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Abstract. We provide constructions of multilinear groups equipped
with natural hard problems from indistinguishability obfuscation, homo-
morphic encryption, and NIZKs. This complements known results on the
constructions of indistinguishability obfuscators from multilinear maps
in the reverse direction.

We provide two distinct, but closely related constructions and show
that multilinear analogues of the DDH assumption hold for them. Our
first construction is symmetric and comes with a κ-linear map e : Gκ −→
GT for prime-order groups G and GT . To establish the hardness of the
κ-linear DDH problem, we rely on the existence of a base group for which
the (κ−1)-strong DDH assumption holds. Our second construction is for
the asymmetric setting, where e : G1 × · · · × Gκ −→ GT for a collection
of κ + 1 prime-order groups Gi and GT , and relies only on the standard
DDH assumption in its base group. In both constructions the linearity
κ can be set to any arbitrary but a priori fixed polynomial value in the
security parameter.

We rely on a number of powerful tools in our constructions: (proba-
bilistic) indistinguishability obfuscation, dual-mode NIZK proof systems
(with perfect soundness, witness indistinguishability and zero knowl-
edge), and additively homomorphic encryption for the group Z

+
N . At

a high level, we enable “bootstrapping” multilinear assumptions from
their simpler counterparts in standard cryptographic groups, and show
the equivalence of IO and multilinear maps under the existence of the
aforementioned primitives.

Keywords: Multilinear map · Indistinguishability obfuscation · Homo-
morphic encryption · Decisional Diffie–Hellman · Groth–Sahai proofs

1 Introduction

1.1 Main Contribution

In this paper, we explore the relationship between multilinear maps and obfus-
cation. Our main contribution is a construction of multilinear maps for groups
of prime order equipped with natural hard problems, using indistinguishabil-
ity obfuscation (IO) in combination with other tools, namely NIZK proofs,
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homomorphic encryption, and a base group G0 satisfying a mild cryptographic
assumption. This complements known results in the reverse direction, showing
that various forms of indistinguishability obfuscation can be constructed from
multilinear maps [GGH+13b,CLTV15,Zim15]. The relationship between IO and
multilinear maps is a very natural question to study, given the rich diversity of
cryptographic constructions that have been obtained from both multilinear maps
and obfuscation, and the apparent fragility of current constructions for multi-
linear maps. More on this below.

We provide two distinct but closely related constructions. One is for multi-
linear maps in the symmetric setting, that is non-degenerate multilinear maps
e : G1

κ −→ GT for groups G1 and GT of prime order N . Our construction
relies on the existence of a base group G0 in which the (κ − 1)-SDDH assump-
tion holds—this states that, given a κ-tuple of G0-elements (g, gω, . . . , gωκ−1

),
we cannot efficiently distinguish gωκ

from a random element of G0. Under this
assumption, we prove that the κ-MDDH problem, a natural analogue of the
DDH problem as stated below, is hard.

(The κ-MDDH problem, informal). Given a generator g1 ofG1 and κ+
1 group elements gai

1 in G with ai ←$ ZN , distinguish e(g1, . . . , g1)
∏κ+1

i=1 ai

from a random element of GT .

This problem can be used as the basis for several cryptographic construc-
tions [BS03] including, as the by now the classic example of multiparty non-
interactive key exchange (NIKE) [GGH13a].

Our other construction is for the asymmetric setting, that is multilinear maps
e : G1×· · ·×Gκ −→ GT for a collection of κ groups Gi and GT all of prime order
N . It uses a base group G0 in which we require only that the standard DDH
assumption holds. For this construction, we show that a natural asymmetric
analogue of the κ-MDDH assumption holds (wherein all but two of the κ + 1
group elements input to e come from distinct groups).

In Sect. 7, we also show the intractability of the rank problem for our con-
struction for multilinear maps in the symmetric setting; this is a generalization
of DDH-like problems to matrices that has proven to be useful in cryptographic
constructions [BHHO08,NS09,GHV12,BLMR13,EHK+13].

At a high level, then, our constructions are able to “bootstrap” from rather
mild assumptions in a standard cryptographic group to much stronger multi-
linear assumptions in a group (or groups, in the asymmetric setting) equipped
with a κ-linear map. Here κ is fixed up-front at construction time, but is other-
wise unrestricted. Of course, such constructions cannot be expected to come “for
free,” and we need to make use of powerful tools including probabilistic IO (PIO)
for obfuscating randomized circuits [CLTV15], dual-mode NIZK proofs enjoying
perfect soundness (for a binding CRS), perfect witness indistinguishability (for a
hiding CRS), and perfect zero knowledge, and additive homomorphic encryption
for the group (ZN ,+) (or alternatively, a perfectly correct FHE scheme). It is
an important open problem arising from our work to weaken the requirements
on, or remove altogether, these additional tools.
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1.2 General Approach

Our approach to obtaining multilinear maps in the symmetric setting is as follows
(with many details to follow in the main body). Let G0 with generator g0 be a
group of prime order N in which the (κ − 1)-SDDH assumption holds.

We work with redundant encodings of elements h of the base group G0 of
the form h = gx0

0 (gω
0 )x1 where gω

0 comes from a (κ−1)-SDDH instance; we write
x = (x0, x1) for the vector of exponents representing h. Then G1 consists of all
strings of the form (h, c1, c2, π) where h ∈ G0, ciphertext c1 is a homomorphic
encryption under public key pk1 of a vector x representing h, ciphertext c2 is a
homomorphic encryption under a second public key pk2 of another vector y also
representing h, and π is a NIZK proof showing consistency of the two vectors
x and y, i.e., a proof that the plaintexts x, y underlying c1, c2 encode the
same group element h. Note that each element of the base group G0 is multiply
represented when forming elements in G1, but that equality of group elements
in G1 is easy to test. An alternative viewpoint is to consider (c1, c2, π) as being
auxiliary information accompanying element h ∈ G0; we prefer the perspective
of redundant encodings, and our abstraction in Sect. 3 is stated in such terms.
When viewed in this way, our approach can be seen as closely related to the
Naor–Yung paradigm for constructing CCA-secure PKE [NY90].

Addition of two elements in G1 is carried out by an obfuscation of a circuit
CAdd that is published along with the groups. It has the secret keys sk1, sk2 hard-
coded in; it first checks the respective proofs, then uses the additive homomorphic
property of the encryption scheme to combine ciphertexts, and finally uses the
secret keys sk1, sk2 as witnesses to generate a new NIZK proof showing equality
of encodings. Note that the new encoding is as compact as that of the two input
elements.

The multilinear map on inputs (hi, ci,1, ci,2, πi) for 1 ≤ i ≤ κ is computed
using the obfuscation of a circuit CMap that has sk1 and ω hard-coded in. This
allows CMap to “extract” full exponents of hi in the form (xi,1 + ω · xi,2) from
ci,1, and thereby compute the element g

∏
i(xi,1+ω·xi,2)

0 . This is defined to be
the output of our multilinear map e, and so our target group GT is in fact G0,
the base group. The multilinearity of e follows immediately from the form of the
exponent.

In the asymmetric case, the main difference is that we work with different
values ωi in each of our input groups Gi. However, the groups are all constructed
via redundant encodings, just as above.

This provides a high-level view of our approach, but no insight into why the
approach achieves our aim of building multilinear maps with associated hard
problems. Let us give some intuition on why the κ-MDDH problem is hard in
our setting. We transform a κ-MDDH tuple h = ((gai

1 )i≤κ+1, g
d
T ), where d is

the product of the ai ∈ ZN , g1 is in the “encoded” form above, thus g1 =
(h1, c1, c2, π), and gT is a generator of GT = G0, into another κ-MDDH tuple
h′ with exponents a′

i = ai + ω for i ≤ κ. This means that the exponent of the
challenge element in the target group d′ =

∏κ
1 (ai+ω)aκ+1 can be seen as a degree

κ polynomial in ω. Therefore, with the knowledge of the ai and a (κ− 1)-SDDH
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challenge, with ω implicit in the exponent, we are able to randomize gd′
T replacing

gωκ

T with a uniform value.
Nevertheless, in the preceding simplistic argument we have made two assump-

tions. The first is that we are able to provide an obfuscation of a circuit C ′
Map

that has the same functionality as CMap over G1 without the explicit knowledge
of ω. We resolve this by showing a way of evaluating the κ-linear map on any
elements of G1 using only the powers gωi

0 for 1 ≤ i ≤ κ−1, and vectors extracted
from the accompanying ciphertexts, and then applying IO to the two circuits.1

The second assumption we made is that we can indeed switch from h to h′

without being noticed. In other words, that the vectors xi, yi representing gai

can be replaced (without being noticed) with vectors hi
′ whose second coordinate

is always fixed. Intuitively this is based on the IND-CPA security of the FHE
scheme, but in order to give a successful reduction we also have to change the cir-
cuit CAdd (since CAdd uses both decryption keys). We show two ways to do this:
one is based on probabilistic indistinguishability obfuscation [CLTV15], and the
other uses only (deterministic) indistinguishability obfuscation, and additionally
exploits the specific structure of a particular (pairing-based) NIZK implementa-
tion due to Groth and Sahai [GS08].

We note that in this work we do not construct graded encoding schemes as
in [GGH13a]. That is, we do not construct maps from Gi × Gj to Gi+j . On the
other hand, our construction is noiseless and is closer to multilinear maps as
defined by Boneh and Silverberg [BS03].

1.3 Attacks on Multilinear Maps

Multilinear maps have been in a state of turmoil, with the discovery of
attacks [CHL+15,HJ15,CLR15,MF15,Cor15] against the GGH13 [GGH13a],
CLT [CLT13,CLT15] and GGH15 [GGH15] proposals. Hence, our confidence in
constructions for graded encoding schemes (and thereby multilinear maps) has
been shaken. On the other hand, when IO is constructed from graded encod-
ing schemes via Barrington’s theorem [GGH+13b] or dual-input straddling sets
[AB15,Zim15], then none of the known attacks on graded encoding schemes
seem to apply [CGH+15]. Indeed, when building IO from multilinear maps one
restricts the pool of available operations to an attacker by fixing a circuit a priori
which means that certain “interesting” elements cannot be (easily) constructed.
Hence, currently it is perhaps more plausible to assume that IO exists than it
is to assume that secure multilinear maps exist. However, we stress that more
cryptanalysis of IO constructions is required to investigate what security they
provide.

Moreover, even though current constructions for IO rely on graded encoding
schemes, it is not implausible that alternative routes to achieving IO without
relying on multilinear maps will emerge in due course. And setting aside the novel
applications obtained directly from IO, multilinear maps, and more generally
graded encoding schemes, have proven to be very fruitful as constructive tools
1 This is not trivial since the new method should not lead to an exponential blow-up

in κ.
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in their own right (cf. [BS03,PTT10], resp., [FHPS13,GGH+13c,HSW13] and
[GGSW13,BWZ14,TLL14,BLR+15]). This rich set of applications coupled with
the current uncertainty over the status of graded encoding schemes and multilin-
ear maps provides additional motivation to ask what additional tools are needed
in order to upgrade IO to multilinear maps. As an additional benefit, we upgrade
(via IO) noisy graded encoding schemes to clean multilinear maps—sometimes
now informally called “dream” or “ideal” multilinear maps.

1.4 Related Work

The closest related work to ours is that of Yamakawa et al. [YYHK14,YYHK15];
indeed, their work was the starting point for ours. Yamakawa et al. construct
a self-pairing map, that is a bilinear map from G × G to G; multilinear maps
can be obtained by iterating their self-pairing. Their work is limited to the RSA
setting. It uses the group of signed quadratic residues modulo a Blum integer
N , denoted QR+

N , to define a pairing function that, on input elements gx, gy in
QR+

N , outputs g2xy. In their construction, elements of QR+
N are augmented with

auxiliary information to enable the pairing computation—in fact, the auxiliary
information for an element gx is simply an obfuscation of a circuit for computing
the 2xth power modulo ord(QR+

N ), and the pairing is computed by evaluating
this circuit on an input gy (say). The main contribution of [YYHK14] is in
showing that these obfuscated circuits leak nothing about x or the group order.

A nice feature of their scheme is that the degree of linearity κ that can be
accommodated is not limited up-front in the sense that the pairing output is
also a group element to which further pairing operations (derived from auxiliary
information for other group elements) can be applied. However, the construction
has several drawbacks. First, the element output by the pairing does not come
with auxiliary information.2 Second, the size of the auxiliary information for
a product of group elements grows exponentially with the length of the prod-
uct, as each single product involves computing the obfuscation of a circuit for
multiplying, with its inputs already being obfuscated circuits. Third, the main
construction in [YYHK14] only builds hard problems for the self-pairing of the
computational type (in fact, they show the hardness of the computational ver-
sion of the κ-MDDH problem in QR+

N assuming that factoring is hard). Still,
this is sufficient for several cryptographic applications.

In contrast, our construction is generic with respect to its platform group.
Furthermore, the equivalent of the auxiliary information in our approach does
not itself involve any obfuscation. Consequently, the description of a product
2 The authors of [YYHK14] state that such information can be added in their con-

struction, but what would be needed is the obfuscation of a circuit for computing
4xyth powers. The information available for building this would be obfuscations of
circuits for computing 2xth and 2yth powers, so an obfuscation of a composition of
already obfuscated circuits would be required. Strictly speaking then, the auxiliary
information associated with elements output by their pairing is of a different type
to that belonging to the inputs, making it questionable whether “self-pairing” is the
right description of what is constructed in [YYHK14].
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of group elements stays compact. Indeed, given perfect additive homomorphic
encryption for (Zp,+), we can perform arbitrary numbers of group operations in
each component group Gi. It is an open problem to find a means of augmenting
our construction with the equivalent of auxiliary information in the target group
GT , to make our multilinear maps amenable to iteration and thereby achieve
graded maps as per [GGH13a,CLT13].

2 Background

The security parameter is denoted by λ ∈ N. We assume that λ is an implicit
input given in unary to all algorithms. Given a randomized algorithm A we
denote the action of running A on inputs (x1, . . .) with fresh random coins r and
assigning the output(s) to y1, . . . by (y1, . . .)←$ A(x1, . . . ; r), and for a finite set
X, we denote the action of sampling a uniformly random element x from X
by x←$ X. Vectors are written in boldface x and by slight abuse of notation,
running algorithms on vectors of elements indicates component-wise operation.
A real-valued function μ(λ) is negligible if μ(λ) ∈ O(λ−ω(1)). The set of all
negligible functions is denoted by Negl.

2.1 Homomorphic Public-Key Encryption

Scheme Π := (Gen,Enc,Dec,Eval) denotes a homomorphic public-key encryp-
tion (HPKE) with message space {0, 1}λ, where Eval is a deterministic algo-
rithm. We require Π to be IND-CPA, perfectly correct, and compact, and also
assume that the secret keys are the random coins used in key generation; this
will allow to check key pairs for validity.

2.2 Obfuscators

An algorithm Obf is an obfuscator for circuit class C = {Cλ}λ∈N if for any
m ∈ {0, 1}λ, C ∈ Cλ, and C ←$ Obf(C) we have that C(m) = C(m). The
security of Obf with respect a class C requires that no ppt adversary A :=
(A1,A2) can distinguish the obfuscation of two circuits in C with noticeable
probability. We will consider two notions of obfuscation depending on the class
of permissible adversaries. The first notion is functional equivalence, whereby the
two circuits any sampled circuits C1, C2 must satisfy C(m) = C(m) for all m.
We will write IO for obfuscator whenever this level of security is assumed. The
second notion is X-ind sampling [CLTV15], which, roughly speaking, requires
the existence of a domain subset X of size at most X such that the two circuits
are functionally equivalent outside X and furthermore within X the outputs are
indistinguishable. We will write PIO for this case.

2.3 Dual-Mode NIZK Proof Systems

In our constructions we will be relying on special types of non-interactive zero-
knowledge proof systems [GS08]. These systems have “dual-mode” common
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reference string (CRS) generation algorithms that produce indistinguishable
CRSs in the “binding” and “hiding” modes. The standard prototype for such
schemes are pairing-based Groth–Sahai proofs [GS08], and using a generic NP
reduction to the satisfiability of quadratic equations we can obtain a suitable
proof system for any NP language. We formalize the syntax and security of such
proof systems next.

Syntax. A relation with setup is a pair of ppt algorithms (S,R) such that
S(1λ) outputs (gpk , gsk) and R(gpk , x, w) is a ternary relation and outputs a bit
b ∈ {0, 1}. A dual-mode non-interactive zero-knowledge (NIZK) proof system Σ
for (S,R) consists of five algorithms as follows. (1) Algorithm BCRS(gpk , gsk)
outputs a (binding) common reference string crs and an extraction trapdoor
tdext; (2) HCRS(gpk , gsk) outputs a (hiding) common reference string crs and
a simulation trapdoor tdzk; (3) Prove(gpk , crs, x, w), on input crs, an instance
x, and a witness w for x, outputs a proof π; (4) Verify(gpk , crs, x, π) on input
a bit string crs, an instance x, and a proof π, outputs accept or reject; (5)
WExt(tdext, x, π) on input an extraction trapdoor, an instance x, and a proof π,
outputs a witness w3; and (6) Sim(tdzk, crs, x) on input the simulation trapdoor
tdzk, the CRS crs, and an instance x, outputs a simulated proof π.

Security. We require a dual-mode NIZK to meet the following require-
ments. (1) binding and hiding CRS indistinguishability; (2) perfect completeness
under the hiding and binding modes; (3) perfect soundness under the binding
mode; (4) perfect extractability under the binding mode; (5) perfect witness-
indistinguishability under the hiding mode; and (6) perfect zero-knowledge under
the binding mode.

2.4 Hard Membership Problems

Finally, we will use languages with hard membership problems. More specifically,
we say that a family L = {Lλ} of families Lλ = {L} of languages L ⊆ U in a
universe U = Uλ has a hard subset membership problem if the following holds.
Namely, we require that no ppt algorithm can efficiently distinguish between
x←$ L for L←$ Lλ, and x←$ U = Uλ.

3 Multilinear Groups with Non-unique Encodings

Before presenting our constructions, we formally introduce what we mean by a
multilinear group (MLG) scheme. Our abstraction is a direct adaptation of the
“cryptographic” MLG setting of [BS03] to a setting where group elements have
non-unique encodings. In our abstraction, on top of the procedures needed for
3 We note that extraction in Groth–Sahai proofs does not for all types of statements

recover a witness. (Instead, for some types of statements, only gwi for a witness
variable wi ∈ Zp can be recovered.) Here, however, we will only be interested in
witnesses w = (w1, . . . , wn) ∈ {0, 1}n that are bit strings, in which case extraction
always recovers w. (Specifically, extraction will recover gwi for all i, and thus all wi.).
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generating, manipulating and checking group elements, we introduce an equality-
checking procedure which generalizes that for groups with unique encodings.

Syntax. A multilinear group (MLG) scheme Γ consists of six ppt algorithms
as follows.

Setup(1λ, 1κ): This is the setup algorithm. On input the security parameter
1λ and the multilinearity 1κ, it outputs the group parameters pp. These
parameters include generators g1, . . . , gκ+1, identity elements 11, . . . , 1κ+1,
and integers N1, . . . , Nκ+1 (which will represent group orders). We assume
pp is provided to the various algorithms below.

Vali(h): This is the validity testing algorithm. On input (the group parameters
and) a group index 1 ≤ i ≤ κ + 1 and a string h ∈ {0, 1}∗, it returns
b ∈ {�,⊥}. We define Gi, which is also parameterized by pp, as the set of
all h for which Vali(h) holds. We write h ∈ Gi when Vali(h) holds and
refer to such strings as group elements (since we will soon impose a group
structure on Gi). We require that the bit-strings in Gi have lengths that are
polynomial in 1κ and 1λ, a property that we refer to as compactness.

Eqi(h1, h2): This is the equality testing algorithm. On input two valid group
elements h1, h2 ∈ Gi, it outputs a Boolean value b ∈ {�,⊥}.4 We require
Eqi to define an equivalence relation. We say that the group has unique
encodings if Eqi simply checks the equality of bit strings. We write Gi(h)
for the set of all h′ ∈ Gi such that Eqi(h, h′) = �; for any such h, h′ in Gi we
write h = h′; sometimes we write h = h′ in Gi for clarity. Since “=” refers
to equality of bit-strings as well as equivalence under Eqi we will henceforth
will write “as bit-strings” when we mean equality in that sense. We require
|Gi/Eqi|, the number of equivalence classes into which Eqi partitions Gi,
to be finite and equal to Ni (where Ni comes from pp). Note that equality
testing algorithms Eqi for 1 ≤ i ≤ κ can be derived from one for Eqκ+1

using the multilinear map e defined below, provided Nκ+1 is prime.
Opi(h1, h2): This algorithm will define our group operation. On input two valid

group elements h1, h2 ∈ Gi it outputs h ∈ Gi. We write h1h2 in place
of Opi(h1, h2) for simplicity. We require that Opi respect the equivalence
relations Eqi, meaning that if h1 = h2 in Gi and h ∈ Gi, then h1h = h2h
in Gi. We also demand that h1h2 = h2h1 in Gi (commutativity), for any
third h3 ∈ Gi we require h1(h2h3) = (h1h2)h3 in Gi (associativity) and
h11i = h1 in Gi. These requirements ensure that Gi/Eqi acts as an Abelian
group of order Ni with respect to the operation induced by Opi and identity
element 1i.

The algorithm Op gives rise to an exponentiation algorithm Expi(h, z)
that on input h ∈ Gi and z ∈ N outputs an h′ ∈ Gi such that h′ = h · · · h in
Gi with z occurrences of h. When no h is specified, we assume h = gi. This
algorithm runs in polynomial time in the length of z. We denote Expi(h, z)
by hz and define h0 := 1i. Note that under the definition of Ni for any h ∈ Gi

4 We assume, without loss of generality, that all algorithms return ⊥ when run on
invalid group elements.
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we have that Expi(h,Ni) = 1i.5 This in turn leads to an inversion algorithm
Invi(h) that on input h ∈ Gi outputs hNi−1. We insist that gi in fact has
order Ni, so that (the equivalence class containing) gi generates Gi/Eqi.
We do not treat the case where the Ni are unknown but the formalism is
easily extended to include it by adding an explicit inversion algorithm and
by replacing Ni in pp with an approximation (which may be needed for
sampling purposes).

We use the bracket notion [EHK+13] to denote an element h = gx
i

in Gi with [x]i. When using this notation, we will write the group
law additively. This notation will be convenient in the construction and
analysis of our MLG schemes. For example [z]i + [z′]i succinctly denotes
Opi(Exp(gi, z),Exp(gi, z

′)). Note that when writing [z]i it is not necessar-
ily the case that z is explicitly known.

e(h1, . . . , hκ): This is the multilinear map algorithm. For κ group elements hi ∈
Gi as input, it outputs hκ+1 ∈ Gκ+1. We demand that for any 1 ≤ j ≤ κ
and any h′

j ∈ Gj

e(h1, . . . , hjh
′
j , . . . , hκ) = e(h1, . . . , hj , . . . , hκ)e(h1, . . . , h

′
j , . . . , hκ).

We also require the map to be non-degenerate in the sense that for some
tuple of elements as input the multilinear map outputs an element of Gκ+1

not in the equivalence class of 1κ+1. (This implies that e is surjective onto
Gκ+1/Eqκ+1 when Ni is prime, but need not imply surjectivity when Nκ+1

is composite.) We call an MLG scheme symmetric if the group algorithms are
independent of the group index for 1 ≤ i ≤ κ and the e algorithm is invariant
under permutations of its inputs. That is for any permutation π : [κ] −→ [κ]
we have

e(h1, . . . , hκ) = e(hπ(1), . . . , hπ(κ)).

We refer to all the other cases as being asymmetric. To distinguish the target
group we frequently write GT instead of Gκ+1 (and similarly for 1T and gT in
place of 1κ+1 and gκ+1) as its structure in our construction will be different
from that of the source groups G1, . . . ,Gκ.

Sami(z): This is the sampling algorithm. On input z ∈ N it outputs h ∈ Gi

whose distribution is “close” to that of uniform over the equivalence class
Gi(gz

i ). Here “close” is formalized via computational, statistical or perfect
indistinguishability. We also allow a special input ε to this algorithm, in
which case the sampler is required to output a uniformly distributed h ∈ Gi

together with a z such that h ∈ Gi(gz
i ). When outputting z is not required,

we say that Sami(ε) is discrete-logarithm oblivious. Note that for groups with
unique encodings these algorithms trivially exist. For notational convenience,
for a known a we define [a]i to be an element sampled via Sami(a).

In some applications, we also rely on the following algorithm, which provides
a canonical string for all group elements within an equivalence class.
5 However, note that Ni need not be the least integer with this property.



Multilinear Maps from Obfuscation 455

Exti(h): This is the extraction algorithm. On input h ∈ Gi it outputs a string
s ∈ {0, 1}p(λ) where p(·) denotes a polynomial function. We demand that for
any h1, h2 ∈ Gi with h1 = h2 in Gi we have that Exti(h1) = Exti(h2) (as
bit-strings). We also require that the distribution of Exti([z]i) is uniform
over {0, 1}p(λ), for [z]i ←$ Sami(ε). For groups with unique encodings this
algorithm trivially exists.

In the full version of the paper we provide possible extensions to this syntax.

Comparison with GGH. Our formalization differs from that of [GGH13a]
which defines a graded encoding scheme. The main difference is that a graded
encoding scheme defines a ei,j algorithm that takes inputs from Gi and Gj and
returns an element in Gi+j such that the result is linear in each input. Moreover,
the abstraction and construction of graded encodings schemes in [GGH13a] do
not provide any validity algorithms; these are useful in certain adversarial sit-
uations such as CCA security and signature verification. Further, all known
candidate constructions of graded encoding schemes are noisy and only permit
a limited number of operations.

4 The Construction

We now present our construction of an MLG scheme Γ according to the syn-
tax introduced in Sect. 3. In the later sections we will consider special cases of
the construction and prove the hardness of analogues of the multilinear DDH
problem under various assumptions.

We rely on the following building blocks in our MLG scheme. (1) A cyclic
group G0 of some order N0 with generator g0 and identity 10; formally we think
of this as a 1-linear MLG scheme Γ0 with unique encodings in which e is triv-
ial; the algorithm Val0 implies that elements of G0 are efficiently recognizable.
(2) A general-purpose obfuscator Obf . (3) An additively homomorphic public-
key encryption scheme Π := (Gen,Enc,Dec,Eval) with plaintext space ZN

(alternatively, a perfectly correct HPKE scheme). (4) A dual-mode NIZK proof
system. (5) A family T D of (families of) languages TDwhich has a hard subset
membership problem, and such that all TDhave efficiently computable witness
relations with unique witnesses.6 (See Sect. 2 for more formal definitions.)

We reserve variables and algorithms with index 0 for the base scheme Γ0;
we also write N = N0. We require that the algorithms of Γ0 except for Setup0

and Sam0 are deterministic. We will also use the bracket notation to denote
the group elements in G0. For example, we write [z]0, [z

′]0 ∈ G0 for two valid
elements of the base group and [z]0 + [z′]0 ∈ G0 for Op0([z]0, [z

′]0). Variables
with nonzero indices correspond to various source and target groups. Given all
of the above components, our MLG scheme Γ consists of algorithms as detailed
in the sections that follow.
6 An example of such a language is the Diffie–Hellman language TD = {(gr

1 , gr
2) | r ∈

N} in a DDH group.
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4.1 Setup

The setup algorithm for Γ samples parameters pp0 ←$ Setup0(1λ) for the base
MLG scheme, generates two encryption key pairs (pk j , sk j)←$ Gen(1λ) (j =
1, 2), and a matrix W = (ω1, . . . ,ωk)t ∈ Z

κ×�
N where κ is the linearity and

� ∈ {2, 3} is a parameter of our construction. It sets

gpk := (pp0, pk1, pk2, [W]0,TD, y),

where [W]0 denotes a matrix of G0 elements that entry-wise is written in the
bracket notation, TD←$ T D, and y is not in TD. In our MLG scheme we set
N1 = · · · = Nκ+1 := N , where N is the group order implicit in pp0. The
setup algorithm then generates a common reference string crs = (crs ′, y) where
crs ′ ←$ BCRS(gpk , gsk) for a relation (S,R) that will be defined in Sect. 4.2. It
also constructs two obfuscated circuits CMap and CAdd which we will describe in
Sects. 4.3 and 4.4. For 1 ≤ i ≤ κ, the identity elements 1i and group generators
gi are sampled using Sami(0) and Sami(xi) respectively for algorithm Sami

described in Sect. 4.5 with xi ∈ [N ] that is co-prime to N . We emphasize that this
approach is well defined since the operation of Sami is defined independently of
the generators and the identity elements and depends only on gpk and crs. We
set 1κ+1 = 10 and gκ+1 = g0. The scheme parameters are

pp := (gpk , crs, CMap, CAdd, g1, . . . , gκ+1, 11, . . . , 1κ+1).

We note that this algorithm runs in polynomial time in λ as long as κ is poly-
nomial in λ.

4.2 Validity and Equality

The elements of Gi for 1 ≤ i ≤ κ are tuples of the form h = ([z]0, c1, c2, π)
where c1, c2 are encryptions of vectors from Z

�
N under , pk1, pk2, respectively

(encryption algorithm Enc extends from plaintext space ZN to Z
�
N in the obvious

way) and where π is a NIZK to be defined below. We refer to (c1, c2, π) as the
auxiliary information for [z]0. The elements of Gκ+1 are just those of G0.

The NIZK proof system that we use corresponds to the following inclu-
sive disjunctive relation (S,R := R1 ∨ R2). Algorithm S(1λ) outputs gpk =
(pp0, pk1, pk2, [W]0,TD) as defined above and sets gsk = (sk1, sk2). Relation
R1 on input gpk , tuple ([z]0, c1, c2), and witness (x,y, r1, r2, sk1, sk2) accepts
iff [z]0 ∈ G0, the representations of [z]0 as x,y ∈ Z

�
N are valid with respect to

[W]0 in the sense that

[z]0 = [〈x,ωi〉]0 ∧ [z]0 = [〈y,ωi〉]0,
(where 〈·, ·〉 denotes inner product) and the following ciphertext validity condi-
tion (with respect to the inputs to the relation) is met:

(c1 = Enc(x, pk1; r1) ∧ c2 = Enc(x, pk2; r2))
∨

(pk1, sk1) = Gen(sk1) ∧ (pk2, sk2) = Gen(sk2)
∧x = Dec(c1, sk1) ∧ y = Dec(c2, sk2))
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Recall that we have assumed the secret key of the encryption scheme to be
the random coins used in Gen. Note that the representation validity check can
be efficiently performed “in the exponent” using [W]0 and the explicit knowledge
of x and y. Note also that for honestly generated keys and ciphertexts the two
checks in the expression above are equivalent (although this not generally the
case when ciphertexts are malformed).

Relation R2 depends on the language TD, and on input gpk , tuple
([z]0, c1, c2), and witness wy accepts iff y ∈ TD.

For 1 ≤ i ≤ κ, the Vali algorithm for Γ , on input ([z]0, c1, c2, π), first checks
that the first component is in G0 using Val0 and then checks the proof π; if
both tests pass, it then returns �, else ⊥. Observe that for an honest choice of
crs = (crs ′, y), the perfect completeness and the perfect soundness of the proof
system ensure that only those elements which pass relation R1 are accepted.
Algorithm Valκ+1 just uses Val0.

The equality algorithm Eqi of Γ for 1 ≤ i ≤ κ first checks the validity of the
two group elements passed to it and then returns true iff their first components
match, according to Eq0, the equality algorithm from the base scheme Γ0. Algo-
rithm Eqκ+1 just uses Eq0. The correctness of this algorithm follows from the
perfect completeness of Σ.

4.3 Group Operations

We provide a procedure that, given as inputs h = ([z]0, c1, c2, π) and h′ =
([z′]0, c1

′, c2
′, π′) ∈ Gi, generates a tuple representing the product h ·h′. This, in

particular, will enable our multilinear map to be run on the additions of group
elements whose explicit representations are not necessarily known. We exploit
the structure of the base group as well as the homomorphic properties of the
encryption scheme to “add together” the first three components. We then use
(sk1, sk2) as a witness to generate a proof π′′ that the new tuple is well formed.
(For technical reasons we check the validity of h and h′ in two different ways:
using proofs π, π′, and also explicitly using (sk1, sk2). Note that, although useful
in the analysis, the explicit check is redundant by the perfect soundness of the
proof system under a binding crs ′.)

In pp we include an obfuscation of the CAdd circuit shown in Fig. 1 (top), and
again we emphasize that steps 5a or 5b are never reached with a binding crs ′ (but
they may be reached with a hiding crs ′ later in the analysis). Either an IO or a
PIO will be used to obfuscate this circuit. Note that although we have assumed
the evaluation algorithm to be deterministic, algorithm Prove is randomized and
we need to address how we deal with its coins. When using PIO to obfuscate
CAdd, the obfuscator directly deals with the needed randomness.7 When using
IO, a random (but fixed) set of coins will be hardwired into the circuit and
hence the same set of coins will be used for all inputs. (As we shall see, when
using IO the proof system has to satisfy extra structural requirements; these
7 Typically, the obfuscated circuit will have a PRF key hardwired in and derives the

required randomness by applying the PRF to the circuit inputs.
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Fig. 1. Top: Circuit for addition of group elements. Explicit randomness r is used with
an IO and is internally generated when using a PIO. Bottom: Circuit implementing
the multilinear map. Recall that here gpk = (pp0, pk1, pk2, [W]0,TD, y).

ensure that using the same coins throughout does not compromise security.)
The Opi algorithm for 1 ≤ i ≤ κ runs the obfuscated circuit on i, the input
group elements. Algorithm Opκ+1 just uses Op0 as usual. The correctness of
this algorithm follows from those of Γ0 and Π, the completeness of Σ and the
correctness, in our sense of, (the possibly probabilistic) obfuscator Obf ; see
Sect. 2 for the definitions.

4.4 The Multilinear Map

The multilinear map for Γ , on input κ group elements hi = [zi]i = ([zi]0, ci,1,
ci,2, πi), uses sk1 to recover the representation xi. It then uses the explicit knowl-
edge of the matrix W to compute the output of the map as

e([z1]1, . . . , [zκ]κ) :=

[
k∏

i=1

〈xi,ωi〉
]

κ+1

.
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Recalling that Gκ+1 is nothing other than G0, and gκ+1 = g0, the output of
the map is just the G0-element (g0)

∏k
i=1〈xi,ωi〉. The product in the exponent

can be efficiently computed over ZN for any polynomial level of linearity κ
and any � as it uses xi and ωi explicitly. The multilinearity of the map follows
from the linearity of each of the multiplicands in the above product (and the
completeness of Σ, the correctness of Π, and the correctness of the (possibly
probabilistic) obfuscator Obf). An obfuscation CMap of the circuit implementing
this operation (see Fig. 1, bottom) will be made available through the public
parameters and e is defined to run this circuit on its inputs.

4.5 Sampling and Extraction

Given vectors x and y in Z
�
N satisfying 〈x,ωi〉 = 〈y,ωi〉, we set [z]0 := [〈y,ωi〉]0

(which can be computed using [W]0 and explicit knowledge of x) and

[z]i ←
(
[z]0, c1 = Enc(x, pk1; r1), c2 = Enc(y, pk2; r2),

π = Prove(gpk , crs, ([z]i, c1, c2), (x,y, r1, r2)
)
.

If W is explicitly known the vectors x and y can take arbitrary forms subject
to validity. This matrix, however, is only implicitly known, and in our sampling
procedure we set x = y = (z, 0) when � = 2 and x = y = (z, 0, 0) when
� = 3. (We call these the canonical representations.) Note that the outputs of
the sampler are not statistically uniform within Gi([z]i). Despite this, under the
IND-CPA security of the encryption scheme it can be shown that the outputs
are computationally close to uniform.

Since the target group has unique encodings, as noted in Sect. 3, an extraction
algorithm for all groups can be derived from one for the target group. The latter
can be implemented by applying a universal hash function to the group elements
in GT , for example.

5 Indistinguishability of Encodings

In this section we will state two theorems that are essential tools in establishing
the intractability of the κ-MDDH for our MLG scheme Γ constructed in Sect. 4.
These theorems, roughly speaking, state that valid encodings of elements within
a single equivalence class are computationally indistinguishable. We formalize
this property via the κ-Switch game shown in Fig. 2. This game lets an adversary
A choose an element [z]i ∈ Gi by producing two valid representations (x0,y0)
and (x1,y1) for it. The adversary is given an encoding of [z]i generated using
(xb,yb) for a random b, and has to guess the bit b. In this game, besides access
to pp, which contains the obfuscated circuits for the group operation and the
multilinear map, we also provide the matrix W in the clear to the adversary.
This strengthens the κ-Switch game and is needed for our later analysis.

To prove that the advantage of A in the κ-Switch game is negligible we
rely on the security of the obfuscator, the IND-CPA security of the encryption
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Fig. 2. Game formalizing the indistinguishability of encodings with an equivalence
class. This game is specific to our construction Γ . An adversary is legitimate if z =
〈xb, ωi〉 = 〈yb, ωi〉 for b ∈ {0, 1}. We note that A gets explicit access to matrix W
generated during setup.

scheme, and the security of the NIZK proof system. Depending on the type of
the obfuscator and proof system used, we show indistinguishability of encodings
in two incomparable ways: (1) using a probabilistic obfuscator that is secure
against X-IND adversaries and a dual-mode NIZK as defined in Sect. 2; and (2)
using a (standard) indistinguishability obfuscator for deterministic circuits and
a dual-mode NIZK that is required to satisfy a “witness-translation” property
that we formalize in Sect. 5.2.

5.1 Using Probabilistic Indistinguishability Obfuscation

The indistinguishability of encodings using the first set of assumptions above
is conceptually simpler to prove and we start with this case. Intuitively, the
IND-CPA security of the encryption scheme will ensure that the encryptions of
the two representations are indistinguishable. This argument, however, does not
immediately work as the parameters pp contain component CAdd that depends
on both decryption keys. We deal with this by finding an alternative implemen-
tation of this circuit without the knowledge of the secret keys, in the presence
of a slightly different public parameters (which are computationally indistin-
guishable to those described in Sect. 4). The next lemma, roughly speaking, says
that provided parameters pp include an instance y ∈ TD, then there exists an
alternative implementation ĈAdd that does not use the secret keys, and whose
obfuscation is indistinguishable to that of CAdd of Fig. 1 (top) for an adversary
that knows the secret keys. It relies on the security of the obfuscator and the
security of the NIZK proof system. A formal proof is in the full version, we give
an overview of the proof below.

Lemma 1. Let PIO be a secure obfuscator for X-IND samplers, and Σ be a
dual-mode NIZK proof system. Additionally, let parameters p̃p sampled as in
Sect. 4 but with ỹ ∈ TD, and let p̂p sampled as p̃p but with a hiding CRS ĉrs ′,
and an obfuscation of circuit ĈAdd of Fig. 3. Then, for any ppt adversary A,

Pr[A(p̃p, sk1, sk2) = 1 : (sk1, sk2)←$ Gen(1λ)]
− Pr[A(p̂p, sk1, sk2) = 1 : (sk1, sk2)←$ Gen(1λ)] ∈ Negl.
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Fig. 3. Alternative circuit for addition of group elements. Recall that here p̂p includes
gpk = (pp0, pk1, pk2, [W]0,TD, ỹ) where ỹ ∈ TD (also includes a hiding CRS ĉrs ′).
The circuit uses (the) witness wy to ỹ ∈ TD to produce π′′.

Proof (Sketch). The crucial observation is that a witness wy to ỹ ∈ TD is also a
witness to x ∈ R, and therefore ĈAdd can use wy instead of sk1, sk2 to produce
the output proof π′′. Below we provide brief descriptions of the transformation
from CAdd to ĈAdd, as well as some intuition for the justifications of each step.

Game0: We start with (a PIO obfuscation of) circuit CAdd of Fig. 1 and with p̃p
including ỹ ∈ TD and a binding crs ′.

Game1: The circuit has witness wy to ỹ ∈ TD hardcoded. If some input reaches
the “invalid” branches (steps 5a or 5b of CAdd; see Fig. 1 (top)), CAdd does
not extract a witness from the corresponding proof, but instead uses wy

to generate proof π′′. Since the witness wy is unique, and the CRS crs ′

guarantees perfect soundness, this leads to exactly the same behavior of
CAdd in Game 0. Hence, this hop is justified by PIO. Note that Game 1
requires no extraction trapdoor tdext anymore.

Game2: The CRS ĉrs ′ included in the public parameters is now hiding (such
that the generated proofs are perfectly witness-indistinguishable).

Game3: Here, output proofs π′′ for those inputs entering the “valid” branch (step
5c; see Fig. 1) use wy (and not sk1, sk2) as witness. In particular, this game
does not need to perform a explicit validity check (using sk1, sk2) anymore.
This hop is justified by PIO, where the perfect witness indistinguishability of
ĉrs ′ (when constructed as a hiding CRS) guarantees that the CAdd circuits
in Games 2 and 3 have identically distributed outputs.

With the above lemma we can invoke IND-CPA security, and via a sequence
of games obtain the result stated below. The proof can be found in the full
version; here we give a high-level overview of the proof (see also Fig. 4).

Theorem 1 (Switching encodings using PIO). Let Γ be the MLG scheme
constructed in Sect. 4, where PIO is secure for X-IND samplers, Π is an
IND-CPA-secure encryption scheme, and Σ is a dual-mode NIZK proof sys-
tem. Then, encodings of equivalent group elements are indistinguishable. More
precisely, for any ppt adversary A and all λ ∈ N,

Advκ-switch
Γ,A (λ) ∈ Negl.
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Proof (Sketch). The strategy of the proof is as follows. We start replacing para-
meters pp as described in Sect. 4 with parameters p̃p of Lemma 1, the latter
include an instance ỹ ∈ TD, this hop is justified by the hardness of deciding
membership in TD; then we apply Lemma 1 to replace parameters p̃p with p̂p,
including an obfuscation of circuit ĈAdd of Fig. 3; at this point we invoke the
IND-CPA security of the encryption scheme to change the representation vector
encrypted under pk2 of the challenge encoding (the challenge proof π∗ is gener-
ated using simulator trapdoor tdzk, and hence is identically distributed to a real
proof); next, we revert back to parameters pp, including a no-instance y /∈ TD
and an obfuscation of circuit CAdd of Fig. 1, which is justified again by the hard-
ness of TDand Lemma 1; note that now it is possible to use sk2 in CMap, instead
of sk1, invoking the security of PIO (functional equivalence follows from the
perfect soundness of the NIZK with a binding CRS); last, we repeat the same
steps to change the representation vector encrypted under pk1. This completes
the proof. (See Fig. 4 for a sketch of the hybrids.)

5.2 Doing Without Probabilistic Obfuscation

In contrast to the PIO-based approach from Sect. 5.1, we can also only use
(deterministic) indistinguishability obfuscation, but a stronger notion of NIZK
proof system. Concretely, our proof works for any dual-mode NIZK proof system
that enjoys perfect completeness, perfect soundness (when the CRS is generated
using BCRS), perfect WI (when the CRS is generated by HCRS), and meets a
structural requirement we explain below. This requirement is fulfilled by Groth–
Sahai proofs [GS08] based on the DDH or k-Linear assumption.

A structural property. To explain the required structural property, recall
first that perfect WI guarantees that proofs that are honestly generated (under
a hiding CRS) have a distribution that is independent of the used witness. For
our purposes, we require a slightly more specialized property: we require that
a change of the used witness (in Prove) can be compensated with a change of
random coins. In other words, we require that for every hiding CRS crs, and for
every statement x and pair of witnesses w,w′ for x, there is a value Δ such that

∀r : Prove(gpk , crs, x, w; r) = Prove(gpk , crs, x, w′; r + Δ), (
)

where “+” is a suitable homomorphic operation on random coins. Note that Δ
may depend on w and w′, but not on r. Furthermore, we require that Δ can be
efficiently computed from x, w, w′, and the zero-knowledge CRS trapdoor tdzk

output by HCRS.
Again, we stress that Groth–Sahai proofs have the desired property (when

restricting to statements with witnesses w ∈ {0, 1}∗ that are bit strings). We
give more details in the full version of this paper.

The deterministic circuit CAdd. We now comment on a necessary slight
tweak to the multilinear map construction itself. Namely, we have to view both
CAdd and CMap as deterministic circuits (so they can be obfuscated using an
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Fig. 4. Outline of the proof steps of Theorem 1. b is the random bit of the κ-Switch
game (see Fig. 2). Changing between pp and p̃p is justified by the hardness of deciding
membership of TD, and changing between p̃p and p̂p by Lemma 1. The hops relying
on PIO use the perfect soundness under binding crs ′ to argue function equivalence.

indistinguishability obfuscator IO). For CMap, this is trivial, since it already is
deterministic. Furthermore, we can view CAdd as a deterministic circuit that
takes as input (among other things) random coins r, and outputs (among other
things) a NIZK proof π = Prove(gpk , crs, x, w; r) for a fixed witness w hard-
wired into CAdd. For our purposes, we use a slight variation of CAdd that instead
generates π as Prove(gpk , crs, x, w;R), where R is a uniformly random value
that is hardwired (upon creation time) into CAdd. When we want to make the
choice of R explicit, we also write CR

Add.
For this slight variation of our construction, we claim:

Theorem 2 (Switching encodings using IO). Let IO be an indistinguisha-
bility obfuscator, Π an IND-CPA encryption scheme, and Σ the specific dual-
mode NIZK proof system of Groth and Sahai (see [GS08]). Let Γ be the MLG
scheme of Sect. 4 obtained using these primitives. Then, for any ppt adver-
sary A,

Advκ-switch
Γ,A (λ) ∈ Negl.

Here, we only give a brief intuition for the proof. A more detailed proof is given
in the full version.

In a nutshell, the proof of Theorem 2 proceeds like that of Theorem 1, except
of course in those steps that use the security of the probabilistic indistinguishabil-
ity obfuscator PIO. There are two types of such steps (resp. changes of CMap or
CAdd): in the first type, functional equivalence is fully preserved (even when view-
ing CAdd as a deterministic circuit. This type of change occurs in the hop from
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Game0 to Game1 in the proof of Lemma 1, and in the hops from Game5 to Game6

and from Game11 to Game 12 in the proof of Theorem 1. Since the corresponding
deterministic circuits are functionally equivalent (in case of CAdd = CR

Add: when
the same value of R is used), the security of IO can be directly utilized.

The second type of steps lets CAdd use a different witness (e.g., wy instead
of (sk1, sk2), or vice versa) to generate consistency proofs π′′. This type of proof
step occurs in the hop from Game2 to Game3 in the proof of Lemma 1. Note
that at this point, the generated CRS is hiding, and CAdd = CR

Add uses a single
hardcoded random string R as random coins to generate such proofs. By property
(
) above, we have that

CR
Add,1 ≡ CR+Δ

Add,2,

where CAdd,1 and CAdd,2 denote the CAdd variants before and after the step,
and Δ denotes the randomness shift value from (
).

Hence, this change can be justified with a reduction to the (deterministic)
indistinguishability property of IO. Specifically, a suitable circuit sampler would
sample circuits C1 := CR

Add,1 and C2 := CR+Δ
Add,2 for a uniform R, and a Δ

generated from the corresponding witnesses. (We note that during this reduction,
we can of course assume both relevant witnesses (sk1, sk2) and wy to be known.)

The remaining parts of the proof of Theorem 2 (including the proof of
Lemma 1) apply unchanged.

6 The Multilinear DDH Problem

In the full version we show that natural multilinear analogues of the decisional
Diffie–Hellman (DDH) problem are hard for our MLG scheme Γ from Sect. 4. We
will establish this for two specific Setup algorithms which give rise to symmetric
and asymmetric multilinear maps in groups of prime order N . (See Sect. 3 for
the formal definition.) In the symmetric case, we will base hardness on the q-
strong DDH problem [BBS04] and in the asymmetric case on the standard DDH
problem.

6.1 Intractable Problems

We start by formalizing the hard problems that we will be relying on and those
whose hardness we will be proving. We do this in a uniform way using the
language of group schemes of Sect. 3. Informally, the DDH problem requires the
indistinguishability of gxy from a random element given (gx, gy) for random x

and y, the q-SDDH problem requires this for gxq+1
given (gx, gx2

, . . . , gxq

) and
the κ-MDDH problem, whose hardness we will be establishing, generalizes the
standard bilinear DDH problem (and its variants) and requires this for g

a1···aκ+1
T

in the presence of (ga1 , . . . , gaκ+1).

The DDH problem. We say that a group scheme Γ0 is DDH intractable if

Advddh
Γ0,A(λ) := 2 · Pr

[
DDHA

Γ0
(λ)

]
− 1 ∈ Negl,

where game DDHA
Γ0

(λ) is shown in Fig. 5 (left).
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Fig. 5. Left: The DDH problem. Middle: The strong DDH problem. Right: The
multilinear DDH problem, where I specifies the available group elements. By slight
abuse of notation, repeated use of [ai]i denotes the same sample.

The q-SDDH problem. For q ∈ N we say that a group scheme Γ0 is q-SDDH
intractable if

Advq-sddh
Γ0,A (λ) := 2 · Pr

[
q-SDDHA

Γ0
(λ)

]
− 1 ∈ Negl,

where game q-SDDHA
Γ0

(λ) is shown in Fig. 5 (middle).

The (κ, I)-MDDH problem. For κ ∈ N we say that an MLG scheme Γ is
κ-MDDH intractable with respect to the index set I if

Adv(κ,I)-mddh
Γ,A (λ) := 2 · Pr

[
(κ, I)-MDDHA

Γ (λ)
]
− 1 ∈ Negl,

where game (κ, I)-MDDHA
Γ (λ) is shown in Fig. 5 (right). Here I is a set of

ordered pairs of integers (i, j) with 1 ≤ i ≤ κ + 1, 1 ≤ j ≤ κ. The adversary is
provided with challenge group elements [ai]j for (i, j) ∈ I, so that its challenge
elements may lie in any combination of the groups. The standard MDDH problem
corresponds to the case where

I = I∗ := {(1, 1), . . . , (κ, κ), (κ + 1, κ)}.

6.2 The Symmetric Setting

We describe a special variant of our general construction in Sect. 4 which gives
rise to a symmetric MLG scheme as defined in Sect. 3. Recall that in the con-
struction a matrix W was chosen uniformly at random in Z

κ×�
N . We set � := 2

and sample W = (ω1, . . . ,ωκ)t by setting ωi = (1, ω) for a random ω ∈ ZN .
The generators and identity elements for all groups are set to be a single value
generated for the first group. These modifications ensure that the scheme algo-
rithms are independent of the index for 1 ≤ i ≤ κ and that e is invariant under
all permutations of its inputs.
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The following lemma, which provides a mechanism to compute polynomial
values “in the exponent,” will be helpful in the security analysis of our construc-
tions.

Lemma 2 (Horner in the exponent). Let ω = (ω0, ω1, ω2) ∈ ZN , and
xi = (xi,0, xi,1, xi,2) ∈ Z

3
N for i = 1 . . . κ. Define zi := 〈xi,ω〉. Then given only

the implicit values [ωi
0ω

j
1ω

k
2 ]T , for all i, j, k such that i+j+k = κ and the explicit

values xi the element [z1 · · · zn]T can be efficiently computed.

Proof. Let

P (ω0, ω1, ω2) :=
κ∏

i=1

(xi,0 · ω0 + xi,1 · ω1 + xi,2 · ω2) =
∑

i+j+k=κ

pijk · ωi
0ω

j
1ω

k
2 ,

Clearly, if all pijk are known then [P (ω)]T can be computed using [ωi
0ω

j
1ω

k
2 ]T

with polynomially many operations. (There are O(κ2) summands above.) To
obtain these values we apply Horner’s rule. Define

Pi(ω0, ω1, ω2) :=

{
1 if i = 0 ;
(xi,0 · ω0 + xi,1 · ω1 + xi,2 · ω2) · Pi−1(ω0, ω1, ω2) otherwise.

The coefficients of Pκ are the required pijk values. Let ti denote the number of
terms in Pi. It takes at most 3ti multiplications and ti − 1 additions in ZN to
compute the coefficients of Pi from Pi−1 and xi. Since ti ∈ O(κ2), at most O(κ3)
many operations in total are performed. We note that the lemma generalizes to
any (constant) � with computational complexity O(κ�).

A formal statement and proof of the following result is in the full version of
the paper, here we give a high level overview. Below I = I∗ denotes the index
set with all the second components being 1.

Theorem 3 ((κ−1)-SDDH hard =⇒ symmetric (κ, I∗)-MDDH hard). Let
Γ ∗ denote scheme Γ of Sect. 4 constructed using base group Γ0 and an indistin-
guishability obfuscator IO with modifications as described above, and let κ ∈ N.
Then for any ppt adversary A there are ppt adversaries B1, B2 of essentially
the same complexity as A such that

Adv(κ,I∗)-mddh
Γ ∗,A (λ) ≤ 2 · Adv(κ−1)-sddh

Γ0,B1
(λ) + (κ + 1) · Advκ-switch

Γ ∗,B2
(λ) + μ(λ),

for all λ ∈ N and a suitable negligible function μ.

Proof (Sketch). In our reduction, the value ω used to generate W will play the
role of the implicit value in the SDDH problem instance. We therefore change the
implementation of CMap to one that does not know ω in the clear and only uses
the implicit values [ωi]0 (recall that in our construction GT is just G0, so these
elements come from the SDDH instance). Such a circuit C∗

Map can be efficiently
implemented using Horner’s rule above. In more detail, C∗

Map has [ωi]T hard-
coded in, recovers xi from its inputs using sk1, and then applies Lemma 2 with
(ω0, ω1, ω2) := (1, ω, 0) to evaluate the multilinear map.

The proof proceeds along a sequence of κ + 6 games as follows.
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Game0: This is the κ-MDDH problem (Fig. 5, right). We use xi and yi to denote
the representation vectors of ai generated within the sampler SamI(i)(ai),
where (i, I(i)) ∈ I.

Game1–Gameκ: In these games we gradually switch the representations of [ai]1
for i ∈ [κ] so that they are of the form (ai −ω, 1). Each hop can be bounded
via the Switch game. (We have not (yet) changed the representation of
[aκ+1]1.)

Gameκ+1: This game introduces a conceptual change: the ai for i ∈ [κ] are
generated as ai + ω. Note that the distributions of these values are still
uniform and that the exponent of the MDDH challenge when b = 1 is

aκ+1 ·
κ∏

i=1

(ai + ω).

This game prepares us for embedding a (κ−1)-SDDH challenge and then to
stepwise randomize the exponent above.

Gameκ+2: This game switches CMap to C∗
Map as defined above. We use indis-

tinguishability obfuscation and the fact that these circuits are functionally
equivalent to bound this hop. We are now in a setting where ω is only implic-
itly known.

Gameκ+3: This game replaces [ωκ]0 with a random value [τ ]0 in C∗
Map and the

computation of the challenge exponent. This hop can be bounded via the
(κ−1)-SDDH game. Note that at this point the exponent is not information-
theoretically randomized as τ is used within C∗

Map.
Gameκ+4: This game sets the representation of [aκ+1]1 to (aκ+1 − ω, 1). Once

again, this hop can be bounded by the Switch game.
Gameκ+5: This game introduces a conceptual change analogous to that in

Gameκ+1 for aκ+1. Note that a linear factor (aκ+1 + ω) is introduced in
this game. This will help to fully randomize the exponent next.

Gameκ+6: Analogously to Gameκ+3, this game replaces [ωκ]0 with a random
value [σ]0. We bound this hop using the (κ − 1)-SDDH game.

In Gameκ+6, irrespective of the value of b ∈ {0, 1}, the challenge is uniformly
and independently distributed as σ remains outside the view of the adversary.
Hence the advantage of any (unbounded) adversary in this game is 0. This
concludes the sketch proof.

6.3 The Asymmetric Setting

We describe a second variant of the construction in Sect. 4 that results in
an asymmetric MLG scheme. We set � := 2 and choose the matrix W =
(ω1, . . . ,ωκ)t by setting ωi := (1, ωi) for random ωi ∈ ZN .

The following theorem shows that for index set I = {(i, I(i)) : 1 ≤ i ≤ κ+1}
given by an arbitrary function I : [κ + 1] −→ [κ] of range at least 3, this
construction is (κ, I)-MDDH intractable under the standard DDH assumption
in the base group, the security of the obfuscator, and the κ-Switch game in
Sect. 5. We present the proof intuition here and leave the details to the full
version.
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Theorem 4 (DDH hard =⇒ asymmetric (κ, I∗)-MDDH hard). Let Γ ∗

denote scheme Γ of Sect. 4 constructed using base group Γ0 and an indistin-
guishability obfuscator IO with modifications as described above. Let κ ≥ 3 be
a polynomial and I∗ as above. Then for any ppt adversary A there are ppt
adversaries B1 and B2 such that

Adv(κ,I∗)-mddh
Γ ∗,A (λ) ≤ 2 · Advddh

Γ0,B1
(λ) + 3 · Advκ-switch

Γ ∗,B2
(λ) + μ(λ),

for a all λ ∈ N and suitable negligible function μ.

Proof (Sketch). The general proof strategy is similar to that of the symmetric
case, and proceeds along a sequence of 8 games as follows.

Game0: This is the (κ, I)-MDDH problem. Without loss of generality we assume
that I(i) = i for i ∈ [3].

Game1–Game3: In these games we gradually switch the representation vectors
of [ai]i for i = 1, 2, 3 to those of the form (ai −ωi, 1). Each of these hops can
be bounded via the Switch game.

Game4: This game introduces a conceptual change and generates ai as ai + ωi.
The exponent of the MDDH challenge when b = 1 is

(a1 + ω1)(a2 + ω2)(a3 + ω3) ·
κ+1∏

j≥4

aj .

Game5: In this game we change the implementation of CMap to one which uses
all but two of the ωi explicitly, the remaining two implicitly, and additionally
[ω1ω2]0, i.e., ω1ω2 given implicitly in the exponent. The new circuit C∗

Map

will be implemented using Horner’s rule and is functionally equivalent to
the original circuit used in the scheme. We invoke the IO security of the
obfuscator to conclude the hop. This game prepares us to embed a DDH
challenge next.

Game6: In this game we replace all the occurrences of [ω1ω2]0 with a random [τ ]0
and the corresponding implicit values. We bound the distinguishing advan-
tage in this hop down to the DDH game.

Game7: Similarly to Game5, we change the implementation of C∗
Map using [τω3]0

and argue via indistinguishability of obfuscations for functionally equivalent
circuits.

Game8: Finally, using the hardness of DDH, we replace all the occurrences of
[τω3]0 with a random [σ]0.

In Game8, irrespective of the value of b ∈ {0, 1}, the challenge is uniformly and
independently distributed as σ remains outside the view of the adversary. Hence
the advantage of any (possibly unbounded) adversary in this game is 0.

7 The Rank Problem

The RANK problem is a generalization of DDH-like problems to matrices and has
proven to be very useful in cryptographic constructions [BHHO08,NS09,GHV12,
BLMR13,EHK+13]. Here we consider the problem in groups with non-unique
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Fig. 6. The RANK problem parameterized by integers κ, m, n, r0 and r1.

encodings equipped with a multilinear map. Our main result is to show that,
subject to certain restrictions, the intractability of the rank problem for our
construction of an MLG scheme Γ from Sect. 4 follows from that of the q-SDDH
problem for Γ0.

7.1 Formalization of the Problem

The (κ,m, n, r0, r1)-RANK problem. For κ,m, n, r0, r0 ∈ N we say that an
MLG scheme Γ is (κ,m, n, r0, r1)-RANK intractable if

Adv(κ,m,n,r0,r1)-rank
Γ,A (λ) := 2 · Pr

[
(κ,m, n, r0, r1)-RANKA

Γ (λ)
]
− 1 ∈ Negl,

where game (κ,m, n, r0, r1)-RANKA
Γ (λ) is shown in Fig. 6.

In the presence of a κ-linear map the (κ,m, n, r0, r1)-RANKA
Γ (λ) problem is

easy for any r0 < r1 < κ, since the determinants of all the rb-minors can be
expressed as forms of degree at most κ, and the multilinear map can be used to
distinguish their images in the target group. However, this does not invalidate
the plausibility of the rank problem for κ ≤ r0 < r1; indeed there are known
reductions to the DDH, the decision linear problems [BHHO08,NS09].

7.2 The RANK Problem with Our MLG Scheme

Let pp denote the public parameters of such an MLG scheme, obtained by run-
ning Setup with input (1λ, 1κ). For simplicity, we focus on the case where N
is prime. Let Rkr(Zm×n

N ) denote the set of m × n matrices over ZN of rank r,
where necessarily r ≤ min(m,n). We use a variant of our construction in Sect. 4,
setting � := 3 and sampling W = (ω1, . . . ,ωκ)t ∈ Z

κ×3
N where ωi = (1, ω, ω2) for

ω ←$ ZN . Note that this results in a symmetric pairing and henceforth we omit
subscripts from source group elements. Let [M] denote a matrix whose (i, j)th
entry contains an encoding of the form [mi,j ] = ([mi,j ]0, ci,j,1, ci,j,2, πi,j), with
mi,j ∈ ZN .

We show that for our construction in Sect. 4, with the modification introduced
above, the rank problem is indeed hard provided κ ≤ r0 < r1. A standard hybrid
argument shows that it is sufficient to establish this for r1 := r0 + 1, with a
polynomial loss in the security. Our main result is stated below. The proof is in
the full version of the paper, here we give only give some intuition.
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Theorem 5 (SDDH =⇒ RANK). Let Γ denote scheme Γ of Sect. 3 with
� := 3 and with respect to the base group Γ0 and an indistinguishability obfuscator
IO. Let κ,m, n, r be integers with r ≥ κ. Then, for any ppt adversary A there
are ppt adversaries B1 and B2 of essentially the same complexity as A such that
for all λ ∈ N and a suitable negligible function μ

Adv(κ,m,n,r,r+1)-RANK
Γ,A (λ) ≤

2κ−1∑

q=1

Advq-sddh
Γ0,B1

(λ) + (mn) ·Advκ-switch
Γ,B2

(λ) + μ(λ).

7.3 Proof Intuition

The main difficulty comes in generating consistent encodings of a rank r challenge
matrix [M] throughout its gradual transformation into a rank r + 1 challenge
matrix. Contrast this with the MDDH reduction of Sect. 6, where the challenge
that is transformed lives in the target group —a group with unique encodings.
As we will see below, having encodings that are represented also with respect to
ω2 will help to overcome this problem and embed a 1-SDDH tuple.

Embedding the SDDH challenge. To reduce the rank problem to 1-SDDH,
consider the following matrix

[W]0 =
[
[1]0 [ω]0
[ω]0 [τ ]0

]

,

which is formed from an 1-SDDH challenge. We will exploit the fact that if τ = ω2

then W has rank 2, and if τ is uniform then it has rank 2 with overwhelming
probability in λ.

Lifting. To obtain an m × n matrix M of rank r ≥ κ or r + 1 we can use the
standard trick of embedding the identity matrix Ir−1 in the diagonal:

M =

⎡

⎣
S
Ir−1

0

⎤

⎦ ,

where 0 denotes padding with zeroes from ZN to bring the matrix up to the
required size. Moreover, via the random self-reducibility of the rank problem the
structure in M can be removed. An important point worth mentioning is that
after the randomization we are still able to generate an encoded matrix [M] even
when ω and τ are only known in the exponent.

Breaking correlation with CMap. We follow a similar strategy to break the
dependent between CMap and ω. Using the powers [h]0 = ([1]0, [ω]0, . . . , [ω2κ]0)
we build circuit functionally equivalent to CMap, indeed a circuit that outputs

[
κ∏

i

(xi,0 + xi,1ω + xi,2ω
2)

]

T
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via Lemma 2 (recall that GT = G0), and invoke the security of the obfuscator.
We then use the q-SDDH assumptions for 2 ≤ q ≤ 2κ − 1 in G0 to gradually
transform [h]0 into [q]0 = ([1]0, [ω]0, [ω2]0, [τ3]0, . . . , [τ2κ]0) and embed a 1-SDDH
tuple in the challenge matrix [M] as explained above.
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