iO(C; r)f ≡ Cf for all C ∈ C
and r ∈ {0, 1}∗, the triplet (Gen,Samp,P) is a permutation family relative to
the oracle (f, iO) (as in Definition 2.1).

– Black-Box Proof of Security: For any function f , for any function iO
such that iO(C; r)f ≡ Cf for all C ∈ C and r ∈ {0, 1}∗, for any oracle-aided
algorithm A that runs in time TA = TA(n), and for any function εA = εA(n),
if

Pr
[
Af,iO(α,Pf,iO(α, x)) = x

]
≥ εA(n)

for infinitely many values of n ∈ N, where the probability is taken over the
choice of α ← Genf,iO(1n), x ← Sampf,iO(α), and over the internal random-
ness of A, then either

Pr
[
MA,f,iO (f (x)) ∈ f−1(f(x))

]
≥ εM,1

(
TA(n) · ε−1

A (n)
)

· εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the
choice of x ← {0, 1}n and over the internal randomness of M , or

∣
∣
∣
∣Pr

[
ExpiO(f,iO),iO,MA,C(n) = 1

]
− 1

2

∣
∣
∣
∣ ≥ εM,1

(
TA(n) · ε−1

A (n)
)

· εM,2(n)

for infinitely many values of n ∈ N (see Definition 2.4 for the description of
the experiment ExpiO(f,iO),iO,MA,C(n)).

The “Security Loss” Functions. Black-box constructions are typically for-
mulated with a reduction algorithm M that runs in polynomial time and offers
a polynomial security loss. In our setting, as we are interested in capturing
constructions that may be based on super-polynomial security assumptions, we
allow the algorithm M to run in arbitrary time TM (n) and to have an arbitrary
security loss.

In general, the security loss of a reduction is a function of the adversary’s
running time TA(n), of its success probability εA(n), and of the security parame-
ter n ∈ N. Following Luby [46] and Goldreich [36], we simplify the presentation
by considering Levin’s unified security measure TA(n) · ε−1

A (n). Specifically, our
definition captures the security loss of a reduction by considering an “adversary-
dependent” security loss εM,1(TA(n) · ε−1

A (n)), and an “adversary-independent”
security loss εM,2(n). By considering arbitrary security loss functions, we are
indeed able to capture constructions that rely on super-polynomial security
assumptions. For example, in the recent construction of Bitansky et al. [13] (and
in various other recent constructions based on indistinguishability obfuscation),

On Constructing OWPs from Indistinguishability Obfuscation 525

the adversary-dependent loss is polynomial whereas the adversary-independent
loss is sub-exponential6.

Domain-Invariant Constructions. We now define the notion of domain
invariance which allows us to refine the above class of constructions. Recall that
for an oracle-aided permutation family (Gen,Samp,P) and for any oracle Γ , we
denote by IΓ

n the support of the distribution GenΓ (1n) for every n ∈ N, and we
let IΓ def=

⋃
n∈N

IΓ
n (i.e., IΓ is the set of all permutation indices). In addition, for

any permutation index α ∈ IΓ we denote by DΓ
α the domain of the permutation

PΓ (α, ·).

Definition 3.2. An oracle-aided one-way permutation family (Gen,Samp,P) is
domain invariant relative to a set S of oracles if there exist sequences {In}n∈N

and {Dα}α∈I such that for every oracle Γ ∈ S the following conditions hold:

1. IΓ
n = In for every n ∈ N (i.e., a permutation index α is either valid with

respect to all oracles in S or invalid with respect to all oracles in S).
2. DΓ

α = Dα for every α ∈
⋃

n∈N
In (i.e., the domain of PΓ (α, ·) is the same for

all Γ ∈ S).

3.2 Proof Overview and the Oracle Γ

Our result in this section is obtained by presenting a distribution over oracles
Γ relative to which the following two properties hold: (1) there is no domain-
invariant one-way permutation family (Gen,Samp,P), and (2) there exist an
exponentially-secure one-way function f and an exponentially-secure indistin-
guishability obfuscator iO for the class of all polynomial-size oracle-aided cir-
cuits Cf . Equipped with the notation and terminology introduced in Sect. 3.1,
we prove the following theorem:

Theorem 3.3. Let (Gen,Samp,P,M, TM , εM,1, εM,2) be a fully black-box dom-
ain-invariant construction of a one-way permutation family from a one-way
function f and an indistinguishability obfuscator for the class of all polynomial-
size oracle-aided circuits Cf . Then, at least one of the following propertied holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential
time).

2. εM,1(nc) · εM,2(n) ≤ 2−n/4 for some constant c > 1 (i.e., the security loss is
exponential).

In particular, the theorem implies that if the running time TM (·) of the
reduction is sub-exponential and the adversary-dependent security loss εM,1(·)
is polynomial as in the vast majority of constructions (and, in particular, as in

6 This is also the situation, for example, when using “complexity leveraging” for argu-
ing that any selectively-secure identity-based encryption scheme is in fact adaptively
secure.

526 G. Asharov and G. Segev

the construction of Bitansky et al. [13]), then the adversary-independent security
loss εM,2(·) must be exponential (thus ruling out even constructions that rely on
sub-exponential security assumptions – as discussed in Sect. 3.1).

In what follows we describe the oracle Γ (more accurately, the distribution
over such oracles), and then explain the structure of our proof.
The Oracle Γ. The oracle Γ is a triplet

(
f,O,Evalf,O

)
that is sampled from a

distribution S defined as follows:

– The Function f = {fn}n∈N. For every n ∈ N, the function fn is a uniformly
chosen function fn : {0, 1}n → {0, 1}n.
Looking ahead, we will prove that f is a one-way function relative to Γ .

– The Functions O = {On}n∈N and Evalf,O = {Evalf,On }n∈N. For every
n ∈ N the function On is an injective function On : {0, 1}2n → {0, 1}10n chosen
uniformly at random. The function Evalf,O

n on input (Ĉ, x) ∈ {0, 1}10n ×
{0, 1}n finds the unique pair (C, r) ∈ {0, 1}n×{0, 1}n such that On(C, r) = Ĉ,
where C is an oracle-aided circuit and r is a string (uniqueness is guaranteed
since On is injective). If such a pair exists, it evaluates and outputs Cf (x),
and otherwise it outputs ⊥.
Looking ahead, we will use O and Eval for realizing an indistinguishability
obfuscator iO relative to Γ for the class of all polynomial-size oracle-aided
circuits Cf .

The Structure of Our Proof. Our proof consists of two parts: (1) showing
that relative to Γ there is no domain-invariant one-way permutation family,
and (2) showing that relative to Γ the function f is an exponentially-secure
one-way function and that the pair (O,Eval) can be used for implementing an
exponentially-secure indistinguishability obfuscator for oracle-aided circuits Cf .

The vast majority of our effort in this proof is in showing that relative to Γ
there is no domain-invariant one-way permutation family. Specifically, as for the
second part, our oracle Γ is somewhat similar to the oracle introduced by [3],
relative to which they proved the existence of an exponentially-secure one-way
function and an exponentially-secure indistinguishability obfuscator. The main
difference between the oracles is that the function O in their case is a permuta-
tion, whereas in our case it is an injective length-increasing function. Since our
aim here is to rule out constructions of one-way permutations, then clearly we
cannot allow O to be a permutation. This requires us to revisit the proof of [3]
and generalize it to the case where O is injective and length increasing.

In what follows, we say that an algorithm A that has oracle access to Γ is a
q-query algorithm if it makes at most q queries to Γ , and each of its queries to
Eval consists of a circuit of size at most q.

Part 1: Inverting any Domain-Invariant Construction. Building upon
and generalizing the work of Rudich [57], we show that relative to the oracle Γ
there are no domain-invariant one-way permutations families. As discussed in

On Constructing OWPs from Indistinguishability Obfuscation 527

Sect. 1.3, Rudich presented an attacker that inverts any single domain-invariant
permutation that has oracle access to a random function. Here we need to deal
with constructions that have oracle access to a significantly more structured func-
tionality7, and that are permutation families. Nevertheless, inspired by the main
ideas underlying Rudich’s attacker we prove the following theorem in Sect. 3.3:

Theorem 3.4 (Simplified). Let (Gen,Samp,P) be an oracle-aided domain-
invariant permutation family. Then, there exist a polynomial q(·) and a q-query
algorithm A such that

Pr
[
AΓ (α,PΓ (α, x)) = x

]
≥ 1 − 2−10

for any n ∈ N, where the probability is taken over the choice of Γ ← S, α ←
GenΓ (1n), x ← SampΓ (α), and over the internal randomness of A. Moreover, the
algorithm A can be implemented in polynomial time given access to a PSPACE-
complete oracle.

Part 2: The Existence of a One-Way Function and an Indistinguisha-
bility Obfuscator. As discussed above, by refining the proof of [3] we prove
that f is an exponentially-secure one-way function relative to Γ , and we con-
struct an exponentially-secure indistinguishability obfuscator iO. Our obfuscator
is defined as follows: For obfuscating an oracle-aided circuit C ∈ {0, 1}n (i.e.,
we denote by n = n(C) the bit length of C’s representation), the obfuscator iO
samples r ← {0, 1}n uniformly at random, computes Ĉ = On(C, r), and outputs
the circuit Eval(Ĉ, ·). That is, the obfuscated circuit consists of a single Eval gate
with hardwired input Ĉ. We prove the following theorem in the full version of
this paper [4]:

Theorem 3.5 (Simplified). For any oracle-aided 2n/4-query algorithm A it
hold that

Pr
[
AΓ (f(x)) ∈ f−1(f(x))

]
≤ 2−n/2

and ∣
∣
∣
∣Pr

[
ExpiOΓ,iO,A,C(n) = 1

]
= 1 − 1

2

∣
∣
∣
∣ ≤ 2−n/4

for all sufficiently large n ∈ N, where the probability is taken over the choice of
Γ ← S and internal randomness of A for both cases, in addition to the choice of
x ← {0, 1}n in the former case and to the internal randomness of the challenger
in the latter case.

3.3 Attacking Domain-Invariant Permutation Families
Relative to Γ

We show that relative to the oracle Γ there are no domain-invariant one-way
permutations families. As discussed in Sect. 1.3, Rudich presented an attacker
7 For example, there are dependencies between O, Eval and f which allow Eval to

query O for a exponential number of times.

528 G. Asharov and G. Segev

that inverts any single domain-invariant permutation that has oracle access to
a random function. Here we need to deal with constructions that have oracle
access to a significantly more structured functionality. We prove the following
theorem:

Theorem 3.6. Let (Gen,Samp,P) be an oracle-aided permutation family that is
domain invariant relative to the support of the distribution S. Then, there exist
a polynomial q(·) and a q-query algorithm A such that

Pr
[
AΓ (α,PΓ (α, x∗)) = x∗] ≥ 1 − 2−10

for any n ∈ N, where the probability is taken over the choice of Γ ← S,
α ← GenΓ (1n), x∗ ← SampΓ (α), and over the internal randomness of A. More-
over, the algorithm A can be implemented in polynomial time given access to a
PSPACE-complete oracle.

We first provide additional notation definitions that we require for the proof
of the above theorem, and then we provide its formal proof.

The Event spoof. The event spoof will help up show that the oracle Eval
does not provide the construction with any significant capabilities. We formally
define this event and then state an important claim that will help up to prove
our theorem.

Definition 3.7. For any oracle-aided algorithm M , consider the following event
spoofn that may occur during an execution of MΓ (1n): The algorithm makes a
query Evaln(Ĉ, a) with |Ĉ| = 10n whose output is not ⊥, yet Ĉ was not an output
of a previous On-query.

In the full version of this paper [4] we prove the following claim:

Claim 3.8. For any n ∈ N, for any f and O−n = {Om}m∈N,m �=nm and for
any q-query algorithm M , the probability that spoofn occurs in an execution of
MΓ (1n) satisfies

Pr
On

[spoofn] ≤ q · 2−8n .

Notation. Denote by T the support of the distribution S from which our oracle
Γ = (f,O,Evalf,O) is sampled. Note that the oracle Eval is fully determined given
f and O, and therefore it is enough to consider the choice of the latter only. For
every n ∈ N we let In denote the support of GenΓ (1n), which is the same for
every Γ ∈ T due to the domain invariant assumption, and we let I =

⋃
n∈N

In.
In addition, we let D = {Dα}α∈I be the set of domains (which is again the same
for any Γ ∈ T).

We let Partial(Γ ′) denote the set of oracle queries that our adversary A will
sample in each iteration. We let Q denote the set of actual queries that made
by A to the true oracle Γ . We write, e.g., [On(C, r) = Ĉ] ∈ Q to denote that Q

On Constructing OWPs from Indistinguishability Obfuscation 529

contains an On-query with input (C, r) and output Ĉ. Likewise, [fn(x) = y] ∈
Partial(Γ ′) denotes that there is some fn query in Partial(Γ ′) with input x and
output y. We also use the symbol � to indicate an arbitrary value, for instance
[Eval(Ĉ, a) = �] ∈ Q denotes that A made an Eval call to Γ on the pair (Ĉ, a),
but we are not interested in the value that was returned by the oracle.

The Set of Queries/Answers that the Adversary Samples. Our adver-
sary A will sample in each iteration some oracle queries/answers Partial(Γ ′) =
(f ′,O′,Eval′) that are consistent with the actual queries Q it made so far. How-
ever, since the oracles (f,O,Eval) have some dependencies, we want that these
dependencies will appear explicitly in the set of queries/answers that the adver-
sary samples (looking ahead, by doing so, we will be able to construct a hybrid
oracle Γ̃). Formally, we define:

Definition 3.9 (Consistent Oracle Queries/Answers). Let Partial(Γ ′) =
(f ′,O′,Eval′) be a set of queries/answers. We say it is consistent if for every
m ∈ N it holds that:

1. For every query
[
Evalm(Ĉ, �) = �

]
∈ Eval′, there exists a query

[
Om(�) =

Ĉ
]

∈ O′.
2. For every query

[
Evalm(Ĉ, a) = β

]
∈ Eval′ with |Ĉ| = 10m and |a| = m, let

[
Om(C, r) = Ĉ

]
∈ O′ that is guaranteed to exist by the previous requirement.

Then, the oracle f ′ contains also queries/answers sufficient for the evaluation
of Cf ′

(a), and the value of this evaluation is indeed β.

Augmented Oracle Queries. For the analysis, we consider the queries that
are associated with the execution of PΓ (α, x∗) = y∗, for some α ∈ I. In fact, the
set that we consider may contain some additional queries that do not necessarily
appear in the execution of PΓ (α, x∗), but are still associated with this execution.
Let RealQ(Π,Γ, α, x∗) denote the set of actual queries to Γ in the evaluation of
PΓ (α, x∗). We define:

Definition 3.10 (Augmented Oracle Queries). The set of extended queries,
denoted AugQ(Π,Γ, x∗), consists of the following queries:

1. All the queries in RealQ(Π,Γ, α, x∗).
2. For every query [Evalm(Ĉ, a) = β] ∈ RealQ(Π,Γ, α, x∗) with |Ĉ| = 10m, |a| =

m and b �= ⊥, let C, r ∈ {0, 1}m be the unique pair such that Om(C, r) = Ĉ.
Then, the set AugQ(Π,Γ, x∗) contains all the f-queries/answers sufficient to
for the evaluation of Cf (a).

Note that these additional queries correspond to the consistent queries/answers
that the adversary samples in the attack, as in Definition 3.9. We do not explicitly
require the first requirement of Definition 3.9 here. This is because our analysis

530 G. Asharov and G. Segev

focuses on the case where there is no Eval query on an obfuscated circuit Ĉ that
is not an output of a previous O-query.

Looking ahead, all the circuits that will be evaluated by the oracle Eval are
of some polynomial size in the security parameter,and therefore each evaluation
adds some polynomial number of oracle queries to f . Therefore, the overall size
of AugQ(Π,Γ, x∗) is some polynomial. Let 	 = 	(n) > n be an upper bound of
|AugQ(P, Γ̃ , x)| for all possible Γ̃ ∈ T and all x ∈ Dα.

Equipped with the above notation and definitions, we are now ready to prove
Theorem 3.6.

Proof of Theorem 3.6. Let Π = (Gen,Samp,P) be an oracle-aided permutation
family that is domain invariant relative to the support of the distribution S.
Consider the following oracle-aided algorithm A:

The Algorithm A.

– Input: An index α ∈ I and a value y∗ ∈ Dα.
– Oracle access: The oracle Γ .
– The algorithm:

1. Initialize an empty list Q of oracle queries/answers to Γ (looking ahead,
the list Q will always be consistent with the true oracle Γ).

2. Avoiding spoofmfor small m. Let t = log(16). The adversary A queries
the oracle fm on all inputs |x| = m for all m ≤ t. It queries Om(C, r) for all
|C| = |r| = m ≤ t; and queries Evalm(Ĉ, a) on all m ≤ t with |Ĉ| = m/10
and |a| = m. Denote this set of queries by Q∗.

3. Run the following for 	 + 1 iterations:
(a) Simulation phase: A finds a value x′ ∈ Dα and a set Partial(Γ ′)

of consistent oracle queries/answers that is consistent with the list of
queries/answers Q, such that PPartial(Γ ′)(α, x′) = y∗ as follows: 8

i. A samples an oracle Γ ′ = (f ′,O′,Eval′) uniformly at random from
the set of all oracles that are consistent with Q. That is, f ′ and O′

are sampled uniformly at random conditioned on Q, and then Eval′

is defined accordingly.
ii. A inverts y∗ relative to Γ ′. Specifically, A enumerates over Dα and

find the unique input x′ ∈ Dα for which PΓ ′
(α, x′) = y∗.

iii. A sets Partial(Γ ′) to be all the queries in Q, and all the queries
included in the evaluation of PΓ ′

(α, x′).
(b) Evaluation phase: The adversary evaluates PΓ (α, x′). If the output

of the evaluation is y∗, it halts and outputs x′.
(c) Update phase: Otherwise, A makes all the queries in Partial(Γ ′) \ Q

to the true oracle Γ , and continues to the next iteration.
4. In case the adversary has not halted yet, it outputs ⊥.

8 Note that the set of queries/answers Partial(Γ ′) may be inconsistent with the true
oracle Γ on all queries Partial(Γ ′) \ Q.

On Constructing OWPs from Indistinguishability Obfuscation 531

Analysis. We show that in each iteration the adversary either finds x∗ or learns
some query associated with the evaluation PΓ (α, x∗). We now define these two
“bad” events and show that they occur with small probability. We then proceed
to the analysis conditioned that these two bad events do not occur.

The Event spoof. For any m ∈ N, define spoofm to be the event where
[
Evalm(Ĉ, a) �= ⊥

]
∈ AugQ(Π,Γ, x∗)

but [
Om(�, �) = Ĉ

]
�∈ AugQ(Π,Γ, x∗) ∪ Q∗ .

Let spoofΓ =
∨

m spoofm. By construction, Q∗ contains all possible Om-
queries for every m ≤ t, and therefore spoofm cannot occur for m ≤ t. Moreover,
by Claim 3.8, we have that

Pr [spoofΓ] ≤ Pr
[∨

mspoofm
]

≤
∞∑

m=t

Pr [spoofm]

≤
∞∑

m=log 16�

	 · 2−8m ≤ 2 · 	 · 2−8 log 16� ≤ 2−31

Let spoof ′m be the event where the adversary A queries the real oracle Γ

some query [Evalm(Ĉ, �)], receives a value differ than ⊥, but Ĉ was not an
output of Γ on some previous query of A to Om. Let spoofA =

∨
m spoof ′m.

Similarly to the above, the probability of spoofA is bounded by 2−31. Finally,
we let spoof = spoofΓ ∨ spoofA, and this probability is bounded by 2−30.

The Event fail. The second bad event that we consider is the event fail. This
event occurs whenever A samples an oracle Γ ′ that has some contradiction with
the oracle Γ , and therefore the hybrid oracle Γ̃ cannot be constructed.

Let T (Q) be the set of all oracles Γ ′ that are consistent with Q (namely, each
query in Q is answered the same for all Γ ′ ∈ T (Q), with the same answer as
Γ). In each iteration, the adversary A samples the oracle Γ ′ which is consistent
with the true oracle queries Q. Let T -admissible denote the set of “valid” oracles
that A may sample; the set T -admissible contains all oracles Γ ′ = (f ′,O′,Eval′)
such that:

– Γ ′ is consistent with Q.
– Γ ′ avoids the outputs of O. For every m ∈ N, the true oracle Om and the

sampled oracle O′
m should have disjoint outputs (except for the queries in Q).

Formally, let QO
m = {x ∈ {0, 1}2m | [Om(x) = �] ∈ Q}. Then, we require

that for every x, y �∈ QO
m it holds that Om(x) �= O′

m(y).
– Γ ′ avoids invalid Eval-queries. That is, for every

[
Evalm(Ĉ, a) = ⊥

]
∈

AugQ(Π,Γ, x∗), with |Ĉ| = 10m, for every C, r ∈ {0, 1}m it holds that
O′

m(C, r) �= Ĉ.

532 G. Asharov and G. Segev

Notice that the first two conditions relate to the set of queries Q, whereas the
third condition relates to the set AugQ(Π,Γ, x∗). Moreover, note that the sec-
ond condition defines 22m − |Q| outputs of O′

m that are invalid, and the third
condition defines at most q invalid outputs. Therefore, there are overall at most
22m outputs of O′

m that are invalid.
Note that between iterations, the set Q varies. We define by Invalid-Im(i)

m the
set of all invalid outputs for O′

m, in the ith iteration. In all iterations, the set
Invalid-Im(i)

m is bounded by 22m.
Let fail(i)m denote the event where A samples an invalid oracle O′

m in some
iteration i. Let fail(i) =

∨
m fail(i)m , and let fail =

∨
i fail

(i). For every m, we have
that:

Pr
O′

m

[
fail(i)m

]
= Pr

O′
m

[
∃x ∈ {0, 1}2m s.t. O′

m(x) ∈ Invalid-Im(i)
m

]

≤ 22m ·

∣
∣
∣Invalid-Im(i)

m

∣
∣
∣

210m − 22m
≤ 2−5m .

As a result, we get that the probability that sampling O fails for some length
m > t is bounded by

Pr
O′

[
fail(i)

]
≤

∞∑

m=t

2−5m ≤ 2 · 2−5t .

We therefore conclude that the probability that in some of the 	 + 1 iterations,
the adversary A samples some oracle Γ ′ �∈ T -admissible is bounded by

Pr [fail] ≤
�+1∑

i=1

Pr
[
fail(i)

]
≤ (+ 1) · 2 · 2−5t = 2(+ 1) ·

(
2−4 · 	−1

)5 ≤ 2−19 ,

where recall that t = log(16). We are now ready for the main claim of the
analysis.

Claim 3.11. Assume that fail and spoof do not occur. Then, in every iteration
at least one of the following occurs:

1. A finds the pre-image x∗ such that PΓ (α, x∗) = y∗.
2. During the update phase A queries Γ with at least one of the queries in

AugQ(Π,Γ, x∗).

Proof. Assume that neither one of the above conditions hold. Then, we show
that there exists an oracle Γ̃ ∈ T that behaves like the true oracle Γ on
P
˜Γ (α, x∗) = PΓ (α, x∗) = y∗, and on the other hand, it behaves like Γ ′ in the

evaluation of P˜Γ (α, x′) = PPartial(Γ ′)(α, x′) = y∗. According to this oracle Γ̃ , the
following hold:

1. Since Π is a domain-invariant construction, and since Γ̃ ∈ T , there exists
some randomness r ∈ {0, 1}∗ such that Gen

˜Γ (1n; r) = α.

On Constructing OWPs from Indistinguishability Obfuscation 533

2. Since Π is a domain-invariant construction, it holds that Im(Samp
˜Γ (α)) =

Im(SampΓ (α)) = Im(SampPartial(Γ
′)(α)) = Dα. As a result, there exists some

randomness r′ ∈ {0, 1}∗ such that Samp
˜Γ (α; r′) = x′ and Samp

˜Γ (α; r∗) = x∗.
3. As mentioned above, P˜Γ (α, x′) = y∗ and P

˜Γ (α, x∗) = y∗.

Since the first condition in the statement does not hold, we conclude that x′ �= x∗

but still P˜Γ (α, x′) = P
˜Γ (α, x∗), in contradiction to the assumption that P˜Γ (α, ·)

defines a permutation.

We now show that the oracle Γ̃ = (f̃ , Õ, Ẽval) as above can be con-
structed. Recall that we assume that the both conditions of the state-
ment of the claim do not hold, and therefore in particular it holds that
AugQ(Π,Γ, x∗) ∩ Partial(Γ ′) ⊆ Q.

The Oracle f̃ . Note that for every m ≤ t, the set of queries Q∗ contains all the
functions {fm}m≤t and thus agrees completely with f (i.e., also with f ′). We
therefore set f̃m = fm.

For every m > t, we define the function f̃m as follows. For every x such that
[fm(x) = y′] ∈ AugQ(Π,Γ, x∗), we set f̃m(x) = y′. For every [fm(x) = y] ∈
Partial(Γ ′), we set f̃m(x) = y. Since AugQ(Π,Γ, x∗) ∩ Partial(Γ ′) ⊆ Q, we have
that there is no contradiction, i.e., there are no input x and outputs y, y′ such
that y �= y′ and [fm(x) = y′] ∈ f ′ and [fm(x) = y] ∈ AugQ(Π,Γ, x∗). For any
other value x �∈ Partial(Γ ′) ∩ AugQ(Π,Γ, x∗), we set f̃m(x) = 0m.

Before we continue to define the oracle Õ, we first define some set of output
values that Õ will have to avoid. For every m > t, we define the set avoid-Om as

avoid-Om
def={

Ĉ ∈ {0, 1}10m | ∃ [Evalm(Ĉ, �) = �] ∈ AugQ(Π,Γ, x∗) ∪ Partial(Γ ′)
}

.

The Oracle Õ. The oracle is already defined for every m ≤ t. For every m > t,
we define the function Õm as follows. For every [Om(x) = y] ∈ AugQ(Π,Γ, x∗),
we set Õm(x) = y. Likewise, for every [Om(x) = y] ∈ Partial(Γ ′), we set Õm(x) =
y. Since AugQ(Π,Γ, x∗)∩Partial(Γ ′) ⊆ Q, we have that there is no contradiction,
that is, there is no pre-image that has two possible outputs. Moreover, since fail
does not occur, it holds that Γ ′ ∈ T -admissible, the two functions Om and (the
partially defined function) O′

m do not evaluate to the same output, and so the
partially defined function Õm is injective. We continue to define Õm on the
additional values, such that Om is injective and avoids the set avoid-Om.

The Oracle Ẽval. We define the oracle Ẽval using the oracles f̃ and Õ exactly as
the true oracle Eval is defined using the true oracles f and O. We now show that
Ẽval is consistent with AugQ(Π,Γ, x∗) and Partial(Γ ′). That is, that every query
[Evalm(�, �)] ∈ AugQ(Π,Γ, x∗) ∪ Partial(Γ ′) has the same answer with Ẽval, and
therefore PΓ (α, x∗) = P

˜Γ (α, x∗) and PΓ ′
(xα, x′) = P

˜Γ (α, x′). We have:

534 G. Asharov and G. Segev

1. Assume that there exists [Eval(Ĉ, a) = β] ∈ Eval′ for some β �= ⊥. Since the
oracle Partial(Γ ′) = (f ′,O′,Eval′) is consistent (recall Definition 3.9), then
there exists a query

[
Om(C, r) = Ĉ

]
∈ Partial(Γ ′) and f ′ contains all the

necessary queries/answers for the evaluation of Cf ′
(a), and it also holds that

Cf ′
(a) = β. However, since any (f ′,O′)-queries in Partial(Γ ′) has the exact

same answer with (f̃ , Õ), it holds that C
˜f (a) = β and Õ(C, r) = Ĉ, and so,

from the definition of Ẽval it holds that Ẽval(Ĉ, a) = β as well.
2. Assume that there exists [Eval(Ĉ, a) = β] ∈ AugQ(Π,Γ, x∗) for some β �=

⊥. Since the event spoof does not occur, there exists a query [O(C, r) =
Ĉ] ∈ AugQ(Π,Γ, x∗) as well, and AugQ(Π,Γ, x∗) contains also all the f -
queries necessary for the evaluation Cf (a). Since these queries appear in
AugQ(Π,Γ, x∗), it holds that f̃ and Õ agree on the same queries, and therefore
Ẽval(Ĉ, a) = β, as well.

3. For every query [Eval(Ĉ, a) = ⊥] ∈ Partial(Γ ′) ∪ AugQ(Π,Γ, x∗) we show
that Ẽval(Ĉ, a) = ⊥ as well. Specifically, it suffices to show that there do not
exist C and r for which Õ(C, r) = Ĉ. Assume towards a contradiction that
there exist such C and r, then there is inconsistency only if Õ(C, r) = Ĉ but
[Eval(Ĉ, a) = ⊥] ∈ Partial(Γ ′) ∪ AugQ(Π,Γ, x∗). However, this cannot occur
since the oracles O and O′ do not contradict, and Õ avoids all Eval-queries
in both Partial(Γ ′) and AugQ(Π,Γ, x∗), since it avoids the set avoid-O.

This completes the proof of claim 3.11.

From the previous claim we conclude that:

Pr
Γ←S

α←GenΓ (1n)

x∗←SampΓ (α)

[
AΓ (α,PΓ (α, x∗)) = x∗ | fail ∧ spoof

]
= 1 .

Since Pr [fail] + Pr [spoof] ≤ 2−10, it holds that:

Pr
Γ←S

α←GenΓ (1n)

x∗←SampΓ (α)

[
AΓ (α,PΓ (α, x∗)) = x∗]

≥ 1 − 2−10.

Finally, we observe that A makes at most a polynomial number of oracle queries
to Γ , and all other computations that are done by A can be done using a
polynomial number of queries to a PSPACE-complete oracle (as in the work of
Impagliazzo and Rudich [43]): In each iteration, sampling x′ and Partial(Γ ′) can
be done in polynomial space, requires access only to Q which is of polynomial
size, and does not require access to Γ . �

3.4 Proof of Theorem 3.3

Equipped with the proofs of Theorems 3.4 and 3.5, we are now ready to prove
Theorem 3.3.

On Constructing OWPs from Indistinguishability Obfuscation 535

Proof of Theorem 3.3. Let (Gen,Samp,P,M, TM , εM,1, εM,2) be a fully black-
box construction of a domain-invariant one-way permutation family from a one-
way function f and an indistinguishability obfuscator iO for the class C of
all oracle-aided polynomial-size circuits Cf (recall Definition 3.2). Theorem 3.4
guarantees the existence of an oracle-aided algorithm A that runs in polynomial
time TA(n) such that

Pr
[
APSPACE,Γ (α,PΓ (α, x)) = x

]
≥ εA(n)

for any n ∈ N, where εA(n) = 1 − 2−10, and the probability is taken over
the choice of Γ ← S, α ← GenΓ (1n), x ← SampΓ (α), and over the internal
randomness of A. Definition 3.1 then states that there are two possible cases to
consider: A can be used either for inverting the one-way permutation f or for
breaking the indistinguishability obfuscator iO.

In the first case we obtain from Definition 3.1 that

Pr
[
MAPSPACE,Γ (f (x)) ∈ f−1(f(x))

]
≥ εM,1

(
TA(n) · ε−1

A (n)
)

· εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice
of x ← {0, 1}n and over the internal randomness of M . The algorithm M may
invoke A on various security parameters (i.e., in general M is not restricted to
invoking A only on security parameter n), and we denote by 	(n) the maximal
security parameter on which M invokes A (when M itself is invoked on security
parameter n). Thus, viewing MA as a single oracle-aided algorithm that has
access to a PSPACE-complete oracle and to Γ , its running time TMA(n) satisfies
TMA(n) ≤ TM (n) · TA((n)) (this follows since M may invoke A at most TM (n)
times, and the running time of A on each such invocation is at most TA((n))).
In particular, viewing M ′ def= MAPSPACE

as a single oracle-aided algorithm that has
oracle access to Γ , implies that M ′ is a q-query algorithm where q(n) = TMA(n).9

Theorem 3.5 then implies that either 2n/4 ≤ q(n) or εM,1

(
TA(n) · ε−1

A (n)
)

·
εM,2(n) ≤ 2−n/2. In the first sub-case, noting that 	(n) ≤ TM (n), we obtain that

2n/4 ≤ q(n) = TMA(n) ≤ TM (n) · TA((n)) ≤ TM (n) · TA(TM (n)).

The running time TA(n) of the adversary A (when given access to a PSPACE-
complete oracle) is some fixed polynomial in n, and therefore TM (n) ≥ 2ζn

for some constant ζ > 0. In the second sub-case, we have that εM,1 (TA(n)) ·
εM,2(n) ≤ 2−n/2, and since TA(n) is some fixed polynomial in n (and εA(n) is a
constant) we obtain that εM,1(nc) · εM,2(n) ≤ 2−n/2 for some constant c > 1.

In the second case we obtain from Definition 3.1 that
∣
∣
∣
∣Pr

[
ExpiO

Γ,iO,MAPSPACE ,C(n) = 1
]

− 1
2

∣
∣
∣
∣ ≥ εM,1

(
TA(n) · ε−1

A (n)
)

· εM,2(n)

9 Recall that an algorithm that has oracle access to Γ is a q-query algorithm if it makes
at most q queries to Γ , and each of its queries to Eval consists of a circuit of size at
most q.

536 G. Asharov and G. Segev

for infinitely many values of n ∈ N, where Γ ← S. As in the first case, viewing
M ′ def= MAPSPACE

as a single oracle-aided algorithm that has oracle access to Γ ,
implies that M ′ is a q-query algorithm where q(n) = TMA(n). Theorem 3.5 then
implies that either 2n/4 ≤ q(n) or εM,1

(
TA(n) · ε−1

A (n)
)
· εM,2(n) ≤ 2−n/4. As in

the first case, this implies that either TM (n) ≥ 2ζn for some constant ζ > 0, or
εM,1(nc) · εM,2(n) ≤ 2−n/4 for some constant c > 1. �

4 Impossibility for Constructions Based on One-Way
Functions

As discussed in Sect. 1.3, the known impossibility results for constructing one-
way permutations based on one-way functions [44,50,57] fall short in two aspects.
First, these results rule out constructions of a single one-way permutation, and
do not rule out constructions of a one-way permutation family. Second, these
results rule out constructions that are domain invariant (recall Definition 3.2),
and do not rule out constructions that are not domain invariant (such as the
construction of Bitansky et al. [13]).

In this section we resolve this surprising gap by ruling out all fully black-box
constructions of one-way permutation families from one-way functions – even
constructions that are not domain invariant. In what follows we first formally
define this class of reductions, and then state and prove our result.

Definition 4.1. A fully black-box construction of a one-way permutation fam-
ily from a one-way function consists of a triplet of oracle-aided probabilistic
polynomial-time algorithms (Gen,Samp,P), an oracle-aided algorithm M that
runs in time TM (·), and functions εM,1(·) and εM,2(·), such that the following
conditions hold:

– Correctness: For any function f the triplet (Gen,Samp,P) is a permutation
family relative to f (as in Definition 2.1).

– Black-Box Proof of Security: For any function f , for any oracle-aided
algorithm A that runs in time TA = TA(n), and for any function εA = εA(n),
if

Pr
[
Af (α,Pf (α, x)) = x

]
≥ εA(n)

for infinitely many values of n ∈ N, where the probability is taken over the
choice of α ← Genf (1n), x ← Sampf (α), and over the internal randomness
of A, then

Pr
[
Mf,A (f (x)) ∈ f−1(f(x))

]
≥ εM,1

(
TA(n) · ε−1

A (n)
)

· εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the
choice of x ← {0, 1}n and over the internal randomness of M .

On Constructing OWPs from Indistinguishability Obfuscation 537

The above definition clearly captures constructions that are not domain
invariant. First, it allows the support of the distribution Genf (1n) to depend
on f . Second, for each permutation index α that is produced by Genf (1n), it
allows the domain of the permutation Pf (α, ·) to depend on f . For this general
class of reductions we prove the following theorem:

Theorem 4.2. Let (Gen,Samp,P,M, TM , εM,1, εM,2) be a fully black-box con-
struction of a one-way permutation family from a one-way function. Then, at
least one of the following propertied holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential
time).

2. εM,1(nc) · εM,2(n) ≤ 2−βn for some constants c > 1 and β > 0 (i.e., the
security loss is exponential).10

Towards proving Theorem4.2 we generalize the attack presented in Sect. 1.3
from inverting any single oracle-aided domain-invariant permutation to inverting
any oracle-aided one-way permutation family – even such families that are not
domain invariant. In the full version of this paper [4], we prove the following
theorem:

Theorem 4.3. Let (Gen,Samp,P) be a triplet of oracle-aided probabilistic
polynomial-time algorithms that is a permutation family relative to any oracle f .
Then, there exists an oracle-aided algorithm A that makes a polynomial number
of oracle queries such that for any function f it holds that

Pr
[
Af (α,Pf (α, x)) = x

]
= 1

for any n ∈ N, where the probability is taken over the choice of α ← Genf (1n) and
x ← Sampf (α), and over the internal randomness of A. Moreover, the algorithm
A can be implemented in polynomial time given access to a PSPACE-complete
oracle.

References

1. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015)

2. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 308–326. Springer, Berlin (2015)

3. Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation
and functional encryption. In: Proceedings of the 56th Annual IEEE Symposium
on Foundations of Computer Science (2015, To appear). https://eprint.iacr.org/
2015/341.pdf

10 In particular, if the adversary-dependent security loss εM,1(·) is polynomial, then the
adversary-independent security loss εM,2(·) is exponential.

https://eprint.iacr.org/2015/341.pdf
https://eprint.iacr.org/2015/341.pdf

538 G. Asharov and G. Segev

4. Asharov, G., Segev, G.: On constructing one-way permutations from indistin-
guishability obfuscation. Cryptology ePrint Archive, Report 2015/752 (2015).
http://eprint.iacr.org/2015/752.pdf

5. Baecher, P., Brzuska, C., Fischlin, M.: Notions of black-box reductions, revisited.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp.
296–315. Springer, Heidelberg (2013)

6. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

7. Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal — an O(n2) query
attack on any key exchange from a random oracle. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 374–390. Springer, Heidelberg (2009)

8. Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any one-way
function and a framework for differing-inputs obfuscation. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 102–121. Springer,
Heidelberg (2014)

9. Bitansky, N., Canetti, R., Cohn, H., Goldwasser, S., Kalai, Y.T., Paneth, O., Rosen,
A.: The impossibility of obfuscation with auxiliary input or a universal simulator.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp.
71–89. Springer, Heidelberg (2014)

10. Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box obfuscation
for general circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II.
LNCS, vol. 8617, pp. 108–125. Springer, Heidelberg (2014)

11. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part II. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015)

12. Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a
nash equilibrium. In: Proceedings of the 56th Annual IEEE Symposium on Foun-
dations of Computer Science (2015, To appear). https://eprint.iacr.org/2014/1029.
pdf

13. Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos. In:
Kushilevitz, E., Malkin, T., (eds.) TCC 2016-A, Part I. LNCS, vol. 9563, pp. 474–
502. Springer, Heidelberg (2016)

14. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: Proceedings of the 56th Annual IEEE Symposium on Foundations
of Computer Science (2015, To appear). https://eprint.iacr.org/2014/163.pdf

15. Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Comput. 13(4), 850–864 (1984)

16. Bogdanov, A., Brzuska, C.: On basing size-verifiable one-way functions on NP-
hardness. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014,
pp. 1–6. Springer, Heidelberg (2015)

17. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014)

18. Brakerski, Z., Katz, J., Segev, G., Yerukhimovich, A.: Limits on the power of zero-
knowledge proofs in cryptographic constructions. In: Ishai, Y. (ed.) TCC 2011.
LNCS, vol. 6597, pp. 559–578. Springer, Heidelberg (2011)

19. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014)

http://eprint.iacr.org/2015/752.pdf
https://eprint.iacr.org/2014/1029.pdf
https://eprint.iacr.org/2014/1029.pdf
https://eprint.iacr.org/2014/163.pdf

On Constructing OWPs from Indistinguishability Obfuscation 539

20. Brzuska, C., Farshim, P., Mittelbach, A.: Random-oracle uninstantiability from
indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part
II. LNCS, vol. 9015, pp. 428–455. Springer, Heidelberg (2015)

21. Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party com-
putation from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015, Part II. LNCS, vol. 9015, pp. 557–585. Springer, Heidelberg (2015)

22. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015)

23. Canetti, R., Kalai, Y.T., Paneth, O.: On obfuscation with random oracles. In:
Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 456–467.
Springer, Heidelberg (2015)

24. Chang, Y., Hsiao, C., Lu, C.: The impossibility of basing one-way permutations
on central cryptographic primitives. J. Cryptology 19(1), 97–114 (2006)

25. Chung, K., Lin, H., Mahmoody, M., Pass, R.: On the power of nonuniformity in
proofs of security. In: Proceedings of the 4th Innovations in Theoretical Computer
Science Conference, pp. 389–400 (2013)

26. Chung, K., Lin, H., Pass, R.: Constant-round concurrent zero-knowledge from
indistinguishability obfuscation. Cryptology ePrint Archive, Report 2014/991
(2014)

27. Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable,
multiparty computation in constant rounds. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015, Part II. LNCS, vol. 9015, pp. 586–613. Springer, Heidelberg (2015)

28. Dachman-Soled, D., Lindell, Y., Mahmoody, M., Malkin, T.: On the black-box
complexity of optimally-fair coin tossing. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol.
6597, pp. 450–467. Springer, Heidelberg (2011)

29. Dachman-Soled, D., Mahmoody, M., Malkin, T.: Can optimally-fair coin tossing
be based on one-way functions? In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349,
pp. 217–239. Springer, Heidelberg (2014)

30. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014)

31. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: Pro-
ceedings of the 54th Annual IEEE Symposium on Foundations of Computer Sci-
ence, pp. 40–49 (2013)

32. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistin-
guishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 614–637. Springer, Heidelberg (2015)

33. Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic
cryptographic constructions. SIAM J. Comput. 35(1), 217–246 (2005)

34. Gertner, Y., Malkin, T., Myers, S.: Towards a separation of semantic and CCA
security for public key encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol.
4392, pp. 434–455. Springer, Heidelberg (2007)

35. Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor
functions on trapdoor predicates. In: Proceedings of the 42nd Annual IEEE Sym-
posium on Foundations of Computer Science, pp. 126–135 (2001)

36. Goldreich, O.: On security preserving reductions - revised terminology. Cryptology
ePrint Archive, Report 2000/001 (2000)

37. Goldreich, O.: Foundations of Cryptography - Volume 1: Basic Techniques. Cam-
bridge University Press, Cambridge (2001)

540 G. Asharov and G. Segev

38. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai,
A., Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer,
Heidelberg (2014)

39. Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in interactive
protocols - tight lower bounds on the round and communication complexities of
statistically hiding commitments. SIAM J. Comput. 44(1), 193–242 (2015)

40. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

41. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014)

42. Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash
functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol.
3152, pp. 92–105. Springer, Heidelberg (2004)

43. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, pp. 44–61 (1989)

44. Kahn, J., Saks, M., Smyth, C.D.: The dual BKR inequality and Rudich’s conjec-
ture. Comb. Probab. Comput. 20(2), 257–266 (2011)

45. Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-way
functions and (im)perfect obfuscation. In: Proceedings of the 55th Annual IEEE
Symposium on Foundations of Computer Science, pp. 374–383 (2014)

46. Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton Univer-
sity Press, Princeton (1996)

47. Mahmoody, M., Maji, H.K., Prabhakaran, M.: On the power of public-key encryp-
tion in secure computation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
240–264. Springer, Heidelberg (2014)

48. Mahmoody, M., Pass, R.: The curious case of non-interactive commitments – on
the power of black-box vs. non-black-box use of primitives. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 701–718. Springer, Hei-
delberg (2012)

49. Matsuda, T.: On the impossibility of basing public-coin one-way permutations on
trapdoor permutations. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 265–
290. Springer, Heidelberg (2014)

50. Matsuda, T., Matsuura, K.: On black-box separations among injective one-way
functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 597–614. Springer,
Heidelberg (2011)

51. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, pp. 33–43 (1989)

52. Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Towards non-black-box lower
bounds in cryptography. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 579–
596. Springer, Heidelberg (2011)

53. Rabin, M.O.: Digitalized signatures and public-key functions as intractable as fac-
torization. Technical report 212, Laboratory for Computer Science, Massachusetts
Institute of Technology (1979)

54. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryp-
tographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004)

On Constructing OWPs from Indistinguishability Obfuscation 541

55. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

56. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
pp. 387–394 (1990)

57. Rudich, S.: Limits on the provable consequences of one-way functions. Ph.D. thesis,
EECS Department, University of California, Berkeley (1988)

58. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Proceedings of the 46th Annual ACM Symposium on Theory
of Computing, pp. 475–484 (2014)

59. Simon, D.R.: Findings collisions on a one-way street: can secure hash functions be
based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 334–345. Springer, Heidelberg (1998)

60. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 678–697. Springer, Heidelberg (2015)

61. Wee, H.M.: One-way permutations, interactive hashing and statistically hiding
commitments. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 419–433.
Springer, Heidelberg (2007)

Contention in Cryptoland:
Obfuscation, Leakage and UCE

Mihir Bellare1(B), Igors Stepanovs1, and Stefano Tessaro2

1 Department of Computer Science and Engineering,
University of California San Diego, San Diego, USA

mihir@eng.ucsd.edu,

http://cseweb.ucsd.edu/∼mihir/,

https://sites.google.com/site/igorsstepanovs/
2 Department of Computer Science,

University of California Santa Barbara, Santa Barbara, USA
http://www.cs.ucsb.edu/∼tessaro/

Abstract. This paper addresses the fundamental question of whether or
not different, exciting primitives now being considered actually exist. We
show that we, unfortunately, cannot have them all. We provide results of
the form ¬A∨¬B, meaning one of the primitives A,B cannot exist. (But
we don’t know which.) Specifically, we show that: (1) VGBO (Virtual
Grey Box Obfuscation) for all circuits, which has been conjectured to be
achieved by candidate constructions, cannot co-exist with Canaletto’s
1997 AI-DHI (auxiliary input DH inversion) assumption, which has
been used to achieve many goals including point-function obfuscation
(2) iO (indistinguishability obfuscation) for all circuits cannot co-exist
with KM-LR-SE (key-message leakage-resilient symmetric encryption)
(3) iO cannot co-exist with hash functions that are UCE secure for
computationally unpredictable split sources.

1 Introduction

Cryptographic theory is being increasingly bold with regard to assumptions and
conjectures. This is particularly true in the area of obfuscation, where candi-
date constructions have been provided whose claim to achieve a certain form of
obfuscation is either itself an assumption [31] or is justified under other, new and
strong assumptions [12,34,41]. This is attractive and exciting because we gain
new capabilities and applications. But it behoves us also to be cautious and try
to ascertain, not just whether the assumptions are true, but whether the goals
are even achievable.

But how are we to determine this? The direct route is cryptanalysis, and
we have indeed seen some success [27,28,33,39]. But cryptanalysis can be diffi-
cult and runs into major open complexity-theoretic questions. There is another
rewarding route, that we pursue here. This is to seek and establish relations
that we call contentions. These take the form ¬A ∨ ¬B where A, B are different
primitives or assumptions. This shows that A, B are not both achievable, mean-
ing they cannot co-exist. We may not know which of the two fails, but at least
c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 542–564, 2016.
DOI: 10.1007/978-3-662-49099-0 20

Contention in Cryptoland: Obfuscation, Leakage and UCE 543

one of the two must, which is valuable and sometimes surprising information.
Indeed, many intriguing contentions of this form have been provided in recent
work [5,11,14,20–22,32,36]. For example, we know that the following cannot
co-exist: “Special-purpose obfuscation” and diO [32]; Multi-bit point function
obfuscation and iO [22]; extractable one-way functions and iO [14].

In this paper we begin by addressing the question of whether VGBO (Vir-
tual Grey Box Obfuscation) for all circuits is possible, as conjectured by BCKP
[13, Section 1.1]. We show that this is in contention with the AI-DHI assumption
of [15,25]. We go on to show that iO is in contention with certain forms of leakage
resilient encryption and UCE.

1.1 VGBO and AI-DHI

We show that ¬VGBO ∨ ¬AI-DHI. That is, Virtual Grey Box Obfuscation
(VGBO) of all circuits is in contention with Canaletto’s 1997 AI-DHI (Auxiliary-
Input Diffie-Hellman Inversion) assumption [15,25]. One of the two (or both)
must fail. Let us now back up to provide more information on the objects involved
and the proof.

The study of obfuscation began with VBBO (Virtual Black Box Obfusca-
tion) [4,37], which asks that for any PT adversary A given the obfuscated cir-
cuit, there is a PT simulator S given an oracle for the original circuit, such that
the two have about the same probability of returning 1. The impossibility of
VBBO [4,16,35] has lead to efforts to define and achieve weaker forms of obfus-
cation. VGBO [10] is a natural relaxation of VBBO allowing the simulator S
to be computationally unbounded but restricted to polynomially-many oracle
queries. This bypasses known VBBO impossibility results while still allowing
interesting applications. Furthermore BCKP [12,13] show that VGBO for NC1

is achievable (under a novel assumption). They then say “existing candidate
indistinguishability obfuscators for all circuits [3,19,31] may also be considered
as candidates for VGB obfuscation, for all circuits” [13, Section 1.1]. This would
mean, in particular, that VGBO for all circuits is achievable. In this paper we
ask if this “VGB conjecture” is true.

The AI-DHI assumption [15,25] says that there is an ensemble G = {Gλ :
λ ∈ N} of prime-order groups such that, for r, s chosen at random from Gλ,
no polynomial-time adversary can distinguish between (r, rx) and (r, s), even
when given auxiliary information a about x, as long as this information a is
“x-prediction-precluding,” meaning does not allow one to just compute x in
polynomial time. The assumption has been used for oracle hashing [25], AIPO
(auxiliary-input point-function obfuscation) [15] and zero-knowledge proofs [15].

Our result is that ¬VGBO∨¬AI-DHI. That is, either VGBO for all circuits is
impossible or the AI-DHI assumption is false. To prove this, we take any ensemble
G = {Gλ : λ ∈ N} of prime-order groups. For random x, we define a way of
picking the auxiliary information a such that (1) a is x-prediction-precluding, but
(2) there is a polynomial-time adversary that, given a, can distinguish between
(r, rx) and (r, s) for random r, s. Consider the circuit Cx that on input u, v
returns 1 if v = ux and 0 otherwise. The auxiliary information a will be a VGB

544 M. Bellare et al.

obfuscation C of Cx. Now (2) is easy to see: the adversary, given challenge (u, v),
can win by returning C(u, v). But why is (1) true? We use the assumed VGB
security of the obfuscator to reduce (1) to showing that no, even unbounded,
simulator, given an oracle for Cx, can extract x in a polynomial number of
queries. This is shown through an information-theoretic argument that exploits
the group structure.

The natural question about which one would be curious is, which of VGBO
and AI-DHI is it that fails? This is an intriguing question and we do not know
the answer at this point.

1.2 Key-Message Leakage Resilience

DKL [30] and CKVW [26] provide key leakage resilient symmetric encryption
(K-LR-SE) schemes. This means they retain security even when the adver-
sary has auxiliary information about the key, as long as this information is
key-prediction-precluding, meaning does not allow one to compute the key. We
consider a generalization that we call key-message leakage resilient symmetric
encryption (KM-LR-SE). Here the auxiliary information is allowed to depend not
just on the key but also on the message, the requirement however still being that
it is key-prediction-precluding, meaning one cannot compute the key from the
auxiliary information. The enhancement would appear to be innocuous, because
the strong semantic-security style formalizations of encryption that we employ
in any case allow the adversary to have a priori information about the message.
However, we show that this goal is impossible to achieve if iO for all circuits is
possible. That is, we show in Theorem3 that ¬iO∨¬KM-LR-SE. Since iO seems
to be growing to be more broadly accepted, this indicates that KM-LR-SE is not
likely to exist. We think this may be of direct interest from the perspective of
leakage resilience, but its main importance for us is as a tool to establish new
negative results for UCE as discussed in Sect. 1.3 below. The proof of Theorem 3
is a minor adaptation of the proof of BM [22] ruling out MB-AIPO under iO.

1.3 UCE for Split Sources

UCE is a class of assumptions for function families introduced in BHK [6] with
the goal of instantiating random oracles. For a class S of algorithms called
sources, BHK define UCE[S] security of a family of functions. The parameteri-
zation is necessary because security is not achievable for the class of all sources.
BHK and subsequent work [5,6,20,23,29,40] have considered several restricted
classes of sources and, based on the assumption of UCE security for these, been
able to instantiate random oracles to obtain secure, efficient instantiations for
primitives including deterministic public-key encryption, message-locked encryp-
tion, encryption secure for key-dependent messages, encryption secure under
related-key attacks, adaptive garbling, hardcore functions and IND-CCA public-
key encryption.

However UCE here has functioned as an assumption. We know little about
its achievability. The basic foundational question in this area is, for which source

Contention in Cryptoland: Obfuscation, Leakage and UCE 545

classes S is UCE[S] security achievable? The first step towards answering this
was taken by BFM [20], who showed that ¬iO ∨ ¬UCE[Scup]. That is, iO for
all circuits is in contention with UCE security relative to the class Scup of all
computationally unpredictable sources. (These are sources whose leakage is com-
putationally unpredictable when their queries are answered by a random ora-
cle.) This lead BHK [6] to propose restricting attention to “split” sources. Such
sources can leak information about an oracle query and its answer separately,
but not together. This circumvents the BFM attack. Indeed, UCE[Scup ∩ Ssplt]
appeared plausible even in the presence of iO. However in this paper we show
¬iO ∨ ¬UCE[Scup ∩ Ssplt], meaning iO and UCE[Scup ∩ Ssplt] security cannot
co-exist. The interpretation is that UCE[Scup∩Ssplt]-secure function families are
unlikely to exist. We obtain our ¬iO∨¬UCE[Scup ∩Ssplt] result by showing that
UCE[Scup ∩ Ssplt] ⇒ KM-LR-SE, meaning we can build a key-message leakage
resilient symmetric encryption scheme given any UCE[Scup ∩ Ssplt]-secure func-
tion family. But we saw above that ¬iO ∨ ¬KM-LR-SE and can thus conclude
that ¬iO ∨ ¬UCE[Scup ∩ Ssplt].

BM2 [23] show that UCE[Scup ∩Ssplt ∩S1] security —Scup ∩Ssplt ∩Sq is the
class of computationally unpredictable split sources making q oracle queries— is
achievable. (They assume iO and AIPO.) Our ¬iO ∨ ¬UCE[Scup ∩ Ssplt] result
does not contradict this since our source makes a polynomial number of oracle
queries. Indeed our result complements the BM2 one to show that a bound on
the number of source oracle queries is necessary for a positive result. Together
these results give a close to complete picture of the achievability of UCE for split
sources, the remaining open question being achievability of UCE[Scup ∩ Ssplt ∩
Sq] for constant q > 1.

We note that we are not aware of any applications assuming UCE[Scup ∩
Ssplt]. Prior applications have used either UCE[Scup ∩ Ssplt ∩ S1] or quite dif-
ferent classes like UCE[Ssup] —Ssup is the class of statistically unpredictable
sources [6,20]— and neither of these is at risk from our results. However our
¬iO∨ ¬UCE[Scup ∩Ssplt] result is of interest towards understanding the achiev-
ability of UCE assumptions and the effectiveness of different kinds of restrictions
(in this case, splitting) on sources. The achievability of UCE[Scup∩Ssplt] security
was an open problem from prior work.

1.4 Discussion and Related Work

The idea of using an obfuscated circuit as an auxiliary input to obtain contention
results has appeared in many prior works [5,11,14,20–22,32,36]. Some of the con-
tentions so established are between “Special-purpose obfuscation” and diO [32],
between MB-AIPO and iO [22] and between extractable one-way functions and
iO [14]. Our work follows in these footsteps.

KM-LR-SE can be viewed as a symmetric encryption re-formulation of
MB-AIPO following the connection of the latter to symmetric encryption estab-
lished by CKVW [26]. The main change is in the correctness condition. We
formulate a weak correctness condition, which is important for our application
to UCE. In its absence, our negative result for split-source UCE would only be

546 M. Bellare et al.

for injective functions, which is much weaker. With this connection in mind, the
proof of Theorem 3, as we have indicated above, is a minor adaptation of the
proof of BM [22] ruling out MB-AIPO under iO. Our result about KM-LR-SE is
thus not of technical novelty or interest but we think this symmetric encryption
re-formulation of BM [22] is of interest from the leakage resilience perspective
and as a tool to obtain more negative results, as exemplified by our application
to UCE.

In independent and concurrent work, BM3 [24] show ¬iO ∨ ¬UCE[Ss-cup],
where Ss-cup is the class of strongly computationally unpredictable sources as
defined in [22]. But the latter show that Scup ∩ Ssplt is a strict subset of Ss-cup.
This means that our ¬iO∨¬UCE[Scup∩Ssplt] result is strictly stronger than the
¬iO ∨ ¬UCE[Ss-cup] result of [24]. (Under iO, our result rules out UCE security
for a smaller, more restricted class of sources.)

Our results on UCE, as with the prior ones of BFM [20], are for the basic setting,
where there is a single key or single user [6]. BHK [6] also introduce a multi-key
(multi-user) setting. Some negative results about this are provided in [8].

2 Preliminaries

Notation. We denote by λ ∈ N the security parameter and by 1λ its unary repre-
sentation. If x ∈ {0, 1}∗ is a string then |x| denotes its length, x[i] denotes its i-th
bit, and x[i..j] = x[i] . . . x[j] for 1 ≤ i ≤ j ≤ |x|. We let ε denote the empty string.
If s is an integer then Pads(C) denotes circuit C padded to have size s. We say that
circuits C0,C1 are equivalent, written C0 ≡ C1, if they agree on all inputs. If x
is a vector then |x| denotes the number of its coordinates and x[i] denotes its i-th
coordinate. If X is a finite set, we let x ←$ X denote picking an element of X uni-
formly at random and assigning it to x. Algorithms may be randomized unless oth-
erwise indicated. Running time is worst case. “PT” stands for “polynomial-time,”
whether for randomized algorithms or deterministic ones. If A is an algorithm, we
let y ← A(x1, . . . ; r) denote running A with random coins r on inputs x1, . . . and
assigning the output to y. We let y ←$ A(x1, . . .) be the result of picking r at ran-
dom and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all possible
outputs of A when invoked with inputs x1, We say that f : N → R is negligible
if for every positive polynomial p, there exists λp ∈ N such that f(λ) < 1/p(λ) for
all λ > λp. We use the code based game playing framework of [7]. (See Fig. 1 for
an example.) By GA(λ) we denote the event that the execution of game G with
adversary A and security parameter λ results in the game returning true.

Auxiliary Information Generators. Many of the notions we consider involve
the computational unpredictability of some quantity even given “auxiliary infor-
mation” about it. We abstract this out via our definition of an auxiliary informa-
tion generator X. The latter specifies a PT algorithm X.Ev that takes 1λ to return
a target k ∈ {0, 1}X.tl(λ), a payload m ∈ {0, 1}X.pl(λ) and an auxiliary information
a, where X.tl,X.pl: N → N are the target and payload length functions associated
to X, respectively. Consider game PRED of Fig. 1 associated to X and a predictor

Contention in Cryptoland: Obfuscation, Leakage and UCE 547

adversary Q. For λ ∈ N let AdvpredX,Q(λ) = Pr[PREDQ
X (λ)]. We say that X is unpre-

dictable if AdvpredX,Q(·) is negligible for every PT adversary Q. We say that X is uni-
form if X.Ev(1λ) picks the target k ∈ {0, 1}X.tl(λ) and the payload m ∈ {0, 1}X.pl(λ)

uniformly and independently. Note that the auxiliary information a may depend
on both the target k and the payload m, but unpredictability refers to recovery of
the target k alone.

Game PREDQ
X (λ)

(k, m, a) ←$ X.Ev(1λ)

k′ ←$ Q(1λ, a)

Return (k = k′)

Game PRGR
R (λ)

b ←$ {0, 1}
m ←$ {0, 1}R.sl(λ)

y1 ← R.Ev(1λ, m)

y0 ←$ {0, 1}2·R.sl(λ)

b′ ←$ R(1λ, yb)

Return (b = b′)

Game IOO
Obf,S(λ)

b ←$ {0, 1}
(C0, C1, aux) ←$ S(1λ)

C ←$ Obf(1λ, Cb)

b′ ←$ O(1λ, C, aux)

Return (b = b′)

Fig. 1. Games defining unpredictabilty of auxiliary information generator X, PR-
security of pseudorandom generator R and iO-security of obfuscator Obf relative to cir-
cuit sampler S.

PRGs. A pseudorandom generator R [17,44] specifies a deterministic PT
algorithm R.Ev where R.sl: N → N is the seed length function of R such that
R.Ev(1λ, ·): {0, 1}R.sl(λ) → {0, 1}2·R.sl(λ) for all λ ∈ N. We say that R is PR-secure
if the function AdvprR,R(·) is negligible for every PT adversary R, where for λ ∈ N

we let AdvprR,R(λ) = 2 Pr[PRGR
R (λ)] − 1 and game PRG is specified in Fig. 1.

Obfuscators. An obfuscator is a PT algorithm Obf that on input 1λ and a circuit
C returns a circuit C such that C ≡ C. (That is, C(x) = C(x) for all x.) We refer to
the latter as the correctness condition. We will consider various notions of security
for obfuscators, including VGBO and iO.

Indistinguishability Obfuscation. We use the BST [9] definitional framework
which parameterizes security via classes of circuit samplers. Let Obf be an obfus-
cator. A sampler in this context is a PT algorithm S that on input 1λ returns a
triple (C0,C1, aux) where C0,C1 are circuits of the same size, number of inputs
and number of outputs, and aux is a string. If O is an adversary and λ ∈ N

we letAdvioObf,S,O(λ) = 2 Pr[IOO
Obf,S(λ)] − 1 where game IOO

Obf,S(λ) is defined in
Fig. 1. Now let S be a class (set) of circuit samplers. We say that Obf is S -secure if
AdvioObf,S,O(·) is negligible for every PT adversary O and every circuit sampler
S ∈ S . We say that circuit sampler S produces equivalent circuits if there exists a
negligible function ν such that Pr

[
C0 ≡ C1 : (C0, C1, aux) ←$ S(1λ)

]
≥ 1 −

ν(λ) for all λ ∈ N. Let Seq be the class of all circuit samplers that produce
equivalent circuits. We say that Obf is an indistinguishability obfuscator if it is
Seq-secure [4,31,42].

548 M. Bellare et al.

Function Families.A family of functions F specifies the following. PT key gener-
ation algorithm F.Kg takes 1λ to return a key fk ∈ {0, 1}F.kl(λ), where F.kl: N → N

is the key length function associated to F. Deterministic, PT evaluation algorithm
F.Ev takes 1λ, key fk ∈ [F.Kg(1λ)] and an input x ∈ {0, 1}F.il(λ) to return an out-
put F.Ev(1λ, fk, x) ∈ {0, 1}F.ol(λ), where F.il,F.ol: N → N are the input and out-
put length functions associated to F, respectively. We say that F is injective if the
function F.Ev(1λ, fk, ·): {0, 1}F.il(λ) → {0, 1}F.ol(λ) is injective for every λ ∈ N and
every fk ∈ [F.Kg(1λ)].

UCE Security. Let us recall the Universal Computational Extractor (UCE)
framework of BHK [6]. Let H be a family of functions. Let S be an adversary called
the source and D an adversary called the distinguisher. We associate to them and
H the game UCES,D

H (λ) in the left panel of Fig. 2. The source has access to an ora-
cle HASH and we require that any query x made to this oracle have lengthH.il(λ).
When the challenge bit b is 1 (the “real” case) the oracle responds via H.Ev under
a key hk that is chosen by the game and not given to the source. When b = 0 (the
“random” case) it responds as a random oracle. The source then leaks a string L
to its accomplice distinguisher. The latter does get the key hk as input and must
now return its guess b′ ∈ {0, 1} for b. The game returns true iff b′ = b, and the uce-
advantage of (S,D) is defined for λ ∈ N via AdvuceH,S,D(λ) = 2Pr[UCES,D

H (λ)] − 1.
If S is a class (set) of sources, we say that H is UCE[S]-secure if AdvuceH,S,D(·) is neg-
ligible for all sources S ∈ S and all PT distinguishers D.

Game UCES,D
H (λ)

b ←$ {0, 1} ; hk ←$ H.Kg(1λ)

L ←$ SHASH(1λ)

b′ ←$ D(1λ, hk, L)

Return (b′ = b)

HASH(x)

If T [x] = ⊥ then

If b = 0 then T [x] ←$ {0, 1}H.ol(λ)

Else T [x] ← H.Ev(1λ, hk, x)

Return T [x]

Game PREDP
S (λ)

X ← ∅
L ←$ SHASH(1λ)

x′ ←$ P(1λ, L)

Return (x′ ∈ X)

HASH(x)

If T [x] = ⊥ then

T [x] ←$ {0, 1}H.ol(λ)

X ← X ∪ {x}
Return T [x]

Source SHASH(1λ)

(L0,x) ←$ S0(1
λ)

For i = 1, . . . , |x| do

y[i] ←$ HASH(x[i])

L1 ←$ S1(1
λ,y)

L ← (L0, L1)

Return L

Fig. 2. Games defining UCE security of function family H, unpredictability of source S,
and the split source S = Splt[S0,S1] associated to S0,S1.

It is easy to see that UCE[S]-security is not achievable if S is the class of all PT
sources [6]. To obtain meaningful notions of security, BHK [6] impose restrictions
on the source. A central restriction is unpredictability. A source is unpredictable if
it is hard to guess the source’sHASH queries even given the leakage, in the random
case of the UCE game. Formally, let S be a source and P an adversary called a pre-
dictor and consider game PREDP

S (λ) in the middle panel of Fig. 2. For λ ∈ N we

Contention in Cryptoland: Obfuscation, Leakage and UCE 549

let AdvpredS,P(λ) = Pr[PREDP
S (λ)]. We say that S is computationally unpredictable

if AdvpredS,P(·) is negligible for all PT predictors P, and let Scup be the class of all
PT computationally unpredictable sources. We say that S is statistically unpre-
dictable if AdvpredS,P(·) is negligible for all (not necessarily PT) predictors P, and let
Ssup ⊆ Scup be the class of all PT statistically unpredictable sources.

BFM [20] show that UCE[Scup]-security is not achievable assuming that indis-
tinguishability obfuscation is possible. This has lead applications to either be based
on UCE[Ssup] or on subsets of UCE[Scup], meaning to impose further restrictions
on the source. UCE[Ssup], introduced in [6,20], seems at this point to be a viable
assumption. In order to restrict the computational case, one can consider split
sources as defined inBHK [6]. LetS0,S1 be algorithms, neither ofwhich have access
to any oracles. The split source S = Splt[S0,S1] associated to S0, S1 is defined in
the right panel of Fig. 2. Algorithm S0 returns a pair (L0,x). Here x is a vector over
{0, 1}H.il(λ) all of whose entries are required to be distinct. (If the entries are not
required to be distinct, collisions can be used to communicate information between
the two components of the source, and the BFM [20] attack continues to apply, as
pointed out in [23].) The first adversary creates the oracle queries for the source S,
the latter making these queries and passing the replies to the second adversary to
get the leakage. In this way, neither S0 nor S1 have an input-output pair from the
oracle, limiting their ability to create leakage useful to the distinguisher. A sourceS
is said to belong to the classSsplt if there exist PT S0, S1 such that S = Splt[S0, S1],
meaning is defined as above. The class of interest is now UCE[Scup∩Ssplt], meaning
UCE-security for computationally unpredictable, split sources.

Another way to restrict a UCE source is by limiting the number of queries it
can make. Let Sq be the class of sources making q(·) oracle queries. This allows to
consider Scup ∩ Ssplt ∩ S1, a class of computationally unpredictable split sources
that make a single query. BM2 [23] show that UCE[Scup ∩ Ssplt ∩ S1]-security is
achievable assuming iO and AIPO.

3 VGBO and the AI-DHI Assumption

BCKP [12,13] conjecture that existing candidate constructions of iO also achieve
VGBO and thus in particular that VGB obfuscation for all circuits is possible. Here
we explore the plausibility of this “VGB conjecture.” We show that it implies the
failure of Canaletto’s AI-DHI assumption. Either this assumption is false or VGBO
for all circuits is not possible. (In fact, our result refers to an even weaker VGBO
assumption.)That is, the long-standingAI-DHI assumption andVGBOare in con-
tention; at most one of these can exist. We start by defining VGBO and recalling
the AI-DHI assumption, and then give our result and its proof. We then suggest
a weakening of AI-DHI that we call AI-DHI2 that is parameterized by a group
generator. We show that our attack on AI-DHI extends to rule out AI-DHI2 for
group generators satisfying a property we call verifiability. However there may be
group generators that do not appear to be verifiable, making AI-DHI2 a potential
alternative to AI-DHI.

550 M. Bellare et al.

Game VGB1A
Obf,Smp(λ)

C ←$ Smp(1λ)

C ←$ Obf(1λ, C)

b′ ←$ A(1λ, C)

Return (b′ = 1)

Game VGB0S
Smp,q(λ)

C ←$ Smp(1λ) ; i ← 0

b′ ←$ SCIRC(1λ)

Return (b′ = 1)

CIRC(x)

i ← i + 1

If i > q(λ) then return ⊥
y ← C(x) ; Return y

Fig. 3. Games defining VGB security of obfuscator Obf.

VGBO. Let Obf be an obfuscator as defined in Sect. 2. We define what it means
for it to be a VGB obfuscator. We will use a weak variant of the notion used in
some of the literature [10,12], which strengthens our results since they are negative
relations with starting point VGBO.

A sampler Smp in this context is an algorithm that takes 1λ to return a circuit
C. Let q be a polynomial, A an adversary and S a (not necessarily PT) algorithm
called a simulator. For λ ∈ N let

AdvvgbObf,Smp,q,A,S(λ) =
∣
∣Pr

[
VGB1A

Obf,Smp(λ)
]
− Pr

[
VGB0S

Smp,q(λ)
]∣∣

where the games are in Fig. 3. Let SAMP be a set of samplers. We say that Obf
is a VGB obfuscator for SAMP if for every PT adversary A there exists a (not
necessarily PT) simulator S and a polynomial q such that AdvvgbObf,Smp,q,A,S(·) is
negligible for all Smp ∈ SAMP.

We note that [12] use a VGB variant stronger than the above where the advan-
tage measures the difference in probabilities of A and S guessing a predicate π(C),
rather than just the probabilities of outputting one, which is all we need here. Also
note that our VGB definition is vacuously achievable whenever |SAMP| = 1, since
S can simulate game VGB1A

Obf,Smp(λ) for any fixed choice of A and Smp. Our appli-
cations however use a SAMP of size 2.

The AI-DHI Assumption. Let G = {Gλ : λ ∈ N} be an ensemble of groups
where for every λ ∈ N the order p(λ) of group Gλ is a prime in the range 2λ−1 <
p(λ) < 2λ. We assume that relevant operations are computable in time polynomial
in λ, including computing p(·), testing membership in Gλ and performing opera-
tions in Gλ. By G

∗
λ we denote the non-identity members of the group, which is the

set of generators since the group has prime order. An auxiliary information gener-
ator X for G is an auxiliary information generator as per Sect. 2 with the additional
property that the target k returned byX.Ev(1λ) is inZp(λ) (i.e. is an exponent) and
the payload m is ε (i.e. is effectively absent).

Now consider game AIDHI of Fig. 4 associated to G,X and an adversary A. For
λ ∈ N let AdvaidhiG,X,A(λ) = 2 Pr[AIDHIAG,X(λ)] − 1. We say that G is AI-DHI-secure
if AdvaidhiG,X,A(·) is negligible for every unpredictable X for G and every PT adversary

Contention in Cryptoland: Obfuscation, Leakage and UCE 551

Game AIDHIA
G,X(λ)

b ←$ {0, 1} ; (k, ε, a) ←$ X.Ev(1λ)

g ←$ G
∗
λ

K1 ← gk ; K0 ←$ Gλ

b′ ←$ A(1λ, g, Kb, a)

Return (b = b′)

Game AIDHI2A
GG,X(λ)

b ←$ {0, 1} ; (k, ε, a) ←$ X.Ev(1λ)

〈G〉 ←$ GG(1λ) ; g ←$ Gen(G)

K1 ← gk ; K0 ←$ G

b′ ←$ A(1λ, 〈G〉, g, Kb, a)

Return (b = b′)

Fig. 4. Games defining the AI-DHI assumption and the AI-DHI2 assumption.

A. The AI-DHI assumption [15,25] is that there exists a family of groups G that is
AI-DHI secure.

¬ VGBO ∨¬ AI-DHI. The following says if VGB obfuscation is possible then
the AI-DHI assumption is false: there exists no family of groups G that is AI-
DHI secure. Our theorem only assumes a very weak form of VGB obfuscation
for a class with two samplers (given in the proof).

Theorem 1. Let G be a family of groups. Then there is a pair Smp,Smp0 of PT
samplers (defined in the proof) such that if there exists a VGB-secure obfuscator
for the class SAMP = {Smp,Smp0}, then G is not AI-DHI-secure.

Proof (Theorem 1). Let Obf be the assumed obfuscator. Let X be the auxiliary
information generator for G defined as follows:

Algorithm X.Ev(1λ)
k ←$ Zp(λ)

C ←$ Obf(1λ,C1λ,k)
Return (k, ε,C)

Circuit C1λ,k(g, K)
If (g �∈ G

∗
λ or K �∈ Gλ) then return 0

If (gk = K) then return 1
Else return 0

The auxiliary information a = C produced by X is an obfuscation of the circuit
C1λ,k shown on the right above. The circuit has 1λ and the target value k
embedded inside. The circuit takes inputs g, K and checks that the first is a
group element different from the identity —and thus a generator— and the
second is a group element. It then returns 1 if gk equals K, and 0 otherwise.

We first construct a PT adversary A∗ such that AdvaidhiG,X,A∗(·) is non-negligible.
On input 1λ, g,Kb,C, it simply returns C(g, Kb). That is, it runs the obfuscated
circuit C on g and Kb and returns its outcome. If the challenge bit b in game
AIDHIA

∗
G,X(λ) is 1 then the adversary always outputs b′ = 1. Otherwise, the

adversary outputs b′ = 1 with probability 1/p(λ). We have AdvaidhiG,X,A∗(λ) =
1 − 1/p(λ) ≥ 1 − 21−λ, which is not negligible.

We now show that the constructed auxiliary information generator X is unpre-
dictable. In particular, for any PT adversary Q we construct a PT adversary A
and samplers Smp, Smp0 such that for all simulators S and all polynomials q,

AdvpredX,Q(λ) ≤ AdvvgbObf,Smp,q,A,S(λ) + AdvvgbObf,Smp0,q,A,S(λ) +
q(λ)
2λ−1

. (1)

552 M. Bellare et al.

Concretely, the adversary A and the samplers Smp,Smp0 operate as follows:

Adversary A(1λ,C)
k′ ←$ Q(1λ,C)
ḡ ←$ G

∗
λ

Return C(ḡ, ḡk′
)

Algorithm Smp(1λ)
k ←$ Zp(λ)

Return C1λ,k

Algorithm Smp0(1λ)
Return C0

In Smp0, the circuit C0 takes as input a pair of group elements g, g′ from Gλ

and always returns 0.
To show Eq. (1), we first note that by construction

AdvpredX,Q(λ) = Pr
[
VGB1A

Obf,Smp(λ)
]

, (2)

because an execution of PREDQ
X (λ) results in the same output distribution as in

VGB1A
Obf,Smp(λ). The only difference is that in the latter, the check of whether

the guess is correct is done via the obfuscated circuit C. Now, for all simulators
S and polynomials q, we can rewrite Eq. (2) as

AdvpredX,Q(λ) = Pr
[
VGB1A

Obf,Smp(λ)
]
− Pr

[
VGB0S

Smp,q(λ)
]

+ Pr
[
VGB0S

Smp,q(λ)
]
− Pr

[
VGB0S

Smp0,q(λ)
]

+ Pr
[
VGB0S

Smp0,q(λ)
]

− Pr
[
VGB1A

Obf,Smp0
(λ)

]

+ Pr
[
VGB1A

Obf,Smp0
(λ)

]
.

To upper bound AdvpredX,Q(λ), we first note that

Pr
[
VGB1A

Obf,Smp(λ)
]
− Pr

[
VGB0S

Smp,q(λ)
]

≤ AdvvgbObf,Smp,q,A,S(λ)

and

Pr
[
VGB0S

Smp0,q(λ)
]

− Pr
[
VGB1A

Obf,Smp0
(λ)

]
≤ AdvvgbObf,Smp0,q,A,S(λ) .

Moreover, we have Pr
[
VGB1A

Obf,Smp0
(λ)

]
= 0 by constructon. Namely, adver-

sary A never outputs 1 in game VGB1A
Obf,Smp0

(λ), since it is given an obfuscation
of the constant zero circuit C0.

We are left with upper bounding the difference between Pr
[
VGB0S

Smp,q(λ)
]

and Pr
[
VGB0S

Smp0,q(λ)
]
. Note that S is allowed to issue at most q(λ) queries to

the given circuit, which is either C1λ,k for a random k ←$ Zp(λ) or C0. Denote by
Hit the event that S makes a query (g, K) in VGB0S

Smp,q(λ) such that gk = K.
Then, by a standard argument,

Pr
[
VGB0S

Smp,q(λ)
]
− Pr

[
VGB0S

Smp0,q(λ)
]

≤ Pr [Hit] .

To compute Pr [Hit], we move from VGB0S
Smp,q(λ) to the simpler VGB0S

Smp0,q(λ),
where all of S’s queries are answered with 0. We extend the latter game to sample

Contention in Cryptoland: Obfuscation, Leakage and UCE 553

a random key k ←$ Zp(λ), and we define Hit′ as the event in this game that for
one of S’s queries (g, K) we have gk = K. It is not hard to see that Pr

[
Hit′

]
and

Pr [Hit] are equal, as both games are identical as long as none of such queries
occur. Since there are at most q(λ) queries, and exactly one k can produce the
answer 1 for these queries, the union bound yields

Pr [Hit] = Pr
[
Hit′

]
≤ q(λ)

p(λ)
≤ q(λ)

2λ−1
,

which concludes the proof. �

The AI-DHI2 Assumption. We now suggest a relaxation AI-DHI2 of the AI-
DHI assumption given above. The idea is that for each value of λ there is not one,
but many possible groups. Formally, a group generator is a PT algorithm GG
that on input 1λ returns a description 〈G〉 of a cyclic group G whose order |G| is
in the range 2λ−1 < |G| < 2λ. We assume that given 1λ, 〈G〉, relevant operations
are computable in time polynomial in λ, including performing group operations
in G and picking at random from G and from the set Gen(G) of generators
of G. An auxiliary information generator X for GG is an auxiliary information
generator as per Sect. 2 with the additional property that the target k returned
by X.Ev(1λ) is in Z2λ−1 —this makes it a valid exponent for any group G such
that 〈G〉 ∈ [GG(1λ)]— and the payload m is ε (i.e. is effectively absent).

Now consider game AIDHI2 of Fig. 4 associated to GG,X and an adversary
A. For λ ∈ N let Advaidhi2GG,X,A(λ) = 2Pr[AIDHI2A

GG,X(λ)] − 1. We say that GG is
AI-DHI2-secure if Advaidhi2GG,X,A(·) is negligible for every unpredictable X for GG
and every PT adversary A. The (new) AI-DHI2 assumption is that there exists
a group generator GG which is AI-DHI2 secure.

BP [15] give a simple construction of AIPO from AI-DHI. It is easy to extend
this to use AI-DHI2.

A verifier for group generator GG is a deterministic, PT algorithm GG.Vf that
can check whether a given string d is a valid description of a group generated
by the generator GG. Formally, GG.Vf on input 1λ, d returns true if d ∈ [GG(1λ)]
and false otherwise, for all d ∈ {0, 1}∗. We say that GG is verifiable if it has a
verifier and additionally, in time polynomial in 1λ, 〈G〉, where 〈G〉 ∈ [GG(1λ)],
one can test membership in G and in the set Gen(G) of generators of G. The
following extends Theorem 1 to say that if VGBO is possible then no verifiable
group generator is AI-DHI2 secure.

Theorem 2. Let GG be a verifiable group generator. Then there is a pair Smp,
Smp0 of PT samplers such that if there exists a VGB-secure obfuscator for the
class SAMP = {Smp,Smp0}, then GG is not AI-DHI2-secure.

We omit a full proof, as it is very similar to the one of Theorem1. We only note
that to adapt the proof, we require X.Ev(1λ) to output a random k in Z2λ−1

together with the obfuscation of the following circuit C1λ,k. The circuit C1λ,k

takes as input a string d expected to be a group description, together with two
strings g and K. It first runs GG.Vf on input 1λ, d to check whether d ∈ [GG(1λ)],

554 M. Bellare et al.

returning 0 if the check fails. If the check succeeds, so that we can write d = 〈G〉,
it further checks that g ∈ Gen(G) and K ∈ G, returning 0 if this fails. Finally
the circuit returns 1 if and only if gk = K in the group G. The crucial point is
that for every valid input (d, g,K), there is at most one k ∈ Z2λ−1 which satisfies
gk = K in the group described by d. This uses the assumption that G is cyclic.

Many group generators are cyclic and verifiable. For example, consider a
generator GG that on input 1λ returns a description of G = Z

∗
p for a safe prime

p = 2q−1. (That is, q is also a prime.) The verifier can extract p, q from 〈G〉 and
check their primality in PT. For such generators, we may prefer not to assume
AI-DHI2-security, due to Theorem 2. However there are group generators that
do not appear to be verifiable and where Theorem2 thus does not apply. One
must be careful to note that this does not mean that VGBO would not rule
out AI-DHI2 security for these group generators. It just means that our current
proof method may not work. Still at this point, the AI-DHI2 assumption, which
only says there is some group generator that is AI-DHI2-secure, seems plausible.

Discussion. As we indicated, one of the main applications of AI-DHI was
AIPO [15], and furthermore this connection is very direct. If VGB is in contention
with AI-DHI, it is thus natural to ask whether it is also in contention with AIPO.
We do not know whether or not this is true. One can also ask whether VGB is
in contention with other, particular AIPO constructions, in particular the one of
BP [15] based on the construction of Wee [43]. Again, we do not know the answer.
We note that alternative constructions of AIPO and other forms of point-function
obfuscation are provided in [8].

4 KM-Leakage Resilient Encryption

We refer to a symmetric encryption scheme as K-leakage-resilient if it retains
security in the presence of any leakage about the key that leaves the key compu-
tationally unpredictable [30]. Such schemes have been designed in [26,30]. Here,
we extend the model by allowing the leakage to depend not just on the key
but also on the message, still leaving the key computationally unpredictable.
The extension seems innocuous, since the indistinguishability style formaliza-
tions used here already capture the adversary having some information about
the message. But Theorem 3 shows that KM-leakage-resilience is in contention
with iO. The interpretation is KM-leakage-resilience is not achievable.

Theorem 3 is of direct interest with regard to understanding what is and is
not achievable in leakage-resilient cryptography. But for us its main importance
will be as a tool to rule out UCE for computationally unpredictable split sources
assuming iO in Sect. 5.

We use standard definitions of indistinguishability obfuscation [2,4,18,31,42]
and pseudorandom generators [17,44], as recalled in Sect. 2. We now start by
formalizing KM-leakage resilience.

KM-Leakage Resilient Encryption. Let a symmetric encryption scheme
SE specify the following. PT encryption algorithm SE.Enc takes 1λ, a key

Contention in Cryptoland: Obfuscation, Leakage and UCE 555

Game INDA
SE,X(λ)

b ←$ {0, 1}
(k, m1, a) ←$ X.Ev(1λ)

m0 ←$ {0, 1}SE.ml(λ)

c ←$ SE.Enc(1λ, k, mb)

b′ ←$ A(1λ, a, c)

Return (b = b′)

Game DECSE(λ)

k ←$ {0, 1}SE.kl(λ)

m ←$ {0, 1}SE.ml(λ)

c ←$ SE.Enc(1λ, k, m)

m′ ← SE.Dec(1λ, k, c)

Return (m = m′)

Fig. 5. Games defining X-KM-leakage resilience of symmetric encryption scheme SE
and decryption correctness of symmetric encryption scheme SE.

k ∈ {0, 1}SE.kl(λ) and a message m ∈ {0, 1}SE.ml(λ) to return a ciphertext c,
where SE.kl,SE.ml: N → N are the key length and message length functions of
SE, respectively. Deterministic PT decryption algorithm SE.Dec takes 1λ, k, c to
return a plaintext m ∈ {0, 1}SE.ml(λ). Note that there is a key length but no
prescribed key-generation algorithm.

For security, let X be an auxiliary information generator with X.tl = SE.kl
and X.pl = SE.ml. Consider game INDA

SE,X(λ) of Fig. 5 associated to SE,X and
adversary A. The message m0 is picked uniformly at random. The adversary A
must determine which message has been encrypted, given not just the ciphertext
but auxiliary information a on the key and message m1. For λ ∈ N we let
AdvindSE,X,A(λ) = 2Pr[INDA

SE,X(λ)]−1. We say that SE is X-KM-leakage resilient if
the function AdvindSE,X,A(·) is negligible for all PT adversaries A. This is of course
not achievable if a allowed the adversary to compute k, so we restrict attention
to unpredictable X. Furthermore, weakening the definition, we restrict attention
to uniform X, meaning k and m1 are uniformly and independently distributed.
Thus we say that SE is KM-leakage-resilient if it is X-KM-leakage resilient for
all unpredictable, uniform X.

The above requirement is strong in that security is required in the pres-
ence of (unpredictable) leakage on the key and first message. But beyond that,
in other ways, it has been made weak, because this strengthens our negative
results. Namely, we are only requiring security on random messages, not chosen
ones, with the key being uniformly distributed, and the key and the two mes-
sages all being independently distributed. Furthermore, in contrast to a typical
indistinguishability definition, the adversary does not get the messages as input.

The standard correctness condition would ask that SE.Dec(1λ, k,SE.Enc(1λ,
k,m)) = m for all k ∈ {0, 1}SE.kl(λ), all m ∈ {0, 1}SE.ml(λ) and all λ ∈ N. We call
this perfect correctness. We formulate and use a weaker correctness condition
because we can show un-achievability even under this and the weakening is
crucial to our applications building KM-leakage-resilient encryption schemes to
obtain further impossibility results. Specifically, we require correctness only for
random messages and random keys with non-negligible probability. Formally,

556 M. Bellare et al.

consider game DECSE(λ) of Fig. 5 associated to SE, and for λ ∈ N let AdvdecSE (λ) =
Pr[DECSE(λ)] be the decryption correctness function of SE. We require that
AdvdecSE (·) be non-negligible.

¬iO ∨ ¬KM-LR-SE. The following says that KM-leakage-resilient symmetric

encryption is not achievable if iO and PRGs (which can be obtained from one-
way functions [38]) exist:

Theorem 3. Let SE be a symmetric encryption scheme. Let Obf be an indis-
tinguishability obfuscator. Let R be a PR-secure PRG with R.sl = SE.ml. Assume
that 2−SE.kl(λ) and 2−R.sl(λ) are negligible. Then there exists a uniform auxiliary
information generator X such that the following holds: (1) X is unpredictable,
but (2) SE is not X-KM-leakage resilient.

The proof is a minor adaptation of the proof of BM [22] ruling out MB-AIPO
under iO. Following BM [22], the idea is that the auxiliary information generator
X picks a key k and message m uniformly and independently at random and lets
C be the circuit that embeds k and the result y of the PRG on m. On input
a ciphertext c, circuit C decrypts it under k and then checks that the PRG
applied to the result equals y. The auxiliary information is an obfuscation C of
C. The attack showing claim (2) of Theorem 3 is straightforward but its analysis
is more work and exploits the security of the PRG. Next one shows that iO-
security of the obfuscator coupled with security of the PRG implies claim (1),
namely the unpredictability of X. For completeness we provide a self-contained
proof in Appendix A. A consequence of Theorem 3 is the following.

Corollary 4. Let SE be a symmetric encryption scheme such that SE.ml(·) ∈
Ω((·)ε) for some constant ε > 0. Assume the existence of an indistinguishability
obfuscator and a one-way function. Then SE is not KM-leakage resilient.

Proof (Corollary 4). The assumption on SE.ml implies that there exists a PR-
secure PRG R with R.sl = SE.ml [38]. To conclude we apply Theorem3. �

Related Work. CKVW [26] show that symmetric encryption with weak keys
satisfying a wrong key detection property is equivalent to MB-AIPO. Wrong
key detection, a form of robustness [1], asks that, if you decrypt, under a certain
key, a ciphertext created under a different key, then the result is ⊥. This is
not a requirement for KM-LR-SE. However, implicit in the proof of Theorem3
is a connection between KM-LR-SE and a form of MB-AIPO with a relaxed
correctness condition.

5 UCE for Split Sources

BFM [20] showed that UCE[Scup]-security is not possible if iO exists. We improve
this to show that UCE[Scup∩Ssplt]-security is not possible if iO exists. We obtain
this by giving a construction of a KM-leakage-resilient symmetric encryption
scheme from UCE[Scup ∩ Ssplt] and then invoking our above-mentioned result.
Definitions of UCE-secure function families [6] are recalled in Sect. 2.

Contention in Cryptoland: Obfuscation, Leakage and UCE 557

UCE[Scup ∩ Ssplt] ⇒ KM-LR-SE. We give a construction of a KM-leakage
resilient symmetric encryption scheme from a UCE[Scup ∩Ssplt] family H, which
will allow us to rule out such families under iO. Assume for simplicity that
H.il is odd, and let � = (H.il − 1)/2. We call the symmetric encryption scheme
SE = H&C[H] that we associate to H the Hash-and-Check scheme. It is defined
as follows. Let SE.kl(λ) = SE.ml(λ) = �(λ) for all λ ∈ N. Let the encryption and
decryption algorithms be as follows:

Algorithm SE.Enc(1λ, k,m)
hk ←$ H.Kg(1λ)
For i = 1, . . . , |m| do

y[i] ← H.Ev(1λ,hk, k‖m[i]‖〈i〉�(λ))
Return (hk,y)

Algorithm SE.Dec(1λ, k, (hk,y))
For i = 1, . . . , |y| do

If (H.Ev(1λ,hk, k‖1‖〈i〉�(λ)) = y[i])
Then m[i] ← 1 else m[i] ← 0

Return m

Here 〈i〉�(λ) = 1i0�(λ)−i denotes a particular, convenient encoding of integer
i ∈ {1, . . . , �(λ)} as a string of �(λ) bits, and m[i] denotes the i-th bit of m.
The ciphertext (hk,y) consists of a key hk for H chosen randomly and anew at
each encryption, together with the vector y whose i-th entry is the hash of the
i-th message bit along with the key and index i. This scheme will have perfect
correctness if H is injective, but we do not want to assume this. The following
theorem says that the scheme is KM-leakage resilient and also has (somewhat
better than) weak correctness under UCE-security of H.

Theorem 5. Let H be a family of functions that is UCE[Scup ∩ Ssplt]-secure.
Assume H.il(·) ∈ Ω((·)ε) for some constant ε > 0 and 2−H.ol(·) is negligible.
Let SE = H&C[H]. Then (1) symmetric encryption scheme SE is KM-leakage
resilient, and (2) 1 − AdvdecSE (·) is negligible.

Proof (Theorem 5). Assuming for simplicity as in the construction that H.il is
odd, let �(·) = (H.il(·)−1)/2. We now prove part (1). Let X be an unpredictable,
uniform auxiliary information generator. Let A be a PT adversary. We build a
PT source S ∈ Scup ∩ Ssplt and a PT distinguisher D such that

AdvindSE,X,A(λ) ≤ 2 · AdvuceH,S,D(λ) (3)

for all λ ∈ N. The assumption that H is UCE[Scup ∩ Ssplt]-secure now implies
part (1) of the theorem.

We proceed to build S,D. We let S be the split source S = Splt[S0, S1], where
algorithms S0,S1 are shown below, along with distinguisher D:

Algorithm S0(1λ)
(k,m1, a) ←$ X.Ev(1λ)
m0 ←$ {0, 1}�(λ) ; d ←$ {0, 1}
For i = 1, . . . , �(λ) do

x[i] ← k‖md[i]‖〈i〉�(λ)

Return ((d, a),x)

Algorithm S1(1λ,y)
Return y

Distinguisher D(1λ,hk, L)
((d, a),y) ← L ; c ← (hk,y)
d′ ←$ A(1λ, a, c)
If (d = d′) then b′ ← 1
Else b′ ← 0
Return b′

558 M. Bellare et al.

Here S0 calls the auxiliary information generator X to produce a key, a plaintext
message and the corresponding auxiliary input. It then picks another plaintext
message and the challenge bit d at random, and lets x consist of the inputs on
which the hash function would be applied to create the challenge ciphertext. It
leaks the challenge bit and auxiliary information. Algorithm S1 takes as input the
result y of oracle HASH on x, and leaks the entire vector y. The distinguisher
gets the leakage from both stages, together with the key hk. Using the latter,
it can create the ciphertext c, which it passes to A to get back a decision. Its
output reflects whether A wins its game.

Letting b denote the challenge bit in game UCES,D
H (λ), we claim that

Pr[b′ = 1 | b = 1] =
1
2

+
1
2
AdvindSE,X,A(λ) and Pr[b′ = 1 | b = 0] =

1
2

,

from which Eq. (3) follows. The first equation above should be clear from the
construction. For the second, when b = 0, we know that HASH is a random
oracle. But the entries of x are all distinct, due to the 〈i〉�(λ) components. So
the entries of y are uniform and independent, and in particular independent of
the challenge bit d.

This however does not end the proof: We still need to show that S ∈ Scup ∩
Ssplt. We have ensured that S ∈ Ssplt by construction. The crucial remainig step
is to show that S ∈ Scup. This will exploit the assumed unpredictability of X.
Let P be a PT predictor. We build PT adversary Q such that

AdvpredS,P(λ) ≤ AdvpredX,Q(λ) (4)

for all λ ∈ N. The assumption that X is unpredictable now implies that S ∈ Scup.
The construction of Q is as follows:

Adversary Q(1λ, a)
For i = 1, . . . , �(λ) do y[i] ←$ {0, 1}H.ol(λ)

d ←$ {0, 1} ; x′ ←$ P(1λ, ((d, a),y)) ; k ← x′[1..�(λ)] ; Return k

Adversary Q computes leakage ((d, a),y) distributed exactly as it would be in
game PREDP

S (λ), where HASH is a random oracle. It then runs P to get a
prediction x′ of some oracle query of S. If game PREDP

S (λ) returns true, then
x′ must have the form k‖md[i]‖〈i〉�(λ) for some i ∈ {1, . . . , �(λ)}, where k, d are
the key and challenge bit, respectively, chosen by S. Adversary Q can then win
its PREDQ

X (λ) game by simply returning k, which establishes Eq. (4).
This completes the proof of part (1) of the theorem. We prove part (2) by

building a PT source S ∈ Ssup ∩ Ssplt and a PT distinguisher D such that

1 − AdvdecSE (λ) ≤ AdvuceH,S,D(λ) +
�(λ)

2H.ol(λ)
(5)

for all λ ∈ N. But we have assumed that H is UCE[Scup ∩ Ssplt]-secure, so it
is also UCE[Ssup ∩ Ssplt]-secure. We have also assumed 2−H.ol(·) is negligible.
Part (2) of the theorem follows.

We proceed to build S,D. We let S be the split source S = Splt[S0, S1], where
algorithms S0,S1 are shown below, along with distinguisher D:

Contention in Cryptoland: Obfuscation, Leakage and UCE 559

Algorithm S0(1λ)
k ←$ {0, 1}�(λ)

For i = 1, . . . , �(λ) do
x[2i − 1] ← k‖1‖〈i〉�(λ)

x[2i] ← k‖0‖〈i〉�(λ)

Return (ε,x)

Algorithm S1(1λ,y)
Return y

Distinguisher D(1λ,hk, (ε,y))
b′ ← 0
For i = 1, . . . , �(λ) do

If (y[2i − 1] = y[2i])
Then b′ ← 1

Return b′

Letting b denote the challenge bit in game UCES,D
H (λ), we claim that

Pr[b′ = 1 | b = 1] ≥ 1 − AdvdecSE (λ) and Pr[b′ = 1 | b = 0] ≤ �(λ)
2H.ol(λ)

,

from which Eq. (5) follows. The first equation above is true because decryption
errors only happen when hash outputs collide for different values of the message
bit. For the second, when b = 0, we know that HASH is a random oracle. But
the entries of x are all distinct. So the entries of y are uniform and independent.
The chance of a collision of two entries is thus 2−H.ol(λ), and the equation then
follows from the union bound.

S is a split source by construction. To conclude the proof we need to show
that S ∈ Ssup. In the case HASH is a random oracle, the distinctness of the
oracle queries of S means that the entries of y are uniformly and independently
distributed. Since there is no leakage beyond y, the leakage gives the predictor P
no extra information about the entries of x. The uniform choice of k by S means
that AdvpredS,P(·) ≤ 2−�(·), even if P is not restricted to PT. But our assumption
on H.il(·) in the theorem statement implies that 2−�(·) is negligible. �

¬iO∨ ¬UCE[Scup ∩Ssplt]. In the BFM [20] iO-based attack on UCE[Scup], the
source builds a circuit which embeds an oracle query x and its answer y, and
outputs an obfuscation of this circuit in the leakage. Splitting is a restriction on
sources introduced in BHK [6] with the aim of preventing such attacks. A split
source cannot build the BFM circuit because the split structure denies it the
ability to leak information that depends both on a query and its answer. Thus,
the BFM attack does not work for UCE[Scup ∩Ssplt]. However, we show that in
fact UCE[Scup ∩ Ssplt]-security is still not achievable assuming iO. This is now
a simple corollary of Theorems 3 and 5 that in particular was the motivation for
the latter:

Theorem 6. Let H be a family of functions such that H.il(·) ∈ Ω((·)ε) for some
constant ε > 0 and 2−H.ol(·) is negligible. Assume the existence of an indistin-
guishability obfuscator and a one-way function. Then H is not UCE[Scup∩Ssplt]-
secure.

BM2 [23] show that UCE[Scup ∩ Ssplt ∩ S1]-security is achievable assuming iO
and AIPO. Our negative result of Theorem6 does not contradict this, and in
fact complements it to give a full picture of the achievability of UCE security
for split sources.

560 M. Bellare et al.

Acknowledgments. Bellare and Stepanovs were supported in part by NSF grants
CNS-1116800, CNS-1228890 and CNS-1526801. Tessaro was supported in part by NSF
grant CNS-1423566. This work was done in part while Bellare and Tessaro were visiting
the Simons Institute for the Theory of Computing, supported by the Simons Foundation
and by the DIMACS/Simons Collaboration in Cryptography through NSF grant CNS-
1523467.

We thank Huijia Lin for discussions and insights. We thank the TCC 2016-A
reviewers for extensive and insightful comments.

A Proof of Theorem3

The construction and proof follow [22]. We specify uniform auxiliary information
generator X as follows:

Algorithm X.Ev(1λ)
k ←$ {0, 1}SE.kl(λ)

m ←$ {0, 1}SE.ml(λ) ; y ← R.Ev(1λ,m)
C ← Pads(λ)(C1λ,k,y) ; C ←$ Obf(1λ,C)
Return (k,m,C)

Circuit C1λ,k,y(c)
m ← SE.Dec(1λ, k, c)
y′ ← R.Ev(1λ,m)
If (y = y′) then return 1
Else return 0

The circuit C1λ,k,y takes as input a ciphertext c, decrypts it under the embedded
key k to get back a SE.ml(λ)-bit message m, applies the PRG to m to get a string
y′, and returns 1 iff y′ equals the embedded string y. The auxiliary information
generator creates this circuit as shown and outputs its obfuscation.

We define polynomial s so that s(λ) is an upper bound on max(|C1
1λ,k,y|, |C2|)

where the circuits are defined in Fig. 6 and the maximum is over all k ∈
{0, 1}SE.kl(λ) and y ∈ {0, 1}2·R.sl(λ). Let us first present an attack proving part (2) of
the theorem. Below we define an adversary A against the X-KM-leakage resilience
of SE and an adversary R against the PR-security of R:

Adversary A(1λ,C, c)
b′ ← C(c)
Return b′

Adversary R(1λ, y)
k ←$ {0, 1}SE.kl(λ) ; m0 ←$ {0, 1}SE.ml(λ)

c ←$ SE.Enc(1λ, k,m0) ; m ← SE.Dec(1λ, k, c)
y′ ← R.Ev(1λ,m)
If (y′ = y) then g′ ← 1 else g′ ← 0 ; Return g′

Adversary A has input 1λ, the auxiliary information (leakage) which here is the
obfuscated circuit C, and a ciphertext c. It simply computes and returns the bit
C(c) = C1λ,k,y(c). For the analysis, consider game INDA

SE,X(λ) of Fig. 5. If the
challenge bit b is 1 and the decryption performed by C is correct then y′ = y, so

Pr[b′ = 1 | b = 1] ≥ AdvdecSE (λ) . (6)

In the case b = 0, the corresponding analysis in [22] for the insecurity of
MB-AIPO relied on the fact that PRGs have low collision probability on random
seeds. This will not suffice for us because of our weak correctness condition. The
latter means that when b = 0, we do not know that SE.Dec(1λ, k, c) equals m0

Contention in Cryptoland: Obfuscation, Leakage and UCE 561

and indeed have no guarantees on the distribution of decrypted plaintext mes-
sage. Instead, we directly exploit the assumed PR-security of the PRG. Thus,
consider game PRGR

R (λ) with adversary R as above. Letting g denote the chal-
lenge bit in the game, we have

AdvprR,R(λ) = Pr[g′ = 1 | g = 1] − Pr[g′ = 1 | g = 0]

≥ Pr[b′ = 1 | b = 0] − 2−2·R.sl(λ) . (7)

From Eqs. (7) and (6), we have

AdvindSE,X,A(λ) = Pr[b′ = 1 | b = 1] − Pr[b′ = 1 | b = 0]

≥ AdvdecSE (λ) − AdvprR,R(λ) − 2−2·R.sl(λ) . (8)

Our weak correctness condition implies that the first term of Eq. (8) is non-
negligible. On the other hand, the second and third terms are negligible. This
means AdvindSE,X,A(·) is not negligible, proving claim (2) of Theorem3.

Games G0–G3

k ←$ {0, 1}SE.kl(λ) ; m ←$ {0, 1}SE.ml(λ)

y ← R.Ev(1λ, m) ; C ←$ Obf(1λ,Pads(λ)(C
1
1λ,k,y)) // G0

y ←$ {0, 1}2·R.sl(λ) ; C ←$ Obf(1λ,Pads(λ)(C
1
1λ,k,y)) // G1

y ←$ {0, 1}2·R.sl(λ) ; C ←$ Obf(1λ,Pads(λ)(C
2)) // G2

k′ ←$ Q(1λ, C) ; Return (k = k′)

Circuit C1
1λ,k,y(c)

m ← SE.Dec(1λ, k, c) ; y′ ← R.Ev(1λ, m)
If (y = y′) then return 1 else return 0

Circuit C2(c)

Return 0

Fig. 6. Games for proof of part (1) of Theorem 3.

We proceed to prove part (1) of the theorem statement. Let Q be a PT
adversary. Consider the games and associated circuits of Fig. 6. Lines not anno-
tated with comments are common to all three games. Game G0 is equivalent to
PREDQ

X (λ), so

AdvpredX,Q(λ) = Pr[G2] + (Pr[G0] − Pr[G1]) + (Pr[G1] − Pr[G2]) . (9)

We have Pr[G2] = 2−SE.kl(λ), where the latter is assumed to be negligible, because
k is uniformly random and the circuit C that is passed to adversary Q does not
depend on k. We now show that Pr[Gi] − Pr[Gi+1] is negligible for i ∈ {0, 1},
which by Eq. (9) implies that AdvpredX,Q(·) is negligible and hence proves the claim.

First, we construct a PT adversary R against PRG R, as follows:

Adversary R(1λ, y)
k ←$ {0, 1}SE.kl(λ) ; C ←$ Obf(1λ,Pads(λ)(C1

1λ,k,y)) ; k′ ←$ Q(1λ,C)
If (k = k′) then return 1 else return 0

562 M. Bellare et al.

We have Pr[G0] − Pr[G1] = AdvprR,R(λ), where the advantage is negligible by the
assumed PR-security of R.

Next, we construct a circuit sampler S and an iO-adversary O, as follows:

Circuit Sampler S(1λ)
k ←$ {0, 1}SE.kl(λ) ; y ←$ {0, 1}2·R.sl(λ)

C1 ← Pads(λ)(C1
1λ,k,y) ; C0 ← Pads(λ)(C2)

aux ← k ; return (C0,C1, aux)

Adversary O(1λ,C, aux)
k ← aux ; k′ ←$ Q(1λ,C)
If (k = k′) then return 1
Else return 0

It follows that Pr[G1]−Pr[G2] = AdvioObf,S,O(λ). We now show that S ∈ Seq, and
hence AdvioObf,S,O(λ) is negligible by the assumed iO-security of Obf. Specifically,
note that C1

1λ,k,y and C2 are not equivalent only if y belongs to the range of
R, which contains at most 2R.sl(λ) values. However, y is sampled uniformly at
random from a set of size 22·R.sl(λ). It follows that

Pr
[
C0 ≡ C1 : (C0,C1, aux) ←$ S(1λ)

]
≥ 1 − 2−R.sl(λ),

where 2−R.sl(λ) is assumed to be negligible, and hence S ∈ Seq.

References

1. Abdalla, M., Bellare, M., Neven, G.: Robust encryption. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010)

2. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. Cryptology ePrint Archive, Report 2013/689 (2013). http://
eprint.iacr.org/2013/689

3. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

5. Bellare, M., Hoang, V.T.: Resisting randomness subversion: fast deterministic and
hedged public-key encryption in the standard model. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 627–656. Springer, Heidelberg
(2015)

6. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating Random Oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
398–415. Springer, Heidelberg (2013)

7. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

8. Bellare, M., Stepanovs, I.: Point-function obfuscation: a framework and generic
constructions. In: Kushilevitz, E., Malkin, T., (eds.) TCC 2016-A, Part II. LNCS,
vol. 9563, pp. 565–594. Springer, Heidelberg (2016)

9. Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any one-way
function and a framework for differing-inputs obfuscation. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 102–121. Springer,
Heidelberg (2014)

http://eprint.iacr.org/2013/689
http://eprint.iacr.org/2013/689

Contention in Cryptoland: Obfuscation, Leakage and UCE 563

10. Bitansky, N., Canetti, R.: On Strong Simulation and Composable Point Obfusca-
tion. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 520–537. Springer,
Heidelberg (2010)

11. Bitansky, N., Canetti, R., Cohn, H., Goldwasser, S., Kalai, Y.T., Paneth, O., Rosen,
A.: The impossibility of obfuscation with auxiliary input or a universal simulator.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp.
71–89. Springer, Heidelberg (2014)

12. Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box obfuscation
for general circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II.
LNCS, vol. 8617, pp. 108–125. Springer, Heidelberg (2014)

13. Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box obfuscation
for general circuits. Cryptology ePrint Archive, Report 2014/554 (2014). http://
eprint.iacr.org/2014/554

14. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 505–514. ACM
Press, May / June (2014)

15. Bitansky, N., Paneth, O.: Point obfuscation and 3-round zero-knowledge. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 190–208. Springer, Heidelberg
(2012)

16. Bitansky, N., Paneth, O., On the impossibility of approximate obfuscation and
applications to resettable cryptography. In: Boneh, D., Roughgarden, T., Feigen-
baum, J. (eds.) 45th ACM STOC, pp. 241–250. ACM Press, June 2013

17. Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudorandom bits. SIAM J. Comput. 13(4), 850–864 (1984)

18. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)

19. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014)

20. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability Obfuscation and
UCEs: The Case of Computationally Unpredictable Sources. In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 188–205. Springer,
Heidelberg (2014)

21. Brzuska, C., Farshim, P., Mittelbach, A.: Random-oracle uninstantiability from
indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part
II. LNCS, vol. 9015, pp. 428–455. Springer, Heidelberg (2015)

22. Brzuska, C., Mittelbach, A.: Indistinguishability Obfuscation versus Multi-bit
Point Obfuscation with Auxiliary Input. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014, Part II. LNCS, vol. 8874, pp. 142–161. Springer, Heidelberg (2014)

23. Brzuska, C., Mittelbach, A.: Using indistinguishability obfuscation via UCEs. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 122–
141. Springer, Heidelberg (2014)

24. Brzuska, C., Mittelbach, A.: Universal computational extractors and the super-
fluous padding assumption for indistinguishability obfuscation. Cryptology ePrint
Archive, Report 2015/581 (2015). http://eprint.iacr.org/2015/581

25. Canetti, R.: Towards realizing random oracles: hash functions that hide all partial
information. In: Kaliski Jr, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–
469. Springer, Heidelberg (1997)

26. Canetti, R., Tauman Kalai, Y., Varia, M., Wichs, D.: On Symmetric Encryption
and Point Obfuscation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp.
52–71. Springer, Heidelberg (2010)

http://eprint.iacr.org/2014/554
http://eprint.iacr.org/2014/554
http://eprint.iacr.org/2015/581

564 M. Bellare et al.

27. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015)

28. Coron, J.-S., Lepoint, T., Tibouchi, M.: Cryptanalysis of two candidate fixes of
multilinear maps over the integers. Cryptology ePrint Archive, Report 2014/975
(2014). http://eprint.iacr.org/2014/975

29. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treat-
ment of backdoored pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 101–126. Springer, Heidelberg (2015)

30. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In:
Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 621–630. ACM Press, May / June
(2009)

31. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press October 2013

32. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–535.
Springer, Heidelberg (2014)

33. Gentry, C., Halevi, S., Maji, H.K., Sahai, A.: Zeroizing without zeroes: Cryptan-
alyzing multilinear maps without encodings of zero. Cryptology ePrint Archive,
Report 2014/929 (2014). http://eprint.iacr.org/2014/929

34. Gentry, C., Lewko, C.A., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. Cryptology ePrint Archive,
Report 2014/309 (2014). http://eprint.iacr.org/2014/309

35. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: 46th FOCS, pp. 553–562. IEEE Computer Society Press, October 2005

36. Green, M.D., Katz, J., Malozemoff, A.J., Zhou, H.-S.: A unified approach to ide-
alized model separations via indistinguishability obfuscation. Cryptology ePrint
Archive, Report 2014/863 (2014). http://eprint.iacr.org/2014/863

37. Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg (2000)

38. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

39. Lee, H.T., Seo, J.H.: Security analysis of multilinear maps over the integers. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 224–
240. Springer, Heidelberg (2014)

40. Matsuda, T., Hanaoka, G.: Chosen ciphertext security via UCE. In: Krawczyk, H.
(ed.) PKC 2014. LNCS, vol. 8383, pp. 56–76. Springer, Heidelberg (2014)

41. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014)

42. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press,
May / June 2014

43. Wee, H.: On obfuscating point functions. In: Gabow, H.N., Fagin, R. (eds.) 37th
ACM STOC, pp. 523–532. ACM Press, May 2005

44. Yao, A.C.-C.: Theory and applications of trapdoor functions (extended abstract).
In: 23rd FOCS, pp. 80–91. IEEE Computer Society Press, November (1982)

http://eprint.iacr.org/2014/975
http://eprint.iacr.org/2014/929
http://eprint.iacr.org/2014/309
http://eprint.iacr.org/2014/863

Point-Function Obfuscation: A Framework
and Generic Constructions

Mihir Bellare(B) and Igors Stepanovs

Department of Computer Science and Engineering,
University of California, San Diego, USA

mihir@eng.ucsd.edu

http://cseweb.ucsd.edu/mihir/,

https://sites.google.com/site/igorsstepanovs/

Abstract. We give a definitional framework for point-function obfusca-
tion in which security is parameterized by a class of algorithms we call
target generators. Existing and new notions are captured and explained
as corresponding to different choices of this class. This leads to an elegant
question: Is it possible to provide a generic construction, meaning one
that takes an arbitrary class of target generators and returns a point-
function obfuscator secure for it? We answer this in the affirmative with
three generic constructions, the first based on indistinguishability obfus-
cation, the second on deterministic public-key encryption and the third
on universal computational extractors. By exploiting known construc-
tions of the primitives assumed, we obtain new point-function obfusca-
tors, including many under standard assumptions. We end with a broader
look that relates different known and possible notions of point function
obfuscation to each other and to ours.

1 Introduction

In the theory of point-function obfuscation (PO), there are many different goals
and definitions. It is (at least to us) hard territory to navigate. Meanwhile,
there are few constructions; indeed, there are fewer constructions than there
are definitions. And the ones that exist use strong assumptions. We try to bring
some structure and unity to this area via a parameterized definitional framework,
generic constructions and relations between definitions.

1.1 The State of Point-Function Obfuscation

A point function with target k ∈ {0, 1}∗ is the circuit Ik that on input k′ ∈
{0, 1}|k| returns 1 if k′ = k and 0 otherwise. A point-function obfuscator Obf
takes input Ik and returns another circuit P that is functionally equivalent to
Ik, meaning on input k′ ∈ {0, 1}|k| it also returns 1 if k′ = k and 0 otherwise.
Security requires that P hides k. We now discuss the state of the area with regard
to both definitions and constructions.

c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 565–594, 2016.
DOI: 10.1007/978-3-662-49099-0 21

566 M. Bellare and I. Stepanovs

Definitions. The theory of PO contains a large number of different goals and
definitions. Sometimes there is auxiliary information [14,21,35], other times not
[23,27,39,47]. Sometimes security pertains to a single target, other times to
many [25]. Sometimes the formalization is a VBB-style simulation based one,
other times indistinguishability based. Within each category, there are variants,
for example, for indistinguishability, whether the necessary unpredictability con-
dition on targets should be for polynomial-time or unbounded adversaries, and
with negligible or sub-exponential advantage. And this list is not complete.

While from one perspective there are too many definitions, from other per-
spectives there are too few. Think of different elements that have been consid-
ered (for example whether or not auxiliary information is present, one target
or many, polynomial-time or unbounded predictability adversaries, ..., in the
context of an indistinguishability-based definition) as dimensions or axes in a
multi-dimensional space. Then definitions in the literature can be seen as cap-
turing some points in this space. But there is no systematic attempt to look
in some unified way at all the points in this space. There is a connection that
does not seem to have been explicitly made and pursued, namely that defini-
tionally, there is little to no difference between PO and deterministic public-key
encryption DPKE [3,4,17] or other forms of entropic security [30,36]. Exist-
ing systematic and in-depth consideration of DPKE definitions and relations
between them [4,17] can be exploited to obtain semantic-security formalizations
of PO that address issues with current definitions, and also to obtain definitional
relations.

Constructions. Existing constructions use strong assumptions and achieve only
some of the goals. A primary construction is from the AI-DHI (Auxiliary-Input
Diffie-Hellman Inversion) assumption [14,23]. Calling it a construction is a bit
of a stretch; the security just amounts to the assumption. The latter cannot
co-exist with VGBO (Virtual Grey Box Obfuscation) [10]. That doesn’t mean it
is wrong (perhaps VGBO does not exist) but it would be preferable to base PO
on assumptions not in contention with VGBO. Wee [47] provides a construction
based on a fixed permutation about which a novel, strong uninvertibility assump-
tion is made. He only proves security in the absence of auxiliary information,
and GK [35] show that the construction does not in fact provide security in the
presence of auxiliary information. However BP [14] specify an extension of Wee’s
construction with a family of permutations rather than a fixed one, and show,
under a novel assumption called Assumption 2.1 in their paper, that it achieves
security with targets that are hard to predict given the auxiliary information.
BP [14] explain that Assumption 2.1 asks for (a weak form of) extractability,
making it a strong assumption in light of the impossibility of related extractable
primitives [13]. DKL [29] use a novel assumption they call LSN to give a con-
struction for targets that are exponentially hard to predict given the auxiliary
information. BHK [6] give a construction for statistically hard to predict tar-
gets and no auxiliary information based on a multi-key version of their UCE
assumption. There are simple constructions in the ROM [39].

Point-Function Obfuscation: A Framework and Generic Constructions 567

In summary, there are few (standard-model) constructions and those that
exist all use strong and sometimes novel assumptions. Also, each construction
achieves a different variant of the goal and it is hard to visualize, or say in a
concise way, what has been done. The framework that we now discuss provides
language to do this.

1.2 Contributions in Brief

We pick one, simple indistinguishability-based definitional template. Using this,
we provide a framework parameterized by a class X of objects we call target
generators, giving a definition of what it means for a point-function obfuscator
to be IND[X] secure. This allows us to recover and explain different notions in
the literature as each corresponding to a choice of X, and also obtain many
natural new ones, points in the above-mentioned multi-dimensional space that
had not been explicitly considered.

This taxonomy leads to a compelling and general new question: Is it possible
to find a generic construction, meaning a compiler that given an arbitrary X
returns a point-function obfuscator secure relative to it? We answer this in the
affirmative by providing three such generic constructions. As a consequence we
obtain new constructions for both old and new forms of PO.

We then step back to consider other definitions of PO. These include existing
simulation and indistinguishability style notions, as well as new, semantic secu-
rity style ones emanating from the above-mentioned connection to DPKE. We
formulate these also in a parameterized framework and then provide relations
(implications and separations) between these notions and our IND notion.

We now look at these three contributions in more detail.

1.3 Definitional Framework

Recall that a point-function obfuscator Obf takes input Ik and returns another
circuit P that is functionally equivalent to Ik. Security requires that P hides k.
We define a target generator X as a polynomial-time algorithm that on input the
security parameter returns a vector k of target points together with auxiliary
information a. We measure security of a candidate point-function obfuscator
Obf relative to X. To do this, we associate to an adversary A its advantage
Advind

Obf,X,A(·) in guessing the challenge bit b in the following game. We run X

to get (k, a). We let P be the vector obtained by independently obfuscating Ik

for each of the targets k from k (b = 1) or by obfuscating the same number of
random, independent targets (b = 0). The input to A is P and a. Now we let X
be a class (set) of target generators X and say that obfuscator Obf is IND[X]-
secure if Advind

Obf,X,A(·) is negligible for all polynomial time A and all X ∈ X. See
Sect. 3 for a formal definition.

What we have here is a notion of point-function obfuscation parameterized by
a class of target generators. We view the latter as knobs. By turning these knobs
(defining specific classes) we can capture specific restrictions, and by intersecting

568 M. Bellare and I. Stepanovs

classes we can combine them, allowing us to speak precisely yet concisely about
different variant notions that are unified in this way.

IND[X]-security is not achievable for all X. For example, X could pick k[1]
to be the string of all zeroes, and the adversary could test whether or not P
returns 1 on input that string. The minimal requirement for security is that the
target points produced by X are unpredictable given a. In Sect. 3 we formalize
a prediction game and advantage so that we can define the classes Xcup,Xseup

and Xsup of computationally, sub-exponentially and statistically unpredictable
target generators. We let Xq(·) denote the class of target generators outputting
q(·) target points and Xε the class of target generators that produce no auxiliary
information. (Formally it is the empty string.)

Already we can characterize prior work in a precise way. IND[Xcup ∩ Xε ∩
X1] is plain point-function obfuscation [23,27,39,47], where there is just one
target point, no auxiliary information, and unpredictability is computational.
IND[Xcup ∩X1] is AIPO [14,20], where there is again one target point, but aux-
iliary information is now present, while unpredictability continues to be compu-
tational. IND[Xcup] is composable AIPO [25], where there are many arbitrarily
correlated target points, auxiliary information is present, and unpredictability
is computational. DKL [29] achieve IND[Xsup ∩X1], where there is a single tar-
get that is statistically hard to predict given the auxiliary information. BHK
[6] achieve IND[Xsup ∩ Xε], where there are multiple targets, unpredictability
is statistical, and there is no auxiliary information. Other prior notions can be
captured in similar ways, and many natural new notions emerge as well.

1.4 Generic Constructions

As we saw above, constructions so far have been ad hoc, targeting different
security goals and using strong, novel assumptions to achieve them. The above
framework allows us to frame a compelling question, namely whether there are
generic constructions. By this we mean that we are handed an arbitrary class
X of target generators and asked to craft an obfuscator that is IND[X]-secure.
If we can do this, we can, in one unified swoop, obtain constructions for a wide
variety of forms of PO, not only ones considered in the past, but also new ones.

In this paper we provide three such generic constructions. The first is based on
indistinguishability obfuscation, the second on deterministic public-key encryp-
tion and the third on (multi-key) UCE.

One natural objection at this point is that we know that IND[X] is not
achievable for some choices of X. For example, assuming iO, this is true for
X = Xcup, meaning composable PO. (This follows by combining [20,24].) So
how can our constructions achieve IND[X] for any given X? In fact, they do,
and this, interestingly, yields new negative results, ruling out the primitives we
start from for those particular values of X. We will explain further below.

PO from iO. The emergence of candidate constructions for iO (indistinguisha-
bility obfuscation) [12,33,34,43] raised a natural hope, namely that one could

Point-Function Obfuscation: A Framework and Generic Constructions 569

obtain PO from iO. But this has not happened. Despite the many powerful appli-
cations of iO, constructing point-function obfuscation from it has surprisingly
evaded effort.

We show that iO plus a OWF yields PO. More precisely, we show iO +
OWF[X] ⇒ IND[X]: Given iO and a family of functions that is one-way relative
to X as defined in Sect. 5.1 we can construct an obfuscator that is IND[X]-
secure. The construction, result and proof are in Sect. 5.1. The idea is that to
obfuscate Ik we pick at random a key fk for the OWF F (formally, the latter
is a family of functions) and let y = F(fk, k). We consider the circuit C that
hardwires fk, y and on input k′ returns 1 if F(fk, k′) = y and 0 otherwise. We
then apply an indistinguishability obfuscator to C to produce the obfuscated
point function. The security proof is a sequence of hybrids. Although we assume
only iO, we exploit diO [1,2,16] in the proof in a manner similar to [9]. We will
need it for circuits that differ only on one input, and in this case the result of
BCP [16] says that an iO-secure obfuscator is also diO-secure, so the assumption
remains iO. As part of the proof we state and prove a lemma reducing (d)iO
on polynomially-many, related circuits to the usual single-circuit case. We note
that to guarantee the usual (perfect) correctness condition of a PO, we require
the OWF to be injective.

We highlight the simplest case of this result as still being novel and of interest.
Namely, given iO and an ordinary injective OWF, we achieve plain point-function
obfuscation, IND[Xcup ∩ Xε ∩ X1] in our notation. Previous constructions have
been under assumptions that at this point seem less accepted than iO, and
Wee [47] gives various arguments as to why this goal is hard under standard
assumptions. Also on the negative side, combining our result with [20,24] allows
us, under iO, to rule out OWF[Xcup] (one-way functions secure for polynomially-
many, computationally unpredictable correlated inputs), at least in the injective
case.

PO from DPKE. Deterministic public key encryption (DPKE) [3] was moti-
vated by applications to efficient searchable encryption [3]. It cannot provide
IND-CPA security. Instead, BBO [3] provide a definition of a goal called PRIV
which captures the best-possible security that encryption can provide subject to
being deterministic. At this point many constructions of DPKE are known for
various variant goals [3–5,15,17,32,38,42,45,48,50].

We show how to leverage these for point-function obfuscation via our second
generic construction. We show that PRIV1[X] ⇒ IND[X]. That is, given a deter-
ministic public-key encryption scheme that is PRIV1 secure relative to X we can
build a point-function obfuscator secure relative to the same class in a simple
and natural way. Namely to obfuscate Ik we pick at random a public key pk and
the associated secret key sk for the DPKE scheme and let c be the encryption of
k under pk. The point-function obfuscation is the circuit C that hardwires pk, c
and on input k′, returns 1 if the encryption of k′ under pk equals c, and 0 oth-
erwise. The fact that the encryption is deterministic is used crucially to define
the circuit. (The latter must be deterministic.) The secret key sk is discarded
and not used in the construction. We note that we only require security of the

570 M. Bellare and I. Stepanovs

DPKE scheme for a single message (PRIV1) so the negative result of Wichs [49]
does not apply. The construction, result and proof are in Sect. 5.2.

From the LTDF-based DPKE scheme of BFO [15] and LTDFs from [31,37,44,
48,51] we now get IND[Xsup ∩Xε ∩X1]-secure obfuscators under a large number
of standard assumptions. We also get IND[Xseup ∩ X1]-secure obfuscators under
the DLIN, Subgroup Indistinguishability and LWE assumptions via [17,48,50]. On
the negative side we can rule out PRIV1[Xcup]-secure DPKE under iO via [20,24].

PO from UCE. UCE [6] is a class of assumptions on function families crafted
to allow instantiation of random oracles in certain settings. UCE security is
parameterized so that we have UCE[S] security of a family of functions for
different choices of classes S of algorithms called sources. The parameterization
is necessary because security is not achievable for the class of all sources. Different
applications rely on UCE relative to different classes of sources [5,6,18,21,28,41].

In this work we use the multi-key version of UCE, abbreviated mUCE [6].
We show how to associate to any given class X of target generators a class SX of
sources such that mUCE[SX] ⇒ IND[X], meaning we can build a point-function
obfuscator secure for X given a family of functions that is mUCE[SX]-secure.
The definition of SX is given in Sect. 5.3. But what is most relevant here is that
the strength of UCE-framework assumptions is very sensitive to the choice of
class of sources that parameterizes the particular assumption, and SX has good
properties in this regard. The sources are what are called “split” in [6], and
they inherit the unpredictability attributes of the target generators. mUCE[SX]-
security is not achievable for all choices of X but the assumption is valid as far
as we know for many choices of X, yielding new constructions.

1.5 Alternative Notions and Relations Between Notions

Above, we fixed one, basic definitional template, which we called IND, and then
parameterized it by classes X of target generators to get notions IND[X]. How-
ever, there are other possible choices for the basic template, some emanating from
the literature, and others from the definitional similarity of PO with DPKE. We
consider parameterized versions of some of these and relate them to each other
and to IND. Specifically we define and consider the following (see Sect. 6 for
formal definitions):

• SIM[X]: (Simulation) The first definitions for PO simply restricted VBB secu-
rity [2] to the class of point functions [25,35,39,47]. With SSS[X] we give an
X-parameterized version of this.

• SIND[X]: (Strong Indistinguishability) Recall that in IND[X], the adversary
decision bit is produced as a function of the vector P of obfuscated point
functions and the auxiliary information a. In SIND[X], this bit is not the final
decision, but is passed to another adversary who produces the final decision
based on it and the target vector itself. This is a parameterized version of the
definition of [23].

• CSS[X]: (Comparison-based semantic security) This is an analogue of compar-
ision based semantic security for boolean functions for DPKE [4] in which the

Point-Function Obfuscation: A Framework and Generic Constructions 571

adversary needs to compute some predicate on the target vector and auxiliary
information.

• SSS[X]: (Simulation-based semantic security) This is an analogue of simula-
tion based semantic security for boolean functions for DPKE [4] in which a
simulator with an oracle for the point functions must compute a predicate on
the target vectors and auxiliary information.

Figure 8 shows the relations between five parameterized notions of PO, namely
the four above and our original IND[X].

1.6 Discussion and Further Related Work

In concurrent and independent work, BM3 [22] take first steps towards a para-
meterized definition for point-function obfuscation, with separate definitions for
the basic and composable cases. They also show that injective mUCE-secure
function families for strongly unpredictable sources making one oracle query per
key implies composable AIPO (both for computational and statistical unpre-
dictability), which is a special case of our mUCE result.

Multi-bit auxiliary-input point-function obfuscation (MB-AIPO) [11,25,40]
allows one to obfuscate the circuit Ik,m that on input k′ returns m if k = k′

and ⊥ otherwise, where k,m are strings. CD [25] show that composable AIPO
implies MB-AIPO. MB-AIPO was subsequently used in BP [14] and MH [40].
BM1 [20] show that if iO is possible then MB-AIPO is not. MB-AIPO seems to
be quite a bit stronger than AIPO itself and in particular this result does not
rule out AIPO.

In Sect. 5.1 we define OWF[X], one-wayness of a function family relative to
a class of target generators, the targets here being the inputs to the OWF. We
note that OWF[Xsup ∩ Xε] (inputs are statistically unpredictable and there is
no auxiliary information) is the notion of a one-way correlation intractable hash
(CIH) function family as per GOR [36].

Our parameterized PRIV1[X] notions of security for DPKE schemes apply
equally to function families and thus recover, via particular choices of X, some
of the security notions for CIH function families from GOR [36]. In these cases,
since our DPKE-based constructions of PO do not require that decryption in
the DPKE scheme is polynomial-time, CIH function families meeting the corre-
sponding notions suffice as well.

Seeing that prior work can be characterized in terms of intersections of certain
basic classes in our framework makes apparent that so far the literature has
considered only a few points from the larger space of all possible intersections.
A systematic consideration of the full space (which is lacking) would surface
other notions of interest and give a coherent picture of the area.

2 Notation and Standard Definitions

Notation. We denote by λ ∈ N the security parameter and by 1λ its unary
representation. We let ε denote the empty string. If s is an integer then Pads(C)

572 M. Bellare and I. Stepanovs

denotes circuit C padded to have size s. We say that circuits C0,C1 are equiv-
alent, written C0 ≡ C1, if they agree on all inputs. If x is a vector then |x|
denotes the number of its coordinates and x[i] denotes its i-th coordinate. We
write x ∈ x as shorthand for x ∈ {x[1], . . . ,x[|x|]}. If X is a finite set, we
let x ← $ X denote picking an element of X uniformly at random and assign-
ing it to x. Algorithms may be randomized unless otherwise indicated. Running
time is worst case. “PT” stands for “polynomial-time,” whether for randomized
algorithms or deterministic ones. If A is an algorithm, we let y ← A(x1, . . . ; r)
denote running A with random coins r on inputs x1, . . . and assigning the out-
put to y. We let y ← $ A(x1, . . .) be the result of picking r at random and letting
y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all possible outputs of
A when invoked with inputs x1, We say that f : N → R is negligible if for
every positive polynomial p, there exists λp ∈ N such that f(λ) < 1/p(λ) for all
λ > λp. We use the code based game playing framework of [7]. (See Fig. 3 for
an example.) By GA(λ) we denote the event that the execution of game G with
adversary A and security parameter λ results in the game returning true.

Obfuscators. An obfuscator is a PT algorithm Obf that on input 1λ and a
circuit C returns a circuit C. If C is an n-vector of circuits then Obf(1λ,C)
denotes the vector (Obf(1λ,C[1]), . . . , Obf(1λ,C[n])) formed by applying Obf
independently to each coordinate of C. The correctness condition of obfuscator
Obf requires that for every circuit C, every λ ∈ N and every C ∈ [Obf(1λ,C)]
we have C ≡ C (meaning C(x) = C(x) for all x). We also call the latter a
perfect correctness condition and we require that it holds for all obfuscators. We
consider various notions of security for obfuscators, namely indistinguishability
obfuscation and variants of point-function obfuscation, including AIPO.

Indistinguishability Obfuscation. Although our results need only iO, we use
diO [1,2,16] in the proof, applying BCP [16] to then reduce the assumption to
iO. To give the definitions compactly, we use the definitional framework of BST
[9] which allows us to capture iO variants (including diO) via classes of circuit
samplers. Let Obf be an obfuscator. A sampler in this context is a PT algorithm
S that on input 1λ returns a triple (C0,C1, aux) where C0,C1 are circuits of
the same size, number of inputs and number of outputs, and aux is a string.
If O is an adversary and λ ∈ N we let Advio

Obf,S,O(λ) = 2Pr[IOO
Obf,S(λ)] − 1

where game IOO
Obf,S(λ) is defined in Fig. 1. Now let S be a class (set) of circuit

samplers. We say that Obf is S -secure if Advio
Obf,S,O(·) is negligible for every

PT adversary O and every circuit sampler S ∈ S . We say that circuit sampler
S produces equivalent circuits if there exists a negligible function ν such that
Pr

[
C0 ≡ C1 : (C0,C1, aux) ←$ S(1λ)

]
≥ 1−ν(λ) for all λ ∈ N. Let Seq be the

class of all circuit samplers that produce equivalent circuits. We say that Obf is
an indistinguishability obfuscator if it is Seq-secure [2,33,46].

We say that a circuit sampler S is difference secure if Advdiff
S,D(·) is negligible for

every PT adversary D, where Advdiff
S,D(λ) = Pr[DIFFD

S (λ)] and game DIFFD
S (λ)

is defined in Fig. 1. Difference security of S means that given C0,C1, aux it is
hard to find an input on which the circuits differ [1,2,16]. Let Sdiff be the class of

Point-Function Obfuscation: A Framework and Generic Constructions 573

Game DIFFD
S (λ)

(C0, C1, aux) ←$ S(1λ)

x ←$ D(C0, C1, aux)

Return (C0(x) �= C1(x))

Game IOO
Obf,S(λ)

b ←$ {0, 1} ; (C0, C1, aux) ←$ S(1λ)

C ←$ Obf(1λ, Cb) ; b′ ←$ O(1λ, C, aux)

Return (b = b′)

Fig. 1. Games defining difference-security of circuit sampler S and iO-security of obfus-
cator Obf relative to circuit sampler S.

all difference-secure circuit samplers. We say that circuit sampler S produces d-
differing circuits, where d: N → N, if for all λ ∈ N circuits C0 and C1 differ on at
most d(λ) inputs with an overwhelming probability over (C0,C1, aux) ←$ S(1λ).
Let Sdiff(d) be the class of all difference-secure circuit samplers that produce
d-differing circuits, so that Seq ⊆ Sdiff(d) ⊆ Sdiff . The interest of this definition
is the following result of BCP [16] that we use:

Proposition 1. If d is a polynomial then any Seq-secure circuit obfuscator is
also an Sdiff(d)-secure circuit obfuscator.

Function Families. A family of functions F specifies the following. PT key
generation algorithm F.Kg takes 1λ to return a key fk ∈ {0, 1}F.kl(λ), where
F.kl: N → N is the key length function associated to F. Deterministic, PT evalu-
ation algorithm F.Ev takes 1λ, key fk ∈ [F.Kg(1λ)] and an input x ∈ {0, 1}F.il(λ)

to return an output F.Ev(1λ, fk, x) ∈ {0, 1}F.ol(λ), where F.il,F.ol: N → N are the
input and output length functions associated to F, respectively. We say that F is
injective if the function F.Ev(1λ, fk, ·): {0, 1}F.il(λ) → {0, 1}F.ol(λ) is injective for
every λ ∈ N and every fk ∈ [F.Kg(1λ)]. Notions of security for function families
that we use are mUCE and OWF, the latter defined in Sect. 5.1.

UCE Framework. We recall the Universal Computational Extractor (UCE)
framework of BHK [6]. We will use what BHK call the multi-key version of UCE
(mUCE). It is an extension of the more commonly used UCE notion for a single
key, meaning that it implies the latter. Meanwhile, no implications in the other
direction (from single-key to multi-key) are known.

Let H be a family of functions. Let S be an adversary called the source and
D an adversary called the distinguisher. Consider game mUCES,D

H (λ) in the left
panel of Fig. 2. Associated to S is a polynomial S.nk that indicates how many
keys S uses. The source has access to an oracle HASH. A query to HASH
consists of an index i of a key and the actual input x, which is a string required
to have length H.il(λ). When the challenge bit b is 1 (the “real” case) the oracle
responds via H.Ev under a key hk[i] that is chosen by the game and not given
to the source. When b = 0 (the “random” case) it responds as a random oracle.
The source then leaks a string L to its accomplice distinguisher. The latter does
get the key vector hk as input and must now return its guess b′ ∈ {0, 1} for b.
The game returns true iff b′ = b. The advantage of (S,D) against the mUCE
security of H is defined for λ ∈ N via Advm-uce

H,S,D(λ) = 2Pr[mUCES,D
H (λ)] − 1.

574 M. Bellare and I. Stepanovs

If S is a class (set) of sources, we say that H is mUCE[S]-secure if Advm-uce
H,S,D(·)

is negligible for all sources S ∈ S and all PT distinguishers D.

mUCES,D
H (λ)

For i = 1, . . . , S.nk(λ) do hk[i] ←$ H.Kg(1λ)

b ←$ {0, 1} ; L ←$ SHASH(1λ)

b′ ←$ D(1λ,hk, L)

Return (b = b′)

HASH(i, x)

If not (1 ≤ i ≤ S.nk(λ)) then return ⊥
If T [i, x] = ⊥ then

If b = 0 then T [i, x] ←$ {0, 1}H.ol(λ)

Else T [i, x] ← H.Ev(1λ,hk[i], x)

Return T [i, x]

mSPREDP
S (λ)

X ← ∅ ; L ←$ SHASH(1λ)

x ←$ P(1λ, L)

Return (x ∈ X)

HASH(i, x)

If not (1 ≤ i ≤ S.nk(λ)) then

Return ⊥
If T [i, x] = ⊥ then

T [i, x] ←$ {0, 1}H.ol(λ)

X ← X ∪ {x}
Return T [i, x]

Fig. 2. Games defining mUCE security of function family H and unpredictability of
source S.

It is easy to see that mUCE[S]-security is not achievable if S is the class of
all PT sources [6]. To obtain meaningful notions of security, BHK [6] impose
restrictions on the source. A central restriction is unpredictability. A source is
unpredictable if it is hard to guess the source’s HASH queries even given the
leakage, in the random case of the mUCE game. Formally, let S be a source and
P an adversary called a predictor and consider game mSPREDP

S (λ) in Fig. 2.
For λ ∈ N we let Advm-spred

S,P (λ) = Pr[mSPREDP
S (λ)]. We say that S is com-

putationally unpredictable if Advm-spred
S,P (·) is negligible for all PT predictors P,

and let Scup be the class of all PT computationally unpredictable sources. We
say that S is statistically unpredictable if Advm-spred

S,P (·) is negligible for all (not
necessarily PT) predictors P, and let Ssup ⊆ Scup be the class of all PT statis-
tically unpredictable sources. We say that S is sub-exponentially unpredictable
if there is an ε > 0 such that for any PT predictor P there is a λP such that
Advm-spred

S,P (λ) ≤ 2−λε

for all λ ≥ λP , and let Sseup ⊆ Scup be the class of all PT
sub-exponentially unpredictable sources.

BFM [18] show that UCE-framework security notions (both single-key and
multi-key) are not achievable for Scup assuming that indistinguishability obfusca-
tion exists. This has lead applications to impose further restrictions on the source
by using either Ssup or subsets of Scup. Assumptions based on Ssup, introduced
in [6,18], at this point seem to be a viable. In order to restrict the computational
case, one can consider split sources as defined in BHK [6]. Such sources can leak
information about oracle queries and answers separately, but not together. We
let Ssplt denote the class of split sources. Another way to restrict a source is
by limiting the number of queries it can make. Let Sn,q be the class of sources

Point-Function Obfuscation: A Framework and Generic Constructions 575

S such that S.nk(·) ≤ n(·) and S makes at most q(·) queries to each key. In
particular S1,1 is the class of sources that use only one key and make only one
query to it.

3 Point-Function Obfuscation Framework

The literature considers many different variants of point function obfuscation.
Here we provide a definitional framework that unifies these concepts and allows
us to obtain not just known but also new variants of point function obfuscation
as special cases. The framework parameterizes the security of a point-obfuscator
by a class of algorithms we call target generators. Different notions of point
obfuscation then correspond to different choices of this class. We start by defining
target generators.

Target Generators. A target generator X specifies a PT algorithm X.Ev that
takes 1λ to return a target vector k and auxiliary information a ∈ {0, 1}∗. The
entries of k are the targets, each of length X.tl(λ), and the vector itself has length
X.vl(λ), where X.tl,X.vl : N → N are the target length and target-vector length
functions associated to X, respectively.

Game INDA
Obf,X(λ)

b ←$ {0, 1}
(k1, a1) ←$ X.Ev(1λ)

For i = 1, . . . ,X.vl(λ) do

k0[i] ←$ {0, 1}X.tl(λ)

P ←$ Obf(1λ, Ikb)

b′ ←$ A(1λ,P, a1)

Return (b = b′)

Game PREDQ
X (λ)

(k, a) ←$ X.Ev(1λ)

k ←$ Q(1λ, a)

Return (∃i : k[i] = k)

Game TRIVA
X (λ)

b ←$ {0, 1}
(k1, a1) ←$ X.Ev(1λ)

For i = 1, . . . ,X.vl(λ) do

k0[i] ←$ {0, 1}X.tl(λ)

b′ ←$ A(1λ,kb, a1)

Return (b = b′)

Fig. 3. Games defining IND security of point-function obfuscator Obf relative to target
generator X, unpredictabilty of target generator X and triviality of target generator X.

Point-Function Obfuscation. If k is a bit-string then Ik: {0, 1}|k| → {0, 1}
denotes a canonical representation of the circuit that on input k′ ∈ {0, 1}|k| returns
1 if k = k′ and 0 otherwise. It is assumed that given Ik, one can compute k in
time linear in |k|. A circuit C is called a point circuit if there is a k, called the
circuit target, such that C ≡ Ik. If k is an n-vector of strings then we let Ik =
(Ik[1], . . . , Ik[n]).

Let Obf be an obfuscator, as defined in Sect. 2. Its correctness condition
guarantees that on input 1λ, Ik, it returns a point circuit with target k, which
is the condition for calling it a point-function obfuscator. We say that Obf has
target length Obf.tl: N → N if its correctness condition is only required on inputs
Ik with k ∈ {0, 1}Obf.tl(λ).

576 M. Bellare and I. Stepanovs

Security of Point-Function Obfuscation. We now define security of point-
function obfuscator relative to a class of target generators. We will then consider
various choices of these classes.

Consider game IND of Fig. 3 associated to a point-function obfuscator Obf,
a target generator X and an adversary A, such that Obf.tl = X.tl. For λ ∈ N let
Advind

Obf,X,A(λ) = 2Pr[INDA
Obf,X(λ)]−1. The game generates a target vector k1 and

corresponding auxiliary information a1 via X. It also samples a target vector k0

uniformly at random, containing X.vl(λ) elements each of length X.tl(λ). It then
obfuscates the targets in the challenge vector kb via Obf to produce P which,
as per our notation, will be the vector (Obf(1λ, Ikb[1]), . . . ,Obf(1

λ, Ikb[X.vl(λ)]))
formed by independently obfuscating the targets in the target vector. Given
P and a1, adversary A outputs a bit b′, and wins the game if this equals b,
meaning it guesses whether the target vector that was obfuscated was the one
corresponding to auxiliary information a1 or one independent of it.

Let X be a class (set) of target generators. We say that Obf is IND[X]-
secure if Advind

Obf,X,A(·) is negligible for every PT A and every X ∈ X. We now
capture different notions in the literature, as well as new ones, by considering
particular classes X. At the end of this section we will present what we call the
triviality theorem, showing how the definition is vacuous for some classes, and
discuss its implications. We will further discuss alternative security definitions
for point-function obfuscation in Sect. 6.

Classes of Target Generators. One important (and necessary) condition on
a target generator is unpredictability. To define this, consider game PRED of
Fig. 3 associated to X and a predictor adversary Q. For λ ∈ N let Advpred

X,Q(λ) =
Pr[PREDQ

X (λ)]. The game generates a target vector k and associated auxiliary
information a. The adversary Q gets a and wins if it can predict any entry of
the vector k.

The first dimension along which point-function obfuscators are classified is
the type of unpredictability, encompassing two sub-dimensions: the success prob-
ability of predictors (may be required to be negligible or sub-exponential) and
their computational power (PT and computationally unbounded are the popular
choices, but one could also consider sub-exponential time). Some relevant classes
are the following:

– Xcup — Class of computationally unpredictable target generators — X ∈ Xcup

if Advpred
X,Q(·) is negligible for all PT predictor adversaries Q.

– Xseup — Class of sub-exponentially unpredictable target generators — X ∈
Xseup if there exists 0 < ε < 1 such that for every PT predictor adversary Q
there is a λQ such that Advpred

X,Q(λ) ≤ 2−λε

for all λ ≥ λQ.
– Xsup — Class of statistically unpredictable target generators — X ∈ Xsup

if Advpred
X,Q(·) is negligible for all (even computationally unbounded) predictor

adversaries Q.

Another dimension is the number of target points in the target vector, to capture
which, for any polynomial q: N → N, we let

Point-Function Obfuscation: A Framework and Generic Constructions 577

– Xq(·) — Class of generators producing q(·) target points — X ∈ Xq(·) if
X.vl = q. An important special case is q(·) = 1.

Another important dimension is auxiliary information, which may be present or
absent (the latter, formally means it is the empty string), to capture which we
let

– Xε — Class of generators with no auxiliary information — X ∈ Xε if a = ε
for all (k, a) ∈ [X.Ev(1λ)] and all λ ∈ N.

We can recover notions from the literature as follows:

– IND[Xcup ∩Xε ∩X1] — This is basic point-function obfuscation, secure for a
single computationally unpredictable target point, and no auxiliary informa-
tion is allowed. It is achieved in [23,27,39,47].

– IND[Xcup ∩ X1] — This is AIPO [14,35], secure for a single computation-
ally unpredictable target point in the presence of auxiliary information. It
is achieved under the AI-DHI assumption by Canetti [23], and using the
extended construction of Wee [47] by BP [14].

– IND[Xcup] — This is composable AIPO [25], meaning that it is secure for arbi-
trarily many correlated target points that are computationally unpredictable
in the presence of auxiliary information. BM1 [20] showed that this notion
cannot co-exit with iO in the presence of OWFs.

– IND[Xsup ∩ Xε] — This is composable point-function obfuscation, secure for
arbitrarily many correlated target points that are statistically unpredictable,
and no auxiliary information is allowed. It is achieved from mUCE[Ssup] in
BHK [6].

Furthermore, DKL [29] achieve IND[Xsup ∩ X1] from the LSN (i.e. auxiliary-
input LPN) assumption and BM3 [22] build IND[Xsup] from mUCE[Ss-sup ∩
X1]. Here Ss-sup denotes a subclass of Ssup ∩Ssplt that is used to denote sources
with “strong statistical unpredictability”, as defined in BM2 [21]. We note that
some of the above results achieve notions that are stronger than IND. Such
notions are discussed and defined in Sect. 6.

Triviality Theorem. The IND[X] definition has the peculiar property of triv-
ializing for some choices of X. For example, let X be a target generator that
returns a vector of random, independent targets and auxiliary information a = ε
the empty string. Then any point-function obfuscator Obf is IND[{X}]-secure.
This is true because game IND in this case samples k0,k1 from the same dis-
tribution and the information provided to the adversary A is thus independent
of the challenge bit. Before discussing and assessing what this means for the
definition, we provide a general triviality theorem that characterizes for what
choices of X this phenomenon happens.

Consider game TRIV of Fig. 3 associated to a target generator X and an
adversary A. For λ ∈ N let Advtriv

X,A(λ) = 2Pr[TRIVA
X (λ)] − 1. We say that X

is trivial if Advtriv
X,A(·) is negligible for every PT A. An example of trivial X is

the one given above. Let Xtriv be the class of all trivial target generators, and

578 M. Bellare and I. Stepanovs

say that a class X is trivial if X ⊆ Xtriv. The proof of the following triviality
theorem follows directly from the definitions of games IND and TRIV and is
omitted.

Theorem 2. Let X ⊆ Xtriv be a class of target generators. Let Obf be any
point-function obfuscator. Then Obf is IND[X]-secure.

This can be viewed as a defect of the IND definition, but whether or not this is
true is debatable. The IND definition has been successfully employed in appli-
cations [14,21]. In these cases, X = Xcup ∩X1, a class to which Theorem 2 does
not apply. This indicates that the classes of target generators arising in appli-
cations are naturally not trivial. And the constructions we give in Sect. 5 cover
such non-trivial classes. Thus we are on the whole unsure whether or not The-
orem 2 should be viewed as a definitional weakness. In Sect. 6 we will provide
alternative security definitions for PO that avoid this type of triviality theorem
and are meaningful for all choices of target generators. But if an application can
be obtained via IND, then it seems preferable, since this definition is simpler
and easier to use and, from Sect. 5, we have more constructions for it.

4 (d)iO for Multi-circuit Samplers

We state and prove a lemma we will use that may be of independent interest.
We extend the standard definition of circuit samplers from Sect. 2 to get multi-
circuit samplers, which are samplers that may produce a vector of circuit pairs
(but still only a single auxiliary information string). We also extend the security
definition of differing-inputs obfuscation to work with respect to multi-circuit
samplers. We then use a hybrid argument to show that the security of the latter
is implied by the standard definition of differing-inputs obfuscation for circuit
samplers that produce only a single pair of circuits. This result will be used for
our iO-based construction of a point-function obfuscator, BCP [16] being applied
to move from diO to iO. (We stress that diO is used as a tool but not as an
assumption in our results.)

iO for Multi-circuit Samplers. A multi-circuit sampler is a PT algorithm
S with an associated circuit-vector length function S.vl : N → N. Algorithm S
on input 1λ returns a triple (C0,C1, aux) where aux is a string and C0,C1 are

Game MDIFFD
S (λ)

(C0,C1, aux) ←$ S(1λ)

x ←$ D(C0,C1, aux)

Return (∃i : C0[i](x) �= C1[i](x))

Game MIOO
Obf,S(λ)

b ←$ {0, 1} ; (C0,C1, aux) ←$ S(1λ)

C ←$ Obf(1λ,Cb) ; b′ ←$ O(1λ,C, aux)

Return (b = b′)

Fig. 4. Games defining difference-security of multi-circuit sampler S and iO-security of
obfuscator Obf relative to multi-circuit sampler S.

Point-Function Obfuscation: A Framework and Generic Constructions 579

circuit vectors of length S.vl(λ), such that circuits C0[i] and C1[i] are of the same
size, number of inputs and number of outputs for every i ∈ {1, . . . ,S.vl(λ)}.

Consider game MIO of Fig. 4 associated to an obfuscator Obf, a multi-circuit
sampler S and an adversary O. For λ ∈ N let Advm-io

Obf,S,O(λ) = 2Pr[MIOO
Obf,S(λ)]−

1. Let S be a class of multi-circuit samplers. We say that Obf is S -secure if
Advm-io

Obf,S,O(·) is negligible for every multi-circuit sampler S ∈ S and every PT
adversary O.

Consider game MDIFF of Fig. 4 associated to a multi-circuit sampler S and
an adversary D. For λ ∈ N let Advm-diff

S,D (λ) = Pr[MDIFFD
S (λ)]. We say that a

multi-circuit sampler S is difference secure if Advm-diff
S,D (·) is negligible for every

PT adversary D. Let Sm-diff be the class of all difference-secure multi-circuit
samplers and let d: N → N. We say that multi-circuit sampler S produces d-
differing circuits if circuits C0[i] and C1[i] differ on at most d(λ) inputs with
an overwhelming probability over (C0,C1, aux) ∈ [S(1λ)], for all λ ∈ N and
all i ∈ {1, . . . ,S.vl(λ)}. Let Sm-diff(d) be the class of all difference-secure multi-
circuit samplers that produce d-differing circuits. The proof of the following
lemma is provided in [8].

Lemma 3. Let d : N → N. Let Obf be an Sdiff(d)-secure obfuscator. Then Obf
is also an Sm-diff(d)-secure obfuscator.

5 Generic Constructions of PO

Prior constructions have targeted IND[X] for specific choices of X in ad hoc ways
and used non-standard assumptions. In this section we provide constructions
that are generic. This means they take an arbitrary, given class X of target
generators and return a point-function obfuscator that is IND[X]-secure.

5.1 PO from iO

OWFs. Consider game OWF of Fig. 5 associated to a function family F, a target
generator X with X.tl = F.il, and an adversary F . For λ ∈ N let Advowf

F,X,F (λ) =
Pr[OWFF

F,X(λ)]. Let X be a class of target generators with target length F.il.
Let X1ur be the target generator with X1ur.vl(·) = 1 and X1ur.tl = F.il, where the
target is sampled from a uniform distribution and the auxiliary information is
always empty, meaning a = ε. We say that F is OWF[X]-secure if Advowf

F,X,F (·) is
negligible for all PT adversaries F and all X ∈ X ∪ {X1ur}. Relevant classes X
are the same as for PO. The standard notion of a OWF is recovered as X = ∅,
meaning that F is secure only with respect to X1ur.

The definition of CD [24] is the special case of ours with vectors of length one.
That of FOR [32], like ours, considers evaluations of the function on multiple
inputs, but in their case the key for the evaluations is the same and there is
no auxiliary input, while in our case the key is independently chosen for each
evaluation and auxiliary inputs may be present. We stress that we require only

580 M. Bellare and I. Stepanovs

Game OWFF
F,X(λ)

(k, a) ←$ X.Ev(1λ)

For i = 1, . . . ,X.vl(λ) do

fk[i] ←$ F.Kg(1λ)

y[i] ← F.Ev(1λ, fk[i],k[i])

k ←$ F(1λ, fk,y, a)

Return (∃i : F.Ev(1λ, fk[i], k) = y[i])

Game PRIV1A
DPKE,X(λ)

b ←$ {0, 1} ; (k1, a) ←$ X.Ev(1λ)

For i = 1, . . . ,X.vl(λ) do

k0[i] ←$ {0, 1}DPKE.ml(λ)

(pk[i], sk[i]) ←$ DPKE.Kg(1λ)

c[i] ← DPKE.Enc(1λ,pk[i],kb[i])

b′ ←$ A(1λ,pk, c, a) ; Return (b = b′)

Fig. 5. Games defining one-wayness of function family F relative to target generator
X and PRIV1-security of deterministic public-key encryption scheme DPKE relative to
target generator X.

one-wayness; we do not require extractability. The latter is a much stronger
assumption [13].

We now show that indistinguishability obfuscation can be used to build a
IND[X]-secure point-function obfuscator for an arbitrary target generator class
X from any OWF[X]-secure function family.

Construction. Let F be a family of functions. Let Obf io be an obfuscator. We
construct a point-function obfuscator Obf with Obf.tl = F.il as follows:

Algorithm Obf(1λ, Ik)
fk ←$ F.Kg(1λ); y ← F.Ev(1λ, fk, k)
P ←$ Obf io(C1λ,fk,y); Return P

Circuit C1λ,fk,y(k′)

If (y = F.Ev(1λ, fk, k′)) then return 1
Else return 0

Theorem 4. Let F be an injective family of functions. Let X be a class of target
generators with target length F.il. Assume that F is OWF[X]-secure. Let Obf io be
an indistinguishability obfuscator. Then Obf constructed above from F and Obf io
is a IND[X]-secure point-function obfuscator.

Proof (Theorem 4). The injectivity of F implies that Obf satisfies the correctness
condition of a point-function obfuscator. We now prove security.

Let X ∈ X be a target generator. Let A be a PT adversary. Consider the
games and the associated circuits of Fig. 6, where s is defined as follows. For any λ
let s(λ) be a polynomial upper bound on max(|C1

1λ,fk,y|), where the maximum is
over all fk ∈ [F.Kg(1λ)] and y ∈ {0, 1}F.ol(λ). Lines not annotated with comments
are common to all games.

Game G0 is equivalent to INDA
Obf,X(λ). The inputs to adversary A in game

G1 do not depend on the challenge bit b, so we have Pr[G1] = 1/2. It follows
that

Advind
Obf,X,A(λ) = 2 · Pr[G0] − 1 = 2 · (Pr[G0] − Pr[G1]).

The first equality holds by the definition of IND, and the second equality
holds because of Pr[G1] = 1/2. We now show that Pr[G0] − Pr[G1] is negligible,
meaning that Advind

Obf,X,A(·) is also negligible. This proves the the theorem.

Point-Function Obfuscation: A Framework and Generic Constructions 581

Games G0, G1

b ←$ {0, 1} ; (k1, a1) ←$ X.Ev(1λ)
For i = 1, . . . ,X.vl(λ) do

k0[i] ←$ {0, 1}X.tl(λ) ; fk[i] ←$ F.Kg(1λ) ; y[i] ← F.Ev(1λ, fk[i],kb[i])

P[i] ←$ Obf io(C
1
1λ,fk[i],y[i]) // G0

P[i] ←$ Obf io(Pads(λ)(C
2 G//)) 1

b′ ←$ A(1λ,P, a1) ; Return (b = b′)

Circuit C1
1λ,fk,y(k)

If (y = F.Ev(1λ, fk, k)) then return 1
Else return 0

Circuit C2(k)

Return 0

Fig. 6. Games for proof of Theorem 4.

We construct a multi-circuit sampler S and a PT iO-adversary O as follows:

Multi-circuit Sampler S(1λ)
d ←$ {0, 1}; (k1, a1) ←$ X.Ev(1λ)
For i = 1, . . . ,X.vl(λ) do

k0[i] ←$ {0, 1}X.tl(λ)

fk[i] ←$ F.Kg(1λ); y[i] ← F.Ev(1λ, fk[i],kd[i])
C1[i] ← C1

1λ,fk[i],y[i]; C0[i] ← Pads(λ)(C2)
aux ← (d, a1); Return (C0,C1, aux)

Adversary O(1λ,C, aux)
(d, a1) ← aux
d′ ←$ A(1λ,C, a1)
If (d = d′) then return 1
Else return 0

We have Pr[G0] − Pr[G1] = Advm-io
Obfio,S,O(λ) by construction. Next, we show that

S ∈ Sm-diff(1). According to Proposition 1 (the result of BCP [16]), any indis-
tinguishability obfuscator is also an Sdiff(1)-secure obfuscator. And according
to Lemma 3, any Sdiff(1)-secure obfuscator is an Sm-diff(1)-secure obfuscator. It
follows that Advm-io

Obfio,S,O(·) is negligible by the iO-security of Obf io.
Let Xur be the target generator with Xur.vl = X.vl and Xur.tl = F.il, where the

targets are sampled independently, from a uniform distribution and auxiliary
information is always a = ε. Given any PT difference adversary D against multi-
circuit sampler S, we build PT adversaries F0 and F1 against the OWF-security
of F relative to target generators Xur and X, respectively. The constructions are
as follows:

Adversary F0(1λ, fk,y, a)
d ← 0; (k1, a1) ←$ X.Ev(1λ)
For i = 1, . . . , |y| do

C1[i] ← C1
1λ,fk[i],y[i]

C0[i] ← Pads(λ)(C2)
aux ← (d, a1); x ←$ D(C1,C0, aux)
Return x

Adversary F1(1λ, fk,y, a)
d ← 1
For i = 1, . . . , |y| do
C1[i] ← C1

1λ,fk[i],y[i]

C0[i] ← Pads(λ)(C2)
aux ← (d, a); x ←$ D(C1,C0, aux)
Return x

Let d denote the value sampled by multi-circuit sampler S in game MDIFFD
S (λ).

Then we have

582 M. Bellare and I. Stepanovs

Pr[MDIFFD
S (λ) | d = 0] = Pr[OWFF0

F,Xur(λ)],

Pr[MDIFFD
S (λ) | d = 1] = Pr[OWFF1

F,X(λ)].

and Advm-diff
S,D (λ) = 1

2 (Advowf
F,Xur,F0

(λ)+Advowf
F,X,F1

(λ)). Note that OWF[X]-security
of F requires that Advowf

F,X1ur,F (λ) is negligible for all PT adversaries F . One can use
the latter with a standard hybrid argument to further prove that Advowf

F,Xur,F0
(λ) is

also negligible for all PT adversaries F0. It follows that the multi-circuit sampler
S is difference-secure. The injectivity of F also implies that S produces 1-differing
circuits. Therefore, S ∈ Sm-diff(1).

5.2 PO from DPKE

Our next generic construction is based on deterministic public-key encryption [3].
As before we aim to provide point-function obfuscation secure for any given class
of target generators. We are able to do this assuming the existence of a determinis-
tic public-key encryption scheme that is secure relative to the same class viewed as
a class of message generators. We can then exploit known constructions of deter-
ministic public-key encryption to get a slew of point-function obfuscators based
on standard assumptions. We begin with a parameterized definition of security for
deterministic public-key encryption.

DPKE. A deterministic public-key encryption scheme DPKE [3] specifies the
following. PT key generation algorithm DPKE.Kg takes 1λ to return a public
encryption key pk and a secret decryption key sk. Deterministic PT encryption
algorithm DPKE.Enc takes 1λ, pk and a plaintext message k ∈ {0, 1}DPKE.ml(λ)

to return a ciphertext c, where DPKE.ml: N → N is the message length function
associated to DPKE. Deterministic decryption algorithm DPKE.Dec takes 1λ,
sk, c to return plaintext message k. We do not require the decryption algo-
rithm to be PT but we do require decryption correctness, namely that for
all λ ∈ N, all (pk, sk) ∈ [DPKE.Kg(1λ)] and all k ∈ {0, 1}DPKE.ml(λ) we have
DPKE.Dec(1λ, sk,DPKE.Enc(1λ,pk, k)) = k.

Now consider game PRIV1 of Fig. 5 associated to a deterministic public-key
encryption scheme DPKE, a target generator X satisfying X.tl = DPKE.ml, and
an adversary A. For λ ∈ N let Advpriv1

DPKE,X,A(λ) = 2Pr[PRIV1A
DPKE,X(λ)] − 1. If

X is a class of target generators then we say that DPKE is PRIV1[X]-secure if
Advpriv1

DPKE,X,A(·) is negligible for all PT adversaries A and all X ∈ X.
This definition reflects what BBO [3] call the multi-user setting where there

are many, independent public keys. However, in our case, only a single message
is encrypted under each key. The single-key version of this is called PRIV1 in
the literature, so we retained the name in moving to the multi-user setting. The
definition is in the indistinguishability style of [4,15] rather than the semantic
security style of [3]. These definitions however did not allow auxiliary inputs.
We are allowing those following BS [17]. Finally, while prior definitions require

Point-Function Obfuscation: A Framework and Generic Constructions 583

unpredictability of the message distribution, ours is simply parameterized by
the latter. Prior definitions are captured as special cases, meaning they can be
recovered as PRIV1[X] for some choice of X.

Construction. Let DPKE be a deterministic public-key encryption scheme. We
construct an obfuscator Obf with Obf.tl = DPKE.ml as follows:

Algorithm Obf(1λ, Ik)
(pk, sk) ←$ DPKE.Kg(1λ)
c ← DPKE.Enc(1λ,pk, k); Return C1λ,pk,c

Circuit C1λ,pk,c(k)

If (DPKE.Enc(1λ,pk, k) = c)
Then return 1 else return 0

The construction is simple. To obfuscate Ik we pick a new key pair for the
deterministic public-key encryption scheme and return a circuit that embeds the
public key pk as well as the encryption c of the target point k. The circuit, given
a candidate target point k′, re-encrypts it under the embedded public key pk and
checks that the ciphertext so obtained matches the embedded ciphertext c. Note
that the determinism of DPKE.Enc is used crucially to ensure that the circuit
is deterministic. For randomized encryption, one cannot check that a message
corresponds to a ciphertext by re-encryption. The secret key sk is discarded and
not used in the construction, but its existence will guarantee correctness of the
point-function obfuscator.

Result. We show that this is a generic construction. Namely, a point-function
obfuscator for a given class X of target generators can be obtained if we have a
deterministic public-key encryption scheme secure for the same class.

Theorem 5. Let DPKE be a deterministic public-key encryption scheme and X
a class of target generators such that X.tl = DPKE.ml for all X ∈ X. Assume
DPKE is PRIV1[X]-secure. Let Obf be as defined above. Then Obf is a IND[X]-
secure point-function obfuscator.

Proof (Theorem 5). The correctness of Obf follows from the decryption correct-
ness of DPKE, and it does not require the decryption algorithm DPKE.Dec to be
PT. We now prove that Obf is IND[X]-secure.

Let X ∈ X be a target generator with X.tl = DPKE.ml. Let A be PT adversary
against the IND security of Obf relative to X. We construct a PT adversary B
against the PRIV1 security of DPKE relative to X as follows:

Adversary B(1λ,pk, c, a)

For i = 1, . . . , |c| do P[i] ← C1λ,pk[i],c[i]

b′ ←$ A(1λ,P, a); Return b′

Circuit C1λ,pk,c(k)

If (DPKE.Enc(1λ,pk, k) = c)
Then return 1 else return 0

We have Advpriv1
DPKE,X,B(λ) = Advind

Obf,X,A(λ) by construction. Hence, for any X ∈ X
the IND-security of Obf relative to X follows from the assumed PRIV1-security
of DPKE relative to X.

In applying Theorem5 to get point function obfuscators, the first case of
interest is X = Xsup ∩ Xε ∩ X1. In this case, PRIV1[X]-secure determinis-
tic public-key encryption is a standard form of the latter for which many con-
structions are known. The central construction, due to BFO [15], is from lossy

584 M. Bellare and I. Stepanovs

trapdoor functions (LTDFs). But the latter can be built from a wide variety
of standard assumptions [31,37,44,48,51]. Thus we get IND[Xsup ∩ Xε ∩ X1]-
secure point-function obfuscators under the same assumptions. The second case
of interest is X = Xseup ∩ X1. Unlike in the first case, there is now auxiliary
information, but it leaves the targets sub-exponentially unpredictable. Construc-
tions of PRIV1[X]-secure deterministic public-key encryption are known under
standard assumptions including DLIN, Subgroup Indistinguishability and LWE
[17,48,50]. Accordingly we get IND[Xseup∩X1]-secure point-function obfuscators
under the same assumptions. BH [5] obtain PRIV-secure DPKE from UCE[Ssup],
which via Theorem 5 yields IND[Xsup ∩ Xε ∩ X1] under UCE[Ssup].

Theorem 5 also yields negative results. Assume iO exists. Then we know that
there do not exist point function obfuscators that are IND[Xcup]-secure [20].
Theorem 5 then implies that there also do not exist deterministic public-key
encryption schemes that are PRIV1[Xcup]-secure.

CIH function families as per GOR [36] do not seem to have a unique asso-
ciated security notion. Rather the authors discuss a few choices. Our parame-
terized PRIV definitions above apply to function families as well and can be
viewed as providing more security notions for CIH function families. These func-
tion families can also be used in our PO construction above as long as they are
injective.

5.3 PO from UCE

Our next generic construction is based on UCE, a class of assumptions on func-
tion families from [6]. We use the multi-key version of the UCE assumption,
denoted mUCE. As before we aim to provide point-function obfuscation secure
for any given class of target generators. We are able to do this with mUCE by
associating to the class of target generators a class of sources. The existence
of an mUCE-secure function family relative to the latter suffices to construct a
point-function obfuscator secure relative to the former.

Construction. Let H be a family of functions. Associate to it a point-function
obfuscator Obf defined as follows. Let Obf.tl = H.il, and

Algorithm Obf(1λ, Ik)
hk ←$ H.Kg(1λ); y ← H.Ev(1λ,hk, k)
Return C1λ,hk,y

Circuit C1λ,hk,y(k′)

y′ ← H.Ev(1λ,hk, k′)
If (y = y′) then return 1 else return 0

The construction is simple and natural. The point-function obfuscation of Ik is
a circuit that embeds the hash y of target k under a freshly-chosen key hk also
embedded in the circuit, and, given a candidate target k′, checks whether its
hash under hk equals the embedded hash value.

Source Classes. To state the result, we need a few definitions. Associate to a
target generator X a source SX defined as follows:

Point-Function Obfuscation: A Framework and Generic Constructions 585

Source SX(1λ)
d ←$ {0, 1}; (k1, a1) ←$ X.Ev(1λ)
For i = 1, . . . ,X.vl(λ) do k0[i] ←$ {0, 1}X.tl(λ)

For i = 1, . . . ,X.vl(λ) do y[i] ←$ HASH(i,kd[i])
L ← ((d, a1),y) ; Return L

The number of keys for this source is SX.nk = X.vl, the number of points in the
target vector. Now let X be a class of target generators and let SX = {SX : X ∈
X } be the corresponding class of sources. We will show that the construction
above is IND[X]-secure assuming H is mUCE[SX]-secure. To appreciate what
this provides we now discuss the assumption further.

Assumptions in the UCE framework are very sensitive to the class of sources
for which security is assumed. Accordingly one tries to restrict sources in different
ways. In this regard SX = { SX : X ∈ X } has some good attributes as we now
discuss, referring to definitions of classes of mUCE sources recalled in Sect. 2.

The first attribute is that the sources in SX are what BHK [6] call “split,”
so that SX ⊆ Ssplt. “Split” means that the leakage is a function of the oracle
queries and answers separately, but not both together. (Above, (d, a1) depends
only on the oracle queries, and y depends only on the answers.) The second
attribute is that the sources make only one query per key. (In particular when
there is only one target point, the source makes only one query overall.) That is,
SX ⊆ Sn,1 if S.nk(·) ≤ n(·) for all S ∈ SX. The third attribute is that the source
class inherits the unpredictability properties of the target generator class. Thus
if X ⊆ Xcup then SX ⊆ Scup consists of computationally unpredictable sources;
if X ⊆ Xsup then SX ⊆ Ssup consists of statistically unpredictable sources; and
if X ⊆ Xseup then SX ⊆ Sseup consists of sources that are sub-exponentially
unpredictable.

We warn that mUCE[SX]-security is not achievable for all choices of X. The
value of our result is that it is entirely general, reducing IND security for a given
X to a question of mUCE security for a related class of sources, and we can then
investigate the latter separately. In this way we get many new constructions.

Result. The following theorem shows that our construction above provides
secure point-function obfuscation in a very general and modular way, namely
the point-function obfuscator is secure relative to a class of target generators if
H is mUCE-secure relative to the corresponding class of sources. After stating
and proving this general result we will look at some special cases of interest.

Theorem 6. Let H be an injective family of functions. Let X be a class of
target generators such that X.tl = H.il for all X ∈ X. Assume H is mUCE[SX]-
secure. Let Obf be as defined above. Then Obf is a IND[X]-secure point-function
obfuscator.

Function family H is assumed to be injective in order to meet the perfect correct-
ness condition of a point-function obfuscator, and it is not important for security.
In [8] we show that non-injective mUCE is sufficient to construct a point-function
obfuscator that satisfies a relaxed correctness condition and achieves the same
security as above.

586 M. Bellare and I. Stepanovs

Proof (Theorem 6). Correctness of the obfuscator follows from the assumed injec-
tivity of H, meaning that the output of Obf(1λ, Ik) is always a point circuit with
target k. We now prove that Obf is IND[X]-secure.

Let X ∈ X be any target generator with X.tl = H.il. Let SX be the correspond-
ing source as defined above. Let A be a PT adversary against the IND-security
of Obf relative to X. We define a PT distinguisher D as follows:

Distinguisher D(1λ,hk, L)
((d, a1),y) ← L
For i = 1, . . . , |y| do P[i] ← C1λ,hk[i],y[i]

d′ ←$ A(1λ,P, a1)
If (d = d′) then return 1 else return 0

Circuit C1λ,hk,y(k′)

y′ ← H.Ev(1λ,hk, k′)
If (y = y′) then return 1
Else return 0

Let b denote the challenge bit in game mUCESX,D
H (λ), and let b′ denote the bit

returned by D in the same game. We claim that

Pr[b′ = 1 | b = 1] = Pr
[
INDA

Obf,X(λ)
]

and Pr[b′ = 1 | b = 0] =
1
2

.

The first equation holds by construction. The second equation is true because D
runs A with inputs that are independent of the challenge bit d. Namely, for b = 0
the entries in y are uniform and independent, since the source S makes only one
query per key index. We have Advm-uce

H,SX,D(λ) = Advind
Obf,X,A(λ)/2. Therefore, for

any X ∈ X the IND security of Obf relative to X follows from the assumed
mUCE[{SX}]-security of H.

Negative Results for Multi-key UCE. Let n : N → N be a polynomial such
that n(·) ∈ Ω((·)ε). Theorem 6 allows us to conclude that mUCE[Scup ∩ Ssplt ∩
Sn,1]-secure injective function families do not exist under certain assumptions.
This is a simple corollary of the prior results which show that MB-AIPO can
not co-exist with iO [20,25]. We now explain our claim in more details.

Theorem 6 shows that the existence of mUCE[Scup∩Ssplt∩Sn,1]-secure injec-
tive function families implies IND[Xcup ∩Xn]-secure point-function obfuscation.
Note that the latter is a composable AIPO as per CD [25]. CD [25] show that
composable AIPO can be used to construct MB-AIPO, which is an obfuscation
that is secure for functions that map a target point to a multi-bit output (as
opposed to an output in {0, 1}). Finally, BM1 [20] show that MB-AIPO cannot
co-exist with iO, assuming one-way functions. These results imply the following:

Corollary 7. Let H be an injective function family. Let n : N → N be a poly-
nomial such that n(·) ∈ Ω((·)ε) for some constant ε > 0. Assume the exis-
tence of one-way functions and indistinguishability obfuscation. Then H is not
mUCE[Scup ∩ Ssplt ∩ Sn,1]-secure.

In a concurrent and independent work, BM3 [22] discuss a similar impossibility
result for mUCE[Ss-cup ∩ Sn,1]-security. Here Ss-cup is a class of UCE sources
introduced in (BM2) [21] who also show that Scup ∩Ssplt

� Ss-cup. We note that

Point-Function Obfuscation: A Framework and Generic Constructions 587

impossibility of mUCE[Scup ∩ Ssplt ∩ Sn,1]-secure function families is a stronger
result because it concerns a smaller class of sources.

No other impossibility results are known for mUCE exclusively, but any nega-
tive results for (single-key) UCE also apply to mUCE. Specifically, BFM [18] give
an iO-based attack on UCE[Scup]. And BST [10] show that UCE[Scup ∩ Ssplt]-
secure function families do not exist assuming the existence of OWFs and iO,
which is a strictly stronger impossibility result than the latter. The result by
BST [10] implies that mUCE[Scup ∩ Ssplt ∩ S1,p]-secure function families do not
exist for a polynomial p(·) ∈ Ω((·)ε), but we currently do not know whether this
notion is comparable to mUCE[Scup ∩ Ssplt ∩ Sn,1].

Related Work. One special case of Theorem 6 is when X = Xcup ∩ X1, so
that IND[X] is AIPO. The theorem and the remarks preceding it imply that we
get this assuming mUCE[Scup ∩ Ssplt ∩ S1,1]-security. This special case of our
result was independently and concurrently obtained in [22]. Note that BM2 [21]
showed that mUCE[Scup ∩ Ssplt ∩ S1,1]-security is achievable assuming iO and
AIPO. It follows from our result that mUCE[Scup ∩ Ssplt ∩ S1,1] and AIPO are
equivalent, assuming iO.

6 Alternative Security Notions for PO

In Sect. 3 we defined IND security of point-function obfuscation. It extends secu-
rity notions that were used for variants of AIPO in BP [14], MH [40], MB1 [20]
and MB3 [22]. The main difference is that IND is parameterized with a class of
target generators, allowing us to unify the treatment of AIPO from the literature.

In this section we provide several alternative security notions for point-
function obfuscation, and show relations between them and IND. Specifically,
we extend the security notion introduced by Canetti [23] as well as the notions
of average-case [26,29] and worst-case [2,25,35,39,47] simulation-based security
for point-function obfuscation. Similar to IND, our extended notions are parame-
terized with classes of target generators. We also define a novel security notion,
called computational semantic security, by adapting the corresponding defini-
tion that was used for DPKE in [4] to the setting of point-function obfuscation
and parameterizing it in the same way as above. Finally, we discuss the security
achieved by our PO constructions from Sect. 5 with respect to the new notions.

Strong Indistinguishability. Consider game SIND of Fig. 7 associated to a
point-function obfuscator Obf, a target generator X, an adversary A and a dis-
tinguisher D, such that A returns an output in {0, 1} and Obf.tl = X.tl. For
λ ∈ N let Advsind

Obf,X,A,D(λ) = 2Pr[SINDA,D
Obf,X(λ)] − 1. Let X be a class of target

generators. We say that Obf is SIND[X]-secure if Advsind
Obf,X,A,D(·) is negligible for

every X ∈ X, every PT A and every PT D. The difference between our defin-
itions of IND and SIND is that the latter also runs a distinguisher in the last
stage of the game, which makes this definition meaningful even for trivial target
generators (as defined in Sect. 3). Our definition of SIND extends the security
notion used for oracle hashing by Canetti [23], parameterizing it with classes of

588 M. Bellare and I. Stepanovs

Game SINDA,D
Obf,X(λ)

b ←$ {0, 1}
(k1, a1) ←$ X.Ev(1λ)

For i = 1, . . . ,X.vl(λ) do

k0[i] ←$ {0, 1}X.tl(λ)

P ←$ Obf(1λ, Ikb)

d ←$ A(1λ,P, a1)

b′ ←$ D(1λ,k1, a1, d)

Return (b = b′)

Game CSSA
Obf,X(λ)

b ←$ {0, 1}
(k1, a1) ←$ X.Ev(1λ)

For i = 1, . . . ,X.vl(λ) do

k0[i] ←$ {0, 1}X.tl(λ)

P ←$ Obf(1λ, Ikb)

t ←$ A1(1
λ,k1, a1)

t′ ←$ A2(1
λ,P, a1)

If (t = t′) then b′ ← 1

Else b′ ← 0

Return (b = b′)

Game SSSA,S,P
Obf,X (λ)

b ←$ {0, 1}
(k, a) ←$ X.Ev(1λ)

P ←$ Obf(1λ, Ik)

p ←$ P(1λ,k, a)

If (b = 1) then

p′ ←$ A(1λ,P, a)

Else p′ ←$ SIk(1λ, a)

If (p = p′) then b′ ← 1

Else b′ ← 0

Return (b = b′)

Fig. 7. Games defining SIND security, CSS security and SSS security of point-function
obfuscator Obf relative to target generator X.

target generators. Another difference is that SIND samples target vectors k0,k1

from distributions that are potentially different, whereas [23] used the same dis-
tribution for both. Note that adversary A cannot be allowed to return an output
of an arbitrary length because then it would be able to return P, hence making
the security trivially unachievable.

Computational Semantic Security. Consider game CSS of Fig. 7 associ-
ated to a point-function obfuscator Obf, a target generator X and an adver-
sary A = (A1,A2) such that algorithms A1,A2 return outputs in {0, 1} and
Obf.tl = X.tl. For λ ∈ N let Advcss

Obf,X,A(λ) = 2Pr[CSSA
Obf,X(λ)] − 1. Let X be a

class of target generators. We say that Obf is CSS[X]-secure if Advcss
Obf,X,A(·) is

negligible for every X ∈ X and every PT A. This is an adaptation of the defi-
nition of computational semantic security for DPKE from [4], which we further
parameterize with classes of target generators. It asks that adversary A can not
use an obfuscation P of k1 to compute any partial information about the latter,
even in the presence of auxiliary information a1. This provides us with a better
intuition about the desired security of point-function obfuscation, as opposed to
the less intuitive definition of SIND.

Simulation-Based Semantic Security. We consider two different definitions
of simulation-based semantic security. Informally, both definitions require that
for every PT adversary A that receives as input an obfuscation of some point-
function Ik, there exists a PT simulator with only an oracle access to Ik, such that
the output distribution of the former is indistinguishable from that of the latter.
The two definitions differ in the way how Ik is chosen. One option is to quantify
over all possible point-functions that can be produced by a particular target
generator. For this purpose, we extend the definitions of worst-case security
[2,25,35,39,47] for point-function obfuscation. We use SIM to denote our new
security notion. An alternative approach is to use target generator X in order
to sample point-functions. This follows the definitions of average-case security

Point-Function Obfuscation: A Framework and Generic Constructions 589

[26,29] for point function obfuscation, and we use SSS to denote our extended
security notion.

Consider game SSS of Fig. 7 associated to a point-function obfuscator Obf,
a target generator X, an adversary A, a simulator S and a predicate algorithm
P, such that algorithms A,S,P return outputs in {0, 1} and Obf.tl = X.tl. For
λ ∈ N let Advsss

Obf,X,A,S,P(λ) = 2Pr[SSSA,S,P
Obf,X (λ)] − 1. Let X be a class of target

generators. We say that Obf is SSS[X]-secure if for every target generator X ∈ X
and every PT A there exists PT S such that Advsss

Obf,X,A,S,P(·) is negligible for
every PT P. Informally, this security notion requires that for every adversary A
there exists a simulator S such that if A can use obfuscations Ik to compute any
property (function) P of k, then S can do the same using only an oracle access to
Ik (meaning that S has oracle access to each of Ik[1], . . . , Ik[n] for n = |k|). This
is required to hold even when A,S,P receive as input some auxiliary information
a about k.

SIM Security. Next, we define the SIM-security of PO. Let X be a class of
target generators. Let Obf be a point-function obfuscator. We say that Obf is
SIM[X]-secure if for every target generator X ∈ X and every PT adversary A
there exists a PT simulator S and a negligible function μ : N → N such that

∣
∣Pr[A(1λ,Obf(1λ, Ik), a) = P(k, a)] − Pr[SIk(1λ, a) = P(k, a)]

∣
∣ ≤ μ(λ)

for every λ ∈ N, every (k, a) ∈ [X.Ev(1λ)] and every PT predicate algorithm P
that returns an output in {0, 1}.

In the above definition of SIM-security, predicate P can be substituted with
a constant function, resulting in an equivalent definition (as noted in [2,35,47]).
In contrast, this is not true for the definition of SSS-security. Replacing P with
a constant function will allow S to run X in order to generate fresh (k, a),
obfuscate Ik to get P, and simulate A on P, a. As a result, every obfuscator
would be vaciously SSS-secure for any class of target generators X.

Fig. 8. Relations between security notions for point-function obfuscation.

Relations Between Security Notions. Figure 8 shows relations between the
security notions for point-function obfuscation that are discussed in this paper.
Consider any two security notions A and B. An arrow from A to B means that
any A[X]-secure point-function obfuscator is also B[X]-secure, for every class
of target generators X. A crossed arrow going from A to B means that there
exists an obfuscator Obf and a class of target generators X such that Obf is
A[X]-secure but not B[X]-secure.

590 M. Bellare and I. Stepanovs

Implications SIM → SSS and SIND → IND trivially follow from our defini-
tions of the corresponding security notions. The proofs for all other implications
and separations shown in Fig. 8 are provided in [8]. The only relations that
are missing in the figure (and can not be deduced using transitivity) are those
between SIM and both of SSS,CSS. We leave it as an open question to show the
remaining relations between these security notions.

Security of Our PO Constructions. Let X be a class of target generators.
In Sect. 5 we showed how to build a point-function obfuscator that is IND[X]-
secure, based on any of the following: a OWF[X]-secure function family and an
iO, or a PRIV1[X]-secure DPKE, or an mUCE[SX]-secure function family for
SX as defined in Sect. 5.3. We do not know how to adapt our constructions to
achieve SIM[X]-security. But each of our construction achieves CSS[X]-security,
requiring only minimal changes in the used assumptions.

We now provide some intuition about our claim. Recall that game CSS com-
putes t ∈ {0, 1} by running A1(1λ,k1, a1), and subsequently compares it to the
output of A2(1λ,P, a1). This is different from game IND where the adversary
consists only of an algorithm A(1λ,P, a1). The difficulty of adapting proofs of
IND[X]-security to achieve CSS[X]-security is that in the latter k1 (required
to run A1) and P (required to run A2) are usually available in different stages
of the security proof, meaning that one has to find a way to pass around the
value of t (which depends on k1) across the stages. We resolve this by pushing t
into the auxiliary information of target generators that parametrize our security
notions.

Let X be a class of target generators. Let P be the set of all PT predicate
algorithms P such that P(1λ, ·, ·) : {0, 1}∗ × {0, 1}∗ → {0, 1} for all λ ∈ N. For
any λ ∈ N, X ∈ X and P ∈ P let XP be defined as follows:

Source XP(1λ)
(k, a) ←$ X(1λ); β ←$ P(1λ,k, a); Return (k, (a, β))

where XP .vl = X.vl and XP .tl = X.tl. We define a new class of target generators
X′ = { XP : X ∈ X,P ∈ P }. Then each of our constructions from Sect. 5
achieves CSS[X]-security, based on either of the following: a OWF[X′]-secure
function family and an iO, or a PRIV1[X′]-secure DPKE, or an mUCE[SX′

]-
secure function family.

Note that for any X ∈ X and P ∈ P, the construction of XP expands the
auxiliary information of X only by a single bit. This means that XP inherits the
unpredictability properties of X. Namely, for any λ ∈ N, X ∈ X, P ∈ P and any
PT adversary R we can construct a PT adversary Q such that Pr[PREDQ

X (λ)] ≥
1
2 Pr[PREDR

XP (λ)] for all λ ∈ N. Adversary Q would attempt to guess the extra
bit of information and then simulate R. The same approach can be used to
show that any OWF[X]-secure function family is also OWF[X′]-secure, recoving
the construction of CSS[X]-secure PO directly from a OWF[X]-secure function
family and an iO.

Definitional Choices. All of our security notions for point-function obfuscation
require that adversaries return single-bit outputs. This is consistent with the

Point-Function Obfuscation: A Framework and Generic Constructions 591

prior work. Specifically, simulation-based definitions in the prior literature always
compare the outputs of adversary and simulator to either a predicate [27,35] or a
constant [2,25,26,29,39,47]. However, it would be more intuitive to not restrict
the size of outputs returned by adversaries in games CSS, SSS and SIM. The
goal of these adversaries can be thought as to compute some “property” of the
target vector, and there is no reason to limit it to a single bit.

The initial work on obfuscation [2] discusses various definitional choices and
chooses to use the weakest of them to achieve stronger impossibility results.
Subsequent work continues to use definitions of the same style even for positive
results. We are not aware of any follow-up discussion on alternative definitions.

Some of our implications from Fig. 8 might change if adversaries in games
CSS, SSS and SIM are allowed to return multiple-bit outputs. In particular,
note that our definitions of CSS and SSS are similar to those that were used for
DPKE schemes in BFOR [4], who showed them to be equivalent for multiple-bit
outputs in their setting. We leave it as an open problem to extend our definitions
to allow outputs of an arbitrary size.

Acknowledgments. Bellare and Stepanovs were supported in part by NSF grants
CNS-1116800, CNS-1228890 and CNS-1526801. This work was done in part while Bellare
was visiting the Simons Institute for the Theory of Computing, supported by the Simons
Foundation and by the DIMACS/Simons Collaboration in Cryptography through NSF
grant CNS-1523467. We thank Stefano Tessaro and Arno Mittelbach for discussions and
insights. Extensive and insightful comments by the TCC 2016-A reviewers lead to consid-
erable changes and additions to the paper including Theorem 2, Corollary 7 and Sect. 6.

References

1. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. Cryptology ePrint Archive, Report 2013/689 (2013). http://
eprint.iacr.org/2013/689

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

3. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

4. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
definitional equivalences and constructions without random oracles. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)

5. Bellare, M., Hoang, V.T.: Resisting randomness subversion: fast deterministic and
hedged public-key encryption in the standard model. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 627–656. Springer, Heidelberg
(2015)

6. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
398–415. Springer, Heidelberg (2013)

http://eprint.iacr.org/2013/689
http://eprint.iacr.org/2013/689

592 M. Bellare and I. Stepanovs

7. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

8. Bellare, M., Stepanovs, I.: Point-function obfuscation: a framework and generic
constructions. Cryptology ePrint Archive, Report 2015/703 (2015). http://eprint.
iacr.org/2015/703

9. Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any one-way
function and a framework for differing-inputs obfuscation. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 102–121. Springer,
Heidelberg (2014)

10. Bellare, M., Stepanovs, I., Tessaro, S.: Contention in cryptoland: obfuscation, leak-
age and uce. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A, Part II. LNCS,
vol. 9563, pp. 542–564. Springer, Heidelberg (2016)

11. Bitansky, N., Canetti, R.: On strong simulation and composable point obfusca-
tion. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 520–537. Springer,
Heidelberg (2010)

12. Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box obfuscation
for general circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II.
LNCS, vol. 8617, pp. 108–125. Springer, Heidelberg (2014)

13. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 505–514. ACM
Press (May/June 2014)

14. Bitansky, N., Paneth, O.: Point obfuscation and 3-round zero-knowledge. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 190–208. Springer, Heidelberg
(2012)

15. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic encryp-
tion, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

16. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)

17. Brakerski, Z., Segev, G.: Better security for deterministic public-key encryption:
the auxiliary-input setting. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 543–560. Springer, Heidelberg (2011)

18. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and
UCEs: the case of computationally unpredictable sources. In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 188–205. Springer,
Heidelberg (2014)

19. Brzuska, C., Farshim, P., Mittelbach, A.: Random-oracle uninstantiability from
indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part
II. LNCS, vol. 9015, pp. 428–455. Springer, Heidelberg (2015)

20. Brzuska, C., Mittelbach, A.: Indistinguishability obfuscation versus multi-bit point
obfuscation with auxiliary input. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014,
Part II. LNCS, vol. 8874, pp. 142–161. Springer, Heidelberg (2014)

21. Brzuska, C., Mittelbach, A.: Using indistinguishability obfuscation via UCEs. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 122–
141. Springer, Heidelberg (2014)

22. Brzuska, C., Mittelbach, A.: Universal computational extractors and the super-
fluous padding assumption for indistinguishability obfuscation. Cryptology ePrint
Archive, Report 2015/581 (2015). http://eprint.iacr.org/2015/581

http://eprint.iacr.org/2015/703
http://eprint.iacr.org/2015/703
http://eprint.iacr.org/2015/581

Point-Function Obfuscation: A Framework and Generic Constructions 593

23. Canetti, R.: Towards realizing random oracles: hash functions that hide all partial
information. In: Kaliski Jr, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–
469. Springer, Heidelberg (1997)

24. Canetti, R., Dakdouk, R.R.: Extractable perfectly one-way functions. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 449–460. Springer, Heidelberg
(2008)

25. Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer,
Heidelberg (2008)

26. Canetti, R., Tauman Kalai, Y., Varia, M., Wichs, D.: On symmetric encryption
and point obfuscation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp.
52–71. Springer, Heidelberg (2010)

27. Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash
functions (preliminary version). In: 30th ACM STOC, pp. 131–140. ACM Press
(May 1998)

28. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treat-
ment of backdoored pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 101–126. Springer, Heidelberg (2015)

29. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In:
Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 621–630. ACM Press (May/June
2009)

30. Dodis, Y., Smith, A.: Entropic security and the encryption of high entropy mes-
sages. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 556–577. Springer,
Heidelberg (2005)

31. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions
of lossy and correlation-secure trapdoor functions. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer, Heidelberg (2010)

32. Fuller, B., O’Neill, A., Reyzin, L.: A unified approach to deterministic encryption:
new constructions and a connection to computational entropy. J. Cryptology 28(3),
671–717 (2015)

33. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press (October 2013)

34. Gentry, C., Lewko, A., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. Cryptology ePrint Archive,
Report 2014/309 (2014). http://eprint.iacr.org/2014/309

35. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: 46th FOCS, pp. 553–562. IEEE Computer Society Press (October 2005)

36. Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 182–200. Springer, Heidelberg (2011)

37. Hemenway, B., Ostrovsky, R.: Building lossy trapdoor functions from lossy encryp-
tion. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 241–260. Springer, Heidelberg (2013)

38. Koppula, V., Pandey, O., Rouselakis, Y., Waters, B.: Deterministic public-key
encryption under continual leakage. Cryptology ePrint Archive, Report 2014/780
(2014). http://eprint.iacr.org/2014/780

39. Lynn, B.Y.S., Prabhakaran, M., Sahai, A.: Positive results and techniques for
obfuscation. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 20–39. Springer, Heidelberg (2004)

http://eprint.iacr.org/2014/309
http://eprint.iacr.org/2014/780

594 M. Bellare and I. Stepanovs

40. Matsuda, T., Hanaoka, G.: Chosen ciphertext security via point obfuscation. In:
Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 95–120. Springer, Heidelberg
(2014)

41. Matsuda, T., Hanaoka, G.: Chosen ciphertext security via UCE. In: Krawczyk, H.
(ed.) PKC 2014. LNCS, vol. 8383, pp. 56–76. Springer, Heidelberg (2014)

42. Mironov, I., Pandey, O., Reingold, O., Segev, G.: Incremental deterministic public-
key encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 628–644. Springer, Heidelberg (2012)

43. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014)

44. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner,
R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 187–196. ACM Press (May 2008)

45. Raghunathan, A., Segev, G., Vadhan, S.: Deterministic public-key encryption for
adaptively chosen plaintext distributions. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 93–110. Springer, Heidelberg (2013)

46. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press
(May/June 2014)

47. Wee, H.: On obfuscating point functions. In: Gabow, H.N., Fagin, R. (eds.) 37th
ACM STOC, pp. 523–532. ACM Press (May 2005)

48. Wee, H.: Dual projective hashing and its applications — lossy trapdoor functions
and more. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 246–262. Springer, Heidelberg (2012)

49. Wichs, D.: Barriers in cryptography with weak, correlated and leaky sources. In:
Kleinberg, R.D. (ed.) ITCS 2013, pp. 111–126. ACM (January 2013)

50. Xie, X., Xue, R., Zhang, R.: Deterministic public key encryption and identity-based
encryption from lattices in the auxiliary-input setting. In: Visconti, I., De Prisco,
R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 1–18. Springer, Heidelberg (2012)

51. Xue, H., Li, B., Lu, X., Jia, D., Liu, Y.: Efficient lossy trapdoor functions based
on subgroup membership assumptions. In: Abdalla, M., Nita-Rotaru, C., Dahab,
R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 235–250. Springer, Heidelberg (2013)

Author Index

Aggarwal, Divesh II-393
Agrawal, Shashank II-259, II-393
Albrecht, Martin R. I-446
Ananth, Prabhanjan I-125
Applebaum, Benny II-65
Asharov, Gilad II-512

Bellare, Mihir II-542, II-565
Ben-Sasson, Eli II-33
Bishop, Allison II-352
Bitansky, Nir I-67, I-474
Bogdanov, Andrej I-209, I-365
Boyle, Elette II-175
Bun, Mark I-176

Canetti, Ran I-389
Cash, David I-225
Chandran, Nishanth II-367
Chase, Melissa II-259
Chen, Binyi II-205
Chen, Yilei I-389
Chiesa, Alessandro II-33
Chung, Kai-Min II-175
Ciampi, Michele II-83, II-112
Cohen, Ran I-596
Coretti, Sandro I-306

Devadas, Srinivas II-145
Dodis, Yevgeniy I-306, II-352
Dziembowski, Stefan II-291

Farshim, Pooya I-446
Faust, Sebastian II-291
Fletcher, Christopher W. II-145
Frederiksen, Tore Kasper I-542
Fuchsbauer, Georg I-282

Gabizon, Ariel II-33
Garg, Sanjam II-480
Gentry, Craig II-480
Goldwasser, Shafi I-505
Guo, Siyao I-209, II-319
Gupta, Divya II-393

Haitner, Iftach I-596
Halevi, Shai II-480
Hemenway, Brett I-525
Hesse, Julia I-416
Heuer, Felix I-282
Hofheinz, Dennis I-251, I-336, I-416, I-446
Hubáček, Pavel II-319

Ishai, Yuval II-3

Jager, Tibor I-336
Jakobsen, Thomas P. I-542

Kanukurthi, Bhavana II-367
Kiltz, Eike I-225, I-282
Komargodski, Ilan II-449

Larraia, Enrique I-446
Lee, Chin Ho I-365
Lin, Huijia I-96, II-205
Liu, Tianren I-372

Mahmoody, Mohammad I-18, I-49
Maji, Hemanta K. II-393
Masny, Daniel I-209
Mohammed, Ameer I-18, I-49
Murtagh, Jack I-157

Nematihaji, Soheil I-18, I-49
Nielsen, Jesper Buus I-542

Omri, Eran I-596
Ostrovsky, Rafail I-525

Pandey, Omkant II-393
Paneth, Omer I-474
Pass, Rafael I-3, I-49, I-96, II-175
Paterson, Kenneth G. I-446
Persiano, Giuseppe II-83, II-112
Pietrzak, Krzysztof I-282
Prabhakaran, Manoj II-393

Raghuraman, Srinivasan II-367
Raykov, Pavel II-65
Ren, Ling II-145
Reyzin, Leonid I-389
Richelson, Silas I-209, I-525
Rosen, Alon I-209, I-525, II-319
Rotem, Lior I-596
Rupp, Andy I-416

Sahai, Amit I-125
Scafuro, Alessandra II-112
Segev, Gil II-512
Seth, Karn I-96
Shelat, Abhi I-3, I-49
Shi, Elaine II-145
Siniscalchi, Luisa II-83, II-112
Skórski, Maciej II-291
Stepanovs, Igors II-542, II-565

Tackmann, Björn I-306
Tauman Kalai, Yael I-505

Telang, Sidharth I-96
Tessaro, Stefano I-225, II-205, II-542
Trifiletti, Roberto I-542

Vadhan, Salil I-157
Vaikuntanathan, Vinod I-67, I-372
Vald, Margarita II-319
van Dijk, Marten II-145
Venturi, Daniele I-306
Virza, Madars II-33
Visconti, Ivan II-83, II-112

Wee, Hoeteck II-237
Weiss, Mor II-3
Wichs, Daniel I-474, II-145
Wikström, Douglas I-566

Yang, Guang II-3

Zhandry, Mark I-176, II-421, II-449, II-480

596 Author Index

	Preface
	TCC 2016-A
	Contents – Part II
	Contents – Part I
	Zero Knowledge and PCP
	Making the Best of a Leaky Situation: Zero-Knowledge PCPs from Leakage-Resilient Circuits
	1 Introduction
	1.1 Our Results and Techniques

	2 Preliminaries
	2.1 Circuit Compilers
	2.2 Leakage-Resilient Circuit Compilers (LRCCs)

	3 SAT-Respecting Relaxed LRCC
	3.1 The Construction
	3.2 A SAT-Respecting Relaxed LRCC over F2
	3.3 Withstanding Leakage from AC 0 Circuits with Gates

	4 WIPCPs and CZKPCPs
	4.1 Distributed ZK and WI Proofs

	A A Leakage-Indistinguishable Encoding Scheme
	References

	Quasi-Linear Size Zero Knowledge from Linear-Algebraic PCPs
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Probabilistically Checkable Proofs
	2.2 Probabilistically Checkable Proofs of Proximity
	2.3 Zero Knowledge PCPs
	2.4 Reed--Muller and Reed--Solomon Codes

	3 Duplex PCPs
	4 Main Theorem
	4.1 Proof Sketch
	4.2 Roadmap of the Rest of the Paper

	5 Linear Algebraic CSPs and Their Canonical PCPs
	5.1 Linear Algebraic Constraint Satisfaction Problems
	5.2 A Canonical PCP for Linear Algebraic CSPs

	6 Zero-Knowledge Duplex PCPs from Randomizable Linear Algebraic CSPs
	6.1 Randomizable Linear Algebraic CSPs
	6.2 Construction of Zero-Knowledge Duplex PCPs

	7 From NTIME to Randomizable Linear Algebraic CSPs
	7.1 Algebraic Problems and Group Preservation
	7.2 Algebraic Problems Naturally Reduce to Linear Algebraic CSPs
	7.3 From Group-Preserving Algebraic Problems to Randomizable Linear Algebraic CSPs
	7.4 An Efficient Reduction from NTIME to Group-Preserving Algebraic Problems
	7.5 Combining the Two Reductions

	8 Proof of Theorem4
	References

	From Private Simultaneous Messages to Zero-Information Arthur-Merlin Protocols and Back
	1 Introduction
	1.1 Zero-Information Unambiguous Arthur-Merlin Communication Protocols
	1.2 Private Simultaneous Message Protocols
	1.3 ZAM vs. PSM

	2 Our Results
	2.1 From Perfect PSM to ZAM
	2.2 From ZAM to One-Sided PSM
	2.3 From 1PSM to PSM and CDS

	3 Preliminaries
	4 Definitions
	4.1 PSM-Based Models
	4.2 ZAM

	5 From pPSM to ZAM
	6 From ZAM to 1PSM
	7 From 1PSM to PSM
	References

	A Transform for NIZK Almost as Efficient and General as the Fiat-Shamir Transform Without Programmable Random Oracles
	1 Introduction
	1.1 Our Results
	1.2 Comparison

	2 HVZK Proof Systems and -Protocols
	2.1 3-Round Public-Coin HVZK Proofs and WI
	2.2 Challenge Lengths of 3-Round HVZK Proofs
	2.3 3-Round Public-Coin HVZK Proofs for or Composition of Statements

	3 Non-Interactive Argument Systems
	4 NIWI Argument Systems from 3-Round HVZK Proofs
	5 Our Transform: NIZK from HVZK
	6 Details on Some -Protocols
	A Dual Mode Commitments and the Need for Strong -protocols
	A.1 A Subtlety in Lindell's Construction: The Need of Strong -protocols

	B An Optimal-Sound (and Not Special Sound) 3-Round Perfect Special HVZK Proof
	References

	Improved OR-Composition of Sigma-Protocols
	1 Introduction
	1.1 Our Contribution
	1.2 Our Techniques
	1.3 Discussion
	1.4 Applications
	1.5 Open Problems

	2 Definitions
	3 -Protocols
	3.1 -protocols and Witness Indistinguishability
	3.2 Or Composition of -protocols: the CDS-OR Transform

	4 t-Instance-Dependent Trapdoor Commitment Schemes
	5 Our New OR-Composition Technique
	5.1 Witness Indistinguishability of Our Transform

	6 Applications
	References

	Oblivious RAM
	Onion ORAM: A Constant Bandwidth Blowup Oblivious RAM
	1 Introduction
	1.1 Server Computation in ORAM
	1.2 Attempts to ``Break'' the Goldreich-Ostrovsky Lower Bound
	1.3 Our Contributions
	1.4 Related Work

	2 Overview of Techniques
	3 Bounded Feedback ORAM
	3.1 Bounded Feedback ORAM Basics
	3.2 New Triplet Eviction Procedure

	4 Semi-honest Onion ORAM with an Additively Homomorphic Encryption
	4.1 Additively Homomorphic Select Sub-protocol
	4.2 Detailed Protocol
	4.3 Bounding Layers
	4.4 Remarks on Cryptosystem Requirements

	5 Security Against Fully Malicious Server
	5.1 Abstract Server-Computation ORAM
	5.2 Semi-honest to Malicious Compiler

	6 Optimizations and Analysis
	6.1 Optimizations
	6.2 Damgård-Jurik Cryptosystem
	6.3 Asymptotic Analysis
	6.4 Concrete Analysis (Semi-honest Case Only)
	6.5 Other Optimizations and Remarks

	7 Conclusion and Open Problems
	A Definitions of Server-Computation ORAM
	A.1 Security Definition

	B Proofs
	B.1 Bounded Feedback ORAM: Bounding Overflows
	B.2 Onion ORAM: Bounding Layers of Encryption
	B.3 Malicious Security Proof

	References

	Oblivious Parallel RAM and Applications
	1 Introduction
	1.1 Applications of OPRAM
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries
	2.1 Parallel RAM (PRAM) Programs
	2.2 Tree-Based ORAM
	2.3 Sorting Networks

	3 Oblivious PRAM
	3.1 Rudimentary Solution: Requiring Large Bandwidth
	3.2 Oblivious Routing, Aggregation, and Multi-cast
	3.3 Putting Things Together

	References

	Oblivious Parallel RAM: Improved Efficiency and Generic Constructions
	1 Introduction
	1.1 Subtree-OPRAM
	1.2 The Generic Transformation

	2 Oblivious (Parallel) RAM
	3 OPRAM with O(log2 N) Server Communication Overhead
	3.1 Subtree-ORAM
	3.2 Oblivious Inter-client Communication Protocols
	3.3 Subtree-OPRAM

	4 Generic OPRAM Scheme
	4.1 Oblivious Dictionaries
	4.2 The Generic OPRAM Protocol

	A Correctness and Obliviousness of ORAM
	B Review of Path-ORAM
	C Analysis of Subtree-ORAM
	D Analysis of Subtree-OPRAM
	E Analysis of Generic-OPRAM
	References

	ABE and IBE
	Déjà Q: Encore! Un Petit IBE
	1 Introduction
	1.1 Our Contributions
	1.2 Our Techniques
	1.3 Discussion

	2 Preliminaries
	2.1 Composite-Order Bilinear Groups and Cryptographic Assumptions
	2.2 Anonymous Identity-Based Encryption
	2.3 Broadcast Encryption

	3 Identity-Based Encryption
	3.1 Core Lemma
	3.2 Our IBE Scheme
	3.3 A Candidate Prime-Order Scheme

	4 Broadcast Encryption
	4.1 Overview
	4.2 Our Broadcast Encryption Scheme

	A Asymmetric Composite-Order Bilinear Groups
	References

	A Study of Pair Encodings: Predicate Encryption in Prime Order Groups
	1 Introduction
	2 Preliminaries
	2.1 Predicate Encryption (PE)

	3 Pair Encoding Schemes
	3.1 Security

	4 Dual System Groups
	4.1 Syntax
	4.2 Properties

	5 Predicate Encryption from Pair Encodings
	6 Proof of Security
	7 Ciphertext-Policy ABE
	7.1 Pair Encoding Scheme
	7.2 Relaxed Perfect Security
	7.3 Instantiation: Constant-Size Ciphertext

	References

	Codes and Interactive Proofs
	Optimal Amplification of Noisy Leakages
	1 Introduction
	1.1 Our Contributions
	1.2 A High-Level Proof Outline
	1.3 Our Techniques

	2 Preliminaries
	3 Our Main Result
	3.1 Proof of Theorem 1

	4 Lower Bounds
	A Proofs
	A.1 Proof of Proposition 1
	A.2 Proof of Proposition 2
	A.3 Proof of Lemma 2
	A.4 Proof of Lemma 3
	A.5 Proof of Lemma 4
	A.6 Proof of Theorem 2
	A.7 Proof of Lemma 6
	A.8 Harmonic Analysis

	References

	Rational Sumchecks
	1 Introduction
	1.1 Our Results
	1.2 Comparison to Alternative Delegation Schemes
	1.3 Other Related Work

	2 Preliminaries
	3 Rational Sumcheck Protocols
	4 Composition of Classical and Rational Interactive Proofs
	4.1 Substituting Oracle by Rational Proof in Interactive Proof
	4.2 Substituting Oracle by Rational Multi-prover Proof in Multi-prover Proof

	5 Rational Delegation for NC
	5.1 The Protocol of Goldwasser, Kalai and Rothblum [15]
	5.2 Single-Round Rational Arguments for NC

	6 Rational Delegation for P
	6.1 The Protocol of Kalai, Raz and Rothblum [19]
	6.2 No-Signaling Rational Multi-prover Proofs for Deterministic Computations
	6.3 Single-Round Rational Arguments for P

	A Building Blocks
	References

	Interactive Coding for Interactive Proofs
	1 Introduction
	2 Resilient Interactive Protocols
	3 Backtracking-Resilient Protocols
	4 Compiling Backtracking-Resilient Protocols Against Adversarial Channel Errors
	5 Analysis of the Compiled Algorithms
	5.1 Completeness
	5.2 Soundness

	6 Conclusions and Open Problems
	References

	Information-Theoretic Local Non-malleable Codes and Their Applications
	1 Introduction
	1.1 Results
	1.2 Techniques
	1.3 Organization of the Paper

	2 Preliminaries
	2.1 Notation
	2.2 Definitions

	3 Non-malleable Codes with O"0365O(k) Locality Against Fsplit4
	4 Non-malleable Codes with O() Locality Against Fhalf
	4.1 Quoted Non-malleability
	4.2 Achieving Full Non-malleability

	5 Updatability and Security Against Continual Attacks
	6 Applications of Local Non-malleable Codes
	References

	Optimal Computational Split-state Non-malleable Codes
	1 Introduction
	1.1 Technical Overview
	1.2 Prior Work

	2 Preliminaries
	2.1 Non-malleable Codes in the Split-State Model
	2.2 Building Blocks

	3 Our Construction
	3.1 Proof of Non-malleability

	4 Proof of Theorem 1
	5 Necessity of One-Way Functions
	References

	Limitations of Obfuscation and Obfuscation-Avoiding Constructions
	How to Avoid Obfuscation Using Witness PRFs
	1 Introduction
	1.1 Motivating Example: Non-interactive Key Exchange Without Setup
	1.2 Our Contributions: Witness PRFs
	1.3 Techniques
	1.4 Directions for Future Work
	1.5 Other Related Work

	2 Preliminaries
	2.1 Subset-Sum
	2.2 Multilinear Maps

	3 Witness PRFs
	3.1 Security

	4 An Abstraction: Subset-Sum Encoding
	4.1 A Simple Instantiation from Multilinear Maps
	4.2 Witness PRFs from Subset-Sum Encodings

	5 Applications
	5.1 CCA-secure Public Key Encryption
	5.2 Non-interactive Multiparty Key Exchange

	References

	Cutting-Edge Cryptography Through the Lens of Secret Sharing
	1 Introduction
	1.1 Overview of Our Techniques

	2 Preliminaries
	2.1 Monotone-NP and Access Structures
	2.2 Commitment Schemes
	2.3 Multilinear Maps
	2.4 Witness Pseudorandom Functions
	2.5 Indistinguishability Obfuscation

	3 Distributed Secret Sharing
	3.1 Alternative Definitions
	3.2 Distributed Secret Sharing Implies One-Way Functions
	3.3 Distributed Secret Sharing for Threshold
	3.4 Distributed Secret Sharing Is Equivalent to Witness PRFs

	4 Functional Secret Sharing
	4.1 Functional Secret Sharing Is Equivalent to iO

	References

	Functional Encryption Without Obfuscation
	1 Introduction
	1.1 Our Results
	1.2 Overview of Our Techniques
	1.3 Instantiating Our Assumptions
	1.4 Independent Work
	1.5 Subsequent Work

	2 Preliminaries: Graded Encoding Schemes
	3 Additional Background
	3.1 Adaptively Secure FE
	3.2 Branching Programs

	4 Slotted Functional Encryption
	4.1 Core Predicates
	4.2 Additional Derivable Predicates
	4.3 Reductions

	5 Slotted Functional Encryption for NC1
	5.1 Security Proof
	5.2 Adaptively Secure FE for NC1

	References

	On Constructing One-Way Permutations from Indistinguishability Obfuscation
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Overview of Our Results
	1.4 Paper Organization

	2 Preliminaries
	2.1 Oracle-Aided One-Way Permutation Families
	2.2 Indistinguishability Obfuscation for Oracle-Aided Circuits

	3 Impossibility for Constructions Based on iO and One-Way Functions
	3.1 The Class of Constructions
	3.2 Proof Overview and the Oracle
	3.3 Attacking Domain-Invariant Permutation Families Relative to
	3.4 Proof of Theorem 3.3

	4 Impossibility for Constructions Based on One-Way Functions
	References

	Contention in Cryptoland: Obfuscation, Leakage and UCE
	1 Introduction
	1.1 VGBO and AI-DHI
	1.2 Key-Message Leakage Resilience
	1.3 UCE for Split Sources
	1.4 Discussion and Related Work

	2 Preliminaries
	3 VGBO and the AI-DHI Assumption
	4 KM-Leakage Resilient Encryption
	5 UCE for Split Sources
	References

	Point-Function Obfuscation: A Framework and Generic Constructions
	1 Introduction
	1.1 The State of Point-Function Obfuscation
	1.2 Contributions in Brief
	1.3 Definitional Framework
	1.4 Generic Constructions
	1.5 Alternative Notions and Relations Between Notions
	1.6 Discussion and Further Related Work

	2 Notation and Standard Definitions
	3 Point-Function Obfuscation Framework
	4 (d)iO for Multi-circuit Samplers
	5 Generic Constructions of PO
	5.1 PO from iO
	5.2 PO from DPKE
	5.3 PO from UCE

	6 Alternative Security Notions for PO
	References

	Author Index

