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Preface

The 13th Theory of Cryptography Conference (TCC 2016-A) was held during January
10–13, 2016, at the Suzanne Dellal Center in Tel Aviv, Israel. It was sponsored by the
International Association for Cryptographic Research (IACR). The general chairs
of the conference were Ran Canetti and Iftach Haitner. We would like to thank them for
their hard work in organizing the conference.

The conference received 112 submissions, of which the Program Committee
(PC) selected 45 for presentation (with three pairs of papers sharing a single presen-
tation slot per pair). Each submission was reviewed by at least three PC members, often
more. The 24 PC members, all top researchers in our field, were helped by 112 external
reviewers, who were consulted when appropriate. These proceedings consist of the
revised version of the 45 accepted papers. The revisions were not reviewed, and the
authors bear full responsibility for the content of their papers.

As in previous years, we used Shai Halevi’s excellent web-review software, and are
extremely grateful to him for writing it, and for providing fast and reliable technical
support whenever we had any questions. Based on the experience from last year, we
again made use of the interaction feature supported by the review software, where PC
members may directly and anonymously interact with authors. This was used to ask
specific technical questions that arise, such as suspected bugs. We felt this was efficient
and successful, and are thankful to last year’s chairs, Yevgeniy Dodis and Jesper Buus
Nielsen, for suggesting this feature, and to Shai Halevi for implementing it.

This was the second year where TCC presented the Test of Time Award to an
outstanding paper that was published at TCC at least eight years ago, making a sig-
nificant contribution to the theory of cryptography, preferably with influence also in
other areas of cryptography, theory, and beyond. This year the Test of Time Award
Committee selected the following paper, published ten years ago at TCC 2006:

“Calibrating Noise to Sensitivity in Private Data Analysis,” by Cynthia Dwork, Frank McSherry,
Kobbi Nissim, and Adam Smith.

This paper was selected for introducing the definition of differential privacy, pro-
viding a solid mathematical foundation for a vast body of subsequent work on private
data analysis. The authors were also invited to deliver a talk at TCC 2016-A. The
conference also featured two other invited events. First, an invited talk by Yael Kalai
and Shafi Goldwasser (delivered by Yael) followed by panel on “cryptographic
assumptions.” Second, an invited talk by Yevgeniy Dodis. Finally, in addition to
regular papers and invited events, the conference also featured a rump session.

We are greatly indebted to many people who were involved in making TCC 2016-A
a success. First of all, a big thanks to the most important contributors: all the authors
who submitted papers to the conference. Next, we would like to thank the PC members
for their hard work, dedication, and diligence in reviewing the papers, verifying the
correctness, and in-depth discussion. We are also thankful to the external reviewers for
their volunteered hard work and investment in reviewing papers and answering



questions, often under time pressure. For running the conference itself, we are very
grateful to the general chairs, Ran Canetti and Iftach Haitner, as well as Galit Herzberg
and the rest of the local Organizing Committee. Finally, we are thankful to the TCC
Steering Committee as well as the entire thriving and vibrant TCC community.

January 2016 Eyal Kushilevitz
Tal Malkin
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Impossibility of VBB Obfuscation with Ideal
Constant-Degree Graded Encodings

Rafael Pass1(B) and Abhi Shelat2

1 Cornell University, Ithaca, USA
rafael@cs.cornell.edu

2 University of Virginia, Charlottesville, USA
abhi@virginia.edu

Abstract. A celebrated result by Barak et al. (Crypto’01) shows the
impossibility of general-purpose virtual black-box (VBB) obfuscation in
the plain model. A recent work by Canetti, Kalai, and Paneth (TCC’15)
extends this impossibility result to the random oracle model (assuming
trapdoor permutations).

In contrast, Brakerski-Rothblum (TCC’14) and Barak et al. (Euro-
Crypt’14) show that in idealized graded encoding models, general-purpose
VBB obfuscation indeed is possible; these constructions require graded
encoding schemes that enable evaluating high-degree (polynomial in the
size of the circuit to be obfuscated) polynomials on encodings.

We show a complementary impossibility of general-purpose VBB
obfuscation in idealized graded encoding models that enable only evalu-
ation of constant-degree polynomials (assuming trapdoor permutations).

1 Introduction

The goal of program obfuscation is to “scramble” a computer program in order
to hide its implementation details (making it hard to “reverse-engineer”) while
preserving its functionality (i.e., input/output behavior). The most desirable
notion of security—virtual black-box security (VBB) [BGI+01]—requires that
any bit of information an attacker can learn from the obfuscated code can be
simulated using only black-box access to the functionality.1 The celebrated result
of Barak et al. [BGI+01], however, demonstrates a strong impossibility result

R. Pass—Work supported in part by a Microsoft Faculty Fellowship, Google Fac-
ulty Award, NSF Award CNS-1217821, NSF Award CCF-1214844, AFOSR Award
FA9550-15-1-0262 and DARPA and AFRL under contract FA8750-11-2-0211.
A. Shelat—Work performed while visiting Cornell Tech, and supported by NSF
CAREER Award 0845811, NSF TC Award 1111781, NSF TC Award 0939718,
DARPA and AFRL under contract FA8750-11-C-0080, Microsoft New Faculty Fel-
lowship, SAIC Scholars Research Award, and Google Faculty Award.

1 A similar simulation-based, but even stronger, notion of security was previously
defined by Hada [Had00]. Even earlier, Canetti [Can97] considered a similar notion
of security (without explicitly referring to obfuscation) for the special case of what
is now referred to as point-function obfuscation.

c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part I, LNCS 9562, pp. 3–17, 2016.
DOI: 10.1007/978-3-662-49096-9 1



4 R. Pass and A. Shelat

regarding VBB obfuscation: they show the existence of families of functions
{fs} for which black-box access to fs (for a randomly chosen s) does not leak
any advantage in guessing even a single bit of s, but the code of any program
that computes fs allows recovery of the entire secret s. The idea behind their
impossibility result is to consider a function fs that satisfies two properties (1)
the function is not learnable (thus given black-box access to it, it is hard to find
a concise representation of it), but (2) on input a program Π that computes the
function fs, fs(Π) reveals some secret. The code of the obfuscated program is
thus an input on which the function releases the secret, yet the secret cannot be
recovered using just black-box access to the function.

This impossibility result, however, only applies in the plain model in which
the obfuscated code is a standard circuit that does not make oracle calls to
external functionalities (or else, we cannot feed this code as an input to the
function). In contrast, Canetti and Vaikuntanathan [CV13] show an obfuscator
for NC1 circuits in an idealized composite-order group with special pseudo-free
properties. More recently, Brakerski and Rothblum [BR14] and Barak, Garg,
Kalai, Paneth and Sahai [BGK+14], following the breakthrough obfuscation
construction of Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13b]2,
demonstrate VBB obfuscation for all polynomial-size circuits in the idealized
graded encoding [GGH13a] (a.k.a. “approximate” multilinear map [BS03,Rot13])
model.

In the idealized graded encoding model [BR14,BGK+14], players have black-
box access to a field Fp (where p is a prime), but they can only perform certain
restricted operations on field elements and determine whether an expression eval-
uates to zero. For instance, the simplest form of graded encodings of [GGH13a]
enables computing all polynomials of some (a-priori) bounded polynomial degree,
and determine whether the polynomial evaluates to zero; this is referred to as a
“zero-test query”3. Note that a generic group [Sho97] model for Z∗

p where p is a
prime can be viewed as a special-case of an idealized graded encoding model in
which operations are restricted to be linear (i.e., degree 1 polynomials). Degree
two graded encodings capture idealized groups with bilinear maps.

A natural question is whether weaker idealized models such as the generic
group model or idealized groups with bilinear maps suffice for obtaining VBB
obfuscation for polynomial-size circuits. This question was first addressed by
Lynn, Prabhakaran and Sahai [LPS04] who showed positive obfuscation results
for specific functions in the Random Oracle model [BR93] where both the obfus-
cator and the evaluator have oracle access to a truly random function; they left
open the question of whether general-purpose obfuscation in the Random Ora-
cle model is possible. This open question was recently answered in an elegant
work by Canetti, Kalai and Paneth [CKP15] who show that the impossibility
result of [BGI+01] also extends to the Random Oracle Model. [CKP15] in turn

2 The construction of [GGH+13b] was proved to satisfy the weaker notion of indistin-
guishability obfuscation in an idealized “matrix-multiplication” model.

3 The constructions in [BR14,BGK+14] require certain additional “set-based” restric-
tions on polynomials; we return to this in Sect. 2.2.
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left open the questions of whether general-purpose VBB obfuscation in more
sophisticated idealized models (such as the generic group model) is possible.

Our Results. In this work, we show impossibility of VBB obfuscation in idealized
graded encoding models that restrict zero-tests to degree-d polynomials, where
d is a constant.

Theorem 1 (Informally stated). Assuming the existence of trapdoor permu-
tations, there exists a family of functions F for which there do not exist VBB
obfuscators for F in idealized degree-d graded encoding models, where d is a
constant.

Our theorem stands in contrast with the results of [BR14] and [BGK+14] which
indeed show feasibility of general-purpose VBB obfuscation in an idealized graded
encoding model that allows for high-degree (polynomial in the size of the circuit
being obfuscated) zero-test queries.

The obfuscator construction of [BGK+14] also satisfies subexponential VBB
security (that is security holds also with respect to subexponential-size attack-
ers). Our main theorem extends to rule out general-purpose VBB obfuscation
with subexponential security in idealized graded encoding models that allow for
nα-degree zero-test queries (where α < 1 and n is the description length of the
function being obfuscated).

Follow-up Work. We note that our proof directly generalizes to any graded
encoding scheme that operates on elements in a ring (as opposed to Fp) as
long as (a) there exists an efficient method for determining the row-rank
of a matrix of this ring, and (b) the row-rank of a matrix is polynomially
bounded by the column-rank. In follow-up work, Mahmoody, Mohammed, and
Nematihaji [MMN15] have extended our techniques to apply to more general
rings.

2 Definitions and Preliminaries

2.1 Virtual Black-Box Obfuscation

We recall the definition of approximate VBB obfuscation from Barak et al.
[BGI+01], and Canetti, Kalai, and Paneth [CKP15], and generalize it for any
family of oracles M that are indexed by a security parameter.

Definition 1 (ε-Approximate VBB Obfuscation in an Oracle Model
[CKP15,BGK+14]). For a function ε : N → {0, 1}, an obfuscator O is a
secure ε-approximate virtual black-box (VBB) obfuscation for the family F in the
M -oracle model if it satisfies the following properties:

– Approximate Functionality: for all n ∈ N, k ∈ {0, 1}n:

Pr
[OM|k|(k)(x) �= Fk(x)

] ≤ 1 − ε(n)

where the probability is over the choice of x and the coins of M and O.
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– Virtual Black-Box (VBB): for every poly-size adversary A, there exists a poly-
size simulator S and a negligible function μ such that for every k ∈ {0, 1}∗:

∣
∣
∣Pr

[
AM|k|(OM|k|(k)) = 1

] − Pr
[
SFk(1|k|) = 1

]∣∣
∣ ≤ μ(|k|)

where the probability it taken over the coins of M , O, adversary A and the
simulator S.

We simply say that O is a secure VBB obfuscator if ε = 1. We further say that
O is a secure (ε-approximate) obfuscation in the plain model for the family F if
it is a secure (ε-approximate) obfuscation for the family F in the ⊥-oracle model
where the ⊥-oracle returns ⊥ on every query.

We finally say that O is subexponentially-secure if the VBB condition holds
with respect to any subexponential-size4 A and a subexponential-size S.

Our definition of subexponentially-secure VBB obfuscation is incomparable
to the definition of VBB obfusaction: it is stronger in that we require simulation
of subexponential-size attackers, but it is weaker in that we allow the simulator
to be subexponential size (even if the attacker is polynomial in size).

We use the following theorem by Bitansky and Paneth [BP13] and its exten-
sion which follows by relying on stronger trapdoor permutations. We choose
specific constants for simplicity of notation; the theorem holds for any constants.

Theorem 2 ([BP13]). Assuming the existence of trapdoor permutations, there
exists a family of polynomial-time computable functions F such that a polynomial-
size 0.8-approximate VBB obfuscator for F does not exist.

Theorem 3 (scaled version of [BP13]). Assuming the existence of sub-
exponentially secure5 trapdoor permutations, there exists a family of polynomial-
time computable functions F such that a subexponential-size 0.8-approximate
subexponentially-secure VBB obfuscator for F does not exist.

2.2 Idealized Graded Encodings

We now define the ideal level-d graded encoding oracle. For simplicity of nota-
tion, we consider an oracle that has the size of the field hard-coded. Our model,
inspired by the formalism from [PST14,BR14,BGK+14,Sho97], considers a sim-
ple idealized graded encoding oracle which enables players to (a) encode an ele-
ment v under a “label” l, and receive a random “handle” h in return, and (b) to
make “legal” zero-test queries on these encodings: a zero-test query is a formal
polynomial p on variables h, which evaluates to true if and only if p(v) = 0,
where for every i, vi is the value encoded under handle hi. The legality of a query
is determined by a legality-predicate g: g(p, l) outputs 1 if the query is deemed

4 That is, whose circuit size is bounded by T (n) = poly(2nα

) for any 0 < α < 1.
5 That is, security holds against all circuits whose size is bounded by T (n) = poly(2nα

)
for any 0 < α < 1.
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legal, where l are the labels corresponding to the handles h. In this work we
consider a natural class of “well-formed” legality predicates, which, as we shall
discuss shortly, generalize all previously used notions of legality.

Definition 2 (Well-formed legality predicate). Given a set of multi-sets
(legal label sets) S define the predicate gS(p, l) = 1 if and only if for every
monomial xj1 · · · xjd

of p, it holds that the multi-set {lj1 , . . . , ljd
} ∈ S. We say

that a legality predicate g is well-formed if there exists a set S such that g = gS.

For instance, to capture:

– idealized groups [Sho97] (where we do not allow any multiplications), consider
the predicate gS corresponding to the set S = {{1}} (and requiring that all
encodings are made under the label 1).

– “simple” d-level graded encodings of [GGH13a], consider the predicate gS

corresponding to the set S where {lj1 , . . . , ljm
} ∈ S if and only if

∑
i∈[m] lji

= d

(and requiring that all encodings are made under a label l ∈ [d] that represents
the element’s “level”).

– “set-based” d-level graded encodings [GGH13a,BR14,BGK+14], consider the
predicate gS corresponding to the set S where {lj1 , . . . , ljm

} ∈ S if and only
if the disjoint union of labels lji

where i ∈ [m] is the set {1, 2, . . . , d}, i.e.
�i∈[d]lji

= [d] (and requiring that all encodings are made under a label l that
is a subset of [d]).

Additionally, to capture secret-key encodings in which only the obfuscator
can create new encodings, we follow [BGK+14] and require that encodings can
only occur once upon initialization; after initialization no more encodings can
be performed. (In contrast to [BGK+14], however, these encodings can be per-
formed adaptively.)

Definition 3 (Ideal graded encoding oracle). The oracle Mg
q = (enc, zero)

is a stateful oracle, parameterized by integer q and a legality predicate g, that
responds to queries in the following manner:

1. Upon initialization and only then, the activator may adaptively make any
number of queries of the form enc(v, l); for each such query, Mg

q picks a
uniformly random “handle” h ∈ {0, 1}3|q|, stores the tuple (v, l, h) in a list
LO and returns h.6 This initialization phase ends if any algorithm other than
the activating algorithm makes any query to Mq, or if the activator makes a
non enc query. Any subsequent enc(·, ·) queries will be answered with ⊥.

2. On input query zero(p) where p is a formal polynomial over variables
h1, . . . , hm, each of which is represented as a string of length 3|q| (corre-
sponding to some handle), Mg

q does the following:

6 In particular, even if the same value v is encoded twice (under the same label),
independently random handles are returned for the two encodings. This model thus
considers randomized graded encodings. Our results also apply to deterministic ran-
domized encodings where the oracle keeps state also during the encoding phase and
always returns the same handle for an encoding of the value v under the label l.
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(a) For each i ∈ [m], retrieve a tuple (vi, li, hi) from the state LO; if no such
tuple exists, it returns false.

(b) (Illegal query) If all tuples are retrieved, return false if g(p, l) �= 1
(c) (Zero test) Finally, return true iff p(v1, . . . , vn) = 0 mod q, and false

otherwise.
3. (All other queries are answered with ⊥).

We say that M is an ideal graded encoding oracle if M = {Mg1
q1 ,Mg2

q2 , . . .},
and for every n ∈ N, qn is a prime, |qn| > n and gn is a well-formed legality
predicate. Finally, we say that M is a degree-d(·) ideal graded encoding oracle if
for all n ∈ N, gn(p, l) returns false when deg(p) > d(n).

A Remark on the Model. Following [PST14], for simplicity of notation, we do
not directly allow players to create new encodings by adding and multiplying
old ones as in the definitions of [BR14,BGK+14]. This restriction is without
loss of generality since (a) an obfuscator “knows” all values it has previously
encoded (since it needs to explicitly provide them to the encoding oracle) so
instead of operating on old encodings, it can simply operate on the actual values
and simply create a new encoding of the resulting value7, and (b) when evaluat-
ing the obfuscated code, operations on encodings can be simulated by “bogus”
independently random handles8, and emulating zero-test queries by appropri-
ately modifying the zero-test polynomial p to take into account the previously
performed operations.

Feasibility of VBB Obfuscation in Idealized Graded Encoding Models. The results
of [BR14,BGK+14] demonstrate feasibility of VBB obfuscation in idealized “set-
based” graded encoding models that allow zero-test queries with super-constant
degree.

Theorem 4 ([BR14,BGK+14]). Under the LWE assumption9, for every poly-
nomial p(·), there exists a (polynomial-time computable) sequence of well-formed
legality predicates g1, g2, . . ., such that for any ideal graded encoding oracle
M = {Mg1

q1 ,Mg2
q2 , . . .}, there exists a polynomial-size obfuscator O10 such that

O is a VBB obfuscator for the class of p(·)-sized circuits in the M model.
7 To make this argument it is important that we allow adaptive encodings during the

initialization phase, as opposed to a single non-adaptive encoding query as in the
definition of [BGK+14].

8 For this emulation with “bogus” random handles to work, it is important that we
consider a model of randomized graded encodings (where multiple encodings of the
same value are given fresh random handles). In case the encoding is deterministic
(and thus encodings of the same value need to be given the same handle) the simu-
lation fails: if the result of the operation yields a value that was previously encoded
we should output that handle instead. Nevertheless, as we point out at the end of
Sect. 3, our results extend to deal also with deterministic encodings where players
can perform operations on the encodings.

9 [BGK+14] present unconditionally secure obfuscators for NC1; the LWE assumption
is needed to bootstrap up to polynomial-size circuits.

10 The only non-uniform advice needed is the prime qn.
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Their construction also satisfies subexponential VBB security assuming an
appropriate subexponential strengthening of LWE.

3 Impossibility of VBB Obfuscation

Theorem 5. Assuming the existence of trapdoor permutations, there exists a
family of functions F such that for every constant d and every degree-d ideal
graded encoding oracle M , a polynomial-size 0.9-approximate VBB obfuscator
for F does not exist in the M oracle model.

We briefly review the approach of [CKP15] as we will follow the same high-
level structure. Their first step is to show that any VBB obfuscator in the Ran-
dom Oracle model can be transformed into an approximate VBB obfuscator in
the plain. They next rely on Theorem 2 to conclude their impossibility result.
The first step is achieved by running the original VBB obfuscator in the Ran-
dom Oracle model by simulating all random oracle queries (with truly random
answers). Additionally, to ensure consistency between answers to queries in the
obfuscation phase and answers in the execution of the obfuscated code, the obfus-
cator performs a learning phase in which most heavy oracle queries (i.e. oracle
queries that are made with high probability when running the obfuscated code on
random inputs) are discovered; the answers to the heavy queries are hard-coded
into the obfuscated code. This ensures that when the obfuscated code is run on
a random input, except with inverse polynomial probability (proportional to the
number of random inputs used in the learning phase), the obfuscated code will
not make any random oracles queries that were not made during the learning
phase (i.e. that are not hard-coded), and as a consequence, the obfuscated code
correctly computes the function with high probability. Furthermore, the only
difference between the new (plain-model) obfuscator and the original (random-
oracle-model) obfuscator is that the former leaks the set of heavy queries; since
this leak is something that can be learned by running the obfuscated code of the
random-oracle-model obfuscator, VBB security ensures that the same heavy set
can be simulated using only black-box access to the function.

As mentioned, we follow the same high-level approach. Our main result
(Lemma 6 below) shows how to transform any VBB obfuscator in the constant-
degree graded encoding model into an approximate VBB obfuscator in the plain
model. The proof of Theorem 5 is then concluded by applying Theorem 2. Just
as [CKP15], we run the original (graded-encoding-model) obfuscator and sim-
ulate its oracle queries. But it no longer suffices to simply learn all the heavy
queries: the obfuscated code may only ask “light” queries (i.e., each query has
negligible probability) yet the answer to those queries are correlated (in fact, even
determined by) the queries made during the obfuscation phase. For instance,
assume that the obfuscator encodes two elements v1 and v2, and later the eval-
uator makes a zero-test query of the form p(v1, v2) = av1 + bv2 where a and b
are chosen from some distribution with high min-entropy.

Rather, we show that by running the obfuscated code on sufficiently many
random inputs and honestly emulating answers to oracle queries, we can recover
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a set of linearly independent polynomials in the values v1, . . . , v� encoded dur-
ing the obfuscation phase such that, except with inverse polynomial probability,
when the obfuscated code is run on a random input, every zero-test query can be
correctly emulated by simply determining whether the zero-test polynomial is a
linear combination of polynomials in the stored set. Since the oracle is restricted
to answering constant-degree d polynomials, there can be at most (�+1)d mono-
mials in the values v1, . . . , v�, and thus at most (� + 1)d linearly independent
polynomials in those values. If we record all zero-test polynomials that evaluate
to zero, then after sufficiently many samples, we have either recovered the full
basis (which allows one to correctly answer all remaining zero-test queries), or it
is unlikely that a new sample will add another linearly independent polynomial,
which in turn means that when the obfuscated code is run on a random input,
our emulation only fails with small probability. We finally observe that, just as in
[CKP15], leaking the set of linearly independent polynomials does not challenge
VBB security because this set (just as the set of heavy random oracle queries
in the case of [CKP15]) can be learned from just observing the obfuscated code
and can thus be simulated.

We now turn to state and formally prove our main lemma, which combined
with Theorem 2 directly concludes our main result (i.e., Theorem 5).

Lemma 6 (Main). For every constant d and every degree-d ideal graded encod-
ing oracle M , if a family of functions F indexed by k has a polynomial-size
ε(|k|)-approximate VBB obfuscator in the M oracle model, then there exists a
polynomial-size (ε(|k|)+1/|k|)-approximate11 VBB obfuscator for F in the plain
model.

Proof. Let M = {Mg1
q1 ,Mg2

q2 , . . .} be a degree-d ideal graded encoding oracle for
some constant d. Let O be an ε-approximate obfuscator for family F in the
M oracle model that requests encodings of at most �(|k|) elements where k is
the index for family F ; we assume without loss of generality that �(n) ≥ 1.
We construct a (non-uniform12) polynomial-size (ε(n)+ 1/n)-approximate VBB
obfuscator O′ for F in the plain model below.

New obfuscator O′(k):

1. On input k, run O(k) and simulate the queries to Mgk
q|k| (i.e., answer the initial

enc queries by creating a list LO of encoded elements as in the definition
of Mgk

q|k| , and answer zero(p) queries by evaluating the polynomial p on the
“decoded” elements) to compute the obfuscated program Ck.

11 1/|k| can be replaced by any inverse polynomial by appropriately adjusting the
parameters in our proof.

12 The non-uniformity in our construction is to encode the sequence of primes q1, q2, . . .
that is implicit in the oracle Mg. If we model the oracle M with a uniform algorithm
that picks the field for each security parameter, then our construction below can also
be uniform.
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2. If O(k) did not make any initial encoding queries, simply modify the code of
Ck to honestly emulate the M oracle with some hard-coded uniformly chosen
randomness (to generate handles), output this modified code, and halt.

3. Otherwise, set Lc to empty.
4. Repeat until there have been L = (�(|k|) + 1)d|k| iterations without any new

additions to Lc:
(a) Sample random input xj .
(b) Run Ck(xj) while simulating zero-test queries to M using the list of

encoded elements LO from Step 1.
(c) Additionally, whenever a zero-test query zero(p) evaluates to true, record

the formal polynomial p if it is linearly independent with all previously
stored polynomials in Lc.Testing whether p is a linear combination of
polynomials in Lc can be performed efficiently through Gaussian elimi-
nation (by viewing each monomial as a separate variable).

5. Output a new circuit C ′
k that does the following:

(a) On input y, run Ck(y).
(b) If Ck(y) makes a zero(p) query to M , answer true if p is a linear combi-

nation of the polynomials in Lc and otherwise answer false.

Claim. Obfuscator O′ runs in (non-uniform) polynomial time.

Proof. Recall that �(|k|) is an upper bound on the number of encodings. As a
consequence, there are at most (�(|k|)+1)d degree-d monomials in the encodings;
thus, there can be at most (�(|k|) + 1)d linearly independent zero-test polyno-
mials. Since O continues iterating until there have been L consecutive iterations
with no new additions to Lc, it follows that there can be at most L · (�(|k|)+1)d

iterations, each of which can be implemented in polynomial time.

Proposition 1. The obfuscator O′ is (ε(n) + 1/n)-approximately correct.

Proof. Consider a hybrid obfuscator Õ′ that proceeds just as O′ except that it
always outputs a program C̃ ′

k that honestly simulates the Mg oracle using the
state LO from Stage 1.

Let Expk denote the experiment that consists of running Ck ← O(k), picking
a uniformly random input x∗ ← {0, 1}|k|, and outputting 1 iff Ck(x∗) = Fk(x∗)
(and 0 otherwise). Define Exp′

k and Ẽxp′
k in exactly the same way but using O′

and Õ′ respectively.
Since O is ε(n)-approximately correct, for every k ∈ {0, 1}n, we have

Pr[Expk = 0] ≤ ε(n)

We also observe that by construction, for every k ∈ {0, 1}n,

Pr[Expk = 0] = Pr[Ẽxp′
k = 0]

This directly follows from the observation that the only difference between these
experiments is that in Ẽxp, the obfuscator hard-codes the randomness of Mg
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(needed to generate handles) in the obfuscated code in the event that O did
not make any initial encoding queries. But since in the experiment we only
evaluate the obfuscated code on a single input, the outputs of the experiments
are identically distributed.

Our goal is now to prove that for k ∈ {0, 1}n,

Pr[Exp′
k = 0] ≤ Pr[Ẽxp′

k = 0] + 1/n

which concludes the proof of the proposition.
Note that there is only one difference between the program C̃ ′

k produced by
Õ′ and the program C ′

k produced by O′ when run on the input x∗ in the above
experiments:

– C ′
k(x∗) may make a zero-test query zero(p,h) that should evaluate to true,

but p is not in the span of Lc (and thus C ′
k emulates the answer as false,

whereas C̃k honestly emulates the answer as true.) Let badi denote the event
that this happens for the first time when |Lc| = i.

Let us note that C ′
k(x∗) can never err in the other direction; that is, it never

answers a zero-test query as true when the answer in fact should be false.
This follows from the fact that if p is in the span of Lc, then a) all input handles
to p correspond to some encoding, and p necessarily evaluates to zero given the
encoded value corresponding to those handles, and b) by the wellformedness con-
dition of g, g(p, l) necessarily evaluates to true (as p cannot use any monomials
not already in use by the polynomials in Lc).

It follows by construction that conditioned on badi not happening for any i,
experiments Exp′

k and Ẽxp′
k proceed identically.

The proof is concluded by the following two claims which show that the
probability of any bad event is small. In the following we focus on experiment
Exp′ but the same arguments straighforwardly hold for Ẽxp′.

Claim. For every i, Pr[badi] ≤ 1/L.

Proof. For every bad random tape for the experiment that induces event badi,
we identify at least L unique good random tapes obtained by swapping the
final run on input x∗ with one of the (at least L) sampled iterations (using xi);
furthermore, we show that any two distinct bad executions lead to disjoint sets
of good executions. We conclude the claim based on the fact that the fraction of
bad tapes is at most 1/L and each random tape is equally likely.

Let us now formally specify the mapping Φ from bad tapes to good tapes, and
specify an inverse mapping Φ−1 that given a good tape in the range of Φ recovers
the bad tape it was generated from. The existence of such an inverse map shows
that any two distinct bad tapes lead to distinct sets of good tapes, as desired.

Recall that by the proof of Claim 3, m = L · (�(n) + 1)d is a bound on the
number of iterations in step 4. We define a random tape for the experiment Expk

as (ρ, x1, . . . , xm, x∗) where (x1, . . . , xm) are the inputs sampled to be used in
step (4a) of O′ (note that not all of those samples may be used), x∗ is the final
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input chosen in the experiment, and ρ is the remaining randomness (i.e., the
randomness of underlying O and randomness of O′ in the event that O did not
make the initial encoding queries). Let q(R) denote the number of samples made
in step 3 given the random tape R; by construction L ≤ q(R) ≤ m.

We say that a random tape R = (ρ, x1, . . . , xm, x∗) is bad if Exp′
k(R) induces

event badi; that is, (a) in the evaluations of C ′
k(xj) for j ∈ [q(R) − L, . . . , q(R)],

there are no linearly independent zero-test polynomials that evaluate to 0, (b)
the evaluation of C ′

k(x∗) leads to such a linearly independent polynomial that
evaluates to 0, and (c) the size of Lc is i.

Define the mapping Φ(R) as the set of L random tapes Φ(R) = {Rj}j∈[L]

where Rj is constructed by swapping the tth random sample xt, where t =
(q(R) − j + 1), with the last sample x∗ as follows:

Rj = (ρ, x1, . . . , xt−1, x
∗, xt+1, . . . , xm, xj)

Note that Exp′
k(Rj) does not induce badi since the experiment finds at least i+1

linearly independent polynomials that evaluate to zero (and thus Lc > i).
Finally, let Φ−1(·) be an inverse map that on input a tape R, swaps the last

sample in the tape with the first sample xt that leads to i+1 linearly independent
polynomials in the set Lc (and if no such xt exists simply outputs R). It follows
directly by construction that for every bad R, Φ−1(Φ(R)) = R. (Note that in
our definition of the inverse map, we make use of the fact that the event badi is
parameterized by i.)

By a union bound, it follows from Claim 3 that,

Pr
[∃i s.t. badi

]
= Pr

[
bad1 ∨ · · · ∨ bad�′(n)d

]
≤ �′(n)d

L
=

�′(n)d

�′(n)dn
= 1/n

where �′(n) = �(n)+1 since as noted in the proof of Claim 3, the maximum size
of Lc is �′(n)d = (�(n)+1)d. This concludes that O′ is ε(n)+1/n approximately
correct.

Proposition 2. Obfuscator O′ satisfies the virtual-black box property.

Proof. This proof is essentially identical to the one given in [CKP15] for a similar
statement. We include it here to be self-contained. Fix an index k. Given an
adversary A′ for the new obfuscator O′, we construct a new adversary AM for
the OM obfuscator as follows. The new adversary AM (Ck), on input a circuit
Ck produced by the obfuscation OM algorithm, simulates steps 2, 3, and 4 of
the O′ algorithm by answering all queries using its oracle M (whose answers will
be consistent with the oracle used by OM to produce Ck).13 At the end of this
simulation, A thus produces a circuit C ′

k with exactly the same distribution as the
output of O′. Adversary AM then runs A′(C ′

k) (which does not make any oracle
queries) and returns the same output. It therefore follows by construction that

Pr
[
AM|k|(OM|k|(k)) = 1

]
= Pr [A′(O′(k)) = 1]

13 Step 2 (i.e., checking whether the initial encoding queries have been made) can be
simulated by making a “dummy” enc(0, 0) query and checking whether M returns ⊥.
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By the approximate VBB security property of O for family F , it follows that
there exists a simulator S and a negligible function μ such that

Pr
[
AM|k|(OM|k|(k)) = 1

] − Pr
[
SFk(|k|) = 1

] ≤ μ(|k|)
which immediately implies that

Pr [A′(O′(k)) = 1] − Pr
[
SFk(|k|) = 1

] ≤ μ(|k|)
and concludes the proposition since S is also a good simulator for A′.

We conclude that O′ is a secure ε(n) + 1/n-approximate VBB obfuscator for F
(in the plain model). This finishes the proof of Lemma 6.

Remark (extension to “sparse” high-degree zero-test polynomials). This proof
uses the constant-degree restriction on the zero-test queries to argue that the
number of monomials in encoded values is polynomial. The theorem thus extends
to high-degree polynomials as long as the legality predicate restricts these
polynomials to be “sparse” in the sense that the total number of monomials
over which any legal zero-test query is formed must be (a-priori) polynomially
bounded. Note that it does not suffice to require that each zero-test query has a
small number of monomials. Rather, we require that there exists a small set of
monomials that suffices to represent all legal zero-test queries.

Remark (extension to “multi-slot” graded encodings). Our result directly extend
to “multi-slot” graded encodings (as in [AB15]), which are a model of composite-
order graded encodings. In this model, an encoding is a vector of elements;
operations on elements are performed component-wise and finally a zero-test
can be performed which determines whether the whole vector is 0. Our proof
directly extends also to this setting (by simply viewing each component as a
separate variable).

Remark (extension to deterministic encodings). Our graded encoding oracle
models an idealized randomized graded encodings scheme: even if the same value
v is encoded twice (under the same label), we get independently random han-
dles for the two encodings. Our proof, however, works in exactly the same way
also for deterministic randomized encodings, where the oracle keeps state also
during the encoding phase and always returns the same handle for an encod-
ing of the value v under the label l. This trivially follows since our oracle does
not allow players to perform any operations on encodings but simply zero-test
queries. As previously mentioned, for the case of randomized graded encodings,
it is without loss of generality since operations on encodings can be simulated by
“bogus” independently random handles. For the case of deterministic encodings,
however, this simulation no longer works: if the result of the operation yields a
value that was previously encoded we should output that handle instead. But for
the purpose of our proof, we can make the simulation work: Modify the learning
phase to keep track of also all handles h “seen”, adding them to Lc; addition-
ally, for every operation, make a zero-test query to check whether the value to
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be encoded after the operation equals the value encoded under any previously
stored handle. Next, during the evaluation of the obfuscated code, emulate oper-
ations on encodings by first checking (using a zero-test query, which is emulated
as before) whether the value to be encoded after the operation equals the value
encoded under any previously stored handle, and, if so, outputting this handle,
and otherwise outputting a random handle. It follows using the same argument
as above that this emulation only fails with inverse polynomial probability.

Remark (extension to rings). We note that our proof directly generalizes to
any graded encoding scheme that operates on elements in a ring (as opposed
to Fp) as long as (a) there exists an efficient method for determining the row-
rank of a matrix of this ring, and (b) the row-rank of a matrix is polynomially
bounded by the column-rank. Property (a) is needed to test whether we get a
linearly independent polynomial (we used Gaussian elimination for the case of
Fp), and property (b) is needed to ensure that the maximum number of linearly
independent polynomials is polynomially bounded by the number of monomials
(for the case of Fp row-rank equals column-rank, and thus the number of linearly
independent polynomials is bounded by the number of monomials).

4 Impossibility of Subexponential VBB Security

We now consider sub-exponential VBB security and rule out constructions that
use nα-degree zero-test queries for any 0 < α < 1.

Theorem 7. Assuming the existence of exponentially-secure trapdoor permu-
tations, there exists a family of polynomial-time computable functions F such
that for every 0 < α < 1, every degree-nα ideal graded encoding oracle M , a
polynomial-size 0.9-approximate VBB obfuscator for F does not exist in the M
oracle model.

Recall that, in contrast, Barak et al. [BGK+14] show that for every family F
of polynomial-time functions, subexponentially-secure VBB obfuscation is pos-
sible using p(n)-degree ideal graded encodings where p is a polynomial (under
appropriate cryptographic hardness assumptions).

We follow the proof of Theorem 5 and prove the following lemma which
combined with Theorem 3 proves the theorem.

Lemma 8. For every α < 1 and degree-nα ideal graded encoding oracle M , if
a family of functions F indexed by k has a polynomial-size ε(n)-approximate
subexponentially-secure VBB obfuscator in the M oracle model, then there exists
a subexponential-size (ε(n) + 1/n)-approximate subexponentially-secure VBB
obfuscator for F in the plain model.

Proof (Sketch). The construction is identical to the one in the proof of Lemma 6,
except that we set d = nα (instead of it being a constant), where n = |k|.

By the same proof, the size of the new (plain-model) obfuscator is polynomial
in �(n)nα

= 2nα log �(n), where �(n) is a bound on the number of encoding queries
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made by the original obfuscator. It follows that the size of the obfuscator is
subexponential.

Approximate correctness follows as per the proof of Lemma 6. Finally, subex-
ponential VBB simulation follows in exactly the same way as Lemma 6 by appeal-
ing to subexponential VBB security of the original VBB obfuscator.
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Abstract. The celebrated work of Barak et al. (Crypto’01) ruled out
the possibility of virtual black-box (VBB) obfuscation for general circuits.
The recent work of Canetti, Kalai, and Paneth (TCC’15) extended this
impossibility to the random oracle model as well assuming the existence
of trapdoor permutations (TDPs). On the other hand, the works of Barak
et al. (Crypto’14) and Brakerski-Rothblum (TCC’14) showed that gen-
eral VBB obfuscation is indeed possible in idealized graded encoding mod-
els. The recent work of Pass and Shelat (Cryptology ePrint 2015/383)
complemented this result by ruling out general VBB obfuscation in ide-
alized graded encoding models that enable evaluation of constant-degree
polynomials in finite fields.

In this work, we extend the above two impossibility results for general
VBB obfuscation in idealized models. In particular we prove the follow-
ing two results both assuming the existence of trapdoor permutations:

– There is no general VBB obfuscation in the generic group model of
Shoup (Eurocrypt’97) for any abelian group. By applying our tech-
niques to the setting of Pass and Shelat we extend their result to any
(even non-commutative) finite ring.

– There is no general VBB obfuscation in the random trapdoor permu-
tation oracle model. Note that as opposed to the random oracle which
is an idealized primitive for symmetric primitives, random trapdoor
permutation is an idealized public-key primitive.

Keywords: Virtual black-box obfuscation · Idealized models · Graded
encoding · Generic group model

1 Introduction

Obfuscating programs to make them “unintelligible” while preserving their func-
tionality is one of the most sought after holy grails in cryptography due to its
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numerous applications. The celebrated work of Barak et al. [BGI+01] was the
first to launch a formal study of this notion in its various forms. Virtual Black-
Box (VBB) obfuscation is a strong form of obfuscation in which the obfus-
cated code does not reveal any secret bit about the obfuscated program unless
that information could already be obtained through a black-box access to the
program. It was shown in [BGI+01] that VBB obfuscation is not possible in
general as there is a family of functions F that could not be VBB obfuscated.
Roughly speaking, F would consist of circuits C such that given any obfuscation
B = O(C) of C, by running B over B itself as input one can obtain a secret
s about C that could not be obtained through mere black-box interaction with
C. This strong impossibility result, however, did not stop the researchers from
exploring the possibility of VBB obfuscation for special classes of functions, and
positive results for special cases were presented (e.g., [Can97,Wee05]) based on
believable computational assumptions.

The work of Lynn, Prabhakaran and Sahai [LPS04] showed the possibility
of VBB obfuscation for certain class of functions in the random oracle model
(ROM). The work of [LPS04] left open whether general purpose obfuscator for
all circuits could be obtained in the ROM or not. Note that when we allow the
random oracle to be used during the obfuscation phase (and also let the obfus-
cated code to call the random oracle) the impossibility result of [BGI+01] no
longer applies, because the proof of [BGI+01] requires the obfuscated algorithm
to be a circuit in the plain model where no oracle is accessed. In fact, despite the
impossibility of general VBB obfuscation in the plain model, a construction for
VBB obfuscation in the ROM could be used as a practical heuristic obfuscation
mechanism once instantiated with a strong hash function such as SHA3. This
would be in analogy with the way ROM based constructions of other primitives
are widely used in practice despite the impossibility results of [CGH04].

On a different route, the breakthrough of Garg et al. [GGH+13b] proposed
a candidate indistinguishability obfuscation (iO), a weaker form of obfuscation
compared to VBB for which no impossibility results were (are) known, relying on
the so called “approximate multi-linear maps” (MLM) assumption [GGH13a].
Shortly after, it was proved by Barak et al. [BGK+14] and Brakerski and Roth-
blum [BR14] that the construction of [GGH+13b] could be used to get even
VBB secure obfuscation (rather than the weaker variant of iO) in an idealized
form of MLMs, called the graded encoding model. The VBB obfuscation schemes
of [BGK+14,BR14] in idealized models raised new motivations for studying the
possibility of VBB obfuscation in such models including the ROM.

Canetti, Kalai, and Paneth [CKP15] proved the first impossibility result for
VBB obfuscation in a natural idealized model by ruling out the existence of
general purpose VBB obfuscators in the random oracle model, assuming the
existence of trapdoor permutations. Their work resolved the open question of
[LPS04] negatively. At a technical level, [CKP15] showed how to compile any
VBB obfuscator in the ROM into an approximate VBB obfuscator in the plain
model which preserves the circuit’s functionality only for “most” of the inputs.
This would rule out VBB obfuscation in plain model (assuming TDPs) since
Bitansky and Paneth [BP13] had shown that no approximate VBB obfuscator
for general circuits exist if trapdoor permutations exist.
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Pass and shelat [Pas15] further studied the possibility of VBB obfuscation in
idealized algebraic models in which the positive results of [BGK+14,BR14] were
proved. [Pas15] showed that the existence of VBB obfuscation schemes in the
graded encoding model highly depends on the degree of polynomials (allowed to
be zero tested) in this model. In particular they showed that VBB obfuscation
of general circuits is impossible in the graded encoding model of constant-degree
polynomials. Their work nicely complemented the positive results of [BGK+14,
BR14] that were proved in a similar (graded encoding) model but using super-
constant (in fact polynomial in security parameter) polynomials.

We shall emphasize that proving limitations of VBB obfuscation or any other
primitive in generic models of computation such as the generic group model
of Shoup [Sho97] are strong lower-bounds (a la black-box separations [RTV04,
IR89]) since such results show that for certain crypto tasks, as long as one uses
certain algebraic structures (e.g., an abelian group) in a black-box way as the
source of computational hardness, there will always be a generic attack that
(also treats the underlying algebraic structure in a black-box way and) breaks
the constructed scheme. The fact that the proposed attack is generic makes the
lower-bound only stronger.

1.1 Our Results

In this work we extend the previous works [CKP15,Pas15] on the impossibility of
VBB obfuscation in idealized models of computation and generalize their results
to more powerful idealized primitives. We first focus on the generic group model
of Shoup [Sho97] (see Definitions 10 and 11) and rule out the existence of general
VBB obfuscation in this model for any finite abelian group.

Theorem 1 (Informal). Assuming trapdoor permutations exist, there is no
virtual black-box obfuscation for general circuits in the generic group model for
any finite abelian group.

The work of [Pas15] implies a similar lower bound for the case of abelian
groups of prime order. We build upon the techniques of [CKP15,Pas15] and
extend the result of [Pas15] to arbitrary (even noncyclic) finite abelian groups.
See the next section for a detailed description of our techniques for proving this
theorem and the next theorems described below.

We then apply our techniques designed to prove Theorem1 to the setting of
graded-encoding model studied in [Pas15] and extend their results to arbitrary
finite rings (rather than fields) which remained open after their work. Our proof
even handles noncommutative rings.

Theorem 2 (Informal). Assuming trapdoor permutations exist, there is no
virtual black-box obfuscation for general circuits in ideal degree-O(1) graded
encoding model for any finite ring.

Finally, we generalize the work of [CKP15] beyond random oracles by ruling
out general VBB obfuscation in random trapdoor permutations (TDP) oracle
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model. Our result extends to an arbitrary number of levels of hierarchy of trap-
doors, capturing idealized version of primitives such as hierarchical identity based
encryption [HL02].

Theorem 3 (Informal). Assuming trapdoor permutations exist, there is no
virtual black-box obfuscation for general circuits in the random trapdoor permu-
tation model, even if the oracle provides an unbounded hierarchy of trapdoors.

Note that the difference between the power of random oracles and random
TDPs in cryptography is usually huge, as random oracle is an idealized primitive
giving rise to (very efficient) symmetric key cryptography primitives, while TDPs
could be used to construct many public-key objects. Our result indicates that
when it comes to VBB obfuscation random TDPs are no more powerful than
just random oracles.

Connection to Black-Box Complexity of IO. In a very recent follow-up work by
the authors, Rafael Pass, and abhi shelat [MMN+15] it is shown that the results
of this work and those of [Pas15] could be used to derive lower-bounds on the
assumptions that can be used in a black-box way to construct indistinguishability
obfuscation. In particular, let P be a primitive implied by (i.e. exist relative to)
random trapdoor permutations, generic abelian group model, or the degree-O(1)
graded encoding model; this includes powerful primitives such as exponentially
secure TDPs or exponentially secure DDH-type assumptions. [MMN+15] shows
that basing iO on P in a black-box way is either impossible, or it is at least as
hard as basing public-key cryptography on one-way functions (in a non-black-box
way). Whether or not public-key encryption can be based on one-way functions
has remained as one of the most fundamental open questions in cryptography.

1.2 Technical Overview

The high level structure of the proofs of our results follows the high level struc-
ture of [CKP15], so we start by recalling this approach. The idea is to convert the
VBB obfuscator OI in the idealized model to an approximate VBB obfuscation
Ô in the plain model which gives the correct answer C(x) with high (say, 9/10)
probability over the choice of random input x and randomness of obfuscator.
The final impossibility follows by applying the result of [BP13] which rules out
approximate VBB in the plain model. Following [CKP15] our approximate VBB
obfuscator Ô in the plain model has the following high level structure.

1. Obfuscation emulation. Given a circuit C emulate the execution of the
obfuscator OI in the idealized model over input C to get circuit B (running
in the idealized model).1

1 The emulation here and in next steps would require the idealized model I to have an
efficient “lazy evaluation” procedure. For example lazy evaluation for random oracles
chooses a random answer (different from previous ones) given any new query.
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2. Learning phase. Emulate the execution of B over m random inputs for
sufficiently large m. Output B and the view z of the m executions above as
the obfuscated code B̂ = (B, z).

3. Final execution. Execute the obfuscated code B̂ = (B, z) on new random
points using some form of “lazy evaluation” of the oracle while only using
the transcript z of the learning phase (and not the transcript of obfuscator
O which is kept private) as the partially fixed part of the oracle. The exact
solution here depends on the idealized model I, but they all have the following
form: if the answer to a new query could be “derived” from z then use this
answer, otherwise generate the answer from some simple distribution.

VBB Property. As argued in [CKP15], the VBB property of Ô follows from the
VBB property of O and that the sequence of views z could indeed be sampled by
any PPT holding B in the idealized model (by running B on m random inputs),
and so it is simulatable (see Lemma 5).

Approximate Correctness. The main challenge is to show the approximate cor-
rectness of the new obfuscation procedure in the plain model. The goal here is
to show that if the learning phase is run for sufficiently large number of rounds,
then its transcript z has enough information for emulating the next (actual) exe-
cution consistently with but without knowing the view of O. In the case that I
is a random oracle [CKP15] showed that it is sufficient to bound the probability
of the “bad” event E that the final execution of B̂ = (B, z) on a random input
x asks any of the “private” queries of the obfuscator O which is not discovered
during the learning phase. The work of [Pas15] studies graded encoding oracle
model where the obfuscated code can perform arbitrary zero-test queries for low
degree polynomials p(·) defined over the generated labels s1, . . . , sk. The oracle
will return true if p(s1, . . . , sk) = 0 (in which case p(·) is called a zero polynomial)
and returns false otherwise. Due to the algebraic structure of the field here, it is
no longer enough to learn the heavy queries of the obfuscated code who might
now ask its oracle query p(·) from some “flat” distribution while its answer is
correlated with previous answers.

Generic Group Model: Proving Theorem 1. To describe the high level
ideas of the proof of our Theorem1 it is instructive to start with the proof of
[Pas15] restricted to zero testing degree-1 polynomials and adapt it to the very
close model of GGM for Zp when p is a prime, since as noted in [Pas15] when it
comes to zero-testing linear functions these two models are indeed very close.2

Case of Zp For Prime p [Pas15]. When we go to the generic group model we can
ask addition and labeling queries as well. It can be shown that we do not need to
generate any labels during obfuscation and they can be emulated using addition
2 More formally, using the rank argument of [Pas15] it can be shown that for the pur-

pose of obfuscation, the two models are equivalent up to arbitrary small 1/ poly(n)
completeness error.
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queries. Then, by induction, all the returned labels t1, . . . , t� for addition queries
are linear combinations of s1, . . . , sk with integer coefficients3 and that is how we
represent queries. Suppose we get an addition query a+b and want to know the
label of the group element determined by (the coefficients) a + b = x. Suppose
for a moment that we know s is the label for a vector of integers c, and suppose
we also know that the difference x − c evaluates to zero. In this case, similarly
to [CKP15], we can confidently return the label s as the answer to a + b. To
use this idea, at any moment, let W be the space of all (zero) vectors α − β
such that we have previously discovered same labels for α and β. Now to answer
a + b = x we can go over all previously discovered labels (c �→ s) and return
s if x − c ∈ span(W ), and return a random label otherwise. The approximate
correctness follows from the following two points.

– The rank argument. First note that if x − c ∈ span(W ) then the label for
the vector a + b = x is indeed s. So we only need worry about cases where
x − c �∈ span(W ) but x − c is still zero. The rank argument of [Pas15] shows
that this does not happen too often if we repeat the learning phase enough
times. The main idea is that if this “bad” event happens, it increases the rank
of W , but this rank can increase only k times.

– Gaussian elimination. Finally note that the test x − c �∈ span(W ) can be
implemented efficiently using Gaussian elimination when we work in Zp.

Case of General Cyclic Abelian Groups. We first describe how to extend the
above to any cyclic abelian group Zm (for possibly non-prime m) as follows.

– Alternative notion for rank of W . Unfortunately, when we move to the
ring of Zm for non-prime m it is no longer a field and we cannot simply talk
about the rank of W (or equivalently the dimension of span(W )) anymore.4

More specifically, similarly to [Pas15], we need such (polynomial) bound to
argue that during most of the learning phases the set span(W ) does not
grow. To resolve this issue we introduce an alternative notion which here
we call r̃ank(W ) that has the following three properties even when vectors
w ∈ W are in Z

k
m (1) If a ∈ span(W ) then r̃ank(W ) = r̃ank(W ∪ {a}),

and (2) if a �∈ span(W ) then r̃ank(W ) + 1 ≤ r̃ank(W ∪ {a}), and (3)
1 ≤ r̃ank(W ) ≤ k · log |Zm| = k · log m. In particular in Lemma21 we show
that the quantity r̃ank(W ) := log |span(W )| has these three properties. These
properties together show that span(W ) can only “jump up” k ·log m (or fewer)
times during the learning phase, and that property is enough to be able to
apply the argument of [Pas15] to show that sufficiently large number of learn-
ing phases will bound the error probability by arbitrary 1/poly(n).

3 Even though the summation is technically defined over the group elements, for sim-
plicity we use the addition operation over the labels as well.

4 Note that this is even the case for Zq when q is a prime power, although finite fields
have prime power sizes.
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– Solving system of linear equations over Zm. Even though m is not nec-
essarily prime, this can still be done using a generalized method for cyclic
abelian groups [McC90].

Beyond Cyclic Groups. Here we show how to extend the above argument beyond
cyclic groups to arbitrary abelian groups. First note that to solve the Gaussian
elimination algorithm for Zm, we first convert the integer vectors of W into some
form of finite module by trivially interpreting the integer vectors of W as vectors
in Z

k
m. This “mapping” was also crucially used for bounding r̃ank(W ).

– Mapping integers to general abelian G. When we move to a general
abelian group G we again need to have a similar mapping to map W into
a “finite” module. Note that we do not know how to solve these questions
using integer vectors in W efficiently. In Lemma 9 we show that a generalized
mapping ρG(·) : Z �→ G (generalizing the mapping ρZm

(x) = (x mod m) for
Zm) exists for general abelian groups that has the same effect; namely, without
loss of generality we can first convert integer vectors in W to vectors in Gk

and then work with the new W .
– The alternative rank argument. After applying the transformation above

over W (to map it into a subset of Gk) we can again define and use the three
rank-like properties of r̃ank(·) (instead of rank(W )) described above, but here
for any finite abelian group G. In particular we use r̃ank(W ) := log |span

Z
(W )|

where span
Z
(·) is the module spanned by W using integer coefficients. Note

that even though G is not a ring, multiplying integers with x ∈ G is naturally
defined (see Definition 8).

– System of linear equations over finite abelian groups. After the con-
version step above, now we need to solve a system of linear equation xW = a
where elements of W,a are from G but we are still looking for integer vector
solutions x. After all, there is no multiplication defined over elements from
G. See the full version of this paper in which we give a reduction from this
problem (for general finite abelian groups) to the case of G = Zm which is
solvable in polynomial time [McC90].

Low-Degree Graded Encoding Model: Proving Theorem 2. To prove
Theorem 3 for general finite rings, we show how to use the ideas developed for
the case of general abelian generic groups discussed above and apply them to
the framework of [Pas15] for low-degree graded encoding model as specified in
Theorem 2. Recall that here the goal is to detect the zero polynomials by checking
their membership in the module span(W ). Since here we deal with polynomials
over a ring (or field) R the multiplication is indeed defined. Therefore, if we
already know a set of zero polynomials W and want to judge whether a is also
(the vector corresponding to) a zero polynomial, the more natural approach is
to solve a system of linear equations xW = a over ring R.

Searching for Integer Solutions Again. Unfortunately we are not aware of a
polynomial time algorithm to solve x · W = a in general finite rings and as we
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mentioned above even special cases like R = Zm are nontrivial [McC90]. Our
idea is to try to reduce the problem back to the abelian groups by somehow
eliminating the ring multiplication. Along this line, when we try to solve x ·
W = a, we again restrict ourselves only to integer solutions. In other words, we
do not multiply inside R anymore, yet we take advantage of the fact that the
existence of integer solution to x ·W = a is still sufficient to conclude a is a zero
vector. As we mentioned above, we indeed know how to find integer solutions
to such system of linear equations in polynomial time (see [McC90] and the full
version of the paper).

Finally note that, we can again use our alternative rank notion of r̃ank(W )
to show that if we run the learning phase of the obfuscation (in plain model) m
times the number of executions in which span

Z
(W ) grows is at most poly(n) (in

case of degree-O(1) polynomials). This means that we can still apply the high
level structure of the arguments of [Pas15] for the case of finite rings without
doing Gaussian elimination over rings.

Random Trapdoor Permutation Model: Proving Theorem 3. Here we
give the high-level intuition behind our result for the random TDP oracle model.

Recalling the Case of Random Oracles [CKP15]. Recall the high level structure
of the proof of [CKP15] for the case of random oracles described above. As we
mentioned, [CKP15] showed that to prove approximate correctness it is sufficient
to bound the probability of the event E that the final execution of B̂ = (B, z) on
a random input x asks any of the queries that is asked by emulated obfuscation
O of B (let QO denote this set) which is not discovered during the learning
phase. So if we let QE , QB , QO denote the set of queries asked, respectively,
in the final execution, learning, and obfuscation phases, the bad event would be
QE ∩(QO \QB) �= ∅. This probability could be bound by arbitrary small 1/poly
by running the learning phase sufficiently many times. The intuition is that all
the “heavy” queries which have a 1/poly-chance of being asked by B̂ = (B, z)
(i.e., being in QE) on a random input x would be learned, and thus the remaining
unlearned private queries (i.e., QO \ QB) would have a sufficiently small chance
of being hit by the execution of B̂ = (B, z) on a random input x.

Warm-up: Random Permutation Oracle. We start by first describing the proof
for the simpler case of random permutation oracle. The transformation tech-
nique for the random oracle model can be easily adapted to work in the random
permutation model as follows. For starters, assume that the random permuta-
tion is only provided on one input length k; namely R : {0, 1}k �→ {0, 1}k. If
k = O(log n) where n is the security parameter, then it means that the whole
oracle can be learned during the obfuscation and hardcoded in the obfuscated
code, and so R cannot provide any advantage over the plain model. On the other
hand if k = ω(log n) it means that the range of R is of super-polynomial size.
As a result, the same exact procedure proposed in [CKP15] (that assumes R is a
random oracle and shows how to securely compile out R from the construction)
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would also work if R is a random permutation oracle. The reason is that the
whole transformation process asks poly(n) number of queries to R and, if the
result of the transformation does not work when R is a random permutation,
then the whole transformation gives a poly(n) = q query attack to distinguish
between whether R is a random permutation or a random function. Such an
attack cannot “succeed” with more than negligible probability when the domain
of R has super-polynomial size qω(1) in the number of queries q.5

Random TDP Model. Suppose T = (G,F, F−1) is a random trapdoor permuta-
tion oracle in which G is a random permutation for generating the public index,
F is the family of permutations evaluated using public index, and F−1 is the
inverse permutation computed using the secret key (see Definition 28 for formal
definition and notation used). When the idealized oracle is T = (G,F, F−1),
we show that it is sufficient to apply the same learning procedure used in the
random oracle case over the normalized version of the obfuscated algorithm B
to get a plain-model execution B̂(x) that is statistically close to an execution
BT (x) that uses oracle T . This, however, requires careful analysis to prove that
inconsistent queries specific to the TDP case occur with small probability.

Indeed, since the three algorithms (emulation, learning, and final execution)
are correlated, there is a possibility that the execution of B on the new random
input might ask a new query that is not in QO, and yet still be inconsistent
with some query in QO\QB . For example, assume we have a query q of the form
G(sk) = pk that was asked during the obfuscation emulation phase (and thus is
in QO) but was missed in the learning phase (and thus is not in QB) and assume
that a query of the form F [pk](x) = y was asked during the learning phase (so it
is in QB). Then, it is possible that during the evaluation of the circuit B, it may
ask a query q′ of the form F−1[sk](y) and since this is a new query undetermined
by previously learned queries, the plain-model circuit B̂ will answer with some
random answer y′. Note that in this case, y′ would be different from y with very
high probability, and thus even though q �= q′, they are together inconsistent
with respect to oracle T .

As we show in our case-by-case analysis of the learning heavy queries proce-
dure for the case of trapdoor permutation (in Sect. 4.2), the only bad events that
we need to consider (besides hitting unlearned QO queries, which was already
shown to be unlikely) will be those whose probability of occurring are negligi-
ble (we use the lemmas from [GKLM12] as leverage). Due to our normalization
procedure, the rest of the cases will be reduced to the case of not learning heavy
queries, and this event is already bounded.

5 In general, when the random permutation R is available in all input lengths, we
can use a mixture of the above arguments by generating all the oracle queries of
length c log(n) (for a sufficiently large constant c) during the obfuscation (in the
plain model) and representing this randomness in the obfuscated circuit. This issue
also exists in the trapdoor permutation and the generic group models and can be
handled exactly the same way.
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2 Virtual Black-Box Obfuscation

Below we give a direct formal definition for approximately correct virtual black-
box (VBB) obfuscation in idealized models. The (standard) definition of VBB is
equivalent to 0-approximate VBB in the plain model where no oracle is accessed.

Definition 4 (Approximate VBB in Idealized Models [BGK+13,
CKP15]). For a function ε(n) ∈ [0, 1], a PPT algorithm O is called an
ε-approximate general purpose VBB obfuscator in the I-ideal model if the fol-
lowing is satisfied:

– Approximate Functionality: For any circuit C of size n and input size m

Pr
x←{0,1}m

[OI(C)(x) �= C(x)] ≤ ε(n)

where the probability is over the choice of input x, the oracle I, and the inter-
nal randomness of O.

– Virtual Black-Box: For every PPT adversary A, there exists a PPT simulator
S and a negligible σ(n) such that for all n ∈ N and circuits C ∈ {0, 1}n:

∣
∣Pr[AI(OI(C)) = 1] − Pr[SC(1n) = 1]

∣
∣ ≤ σ(n)

where the probability is over I and the randomness of A, S, and O.

The following lemma is used in [CKP15], and here we state it in an abstract
form considering only the VBB security and ignoring the completeness.

Lemma 5 (Preservation of VBB Security). Let O be a PPT algorithm in
the I-ideal model that satisfies VBB security, and let U be a PPT algorithm (in
the I-ideal model) that, given input B = OI(C) for some circuit C ∈ {0, 1} of
size n, outputs (B, z) where z is some string. If there exists a plain-model PPT
algorithm Ô that, on input C, outputs (B′, z′) with distribution statistically close
to (B, z) conditioned on C then Ô also satisfies VBB security.

Proof. To prove that Ô satisfies the security of VBB obfuscation (regardless of
its completeness) we show a reduction that turns any plain-model adversary Â

that breaks the VBB security of Ô into an ideal-model adversary AI against O.
For any fixed circuit C, AI accepts as input B = OI(C) then executes

UI(B) to get (B, z). AI will then run Â with input (B, z) then output whatever
Â outputs. Given the behaviour of AI , we have that:

Pr[AI(B) = 1] = Pr[Â(B, z) = 1] (1)

Furthermore, if we let the statistical distance between (B, z) and Ô(C) = (B′, z′)
be at most ε(n), then we also have:

∣
∣
∣Pr[Â(B′, z′) = 1] − Pr[Â(B, z) = 1]

∣
∣
∣ ≤ ε(n) (2)
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Since O satisfies the security of VBB in the ideal model, we have that, there is
a simulator S for the adversary AI in the ideal model such that:

∣
∣Pr[AI(B) = 1] − Pr[SC(1n) = 1]

∣
∣ ≤ negl(n) (3)

Now let Ŝ be a VBB simulator for Â. Combining this with Eqs. 1 and 2, and
given that ε(n) is a negligible function, we find that Ô is also VBB-secure using
the same simulator S.

3 Impossibility of VBB in Generic Algebraic Models

In this section we will formally state and prove our Theorems 1 and 2 for the
generic group and graded encoding models.

3.1 Preliminaries

We start by stating some basic group theoretic notation, facts, and definitions.
By Z we refer to the set of integers. By Zn we refer to the additive (or maybe
the ring) of integers modulo n. When G is an abelian group, we use + to denote
the operation in G. A semigroup (G,	) consists of any set G and an associative
binary operation 	 over G.

Definition 6. For semi-groups (G1,	1), . . . , (Gk,	1), by the direct product
semi-group (G,	) = (G1 × · · · × Gk,	1 × · · · × 	k) we refer to the group
in which for g = (g1, . . . , gk) ∈ G,h = (h1, . . . , hk) ∈ G we define g 	 h =
(g1 	1 h1, . . . , gk 	k h1). If Gi’s are groups, their direct product is also a group.

The following is the fundamental theorem of finitely generated abelian groups
restricted to case of finite abelian groups.

Theorem 7 (Characterization of Finite Abelian Groups). Any finite
abelian group G is isomorphic to some group Zp

α1
1

× · · ·× Zp
αd
d

in which pi’s are
(not necessarily distinct) primes and Zp

αi
i

is the additive group mod pαi
i .

Definition 8 (Integer vs in-group multiplication for abelian groups).
For integer a ∈ Z and g ∈ G where G is any finite abelian group by a ·g we mean
adding g by itself |a| times and negating it if a < 0. Now let g, h ∈ G both be
from abelian group G and let G = Zp

α1
1

×· · ·×Zp
αd
d

where pi’s are primes. If not
specified otherwise, by g · h we mean the multiplication of g, h in G interpreted
as the multiplicative semigroup that is the direct product of the multiplicative
semigroups of Zp

αi
i

’s for i ∈ [d] (where the multiplications in Zp
αi
i

are mod pαi
i ).

Lemma 9 (Mapping integers to abelian groups). Let G = Zp
α1
1

× · · · ×
Zp

αd
d

. Define ρG : Z �→ G as ρG(a) = (a1, . . . , ad) ∈ G where ai = a mod pαi
i ∈

Zp
αi
i

. Also for a = (a1, . . . , ak) ∈ Z
k define ρG(a) = (ρG(a1), . . . , ρG(ak)). Then

for any a ∈ Z and g ∈ G = Zp
α1
1

× · · · × Zp
αd
d

it still holds that a · g = ρG(a) · g

where the first multiplication is done according to Definition 8, and the second
multiplication is done in G. More generally, if a = (a1, . . . , ak) ∈ Z

k, and g =
(g1, . . . , gk) ∈ G, then

∑
i∈[k] aigi = 〈a,g〉 = 〈ρG(a),g〉.
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3.2 Generic Group Model

We start by formally defining the generic group model.

Definition 10 (Generic Group Model [Sho97]). Let (G,	) be any group of
size N and let S be any set of size at least N . The generic group oracle I[G �→ S]
(or simply I) is as follows. At first an injective random function σ : G �→ S is
chosen, and two type of queries are answered as follows.

– Type 1: Labeling Queries. Given g ∈ G oracle returns σ(g).
– Type 2: Addition Queries. Given y1, y2, if there exists x1, x2 such that

σ(x1) = y1 and σ(x2) = y2, it returns σ(x1 	 x2). Otherwise it returns ⊥.

Definition 11. [Generic Algorithms in Generic Group Model] Let AI be an
algorithm (or a set of interactive algorithms A = {A1, A2, . . .}) accessing the
generic group oracle I[G �→ S]. We call AI generic if it never asks any query
(of the second type) that is answered as ⊥. Namely, only queries are asked for
which the labels are previously obtained.

Remark 12 (Family of Groups). A more general definition allows generic oracle
access to a family of groups {G1, G2, . . .} in which the oracle access to each group
is provided separately when the index i of Gi is also specified as part of the query
and the size of the group Gi is known to the parties. Our negative result of Sect. 3
directly extends to this model as well. We use the above “single-group” definition
for sake of simplicity.

Remark 13 (Stateful vs Stateless Oracles and the Multi-Party Setting). Note
that in the above definition we used a stateless oracle to define the generic
group oracle, and we separated the generic nature of the oracle itself from how
it is used by an algorithm AI . In previous work (e.g., Shoup’s original definition
[Sho97]) a stateful oracle is used such that: it will answer addition queries only
if the two labels are already obtained before.6

Note that for “one party” settings in which AI is a single algorithm, AI

“knows” the labels that it has already obtained from the oracle I, and so w.l.o.g.
AI would never ask any addition queries unless it has previously obtained the
labels itself. However, in the multi-party setting, a party might not know the
set of labels obtained by other parties. A stateful oracle in this case might
reveal some information about other parties’ oracle queries if the oracle does
not answer a query (y1, y1) (by returning ⊥) just because the labels for y1, y2
are not obtained so far.

Remark 14 (Equivalence of Two Models for Sparse Encodings). If the encoding
of G is sparse in the sense that |S|/|G| = nω(1) where n is the security parameter,
then the probability that any party could query a correct label before it being
returned by oracle through a labeling (type 1) query is indeed negligible. So
in this case any algorithm (or set of interactive algorithms) AI would have a

6 So the oracle might return ⊥ even if the two labels are in the range of σ(G).
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behavior that is statistically close to a generic algorithm that would never ask
a label in an addition query unless that label is previously obtained from the
oracle. Therefore, if |S|/|G| = nω(1), we can consider AI to be an arbitrary
algorithm (or set of interactive algorithms) in the generic group model I. The
execution of A would be statistically close to a “generic execution” in which AI

never asks any label before obtaining it.

In light of Remarks 13 and 14, for simplicity of the exposition we will always
assume that the encoding is sparse |S|/|G| = nω(1) and so all the generic group
model are automatically (statistically close to being) generic.

Theorem 15 (Theorem 1 Formalized). Let G be any abelian group of size
at most 2poly(n). Let O be an obfuscator in the generic group model I[G �→ S]
where the obfuscation of any circuit followed by execution of the obfuscated code
(jointly) form a generic algorithm. If O is an ε-approximate VBB obfuscator
in the generic group model I[G �→ S] for poly-size circuits, then for any δ =
1/poly(n) there exists an (ε + δ)-approximate VBB obfuscator Ô for poly-size
circuits in the plain model.

Remark 16 (Size of G). Note that if a poly(n)-time algorithm accesses (the
labels of the elements of) some group G, it implicitly means that G is at most
of exp(n) size so that its elements could be names with poly(n) bit strings. We
chose, however, to explicitly mention this size requirement |G| ≤ 2poly(n) since
this upper bound plays a crucial role in our proof for general abelian groups
compared to the special case of finite fields.

Remark 17 (Sparse Encodings). If we assume a sparse encoding i.e., |S|/|G| =
nω(1) (as e.g., is the case in [Pas15] and almost all prior work in generic group
model) in Theorem 15 we no longer need to explicitly assume that the obfuscation
followed by execution of obfuscated code are in generic form; see Remark 14.

Since [BP13] showed that (assuming TDPs) there is no (1/2 − 1/poly)-
approximate VBB obfuscator in the plain-model for general circuits, the fol-
lowing corollary is obtained by taking δ = ε/2.

Corollary 18. If TDPs exist, then there exists no (1/2 − ε)-approximate VBB
obfuscator O for general circuits in the generic group model for any ε =
1/poly(n), any finite abelian group G and any label set S of sufficiently large
size |S|/|G| = nω(1). The result would hold for labeling sets S of arbitrary size
if the execution of the obfuscator O followed by the execution of the obfuscated
circuit O(C) form a generic algorithm.

Now we formally prove Theorem 15. We will first describe the algorithm of
the obfuscator in the plain model, and then will analyze its properties.

Notation and w.l.o.g. Assumptions. Using Theorem 7 w.l.o.g. we assume that our
abelian group G is isomorphic to the additive direct product group Zp

α1
1

× · · · ×
Zp

αd
d

where pi’s are prime. Let ei ∈ G be the vector that is 1 in the i’th coordinate
and zero elsewhere. Note that {e1, . . . , ek} generates G. We can always assume
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that the first d labels obtained by O are the labels of e1, . . . , ed and these labels
are explicitly passed to the obfuscated circuit B = O(C). Let k = poly(n) be an
upper bound on the running time of the obfuscator O for input C which in turn
upper bounds the number of labels obtained during the obfuscation (including
the the d labels for e1, . . . , ed). We also assume w.l.o.g. that the obfuscated code
never asks any type one (i.e., labeling) oracle queries since it can use the label
for e1, . . . , ed to obtain labels of any arbitrary g = a1e1 + · · · + aded using a
polynomial number of addition (i.e., type two) oracle queries. For σ(g) = s,
a ∈ Z, and t = σ(a · g) we abuse the notation and denote a · s = t.

The Construction. Even though the output of the obfuscator is always an
actual circuit, we find it easier to first describe how the obfuscator Ô generates
some “data” B̂, and then we will describe how to use B̂ to execute the new
obfuscated circuit in the plain model. For simplicity we use B̂ to denote the
obfuscated circuit.

How to Obfuscate. The new obfuscator Ô. The new obfuscator Ô uses lazy
evaluation to simulate the labeling σ(·) oracle. For this goal, it holds a set Qσ

of the generated labels. For any new labeling query g ∈ G if σ(g) = s is already
generated it returns s. Otherwise it chooses an unused label s from S uniformly
at random and adds the mapping (g → s) to Qσ and returns s. For an addition
query (s1, s2) it first finds g1, g2 such that σ(g1) = s1 an σ(g2) = s2 (which exist
since the algorithm that calls the oracle is in generic form) and gets g = g1 + g2.
Now Ô proceeds as if g is asked as a labeling query and returns the answer. The
exact steps of Ô are as follows.

1. Emulating obfuscation. Ô emulates OI(C) to get circuit B.
2. Learning phase 1 (heavy queries): Set QB = ∅. For i ∈ [d] let ti = σ(ei) be

the label of ei ∈ G which is explicitly passed to B by the obfuscator O(C)
and T = (t1, . . . , td) at the beginning. The length of the sequence T would
increase during the steps below but will never exceed k. Choose m at random
from � = [3 · k · log(|G|)/δ�]. For i = 1, . . . ,m do the following:
– Choose xi as a random input for B. Emulate the execution of B on xi using

the (growing) set Qσ of partial labeling for the lazy evaluation of labels.
Note that as we said above, w.l.o.g. B only asks addition (i.e., type two)
oracle queries. Suppose B (executed on xi) needs to answer an addition
query (s1, s2). If either of the labels u = s1 or u = s2 is not already
obtained during the learning phase 1 (which means it was obtained during
the initial obfuscation phase) append u to the sequence T of discovered
labels by T := (T, u). Using induction, it can be shown that for any addition
query asked during learning phase 1, at the time of being asked, we would
know that the answer to this query will be of the form

∑
i∈[k] ai · ti for

integers ai. Before seeing why this is the case, let ai = (ai,1, . . . , ai,k) be
the vector of integer coefficients (of the labels t1, t2, . . . ) for the answer s
that is returned to the i’th query of learning phase 1. We add (ai → s)
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to QB for the returned label. To see why such vectors exist, let (s1, s2)
be an addition query asked during this phase, and let s ∈ {s1, s2}. If the
label s is obtained previously during learning phase 1, then the linear form
s =

∑
i∈[k] ai · ti is already stored in QB . On the other hand, if s is a new

label discovered during an addition (i.e., type two) oracle query which just
made T = (t1, . . . , tj−1, tj = s) have length j, then s = ai · ti for aj = 1.
Finally, if the linear forms for both of (s1, s2) in an addition oracle query
are known, the linear form for the answer s to this query would be the
summation of these vectors.7

3. Learning phase 2 (zero vectors): This step does not involve executing B any-
more and only generates a set W = W (QB) ⊆ Gk of polynomial size. At the
beginning of this learning phase let W = ∅. Then for all (a1 → s1) ∈ QB

and (a2 → s2) ∈ QB , if s1 = s2, let a = a1 − a2, and add ρG(a) to W where
ρG(a) is defined in Lemma 9.

4. The output of the obfuscation algorithm will be B̂ = (B,QB ,W, T, r) where
T is the current sequence of discovered labels (t1, t2, . . . ) as described in
Lemma 9, and r is a sufficiently large sequence of random bits that will be
used as needed when we run the obfuscated code B̂ = (B,QB ,W, T, r) in the
plain model.8

How to Execute. In this section we describe how to execute B̂ on an input x
using (B,QB ,W, T, r).9 Before describing how to execute the obfuscated code,
we need to define the following algebraic problem.

Definition 19. [Integer Solutions to Linear Equations over Abelian Groups
(iLEAG)] Let G be a finite abelian group. Suppose we are given G (e.g., by
describing its decomposition factors according to Theorem7) an n × k matrix A
with components from G and a vector b ∈ Gk. We want to find an integer vector
x ∈ Z

n such that xA = b.

Remark 20 (Integer vs. Ring Solutions). Suppose instead of searching for an
integer vector solution x ∈ Z

n we would ask to find x ∈ Gn and define multi-
plication in G according to Definition 8 and call this problem G-LEAG. Then
any solution to iLEAG can be directly turned into a solution for G-LEAG by
7 Note that although the sequence T grows as we proceed in learning phase 1, we

already now that this sequence will not have length more than d since all of these
labels that are discovered while executing the obfuscated code has to be generated by
the obfuscator, due to the assumption that the sequential execution of the obfuscator
followed by the obfuscated code is in generic form. Therefore we can always consider
ai to be of dimension k.

8 Note that even though W (QB) could always be derived from QB , and even T could
be derived from an ordered variant of QB (in which the order in which QB has grown
is preserved) we still choose to explicitly represent these elements in the obfuscated
̂B to ease the description of the execution of ̂B.

9 Note that we do not have access to the set Qσ that was used for consistent lazy
evaluation of σ(·).
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mapping any integer coordinate xi of x into G by mapping ρG(xi) of Lemma 9.
The converse is true also for G = Zn, since any g ∈ Zn is also in Z and it holds
that ρG(g) = g ∈ G. However, the converse is not true in general for general
abelian groups, since there could be members of G that are not in the range of
ρG(Z). For example let G = Zp2 × Zp for prime p > 2 and let g = (2, 1). Note
that there is no integer a such that a mod p2 = 2 but a mod p = 1.

Executing B̂. The execution of B̂ = (B,QB ,W, T, r) on x will be done identically
to to the “next” execution during the learning phase 1 of the obfuscation (as if
x is the (m + 1)’st execution of this learning phase) and even the sets QB ,W =
W (QB) will grow as the execution proceeds, with the only difference described
as follows.10 Suppose we want to answer an addition (i.e., type two) oracle query
(s1, s2) where for b = {1, 2} we inductively know that sb =

∑
i∈[k] ab,i · ti. For

b = {1, 2} let ab = (ab,1, . . . , ab,k) and let a = a1 + a2.

– Do the following for all (b → s) ∈ QB . Let c = a− b and let c = ρG(c) ∈ Gk

as defined in Lemma 9. Let A be a matrix whose rows consists of all vectors
in W . Run the polynomial time algorithm presented in the full version of this
paper (based on an algorithm of [McC90] for G = Zn) to see if there is any
integer solution v for vA = c as an instance of the iLEAG problem defined in
Definition 19. If an integer solution v exists, then return s as the result (recall
(b → s) ∈ QB), break the loop, and continue the execution of B̂. If the loop
ended and no such (b → s) ∈ QB was found, choose a random label s not in
QB as the answer, add (a → s) to QB and continue.

Completeness and the Soundness. In this section we prove the completeness
and soundness of the construction of Sect. 3.2.

Size of S. In the analysis below, we will assume w.l.o.g. that the set of labels
S has superpolynomial size |S| = nω(1). This would immediately hold if the
labeing of G is sparse, since it would mean even |S|/|G| ≥ nω(1). Even if the
labeling is not sparse, we will show that w.l.o.g. we can assume that G itself
has super-polynomial size (which means that S will be so too). That is because
otherwise all the labels in G can be obtained by the obfuscator, the obfuscated
code, and the adversary and we will be back to the plain model. More formally,
for this case Theorem 15 could be proved through a trivial construction in which
the new obfuscator simply generates all the labels of G and plants all of them
in the obfuscated code and they will be used by the obfuscated algorithm. More
precisely, when the size of G (as a function of security parameter n) is neither of
polynomial size |G| = nO(1) nor super-polynomial size |G| = nω(1) we can still
choose a sufficiently large polynomial γ(n) and generate all labels of G when
|G| < γ(n), and otherwise use the obfuscation of Sect. 3.2.

10 We even allow new labels ti to be discovered during this execution to be appended
to T , even though that would indirectly lead to an abort!
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Completeness: Approximate Functionality. Here we prove the the following
claim.

Claim. Let B̂ = (B,QB ,W, T, r) be the output of the obfuscator Ô given input
circuit C with input length α. If we run B̂ over a random input according to the
algorithm described in Sect. 3.2, then it holds that

Pr
x←{0,1}α, ̂B← ̂O(C)

[

̂B(x) �= C(x)
]

≤ Pr
x←{0,1}α,B←OI[G �→S](C)

[

BI[G�→S](x) �= C(x)
]

+ δ

over the randomness of I[G �→ S], random choice of x and the randomness of
the obfuscators.

Proof. As a mental experiment, suppose we let the learning phase 1 always runs
for exactly �+1 = 1+[3 ·k · log(|G|)/δ�] rounds but only derive the components
(QB ,W (QB), T ) based on the first m executions. Now, let xi be the random
input used in the i’th execution and yi be the output of the i’th emulation
execution the learning phase 1. Since all the executions of the learning phase 1
are perfect simulations, for every i ∈ [�], and in particular i = m, it holds that

Pr[BI[G �→S](x) �= C(x)] = Pr[yi �= C(x)]

where probability is over the choice of inputs x, xi as well as all other randomness
in the system. Thus, to prove claim 3.2 it will suffice to prove that

|Pr[yi �= C(x)] − Pr[B̂(xi) �= C(x)]| < δ.

We will indeed do so by bounding the statistical distance between the execution
of B̂ vs the m + 1’st execution of the learning phase 1 over the same input xi.
Here we will rely on the fact that m is chosen at random from [�].

Claim. For random [�] the statistical distance between the m+1’st execution of
the learning phase 1 (which we call B′) and the execution of B̂ over the same
input xi is ≤ 2δ/3 + negl(n).

To prove the above claim we will define three type of bad events over a joint
execution of B′ = Bm+1 and B̂ when they are done concurrently and using the
same random tapes (and even the input xi). We will then show that (1) as long
as these bad events do not happen the two executions proceed identically, and
(2) the total probability of these bad events is at most 2δ/3 + negl(n). In the
following we suppose that the executions of B′ and B̂ (over the same random
input) has proceeded identically so far. Suppose we want to answer an addition
(i.e., type two) oracle query (s1, s2) where for b = {1, 2} we inductively know
that sb =

∑
i∈[k] ab,i · ti. Several things could happen:

– If the execution of B̂ finds (b → s) ∈ QB such that when we take c = a − b
and let c = ρG(c) ∈ Gk and let A be a matrix whose rows are vectors in (the
current) W , there is an integer solution v to the iLEAG instance vA = c.
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If this happens the execution of B̂ will use b as the answer. We claim that
this is the “correct” answer as B′ would also use the same answer. This is
because by the definition of W and Lemma 9 for all w ∈ W it holds that w =
(w1, . . . , wk) is a “zero vector in Gk” in the sense that summing the (currently
discovered labels in) T with coefficients w1, . . . , wk (and multiplication defined
according to Definition 8) will be zero. As a result, vA = c which is a linear
combination of vectors in W with integer coefficients will also be a zero vector.
Finally, by another application of Lemma9 it holds that (c1, . . . , ck) = c = a−
b is a “zero vector in Z

k in the sense that summing the (currently discovered
labels in) T with integer coefficients c1, . . . , ck (and multiplication defined
according to Definition 8) will also be zero. Therefore the answer to the query
defined by vector a is equal to the answer defined by vector b which is s.

– If the above does not happen (and no such (b → s) ∈ QB is found) then
either of the following happens. Suppose the answer returned for (s1, s2) in
execution of B′ is s′:
• Bad event E1: s′ is equal to one of the labels in QB . Note that in this

case the executions will diverge because B̂ will choose a random label.
• Bad event E2: s′ is equal to one of the labels discovered in the emulation

of OI(C) (but not present in the current QB).
• Bad event E3: s′ is a new label, but the label chosen by B̂ is one of the

labels used in the emulation of OI(C). (Note that in this case the execution
of B̂ will not use any previously used labels in QB .

It is easy to see that as long as none of the events E1, E2, E3 happen, the exe-
cution of B′ and B̂ proceeds statistically the same. Therefore, to prove Claim 3.2
and so Claim 3.2 it is sufficient to bound the probability of the events E1, E2, E3

as we do below.

Claim. Pr[E3] < negl(n).

Proof. This is because (as we described at the beginning of this subsection above)
the size of S is nω(1) but the number of labels discovered in the obfuscation phase
is at most k = poly(n). Therefore the probability that a random label from S
after excluding labels in QB (which is also of polynomial size) hits one of at most
k possible labels is ≤ k/(|S| − |QB |) = negl(n). Therefore, the probability that
E3 happens for any of the oracle quries in the execution of B̂ is also negl(n).

Claim. Pr[E2] < δ/(3 log |G|) < δ/3.

Proof. We will prove this claim using the randomness of m ∈ [�]. Note that
every time that a label u is discovered in learning phase 1, this label u cannot be
discovered “again”, since it will be in QB from now on. Therefore, the number of
possible indexes of i ∈ [�] such that during the i’th execution of the learning phase
1 we discover a label out of QB is at most k. Therefore, over the randomness
of m ← [�] the probability that the m + 1’st execution discovers any new labels
(generated in the obfuscation phase) is at most k/� ≤ δ/(3 log |G|).
Claim. Pr[E1] < δ/3.
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Proof. Call i ∈ [�] a bad index, if event E3 happens conditioned on m = i
during the execution of B′ (which is the (m+1)’s execution of learning phase 1).
Whenever E3 happens at any moment, it means that the vector c is not currently
in W (QB), but it will be added W just after this query is made. We will show
(Lemma 21 below) that the size of span

Z
(W ) will at least double after this oracle

query for some set span
Z
(W ) that depends on W and that span

Z
(W ) ⊆ Gk, and

so |span
Z
(W )| ≤ |G|k. As a result the number of bad indexes i will be at most

log |G|k = k log |G|. Therefore, over the randomness of m ∈ [�] the probability
that m + 1 is a bad index is at most k log |G|/� ≤ δ/3.

Lemma 21. Let W ⊆ Gk for some abelian group G. Let span
Z
(W ) =

{∑
w∈W aww | aw ∈ Z} be the module spanned by W using integer coefficients.

If c �∈ span
Z
(W ), then it holds that

|span
Z
(W ∪ {c})| ≥ 2 · |span

Z
(W )|.

Proof. Let A = span
Z
(W ) and let B = {c + w | w ∈ span

Z
(W )} be A shifted

by c. It holds that |A| = |B| and A ∪ B ⊂ span
Z
(W ∪ {c}). It also holds that

A ∩ B = ∅, because otherwise then we would have: ∃i, j : w + c = w′ for
w,w′ ∈ span

Z
(W ) which would mean c = w − w′ ∈ span

Z
(W ) which is a

contradiction. Therefore |span
Z
(W ∪ {c})| ≥ |A| + |B| = 2 · |span

Z
(W )|.

Soundness: VBB Simulatability. To derive the soundness we apply Lemma 5 as
follows. O will be the obfuscator in the ideal model and Ô will be our obfuscator
in the plain model where z′ = QB ,W, T, r is the extra information output by Ô.
The algorithm U will be a similar algorithm to Ô but only during its learning
phase 1 and 2 starting from an already obfuscated B. However, U will continue
generating z′ using the actual oracle I[G �→ S] instead of inventing the answers
through lazy evaluation. Since the emulation of the oracle during the learning
phases, and that all of QB ,W, T,R could be obtained by only having B (and no
secret information about the obfuscation phase are not needed) the algorithm U
also has the properties needed for Lemma 5.

Remark 22 (General abelian vs Zn). Note that when G = Zn is cyclic, the map-
ping ρG : Z �→ G of Lemma 9 will be equivalent to simply mapping every a ∈ Z

to (a mod n) ∈ G. Therefore, Definition 8 generalizes the notion of Zn as a ring
to general abelian groups, since the multiplication x ·y mod n in Zn is the same
as a multiplication in which x is interpreted from Z (as in Definition 8) which is
equivalent to doing the multiplication inside G according to by Lemma 9.

3.3 Degree-O(1) Graded Encoding Model

We adapt the following definition from [Pas15] restricted to the degree-d poly-
nomials. For simplicity, as in [Pas15] we also restrict ourselves to the setting
in which only the obfuscator generates labels and the obfuscated code only
does zero tests, but the proof directly extends to the more general setting of
[BGK+14,BR14]. We also use only one finite ring R in the oracle (whose size
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could in fact depend on the security parameter) but our impossibility result
extends to any sequence of finite rings as well.

Definition 23 (Degree-d Ideal Graded Encoding Model). The oracle
Md

R = (enc, zero) is stateful and is parameterized by a ring R and a degree
d and works in two phases. For each l ∈ [d], the oracle enc(·, l) is a random
injective function from the ring R to the set of labels S = {0, 1}3·|R|.

1. Initialization phase: In this phase the oracle answers enc(v, l) queries and for
each query it stores (v, l, h) in a list LO.

2. Zero testing phase: Suppose p(·) is a polynomial whose coefficients are explic-
itly represented in R and its monomials are represented with labels h1, . . . , hm

obtained through enc(·, ·) oracle in phase 1. Given any such query p(·) the ora-
cle answers as follows:
(a) If any hi is not in LO (i.e., it is not obtained in phase 1) return false.
(b) If the degree of p(·) is more than d then return false.
(c) Let (vi, li, hi) ∈ LO. If p(v1, . . . , vm) = 0 return true; otherwise false.

Remark 24. Remarks 13 and 14 regarding the stateful vs stateless oracles and
the sparsity of the encoding in the context of generic group model apply to
the graded encoding model as well. Therefore, as long as the encoding is sparse
(which is the case in the definition above whenever |R| is of size nω(1)) the
probability of obtaining any valid label h = enc(v, l) through any polynomial
time algorithm without it being obtained from the oracle previously (by the
same party or another party) becomes negligible, and so the model remains
essentially equivalent (up to negligible error) even if the oracle does not keep
track of which labels are obtained previously through LO.

We prove the following theorem generalizing a similar result by Pass and
shelat [Pas15] who proved this for any finite field; here we prove the theorem for
any finite ring.

Theorem 25. Let R be any ring of size at most 2poly(n). Let O be any
ε-approximate VBB obfuscator for general circuits in the ideal degree-d graded
encoding model Md

R for d = O(1) where the initialization phase of Md
R happens

during the obfuscation phase. Then for any δ = 1/poly(n) there is an (ε + δ)-
approximate obfuscator Ô for poly-size circuits in the plain model.

See Sect. 3.3 for the proof of Theorem25. As in previous sections, the follow-
ing corollary is obtained from Theorem25 by taking δ = ε/2.

Corollary 26. If TDPs exist, then there exists no (1/2 − ε)-approximate VBB
obfuscator O for general circuits in the ideal degree-d graded encoding model
Md

R for any finite ring R of at most exponential size |R| ≤ 2poly(n) and any
constant degree d, assuming the initialization phase of Md

R happens during the
obfuscation phase.
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[Pas15] state their theorem in a more general model where a sequence of
fields of growing size are accessed. For simplicity, we state a simplified variant
for simplicity of presentation where only one ring is accessed but we let the size
of ring R to depend on the security parameter n. Our proof follows the footsteps
of [Pas15] but will deviate from their approach when R �= Zp by using some of
the ideas employed in Sect. 3.

Proving Theorem 25. Here we sketch the proof assuming the reader is familiar
with the proof of Theorem15 from previous section. The high level structure of
the proof remains the same.

Construction. The new obfuscator Ô will have these phases:

– Emulating obfuscation. Ô emulates OMd
R(C) to get circuit B.

– Learning heavy subspace of space of zero vectors: The learning phase here will
be rather simpler than those of Sect. 3.2 and will be just one phase. Here
we repeat the learning phase m times where m is chosen at random from
� = [k · log(|G|)/δ�]. The variables W and T will be the same as in Sect. 3.2
with the difference that W will consist of the vector of coefficients for all
polynomials whose zero test answer is true.

– The returned obfuscated code will be B̂ = (B,W, T, r) where r is again the
randomness needed to run the obfuscated code.

– Executing B̂. To execute B̂ on input x, we answer zero test queries as follows.
For any query vector (of coefficients) a we test whether a ∈ span

Z
(W ).11 If

a ∈ span
Z
(W ) then return true, otherwise return false.

Completeness and Soundness.

– The completeness follows from the same argument given for the soundness of
Construction 3.2. Namely, the execution of B̂ is identical to the execution of
the m + 1’s learning phase (as if it exists) up to a point where we return a
wrong false answer to an answer that is indeed a zero polynomial. (Note that
the converse never happens). However, when such event is about to happen,
the size of span

Z
(W ) will double. Since the size of span

Z
(W ) is at most |R|k, if

we choose m at random from [�] the probability of the bad event (of returning
a wrong false in m + 1’st execution) is at most k log |R|/� = δ.

– The soundness follows from Lemma 5 similarly to the way we proved the
soundness of the construction of Sect. 3.2.

Extension to Avoid Initialization. In Theorem 25 we have a restriction which
says that the initialization phase must happen during the obfuscation phase
only. We can extend the proof of Theorem25 to the case that we don’t have this
restriction. This entails allowing the obfuscator O and the obfuscated circuit
B to ask any type of query (be it initialization phase queries or zero-testing

11 Note that we do not solve a system of equations in R and rather search only integer
solutions to xW = a as we did in Sect. 3.2.
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queries) during their execution. The reason that we can avoid this restriction
is that, whenever the obfuscated circuit B asks an initialization phase query
enc(v, l), we can treat it as a polynomial containing v. enc(1, l) and using that
we can find out whether we should answer this query randomly or using one of
the previous labels. This is very similar to the method that we employed in the
learning and execution phases of generic group model case.

Claim. Let R be any ring of size at most 2poly(n). Let O be any ε-approximate
VBB obfuscator for general circuits in the ideal degree-d graded encoding model
Md

R for d = O(1), Then for any δ = 1/poly(n) there is an (ε + δ)-approximate
obfuscator Ô for poly-size circuits in the plain model.

Proof. Suppose that obfuscated circuit is B, and let {hi = enc(vi, li)}n
1 be the

obfuscator’s queries. We already know that n is less than the running time of
obfuscator. We might learn some pair of (hi, vi) during the learning phase.

Construction. The new ε-approximate obfuscator Ô will have these phases:

– Emulating obfuscation. same as previous case.
– Learning obfuscator’s queries and heavy subspace of space of zero vectors: We

do exactly what we did in previous learning phase. Also if obfuscated circuit
asked initialization phase queries, we memorize it.

– The returned obfuscated code will be B̂ = (B,W, T, r) where r is again the
randomness needed to run the obfuscated code.

– Executing B̂. To execute B̂ on input x, we do as follows. If we saw query
enc(v, l): First we check, if we memorized query enc(v, l) before, we answer it
using memorized queries list otherwise we answer it randomly. Also we treat
enc(v, l) as a polynomial v.enc(1, l). We answer zero test queries as follows.
For any query vector (of coefficients) a we test whether a ∈ span

Z
(W ).12 If

a ∈ span
Z
(W ), return true, otherwise return false.

Completeness and Soundness.

– The proof of completeness is same as previous case. The only difference is that
here we need to be sure that we answer initialization phase query correctly
(call it event E). Let ji be the index such that we saw the query enc(vi, li)
for the first time. E happens if we hit one of the index ji. Since we chose m
at random, we can always bound pr(E) by choosing the right l.

– The soundness is same as previous case.

Remark 27. Note that our proof of Theorem25 does not assume any property
for the multiplication (even the associativity!) other than assuming that it is
distributive. Distributivity is needed by the proof since we need to be able to
conclude that the summation of the vectors of the coefficients of two zero poly-
nomials is also the vector of the coefficients of a zero polynomial; the latter is
implied by distributivity.
12 Note that we do not solve a system of equations in R and rather search only integer

solutions to xW = a as we did in Sect. 3.2.
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4 Impossibility of VBB in the Random TDP Model

In this section we formally prove Theorem 3 showing that any obfuscator O with
access to a random trapdoor permutation oracle T can be transformed into a
new obfuscator Ô in the plain model (no access to an ideal oracle) with some
loss in correctness. We start by defining the random trapdoor permutation model
and TDP query tuples followed by the formalization of Theorem3.

Definition 28 (Random Trapdoor Permutation). For any security para-
meter n, a random trapdoor permutation (TDP) oracle Tn consists of three sub-
routines (G,F, F−1) as follows:

– G(·) is a random permutation over {0, 1}n mapping trapdoors sk to a public
indexes pk.

– F [pk](x): For any fixed public index pk, F [pk](·) is a random permutation
over {0, 1}n.

– F−1[sk](y): For any fixed trapdoor sk such that G(sk) = pk, F−1[sk](·) is the
inverse permutation of F [pk](·), namely F−1[sk](F [pk](x)) = x.

Definition 29 (TDP query tuple). Given a random TDP oracle Tn =
(G,F, F−1), a TDP query tuple consists of three query-answer pairs
(VG, VF , VF −1) where:

– VG = (sk, pk) represents a query to G on input sk and its corresponding
answer pk

– VF = ((pk, x), y) represents a query to F [pk] on input x and its corresponding
answer y

– VF −1 = ((sk, y), x′) represents a query to F−1[sk] on y and its corresponding
answer x′

We say that a TDP query tuple (VG, VF , VF −1) is consistent if x = x′.

Definition 30 (Partial TDP query tuple). A partial TDP query tuple is
one where one or more of the elements of the tuple are unknown and we denote
the missing elements with a period. For example, we say a query set Q contains
a TDP query tuple (·, VF , ·) if it contains the query-answer pair VF = ((pk, x), y)
but is missing the query-answer pairs VG = (sk, pk) and VF −1 = ((sk, y), x′).

Theorem 31 (Theorem 3 formalized). Let O be an ε-approximate obfus-
cator for poly-size circuits in the random TDP oracle model. Then, for any
δ = 1/poly(n), there exists an (ε + δ)-approximate obfuscator Ô in the plain
model for poly-size circuits.

Before proving Theorem31, we state a corollary of this theorem to rule out
approximate VBB obfuscation in the ideal TDP model. Since [BP13] showed
that assuming TDPs exist, (1/2 − 1/poly)-approximate VBB obfuscator does
not exist for general circuits, we obtain the following corollary by taking δ = ε/2.
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Corollary 32. If TDPs exist, then there exists no (1/2 − ε)-approximate VBB
obfuscator O for general circuits in the ideal random TDP model for any ε =
1/poly(n).

The proof of Theorem31 now follows in the next two sections. We will first
describe the algorithm of the obfuscator in the plain model, and then will analyze
its completeness and soundness.

4.1 The Construction

We first describe how the new obfuscator Ô generates some data B̂, and then
we will show how to use B̂ to run the new obfuscated circuit in the plain model.
We also let lO, lB = poly(n), respectively, be the number of queries asked by the
obfuscator O and the obfuscated code B to the random trapdoor permutation
oracle T . Note that, for simplicity of exposition, we assume the adversary only
asks the oracle for queries of size n (i.e. the domain of the permutations in T
are of fixed size n). However, as mentioned in Sect. 1.2, we can easily extend the
argument to handle O(log(n))-size or ω(log(n))-size queries to T .

How to Obfuscate

The New Obfuscator Ô in Plain Model. Given an ε-approximate obfuscator O
in the random TDP model, we construct a plain-model obfuscator Ô such that,
given a circuit C ∈ {0, 1}n, works as follows:

1. Emulation phase: Emulate OT (C). Let QO represent the set of queries asked
by OT and their corresponding answers. We initialize QO = ∅. For every
query q asked by OT (C), we would answer the query uniformly at random
conditioned on the answers to previous queries.

2. Canonicalize B: Let the obfuscated circuit B be the output of O(C). Modify
B so that, before asking any query of the form F−1[sk](y), it would first ask
G(sk) to get some answer pk followed by F−1[sk](y) to get some answer x
then finally asks F [pk](x) to get the expected answer y.

3. Learning phase: Set QB = ∅. Let the number of iterations to run the learning
phase be m = 2lBlO/δ where lB ≤ |B| represents the number of queries
asked by B and lO ≤ |O| represents the number of queries asked by O. For
i = {1, ...,m}:
– Choose xi

$←− D|C|
– Run B(xi). For every query q asked by B(xi):

• If (q, a) ∈ QO ∪ QB for some answer a, answer consistently with a
• Otherwise, answer q uniformly at random and conditioned on the

answers of previous related queries in QO ∪ QB

• Let a be the answer to q. If (q, a) /∈ QB , add the pair (q, a) to QB

4. The output of the obfuscation algorithm will be B̂ = (B,QB , R) where R =
{r1, ..., r|B|} is a set of (unused) oracle answers that are generated uniformly
at random.
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How to Execute. To execute B̂ on an input x using (B,QB , R) we simply
emulate B(x). For every query q asked by B(x), if (q, a) ∈ QB for some a then
return a. Otherwise, answer randomly with one of the answers a in R and add
(q, a) to QB .

4.2 Completeness and Soundness

Completeness: Approximate Functionality. Consider two separate experiments
(real and ideal) that construct the plain-model obfuscator exactly as described
in Sect. 4.1 but differ when executing B̂. Specifically, in the real experiment,
B̂ emulates B(x) on a random input x using QB and R, whereas in the ideal
experiment, we execute B̂ and answer B(x)’s queries using the actual oracle
T instead. In essence, in the real experiment, we can think of the execution as
B
̂T (x) where T̂ is the TDP oracle simulated by B̂ using QB and R as the oracle’s

answers (without knowing QO, which is part of oracle T ). We will contrast the
real experiment with the ideal experiment and show that the statistical distance
between these two executions is at most δ. In order to achieve this, we will
identify the events that differentiate between the executions BT (x) and B

̂T (x),
and to that end we will make use of the following two lemmas:

Lemma 33 ([GKLM12]). Let B be a canonical oracle-aided algorithm that asks
t queries to a TDP oracle T . Let EG be the event that B asks a query of the
form VG = (sk, pk) after asking either query VF = ((pk, x), y) and/or VF −1 =
((sk, y), x) from the TDP query tuple (VG, VF , VF −1). Then Pr[EG] ≤ O(t2/2n).

Lemma 34 ([GKLM12]). Let B be an oracle-aided algorithm that asks t queries
to a TDP oracle T and let Q be the set of queries that B have issued. Then for
any new query x, the answer is either (1) determined completely by Q or (2) is
drawn from a distribution with a statistical distance of O(t/2n) away from the
uniform distribution.

Now let q be a new query that is being asked by B
̂T (x). We present a case-

by-case analysis of all possible queries to identify the cases that can cause dis-
crepancies between the real and ideal experiments:

– Case 1: If q is determined by the queries in QB in the real experiment then
it is also determined by QB in the ideal experiment.

– Case 2: If q is not determined by QB ∪ QO in the ideal experiment then it is
also not determined by QB in the real experiment. In the ideal experiment the
query will be answered randomly and consistently with respect to QB ∪ QO

whereas in the real experiment the query will be answered randomly and
consistently with respect to QB . By Lemma 34, the answers will be from a
distribution that is statistically close to uniform.

– Case 3: If q is not determined by QB in the real experiment then, depending
on the queries in QO, it may or may not be so the ideal experiment:
• Case 3a: The query q is in QO. In that case, in the real experiment, the

answer would be random whereas in the ideal experiment it would use the
correct answer from QO.
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• Case 3b: The query q is of type VG = (sk, pk) and the corresponding
partial TDP query tuple (., VF , VF −1) is in QO

• Case 3c: The query q is of type VF = ((pk, x), y) and the corresponding
partial TDP query tuple (VG, ., VF −1) is in QO

• Case 3d: The query q is of type VF −1 = ((sk, y), x) and the corresponding
partial TDP query tuple (VG, VF , .) is in QO

• Case 3e: The query q is of type VF = ((pk, x), y) and VG = (sk, pk) is in
QB , but VF −1 = ((sk, y), x) is in QO

• Case 3f : The query q is of type VF −1 = ((sk, y), x) and VG = (sk, pk) is in
QB , but VF = ((pk, x), y) is in QO

• Case 3g: The query q is of type VF = ((pk, x), y) and VF −1 = ((sk, y), x)
is in QB , but VG = (sk, pk) is in QO

• Case 3h: The query q is of type VF −1 = ((sk, y), x) and VF = ((pk, x), y)
is in QB , but VG = (sk, pk) is in QO

We note that the bad events that can cause any differences between the real
and ideal experiments are case 2 and parts of case 3. For case 2, Lemma 34
ensures that this event happens with negligible probability. For case 3a, learning
heavy queries would diminish the effect of this event. For cases 3b, 3e, and 3f ,
Lemma 33 ensures that this event happens with negligible probability since VG

was issued after VF and/or VF −1 was asked. For cases 3c and 3d, the remaining
query from the tuple would have been defined in QO and is thus captured during
the learning of heavy queries. For case 3g, if VG and VF −1 were asked during
the emulation or learning phases, then VF would also be defined and thus can
be learned. However, if VF −1 was asked during the execution phase then, due
the canonicalization of B, it would have to ask VG ∈ QO which reduces to case
3a. Similarly, for case 3h, due the canonicalization of B, we would have to ask
VG ∈ QO and this reduces to case 3a once again.

For any x, define Ek(x) to be the event that case k happens and let event
E(x) = (E2(x) ∨ E3a(x) ∨ E3b(x) ∨ E3e(x) ∨ E3f (x)). Assuming that event E

does not happen, the output distributions of BT (x) and B
̂T (x) are identical.

More formally, the probability of correctness for Ô is:

Pr
x

[B ̂T (x) �= C(x)] = Pr
x

[B ̂T (x) �= C(x) ∧ ¬E(x)] + Pr
x

[B ̂T (x) �= C(x) ∧ E1(x)]

≤ Pr
x

[B ̂T (x) �= C(x) ∧ ¬E(x)] + Pr
x

[E(x)]

By the approximate functionality of O, we have that:

Pr
x

[OT (C)(x) �= C(x)] = Pr
x

[BT (x) �= C(x)] ≤ ε(n)

Therefore,

Pr
x

[B ̂T (x) �= C(x) ∧ ¬E(x)] = Pr
x

[BT (x) �= C(x) ∧ ¬E(x)] ≤ ε

We are thus left to show that Pr[E(x)] ≤ δ. By Lemma 34, Pr[E2(x)] ≤ negl(n)
and by Lemma 33, Pr[E3b ∨ E3e(x) ∨ E3f (x)] ≤ negl(n) via a union bound.
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The probability of event E3a was already given in [CKP15], but for the sake of
completeness we show our version of the analysis here. As a result, we get that
Pr[E(x)] ≤ δ/2 + negl(n) ≤ δ.

Claim. It holds that Prx[E3a(x)] ≤ δ/2.

Proof. Let (q1, ..., qlB ) be the sequence of queries asked by B
̂T (x) where lB ≤ |B|,

and let qi,j be the jth query that is asked by BT (xi) during the ith iteration of
the learning phase. We define Ej

3a(x) to be the event that the jth query of B(x)
is in QO but not in QB . We also define pq,j to be the probability that qj = q for
any query q and j ∈ [lB ]. We can then write the probability of E3a as follows:

Pr
x

[E3a(x)] ≤ Pr
x

[E1
3a(x) ∨ ... ∨ ElB

3a (x)]

=
lB∑

j=1

Pr
x

[¬E1
3a(x) ∧ ... ∧ ¬Ej−1

3a (x) ∧ Ej
3a(x)]

≤
lB∑

j=1

∑

q∈QO

Pr
x

[qj = q ∧ (q1,j �= q ∧ ... ∧ qm,j �= q)]

=
lB∑

j=1

∑

q∈QO

pq,j(1 − pq,j)m ≤
lB∑

j=1

∑

q∈QO

1
m

≤
lB∑

j=1

lO
m

=
lBlO
m

.

Thus, given that m = 2lBlO/δ, we get Pr[E3a(x)] ≤ δ/2.

Soundness: VBB Simulatability. To show that the security property is satisfied,
it suffices to provide a PPT algorithm UT in the ideal TDP model that takes as
input OT (C) for some circuit C and outputs a distribution that is statistically
close to the output distribution of Ô. If that is the case, we can invoke Lemma 5
and conclude that Ô is also VBB-secure.

The description of U is precisely the same as Steps 2–4 of the procedure
detailed in Sect. 4.1 except that queries made by B = OT (C) are answered
using oracle T instead of being randomly simulated. If we let (B,QB , R) be the
output of UT (OT (C)) then we can easily see that it is identically distributed to
the output distribution of Ô since, in both cases, QB has query-answers with
consistent and random TDP query tuples. They differ only by how these query
answers are generated (UT answers them using T , while Ô simulates them using
lazy evaluation with respect to some oracle T̂ distributed the same as T ).

4.3 Extension to Hierarchical Random TDP

In this section, we reason that the proof for the ideal TDP case can be extended
to hierarchical TDP oracles as well. We start by defining how the oracle for the
random hierarchical trapdoor permutation primitive changes from Definition 28.
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Definition 35 (Random Hierarchical Injective Trapdoor Functions).
For any security parameter n and l = poly(n), an l-level random hierarchi-
cal injective trapdoor function (HTDF) oracle T l

n consists of 2l + 3 subroutines
({Ji}l+1

i=1, {Ki}l+1
i=0) defined as follows:

– Ki[IDi−2, idi−1](tdi): An injective function, indexed by identity vector IDi−2 =
(id0, ..., idi−2) and idi−1, that accepts as input an i-level trapdoor tdi ∈ {0, 1}m

and outputs a randomly chosen identity idi ∈ {0, 1}n where m = 10nl if
i ∈ [1, l] and m = n (i.e. it is a permutation) if i = {0, l + 1}.

– Ji[IDi−2, tdi−1](idi): An injective function, indexed by identity vector IDi−2 =
(id0, ..., idi−2) and tdi−1 that, given the identity idi ∈ {0, 1}n, outputs the
corresponding trapdoor tdi ∈ {0, 1}m where m = 10nl if i ∈ [1, l] and m = n
(i.e. it is a permutation) if i = {0, l + 1}.

Note that, for any fixed IDi−2, if tdi = Ji[IDi−2, tdi−1](idi) and idi−1 =
Ki−1[IDi−3, idi−2](tdi−1) then idi = Ki[IDi−2, idi−1](tdi). In other words, we
can think of Ki as the inverse of Ji only if the indices of the two functions
match (that is, the trapdoor tdi−1 indexing Ji corresponds to the identity idi−1

indexing Ki).

Remark 36. It is also crucial to note that we used (sparse) injective functions for
generating the intermediate levels of trapdoor. Such a change was made in order
to obtain interesting primitives from this oracle, such as fully-secure hierarchical
identity-based encryption (HIBE). If permutations were used instead, we would
only achieve HIBE with security against adversaries that do not choose an iden-
tity for the permutation F to attack. Furthermore, removing Ki for i ∈ [1, l]
as a way to prevent this attack’s capability hinders our ability to perform the
canonicalization procedure for the obfuscated circuit.

Remark 37. For the special case of 1-level HTDF (i.e. TDP), we only have
three permutations: K0,K1[id0] and J1[td0], which correspond to permutations
G,F [pk], and F−1[sk], respectively in the language of TDP that we used in
Definition 28. Note that here, we would refer to 0-level identities as master pub-
lic keys and 0-level trapdoors as master secret keys.

We also present a variant of TDP query tuples that generalizes Definition 29 to
work with hierarchical injective trapdoor functions.

Definition 38 (HTDF query tuple). Given a random l-level HTDF oracle
T l

n = ({Ji}l+1
i=1, {Ki}l+1

i=0), an i-level HTDF query tuple consists of three (possi-
bly) related query-answer pairs (VKi−1 , VKi

, VJi
) where, for any fixed IDi−2 =

(id0, ..., idi−2):

– VKi−1 = (tdi−1, idi−1) represents a query to Ki−1[IDi−3, idi−2] on input tdi−1

and its corresponding answer idi−1

– VKi
= ((idi−1, tdi), idi) represents a query to Ki[IDi−2, idi−1] on input tdi

and its corresponding answer idi
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– VJi
= ((tdi−1, idi), td′

i) represents a query to Ji[IDi−2, tdi−1] on input idi and
its corresponding answer td′

i

We say that an i-level HTDF query tuple is consistent if tdi = td′
i.

Remark 39. For the purposes of comparison, we note that, for the special case
of 1-level HTDF (i.e. TDP), we only have TDP query tuples of the form
(VK0 , VK1 , VJ1) = (VG, VF , V −1

F ). Thus, VG = (sk, pk) represents a query to
G on sk = td0 and the answer pk = id0, VF = ((pk, x), y) represents a query to
Fpk on x = td1 and the answer y = id1, and VF −1 = ((sk, y), x′) represents a
query to F−1

sk on y and the answer x′, which should be x if the tuple is consistent.

Extension of the Proof. The extension of the impossibility result to random
HTDF is straightforward, so we will outline the main differences between the
TDP case and describe how to resolve the issues that are related to this oracle.
First, we still perform the normalisation procedure on Ô and B where the query
behaviour of these algorithms are modified such that for any query q of the
form Ji[IDi−2, tdi−1](idi), we first ask Ki−1[IDi−3, idi−2](tdi−1) to get idi−1.
This allows us to discover whether we have a query Ki[IDi−2, idi−1](tdi) whose
answer is idi, in which case we can answer q with tdi. This procedure ensures
that all query tuples that contain Ji queries are consistent.

We now turn to verifying whether the proof of approximate functionality for
TDP holds in this case as well and, in particular, focus on the event E(x) that
was defined Sect. 4.2. The main issue that we have to consider, which is unique
to the HTDF case, is the possibility that different consistent TDP query tuples
can be related to each other, and an overlap between these queries may cause an
inconsistency in one of the tuples. Specifically, an i-level TDP query tuple of the
form (VKi−1 , ·, ·) might overlap with an (i− 1)-level TDP query tuple (·, ·, VJi−1)
from QO, where the answer of VKi−1 is inconsistent with that of VJi−1 . However,
our normalisation procedure prevents precisely this issue as any TDP query tuple
that contains VJi−1 must also have VKi−1 , which means that the queries should
not overlap otherwise event E1 occurs leading to a contradiction to our initial
assumption.

Acknowledgement. We thank Victor Shoup and Hendrik W. Lenstra for pointing
us out to the literature on solving linear equations over the ring Zn.
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Abstract. Since the seminal work of Garg et al. (FOCS’13) in which
they proposed the first candidate construction for indistinguishability
obfuscation (iO for short), iO has become a central cryptographic primi-
tive with numerous applications. The security of the proposed construc-
tion of Garg et al. and its variants are proved based on multi-linear
maps (Garg et al. Eurocrypt’13) and their idealized model called the
graded encoding model (Brakerski and Rothblum TCC’14 and Barak
et al. Eurocrypt’14). Whether or not iO could be based on standard and
well-studied hardness assumptions has remain an elusive open question.

In this work we prove lower bounds on the assumptions that imply iO
in a black-box way, based on computational assumptions. Note that any
lower bound for iO needs to somehow rely on computational assump-
tions, because if P = NP then statistically secure iO does exist. Our
results are twofold:

1. There is no fully black-box construction of iO from (exponentially
secure) collision-resistant hash functions unless the polynomial hier-
archy collapses. Our lower bound extends to (separate iO from) any
primitive implied by a random oracle in a black-box way.
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2. Let P be any primitive that exists relative to random trapdoor per-
mutations, the generic group model for any finite abelian group, or
degree-O(1) graded encoding model for any finite ring. We show that
achieving a black-box construction of iO from P is as hard as basing
public-key cryptography on one-way functions.
In particular, for any such primitive P we present a constructive pro-
cedure that takes any black-box construction of iO from P and turns
it into a construction of semantically secure public-key encryption
form any one-way functions. Our separations hold even if the con-
struction of iO from P is semi-black-box (Reingold, Trevisan, and
Vadhan, TCC’04) and the security reduction could access the adver-
sary in a non-black-box way.

Keywords: Indistinguishability obfuscation · Black-box separations

1 Introduction

The celebrated work of Barak et al. [3] initiated a formal study of the notion
of program obfuscation which is the process of making programs unintelligible
while preserving their functionalities. The main result of [3] was indeed a neg-
ative one showing that a strong form of obfuscation, called virtual black-box
obfuscation, is indeed impossible for general circuits. The same work [3] also
defined a weaker notion of obfuscation, called indistinguishability obfuscation
(iO). The security of iO only requires that the obfuscation of two equivalent and
same-size circuits C1, C2 should be computationally indistinguishable in the eyes
of efficient adversaries.

The first candidate construction for iO was presented in the breakthrough
work of Gentry et al. [12]. [12] showed how to construct iO for NC1 circuits based
on multi-linear assumptions [11], and also showed how to boost iO for NC1 to
iO for general circuits based on the learning with error (LWE) assumption [33].
The work of [12] led to an active area with a long list of results using iO as
a “central hub” [36] for cryptographic tasks/primitives and basing them on iO
together with one-way functions or other (relatively weak) standard assumptions.
Interestingly, as shown by [23] the one-way function itself could be based on iO
and the worst-case assumption that NP �= BPP, leading to tens of applications
solely based on iO and NP �= BPP.1

Assumptions Behind iO. Since the first candidate construction of iO was pre-
sented by [12] a few other variants of this constructions with different assump-
tions have been presented. Brakerski and Rothblum [8] showed that in an idealized
model based on multilinear maps, known as the graded encoding model one can
achieve iO (or even VBB obfuscation) assuming the bounded speedup hypothe-
sis. Barak et al. [2] improved the result of [8] by making the construction uncon-
ditionally secure in the graded encoding model. Miles et al. [27] took another step

1 Note that we cannot hope to get OWFs from iO alone without any hardness for
class NP since iO exist unconditionally if NP = P.
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in this direction by making the construction even more secure by allowing unlim-
ited additions across different encoding “levels”. Pass et al. [32] constructed iO for
NC1 circuits based on (subexponentially secure) semantically-secure multilinear
encodings. Their work was the first result basing iO on falsifiable assumptions [29],
however they relied on super-polynomial assumptions. Gentry et al. [15] construct
iO based on subgroup elimination assumptions.

Despite all the efforts mentioned above to base iO on hardness assumptions,
the assumptions behind the constructions of iO seem to be qualitatively differ-
ent compared to other cryptographic primitives, even in comparison with very
powerful primitives such as fully homomorphic encryption [14,35] which could
be constructed from LWE [9]. The recent beautiful work of [1] proved the first
limitation on the power of iO by ruling out constructions of collision-resistant
hash functions from iO and OWF (even if iO uses OWF in a non-black-box way).

To the best of our knowledge, no lower-bounds on the complexity of the
assumptions behind iO are proved yet. The same work of [1] ruled out fully
black-box constructions of iO from private-key functional encryption schemes
(PFE), but this result requires the iO to also handle circuits with PFE gates. We
note, however, that obfuscating circuits in plain model with no oracle gates is in
fact sufficient for all applications of iO. Moreover, since iO exists if NP = P, any
lower bound on the complexity of (standard definition of) iO in which we only
aim at obfuscating circuits in the plain model needs to rely on computational
assumptions (unless we first prove NP �= P).

In this work we initiate a formal study on the assumption complexity of iO
from a lower-bound perspective.2 We prove our results in the black-box frame-
work of Impagliazzo and Rudich [21] and its refinements by Reingold et al. [34].
Lower bounds against black-box constructions/reductions are considered funda-
mental due to the abundance of black-box techniques as well as their (typical)
efficiency advantage over their non-black-box counterparts.

Since applications of iO almost always lead to non-black-box constructions,
it could be argued that a black-box separation for iO is not meaningful. Note,
however, that in this work we are not studying which primitives could be con-
structed from iO in a black-box way. We are instead looking at the complexity of
assumptions behind iO. An instructive analogy is zero knowledge proofs for NP
(ZKP). Using ZKPs for general NP statements also makes constructions non-
black-box (since some piece of code is used as witness used by the prover) yet, we
can indeed construct ZKPs for NP from one-way functions in a fully black-box
way [17,18,28].3 Therefore, even though iO leads to non-back-box constructions,
the construction of iO itself could very much be black-box, and so separating it
from classical primitives is also meaningful.

2 As mentioned above, we do not allow oracle gates for the circuits that are going to
be obfuscated.

3 It is also instructive to note that even though ZKP for NP could be constructed
from OWFs in a fully black-box way, it is conceivable that a separation would hold
if we require a proof system for satisfiability of circuits with oracle gates.
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1.1 Our Results

Our first lower bound holds for any primitive implied by a random oracle (e.g.,
exponentially secure one-way functions or collision-resistant hash functions) and
it is proved for fully black-box constructions that treat the primitive and the
adversary in a black-box way (see Definition 5).

Theorem 1 (Fully black-box separation from primitives implied by
random oracle). Unless the polynomial hierarchy collapses, there is no fully
black-box construction of iO from collision-resistant hash functions or more gen-
erally any primitive implied by a random oracle in a black-box way.

Intuition Behind the Proof. To prove Theorem 1 we will first prove a use-
ful lemma (see Lemma 17) which, roughly speaking, asserts that for any pair
of circuits C1, C2, either (1) a (computationally unbounded) polynomial-query
attacker can guess which one is obfuscated in the random oracle model with a
probability close to one, or that (2) there is a way to obfuscate them into the same
output circuit B. The latter could be used as a witness that C1 and C2 compute
the same function, assuming that the obfuscation is an iO. Now consider the
set of equivalent and same-size circuit C = {(C0, C1) | C0 ≡ C1 ∧ |C0| = |C1|}.
If Case (1) happens for an infinite subset of C, we get a poly-query attacker
against iO in the random oracle model which is sufficient for deriving the black-
box separations of Theorem 1. On the other hand, if Case (1) happens only for
a finite subset of C, we get an efficient procedure to certify the equivalence of
two given circuits, implying NP �= P. We prove Lemma 17 by reducing it to a
result by Mahmoody and Pass [25] who ruled out the existence of non-interactive
commitments from one-way functions. Roughly speaking, we construct a non-
interactive commitment scheme based on common input (C1, C2) in the random
oracle model, and we show that: the cheating receiver strategy of [25] implies
our Case (1), and the cheating sender strategy of [25] implies our Case (2). The
result of [25] shows that either of these strategies always exist. See Sect. 3 for
the formal and detailed proof.

Our second lower bound does not rule out black-box construction of iO based on
believable assumptions, but shows that achieving such constructions for a large
variety of primitives is as hard has solving another long standing open question
in cryptography; namely, basing public-key encryption on one-way functions.
It also captures a larger class of security reductions known as semi-black-box
reductions [34] that allow the security reduction to access the adversary in a
non-black-box way (see Definition 6).

Theorem 2 (Hardness of semi-black-box construction). Let P be a prim-
itive that provably exists relative to random trapdoor permutation oracle, the
generic group model (for any finite abelian group) or the degree-O(1) graded
encoding model (for any finite ring). Any semi-black-box construction of iO
from P (constructively) implies a construction of semantically secure public-key
encryption from one-way functions.
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Primitives Captured by Theorem 2. Theorem 2 captures a large set of pow-
erful cryptographic primitives that could be constructed in idealized models.
For example trapdoor permutations (and any primitive implied by TDPs in a
black-box way) trivially exist relative to the idealized model of random TDPs.
Even primitives that we do not know how to construct from TDPs in a black-
box way (e.g., CCA secure public key encryption) are known to exist in the
random TDP model [5]. The generic group model defined by Shoup [37] (see
Definition 12) is an idealized model in which (a black-box form of) the DDH
assumption holds unconditionally. Therefore, our separation of Theorem 2 cov-
ers any primitive that could be constructed from DDH assumption in a black-box
way. The same holds for bilinear assumptions in the graded encoding model (see
Definition 13) of degree 2. Namely, primitives that could be constructed from
bilinear assumptions (in a black-box way) exist in the degree O(1) graded encod-
ing model unconditionally. This includes one-round 3-party key-agreement [22],
identity based encryption [7], etc.

Intuition Behind the Proof. Our main tool in proving Theorem 2 is the following
theorem which is implicit in the recent work of the authors [24,31]. Even though
the focus of [24,31] is on virtual black-box obfuscation, the same construction
presented in [24,31] for the case of VBB implies the following theorem for iO.

Theorem 3 (Implicit in [24,31]). The existence of iO in any of the idealized
models of: random trapdoor permutation oracle, generic group model for finite
abelian groups, or the degree-O(1) graded encoding model for finite rings, implies
1/p(n)-approximate iO in the plain model for any polynomial p(n).

We then show that the existence of (1/6)-approximate iO and any one-way
functions imply the existence of “approximately correct” and “approximately
secure” public-key encryption schemes. In order to prove this we employ a
construction of Sahai and Waters [36] using which they showed that iO and
OWF imply PKE. Here we show that the very same construction, when instan-
tiated using approximate iO, leads to “approximately correct” and “approxi-
mately secure” public-key encryption. Finally we use a result of Holenstein [19]
who showed how to amplify any approximately-correct and approximately-secure
PKE into a full fledged (semantically secure) PKE for sufficiently good approx-
imation! See Sect. 4 for the formal and detailed proof.

Remark 4. Our proof of Theorem 1 relies on perfect completeness of iO.
Theorem 2 above holds even if with negligible probability over the obfuscator’s
randomness the obfuscated circuit does not compute the same function. Extend-
ing Theorem 1 to allow negligible error over the randomness of the obfuscator
remains an interesting open questions.

Previous work on hardness of black-box constructions. Theorem 2 has the same
spirit as the result by Impagliazzo and Rudich [21] who showed any semi-black-
box construction of key agreement from one-way functions would implies P �=
NP. Therefore, the fact that we are far from proving P �= NP implies that we
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as far from basing key agreements on one-way functions in a black-box way.4

Similarly, our Theorem 2 shows that as long as we are not able to base public-
key encryption on one-way functions, we cannot base iO on a variety of strong
primitives in a semi-black-box way. Other results of the same flavor exist in
connection with program checkers [6] for NP. Mahmoody and Xiao [26] showed
that any construction of one-way functions based on worst-case hardness of NP
implies program checkers for NP whose existence is one of the long standing
open questions in complexity theory.

Falsifiability of iO. An intriguing open question regarding assumption complex-
ity of iO is whether iO could be based on any “falsifiable” assumption [29].
A falsifiable assumption is one with an efficient challenger security game. The
question is raised since an adversary attacking an iO scheme starts with propos-
ing two equivalent circuits and efficient challenger has no direct way to verify
this. Since our primitives used in the theorems above are falsifiable, a separation
of iO from falsifiable assumptions would imply our results for the case of poly-
nomially secure primitives. However, constructions of iO based on exponentially
secure falsifiable assumptions are indeed known [32]. Therefore, our results are
interesting even if one can prove that iO cannot be based on falsifiable assump-
tions. Moreover, the known lower bounds against falsifiable assumptions [16,30]
are proved only for black-box proofs of security in which the adversary is used in
a black-box way. Our Theorem 2 holds even for semi-black-box constructions in
which the security reduction could use the adversary in a non-black-box manner.

2 Preliminaries

For circuits C,D, we denote by C ≡ D that they compute the same function.
By |C| we denote the size of the bit representation of C. By a partial oracle f we
denote an oracle that is only defined for a subset of possible queries. For random
variables X,Y , by X ≈ Y we denote the fact that X and Y are distributed
identically. We call a function ε(n) negligible if ε(n) < 1/p(n) for all polynomial
p(·) and sufficiently large n. We call ρ(n) overwhelming, if 1 − ρ(n) is negligible.

2.1 Black-Box Constructions

Definition 5 (Fully black-box constructions [34]). A fully black-box con-
struction of a primitive Q from a primitive P consists of two PPT algorithms
(Q,S) as follows:

1. Implementation: For any oracle P that implements P, QP implements Q.
2. Security reduction: for any oracle P implementing P and for any (computa-

tionally unbounded) oracle adversary A successfully breaking the security of
QP , it holds that SP,A breaks the security of P .

4 Formalizing semi-black-box constructions interpreting the result of [21] in this con-
text is due to [34].
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Primitives with Stronger Hardness. The above definition is for polynomially
secure primitives. When the used primitive P is s-secure for a more quantitative
bound s(n) � poly(n), the security reduction S could potentially run in longer
running time as well so long as it holds that: when P,A are polynomial time,
the total running time of the composed algorithm SP,A is also small enough to
be considered a legal attack against the implementation P of P.

In the following more relaxed form of constructions, the security reduction
can depend arbitrarily on the adversary but it still treats the implementation of
the used primitive in a black-box way.

Definition 6 (Semi-black-box constructions [34]). A semi-black-box con-
struction of a primitive Q from a primitive P is defined similarly to the fully
black-box Definition of 5 with the following difference in the security reduction:

– For any oracle P implementing P and any efficient oracle-aided adversary
AP who breaks the security of QP it holds that SP (A) breaks the security of
P . Note that since A’s description is efficient it could indeed be given to S in
a non-black-box way.

Remark 7. The work of Reingold et al. [34] also defines a “∀∃” variant of the
semi-black-box constructions in which SP can arbitrarily depend on AP (rather
than depending on it in a unified way). In this work we work with the basic
default variant that we also find more natural.

Efficiency of Adversary. We used the term efficient in an unspecified way so that
it could be applied to complexity classes beyond polynomial time. For example,
using a quasi-polynomially secure primitive P to construct a polynomially secure
primitive Q would require a security primitive that is more relaxed and could
lead to a quasi-polynomial (as opposed to polynomial) time attack against P
using any polynomial-time attacker against QP .

2.2 Indistinguishability Obfuscation

Definition 8 ([3]). A PPT algorithm O is an indistinguishability obfuscator
(iO) if the following two hold:

– Correctness: For every circuit C, it holds that Prr[Or(C) ≡ C] = 1.
– Soundness: For every PPT adversary A there exists a negligible function α(·)

such that for every pair of equivalent circuits C1 ≡ C2 with the same size
|C1| = |C2| = n it holds that:

Pr
r,s,b

[As(C1, C2, B) = b : b
$←{0, 1}, B = Or(Cb)] ≤ 1/2 + α(n)

where the probability is over the random seeds of the obfuscator O, adversary
A and the random bit b.
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Definition 9 (Approximate iO). A PPT O is called an ε-approximate iO if
it satisfies the same soundness condition and the following modified correctness
condition.

– Approximate correctness: Prr,x[Or(C)(x) �= C(x)] = ε(|C|) where the proba-
bility is over the randomness of the obfuscator as well as the randomly selected
input.

Definition 10 (Fully and semi-black-box constructions of iO). A fully
black-box construction of iO from primitive P consists of two oracle algorithms
(O,S) such that

– Implementation (correctness): For every oracle P implementing P, every cir-
cuit C, and every randomness r for O it holds that B = OP

r (C) is an oracle-
aided circuit B such that BP ≡ C.

– Soundness: For any oracle P implementing P, any ε ≥ 1/poly(n) and any
oracle adversary A who ε-breaks OP , it holds that SP,A(11/ε(n)) breaks the
security of P .
We say that A ε-breaks OP if for an infinite number of pairs of equivalent
circuits C0 ≡ C1 of equal lengths n it holds that

Pr
r,s

[As(C1, C2, B) : b
$←{0, 1}, B = OP

r (Cb)] ≥ 1/2 + ε(n)

where the probability is over the random seeds of the obfuscator O, adversary
A and the random bit b.

A semi-black-box construction of iO from P is defined similarly, with its
soundness defined along the line of Definition 6. Namely, we require that for
any efficient adversary A who ε-breaks OP , there is also an efficient adversary
breaking the security of P .

2.3 Generic/Idealized Models

Definition 11 (Random Oracle Model). In the random oracle model, all
parties have access to a randomized oracle f such that for each input x, the
answer f(x) is uniformly (and independently of the rest of the oracle) distributed
over {0, 1}|x|.

Definition 12 (Generic Group Model [37]). Let (G,�) be any group of size
N and let S be any set of size at least N . The generic group oracle I[G → S]
(or simply I) is as follows. At first an injective random function σ : G → S is
chosen, and two type of queries are answered as follows.

– Labeling Queries. Given g ∈ G oracle returns σ(g).
– Addition Queries. Given y1, y2, if there exists x1, x2 such that σ(x1) = y1

and σ(x2) = y2, it returns σ(x1 � x2). Otherwise it returns ⊥.
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Definition 13 (Degree-d Ideal Graded Encoding Model). The oracle
Md

R = (enc, zero) is stateful and is parameterized by a ring R and a degree d
and works in two phases. For each l the oracle enc(·, l) is a random injective
function from the ring R to the set of labels S.

1. Initialization phase: In this phase the oracle answers enc(v, l) queries and for
each query it stores (v, l, h) in a list LO.

2. Zero testing phase: Suppose p(·) is a polynomial whose coefficients are explic-
itly represented in R and its monomials are represented with labels h1, . . . , hm

obtained through enc(·, ·) oracle in phase 1. Given any such query p(·) the ora-
cle answers as follows:
(a) If any hi is not in LO (i.e., it is not obtained in phase 1) return false.
(b) If the degree of p(·) is more than d then return false.
(c) Let (vi, li, hi) ∈ LO. If p(v1, . . . , vm) = 0 return true, otherwise false.

Generic Algorithms. A generic algorithm in the generic group model (resp.
graded encoding model) is an algorithm in which no label s is used in an addi-
tion (resp. zero testing) query unless it is previously obtained through the oracle
itself. In this work we only use sparse encodings in which |S|/|G| = nω(1) (resp.
|S|/|R| = nω(1) in the graded encoding model) where n is the security para-
meter. Therefore, the execution of poly-time algorithms in this model will be
statistically close to being generic.

Definition 14 (Primitives in Idealized Models). We say a primitive P
exists relative to the randomized oracle (or idealized model) I if there is an
oracle-aided algorithm P such that:

1. Completeness: For every instantiation I of I, it holds that P I implements
P correctly.

2. Security: Let A be an oracle-aided adversary AI where the complexity of
A is bounded by the specified complexity of the attacks for primitive P. For
example if P is polynomially secure (resp., quasi-polynomially secure), then
A runs in in polynomial time (resp., quasi-polynomial time). For every such
oracle aided A, with measure one over the sampling of the idealized oracle
I

$←I, it holds that A does not break the security of P I .

We call P a black-box construction of P relative to I if the security property
holds also in a “black-box” way defined as follows:

– Let A be an oracle-aided adversary AI where the query complexity of A is
bounded by the specified complexity of the attacks for primitive P. For example
if P is polynomially secure (resp., quasi-polynomially secure), then A only asks
a polynomial (resp., quasi-polynomial) number of queries.
For every such oracle aided A, with measure one over the sampling of the
idealized oracle I

$← I, it holds that A does not break the security of P I .

In the definition above, we only require the scheme to be secure after the
adversary is fixed. This is along the line of the way the random oracle model is
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used in cryptography [5], and lets us easily derive certain primitives in idealized
models. For example it is easy to see that a random trapdoor permutation, with
measure one, is a secure TDP against any fixed adversary of polynomial query
complexity. Therefore, TDPs exist in the idealized model of random TDP in
a black-box way. In fact stronger results are proved in the literature for other
primitives. Impagliazzo and Rudich [21] and Gennaro and Trevisan [13] showed
that one-way functions exist relative to the idealized model of random oracle,
even if we sample the oracle first and then go over enumerating possible attacks.
Chung et al. [10] proved a similar result for collision resistant hash functions.

The following lemma could be verified by inspection.

Lemma 15. If there is a semi-black-box construction of Q from P then:

1. If P exists relative to idealized model I, Q exists relative to I as well.
2. If in addition the construction of P from I is black-box, then a black-box

construction of Q relative to I exists as well.

Proof. Let Q be the semi-black-box construction of Q from P. Let P be the
implementation of P relative to I. It is easy to see that QP is an implementation
of Q relative to I. Now we prove the security properties of Lemma 15.

1. Let A be any successful attacker against the implementation of QP in the
idealized model I. Then by non-zero measure over the choice of I

$←I it
holds that A breaks the security of QP I

. For any such I, the security reduction
SI(A) also breaks the security of P I . This means that the attacker S(A) = B
breaks the security of P I with non-zero measure over the sampled oracle
I

$←I. This contradicts the assumption that P is securely realized in I.
2. A similar proof holds for the black-box constructions in idealized models. The

only modification is that now we use B = SA (rather than S(A)).

3 Separating iO from Random Oracle Based Primitives

In this section we prove the following formalization of Theorem 1.

Theorem 16 (Theorem 1 formalized). If NP �= co-NP then there is no
fully black-box construction of iO from any primitive P that exists relative to a
random oracle in a black-box way. This includes exponentially secure one-way
functions and collision-resistant hash functions.

To prove Theorem 16 we will first prove a useful lemma (see Lemma 17)
which, roughly speaking, asserts that for any pair of circuits C1, C2, either an
attacker can guess which one is obfuscated in the random oracle model with a
probability close to one, or that there is a way to obfuscate them into the same
output circuit B. The latter could be used as a witness that C1 and C2 compute
the same function, assuming that the obfuscation is an iO.
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Lemma 17 (Distinguish or Witness). Let O be an oracle aided randomized
polynomial-time algorithm taking circuits as input such that for every length-
preserving oracle f and every randomness r it holds that Of

r (C) ≡ C (ı.e., O
always outputs circuits with the same input/output functionality as the input
circuit C). Then, at least one of the following holds:

1. There is an infinite sequence of circuits (C1
0 , C1

1 ), . . . , (Ci
0, C

i
1), . . . such that

|Ci
0| = |Ci

1| for all i, and there exists a (computationally unbounded) poly(n)-
query A such that the following holds for all i:

Pr
r,s,f,b

[Af
s (B) = b : b

$←{0, 1}, B = Of
r (Ci

b)] ≥ 1 − 1/n2

where n is the bit size of the circuits: |Ci
0| = |Ci

1| = n.
2. NP = co-NP.

We will first prove Theorem 16 using Lemma 17, and then we will prove
Lemma 17.

Proof (of Theorem 16). In what follows we will always assume NP �= co-NP.
We will describe the proof for one-way functions, but it can be verified that the
very same proof holds for any primitive that holds relative to random oracles in
a black-box way (see Definition 14).

Suppose (O,S) is a fully black-box construction of iO from one-way functions.
We use a random oracle f to implement the one-way function required by O.
By Lemma 17 and the assumption that NP �= co-NP we know that there is
a computationally unbounded attacker A and an infinite sequence of equivalent
and same-size circuits (C1

0 , C1
1 ), . . . , (Ci

0, C
i
1), . . . such that A breaks the security

of iO over the challenge circuits (Ci
0, C

i
1) of length |Ci

0| = n = |Ci
1| by guessing

which one of them is being obfuscated with probability ≥ 1− 1/n2. Let ε = 1/4.
By an averaging argument, with probability at least 1−O(1/n2) over the choice
of oracle f , it holds that the probability that A correctly guesses which one of
(Ci

0, C
i
1) is being obfuscated is at least 1/2 + ε. Since the summation

∑
i 1/i2 =

O(1) converges, by Borel-Cantelli lemma, for measure one of the random oracles
f it holds that A ε-breaks the implemented iO Of .

Now that A is a “legal” adversary, by definition of fully black-box iO, the
security reduction Sf,A shall break the one-way property of f . Algorithms A
and S are both poly(n)-query attackers, and so the combination B = SA also
asks only a polynomial number of queries to f and succeeds in breaking the
one-wayness of f for nonzero measure of samples for f .

The existence of such B, however, is impossible since a random oracle f , with
measure one, is secure against attackers who ask only a polynomial number of
queries [13,21].5

5 The works of [13,21] work with polynomial time Turing machines or circuits, however
their goal is to fix the random oracle f before enumerating the attackers. However,
if the attacker is fixed before the sampling of f , the proofs of [13,21] imply the
one-wayness of f with measure one even if the fixed attacker is computationally
unbounded.
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Now we prove Lemma 17. To prove Lemma 17 we will use the following
lemma from [25].

Lemma 18 ([25]). Suppose S is an oracle-aided PPT algorithm that calls ora-
cle f and takes private input b ∈ {0, 1}, randomness r, and common input
z ∈ {0, 1}n (where n is the security parameter) and outputs c = Sf

r (z, b). For
any δ = δ(n) ≤ 1/100, there is a (computationally unbounded) oracle-aided algo-
rithm R such that for all z ∈ {0, 1}n at least one of the following holds.

1. If f is the random oracle, Rf (z, c) asks poly(n/δ) queries and correctly guesses
the random bit b that Sf

r (z, b) used to generate c with probability ≥ 1 − δ(n).
Namely:

Pr
f,r,b

[Rf (z, c) = b : b
$←{0, 1}, c = Sf

r (z, b)] ≥ 1 − δ(n).

2. There is a partial oracle f ′ of size poly(n) and two random seeds r0, r1 and
a message c such that Sf ′

r0
(z, 0) = c = Sf ′

r1
(z, 1). In other words, there is a

message c that could be opened into both b = 0 and b = 1 using random seeds
r0, r1, and the queries asked by S during these two possible executions are all
described by the partial function f ′.

Remark 19. Mahmoody and Pass [25] proved a more general lemma ruling out
(even “somewhere binding”) non-interactive commitment schemes in the random
oracle model. Lemma 18 is a special case of their result which is still sufficient
for us. In the setting of [25] the security parameter is given to the parties in
the form of 1n, but their proof handles parties who in addition receive some
z ∈ {0, 1} and the parties’ behavior could also depend on the given z. For the
sake of completeness, we have provided a self contained sketch of the proof of
Lemma 18 in Appendix A.

Proof (of Lemma 17)
Consider the set of circuit pairs that are equivalent and of the same size:

C = {(C0, C1) | C0 ≡ C1 ∧ |C0| = |C1|}. We apply Lemma 18 for δ = 1/n2 as
follows. Use (C0, C1) = z ∈ C as the common input given to both parties. Let
S be a sender strategy that, given input bit b, obfuscates Cb and sends out the
obfuscated circuit B.

By Lemma 18 for each (C0, C1) = z ∈ C either of the following holds:

1. Af ((C0, C1), B) can guess the random b in the random oracle model correctly
with probability at least 1 − 1/n2.

2. There is a partial oracle f ′ of polynomial size and two random strings r0, r1
such that Of ′

rb
(Cb) = B for both b ∈ {0, 1}.

Note that if C0 �≡ C1 then Case (2) cannot happen as no such (f ′, r0, r1) can
exist by perfect completeness of iO. Therefore, if Case (2) happens, the existence
of (f ′, r0, r1) serves as an efficiently verifiable proof that C0 ≡ C1.

Now let Ca be the subset of C for which Case (1) holds. There are two cases:
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1. Ca is not finite, in which case we have shown that Case 1 of the lemma holds.
2. If Ca is finite, then for all (except a finite number) of (C0, C1) ∈ C we can

efficiently prove that C0, C1 are equivalent circuits. This would give a proof
system for proving the equivalency of two given circuits, but this problem is
co-NP-complete. Thus, co-NP = NP.

4 Hardness of Semi-Black-Box Constructions of iO

In this section, we prove Theorem 2. We will first show that approximate iO is
still powerful enough to base public-key cryptography on private-key cryptogra-
phy. We will use this result and results of [24,31] to derive Theorem 2.

Theorem 20. The existence of (1/6)-approximate iO and any one-way func-
tions imply the existence of semantically secure public-key encryption schemes.

We first prove Theorem 2 using Theorems 3 and 20.

Proof (of Theorem 2 using Theorems 3 and 20). Let P be any such primitive
with implementation P relative to the idealized model I, and suppose O is any
such semi-black-box construction of iO from P. By Lemma 15, we conclude that
O′ = OP is a construction of iO in the idealized model I. This, together with
Theorem 3 imply that there is a (1/6)-approximate iO in the plain model. Finally,
by Theorem 20 and the existence of (1/6)-approximate iO implies that we can
construct semantically secure public-key encryption from one-way functions.

4.1 Proving Theorem 20

In this section we prove that (1/6)-approximate iO and one-way functions imply
semantically secure public-key encryption. Therefore, any provably secure con-
struction of (1/6)-approximate iO would enable us to take any one-way functions
and construct a secure public-key encryption scheme from it. In the terminology
of [20] it means that Cryptomania collapses to Minicrypt if (1/6)-approximate
iO exists.

Intuition. Sahai and Waters [36] showed that iO and OWF imply PKE. Here we
show that the very same construction, when instantiated using approximate iO,
leads to “approximately correct” and “approximately secure” public-key encryp-
tion. Then, using a result of [19] we amplify the soundness and correctness to
get a full fledged semantically secure public key encryption scheme.

Definition 21 (Approximate correctness and security for PKE). We
call a public-key bit-encryption scheme (Gen,Enc,Dec) for message space {0, 1}
ε(n)-correct if

Pr[Decdk(Encek(b)) = b : (ek, dk) ← Gen(1n), b $←{0, 1}] ≥ 1 − ε(n)
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where the probability is over the randomness of the key generation, encryption,
decryption, and the bit b. We call (Gen,Enc,Dec) δ(n)-secure if for any PPT
adversary A, it holds that

Pr[A(pk,Encpk(b)) = b] ≤ 1/2 + δ(n)

where the probability is over the randomness of generation, encryption, the adver-
sary, and bit b.

Holenstein [19] showed how to amplify any ε-correct and ε-secure PKE into
a full fledged (semantically secure) PKE for sufficiently small ε.

Theorem 22 (Implied by Corollary 7.8 in [19]). Suppose (Gen,Enc,Dec)
is ε-correct and δ-secure for constants ε, δ such that (1 − 2ε)2 > 2δ. Then there
exists a semantically secure PKE.

Theorem 23 below asserts that approximate iO and one-way functions imply
approximately correct and approximately secure PKE.

Theorem 23 (Approximate iO + OWF ⇒ Approximate PKE). If
ε-approximate iO and one-way functions exist, then there is an ε-correct and
(ε + negl(n))-secure public-key bit encryption scheme.

We first prove Theorem 20 using Theorem 23 and then will prove 23.

Proof (of Theorem 20). Because (1 − 2 · 1/6)2 > 2 · 1/6, Theorem 20 follows
immediately from Theorem 22 and the following Theorem 23 using ε = 1/6.

In the rest of this section we prove Theorem 23.

Proof (of Theorem 23). We show that the very same construction of PKE from
iO and OWF presented by Sahai and Waters [36], when instantiated with an
ε-approximate iO, has the demanded properties of Theorem 23.

Properties of the Construction of [36]. We first describe the abstract properties
of the construction of [36] (for PKE using iO and OWFs) and its security proof
that we need to know.

– Construction/correctness:
1. The key generation process generates a circuit C and publishes O(C) = B

as public key where O is an iO scheme.
2. The encryption simply runs B on (r, b) where r is the encryption random-

ness and b is the bit to be encrypted.
3. The scheme has completeness 1.

– Security: [36] proves the security of the construction above by showing that no
PPT algorithm can distinguish between the following two random variables
X0,X1 defined as:
• Xb ≈ (Os(C), C(r, b)) ≈ (B,C(r, b)) where s is the randomness for O.

When clear from the context we drop the randomness s and simply write
O(C) denoting it as a random variable over the randomness of O.
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It can be verified by inspection that the proof of [36] for indistinguishability of
X0 and X1 does not rely on completeness of the obfuscation O and only relies
on its indistinguishability (when applied to circuits with the same functions).
We will rely on this feature of the proof of [36] in our analysis.

Below we analyze the correctness and security of the construction of [36]
when O is an ε-approximate iO.

Correctness. By the definition of ε-approximate iO and ε-correct bit encryption,
and the fact that the [36] construction has perfect completeness when O is iO,
it follows that the completeness of the new scheme (when b is also chosen at
random) is at least 1 − ε. Thus the scheme is ε-correct.

Security. First recall that for the basic construction of [36] using (perfect) iO,
no PPT attacker A can guess b with probability better than 1/2+ negl(n) when
b is chosen at random and A is given a sample from the random variable Xb (for
random b). As we mentioned above, the proof of this statement does not rely on
the correctness of the used iO and only relies on its indistinguishability.

Now we want to bound the distinguishing advantage of PPT adversaries
between the following random variables Y0, Y1:

– Yb ≈ (B,B(r, b)) ≈ (Os(C), Os(C)(r, b)) where s is the randomness of the
obfuscator O.

The difference between Yb’s and Xb’s stems from the fact that the public-key
B = O(C) no longer computes the same exact function as the circuit C as the
obfuscation only guarantees approximate correctness. We reduce the analysis of
the new scheme to the original analysis of [36].

By the analysis of [36] we already know that if any PPT A is given a sample
from Xb for a random b it has at most 1/2+negl(n) chance of correctly guessing
b. Also note that the distributions Xb and Yb for a random b are ε-close due to the
ε-correctness of the obfuscation. More formally, the distributions Xb and Yb could
be defined over the same sampling space using: random seeds of key generation,
obfuscation, encryption, and bit b. This way with probability ≥ 1 − ε (and by
the ε-approximate correctness of the obfuscation) the actual sampled values of
Xb and Yb will be equal, and this implies that they are ε-close. As a result, when
we switch the distribution of the challenge given to the adversary and give a
sample of Yb (for random b) instead of a sample from Xb, the adversary’s chance
of guessing b correctly can increase at most by ε and reach at most 1/2+negl +ε.
Therefore, the new scheme is (ε + negl)-secure according to Definition 21.

A Omitted Proofs

For sake of completeness we sketch the proof of Lemma 18.

Proof (Sketch of Lemma 18). Let ε be a parameter to be chosen later. Let R
be an attacker who maintains a list of “learned” oracle queries L and, given c
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sent by the sender for b
$←{0, 1} and common input z, it adaptively asks the

lexicographically first oracle query x �∈ L that has at least ε chance of being
asked by sender S conditioned on the knowledge of (L, z). After asking such x
from f , A adds (x, f(x)) to L. As long as such query x exists, R asks them.
It was shown in [4] that this learning algorithm asks, on average, at most m/ε
number of queries where m = poly(|z|) is the number of queries asked by the
sender. So as long as ε = poly(n/δ) this learning algorithm is efficient.

Now, let L be the final learned set by R. If conditioned on L it holds that
both of b = 0 and b = 1 have at least ρ probability of being used by S, then by
conditioning on the distribution of the sender’s view on b = 0 or b = 1 all the
unlearned queries remain at most ε/ρ = σ-heavy. Now it is easy to see that if we
sample a random view for S conditioned on L, b = 0 and L, b = 1 and call them
V0 and V1, the probability that queries of V0 and V1 collide out of L is at most
m · σ ≤ m · ε/ρ. For ρ > m · ε this probability is less than one, which means that
if ρ > m · ε, then there exists a consistent pair of views for S that he can use to
output c for both cases of b = 0 and b = 1. This means that Case 2 happens.

Now let us assume that Case 2 does not happen. It means that for all execu-
tions of the algorithm A, when A is done with learning the ε heavy queries, the
probability of either b = 1 or b = 0 conditioned on L is at most ε. This means
that A can guess b correctly with probability 1 − ε.

If we can choose ρ = O(m/ε) and ε = δ in the argument above (assuming
that Case 2 does not happen) we get an attacker A that asks O(m · ε/ε) = O(m)
queries. We can alternatively choose smaller ρ and cut A’s execution after it asks
O(m/δ) number of queries and use ε = δ/10. By an application of the Markov
inequality A will ask more than 100(m/δ) number of queries with probability at
most ε, and so A will ask at most O(m/δ) number of queries and will guess b
correctly with probability at least 2ε < δ.
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Abstract. We show general transformations from subexponentially-
secure approximate indistinguishability obfuscation (IO) where the
obfuscated circuit agrees with the original circuit on a 1/2 + ε fraction
of inputs on a certain samplable distribution, into exact indistinguisha-
bility obfuscation where the obfuscated circuit and the original circuit
agree on all inputs. As a step towards our results, which is of indepen-
dent interest, we also obtain an approximate-to-exact transformation for
functional encryption. At the core of our techniques is a method for “fool-
ing” the obfuscator into giving us the correct answer, while preserving
the indistinguishability-based security. This is achieved based on various
types of secure computation protocols that can be obtained from differ-
ent standard assumptions.

Put together with the recent results of Canetti, Kalai and Paneth
(TCC 2015), Pass and Shelat (TCC 2016), and Mahmoody, Mohammed
and Nemathaji (TCC 2016), we show how to convert indistinguishabil-
ity obfuscation schemes in various ideal models into exact obfuscation
schemes in the plain model.

1 Introduction

Program obfuscation, the science of making programs “unintelligible” while
preserving functionality, has been a holy grail in cryptography for over a
decade. While the most natural and intuitively appealing notion of obfusca-
tion, namely virtual-black-box (VBB) obfuscation [7], was shown to have strong
limitations [7,10,42], the recent work of Garg, Gentry, Halevi, Raykova, Sahai
and Waters [35,57] opened new doors by demonstrating that the weaker notion
of indistinguishability obfuscation (IO) is both very useful and potentially achiev-
able. Since then, a veritable flood of applications has made indistinguishability
obfuscation virtually “crypto-complete”.
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On the flip side, the tremendous power of IO also begets its reliance on
strong and untested computational assumptions. Indeed, it has been a major
cryptographic quest to come up with a construction of IO based on well-studied
computational assumptions. Garg et al. [35] gave the first candidate construction
of IO, however the construction came as-is, without a security proof. We have
recently seen several works [3,14,39,55] that shed light on how a security proof
for IO will look like. Pass, Seth and Telang show security of an IO construction
based on a “semantic security” assumption on multi-linear maps [33]; Gentry,
Lewko, Sahai and Waters [39] (following [40]) show security based on the “mul-
tilinear subgroup elimination assumption” on multi-linear maps; Ananth and
Jain [3] and Bitansky and Vaikuntanathan [14] show how to construct IO from
any functional encryption scheme.

Unfortunately, the first two of these works are based on the mathemati-
cal abstraction of multi-linear maps which has had a troubled history so far
(with several constructions [19,28,29,34,36,38] and matching attacks [25,27,34,
45,49]), and the last two rely on functional encryption with succinct encryption
for which the only known constructions, yet again, use multi-linear maps.

Yet another line of work focuses on proving the security of obfuscators in so-
called idealized models. In a typical idealized model, both the construction and
the adversary have access to an oracle that implements a certain functionality;
in the random oracle model [8], this is a random function; in the generic group
model [58], this is the functionality of a group; and the most recent entrant
to this club, namely the ideal multilinear map model, is an abstraction of the
functionality of multilinear maps. Several works [4,6,21,22,60] along this route
prove security of (different) constructions of obfuscation (even in the sense of
virtual black-box security) in various ideal multi-linear map models.

An even more recent line of work, initiated by Canetti, Kalai, and Paneth [23],
investigates how to transform constructions of obfuscation in idealized models
into ones in the plain model, where there are no oracles. Indeed, this may lead
to an aesthetically appealing avenue to constructing obfuscation schemes:

1. Construct an obfuscation scheme in an appropriate idealized model.
2. “De-idealize” it: translate the ideal model obfuscation scheme into a scheme

in the real world.

Even if eventual constructions of obfuscation schemes do not initially proceed
along these lines, we believe that this two-step process is a conceptually appeal-
ing route to eventual, mature, constructions of obfuscation schemes. Indeed,
constructions in ideal models, while not immediately deployable, typically give
us an abstract, high level, understanding.

In more detail, the work of [23] show that any obfuscator in the random
oracle model can be converted to an obfuscator in the plain model with the
same security properties. Pass and Shelat [54] and subsequently, Mahmoody,
Mohammed and Nematihaji [50] extend this to the generic group and ring models
respectively, as well as ideal multilinear maps model with bounded multi-linearity.

However, the resulting obfuscators suffer from a major drawback: they only
have approximate correctness. That is, the plain model obfuscator may err on a
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polynomially large fraction of inputs (or more generally with some polynomial
probability when inputs are taken from a given samplable distribution). Roughly
speaking, these results proceed by isolating a list of “heavy oracle queries”, that
is, queries that arise in the evaluation of the obfuscated circuit on a large fraction
of inputs. Once the (polynomially large set of) heavy queries are identified, the
result of the oracle queries on this set is published as part of the obfuscated
circuit. This approach will inherently miss the queries made by a rare set of
inputs, resulting in an incorrect evaluation.

While these transformations already have interesting consequences (regard-
ing the impossibility of VBB in these idealised models), the lack of correctness
presents a serious obstacle towards fulfilling the above two-step plan. Indeed, it
is far from clear that applications of IO will work when we only have approx-
imate IO at our disposal. Certainly, one could go through the applications of
IO one-by-one, and attempt to re-derive them from approximate IO, but in the
absence of automated theorem provers1, this seems neither particularly efficient
nor aesthetically pleasing. This motivates us to ask:

Can approximate indistinguishability obfuscation be made exact?

In other words, we are asking for “one transformation to rule them all”, a generic
way to compile an approximate obfuscation scheme into a perfectly correct obfus-
cation scheme, automatically enabling to recover all the applications of IO even
given only approximately correct obfuscation.

In this work, we provide exactly such a transformation, under standard addi-
tional assumptions. Let us now describe our results in detail.

1.1 Our Results

We say that an obfuscator apO is (X , α)-correct for a given input sampler X
and α ∈ [0, 1] (which may depend on the security parameter), if it is correct
with probability at least α over inputs sampled by X . Security is defined as in
the standard setting of (exact) indistinguishability obfuscation. We shall refer
to such an obfuscator as an approximate indistinguishability obfuscator.

Our main result is that approximate IO with subexponential security for
a certain class of samplers can be converted under standard assumptions into
almost exact IO where for any circuit, with overwhelming probability over the
coins of the obfuscator algorithm the resulting obfuscation is correct on all
inputs. We present two routes towards this result based on different assump-
tions and with different parameters.

Theorem 1.1 (informal). Assuming DDH, there exists an input sampler X1

and a transformation that for any α ≥ 1
2 + λ−O(1), converts any (X1, α)-correct

sub-exponentially secure IO scheme for P/poly into an almost exact IO scheme
for P/poly.

1 Graduate students do not count.
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Theorem 1.2 (informal). Assuming sub-exponentially-secure puncturable
PRFs in NC1, there exists an input sampler X2, polynomial poly2(·), and a
transformation that for any α ≥ 1 − 1

poly2(λ)
, converts any (X2, α)-correct sub-

exponentially-secure IO scheme for P/poly into an almost exact IO scheme
for P/poly.

Since the works of [23,50,54] apply to any efficient sampler X and any α that is
polynomially bounded away from 1, we obtain the following main corollary

Corollary 1.3 (Main Theorems + [23,50,54]). Assume that there is an
indistinguishability obfuscator in either the random oracle model, the ideal
generic group/ring model, or ideal multilinear maps model with bounded multi-
linearity. Then, there is an (almost) exact obfuscator in the plain model.

We note that our theorems result in IO that may still output an erroneous obfus-
cator, but only with some negligible probability over the coins of the obfuscator
alone. This is analogous to the setting of correcting decryption errors in plain
public key encryption [31], and as far as we know is sufficient in all applications.
In subsequent work [15], we show that under a worst-case complexity assumption
typically used in the setting of derandomization, we could transform any such
obfuscator to one that is perfectly correct.

We also show how to transform approximate functional encryption into exact
functional encryption, where approximate FE is defined analogously to approx-
imate IO with respect to a distribution on the message space and decryption
errors. Besides being of independent interest, this transformation will also serve
as a building block to obtain the second theorem above.

Theorem 1.4 (Informal). Assuming weak PRFs in NC1, there exists a mes-
sage sampler X , constant η, and a transformation that for any α ≥ 1 − η,
converts any (X , α)-correct FE scheme for P/poly into an almost exact scheme
FE scheme for P/poly.

We now proceed to provide an overview of our techniques.

1.2 Overview of Our Techniques

The starting point of our constructions comes from the notion of random self-
reducibility [1]. That is, imagine that you have an error-prone algorithm A that
computes a (Boolean) function F correctly on a 1/2 + ε fraction of inputs. Sup-
pose that there is an efficient randomizer r(·) that maps an input x into a random
input r = r(x) such that given F (r), one can efficiently recover F (x). Then, we
can turn A into a BPP algorithm for computing F ; namely, A′(x) = A(r(x)).
The new algorithm computes F correctly for any input with high probability over
its own random coins. The probability of error can then be made arbitrarily small
using standard amplification (i.e., taking majority of ≈ ε−2 invocations).

In our setting, F is an arbitrary function, which is likely not random self-
reducible. Nevertheless, we show how to make the essence of this idea work, using
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various notions of (two-party and multi-party) non-interactive secure function
evaluation (SFE) [9,37,59]. Indeed, certain forms of non-interactive SFE (or
homomorphic encryption) have been used in several instances in the literature
to obtain (sometimes computational) random self-reducibility [5,11,12,26]. The
rough idea is that if we can get the obfuscator to homomorphically evaluate a
given function on encryptions for some fixed input distribution, then it must
also behave correctly with roughly the same probability on encryptions of any
arbitrary input. This, however, should be done with care to ensure that homo-
morphic evaluation does not harm the security of the obfuscator. We next go
into more details on how we carry out this agenda.

Our First Construction. Our first construction uses a two-party non-
interactive secure function evaluation protocol with security against malicious
senders. For simplicity, let us describe this approach in the language of fully
homomorphic encryption (FHE). Let (Enc,Dec,Eval) be a (secret-key) FHE
scheme (not necessarily compact). (We assume that the randomness of the key
generation algorithm acts as the secret key, and avoid explicitly dealing with key
generation.)

To exactly obfuscate a circuit C, we use the approximate obfuscator apO
to obfuscate the circuit EvalC that, given as input an encryption of some x,
homomorphically computes an encryption of C(x). Assume that apO(EvalC)
is correct on a 1/2 + ε fraction of encryptions of 0n. The key observation is
that semantic security of the encryption scheme means that apO(EvalC) is also
correct on a 1/2+ ε−λ−ω(1) fraction of encryptions of any x; that is, it outputs
EvalC(Enc(x)) = Enc(C(x)). This gives the required randomizer and can be
amplified to give us correctness for every input x.

The problem with this idea is the security of the final obfuscator. Indeed,
EvalC(Enc(x)) may reveal information about the circuit C beyond the out-
put C(x). The problem goes even further: since the evaluator in this setting
is untrusted, she can try to run the obfuscated circuits with malformed encryp-
tions, potentially making the problem much worse. The solution is to rely on a
maliciously function-hiding homomorphic encryption scheme. Such an object can
be constructed using Yao’s garbled circuits combined with an oblivious transfer
(OT) protocol secure against malicious receivers (such as the Naor-Pinkas pro-
tocol based on the DDH assumption [52]). The evaluation procedure, however,
is randomized, but can be derandomized with a pseudo-random function.

While the above works perfectly assuming ideal VBB obfuscation, this is
not necessarily the case for IO. Nevertheless, we observe that we can use apO
to obfuscate this (de)randomized circuit using the machinery of probabilistic
IO [24]. This allows us to show that indistinguishability obfuscation is main-
tained, but requires going through an exponential number of hybrids, in turn
requiring sub-exponential security from apO (and some of the other involved
primitives).

Our Second Construction. Our second construction goes through the notion
of functional encryption (FE). In a (public-key) FE scheme, the owner of a
functional secret key FSKF can “decrypt” a ciphertext FE.Enc(MPK,m) to learn
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F (m), but should learn nothing else about m. In an approximately correct FE
scheme, the decryption algorithm could err on encryptions of certain messages
m, but should be correct with probability 1 − ε on messages m drawn from a
(sampleable) distribution X .

We show how to transform an approximately correct FE scheme into an
exact FE scheme. Here the main advantage over the setting of approximate
IO is that we are only concerned with honestly generated encrypted messages
and are not concerned with function hiding. In particular, we can relax the
assumptions required for the SFE and rely on (a non-interactive) information-
theoretic version of the Ben-Or-Goldwasser-Wigderson multi-party computation
protocol for NC1 [9].

This construction also provides an alternative route for the IO transforma-
tion. Concretely, we show that starting from approximate IO, we can first apply
the transformation of Garg et al. [35] to obtain approximate FE. For this to
work, we need show how to obtain (almost exact) NIZKs and public-key encryp-
tion directly from approximate IO, which are required for the transformation.
Then, in the second step, we apply our exact-to-approximate transformation for
FE, and finally invoke a transformation from (exact) FE to IO [3,14]. The latter
transformation requires that the size of the encryption circuit the FE scheme
is relatively succinct. In our case, due to the BGW-based SFE, this size grows
exponentially in the depth. Fortunately though, in [14], it is shown that this still
suffices to obtain IO, assuming also puncturable PRFs in NC1.

Overall, this leads to a construction of (almost exact) IO from
subexponentially-secure approximate IO and subexponentially-secure punc-
turable PRFs in NC1 (which in turn can be obtained from standard assumptions
such as LWE [16]).

Organization. In Sect. 2, we define the required tools for our transformations,
including the forms of SFE that we rely on. In Sect. 3, we describe our first
basic transformation from approximate to exact IO. In Sect. 4, we describe our
transformation from approximate to exact FE. In Sect. 5, we describe our second
transformation for IO, going through our transformation for FE.

2 Preliminaries

The cryptographic definitions in the paper follow the convention of modeling
security against non-uniform adversaries. An efficient adversary A is modeled as
a sequence of circuits A = {Aλ}λ∈N

, such that each circuit Aλ is of polynomial
size λO(1) with λO(1) input and output bits. We often omit the subscript λ when
it is clear from the context.

When we refer to a randomized algorithm A, we typically do not explicitly
denote its random coins, and use the notation s ← A or s ← A(x) if A has an
extra input x. When we want to be explicit regarding the coins, we shall denote
s ← A(r), or s ← A(x; r), respectively.
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Whenever we refer to a circuit class C = {Cλ}, we mean that each set Cλ

consists of Boolean circuits of size at most poly(λ) for some polynomial poly(·),
defined on the domain {0, 1}n(λ). When referring to inputs x ∈ {0, 1}n(λ), we
often omit λ from the notation.

2.1 Non-interactive Secure Function Evaluation

We consider two-message secure function evaluation (SFE) protocols. Typically,
such a protocol consists of two parties (A,B) and has the following syntax. Party
A is given input x, encrypts x and sends the encrypted input to B. B given as
additional input a function f , homomorphically evaluates f on the encrypted x,
and returns the result to A, who can then decrypt the result f(x). The protocol
is required to ensure input-privacy for A and function privacy for B (on top of
correctness).

Definition 2.1 (Secure Function Evaluation). A scheme SFE =
(Enc,Eval,Dec), where Enc,Eval are probabilistic and Dec is deterministic, is
a two-message secure function evaluation protocol for circuit class C = {Cλ},
where Cλ is defined over {0, 1}n(λ), if the following requirements hold:

– Correctness: for any λ ∈ N, C ∈ Cλ and input x ∈ {0, 1}n in the domain of
C it holds that:

Pr

[

Dec(R, ̂CT) = C(x)

∣

∣

∣

∣

(CT,R) ← Enc(x)
̂CT ← Eval(CT, C)

]

≥ 1 − ν(λ),

for some negligible ν(·), where the probability is over the coin tosses of Enc
and Eval.

– Input Hiding: for any polysize distinguisher D there exists a negligible func-
tion μ(·), such that for all λ ∈ N, and equal size inputs x0, x1 ∈ {0, 1}n:

|Pr[D(CT0) = 1] − Pr[D(CT1) = 1]| ≤ μ(λ),

where CTb ← Enc(xb).
– Malicious Function Hiding: there exists a (possibly inefficient) function

Ext, such that for any polysize distinguisher D there exists a negligible function
μ(·), such that for all λ ∈ N, maliciously chosen CT∗, and equal size circuits
C0, C1 ∈ Cλ that agree on x = Ext(CT∗):

∣

∣

∣Pr[D(̂CT0) = 1] − Pr[D(̂CT1) = 1]
∣

∣

∣ ≤ μ(λ),

where ĈTb ← Eval(CT∗, Cb).
We say that the scheme is δ-function-hiding, for some concrete negligible func-
tion δ(·), if for all poly-size distinguishers, the above indistinguishability gap
μ(λ) is smaller than δ(λ)Ω(1).

Remark 2.2 (strong function privacy). For our most basic transformation from
approximate IO to exact IO, we will require 2−σ(λ)·λ−ω(1)-function-hiding, where
σ(λ) is the size of encryptions in the scheme. Below, we discuss an instantiation,
based on the DDH assumption, that has perfect function-hiding, and thus sat-
isfies this requirement.
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Distributed Secure Function Evaluation. We will also consider a notion of
two-message distributed function evaluation (DSFE). Such a protocol consists
of k + 2 parties (A,B1, . . . , Bk, C) and has the following syntax. Party A, given
input x, shares x into k shares and sends the shares to B1, . . . , Bk. The parties
B1, . . . , Bk given as additional input a function f , homomorphically and non-
interactively evaluate f on each share, and send the evaluated shares to C, who
can then decrypt and obtain the result f(x).

The protocol is required to ensure that each individual share sent by A in
the second message hides all information regarding the input x. We also require
that C gains no information on the input, except for the output of the function
(formally, we will require an indistinguishability-based guarantee analogous to
that of functional encryption.) Furthermore, we will require that correctness
holds even if some τ fraction of the parties B1, . . . , Bk are faulty.

Definition 2.3 (Distributed Secure Function Evaluation). A scheme
DSFE = (Enc,Eval,Dec), where Enc is probabilistic and Eval,Dec are determin-
istic, is a (k, τ)-secure distributed function evaluation protocol for circuit class
C = {Cλ}, where Cλ is defined over {0, 1}n for n = n(λ), k = k(λ), and τ = τ(λ),
if the following requirements hold:

– Correctness in the Presence of F aults: for any λ ∈ N, C ∈ Cλ and input
x ∈ {0, 1}n in the domain of C and any set S ∈ [k] of size smaller than τk,
and functions {Erri : i ∈ S} it holds that:

Pr

⎡
⎢⎣Dec(R, ĈT1, . . . , ĈTk) = C(x)

∣∣∣∣∣∣∣

(CT1, . . . ,CTk,R) ← Enc(x)

∀i ∈ [k] \ S : ĈTi = Eval(CTi, C)

∀i ∈ S : ĈTi ← Erri(CTi)

⎤
⎥⎦ ≥ 1 − ν(λ),

for some negligible ν(·), where the probability is over the coin-tosses of Enc.
– Input Hiding: for any polysize distinguisher D there exists a negligible func-

tion μ(·), such that for all λ ∈ N, and equal size inputs x0, x1 ∈ {0, 1}n and
any i ∈ [k]:

|Pr[D(CT0,i) = 1] − Pr[D(CT1,i) = 1]| ≤ μ(λ),

where CTb,i denotes the i-th ciphertext output by Enc(xb).
– Residual Input Hiding: for any polysize distinguisher D there exists a neg-

ligible function μ(·), such that for all λ ∈ N, inputs x0, x1 ∈ {0, 1}n, and
circuit C ∈ Cλ such that C(x0) = C(x1):

∣

∣

∣Pr[D(R0, ̂CT0,1, . . . , ̂CT0,k) = 1] − Pr[D(R1, ̂CT1,1, . . . , ̂CT1,k) = 1]
∣

∣

∣ ≤ μ(λ),

where for (b, i) ∈ {0, 1} × [k], ĈTb,i = Eval(CTb,i, C), and (CTb,1, . . . ,
CTb,k,Rb) ← Enc(xb).

Remark 2.4 (difference from SFE). There are two main differences from SFE.
The first is in security, in the above we do not require any type of function-hiding,
but require residual input-hiding. The second is the functionality: we allow dis-
tributed evaluation (with some resilience to faults). The second difference is not
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essential, and is considered in order to reduce the underlying computational
assumptions. In particular, a (non-distributed) SFE with residual input-hiding
implies DSFE with k = 1, τ = 0.

Remark 2.5 (deterministic Eval). Jumping ahead, we remark that we will use
distributed SFE in a setting where the encryptor is always honest. Since we are
not requiring any privacy against the encryptor, we may assume w.l.o.g that
Eval is deterministic. Indeed, we can always sample any required randomness as
part of the encryption process and embed it in the shares CT1, . . . ,CTk.

Instantiations. We now mention known instantiations of SFE and DSFE
schemes, which we can rely on.

SFE. As mentioned above, for our application, we will require rather strong
function-hiding. To instantiate the scheme we may rely on the SFE protocol
obtained by using the oblivious transfer protocol of Naor and Pinkas [52] that
is based on DDH and is secure against unbounded receivers in conjunction with
an information-theoretic variant of Yao’s garbled circuit [59] for NC1 [46]. The
resulting SFE scheme is for classes of circuits in NC1, which will suffice for our
purposes. Alternatively, we can use a strong enough computational variant of
Yao based on sub-exponential one-way functions, resulting in a construction for
all polynomial-size circuits.

More generally, the Naor-Pinkas OT can be replaced with any OT that has
statistical function-hiding. In the CRS model, such two-message protocols exist
from other standard assumptions as well [56]. While our main transformation
is described using SFE in the plain model, it can be naturally extended to the
CRS setting (see Remark 3.6).

DSFE. An information-theoretically secure DSFE scheme for circuit classes in
NC1 can be obtained based on a non-interactive variant of the BGW protocol
[9] similar to that used in [44]. In the full version of this paper, we outline
this variant.In the resulting DSFE scheme, the complexity of encryption does
not grow with the size of the circuits evaluated, but does grow exponentially
with their maximal depth. As will be discussed later on, this will still be good
enough in our context, to bootstrap functional encryption to indistinguishability
obfuscation, as shown in [14].

2.2 Symmetric Encryption

A symmetric encryption scheme Sym consists of a tuple of two PPT algorithms
(Sym.Enc,Sym.Dec). The encryption algorithm takes as input a symmetric key
SK ∈ {0, 1}λ, where λ is the security parameter, and a message m ∈ {0, 1}∗ of
polynomial size in the security parameter, and outputs a ciphertext SCT. The
decryption algorithm takes as input (SK,SCT), and outputs the decrypted mes-
sage m. For this work, we only require one-time security. The detailed definition
is standard and is given in the full version of this paper.
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2.3 Puncturable Pseudorandom Functions

We consider a simple case of puncturable pseudo-random functions (PRFs) where
any PRF may be punctured at a single point. The definition is formulated as
in [57], and is satisfied by the Goldreich-Goldwasser-Micali PRF construction
[18,20,41,47].

Definition 2.6 (Puncturable PRFs). Let n, k be polynomially bounded length
functions. An efficiently computable family of functions

PRF =
{

PRFK : {0, 1}∗ → {0, 1}λ
∣

∣

∣ K ∈ {0, 1}k(λ), λ ∈ N

}

,

associated with an efficient (probabilistic) key sampler GenPRF , is a puncturable
PRF if there exists a poly-time puncturing algorithm Punc that takes as input a
key K, and a point x∗, and outputs a punctured key K{x∗}, so that the following
conditions are satisfied:

1. Functionality is preserved under puncturing: For every x∗ ∈ {0, 1}∗,

Pr
K←GenPRF (1λ)

[∀x �= x∗ : PRFK(x) = PRFK{x∗}(x)
∣

∣ K{x∗} = Punc(K, x∗)
]

= 1.

2. Indistinguishability at punctured points: for any polysize distinguisher
D there exists a negligible function μ(·), such that for all λ ∈ N, and any
x∗ ∈ {0, 1}∗,

|Pr[D(x∗,K{x∗},PRFK(x∗)) = 1] − Pr[D(x∗,K{x∗}, u) = 1]| ≤ μ(λ) ,

where K ← GenPRF (1λ),K{x∗} = Punc(K, x∗), and u ← {0, 1}λ.
We further say that PRF is δ-secure, for some concrete negligible function
δ(·), if for all polysize distinguishers the above indistinguishability gap μ(λ)
is smaller than δ(λ)Ω(1).

Remark 2.7 (uniform output). For some of our constructions, it will be conve-
nient to assume that the PRF family is one-universal; that is, for any fixed x,
PRFK(x) is distributed uniformly at random (when K is sampled at random). It
is not hard to see that such a puncturable PRF can be easily obtained from any
puncturable PRF by adding a random string U to the key and XORing U to
every output.

3 Correcting Errors in Indistinguishability Obfuscation

In this section, we define approximate IO and show how to transform any approx-
imate IO to (almost) perfectly correct IO, based on SFE.

3.1 Approximate and Exact IO

We start by defining indistinguishability obfuscation (IO) with almost perfect
correctness. The definition is formulated as in [7].
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Definition 3.1 (Indistinguishability Obfuscation). A PPT algorithm O is
said to be an indistinguishability obfuscator for a class of circuits C = {Cλ}, if
it satisfies:
1. Almost Perfect Correctness: for any security parameter λ and C ∈ Cλ,

Pr
O

[

∀x : O(C, 1λ)(x) = C(x)
]

≥ 1 − 2−λ .

2. Indistinguishability: for any polysize distinguisher D there exists a negligi-
ble function μ(·), such that for any two circuits C0, C1 ∈ C that compute the
same function and are of the same size:

∣

∣

∣Pr[D(O(C0, 1
λ)) = 1] − Pr[D(O(C1, 1

λ)) = 1]
∣

∣

∣ ≤ μ(λ),

where the probability is over the coins of D and O.
We further say that O is δ-secure, for some concrete negligible function δ(·), if
for all polysize distinguishers the above indistinguishability gap μ(λ) is smaller
than δ(λ)Ω(1).

We now define an approximate notion of correctness that allows the obfuscated
circuit to err with some probability over inputs taken from some samplable
distribution.

Definition 3.2 ((α,X )-correct IO). For α(λ) ∈ [0, 1] and an ensemble of
input samplers X = {Xλ}, we say that O is (α,X )-correct if instead of (almost)
perfect correctness, it satisfies the following relaxed requirement:
1. Approximate Correctness: for any security parameter λ, C ∈ Cλ,

Pr
[

O(C, 1λ)(x) = C(x)
∣

∣

∣ x ← Xλ

]

≥ α(λ),

where the probability is also over the coins of O.

3.2 The Transformation

We now describe a transformation from approximately correct IO to (almost)
perfectly correct IO and analyze it. The transformation is based on SFE satis-
fying a strong function-hiding guarantee. We discuss an instantiation based on
standard computational assumptions in Sect. 3.3.

In Sect. 5, we discuss an alternative transformation through functional
encryption based on weaker computational assumptions.

A Worst-Case Approximate Obfuscator. The main step of the transfor-
mation is to obtain random self-reducibility; that is,to convert an approximate
obfuscator apO, which works reasonably well on average for random inputs taken
from an appropriate distribution, into a worst-case approximate obfuscator wcO
that, for any (worst-case) input, works well on average over the random coins
of the obfuscator alone. Then, in the second step, we invoke standard “BPP
amplification”.

Ingredients. In the following, let λ denote a security parameter, let ε < 1 be
some constant, η(λ) = λ−Ω(1) and let C = {Cλ} denote a circuit class. We rely
on the following primitives:
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– A secure function evaluation scheme SFE for C that is 2−ω(σ(λ)+log λ)-function-
hiding, where σ(λ) is the length of fresh ciphertexts generated by the encryp-
tion algorithm Enc for security parameter λ (and inputs of size n = n(λ) in
the domain of Cλ).

– A 2−λ̃ε

-secure puncturable pseudo-random function family PRF , where the
security parameter is λ̃ = ω(σ(λ) + log λ)1/ε.

– A ( 12 + η(λ),X )-correct, 2−λ̃ε

-secure indistinguishability obfuscator apO for
C, where the security parameter is λ̃ = ω(σ(λ) + log λ)1/ε. The sampler class
X depends on SFE and the class C depends on SFE, PRF , and C. Both X
and C are specified below as part of the description of the constructed (exact)
obfuscator O.

The Worst-Case Obfuscator wcO:
Given a circuit C : {0, 1}n → {0, 1} and security parameter λ, the obfuscator
wcO(C, 1λ)

1. computes a new security parameter λ̃ = ω(σ(λ)+ log λ)1/ε, where σ(λ) is the
length of ciphertexts as defined above,

2. samples a puncturable PRF seed K ← GenPRF (1λ̃),
3. computes the augmented C-evaluation circuit CK defined in Fig. 1,
4. outputs an approximate obfuscation C̃ ← apO(CK, 1λ̃).

Fig. 1. The augmented C-evaluation circuit.

We next describe the how the obfuscation C̃ is evaluated on any input x via a
randomized procedure.

Randomized Evaluation:
Given an obfuscation C̃, an input x ∈ {0, 1}n, and security parameter λ:

1. compute (CT,R) ← Enc(x),
2. compute ĈT = C̃(CT),
3. output y = Dec(R, ĈT).
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The ensemble of samplers X consists of samplers X 0 that sample encryptions
from Enc(0n) whereas the class C consists of circuits CK as defined in Fig. 1.

Proposition 3.3. wcO satisfies:

1. Worst-Case Approximate Correctness: for any λ, C ∈ Cλ, x ∈ {0, 1}n,

Pr
[

O(C, 1λ)(x) = C(x)
]

≥ 1

2
+ η(λ) − λ−ω(1) ,

where the probability is over the coins of apO.
2. Indistinguishability: as in Definition 3.1.

The intuition behind the proof is outlined in the introduction. We now turn to
the actual proof.

Proof. We first prove that the new obfuscator is worst-case approximately cor-
rect, and then prove that it is secure.

Correctness. For any λ, n = n(λ), input x ∈ {0, 1}n, let us denote X x := Enc(x)
a sampler for encryptions of x. Then, by the input-hiding guarantee of SFE, and
the approximate correctness of apO, we claim that the approximate obfuscation
is correct on encryptions of an arbitrary x ∈ {0, 1}n as on encryptions of 0n.
That is, there exists a negligible μ(λ) such that

Pr
[

˜C(CT) = CK(CT)
∣

∣

∣ CT ← X x
]

≥

Pr
[

˜C(CT) = CK(CT)
∣

∣

∣ CT ← X 0
]

− μ(λ) ≥
1

2
+ η(λ) − μ(λ),

where in both of the above K ← GenPRF (1λ̃), C̃ ← apO(CK, 1λ̃).

It now follows that decryption is correct with probability noticeably larger than
half. Concretely,

Pr

[

Dec(R, ̂CT) = C(x)

∣

∣

∣

∣

CT,R ← Enc(x)
̂CT = ˜C(CT)

]

≥

Pr

[

Dec(R, ̂CT) = C(x)

∣

∣

∣

∣

CT,R ← Enc(x)
̂CT = CK(CT)

]

· Pr
[

˜C(CT) = CK(CT)
∣

∣

∣ CT ← X x
]

=

Pr

⎡

⎣Dec(R, ̂CT) = C(x)

∣

∣

∣

∣

∣

∣

CT,R ← Enc(x)
r = PRFK(CT)

̂CT = Eval(CT, C; r)

⎤

⎦ · Pr
[

˜C(CT) = CK(CT)
∣

∣

∣ CT ← X x
]

≥

(1 − ν(λ)) ·
(

1

2
+ η(λ) − μ(λ)

)

,

where in all of the above K ← GenPRF (1λ̃), C̃ ← apO(CK, 1λ̃), and ν(·) is some
negligible function (corresponding to the negligible decryption error of SFE). In
the last step, we relied on the fact that for any fixed CT, PRFK(CT) is distributed
uniformly at random (Remark 2.7), and the (almost) perfect correctness of SFE.

This completes the proof of correctness.
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Security Analysis. Consistently with the notation above, for K ←
GenPRF (1λ̃), and a circuit C ∈ Cλ, we denote by C̃ ← apO(CK, 1λ̃) the cor-
responding approximate obfuscation of the (derandomized) evaluation circuit.
We show that for any polysize distinguisher there exists a neglgible μ(·), such
that for any C0, C1 ∈ Cλ that compute the same function it holds that

∣

∣

∣Pr[D( ˜C0) = 1] − Pr[D( ˜C1) = 1]
∣

∣

∣ ≤ μ(λ) .

Roguhly, the above follows from the fact that the output of the two under-
lying obfuscated circuits on any point CT ∈ {0, 1}σ(λ) is indistinguishable even
given C0, C1. Indeed, because the circuits C0, C1 compute the same function,
by the function-hiding of SFE, for any ciphertext CT ∈ {0, 1}σ(λ), the evaluated
ciphers Eval(CT, C0) and Eval(CT, C1) are indistinguishable. Canetti, Lin, Tes-
saro, and Vaikuntanathan [24] show that (sub-exponential) IO in conjunction
with (sub-exponential) puncuturable PRFs are sufficient in this setting, which
they formalize by probabilistic IO notion. For the sake of completeness, we next
sketch the argument.

We consider a sequence of 2σ + 1 hybrids {HCT}CT∈{0,...,2σ}, where we nat-
urally identify integers in [2σ] with strings in {0, 1}σ. In HCT, we obfuscate a
circuit CCT(CT′) that computes C0,K for all CT′ > CT and C1,K for all CT′ ≤ CT;
the circuit is padded to size � (as in Fig. 1).

We first note that C0 computes the same function as C0,K and that C2σ

computes the same function as C1,K, and thus by the IO security,
∣

∣

∣Pr
[

D( ˜C0) = 1
]

− Pr [D(H0) = 1]
∣

∣

∣ ≤ 2−λ̃ε

,
∣

∣

∣Pr [D(H2σ ) = 1] − Pr
[

D( ˜C1) = 1
]∣

∣

∣ ≤ 2−λ̃ε

.

We show that for any CT ∈ [2σ],

|Pr [D(HCT−1) = 1] − Pr [D(HCT) = 1]| ≤ O(2−λ̃ε

) .

This follows a standard puncturing argument with respect to the point CT,
consisting of:

– puncturing PRFK at CT, and hardwiring C0,K(CT) = Eval(CT, C0;PRFK(CT)),
which relies on IO security,

– replacing PRFK(CT) with true randomness, which relies on pseudorandomness
at punctured points,

– replacing Eval(CT, C0) with Eval(CT, C1), which relies on function hiding.
– reversing the above steps.

Each of the steps induces a loss of 2−λ̃ε

= 2−ω(σ(λ)+log λ) in the indistinguisha-
bility gap.

This completes the security analysis.

The (Almost) Exact Obfuscator O: to obtain an (almost) exact obfuscator
O from the worst-case approximate obfuscator we apply standard “BPP ampli-
fication”. Such a transformation is given in [48, Appendix B]. For the sake of
completeness, we sketch it here.
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Obfuscation: Given a circuit C : {0, 1}n → {0, 1} and security parameter λ,
the obfuscator O(C, 1λ) outputs N = ω(n+λ)

η2(λ) obfuscations C̃1, . . . , C̃N , where

C̃i ← wcO(C, 1λ), and N random strings r1, . . . , rN , where ri ← {0, 1}λ.

Evaluation: Given an obfuscation
{

C̃i, ri

∣
∣
∣ i ∈ [N ]

}
, input x ∈ {0, 1}n, and

security parameter λ:

1. For i ∈ [N ], invoke the randomized evaluation procedure for C̃i, for input x,
using randomness ri, store the result yi.

2. Output y = majority(y1, . . . , yN ).

Remark 3.4. (deterministic evaluator). Publishing the random strings ri is done
to match the usual obfuscation syntax where the evaluation is deterministic. We
may also let the evaluator sample this randomness.

Proposition 3.5. O is an (almost) perfectly correct indistinguishability
obfuscator.

Proof (Proof Sketch). We show correctness and security.

Correctness. By a Chernoff bound, for large enough λ, and any x ∈ {0, 1}n, the
probability that the majority value y among all decrypted y1, . . . , yN is incorrect
is bounded by

Pr [y �= C(x)] ≤ 2−Ω(N ·η2(λ)) ≤ 2−n+λ.

The required correctness follows by a union bound over all inputs in {0, 1}n.

Security. The obfuscation consists of N independent copies of worst-case obfus-
cations C̃i ← wcO(C), where wcO satisfies indistinguishability. Security thus
follows by a standard hybrid argument.

Remark 3.6 (SFE in the CRS model). The above construction can be natu-
rally extended to rely also on non-interactive SFE schemes in the CRS model
(rather than the plain model). Indeed, the CRS can be generated by the (honest)
obfuscator.

3.3 Instantiating the Scheme

As discussed in Sect. 2.1, we can instantiate the SFE based on the (polynomial)
DDH assumption and sub-exponential one-way functions. Sub-exponential one-
way functions are also needed here in order to obtain sub-exponentially-secure
puncturable PRFs.

We can thus state the following theorem

Theorem 3.7. Assuming sub-exponentially secure approximate IO for P/poly,
(polynomial) DDH, and sub-exponentially-secure one-way functions, there exists
(almost) perfectly correct IO for P/poly.

Alternative instantiations of the above under more computational assumptions
[56] can be obtained when extending the scheme to SFE in the CRS model.
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4 Correcting Errors in Functional Encryption

In this section, we define approximate FE and show how to transform any
approximate FE to (almost) perfectly correct FE, based on DSFE. For the sake
of concreteness, we focus on the public-key setting. We also focus on selective-
security, which can be generically boosted to adaptive security [2].

4.1 Approximate and Exact FE

We recall the definition of public-key functional encryption (FE) with selective
indistinguishability-based security [17,53], and extend the definition to the case
of approximate correctness.

A public-key functional encryption (FE) scheme FE, for a function class
F = {Fλ} (represented by boolean circuits) and message space M ={{0, 1}n(λ) : λ ∈ N

}
, consists of four PPT algorithms (FE.Setup, FE.Gen, FE.Enc,

FE.Dec) with the following syntax:

– FE.Setup(1λ): Takes as input a security parameter λ in unary and outputs a
(master) public key and a secret key (MPK,MSK).

– FE.Gen(MSK, f): Takes as input a secret key MSK, a function f ∈ Fλ and
outputs a functional key FSKf .

– FE.Enc(MPK,M): Takes as input a public key MPK, a message M ∈ {0, 1}n(λ)

and outputs an encryption of M .
– FE.Dec(FSKf ,FCT): Takes as input a functional key FSKf , a ciphertext FCT

and outputs M̂ .

We next recall the required security properties as well the common (almost)
perfect correctness requirement.

Definition 4.1. (Selectively-Secure Public-key FE). A tuple of PPT algo-
rithms FE = (FE.Setup, FE.Gen, FE.Enc, FE.Dec) is a selectively-secure public-
key functional encryption scheme, for function class F = {Fλ}, and message
space M =

{{0, 1}n(λ) : λ ∈ N
}
, if it satisfies:

1. Almost Perfect Correctness: for every λ ∈ N, message M ∈ {0, 1}n(λ),
and function f ∈ Fλ,

Pr

⎡

⎣f(M) ← FE.Dec(FSKf ,FCT)

∣

∣

∣

∣

∣

∣

(MPK,MSK) ← FE.Setup(1λ)
FSKf ← FE.Gen(MSK, f)
FCT ← FE.Enc(MPK, M)

⎤

⎦ ≥ 1 − 2−λ.

2. Selective-Security: for any polysize adversary A, there exists a negligible
function μ(λ) such that for any λ ∈ N, it holds that

AdvFEA =
∣

∣

∣Pr[Expt
FE
A (1λ, 0) = 1] − Pr[ExptFEA (1λ, 1) = 1]

∣

∣

∣ ≤ μ(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptFEA (1λ, b), modeled as
a game between the challenger and the adversary A, is defined as follows:
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(a) The adversary submits the challenge message-pair M0,M1 ∈ {0, 1}n(λ) to
the challenger.

(b) The challenger executes FE.Setup(1λ) to obtain (MPK,MSK). It then exe-
cutes FE.Enc(MPK,Mb) to obtain FCT. The challenger sends (MPK,FCT)
to the adversary.

(c) The adversary submits function queries to the challenger. For any submit-
ted function query f ∈ Fλ, if f(M0) = f(M1), the challenger generates
and sends FSKf ← FE.Gen(MSK, f). In any other case, the challenger
aborts.

(d) The output of the experiment is the output of A.
We further say that FE is δ-secure, for some concrete negligible function δ(·),
if for all polysize adversaries the above indistinguishability gap μ(λ) is smaller
than δ(λ)Ω(1).

We now define an approximate notion of correctness that allows decryption
to error with some probability over encryption of messages taken from some
given distribution.

Definition 4.2. ((α,X )-correct FE). For α(λ) ∈ [0, 1] and an ensemble of
samplers X = {Xλ} with support M =

{{0, 1}n(λ) : λ ∈ N
}
, we say that FE is

(α,X )-correct if instead of (almost) perfect correctness, it satisfies the following
relaxed requirement:

1. Approximate Correctness: for every λ ∈ N, and function f ∈ Fλ,

Pr

⎡
⎢⎢⎣f(M) ← apFE.Dec(apFSKf ,FCT)

∣∣∣∣∣∣∣∣

(apMPK, apMSK) ← apFE.Setup(1λ)
apFSKf ← apFE.Gen(apMSK, f)

M ← Xλ

apFCT ← apFE.Enc(apMPK, M)

⎤
⎥⎥⎦ ≥ α(λ).

4.2 The Transformation

We now describe the transformation from approximately correct FE to (almost)
perfectly correct FE and analyze it. The transformation is based on DSFE. We
discuss instantiations in Sect. 4.3.

A Worst-Case Approximate FE. As in the case of obfuscation, the main step
of the FE transformation is to obtain random self-reducibility; that is,to convert
an approximate FE scheme apFE, which works reasonably well on average for
random messages taken from some appropriate distribution, into a worst-case
approximate scheme wcFE that, for any (worst-case) message, works well on
average over the random coins of the obfuscator alone. Then, in the second step,
we invoke standard “BPP amplification”.

Ingredients. In the following, let λ denote a security parameter, and let F =
{Fλ} denote a function class. Consider functions k(λ) ∈ N, and ρ(λ), η(λ) ∈ [0, 1]
such that η = 1

2 − √
ρ ∈ [ 1

λO(1) ,
1
2 − 1

λO(1) ]. We rely on the following primitives:
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– A (k,
√

ρ)-secure distributed function evaluation scheme DSFE for C. We shall
further assume that when encrypting an input, the shares CT1, . . . ,CTk all
have the same marginal distribution (i.e., CTi ≡ CTj).2

– A (1 − ρ,X )-correct (single-key, selectively-secure) functional encryption
scheme apFE = (apFE.Setup, apFE.Gen, apFE.Enc, apFE.Dec) for C. The sam-
pler class X depends on DSFE and the class F depends on DSFE, and F . Both
X and F are specified below as part of the description of the constructed
(almost exact) scheme FE.

– A one-time symmetric key encryption scheme Sym = (Sym.Enc,Sym.Dec).

The Worst-Case Scheme wcFE: The scheme wcFE, for function class F =
{Fλ} and message space M =

{{0, 1}n(λ) : λ ∈ N
}
, consists of the algorithms

(wcFE.Setup, wcFE.Gen, wcFE.Enc, wcFE.Dec) defined as follows:

– wcFE.Setup(1λ): generate (apMPK, apMSK) ← apFE.Setup(1λ). The public
key MPK and secret key MSK are accordingly set to be the apMPK and apMSK.

– wcFE.Gen(wcMSK, f): sample SCT ← Sym.Enc(SK, 0�×k), where � = �(λ)
is a polynomial specified in the security analysis, and SK ← {0, 1}λ. Con-
sider the augmented f -evaluation function fSCT as defined in Fig. 2. Generate
apFSKSCT ← apFE.Gen(apMSK, fSCT). The functional key wcFSKf will con-
sists of the functional key apFSKSCT.

– wcFE.Enc(wcMPK,M):
1. Compute (CT1, . . . ,CTk,R) ← DSFE.Enc(M),
2. For j ∈ [k]

• let apMj = (norm,CTj ,⊥,⊥)
• generate apFCTj ← apFE.Enc(apMPK, apMj).

Output wcFCT = {apFCT1, . . . , apFCTk,R}.
– wcFE.Dec(wcFSKf ,wcFCT):

1. Parse wcFSKf = apFSKSCT and wcFCT = (apFCT1, . . . , apFCTk,R).
2. for j ∈ [k], compute ĈTj ← apFE.Dec(apFSKSCT, apFCTj).
3. output y = DSFE.Dec(R, ĈT1, . . . , ĈTk).

The ensemble of samplers X consists of samplers X 0 that sample FE plain-
texts of the form apM = (norm,CT,⊥,⊥) where CT is the first of k ciphertext
components sampled from DSFE.Enc(0n), i.e. it is a share of a zero-encryption in
the underlying DSFE scheme. The class F consists of circuits fSCT as in Fig. 2.

Proposition 4.3. wcFE satisfies:
1. Worst-Case Approximate Correctness: for every λ ∈ N, function f ∈

Fλ, and message M ∈ {0, 1}n,

Pr

⎡
⎣f(M) ← wcFE.Dec(wcFSKf ,wcFCT)

∣∣∣∣∣∣
(wcMPK,wcMSK) ← wcFE.Setup(1λ)
wcFSKf ← wcFE.Gen(wcMSK, f)
wcFCT ← wcFE.Enc(wcMPK, M)

⎤
⎦ ≥

1

2
+ η − λ−ω(1) .

2 This is just to simplify the construction and is satisfied the instantiation discussed
in Sect. 2. In Remark 4.4, we explain how this assumption can be removed (at the
cost of complicating the construction).
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Fig. 2. The augmented f -evaluation circuit.

2. Selective Security: as in Definition 4.1.

We now turn to the proof.

Proof. We first prove that the new obfuscator has worst-case approximate cor-
rectness, and then prove that it is selectively secure.

Correctness. For any λ, n = n(λ), message M ∈ {0, 1}n, let us denote X M a
sampler for FE plaintexts of the form apM = (norm,CT,⊥,⊥) that is defined
just like X 0 except that CT is a share of an encryption of M sampled from
DSFE.Enc(M) in the underlying DSFE scheme, rather than a share of an encryp-
tion of 0n.

Then, by the input-hiding guarantee of SFE, and the approximate correct-
ness of apFE, we claim that, for any function f ∈ F and corresponding fSCT,
decryption in apFE is correct on encryptions of an arbitrary M ∈ {0, 1}n as on
encryptions of 0n. That is, there exists a negligible μ(λ) such that

Pr
[

apFE.Dec(apFSKfSCT , apFCT) = fSCT(apM)
∣

∣

∣ apM ← X M
]

≥
Pr
[

apFE.Dec(apFSKfSCT , apFCT) = fSCT(apM)
∣

∣ apM ← X 0]− μ ≥
1 − ρ − μ ,

where (apMPK, apMSK) ← apFE.Setup(1λ), apFSKfSCT
← apFE.Gen(apMSK,

fSCT), apFCT ← apFE.Enc(apMPK, apM), as defined above in the construction
of the exact scheme, and apM = (norm,CT,⊥,⊥).

We now consider alternative samplers
{X M

j

∣
∣ j ∈ [k]

}
that sample apMj just

as in the canonical X M , except that CT is sampled as the jth share of a DSFE
encryption of M (rather than the first). Note that by our assumption that the
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shares CT1, . . . ,CTk ← DSFE.Enc(M) have the same marginal distribution, the
samplers X M ,X M

1 , . . . ,X M
k all sample from the same distribution. In particular,

they satisfy the above statement regarding the probability of correct decryption,
satisfied by X M .

We shall denote by X M
j |CTj the corresponding sampler conditioned on CT =

CTj for some fixed CTj . We now consider the joint sampler (apM1, . . . , apMk) ←
X M

[k] where first shares (CT1, . . . ,CTk) are sampled from DSFE.Enc(M), and then
each apMj is sampled from Xj |CTj . Note that this sampler corresponds to the
way that encryption is done in our actual scheme wcFE defined above.

Noting that the marginal distribution of each apMj sampled accordingly
to X M

[k] is the same as X M
j , it follows that the expected number of successful

decryptions for a sample from X M
[k] can be lower bounded as follows

E

[

|{j | apFE.Dec(apFSKfSCT , apFCTj) = fSCT(apMj)}|
∣

∣

∣ (apM1, . . . , apMk) ← X M
[k]

]

=

k · Pr
[

apFE.Dec(apFSKfSCT , apFCTj) = fSCT(apMj)
∣

∣

∣ apMj ← X M
]

≥
k · (1 − ρ − μ),

where (apMPK, apMSK) ← apFE.Setup(1λ), apFSKfSCT
← apFE.Gen(apMSK,

fSCT), apFCTj ← apFE.Enc(apMPK, apMj).
It follows by averaging that with probability at least 1−√

ρ− 2μ√
ρ the number

of successful decryptions as defined above is larger than k ·(1−√
ρ). In particular,

(for large enough λ) the fraction of faults is below the threshold
√

ρ allowing to
reconstruct fSCT(apM).

Going to our actual encryption scheme wcFE, we now claim that decryption is
correct with probability noticeably larger than half. Concretely,

Pr

[

DSFE.Dec(R,̂CT1, . . . ,̂CTk) = f(M)

∣

∣

∣

∣

∣

CT1, . . . ,CTk,R ← DSFE.Enc(M)
̂CTj = apFE.Dec(apFSKfSCT

, apFCTj)

]

≥

Pr

[

DSFE.Dec(R,̂CT1, . . . ,̂CTk) = f(M)

∣

∣

∣

∣

∣

CT1, . . . ,CTk,R ← DSFE.Enc(M)
∣

∣

∣

{

̂CTj = fSCT(apMj)
}∣

∣

∣ ≥ √
ρ · k

]

·

Pr
[∣

∣

{

apFE.Dec(apFSKfSCT
, apFCTj) = fSCT(apMj)

}∣

∣ ≥ √
ρ · k

∣

∣ CT1, . . . ,CTk,R ← DSFE.Enc(M)
]

=

Pr

[

DSFE.Dec(R,̂CT1, . . . ,̂CTk) = f(M)

∣

∣

∣

∣

∣

CT1, . . . ,CTk,R ← DSFE.Enc(M)
∣

∣

∣

{

̂CTj = DSFE.Eval(CTj , f)
}∣

∣

∣ ≥ √
ρ · k

]

·

Pr
[

∣

∣

{

apFE.Dec(apFSKfSCT
, apFCTj) = fSCT(apMj)

}∣

∣ ≥ √
ρ · k

∣

∣

∣ CT1, . . . ,CTk ← X M
[k]

]

≥

(1 − ν) ·
(

1 − √
ρ − 2μ√

ρ

)

≥ 1

2
+ η − λ

−ω(1)
,

where in all of the above (apMPK, apMSK) ← apFE.Setup(1λ), apFSKfSCT
←

apFE.Gen(apMSK, fSCT), apMj = (norm,CTj ,⊥,⊥), apFCTj ← apFE.Enc
(apMPK, apMj), and ν(·) is some negligible function (corresponding to the neg-
ligible decryption error of DSFE).

This completes the proof of correctness.

Security Analysis. We prove the selective security of wcFE in a sequence of
hybrids, showing that any adversary A cannot tell the case that the challenge
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is an encryption of M0 from the case that the challenge is an encryption of M1,
for the corresponding (M0,M1) of his choice.

H1: this corresponds to the usual security game where the challenge is an encryp-
tion of M0.
H2: here, when generating a key FSKf for a function f , and accordingly gen-
erating an (approximate) key apFSKfSCT

for the function fSCT, the symmetric
ciphertext SCT is not an encryption of 0�×k as in the previous hybrid, but rather
an encryption of the DSFE evaluation corresponding to the challenge ciphertext.
Concretely, consider the generation of the challenge ciphertext FCT∗:

– FE.Enc(MPK,M0):
1. Compute (CT∗

1, . . . ,CT
∗
k,R∗) ← DSFE.Enc(M0),

2. For j ∈ [k]
• let apM∗

j = (norm,CT∗
j ,⊥,⊥)

• generate apFCT∗
j ← apFE.Enc(apMPK, apM∗

j ).
Output FCT∗ = (apFCT∗

1, . . . , apFCT
∗
k,R∗).

Then SCT will now encrypt ĈT
∗
f,1, . . . , ĈT

∗
f,k, where ĈT

∗
f,j = DSFE.Eval(CT∗

j , f).

Indistinguishability from the previous hybrid follows by the semantic-security of
symmetric encryption. (At this point, a corresponding symmetric secret key SK
is not present – in all encryptions the symmetric-key slot is set to ⊥.)
H3: here, we change the generation of the challenge ciphertext so to invoke the
trapdoor mode rather than the normal mode. Concretely, for each j ∈ [k], we
generate apM∗

j = (trap,⊥,⊥,SK, j), where SK is the symmetric key correspond-
ing SCT.

Indistinguishability from the previous hybrid follows from the security of the
underlying scheme apFE. Indeed, at this point, for every function f for which a
key apFSKfSCT

was generated,

fSCT(trap, ⊥, ⊥, SK, j) = fSCT(norm,CTj , ⊥, ⊥) = ̂CT
∗
f,j .

H4: here, we change how the evaluations ĈT
∗
f,j are generated. Recall that in the

previous hybrid ĈT
∗
f,j = DSFE.Eval(CT∗

j , f), where CT∗
j was generated as part

of (CT∗
1, . . . ,CT

∗
k,R∗) ← DSFE.Enc(M0). Now, instead of encrypting M0 in the

latter we encrypt M1.

Indistinguishability now follows from the residual input privacy of the underlying
DSFE, since f(M0) = f(M1). (Recall, that this is guaranteed also in the presence
of R∗, provided that CT∗

1, . . . ,CT
∗
k are absent from the adversary’s view, which

is indeed the case in this hybrid.)
H5–H8: symmetrically follow the above hybrids in reverse order, until the usual
security game where M1 is encrypted in the challenge.

This completes the security analysis.
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Remark 4.4 (removing the assumption on equally-distributed shares). In the
above construction we have assumed that the DSFE shares CT1, . . . ,CTk have
the same marginal distribution (for which we have also exhibited an instantia-
tion in Sect. 2.1). To remove this assumption, we could have an instance of an
approximate FE scheme apFEi for each i with respect to the corresponding dis-
tribution on CTi (whereas in the construction above we relied on one instance
of an approximate FE defined with respect to the marginal distribution which
was the same for all shares).

The (Almost) Exact Scheme FE: to obtain an (almost) exact scheme from the
worst-case approximate scheme we again apply standard “BPP amplification”.
Namely, we consider N parallel copies of the scheme for a large enough N .

Formally, the scheme FE, for function class F = {Fλ} and message space
M =

{{0, 1}n(λ) : λ ∈ N
}
, consists of the algorithms (FE.Setup, FE.Gen, FE.Enc,

FE.Dec) defined as follows:

– FE.Setup(1λ): let N = ω(n+λ)
η2 . For i ∈ [N ], generate (wcMPKi,wcMSKi) ←

wcFE.Setup(1λ). The public key MPK and secret key MSK are accordingly set
to be all of the public keys {wcMPKi}i∈[N ] and secret keys {wcMSKi}i∈[N ].

– FE.Gen(MSK, f): For i ∈ [N ], generate wcFSKf,i ← wcFE.Gen(wcMSKi, f).
The functional key FSKf will consists of the functional keys {wcFSKf,i}i∈[N ].

– FE.Enc(MPK,M): For i ∈ [N ], compute wcFCTi ← wcFE.Enc(wcMPKi,M).
The ciphertext FCT consists of the ciphertexts (wcFCT1, . . . ,wcFCTN ).

– FE.Dec(FSKf ,FCT):
1. Parse FSKf = {wcFSKf,i}i∈[N ] and FCT = {wcFCTi}i∈[N ].
2. For i ∈ [N ], compute yi = wcFE.Dec(wcFSKf,i,wcFCTi).
3. Output y = majority(y1, . . . , yN ).

Proposition 4.5. FE is an (almost) perfectly correct selectively-secure func-
tional encryption scheme.

Proof (Proof Sketch). We show correctness and security.

Correctness. By a Chernoff bound, for large enough λ, and message M ∈
{0, 1}n, the probability that the majority value y among all decrypted y1, . . . , yN

is incorrect is bounded by

Pr [y �= f(M)] ≤ 2−Ω(N ·η2(λ)) ≤ 2−n+λ .

The required correctness follows by a union bound over all messages in {0, 1}n.

Security. The scheme consists of N independent copies of the worst-case scheme
that is selectively secure. Security thus follows by a standard hybrid argument.
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4.3 Instantiating the Scheme

As discussed in Sect. 2.1, we can instantiate the DSFE based an information-
theoretic variant of BGW for NC1, resulting in an FE scheme for NC1. The
scheme can then be generically bootstrapped to P/poly assuming weak PRFs
in NC1 [2].

Theorem 4.6. Assuming approximate FE for P/poly and weak PRFs in NC1,
there exists (almost) perfectly correct FE for P/poly.

5 An Alternative Transformation for IO Based on FE

Recall that the transformation from (subexponential) approximate IO to
(almost) exact IO described in Sect. 3.2 required SFE with function hiding
against malicious receivers, and was instantiated based on (polynomial) DDH
and subexponential one-way functions. In this section, we show an alternative
transformation based on any subexponential puncturable PRF in NC1. The
transformation is based on a combination of the FE transformation from Sect. 4
and known results from the literature.

The high-level idea consists of three basic steps:

1. Start with a (subexponentially-secure) approximate IO and implement
directly (subexponentially-secure) approximate FE with compact ciphertexts
by following a construction from the exact IO setting [35].

2. Apply the transformation from approximate FE to obtain exact FE with
compact ciphertexts, based on weaker assumptions.

3. Apply a transformation from exact FE to (exact) IO [3,14].

Fulfilling this high-level plan requires some care though. The transforma-
tion of Garg et al. [35] from IO to FE naturally extends to the approximate
setting, but relies on additional assumptions: (exact) public-key encryption and
(exact, or rather complete) NIZKs. While these primitives are known based on
exact IO [13,57], they do not work in the approximate setting. Nevertheless, we
show how these constructions can be extended to imply the exact versions of
the primitives (from approximate IO). A second issue that should be addressed
is how the approximate FE to exact FE transformation affects the complexity
of FE encryption. Indeed, the transformations of [3,14] require certain succinct-
ness properties. We observe that the transformation, when instantiated with the
BGW-based DSFE, satisfies the required compactness, when assuming addition-
ally (sub-exponentially-secure) puncturable PRFs in NC1.

Overall, we prove

Theorem 5.1. Assuming approximate IO for P/poly and puncturable PRFs
in NC1, both with sub-exponential security there exists (almost) perfectly correct
IO P/poly.

We next provide further details.
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5.1 Approximate FE from Approximate IO

The starting point for this step is the Garg et al. [35]. To obtain FE from IO and
PKE, and NIZKs, the transformation works as follows. Each encryption has the
form (e0, e1, π), where e0, e1 encrypt a message M under two independent copies
of a plain (exact) public-key encryption scheme, and π is a proof that (e0, e1) are
indeed well-formed using an (exact) NIZK with statistical simulation-soundness.

A functional key for a function f is an obfuscation of a circuit CSK0,CRS that
given (e0, e1, π):

– verifies the correctness of π with respect to the hardwired common reference
string CRS,

– if the proof is accepting, decrypts e0 using the hardwired secret key SK0 to
obtain M ,

– and outputs f(M).

It follows readily that if we replace exact IO in this transformation with
approximate IO (say while still using exact PKE and NIZKs) the resulting FE
scheme would be approximately-correct. Concretely to get α-correct FE for a
message sampler X , we start with IO that is α-correct for an input sampler X ′

that samples FE encryptions (e0, e1, π) of random messages M taken from X .
In fact, even if we start with α-correct versions of PKE and NIZKs we would

get Ω(α)-correct FE, however, the security of the FE scheme might no longer
hold; indeed, the exact correctness of the PKE and NIZK play an important
role in the security proof in [35]. To fill this gap we will show how to obtain
exact NIZK and PKE directly from approximate IO. More accurately, we would
obtain almost exactly correct versions where the NIZK and PKE are exactly
correct with overwhelming probability over the choice of their public parameters
(i.e., the common reference string and public-keys), which is sufficient for the
security proof in [35].

(Almost) Exact PKE. To obtain (almost) exact PKE, we start with the PKE
of Sahai and Waters [57] based on exact IO and one-way functions. Here the
public key consists of an obfuscation C̃ of a circuit CK that given a PRG seed s
outputs PRFK(PRG(s)) for an appropriately stretching pseudo-random genera-
tor and a puncturable PRF. An encryption of M consists of PRG(s),M ⊕ C̃(s).
Replacing exact IO with α-correct IO in their transformation results in approx-
imate PKE in two senses: (a) the scheme is correct with probability α over
an encryption of any message M ; (b) it is weakly semantically secure, the
probability of guessing a random encrypted message M can be bounded by
β = 2−|M | + λ−ω(1) + (1 − α). Schemes such as the latter can be corrected using
techniques from the literature [31, Theorem 4] so long that β < O(α4), which
holds for constant α that is sufficiently close to 1.

In the resulting scheme, the probability of decryption error is over the choice
of public-key and the randomness used in encryption. In the same work [31],
Dwork, Naor, and Reingold show how to shift the error probability to the choice
of the public-key alone; namely, get a scheme where with overwhelming proba-
bility over the choice of keys there are no decryption errors at all. This is done
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as follows, assume the decryption error is bounded by 2−λ, and encryption uses
r(λ) = λO(1) bits of randomness. We will now publish together with the public
key a random string R ← {0, 1}r. Encryption will now be done with randomness
R′ = R ⊕ PRG(s), where PRG : {0, 1}λ/2 → {0, 1}r is a pseudo-random gen-
erator and s ← {0, 1}λ/2 is a random seed. Due to the sparseness of the PRG
with probability 2−Ω(λ) over the choice of the keys the are no decryption errors.
Semantic-security is maintained due to the security of the PRG.

(Almost) Exact NIZK. Statistical simulation-sound NIZKs can be con-
structed from any NIZK proof and non-interactive commitment schemes in the
common reference string model [35]. The same also holds for the case that the
NIZK is almost exact (where the resulting SSS NIZK will also be almost exact).
The required commitments can be constructed from one-way functions [51]. We
now describe how to obtain the required NIZKs from approximate IO.

Concretely, we examine the NIZK construction of Bitansky and Paneth [13]
based on exact IO and one-way functions. In their construction, IO is used to
implement invariant signatures [43], which are in turn used to implement the
hidden-bit model [32]. Concretely, a verification key VK in their scheme consists
of an obfuscated circuit CCRS,K that given a message M ∈ {0, 1}n, computes
(b, r) ← PRFK(M) using a puncturable PRF, and outputs a Naor commitment
C = COMCRS(b, r), with respect to common reference string CRS.

Replacing exact IO with α-correct IO preserves two of the guarantees of
the invariant signatures: 1) it is invariant in the sense that for every verifica-
tion key VK and message M , C = VK(M) can be opened to a unique bit b,
due to the binding of the commitment; 2) it satisfies pseudorandomness of the
unique property b, since the obfuscator is as secure as in the exact case. However,
now completeness only holds with probability α over random messages M . The
implementation of the hidden bit model indeed invokes the invariant signatures
for random messages. This leads to a corresponding NIZK with completeness
error (1 − α) · poly(λ), for some poly that depends on the NIZK construction
(and soundness error 2−λ). Assuming α > 1 − 1

λ·poly(λ) , we can then take say λ2

independent copies, requiring that the prover succeeds only on a single instance,
resulting in a NIZK with completeness error 2−λ and soundness error λ2 · 2−λ.

In the resulting scheme, the completeness error is over the choice of the
common-reference string and the randomness used by the prover. As before we
can use the technique from [31], to shift the error probability to the choice of
the CRS alone by sparsifying the coins used by the prover using a PRG. This
transformation still maintains computational zero-knowledge due to the pseudo-
randomness of the PRG, and has the same unconditional soundness.

A caveat of the latter transformation is that it can only correct a polynomial
fraction 1 − α = λ−Θ(1) of errors (and not say a constant, as in the previous
construction). We stress that in the de-idealized constructions of obfuscation
[23,50,54] the error rate can be made an arbitrary small polynomial. Thus the
implication to constructions of IO with an ideal assisting oracle still holds.
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5.2 FE to IO

Exact FE vs Almost Exact FE. The transformations of [3,14] from FE to
IO are naturally described in terms of perfectly correct FE, nevertheless it is
easy to verify that they also work starting from FE that is perfectly-correct with
overwhelming probability only over the setup phase generating the keys. The
resulting IO will be almost perfectly correct.

To almost exact FE given in Sect. 4 can be turned to one that satisfies
the above property using again the randomness sparsification technique of [31]
described above.

Succinctness. In the previous subsection, we described how to obtain an
approximate FE scheme where the complexity of encryption is independent of
the circuit and output size of the corresponding functions, as inherited from the
exact scheme of [35]. To fulfill our approach we need to make sure that applying
our transformation to exact FE still preserves certain succinctness properties
required by the transformations in [3,14]. Concretely, we note that our approx-
imate to exact FE transformation inherits its succinctness from the underlying
DSFE scheme. As discussed in 4.3, using the BGW-based DSFE, incurs a 2O(d)

overhead in the complexity of encryption, where d is the maximal depth of
any circuit in the class, but is otherwise as efficient. Fortunately, Bitansky and
Vaikuntanathan [14] show that this is still sufficient for a variant of their trans-
formation from FE to IO, under the additional assumption of sub-exponentially-
secure puncturable PRFs in NC1.

Acknowledgements. We thank Ilan Komargodsky for pointing out [48, Appendix
B], and the anonymous TCC reviewers for their comments.
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Abstract. We consider randomized encodings (RE) that enable encod-
ing a Turing machine Π and input x into its “randomized encoding”
Π̂(x) in sublinear, or even polylogarithmic, time in the running-time
of Π(x), independent of its output length. We refer to the former as
sublinear RE and the latter as compact RE. For such efficient RE, the
standard simulation-based notion of security is impossible, and we thus
consider a weaker (distributional) indistinguishability-based notion of
security: Roughly speaking, we require indistinguishability of Π̂0(x0)
and Π̂0(x1) as long as Π0, x0 and Π1, x1 are sampled from some distri-
butions such that Π0(x0),Time(Π0(x0)) and Π1(x1),Time(Π1(x1)) are
indistinguishable.

We show the following:
– Impossibility in the Plain Model: Assuming the existence

of subexponentially secure one-way functions, subexponentially-
secure sublinear RE does not exists. (If additionally assum-
ing subexponentially-secure iO for circuits we can also rule out
polynomially-secure sublinear RE.) As a consequence, we rule out also
puncturable iO for Turing machines (even those without inputs).

– Feasibility in the CRS model and Applications to iO for cir-
cuits: Subexponentially-secure sublinear RE in the CRS model and
one-way functions imply iO for circuits through a simple construc-
tion generalizing GGM’s PRF construction. Additionally, any compact
(even with sublinear compactness) functional encryption essentially
directly yields a sublinear RE in the CRS model, and as such we get an
alternative, modular, and simpler proof of the results of [AJ15,BV15]
showing that subexponentially-secure sublinearly compact FE implies
iO. We further show other ways of instantiating sublinear RE in
the CRS model (and thus also iO): under the subexponential LWE
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assumption, it suffices to have a subexponentially secure FE schemes
with just sublinear ciphertext (as opposed to having sublinear encryp-
tion time).

– Applications to iO for Unbounded-input Turing machines:
Subexponentially-secure compact RE for natural restricted classes of
distributions over programs and inputs (which are not ruled out by
our impossibility result, and for which we can give candidate construc-
tions) imply iO for unbounded-input Turing machines. This yields the
first construction of iO for unbounded-input Turing machines that
does not rely on (public-coin) differing-input obfuscation.

1 Introduction

The beautiful notion of a randomized encoding (RE), introduced by Ishai and
Kushilevitz [IK00], aims to trade the computation of a “complex” (deterministic)
function Π on a given input x for the computation of a “simpler” randomized
function—the “encoding algorithm”—whose output distribution Π̂(x) encodes
Π(x) (from which Π(x) can be efficiently decoded, or “evaluated”). Furthermore,
the encoding Π̂(x) should not reveal anything beyond Π(x); this is referred to
as the privacy, or security, property of randomized encodings and is typically
defined through the simulation paradigm [GMR89].

Most previous work have focused on randomized encodings where encodings
can be computed in lower parallel-time complexity than what is required for
computing the original function Π. For instance, all log-space computations have
perfectly-secure randomized encodings in NC0 [IK00,IK02a,AIK04], and assum-
ing low-depth pseudo-random generators, this extends to all polynomial-time
computations (with computational security) [AIK06,Yao82]. Such randomized
encodings have been shown to have various applications to parallel cryptogra-
phy, secure computation, verifiable delegation, etc. (see [App11] for a survey).

Bitansky, Garg, Lin, Pass and Telang [BGL+15] recently initiated a study
of succinct randomized encodings where we require that the time required
to compute Π̂(x) is smaller than the time required to compute Π(x); their
study focused on functions Π that have single-bit outputs. [BGL+15,CHJV14,
KLW14] show that subexponentially-secure indistinguishability obfuscators (iO)
[BGI+01,GGH+13] and one-way functions1 imply the existence of such succinct
randomized encodings for all polynomial-time Turing machines that output just
a single bit.

We here further the study of such objects, focusing on functions Π with long
outputs. Given a description of a Turing machine Π and an input x, we consider
two notions of efficiency for randomized encodings Π̂(x) of Π(x) with running
time T .

– compact RE : Encoding time (and thus also size of the encodings) is
poly(|Π|, |x|, log T )

1 The one-way function assumption can be weakened to assume just that NP �⊆ ioBPP
[KMN+14].
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– sublinear RE : Encoding time (and thus also size) is bounded by poly(|Π|, |x|)∗
T 1−ε, for some ε > 0.

We assume without loss of generality that the randomized encoding Π̂(x) of Π,x
itself is a program, and that the decoding/evaluation algorithm simply executes
Π̂(x).

It is easy to see that for such notions of efficiency, the standard simulation-
based notion of security is impossible to achieve—roughly speaking, the sim-
ulator given just Π(x) needs to output a “compressed” version of it, which
is impossible if Π(x) has high pseudo-Kolmogorov complexity (e.g., if Π is a
PRG); we formalize this argument in Theorem 14 in Sect. 6. Consequently, we
consider weaker indistinguishability-based notions of privacy. One natural indis-
tinguishability based notion of privacy simply requires that encoding Π̂0(x0) and
Π̂1(x1) are indistinguishable as long as Π0(x0) = Π1(x1) and Time(Π0(x0)) =
Time(Π1(x1)), where Time(Π(x)) is the running-time of Π(x); such a notion
was recently considered by Ananth and Jain [AJ15]. In this work, we con-
sider a stronger notion which requires indistinguishability of Π̂0(x0) and Π̂0(x1)
as long as Π0, x0 and Π1, x1 are sampled from some distributions such that
Π0(x0),Time(Π0(x0)) and Π1(x1),Time(Π1(x1)) are indistinguishable. We refer
to this notion as distributional indistinguishability security, and note that it
easily follows that the standard simulation-based security implies distributional
indistinguishability security.

The goal of this paper is to investigate compact and sublinear RE satisfying
the above-mentioned distributional indistinguishability notion. For the remain-
der of the introduction, we refer to randomized encodings satisfying distribu-
tional indistinguishability security as simply RE. For comparison, we refer to
randomized encodings with the weaker (non-distributional) indistinguishability
security as weak RE.

Compact RE v.s. Obfuscation. Before turning to describe our results, let
us point out that RE can be viewed as (a degenerate form) of obfuscation for
special classes of programs.

Recall that an indistinguishability obfuscator (iO) [BGI+01,GGH+13] is a
method O for “scrambling” a program Π into O(Π) such that for any two
functionally equivalent programs Π0,Π1 (that is, their outputs and run-time
are the same on all inputs,) O(Π0) is indistinguishable from O(Π1). iO for
Turing machines [BGI+01,BCP14,ABG+13] additionally requires that the size
of the obfuscated code does not grow (more than polylogarithmically) with the
running-time of the Turing machine.

We may also consider a useful strengthening of this notion—which we
call “puncturable iO”—which, roughly speaking, requires indistinguishability
of O(Π0) and O(Π1) as long as Π0 and Π1 differ on at most one input x∗

and their outputs on input x∗ are indistinguishable. More precisely, we say
that a distribution D is admissible if there exists some x∗ such that a) for
every triple (Π0,Π1,Π) in the support of D, and every x �= x∗, it holds
that Π0(x) = Π1(x) = Π(x), and b) (Π,Π0(x∗)) and (Π,Π1(x∗)) are com-
putationally indistinguishable when (Π0,Π1,Π) are sampled randomly from D.
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Puncturable iO requires indistinguishability of O(Π0) and iO(Π1) for Π0,Π1

sampled from any admissible distribution. Interestingly, for the case of circuits,
puncturable iO is equivalent to (standard) iO.2 Indeed, such a notion is implic-
itly used in the beautiful and powerful punctured-program paradigm by Sahai
and Waters [SW14], and all its applications. (In this context, think of Π as the
“punctured” version of the programs Π0, Π1.)

In the case of Turing machines, when restricting to the degenerate case of
Turing machines with no inputs (or more precisely, we only consider the exe-
cution of Π() on the “empty” input), the notion of iO for Turing machines is
equivalent to the notion of a compact weak RE. Compact RE, on the other hand,
is equivalent to puncturable iO for Turing machines (without inputs). (Jump-
ing ahead, as we shall see, for the case of Turing machines it is unlikely that
puncturable iO is equivalent to standard iO.)

1.1 Our Results

iO from sublinear RE. We start by showing that sublinear RE is an
extremely useful primitive: Subexponentially-secure sublinear RE implies indis-
tinguishability obfuscators for all polynomial-size circuits.

Theorem 1. The existence of subexponentially-secure sublinear RE and one-
way functions implies the existence of subexponentially-secure iO for circuits.

Before continuing, let us mention that Theorem 1 is related to a recent beautiful
result by Ananth and Jain [AJ15] which shows that under the LWE assumption,
subexponentially-secure compact RE (satisfying only the weak indistinguisha-
bility security) implies iO for circuits. Their construction goes from RE to func-
tional encryption (FE) [BSW11], and then from FE to iO; (the first step relies on
previous constructions of FE [GKP+13a,GVW13], while the second step relies
on a sequence of complex transformations and analysis). In contrast, the proof
of Theorem 1 directly constructs iO from RE in a surprisingly simple way: We
essentially use the GGM construction [GGM86] that builds a PRF from a PRG
using a tree, but replace the PRG with a RE. Let us explain in more details
below.

Consider a program Π taking n-bit inputs. We consider a binary tree where
the leaves are randomized encodings of the function applied to all possible inputs,
and each node in the tree is a randomized encoding that generates its two chil-
dren. More precisely, given a sequence of bits x1, · · · , xi, let Π̃R,x1,··· ,xi

denote
an (input-less) program that

– if i = n simply outputs a RE of the program Π and input (x1, · · · , xn) using
R as randomness, and

2 To see this, consider a hybrid program Πy(x) that runs Π(x) if x �= x∗ and other-
wise (i.e., if x = x∗ outputs y). By the iO property we have that for every Π, Π0, Π1

in the support of D, O(ΠΠb(x
∗)) is indistinguishable from O(Πb). Thus, if O(Π0),

O(Π1) are distinguishable, so are O(ΠΠ0(x
∗)), O(ΠΠ1(x

∗)), which contradicts indis-
tinguishability of (Π, Π0(x

∗)) and (Π, Π1(x
∗)).
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– otherwise, after expanding R0, R1, R2, R3 from R using a PRG, outputs ran-
domized encodings of (input-less) programs Π̃R0,x1,··· ,xi,0 and Π̃R1,x1,··· ,xi,1

using respectively R2, R3 as randomness.

We associate each node in the binary tree that has index x1, · · · , xi with a
randomized encoding of the program Π̃R,x1,··· ,xi

, denoted as Π̂R,x1,··· ,xi
. In par-

ticular, the root of the tree is associated with a randomized encoding Π̂ of the
(initial) program Π̃R hardwired with a randomly chosen R.

The obfuscation of Π is now a program with the “root” Π̂ hardcoded, and
given an input x, computes the path from the root to the leaf x – by recursively
evaluating the randomized encodings associated with nodes on the path – and
finally outputs the evaluation of the leaf. More precisely, on input x, evaluate Π̂
to obtain Π̂0, Π̂1, next evaluate Π̂x1 to obtain Π̂x1,0, Π̂x1,1, so on and so forth
until Π̂x1,··· ,xn

is evaluated, yielding the output Π(x1, · · · , xn).
Note that for any two functionally equivalent programs, the randomized

encodings associated with individual leaf node are computationally indistin-
guishable by the indistinguishability security property (the non-distributional
version suffices here). Then, by the distributional indistinguishability security,
the randomized encodings associated with tree nodes one layer above are also
indistinguishable. Thus, by induction, it follows that the roots are indistinguish-
able, which implies that obfuscations of functionally equivalent programs are
indistinguishable. Let us note that the reason that subexponential security is
needed is that each time we go up one level in the tree (in the inductive argu-
ment), we lose at least a factor 2 in the indistinguishability gap (as each node
generates two randomized encodings, its children). Hence, we need to ensure that
encodings are at least poly(2n)-indistinguishable, which can be done by scaling
up the security parameter.

On the existence of Compact and Sublinear RE. We next turn to inves-
tigating the existence of compact and sublinear RE. We show—assuming just
the existence of subexponentially-secure one-way functions—impossibility of
subexponentially-secure sublinear (and thus also compact) RE.3

Theorem 2. Assume the existence of subexponentially secure one-way func-
tions. Then, there do not exists subexponentially-secure sublinear RE.

As observed above, compact RE can be interpreted as a stronger notion of iO
(which we referred to as puncturable iO) for “degenerate” input-less Turing
machines, and as such Theorem 2 rules out (assuming just one-way functions)
such a natural strengthening of iO for (input-less) Turing machines. We note that
this impossibility stands in contrast with the case of circuits where puncturable
iO is equivalent to iO.

We remark that although it may seem like Theorem 2 makes Theorem 1 point-
less, it turns out that Theorem 1 plays a crucial role in the proof of Theorem 2:

3 This result was established after hearing that Bitansky and Paneth had ruled out
compact RE assuming public-coin differing-input obfuscation for Turing Machines
and collision-resistant hashfunctions. We are very grateful to them for informing us
of their result.
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Theorem 2 is proven by first ruling out sublinear (even just polynomially-secure)
RE assuming iO and one-way functions. Next, by using Theorem 1, the iO
assumption comes for free if considering subexponentially-secure RE. That is,
assuming one-way functions, we have the following paradigm:

sub-exp secure sublinear RE
Theorem 1

=⇒ iO =⇒ impossibility of (poly secure) sublinear RE

Let us now briefly sketch how to rule out sublinear RE assuming iO and
one-way functions (as mentioned, Theorem 2 is then deduced by relying on
Theorem 1). The idea is somewhat similar to the non-black-box zero-knowledge
protocol of Barak [Bar01].

Let Πb
s,u be a program that takes no input and outputs a sufficiently long

pseudo-random string y = PRG(s) and an indistinguishability obfuscation R̃b
y

(generated using pseudo-random coins PRG(u)) of the program Rb
y. The program

Rb
y takes input Σ of length |y|/2, and outputs b iff Σ, when interpreted as an

input-less Turing machine, generates y; in all other cases, it outputs ⊥.4 We
note that the size of the program Πb

s,u is linear in the security parameter λ,
whereas the pseudo-random string y it generates could have length |y| = λα for
any sufficiently large constant α.

Consider the pair of distributions Π0
Uλ,Uλ

and Π1
Uλ,Uλ

that samples respec-
tively programs Π0

s,u and Π1
s,u as described above with random s and u. We first

argue that their outputs are computationally indistinguishable. Recall that the
output of Πb

s,u is a pair (y, R̃b
y). By the pseudorandomness of PRG, this output

distribution is indistinguishable from (X, R̃b
X) where X a uniformly distributed

random variable over λα bit strings. With overwhelming probability X has high
Kolmogorov complexity, and when this happens Rb

X is functionally equivalent to
the program R⊥ that always outputs ⊥. Therefore, by the security of the iO, the
output of programs sampled from Πb

Uλ,Uλ
is computationally indistinguishable

to (X, R̃⊥), and hence outputs of Π0
Uλ,Uλ

and Π1
Uλ,Uλ

are indistinguishable.
Let us now turn to showing that randomized encodings of Π0

Uλ,Uλ
and Π1

Uλ,Uλ

can be distinguished. Recall that a randomized encoding Π̂b of Πb
Uλ,Uλ

itself
can be viewed as a (input-less) program that outputs (y, R̃b

y). Given Π̂b, the
distinguisher can thus first evaluate Π̂b to obtain (y, R̃b

y) and next evaluate
R̃b

y(Π̂b) to attempt to recover b. Note that Π̂b clearly is a program that generates
y (as its first input); furthermore, if the RE scheme is compact, the length
of the program |Π̂b| is bounded by poly(λ, log λα), which is far smaller than
|y|/2 = λα/2 when α is sufficiently large. Therefore, Σ = Π̂b is indeed an input
that makes R̃b

y output b, enabling the distinguisher to distinguish Π̂0 and Π̂1

with probability close to 1!
Finally, if the RE is only sublinear, the length of the encoding |Π̂b| is only

sublinear in the output length, in particular, bounded by poly(λ)(λα)1−ε for
4 To enable this, we require iO for bounded-input Turing machines, whereas Theorem 1

only gives us iO for circuits. However, by the results of [BGL+15,CHJV14,KLW14]
we can go from iO for circuits to iO for bounded-inputs Turing machines.
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some constant ε > 0. If α > 1/(1 − ε) (which clearly happens if ε is suffi-
ciently small), then we do not get enough “compression” for the above proof
to go through. We circumvent this problem by composing a sublinear RE with
itself a sufficient (constant) number of times—to compose once, consider creat-
ing randomized encoding of the randomized encoding of a function, instead of
the function itself; each time of composition reduces the size of the encoding to
be w.r.t. a smaller exponent 1 − ε′. Therefore, it is without loss of generality to
assume that ε is any sufficiently big constant satisfying α << 1/(1 − ε); so the
desired compression occurs.

Sublinear RE in the CRS model from sublinear FE. Despite Theorem 2,
not all is lost. We remark that any sublinear functional encryption scheme (FE)
[AJ15,BV15] almost directly yields a sublinear RE in the Common Reference
String (CRS) model; roughly speaking, an FE scheme is called sublinear if the
encryption time is sublinear in the size of the circuit that can be evaluated on
the encrypted message.

Theorem 3. Assume the existence of subexponentially-secure sublinear (resp.
compact) FE. Then there exists a subexponentially-secures sublinear (resp. com-
pact) RE in the CRS model.

Furthermore, Theorem 1 straightforwardly extends also to RE in the CRS model.
Taken together, these result provide an alternative, modular, simpler proof
of the recent results of Ananth and Jain [AJ15] and Bitansky and Vaikun-
tanathan [BV15] showing that subexponentially-secure sublinear FE implies
subexponentially-secure iO. (All these approaches, including a related work by
Brakerski, Komargodski and Segev [BKS15] have one thing in common though:
they all proceed by processing inputs one bit at a time, and hard-coding parts
of input to the program.)

Theorem 4 (informal, alternative proof of [BV15,AJ15]). Assume the
existence of subexponentially-secure sublinear FE. Then there exists a
subexponentially-secure iO for circuits.

But there are also other ways to instantiate sublinear RE in the CRS model. We
show that under the subexponential LWE assumption (relying on [GKP+13a,
ABSV14,GVW13]) sublinear RE in the CRS model can be based on a signifi-
cantly weaker notion of sublinear FE—namely FE schemes where the encryp-
tion time may be fully polynomial (in the size of the circuit to be evaluated)
but only the size of the ciphertext is sublinear in the circuit size—we refer to
this notion as a FE with sublinear ciphertexts. Roughly speaking, we show this
by (1) transforming the “succinct” FE (i.e. compact FE for 1-bit outputs) of
[GKP+13a,ABSV14] into an RE which depends linearly on the output length
but only polylogarithmically on the running time, (2) transforming an FE with
sublinear ciphertext into an RE with “large” running-time but short output, and
(3) finally composing the two randomized encodings (i.e., computing the step 1
RE of the step 2 RE).

Combining this result with (the CRS-extended version of) Theorem 1, we get:
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Theorem 5 (informal). Assume the existence of subexponentially-secure FE
with sublinear ciphertexts and the subexponential LWE assumption. Then there
exists a subexponentially-secure iO for circuits.

Toward Turing Machine Obfuscation with Unbounded Inputs. We
finally address the question of constructing indistinguishability obfuscators for
Turing machines with unbounded inputs. (For the case of Turing machine
obfuscation with unbounded-length inputs, the same obfuscated code needs
to work for every input-length, and in particular, the size of the obfuscated
code cannot grow with it.) Although it is known that subexponentially secure
iO for circuits implies iO for Turing machines with bounded inputs lengths
[BGL+15,CHJV14,KLW14], the only known construction of iO for Turing
machines with unbounded inputs relies on (public-coin) differing-input obfus-
cation for circuits and (public-coin) SNARKs [BCP14,ABG+13,IPS15]—these
are strong “extractability” assumptions (and variants of them are known to be
implausible [BCPR13,GGHW13,BP15]).

We note that the construction from Theorem 1 easily extends to show
that subexponentially-secure compact RE implies iO for Turing machines with
unbounded input: instead of having a binary tree, we have a ternary tree where
the “third” child of a node is always a leaf; that is, for a tree node corresponding
to x1, · · · , xi, its third child is associated with a randomized encoding of program
Π, and input (x1, · · · , xi), which can be evaluated to obtain output Π(x1, · · · xi).
Then, by using a tree of super-polynomial depth, we can handle any polynomial-
length input. Note that since obfuscating a program only involves computing the
root RE (as before), the obfuscation is still efficient. Moreover, for any input, we
still compute the output of the program in time polynomial in the length of the
input by evaluating the “third” child of the node when all input bits have been
processed.5

But as shown in Theorem 2, compact RE cannot exist (assuming one-way
functions)! However, just as for the case of differing-inputs obfuscation and
SNARKs, we may assume the existence of compact RE for restricted types of
“nice” distributions (over programs and inputs), for which impossibility does not
hold, yet the construction in Theorem 1 still works. We formalize one natural
class of such distributions, and may assume that the iO for bounded-input Tur-
ing machines construction of [KLW14] (based on iO for circuits) yields such a
compact RE (for the restricted class of distributions). This yields a new candi-
date construction of unbounded input Turing machines (based on a very different
type of assumption than known constructions).

5 Proving security becomes slightly more problematic since there is no longer a
polynomial bound on the depth of the tree (recall that we required poly(2n)-
indistinguishable RE to deal with inputs of length n). Thus issue, however, can
be dealt with by using larger and larger security parameters for RE that are deeper
down in the tree.
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2 Preliminaries

Let N denote the set of positive integers, and [n] denote the set {1, 2, . . . , n}. We
denote by PPT probabilistic polynomial time Turing machines. The term neg-
ligible is used for denoting functions that are (asymptotically) smaller than one
over any polynomial. More precisely, a function ν(·) from non-negative integers
to reals is called negligible if for every constant c > 0 and all sufficiently large n,
it holds that ν(n) < n−c.
Turing machine notation. For any Turing machine Π, input x ∈ {0, 1}∗ and
time bound T ∈ N, we denote by ΠT (x) the output of Π on x when run for
T steps. We refer to {Mλ}λ∈N

as a class of Turing machines. One particular
class we will consider is the class of Turing machines that have 1-bit output.
We call such a machine a Boolean Turing machine. Throughout this paper, by
Turing machine we refer to a machine with multi-bit output unless we explicitly
mention it to be a Boolean Turing machine.

2.1 Concrete Security

Definition 1 ((λ0, S(·))-indistinguishability). A pair of distributions X, Y
are S-indistinguishable for some S ∈ N if every S-size distinguisher D it holds
that

|Pr[x $← X : D(x) = 1] − Pr[y $← Y : D(y) = 1]| ≤ 1
S

A pair of ensembles {Xλ}, {Yλ} are (λ0, S(·))-indistinguishable for some
λ0 ∈ N and S : N → N if for every security parameter λ > λ0, the distributions
Xλ and Yλ are S(λ) indistinguishable.

Discussion on (λ0, S(·))-indistinguishability: We remark that the above
definition requires that there is a universal λ0 that works for all distinguisher
D. A seemingly weaker variant could switch the order of quantifiers and only
require that for every distinguisher D there is a λ0. We show that the above
definition is w.l.o.g, since it is implied by the following standard definition with
auxiliary inputs in the weaker fashion.

Let U be a universal TM that on an input x and a circuit C computes C(x).
Let S′ : N → N denote the run time S′(S) of U on input a size S circuit.

Definition 2. A pair of ensembles {Xλ}, {Yλ} are S(·)-indistinguishable if for
every S′ ◦ S(·)-time uniform TM distinguisher D, there exists a λ0 ∈ N , such
that, for every security parameter λ > λ0, and every auxiliary input z = zλ ∈
{0, 1}∗,

|Pr[x $← Xλ : D(1λ, x, z) = 1] − Pr[y $← Yλ : D(1λ, y, z) = 1]| ≤ 1
S(λ)

This definition implies (λ0, S(·))-indistinguishability. Consider a distinguisher D
that on input (1λ, x, z) runs the universal TM U(x, z), and let λU be the constant
associated with it. For any λ > λU , and every S(λ)-size circuit C, by setting the
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auxiliary input z = C, the above definition implies that the distinguishing gap
by C is at most 1/S(λ). Therefore, λU is effectively the universal constant that
works for all (circuit) distinguisher.

Below, we state definitions of cryptographic primitives using (λ0, S(·))
indistinguishability. Traditional polynomial or sub-exponential security can be
directly derived from such more concrete definitions as follows:

Definition 3 (Polynomial Indistinguishability). A pair of ensembles
{Xλ}, {Yλ} are polynomially indistinguishable if for every polynomial p(·),
there is a constant λp ∈ N , such that, the two ensembles are (λp, p(·))-
indistinguishable.

Definition 4 (Sub-exponential Indistinguishability). A pair of ensembles
{Xλ}, {Yλ} are sub-exponentially indistinguishable, if there is a sub-exponential
function S(λ) = 2λε

with ε ∈ (0, 1) and a constant λ0 ∈ N , such that, the two
ensembles are (λ0, S(·))-indistinguishable.

2.2 Standard Cryptographic Primitives

Definition 5 (Pseudorandom Generator). A deterministic PT uniform
machine PRG is a pseudorandom generator if the following conditions are satis-
fied:

Syntax. For every λ, λ′ ∈ N and every r ∈ {0, 1}λ, PRG(r, λ′) outputs r′ ∈
{0, 1}λ′

(λ0, S(·))-Security. For every function p(·), such that, p(λ) ≤ S(λ) for all λ,
the following ensembles are (λ0, S(·)) indistinguishable

{
r

$← {0, 1}λ : PRG(r, p(λ))
} {

r′ $← {0, 1}p(λ)
}

2.3 Indistinguishability Obfuscation

In this section, we recall the definition of indistinguishability obfuscation for
Turing machines from [BGI+01,BCP14,ABG+13]. Following [BCP14], we con-
siders two notions of obfuscation for Turing machines. The first definition, called
bounded-input indistinguishability obfuscation, only requires the obfuscated pro-
gram to work for inputs of bounded length and furthermore the size of the obfus-
cated program may depend polynomially on this input length bound. (This is
the notion achieved in [BGL+15,CHJV14,KLW14] assuming subexponentially-
secure iO for circuits and one-way functions.)

The second notion considered in [BCP14] is stronger and requires the obfus-
cated program to work on any arbitrary polynomial length input (and the size
of the obfuscated machine thus only depends on the program size and secu-
rity parameter). We refer to this notion as unbounded-input indistinguishabil-
ity obfuscation. (This stronger notion of unbounded-input indistinguishability
obfuscator for Turing machines is only known to be achievable based on strong
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“extractability assumptions”—namely, (public-coin) differing-input obfuscation
for circuits and (public-coin) SNARKs [BCP14,ABG+13,IPS15], variants of
which are known to be implausible [BCPR13,GGHW13,BP15]).

Definition 6 (Indistinguishability Obfuscator (iO) for a class of Turing
machines). An indistinguishability obfuscator for a class of Turing machines
{Mλ}λ∈N

is a uniform machine that behaves as follows:

Π̂ ← iO(1λ,Π, T ): iO takes as input a security parameter 1λ, the Turing
machine to obfuscate Π ∈ Mλ and a time bound T for Π. It outputs a
Turing machine Π̂.

We require the following conditions to hold.

Correctness: For every λ ∈ N , Πλ ∈ Mλ, input xλ and time bound Tλ,

Pr[(Π̃ $← iO(1λ,Πλ, Tλ) : Π̃(xλ) = ΠT (xλ)] = 1.

Efficiency: The running times of iO and Π̂ are bounded as follows:
There exists polynomial p such that for every security parameter λ, Tur-
ing machine Π ∈ Mλ, time bound T and every obfuscated machine Π̂ ←
iO(1λ,Π, T ) and input x, we have that

TimeiO(1λ,Π, T ) ≤ p(λ, |Π|, log T )
TimeΠ̂(x) ≤ p(λ, |Π|, |x|, T )

(λ0, S(·))-Security: For every ensemble of pairs of Turing machines and time
bounds {Π0,λ,Π1,λ, Tλ} where for every λ ∈ N, Π0 = Π0,λ, Π1 = Π1,λ,
T = Tλ, satisfying the following

Π0,Π1 ∈ Mλ |Π0| = |Π1| ≤ poly(λ) T ≤ poly(λ)

∀x,ΠT
0 (x) = ΠT

1 (x),

the following ensembles are (λ0, S(·))-indistinguishable
{
iO(1λ,Π0,λ, Tλ)

} {
iO(1λ,Π1,λ, Tλ)

}
.

Definition 7 (Unbounded-input indistinguishability obfuscator for
Turing machines). An unbounded-input indistinguishability obfuscator for Tur-
ing machines iO(·, ·, ·) is simply an indistinguishability obfuscator for the class
of all Boolean Turing machines.

Remark 1 (Obfuscation for Boolean Turing machines is without loss
of generality). The above definition is equivalent to one that considers the
class of all Turing machines. Any Turing machine with output length m can
be represented as a Boolean Turing machine that takes in an additional input
i ∈ [m] and returns the ith bit of the m-bit long output.
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Definition 8 (Bounded-input indistinguishability obfuscator for Tur-
ing machines). A bounded-input indistinguishability obfuscator for Turing
machines iO(·, ·, ·, ·) is a uniform machine such that for every polynomial p,
iO(p, ·, ·, ·) is an indistinguishability obfuscator for the class of Turing machines
{Mλ} where Mλ are machines that accept only inputs of length p(λ). Addition-
ally, iO(p, 1λ,Π, T ) is allowed to run in time poly(p(λ) + λ + |Π| + log T ).

2.4 Functional Encryption

Definition 9 (Selectively-secure Single-Query Public-key Functional
Encryption). A tuple of PPT algorithms (FE.Setup,FE.Enc,FE.Dec) is a
selectively-secure functional encryption scheme for a class of circuits {Cλ} if
it satisfies the following properties.

Completeness. For every λ ∈ N, C ∈ Cλ and message m ∈ {0, 1}∗,

Pr

⎡

⎣
(mpk,msk) ← FE.Setup(1λ)

c ← FE.Enc(1λ,m)
skC ← FE.KeyGen(msk,C)

: C(m) ← FE.Dec(skC , c)

⎤

⎦ = 1

(λ0, S(·))-Selective-security. For every ensemble of circuits and pair of mes-
sages {Cλ,m0,λ,m1,λ} where Cλ ∈ Cλ, |Cλ|, |m0,λ|, |m1,λ| ≤ poly(λ), and
Cλ(m0,λ) = Cλ(m1,λ), the following ensembles of distributions {D0,λ} and
{D1,λ} are (λ0, S(·))-indistinguishable.

Db,λ =

⎛

⎝
(mpk,msk) ← FE.Setup(1λ)

c ← FE.Enc(1λ,mb,λ)
skC ← FE.KeyGen(msk,Cλ)

: mpk, c, skC

⎞

⎠

We note that in this work, we only need the security of the functional encryp-
tion scheme to hold with respect to statically chosen challenge messages and
functions.

Definition 10 (Compact Functional Encryption). We say a functional
encryption scheme is compact if it additionally satisfies the following require-
ment:

Compactness. The running time of FE.Enc is bounded as follows.
There exists a polynomial p such that for every security parameter λ ∈ N

and message m ∈ {0, 1}∗, TimeFE.Enc(1λ,m) ≤ p(λ, |m|, polylog(s)), where
s = maxC∈Cλ

|C|.
Furthermore, we say the functional encryption scheme has sub-linear com-
pactness if there exists a polynomial p and constant ε > 0 such that for every
security parameter λ ∈ N and message m ∈ {0, 1}∗, TimeFE.Enc(1λ,m) ≤
p(λ, |m|)s1−ε.

We also define a notion of succinctness, as follows:
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Definition 11 (Succinct Functional Encryption). A compact functional
encryption scheme for a class of circuits that output only a single bit is called a
succinct functional encryption scheme.

Theorem 6 [GKP+13a]. Assuming (sub-exponentially secure) LWE, there
exists a (sub-exponentially secure) succinct functional encryption scheme for
NC1.

We note that [GKP+13a] do not explicitly consider sub-exponentially secure
succinct functional encryption, but their construction satisfies it (assuming sub-
exponentially secure LWE).

Theorem 7 [GKP+13a,ABSV14]. Assuming the existence of symmetric-key
encryption with decryption in NC1 (resp. sub-exponentially secure) and succinct
FE for NC1 (resp. sub-exponentially secure), there exists succinct FE for P/poly
(resp. sub-exponentially secure).

We also consider an even weaker notion of sublinear-compactness, where
only the ciphertext size is sublinear in the size bound s of the function being
evaluation, but the encryption time can depend polynomially on s.

Definition 12 (Weakly Sublinear Compact Functional Encryption).
We say a functional encryption scheme for a class of circuits {Cλ} is weakly sub-
linear compact if there exists ε > 0 such that for every λ ∈ N, pk ← FE.Setup(1λ)
and m ∈ {0, 1}∗ we have that

TimeFE.Enc(pk,m) = poly(λ, |m|, s)
outlenFE.Enc(pk,m) = s1−ε · poly(λ, |m|)

where s = maxC∈Cλ
|C|.

3 Randomized Encoding Schemes

Roughly speaking, randomized encoding schemes encodes a computation of a
program Π on an input x, into an encoded computation (Π̂, x̂), with the follow-
ing two properties: First, the encoded computation evaluates to the same output
Π(x), while leaking no other information about Π and x. Second, the encoding is
“simpler” to compute than the original computation. In the literature, different
measures of simplicity have been considered. For instance, in the original works
by [IK02a,AIK06], the depth of computation is used and it was shown that any
computation in P can be encoded in NC1 using Yao’s garbled circuits [Yao82].
A recent line of works [BGL+15,CHJV14,KLW14] uses the time-complexity as
the measure and show that any Boolean Turing machine computation can be
encoded in time poly-logarithmic in the run-time of the computation.

Traditionally, the security of randomized encoding schemes are capture via
simulation. In this work, we consider a new distributional indistinguishability-
based security notion, and show that it is implied by the transitional simulation
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security. Additionally, we further explore how compact the encoded computation
can be: Similar to the recent works [BGL+15,CHJV14,KLW14], we consider
encoding whose size depends poly-logarithmically on the run-time of the encoded
computation; but differently, we directly consider Turing machines with arbitrary
length outputs, and require the size of the encoding to be independent of the
output length. Such scheme is called a compact randomized encoding scheme.

3.1 Distributional Indistinguishability Security

In this paper, we study randomized encoding for all Turing machine com-
putation, whose encoding size is independent of the output length of the
computation—we say such randomized encoding schemes are compact. Towards
this, we must consider weaker security notions than simulation security, and
indistinguishability-based security notions are natural candidates. One weaker
notion that has been considered in the literature requires encoding of two com-
putation, (Π1, x1) and (Π2, x2) with the same output Π1(x1) = Π2(x2), to be
indistinguishable. In this work, we generalize this notion to, what called distrib-
utional indistinguishability security—this notion requires encoding of computa-
tions sampled from two distributions, (Π1, x1)

$← D1 and (Π2, x2)
$← D2, to be

indistinguishable, provided that their outputs are indistinguishable.

Definition 13 (Randomized Encoding Scheme for a Class of Turing
Machines). A Randomized Encoding scheme RE for a class of Turing machines
{Mλ} consists of two algorithms,

– (Π̂, x̂) $← Enc(1λ,Π, x, T ): On input a security parameter 1λ, Turing machine
Π ∈ Mλ, input x and time bound T , Enc generates an encoded machine Π̂
and encoded input x̂.

– y = Eval(Π̂, x̂): On input (Π̂, x̂) produced by Enc,Eval outputs y.

Correctness: The two algorithms Enc and Eval satisfy the following correctness
condition: For all security parameters λ ∈ N, Turing machines Π ∈ Mλ,
inputs x and time bounds T , it holds that,

Pr[(Π̂, x̂) $← Enc(1λ,Π, x, T ) : Eval(Π̂, x̂) = ΠT (x))] = 1

Definition 14 (Distributional (λ0, S(·))-Indistinguishability Security).
A randomized encoding scheme RE for a class of Turing machines {Mλ} satisfies
distributional (λ0, S(·))-indistinguishability security, (or (λ0, S(·))-ind-security
for short) if the following is true w.r.t. some constant c > 0:

For every ensembles of distributions {D0,λ} and {D1,λ} with the following
property:

1. there exists a polynomial B, such that, for every b ∈ {0, 1}, Db,λ is a distrib-
ution over tuples of the form (Πb, xb, Tb), where Πb is a Turing machine, xb

is an input and Tb is a time bound, and λ, |Πb|, |xb|, Tb ≤ B(λ).
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2. there exist an integer λ′
0 ≥ λ0, and a function S′ with S′(λ) ≤ S(λ) for all

λ, such that, the following ensembles of output distributions are (λ′
0, S

′(·))-
indistinguishable,

{
(Π0, x0, T0)

$← D0,λ : ΠT0
0 (x0), T0, |Π0|, |x0|

}

{
(Π1, x1, T1)

$← D1,λ : ΠT1
1 (x1), T1, |Π1|, |x1|

}

the following ensembles of encoding is (λ′
0, S

′′(·))-indistinguishable, where
S′′(λ) = S′(λ)

λc − B(λ)c.
{

(Π0, x0, T0)
$← D0,λ : Enc(1λ,Π0, x0, T0)

}

{
(Π1, x1, T1)

$← D1,λ : Enc(1λ,Π1, x1, T1)
}

For convenience, in the rest of the paper, we directly refer to distributional
indistinguishability security as indistinguishability security. The above concrete
security directly gives the standard polynomial and sub-exponential security.

Definition 15 (Polynomial and Sub-exponential Indistinguishability
Security). A randomized encoding scheme RE for a class of Turing machines
{Mλ} satisfies polynomial ind-security, if it satisfies (λp, p(·))-indistinguishability
security for every polynomial p and some λp ∈ N . Furthermore, it satisfies sub-
exponential ind-security if it satisfies (λ0, S(·))-indistinguishability security for
S(λ) = 2λε

with some ε ∈ (0, 1).

We note that, by definition, it holds that any randomized encoding scheme that
is (λ0, S(·))-ind-secure, is also (λ′

0, S
′(·))-ind-secure for any λ′

0 ≥ λ0 and S′ s.t.
S′(λ) ≤ S(λ) for every λ. Therefore, naturally, sub-exponential ind-security is
stronger than polynomial ind-security.

In the full version, we show that RE schemes with ind-security are composable
just as RE schemes with simulation security are.

3.2 Compactness and Sublinear Compactness

With indistinguishability-security, we now define compact randomized encoding
schemes for all Turing machines, whose time-complexity of encoding is indepen-
dent of the output length.

Definition 16 (Compact Randomized Encoding for Turing machines).
A (λ0, S(·))-ind-secure compact randomized encoding scheme for Turing
machines, is a randomized encoding scheme with (λ0, S(·))-indistinguishability
security for the class of all Turing machines, with the following efficiency:

– For every security parameter λ, Turing machine Π, input x, time bound T
and every encoded pair (Π̂, x̂) ← Enc(1λ,Π, x, T ), it holds

TimeEnc(1λ,Π, x, T ) = poly(λ, |Π|, |x|, log T )

TimeEval(Π̂, x̂) = poly(λ, |Π|, |x|, T )
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In this work, we also consider a weaker variant of the above compactness
requirement, where the encoding time is sub-linear (instead of poly-logarithmic)
in the computation time. For our results a compact randomized encoding scheme
with sub-linear efficiency will suffice.

Definition 17 (Sub-linear Compactness of Randomized Encoding
schemes). We say a randomized encoding scheme RE = (Enc,Eval) for a class of
Turing machines {Mλ} has sub-linear compactness if the efficiency requirement
on Enc in Definition 16 is relaxed to: For some constant ε ∈ (0, 1),

TimeEnc(1λ,Π, x, T ) ≤ poly(λ, |Π|, |x|) · T 1−ε

4 Unbounded-Input IO from Compact RE

In this section, we define our succinct indistinguishability obfuscator for Turing
machines. Let RE = (Enc,Eval) be a compact randomized encoding scheme for
Turing machines with sub-exponential indistinguishability security. Let c be the
constant for the security loss associated with the indistinguishability security
of RE. We assume without loss of generality that Enc(1λ, ·, ·) requires a random
tape of length λ. Let PRG be a sub-exponentially secure pseudorandom generator
and let ε be the constant associated with the sub-exponential security of PRG.

For every λ ∈ N, D ≤ 2λ, define

l(λ,−1) = λ

l(λ,D) = l(λ,D − 1) + (2dλ)1/ε

where d > 0 is any constant strictly greater than c.

Construction 1. Consider a Turing machine Π, security parameter λ ∈ N,
and time bound T of Π. For every partial input s ∈ {0, 1}∗ with |s| ≤ 2λ and
R ∈ {0, 1}2l(λ,|s|), we recursively define a Turing machine Π̃s,R to be as follows:

When |s| < 2λ:
On the empty input, Π̃s,R outputs:

Enc(1l(λ,|s|+1), Π̃s0,R0 , T
′(λ, |s| + 1, |Π|, log(T ));R1)

Enc(1l(λ,|s|+2), Π̃s1,R2 , T
′(λ, |s| + 1, |Π|, log(T ));R3)

Enc(1l(λ,|s|+1),Π, s, T ;R4)

where (R0, R1, R2, R3, R4) ← PRG(R, 5 · 2l(λ, |s| + 1)) and T ′ is some fixed
polynomial in λ, |s|+1, |Π| and log(T ). In the special case when |s| = 2λ −1,
the time bound used in the first two encodings is set to T .
On all other inputs, Π̃s,R outputs ⊥.

When |s| = 2λ:
On the empty input, Π̃s,R outputs Enc(1l(λ,|s|+1),Π, s, T ;R). On all other
inputs, Π̃s,R outputs ⊥.
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We define T ′(·, ·, ·, ·) (corresponding to the bound placed on the running time
of Π̃s,R) to be the smallest polynomial such that for all λ, s ∈ {0, 1}≤2λ

, R ∈
{0, 1}2l(λ,|s|), Π and T ,

T ′(λ, |s|, |Π|, log(T )) ≥ p(λ|s|+1, |Π̃s0,R|, 0, log(T ′
|s|+1))

+ p(λ|s|+1, |Π̃s1,R|, 0, log(T ′
|s|+1))

+ p(λ|s|+1, |Π|, |s|, log(T ))
+ TimePRG(R, 5 · 2l(λ, |s| + 1))

where λ|s|+1 = l(λ, |s| + 1), T ′
|s|+1 = T ′(λ, |s| + 1, |Π|, log(T )) (corresponding

to the security parameter and time bound used for each of Π̃s0,R0 and Π̃s1,R1),
TimePRG is the bound on the running time of the PRG, and p(·, ·, ·, ·) is the bound
on TimeEnc from the compactness of RE. We note that the polynomial T ′ exists
because p is a polynomial, each of λ|s|+1 and |Π̃s,R| are of size polynomial in
λ, |s| and |Π|, and the self-dependence of T ′(λ, |s|, |Π|, log(T )) on T ′

|s|+1 is only
poly-logarithmic.

Remark: We note that |Π̃s,R| is always poly(λ, |Π|, |s|, log(T )). This is because
Π̃s,R is fully described by λ, Π, s, R and T , and the size of each of these is
bounded by poly(λ, |Π|, |s|, log(T )).

Given this definition of Π̃s,R, we define our indistinguishability obfuscator as
follows:

Construction 2 (Indistinguishability Obfuscator). On input λ ∈ N, Tur-
ing machine Π and time bound T , define Π̃, the indistinguishability obfuscation
of Π, to be

Π̃ = iO(1λ,Π, T ) = Enc(1l(λ,0), Π̃ε,R, T ′(λ, 0, |Π|, log(T )))

where ε is the empty string, and R
$← {0, 1}2l(λ,0) and T ′ a fixed polynomial in

λ, |Π| and log(T ), as described above.

Evaluation: The algorithm to evaluate Π̃ on input x ∈ {0, 1}d, d < 2λ proceeds
as follows:

1. For every 0 ≤ i ≤ d, compute encodings of Π̃x≤i,R successively, starting with
Π̃, an encoding of Π̃ε,R, and subsequently, for every 0 < i ≤ d, computing
the encoding of Π̃x≤i,R by evaluating the encoding of Π̃x<i,R, and selecting
the encoding of Π̃x≤i,R from its output.

2. Evaluate the encoding of Π̃x,R = Π̃x≤d,R and obtain from its output (Π̂, x̂) =
Enc(1l(λ,|x|+1),Π, x, T ;R4).

3. Run Eval(Π̂, x̂) to obtain Π(x).

We defer analysis of the correctness, running time, and compactness of our
iO construction to the full version of our paper [LPST15].
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4.1 Security Proof

Theorem 8. Let (Enc,Eval) be a sub-exponentially-indistinguishability-secure,
compact randomized encoding scheme and let PRG be a sub-exponentially-secure
pseudorandom generator. Then the indistinguishability obfuscator defined in
Construction 2 is subexponentially-secure.

Proof. Consider any pair of ensembles of Turing machines and time bounds{
Π0

λ,Π1
λ, Tλ

}
where for every λ ∈ N, Π0 = Π0

λ, Π1 = Π1
λ, T = Tλ,

|Π0| = |Π1| ≤ poly(λ) |T | ≤ poly(λ)

∀x,Π0,T (x) = Π1,T (x)

We first introduce some notation to describe the distributions of random-
ized encodings generated by iO(1λ,Π0

λ, Tλ) and iO(1λ,Π1
λ, Tλ). For λ ∈ N,

s ∈ {0, 1}∗, |s| ≤ 2λ, we define the following distributions

Dλ,0,s = Enc(1l(λ,|s|), Π̃0
s,R, T ′)

Dλ,1,s = Enc(1l(λ,|s|), Π̃1
s,R, T ′)

where R is uniformly random, T ′ is as described in Construction 1 and Π̃b
s,R is

defined for the Turing machine Πb
λ, security parameter λ and time bound Tλ.

We will show something stronger than the theorem statement. In particular, we
have the following claim.

Claim. There exists λ0, ε ∈ N such that for every λ > λ0, for every s ∈
{0, 1}∗, |s| ≤ 2λ we have that the distributions Dλ,0,s and Dλ,1,s are S(λ) indis-
tinguishable where S(λ) ≥ 10 · 2l(λ,|s|−1)ε

.
Using the above claim with s as the empty string and recalling l(λ, 0) = λ,

the theorem statement follows. Therefore, in the remainder of the proof, we prove
the above claim.

Proof of claim. Let ε be the larger of the constants associated with the sub-
exponential security of the pseudorandom generator PRG and the indistinguisha-
bility security of the encoding scheme (Enc,Eval) (these constants are also named
ε in their respective security definitions). Similarly, We consider λ0 to be large
enough so that the security of the encoding scheme (Enc,Eval) and the pseudo-
random generator PRG is applicable. We will actually require a larger λ0 so that
certain asymptotic conditions (depending only on the polynomial size bounds
of Π0

λ, Π1
λ and Tλ) hold, which we make explicit in the remainder of the proof.

For every λ > λ0, we prove the claim by induction on |s|. Our base case will be
when |s| = 2λ and in the inductive step we show the claim holds for all s of a
particular length d, if it holds for all s of length d + 1.

Induction statement, for a fixed λ > λ0: For every s ∈ {0, 1}≤2λ

, the dis-
tributions Dλ,0,s and Dλ,1,s are 10 · 2l(λ,|s|−1)ε

indistinguishable.



114 H. Lin et al.

Base case: |s| = 2λ
. In this case, recall that the output of Π̃b

s,R is simply
(Π̂b,T

λ , ŝ). We first claim that, for all s, (Π̂0,T
λ ŝ) and (Π̂1,T

λ , ŝ) are 2λ′ε
indis-

tinguishable where λ′ = l(λ, |s|), as follows.
Recall that the output of evaluating Π̂b,T

λ , ŝ is simply Πb,T
λ (s). Since we have

that Π0,T
λ (s) = Π1,T

λ (s) for all s, we can apply the security of the randomized
encoding scheme. More concretely, since the output (point) distributions are
identical, they are 10 · 2λ′ε

-indistinguishable where λ′ = l(λ, |s| + 1). Let B(·)
be a polynomial such that B(λ′) bounds from above |Πb|, |s| and T . By the
security of the encoding scheme, the encodings (Π̂0,T

λ ŝ) and (Π̂1,T
λ ŝ) are S′

indistinguishable where

S′ ≥ 10 · 2l(λ,|s|+1)ε

l(λ, |s| + 1)c
− B(l(λ, |s| + 1))c ≥ 10 · 2l(λ,|s|+1)ε

l(λ, |s| + 1)d
≥ 10 · 2l(λ,|s|)ε

where the first inequality holds for sufficiently large λ and in the second inequal-
ity, we use the fact that l(λ, |s|+1) = l(λ, |s|)+λd/ε. Thus (Π̂0,T

λ , ŝ) and (Π̂1,T
λ , ŝ)

are 10 · 2l(λ,|sλ|)ε

-indistinguishable.
Now, recall that the output of Π̃b

s,R is simply (Π̂b,T
λ , ŝ). By the above argu-

ment, we have that, for all s, (Π̂0,T
λ ŝ) and (Π̂1,T

λ , ŝ) are 2λ′ε
-indistinguishable

where λ′ = l(λ, |s|). Let B′ be the polynomial such that B′(l(λ, |s|)) bounds
|Π̃b

s,R| and the running time of Π̃b
s,R. The encodings Dλ,0,s and Dλ,1,s are S′

indistinguishable where

S′ ≥ 10 · 2l(λ,|s|)ε

l(λ, |s|)c
− B′(l(λ, |s|))c ≥ 10 · 2l(λ,|s|+1)ε

l(λ, |s|)d
≥ 10 · 2l(λ,|s|−1)ε

where, as before, the first inequality holds for sufficiently large λ and in the
second inequality, we use the fact that l(λ, |s| + 1) = l(λ, |s|) + λd/ε. Hence the
claim holds for |s| = 2λ.

Inductive step: |s| < 2λ. By the induction hypothesis, we assume the claim

holds for all s′ such that |s′| = |s| + 1. Recall that the output of Π̃b
s,R (where

R
$← {0, 1}2l(λ,|s|)) is

Enc(1l(λ,|s|+1), Π̃b
s0,R0

, T ′;R1)

Enc(1l(λ,|s|+1), Π̃b
s1,R2

, T ′;R3)

Enc(1l(λ,|s|+1),Πb
λ, s, T ;R4)

where (R0, R1, R2, R3, R4) ← PRG(R, 5 · 2l(λ, |s| + 1)). Let Hb denote the above
output distribution. We will show H0 and H1 are indistinguishable by a hybrid
argument as follows.

– Let G1 be a hybrid distribution exactly as H0 except that (R0, R1, R2,

R3, R4)
$← {0, 1}5·2l(λ,|s|+1). We claim that for both the distributions H0

and G1 are 5 · 2λ′ε
indistinguishable where λ′ = l(λ, |s|).
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This follows from the PRG security as follows: any size 5 · 2λ′ε
adversary A

that distinguishes H0 and G1 can be turned into an adversary A′ that can
break the PRG security with seed length 2λ′ with the same advantage. A′ has
Π0

λ, Π1
λ, Tλ and s hardcoded in it. Hence, the size of A′ is

5 · 2λ′ε
+ poly(λ) + poly(|s|) ≤ 5 · 2λ′ε

+ poly(λ′) ≤ 2(2λ′)ε

where the last inequality holds when λ is sufficiently large. Hence, A′ breaks
the 2(2λ′)ε

-security of PRG and we have a contradiction.
Writing out the components of G1, we have that it is identical to

G1 ≡ Dλ,0,s0,Dλ,0,s1,Enc(1l(λ,|s|+1),Π0
λ, s, Tλ;R)

– Let G2 be a hybrid distribution obtained by modifying the first component of
G1 as follows.

G2 ≡ Dλ,1,s0,Dλ,0,s1,Enc(1l(λ,|s|+1),Π0
λ, s, Tλ;R)

We show that G1 and G2 are 5 · 2λ′ε
indistinguishable. This follows from the

induction hypothesis as follows: any size 5 ·2λ′ε
adversary A that distinguishes

G1 and G2 with advantage better than 1/(5 · 2λ′ε
) can be turned into an

adversary A′ that can distinguish Dλ,0,s0 and Dλ,1,s0 with the same advantage.
As before, A′ has Π0

λ, Π1
λ, Tλ and s hardcoded in it, and therefore the size

of A′ is at most 5 · 2λ′ε
+ poly(λ′) ≤ 10 · 2λ′ε

. Hence, A′ breaks the induction
hypothesis that says Dλ,0,s0 and Dλ,1,s0 are 10 · 2λ′ε

-indistinguishable.
– Similarly, let G3 be a hybrid distribution obtained by modifying the second

component of G2 as follows.

G3 ≡ Dλ,1,s0,Dλ,1,s1,Enc(1l(λ,|s|+1),Π0
λ, s, Tλ;R)

Similarly as above, we have that G2 and G3 are 5 · 2λ′ε
-indistinguishable.

– Let G4 be a hybrid distribution obtained by modifying the third component
of G3 as follows.

G4 ≡ Dλ,1,s0,Dλ,1,s1,Enc(1l(λ,|s|+1),Π1
λ, s, Tλ;R)

We show G3 and G4 are 5 · 2λ′ε
-indistinguishable. First, since Π0,T

λ (s) =
Π1,T

λ (s), by the security of the encoding scheme, we have that the encodings
that form the third component of G3 and G4 are S′ indistinguishable where,
similar to the base case, B(l(λ, |s|)) bounds from above |Πb

λ|, |s| and T

S′ ≥ 10 · 2l(λ,|s|)ε

l(λ, |s|)c
− B(l(λ, |s|))c ≥ 10 · 2l(λ,|s|)ε

l(λ, |s|)d
≥ 10 · 2l(λ,|s|−1)ε

Hence by a similar argument as before, the hybrid distributions are 5 · 2λ′ε
-

indistinguishable.
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– Finally we observe that G4 and H1 are 5 · 2λ′ε
-indistinguishable just as G1

and H0 were. By a simple hybrid argument, we have that H0 and H1 are
2λ′ε

-indistinguishable.
Recall that H0 and H1 are the distributions of outputs of Π̃0

s,R and Π̃1
s,R

respectively. By the security of the randomized encoding scheme, the encod-
ings of these machines, i.e. Dλ,0,s and Dλ,1,s are S′(λ)-indistinguishable where

S′(λ) ≥ 2l(λ,|s|)ε

l(λ, |s|)c
− B′(l(λ, |s|)c ≥ 2l(λ,|s|)ε

l(λ, |s|)d
≥ 2l(λ,|s|−1)ε · 2(2dλ)

2dλ · (2dλ)d/ε
≥ 10 · 2l(λ,|s|−1)ε

where B′(l(λ, |s|)) bounds from above |Πb
s,R| and T ′. The second inequality

holds for sufficiently large λ. In the third inequality, we use the fact that
l(λ, |s|) ≤ |s|(2dλ)1/ε ≤ 2λ(2dλ)1/ε and the last inequality holds for sufficiently
large λ.

4.2 Nice Distributions

Later in Sect. 6, we show that compact RE does not exist for general distribu-
tions in the plain model. However, here we observe that the above construction of
unbounded input IO relies only on compact RE for certain “special purpose” distri-
butions that is not ruled out by the impossibility result in Sect. 6. We now abstract
out the structure of these special purpose distributions. Let RE = (Enc,Dec) be a
randomized encoding scheme; we define “nice” distributions w.r.t. RE.

0-nice distributions: We say that a pair of distribution ensembles {D0,λ} and
{D1,λ} are 0-nice if D0,λ always outputs a fixed tuple (Π0, x, T ) while D1,λ

always outputs a fixed tuple (Π1, x, T ), satisfying that ΠT
0 (x) = ΠT

1 (x).
k-nice distributions: We say that a pair of distribution ensembles {D0,λ}

and {D1,λ} are k-nice if there exist some 	 = poly(λ) pairs of distributions
({E i

0,λ}, {E i
1,λ})i∈[�], where the ith pair is ki-nice with ki ≤ k − 1, such that,

Db,λ samples tuple (Πb, xb, Tb) satisfying the following:
– For each i ∈ [	], sample (Λi

b, z
i
b, T

i
b )

$← E i
b,λ.

–The output of Πb(xb) consists of 	 randomized encodings, where the ith

encoding is in the support of Enc(1λ′
, Λi

b, z
i
b, T

i
b ), for some λ′ = poly(λ).

Finally, we say that a pair of distribution ensembles {D0,λ} and {D1,λ} are nice
w.r.t. RE if they are k-nice w.r.t. RE for some integer k.

Our construction of unbounded input IO and its analysis in previous sections
relies only on compact RE for nice distribution ensembles. Hence we can refine
Theorem 8 to the following:

Proposition 1. Assume the existence of a compact randomized encoding
scheme RE which is sub-exponentially-indistinguishability-secure for every pair
of distribution ensemble that are nice w.r.t. RE; assume further the existence of
sub-exponentially secure one-way functions. Then, there is an unbounded-input
indistinguishability obfuscator for Turing machines.
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We stress again that compact RE for nice distributions is not ruled out by the
impossibility result in Sect. 6. Hence, we obtain unbounded input IO from a
new assumption different from the extactability assumptions used in previous
work [BCP14,ABG+13,IPS15].

Candidate Construction: Finally, we describe a candidate construction of
compact RE for nice distributions using the KLW indistinguishability obfusca-
tor for bounded-input Boolean Turing machines: Given input (1λ,M, x, T ), the
encoding is an obfuscation, using the KLW scheme, of the program ΠM,x that on
input i ∈ [T ] outputs the ith bit of the output MT (x). Since ΠM,x is Boolean, the
KLW obfuscator can be applied, and the encoding time is poly(λ, |M |, |x|, log T )
(hence compact). By the security of indistinguishability obfuscation, for any
M1, x1 and M2, x2 with identical outputs, their encodings are indistinguishable,
and thus this construction is a weak compact RE. We here consider it also a
candidate construction for compact RE with distributional indistinguishability.

Bounded-Input IO from Sublinear RE: We note that relying on a very
similar construction as above, a randomized encoding scheme with only sublin-
ear compactness (as opposed to full compactness) can be used to construct a
bounded-input indistinguishability obfuscator for Turing machines. We refer the
reader to the full version of this paper [LPST15] for more details.

5 Bounded-Input IO from Compact RE in the CRS
Model

In this section we consider compact RE schemes for Turing machines in the
common reference string (CRS) model. We show that (1) such encoding schemes
can be constructed from compact functional encryption for circuits, and that
(2) such encoding schemes suffice to get IO for circuits, which then by [KLW14]
suffices to get bounded-input IO for Turing machines.

5.1 Randomized Encoding Schemes in the CRS Model

We first formally define a randomized encoding scheme for a class of Turing
machines in the CRS model. In this model, a one-time setup is performed which
takes (in addition to the security parameter) a bound on machine size, input
length, running time and output length. Only computations that respect these
bounds can be encoded using this setup. The setup outputs a long CRS (the
length is polynomial in the aforementioned bounds) and a short public encoding
key (which depends only on the security parameter). The public encoding key is
used by the encoding algorithm, which produces encodings that are compact as
before. The CRS is used by the evaluation algorithm.

Definition 18 (Randomized Encoding Schemes in the CRS Model). A
Randomized Encoding scheme RE for a class of Turing machines {Mλ} in the
CRS model consists of the following algorithms:
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– (crs, pk) $← Setup(1λ, 1m, 1n, 1T , 1l): Setup gets as input (in unary) the secu-
rity parameter λ, a machine size bound m, input length bound n, time bound
T and output length bound l.

– Π̂x
$← Enc(pk,Π, x): Enc is probabilistic and gets as input a public key pk

generated by Setup, Turing machine Π ∈ Mλ and input x. It outputs an
encoding Π̂x

6.
– y ← Eval(Π̂x, crs): On input Π̂x produced by Enc and crs produced by Setup,

Eval outputs y.

Correctness: For every security parameters λ ∈ N, m,n, T, l ∈ N, Turing
machine Π ∈ Mλ and input x, such that, |Π| ≤ m, |x| ≤ n, and |ΠT (x)| ≤ l,
we have that

Pr

[
(crs, pk) $← Setup(1λ, 1m, 1n, 1T , 1l)

Π̂x
$← Enc(pk,Π, x)

: Eval(Π̂x, crs) = ΠT (x)

]

= 1

In the CRS model, it is possible to have a compact RE for all Turing machines
with simulation security.

Definition 19. A randomized encoding scheme RE for a class of Turing
machines {Mλ} in the CRS model satisfies (λ0, S(·))-simulation security, if
there exists a PPT algorithm Sim and a constant c, such that, for every ensem-
ble {Πλ, xλ,mλ, nλ, lλ, Tλ} where Πλ ∈ Mλ and |Πλ|, |xλ|,mλ, nλ, lλ, Tλ ≤ B(λ)
for some polynomial B, the following ensembles are (λ0, S

′(λ)) indistinguishable,
with S′(λ) = S(λ) − B(λ)c for all λ ∈ N .

{
(crs, pk) $← Setup(1λ, 1m, 1n, 1T , 1l), Π̂x

$← Enc(pk,Π, x) : (crs, pk, Π̂x)
}

{
(crs, pk, Π̂x) $← Sim(1λ,ΠT (x), 1|Π|, 1|x|, 1m, 1n, 1T , 1l) : (crs, pk, Π̂x)

}

where subscripts of security parameter are suppressed.

Definition 20 (Compactness and Sublinear Compactness in the CRS
model). A randomized encoding scheme RE = (Setup,Enc,Eval) for Turing
machines in the CRS model is compact (or sublinear compact) if Setup is PPT,
and Enc and Eval have the same efficiency as their counterparts in a compact
(or sublinear compact) randomized encoding scheme for Turing machines in the
plain model.

Remark 2. We note that a distributional-indistinguishability notion of security
(analogous to Definition 14) can be defined for randomized encoding schemes in
the CRS model. In the full version of this paper [LPST15], we provide this def-
inition and show (λ0, S)-simulation security implies (λ0, S)-indistinguishability
security both in the plain model and the CRS model.

6 Encoding Π̂x can be viewed as the combination of the program encoding Π̂ and the
input encoding x̂ of Definition 13.
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5.2 Succinctness and Weak-Compactness

We also consider a different weakening of compactness, called succinctness
[BGL+15], where encoding time can depend linearly on the length of the output
(but only polylogarithmically on the time bound T ).

Definition 21 (Succinct Randomized Encoding for Turing machines
[BGL+15]). A succinct randomized encoding scheme for Turing machines in
the CRS model is succinct if it has the following efficiency:

– For every security parameters λ ∈ N, m,n, T, l ∈ N, Turing machine Π ∈ Mλ

and input x, such that, |Π| ≤ m, |x| ≤ n, and |ΠT (x)| ≤ l, every public key
pk ← Setup(1λ, 1m, 1n, 1T , 1l) and every encoding Π̂x ← Enc(1λ,Π, x, T ), it
holds

TimeSetup(1λ, 1m, 1n, 1T , 1l) = poly(λ,m, n, T, l)
TimeEnc(pk,Π, x) = 	 · poly(λ, |Π|, |x|, log T )

TimeEval(Π̂, x̂) = poly(λ,m, n, T )

We finally consider a notion of RE that is weaker than sublinear-compactness,
where we allow the encoding time to be polynomially dependent on the time
bound T , but still require the encoding size be sub-linear in T. We call such RE
schemes weakly sublinear compact.

Definition 22 (Weakly Sublinear Compact Randomized Encoding
scheme). We say a randomized encoding scheme RE = (Setup,Enc,Eval) in
the CRS model for a class of Turing machines {Mλ} is weakly sublinear com-
pact if the efficiency requirement on Enc in Definition 21 is changed to: For
some constant ε ∈ (0, 1),

TimeEnc(pk,Π, x) = poly(λ, |Π|, |x|, T )

outlenEnc(pk,Π, x) = T 1−ε · poly(λ, |Π|, x|)
Next, we observe that RE schemes satisfying the notions defined above (i.e.

succinctness and weak sublinear compactness) can be composed to get a RE
scheme satisfying sub-linear compactness. In particular, by composing a succinct
RE scheme with a weakly compact RE scheme, one can obtain a sub-linearly
compact RE scheme. We defer the proof to the full version of the paper.

Theorem 9. Assume the existence of pseudorandom generators. If there is a
succinct RE scheme and a weakly sublinear compact RE scheme for Turing
machines, then there is a sub-linearly compact randomized encoding scheme for
Turing machines.

5.3 Randomized Encodings with CRS from Compact Functional
Encryption

In this section we construct RE schemes in the CRS model from Compact Func-
tional encryption schemes and pseudorandom generators.
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Let (FE.Setup,FE.Enc,FE.Dec) be a public key, compact functional encryp-
tion scheme for P/poly, and let PRG be a pseudorandom generator. We define
a randomized encoding scheme in the CRS model (Setup,Enc,Eval) as follows.

The setup algorithm Setup(1λ, 1m, 1n, 1T , 1l):
– Setup first generates keys for the functional encryption scheme

(mpk,msk) ← FE.Setup(1λ) and samples a uniformly random string
s ← {0, 1}λ.

– Next, it generates the string c ← 0l ⊕ PRG(s, l). That is, it encrypts 0l

using a one-time pad with the key coming from PRG(s, l)
– Let U be the universal circuit that on input (Π,x) where |Π| ≤ m and

|x| ≤ n runs machine Π on x for at most T steps and outputs the first l
bits of the tape as output. We define a circuit CU,c, that has the string
c and circuit U hardcoded in it, as follows.
1. CU,c takes as input (Π,x, s′, b) where (Π,x) satisfies the size con-

straints as described above, s′ ∈ {0, 1}λ and b ∈ {0, 1}.
2. If b = 0 then CU,c outputs U(Π,x).
3. Otherwise CU,c outputs c ⊕ PRG(s′).

– Setup runs skC ← FE.KeyGen(msk,CU,c) and outputs skC as the com-
mon reference string crs and mpk as the public encoding key pk.

The encoding algorithm Enc(pk,Π, x): Enc parses pk as the functional public
key mpk and runs ct ← FE.Enc(mpk, (Π,x, 0λ, 0)). Enc outputs the functional
ciphertext ct as the encoding Π̂x.

The evaluation algorithm Eval(Π̂x, crs): Eval parses Π̂x as a functional
ciphertext ct and crs as the functional secret key skCU,c

. Eval runs y ←
FE.Dec(skCU,c

, ct) and outputs y.

The correctness of the above encoding scheme follows directly from that of
the underlying functional encryption scheme. When a randomized encoding of
(Π,x) is evaluated, it outputs the result of running the universal circuit U on
(Π,x) that is ΠT (x). Also the efficiency properties of the above scheme follow
directly from the compactness properties of the functional encryption scheme.
For example, if the functional encryption scheme we start from has sub-linear
compactness (the ciphertext size is sub-linear in the circuit size of the function
for which the functional secret keys are generated) then we get an encoding
scheme with sub-linear compactness.

We have the following theorem. We refer the reader to the full version for
the proof.

Theorem 10. Let (FE.Setup,FE.Enc,FE.Dec) be a public key functional encryp-
tion scheme for P/poly with (λ0, S(·)) selective security, and let PRG be
a pseudorandom generator with (λ0, S(·)) security. The randomized encoding
scheme defined above is (λ0,

S(·)
4 )-simulation secure.

Corollary 1. If there exists a public key, compact (resp. succinct, weakly sub-
linear compact) functional encryption for P/poly scheme with selective security,
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and a secure PRG, then there exists a compact (resp. succinct7, weakly sublinear
compact) randomized encoding scheme for Turing machines in the CRS model
that is simulation secure.

The above theorem and corollary also work in the regime of sub-exponential
security. That is, starting with a functional encryption scheme and pseudoran-
dom generator that are sub-exponentially secure we obtain a RE scheme with
sub-exponential security.

The following corollary is obtained by combining Corollary 1 with Theorem 6
and Theorem 7. While we use this corollary in our results, we believe it is of
independent interest too. Succinct RE schemes for Turing machines were shown
by [BGL+15] to have a variety of applications. However the only known con-
struction of it ([KLW14]) relies on iO for circuits. We observe that in the CRS
model, succinct RE schemes can be based simply on LWE.

Corollary 2. Assuming LWE (resp. with sub-exponential hardness), there exists
a succinct RE scheme for Turing machines in the CRS model with (resp. sub-
exponential) simulation security.

Finally, the following corollary shows that, assuming LWE, weakly sublin-
ear compact FE is sufficient to construct sublinearly-compact RE in the CRS
model. This corollary follows by combining Corollary 1, which shows that weakly
sublinear compact FE implies weakly sublinear compact RE in the CRS model,
Corollary 2, which constructs succinct RE in the CRS model from LWE, and
finally Theorem 9, which shows that weakly sublinear compact RE and succinct
RE can be combined to produce sublinearly-compact RE in the CRS model.

Corollary 3. Assuming LWE (resp. with sub-exponential hardness), if there
exists a weakly sublinear compact FE scheme for P/poly (resp. with sub-
exponential security), then there exists a sublinearly-compact RE scheme for
Turing machines in the CRS model with (resp. sub-exponential) simulation
security.

5.4 IO for Circuits from RE in the CRS Model

In this section we show that compact RE schemes for Turing machines in the
CRS model implies iO for circuits; combining with the result of [KLW14] that
iO for circuits implies iO for (bounded-input) Turing machines, we obtain the
following theorem:

Theorem 11. Assume the existence of sub-exponentially secure one-way func-
tions. If there exists a sublinearly compact randomized encoding scheme in
the CRS model with sub-exponential simulation security, then there exists an
bounded-input indistinguishability obfuscator for Turning machines.
7 We note that for succinct RE, we first apply the transformation from succinct FE

to get succinct RE with 1-bit output, and to encode Turing Machines with multi-bit
outputs, we generate one such RE for each output bit.
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We note that the theorem also holds w.r.t. sublinearly compact randomized
encoding scheme in the CRS model, satisfying, weaker, distributional indistin-
guishability security, with auxiliary inputs (i.e., Definition 14 w.r.t. distributions
{Db,λ} that additionally samples an auxiliary input zb, and the security require-
ment is that if the output distributions together with the auxiliary inputs are
indistinguishable, then the encodings together with the auxiliary inputs are also
indistinguishable, with appropriate security loss). Since the distributional indis-
tinguishability security is implied by simulation security, and in the CRS model,
we can construct sublinearly compact RE with simulation security from sub-
linearly compact FE schemes, for simplicity, we directly state and prove the
theorem w.r.t. simulation security.

The construction and proof is very similar to that of unbounded-input iO
from compact RE schemes in the plain model presented in Sect. 4. We refer the
reader to the full version [LPST15] for more details.

5.5 Summary of Results Using RE in the CRS Model

We observe that by combining Theorem 11 with Corollary 1, we reprove the
results of [AJ15,BV15]

Theorem 12. Assuming the existence of compact functional encryption with
subexponential security, there exists a bounded-input indistinguishability obfus-
cator for Turing Machines.

Further, we get the following new result, as a consequence of Corollary 3 and
Theorem 11:

Theorem 13. Assuming the existence of weakly sublinear compact functional
encryption with subexponential security and LWE with subexponential security,
there exists a bounded-input indistinguishability obfuscator for Turing Machines.

6 Impossibility of Compact RE

In this section, we mention several impossibility results related to sublinear (and
hence compact) RE with different security. We refer the reader to the full version
[LPST15] for the proofs.

Theorem 14. The following impossibility results hold in the plain model:

1. Sublinear randomized encoding schemes with (polynomial) simulation security
do not exist, assuming one-way functions.

2. Sublinear randomized encoding schemes with sub-exponential indistinguisha-
bility security do not exist, assuming sub-exponentially secure one-way func-
tions.

3. Sublinear randomized encoding schemes with (polynomial) indistinguishability
security do not exist, assuming bounded-input iO for Turing machines and
one-way functions.
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Abstract. In this work, we construct an adaptively secure functional
encryption for Turing machines scheme, based on indistinguishability
obfuscation for circuits. Our work places no restrictions on the types of
Turing machines that can be associated with each secret key, in the sense
that the Turing machines can accept inputs of unbounded length, and
there is no limit to the description size or the space complexity of the
Turing machines.

Prior to our work, only special cases of this result were known,
or stronger assumptions were required. More specifically, previous work
(implicitly) achieved selectively secure FE for Turing machines with a-
priori bounded input based on indistinguishability obfuscation (STOC
2015), or achieved FE for general Turing machines only based on
knowledge-type assumptions such as public-coin differing-inputs obfus-
cation (TCC 2015).

A consequence of our result is the first constructions of succinct adap-
tively secure garbling schemes (even for circuits) in the standard model.
Prior succinct garbling schemes (even for circuits) were only known to
be adaptively secure in the random oracle model.

1 Introduction

Contemporary cloud-based computing systems demand encryption schemes
that go far beyond the traditional goal of merely securing a communication
channel. The notion of functional encryption, first conceived under the name
of Attribute-Based Encryption in [SW05] and formalized later in the works
of [BSW11,O’N10], has emerged as a powerful form of encryption well-suited
to many contemporary applications (see [BSW11,BSW12] for further discussion
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of application scenarios for functional encryption). A functional encryption
(FE) scheme allows a user possessing a key associated with a function f to
recover the output f(x), given an encryption of x. The intuitive security guar-
antee of a FE scheme dictates that the only information about x revealed to
the user is f(x). Furthermore, if the user obtains keys for many functions
f1, . . . fk, then the user should only learn f1(x), . . . , fk(x) and nothing more.
It turns out that formalizing security using a simulation-based definition leads
to impossibility results [BSW11,AGVW13]; however, there are sound adap-
tive indistinguishability-based formulations [BSW11] that also imply simulation-
based security in restricted settings [CIJ+13]. Following most recent work on
FE [GGH+13,Wat15,GGHZ14,ABSV15], we will focus on achieving this strong
indistinguishability-based notion of security here.

In this work, we address the following basic question:

“Is FE possible for functions described by arbitrary Turing machines?”

Previous Work and Its Limitations. There have been many works on func-
tional encryption over the past few years but a satisfying answer to this question
has remained elusive.

The first constructions of FE considered only limited functions, such as inner
product [KSW08]. The first constructions of FE that allowed for more general
functions considered the setting where the adversary can just request a single
(or a bounded number of) key queries [SS10,GVW12], but only for functions
represented by circuits. A major advance occurred in the work of [GGH+13],
which constructed an FE scheme allowing for functions specified by arbitrary
circuits, with no bound on key queries, based on indistinguishability obfuscation
(iO) for circuits. Since this work, the assumption of iO for circuits has become
the staple assumption in this area.

However, [GGH+13] and other FE results deal with functionalities repre-
sented by circuits – and representing functions as circuits gives rise to two
major drawbacks. The first drawback is that a circuit representation takes the
worst case running time on every input. Research to deal with this issue was
initiated by Goldwasser et al. [GKP+13], and there have been several recent
works [BGL+15,CHJV15,KLW15,CCC+15], that (implicitly or explicitly) give
rise to FE schemes with input-specific runtimes based on iO for circuits.

The second drawback is that the input length of the function is a-priori
bounded. In many scenarios, especially involving large datasets, having an a-priori
bound is clearly unreasonable. For example, if functional encryption is used for
allowing a researcher to perform some data analysis on hospital records, then hav-
ing a bound on input length would require that there be an a-priori bound, at
the time of setting up the encryption scheme, on the length of encrypted hospi-
tal records, which seems quite unreasonable. In general, we would like to repre-
sent the function being computed as a Turing Machine, that can accept inputs
of arbitrary length. The problem of constructing FE schemes which can handle
messages of unbounded length has remained largely open: the recent works of
[BGL+15,CHJV15,KLW15] construct iO for Turing Machines only with bounded
input length, where the bound must be specified at the time of obfuscating
the Turing Machine. If this iO method is combined, for example, with the FE
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construction recipe of [GGH+13], then this would only yield FE for functions with
a bound on input length specified at the time of setting up the FE scheme.

There have been works [BCP14,IPS15] on overcoming the issue of a priori
bounded input lengths but these are based on strong knowledge-type assump-
tions called differing inputs obfuscation [BGI+12,BCP14,ABG+13] or more
recently public-coin differing inputs obfuscation [IPS15]. Our main contribu-
tion is developing new technical approaches that allow us to remove the need for
such assumptions, and use only iO for circuits1.

Results and Technical Overview. We prove the following informal theorem.

Theorem 1 (Informal). There exists a public-key FE scheme, assuming the
existence of indistinguishability obfuscation and one-way functions, that satisfies
the following properties:

1. There is no a priori bound on the number of functional keys issued.
2. The secret keys correspond to Turing machines.
3. It achieves adaptive security.
4. There is no a priori bound on length of the plaintext and the size of the Turing

machine.
5. The running time of encryption is independent of the Turing machine size.

The running time of the key generation is independent of the plaintext size.

A corollary of the above theorem is the first construction of succinct adaptively
secure garbling schemes for TMs (with indistinguishability-based security) in
the standard model. By succinctness, we mean that the size of the input encod-
ing is independent of the function (circuit or TM) size. Prior solutions were
either shown in the random oracle model [BHR12,AIKW15] or under restricted
settings [BGG+14].

We now give a roadmap for the overall approach and the techniques we use to
achieve our result. To gather some ideas towards achieving our goal of adaptive
FE for TMs, we first focus on the simplest possible scenario of FE for Turing
machines: adversary can make only a single ciphertext query and a function
query, and furthermore we work in the secret-key setting. We call a FE scheme
satisfying this security notion to be 1-CT 1-Key Private-key FE.

Initial Goal: Adaptive 1-CT 1-Key Private-key FE for TMs. To build
an adaptive 1-CT 1-key private-key FE for TMs scheme, we first take inspiration
from the corresponding FE for circuits constructions known in the literature to
see what tools might be helpful here. Sahai and Seyalioglu [SS10] and Gorbunov
et al. [GVW12] give constructions using the tool of randomized encodings (RE)
of computation. A randomized encoding is a representation of a function along
with an input that is simpler to compute than the function itself. Further this
representation reveals only the output of the function and nothing else. In
other words, given functions f1, f2 and inputs x1, x2 such that f1(x1) = f2(x2),

1 We stress that despite recent cryptanalytic progress, iO candidates such as
[BGK+14] remain beyond the reach of any known cryptanalytic technique.
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it should be the case that the encoding of (f1, x1) should be computationally
indistinguishable from an encoding of (f2, x2). Such randomized encodings for
TMs were recently constructed in [BGL+15,CHJV15,KLW15], based on iO for
circuits.

The essential difference between a randomized encoding and what we need
for a 1-CT 1-key FE scheme concerns two additional features that we would need
from the randomized encoding:

– First, we need the randomized encoding to be computable separately for the
function and the input. That is, given only f , it should be possible to compute
an encoding f̂ ; and given only x, it should be possible to compute an encoding
x̂; such that (f̂ , x̂) constitute a randomized encoding of (f, x). We need this
because the ciphertext will be akin to the encoding of the input, whereas the
private key will be akin to the encoding of the function. This is essentially the
notion of a decomposable randomized encoding [AIK06].

– Then, more crucially, we also need to strengthen our notion of security:
In a standard randomized encoding scheme, the adversary needs to declare
f1, f2, x1, x2 all at the beginning, and then we have the guarantee that (f̂1, x̂1)
is computationally indistinguishable to (f̂2, x̂2). However, for an FE scheme,
even with just “selective” security, the adversary is given the power to adap-
tively specify at least f1, f2 after it has seen the encodings x̂1 and x̂2. More gen-
erally, we would like to have security where the adversary can choose whether
it would like to specify f1, f2 first or x1, x2 first.

It turns out that achieving these two properties is relatively straightforward
when dealing with randomized encodings of circuits using Yao’s garbled cir-
cuits [Yao86]. It is not so straightforward for us in the context of TMs and
adaptive security, as we explain below.

To see why our situation is nontrivial and to get intuition about the obstacles
we must overcome, let us first consider a failed attempt to achieve these properties
by trying to apply the generic transformation, which was formalized in the work
of Bellare et al. [BHR12], to achieve adaptive security: in this attempt, the
new input encoding and new function encoding will now be (x̂ ⊕ R,S) and
(R, f̂ ⊕S), respectively, where R and S are random strings. The idea behind this
transformation is as follows: no matter what the adversary queries for (input or
function) in the beginning, it is just given two random strings (R,S). When the
adversary makes the other query, the simulator would know at this point both
the input and the function. Hence, it would obtain the corresponding encodings
f̂ and x̂ from the ordinary security of the randomized encoding scheme. Now,
the simulator would respond to the adversary by giving (x̂ ⊕ R, f̂ ⊕ S) thus
successfully simulating the game. The problem with this solution for us lies in
the sizes of the encodings. If we look at the strings R and S, they are as long
as the length of x̂ and f̂ respectively. This would mean that the size of the new
input encoding (resp., new function encoding) depends on the function length
(resp., input length) – which violates our main goal of achieving FE without
restrictions on input length!
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Revisiting the KLW Randomized Encoding. In order to achieve our goal,
we will need to look at the specifics of the decomposable RE for TMs construction
in [KLW15]. We then develop new ideas specific to the construction that help
us achieve adaptive security. Before we do that, we revisit the KLW randomized
encoding at a high level, sufficient for us to explain the new ideas in our work.
The encoding procedure of a Turing machine M and input x consists of the
following two main steps:

1. The storage tape of the TM is initialized with the encryption of x. It then
builds an accumulator storage tree on the ciphertext. The accumulator storage
tree resembles a Merkle hash tree with the additional property that this tree
is unconditionally sound for a select portion of the storage. The root of the
tree is then authenticated.

2. A program that computes the next step function of the Turing machine M is
then designed. This program enables computation of M one step at a time.
This program has secrets that enable decrypting encrypted tape symbols and
also to perform some checks on the input encrypted symbol. To hide the
secrets, this program is obfuscated.

The decoding just involves running the next message function repeatedly on the
computation obtained so far until the Turing Machine terminates. At this point,
the decode algorithm will output whatever the Turing Machine outputs.

First Step Towards Adaptivity: 3-Stage KLW. The main issue with trying
to use the random masking technique was that we were trying to use randomness
to mask the entire input encoding or the function encoding, which could be of
unbounded length. So our main goal will be to find a way to achieve adaptivity
where randomness need only be used to mask bounded portions of the encoding.

As a first step towards achieving this, we want to symmetrize how we treat
the input x and the function f . We do this by treating both x and f as being
inputs to a Universal Turing Machine U , where U is both of bounded size and
is entirely known a-priori, such that U(f, x) = f(x).

That is, we have three algorithms2: InpEnc outputs an encoding of input x,
FnEnc outputs an encoding of f , and UTMEnc outputs a TM encoding of UTM.

A natural approach would be to try to use the KLW scheme sketched above to
achieve the goal. The only difference is that, unlike the original KLW scheme, in
the 3-stage KLW scheme, the input encoding is split into two encodings (InpEnc
and FnEnc) and so there must be a way to stitch the input encodings into one.
We develop a mechanism, called combiner, to achieve this goal. A combiner
is an algorithm that combines two input encodings into one input encoding.
Furthermore, the combiner algorithm we develop is succinct; it only takes a
portion of the two encodings (of say, x and f) and spits out an element that
together with the encodings of x and f represent x||f . Note, however, that the
combiner algorithm needs secret information in order to perform its combining

2 The actual algorithms as presented in the technical section is slightly different. We
chose to present it this way in the introduction for intuitive clarity.



130 P. Ananth and A. Sahai

role correctly. The key to constructing this combiner is the accumulator storage
scheme of KLW. Recall that the accumulator storage on (x||f) was essentially a
binary tree on x||f . We modify this accumulator storage such that the storage
tree on (x||f) can be built by first building a storage tree on x, then building a
separate independent storage tree on f , and then joining both these two trees
by making them children of a root node. Once we have this tool, developing our
combiner algorithm is easy: the input encoding of x consists of a storage tree on
an encryption of x, encoding of f consists of a storage tree on the encryption
of f . The combine algorithm then takes only the root nodes of both these two
trees and creates a new root node which is the parent of these two root nodes.
The combiner then signs on the root node as a means of authenticating the fact
that this new root node was created legally.

We are almost ready to now apply the random masking technique to achieve
adaptive security by masking our new succinct representations. However, there
is a problem: the combiner algorithm. In 3-stage KLW, once we have encodings
of x and f , before we can have a randomized encoding, these two encodings need
to be combined using secret information. This is not allowed in a randomized
encoding, where the decode algorithm must be public.

Getting rid of combiner: 2-ary FE for TMs (1-CT 1-Key Setting). Since
we need to eliminate the need for the combiner algorithm, we start by trying
to delegate the combine operation to the decoder. We can attempt to do so by
including an obfuscated version of the combiner program as part of the encoding
itself, where obfuscation is needed since the combiner procedure contains some
secret values that have to be hidden. By itself, however, this approach does not
work, because the adversary who now possesses the obfuscated combine program
can now illegally combine different storages (other than those corresponding to
x and f) – we term this type of attack as a mixed storage attack.

To prevent mixed storage attacks, we use splittable signatures: the challenger
can sign the root of the storage of x as well as the root of the storage of f . The
obfuscated program now only outputs the combined value if the signatures can
be verified correctly. By using splittable signatures, we can argue that the adver-
sary is prevented from mixed storage attacks relying only on indistinguishability
obfuscation for circuits.

Once we have the obfuscated combiner program, the next issue is whether the
obfuscated combiner should be included as part of InpEnc or FnEnc. Including
it in either of them will cause problems because the simulator needs to simulate
the appropriate parameters in the combiner algorithm and it can do that only
after looking at both the InpEnc and FnEnc queries. Here we can (finally!) apply
the random masking technique since the size of the combiner is independent of
the size of the input as well as the function and thus the length of the random
mask needed is small. The resulting scheme that we get is a 2-ary FE [GGG+14]
for TMs, where the adversary can only make a single message and key query –
note that it is essentially the same as 3-stage KLW scheme except that it does
not have the combiner algorithm.
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Using some additional but similar ideas, we can show that the algorithms
FnEnc and UTMEnc can be combined into one encoding. The result is a scheme
with an input encoding, function encoding and a decode algorithm with the
security guarantee that the input query and the function query can be made
adaptively, which is precisely the goal we had started off with.

Boosting Mechanism: 1-Key 1-CT (Private-Key) FE to Many-Key
(Public-Key) FE. Now that we have achieved the goal of single-ciphertext
single-key private key FE for TMs, the next direction is to explore whether there
is any way to combine this with other known tools to obtain a public-key FE with
unbounded number of function queries. We give a mechanism of combining the
1-Key 1-CT FE scheme with other FE schemes that are defined for circuits to
obtain a public-key FE scheme for Turing machines. Further, our resulting FE
scheme is such that it is adaptively secure assuming only that the 1-Key 1-CT
FE scheme is adaptively secure. The high level approach is that the ciphertexts
and the functional keys are designed such that every ciphertext-functional key pair
gives rise to a unique instantiation of single-ciphertext single-key private FE. This
is reminiscent of the approach of Waters [Wat15], later revisited by [ABSV15], in
the context of constructing adaptively secure FE for circuits.

Our boosting mechanism, however, diverges in several ways from the previous
works of [Wat15,ABSV15]. First, we note that just syntactically, our boosting
mechanism is the first such mechanism that uses only 1-Key 1-CT FE as a
building block; in contrast, for example, [ABSV15] needed many-Key 1-CT FE
as a building block.

Zooming in on the main new idea we develop for our boosting mechanism,
we find that it is used exactly to deal with the fact that unbounded inputs that
must be embedded in ciphertexts. Note that all previous FE schemes placed an a-
priori bound on the inputs to be encrypted in ciphertexts. Therefore, to build our
encryption mechanism, we cannot use previous FE encryption to encode inputs.
We also cannot directly use the 1-Key 1-CT FE, since this scheme can only sup-
port a single key and a single ciphertext. To resolve this dilemma, we note that
even though previous FE schemes could not handle inputs of unbounded length,
previous FE schemes can handle keys corresponding to arbitrary-length circuits.
Therefore, crucially in our boosting procedure, when encrypting an input x, we
actually prepare a circuit Hx that has x built into it, and then use an existing FE
scheme to prepare a key corresponding to Hx. Here we make use of the Brakerski-
Segev [BS14] transformation to guarantee that the key for Hx does not leak x.
We utilize a new layer of indirection, where this circuit Hx expects to receive
as input the master secret key of a 1-Key 1-CT FE scheme, and then uses this
master secret key to create a 1-Key 1-CT encryption of x. In this way, the final
FE scheme that we construct inherits the security of the 1-Key 1-CT encryp-
tion scheme, but a fresh and independent instance of the 1-Key 1-CT scheme is
created for each pair of (input, function) that is ever considered within our final
FE scheme.

Subsequent Work. Recently, Nimishaki, Wichs and, Zhandry [NWZ15] con-
struct a traitor tracing scheme which allows for embedding user information in
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the issued keys. One of the main tools used to construct this primitive is an
adaptively secure FE scheme. As a first step, they show how to achieve a trai-
tor tracing scheme from a private linear broadcast encryption (PLBE) scheme
defined for a large identity space. In the next step, they show how to design a
PLBE scheme from adaptive FE.

2 Preliminaries

We denote λ to be the security parameter. We say that a function μ(λ) is neg-
ligible if for any polynomial p(λ) it holds that μ(λ) < 1/p(λ) for all sufficiently
large λ ∈ N. We use the notation negl to denote a negligible function.

We assume that the reader is familiar with the notion of Turing machines,
standard cryptographic notions of pseudorandom functions and symmetric
encryption schemes. We use the convention that a Turing machine also out-
puts the time it takes to execute. As a consequence, if we have M0(x) = M1(x)
then it means that not only are the outputs same but even the running times
are the same.

2.1 Functional Encryption for Turing Machines

We now define the notion of functional encryption (FE) for Turing machines.
This notion differs from the traditional notion of FE for circuits (to be defined
later) in that the functional keys are associated to Turing machines as against
circuits. Further, the functional keys can be used to decrypt ciphertexts of mes-
sages of arbitrary length and the decryption time depends only the running time
of the Turing machine on the message.

A public-key functional encryption scheme, defined for a message space
M and a class of Turing machines F , consists of four PPT algorithms FE =
(Setup,KeyGen,Enc,Dec) described as follows.

– Setup(1λ): The setup algorithm takes as input the security parameter λ in
unary and outputs a public key-secret key pair (PK,MSK).

– KeyGen(MSK, f ∈ F): The key generation algorithm takes as input the master
secret key MSK, a Turing machine f ∈ F3, and outputs a functional key skf .

– Enc(PK,m ∈ M): The encryption algorithm takes as input the public key PK,
a message m ∈ M and outputs a ciphertext CT.

– Dec(skf ,CT): The decryption algorithm takes as input the functional key skf ,
a ciphertext CT and outputs m̂.

The FE scheme defined above, in addition to correctness and security, needs to
satisfy the efficiency property. All these properties are defined below.

Correctness. The correctness notion of a FE scheme dictates that there exists
a negligible function negl(λ) such that for all sufficiently large λ ∈ N,
3 We use the same notation to denote the function as well as the Turing machine

representing the function f .
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for every message m ∈ M, and for every Turing machine f ∈ F it
holds that Pr [f(m) ← Dec(KeyGen(MSK, f),Enc(PK,m))] ≥ 1 − negl(λ), where
(PK,MSK) ← Setup(1λ), and the probability is taken over the random choices
of all algorithms.

Efficiency. The efficiency property of a public-key FE scheme says that the algo-
rithm Setup on input 1λ should run in time polynomial in λ, KeyGen on input the
Turing machine f (along with master secret key) should run in time polynomial
in (λ, |f |), Enc on input a message m (along with the public key) should run in
time polynomial in (λ, |m|). Finally, Dec on input a functional key of f and an
encryption of m should run in time polynomial in (λ, |f |, |m|, timeTM(f,m))).

Security. The security notion we define is identical to the indistinguishability-
based security notion defined for circuits.

Definition 1. A public-key functional encryption scheme FE = (Setup, KeyGen,
Enc, Dec) over a class of Turing machines F and a message space M is adap-
tively secure if for any PPT adversary A there exists a negligible function μ(λ)
such that for all sufficiently large λ ∈ N, the advantage of A is defined to be

AdvFEA =
∣
∣
∣Prob[ExptFEA (1λ, 0) = 1] − Prob[ExptFEA (1λ, 1) = 1]

∣
∣
∣ ≤ μ(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptFEA (1λ, b), modeled as a
game between the challenger and the adversary A, is defined as follows:

1. The challenger first executes Setup(1λ) to obtain (PK,MSK). It then sends
PK to the adversary.

2. Query Phase I: The adversary submits a Turing machine query f to the
challenger. The challenger sends back skf to the adversary, where skf is the
output of KeyGen(MSK, f).

3. Challenge Phase: The adversary submits a message-pair (m0,m1) to the
challenger. The challenger checks whether f(m0) = f(m1) for all Turing
machine queries f made so far. If this is not the case, the challenger aborts.
Otherwise, the challenger sends back CT = Enc(MSK,mb).

4. Query Phase II: The adversary submits a Turing machine query f to
the challenger. The challenger generates skf , where skf is the output of
KeyGen(MSK, f). It sends skf to the adversary only if f(m0) = f(m1), oth-
erwise it aborts.

5. The output of the experiment is b′, where b′ is the output of A.

We can also consider a weaker notion, termed as selective security, where the
adversary has to submit the challenge message pair at the beginning of the game
itself even before it receives the public parameters and such a FE scheme is said
to be selectively secure.

Private Key Setting. We can analogously define the notion of FE for TMs in
the private-key setting. The difference between the public-key setting and the
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private-key setting is that in the private-key setting, the encryptor needs to know
the master secret key to encrypt the messages. We provide the formal definition
of private-key FE for TMs in the full version [AS15].

2.2 (Compact) FE for Circuits

Public-Key FE. One of the building blocks in our construction of FE for TMs
is a public-key FE for circuits (i.e., the functions are represented as circuits).
We now recall its definition from [BSW11,O’N10].

A public-key functional encryption (FE) scheme PubFE, defined for a class
of functions F = {Fλ}λ∈N and message space M = {Mλ}λ∈N, is represented
by four PPT algorithms, namely (Setup, KeyGen, Enc, Dec). The input length of
any f ∈ Fλ is the same as the length of any m ∈ Mλ. The description of these
four algorithms is given below.

– Setup(1λ): It takes as input a security parameter λ in unary and outputs a
public key-secret key pair (PK,MSK).

– KeyGen(MSK, f ∈ Fλ): It takes as input a secret key MSK, a function f ∈ Fλ

and outputs a functional key skf .
– Enc(PK,m ∈ Mλ): It takes as input a public key PK, a message m ∈ Mλ and

outputs an encryption of m.
– Dec(skf ,CT): It takes as input a functional key skf , a ciphertext CT and

outputs m̂.

We require the FE scheme to satisfy the efficiency property in addition to the
traditional properties of correctness and security.

Correctness. The correctness property says that there exists a negligible function
negl(λ) such that for all sufficiently large λ ∈ N, for every message m ∈ Mλ,
and for every function f ∈ Fλ it holds that Pr[f(m) ← Dec(KeyGen(MSK, f),
Enc(PK,m))] ≥ 1 − negl(λ), where (PK,MSK) ← Setup(1λ), and the probability
is taken over the random choices of all algorithms.

Efficiency. At a high level, the efficiency property says that the setup and the
encryption algorithm is independent of the size of the circuits for which func-
tional keys are produced. More formally, the running time of the setup algorithm,
Setup(1λ) is a polynomial in just the security parameter λ and the encryption
algorithm, Enc(PK,m) is a polynomial in only the security parameter λ and
length of the message, |m|.

An FE scheme that satisfies the above efficiency property is termed as com-
pact FE. It was shown by [AJ15,BV15] that iO is implied by (sub-exponentially
hard) compact FE. However, we don’t place any sub exponential hardness
requirement on compact FE in our work.

Remark 1. We note that the definitions of FE for circuits commonly used in the
literature do not have the above efficiency property.

Security. The security definition is modeled as a game between the challenger
and the adversary as before.
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Definition 2. A public-key functional encryption scheme FE = (Setup, KeyGen,
Enc, Dec) over a function space F = {Fλ}λ∈N and a message space M =
{Mλ}λ∈N is an adaptively-secure public-key functional encryption
scheme if for any PPT adversary A there exists a negligible function μ(λ) such
that for all sufficiently large λ ∈ N, the advantage of A is defined to be

AdvFEA =
∣
∣
∣Prob[ExptFEA (1λ, 0) = 1] − Prob[ExptFEA (1λ, 1) = 1]

∣
∣
∣ ≤ μ(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptFEA (1λ, b), modeled as a
game between the challenger and the adversary A, is defined as follows:

1. The challenger first executes Setup(1λ) to obtain (PK,MSK). It then sends
PK to the adversary.

2. Query Phase I: The adversary submits a function query f to the challenger.
The challenger sends back skf to the adversary, where skf is the output of
KeyGen(MSK, f).

3. Challenge Phase: The adversary submits a message-pair (m0,m1) to the
challenger. The challenger checks whether f(m0) = f(m1) for all function
queries f made so far. If this is not the case, the challenger aborts. Otherwise,
the challenger sends back CT = Enc(MSK,mb).

4. Query Phase II: The adversary submits a function query f to the
challenger. The challenger generates skf , where skf is the output of
KeyGen(MSK, f). It sends skf to the adversary only if f(m0) = f(m1), oth-
erwise it aborts.

5. The output of the experiment is b′, where b′ is the output of A.

We define the FE scheme to be selectively secure if the adversary has to declare
the challenge message pair even before it receives the public parameters.

Function-Private Private Key FE. We now give an analogous definition of
FE for circuits in the private-key setting. In particular, we focus on the private-
key FE that is function-private.

A function-private private-key functional encryption (FE) scheme PrivFE,
defined for a class of functions F = {Fλ}λ∈N and message space M = {Mλ}λ∈N,
is represented by four PPT algorithms, namely (PrivFE.Setup, PrivFE.KeyGen,
PrivFE.Enc, PrivFE.Dec). The input length of any f ∈ Fλ is the same as the
length of any m ∈ Mλ.

We give the description of the four algorithms below.

– PrivFE.Setup(1λ): It takes as input a security parameter λ in unary and out-
puts a secret key PrivFE.MSK.

– PrivFE.KeyGen(PrivFE.MSK, f ∈ Fλ): It takes as input a secret key
PrivFE.MSK, a function f ∈ Fλ and outputs a functional key PrivFE.skf .

– PrivFE.Enc(PrivFE.MSK,m ∈ Mλ): It takes as input a secret key PrivFE.MSK,
a message m ∈ Mλ and outputs an encryption of m.

– PrivFE.Dec(PrivFE.skf ,CT): It takes as input a functional key PrivFE.skf , a
ciphertext CT and outputs m̂.

We require the above function-private private key FE scheme to satisfy the cor-
rectness, efficiency and the function privacy properties of the above FE scheme.
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Correctness. The correctness notion of a function-private private-key FE scheme
dictates that there exists a negligible function negl(λ) such that for all suf-
ficiently large λ ∈ N, for every message m ∈ Mλ, and for every func-
tion f ∈ Fλ it holds that Pr[f(m) ← PrivFE.Dec(PrivFE.KeyGen(PrivFE.MSK,
f),PrivFE.Enc(PrivFE.MSK,m))] ≥ 1 − negl(λ), where PrivFE.MSK ←
PrivFE.Setup(1λ), and the probability is taken over the random choices of all
algorithms.

Efficiency. At a high level, the efficiency property says that the setup algo-
rithm and the encryption algorithm is independent of the size of the cir-
cuits for which functional keys are produced. More formally, the running time
of PrivFE.Setup(1λ) is just a polynomial in the security parameter λ, and
PrivFE.Enc(PrivFE.MSK,m) is a polynomial in only the security parameter λ
and length of the message, |m|.

Function Privacy. We now recall the definition of function privacy in private key
FE as defined by Brakerski, and Segev [BS14]. Note that the function privacy
property below subsumes the usual notion of security (when only one function
is submitted).

Definition 3. A private-key functional encryption scheme PrivFE =
(PrivFE.Setup, PrivFE.KeyGen, PrivFE.Enc, PrivFE.Dec) over a function space F =
{Fλ}λ∈N and amessage spaceM = {Mλ}λ∈N is a function-privateadaptively-
secure private-key FE scheme if for any PPT adversary A there exists a negli-
gible function μ(λ) such that for all sufficiently large λ ∈ N, the advantage of A is
defined to be

AdvPrivFEA =
∣
∣
∣Prob[ExptPrivFEA (1λ, 0) = 1] − Prob[ExptPrivFEA (1λ, 1) = 1]

∣
∣
∣ ≤ μ(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptPrivFEA (1λ, b), modeled as
a game between the challenger and the adversary A, is defined as follows:

1. The challenger first executes PrivFE.MSK ← PrivFE.Setup(1λ). The adver-
sary then makes the following message queries and function queries in no
particular order.
– Message queries: The adversary submits a message-pair (m0,m1)

to the challenger. In return, the challenger sends back CT =
PrivFE.Enc(PrivFE.MSK,mb).

– Function queries: The adversary then makes functional key queries. For
every function-pair query (f0, f1), the challenger sends PrivFE.skfb

to the
adversary, where PrivFE.skfb

is the output of PrivFE.KeyGen(PrivFE.MSK,
fb) only if f0(m0) = f1(m1), for all message-pair queries (m0,m1). Other-
wise, it aborts.

2. The output of the experiment is b′, where b′ is the output of A.

We define a function-private private key FE to be selectively secure if the adver-
sary has to declare all the challenge message pairs at the beginning of the security
game.
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Remark 2. We note that we can define a private-key FE scheme without the
function privacy property, analogous to the public-key FE.

Single-Key Setting. A single-key function-private functional encryption scheme
(in the private-key setting) is a functional encryption scheme, where the adver-
sary in the security game (either selective or adaptive) is allowed to query for only
one function. There are several known constructions [SS10,GVW12,GKP+12]
but none of them satisfy the efficiency property of our FE definition – in par-
ticular, the size of the ciphertexts in these constructions grow with the circuit
size (for which functional keys are computed). We later describe how to obtain
a single-key scheme that indeed satisfies the efficiency property.

3 Adaptive 1-Key 1-Ciphertext FE for TMs

One of the main tools in our constructions is a single-key single-ciphertext FE
for TMs in the private key setting. In the security game, the adversary only
gets to make a single message and function query. Since we are interested in
adaptive security, the message and the function query can be made in any order.
In the language of randomized encodings (RE), this primitive is nothing but
an adaptively secure succinct decomposable RE. The formal definition of single-
ciphertext single-key FE for TMs is provided in the full version [AS15].

In the adaptive security game of single-ciphertext single-key FE, the adver-
sary can only make a single function query and a single challenge message query.
We define this notion for the case when the functions are represented by Turing
machines.

As before, we can define a single-ciphertext single-key private-key FE to be
selectively-secure if the adversary has to declare the challenge message pair even
before he submits the function query.

We now proceed to build this tool based on iO and one-way functions.
Towards this end, we first consider the notion of private key multi-ary func-
tional encryption (FE) [GGG+14] for TMs. Multi-ary FE is a generalization of
FE where the functions can take more than one input. We are interested in the
restricted setting when the adversary only makes a single function and message
query. Moreover, we restrict ourselves to the 2-ary setting, i.e., the arity of the
functions is 2. We refer to this notion as 2-ary FE for TMs. We describe this
notion formally in Sect. 3.1. Prior to this work, we knew how to construct this
only based on (public coins) differing inputs obfuscation. Later we show how to
construct this primitive assuming just iO for circuits and one-way functions.

3.1 Semi-Adaptive 2-Ary FE for TMs: 1-Key 1-Ciphertext Setting

The formal description of the 2-ary FE for TMs is given below. A 2-ary FE
for a class of Turing machines F consists of four PPT algorithms, 2FE =
(2FE.Setup, 2FE.Enc, 2FE.KeyGen, 2FE.Dec), as described below.
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– 2FE.Setup(1λ): On input the security parameter λ, the algorithm 2FE.Setup
outputs a master secret key 2FE.MSK.

– 2FE.KeyGen(2FE.MSK,M): On input the master secret key 2FE.MSK and Tur-
ing machine M ∈ F , it outputs the key 2FE.skM .

– 2FE.Enc(2FE.MSK, x, b): On input the master secret key 2FE.MSK, message
x ∈ {0, 1}∗ and position b ∈ {0, 1}, it outputs 2FE.CTx.

– 2FE.Dec(2FE.skM , 2FE.CTx, 2FE.CTy): On input the functional key 2FE.skM

and ciphertexts 2FE.CTx and 2FE.CTy, it outputs the value z.

Remark 3. The bit b essentially indicates the position with respect to which
the message needs to be encrypted. For convenience sake, we refer to the first
position as the 0th position and the second position as the 1st position.

For the above notion to be interesting, a 2-ary FE for TMs scheme is required
to satisfy the following correctness, efficiency and security properties.

Correctness: This property ensures that the output of 2FE.Dec(2FE.skM ,
2FE.CTx, 2FE.CTy) is always M(x, y) where (i) 2FE.MSK ← 2FE.Setup(1λ),
(ii) 2FE.skM ← 2FE.KeyGen(2FE.MSK,M), (iii) 2FE.CTx ← 2FE.Enc(2FE.MSK,
x, 0) and (iv) 2FE.CTy ← 2FE.Enc(2FE.MSK, y, 1).

Efficiency: This property says that the size of the ciphertexts (resp., func-
tional key) depend solely on the size of the message (resp., machine) and
the security parameter. That is, the complexity of 2FE.Enc(2FE.MSK, x, b)
is a polynomial in (λ, |x|) and the complexity of 2FE.KeyGen(2FE.MSK,M)
is a polynomial in (λ, |M |). Furthermore, we require that the complexity of
2FE.Dec(2FE.skM , 2FE.CTx, 2FE.CTy) is just a polynomial in (λ, |x|, |y|, |M |, t),
where t is the time taken by M to execute on the input (x, y).

Semi-Adaptive Security: The security guarantee states that the adversary
cannot distinguish joint ciphertexts of (x0, y0) from the joint ciphertexts of
(x1, y1) given the functional key of M , as long as M(x0, y0) = M(x1, y1). Note
that we adopt the convention that the Turing machine also outputs its running
time and thus this alone ensures that the execution time of M(x0, y0) is the
same as the execution time of M(x1, y1). Depending on the order of the message
and the Turing machine queries the adversary can make, there are many ways
to model the security of a 2-ary FE scheme. We adopt the notion where the
adversary can make the message queries corresponding to 0th and 1st position
in an adaptive manner but the TM query should be made only after both the
message queries. We term this notion semi-adaptive security.

Suppose A be any PPT adversary. We define an experiment ExptASemiAd below.

ExptSemiAd
A (1λ):

1. The challenger first executes 2FE.Setup(1λ) to obtain 2FE.MSK. It then
chooses a bit b at random.

2. The following two bullets are executed in an arbitrary order (depending on
the choice of the adversary).
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– The adversary submits the message query (x0, x1), corresponding to 0th

position, to the challenger. The challenger responds with 2FE.CTx ←
2FE.Enc(2FE.MSK, x0, 0) if b = 0 else it responds with 2FE.CTx ←
2FE.Enc(2FE.MSK, x1, 0).

– The adversary submits the message query (y0, y1), corresponding to 1st

position, to the challenger. The challenger responds with 2FE.CTy ←
2FE.Enc(2FE.MSK, y0, 1) if b = 0 else it responds with 2FE.CTy ←
2FE.Enc(2FE.MSK, y1, 1).

3. After both the message queries, the adversary then submits a Turing machine
M to the challenger. The challenger aborts if either (i) M(x0, y0) �= M(x1, y1)
or (ii) |x0| �= |x1| or (iii) |y0| �= |y1|. If it has not aborted, it executes
2FE.skM ← 2FE.KeyGen(2FE.MSK,M). It then sends 2FE.skM to the adver-
sary.

4. The adversary outputs b′.

The experiment outputs 1 if b = b′, otherwise it outputs 0.
We now define the semi-adaptive security notion.

Definition 4. A 2-ary FE scheme is semi-adaptive secure if for any PPT adver-
sary A, we have that the probability that the output of the experiment ExptSemiAd

A
is 1 is at most 1/2 + negl(λ), for any negligible function negl.

3.2 Adaptive FE from Semi-adaptive 2-Ary FE for TMs

We now show how to achieve adaptively secure single-ciphertext single-key FE
starting from a semi-adaptively secure 2-ary FE for TMs. Recall that in the semi-
adaptive security game of 2-ary FE, the key query can be made only after the
message queries but however, the message queries corresponding to the first and
the second position can be made in an adaptive manner. This leads to the main
idea behind our construction – symmetrization of the input and the TM. That
is, the adaptive FE functional key of a machine M is the 2-ary FE encryption
of M w.r.t the 1st position and the adaptive FE encryption of a message m
is essentially the 2-ary FE encryption of m w.r.t the 0th position. This takes
care of the adaptivity issue. To facilitate the execution of M on m, a 2-ary
FE key of a universal TM (UTM) is also provided. The question is whether we
include the 2-ary FE key of UTM in the ciphertext or the functional key. This
is crucial because the UTM key can only be provided by the challenger after
seeing the queries corresponding to both the 0th and 1st position. To solve this
issue, we additively secret share the UTM key across both the ciphertext and the
functional key. This gives the challenger leeway to provide a random string as
part of the response to the first query and by providing the appropriate secret
share in the second response it can reveal the UTM key – at this point the
challenger has seen both m and M . The formal scheme is described next.

Consider a 2-ary FE for TMs, denoted by 2FE = (2FE.Setup, 2FE.KeyGen,
2FE.Enc, 2FE.Dec), for a class of Turing machines F . We construct a single-
ciphertext single-key FE, OneCTKey, for the same class F .
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Denote by UTM = UTMλ, the universal Turing machine, that takes as input
a Turing machine M , message m and outputs M(m) if it halts within 2λ steps
else it outputs ⊥. Further, we denote by �UTM to be the length of the output of
a 2FE key of UTM.

OneCTKey.Setup(1λ): On input the security parameter λ, it first executes
2FE.Setup(1λ) to obtain the master secret key 2FE.MSK. It also picks a random
string R in {0, 1}�UTM . It outputs the secret key OneCTKey.MSK = (2FE.MSK, R)
as the master secret key.

OneCTKey.KeyGen(OneCTKey.MSK,M ∈ F): On input the master secret key
OneCTKey.MSK = (2FE.MSK, R), and a Turing machine M ∈ F , it exe-
cutes 2-ary FE encryption of M w.r.t 0th position, 2FE.Enc(2FE.MSK,M, 0),
to obtain 2FE.CTM . It then computes a 2-ary FE key of UTM by generating
2FE.skUTM ← 2FE.KeyGen(2FE.MSK,UTMλ). Finally, it outputs the functional
key OneCTKey.skM = (2FE.CTM , 2FE.skUTM ⊕ R).

OneCTKey.Enc(OneCTKey.MSK,m): On input the master secret key
OneCTKey.MSK = (2FE.MSK, R), and message m, it generates a 2-ary FE
encryption of m by executing 2FE.CTm ← 2FE.Enc(2FE.MSK,m, 1). It outputs
the ciphertext OneCTKey.CT = (2FE.CTm, R).

OneCTKey.Dec(OneCTKey.skM ,OneCTKey.CT): On input the functional key
OneCTKey.skM = (2FE.CTM , S) and ciphertext OneCTKey.CT = (2FE.CTm, R).
It computes S ⊕ R to obtain 2FE.skUTM. It then executes 2FE.Dec(2FE.skUTM,
2FE.CTM , 2FE.CTm) to obtain z. Finally, it outputs z.

We prove the following theorem. The proof of the theorem is available in the
full version [AS15].

Theorem 2. The scheme OneCTKey satisfies correctness, efficiency and adap-
tive security properties.

3.3 Constructing Semi-adaptive 2-Ary FE for TMs: Overview

Lets begin with the following simple idea: the 2-ary FE encryption of x w.r.t 0th

position will just be a standard public key encryption of x0. Since this encryp-
tion should not be malleable, we provide an authentication of the ciphertext.
Similarly, the 2-ary FE encryption of y w.r.t 1st position is also a public key
encryption of y along with its authentication. The functional key of M is an
obfuscated program that takes as input an encrypted tape symbol; decrypts
it; executes the next message function and then outputs an encryption of the
new symbol. The evaluation is performed by executing next message function
one step at a time while updating the storage tape which is initialized to the
encryptions of x and y along with their respective authentications.

This however suffers from consistency issues. An adversary could re-use
encrypted storage tape values of the current tape in the future steps. It would
seem that using signatures to bind the time step to the tape symbol should
solve this problem. In fact, if we had virtual black box obfuscation this idea
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would work. However, we are stuck with indistinguishability obfuscation and it
is not clear how to make this work – signatures in general aren’t compatible with
iO because signatures guarantee computational soundness whereas iO demands
information theoretic soundness. Looking back at the literature, we notice that
Koppula-Lewko-Waters had to deal with similar issues in their recent work on
randomized encodings (RE)4 for TMs [KLW15]. The template of their construc-
tion comprises of two components as described below. The actual construction
of KLW has more intricate details involved from what is presented below but to
keep the discussion at an intuitive level, we choose to describe it this way.

Let M and x be the input to the encoding procedure.

– Storage tree: Encrypt x using a public key encryption scheme. Initialize the
work tape with this ciphertext. Compute a storage tree on this ciphertext.
The root of the storage tree along with the current time step (which is ini-
tially 0) is then signed using a signature scheme. This signature serves as an
authentication of the work tape and the current time step.

– Obfuscated next message program: The obfuscated program takes as
input an encrypted tape symbol (leaf node), its path to the root of the storage
tree and the signature on the root. It performs few checks to test whether the
encrypted tape symbol is valid. It then decrypts the encrypted tape symbol,
computes the next message function of the TM M and then re-encrypts the
output tape symbol. Finally, it computes the new root of the storage tree (this
can be done by just having the appropriate path from the new tape symbol
leading up to the root) and signs it.

There are two main hurdles in using the above template for our construction of
2-ary FE for TMs: (i) the TM only takes a single input in the above template
whereas in our setting the TM takes two inputs. Moreover, we require that the
TM and the inputs are encoded separately and, (ii) the security notion considered
by KLW is weak-selective – the adversary is required to declare both the TM
and the input at the beginning of the game. On the other hand the security
notion we consider is stronger. Because of these two main reasons, we employ
new techniques to achieve our construction.

Ciphertext Combiner Mechanism. As remarked earlier, we require that the TM
and the inputs are encoded separately. We exploit the fact that inherently KLW
has two components – storage tree and obfuscated next message program – that
depend upon the input and the TM separately. But note that we have two
inputs and so we need to further split the storage tree component. The tree
structure automatically allows for such a decomposition. We compute a storage
tree on the (encrypted) 0th position input and another tree on the (encrypted)
1st position input. We can then combine the roots of both the trees, during the
decryption phase, to obtain a new root. But the root of the new tree needs to

4 A randomized encoding of a machine M and input x is an encoding of M(x) that
takes much less time to compute than M(x). Furthermore, the encoding should only
reveal M(x) and nothing more.
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be authenticated and this operation needs to be public. We could provide the
decryptor the signing key but then we end up sacrificing security!

To overcome this problem, we provide a combiner program, as part of one
of the ciphertexts, that takes as input two nodes in the tree and outputs a new
node along with a signature. This signature is signed using a signing key which
is part of the combiner program. Of course the combiner program needs to be
obfuscated to hide the signing key. As we will see later in the actual construction,
we require “iO-compatible” signatures a.k.a splittable signatures scheme of KLW
to make this idea work.

While using combiner seems to solve the problem, the next question is in
which ciphertext do we include the combiner? We will see next that this becomes
crucial for our proof of security.

Ensuring Semi-adaptivity. Suppose we decide to include the combiner as part
of the 0th ciphertext. In line with the techniques used in proving the security
using iO, we require that in the proof of security we hardwire the resulting
(combined) root node in the combiner. But this is not possible if the 0th position
challenge message is requested before the 1st position challenge message. The
same problem occurs if we include the combiner as part of the 1st position
ciphertext – the adversary can now query for the 1st position challenge ciphertext
first and then query the 0th position challenge message.

This conundrum can be tackled by using deniable encryption. We can com-
pute a deniable encryption of combiner in one ciphertext and in the other cipher-
text we open the deniable ciphertext. This gives us the flexibility to open the
ciphertext to whatever message we want depending on the adversary’s queries.
While this solves the problem, we can replace deniable encryption with a much
simpler tool – one-time pad! We compute a one-time pad of the combiner with
randomness R in one ciphertext and the other ciphertext contains just R. This
solves our problem just like the case of deniable encryption.

We present a high level and a simplified description of the 2-ary FE scheme
below. The formal description is more involved and is presented in full ver-
sion [AS15] where we present the construction in a modular fashion by first
describing an intermediate primitive that we call 3-stage KLW.

1. Setup: Generate a master signing key-verification key pair (SK, V K). Also
generate two auxiliary signature key-verification key pairs (SKx, V Kx) and
(SKy, V Ky). Generate the public parameters PP of the storage tree. Compute
a random string R of appropriate length. The public key is PP while the
master secret key is (SKx, SKy, V Kx, V Ky, SK, V K,R).

2. Key generation of M : Generate an obfuscated next message program of
M whose functionality is as in the above high level description. The pair
(SK, V K) is hardwired inside the obfuscated program.

3. Encryption of x w.r.t 0th position: Compute a storage tree on x. Sign
the root of the tree rtx using SKx to obtain σx. Compute the obfuscated
combiner program S = Comb⊕R whose description is as given above. Output
(rtx, σx, S).
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4. Encryption of y w.r.t 1st position: Compute a storage tree on y. Sign the
root of the tree rty using SKy to obtain σy. Output (rty, σy, R).

5. Decryption: First, compute S ⊕ R to recover Comb. Then execute Comb
on inputs ((rtx, σx) , (rty, σy)) to obtain the joint root rt accompanied by the
signature σ computed using SK. Once this is done, using the joint tree and
obfuscated next message program of M , execute the decode procedure of
KLW to recover the answer.

4 Adaptive FE for TMs

We show how to obtain an adaptively secure public key functional encryption
scheme for Turing machines. To achieve this, we use a public key FE scheme for
circuits, single-key FE scheme for circuits and single-key single-ciphertext FE
for Turing machines.

Tools. We use the following tools to achieve the transformation.

– (Compact) Public key FE scheme for circuits, denoted by PubFE =
(PubFE.Setup,PubFE.KeyGen,PubFE.Enc,PubFE.Dec). It suffices for us that
PubFE is selectively secure.

– (Compact) Function-private Single-key FE scheme for circuits, denoted by
OneKey = (OneKey.Setup,OneKey.KeyGen,OneKey.Enc, OneKey.Dec). It suf-
fices for us that OneKey is selectively secure.

– Single-key single-ciphertext FE scheme for Turing machines, denoted
by OneCTKey = (OneCTKey.Setup,OneCTKey.KeyGen,OneCTKey.Enc,
OneCTKey.Dec). We require that OneCTKey is adaptively secure.

– Psuedorandom function family, F.
– Symmetric encryption scheme with pseudorandom ciphertexts, denoted by
Sym = (Sym.Setup,Sym.Enc,Sym.Dec).

Instantiations of the Tools. We gave an construction of single-key single-
ciphertext FE for Turing machines satisfying adaptive security in Sect. 3. We
can instantiate the compact public-key FE scheme using the construction
of [GGH+13,Wat15] (here, we refer to the post-challenge FE construction of
[Wat15]). This construction can be based on indistinguishability obfuscation and
other standard assumptions. Lastly, we can instantiate a function-private single
key FE by, first, applying the function-privacy transformation by Brakerski-
Segev [BS14] on the public-key FE5. The resulting FE is a private-key FE which
is also function-private. And, a function-private single-key FE in the private key
setting is a special case of function-private private key FE. Note that this instan-
tiation can be based off the same assumptions as public-key FE (this is because,
[BS14] does not add any additional assumptions).

Intuition. We view our construction as a transformation from adaptively
secure 1-CT 1-key FE scheme into one that can handle unbounded collusions.
5 The function-privacy transformation was defined for private key FE but a public key

FE can be transformed into a private key FE in a straightforward way.
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Even though in general we don’t know any way of achieving this, we show that
by leveraging additional tools we can attain this goal. These additional tools, as
mentioned above, are multi-key FE schemes that are only selective secure.

The key idea is as follows: we give a mechanism to generate a unique key
corresponding to a pair of ciphertext (of m) and functional key (of f) in the
resulting adaptive multi-key FE scheme. This unique key would correspond to
the master secret key of the adaptive 1-CT 1-Key FE scheme. At this point,
we can generate functional keys of f and ciphertext of m w.r.t this unique key.
Implementing this mechanism using iO, in the context of FE for circuits, was
introduced by Waters [Wat15]. We show how to implement the same, in the more
general context of FE for TMs, but using just a multi-key FE. We highlight that
in general we don’t know how to replace the use of iO with multi-key FE since
FE does not offer function hiding.

At the high level, the construction proceeds as follows. A ciphertext of m
“communicates” a PRF key K to a functional key of f . This communication
is enabled by a multi-key FE scheme. The functional key using K and hard-
wired values, derives the master secret key OneCTKey.MSK of a 1-CT 1-Key FE
scheme. If then computes a functional key of f w.r.t OneCTKey.MSK. But the
ciphertext of m does not contain an encryption w.r.t OneCTKey.MSK! And so
this key has to be “communicated” from functional key back to the ciphertext.
To do this, we will use another instantiation of selectively secure FE scheme.
Here, we note that it suffices to consider just a single-key scheme and that too in
the private key setting. Once we have this instantiation, the functional key can
now generate a single-key FE encryption of OneCTKey.MSK. The single-key FE
functional key, which will now be part of the ciphertext, will take as input encryp-
tion of OneCTKey.MSK and outputs an encryption of m w.r.t OneCTKey.MSK.
Finally, we can just run the decryption algorithm of OneCTKey to obtain the
answer. We illustrate a simple example, when a single ciphertext and functional
key is released, in Fig. 1.

Our construction has more details that we present below.

Construction. We now describe the construction. We denote the FE for TMs
scheme, that we construct, to be FE = (Setup,KeyGen,Enc,Dec).

Setup(1λ): Execute PubFE.Setup(1λ) to obtain (PubFE.MSK,PubFE.PK). Output
the secret key-public key pair (MSK = PubFE.MSK,PK = PubFE.PK).

KeyGen(MSK = PubFE.MSK, f): Draw CE at random6. Denote τ to be
(τ0||τ1||τ2||τ3), where τi for i ∈ {0, 1, 2, 3} is picked at random. Execute

6 The length of CE is determined as follows. Denote by |f |, the size of the Turing
machine representing f . Denote by �OneCTKey, the length of the ciphertext obtained
by encrypting a message of length |f |, using OneCTKey.Enc. Denote by �OneKey, the
length of the ciphertext obtained by encrypting a message of length λ + 2, using
OneKey.Enc. Further, denote by �Sym to be the length of the ciphertext obtained by
encrypting a message of length �OneCTKey + �OneKey, using Sym.Enc. We set the length
of CE to be �Sym.
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Fig. 1. The ciphertext of m has two components – the first component is a single-
key FE (denoted by FE2) functional key and the second component is a multi-key FE
(denoted by FE1) encryption of a PRF key K. The function key of f is just a FE1

functional key of the program described in the figure. The arrows indicate the flow of
execution of decryption of the ciphertext of m using the functional key of f .

PubFE.KeyGen(PubFE.MSK, G[f, CE , τ ]), where G[f, CE , τ ] is described in Fig. 2,
to obtain PubFE.skG. Output skf = PubFE.skG.

Enc(PK = PubFE.PK,m):

– Draw a PRF key K at random from {0, 1}λ.
– Execute OneKey.Setup(1λ) to obtain OneKey.MSK.
– Execute OneKey.KeyGen(OneKey.MSK,H[m]) to obtain OneKey.skH , where

H[m] is defined in Fig. 3.
– Execute PubFE.Enc(PubFE.PK, (OneKey.MSK,K,⊥, 0)) to obtain PubFE.CT.

Finally, output CT = (OneKey.skH ,PubFE.CT).

Dec(skf = skG,CT = (OneKey.skH ,PubFE.CT)):

– Execute PubFE.Dec(PubFE.skG,PubFE.CT) to obtain (OneCTKey.skf ,
OneKey.CT).

– Execute OneKey.Dec(OneKey.skH ,OneKey.CT) to obtain OneCTKey.CT.
– Execute OneCTKey.Dec(OneCTKey.skf ,OneCTKey.CT) to obtain m̂.

Output m̂.
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Fig. 2. Description of function G.

Fig. 3. Description of function H.

We prove the following theorem that establishes the proof of security of the
above scheme.

Theorem 3. Assuming the selective security of PubFE,OneKey, adaptive secu-
rity of OneCTKey, security of F, Sym, we have that the scheme FE is adaptively
secure.

Since the proof is involved, we choose to first present the proof of selective
security of FE. We then point out the (minor) changes that need to be made to
prove the adaptive security of FE. We give a sketch of the proof of the above
scheme in Sect. 5 and the formal proof is provided in the full version [AS15]. We
also present the proof of correctness and efficiency in the full version.

5 Proof of Theorem 3: Overview

To explain the proof intuition, we restrict ourselves to the setting when the
adversary makes only a single message and key query.

In the first hybrid, the challenger uses a bit b picked at random, to gener-
ate the challenge ciphertext as in the (selective) security notion. By using the
security of many primitives (listed in the theorem statement), we then move
to a hybrid where the bit b is information-theoretically hidden from the adver-
sary. At this point, the probability that the adversary guesses the bit b is 1/2.
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And thus the probability that the adversary guesses b correctly in the first hybrid
is at most 1/2 + negl(λ).

Hybrid0: This corresponds to the real experiment when the challenger uses the bth

message in the challenge message pair query to compute the challenge ciphertext,
where the bit b is picked at random. The output of the hybrid is the same as the
output of the adversary.

Hybrid1: In this hybrid, the values corresponding to the challenge ciphertext are
hardwired in the “CE” component of all the functional keys.

That is, the challenger upon receiving a function query f , first sam-
ples a symmetric key Sym.k∗. It generates an encryption of the message
(OneCTKey.MSK, R2, 0) with respect to the single-key FE scheme. Call this
ciphertext, OneKey.CT. It then samples a functional key of f with respect to the
single-key single-ciphertext FE scheme. Call this functional key, OneCTKey.skf .
It is important to note here that, the (pseudo)randomness used in the gener-
ation of OneKey.CT and OneCTKeyf is as described in the scheme. Finally, it
computes a symmetric encryption of (OneKey.CT,OneCTKey.skf ) using the key
Sym.k. The resulting ciphertext will be assigned to CE and then the challenger
proceeds as in the previous hybrid.

The indistinguishability of Hybrid0 and Hybrid1 follows from the security of
symmetric encryption scheme.

Hybrid2: In this hybrid, the mode is switched from β = 0 to β = 1.
Upon receiving a challenge message query (m0,m1), the challenger computes

the challenge ciphertext as follows. Recall that there are two components in the
ciphertext – namely, the single-key FE functional key and the public-key FE
ciphertext. The challenger computes the single-key FE functional key as in the
previous hybrid. However, it generates the public-key FE cipehertext to be an
encryption of (⊥,⊥,Sym.k∗, 1) instead of (OneKey.MSK∗,K∗,⊥, 0), as in Hybrid1.
The rest of the hybrid is the same as the previous hybrid.

The indistinguishability of Hybrid1 and Hybrid2 follows from the security
of public-key FE scheme. This is because the output of G (Fig. 2) on input
(⊥,⊥,Sym.k∗, 1) is nothing but the decryption of CE . And by our choice of CE ,
this is the same as the output of G on input (OneKey.MSK∗,K∗,⊥, 0).

Hybrid3: The hardwired values in the “CE” components of all the functional keys
are now computed using randomness drawn from a uniform distribution. Recall
that in the previous hybrid, the single-key ciphertext and the single-key single-
ciphertext FE encrypted in CE were computed using pseudorandom values.

The indistinguishability of Hybrid2 and Hybrid3 follows from the security of
pseudorandom function family.

Hybrid4: A branch encrypting message m0 (the 0th message in the challenge
message query) is introduced in the function H.

The challenger upon receiving the challenge message query (m0,m1), first
computes a single-key FE functional key of the function H∗[m0,mb, v], as
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Fig. 4. Description of hybrid function H*.

described in Fig. 4. Here, b is the challenge bit, picked at random by the chal-
lenger. The program H∗ is the same as H except that it contains an additional
branch. The rest of the hybrid is the same as Hybrid3.

The indistinguishability of Hybrid3 and Hybrid4 follows from the function-
privacy property of single-key FE scheme. To see why, let us look at the messages
that are encrypted under the single-key FE scheme (note that each encryption
is part of the “CE” component of some functional key). We observe that each
message is of the form (OneCTKey.MSK, R, 0). From the descriptions of H and
H∗, it follows that the output of H on (OneCTKey.MSK, R, 0) is the same as the
output of H∗ on (OneCTKey.MSK, R, 0).

Hybrid5: We switch the mode of α from 0 to 1 in the OneKey ciphertexts output
by all the functional keys.

The challenger, upon receiving a functional query f , first generates a
single-key FE ciphertext to be an encryption of (OneCTKey.MSK, R, 1), where
OneCTKey.MSK is as generated in the previous hybrids. The resulting ciphertext
along with the single-key single-ciphertext FE functional key is then encrypted,
using the symmetric key encryption, to obtain CE . The rest of the functional
key is then generated as previously.

The indistinguishability of Hybrid4 and Hybrid5 is more complex and involves
more intermediate hybrids and thus we defer the explanation.

Hybrid6: We change the α = 0 branch in the function H to encrypt the message
m0 instead of mb.

The challenger upon receiving a message query (m0,m1), first generates a
single-key FE functional key of H∗[m0,m0, v]. It then generates the public key
FE encryption as in previous hybrids. The rest of the hybrid is as in Hybrid5.

The indistinguishability of Hybrid5 and Hybrid6 follows from the function
privacy property of single-key FE scheme. To see why, we look at the messages
encrypted in the single-key FE ciphertexts. We first note all these ciphertexts
are part of “CE” component of some functional key. Further, each message is of
the form (OneCTKey.MSK, R, 1). Thus, the output of H∗[mb,m0, v] is the same
as the output of H∗[m0,m0, v].

Observe that the challenge bit b is no longer used. This combined with the
indistinguishability of consecutive hybrids proves that the probability that A
wins in Hybrid1 is at most 1/2 + negl(λ). This proves the security of FE.
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6 Future Directions

The works of [AJ15,BV15,AJS15] show the equivalence of (sub-exponentially
secure) FE and iO for the case of circuits. It would be interesting to explore
the possibility of the equivalence of FE for Turing machines and iO for Turing
machines (with no restriction on the input length). One direct consequence of a
feasibility result in this direction is establishing the existence of iO for Turing
machines based on iO for circuits. The current feasibility results on iO for Turing
machines are based on knowledge assumptions.
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A Tools Used in [KLW15]

We recall the key tools, namely, positional accumulators, iterators and splittable
signatures, used in the work of Koppula et al. [KLW15].

We now describe the syntax of the tools below. We refer the reader
to [KLW15] for the correctness and the security definitions.

A.1 Positional Accumulators

The notion of positional accumulators is defined below. A positional accumulator
for message space Msgλ consists of the following algorithms.

SetupAcc(1λ, T ) → PPAcc, w0, store0 The setup algorithm takes as input a secu-
rity parameter λ in unary and an integer T in binary representing the maxi-
mum number of values that can stored. It outputs public parameters PPAcc,
an initial accumulator value w0, and an initial storage value store0.

EnforceRead(1λ, T, (m1, INDEX1), . . . , (mk, INDEXk), INDEX∗) → (PPAcc, w0,
store0). The setup enforce read algorithm takes as input a security parameter
λ in unary, an integer T in binary representing the maximum number of
values that can be stored, and a sequence of symbol, index pairs, where each
index is between 0 and T −1, and an additional INDEX∗ also between 0 and
T − 1. It outputs public parameters PPAcc, an initial accumulator value w0,
and an initial storage value store0.

EnforceWrite(1λ, T, (m1, INDEX1), . . . , (mk, INDEXk)) → PPAcc, w0, store0 The
setup enforce write algorithm takes as input a security parameter λ in unary,
an integer T in binary representing the maximum number of values that can
be stored, and a sequence of symbol, index pairs, where each index is between
0 and T −1. It outputs public parameters PPAcc, an initial accumulator value
w0, and an initial storage value store0.
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PrepRead(PPAcc, storein, INDEX) → m,π The prep-read algorithm takes as
input the public parameters PPAcc, a storage value storeIn, and an index
between 0 and T − 1. It outputs a symbol m (that can be ε) and a value π.

PrepWrite(PPAcc, storein, INDEX) → aux The prep-write algorithm takes as
input the public parameters PPAcc, a storage value storeIn, and an index
between 0 and T − 1. It outputs an auxiliary value aux.

VerifyRead(PPAcc, win,mread, INDEX, π) → {True, False} The verify-read algo-
rithm takes as input the public parameters PPAcc, an accumulator value win,
a symbol, mread, an index between 0 and T − 1, and a value π. It outputs
True or False.

WriteStore(PPAcc, storein, INDEX,m) → storeOut The write-store algorithm
takes in the public parameters, a storage value storein, an index between
0 and T − 1, and a symbol m. It outputs a storage value storeout.

Update(PPAcc, win,mwrite, INDEX, aux) → wOut or Reject The update algo-
rithm takes in the public parameters PPAcc, an accumulator value win, a
symbol mwrite, and index between 0 and T − 1, and an auxiliary value aux.
It outputs an accumulator value wout or Reject.

A.2 Iterators

In this subsection, we now describe the notion of cryptographic iterators. As
remarked earlier, iterators essentially consist of states that are updated on the
basis of the messages received. We describe its syntax below.

Syntax. Let � be any polynomial. An iterator PPItr with message space Msgλ =
{0, 1}�(λ) and state space SplSchemeλ consists of three algorithms - SetupItr,
ItrEnforce and Iterate defined below.

SetupItr(1λ, T ) The setup algorithm takes as input the security parameter λ (in
unary), and an integer bound T (in binary) on the number of iterations. It
outputs public parameters PPItr and an initial state v0 ∈ SplSchemeλ.

ItrEnforce(1λ, T,m = (m1, . . . ,mk)) The enforced setup algorithm takes as input
the security parameter λ (in unary), an integer bound T (in binary) and k
messages (m1, . . . ,mk), where each mi ∈ {0, 1}�(λ) and k is some polynomial
in λ. It outputs public parameters PPItr and a state v0 ∈ SplScheme.

Iterate(PPItr, vin,m) The iterate algorithm takes as input the public parameters
PPItr, a state vin, and a message m ∈ {0, 1}�(λ). It outputs a state vout ∈
SplSchemeλ.

For simplicity of notation, the dependence of � on λ will not be explic-
itly mentioned. Also, for any integer k ≤ T , we will use the notation
Iteratek(PPItr, v0, (m1, . . . ,mk)) to denote Iterate(PPItr, vk−1,mk), where vj =
Iterate(PPItr, vj−1,mj) for all 1 ≤ j ≤ k − 1.

A.3 Splittable Signatures

We describe the syntax of the splittable signatures scheme below.
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Syntax. A splittable signature scheme SplScheme for message space Msg consists
of the following algorithms:

SetupSpl(1λ) The setup algorithm is a randomized algorithm that takes as input
the security parameter λ and outputs a signing key SK, a verification key VK
and reject-verification key VKrej.

SignSpl(SK,m) The signing algorithm is a deterministic algorithm that takes as
input a signing key SK and a message m ∈ Msg. It outputs a signature σ.

VerSpl(VK,m, σ) The verification algorithm is a deterministic algorithm that
takes as input a verification key VK, signature σ and a message m. It outputs
either 0 or 1.

SplitSpl(SK,m∗) The splitting algorithm is randomized. It takes as input a
secret key SK and a message m∗ ∈ Msg. It outputs a signature σone =
SignSpl(SK,m∗), a one-message verification key VKone, an all-but-one signing
key SKabo and an all-but-one verification key VKabo.

SignSplAbo(SKabo,m) The all-but-one signing algorithm is deterministic. It takes
as input an all-but-one signing key SKabo and a message m, and outputs a
signature σ.

KLW described various security notions corresponding to the above splittable
signatures scheme. We describe only one of the properties that will be useful
for this work. This security notion is termed as VKone indistinguishability and
states that given a signature on a message m, an adversary should not be able
to distinguish the verification key VK from the split verification key VKone, that
is computed as a result of applying SplitSpl on the signing key and message m.
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Abstract. In the study of differential privacy, composition theorems
(starting with the original paper of Dwork, McSherry, Nissim, and Smith
(TCC’06)) bound the degradation of privacy when composing several dif-
ferentially private algorithms. Kairouz, Oh, and Viswanath (ICML’15)
showed how to compute the optimal bound for composing k arbitrary
(ε, δ)-differentially private algorithms. We characterize the optimal com-
position for the more general case of k arbitrary (ε1, δ1), . . . , (εk, δk)-
differentially private algorithms where the privacy parameters may differ
for each algorithm in the composition. We show that computing the opti-
mal composition in general is #P-complete. Since computing optimal
composition exactly is infeasible (unless FP=#P), we give an approxi-
mation algorithm that computes the composition to arbitrary accuracy
in polynomial time. The algorithm is a modification of Dyer’s dynamic
programming approach to approximately counting solutions to knapsack
problems (STOC’03).

Keywords: Differential privacy · Composition · Computational com-
plexity · Approximation algorithms

1 Introduction

Differential privacy is a framework that allows statistical analysis of private data-
bases while minimizing the risks to individuals in the databases. The idea is that
an individual should be relatively unaffected whether he or she decides to join
or opt out of a research dataset. More specifically, the probability distribution
of outputs of a statistical analysis of a database should be nearly identical to
the distribution of outputs on the same database with a single person’s data
removed. Here the probability space is over the coin flips of the randomized dif-
ferentially private algorithm that handles the queries. To formalize this, we call
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two databases D0,D1 with n rows each neighboring if they are identical on at
least n − 1 rows, and define differential privacy as follows:

Definition 1.1 (Differential Privacy [2,3]). A randomized algorithm M is
(ε, δ)-differentially private if for all pairs of neighboring databases D0 and D1

and all output sets S ⊆ Range(M)

Pr[M(D0) ∈ S] ≤ eε Pr[M(D1) ∈ S] + δ

where the probabilities are over the coin flips of the algorithm M .

In the practice of differential privacy, we generally think of ε as a small, non-
negligible, constant (e.g. ε = .1). We view δ as a “security parameter” that is
cryptographically small (e.g. δ = 2−30). One of the important properties of differ-
ential privacy is that if we run multiple distinct differentially private algorithms
on the same database, the resulting composed algorithm is also differentially
private, albeit with some degradation in the privacy parameters (ε, δ). In this
paper, we are interested in quantifying the degradation of privacy under com-
position. We will denote the composition of k differentially private algorithms
M1,M2, . . . ,Mk as (M1,M2, . . . ,Mk) where

(M1,M2, . . . ,Mk)(x) = (M1(x),M2(x), . . . , Mk(x)).

A handful of composition theorems already exist in the literature. The first basic
result says:

Theorem 1.2 (Basic Composition [2]). For every ε ≥ 0, δ ∈ [0, 1], and
(ε, δ)-differentially private algorithms M1,M2, . . . ,Mk, the composition (M1,
M2, . . . ,Mk) satisfies (kε, kδ)-differential privacy.

This tells us that under composition, the privacy parameters of the individual
algorithms “sum up,” so to speak. We care about understanding composition
because in practice we rarely want to release only a single statistic about a
dataset. Releasing many statistics may require running multiple differentially
private algorithms on the same database. Composition is also a very useful tool
in algorithm design. Often, new differentially private algorithms are created by
combining several simpler algorithms. Composition theorems help us analyze the
privacy properties of algorithms designed in this way.

Theorem 1.2 shows a linear degradation in global privacy as the number of
algorithms in the composition (k) grows and it is of interest to improve on this
bound. If we can prove that privacy degrades more slowly under composition,
we can get more utility out of our algorithms under the same global privacy
guarantees. Dwork, Rothblum, and Vadhan gave the following improvement on
the basic summing composition above [5].

Theorem 1.3 (Advanced Composition [5]). For every ε > 0, δ, δ′ > 0, k ∈
N, and (ε, δ)-differentially private algorithms M1,M2, . . . ,Mk, the composition
(M1,M2, . . . ,Mk) satisfies (εg, kδ + δ′)-differential privacy for

εg =
√

2k ln(1/δ′) · ε + k · ε · (eε − 1) .
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Theorem 1.3 shows that privacy under composition degrades by a function
of O(

√
k ln(1/δ′)) which is an improvement if δ′ = 2−O(k). It can be shown

that a degradation function of Ω(
√

k ln(1/δ)) is necessary even for the simplest
differentially private algorithms, such as randomized response [11].

Despite giving an asymptotically correct upper bound for the global privacy
parameter, εg, Theorem 1.3 is not exact. We want an exact characterization
because, beyond being theoretically interesting, constant factors in composition
theorems can make a substantial difference in the practice of differential privacy.
Furthermore, Theorem 1.3 only applies to “homogeneous” composition where
each individual algorithm has the same pair of privacy parameters, (ε, δ). In
practice we often want to analyze the more general case where some individual
algorithms in the composition may offer more or less privacy than others. That
is, given algorithms M1,M2, . . . ,Mk, we want to compute the best achievable
privacy parameters for (M1,M2, . . . ,Mk). Formally, we want to compute the
function:

OptComp(M1,M2, . . . ,Mk, δg) = inf{εg : (M1,M2, . . . ,Mk) is (εg, δg)-DP}.

It is convenient for us to view δg as given and then compute the best εg,
but the dual formulation, viewing εg as given, is equivalent (by binary search).
Actually, we want a function that depends only on the privacy parameters of
the individual algorithms:

OptComp((ε1, δ1), (ε2, δ2), . . . , (εk, δk), δg) =
sup{OptComp(M1,M2, . . . ,Mk, δg) : Mi is (εi, δi)-DP ∀i ∈ [k]}.

In other words we want OptComp to give us the minimum possible εg that
maintains privacy for every sequence of algorithms with the given privacy para-
meters (εi, δi). This definition refers to the case where the sequence of algorithms
(M1, . . . ,Mk) and the pair of neighboring databases (D0,D1) on which they are
applied are fixed, but we show that the same optimal bound holds even if the
algorithms and databases are chosen adaptively, i.e. Mi and databases (D0,D1)
are chosen adaptively based on the outputs of M1, . . . ,Mi−1. (See Sect. 2 for a
formal definition.)

A result from Kairouz, Oh, and Viswanath [9] characterizes OptComp for
the homogeneous case.

Theorem 1.4 (Optimal Homogeneous Composition [9]). For every ε ≥ 0
and δ ∈ [0, 1), OptComp((ε, δ)1, (ε, δ)2, . . . , (ε, δ)k, δg) = (k − 2i)ε, where i is the
largest integer in {0, 1, . . . , �k/2�} such that

i−1∑

l=0

(
k

l

)
(
e(k−l)ε − e(k−2i+l)ε

)

(1 + eε)k
≤ 1 − 1 − δg

(1 − δ)k
.

With this theorem the authors exactly characterize the composition behavior
of differentially private algorithms with a polynomial-time computable solution.
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The problem remains to find the optimal composition behavior for the more
general heterogeneous case. Kairouz, Oh, and Viswanath also provide an upper
bound for heterogeneous composition that generalizes the O(

√
k ln(1/δ′)) degra-

dation found in Theorem 1.3 for homogeneous composition but do not comment
on how close it is to optimal.

1.1 Our Results

We begin by extending the results of Kairouz, Oh, and Viswanath [9] to the
general heterogeneous case.

Theorem 1.5 (Optimal Heterogeneous Composition). For all ε1, . . . , εk ≥
0 and δ1, . . . , δk, δg ∈ [0, 1),OptComp((ε1, δ1), (ε2, δ2), . . . , (εk, δk), δg) equals the
least value of εg such that

1
∏k

i=1 (1 + eεi)

∑

S⊆{1,...,k}
max

{
e

∑

i∈S

εi − eεg · e

∑

i�∈S

εi

, 0
}

≤ 1− 1 − δg
∏k

i=1 (1 − δi)
. (1)

Theorem 1.5 exactly characterizes the optimal composition behavior for any
arbitrary set of differentially private algorithms. It also shows that optimal com-
position can be computed in time exponential in k by computing the sum over
S ⊆ {1, . . . , k} by brute force. Of course in practice an exponential-time algo-
rithm is not satisfactory for large k. Our next result shows that this exponential
complexity is necessary:

Theorem 1.6. Computing OptComp is #P -complete, even on instances where
δ1 = δ2 = . . . = δk = 0 and

∑
i∈[k] εi ≤ ε for any desired constant ε > 0.

Recall that #P is the class of counting problems associated with decision
problems in NP. So being #P -complete means that there is no polynomial-time
algorithm for OptComp unless there is a polynomial-time algorithm for count-
ing the number of satisfying assignments of boolean formulas (or equivalently
for counting the number of solutions of all NP problems). So there is almost
certainly no efficient algorithm for OptComp and therefore no analytic solution.
Despite the intractability of exact computation, we show that OptComp can be
approximated efficiently.

Theorem 1.7. There is a polynomial-time algorithm that given ε1, . . . , εk ≥
0, δ1, . . . δk, δg ∈ [0, 1), and η > 0, outputs ε∗ where

OptComp((ε1, δ1), . . . , (εk, δk), δg) ≤ ε∗ ≤ OptComp((ε1, δ1), . . . , (εk, δk), e−η/2·δg)+η .

The algorithm runs in O
(

log
(

k
η

∑k
i=1 εi

)

k2

η

∑k
i=1 εi

)

time assuming constant-time

arithmetic operations.
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Note that we incur a relative error of η in approximating δg and an additive
error of η in approximating εg. Since we always take εg to be non-negligible or
even constant, we get a very good approximation when η is polynomially small
or even a constant. Thus, it is acceptable that the running time is polynomial
in 1/η.

In addition to the results listed above, our proof of Theorem 1.5 also provides
a somewhat simpler proof of the Kairouz-Oh-Viswanath homogeneous composi-
tion theorem (Theorem 1.4 [9]). The proof in [9] introduces a view of differential
privacy through the lens of hypothesis testing and uses geometric arguments.
Our proof relies only on elementary techniques commonly found in the differen-
tial privacy literature.

Practical Application. The theoretical results presented here were motivated
by our work on an applied project called “Privacy Tools for Sharing Research
Data”1. We are building a system that will allow researchers with sensitive
datasets to make differentially private statistics about their data available
through data repositories using the Dataverse2 platform [1,8]. Part of this sys-
tem is a tool that helps both data depositors and data analysts distribute a
global privacy budget across many statistics. Users select which statistics they
would like to compute and are given estimates of how accurately each statistic
can be computed. They can also redistribute their privacy budget according to
which statistics they think are most valuable in their dataset. We implemented
the approximation algorithm from Theorem 1.7 and integrated it with this tool
to ensure that users get the most utility out of their privacy budget.

2 Technical Preliminaries

A useful notation for thinking about differential privacy is defined below.

Definition 2.1. For two discrete random variables Y and Z taking values in the
same output space S, the δ-approximate max-divergence of Y and Z is defined as:

Dδ
∞(Y ‖Z) ≡ max

S

[
ln

Pr[Y ∈ S] − δ

Pr[Z ∈ S]

]
.

Notice that an algorithm M is (ε, δ) differentially private if and only if for all
pairs of neighboring databases, D0,D1, we have Dδ

∞(M(D0)‖M(D1)) ≤ ε. The
standard fact that differential privacy is closed under “post processing” [3,4]
now can be formulated as:

Fact 2.2. If f : S → R is any randomized function, then

Dδ
∞(f(Y )‖f(Z)) ≤ Dδ

∞(Y ‖Z).

1 privacytools.seas.harvard.edu.
2 dataverse.org.

http://privacytools.seas.harvard.edu
http://dataverse.org
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Adaptive Composition. The composition results in our paper actually hold for a
more general model of composition than the one described above. The model is
called k-fold adaptive composition and was formalized in [5]. We generalize their
formulation to the heterogeneous setting where privacy parameters may differ
across different algorithms in the composition.

The idea is that instead of running k differentially private algorithms cho-
sen all at once on a single database, we can imagine an adversary adaptively
engaging in a “composition game.” The game takes as input a bit b ∈ {0, 1}
and privacy parameters (ε1, δ1), . . . , (εk, δk). A randomized adversary A, tries to
learn b through k rounds of interaction as follows: on the ith round of the game,
A chooses an (εi, δi)-differentially private algorithm Mi and two neighboring
databases D(i,0),D(i,1). A then receives an output yi ← Mi(D(i,b)) where
the internal randomness of Mi is independent of the internal randomness of
M1, . . . ,Mi−1. The choices of Mi,D(i,0), and D(i,1) may depend on y0, . . . , yi−1

as well as the adversary’s own randomness.
The outcome of this game is called the view of the adversary, V b which is

defined to be (y1, . . . , yk) along with A’s coin tosses. The algorithms Mi and
databases D(i,0),D(i,1) from each round can be reconstructed from V b. Now we
can formally define privacy guarantees under k-fold adaptive composition.

Definition 2.3. We say that the sequences of privacy parameters ε1, . . . , εk ≥
0, δ1, . . . , δk ∈ [0, 1) satisfy (εg, δg)-differential privacy under adaptive compo-
sition if for every adversary A we have D

δg∞(V 0‖V 1) ≤ εg, where V b rep-
resents the view of A in composition game b with privacy parameter inputs
(ε1, δ1), . . . , (εk, δk).

Computing Real-Valued Functions. Many of the computations we discuss involve
irrational numbers and we need to be explicit about how we model such com-
putations on finite, discrete machines. Namely when we talk about computing
a function f : {0, 1}∗ → R, what we really mean is computing f to any desired
number q bits of precision. More precisely, given x, q, the task is to compute
a number y ∈ Q such that |f(x) − y| ≤ 1

2q . We measure the complexity of
algorithms for this task as a function of |x| + q.

3 Characterization of OptComp

Following [9], we show that to analyze the composition of arbitrary (εi, δi)-DP
algorithms, it suffices to analyze the composition of the following simple variant
of randomized response [11].

Definition 3.1 ([9]). Define a randomized algorithm M̃(ε,δ) : {0, 1} →
{0, 1, 2, 3} as follows, setting α = 1 − δ:

Pr[M̃(ε,δ)(0) = 0] = δ Pr[M̃(ε,δ)(1) = 0] = 0
Pr[M̃(ε,δ)(0) = 1] = α · eε

1+eε Pr[M̃(ε,δ)(1) = 1] = α · 1
1+eε

Pr[M̃(ε,δ)(0) = 2] = α · 1
1+eε Pr[M̃(ε,δ)(1) = 2] = α · eε

1+eε

Pr[M̃(ε,δ)(0) = 3] = 0 Pr[M̃(ε,δ)(1) = 3] = δ
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Note that M̃(ε,δ) is in fact (ε, δ)-DP. Kairouz, Oh, and Viswanath showed that
M̃(ε,δ) can be used to simulate the output of every (ε, δ)-DP algorithm on adja-
cent databases.

Lemma 3.2 ([9]). For every (ε, δ)-DP algorithm M and neighboring databases
D0,D1, there exists a randomized algorithm T such that T (M̃(ε,δ)(b)) is identi-
cally distributed to M(Db) for b = 0 and b = 1.

Proof. We provide a new proof of this lemma in the full version of the paper
[10].

Since M̃(ε,δ) can simulate any (ε, δ) differentially private algorithm and it is
known that post-processing preserves differential privacy (Fact 2.2), it follows
that to analyze the composition of arbitrary differentially private algorithms, it
suffices to analyze the composition of M̃(εi,δi)’s:

Lemma 3.3. For all ε1, . . . , εk ≥ 0, δ1, . . . , δk, δg ∈ [0, 1),

OptComp((ε1, δ1), . . . , (εk, δk), δg) = OptComp(M̃(ε1,δ1), . . . , M̃(εk,δk), δg).

Proof. Since M̃(ε1,δ1), . . . , M̃(εk,δk) are (ε1, δ1), . . . , (εk, δk)-differentially private,
we have:

OptComp((ε1, δ1), . . . , (εk, δk), δg)
= sup{OptComp(M1, . . . ,Mk, δg) : Mi is (εi, δi)-DP ∀i ∈ [k]}
≥ OptComp(M̃(ε1,δ1), . . . , M̃(εk,δk), δg) .

For the other direction, it suffices to show that for every M1, . . . ,Mk that
are (ε1, δ1), . . . , (εk, δk)-differentially private, we have

OptComp(M1, . . . ,Mk, δg) ≤ OptComp(M̃(ε1,δ1), . . . , M̃(εk,δk)) .

That is,

inf{εg : (M1, . . . , Mk) is (εg, δg)-DP} ≤ inf{εg : (M̃(ε1,δ1), . . . , M̃(εk,δk)) is (εg, δg)-DP}.

So suppose (M̃(ε1,δ1), . . . , M̃(εk,δk)) is (εg, δg)-DP. We will show that
(M1, . . . ,Mk) is also (εg, δg)-DP. Taking the infimum over εg then completes
the proof.

We know from Lemma 3.2 that for every pair of neighboring data-
bases D0,D1, there must exist randomized algorithms T1, . . . , Tk such that
Ti(M̃(εi,δi)(b)) is identically distributed to Mi(Db) for all i ∈ {1, . . . , k}. By
hypothesis we have

Dδg∞
(
(M̃(ε1,δ1)(0), . . . , M̃(εk,δk)(0))‖(M̃(ε1,δ1)(1), . . . , M̃(εk,δk)(1))

)
≤ εg .

Thus by Fact 2.2 we have:

D
δg
∞
(

(M1(D0), . . . , Mk(D0))‖(M1(D1), . . . , Mk(D1))
)

=

D
δg
∞
(

(T1(M̃(ε1,δ1)(0)), . . . , Tk(M̃(εk,δk)(0)))‖(T1(M̃(ε1,δ1)(1)), . . . , Tk(M̃(εk,δk)(1)))
)

≤ εg.



164 J. Murtagh and S. Vadhan

Now we are ready to characterize OptComp for an arbitrary set of differen-
tially private algorithms.

Proof (Proof of Theorem 1.5). Given (ε1, δ1), . . . , (εk, δk) and δg, let M̃k(b)
denote the composition (M̃(ε1,δ1)(b), . . . , M̃(εk,δk)(b)) and let P̃ k

b (x) be the prob-
ability mass function of M̃k(b), for b = 0 and b = 1. By Lemma 3.3,
OptComp((ε1, δ1), . . . , (εk, δk), δg) is the smallest value of εg such that:

δg ≥ max
Q⊆{0,1,2,3}k

{P̃ k
0 (Q) − eεg · P̃ k

1 (Q)}.

Given εg, the set S ⊆ {0, 1, 2, 3}k that maximizes the right-hand side is

S = S(εg) =
{

x ∈ {0, 1, 2, 3}k | P̃ k
0 (x) ≥ eεg · P̃ k

1 (x)
}

.

We can further split S(εg) into S(εg) = S0(εg) ∪ S1(εg) with

S0(εg) =
{

x ∈ {0, 1, 2, 3}k | P̃ k
1 (x) = 0

}
.

S1(εg) =
{

x ∈ {0, 1, 2, 3}k | P̃ k
0 (x) ≥ eεg · P̃ k

1 (x), and P̃ k
1 (x) > 0

}
.

Note that S0(εg) ∩ S1(εg) = ∅. We have P̃ k
1 (S0(εg)) = 0 and P̃ k

0 (S0(εg)) =
1 − Pr[M̃k(0) ∈ {1, 2, 3}k] = 1 −∏k

i=1(1 − δi). So

P̃ k
0 (S(εg)) − eεg P̃ k

1 (S(εg)) = P̃ k
0 (S0(εg)) − eεg P̃ k

1 (S0(εg)) + P̃ k
0 (S1(εg)) − eεg P̃ k

1 (S1(εg))

= 1 −
k∏

i=1

(1 − δi)
k + P̃ k

0 (S1(εg)) − eεg P̃ k
1 (S1(εg)).

Now we just need to analyze P̃ k
0 (S1(εg))−eεg P̃ k

1 (S1(εg)). Notice that S1(εg) ⊆
{1, 2}k because for all x ∈ S1(εg), we have P̃0(x) > P̃1(x) > 0. So we can write:

P̃ k
0 (S1(εg)) − eεg · P̃ k

1 (S1(εg))

=
∑

y∈{1,2}k

max

⎧
⎨

⎩

∏

i : yi=1

(1 − δi)eεi

1 + eεi
·
∏

i : yi=2

(1 − δi)
1 + eεi

−

eεg

∏

i : yi=1

(1 − δi)
1 + eεi

·
∏

i : yi=2

(1 − δi)eεi

1 + eεi
, 0

⎫
⎬

⎭

=
k∏

i=1

1 − δi

1 + eεi

∑

y∈{0,1}k

max

{
e
∑k

i=1 εi

e
∑k

i=1 yiεi
− eεg · e

∑k
i=1 yiεi , 0

}

.

Putting everything together yields:

δg ≥ P̃ k
0 (S0(εg)) − eεg P̃ k

1 (S0(εg)) + P̃ k
0 (S1(εg)) − eεg P̃ k

1 (S1(εg))

= 1 −
k∏

i=1

(1 − δi) +
∏k

i=1(1 − δi)
∏k

i=1 (1 + eεi)

∑

S⊆{1,...,k}
max

{
e

∑

i∈S

εi − eεg · e

∑

i�∈S

εi

, 0
}

.
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We have characterized the optimal composition for an arbitrary set of dif-
ferentially private algorithms (M1, . . . ,Mk) under the assumption that the algo-
rithms are chosen in advance and all run on the same database. Next we show
that OptComp under this restrictive model of composition is actually equivalent
under the more general k-fold adaptive composition discussed in Sect. 2.

Theorem 3.4. The privacy parameters ε1, . . . , εk ≥ 0, δ1, . . . , δk ∈ [0, 1),
satisfy (εg, δg)-differential privacy under adaptive composition if and only if
OptComp((ε1, δ1), . . . , (εk, δk), δg) ≤ εg.

Proof. First suppose the privacy parameters ε1, . . . , εk, δ1, . . . , δk satisfy (εg, δg)-
differential privacy under adaptive composition. Then OptComp((ε1, δ1), . . . ,
(εk, δk), δg) ≤ εg because adaptive composition is more general than the compo-
sition defining OptComp.

Conversely, suppose OptComp((ε1, δ1), . . . , (εk, δk), δg) ≤ εg. In particular,
this means OptComp(M̃(ε1,δ1), . . . , M̃(εk,δk), δg) ≤ εg. To complete the proof,
we must show that the privacy parameters ε1, . . . , εk, δ1, . . . , δk satisfy (εg, δg)-
differential privacy under adaptive composition.

Fix an adversary A. On each round i, A uses its coin tosses r and the previous
outputs y1, . . . , yi−1 to select an (εi, δi)-differentially private algorithm Mi =
M

r,y1,...,yi−1
i and neighboring databases D0 = D

r,y1,...,yi−1
0 ,D1 = D

r,y1,...,yi−1
1 .

Let V b be the view of A with the given privacy parameters under composition
game b for b = 0 and b = 1.

Lemma 3.2 tells us that there exists an algorithm Ti = T
r,y1,...,yi−1
i such that

Ti(M̃(εi,δi)(b)) is identically distributed to Mi(Db) for both b = 0, 1 for all i ∈ [k].
Define T̂ (z1, . . . , zk) for z1, . . . , zk ∈ {0, 1, 2, 3} as follows:

1. Randomly choose coins r for A
2. For i = 1, . . . , k, let yi ← T

r,y1,...,yi−1
i (zi)

3. Output (r, y1, . . . , yk)

Notice that T̂ (M̃(ε1,δ1)(b), . . . , M̃(εk,δk)(b)) is identically distributed to V b for
both b = 0, 1. By hypothesis we have

Dδg∞
(
(M̃(ε1,δ1)(0), . . . , M̃(εk,δk)(0))‖(M̃(ε1,δ1)(1), . . . , M̃(εk,δk)(1))

)
≤ εg.

Thus by Fact 2.2 we have:

D
δg
∞
(

V
0‖V

1)
= D

δg
∞
(

T̂ (M̃(ε1,δ1)(0), . . . , M̃(εk,δk)(0))‖T̂ (M̃(ε1,δ1)(1), . . . , M̃(εk,δk)(1))
)

≤ εg.

4 Hardness of OptComp

#P is the class of all counting problems associated with decision problems in NP.
It is a set of functions that count the number of solutions to some NP problem.
More formally:
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Definition 4.1. A function f : {0, 1}∗ → N is in the class #P if there exists a
polynomial p : N → N and a polynomial time algorithm M such that for every
x ∈ {0, 1}∗:

f(x) =
∣
∣
∣
{

y ∈ {0, 1}p(|x|) : M(x, y) = 1
}∣∣
∣ .

Definition 4.2. A function g is called #P -hard if every function f ∈ #P can
be computed in polynomial time given oracle access to g. That is, evaluations of
g can be done in one time step.

If a function is #P -hard, then there is no polynomial-time algorithm for com-
puting it unless there is a polynomial-time algorithm for counting the number
of solutions of all NP problems.

Definition 4.3. A function f is called #P -easy if there is some function g ∈
#P such that f can be computed in polynomial time given oracle access to g.

If a function is both #P -hard and #P -easy, we say it is #P -complete. Prov-
ing that computing OptComp is #P -complete can be broken into two steps:
showing that it is #P -easy and showing that it is #P -hard.

Lemma 4.4. Computing OptComp is #P -easy.

Proof. A proof of this statement can be found in the full version of the paper [10].

Next we show that computing OptComp is also #P -hard through a series
of reductions. We start with a multiplicative version of the partition problem
that is known to be #P -complete by Ehrgott [7]. The problems in the chain of
reductions are defined below.

Definition 4.5. #INT-PARTITION is the following problem: given a set Z =
{z1, z2, . . . , zk} of positive integers, count the number of partitions P ⊆ [k] such
that ∏

i∈P

zi −
∏

i
∈P

zi = 0 .

All of the remaining problems in our chain of reductions take inputs
{w1, . . . , wk} where 1 ≤ wi ≤ e is the Dth root of a positive integer for all
i ∈ [k] and some positive integer D. All of the reductions we present hold for
every positive integer D, including D = 1 when the inputs are integers. The
reason we choose D to be large enough such that our inputs are in the range
[1, e] is because in the final reduction to OptComp, εi values in the proof are set
to ln(wi). We want to show that our reductions hold for reasonable values of ε’s
in a differential privacy setting so throughout the proofs we use wi’s ∈ [1, e] to
correspond to εi’s ∈ [0, 1] in the final reduction. It is important to note though
that the reductions still hold for any choice of positive integer D and thus any
range of ε’s ≥ 0.
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Definition 4.6. #PARTITION is the following problem: given a number D ∈
N and a set W = {w1, w2, . . . , wk} of real numbers where for all i ∈ [k], 1 ≤ wi ≤
e is the Dth root of a positive integer, count the number of partitions P ⊆ [k]
such that ∏

i∈P

wi −
∏

i
∈P

wi = 0.

Definition 4.7. #T-PARTITION is the following problem: given a number
D ∈ N and a set W = {w1, w2, . . . , wk} of real numbers where for all i ∈ [k],
1 ≤ wi ≤ e is the Dth root of a positive integer and a positive real number T ,
count the number of partitions P ⊆ [k] such that

∏

i∈P

wi −
∏

i
∈P

wi = T.

Definition 4.8. #SUM-PARTITION: given a number D ∈ N and a set W =
{w1, w2, . . . , wk} of real numbers where for all i ∈ [k], 1 ≤ wi ≤ e is the Dth
root of a positive integer and a real number r > 1, find

∑

P⊆[k]

max

⎧
⎨

⎩

∏

i∈P

wi − r ·
∏

i
∈P

wi, 0

⎫
⎬

⎭
.

We prove that computing OptComp is #P -hard by the following series of reduc-
tions:

#INT-PARTITION ≤ #PARTITION ≤ #T-PARTITION ≤ #SUM-PARTITION ≤ OptComp.

Since #INT-PARTITION is known to be #P -complete [7], the chain of
reductions will prove that OptComp is #P -hard.

Lemma 4.9. For every constant c > 1, #PARTITION is #P -hard, even on
instances where

∏
i wi ≤ c.

Proof. Given an instance of #INT-PARTITION, {z1, . . . , zk}, we show how to
find the solution in polynomial time using a #PARTITION oracle. Set D =
�logc(

∏
i zi)� and wi = D

√
zi ∀i ∈ [k]. Note that

∏
i wi = (

∏
i zi)

1/D ≤ c. Let
P ⊆ [k]:

∏

i∈P

wi =
∏

i
∈P

wi ⇐⇒
(
∏

i∈P

wi

)D

=

⎛

⎝
∏

i
∈P

wi

⎞

⎠

D

⇐⇒
∏

i∈P

zi =
∏

i
∈P

zi .

There is a one-to-one correspondence between solutions to the #PARTITION
problem and solutions to the given #INT-PARTITION instance. We can solve
#INT-PARTITION in polynomial time with a #PARTITION oracle. There-
fore #PARTITION is #P -hard.
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Lemma 4.10. For every constant c > 1, #T-PARTITION is #P -hard, even
on instances where

∏
i wi ≤ c.

Proof. Let c > 1 be a constant. We will reduce from #PARTITION, so consider
an instance of the #PARTITION problem, W = {w1, w2, . . . , wk}. We may
assume

∏
i wi ≤ √

c since
√

c is also a constant greater than 1.
Set W ′ = W ∪ {wk+1}, where wk+1 =

∏k
i=1 wi. Notice that

∏k+1
i=1 wi ≤

(
√

c)2 = c. Set T = √
wk+1 (wk+1 − 1). Now we can use a #T-PARTITION

oracle to count the number of partitions Q ⊆ {1, . . . , k + 1} such that
∏

i∈Q

wi −
∏

i
∈Q

wi = T .

Let P = Q ∩ {1, . . . , k}. We will argue that
∏

i∈Q wi −∏i
∈Q wi = T if and
only if

∏
i∈P wi =

∏
i
∈P wi, which completes the proof. There are two cases to

consider: wk+1 ∈ Q and wk+1 �∈ Q.

Case 1: wk+1 ∈ Q. In this case, we have:

wk+1 ·
⎛

⎝

∏

i∈P

wi

⎞

⎠−
∏

i�∈P

wi =
∏

i∈Q

wi −
∏

i�∈Q

wi = T =
√

wk+1
(

wk+1 − 1
)

⇐⇒
⎛

⎝

∏

i∈[k]

wi

⎞

⎠

⎛

⎝

∏

i∈P

wi

⎞

⎠

2

−
∏

i∈[k]

wi =
√

∏

i∈[k]

wi

⎛

⎝

∏

i∈[k]

wi − 1

⎞

⎠

⎛

⎝

∏

i∈P

wi

⎞

⎠ multiplied both sides by
∏

i∈P

wi

⇐⇒
⎛

⎝

∏

i∈P

wi −
√

∏

i∈[k]

wi

⎞

⎠

⎛

⎝

∏

i∈[k]

wi

∏

i∈P

wi +
√

∏

i∈[k]

wi

⎞

⎠ = 0 factored quadratic in
∏

i∈P

wi

⇐⇒
∏

i∈P

wi =
√

∏

i∈[k]

wi

⇐⇒
∏

i�∈P

wi =
∏

i∈P

wi .

So there is a one-to-one correspondence between solutions to the
#T-PARTITION instance W ′ where wk+1 ∈ Q and solutions to the original
#PARTITION instance W .

Case 2: wk+1 �∈ Q. Solutions now look like:

∏

i∈P

wi −
∏

i∈[k]

wi

∏

i
∈P

wi =
√∏

i∈[k]

wi

⎛

⎝
∏

i∈[k]

wi − 1

⎞

⎠ .

One way this can be true is if wi = 1 for all i ∈ [k]. We can check ahead
of time if our input set W contains all ones. If it does, then there are 2k − 2
partitions that yield equal products (all except P = [k] and P = ∅) so we can
just output 2k − 2 as the solution and not even use our oracle. The only other
way to satisfy the above expression is for

∏
i∈P wi >

∏
i∈[k] wi which cannot

happen because P ⊆ [k]. So there are no solutions in the case that wk+1 �∈ Q.
Therefore the output of the #T-PARTITION oracle on W ′ is the solution

to the #PARTITION problem. So #T-PARTITION is #P -hard.
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Lemma 4.11. For every constant c > 1, #SUM-PARTITION is #P -hard
even on instances where

∏
i wi ≤ c.

Proof. We will use a #SUM-PARTITION oracle to solve #T-PARTITION
given a set of Dth roots of positive integers W = {w1, . . . , wk} and a positive
real number T . Notice that for every z > 0:

∏

i∈P

wi −
∏

i
∈P

wi = z =⇒
∏

i∈P

wi −
∏

i∈[k] wi
∏

i∈P wi
= z

=⇒ ∃ j ∈ Z
+such that D

√
j −

∏
i∈[k] wi

D
√

j
= z.

Above, j must be a positive integer, which tells us that the gap in products
from every partition must take a particular form. This means that for a given
D and W , #T-PARTITION can only be non-zero on a discrete set of possible
values of T = z. Given z, we can find a z′ > z such that the above has no solutions
in the interval (z, z′). Specifically, solve the above quadratic for D

√
j (where j

may or may not be an integer), let j′ = �j + 1� > j, and z′ = D
√

j′ −
∏

i wi
D
√

j′ . We
use this property twice in the proof.

Define P z ≡ {P ⊆ [k] | ∏i∈P wi −∏i
∈P wi ≥ z}. As described above we
can find the interval (T, T ′) of values above T with no solutions. Then, for every
c ∈ (T, T ′):
∣

∣

∣

∣

∣

∣

⎧

⎨

⎩

P ⊆ [k] |
∏

i∈P

wi −
∏

i�∈P

wi = T

⎫

⎬

⎭

∣

∣

∣

∣

∣

∣

=
∣

∣

∣P
T \P

c
∣

∣

∣

=
1

T

⎛

⎜

⎝

∑

P ∈P T \P c

⎛

⎝

∏

i∈P

wi −
∏

i�∈P

wi

⎞

⎠

⎞

⎟

⎠

=
1

T

⎛

⎜

⎝

∑

P ∈P T

⎛

⎝

∏

i∈P

wi −
∏

i�∈P

wi

⎞

⎠−
∑

P ∈P c

⎛

⎝

∏

i∈P

wi −
∏

i�∈P

wi

⎞

⎠

⎞

⎟

⎠
.

We now show how to find
∑

P∈P z

(
∏

i∈P

wi − ∏

i
∈P

wi

)

for any z > 0 using

the #SUM-PARTITION oracle. Once we have this procedure, we can run
it for z = T and z = c and plug the outputs into the expression above
to solve the #T-PARTITION problem. We want to set the input r to the
#SUM-PARTITION oracle such that:

∏

i∈P

wi − r ·
∏

i
∈P

wi ≥ 0 ⇐⇒
∏

i∈P

wi −
∏

i
∈P

wi ≥ z.

Solving this expression for r gives:

rz =

4
∏

i∈[k]

wi

(
√

z2 + 4
∏

i∈[k]

wi − z

)2 .



170 J. Murtagh and S. Vadhan

Below we check that this setting satisfies the requirement.

∏
i∈P

wi −
4
∏

i∈[k]

wi

(√
z2 + 4

∏
i∈[k]

wi − z

)2
·
∏
i�∈P

wi ≥ 0 ⇐⇒ 1 −
4
(∏

i�∈P wi

)2
(√

z2 + 4
∏

i∈[k]

wi − z

)2
≥ 0

⇐⇒
√

z2 + 4
∏

i∈[k]

wi ≥ 2
∏
i�∈P

wi + z

⇐⇒ 4
∏

i∈[k]

wi ≥ 4

⎛
⎝∏

i�∈P

wi

⎞
⎠

2

+ 4z
∏
i�∈P

wi

⇐⇒
∏
i∈P

wi −
∏
i�∈P

wi ≥ z.

So we have P z =
{

P ⊆ [k] |∏i∈P wi − rz ·∏i
∈P wi ≥ 0
}

but this does not
necessarily mean that

∑

P∈P z

⎛

⎝
∏

i∈P

wi −
∏

i
∈P

wi

⎞

⎠ =
∑

P∈P z

⎛

⎝
∏

i∈P

wi − rz ·
∏

i
∈P

wi

⎞

⎠.

The sum on the left-hand side without the rz coefficient is what we actually
need to compute. To get this we again use the discreteness of potential solutions
to find z′′ �= z such that P z = P z′′

. We just pick z′′ from the interval (z, z′) of
values above z that cannot possibly contain solutions to #T-PARTITION.

Running our #SUM-PARTITION oracle for rz and rz′′ will output:

∑

P∈P z

⎛

⎝
∏

i∈P

wi − rz ·
∏

i
∈P

wi

⎞

⎠

∑

P∈P z

⎛

⎝
∏

i∈P

wi − rz′′ ·
∏

i
∈P

wi

⎞

⎠

This is just a system of two equations with two unknowns and it can be solved
for
∑

P∈P z

∏
i∈P wi and

∑
P∈P z

∏
i
∈P wi separately. Then we can reconstruct

∑
P∈P z

(∏
i∈P wi −∏i
∈P wi

)
. Running this procedure for z = T and z = c

gives us all of the information we need to count the number of solutions to the
#T-PARTITION instance we were given. We can solve #T-PARTITION in
polynomial time with four calls to a #SUM-PARTITION oracle. Therefore
#SUM-PARTITION is #P -hard.

Now we prove that computing OptComp is #P -complete.

Proof (Proof of Theorem 1.6). We have already shown that computing OptComp
is #P -easy. Here we prove that it is also #P -hard, thereby proving #P -
completeness.
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Given an instance D, W = {w1, . . . , wk}, r of #SUM-PARTITION, where
∀i ∈ [k], wi is the Dth root of an integer and

∏
i wi ≤ c, set εi = ln(wi) ∀i ∈ [k],

δ1 = δ2 = . . . δk = 0 and εg = ln(r). Note that
∑

i εi = ln (
∏

i wi) ≤ ln(c). Since
we can take c to be an arbitrary constant greater than 1, we can ensure that∑

i εi ≤ ε for an arbitrary ε > 0.
Again we will use the version of OptComp that takes εg as input and outputs

δg. After using an OptComp oracle to find δg we know the optimal composition
Eq. 1 from Theorem 1.5 is satisfied:

1
∏k

i=1 (1 + eεi)

∑

S⊆{1,...,k}
max

{
e

∑

i∈S

εi − eεg · e

∑

i�∈S

εi

, 0
}

= 1− 1 − δg
∏k

i=1 (1 − δi)
= δg .

Thus we can compute:

δg ·
k∏

i=1

(1 + eεi) =
∑

S⊆{1,...,k}
max

{
e

∑

i∈S

εi − eεg · e

∑

i�∈S

εi

, 0
}

=
∑

S⊆{1,...,k}
max

⎧
⎨

⎩

∏

i∈S

wi − r ·
∏

i
∈S

wi, 0

⎫
⎬

⎭
.

This last expression is exactly the solution to the instance of
#SUM-PARTITION we were given. We solved #SUM-PARTITION in poly-
nomial time with one call to an OptComp oracle. Therefore computing OptComp
is #P -hard.

5 Approximation of OptComp

Although we cannot hope to efficiently compute the optimal composition for a
general set of differentially private algorithms (assuming P�=NP or even FP�=
#P), we show in this section that we can approximate OptComp arbitrarily well
in polynomial time.

Theorem 1.7 (Restated). There is a polynomial-time algorithm that given
ε1, . . . , εk ≥ 0, δ1, . . . δk, δg ∈ [0, 1), and η > 0, outputs ε∗ where

OptComp((ε1, δ1), . . . , (εk, δk), δg) ≤ ε∗ ≤ OptComp((ε1, δ1), . . . , (εk, δk), e−η/2·δg)+η .

The algorithm runs in O
(
log
(

k
η

∑k
i=1 εi

)
k2

η

∑k
i=1 εi

)
time assuming constant-

time arithmetic operations.

We prove this theorem using the following three lemmas:
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Lemma 5.1. Given non-negative integers a1, . . . , ak, B and weights
w1, . . . , wk ∈ R, one can compute

∑

S⊆[k] s.t.
∑

i∈S

ai≤B

∏

i∈S

wi

in time O(Bk).

Notice that the constraint in Lemma 5.1 is the same one that characterizes knap-
sack problems. Indeed, the algorithm we give for computing

∑
S⊆[k]

∏
i∈S wi is a

slight modification of the known pseudo-polynomial time algorithm for counting
knapsack solutions, which uses dynamic programming. Next we show that we
can use this algorithm to approximate OptComp.

Lemma 5.2. Given ε1, . . . , εk, ε∗ ≥ 0, δ1, . . . δk, δg ∈ [0, 1), if εi = aiε0 ∀i ∈
{1, . . . , k} for non-negative integers ai and some ε0 > 0, then there is an algo-
rithm that determines whether or not OptComp((ε1, δ1), . . . , (εk, δk), δg) ≤ ε∗

that runs in time O
(

k
ε0

∑k
i=1 εi

)
.

In other words, if the ε values we are given are all integer multiples of some
ε0, we can determine whether or not the composition of those privacy parameters
is (ε∗, δg)-DP in pseudo-polynomial time for every ε∗ ≥ 0. This means that given
any inputs to OptComp, if we discretize and polynomially bound the εi’s, then
we can check if the parameters satisfy any global privacy guarantee in polynomial
time. Once we have this, we only need to run binary search over values of ε∗

to find the optimal one. In other words, we can solve OptComp exactly for a
slightly different set of εi’s. The next lemma tells us that the output of OptComp
on this different set of εi’s can be used as a good approximation to OptComp
on the original εi’s.
Lemma 5.3. For all ε1, . . . , εk, c ≥ 0 and δ1, . . . , δk, δg ∈ [0, 1):

OptComp((ε1 + c, δ1), . . . , (εk + c, δk), δg) ≤ OptComp((ε1, δ1), . . . , (εk, δk), e
−kc/2 · δg) + kc .

Next we prove the three lemmas and then show that Theorem 1.7 follows.

Proof (Proof of Lemma 5.1). We modify Dyer’s algorithm for approximately
counting solutions to knapsack problems [6]. The algorithm uses dynamic pro-
gramming. Given non-negative integers a1, . . . , ak, B and weights w1, . . . , wk ∈
R, define

F (r, s) =
∑

S⊆[r] s.t.
∑

i∈S

ai≤s

∏

i∈S

wi .

We want to compute F (k,B). We can find this by tabulating F (r, s) for
(0 ≤ r ≤ k, 0 ≤ s ≤ B) using the recursion:

F (r, s) =

⎧
⎪⎨

⎪⎩

1 if r = 0
F (r − 1, s) + wrF (r − 1, s − ar) if r > 0 and ar ≤ s

F (r − 1, s) if r > 0 and ar > s.
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Each cell F (r, s) in the table can be computed in constant time given earlier
cells F (r′, s′) where r′ < r. Thus filling the entire table takes time O(Bk).

Proof (Proof of Lemma 5.2). Given ε1, . . . , εk, ε∗ ≥ 0 such that εi = aiε0 ∀i ∈
{1, . . . , k} for non-negative integers ai and some ε0 > 0, and δ1, . . . δk, δg ∈ [0, 1),
Theorem 1.5 tells us that answering whether or not

OptComp((ε1, δ1), . . . , (εk, δk), δg) ≤ ε∗

is equivalent to answering whether or not the following inequality holds:

1
∏k

i=1 (1 + eεi)

∑

S⊆{1,...,k}
max

{
e

∑

i∈S

εi − eε∗ · e

∑

i�∈S

εi

, 0
}

≤ 1 − 1 − δg
∏k

i=1 (1 − δi)
.

The right-hand side and the coefficient on the sum are easy to compute given
the inputs so in order to check the inequality, we will show how to compute the
sum. Define

K =

⎧
⎨

⎩
T ⊆ [k] |

∑

i
∈T

εi ≥ ε∗ +
∑

i∈T

εi

⎫
⎬

⎭

=

{

T ⊆ [k] |
∑

i∈T

εi ≤
(

k∑

i=1

εi − ε∗
)

/2

}

=

{

T ⊆ [k] |
∑

i∈T

ai ≤ B

}

for B =

⌊(
k∑

i=1

εi − ε∗
)

/2ε0

⌋

and observe that by setting T = Sc, we have

∑
S⊆{1,...,k}

max

{
e

∑

i∈S
εi − eε∗ · e

∑

i�∈S
εi

, 0

}
=
∑

T∈K

⎛
⎝
⎛
⎝e

k
∑

i=1
εi ·
∏
i∈T

e−εi

⎞
⎠−

⎛
⎝eε∗ ·

∏
i∈T

eεi

⎞
⎠
⎞
⎠ .

We just need to compute this last expression and we can do it for each
term separately since K is a set of knapsack solutions. Specifically, setting wi =
e−εi ∀i ∈ [k], Lemma 5.1 tells us that we can compute

∑
T⊆[k]

∏
i∈T wi subject

to
∑

i∈T ai ≤ B, which is equivalent to
∑

T∈K

∏
i∈T e−εi .

To compute
∑

T∈K

∏
i∈T eεi , we instead set wi = eεi and run the same

procedure. Since we used the algorithm from Lemma 5.1, the running time is
O(Bk) = O

(
k
ε0

∑k
i=1 εi

)
.

Proof (Proof of Lemma 5.3). Let OptComp((ε1, δ1), . . . , (εk, δk), e−kc/2 ·δg) = εg.
From Eq. 1 in Theorem 1.5 we know:

1
∏k

i=1 (1 + eεi)

∑

S⊆{1,...,k}
max

{
e

∑

i∈S

εi − eεg · e

∑

i�∈S

εi

, 0
}

≤ 1 − 1 − e−kc/2 · δg
∏k

i=1 (1 − δi)
.
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Multiplying both sides by ekc/2 gives:

ekc/2

∏k
i=1 (1 + eεi )

∑

S⊆{1,...,k}
max

{

e

∑

i∈S
εi − e

εg · e

∑

i�∈S
εi

, 0

}

≤ e
kc/2 ·

(

1 − 1 − e−kc/2 · δg
∏k

i=1 (1 − δi)

)

≤ 1 − 1 − δg
∏k

i=1 (1 − δi)
.

The above inequality together with Theorem 1.5 means that showing the
following will complete the proof:

∑

S⊆{1,...,k}
max

{
e

∑

i∈S

(εi+c)

− eεg+kc · e

∑

i�∈S

(εi+c)

, 0
}

≤ ekc/2 ·∏k
i=1 (1 + eεi+c)

∏k
i=1 (1 + eεi)

∑

S⊆{1,...,k}
max

{
e

∑

i∈S

εi − eεg · e

∑

i�∈S

εi

, 0
}

.

Since (1 + eεi+c)/(1 + eεi) ≥ ec/2 for every εi > 0, it suffices to show:

∑

S⊆{1,...,k}
max

{
e

∑

i∈S

(εi+c)

− eεg+kc · e

∑

i�∈S

(εi+c)

, 0
}

≤

∑

S⊆{1,...,k}
ekc · max

{
e

∑

i∈S

εi − eεg · e

∑

i�∈S

εi

, 0
}

.

This inequality holds term by term. If a right-hand term is zero(∑
i∈S εi ≤ εg +

∑
i
∈S εi

)
, then so is the corresponding left-hand term

(∑
i∈S(εi + c) ≤ εg + kc +

∑
i
∈S(εi + c)

)
. For the nonzero terms, the factor of

ekc ensures that the right-hand terms are larger than the left-hand terms.

Proof (Proof of Theorem 1.7). Lemma 5.2 tells us that we can determine whether
a set of privacy parameters satisfies some global differential privacy guarantee if
the ε values are discretized. Notice that then we can solve OptComp exactly for
a discretized set of ε values by running binary search over values of ε∗ until we
find the minimum ε∗ that satisfies (ε∗, δg)-DP.

Given ε1, . . . , εk, ε∗, and an additive error parameter η > 0, set ai =⌊
k
η εi

⌋
, ε′

i = η
k · ai ∀i ∈ [k]. With these settings, the ai’s are non-negative inte-

gers and the ε′
i values are all integer multiples of ε0 = η/k. Lemma 5.2 tells

us that we can determine if the new privacy parameters with ε′ values sat-
isfy (ε∗, δg)-DP in time O

(
k2

η

∑k
i=1 εi

)
. Running binary search over values of

ε∗ will then compute OptComp((ε′
1, δ1), . . . , (ε

′
k, δk), δg) = ε′

g exactly in time

O
(
log
(

k
η

∑k
i=1 εi

)
k2

η

∑k
i=1 εi

)
.

Notice that εi − η/k ≤ ε′
i ≤ εi ∀i ∈ [k]. Lemma 5.3 says that the outputted

ε′
g is at most OptComp((ε1, δ1), . . . , (εk, δk), e−η/2 · δg) + η as desired.
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Abstract. An order-revealing encryption scheme gives a public proce-
dure by which two ciphertexts can be compared to reveal the order-
ing of their underlying plaintexts. We show how to use order-revealing
encryption to separate computationally efficient PAC learning from effi-
cient (ε, δ)-differentially private PAC learning. That is, we construct a
concept class that is efficiently PAC learnable, but for which every effi-
cient learner fails to be differentially private. This answers a question of
Kasiviswanathan et al. (FOCS ’08, SIAM J. Comput. ’11).

To prove our result, we give a generic transformation from an order-
revealing encryption scheme into one with strongly correct comparison,
which enables the consistent comparison of ciphertexts that are not
obtained as the valid encryption of any message. We believe this con-
struction may be of independent interest.

Keywords: Differential privacy · Learning theory · Order-revealing
encryption

1 Introduction

Many agencies hold sensitive information about individuals, where statistical
analysis of this data could yield great societal benefit. The line of work on
differential privacy [20] aims to enable such analysis while giving a strong for-
mal guarantee on the privacy afforded to individuals. Noting that the frame-
work of computational learning theory captures many of these statistical tasks,
Kasiviswanathan et al. [37] initiated the study of differentially private learning.
Roughly speaking, a differentially private learner is required to output a classi-
fication of labeled examples that is accurate, but does not change significantly
based on the presence or absence of any individual example.

The early positive results in private learning established that, ignoring com-
putational complexity, any concept class is privately learnable with a number
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of samples logarithmic in the size of the concept class [37]. Since then, a num-
ber of works have improved our understanding of the sample complexity – the
minimum number of examples – required by such learners to simultaneously
achieve accuracy and privacy. Some of these works showed that privacy incurs
an inherent additional cost in sample complexity; that is, some concept classes
require more samples to learn privately than they require to learn without pri-
vacy [1,2,13,16,17,25]. In this work, we address the complementary question of
whether there is also a computational price of differential privacy for learning
tasks, for which much less is known. The initial work of Kasiviswanathan et al.
[37] identified the important question of whether any efficiently PAC learnable
concept class is also efficiently privately learnable, but only limited progress has
been made on this question since then [1,44].

Our main result gives a strong negative answer to this question. We exhibit
a concept class that is efficiently PAC learnable, but under plausible crypto-
graphic assumptions cannot be learned efficiently and privately. To prove this
result, we establish a connection between private learning and order-revealing
encryption. We construct a new order-revealing encryption scheme with strong
correctness properties that may be of independent learning-theoretic and cryp-
tographic interest.

1.1 Differential Privacy and Private Learning

We first recall Valiant’s (distribution-free) PAC model for learning [54]. Let C
be a concept class consisting of concepts c : X → {0, 1} for a data universe X.
A learner L is given n samples of the form (xi, c(xi)) where the xi’s are drawn
i.i.d. from an unknown distribution, and are labeled according to an unknown
concept c. The goal of the learner is to output a hypothesis h : X → {0, 1} from
a hypothesis class H that approximates c well on the unknown distribution.
That is, the probability that h disagrees with c on a fresh example from the
unknown distribution should be small – say, less than 0.05. The hypothesis class
H may be different from C, but in the case where H ⊆ C we call L a proper
learner. Moreover, we say a learner is efficient if it runs in time polynomial in
the description size of c and the size of its examples.

Kasiviswanathan et al. [37] defined a private learner to be a PAC learner
that is also differentially private. Two samples S = {(x1, b1), . . . , (xn, bn)} and
S′ = {(x′

1, b
′
1), . . . , (x

′
n, b′

n)} are said to be neighboring if they differ on exactly
one example, which we think of as corresponding to one individual’s information.
A randomized learner L : (X × {0, 1})n → H is (ε, δ)-differentially private if for
all neighboring datasets S and S′ and all sets T ⊆ H,

Pr[L(S) ∈ T ] ≤ eε Pr[L(S′) ∈ T ] + δ.

The original definition of differential privacy [20] took δ = 0, a case which is
called pure differential privacy. The definition with positive δ, called approximate
differential privacy, first appeared in [19] and has since been shown to enable
substantial accuracy gains. Throughout this introduction, we will think of ε as
a small constant, e.g. ε = 0.1, and δ = o(1/n).
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Kasiviswanathan et al. [37] gave a generic “Private Occam’s Razor” algo-
rithm, showing that any concept class C can be privately (properly) learned
using O(log |C|) samples. Unfortunately, this algorithm runs in time Ω(|C|),
which is exponential in the description size of each concept. With an eye toward
designing efficient private learners, Blum et al. [5] made the powerful observation
that any efficient learning algorithm in the statistical queries (SQ) framework
of Kearns [39] can be efficiently simulated with differential privacy. Moreover,
Kasiviswanathan et al. [37] showed that the efficient learner for the concept
class of parity functions based on Gaussian elimination can also be implemented
efficiently with differential privacy. These two techniques – SQ learning and
Gaussian elimination – are essentially the only methods known for computa-
tionally efficient PAC learning. The fact that these can both be implemented
privately led Kasiviswanathan et al. [37] to ask whether all efficiently learnable
concept classes could also be efficiently learned with differential privacy.

Beimel et al. [1] made partial progress toward this question in the special
case of pure differential privacy with proper learning, showing that the sample
complexity of efficient learners can be much higher than that of inefficient ones.
Specifically, they showed that assuming the existence of pseudorandom gener-
ators with exponential stretch, there exists for any �(d) = ω(log d) a concept
class over {0, 1}d for which every efficient proper private learner requires Ω(d)
samples, but an inefficient proper private learner only requires O(�(d)) examples.
Nissim [44] strengthened this result substantially for “representation learning,”
where a proper learner is further restricted to output a canonical representation
of its hypothesis. He showed that, assuming the existence of one-way functions,
there exists a concept class that is efficiently representation learnable, but not
efficiently privately representation learnable (even with approximate differential
privacy). With Nissim’s kind permission, we give the details of this construction
in Sect. 5.

Despite these negative results for proper learning, one might still have hoped
that any efficiently learnable concept class could be efficiently improperly learned
with privacy. Indeed, a number of works have shown that, especially with dif-
ferential privacy, improper learning can be much more powerful than proper
learning. For instance, Beimel et al. [1] showed that under pure differential
privacy, the simple class of Point functions (indicators of a single domain ele-
ment) requires Ω(d) samples to privately learn properly, but only O(1) samples
to privately learn improperly. Moreover, computational separations are known
between proper and improper learning even without privacy considerations. Pitt
and Valiant [46] showed that unless NP = RP, k-term DNF are not efficiently
properly learnable, but they are efficiently improperly learnable [54].

Under plausible cryptographic assumptions, we resolve the question of
Kasiviswanathan et al. [37] in the negative, even for improper learners. The
assumption we need is the existence of “strongly correct” order-revealing encryp-
tion (ORE) schemes, described in Sect. 1.3.

Theorem 1 (Informal). Assuming the existence of strongly correct ORE,
there exists an efficiently computable concept class EncThresh that is efficiently
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PAC learnable, but not efficiently learnable by any (ε, δ)-differentially private
algorithm.

We stress that this result holds even for improper learners and for the relaxed
notion of approximate differential privacy. We remark that cryptography has
played a major role in shaping our understanding of the computational com-
plexity of learning in a number of models (e.g. [40,41,49,54]). It has also been
used before to show separations between what is efficiently learnable in different
models (e.g. [4,50]).

1.2 Our Techniques

We give an informal overview of the construction and analysis of the concept
class EncThresh.

We first describe the concept class of thresholds Thresh and its simple PAC
learning algorithm. Consider the domain [N ] = {1, . . . , N}. Given a number
t ∈ [N ], a threshold concept ct is defined by ct(x) = 1 if and only if x ≤ t. The
concept class of thresholds admits a simple and efficient proper PAC learning
algorithm LThresh. Given a sample {(x1, ct(x1)), . . . , (xn, ct(xn))} labeled by an
unknown concept ct, the learner LThresh identifies the largest positive example
xi∗ and outputs the hypothesis h = cxi∗ . That is, LThresh chooses the threshold
concept that minimizes the empirical error on its sample. To achieve a small
constant error on any underlying distribution on examples, it suffices to take n =
O(1) samples. Moreover, this learner can be modified to guarantee differential
privacy by instead randomly sampling a threshold hypothesis with probability
that decays exponentially in the empirical error of the hypothesis [37,42]. The
sampling can be performed in polynomial time, and requires only a modest
blow-up in the learner’s sample complexity.

A simple but important observation about LThresh – which, crucially, is not
true of the differentially private version – is that it is completely oblivious to the
actual numeric values of its examples, or even to the fact that the domain is [N ].
In fact, LThresh works equally well on any totally-ordered domain on which it can
efficiently compare examples. In an extreme case, the learner LThresh still works
when its examples are encrypted under an order-revealing encryption (ORE)
scheme, which guarantees that LThresh is able to learn the order of its examples,
but nothing else about them. Up to small technical modifications, our concept
class EncThresh is exactly the class Thresh where examples are encrypted under
an ORE scheme.

For EncThresh to be efficiently PAC learnable, it must be learnable even
under distributions that place arbitrary weight on examples corresponding to
invalid ciphertexts. To this end, we require a “strong correctness” condition on
our ORE scheme. The strong correctness condition ensures that all ciphertexts,
even those that are not obtained as encryptions of messages, can be compared in
a consistent fashion. This condition is not met by current constructions of ORE,
and one of the technical contributions of this work is a generic transformation
from weakly correct ORE schemes to strongly correct ones.
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While a learner similar to LThresh is able to efficiently PAC learn the concept
class EncThresh, we argue that it cannot do so while preserving differential pri-
vacy with respect to its examples. Intuitively, the security of the ORE scheme
ensures that essentially the only thing a learner for EncThresh can do is out-
put a hypothesis that compares an example to one it already has. We make
this intuition precise by giving an algorithm that traces the hypothesis output
by any efficient learner back to one of the examples used to produce it. This
formalization builds conceptually on the connection between differential privacy
and traitor-tracing schemes (see Sect. 1.4), but requires new ideas to adapt to
the PAC learning model.

1.3 Order-Revealing Encryption

Motivated by the task of answering range queries on encrypted databases, an
order-revealing encryption (ORE) scheme [7,8] is a special type of symmetric key
encryption scheme where it is possible to publicly sort ciphertexts according to
the order of the plaintexts. More precisely, the plaintext space of the scheme is the
set of integers [N ] = {1, ..., N},1 and in addition to the private encryption and
decryption procedures Enc,Dec, there is a public comparison procedure Comp
that takes as input two ciphertexts, and reveals the order of the correspond-
ing plaintexts. The notion of best-possible semantic security, defined in Boneh
et al. [8], intuitively captures the requirement that, given a collection of cipher-
texts, no information about the plaintexts is learned, except for the ordering.

Known Constructions of Order-Revealing Encryption. Relatively few construc-
tions of order-revealing encryption are known, and all constructions are currently
based on strong assumptions. Order-revealing encryption can be seen as a special
case of 2-input functional encryption, also known as property preserving encryp-
tion [45]. In such a scheme, there are several functions f1, ..., fk, and given two
ciphertexts c0, c1 encrypting m0,m1, it is possible to learn fi(m0,m1) for all
i ∈ [k]. General multi-input functional encryption schemes can be obtained from
indistinguishability obfuscation [30] or multilinear maps [8]. It is also possible to
build ORE from single-input functional encryption with function privacy, which
means that f is kept secret. Such schemes can be built from regular single-input
schemes without function privacy [12], and such single-input schemes can also
be built from obfuscation [27] or multilinear maps [28].

It is known that the forms of functional encryption discussed above actually
imply obfuscation [3], meaning that all the assumptions from which we can cur-
rently build order-revealing encryption imply obfuscation. However, we stress
that ORE appears to be much, much weaker than obfuscation or functional
encryption: only a single very simple functionality is supported, namely compar-
ison. In particular the functionality does not support evaluating cryptographic
primitives on the plaintext, a feature required of essentially all of the interest-
ing applications of obfuscation/functional encryption. Therefore, we conjecture

1 More generally, any totally-ordered plaintext space can be considered.
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that ORE can actually be based on significantly weaker assumptions. One way
or another, it is important to resolve the status of ORE relative to obfusca-
tion and other strong primitives: if ORE can be based on mild assumptions, it
would strengthen our impossibility result, and likely lead to more efficient ORE
constructions that can actually be used in practice. If ORE actually implies
obfuscation or other similarly strong primitives, then ORE could be a path to
building more efficient obfuscation with better security. Our work demonstrates
that, in addition to having real-world practical motivations, ORE is also an
interesting theoretical object.

Unfortunately, the above constructions are not quite sufficient for our pur-
poses. The issue arises from the fact that our learner needs to work for any dis-
tribution on ciphertexts, even distributions whose support includes malformed
ciphertexts. Unfortunately, previous constructions only achieve a weak form of
correctness, which guarantees that encrypting two messages and then comparing
the ciphertexts using Comp produces the same result (with overwhelming prob-
ability) as comparing the plaintexts directly. This requirement only specifies
how Comp works on valid ciphertexts, namely actual encryptions of messages.
Moreover, correctness is only guaranteed for these messages with overwhelming
probability, meaning even some valid ciphertexts may cause Comp to misbehave.

For our learner, this weak form of correctness means, for some distributions
that place significant weight on bad ciphertexts, the comparison procedure is
completely useless, and thus the learner will fail for these distributions.

We therefore need a stronger correctness guarantee. We need that, for any
two ciphertexts, the comparison procedure is consistent with decrypting the two
ciphertexts and comparing the resulting plaintexts. This correctness guarantee
is meaningful even for improperly generated ciphertexts.

We note that none of the existing constructions of order-revealing encryption
outlined above satisfy this stronger notion. For the obfuscation-based schemes,
ciphertexts consist of obfuscated programs. In these schemes, it is easy to
describe invalid ciphertexts where the obfuscated program performs incorrectly,
causing the comparison procedure to output the wrong result. In the multilinear
map-based schemes, the underlying instantiation use current “noisy” multilin-
ear maps, such as [26]. An invalid ciphertext could, for example, have too much
noise, which will cause the comparison procedure to behave unpredictably.

Obtaining Strong Correctness. We first argue that, for all existing ORE schemes,
the scheme can be modified so that Comp is correct for all valid ciphertexts. We
then give a generic conversion from any ORE scheme with weakly correct com-
parison, including the tweaked existing schemes, into a strongly correct scheme.
We simply modify the ciphertext by adding a non-interactive zero-knowledge
(NIZK) proof that the ciphertext is well-formed, with the common reference
string added to the public comparison key. Then the decryption and compari-
son procedures check the proof(s), and only output the result (either decryption
or comparison) if the proof(s) are valid. The (computational) zero-knowledge
property of the NIZK implies that the addition of the proof to the ciphertext
does not affect security. Meanwhile, NIZK soundness implies that any ciphertext
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accepted by the decryption and comparison procedures must be valid, and the
weak correctness property of the underlying ORE implies that for valid cipher-
texts, decryption and comparison are consistent. The result is that comparisons
are consistent with decryption for all ciphertexts, giving strong correctness.

As we need strong correctness for every ciphertext, even hard-to-generate
ones, we need the NIZK proofs to have perfect soundness, as opposed to com-
putational soundness. Such NIZK proofs were built in [32].

We note also that the conversion outlined above is not specific to ORE, and
applies more generally to functional encryption schemes.

1.4 Related Work

Hardness of Private Query Release. One of the most basic and well-studied
statistical tasks in differential privacy is the problem of releasing answers to
counting queries. A counting query asks, “what fraction of the records in a
dataset D satisfy the predicate q?”. Given a collection of k counting queries
q1, . . . , qk from a family Q, the goal of a query release algorithm is to release
approximate answers to these queries while preserving differential privacy. A
remarkable result of Blum et al. [6], with subsequent improvements by [21,23,33–
35,48], showed that an arbitrary sequence of counting queries can be answered
accurately with differential privacy even when k is exponential in the dataset
size n. Unfortunately, all of these algorithms that are capable of answering more
than n2 queries are inefficient, running in time exponential in the dimensionality
of the data. Moreover, several works [10,21,52] have gone on to show that this
inefficiency is likely inherent.

These computational lower bounds for private query release rely on a connec-
tion between the hardness of private query release and traitor-tracing schemes,
which was first observed by Dwork et al. [21]. Traitor-tracing schemes were intro-
duced by Chor, Fiat, and Naor [18] to help digital content producers identify
pirates as they illegally redistribute content. Traitor-tracing schemes are con-
ceptually analogous to the example reidentification scheme we use to obtain
our hardness result for private learning. Instantiating this connection with the
traitor-tracing scheme of Boneh, Sahai, and Waters [9], which relies on certain
assumptions in bilinear groups, Dwork et al. [21] exhibited a family of 2Õ(

√
n)

queries for which no efficient algorithm can produce a data structure which
could be used to answer all queries in this family. Very recently, Boneh and
Zhandry [10] constructed a new traitor-tracing scheme based on indistinguisha-
bility obfuscation that yields the same infeasibility result for a family of n ·2O(d)

queries on records of size d. Extending this connection, Ullman [52] constructed
a specialized traitor-tracing scheme to show that no efficient private algorithm
can answer more than Õ(n2) arbitrary queries that are given as input to the
algorithm.

Dwork et al. [21] also showed strong lower bounds against private algorithms
for producing synthetic data. Synthetic data generation algorithms produce a
new “fake” dataset, whose rows are of the same type as those in the original
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dataset, with the promise that the answers to some restricted set of queries
on the synthetic dataset well-approximate the answers on the original dataset.
Assuming the existence of one-way functions, Dwork et al. [21] exhibited an effi-
ciently computable collection of queries for which no efficient private algorithm
can produce useful synthetic data. Ullman and Vadhan [53] refined this result
to hold even for extremely simple classes of queries.

Nevertheless, the restriction to synthetic data is significant to these results,
and they do not rule out the possibility that other privacy-preserving data struc-
tures can be used to answer large families of restricted queries. In fact, when the
synthetic data restriction is lifted, there are algorithms (e.g. [15,22,36,51]) that
answer queries from certain exponentially large families in subexponential time.
One can view the problem of synthetic data generation as analogous to proper
learning. In both cases, placing natural syntactic restrictions on the output of an
algorithm may in fact come at the expense of utility or computational efficiency.

Efficiency of SQ Learning. Feldman and Kanade [24] addressed the question of
whether information-theoretically efficient SQ learners – i.e., those making poly-
nomially many queries – could be made computationally efficient. One of their
main negative results showed that unless NP = RP, there exists a concept class
with polynomial query complexity that is not efficiently SQ learnable. Moreover,
this concept class is efficiently PAC learnable, which suggests that the restriction
to SQ learning can introduce an inherent computational cost.

We show that the concept class EncThresh can be learned (inefficiently) with
polynomially many statistical queries. The result of Blum et al. [5] discussed
above, showing that SQ learning algorithms can be efficiently simulated by differ-
entially private algorithms, thus shows that EncThresh also separates SQ learners
making polynomially many queries from computationally efficient SQ learners.

Corollary 1 (Informal). Assuming the existence of strongly correct ORE, the
concept class EncThresh is efficiently PAC learnable and has polynomial SQ query
complexity, but is not efficiently SQ learnable.

While our proof relies on much stronger hardness assumptions, it reveals
ORE as a new barrier to efficient SQ learning. As discussed in more detail in
Sect. 3.3, even though their result is about computational hardness, Feldman
and Kanade’s choice of a concept class relies crucially on the fact that parities
are hard to learn in the SQ model even information-theoretically. By contrast,
our concept class EncThresh is computationally hard to SQ learn for a reason
that appears fundamentally different than the information-theoretic hardness of
SQ learning parities.

Learning from Encrypted Data. Several works have developed schemes for train-
ing, testing, and classifying machine learning models over encrypted data (e.g.
[11,31]). In a model use case, a client holds a sensitive dataset, and uploads an
encrypted version of the dataset to a cloud computing service. The cloud service
then trains a model over the encrypted data and produces an encrypted classi-
fier it can send back to the client, ideally without learning anything about the
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examples it received. The notion of privacy afforded to the individuals in the
dataset here is complementary to differential privacy. While the cloud service
does not learn anything about the individuals in the dataset, its output might
still depend heavily on the data of certain individuals.

In fact, our non-differentially private PAC learner for the class EncThresh
exactly performs the task of learning over encrypted data, producing a classifier
without learning anything about its examples beyond their order (this addresses
the difficulty of implementing comparisons from prior work [31]). Thus one can
interpret our results as showing that not only are these two notions of privacy
for machine learning training complementary, but that they may actually be in
conflict. Moreover, the strong correctness guarantee we provide for ORE (which
applies more generally to multi-input functional encryption) may help enable the
theoretical study of learning from encrypted data in other PAC-style settings.

2 Preliminaries and Definitions

2.1 PAC Learning and Private PAC Learning

For each k ∈ N, let Xk be an instance space (such as {0, 1}k), where the para-
meter k represents the size of the elements in Xk. Let Ck be a set of boolean
functions {c : Xk → {0, 1}}. The sequence (X1, C1), (X2, C2), . . . represents an
infinite sequence of learning problems defined over instance spaces of increasing
dimension. We will generally suppress the parameter k, and refer to the problem
of learning C as the problem of learning Ck for every k.

A learner L is given examples sampled from an unknown probability distrib-
ution D over X, where the examples are labeled according to an unknown target
concept c ∈ C. The learner must select a hypothesis h from a hypothesis class H
that approximates the target concept with respect to the distribution D. More
precisely,

Definition 1. The generalization error of a hypothesis h : X → {0, 1} (with
respect to a target concept c and distribution D) is defined by errorD(c, h) =
Prx∼D[h(x) �= c(x)]. If errorD(c, h) ≤ α we say that h is an α-good hypothesis
for c on D.

Definition 2 (PAC Learning [54]). Algorithm L : (X × {0, 1})n → H is an
(α, β)-accurate PAC learner for the concept class C using hypothesis class H with
sample complexity n if for all target concepts c ∈ C and all distributions D on
X, given an input of n samples S = ((xi, c(xi)), . . . , (xn, c(xn))), where each
xi is drawn i.i.d. from D, algorithm L outputs a hypothesis h ∈ H satisfying
Pr[errorD(c, h) ≤ α] ≥ 1 − β. The probability here is taken over the random
choice of the examples in S and the coin tosses of the learner L.

The learner L is efficient if it runs in time polynomial in the size parameter k,
the representation size of the target concept c, and the accuracy parameters 1/α
and 1/β. Note that a necessary (but not sufficient) condition for L to be efficient
is that its sample complexity n is polynomial in the learning parameters.
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If H ⊆ C then L is called a proper learner. Otherwise, it is called an improper
learner.

Kasiviswanathan et al. [37] defined a private learner as a PAC learner that
is also differentially private. Recall the definition of differential privacy:

Definition 3. A learner L : (X × {0, 1})n → H is (ε, δ)-differentially private if
for all sets T ⊆ H, and neighboring sets of examples S ∼ S′,

Pr[L(S) ∈ T ] ≤ eε Pr[L(S′) ∈ T ] + δ.

The technical object that we will use to show our hardness results for differ-
ential privacy is what we call an example reidentification scheme. It is analogous
to the hard-to-sanitize database distributions [21,53] and re-identifiable data-
base distributions [14] used in prior works to prove hardness results for private
query release, but is adapted to the setting of computational learning. In the first
step, an algorithm Genex chooses a concept and a sample S labeled according
to that concept. In the second step, a learner L receives either the sample S or
the sample S−i where an appropriately chosen example i is replaced by a junk
example, and learns a hypothesis h. Finally, an algorithm Traceex attempts to
use h to identify one of the rows given to L. If Traceex succeeds at identifying
such a row with high probability, then it must be able to distinguish L(S) from
L(S−i), showing that L cannot be differentially private. We formalize these ideas
below.

Definition 4. An (α, ξ)-example reidentification scheme for a concept class C
consists of a pair of algorithms, (Genex,Traceex) with the following properties.

Genex(k, n) Samples a concept c ∈ Ck and an associated distribution D. Draws
i.i.d. examples x1, . . . , xn ←R D, and a fixed value x0. Let S denote the
labeled sample ((x1, c(x1)), . . . , (xn, c(xn)), and for any index i ∈ [n], let S−i

denote the sample with the pair (xi, c(xi)) replaced with (x0, c(x0)).
Traceex(h) Takes state shared with Genex as well as a hypothesis h and identifies

an index in [n] (or ⊥ if none is found).

The scheme obeys the following “completeness” and “soundness” criteria on the
ability of Traceex to identify an example given to a learner L.

Completeness. A good hypothesis can be traced to some example. That is, for
every efficient learner L,

Pr[errorD(c, h) ≤ α ∧ Traceex(h) = ⊥] ≤ ξ.

Here, the probability is taken over h ←R L(S) and the coins of Genex and Traceex.

Soundness. For every efficient learner L, Traceex cannot trace i from the sample
S−i. That is, for all i ∈ [n],

Pr[Traceex(h) = i] ≤ ξ

for h ←R L(S−i).
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We may sometimes relax the completeness condition to hold only under cer-
tain restrictions on L’s output (e.g. L is a proper learner or L is a representation
learner). In this case, we say the (Genex,Traceex) is an example reidentification
scheme for (properly, representation) learning a class C.

Theorem 2. Let (Genex,Traceex) be an (α, ξ)-example reidentification scheme
for a concept class C. Then for every β > 0 and polynomial n(k), there is no
efficient (ε, δ)-differentially private (α, β)-PAC learner for C using n samples
when

δ <

(
1 − β − ξ

n

)
− eεξ.

In a typical setting of parameters, we will take α, β, ε = O(1) and δ, ξ = o(1/n),
in which case the inequality in Theorem 2 will be satisfied for sufficiently large n.

Proof. Suppose instead there were a computationally efficient (ε, δ)-differentially
private (α, β)-PAC learner L for C using n samples. Then there exists an i ∈ [n]
such that Pr[Traceex(L(S)) = i] ≥ (1−β−ξ)/n. However, since L is differentially
private,

Pr[Traceex(L(S−i)) = i] ≥ e−ε

(
1 − β − ξ

n
− δ

)
> ξ(n),

which contradicts the soundness of (Genex,Traceex).

2.2 Order-Revealing Encryption

Definition 5. An Order-Revealing Encryption (ORE) scheme is a tuple (Gen,
Enc,Dec,Comp) of algorithms where:

– Gen(1λ, 1�) is a randomized procedure that takes as inputs a security parameter
λ and plaintext length �, and outputs a secret encryption/decryption key sk and
public parameters pars.

– Enc(sk,m) is a potentially randomized procedure that takes as input a secret
key sk and a message m ∈ {0, 1}�, and outputs a ciphertext c.

– Dec(sk, c) is a deterministic procedure that takes as input a secret key sk
and a ciphertext c, and outputs a plaintext message m ∈ {0, 1}� or a spe-
cial symbol ⊥.

– Comp(pars, c0, c1) is a deterministic procedure that “compares” two cipher-
texts, outputting either “>”, “<”, “=”, or ⊥.

Correctness. An ORE scheme must satisfy two separate correctness require-
ments:

– Correct Decryption: This is the standard notion of correctness for an
encryption scheme, which says that decryption succeeds. We will only consider
strongly correct decryption, which requires that decryption always succeeds.
For all security parameters λ and message lengths �,

Pr[Dec(sk, Enc(sk,m)) = m : (sk, pars) ← Gen(1λ, 1�)] = 1.
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– Correct Comparison: We require that the comparison function succeeds.
We will consider two notions, namely strong and weak. In order to define these
notions, we first define two auxiliary functions:

• Compplain(m0,m1) is just the plaintext comparison function. That is, for
m0 < m1, Compplain(m0,m1) = “ < ”, Compplain(m1,m0) = “ > ”, and
Compplain(m0,m0) = “ = ”.

• Compciph(sk, c0, c1) is a ciphertext comparison function which uses the
secret key. If first computes mb = Dec(sk, cb) for b = 0, 1. If either m0 = ⊥
or m1 = ⊥ (in other words, if either decryption failed), then Compciph

outputs ⊥. If both m0,m1 �= ⊥, then the output is Compplain(m0,m1).
Now we define our comparison correctness notions:
• Weakly Correct Comparison: This informally requires that compari-

son is consistent with encryption. For all security parameters λ, message
lengths �, and messages m0,m1 ∈ {0, 1}�,

Pr
[

Comp(pars, c0, c1)
= Compplain(m0,m1)

: (sk, pars) ← Gen(1λ, 1�)
cb ← Enc(sk,mb)

]
= 1.

In particular, for correctly generated ciphertexts, Comp never outputs ⊥.
• Strongly Correct Comparison: This informally requires that compar-

ison is consistent with decryption. For all security parameters λ, message
lengths �, and ciphertexts c0, c1,

Pr
[

Comp(pars, c0, c1)
= Compciph(sk, c0, c1)

: (sk, pars) ← Gen(1λ, 1�)
]

= 1.

Security. For security, we will consider a relaxation of the “best possible” security
notion of Boneh et al. [8]. Namely, we only consider static adversaries that submit
all queries at once. “Best possible” security is a modification of the standard
notion of CPA security for symmetric key encryption to block trivial attacks.
That is, since the comparison function always leaks the order of the plaintexts,
the left and right sets of challenge messages must have the same order. In our
relaxation where all challenge messages are queried at once, we can therefore
assume without loss of generality that the left and right sequences of messages
are sorted in ascending order. For simplicity, we will also disallow the adversary
from querying on the same message more than once. This gives the following
definition:

Definition 6. An ORE scheme (Gen,Enc,Dec,Comp) is statically secure if, for
all efficient adversaries A, |Pr[W0]−Pr[W1]| is negligible, where Wb is the event
that A outputs 1 in the following experiment:

– A produces two message sequences m
(L)
1 < m

(L)
2 < · · · < m

(L)
q and m

(R)
1 <

m
(R)
2 < · · · < m

(R)
q
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– The challenger runs (sk, pars) ← Gen(1λ, 1�). It then responds to A with pars,
as well as c1, . . . , cq where

ci =

{
Enc(sk,m(L)

i ) if b = 0
Enc(sk,m(R)

i ) if b = 1

– A outputs a guess b′ for b.

We also consider a weaker definition, which only allows the sequences m
(L)
i

and m
(R)
i to differ at a single point:

Definition 7. An ORE scheme (Gen,Enc,Dec,Comp) is statically single-
challenge secure if, for all efficient adversaries A, |Pr[W0]−Pr[W1]| is negligible,
where Wb is the event that A outputs 1 in the following experiment:

– A produces a sequence of messages m1 < m2 < · · · < mq, and challenge
messages mL,mR such that mi < mL < mR < mi+1 for some i ∈ [q − 1].

– The challenger runs (sk, pars) ← Gen(1λ, 1�). It then responds to A with pars,
as well as c1, . . . , cq where ci = Enc(sk,mi) and

c∗ =

{
Enc(sk,mL) if b = 0
Enc(sk,mR) if b = 1

– A outputs a guess b′ for b.

We now argue that these two definitions are equivalent up to some polynomial
loss in security.

Theorem 3. (Gen,Enc,Dec,Comp) is statically secure if and only if it is stati-
cally single-challenge secure.

Proof. We prove that single-challenge security implies many-challenge security
through a sequence of hybrids. Each hybrid will only differ in the messages mi

that are encrypted, and each adjacent hybrid will only differ in a single mes-
sage. The first hybrid will encrypt m

(L)
i , and the last hybrid will encrypt m

(R)
i .

Thus, by applying the single-challenge security for each hybrid, we conclude that
the first and last hybrids are indistinguishable, thus showing many-challenge
security.

Hybrid j for j ≤ q.

mi =

{
min(m(L)

i ,m
(R)
i ) if i ≤ j

m
(L)
i if i > j

First, notice that all the mi are in order since both sequences m
(L)
i and m

(R)
i

are in order. Second, the only difference between Hybrid (j − 1) and Hybrid
j is that mj = m

(L)
j in Hybrid (j − 1) and mj = min(m(L)

j ,m
(R)
j ) in Hybrid

j. Thus, single-challenge security implies that each adjacent hybrid is indistin-
guishable. Moreover, for j where m

(L)
j < m

(R)
j , the two hybrids are actually

identical.
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Hybrid j for j > q.

mi =

{
min(m(L)

i ,m
(R)
i ) if i ≤ 2q − j

m
(R)
i if i > 2q − j

Again, notice that all the mi are in order. Moreover, the only different between
Hybrid (2q − j) and Hybrid (2q − j + 1) is that mj = min(m(L)

j ,m
(R)
j ) in

Hybrid (2q − j) and mj = m
(R)
j in Hybrid (2q − j + 1). Thus, single-challenge

security implies that each adjacent hybrid is indistinguishable. Moreover, for j

where m
(L)
j > m

(R)
j , the two hybrids are actually identical.

3 The Concept Class EncThresh and Its Learnability

Let (Gen,Enc,Dec,Comp) be a statically secure ORE scheme with strongly cor-
rect comparison. We define a concept class EncThresh, which intuitively captures
the class of threshold functions where examples are encrypted under the ORE
scheme. Throughout this discussion, we will take N = 2� and regard the plain-
text space of the ORE scheme to be [N ] = {1, . . . , N}. Ideally we would like, for
each threshold t ∈ [N + 1] and each (sk, pars) ← Gen(1λ), to define a concept

ft,sk,pars(c) =

{
1 if Decsk(c) < t

0 otherwise.

However, we need to make a few technical modifications to ensure that EncThresh
is efficiently PAC learnable.

1. In order for the learner to be able to use the comparison function Comp, it
must be given the public parameters pars generated by the ORE scheme. We
address this in the natural way by attaching a set of public parameters to each
example. Moreover, we define EncThresh so that each concept is supported
on the single set of public parameters that corresponds to the secret key used
for encryption and decryption.

2. Only a subset of binary strings form valid (sk, pars) pairs that are actually
produced by Gen in the ORE scheme. To represent concepts, we need a reason-
able encoding scheme for these valid pairs. The encoding scheme we choose is
the polynomial-length sequence of random coin tosses used by the algorithm
Gen to produce (sk, pars).

We now formally describe the concept class EncThresh. Each concept is para-
meterized by a string r, representing the coin tosses of the algorithm Gen, and
a threshold t ∈ [N + 1] for N = 2�. In what follows, let (skr, parsr) be the keys
output by Gen(1λ, 1�) when run on the sequence of coin tosses r. Let

ft,r(pars, c) =

{
1 if (pars = parsr) ∧ (Dec(skr, c) �= ⊥) ∧ (Dec(skr, c) < t)
0 otherwise.

Notice that given t and r, the concept ft,r can be efficiently evaluated. The
description length k of the instance space Xk = {0, 1}k is polynomial in the
security parameter λ and plaintext length �.
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3.1 An Efficient PAC Learner for EncThresh

We argue that EncThresh is efficiently PAC learnable by formalizing the argu-
ment from the introduction. Because we need to include the ORE public parame-
ters in each example, the PAC learner L (Algorithm 1) for EncThresh actually
works in two stages. In the first stage, L determines whether there is signif-
icant probability mass on examples corresponding to some public parameters
pars. Recall that each concept in EncThresh is supported on exactly one such
set of parameters. If there is no significant mass on any pars, then the all-zeroes
hypothesis is a good hypothesis. On the other hand, if there is a heavy set of
parameters, the learner L applies Comp using those parameters to learn a good
comparator.

Theorem 4. Let α, β > 0. There exists a PAC learning algorithm L for the
concept class EncThresh achieving error α and confidence 1 − β. Moreover, L is
efficient (running in time polynomial in the parameters k, 1/α, log(1/β)).

Algorithm 1. Learner L for EncThresh

1. Request examples {(pars1, c1, b1), . . . , (parsn, cn, bn)} for n = �log(1/β)/α�.
2. Identify an i for which bi = 1 and set pars∗ = parsi; if no such i exists, return h ≡ 0.
3. Let G = {j : parsj = pars∗, bj = 1}. Let j∗ ∈ G be an index with

Comp(pars∗, cj , cj∗) ∈ {<, =, ⊥} for all j ∈ G.
4. Return h defined by

h(pars, c) =

{

1 if (pars = pars∗) ∧ (Comp(pars∗, c, cj∗) ∈ {<, =})

0 otherwise.

Proof. Fix a target concept ft,r ∈ EncThreshk and a distribution D on examples.
First observe that the learner L always outputs a hypothesis with one-sided
error, i.e. we always have h ≤ ft,r pointwise. Also observe that ft′,r ≤ ft,r

pointwise for any t′ < t. These both follow from the strong correctness of the
ORE scheme. Let (skr, parsr) denote the keys output by Gen(1λ, 1�) when run
on the sequence of coin tosses r. Let POS denote the set of examples (pars, c)
on which ft,r(pars, c) = 1. We divide the analysis of the learner in to two cases
based on the weight D places on POS.

Case 1: D places weight at least α on POS. Define t̂ ∈ [N + 1] as the largest
t̂ ≤ t such that errorD(ft̂,r, ft,r) ≥ α. Such a t̂ is guaranteed to exist since f0,r

is the all-zeros function, and therefore errorD(f0,r, ft,r) is equal to the weight D
places on POS, which is at least α.

Suppose ft̂+1,r ≤ h pointwise. Since h has one-sided error (that is, h ≤ ft,r

pointwise), we have errorD(ft̂+1,r, ft,r) = errorD(ft̂+1,r, h) + errorD(h, ft,r), or

errorD(h, ft,r)=errorD(ft̂+1,r, ft,r)−errorD(ft̂+1,r, h) ≤ errorD(ft̂+1,r, ft,r) < α.
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Therefore, it suffices to show that ft̂+1,r ≤ h with probability at least
1 − β. This is guaranteed as long as L receives a sample (parsr, ci, 1) with
t̂ ≤ Dec(skr, ci) < t. In other words, ft,r(parsr, ci) = 1 and ft̂,r(pars

r, ci) = 0.
Since ft̂,r ≤ ft,r pointwise, such samples exactly account for the error between
ft̂,r and ft,r. Thus since errorD(ft̂,r, ft,r) ≥ α, for each i it must be that
t̂ ≤ Dec(skr, ci) < t with probability at least α. The learner L therefore
receives some sample ci with t̂ ≤ Dec(skr, ci) < t with probability at least
1 − (1 − α)n ≥ 1 − β (since we took n ≥ log(1/β)/α).

Case 2: D places less than α weight on POS. Then the identically zero hypothesis
has error at most α, so the claim holds because 0 ≤ h ≤ ft,r.

3.2 Hardness of Privately Learning EncThresh

We now prove the hardness of privately learning EncThresh by constructing an
example reidentification scheme for this concept class. Recall that an example
reidentification scheme consists of two algorithms, Genex, which selects a distrib-
ution, a concept, and examples to give to a learner, and Traceex which attempts
to identify one of the examples the learner received.

Our example reidentification scheme yields a hard distribution even for weak-
learning, where the error parameter α is taken to be inverse-polynomially close
to 1/2.

Theorem 5. Let γ(n) and ξ(n) be noticeable functions. Let (Gen,Enc,Dec,Comp)
be a statically single-challenge secure ORE scheme. Then there exists an (efficient)
(α = 1

2−γ, ξ)-example reidentification scheme (Genex,Traceex) for the concept class
EncThresh.

We start with an informal description of the scheme (Genex,Traceex). The
algorithm Genex sets up the parameters of the ORE scheme, chooses the “mid-
dle” threshold concept corresponding to t = N/2, and sets the distribution on
examples to be encryptions of uniformly random messages (together with the
correct public parameters needed for comparison). Let m1 < m2 < · · · < mn

denote the sorted sequence of messages whose encryptions make up the sample
produced by Genex (with overwhelming probability, they are indeed distinct). We
can thus break the plaintext space up into buckets of the form Bi = [mi,mi+1).
Suppose L is a (weak) learner that produces a hypothesis h with advantage γ
over random guessing. Such a hypothesis h must be able to distinguish encryp-
tions of messages m ≤ t from encryptions of messages m > t with advantage
γ. Thus, there must be a pair of adjacent buckets Bi−1, Bi for which h can
distinguish encryptions of messages from Bi−1 from encryptions from Bi with
advantage γ

n .
This observation leads to a natural definition for Traceex: locate a pair of

adjacent buckets Bi−1, Bi that h distinguishes, and output the identity i of the
example separating those buckets. Completeness of the resulting scheme, i.e. the
fact that some example is reidentified when L succeeds, follows immediately from



192 M. Bun and M. Zhandry

the preceding discussion. We argue soundness, i.e. that an example absent from
L’s sample is not identified, by reducing to the static security of the ORE scheme.
The intuition is that if L is not given example i, then it should not be able to
distinguish encryptions from bucket Bi−1 from encryptions from bucket Bi.

To make the security reduction somewhat more precise, suppose for the sake
of contradiction that there is an efficient algorithm L that violates the sound-
ness of (Genex,Traceex) with noticeable probability ξ. That is, there is some i such
that even without example i, the algorithm L manages to produce (with proba-
bility ξ) a hypothesis h that distinguishes Bi−1 from Bi. A natural first attempt
to violate the security of the ORE is to construct an adversary that challenges
on the message sequences m1 < · · · < mi−1 < m

(L)
i < mi+1, <,mn and

m1 < · · · < mi−1 < m
(R)
i < mi+1 < · · · < mn, where m

(L)
i is randomly cho-

sen from Bi−1 and m
(R)
i is randomly chosen from Bi. Then if h can distinguish

Bi−1 from Bi, the adversary can distinguish the two sequences. Unfortunately,
this approach fails for a somewhat subtle reason. The hypothesis h is only guar-
anteed to distinguish Bi−1 from Bi with probability ξ. If h fails to distinguish the
buckets – or distinguishes them in the opposite direction – then the adversary’s
advantage is lost.

To overcome this issue, we instead rely on the security of the ORE for
sequences that differ on two messages. For the “left” challenge, our adversary
samples two messages from the same randomly chosen bucket, Bi−1 or Bi (in
addition to requesting encryptions of m1, . . . ,mi−1,mi, . . . ,mn). For the “right”
challenge, it samples one message from each bucket Bi−1 and Bi. Let c0 and c1

be the ciphertexts corresponding to thee challenge messages. If h agrees on c0

and c1, then this suggests the messages are from the same bucket, and the adver-
sary should guess “left”. On the other hand, if h disagrees on c0 and c1, then
the adversary should guess “right”. If h distinguishes the buckets Bi−1 and Bi,
this adversary does strictly better than random guessing. On the other hand,
even if h fails to distinguish the buckets, the adversary does at least as well
as random guessing. So overall, it still has a noticeable advantage at the ORE
security game.

We now give the formal proof of Theorem 5.

Proof. We construct an example reidentification scheme for EncThresh as follows.
The algorithm Genex fixes the threshold t = N/2 and samples (skr, parsr) ←R

Gen(1λ, 1�), yielding a concept ft,r. Let D be the distribution (parsr,Enc(skr,m))
for uniformly random m ∈ [N ]. Let m′

1, . . . ,m
′
n ←R [N ], and let m1 ≤ · · · ≤ mn

be the result of sorting the m′
i. Let m0 = 0 and mn+1 = N . Since n = poly(k) �

N , these random messages will be well-spaced. In particular, with overwhelming
probability, |mi+1 − mi| > 1 for every i, so we assume this is the case in what
follows. Genex then sets the samples to be (x1 = (parsr,Enc(skr,m′

1)), . . . , xn =
(parsr,Enc(skr,m′

n))). Let x0 = (parsr,Enc(skr,m0)) be a “junk” example.
The algorithm Traceex creates buckets Bi = [mi,mi+1). For each i, let

pi = Pr
m∈Bi,coins of Enc

[h(parsr,Enc(sk,m)) = 1].
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By sampling random choices of m in each bucket, Traceex can efficiently compute
a good estimate p̂i ≈ pi for each i (Lemma 1). It then accuses the least i for
which p̂i−1 − p̂i ≥ γ

n , and ⊥ if none is found.

Lemma 1. Let K = 8n2

γ2 log(9n/ξ). For each i = 0, . . . , n, let

p̂i =
1
K

K∑

j=1

h(xj)

where xj = (parsr,Enc(skr,mj)) for i.i.d. m1, . . . ,mK ←R Bi. Then |p̂i−pi| ≤ γ
4n

for every i with probability at least 1 − ξ/4.

Proof. By a Chernoff bound, the probability that any given p̂i deviates from pi

by more than γ
4n is at most 2 exp(−Kγ2/8n2) ≤ ξ

4(n+1) . The lemma follows by
a union bound.

We first verify completeness for this scheme. Let L be a learner for EncThresh
using n examples. If the hypothesis h produced by L is (12 − γ)-good, then there
exists i0 < i1 such that pi0 − pi1 ≥ 2γ. If this is the case, then there must be
an i for which pi−1 − pi ≥ 2γ

n . Then with probability all but ξ(n)/2 over the
estimates p̂i, we have p̂i−1 − p̂i ≥ γ

n , so some index is accused.
Now we verify soundness. Fix a PPT L, and let j∗ ∈ [n]. Suppose L violates

the soundness of the scheme with respect to j∗, i.e.

Pr
h←RL(S−j∗ ),coins of Genex

[Traceex(h) = j∗] > ξ.

We will use L to construct an adversary A for the ORE scheme that succeeds
with noticeable advantage. It suffices to build an adversary for the static (many-
challenge) security of ORE, with Theorem 3 showing how to convert it to a single-
challenge adversary. This many-challenge adversary is presented as Algorithm 2.
(While not explicitly stated, the adversary should halt and output a random guess
whenever the messages it samples are not well-spaced.)

Let i∗ be such that mi∗ = m′
j∗ . With probability at least ξ over the parame-

ters (skr, parsr), the choice of messages, the choice of the hypothesis h, and the
coins of Traceex, there is a gap p̂i∗−1 − p̂i∗ ≥ γ

n . Hence, by Lemma 1, there is a
gap pi∗−1 − pi∗ ≥ γ

2n with probability at least ξ
2 .

We now calculate the advantage of the adversary A. Fix a hypothesis h. For
notational simplicity, let p = pi∗−1 and let q = pi∗ . Let y0 = h(parsr, c0i∗) and
y1 = h(parsr, c1i∗). Then the adversary’s success probability is:

Pr[b′ = b] =
1
2
(Pr[y0 = y1|b = 0] + Pr[y0 �= y1|b = 1])

=
1
2
(
1
2
(p2 + (1 − p)2 + q2 + (1 − q)2) + (1 − pq − (1 − p)(1 − q)))

=
1
2

+
1
2
(p − q)2.
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Algorithm 2. ORE adversary A
1. Sample m′

1, . . . , m
′
n ←R [N ], and let m1 ≤ · · · ≤ mn be the result of sorting the

m′
j . Let π be the permutation on {1, . . . , n} such that mπ(j) = m′

j . Let m0 = 0. Let
i∗ = π(j∗) so that mi∗ = m′

j∗ .
2. Construct pairs (m0

L, m1
L) and (m0

R, m1
R) as follows. Let B0 = (mi∗−1, mi∗) and

B1 = (mi∗ , mi∗+1). Sample m0
L ≤ m1

L at random from the same Bj , for a random
choice of j ∈ {0, 1}. Sample m0

R ←R B0 and m1
R ←R B1.

3. Challenge on the pair of sequences m0, m1, . . . , mi∗−1, m
1
L, m2

L, mi∗ , . . . , mn

and m0, m1, . . . , mi∗−1, m
1
R, m2

R, mi∗ , . . . , mn, receiving ciphertexts c1, . . . , c
0
i∗ ,

c1i∗ , . . . , cn. For j 
= j∗, let c′
j = cπ(j) so that c′

j is an encryption of m′
j .

4. Set t = N/2 and let

S−j∗ =
{

(parsr, c′
1, χ(m′

1 ≤ t)), . . . , (parsr, c′
j∗−1, χ(m′

j∗−1 ≤ t)),

(parsr, c0, 1), (parsr, c′
j∗+1, χ(m′

j∗+1 ≤ t)), . . . ,

(parsr, c′
n, χ(m′

n ≤ t))
}

=
{

(parsr, cπ(1), χ(mπ(1) ≤ t)), . . . , (parsr, cπ(j∗−1), χ(mπ(j∗−1) ≤ t)),

(parsr, c0, 1), (parsr, cπ(j∗+1), χ(mπ(j∗+1) ≤ t)), . . . ,

(parsr, cπ(n), χ(mπ(n) ≤ t))
}

Obtain h ←R L(S−j∗).
5. Guess b′ = 0 if h(parsr, c0i∗) = h(parsr, c1i∗). Otherwise guess b′ = 1.

Thus if p − q ≥ γ
2n , then the adversary’s advantage is at least γ2

4n2 . On the
other hand, even for arbitrary values of p, q, the advantage is still nonnegative.
Therefore, the advantage of the strategy is at least ξγ2

8n2 − negl(k) (the negl(k)
term coming from the assumption that the m′

i sampled where distinct), which
is a noticeable function of the parameter k. This contradicts the static security
of the ORE scheme.

3.3 The SQ Learnability of EncThresh

The statistical query (SQ) model is a natural restriction of the PAC model by
which a learner is able to measure statistical properties of its examples, but
cannot see the individual examples themselves. We recall the definition of an SQ
learner.

Definition 8 (SQ learning) [39]). Let c : X → {0, 1} be a target concept
and let D be a distribution over X. In the SQ model, a learner is given access
to a statistical query oracle STAT(c,D). It may make queries to this oracle of
the form (ψ, τ), where ψ : X × {0, 1} → {0, 1} is a query function and τ ∈
(0, 1) is an error tolerance. The oracle STAT(c,D) responds with a value v such
that |v − Prx∈D[ψ(x, c(x)) = 1]| ≤ τ . The goal of a learner is to produce, with
probability at least 1−β, a hypothesis h : X → {0, 1} such that errorD(c, h) ≤ α.
The query functions must be efficiently evaluable, and the tolerance τ must be
lower bounded by an inverse polynomial in k and 1/α.
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The query complexity of a learner is the worst-case number of queries it
issues to the statistical query oracle. An SQ learner is efficient if it also runs in
time polynomial in k, 1/α, 1/β.

Feldman and Kanade [24] investigated the relationship between query com-
plexity and computational complexity for SQ learners. They exhibited a concept
class C which is efficiently PAC learnable and SQ learnable with polynomially
many queries, but assuming NP �= RP, is not efficiently SQ learnable. Concepts
in this concept class take the form

gφ,y(x, x′) =

{
PARy(x′) if x = φ

0 otherwise.

Here, PARy(x′) is the inner product of y and x′ modulo 2. The concept class C
consists of gφ,y where φ is a satisfiable 3-CNF formula and y is the lexicographi-
cally first satisfying assignment to φ. The efficient PAC learner for parities based
on Gaussian elimination shows that C is also efficiently PAC learnable. It is also
(inefficiently) SQ learnable with polynomially many queries: either the all-zeroes
hypothesis is good, or an SQ learner can recover the formula φ bit-by-bit and
determine the satisfying assignment y by brute force. On the other hand, because
parities are information-theoretically hard to SQ learn, the satisfying assignment
y remains hidden to an SQ learner unless it is able to solve 3-SAT.

In this section, we show that the concept class EncThresh shares these prop-
erties with C. Namely, we know that EncThresh is efficiently PAC learnable and
because it is not efficiently privately learnable, it is not efficiently SQ learn-
able [5]. We can also show that EncThresh has an SQ learner with polyno-
mial query complexity. Making this observation about EncThresh is of interest
because the hardness of SQ learning EncThresh does not seem to be related to
the (information-theoretic) hardness of SQ learning parities.

Proposition 1. The concept class EncThresh is (inefficiently) SQ learnable with
polynomially many queries.

As with C there are two cases. In the first case, the target distribution places
nearly zero weight on examples with pars = parsr, and so the all-zeroes hypoth-
esis is good. In the second case, the target distribution places noticeable weight
on these examples, and our learner can use statistical queries to recover the com-
parison parameters parsr bit-by-bit. Once the public parameters are recovered,
our learner can determine a corresponding secret key by brute force. Lemma 2
below shows that any corresponding secret key – even one that is not actually
skr – suffices. The learner can then use binary search to determine the threshold
value t.

Proof. Let ft,r be the target concept, D be the target distribution, and α be
the target error rate. With the statistical query (x × b �→ b, α/4), we can deter-
mine whether the all-zeroes hypothesis is accurate. That is, if we receive a value
that is less than α/2, then Prx∈D[ft,r(x) = 1] ≤ α. If not, then we know that
Prx∈D[ft,r(x) = 1] ≥ α/4, so D places significant weight on examples prefixed
with parsr. Suppose now that we are in the latter case.
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Let m = |pars|. For i = 1, . . . ,m, define ψi(pars, c, b) = 1 if parsi = 1 and
b = 1, and ψi(pars, c, b) = 0 otherwise. Then by asking the queries (ψi, α/16),
we can determine each bit parsri of parsr.

Now by brute force search, we determine a secret key sk for which (sk, parsr)
∈ Range(Gen). The recovered secret key sk may not necessarily be the same
as skr. However, the following lemma shows that sk and skr are functionally
equivalent:

Lemma 2. Suppose (Gen,Enc,Dec,Comp) is a strongly correct ORE scheme.
Then for any pair (sk1, pars), (sk2, pars) ∈ Range(Gen), we have that Decsk1(c)
= Decsk2(c) for all ciphertexts c.

With the secret key sk in hand, we now conduct a binary search for the
threshold t. Recall that we have an estimate v for the weight that ft,r places on
positive examples, i.e. |v − Prx∈D[ft,r(x) = 1]| ≤ α/4. Starting at t1 = N/2, we
issue the query (ϕ1, α/4) where ϕ1(pars, c, b) = 1 iff pars = parsr and Dec(sk, c) <
t. Let ht1 denote the hypothesis

ht1(pars, c) =

{
1 if (pars = parsr) ∧ (Dec(sk, c) �= ⊥) ∧ (Dec(sk, c) < t1)
0 otherwise.

Thus, the query (ϕ1, α/4) approximates the weight ht1 places on positive exam-
ples. Let the answer to this query be v1. If |v1 − v| ≤ α/2, then we can halt
and output the good hypothesis ht1 . Otherwise, if v1 < v − α/2, we set the
next threshold to t2 = 3N/4, and if v1 > v + α/2, we set the next threshold
to t2 = N/4. We recurse up to log N = � = poly(k) times, yielding a good
hypothesis for ft,r.

Proof (Proof of Lemma 2). Suppose the lemma is not true. First suppose that
there exists a ciphertext c such that Dec(sk1, c) = p1 < p2 = Dec(sk2, c). Let c′ ∈
Enc(sk1, p2). Then by strong correctness applied to the parameters (sk1, pars),
we must have Comp(pars, c, c′) = “<”. Now by strong correctness applied to
(sk2, pars), we must have Dec(sk2, c′) > p2. Thus, p1 < Dec(sk1, c′) = p2 <
Dec(sk2, c′). Repeating this argument, we obtain a contradiction because the
message space is finite.

Now suppose instead that there is a ciphertext c for which Dec(sk1, c) =
p ∈ [N ], but Dec(sk2, c) = ⊥. Let c′ ∈ Enc(sk1, p′) for some p′ > p.
Then Comp(pars, c, c′) = “<” by strong correctness applied to (pars, sk1). But
Comp(pars, c, c′) = “⊥” by strong correctness applied to (pars, sk2), again yield-
ing a contradiction.

4 ORE with Strong Correctness

We now explain how to obtain ORE with strongly correct comparison, as all
prior ORE schemes only satisfy the weaker notion of correctness. The lack
of strong correctness is easiest to see with the scheme of Boneh et al. [8].
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The protocol is built from current multilinear map constructions, which are
noisy. If the noise terms grow too large, the correctness of the multilinear map
is not guaranteed. The comparison function in [8] is computed by performing
multilinear operations, and for correctly generated ciphertexts, the operations
will give the right answer. However, there exist ciphertexts, namely those with
very large noise, for which the comparison function gives an incorrect output.
The result is that the comparison operation is not guaranteed to be consistent
with decrypting the ciphertexts and comparing the plaintexts.

As described in the introduction, we give a generic conversion from any ORE
scheme with weakly correct comparison into a strongly correct scheme. We sim-
ply modify the encryption algorithm by adding a non-interactive zero-knowledge
(NIZK) proof that the resulting ciphertext is well-formed. Then the decryption
and comparison procedures check the proof(s), and only output a non-⊥ result
(either decryption or comparison) if the proof(s) are valid.

Instantiating our Scheme. In our construction, we need the (weak) correctness of
the underlying ORE scheme to hold with probability one. However, the existing
protocols only have correctness with overwhelming probability, so some minor
adjustments need to be made to the protocols. This is easiest to see in the
ORE scheme of Boneh et al. [8]. The Boneh et al. scheme uses noisy multilinear
maps [26] which may introduce errors. Therefore, the protocol described in [8]
only achieves the (weak) correctness property with overwhelming probability,
whereas we will require (weak) correctness with probability 1 for the conversion.
However, it is straightforward to generate the parameters for the protocol in such
a way as to completely eliminate errors. Essentially, the parameters in the pro-
tocol have an error term that is generated by a (discrete) Gaussian distribution,
which has unbounded support. Instead, we truncate the Gaussian, resulting in a
noise distribution with bounded support. By truncating sufficiently far from the
center, the resulting distribution is also statistically close to the full Gaussian,
so security of the protocol with truncated noise follows from the security of
the protocol with un-truncated noise. By truncating the noise distribution, it is
straightforward to set parameters so that no errors can occur.

It is similarly straightforward to modify current obfuscation candidates,
which are also built from multilinear maps, to obtain perfect (weak) correct-
ness by truncating the noise distributions. Thus, our scheme has instantiations
using multilinear maps or iO.

4.1 Conversion from Weakly Correct ORE

We describe our generic conversion from an order-revaling encryption scheme
with weak correctness using NIZKs. We will need the following additional tools:

Perfectly Binding Commitments. A perfectly binding commitment Com is a ran-
domized algorithm with two properties. The first is perfect binding, which states
that if Com(m; r) = Com(m′; r′), then m = m′. The second requirement is com-
putational hiding, which states that the distributions Com(m) and Com(m′) are
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computationally indistinguishable for any messages m,m′. Such commitments
can be built, say, from any injective one-way function.

Perfectly Sound NIZK. A NIZK protocol consists of three algorithms:

– Setup(1λ) is a randomized algorithm that outputs a common reference string
crs.

– Prove(crs, x, w) takes as input a common reference string crs, an NP statement
x, and a witness w, and produces a proof π.

– Ver(crs, x, π) takes as input a common reference string crs, statement x, and
a proof π, and outputs either accept or reject.

We make three requirements for a NIZK:

– Perfect Completeness. For all security parameters λ and any true state-
ment x with witness w,

Pr[Ver(crs, x, π) = accept : crs ← Setup(1λ);π ← Prove(crs, x, w)] = 1.

– Perfect Soundness. For all security parameters λ, any false statement x
and any (invalid) proof π,

Pr[Ver(crs, x, π) = accept : crs ← Setup(1λ)] = 0.

– Computational Zero Knowledge. There exists a simulator S1,S2 such
that for any computationally bounded adversary A, the quantity

‖Pr[AProve(crs,·,·)(crs) = 1 : crs ← Setup(1λ)]

− Pr[ASim(crs,τ,·,·)(crs) = 1 : (crs, τ) ← S1(1λ)]‖
is negligible, where Sim(crs, τ, x, w) outputs S2(crs, τ, x) if w is a valid witness
for x, and Sim(crs, τ, x, w) = ⊥ if w is invalid.

NIZKs satisfying these requirements can be built from bilinear maps [32].

The Construction. We now give our conversion. Let (Setup,Prove,Ver) be a
perfectly sound NIZK and (Gen′,Enc′,Dec′,Comp′) and ORE with weakly correct
comparison. We will assume that Enc′ is deterministic; if not, we can derandom-
ize Enc′ using a pseudorandom function. Let Com be a perfectly binding com-
mitment. We construct a new ORE scheme (Gen,Enc,Dec,Comp) with strongly
correct comparison:

– Gen(1λ, 1�): run (sk′, pars′) ← Gen′(1λ, 1�). Let σ = Com(sk; r) for randomness
r, and run crs ← Setup(1λ). Then the secret key is sk = (sk′, r, crs) and the
public parameters are pars = (pars′, σ, crs).

– Enc(sk,m): Compute c′ = Enc′(sk′,m). Let xc′ be the statement ∃m̂, ŝk
′
, r̂ :

σ = Com(ŝk
′
, r̂) ∧ c′ = Enc′(ŝk

′
, m̂). Run πc′ = Prove(crs, xc′ , (m, sk′, r)).

Output the ciphertext c = (c′, πc′).
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– Dec(sk, c): Write c = (c′, πc′). If Ver(crs, xc′ , πc′) = reject, output ⊥. Other-
wise, output m = Dec′(sk′, c′).

– Comp(pars, c0, c1); Write cb = (c′
b, πc′

b
) and pars = (pars′, σ, crs). If Ver(crs, xc′

b
,

πc′
b
) = reject for either b = 0, 1, then output ⊥. Otherwise, output Comp′(pars′,

c′
0, c

′
1).

Correctness. Notice that, for each plaintext m, the ciphertext component c′ =
Enc′(sk′,m) is the unique value such that Dec(sk, (c′, π)) = m for some proof π.
Moreover, the completeness of the zero knowledge proof implies that Enc(sk,m)
outputs a valid proof. Decryption correctness follows.

For strong comparison correctness, consider two ciphertexts c0, c1 where cb =
(c′

b, πc′
b
). Suppose both proofs πc′

b
are valid, which means that verification passes

when running Comp and so Comp(pars, c0, c1) = Comp′(pars′, c′
0, c

′
1). Verification

also passes when decrypting cb, and so Dec(sk, cb) = Dec′(sk′, c′
b).

Since the proofs are valid, c′
b = Enc′(sk′,mb) for some mb for both b =

0, 1. The weak correctness of comparison for (Gen′,Enc′,Dec′,Comp′) implies
that Comp′(pars′, c′

0, c
′
1) = Compplain(m0,m1). The decryption correctness of

(Gen′,Enc′,Dec′,Comp′) then implies that Dec(sk′, c′
b) = mb, and therefore

Dec(sk, cb) = mb. Thus Compciph(sk, c0, c1) = Compplain(m0,m1). Putting it
all together, Comp(pars, c0, c1) = Compciph(sk, c0, c1), as desired.

Now suppose one of the proofs πc′
b

are invalid. Then Comp(pars, c0, c1) = ⊥
and Dec(sk, cb) = ⊥. This means Compciph(sk, c0, c1) = ⊥ = Comp(pars, c0, c1),
as desired.

Security. To prove security, we first use the zero-knowledge simulator to simulate
the proofs π′

c without using a witness (namely, the secret decryption key). Then
we use the hiding property of the commitment to replace σ with a commitment
to 0. At this point, the entire game can be simulated using an Enc′ oracle, and
so the security reduces to the security of Enc′.

Theorem 6. If (Gen′,Enc′,Dec′,Comp′) is a (statically) secure ORE, (Setup,
Prove,Ver) is computationally zero knowledge, and Com is computationally hid-
ing, then (Gen,Enc,Dec,Comp) is a statically secure ORE.

Proof. We will prove security through a sequence of hybrids. Let A be an adver-
sary with advantage ε in breaking the static security of (Gen,Enc,Dec,Comp).

Hybrid 0. This is the real experiment, where σ ← Com(sk), crs ← Setup(1λ), and
the proofs πc′ are answered using Prove and valid witnesses. A has advantage ε
in distinguishing the left and right ciphertexts.

Hybrid 1. This is the same as Hybrid 0, except that crs is generated as
(crs, τ) ← S1(1λ), and all proofs are generated using S2(crs, τ, ·). The zero knowl-
edge property of (Setup,Prove,Ver) shows that this is indistinguishable from
Hybrid 0.
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Hybrid 2. This is the same as Hybrid 1, except that σ ← Com(0). Since the
randomness for computing σ is not needed for simulation, this change is unde-
tectable using the hiding of Com.

Thus the advantage of A in Hybrid 2 is at least ε−negl for some negligible
function negl. Now consider the following adversary cB that attempts to break
the security of (Gen′,Enc′,Dec′,Comp′). B simulates A, and forwards the message
sequences m

(L)
1 < m

(L)
2 < · · · < m

(L)
q and m

(R)
1 < m

(R)
2 < · · · < m

(R)
q produced

by A to its own challenger. In response, it receives pars′, and ciphertexts c′
i,

where c′
i encrypts either m

(L)
i if b = 0 or m

(R)
i if b = 1, for a random bit b chosen

by the challenger.
B now generates σ ← Com(0), (crs, τ) ← S1(1λ), and lets pars = (pars′, σ, crs).

It also computes πc′
i

← S2(crs, τ, xc′
i
), and defines ci = (c′

i, πc′
i
), and gives pars

and the ci to A. Finally when A outputs a guess b′ for b, B outputs the same
guess b′.

We see that the view of A as a subroutine of B is exactly the same view
as in Hybrid 2. Thus, b′ = b with probability at least ε − negl. The secu-
rity of (Gen′,Enc′,Dec′,Comp′) implies that this quantity, and hence ε, must be
negligible. Thus A must have negligible advantage in breaking the security of
(Gen,Enc,Dec,Comp).

5 A Separation for Representation Learning

In this section, we show how to construct a concept class ValidSig that separates
efficient representation learning from efficient private representation learning,
assuming only the existence of one-way functions. Here by “representation learn-
ing” we mean a restricted form of proper learning where a learner must output
a particular representation (i.e. encoding) of a hypothesis h in the concept class
C. As with proper learning, this is a natural syntactic restriction to place on a
learner: for instance, if one wants to learn linear threshold functions (LTF), it
makes sense to require a learner to produce the actual coefficients of an LTF,
rather than an arbitrary circuit that happens to compute an LTF.

The construction is based on the following elegant idea due to Kobbi Nissim
[44]. Suppose H : D → R is a cryptographic hash function with the property
that given x1, . . . , xn with y = H(x1) = · · · = H(xn), it is infeasible for an
efficient adversary to find another x for which H(x) = y. Consider the concept
class HashPoint consisting of the concepts

fx(x′) =

{
1 if H(x) = H(x′)
0 otherwise.

for every x ∈ R. The representation of a concept fx is the point x. The con-
cept class HashPoint is very easy to learn (by representation) without privacy:
a learner can identify any positive example xi and output the representation
xi. Since H(xi) = H(x), the concept fxi

is actually equal to the target concept
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fx. On the other hand, a learner that identifies an index x∗ for which fx∗ = fx

cannot be differentially private, since the security of the hash function means it
is infeasible to produce such an x∗ that is not present in the sample.

Note that this argument breaks down if one tries to show that HashPoint
is not privately properly learnable. While it is infeasible to privately pro-
duce a representation x∗ for which fx∗ is a good hypothesis, the hypothesis
h(x) = χ(H(x) = h(xi)) is equal as a function to every good fx∗ . Moreover,
this hypothesis can be constructed privately as long as the sample contains suf-
ficiently many positive examples.

We make this discussion formal by constructing a concept class ValidSig based
on super-secure digital signature schemes, which can be constructed from one-
way functions. Our use of signatures to derive hardness results for private proper
learning is very analogous to prior hardness results for synthetic data generation
[21,53].

Definition 9. A digital signature scheme is a triple of algorithms
(Gen,Sign,Ver) where

– Gen(1λ) produces a key pair (sk, vk).
– Sign(sk,m) takes the private signing key sk and a message m ∈ {0, 1}∗ and

produces a signature σ for the message m.
– Ver(vk,m, σ) takes the public verification key vk, a message m, and a signa-

ture σ, and (deterministically) outputs a bit indicating whether σ is a valid
signature for m.

The correctness property of a digital signature scheme is that for every
(sk, vk) ←R Gen(1λ), every message m ∈ {0, 1}∗, and every signature σ ←R

Sign(sk,m), we have Ver(vk,m, σ) = 1.

Definition 10. A digital signature scheme is super-secure under adaptive
chosen-plaintext attacks if all efficient adversaries A win the following weak
forgery game with negligible probability:

– The challenger samples (sk, vk) ←R Gen(1λ).
– The adversary A is given vk and oracle access to Sign(sk, ·). It adaptively

queries the signing oracle, obtaining a sequence of message-signature pairs A.
It then outputs a forgery (m∗, σ∗).

– The value of the game is 1 iff Ver(vk,m∗, σ∗) = 1 and (m∗, σ∗) /∈ A.

It is known that super-secure digital signature schemes can be constructed
from one-way functions [29,38,43,47].

We now describe our concept class ValidSig. Let (Gen,Sign,Ver) be a super-
secure digital signature scheme. We define a concept class ValidSig as follows. Fix
the message length �. For every (vk,m, σ) with m ∈ {0, 1}� and Ver(vk,m, σ) = 1,
define the concept

fvk,m,σ(vk′,m′, σ′) =

{
1 if (vk = vk′) ∧ (Ver(vk,m′, σ′) = 1)
0 otherwise.
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For convenience, we also include the all-zeroes hypothesis in ValidSig, with rep-
resentation ⊥.

Theorem 7. Let α, β > 0. There exists a proper PAC learning algorithm L for
the concept class ValidSig achieving error α and confidence 1 − β. Moreover, L
is efficient (running in time polynomial in the parameters k, 1/α, log(1/β)).

Algorithm 3. Learner L for ValidSig

1. Request examples {((vk′
1, m

′
1, σ

′
1), b1), . . . , ((vk

′
n, m′

n, σ′
n), bn)} for n =

�log(1/β)/α�.
2. Identify an i for which bi = 1 and return the representation (vk′

i, m
′
i, σ

′
i). If no such

i exists, return ⊥ representing the all-zeroes hypothesis.

Proof. Fix a target concept fvk,m,σ ∈ ValidSigk and a distribution D on examples.
Let POS denote the set of examples (vk′,m′, σ′) on which fvk,m,σ(vk′,m′, σ′) = 1.
We divide the analysis of the learner into three cases based on the weight D places
on the sets POS.

Case 1: D places at least α weight on POS. Then L receives a positive example
with probability at least 1 − (1 − α)n ≥ 1 − β, and is thus able to identify a
concept that equals the target concept.

Case 2: D places less than α weight on POS. If L gets a positive example, then
the analysis of Case 1 applies. Otherwise, the all-zeroes hypothesis is α-good.

We now prove the hardness of properly privately learning ValidSig by con-
structing an example reidentification scheme for properly learning this concept
class. Our example reidentification scheme yields a hard distribution even when
the error parameter α is taken to be inverse-polynomially close to 1.

Theorem 8. Let γ(n) and ξ(n) be noticeable functions. Let (Gen,Sign,Ver) be a
super-secure digital signature scheme. Then there exists an (efficient) (α = 1 −
γ, ξ)-example reidentification scheme (Genex,Traceex) for representation learning
the concept class ValidSig.

Proof. We construct an example reidentification scheme for ValidSig as follows.
The algorithm Genex samples (sk, vk) ←R Gen(1λ), a message m ∈ {0, 1}�, and
a signature σ ←R Sign(sk,m), yielding a concept fvk,m,σ. Let D be the dis-
tribution of (vk,m,Sign(sk,m)) for random m ←R {0, 1}�. Genex then samples
x0, x1, . . . , xn i.i.d. from D. Given a representation (vk∗,m∗, σ∗), the algorithm
Traceex simply identifies an index i for which xi = (vk∗,m∗, σ∗), and outputs ⊥
if none is found.

We first verify completeness. Let L be a learner for ValidSig using n examples.
If the representation (vk∗,m∗, σ∗) produced by L represents an (1 − γ)-good
hypothesis, then it must be the case that vk∗ = vk and Ver(vk,m∗, σ∗) = 1. Thus,
if L violates the completeness condition, it can be used to construct the weak
forgery adversary A (Algorithm 4) that succeeds with noticeable probability ξ.
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Algorithm 4. Weak forgery adversary A
1. Query the signing oracle on random messages m′

1, . . . , m
′
n ←R {0, 1}�, obtaining

signatures σ′
1, . . . , σ

′
n.

2. Run L on the labeled examples ((vk, m′
1, σ

′
1), 1), . . . , ((vk, m′

n, σ′
n), 1), obtaining a

representation (m∗, σ∗).
3. Output the forgery (m∗, σ∗).

Now we verify soundness. Observe that for any i, the sample S−i contains no
information about message mi. Therefore, the learner has a 2−� = negl(k) prob-
ability at producing a representation containing message mi, proving soundness.
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1 Introduction

1.1 Learning with Rounding

The learning with rounding (LWR) problem, introduced by Banerjee, Peikert,
and Rosen [BPR12], concerns the cryptographic properties of the function
fs : Zn

q → Zp given by

fs(x) = �〈x, s〉�p = �(p/q) · 〈x, s〉�
where s ∈ Z

n
q is a secret key, 〈x, s〉 is the inner product of x and s mod q, and

�·� denotes the closest integer. In this work we are interested in the algorithmic
hardness of the tasks of learning the secret s and of distinguishing fs from a
random function given uniform and independent samples of the form (x, fs(x)).

Learning with rounding was proposed as a deterministic variant of the learn-
ing with errors (LWE) problem [Reg05]. In this problem fs is replaced by the
randomized function gs : Zn

q → Zq given by gs(x) = 〈x, s〉+e, where e is sampled
from some error distribution over Zq independently for every input x ∈ Z

n
q .

In spite of the superficial similarities between the two problems, the cryp-
tographic hardness of LWE is much better understood. Extending works of
Regev [Reg05], Peikert [Pei09], and others, Brakerski et al. [BLP+13] gave a
polynomial-time reduction from finding an approximate shortest vector in an
arbitrary lattice to the task of distinguishing gs from a random function given
access to uniform and independent samples (x, gs(x)) when e is drawn from
the discrete Gaussian distribution of sufficiently large standard deviation. Their
reduction is versatile in two important aspects. First, it is meaningful for any
modulus q that exceeds the standard deviation of the noise. Second, it does not
assume a bound on the number of samples given to the distinguisher.

In contrast, the hardness of the learning with rounding problem has only
been established for restricted settings of the parameters. In their work Banerjee,
Peikert, and Rosen show that if fs can be efficiently distinguished from a ran-
dom function given m random samples with advantage δ, then so can gs with
advantage δ−O(mBp/q), where the noise e is supported on the range of integers
{−B, . . . , B} modulo q. From here one can conclude the hardness of distinguish-
ing fs from a random function given m random samples assuming the hardness
of learning with errors, but only when the modulus q is of an exponential order
of magnitude in the security parameter.

Alwen et al. [AKPW13] give a reduction from LWE to the same problem
assuming that qmax is at least as large as 2nmBp and q2max does not divide q,
where qmax is the largest prime divisor of q. This reduction can be meaningful
even for values of q that are polynomially related to the security parameter. For
example, when q is a prime number then the improvement over the reduction of
Banerjee, Peikert, and Rosen is substantial.

However, the result of Alwen et al. does not apply to all (sufficiently large)
values of the modulus q. For example it does not cover values of q that are powers
of two. In this case the rounding function is particularly natural as it outputs the
first log p significant bits of q in binary representation. Moreover, rounding with
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a small prime q necessarily introduces noticeable bias, consequently requiring
some form of deterministic extraction. Finally, the work of Alwen et al. does not
include a treatment of the significantly more efficient ring variant of LWR.

1.2 Our Results

We establish the cryptographic hardness of the function fs in the following three
settings:

One-Wayness: In Theorem 1 in Sect. 2 we show that any algorithm that recov-
ers the secret s from m independent random samples of the form (x, fs(x))
with probability at least ε also recovers the secret s from m indepen-
dent random samples of the form (x, �gs(x)�p) with probability at least
ε2/(1 + 2Bp/q)m.

Therefore, if the function G(x1, . . . ,xm, s) = (x1, . . . ,xm, gs(x1), . . . ,
gs(xm)) is one-way under some B-bounded distribution (i.e. if the search
version of LWE is hard) then we conclude that

F (x1, . . . ,xm, s) = (x1, . . . ,xm, fs(x1), . . . , fs(xm))

is also one-way, as long as q ≥ 2mBp.
In Theorem 2 in Sect. 2.2 we show that the ring variants of the LWE and

LWR problems (defined in that section) are related in an analogous manner.
Pseudorandomness: In Theorem 3 in Sect. 3 we show that if there exists an effi-

cient distinguisher that tells apart m independent random samples (x, gs(x))
from m independent random samples of the form (x, �u�p), then LWE secrets
can be learned efficiently assuming q ≥ 2mBp.

In particular, when p divides q, the above function F is a pseudorandom
generator assuming the hardness of learning with errors.

Theorem 3 improves upon several aspects of the work of Alwen et al.:
First, we do not impose any number-theoretic restrictions on q; second, they
require the stronger condition q ≥ 2nmBp; third, unlike theirs, our reduction
is sample preserving; and fourth, we believe our proof is considerably simpler.
On the other hand, the complexity of their reduction has a better dependence
on the modulus q and the distinguishing probability.

Hardness of learning from samples with uniform noise: In Theorem 5 in
Sect. 4 we give an efficient reduction that takes as input independent random
samples of the form (x, gs(x)) and produces independent random samples of
the form (x, fs(x)) provided that p divides q and the noise e of gs is uniformly
distributed over the integers in the range [−q/2p, . . . , q/2p). Therefore if fs
can be distinguished efficiently from a random function for any number of
independent random samples, so can gs. By a reduction of Chow [Cho13]
in the other direction (Theorem 6), the two problems are in fact equivalent.
These reductions do not impose any additional restriction on p, q and the
number of LWR samples m.

The learning with errors problem under this noise distribution is not
known to be as hard as the learning with errors problem with discrete
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Gaussian noise when the number of samples is unbounded in terms of q
and n. The existence of a reduction to the case of discrete Gaussian noise is
an interesting open problem.

Noise flooding: In addition, our technique allows for an improved analysis
of noise flooding. The noise flooding technique is ubiquitous in the LWE
cryptographic literature. Roughly speaking, it is used to rerandomize a faulty
sample

(
x, 〈x, s〉 + ebad

)
into one of the form

(
x, 〈x, s〉 + egood

)
where egood

is distributed according to the error distribution implicit in gs(·), while ebad
is not. Most of the time, the desired error distribution is a discrete Gaussian
over Zq whereas ebad is some arbitrary B-bounded element in Zq. The most
common method is to draw a fresh Gaussian error e and set egood = ebad + e
which results in the distribution of egood being within statistical distance
B/σ of the desired Gaussian. However, this requires choosing parameters in
order to ensure that B/σ ≥ B/q is small. In particular, it requires setting
q to be larger than any polynomial in the security parameter. Even worse,
often the bound B is polynomially related to the standard deviation σ′ of
another discrete Gaussian used in the construction. This means that q/σ′

also grows faster than any polynomial in the security parameter, which is
not ideal as the quantity q/σ′ corresponds to the strength of assumption one
is making on the hardness of the underlying lattice problem. In Sect. 5 we
use techniques from Sect. 2 to give a simple proof that noise flooding can be
used whenever q = Ω

(
B

√
m

)
. In particular, it can be used even when q is

polynomial in the security parameter.

Conventions. We write x ← X for a uniform sample from the set X, R(x) for the
function (R(x1), . . . , R(xn)), and Z

n∗
q for the set of vectors in Z

n
q which are not

zero-divisors. Namely, Zn∗
q = {x ∈ Z

n
q : gcd(x1, . . . , xn, q) = 1}. All algorithms

are assumed to be randomized.

2 One-Wayness of LWR

In this section we prove the following theorem. We say a distribution over Zq

is B-bounded if it is supported over the interval of integers {−B, . . . , B}, where
B ≤ (q − 1)/2. We say a B-bounded distribution e is balanced if Pr[e ≤ 0] ≥ 1/2
and Pr[e ≥ 0] ≥ 1/2.

Theorem 1. Let p, q, n, m, and B be integers such that q > 2pB. For every
algorithm Learn,

PrA,s,e[Learn(A, �As + e�p) = s] ≥ PrA,s[Learn(A, �As�p) = s]2

(1 + 2pB/q)m
,

where A ← Z
m×n
q , the noise e is independent over all m coordinates, B-bounded

and balanced in each coordinate, and s is chosen from any distribution supported
on Z

n∗
q .
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The assumptions made on the secret and error distribution in Theorem 1 are
extremely mild. The condition s ∈ Z

n∗
q is satisfied for at least a 1 − O(1/2n)

fraction of secrets s ← Z
n
q . While a B-bounded error distribution may not be

balanced, it can always be converted to a 2B-bounded and balanced error distrib-
ution by a suitable constant shift. The discrete Gaussian distribution of standard
deviation σ is e−Ω(t2)-statistically close to being tσ-bounded and balanced for
every t ≥ 1.

Theorem 2 in Sect. 2.2 concerns the ring variants of the LWR and LWE
problems and will be proved in an analogous manner.

We now outline the proof of Theorem 1. Let Xs denote the distribution of a
single LWR sample a, �〈a, s〉�p where a ← Z

n
q and Ys denote the distribution of

a single rounded LWE sample a, �〈a, s〉 + e�p. To prove Theorem 1 we will fix s
and look at the ratio of probabilities of any possible instance under the product
distributions Xm

s and Ym
s , respectively. If this ratio was always bounded by a

sufficiently small quantity K,1 then it would follow that the success probability
of any search algorithm for LWR does not deteriorate by more than a factor of
1/K when it is run on rounded LWE instances instead.

While it happens that there are exceptional instances for which the ratio of
probabilities under Xm

s and Ym
s can be large, our proof of Theorem 1 will show

that such instances cannot occur too often under the rounded LWE distribution
and therefore does not significantly affect the success probability of the inversion
algorithm. This can be showed by a standard probabilistic analysis, but we opt
instead to work with a measure of distributions that is particularly well suited
for bounding ratios of probabilities: the Rényi divergence.

The role of Rényi divergence in our analysis accounts for our quantitative
improvement over the result of Banerjee, Peikert, and Rosen, who used the
measure of statistical distance in its place. Rényi divergence has been used in a
related context: Bai, Langlois, Lepoint, Stehlé and Steinfeld [BLL+15] use it to
obtain tighter bounds for several lattice-based primitives.

2.1 Proof of Theorem 1

Given two distributions X and Y over Ω, the power of their Rényi divergence2

is RD2(X‖Y) = Ea←X[Pr[X = a]/Pr[Y = a]].

Lemma 1. Let Xs be the distribution of a single LWR sample and let Ys be that
of a single rounded LWE sample. Assume B < q/2p. For every s ∈ Z

n∗
q and every

noise distribution that is B-bounded and balanced, RD2

(
Xs‖Ys

) ≤ 1 + 2Bp/q.

Proof. By the definition of Rényi divergence,

RD2

(

Xs‖Ys

)

= Ea←Zn
q

Pr
[

Xs=(a,�〈a,s〉�p)
]

Pr
[

Ys=(a,�〈a,s〉�p)
] = Ea←Zn

q

1

Pre
[�〈a, s〉 + e�p = �〈a, s〉�p

] .

1 Levin [Lev86] calls this condition K-domination.
2 Rényi divergences [vEH14] are a class of measures parametrized by a real number

α > 1. The definition we give specializes α to 2, which is sufficient for our analysis.
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Let BADs be the set
{
a ∈ Z

n
q :

∣
∣〈a, s〉 − q

p �〈a, s〉�p

∣
∣ < B

}
. These are the

a for which 〈a, s〉 is dangerously close to the rounding boundary. When a /∈
BADs, Pre

[�〈a, s〉 + e�p = �〈a, s〉�p

]
= 1. Since gcd(s1, . . . , sn, q) = 1, the inner

product 〈a, s〉 is uniformly distributed over Zq, so Pr[a ∈ BADs] ≤ (2B − 1)p/q.
When a ∈ BADs, the event �〈a, s〉 + e�p = �〈a, s〉�p still holds at least in one
of the two cases e ≤ or e ≥ 0. By our assumptions on the noise distribution,
Pre

[�〈a, s〉 + e�p = �〈a, s〉�p

] ≥ 1/2. Conditioning over the event a ∈ BADs, we
conclude that

RD2(Xs‖Ys) ≤ 1 · Pr[a /∈ BADs] + 2 · Pr[a ∈ BADs] ≤ 1 +
2Bp

q
. �

To complete the proof of Theorem 1 we need two elementary properties of Rényi
divergence.

Claim. For any two distributions X and Y, (1) RD2(Xm‖Ym) = RD2(X‖Y)m

and (2) for any event E, Pr[Y ∈ E] ≥ Pr[X ∈ E]2/RD2(X‖Y).

Proof. Property (1) follows immediately from independence of the m samples.
Property (2) is the Cauchy-Schwarz inequality applied to the functions

f(a) =
Pr[X = a]

√
Pr[Y = a]

; and g(a) =
√

Pr[Y = a]. �

Proof (Proof of Theorem 1). Fix s such that gcd(s, q) = 1 and the randomness
of Learn. By Lemma 1 and part (1) of Claim 2.1, RD2(Xm

s ‖Ym
s ) ≤ (1+2Bp/q)m.

Letting E be the event {(A,y) : Learn(A,y) = s}, by part (2) of Claim 2.1,

PrA,e[Learn(A, �As + e�p) = s] ≥ PrA[Learn(A, �As�p) = s]2

(1 + 2pB/q)m
.

To obtain the theorem, we average over s and the randomness of Learn and apply
the Cauchy-Schwarz inequality. �

2.2 Hardness over Rings

For many applications it is more attractive to use a ring version of LWR (RLWR).
Banerjee, Peikert, and Rosen [BPR12] introduced it together with LWR. It brings
the advantage of reducing the entropy of A for same sized �As + e�p. In the
following theorem, we give a variant of Theorem 1 for the RLWR based on the
hardness of ring LWE. This theorem is not needed for the remaining sections of
the paper.

Theorem 2. Let p, q, n, k,B be integers such that q > 2pB. Let Rq be the ring
Zq[x]/g(x) where g is a polynomial of degree n over Zq and f be an arbitrary
function over Rq. For every algorithm Learn,

Pra,s,e[Learn(a, �as + e�p) = f(s)] ≥ Pra,s[Learn(a, �as�p) = f(s)]2

(1 + 2pB/q)nk
,
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where a ← Rk
q , the noise e is independent over all k coordinates, B-bounded and

balanced in each coordinate, and s is chosen from any distribution supported on
the set of all units in Rq.

An element in Rq = Zq[x]/g(x) can be represented as a polynomial (in x) of
degree less than n with coefficients in Zq. Here, for a ∈ Rq, �a�p is an element
in Zp[x]/g(x) obtained by applying the function �·�p to each of coefficient of
a separately. A distribution over ring Rq is B-bounded and balanced if every
coefficient is drawn independently from a B-bounded and balanced distribution
over Zq.

The bound in Theorem 2 matches the bound in Theorem 1 since k can be
chosen such that nk is on the order of m. Theorem 2 follows from Claim 2.1 and
the following variant of Lemma 1.

Lemma 2. Assume B < q/2p. For every unit s ∈ Rq and noise distribution χ
that is B-bounded and balanced over Rq, RD2

(
Xs‖Ys

) ≤ (
1+2pB/q

)n where Xs

is the random variable
(
a, �a · s�p

)
and Ys is the random variable

(
a, �a · s�p +e

)

with a ← Rq and e ← χ.

Since the proof is very similar to the proof of Lemma 1, we defer it to
Appendix A.

3 Pseudorandomness of LWR

In this section we prove the following Theorem. We will implicitly assume that
algorithms have access to the prime factorization of the modulus q throughout
this section.

Theorem 3. For every ε > 0, n, m, q > 2pB, and algorithm Dist such that
∣
∣PrA,s

[
Dist

(
A, �As�p

)
= 1

] − PrA,u

[
Dist

(
A, �u�p

)
= 1

]∣∣ ≥ ε, (1)

where A ← Z
m×n
q , s ← {0, 1}n and u ← Z

m
q there exists an algorithm Learn that

runs in time polynomial in n, m, the number of divisors of q, and the running
time of Dist such that

PrA,s

[
Learn

(
A,As + e

)
= s

] ≥
( ε

4qm
− 2n

pm

)2

· 1
(1 + 2Bp/q)m

(2)

for any noise distribution e that is B-bounded and balanced in each coordinate.

One unusual aspect of this theorem is that the secret is a uniformly distrib-
uted binary string in Z

n
q . This assumption can be made essentially without loss

of generality: Brakerski et al. [BLP+13] show that under discrete Gaussian noise,
learning a binary secret in {0, 1}n from LWE samples is as hard as learning a
secret uniformly sampled from Z

Ω(n/ log q)
q . The assumption (1) can also be stated

with s sampled uniformly from Z
n
q : In Sect. 3.4 we show that distinguishing LWR
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samples from random ones is no easier for uniformly distributed secrets than it
is for any other distribution on secrets, including the uniform distribution over
binary secrets. (When q is prime, the proof of Theorem 3 can be carried out for
s uniformly distributed over Z

n
q so these additional steps are not needed.)

To prove Theorem 3 we follow a sequence of standard steps originating from
Yao [Yao82], Goldreich and Levin [GL89]: In Lemma 3 we convert the distin-
guisher Dist into a predictor that given a sequence of LWR samples and a label
a guesses the inner product 〈a, s〉 in Zq with significant advantage. In Lemma 4
we show how to use this predictor to efficiently learn the entries of the vector s
modulo q′ for some divisor q′ > 1 of q. If the entries of the secret s are bits, s is
then fully recovered given LWR samples. By Theorem 1 the learner’s advantage
does not deteriorate significantly when the LWR samples are replaced by LWE
samples.

Our proof resembles the work of Micciancio and Mol [MM11] who give, to the
best of our knowledge, the only sample preserving search-to-decision reduction
for LWE (including its variants). Unlike our theorem, theirs imposes certain
number-theoretic restrictions on q. Also, while Micciancio and Mol work with a
problem that is “dual” to LWE, we work directly with LWR samples.

3.1 Predicting the Inner Product

Lemma 3. For all ε (possibly negative), n, m, q, every polynomial-time function
R over Zq, and every algorithm Dist such that

PrA,s

[
Dist

(
A, R(As)

)
= 1

] − PrA,u

[
Dist

(
A, R(u)

)
= 1

]
= ε,

there exists an algorithm Pred whose running time is polynomial in its input size
and the running time of Dist such that

PrA,s,a

[
Pred

(
A, R(As),a

)
= 〈a, s〉] =

1
q

+
ε

mq
.

where the probabilities are taken over A ← Z
m×n
q , u ← Z

m
q , the random coins

of the algorithms, and secret s sampled from an arbitrary distribution.

Here, R(y) is the vector obtained by applying R to every coordinate of the
vector y.

Proof. Consider the following algorithm Pred. On input (A,b)=((a1, b1), . . . ,
(am, bm)) (aj ∈ Z

n
q , bj ∈ Zq) and a ∈ Z

n
q :

1. Sample a random index i ← {1, . . . , m} and a random c ← Zq.
2. Obtain A′,b′ from A,b by replacing ai with a, bi with R(c), and every bj

for j > i with an independent element of the form R(uj), uj ← Zq.
3. If Dist(A′,b′) = 1, output c. Otherwise, output a uniformly random element

in Zq.
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Let hi =
(
R(〈a1, s〉), . . . , R(〈ai, s〉), R(ui+1), . . . , R(um)

) ∈ Z
m
p , for i ranging

from 0 to m. Then hm = R(As) and h0 = R(u) so by the assumption on Dist it
follows that

Ei

[
PrA,s,u

[
Dist

(
A,hi

)
= 1

] − PrA,s,u

[
Dist

(
A,hi−1

)
= 1

]]
=

ε

m
.

Conditioned on the choice of i,

Pr
[
Pred(A,b,a

)
= 〈a, s〉]

= Pr
[
Dist(A′,b′) = 1 and c = 〈a, s〉] +

1
q

· Pr
[
Dist(A′,b′) �= 1

]

=
1
q

· Pr
[
Dist(A′,b′) = 1 | c = 〈a, s〉] +

1
q

· Pr
[
Dist(A′,b′) �= 1

]

=
1
q

+
1
q

· (
Pr

[
Dist(A′,b′) = 1

∣
∣c = 〈a, s〉] − Pr

[
Dist(A′,b′) = 1

])

when b = R(As), the distribution (A′,b′) is the same as (A,hi−1) while (A′,b′)
conditioned on c = 〈a, s〉 is the same as (A,hi). Averaging over i yields the
desired advantage of Pred. �

3.2 Learning the Secret

Lemma 4. There exists an oracle algorithm List such that for every algorithm
Pred satisfying |Pr[Pred(a) = 〈a, s〉]−1/q| ≥ ε, ListPred(ε) outputs a list of entries
(q′, s′) containing at least one such that q′ > 1, q′ divides q, and s′ = s mod q′

in time polynomial in n, 1/ε, and the number of divisors of q with probability at
least ε/4. The probabilities are taken over a ← Z

n
q , any distribution on s, and

the randomness of the algorithms.

When q is a prime number, the conclusion of the theorem implies that the
list must contain the secret s. When q is a composite, the assumption does not in
general guarantee full recovery of s. For example, the predictor Pred(a) = 〈a, s〉
mod q′ has advantage ε = (q′ − 1)/q but does not distinguish between pairs of
secrets that are congruent modulo q′. In this case List cannot hope to learn any
information on s beyond the value s modulo q′.

The proof of Lemma 4 makes use of the following result of Akavia, Gold-
wasser, and Safra [AGS03] on learning heavy Fourier coefficients, extending work
of Kushilevitz, Mansour, and others. Recall that the Fourier coefficients of a func-
tion h : Zn

q → C are the complex numbers ĥ(a) = Ex←Zn
q
[h(x)ω−〈a,x〉], where

ω = e2πi/q is a primitive q−th root of unity. Our functions of interest all map
into the unit complex circle T = {c ∈ C : |c| = 1}, so we specialize the result to
this setting.

Theorem 4 (Akavia et al. [AGS03]). There is an algorithm AGS that given
query access to a function h : Zn

q → T outputs a list of size at most 2/ε2 which
contains all a ∈ Z

n
q such that |ĥ(a)| ≥ ε in time polynomial in n, log q, and 1/ε

with probability at least 1/2.
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We will also need the following property of the Fourier transform of random
variables. For completeness the proof is given below.

Claim. For every random variable Z over Zq there exists a nonzero r in Zq such
that |E[ωrZ ]| ≥ |Pr[Z = 0] − 1/q|.
Proof (Proof of Lemma 4). We first replace Pred by the following algorithm:
Sample a uniformly random unit (invertible element) u from Z

∗
q and output

u−1Pred(ua). This transformation does not affect the advantage of Pred but
ensures that for fixed s and randomness of Pred, the value Ea[ωr(Pred(a)−〈a,s〉)] is
the same for all r with the same gcd(r, q).

Algorithm List works as follows: For every divisor r < q of q run AGS with ora-
cle access to the function hr(a) = ωr·Pred(a) and output (q′ = q/r, s′/r mod q′)
for every s′ in the list produced by AGS.

We now assume Pred satisfies the assumption of the lemma and analyze List.
By Claim 3.2 there exists a nonzero r ∈ Zq such that |E[ωr(Pred(a)−〈a,s〉)]| ≥ ε.
By Markov’s inequality and the convexity of the absolute value, with probability
at least ε/2 over the choice of s and the randomness of Pred |Ea[ωr(Pred(a)−〈a,s〉)]|
is at least ε/2. We fix s and the randomness of Pred and assume this is the case.
By our discussion on Pred, the expectation of interest is the same for all r with
the same gcd(r, q), so we may and will assume without loss of generality that r
is a divisor of q.

Since Ea[ωr(Pred(a)−〈a,s〉)] = ĥr(rs), by Theorem 4, the r-th run of AGS out-
puts rs with probability at least 1/2. Since (rs)/r mod q′ = s mod q′ it follows
that the entry (q′, s mod q′) must appear in the output of List with probability
at least (1/2)(ε/2) = ε/4. Regarding time complexity, List makes a call to AGS
for every divisor of q except q, so its running time is polynomial in n and the
number of divisors of q. �
Proof (Proof of Claim 3.2). Let ε = Pr[Z = 0] − 1/q and h(a) = q(Pr[Z =
a] − Pr[U = a]), where U ← Zq is a uniform random variable. By Parseval’s
identity from Fourier analysis,

∑

r∈Zq

|ĥ(r)|2 = Ea←Zq
[h(a)2] ≥ 1

q
h(0)2 = qε2.

On the left hand side, after normalizing we obtain that ĥ(r) = E[ω−rZ ] −
E[ω−rU ]. Therefore ĥ(0) = 0, so |ĥ(r)|2 = |E[ω−rZ ]|2 must be at least as large
as qε2/(q − 1) for at least one nonzero value of r, giving a slightly stronger
conclusion than desired. �

3.3 Proof of Theorem 3

On input (A,b), algorithm Learn runs ListPred(A,	b
p,·)(ε/2qm) and outputs any
s ∈ {0, 1}n appearing in the list such that �As�p = �b�p (or the message fail
if no such s exists). By Theorem 1,

Pr[Learn(A, �As + e�p) = s] ≥ Pr[Learn(A, �As�p) = s]2

(1 + 2Bp/q)m
.
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For Learn(A, �As�p) to output s it is sufficient that s appears in the output of
ListPred(A,	As
p,·)(ε/2qm) and that no other s′ ∈ {0, 1}n satisfies �As′�p = �As�p.
By Lemmas 3 and 4, the list contains s mod q′ for some q′ with probability at
least ε/4qm. Since s is binary, s mod q′ = s. By a union bound, the probability
that some �As′�p = �As�p for some s′ �= s is at most 2np−m and so

Pr[Learn(A, �As + e�p) = s] ≥ (ε/4qm − 2np−m)2

(1 + 2Bp/q)m
.

3.4 Rerandomizing the Secret

Lemma 5. Let S be any distribution supported on Z
n∗
q . For every function R

on Zq, there is a polynomial-time transformation that (1) maps the distribution
(A, R(As))A←Z

m×n
q ,s←S to (A, R(As))A←Z

m×n
q ,s←Zn∗

q
and (2) maps the distrib-

uton (A, R(u))A←Z
m×n
q ,u←Zm

q
to itself.

In particular, it follows that the distinguishing advantage (1) can be pre-
served when the secret is chosen uniformly from Z

n∗
q instead of uniformly from

{0, 1}n − {0n}. The sets Z
n∗
q and {0, 1}n − {0n} can be replaced by Z

n
q and

{0, 1}n, respectively, if we allow for failure with probability O(2−n).
To prove Lemma 5 we need a basic fact from algebra. We omit the easy proof.

Claim. Multiplication by an n×n invertible matrix over Zq is a transitive action
on Z

n∗
q .

Proof (Proof of Lemma 5). Choose a uniformly random invertible matrix P ∈
Z

n×n
q and apply the map f(a, b) = (Pa, b) to every row. Clearly this map sat-

isfies the second condition. For the first condition, we write f(a, R(〈a, s〉)) =
(Pa, R(〈a, s〉)), which is identically distributed as (a, R(〈a,P−ts〉)). By
Claim 3.4, for every s in the support of S the orbit of P−ts is Z

n∗
q , so by

symmetry P−ts is uniformly random in Z
n∗
q . Therefore the first condition also

holds. �

4 Equivalence of LWR and LWE with Uniform Errors

When the number of LWR samples is not a priori bounded, we show that the
pseudorandomness (resp. one-wayness) of LWR follows from the pseudorandom-
ness (resp. one-wayness) of LWE with a uniform noise distribution over the range
of integers [− q

2p , . . . , q
2p ). We use a rejection sampling based approach to reject

LWE samples which are likely to be rounded to the wrong value in Zp. This
comes at the cost of throwing away samples, and indeed the sample complexity
of our reduction grows with q.

Theorem 5. Let p and q be integers such that p divides q. Then there is a
reduction R with query access to independent samples such that for every s ∈ Z

n∗
q :
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– Given query access to samples (a, 〈a, s〉+e), a ← Z
n
q , e ← [− q

2p , . . . , q
2p

) ⊂ Zq,
R outputs samples from the distribution (a, �〈a, s〉�p), a ← Z

n
q ,

– Given query access to uniform samples (a, u), a ← Z
n
q , u ← Zq, R outputs a

uniform sample (a, v), a ← Z
n
q , v ← Zp.

In both cases, the expected running time and sample complexity of the reduction
is O(q/p).

Proof. We view the set (q/p)Zp as a subset of Zq. The reduction R queries its
oracle until it obtains the first sample (a, b) ∈ Z

n
q × Zq such that b is in the

set (q/p)Zp and outputs (a, (p/q)b) ∈ Z
n
q × Zp. In both cases of interest b is

uniformly distributed in Zq, so the expected number of query calls until success
is q/p.

When the queried samples are uniformly distributed in Z
n
q × Zq, the out-

put is also uniformly distributed in Z
n
q × Zp. For queried samples of the form

(a, 〈a, s〉 + e), we calculate the probability mass function of the output distrib-
ution. For every possible output (a′, b′), we have

Pr
[
R outputs (a′, b′)

]
= Pr

[
a = a′ and 〈a, s〉 + e = b′ ∣

∣ 〈a, s〉 + e ∈ (q/p)Zp

]

= Pra[a = a′] · Pre

[〈a, s〉 + e = (q/p)b′ ∣
∣ a = a′]

Pre

[〈a, s〉 + e ∈ (q/p)Zp

∣
∣ a = a′]

= q−n ·
{

p/q
p/q , if (q/p)b′ − 〈a′, s〉 ∈ [− q

2p , . . . , q
2p

)

0, otherwise.

=
{

q−n, if b′ = �〈a′, s〉�p

0, otherwise.

This is the probability mass function of the distribution (a, �〈a, s〉�p), as
desired. �
The following theorem whose proof appears in the M.Eng. thesis of Chow [Cho13]
shows that distinguishing LWR samples from uniform and inverting LWR sam-
ples are not substantially harder than they are for LWE samples under the above
noise distribution.

Theorem 6. For all m, n, p, q such that p divides q, and ε (possibly negative),
and polynomial-time algorithm Dist such that

PrA,s

[
Dist

(
A,As + e

)
= 1

] − PrA,u

[
Dist

(
A,u

)
= 1

]
= ε,

there exists a polynomial time algorithm Dist′ such that

PrA,s

[
Dist′

(
A, �As�p

)
= 1

] − PrA,u

[
Dist′

(
A, �u�p

)
= 1

]
=

ε

q
,

where A ← Z
m×n
q , the noise e is independent over all m coordinates and uniform

over the set [− q
2p , . . . , q

2p ) ⊆ Zq in each coordinate, and s is chosen from any
distribution supported on Z

n∗
q .
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Proof. Consider the following algorithm Dist′.
On input (A,b) = ((a1, b1), . . . , (am, bm)) (aj ∈ Z

n
q , bj ∈ Zp) and a ∈ Z

n
q :

1. Sample a random r ← Z
n
q and a random c ← Z

m
q .

2. Obtain A′,b′ ∈ Z
m×n
q ×Z

m
q from A,b by letting A′ = A−c•r, b′ = q

p ·b−c.
3. If Dist(A′,b′) = 1, output 1. Otherwise, output 0.

Here, c • r is the outer product of the vectors c and r.
When b = �u�p, (A′,b′) is distributed as (A′,u). When b = �As�p, we can

write

(A′,b′) = (A − c • r, q
p · �As�p − c)

= (A′, q
p · �A′s + c · 〈r, s〉�p − c)

= (A′,A′s + c · 〈r, s〉 − {A′s + c · 〈r, s〉}p − c)
= (A′,A′s + c · (〈r, s〉 − 1) − {A′s + c · 〈r, s〉}p)

where {x}p = x − q
p · �x�p. Conditioned on 〈r, s〉 = 1, (A′,b′) is distributed as

(A′,A′s+{u}p), which is the same as (A′,A′s+e) where each coordinate of e is
uniformly drawn from set [− q

2p , . . . , q
2p ) ⊆ Zq. In this case Dist has distinguishing

advantage ε. Conditioned on 〈r, s〉 �= 1, (A′,b′) is distributed uniformly over
Z

m×n
q × Z

m
q and Dist has zero distinguishing advantage. Since for any s ∈ Z

n∗
q ,

the probability that 〈r, s〉 = 1 equals 1/q over the random choice of r, the overall
distinguishing advantage is ε/q. �

5 Noise Flooding

In this section, let χσ denote the discrete Gaussian distribution on Zq with stan-
dard deviation σ: χσ(x) is proportional to exp

(−π(x/σ)2
)
. Often in applications

of LWE, one is given a sample (a, b) with b = 〈a, s〉+e for e ← χσ and by perform-
ing various arithmetic operations obtains a new pair (a′, b′) with b′ = 〈a′, s′〉+e′.
Sometimes, the noise quantity e′ obtained is not distributed according to a
Gaussian, but is only subject to an overall bound on its absolute value. If the
proof of security needs (a′, b′) to be an LWE instance, then sometimes the “noise
flooding” technique is used where a fresh Gaussian x ← χσ′ is drawn and b′ is set
to 〈a′, s′〉 + e′ + x. As long as e′ + χσ′ ≈s χσ′ the resulting (a′, b′) is statistically
close to a fresh LWE instance. This technique in some form or another appears in
many places, for example [AIK11,GKPV10,DGK+10,OPW11]. Unfortunately,
e′ + χσ′ ≈s χσ′ requires q to be large and so the applications also carry this
requirement. In this section we bound the continuous analogue of Rényi diver-
gence between e′ + χσ′ and χσ′ and show that the noise flooding technique can
be used even when q is polynomial in the security parameter, as long as the
number of samples is also bounded.

We remark that our main result in this section, Corollary 1, follows from gen-
eral results in prior work which bound the Rényi divergence between Gaussians.
For example, Lemma 4.2 of [LSS14] implies Corollary 1 below. However, we are
unaware of a theorem in the literature with a simple statement which subsumes
Corollary 1. We include a proof for completeness.
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Claim. Let Ψα be the continuous Gaussian on R with standard deviation α:
Ψα(x) = α−1e−π(x/α)2 . Then for any β ∈ R,

RD2(β + Ψα‖Ψα) = e2π(β/α)2 .

Proof. We have

RD2(β + Ψα‖Ψα) = α−1

∫ ∞

−∞
e−

(
π/α2

)[
2(x−β)2−x2)

]
dx

= α−1 · e2π
(
β/α

)2 ∫ ∞

−∞
e−

(
π/α2

)[
(x−2β)2

]
dx

= e2π
(
β/α

)2

.

We have used the substitution u = x − 2β and the identity
∫
R

e−πcu2
du = c−1/2

for all c > 0. �
Corollary 1. Fix m, q, k ∈ Z, a bound B, and a standard deviation σ such that
B < σ < q. Moreover, let e ∈ Zq be such that |e| ≤ B. If σ = Ω

(
B

√
m/ log k

)
,

then
RD2

(
(e + χσ)m‖χm

σ

)
= poly(k)

where Xm denotes m independent samples from X.

Proof. Rényi divergence cannot grow by applying a function to both distribu-
tions. Since the discrete Gaussians e + χσ and χσ are obtained from the contin-
uous Gaussians β + Ψα and Ψα by scaling and rounding, where β = |e|/q and
α = σ/q, we see that

RD2

(
e + χσ‖χσ

) ≤ RD2

(
β + Ψα‖Ψα

)
= exp

(
2π(β/α)2

) ≤ exp
(
2π(B/σ)2

)
.

Therefore, RD2

(
(e + χσ)m‖χm

σ

) ≤ exp
(
2πm(B/σ)2

)
, and the result follows. �
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A Proof of Lemma 2

Proof. By the definition of Rényi divergence,

RD2

(
Xs‖Ys

)
= Ea←Rq

Pr
(
Xs = (a, �a · s�p)

)

Pr
(
Ys = (a, �a · s�p)

)

= Ea←Rq

1
Pre←χ

(�a · s + e�p = �a · s�p

) .
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We define the set borderp,q(B) =
{
x ∈ Zq :

∣
∣x − q

p �x�p

∣
∣ < B

}
. For a ring

element a ∈ Rq, we use ai denote the ith coefficient in the power basis.
For t = 0, . . . , n and for any t ∈ {0, . . . , n}, we define the set BADs,t ={
a ∈ Rq : |{i ∈ [n], (a · s)i ∈ borderp,q(B)}| = t}}. These are the a for

which a · s has exactly t coefficients which are dangerously close to the round-
ing boundary. Fix arbitrary t and a ∈ BADs,t. For any i ∈ [n] such that
(a · s)i /∈ borderp,q(B), Prei

[�(a · s)i + ei�p = �(a · s)i�p] = 1. For any i ∈ [n]
such that (a · s)i ∈ borderp,q(B), the event �(a · s)i + ei�p = �(a · s)i�p still holds
in one of the two cases ei ∈ [−B, . . . , 0] and ei ∈ [0, . . . , B]. By the assumption
on the noise distribution Prei

[�(a · s)i + ei�p = �(a · s)i�p] ≥ 1/2. Because e is
independent over all coefficients and a has exactly t coefficients in borderp,q(B),
Pre←χ

(�a · s + e�p = �a · s�p

) ≥ 1
2t . Because s is a unit in Rq so that a · s is uni-

form over Rq and Pr[a ∈ BADs,t] ≤ (
n
t

) (
1 − |borderp,q(B)|

q

)n−t ( |borderp,q(B)|
q

)t

.

Conditioning over the event a ∈ BADs,t, we conclude

RD2

(
Xs‖Ys

) ≤
n∑

t=0

2t · Pr[a ∈ BADs,t] =
(

1 +
|borderp,q(B)|

q

)n

.

The desired conclusion follows from |borderp,q(B)| ≤ 2pB. �
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Abstract. Secret-key authentication protocols have recently received a
considerable amount of attention, and a long line of research has been
devoted to devising efficient protocols with security based on the hard-
ness of the learning-parity with noise (LPN) problem, with the goal of
achieving low communication and round complexities, as well as highest
possible security guarantees.

In this paper, we construct 2-round authentication protocols that are
secure against sequential man-in-the-middle (MIM) attacks with tight
reductions to LPN, Field-LPN, or other problems. The best prior pro-
tocols had either loose reductions and required 3 rounds (Lyubashevsky
and Masny, CRYPTO’13) or had a much larger key (Kiltz et al., EURO-
CRYPT’11 and Dodis et al., EUROCRYPT’12). Our constructions follow
from a new generic deterministic and round-preserving transformation
enhancing actively-secure protocols of a special form to be sequentially
MIM-secure while only adding a limited amount of key material and
computation.

Keywords: Secret-key authentication · Man-in-the-Middle security ·
LPN · Field LPN

1 Introduction

This paper constructs efficient provably-secure protocols for secret-key authenti-
cation, i.e., for the basic cryptographic task where one party, called the prover,
proves to another – the verifier – that they share the same key. Theoretical
constructions of such protocols (with strong security, to be defined below) exist
from any one-way function. Moreover, practical two-round protocols can be built
from any message-authentication code (MAC) by having one party authenticate
a random challenge, and can be instantiated efficiently for example assuming
AES-128 is unpredictable.

In contrast, this paper contributes to a line of work [10,13,15,16,18–20,22]
on building provably-secure authentication protocols with security reductions to
the learning parity with noise (LPN) and related problems that are as efficient
as possible, meaning that key-size, communication, and rounds are minimized.
c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part I, LNCS 9562, pp. 225–248, 2016.
DOI: 10.1007/978-3-662-49096-9 10



226 D. Cash et al.

LPN problem provides confidence in security due to the failure to find
polynomial-time algorithms for it and its variants, despite wide interest [5,7,21],
and finding constructions of cryptographic primitives based on LPN has given
rise to a substantial body of works [2,6,14,17].

The motivation behind LPN-based authentication protocols is their potential
to be implemented with different efficiency characteristics from protocols with
security reductions to blockcipher security or to problems from number theory
and related fields. For instance, the parallel nature of LPN-based protocols seems
difficult to achieve with factoring or discrete-log type assumption. The poten-
tial efficiency benefits of LPN-based implementations are a subject of ongoing
research, which has identified some advantageous scenarios [15] but also invented
faster attacks [21]. We thus focus on developing techniques for protocol design
and theoretical analysis that beat previous asymptotic runtimes, key sizes, and
round complexity of protocols with similar security reductions. We make no
specific claims of more efficient protocols in specific deployment scenarios.

Concurrently to the above, the recent interest on secret-key authentication
has also motivated attempts to develop a better understanding of its founda-
tions, providing theoretical constructions based on concrete number-theoretic
assumptions like the Decisional Diffie-Hellman (DDH) assumption, or general
assumptions like weak pseudorandom functions [10,22]. We will also contribute
to these lines of work with new constructions.

But before we turn to describing our contributions in detail, we first give an
overview of different security notions for secret-key authentication, as well as of
previous works.

Security notions. Several security notions for secret-key authentication pro-
tocols have been considered, inspired by corresponding notions for the task
of public-key authentication [12]. The weakest, passive security, says that an
attacker should not be able to fool the verifier after observing several sessions
between an honest prover and an honest verifier. This seems unreasonably weak
for most settings, so the stronger man-in-the-middle (MIM) security notion says
that no attacker should be able to cause the verifier to accept in any session where
a message has been changed. Realizing that MIM security from LPN seems diffi-
cult to achieve efficiently, several works instead targeted an intermediate notion
called active security which says that the attacker cannot fool the verifier after
interacting with the prover arbitrarily and observing sessions passively.

The LPN Assumption (and its variants). Recall that for parameters � ∈ N

and 0 ≤ γ ≤ 1
2 , the (decisional) Learning Parity with Noise (LPN) problem

LPN�,γ is the problem of distinguishing a polynomial number of samples of the
form (ri, rT

i s + ei), for a common random secret s ∈ {0, 1}�, random vector
ri ∈ {0, 1}�, and random bit ei (taking value one with probability γ), from
samples of the form (ri, bi), where bi is a random bit. The corresponding LPN�,γ

assumption is that no efficient (i.e., polynomial-time) attacker can distinguish
between the two distributions, except with negligible advantage. Ignoring the
obvious differences in the error distributions, this is the modulo 2 variant of the
learning with error problem introduced in [27].
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We are also going to consider a variant of the LPN problem, introduced
and studied in [15], called Field LPN. The Field-LPN�,γ problem is very similar,
however samples have the form (ri, ri ◦ s+ ei) or (ri, r′

i), where ◦ denotes multi-
plication of �-bit vectors interpreted as elements of the extension field F2� , ei is
a random vector where each component is 1 independently with probability γ,
and r′

i is uniform.

Prior constructions. Let us briefly outline the landscape of earlier works on
secret-key authentication. Table 1 summarizes some of these results.

Juels and Weis [18] first pointed out that a very simple two-round secret-
key authentication protocol by Hopper and Blum [16], called the HB protocol,
enjoys very low hardware complexity, and is hence amenable to implementations
on RFID tags. Moreover, they proved that it is passively secure under the LPN
assumption. Also in [18], they proposed a further three-round protocol, called
HB+, which was proven actively secure in its sequential version under the LPN
assumption, and later the proof was extended to its parallel version by Katz
et al. [19]. The round complexity was then reduced to two rounds by a new
protocol of Kiltz et al. [20], and in contrast to HB+, this latter protocol enjoys
a tight reduction to the hardness of LPN. Heyse et al. [15] then proposed an
even more efficient two-round protocol, called Lapin, based on the hardness of
the field LPN problem. We stress that three-round protocols are less attractive
than two-round ones since the prover needs to keep a state (beyond the secret
key), which is problematic on lightweight devices like RFID tags.

In contrast, progress has been significantly harder in the context of MIM
security. On the one hand, researchers have attempted to design multiple HB-
like protocols with MIM security [8,11,13,25] without or only partial security
proofs. Otherwise, provably MIM-secure constructions all in fact provide a full
message-authentication code (MAC) secure under LPN or Field LPN [10,15,20].
Unfortunately, these constructions are significantly less efficient than the existing
actively secure protocols mentioned above.

While following [3] the notion of MIM security traditionally allows an attacker
to interact with arbitrarily many instances of the prover and the verifier concur-
rently, Lyubashevky and Masny [22] recently considered the notion of sequential
MIM (sMIM) security, which slightly weakens MIM to only allow the attacker
to interfere with non-overlapping sequential sessions. They argue this notion is
sufficient for situations in which keys are managed to never allow parallel ses-
sion, and the sMIM notion is an interesting technical step towards improving
authentication protocol security beyond active security while maintaining effi-
ciency. Moreover, existing MIM attacks against actively secure protocols are
often sequential (e.g., [26]). They give new protocols based on LPN and field-
LPN that nearly match the complexities of actively-secure ones, but all require
three rounds and suffer from a non-tight reduction to the underlying problem.

With respect to other assumptions, we also note that efficient three-round
constructions from DDH and weak pseudorandom functions have also been given,
achieving both active security [10] and sMIM security [22]. Two-round MIM
secure protocols from PRGs have recently been proposed [9].
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All of our constructions come with reductions running in polynomial time
and succeeding with probability polynomially proportional to that of a given
attack. One may consider looser reductions via so-called complexity leveraging
where the reduction loses an exponential factor, with the view that one can
enlarge the security parameter to compensate for the loss. Indeed one can prove
(say) the AUTH2 protocol from [20] as a fully-secure MAC with an exponential
loss of security. A concrete instantiation of the result (assuming the BKW attack
complexity is optimal [7]) will be more efficient than the other approaches we
have outlined.

Polynomial reductions, however, are preferred as they are more robust to
algorithmic advances against the underlying problems. Achieving them is, in
our view, an interesting theoretical challenge that requires new techniques. In
an implementation it is not clear to the authors if either approach (leveraging
or polynomial reductions) is necessarily more secure given the many factors one
must consider.

Our contributions. We provide the to-date most efficient constructions of
sMIM-secure authentication protocols based on the hardness of LPN, as well as
on other assumptions. Our constructions are two rounds and the first message
consists of a truly random challenge, and enjoy tight security reduction to the
underlying assumption.

We improve upon the round complexity of existing sMIM-secure proto-
cols without increasing key length and communication complexity, and without
resorting to complexity leveraging. See Table 1 for a comparison of two of our new
protocols to prior work. Note that our protocols are only a small constant factor
less efficient than the best known actively (or even passively) secure protocols.

At the high level, our constructions follow from a generic transformation
that upgrades a two round protocol of a special form to be sMIM-secure without
introducing significant overhead. The required form is not especially contrived,
but requires some care in its formalization and we present examples of such
protocols to obtain our instantiations. We note that our reduction does not
employ rewinding or forking lemmas like [22], and is tighter and (arguably, to
our taste) simpler as a result.

Our first construction achieves sMiM security with a tight reduction to LPN,
two rounds of communication, and only a modest increase in either key size or
communication over [22]. Our second construction, from Field LPN, matches
the key size and communication of prior work in two rounds instead of three
and has a tight reduction. In fact, for an appropriate choice of components, the
second construction can be understood as a two-round version of the three-round
protocol from [22], though their proof does not cover the two round version.

We also provide a simple construction of a two-round sMIM secure authen-
tication protocol based on the DDH assumption, where the prover response
consists of two group elements. Interestingly, the same construction was proven
MIM secure under the (less standard) Gap-CDH assumption in [10].

Our last construction is based on an arbitrary weak PRF. The complexity of
the construction is comparable to the one building a MAC from a weak PRF,
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Table 1. Authentication protocols based on LPN-related Assumptions. The security
column lists the best possible security reduction from the given assumption, where q is
the number of tag and verification queries. (The two MAC2 protocols are even secure
in the full MiM model.) The complexity column lists the key sizes and communication
complexity of the protocol (with lower-order terms dropped), where � parameterizes
the hardness of the assumption. All LPN-based protocols offer a trade-off between key
size and communication, which is listed in the last two columns. (∗): Reductions to
active security only considered one challenge session, and thus did not have the factor
q. We state the bound for q challenge sessions for a fair comparison to MiM security.
(∗∗): We remark that the key size of the LPN-based protocol in [22] is �2 but one may
be able to reduce it to O(�) by using an almost pairwise independent hash function.

Protocol Rounds Security Complexity Compl. trade-off

Assumption Active(∗) sMiM key size com. key size com.

HB [16] 2 LPN�,γ – – � �2 �2 2�

HB+ [18] 3 LPN�,γ q
√

ε – 2� 2�2 2�2 3�

AUTH2 [20] 2 LPN�,γ qε – 2� �2 2�2 2�

Lapin [15] Field-LPN�,γ 2� 2� – –

MAC2 [20] 2 LPN�,γ qε qε 3�2 �2 �3 4�

Lapin+MAC2 [15] Field-LPN�,γ �2 4� – –

LM [22] 3 LPN�,γ q
√

ε �2 (∗∗) �2 �2 3�

Field-LPN�,γ 4� 3� – –

This work 2 LPN�,γ qε 5� �2 2�2 3�

Field-LPN�,γ 4� 3� – –

using for example the constructions in [1,23,24]. However, our new protocols
enjoy much better parallelism when compared to the naive approach, and is
hence interesting on its own right. It is also fair to point out that [22] accom-
plishes in three rounds the harder task of finding a generic construction from
a (randomized) weak PRF. We observe however that the only known concrete
instantiations of weak PRFs are based on LPN/LWE-type assumptions as well
as on DDH, and for all these concrete instantiations our constructions are more
efficient.

We remark that it is not hard to see that our proofs do not show (full) MIM
security, but we are not aware of an explicit MIM attack against the protocols.

Organization. Section 2 contains basic definitions used below. In Sect. 3 we
describe our transformation from weaker protocols of a special form, and in
Sect. 4 we give several instantiations of the transformation.

2 Preliminaries

For a set X , x
$← X denotes sampling x from X according to the uniform

distribution. We use bold lowercase letters for vectors and bold uppercase letters
for matrices, e.g., x ∈ F

�
2, X ∈ F

�×n
2 . For c ∈ F

�
2, let Mc denote the matrix of the
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linear map lc implementing the finite field multiplication with c when interpreted
as an element in F2� .1

Symmetric authentication syntax. We are going to consider secret-key
authentication protocols, where a prover proves to a verifier that they hold the
same secret key over two or more rounds.

More formally, an r-round symmetric authentication protocol with associated
key space K is a triple of algorithms Auth = (Gen,P,V) with the following
properties:

– Key Generation. The probabilistic key-generation algorithm K ← Gen(1k)
takes as input a security parameter k ∈ N (in unary) and outputs a secret key
K ∈ K.

– Interactive Execution. The probabilistic interactive algorithms P and V, which
we refer to as the prover and the verifier, take both as input a secret key
K ∈ K, synchronously interact with each other over r rounds, and finally
V always receives the last message and outputs a decision out(PK ,VK) ∈
{accept, reject}.

We say that Auth has completeness error α if for all k ∈ N, Pr[out(PK ,VK) =
reject;K ← Gen(1k )] ≤ α. In this paper, we will focus on the simpler case of two-
round protocols, where additionally the first message is a random challenge c ∈ C
for some set C. We call such protocols two-round random-challenge secret-key
authentication protocols. In particular, in such protocols the prover simplifies
to a probabilistic algorithm PK , taking the challenge and the secret key K,
and producing the message t to be sent back to the adversary. Moreover, for a
challenge c ∈ C and response t from the prover, the verifier is fully specified by
an algorithm VK(c, t) ∈ {accept, reject}.

Security. Several security notions for symmetric-key authentication protocols
have been considered in the literature. The weakest one, passive security, says
that an attacker should not be able to fool the verifier after observing several
sessions between a honest prover and a honest verifier. The stronger notion called
active security says that the attacker cannot fool the verifier after interacting
with the prover arbitrarily and observing sessions passively.

This paper targets the security notion of (sequential) security against man-
in-the-middle attacks (or s-mim security, for short). Here, the adversary acts as
a man-in-the middle in a sequence of independent sessions between the prover
and the verifier, all with the same secret key. The adversary wins whenever it
manages to let the verifier accept in some session and has changed at least one
of the messages sent by the prover or the verifier. We are going to formalize this
notion for the relevant case of two-round protocols with random challenge.

Concretely, we describe this security notion via the following game S-MIM
for an attacker A and a two-round random-challenge authentication protocol
Auth = (Gen,P,V) with challenge set C.

1 This representation is unique once the irreducible polynomial f defining F2n =
F2[x]/(f) is fixed.
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main S-MIM:

sid ← 0
K

$← Gen(1k )
Run AC(),P(),V()(1k )
Ret ∃i: (c[i], t[i]) �= (c′[i], t′[i]) ∧ d[i] = accept

Procedure C():

If c[sid] = ⊥ then

c[sid]
$← C

Ret c[sid]

Procedure P(c′):

If c′[sid] = ⊥ then

c′[sid] ← c′, t[sid]
$← PK(c′)

Ret t[sid]

Procedure V(t′):

t′[sid] ← t′, c
$← C()

d[sid] ← VK(c, t′[sid])
sid ← sid + 1
Ret d[sid]

In the game, the attacker makes calls to three oracles, C(·),P(·) and V(·).
All oracles use a global variable sid to “synchronize” the sessions being sim-
ulated. The first oracle returns, for every session, a new random challenge.
The oracle P(c′) runs the prover on input c′ and returns the response t. Ora-
cle V(t′) checks that t′ is a valid response for the current session challenge
c[sid] (obtained by calling C()), and increases the session number. Note that
there is a unique value c[sid] defined in every session, and P only provides (at
most) one valid challenge-tag pair (c′, t) per session. The s-mim advantage is
Advs-mim

Auth (A) = Pr
[
S-MIMA

Auth ⇒ true
]
, and we say that Auth is (t, r, ε)-s-mim-

secure if for all attackers A with time complexity t and running at most r sessions,
we have Advs-mim

Auth (A) ≤ ε.

Hash functions. Our constructions rely on almost pairwise-independent hash
functions.

Definition 1 (Almost pairwise-independent hash functions). For δ ≥ 1,
a function H : KH × X → Y is δ-almost pairwise-independent if

Pr [HKH
(x) = y ∧ HKH

(x′) = y′ ] ≤ δ

|Y|2

for all distinct x, x′ ∈ X and all y, y′ ∈ Y, and where KH
$← KH. Moreover, by

itself, HKH
(x) is uniformly distributed over Y.

The requirement that a single input has uniformly distributed output is not
common, but will be useful in applications and satisfied by the construction
given below. Moreover, Definition 1 implies adaptive security, i.e., when given x,
HKH

(x) = y, for any x′ and y′ chosen adaptively depending on y, the probability
that HKH

(x′) = y′ is at most δ/|Y|.
Lemma 2. If H is δ-almost pairwise-independent, then for every (unbounded)
adversary A and every x ∈ X , we have

Pr[HKH
(x′) = y′ ∧ x′ 
= x : KH

$← KH, (x′, y′) $← A(HKH
(x), x) ] ≤ δ

|Y| .
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Proof. Assume wlog that A is deterministic, and let x′(x, y) and y′(x, y) be the
values of x′ and y′ output by A on inputs y, x, where x′(x, y) 
= x by assumption.
Then,

Pr
[
HKH

(x′) = y′ : KH
$← KH, (x′, y′) $← A(HKH

(x), x)
]

=
∑

y

Pr [HKH
(x) = y ∧ HKH

(x′(x, y)) = y′(x, y) ] ,

which is smaller than |Y| · δ
|Y|2 = δ

|Y| . ��

A construction. We will make use of the following key-length efficient con-
struction of a δ-almost-pairwise independent function, where KH = F

2, Y = F

and X = F
� for some finite field F. The function, given KH = (a, b) ∈ F

2 and
input x = (x0, . . . , x�−1) ∈ F

�, outputs Ha,b(x) =
∑�−1

i=0 xi ◦ ai + b .

Lemma 3. The function H above is δ-almost pairwise independent for δ = �−1.

The folklore proof is given for completeness.

Proof. Fix x = (x0, x1, . . . , x�−1) and x′ = (x′
0, x

′
1, . . . , x

′
�−1). Also, we define

the polynomial px(a) =
∑�−1

i=0 xi ◦ ai, and analogously, define px′(a). Given two
y, y′ ∈ F, we look at the number of keys (a, b) such that px(a) + b = y and
px′(a) + b = y′. This in particular implies that a needs to satisfy

px(a) − px′(a) =
�−1∑

i=0

(xi − x′
i) ◦ ai = y − y′ ,

and since there exists i with xi 
= x′
i, note that by the Schwartz-Zippel lemma

there are at most � − 1 solutions a with the above property, since px(a) − px′(a)
is a polynomial of degree at most �−1. Each such a defines a unique b, and thus
there are overall at most � − 1 solutions, and each one of them is taken with
probability |F|2.

Finally, note that the distribution of Ha,b(x) is, by itself, uniform, because
the term b is uniform, and thus completely blinds the output. ��

3 Generic Construction

This section presents our main result, a generic construction of a two-round
sequential MIM-secure authentication protocol Auth. Our construction relies on
a simpler two-round symmetric authentication protocol Auth′ used as a compo-
nent and which satisfies a particular form of security, in addition to having a
structured tag space, as we discuss next. Later below, we will provide several
instantiations of this generic construction in Sect. 4 via constructions of Auth′

based on a set of different assumptions.
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3.1 Tools

Our construction is going to rely on an authentication protocol Auth =
(Gen,P,V) whose responses given by the prover (which we call tags, following
existing conventions in the literature) τ

$← PK(c) are composed of two distinct
components τ = (τ1, τ2) ∈ T1 × T2. We refer to τ1 and τ2 as the left and right
tag, respectively. In addition to this, we are going to require that the protocol
satisfies two new properties which we now introduce and discuss.

Tag sparsity. The first property is a combinatorial property on the tag space
of Auth. We are going to require that given any challenge c, any secret key K,
and any left component of the tag τ1, there are only few right components τ2
such that τ = (τ1, τ2) is a valid tag for challenge c and key K. This is captured
formally by the following definition.

Definition 4 (Right tag-sparsity). For an ε = ε(k), we say that Auth =
(Gen,P,V) with tags in T1 ×T2, challenge space C, and key space K has ε-sparse
right tags (or alternatively, Auth has ε-right tag sparsity) if

Pr
[
VK(c, (τ1, τ2)) = accept; τ2

$← T2

]
≤ ε

for all c ∈ C, K ∈ K, and τ1 ∈ T1.

Note that one equivalent formulation is that for all K, c, and τ1, there are at
most ε · |T2| valid τ2.

ROR-CMA security. We also consider a new property called real-or-random
right-tag chosen-message security (or ror-cma security, for short), which is specific
to protocols as above with tag space T1 × T2. It considers a game where an
attacker first receives a challenge c∗, then can obtain prover tags for arbitrary
challenges of its choice, and at the end can issue exactly one verification query
for the challenge c∗. The notion demands that the attacker cannot distinguish
this game from another game where queries for challenges c 
= c∗ have the right
tag τ2 replaced by a random element from the same set. Formally, we introduce
the following two games – denoted ROR-CMA(0),ROR-CMA(1) – involving Auth
as well as an adversary A which outputs a decision value in {true, false} at the
end of the game:

main ROR-CMA(b):

K
$← Gen(1k )

c∗ $← C
(τ∗, state)

$← AT(·)(c∗)
d ← VK(c∗, τ∗)
Ret A(state, d)

Procedure T(c):

(τ1, τ1
2 ) $← PK(c), τ0

2
$← T2

If c = c∗ then
Ret τ = (τ1, τ1

2 )
Else ret τ = (τ1, τ b

2 )

Then, for an attacker A and a two-round protocol Auth, we define the
ror-cma advantage as

Advror-cma
Auth (A) = Pr[ROR-CMAA

Auth(0) ⇒ true] − Pr[ROR-CMAA
Auth(1) ⇒ true] .
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Accordingly, we say that Auth is (t, q, ε)-ror-cma-secure if for all t-time attackers
A issuing at most q queries to oracle T(·), we have Advror-cma

Auth (A) ≤ ε.

Relation to active security. We stress that ror-cma security and negligi-
ble right-tag sparsity, when achieved simultaneously, do not even imply passive
security. Indeed, it is easy to modify any protocol with these two properties into
one accepting tags of the form (τ1, 0) for every K and c (and hence becoming
completely insecure) without invalidating these two properties. However, any
such protocol can easily be enhanced to be secure against active adversaries by
blinding τ2 with a secret field element K, either via addition or multiplication.
(Note that negligible right-tag sparsity implies that the set of right tags has
overwhelming size.)

Nonetheless, in order to better understand our construction below, it is
important to observe why the resulting protocol is not necessarily s-mim secure.
Consider e.g. the protocol such that PK(c) = (τ1, τ2 = PRFK(τ1‖c)) for a ran-
dom τ1 and pseudorandom function PRF with key K and n-bit output, and
for which VK accepts (τ1, τ2) on input c if and only if PRFK(τ1‖c) has Ham-
ming distance at most 1 from τ2. One can verify that this protocol is ror-cma
secure and has negligible right-tag sparsity. But when the above tranformation
is applied, resulting in tags (τ1, τ2 = PRFK(τ1‖c) + K ′), an attacker can eas-
ily derive a new valid tag for c as (τ1, τ2 + Δ) for any weight-one Δ – hence
breaking s-mim security. (Similar counterexamples can be built when blinding
via multiplication.)

3.2 The Generic Construction

We now turn to describing our generic construction transforming a ror-cma-
secure two-round random challenge authentication protocol Auth′ with ε-right
tag sparsity (for a small ε) into a sequential MIM secure two-round authentica-
tion protocol.

Description. Let Auth′ = (Gen′,P′,V′) be two-round authentication protocol
with associated key space K, challenge space C, and split tag space T = T1 ×T2,
where we assume that T2 = F is a finite field.2 We will use + and ◦ to denote
addition and multiplication of field elements, respectively. Let H : KH × T1 →
F be a hash function. We build a 2-round symmetric authentication protocol
Auth = (Gen,P,V) as follows. (The protocol Auth inherits the completeness
error of Auth′.)

– Key Generation. The key-generation algorithm Gen(1k) picks a key KH
$← KH

for H, an element KF

$← F\{0}, and generates a key K ′ $← Gen′(1k) for Auth′.
The key is K = (K ′,KH,KF).

– Challenge. The challenge is generated by the verifier V as c
$← C.

2 This is w.l.o.g., as we can always represent T2 as a bit-string {0, 1}t for some t ∈ N

which we associate with F2t .
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– Response. The response σ = (σ1, σ2) to challenge c ∈ C is computed by the

prover P by first running τ = (τ1, τ2)
$← P′

K′(c) and

σ = (σ1, σ2) = (τ1, τ2 ◦ KF + HKH
(τ1)) ∈ T1 × F.

– Verify. Given challenge c and response σ = (σ1, σ2), the verifier V reconstructs

τ = (τ1, τ2) = (σ1, (σ2 − HKH
(σ1)) ◦ KF

−1)

and returns the decision {accept, reject} ← V′
K′(c, τ).

Overhead. We note that our transformation does not increase the tag size of
the underlying protocol Auth′, and thus retains its communication complexity.
Moreover, the key length increases by adding KF and KH. Below, we will show
that H can be instantiated with the hash-function construction given in Sect. 2,
and thus these two additional keys consist overall of three field elements.

3.3 Security

The following theorem establishes the concrete security of our generic construc-
tion. In particular, it says that as long as for sufficiently small δ and ε, H is
δ-almost pairwise independent and Auth′ has both ε-right-tag sparsity and is
ror-cma-secure, then the construction is s-mim-secure.

Theorem 5 (Security of the generic construction). Assume that H is δ-
almost universal and that Auth′ satisfies ε-right tag sparsity and has completeness
error α. Then, for all s-mim-attackers A invoking at most r sessions, there exists
a ror-cma-attack B such that

Advs-mim
Auth (A) ≤ r ·

(
Advror-cma

Auth′ (B) +
r

|C| + εδ
|F|

|F| − 1
+ r · α

)
,

where B has running time approximately equal to that of A, and makes at most
r queries to its oracle. In other words, if Auth′ is (t, r, ε)-ror-cma-secure, then
Auth is (t′, r, r · (ε + r/|C| + εδ|F|/(|F| − 1)))-s-mim-secure, where t′ ≈ t.

Proof. Let A be an attacker for game S-MIM which calls its oracles for at
most r sessions. In the following, we are going to upper bound Advs-mim

Auth (A) =
Pr

[
S-MIMA

Auth ⇒ true
]
. The proof proceeds via a sequence of games.

As our first step, we prove that it is sufficient to consider the first round
where the attacker alters the communication between prover and verifier, and
the latter still accepts. Formally, for all sid∗ ∈ {1, . . . , r}, let Winsid∗ be the
event that in the experiment S-MIMA

Auth session sid∗ is the first session where
the attacker makes the verifier non-trivially accept (and thus d[sid∗] = accept)
with (c′[sid∗], t′[sid∗]) 
= (c[sid∗], t[sid∗]). In particular, for all sid < sid∗ we
either have (c[sid], t[sid]) = (c′[sid], t′[sid]) or d[sid] = reject. Moreover, let
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Fig. 1. Game Gsid∗ for sid∗ ∈ {1, . . . , r} in the proof of Theorem 5. All oracles return
⊥ if sid > sid∗.

Win =
⋃r

sid∗=1 Winsid∗ be the event that S-MIMA
Auth outputs true in the first

place. Clearly, the r events Win1, . . . ,Winr are disjoint, and therefore

Pr [Win ] = Pr

[
r⋃

sid∗=1

Win
∗
sid

]

=
r∑

sid∗=1

Pr [Win
∗
sid ] .

As our first step, we introduce r new games G1, . . . ,Gr, where Gsid∗ only allows
the adversary A to execute sid∗ sessions, and the verifier returns reject for the
first sid∗−1 sessions unless the adversary A has been simply forwarding honestly
generated messages. A formal description of Gsid∗ is given in Fig. 1. There, we
implicitly assume that all oracles return ⊥ whenever sid > sid∗. It is easy to
see that by construction, Pr

[
GA

sid∗ ⇒ true
] ≥ Pr [Winsid∗ ] − (sid∗ − 1)α. The

offset depending on the completeness error α is due to the fact that GA
sid∗ always

accepts honest executions in sessions sid < sid∗, whereas this is not necessarily
true in S-MIMA

Auth. Therefore,

Pr
[
S-MIMA

Auth ⇒ true
]

= Pr [Win ] ≤ r2α +
r∑

sid∗=1

Pr
[
GA

sid∗ ⇒ true
]

. (1)

In the remainder of this proof, for every sid∗ ∈ {1, . . . , r}, we are going to prove
an upper bound on Pr

[
GA

sid∗ ⇒ true
]
. In particular, we now fix an arbitrary

sid∗ ∈ {1, . . . , r}, and let H0 = Gsid∗ .
The proof now continues by transitioning from Game H0 in turn to games

H1, H2 and H3. With respect to H0, these games will only differ in the way in
which queries to P are answered, but all games will otherwise inherit the main
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Fig. 2. Modified prover oracles in the games H1, H2, and H3.

procedure, as well as C and V, verbatim from Gsid∗ = H0. A formal specification
of the respective procedures is given in Fig. 2, and we now discuss them in detail.

We first transition to Game H1, where we will use ror-cma security of Auth′

to replace the right half of every tag computed by P to a random component
whenever c′ 
= c[sid∗], i.e., different from the random challenge used in the last
round. The proof of the following lemma is given below.

Lemma 6. There exists an attacker B such that

Pr
[
HA

0 ⇒ true
] − Pr

[
HA

1 ⇒ true
] ≤ Advror-cma

Auth′ (B) ,

where B has running time approximately equal to that of A, and makes at most
r queries to its oracle.

Subsequently, in Game H2, whenever c′ 
= c[sid∗], instead of generating τ2 at
random, we directly generate σ2 uniformly at random from the same set. Note
that because KF 
= 0, we have that τ2 · KF is a fresh random value, and thus the
two games H1 and H2 are identical,

In the next game, Game H3, the procedure P replies to a query c′ = c[sid∗]
only if it is made in session sid∗, and otherwise returns ⊥. As c[sid∗] is chosen
uniformly at random, and independent of the interaction between the adversary
and the oracles in the first sid∗ − 1 sessions, the “fundamental lemma” of game
playing [4] yields

Pr
[
HA

2 ⇒ true
]−Pr

[
HA

3 ⇒ true
]

≤ Pr [ c[sid∗] ∈ {c′[1], c′[2], . . . , c′[sid∗ − 1]} ] ≤ r

|C| .
(2)

Therefore, putting together Eq. (1), Lemma 6, and Eq. (2), we obtain that there
exists an attacker B making at most r oracle queries and with time complexity
close to the one of A such that

Pr
[
S-MIMA

Auth ⇒ true
]

≤ r ·
(
Advror-cma

Auth′ (B) +
r

|C| + Pr
[
HA

3 ⇒ true
]
)

+ r2α .
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In the rest of the proof, we give an upper bound on the probability that the
game H3 outputs true. The argument is going to rely on the almost pairwise-
independence of H and the right-tag sparsity of Auth′, and is from now on a
purely information-theoretic argument. In particular, it does not rely on KAuth′

being hidden, but only on the fact that all the right tags in sessions prior to sid∗

are random.

Analysis of winning probability in H3. In the following, for notational
convenience we let σ[sid∗] = (σ1 = τ1, σ2) and σ′[sid∗] = (σ′

1, σ
′
2) be the original

and modified values in the second-round of session sid∗. Similarly, we simply
denote c = c[sid∗] and c′ = c′[sid∗]. Concretely, we are going to consider three
different cases when analyzing the probability Pr

[
HA

3 ⇒ true
]

: (1) c′ 
= c, (2)
c′ = c and σ1 = σ′

1, and (3) c′ = c and σ1 
= σ′
1. We now analyze the three

individual cases.

Case c′ 
= c. Observe first that in session sid∗, the attacker obtains (τ1, σ2),
where (τ1, τ2)

$← P′
K(c′

sid∗) and σ2
$← T2, and inputs (σ′

1, σ
′
2) to V. It wins if

(σ′
1, τ

′
2) is a valid tag, where τ ′

2 = (σ′
2 − HKH

(σ′
1)) ◦ K−1

F
.

The crucial point is that KF and KH have never been used prior to the
computation of τ ′

2, as the oracle P has only returned random right tags. So we
can equivalently think of generating these uniformly at random for the first time
at this point independent of the rest of the game, and consider the probability
that V′

K(c, (σ′
1, τ

′
2)) verifies. Moreover, the value Y := HKH

(σ′
1) is going to be

uniform (as we don’t evaluate the function on any other point) by the δ-almost
pairwise independence of H. Therefore, for every value t ∈ F,

Pr [ τ ′
2 = t ] = Pr

[
(σ′

2 − Y ) ◦ K−1
F

= t
]

= Pr [Y = KF ◦ t + σ′
2 ] =

1
|F| .

However, by ε-right tag sparsity, we know that there are at most ε|F| possible
values t for which (σ′

1, t) is a valid tag, and thus by the union bound

Pr
[
HA

3 ⇒ true | c′ 
= c
]

= Pr [V′
K(c, (σ′

1, τ
′
2)) = accept ] ≤ ε · |F| · 1

|F| = ε . (3)

Case c′ = c, σ1 = σ′
1 = τ1 and σ2 
= σ′

2. In this case, in session sid∗, the
attacker obtains (τ1, σ2), where (τ1, τ2)

$← P′
K(c) and σ2

$← τ2 ◦ KF + HKH
(τ1).

Subsequently, it inputs (τ1, σ′
2) to V. It wins if V′

K(c, (τ1, τ ′
2)) = accept, where

τ ′
2 = (σ′

2 −HKH
(τ1))◦K−1

F

= τ2. Once again, we evaluate H only with one input,

and as above Y = HKH
(τ1) is uniformly distributed.

Now, given σ2, τ2, and σ′
2, we want to upper bound the probability that

τ ′
2 = t 
= τ2 for some value t ∈ F, where the probability is over the choice of KF

and Y .

Pr [ τ ′
2 = t | σ2 = τ2 ◦ KF + Y ] =

Pr [ t ◦ KF + Y = σ′
2 ∧ τ2 ◦ KF + Y = σ2 ]

Pr [ τ2 ◦ KF + Y = σ2 ]
.

Since τ2 
= t, there exists exactly one KF such that (τ2 − t) · KF = σ2 − σ′
2,

and moreover, this defines a unique value for Y , which is taken with probability
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at most 1/|F|, and thus the probability in the numerator is upper bounded
by 1/(|F|(|F| − 1)). Moreover, τ2 ◦ KF + Y is clearly uniform (because Y is
uniform), and thus the denominator is 1/|F|. Putting these together gives us
Pr [ τ ′

2 = t | σ2 = τ2 ◦ KF + Y ] ≤ 1/(|F| − 1). Now, due to ε-right tag sparsity,
there are at most ε · |F| right tags τ ′

2 that verify, and thus

Pr
[
HA

3 ⇒ true | c′ = c ∧ σ1 = σ′
1

] ≤ ε · |F|
|F| − 1

. (4)

Case c′ = c and σ1 
= σ′
1. For the final case, the attacker obtains (τ1, σ2) as

in the previous case, but inputs (σ′
1 
= τ1, σ

′
2) to V, and the latter computes

τ ′
2 = (σ′

2 − HKH
(σ′

1)) ◦ K−1
F

.
Here, we indeed evaluate HKH

on two inputs. However, by Lemma 2, we
see that for every possible values σ′

1 and y′, chosen adaptively depending on τ1
and HKH

(τ1), HKH
(σ′

1) = y′ with probability at most δ/|F|. Therefore, for every
possible t such that V′

K(c, (σ′
1, t)) = accept, we have

Pr [ τ ′
2 = t ] = Pr [HKH

(σ′) = KF · t + σ′
2 ] ≤ δ/|F|.

Now, due to ε-right tag sparsity, there are at most ε · |F| such right tags, and
thus

Pr
[
HA

3 ⇒ true | c′ = c ∧ σ1 
= σ′
1

] ≤ ε · |F| · δ

|F| = εδ . (5)

Putting things together. To conclude the proof, we observe that all terms
in Eqs. (3), (4) and (5) are upper bounded by ε · δ · |F|

|F|−1 , and thus we also have

Pr
[
HA

3 ⇒ true
] ≤ ε · δ · |F|

|F|−1 . ��

Proof (Lemma 6). The attacker B for ROR-CMA(b) is very simple. It simu-
lates the execution of Hb to the attacker A. Initially, B uses its input challenge
c∗ as csid∗ . Then, when simulating queries to P on input c′, it forwards them
to its own oracle T, to obtain a pair (τ1, τ2). Finally, B uses the one avail-
able verification query to compute V’s decision bit in session sid∗. Finally, B
outputs the games Hb’s output. By inspection, it is not hard to verify that
Pr

[
ROR-CMA(b)B

Auth′ ⇒ true
]

= Pr
[
HA

b ⇒ true
]
, which concludes the proof of

the lemma. ��

4 Instantiations

In this section, we will provide examples of ror-cma-secure authentication pro-
tocols. All of them can be transformed to s-mim-secure authentication protocols
using the transformation from Sect. 3. Table 2 summarizes the resulting protocols
compactly.
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Table 2. New s-mim-secure 2-round authentication protocols.

Scheme Assump Gen(1n) / Response P(c) / Verify V(c, σ)

AuthLPN Subsect. 4.1 LPN Gen(1n) : (x1, . . . , x5)
$← (F�

2)
5

P(c) = (R, R · (Mc · x1 + x2) + x3 ◦ e + Hx4,x5 (R) ∈ F
�×n
2 × F

�
2

V(c, (R, z)) : |(z − Hx4,x5 (R) − R · (Mc · x1 + x2)) ◦ x−1
3 | small?

AuthTLPN Subsect. 4.1 LPN Gen(1n) : (X1, X2, x3, x4)
$← (Fn×�

2 )2 × (F�
2)

2

P(c) = (r, (X1 · Mc + X2) · r + x3 ◦ e + x4) ∈ F
�
2 × F

n
2

V(c, (r, z)) : |(z − x4 − (X1 · Mc + X2) · r) ◦ x−1
3 | small?

AuthField-LPN Subsect. 4.2 Field-LPN Gen(1n) : (x1, . . . , x4)
$← (F2� )

4

P(c) = (r, r ◦ (x1 ◦ c + x2) + x3 ◦ e + x4) ∈ F2� × F2�

V(c, (R, z)) : |(z − x4 − r ◦ (x1 ◦ c + x2)) ◦ x−1
3 + x4)| small?

Authddh Subsect. 4.4 ddh Gen(1n) : (x1, x2, X)
$← F

2
q × G

P(c) = (R, X · Rx1c+x2 ) ∈ G × G

V(c, (r, z)) : X · Rx1c+x2 = z?

Authwprf Subsect. 4.3 wprf (x0,0, . . . , x�,1, x1, x2)
$← D

2� × F
2

P(c) = (r,
∑�

i=1 F (xi,ci
, r) + Hx1,x2 (r)) ∈ D × F

V(c, (r, z)) :
∑�

i=1 F (xi,ci
, r) + Hx1,x2 (r) = z?

4.1 Instantiations from LPN

Learning Parity with Noise. For a parameter 0 < γ ≤ 1/2, we define
the Bernoulli distribution Bγ that assigns e

$← Bγ the values 1 and 0 with
probabilities γ and 1 − γ, respectively. If D is a distribution over D, then x $←
Dn denotes the n-fold distribution where each component of x ∈ D

n is chosen
according to D.

To define the LPN�,γ problem in dimension � ∈ N and Bernoulli parameter
0 < γ ≤ 1/2 we introduce the LPN advantage as the quantity

AdvLPN(A) = Pr
[
ALPNs,γ() ⇒ true

]
− Pr

[
ALPNs,1/2() ⇒ true

]
,

where s $← F
�
2 and LPNs,α (α ∈ {γ, 1/2}) returns (r, rT · s + e) for r $← F

�
2 and

e
$← Bα. Note that oracle LPNs,1/2 always returns uniform (r, z) $← F

�
2 ×F2. We

say that the LPN�,γ is (t, q, ε)-hard if for all attackers A with time complexity t,
making at most q oracle queries, we have AdvLPN(A) ≤ ε.

ROR-CMA secure Protocol. Let n = O(�) denote the number of repeti-
tions, γ the parameter of the Bernoulli distribution, and γ′ := 1/4 + γ/2 con-
trols the correctness error. The following authentication protocol Auth′

LPN =
{Gen′,P′,V′} originates from [20]. It has associated key space K = (F�

2)
2, tag

space T = T1 × T2 = F
�×n
2 × F

n
2 , and challenge space C = F

�
2.

– Key Generation. The key-generation algorithm Gen′ outputs a secret key K =

(k1,k2)
$← (F�

2)
2.

– Challenge. The challenge is generated by the verifier V′ as c $← F
�
2.

– Response. The response τ = (τ1, τ2) to challenge c ∈ F
�
2 is computed by the

proverP′ by samplingR $← F
�×n
2 and computing τ = (R,RT ·(Mc·k1+k2)+e),
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where e $← Bn
γ . (Recall that Mc is the matrix representation of the finite field

multiplication with c.)
– Verification. Given challenge c ∈ F

�
2 and response τ = (R, z) ∈ F

�×n
2 ×F

n
2 , the

verifier V′ outputs accept iff: rank(R) = n and |RT · (Mc ·k1 +k2)−z| ≤ γ′n.

With the choice of γ′ = 1/4 + γ/2, Auth′
LPN has 2−O(n) completeness error [20,

Theorem 4]. Further, it has ε-sparse right tags, where ε = Pr[ z ≤ γ′n | z $← F
n
2 ] ≤

2−O(n), using the Hoeffding bound.
The proof of the following theorem is postponed to Appendix A.2.

Theorem 7. If LPN�,γ is (t, nq, ε)-hard, then Auth′
LPN is (t′, q, ε)-ror-cma-secure

with t ≈ t′.

There exists an alternative ror-cma-secure authentication protocol [10,20] which
defines τ2 = RT · k↓c + e, where k↓c is the projection of k with respect to all �
non-zero bits of c ∈ C := {F2�

2 : |c| = �}.

MiM secure Protocol. A s-mim-secure 2-round authentication protocol
AuthLPN is obtained via the generic transformation from Sect. 3. An example
instantiation using the almost pairwise independent hash function from Sect. 2
is given in Table 2.

Trade-off. For all LPN-based protocols there exists a natural trade-off between
key-size and communication complexity, as we will explain now. In the ror-cma-
secure protocol AuthT′

LPN we can chose the key as (K1,K2)
$← (Z�×n

2 )2 and define
the response to a challenge c ∈ F �

2 as (r, (Mc ·K1 +K2) · r+e ∈ F
�
2 ×F

n
2 , where

r $← F
�
2. In the resulting s-mim-secure protocol we can use the specific pairwise

independent hash function HS1,s2(r) := S1r + s2, where (S1, s2) ∈ F
�×n
2 × F

n
2 .

The response to a challenge c is computed as σ = (r, z), where

z = ((Mc · K1 + K2) · r + e) ◦ KF + S1r + s2
= (Mc · K1 · MKF

+ K2 · MKF
+ S1) · r + MKF

· e + s2.

This can be rewritten as z = (Mc ·X1+X2)·r+e◦x3+x4 using the substitutions

x1 := K1 · MKF
, X2 := K2 · MKF

+ S1, x3 := KF, x4 := s2.

The resulting protocol AuthTLPN is described in Table 2.

4.2 Instantiations from Field-LPN

Field Learning Parity with Noise. To define the Field-LPN�,γ problem over
the extension field (F2� , ◦,+) and Bernoulli parameter 0 < γ ≤ 1/2, we introduce
the Field-LPN advantage as the quantity

AdvField-LPN(A) = Pr
[
AFLPNs,γ() ⇒ true

]
− Pr

[
AFLPNs,1/2() ⇒ true

]
,
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where s $← F2� and FLPNs,α returns (r, r ◦ s + e) for r $← F2� and e $← B�
α.

Note that FLPNs,1/2 always returns uniform (r, z) $← (F2�)2. We say that the
Field-LPN�,γ is (t, q, ε)-hard if for all attackers A with time complexity t making
at most q oracle queries, we have AdvField-LPN(A) ≤ ε.

ROR-CMA secure Protocol. Let γ the parameter of the Bernoulli distri-
bution, and γ′ := 1/4 + γ/2 controls the correctness error. We use F = F2�

to denote the finite field. The following authentication protocol Auth′
Field-LPN =

{Gen′,P′,V′} originates from [15]. It has associated key space K = F
2, split tag

space T = T1 × T2 = F × F, and challenge space C = F.

– Key Generation. The key-generation algorithm Gen′ outputs a secret key K =

(k1,k2)
$← F

2.
– Challenge. The challenge is generated by the verifier V′ as c $← F.
– Response. The response τ = (τ1, τ2) to challenge c ∈ F is computed by the

prover P′ as τ = (r, r ◦ (k1 ◦ c + k2) + e), where r $← F, e $← B�
γ .

– Verification. Given challenge c ∈ F and response τ = (r, z) ∈ F
2, the verifier

V′ outputs accept iff |r ◦ (k1 ◦ c + k2) − z| ≤ γ′n.

As in the LPN case, Auth′
Field-LPN has 2−O(�) completeness error and 2−O(�)-sparse

right tags. The proof of the following theorem is similar to that of Theorem 7
and is therefore omitted.

Theorem 8. If Field-LPN�,γ is (t, q, ε)-hard, then Auth′
Field-LPN is (t′, q, ε)-

ror-cma-secure with t′ ≈ t.

MiM secure Protocol. We now apply our generic transformation from
Sect. 3 to Auth′

Field-LPN to obtain a s-mim-secure protocol. The key consists of
(k1,k2,KF, s1, s2), where we use the concrete pairwise-independent hash func-
tion Hs1,s2(r) = s1◦r+s2. The response to a challenge c is computed as σ = (r, z),
where z = (r ◦ (k′

1 ◦ c+k′
2) + e) ◦ KF + s1 ◦ r+ s2 = (r ◦ (k′

1 ◦ KF ◦ c+k′
2 ◦ KF +

s1)+e ◦KF + s2. This can be written as z = (r ◦ (x1 ◦ c+x2)+e ◦x3 +x4 using
the substitutions x1 := k1 ◦ KF, x2 := k2 ◦ KF + s1, x3 := KF, x4 := s2.
The resulting simplified protocol AuthField-LPN is given in Table 2.

4.3 Instantiations from Weak PRFs

Weak Pseudorandom Function. Let F be a function family F : K×D → F.
To define the wprfF assumption over function family F we introduce the wprf
advantage of an adversary A as the quantity

Advwprf
F (A) = Pr[AFx() ⇒ true ] − Pr[AU() ⇒ true ] ,

where x
$← K, Fx returns (r, F (x, r)) for r

$← D, and U returns uniform (r, z) $←
D × F. We say that F is a (t, q, ε)-weak PRF if for all attackers A with time
complexity t, making at most q oracle queries, we have Advwprf

F (A) ≤ ε.
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ROR-CMA secure Protocol. We define an authentication protocols
Auth′

wprf = {Gen′,P′,V′} with associated key space K = K
�, split tag space

T = T1 × T2 = D × F, and challenge space C = {0, 1}�.

– Key Generation. The key-generation algorithm Gen′ outputs a secret key K =

(x1,0, . . . , x�,0, x1,1, . . . , x�,1)
$← K

2×�.
– Challenge. The challenge is generated by the verifier V′ as c

$← {0, 1}�.
– Response. The response τ = (τ1, τ2) to challenge c ∈ {0, 1}� is computed by

the prover P′ as τ = (r, z =
∑�

i=1 F (xi,ci
, r)), where r

$← D.
– Verification. Given challenge c ∈ {0, 1}� and response τ = (r, z) ∈ D × F, the

verifier V′ outputs accept iff
∑�

i=1 F (xi,ci
, r) = z.

The protocol has perfect completeness and 1/|F|-sparse right tags. It is easy to
extendAuth′

wprf to randomized weak PRFs (with additive noise), as defined in [22].
This way we obtain protocols from a more general class of assumptions, such as
Toeplitz-LPN [22]. The proof of the following theorem is in Appendix A.2.

Theorem 9. If F is a (t, q, ε)-weak PRF, then Auth′
wprf is (t′, q, ε/�)-ror-cma-

secure with t′ ≈ t.

4.4 Instantiation from DDH

The DDH Problem. Let G be a family of groups with Gn = (G, g, p), where G

is a cyclic group of prime-order p with �log p� = n and g generates G. To define
the ddhG problem over group family G we introduce the ddh advantage as the
quantity

Advddh
G (A) = Pr

[
ADDHx() ⇒ true

]
− Pr

[
AU() ⇒ true

]
,

where x
$← Zp and DDHx returns (R,Rx) for R

$← Zp, and U returns uniform
(R,Z) $← G

2. We say that ddhG is (t, q, ε)-hard if for all attackers A with time
complexity t making at most q oracle queries, we have Advddh(A) ≤ ε. Note that
classical ddh hardness is exactly (t′, 1, ε′)-hardness of ddhG and by the random
self-reducibility of ddh we have that ddhG is (t, q, ε)-hard iff it is (t′, 1, ε′)-hard
with t ≈ t′ and ε ≈ ε′.

ROR-CMA secure Protocol. We define an authentication protocol
Auth′

ddh = {Gen′,P′,V′} with associated key space K = Z
2
p, split tag space

T = T1 × T2 = G × G, and challenge space C = Zp.

– Key Generation. The key-generation algorithm Gen′ outputs a secret key K =

(y1, y2)
$← Z

2
p.

– Challenge. The challenge is generated by the verifier V′ as c $← Zp.
– Response. The response τ = (τ1, τ2) to challenge c ∈ Fp is computed by the

prover P′ as τ = (R,Ry1·c+y2), where R
$← G.
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– Verification. Given challenge c ∈ Zp and response τ = (R,Z) ∈ G
2, the verifier

V′ outputs accept iff Ry1·c+y2 = Z.

The protocol Auth′
ddh has perfect completeness and 1/p-sparse right tags.

Theorem 10. If ddhG is (t, q, ε)-hard, then Auth′
ddh is (t′, q, ε)-ror-cma-secure

with t′ ≈ t.

The proof is similar to the one of Theorem 7 and is omitted.

MiM secure Protocol. We now apply our generic transformation from Sect. 3
to Auth′

ddh to obtain a s-mim-secure protocol. By using the field structure of Zp

in the exponent, we can use the concrete pairwise-independent hash function
Hs1,S2(R) = Rs1 ·S2 ∈ G, where (s1, S2) ∈ Zp ×G. The key of Authddh consists of
(y1, y2,KF, s1, S2). We now show that the key of Authddh can be shrinked by two
elements, see Table 2. The response to a challenge c is computed as σ = (R,Z),
where Z = (Ry1·c+y2)KF · Rs1S2 = Ry1KF·c+y2KF+s1S2. This can be written as
Z = Rx1c+x2S2 using the substitutions x1 := y1KF, x2 := y2KF + s1, X :=
S3. The resulting simplified protocol Authddh is given in Table 2.
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A Omitted Proofs

A.1 Proof of Theorem 7

Proof. Let A be an adversary in the ROR-CMAA
Auth′(b) security game. We

define an adversary BLPNs,α() against the LPN�,γ problem, where α ∈ {γ, 1
2}

is unknown.

Adversary BLPNs,α :

k′
2

$← Z
�
2

c∗ $← F
�
2

(τ∗, state ′) $← AT (·)(1k, c∗)
Parse τ∗ = (R∗, z∗) ∈ F

�×n
2 × F

n
2

If |(R∗)T · k′
2 − z∗| ≤ γ′n and rank(R) = n

d ← accept
Else d ← reject
Ret A(state, d)

Procedure T (c):
If c = c∗ then
z $← Bn

γ

R $← F
�×n
2

Else
(R̃, z) $← LPN

n
s,α()

RT ← R̃T · (Mc − Mc∗)−1

τ1 ← R
τ2 ← z + RTk′

2

Ret (τ1, τ2)
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Note that due to the finite field properties of the linear map Mc, matrix Mc −
Mc∗ is always invertible for c 
= c∗. Adversary B implicitly defines k1 := s and
k2 := −Mc∗ · k1 + k′

2, where s is the LPN secret. As k′
2 is uniform, the key

k = (k1,k2) has the correct distribution. The definition of K = (k1,k2) implies
that

K(c) := Mc · k1 + k2 = (Mc − Mc∗) · k1 + k′
2. (6)

As K(c∗) = k′
2, the bit d is always computed correctly by B. We now consider

the distribution of T(c). First note that τ1 is always a uniform matrix in F
�×n
2 .

For c = c∗, z is Bernoulli distributed and, using Eq. (6), τ2 = RTk′
2 + z is

distributed as computed by prover P′. Further, for c 
= c∗ we have

τ2 = R̃T · s + e + RTk′
2

= RT · (Mc − Mc∗) · k1 + e + RTk′
2

= RT · (Mc · k1 + k2) + e,

where e $← B�
α. If α = 1

2 , then τ1 and τ2 are uniformly distributed and

Pr[BLPNs,1/2() ⇒ true ] = Pr[ROR-CMAA
Auth′(0) ⇒ true ].

If α = γ, then τ = (τ1, τ2) is distributed as computed by prover P′. Hence
Pr

[
BLPNs,γ() ⇒ true

]
= Pr[ROR-CMAA

Auth′(1) ⇒ true ]. The last two equations
provide AdvLPN(B) = Advror-cma

Auth′ (A), where the running time of B is approxi-
mately that of A. ��

A.2 Proof of Theorem 9

Proof. Let A be an attacker in the ROR-CMA(1) game. We now describe games
G0, . . . ,G� that are exactly like the ROR-CMA(1) game, but with modified pro-
cedure T (c). For j ∈ {0, . . . , � − 1}, let Sj : {0, 1}j → F be a random function,
where S0(ε) is defined to be 0. Note that Sj can be efficiently simulated by lazy
evaluation.

main Gj :

K
$← Gen′(1k )

c∗ $← {0, 1}�

(τ∗, state) $← AT (·)(c∗)
d ← V′

K(c∗, τ∗)
Ret A(state, d)

Procedure T (c): //Gj

r
$← D

If c|j = c∗
|j then

z =
∑�

i=1 F (xi,ci
, r)

Else
z = Sj(c|j) +

∑�
i=j+1 F (xi,ci

, r)
Ret τ = (τ1 ← r, τ2 ← z)

Note that in game G0 all tags τ are computed correctly by T and hence G0 =
ROR-CMA(1). Furthermore, in game G�, all tags except for challenge c∗ are
uniform and hence G� = ROR-CMA(0). The following lemma completes the proof
of Theorem 9.
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Lemma 11. For any j ∈ {0, . . . , � − 1}, there exists an attacker Bj such that

Pr
[
GA

j ⇒ true
] − Pr

[
GA

j+1 ⇒ true
] ≤ Advwprf

F (B).

To prove the lemma, we define an adversary B = B
O()
j (0 ≤ j ≤ � − 1) against

F , where O ∈ {Fx,U}.

Adversary BO:

c∗ $← {0, 1}�

xi,k =

{
undefined i = j + 1 ∧ k 
= c∗

j+1

uniform in K otherwise

(τ∗, state) $← AT (·)(c∗)
Parse τ∗ = (r∗, z∗) ∈ D × F

If
∑�

i=1 F (xi,c∗
i
, r∗) = z∗

d ← accept
Else d ← reject
Ret A(state, d)

Procedure T (c):
If c|j+1 = c∗

|j+1 then

r
$← D; z =

∑�
i=1 F (xi,ci

, r)
Else

if cj+1 
= c∗
j+1 then (r, z′) $← O()

Else r
$← D; z′ = F (xj+1,cj+1 , r)

z = Sj(c|j) + z′ +
∑�

i=j+2 F (xi,ci
, r)

τ1 ← r
τ2 ← z
Ret (τ1, τ2)

Adversary B knows all secrets xi,k except xj+1,1−c∗
j

which he defines implicitly
as the secret x from the Fx oracle. In particular, he knows xi,c∗

i
and the bit d

is always computed correctly. It remains to analyze the distribution of T(c). If
cj+1 = c∗

j+1, then the output of T(c) in games Gj and Gj+1 is identical. We
now analyze the case cj+1 
= c∗

j+1. If O = Fx, then z = Sj(c|j) + F (x, r) +
∑�

i=j F (xi,ci
, r) = Sj(c|j) +

∑�
i=j+1 F (xi,ci

, r) and hence Pr[BFx() ⇒ true ] =

Pr[GA
j ⇒ true ]. If O = U, then z = Sj(c|j)+z′+

∑�
i=j+1 F (xi,ci

, r) = Sj(c|j+1)+∑�
i=j+1 F (xi,ci

, r) and hence Pr[BU() ⇒ true ] = Pr[GA
j+1 ⇒ true ]. ��
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Abstract. We describe a new technique for conducting “partitioning
arguments”. Partitioning arguments are a popular way to prove the secu-
rity of a cryptographic scheme. For instance, to prove the security of a
signature scheme, a partitioning argument could divide the set of mes-
sages into “signable” messages for which a signature can be simulated
during the proof, and “unsignable” ones for which any signature would
allow to solve a computational problem. During the security proof, we
would then hope that an adversary only requests signatures for signable
messages, and later forges a signature for an unsignable one.

In this work, we develop a new class of partitioning arguments from
simple assumptions. Unlike previous partitioning strategies, ours is based
upon an algebraic property of the partitioned elements (e.g., the signed
messages), and not on their bit structure. This allows to perform the par-
titioning efficiently in a “hidden” way, such that already a single “slot”
for a partitioning operation in the scheme can be used to implement
many different partitionings sequentially, one after the other. As a con-
sequence, we can construct complex partitionings out of simple basic
(but algebraic) partitionings in a very space-efficient way.

As a demonstration of our technique, we provide the first signature
and public-key encryption schemes that achieve the following properties
simultaneously: they are (almost) tightly secure under a simple assump-
tion, and they are fully compact (in the sense that parameters, keys, and
signatures, resp. ciphertexts only comprise a constant number of group
elements).

Keywords: Partitioning arguments · Tight security proofs · Digital
signatures · Public-key encryption

1 Introduction

Partitioning Arguments. Many security reductions rely on a partitioning
argument. Informally, a partitioning argument divides the parts of a large system
into those parts that are under the control of the simulation, and those parts into
which a computational challenge can be embedded. For instance, a partitioning
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argument for a signature scheme could divide the set of message into “signable
messages” (for which a signature can be generated by the security reduction),
and “unsignable messages” (for which any signature would solve an underlying
problem). During the security reduction, we hope that an adversary only asks
for the signatures of signable messages, but forges a signature for an unsignable
one. Partitioning arguments are a popular means for proving the security of
signature schemes (e.g., [17,29,35,38]), identity-based encyption schemes (e.g.,
[9,10,14,38]), or tightly secure cryptosystems (e.g., [6,15,32]).

The Complexity of Bit-based Partitioning. All of the above works (except
for [10,17], which use a programmable random oracle to implement a partition-
ing) partition messages or identities according to their bit representation. For
instance, in the signature scheme from [29], messages are signable precisely if they
do not start with a particular bit prefix. This non-algebraic approach requires a
certain preparation in the scheme itself: already the scheme must establish cer-
tain distinctions of messages based on their bit representation. For instance, the
signature scheme of [38] uses a hash function of the form H(M) = h0

∏
j hj,Mj

,
where Mj are the bits of the signed message M , and h0 and the hj,b are public
group elements. This leads to comparatively large public parameters or keys, in
particular because all potential distinctions (based on the values of the Mj) are
already present in the scheme.

Our Contribution. In this work, we develop an entirely different partitioning
approach: instead of partitioning based on the bit representation, we partition
according to a simple algebraic predicate. Namely, we view a message M as
above as a Zp-element, and consider various Legendre symbols Lj =

( fj(M)
p

)

for different affine functions fj . Taken together, sufficiently many Lj uniquely
determine M , but the computation of each Lj can be encoded as a series of
Zp-operations.1 Intuitively, this algebraic property allows to “internalize” and
hide the computations of the Lj , e.g., by hiding the fj inside a homomorphic
commitment. As a consequence, only one “universal” partitioning (according to
a single Lj) needs to be performed in the scheme itself; in the analysis, several
simple partitionings can then be implemented sequentially, by varying the fj .

Comparison with Previous Partitioning Techniques. Compared to previ-
ous, bit-based partitioning approaches, our new strategy has the advantage that
it simultaneously leads to compact schemes and to a tight security reduction.
Previous partitioning strategies were either based on more complex partition-
ings (such as [9,29,35,38]) that lead to a non-tight security reduction, or on
a sequence of simple bit-based partitionings (such as [6,15,32]) that lead to
large public parameters or keys. In contrast, we support many simple algebraic
partitionings (and thus a tight security reduction), but we occupy only one “par-
titioning slot” in the public parameters. This leads to tightly secure and very
compact applications, as we will detail next.

1 Technically, we will not even need to explicitly compute Lj , but only prove that
Lj = 1. This is possible using a quadratic equation over Zp.
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Applications. Specifically, we demonstrate the usefulness of our partitioning
technique by describing the first (almost) tightly secure signature and PKE
schemes that are fully compact, in the sense that parameters, keys, and signa-
tures (resp. ciphertexts) only contain a constant number of group elements. Our
security reduction loses only a factor of O(k), where k is the security parameter.
In particular, our security reduction does not degrade in the number of users or
signatures, resp. ciphertexts. The security of our schemes is based upon the Deci-
sional Diffie-Hellman (DDH) assumption in both preimage groups of a pairing.
(This assumption is also called “Symmetric External Diffie-Hellman” or SXDH.)
Tables 1 and 2 give a more detailed comparison with existing schemes.

In the following, we give more details on our techniques and results. To do
so, we start with a little background concerning our applications.

Tight Security Reductions. To argue for the security of a given cryptographic
scheme S, we usually employ a security reduction. That is, we try to argue that
every hypothetical adversary AS on S can be converted into an adversary AP

on an allegedly hard computational problem P . In that sense, the only way to
break S is to solve P . Of course, we are mostly interested in reductions to well-
investigated problems P . Furthermore, there are reasons to consider the tightness
of the reduction: a tight reduction guarantees that AP ’s success εP in solving P
(in a reasonable metric) is about the same as AS ’s success εS in attacking S.

To explain the impact of a (non-)tight reduction in more detail, consider a
public-key encryption (PKE) scheme S that is deployed in a many-user environ-
ment. In this setting, an adversary AS on S may observe, say, nC ciphertexts
generated for each of the, say, nU users. Most known security reductions in
this setting are non-tight, in the sense that εP ≤ εS

nU ·nC
. As a consequence,

keylength recommendations should also take nU and nC into account; no “uni-
versal” keylength recommendation can be given for such a scheme. This is partic-
ularly problematic in settings that grow significantly beyond initial expectations.

Tightly Secure Encryption and Signature Schemes. The construction
of tightly secure cryptographic schemes appears to be a nontrivial task. For
instance, although already explicitly considered in 2000 [3], tightly secure PKE
schemes have only been constructed very recently [2,6,15,28,32].2,3 Moreover,
the schemes from [2,28] have rather large ciphertexts, and the schemes induced
by [6,15] and from [32] require large parameters (but offer small keys and cipher-
texts).

The situation for tightly secure signature schemes is somewhat brighter, but
results are still limited. There are efficient signature schemes that are tightly
secure under “q-type” [8,16,36] or interactive [21] assumptions, or in the random
2 Actually, [6,15] construct tightly secure identity-based encryption (IBE) schemes.

However, those IBE schemes can be viewed as tightly secure signature schemes
(using Naor’s trick [11]), and then converted into tightly secure PKE schemes using
the transformation from [28]. In fact, the PKE scheme of [32] can be viewed as a
(modified and highly optimized) conversion of the IBE scheme from [15].

3 We note that earlier PKE schemes achieve at least a certain form of tight security
under “q-type” assumptions [22,23,27], or in the random oracle model [7,13,20].
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Table 1. Comparison of different (at least almost) tightly EUF-CMA secure signature
schemes from simple4 assumptions in pairing-friendly groups. The parameters, ver-
ification key, and signature columns denote space complexity, measured in group
elements. The reduction loss column denotes the (multiplicative) loss of the secu-
rity reduction to the respective assumption. For the schemes from [6,15], we assume
the signature scheme induced by the presented IBE scheme. Furthermore, n = Θ(k)
denotes the bitlength of the signed message (if the signed message is a bitstring and
not a group element or an exponent). We note that [32] mention that their scheme can
be generalized to the d-LIN assumption (including 1-LIN=DDH). However, since they
only give explicit complexities for the arising signatures (identical to the ones from [6]),
we restrict to their DLIN-based scheme. Finally, we remark that all of these schemes
(except for [12]) imply tightly secure PKE schemes (cf. Table 2).

Scheme Parameters Verification key Signature Reduction loss Assumption

BMS03 [12] 0 k + 3 k + 1 O(k) CDH

HJ12 [28] 2 28 8k + 22 O(1) DLIN

CW13 [15] 2d2(2n + 1) d 4d O(k) d-LIN

BKP14 [6] d d2(2n + 1) 2d + 1 O(k) Dd-MDDH

LJYP14 [32] 0 O(d2n) 2d + 1 O(k) d-LIN

This work 14 6 25 O(k) DDH

oracle model [5,24,30]. There are also more recent and somewhat less efficient
schemes tightly secure under simple4 assumptions [6,12,15,28,32] (see also [1,2]).
Some of these latter schemes can even be converted into tightly secure PKE
schemes; however, all of the schemes [2,6,12,15,28,32] suffer from asymptotically
large parameters, keys, or signatures (resp. ciphertexts).

The Scheme of Chen and Wee. Our technical ideas are best presented with
our signature scheme. At a very high level, we follow the strategy of Chen and
Wee [15] (see also [6]), where we interpret their IBE scheme as a signature scheme
using Naor’s trick [11]. In their scheme, signatures are of the form

σ =
(

h0, sigk ·
n∏

i=1

hi,Mi

)
, (1)

where sigk is the secret key, M = (Mi)n
i=1 ∈ {0, 1}n is the bit representation of

the signed message, and h0, (hi,0, hi,1)n
i=1 are group elements chosen from a joint

public distribution.5

4 With a “simple” assumption, we mean one in which the adversary gets a chal-
lenge whose size only depends on the security parameter, and is then supposed to
output a unique solution without further interaction. Examples of simple assump-
tions are DLOG, DDH, d-LIN, or RSA, but not, say, Strong Diffie-Hellman [8] or
q-ABDHE [22].

5 We note that although their scheme can be viewed as a generalization of Waters sig-
natures [38], their analysis is entirely different. Also, we omit here certain subtleties
regarding the used distributions of group elements.
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During their proof of existential unforgeability (EUF-CMA security), Chen
and Wee gradually modify signatures generated by the security experiment for
an adversary A. This is done via a small hybrid argument over the bit indices of
messages, and thus yields a security proof that loses a factor of O(n). Concretely,
in the i-th hybrid, generated signatures are of the form σ = (h0, sigkM1,...,Mi

·∏n
j=1 hj,Mj

), where sigkM1,...,Mi
= R(M1, . . . ,Mi) for a truly random function

R. Similarly, a forged message-signature pair (M∗, σ∗) from A is only considered
valid if it is consistent with sigkM∗

1 ,...,M∗
i

(instead of sigk). In other words, in the
i-th hybrid, the secret key used in signatures depends on the first i bits of the
signed message.

Table 2. Comparison of different (at least almost) tightly IND-CCA secure PKE
schemes from simple4 assumptions. As in Table 1, the parameters, public key, and
ciphertext columns denote space complexity, measured in group elements, and the
reduction loss column denotes the (multiplicative) loss of the security reduction to
the respective assumption. For the schemes from [6,15], we assume the PKE scheme
induced by the respective signature scheme when going through the construction of
[28]. We note that [32] only describe a symmetric-pairing version of their scheme, so
their DDH-based scheme is not explicit. However, we expect that their DDH-based
scheme has slightly more compact ciphertexts than ours.

Scheme Parameters Public key Ciphertext Reduction loss Assumption

HJ12 [28] O(1) O(1) O(k) O(1) DLIN

AKDNO13 [2] O(1) O(1) O(k) O(1) DLIN

CW13 [15] O(d2k) O(d) O(d) O(k) d-LIN

BKP14 [6] O(d) O(d2k) O(d) O(k) Dd-MDDH

LJYP14 [32] O(1) O(d2k) O(d) O(k) d-LIN

LJYP14 [32] 3 24k + 30 69 O(k) DLIN

This work 15 2 60 O(k) DDH

Thus, the difference between the (i−1)-th and the i-th hybrid is an additional
dependency of used secret keys on the i-th message bit Mi. To progress from
hybrid i − 1 to hybrid i, Chen and Wee first partition the message space in two
halves (according to Mi). Then, using an elaborate argument, they consistently
modify the secret keys used for messages from one half, and thus essentially
decouple those keys from the keys used for messages from the other half. This
creates an additional dependency on Mi. After n = |M | such steps, each signa-
ture uses a different secret key (up to multiple signatures of the same message).
In particular, A gets no information about the secret key sigkM∗

1 ,...,M∗
n

used to
verify its own forgery, and existential unforgeability follows.

We would like to highlight the partitioning character of their analysis: in their
proof, Chen and Wee introduce more and more dependencies of signatures on
the corresponding messages, and each such dependency is based upon a different
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partitioning of the message space.6 Now observe that already regular signatures
(as in (1)) feature distinctions based on all bits of M . These distinctions provide
the technical tool to introduce dependencies in the security proof. However,
as a consequence, rather complex joint distributions need to be sampled during
signature generation, which results in public parameters of O(n) group elements.

Algebraic Partitioning. In a nutshell, our main technical tool is a new way to
partition the message space of a signature scheme. We call this tool “algebraic
partitioning.” Concretely, a signature for a message M ∈ Zp in our scheme
consists essentially of an encryption of the secret key X, along with a consistency
proof:

σ = ( C = Enc(pk ,X), π ) . (2)

The corresponding encryption key pk is part of the verification key vk , and the
consistency proof π proves the following statement:

“Either C encrypts the secret key X, or f(M) ∈ Zp is a quadratic
residue (or both).”

Here, p is the order of the underlying group, and f : Zp → Zp is an affine
function fixed (but hidden) in the verification key. Implicitly, this provides a
single partitioning of messages into those for which f(M) is a quadratic residue,
and those for which f(M) is not. However, since f is hidden, many partitionings
can be induced (one after the other) by varying f during a proof.

In fact, during the security proof, this partitioning will fulfill the same role as
the bit-based partitioning in the analysis of Chen and Wee. In particular, it will
help to introduce additional dependencies of the signature on the message. More
specifically, in the i-th hybrid of the security proof, C will not encrypt X, but a
value XM that depends on the i Legendre symbols

( fj(M)
p

)
for randomly chosen

(but fixed) affine functions f1, . . . , fi. Each new such dependency is introduced by
first refreshing the affine function f hidden in vk , and then modifying all values
encrypted in signatures whenever possible (i.e., whenever f(M) is a quadratic
residue).7 Observe that the single explicit partitioning in regular signatures is
used several times (for different fj) to introduce many dependencies of signatures
on messages in the proof. The remaining strategy can then be implemented
as in [15].

Our different strategy to partition the message space results in a very com-
pact scheme. Namely, since only one explicit partitioning step is performed in the
scheme, parameters, keys, and signatures comprise only a constant number of
group elements. Specifically, parameters, keys, and signatures contain 14, 6, and
25 group elements, respectively. Besides, our scheme is compatible with Groth-
Sahai proofs [26]. Hence, when used in the construction of [28], we immediately

6 We note that a similar technique has also been used in the context of pseudorandom
functions [25,33].

7 This neglects a number of details. For instance, in the somewhat simplified scheme
above, π always ties the ciphertexts in signatures for quadratic non-residues f(M)
to a single value X. In our actual proof, we will thus simulate a part of π, such that
the encrypted values can be decoupled from the original secret key X.
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get the first compact (in the above sense) PKE scheme that is tightly IND-CCA
secure under a simple assumption.8

Different Perspective: Our Scheme as a MAC. So far our high-level discus-
sion can be equally used to justify a similar message authentication code (MAC),
in which verification is non-public. Such a MAC can then be converted into a
signature scheme, e.g., using the technique of Bellare and Goldwasser [4].9 One
could hope that this yields a more modular construction, possibly with a MAC
as a simpler basic building block. (In particular, this approach was suggested by
a reviewer.)

In this work, we still present our idea directly in terms of a signature scheme.
One reason is that a MAC following the strategy described above would actually
not be significantly less complex than a full signature scheme. In particular,
already a MAC would require Groth-Sahai proofs. Moreover, a modular approach
in the spirit of [4] would require “algebraically compatible” building blocks (to
allow for an efficient and tightly secure overall scheme), and would seem to lead
to a more complex presentation.

Open Problems. Besides of course obtaining more efficient (and compact)
schemes, it would be interesting to apply similar ideas in the identity-based
setting. Specifically, currently there is no fully compact identity-based encryption
(IBE) scheme whose security can be tightly based on a standard assumption.10

However, it is not obvious how to use algebraic partitioning in the identity-
based setting. Specifically, it is not clear how to “derive functionality” from
valid signature proofs, in the following sense.

Namely, first note that IBE schemes can be interpreted as signature schemes,
in a sense noted by Naor (cf. [11]): IBE user secret keys for an identity M
correspond to signatures for message M , and verification simply checks whether
the alleged signature works as a decryption key for identity M . It is natural to
use the same interpretation to try to “upgrade” a signature scheme to an IBE
scheme. For this strategy, however, one must find a way to make a signature
σ act as a decryption trapdoor, and thus to “derive functionality from σ” (as
opposed to just check σ for validity). In common discrete-log-based IBE schemes,
this functionality property is achieved by the fact that a pairing operation is

8 Actually, plugging our scheme directly into the construction of [28] yields an asymp-
totically compact, but not very efficient scheme. Thus, we provide a more direct and
efficient explicit PKE construction with parameters, public keys, and ciphertexts
comprised of 15, 2, and 60 group elements, respectively.

9 In a signature scheme derived using the conversion of Bellare and Goldwasser, the
verification key contains an encryption of the MAC secret key. A signature for a
message M then consists of a MAC tag τ for M , along with a non-interactive zero-
knowledge proof that τ is valid relative to the encrypted MAC key.

10 The schemes of [22,23] are tightly secure and fully compact, but rely on a non-
standard (q-type) assumption. On the other hand, IBE schemes obtained through
the “dual systems” technique (e.g., [31,37]) are compact and secure under standard
assumptions, but not known to be tightly secure.
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used to pair IBE user secret keys with ciphertext elements. The result of this
pairing operation is then a common secret that is shared between encryptor and
decryptor.

Our strategy, however, crucially uses quadratic Zp-equations in signatures (to
implement the algebraic partitioning of messages). In particular, our signature
scheme uses a pairing operation already to implement these quadratic equations
(even though signatures in our scheme consist solely of group elements in the
source group of the pairing). As a consequence, the pairing operation cannot be
used anymore to derive a common secret shared with the encryptor. Hence, at
least a straightforward way to turn our signature scheme into an IBE scheme
fails.11

Roadmap. After recalling some basic definitions, we present our signature
scheme in Sect. 3. In Sect. 4, we give a direct construction of a PKE scheme
derived from our signature scheme. In Sect. 5, we give more details on the exact
Groth-Sahai equations arising from the consistency proofs of signatures and
ciphertexts. In Appendix A, we provide additional illustrations for the proof of
our signature scheme.

2 Preliminaries

Notation. Throughout the paper, k ∈ N denotes the security parameter. For
n ∈ N, let [n] := {1, . . . , n}. For a finite set S, we denote with s ← S the process
of sampling s uniformly from S. For a probabilistic algorithm A, we denote with
y ← A(x;R) the process of running A on input x and with randomness R, and
assigning y the result. We write y ← A(x) for y ← A(x;R) with uniformly
chosen R, and we write A(x) = y for the event that A(x;R) (for uniform R)
outputs y. If A’s running time is polynomial in k, then A is called probabilistic
polynomial-time (PPT). A function f : N → R is negligible if it vanishes faster
than the inverse of any polynomial (i.e., if ∀c∃k0∀k ≥ k0 : |f(x)| ≤ 1/kc).

Collision-Resistant Hashing. A hash function generator is a PPT algorithm
H that, on input 1k, outputs (the description of) an efficiently computable func-
tion H : {0, 1}∗ → {0, 1}k.

Definition 1 (Collision-Resistance). We say that a hash function generator
H outputs collision-resistant functions H (or, when the reference to H is clear,
that such an H is collision-resistant), if

Advcr
H,A(k) = Pr

[
x 	= x′ ∧ H(x) = H(x′)

∣
∣ H ← H(1k), (x, x′) ← A(1k,H)

]

is negligible for every PPT adversary A.

11 We realize that this explanation is somewhat technical and may not seem very
compelling. We wish we had a better one.
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Signature Schemes. A signature scheme SIG consists of four PPT algorithms
SPars,SGen,Sig,Ver. Parameter generation SPars(1k) outputs public parame-
ters spp that are shared among all users. Key generation SGen(spp) takes public
parameters spp, and outputs a verification key vk and a signing key sigk . The
signature algorithm Sig(spp, sigk ,M) takes public parameters spp, a signing key
sigk , and a message M , and outputs a signature σ. Verification Ver(spp, vk ,M, σ)
takes public parameters spp, a verification key vk , a message M , and a potential
signature σ, and outputs a verdict b ∈ {0, 1}. For correctness, we require that
1 ← Ver(spp, vk ,M, σ) = 1 always and for all M , all (vk , sigk) ← SGen(1k), and
all σ ← Sig(spp, sigk ,M). For the sake of readability, we will omit the public
parameters spp from invocations of Sig and Ver when the reference is clear.

Definition 2 (Multi-user (One-Time) Existential Unforgetability). Let
SIG be a signature scheme as above, and consider the following experiment for
an adversary A:

1. A specifies (in unary) the number nU ∈ N of desired scheme instances.
2. The experiment then samples parameters spp ← SPars(1k) as well as nU

keypairs (vk (�), sigk (�)) ← SGen(spp).
3. A is invoked on input (1k, spp, (vk (�))nU

�=1), and gets access to signing oracles
Sig(sigk (�), ·) for all � ∈ [nU ]. Finally, A outputs an index �∗ ∈ [nU ] and a
potential forgery (M∗, σ∗).

4. A wins iff Ver(vk (�∗),M∗, σ∗) = 1 and M∗ was not queried to Sig(sigk (�∗), ·).
Let Adveuf-mcma

SIG,A (k) denote the probability that A wins in the above experiment.
We say that SIG is existentially unforgeable under chosen-message attacks in the
multi-user setting (EUF-mCMA secure) iff Adveuf-mcma

SIG,A (k) is negligible for every
PPT A. Let Advot-euf-mcma

SIG,A (k) be the probability that A wins in the slightly modi-
fied experiment in which only one Sig-query to each scheme instance � is allowed.
We say that SIG is existentially unforgeable under one-time chosen-message
attacks in the multi-user setting (OT-EUF-mCMA secure) iff Advot-euf-mcma

SIG,A (k)
is negligible for every PPT A.

Public-key Encryption Schemes. A public-key encryption (PKE) scheme
PKE consists of four PPT algorithms (EPars,EGen,Enc,Dec). The parame-
ter generation algorithm EPars(1k) outputs public parameters epp. Key gen-
eration EGen(epp) outputs a public key pk and a secret key sk . Encryption
Enc(epp, pk ,M) takes parameters epp, a public key pk , and a message M , and
outputs a ciphertext C. Decryption Dec(epp, sk , C) takes public parameters epp,
a secret key sk , and a ciphertext C, and outputs a message M . For correctness,
we require Dec(epp, sk , C) = M always and for all M , all epp ← EPars(1k), all
(pk , sk) ← EGen(epp), and all C ← Enc(epp, pk ,M). As with signatures, we
usually omit the public parameters epp from invocations of Enc and Dec.

Definition 3 (Multi-user, Multi-challenge Indistinguishability of
Ciphertexts). For a public-key encryption scheme PKE and an adversary A,
consider the following security experiment Expind-mcca

PKE,A (k):



260 D. Hofheinz

1. A specifies (in unary) the number nU ∈ N of desired scheme instances.
2. The experiment samples parameters epp ← EPars(1k), and nU keypairs

through (pk (�), sk (�)) ← EGen(epp), and uniformly chooses a bit b ← {0, 1}.
3. A is invoked on input (1k, epp, (pk (�))nU

�=1), and gets access to challenge ora-
cles O(�) and decryption oracles Dec(sk (�), ·) for all � ∈ [nU ]. Here, chal-
lenge oracle O(�), on input two messages M0,M1, outputs an encryption
C ← Enc(pk (�),Mb) of Mb.

4. Finally, A outputs a bit b′, and the experiment outputs 1 iff b = b′.

A PPT adversary A is valid if every pair (M0,M1) of messages submitted to an
O(�) by A satisfies |M0| = |M1|, and if A never submits any challenge cipher-
text (previously received from an O(�)) to the corresponding decryption oracle
Dec(sk (�), ·). Let

Advind-mcca
PKE,A (k) = Pr

[
Expind-mcca

PKE,A (k) = 1
]

− 1/2.

We say that PKE has indistinguishable ciphertexts under chosen-ciphertext
attacks in the multi-user, multi-challenge setting (short: is IND-mCCA secure)
iff Advind-mcca

PKE,A (k) is negligible for all valid A. Let Advind-mcpa
PKE,A be defined simi-

larly, except that A has no access to any Dec oracles. PKE has indistinguishable
ciphertexts under chosen-plaintext attacks in the multi-user, multi-challenge set-
ting (short: is IND-mCPA secure) iff Advind-mcpa

PKE,A (k) is negligible for all valid A.

Quadratic Residues and Legendre Symbols. Let p be a prime. Then,
QRp ⊆ Z

∗
p is the set of quadratic residues modulo p, i.e., the set of all x ∈ Z

∗
p

for which an r ∈ Z
∗
p with r2 = x mod p exists. Given p and an x ∈ QRp, such an

r can be computed efficiently. For x ∈ Zp, we let
(

x
p

)
= x

p−1
2 mod p denote the

Legendre of x modulo p. We have
(

x
p

) ∈ {−1, 0, 1}, and in particular
(

x
p

)
= 1 ⇔

x ∈ QRp, as well as
(

x
p

)
= 0 ⇔ x = 0, and

(
x
p

)
= −1 ⇔ x ∈ Z

∗
p \ QRp.

Group and Pairing Generators. A group generator G is a PPT algorithm
that, on input 1k, outputs the description of a group G, along with its (prime)
order p, and a generator g of G. A pairing generator P is a PPT algorithm that,
on input 1k, outputs descriptions of:

– three groups G, Ĝ, GT of the same prime order p, along with p, and generators
g, ĝ of G, Ĝ,

– a bilinear map e : G×Ĝ → GT that is non-degenerate in the sense of e(g, ĝ) 	=
1 ∈ GT .

Occasionally, it will also be useful to consider a pairing generator P as a group
generator (that only outputs (G, p, g) or (Ĝ, p, ĝ)).

Assumption 1 (Decisional Diffie-Hellman). For a group generator G and
an adversary A, let Advddh

G,A(k) be the following difference:

Pr
[A(1k, G, p, g, gx, gy, gxy) = 1

] − Pr
[A(1k, G, p, g, gx, gy, gz) = 1

]
.
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Here, the probability is over (G, p, g) ← G(1k) and uniformly chosen x, y, z ∈
Zp. We say that the Decisional Diffie-Hellman (DDH) assumption holds with
respect to G iff Advddh

G,A is negligible for every PPT A. When the reference to G
is clear, we also say that the DDH assumption holds in G (and write Advddh

G,A).
On occasion, we might also say that the DDH assumption holds in groups G or
Ĝ sampled by a pairing generator, with the obvious meaning.

ElGamal Encryption. The ElGamal encryption scheme PKEeg is defined as
follows, where we assume a suitable group generator G.

– EParseg(1k) runs (G, p, g) ← G(1k) and outputs epp = (G, p, g).
– EGeneg(epp) picks a uniform sk ← Zp, sets pk = gsk , and outputs (pk , sk).
– Enc(pk ,M), for M ∈ G, picks an R ← Zp, and outputs C = (gR, pkR · M).
– Dec(sk , C), for C = (C1, C2) ∈ G

2, outputs M = C2/Csk
1 .

The ElGamal scheme is tightly IND-mCPA secure under the DDH assumption in
G. Concretely, for every valid IND-mCPA adversary A, there is a DDH adversary
B (of roughly the same complexity as the IND-mCPA experiment with A) with
Advddh

G,B(k) = Advind-mcpa
PKEeg,A(k).

Groth-Sahai Proofs. In a setting with a pairing generator, Groth-Sahai proofs
[26] provide a very versatile and efficient way to prove the satisfiability of very
general classes of equations over G and Ĝ. We will not need them in full gener-
ality, and the next definition only captures a number of abstract properties of
Groth-Sahai proofs we will use. In particular, we will not formalize the exact
classes of languages amenable to Groth-Sahai proofs. (For the exact languages
used in our application, however, we give more details in Sect. 5.1.) Like [18,19],
we formalize Groth-Sahai proofs as commit-and-prove systems:

Definition 4 (GS Proofs [26]). The Groth-Sahai proof system for a given
pairing generator P consists of the following PPT algorithms, where gpp denotes
group parameters sampled by P.

Common Reference Strings. HGen(gpp) and BGen(gpp) sample hiding, resp.
binding common reference strings (CRSs) CRS.

Commitments. For a (hiding or binding) CRS CRS and a G-, Ĝ-, or Zp-
element v, the commitment algorithm Com(gpp,CRS, v;R) outputs a com-
mitment C, where R denotes the used random coins.

Proofs. Let CRS be a CRS, and let X be a system of equations. Each equation
may be over G, Ĝ, or Zp, and involve variables and constants. Let (vi)i be
a variable assignment that satisfies X , and let (Ri)i be a vector of random
coins for Com. Then Prove(gpp,CRS,X , (vi, Ri)i) outputs a proof π.

Verification. For a CRS CRS, a system X of equations, a commitment vector
(Ci)i to an assignment of the variables in X , and a proof π, the verification
algorithm Verify(gpp,CRS,X , (Ci)i, π) outputs a verdict b ∈ {0, 1}.

Simulation. For a hiding CRS generated as CRS ← HGen(gpp;RCRS), a system
X of equations, and a vector (Ri)i of commitment random coins, we have that
Sim(gpp, RCRS,X , (Ri)i) outputs a simulated proof π.
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As with signatures and encryption, we usually omit the group parameters
gpp on invocations of C,Prove,Verify,Sim when the reference is clear.

Theorem 1 (Properties of GS Proofs [26]). The algorithms from Defini-
tion 4 satisfy the following for all choices group parameters gpp ← P(1k) (unless
noted otherwise):

Homomorphic Commitments. For any (hiding or binding) CRS CRS,
any two given commitments Com(CRS, v;R) and Com(CRS, v′;R′) to G-
elements v, v′ allow to efficiently compute a commitment Com(CRS, v ·v′;R ·
R′) to v · v′. (Note that the corresponding random coins R · R′ can be effi-
ciently computed from R and R′.) The same holds for two commitments to
Ĝ-elements, and two commitments to Zp-elements (where the homomorphic
operation on Zp-elements is addition).

Dual-Mode Commitments. Consider a commitment C ← Com(CRS, v;R).
If CRS is binding, then C uniquely determines v, and if CRS is hiding, then
the distribution of C does not depend on v.

CRS Indistinguishability. For every PPT adversary A, there are PPT adver-
saries A1 and A2 with

∣
∣Pr

[A(1k,HGen(gpp)) = 1
] − Pr

[A(1k,BGen(gpp)) = 1
]∣∣

≤
∣
∣
∣Advddh

G,A1
(k)

∣
∣
∣ +

∣
∣
∣Advddh

Ĝ,A2
(k)

∣
∣
∣ ,

where the probability is over gpp ← P(1k), and the random coins of HGen,
BGen, and A.

Perfect Completeness. For every (hiding or binding) CRS CRS, every system
X of equations, every satisfying assignment (vi)i of X , and every possible
vector (Ci)i of commitments generated through Ci ← Com(CRS, vi;Ri), we
have Verify(CRS,X , (Ci)i,Prove(CRS,X , (vi, Ri)i)) = 1 with probability 1.

Perfect Soundness. For every binding CRS CRS, every system X of equations
that is not satisfiable, and every (Ci)i and π, Verify(CRS,X , (Ci)i, π) = 0
always.

Perfect Simulation. For every hiding CRS CRS ← HGen(gpp;RCRS), and
every system X of equations that is satisfied by a variable assignment (vi)i,
the following two distributions are identical:
(
(Ci)i, Prove(CRS,X , (vi, Ri)i)

)
for Ci ← Com(CRS, vi;Ri) and freshRi,

(
(Ci)i, Sim(RCRS,X , (Ri)i)

)
for Ci ← Com(CRS, 1;Ri) and freshRi.

(The probability space consists of the Ri and the coins of Prove and Sim.)

Since simulation is perfect (in the sense above), it also holds for reused commit-
ments (i.e., when multiple adaptively chosen statements X that involve the same
variables and commitments are proven, see also [18]). Besides, perfect simula-
tion directly implies perfect witness-indistinguishability (under a hiding CRS):
for any two vectors (vi)i and (v′

i)i of satisfying assignments of a given system X of
equations, the corresponding commitments and proofs ((Ci)i, π) and ((C ′

i)i, π
′)

are identically distributed. Again, this holds even if the same commitments are
used in several proofs for adaptively generated statements X .
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3 The Signature Scheme

3.1 Scheme Description

Setting and Ingredients. We assume the following ingredients:

– A pairing generator P that outputs groups G = 〈g〉 and Ĝ = 〈ĝ〉 of prime
order p > 2k and an asymmetric pairing e : G × Ĝ → GT . We make the DDH
assumption in both G and Ĝ.

– The ElGamal encryption scheme (given by algorithms EGeneg,Enceg,Deceg)
over G. (That is, we will use P in place of EParseg to generate the group G

for ElGamal.)
– A Groth-Sahai proof system for P (see Definition 4), given by algorithms

HGen,BGen,Com,Prove,Verify,Sim.

Public Parameters. SPars(1k) samples group parameters

gpp = (G, Ĝ, GT , p, g, ĝ, e) ← P(1k)

and sets eppeg = (G, p, g). Then, SPars generates two binding Groth-Sahai CRSs
and two ElGamal keypairs:

CRS1 ← BGen(gpp) (pk0, sk0) ← EGeneg(eppeg)

CRS2 ← BGen(gpp) (pk1, sk1) ← EGeneg(eppeg).

The public parameters are then defined as

spp = (gpp,CRS1,CRS2, pk0, pk1).

Key Generation. SGen(spp) first sets up the exponents

Z = X ← Z
∗
p and α = β = 0,

and commits to them using fresh random coins RZ , Rα, Rβ :

Cα ← Com(CRS1, α;Rα), Cβ ← Com(CRS1, β;Rβ),
CZ ← Com(CRS2, Z;RZ).

We will use that α, β define an affine function f : Zp → Zp through f(x) =
α · x + β mod p.

Verification and signing key are given by

vk = (CZ , Cα, Cβ) sigk = (X,RZ , Rα, Rβ).

Signature Generation. Sig(sigk ,M), for M ∈ Zp, picks fresh random coins R
and encrypts

C0 = Enceg(pk0, g
Z0 ;R) C1 = Enceg(pk1, g

Z1 ;R)
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for Z0 = Z1 = X ∈ Zp, using the same coins R in both encryptions for efficiency.
Then, Sig generates proofs π1 and π2 for the respective statements

(
Z0 = Z1︸ ︷︷ ︸

S1

∨ f(M) ∈ QRp ∪ {0}
︸ ︷︷ ︸

S2

)
and Z0 = Z︸ ︷︷ ︸

S3

. (3)

Here, Z0, Z1, Z, f refer to the values encrypted (resp. committed to) in C0, C1,
CZ , (Cα, Cβ). Concretely, Sig generates a proof π1 for S1∨S2 under CRS1, using
as witness Z0 = Z1 = X and the encryption coins R. Also, Sig computes a proof
π2 for S3 under CRS2, using as witness X and RZ , R. We stress that π1 and π2

are independently generated, with different (fresh) Groth-Sahai commitments to
the respective witnesses. We describe the exact Groth-Sahai equations for these
proofs in Sect. 5.1, and give some intuition on the meaning of the statements
S1-S3 in Sect. 3.2 below.

The signature is then defined as

σ = (C0, C1, π1, π2).

Verification. Ver(spp, vk ,M, σ) outputs 1 if and only if both proofs π1 and π2

in σ are valid with respect to M,C0, C1, CZ , Cα, Cβ .

Correctness. The completeness of Groth-Sahai proofs implies the correctness
of SIG.

Efficiency. SIG has the following efficiency characteristics (cf. Section 5.1):

– The public parameters consist of 8 G- and 6 Ĝ-elements, plus the group para-
meters gpp.

– Each verification key contains 2 G- and 4 Ĝ-elements.
– Each signing key contains 7 Zp-exponents.
– Each signature contains 11 G- and 14 Ĝ-elements.

3.2 Security Analysis

More Details on the Role of π1 and π2 in Signatures. Before we proceed to
the proof, we give some intuition on the proofs π1 and π2 published in signatures
(and the statements S1-S3):

– π1 proves that either C0 and C1 encrypt the same value or that the signed
message satisfies a special property S2 (or both). In the scheme, all messages
are special in this sense (because f(M) = 0 for all M). However, in the proof,
we can adjust f and, e.g., partition the set of messages into special and non-
special ones in a random and roughly balanced way. Intuitively, this provides a
means to make the double encryption (C0, C1) inconsistent (and subsequently
change the encrypted values) in signatures for special messages. At the same
time, any valid adversarial forgery on a non-special message (that does not
satisfy S2) must carry a consistent double encryption (C0, C1).
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– In the scheme, π2 ties the plaintext encrypted in C0 to the master secret Z.
In the simulation, we will remove that connection by simulating π2. Specifi-
cally, recall that π1 and π2 are independently generated, using independently
generated Groth-Sahai commitments to the respective witnesses. Thus, in the
proof, we can simulate π2 without witness (by choosing a hiding CRS2 and
using Sim), while preserving the soundness of π1 (assuming CRS1 is binding).
This simulation of π2 will be instrumental in changing the message encrypted
in C0 (when the signed message is special in the above sense).

Theorem 2 (Security of SIG). Under the DDH assumptions in G and Ĝ,
the signature scheme SIG from Sect. 3.1 is EUF-mCMA secure. Concretely, for
every EUF-mCMA adversary A on SIG, there exist DDH adversaries B and B′

(of roughly the same complexity as the EUF-mCMA experiment with A and SIG)
with

Adveuf-mcma
SIG,A (k) ≤ (8n+1) ·∣∣Advddh

G,B(k)
∣
∣+(4n+1) ·∣∣Advddh

Ĝ,B′(k)
∣
∣+O(n/2k) (4)

for n = 2�log2(p)� + k, where p denotes the order of G and Ĝ, and k is the
security parameter.

Proof Outline. The proof starts with a number of preparations for the core
argument. Our main goal during this phase will be to implement an additional
and explicit check of A’s forgery σ∗ = (C∗

0 , C∗
1 , π∗

1 , π
∗
2) for Deceg(sk0, C

∗
0 ) = gX∗

.
(Note that in the default key setup, this explicit check is redundant, since valid
signatures must fulfill statement S3 from (3).)

In the core argument (from Game 4 to Game 5, detailed in Lemma 1), we
replace the value X used in generated signatures and the additional forgery
check with a value H(M) that depends on the signed message. We start with a
constant function H(M) = X (which corresponds to Game 4), and then intro-
duce more and more dependencies of H(M) on the Legendre symbols

( fj(M)
p

)

for independently and randomly selected (invertible) affine functions fj .
Each such dependency is introduced as follows. We start by committing to

(the coefficients of) a new random function f∗ in Cα, Cβ . This change allows us
to modify the messages Z0, Z1 encrypted in generated signatures for all M with
f∗(M) ∈ QRp ∪ {0} (and only for those M), by proving S2 (and not S1) in
signatures. We will also abort if A’s forgery satisfies f∗(M∗) ∈ QRp ∪ {0}, and
we will keep enforcing our forgery check on C∗

0 . Hence, from A’s point of view, an
additional dependency on

( f∗(M)
p

)
is consistently introduced on all signatures.

More importantly, this dependency is also enforced during the additional forgery
check.

After sufficiently many such dependencies are introduced (for several different
f∗), all signatures are consistently generated with (or checked for) Z0 = Z1 =
R(M) for a truly random function R. At this point, A has to predict a truly
random function R on a fresh input M∗ in order to produce a valid forgery.
Hence, A’s forgery success must be negligible.
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Figures 1 and 2 (on page 27 and page 28) give a more technical summary of
the game transitions of the proof (also taking into account the notation for the
multi-user case). The remainder of this section is devoted to a detailed proof.

Proof (Proof of Theorem 2) We proceed in games. Let out i denote the output
of Game i.

Game 1 is the original EUF-mCMA game with A and SIG. Of course,

Pr [out1 = 1] = Adveuf-mcma
SIG,A (k). (5)

In the following, we apply a superscript to variables to denote to which SIG
instance they belong. For instance, we denote with X(�) and sk (�)

0 , sk (�)
1 the

respective values from the �-th used SIG instance. Furthermore, we write X∗ for
X(�∗) for the challenge instance �∗ selected by A for his forgery, and similarly
for sk∗

0 and sk∗
1.

Thus, in Game 2, we implement an additional “forgery check”. Concretely,
we only consider a forgery σ∗ = (C∗

0 , C∗
1 , π∗

1 , π
∗
2) from A as valid if π∗

1 and π∗
2 are

valid and if Deceg(sk∗
0, C

∗
0 ) = gX∗

. (Otherwise, the game outputs 0.) This change
is purely conceptual: indeed, since CRS2 is binding, we can use the soundness
of Groth-Sahai proofs. Thus, any valid proof π∗

2 guarantees that S3 (from (3))
holds, and so Deceg(sk∗

0, C
∗
0 ) = gX∗

. We obtain

Pr [out2 = 1] = Pr [out1 = 1]. (6)

In Game 3, we generate both CRS1 and CRS2 as hiding CRSs, using HGen.
The CRS indistinguishability of Groth-Sahai proofs yields

Pr [out3 = 1] − Pr [out2 = 1] = Advddh
G,B3

(k) + Advddh
Ĝ,B′

3
(k) (7)

for suitable DDH adversaries B3 and B′
3. (Here, we use the re-randomizability of

DDH tuples. This enables a reduction that loses only a factor of 1 instead of 2.)
In Game 4, we simulate all proofs π2 in signatures generated for A, using the

Groth-Sahai simulator Sim (on input the random coins RCRS used to prepare
CRS). We also generate the corresponding commitments CZ in all verification
keys as CZ ← Com(CRS2, 1). We stress that all X(�) are still chosen randomly,
and all signatures are generated with encryptions C0, C1 of X(�). By the simula-
tion property of Groth-Sahai proofs (see Theorem 1 and the following comment
concerning the reuse of commitments), these changes do not affect A’s view:

Pr [out4 = 1] = Pr [out3 = 1]. (8)

In Game 5, we change the generation of signatures and the forgery check
from Game 2 as follows. To describe these changes, let R(�) : Zp → Z

∗
p (for all

scheme instances � ∈ [nU ]) be truly random functions. Our changes in Game 5
are then as follows:

– All signatures generated for A contain encryptions C0, C1 of exponents Z0 =
Z1 = R(�)(M) (encoded as gZ0 , gZ1) instead of Z0 = Z1 = X(�), where M
is the signed message. As in Game 4, the corresponding proof π is generated
using witnesses for S1 and S3 from (3).
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– Any forgery σ∗ = (C∗
0 , C∗

1 , π∗
1 , π

∗
2) for a (fresh) message M∗ from A is con-

sidered valid only if π∗
1 and π∗

2 are valid and Deceg(sk∗
0, C

∗
0 ) = R∗(M∗)

holds. Otherwise, the game outputs 0. (Again, we use the shorthand nota-
tion R∗ = R(�∗) for the challenge instance �∗.)

In particular, the second change implies that

Pr [out5 = 1] ≤ 1/(p − 1) ≤ 1/2k, (9)

since R∗(M∗) is information-theoretically hidden from A.

Hence, it remains to relate Game 4 and Game 5:

Lemma 1. For n = 2�log2(p)� + k and suitable DDH adversaries B5 and B′
5,

we have
∣
∣Pr [out5 = 1]−Pr [out4 = 1]

∣
∣ ≤ 8n ·∣∣Advddh

G,B5
(k)

∣
∣+4n ·∣∣Advddh

Ĝ,B′
5
(k)

∣
∣+O(n/2k).

(10)

Before we prove Lemma 1, we remark that putting together (5–10), we obtain
(4), which is sufficient to show Theorem 2.

Proof. (of Lemma 1) We will consider a series of hybrid games between Game 4
and Game 5. Concretely, Game 4.i (for i ≥ 0) is defined like Game 4, except for
the following changes:

– We initially uniformly and independently choose i invertible affine functions
fj : Zp → Zp (for j ∈ [i]). The fj define a “partial fingerprint” function
Li : Zp → {−1, 0, 1}i through

Li(M) =
((

f1(M)
p

)
, . . . ,

(
fi(M)

p

))
. (11)

For every scheme instance � ∈ [nU ], let H(�)
i : Zp → Z

∗
p be the composition of

Li with a truly random function R(�)
i : {−1, 0, 1}i → Z

∗
p (so that H(�)

i (M) =

R(�)
i (Li(M))).

– Signatures for A contain encryptions C0, C1 of exponents Z0 = Z1 = H(�)
i (M).

– Any forgery σ∗ = (C∗
0 , C∗

1 , π∗
1 , π

∗
2) for a (fresh) message M∗ from A is consid-

ered valid only if π∗
1 and π∗

2 are valid and Deceg(sk∗
0, C

∗
0 ) = H(�)

i (M∗).

Note that every H(�)
0 is a constant function that maps every input M to the

same random value. Hence, Game 4.0 is identical to Game 4:

Pr [out4.0 = 1] = Pr [out4 = 1]. (12)

Conversely, for large enough i and with high probability, the “fingerprint func-
tion” Li becomes injective, so that all H(�)

i become independent truly random
functions from Zp to Z

∗
p:
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Lemma 2. For n = 2�log2(p)� + k, the function Ln from (11) is injective,
except with probability 1/2k (over the choice of the invertible affine functions
fj : Zp → Zp).

We postpone a proof of Lemma 2 for now.
Hence, the functions H(�)

n = R(�)
n ◦Ln used in Game 4.n (for n = 2�log2(p)�+k)

are statistically close to truly random functions R(�) (as used in Game 5):
∣
∣Pr [out4.n = 1] − Pr [out5 = 1]

∣
∣ ≤ 1/2k. (13)

The Algebraic Partitioning Step. Thus, we only need to show that there is
no detectable difference between Game 4.i and Game 4.(i+1) for any i. We do
so using a hybrid argument (i.e., a sequence of games) that interpolates between
Game 4.i and Game 4.(i+1). (See Fig. 2 for an overview.) In short, we first
refresh the affine function f from Cα, Cβ to a fresh random (but invertible) affine
function f∗. Next, we use f∗ to implement a different treatment of signatures,
depending on

( f(M)
p

)
. We detail these steps in the following.

Concretely, Game 4.i.0 is identical to Game 4.i. Thus,

Pr [out4.i.0 = 1] = Pr [out4.i = 1]. (14)

Step 1: Refresh f . In Game 4.i.1, we initially choose an invertible affine
function f∗ : Zp → Zp uniformly, and we abort (with output 0) if the message
M∗ for which A finally prepares a forgery satisfies f∗(M∗) ∈ QRp∪{0}. We stress
that f∗ is not (yet) committed to in any Cα, Cβ , and thus completely hidden
from A. Hence, an abort occurs with probability p+1

2p = 1
2 + 1

2p , independently
of A’s view, so

Pr [out4.i.1 = 1] =
(

1
2

− 1
2p

)
· Pr [out4.i.0 = 1] ≥ 1

2
· Pr [out4.i.0 = 1] − 1

2p
.

(15)
In Game 4.i.2, we commit to the coefficients f∗

0 , f∗
1 of f∗ from Game 4.i.1 in

Cα, Cβ for all verification keys (instead of the coefficients α = β = 0). Accord-
ingly, we generate all signatures for A by proving statement S2 (and not S1) from
(3) whenever possible (i.e., upon all signature queries with f∗(M) ∈ QRp ∪{0}).
Since CRS1 is hiding, we can use the witness-indistinguishability of Groth-Sahai
proofs to obtain

Pr [out4.i.2 = 1] = Pr [out4.i.1 = 1]. (16)

Step 2: Use f∗ to Decouple Signatures. To describe our change in
Game 4.i.3, recall that in Game 4.i.2, functions H(�)

i is used to determine both
the values Z0 = Z1 = H(�)

i (M) encrypted in C0, C1 upon signature queries,
and to implement the forgery check. In Game 4.i.3, we use three such func-
tions H(�)

i ,Z(�)
i ,Q(�)

i : Zp → Z
∗
p. Each of these functions is defined like H(�)

i , for
the same fingerprint function Li, but with different (i.e., independently cho-
sen) random functions R(�)

i . (In other words, we can write H(�)
i = F ◦ Li,
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and Z(�)
i = F ′ ◦ Li, and Q(�)

i = F ′′ ◦ Li for independently random functions
F, F ′, F ′′ : {−1, 0, 1}i → Z

∗
p. Intuitively, thus, Z(�)

i and Q(�)
i are “decoupled

copies” of H(�)
i .)

Our goal will be to use the functions H(�)
i ,Z(�)

i ,Q(�)
i for messages M satis-

fying f∗(M) /∈ QRp, f∗(M) = 0, and f∗(M) ∈ QRp, respectively. (Hence the
symbols Z and Q.)This will be conceptually identical to using a single function
H(�)

i+1 for all messages of a given scheme instance �. At this point, however, we
can only partially implement this strategy, since we can only replace the mes-
sages encrypted in C1, but not those from C0. (Indeed, sk∗

0 is still required to
implement the additional forgery check in Game 4.i.3.)

Thus, in Game 4.i.3, for every scheme instance � ∈ [nU ], we use the respective
function H(�)

i to generate all ciphertexts C0, C1 in signatures (as in Game 4.i.2),
with the following exceptions:

– For signature queries with f∗(M) = 0, we encrypt Z1 = Z(�)
i (M) (instead of

Z1 = H(�)
i (M)) in the ciphertext C1 of the generated signature.

– For signature queries with f∗(M) ∈ QRp, we encrypt Z1 = Q(�)
i (M) in C1.

Note that for signatures with f∗(M) ∈ QRp ∪ {0}, the random coins used to
generate C1 (or C0) are not used as a witness in the process of constructing π.
Furthermore, no secret key sk (�)

1 has to be known to the game. A reduction to
the (tight) IND-mCPA security of ElGamal yields

n−1∑

i=0

Pr [out4.i.3 = 1] − Pr [out4.i.2 = 1] = n · Advddh
G,B4.i.3

(k) (17)

for a suitable DDH adversary B4.i.3. (We note that even though the random
coins R of C1 are not known explicitly to B4.i.3, a C0 with reused R can be
constructed from sk (�)

0 and a given gR.)
Our next step will be to replace the values encrypted in C0 in a similar way.

To do so, however, we need some preparations, since Game 4.i.3 still knows the
secret keys sk (�)

0 (to finally implement the forgery check). Fortunately, however,
we can alternatively use the sk (�)

1 to implement this check. (To see why this
yields the same functionality, recall that by our abort rule from Game 1, we may
restrict to forgeries with f∗(M∗) /∈ QRp ∪ {0}. However, by (3), a valid forgery
for such a message must contain C∗

0 and C∗
1 that encrypt the same message.)

As a first step, in Game 4.i.4, we initially generate a binding CRS CRS1

(using CRS1 ← BGen(gpp)). The CRS indistinguishability of Groth-Sahai proofs
ensures that

n−1∑

i=0

Pr [out4.i.4 = 1] − Pr [out4.i.3 = 1] = n ·
(
Advddh

G,B4.i.4
(k) + Advddh

Ĝ,B′
4.i.4

(k)
)

(18)
for suitable DDH adversaries B4.i.4 and B′

4.i.4.
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Next, in Game 4.i.5, we implement the forgery check rule from Game 2 using
sk∗

1 (and not sk∗
0). That is, when A submits a forgery σ∗ = (C∗

0 , C∗
1 , π∗

1 , π
∗
2), we

check if Deceg(sk∗
1, C

∗
1 ) = H∗

i (M
∗) holds (and reject the forgery if not). We

may assume that M∗ /∈ QRp ∪ {0} (since otherwise, we trivially abort anyway).
But for such M∗, a valid forgery must fulfill S1 from (3), since at this point,
CRS1 is binding. In other words, we have Deceg(sk∗

1, C
∗
1 ) = H∗

i (M
∗) if and

only if Deceg(sk∗
0, C

∗
0 ) = H∗

i (M
∗). Hence, the change in Game 4.i.5 is purely

conceptual, and we get:

Pr [out4.i.5 = 1] = Pr [out4.i.4 = 1]. (19)

Since we no longer use sk∗
0 (or the random coins from any C1 generated upon a

signature query), we can continue with our strategy. Specifically, in Game 4.i.6,
we generate all ciphertexts C0, C1 in signatures as follows:

– For queries with f∗(M) /∈ QRp, we encrypt Z0 = Z1 = H(�)
i (M) in C0 and C1.

– For queries with f∗(M) = 0, we encrypt Z0 = Z1 = Z(�)
i (M) in C0 and C1.

– For queries with f∗(M) ∈ QRp, we encrypt Z0 = Z1 = Q(�)
i (M) in C0 and C1.

Observe that the only difference to Game 4.i.5 is that the messages Z0 encrypted
in ciphertexts C0 in signatures with f∗(M) ∈ QRp ∪ {0} are changed. For such
encryptions, neither secret key nor random coins are used by the game. Hence,
a reduction to the (tight) IND-mCPA security of ElGamal yields

n−1∑

i=0

Pr [out4.i.6 = 1] − Pr [out4.i.5 = 1] = n · Advddh
G,B4.i.6

(k) (20)

for a suitable DDH adversary B4.i.6. (Again, a reuse of random coins between
C0 and C1 is possible since the secret key sk1 is known to B4.i.6 during the
reduction.)

Step 3: Clean Up. Now in Game 4.i.6, we handle both signature queries and
A’s forgery with either H(�)

i , Z(�)
i , or Q(�)

i , depending on the Legendre symbol
(

M
p

)
of M . This is equivalent to handling all messages with a single function H(�)

i+1

by the definition of H(�)
i (see also (11)). Hence, we already “almost” implement

the rules of Game 4.(i + 1), and we only need to clean up things a little.
Namely, in Game 4.i.7, we again implement the forgery check from Game 2

using sk∗
0 (and not sk∗

1). With the same reasoning as in Game 5, we get:

Pr [out4.i.7 = 1] = Pr [out4.i.6 = 1]. (21)

Next, in Game 4.i.8, we again set up CRS1 as a hiding CRS (using HGen).
Again, CRS indistinguishability guarantees

n−1∑

i=0

Pr [out4.i.8 = 1] − Pr [out4.i.7 = 1] = n ·
(
Advddh

G,B4.i.8
(k) + Advddh

Ĝ,B′
4.i.8

(k)
)

(22)
for suitable DDH adversaries B4.i.8 and B′

4.i.8.
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In Game 4.i.9, we again set up the commitments Cα, Cβ in all verifica-
tion keys as commitments to α = β = 0. Accordingly, we generate all signa-
tures for A by proving statement S1 from (3). (Note that this is possible again
since all generated pairs (C0, C1) do encrypt the same message.) By the witness-
indistinguishability of Groth-Sahai proofs,

Pr [out4.i.9 = 1] = Pr [out4.i.8 = 1]. (23)

Finally, in Game 4.i.10, we do not abort anymore. (That is, we take back the
abort rule from Game 1.) To see how this change affects the game’s output, we
make a few observations. First, note that in both Game 4.i.9 and Game 4.i.10,
A’s view only depends on the way f∗ partitions the set of messages depending
on

( f∗(M)
p

)
, but not on which messages M are mapped by f∗ to squares, and

which to non-squares. (Indeed, any partitioning of the M is invariant under
multiplying f∗ with an invertible non-square modulo p. However, multiplication
with an invertible non-square inverts the Legendre symbol of f∗(M).)

Thus, the probability for A to successfully forge a signature with
( f∗(M∗)

p

)
=

1 is exactly the same as that to forge a signature with
( f∗(M∗)

p

)
= −1. Hence,

if we cease to abort upon f∗(M∗) ∈ QRp ∪ {0}, we at least double A’s success
probability:

Pr [out4.i.10 = 1] ≥ 2 · Pr [out4.i.9 = 1]. (24)

At the same time, Game 4.i.10 is identical to Game 4.(i + 1). (As argued, the
use of three functions H(�)

i ,Z(�)
i ,Q(�)

i for each scheme instance � is equivalent
to the use of a single function H(�)

i+1 in Game 4.(i + 1). Furthermore, CRS1 is
hiding, the Cα, Cβ are set up as commitments to α = β = 0, and the signatures
use proofs of statement S1.) Thus,

Pr [out4.i.10 = 1] = Pr [out4.(i+1) = 1]. (25)

Collecting all differences of probabilities from (14–25), we obtain

∣
∣
∣Pr [out4.0 = 1] − Pr [out4.n = 1]

∣
∣
∣ ≤

∣
∣
∣

n−1∑

i=0

Pr [out4.i = 1] − Pr [out4.(i+1) = 1]
∣
∣
∣

≤ 8n · ∣∣Advddh
G,B5

(k)
∣
∣ + 4n · ∣∣Advddh

Ĝ,B′
5
(k)

∣
∣ + O(n/2k)

for DDH adversaries B5 and B′
5 that combine all adversaries from the collected

differences. Together with (12) and (13), we obtain (10).
It remains to prove Lemma 2:

Proof. (of Lemma 2) For any distinct M0,M1 ∈ Zp and a uniformly chosen

invertible affine function f : Zp → Zp, we have Pr
[(

f(M0)
p

)
=

(
f(M1)

p

)]
≤ 1/2,

since f is pairwise independent. As all fj from (11) are chosen independently,
we get

Pr [Ln(M0) = Ln(M1)] ≤ 1/2n

for any two distinct M0,M1. A union bound over all O(p2) such pairs (M0,M1)
shows the claim.
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4 Compact and (almost) Tightly Secure Public-Key
Encryption

Our signature scheme SIG from Sect. 3 is “almost” automorphic (in the sense
of [1]). Namely, while its verification can be expressed as a system of equa-
tions that is compatible with Groth-Sahai proofs, its messages are exponents (as
opposed to group elements). However, our scheme can still be used in the generic
construction of [28]. This yields an (almost) tightly secure public-key encryption
scheme with compact parameters, keys and ciphertexts. (Here, “compact” means
“comprised of only a constant number of group elements or exponents.”)

But although compact in the above sense, the resulting encryption scheme
would be rather inefficient (in particular since it would use nested Groth-Sahai
proofs). Thus, here we describe an optimized and more compact (almost) tightly
secure public-key encryption scheme PKE.

Setting and Ingredients. The basis for our PKE construction is the signature
scheme SIG from Sect. 3, and we assume similar ingredients. In particular, we
assume groups G and Ĝ, along with the ElGamal encryption and Groth-Sahai
proofs over G. Additionally, we assume:

– An OT-EUF-mCMA secure signature scheme with message space Zp, given by
algorithms OPars,OGen,OSig,OVer. For concreteness, in all of the following,
we assume the one-time signature scheme TOTS from [28] in G. Its OT-EUF-
mCMA security can be tightly reduced to the discrete logarithm assumption
in G (which is implied by the DDH assumption in G).

– A generator H of collision-resistant hash functions H : {0, 1}∗ → {0, 1}k.
We will interpret H-outputs as Zp-elements in the natural way. (Recall that
p > 2k.)

All ingredients can be instantiated under the DDH assumptions in G and Ĝ.

Public Parameters. EPars(1k) first proceeds like the parameter generation
of SIG, and samples group parameters gpp, a hiding Groth-Sahai CRS, and
two ElGamal public keys pk0, pk1. Then, EPars sets up exponents Z,α, β and
ciphertexts

Cα ← Enceg(pk0, g
α;Rα), Cβ ← Enceg(pk0, g

β ;Rβ), CZ ← Enceg(pk0, g
Z ;RZ).

Note that here, we encrypt (and do not commit to) Z,α, β in order to be able
to produce slightly more compact proofs involving Z,α, β later on. However, we
note that conceptually, we could have as well committed to Z,α, β as with SIG.

Finally, EPars chooses parameters opp ← OPars(1k) and a hash function H,
and outputs epp = (gpp,CRS, pk0, pk1, opp,H, Cα, Cβ , CZ).

Key Generation. EGen(epp) samples two ElGamal keypairs (pk ′
0, sk

′
0),

(pk ′
1, sk

′
1) ← EGeneg(G, p, g), and outputs a public and a secret key as

pk = (pk ′
0, pk

′
1) sk = (d, sk ′

d)

for a uniformly chosen bit d ← {0, 1}.
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Encryption. Intuitively, encryption corresponds to a Naor-Yung style double
encryption with consistency proof [34]. The consistency proof itself proceeds as
in [28], and essentially proves that either the double encryption is consistent, or
a signature to a fresh value is known. (A suitable fresh value will be hash of a
freshly sampled verification key of the one-time signature scheme.) Concretely,
Enc(pk ,M), for M ∈ G, chooses a one-time signature keypair (ovk , osk) ←
OGen(opp), and encrypts the values Z ′

0 = Z ′
1 = M ∈ G and Z0 = Z1 = 0 as

C ′
0 = Enceg(pk ′

0, Z
′
0;R

′) C0 = Enceg(pk0, g
Z0 ;R)

C ′
1 = Enceg(pk ′

1, Z
′
1;R

′) C1 = Enceg(pk1, g
Z1 ;R).

(Note that for efficiency and to simplify proofs involving these values, we reuse
the encryption random coins R′ and R.) Then, Enc generates a proof π (under
CRS) of the statement

Z ′
0 = Z ′

1 ∨
((

Z0 = Z1 ∨ f(H(ovk)) ∈ QRp ∪{0}) ∧ (
Z0 = Z ∨ Z = 0

))
. (26)

Enc will prove the left branch S1′ of the outer ∨ clause, using as witness the
encryption randomness R′. Hence, π essentially proves consistency of C ′

0, C
′
1, or

the same statement as for a SIG-signature for H(ovk). (There are some slight
differences compared to a SIG-signature: first, we use only one CRS. Hence, we
cannot simulate proofs for substatement Z0 = Z during the proof. Instead, how-
ever, we can set Z = 0 to be able to generate proofs for S3′ without knowledge
of Z0. Second, because the random coins used for Cα, Cβ , CZ are not known
at encryption time, the proof of quadratic residuosity becomes somewhat less
efficient than the one in SIG’s signing algorithm. We refer to Sect. 5.2 for more
details on the exact proof equations.)

Finally, Enc signs σ ← OSig(osk ,H(C ′
0, C

′
1, C0, C1, π)) and outputs the

ciphertext C = (C ′
0, C

′
1, C0, C1, π, ovk , σ).

Decryption. Dec(sk , C) checks the validity of σ and π. If both σ and π are
valid, Dec outputs M ← Deceg(sk ′

d, C
′
d); otherwise, Dec outputs ⊥.

Efficiency. PKE has the following efficiency characteristics (cf. Section 5.2):

– The public parameters consist of 12 G- and 3 Ĝ-elements, plus the group
parameters gpp, and a description of the hash function H.

– Each public key contains 2 G-elements.
– Each secret key contains one Zp-exponent and a bit.
– Each ciphertext contains 27 G- and 30 Ĝ-elements, and 3 Zp-exponents.

Theorem 3. (Security of PKE). Under the DDH assumptions in G and Ĝ,
and assuming that H is collision-resistant, the PKE scheme PKE described above
is IND-mCCA secure. Concretely, for every EUF-mCMA adversary A on SIG,
there exist DDH adversaries B and B′, and an adversary C on the collision-
resistance of H (of roughly the same complexity as the EUF-mCMA experiment
with A and SIG) with

Adveuf-mcma
SIG,A (k) ≤ O(k) · ∣∣Advddh

G,B(k)
∣

∣+ O(k) · ∣∣Advddh
Ĝ,B′(k)

∣

∣+ Advcr
H,C(k) + O(k/2k).

(27)
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Proof. (Proof sketch) The proof combines the strategy from [28] with our con-
crete signature scheme, and thus we outline only the main strategy. This strat-
egy proceeds in games, and modifies an IND-mCCA attack with adversary A as
follows:

– First, the consistency proofs in all ciphertexts are prepared with different
witnesses. More specifically, instead of proving Z ′

0 = Z ′
1, we prove the right

branch of (26). (Note that this right branch corresponds to the validity of a
SIG-signature for message H(ovk).) Thanks to the witness-indistinguishability
of Groth-Sahai proofs, this change is not detectable by A.

– Next, all challenge ciphertexts generated for A are made inconsistent. (This
is possible since the ciphertext consistency proofs are prepared from signature
witnesses now.) Concretely, recall that so far we have encrypted the respective
challenge message M∗

b (for the secret bit b chosen by the IND-mCCA exper-
iment) in both C ′

0 and C ′
1 of all challenge ciphertexts. Now we encrypt M∗

b

in C ′
d and M∗

1−b in C ′
1−d, where d is the bit chosen for the respective PKE

instance i. Hence, we change the encrypted message for all ElGamal instances
whose secret key is not used. Since only the secret keys sk ′

d (but not the sk ′
1−d)

are used in the experiment, this game modification can be justified with the
(tight) security of ElGamal.

– We now reject all inconsistent (in the sense Deceg(sk ′
0, C

′
0) 	= Deceg(sk ′

1, C
′
1))

decryption queries from A. At this point in the proof, we know both sk ′
0 and

sk ′
1 for all PKE-instances, and can thus recognize the first inconsistent (in the

above sense) decryption query with a valid consistency proof. Note that any
such query implies a valid SIG-signature for a message H(ovk). The security
of the one-time signature scheme guarantees that this message is fresh, so that
A has essentially forged a SIG-signature. Any such forgery can be excluded
with the same strategy as in the proof of Theorem 2 (with the differences
described above). This step entails the dominant terms in (27) related to
DDH reductions.

At this point, A gets no information about the IND-mCCA secret b anymore.
Namely, each challenge ciphertext contains ElGamal encryptions of both M∗

0

and M∗
1 , in an order determined by d⊕b, where d denotes which ElGamal secret

key sk ′
d the experiment uses to decrypt for this instance. Now since inconsistent

ciphertexts are rejected, the game’s answer to A’s decryption queries does not
depend on the any of the bits d. Moreover, unless (any) d is known, also b
is hidden. Hence, A’s view is now completely independent of b, and thus A’s
IND-mCCA success is zero.

5 Details on the Exact Groth-Sahai Equations in Our
Schemes

5.1 The Exact Groth-Sahai Equations for the Proofs in Signatures

We now give details on the proofs π1 and π2 in signatures from SIG. Recall that
π1 and π2 shall prove the respective statements
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(
Z0 = Z1︸ ︷︷ ︸

S1

∨ f(M) ∈ QRp ∪ {0}
︸ ︷︷ ︸

S2

)
and Z0 = Z︸ ︷︷ ︸

S3

. (28)

The Statements S1-S3. We now discuss the three individual statements S1-
S3 from (28) in more detail. To this end, let us write the ElGamal ciphertexts
C0, C1 from a signature as

C0 = (A,B0) = (gR, pkR
0 · gZ0) C1 = (A,B1) = (gR, pkR

1 · gZ1).

(Of course, the reused value A = gR will only appear once in a signature.)

S1. The statement Z0 = Z1 holds if and only if (g, pk1/pk0, A,B1/B0) is a
Diffie-Hellman tuple. Thus, S1 is equivalent to the equations A = gR and
B1/B0 = (pk1/pk0)R, with witness R.

S2. The statement f(M) ∈ QRp ∪ {0} is equivalent to the existence of an expo-
nent W ∈ Zp with f(M) = W 2 mod p. (Recall that a commitment to f(M)
can be homomorphically computed from M and the commitments Cα, Cβ .)
Hence, a witness to S2 is given by (α, β,W ).

S3. We can express Z0 = Z as an equation B0 = pkR
0 · gZ with witness (R,Z).

All involved commitment random coins are additionally required to construct a
valid proof. Besides, so far we have neglected that in a setting with an asymmetric
pairing, not all combinations of, e.g., Zp-products can be directly expressed. (For
instance, a square W 2 needs to be rephrased as W · Ŵ , with an additional proof
that W = Ŵ .) Hence, in the rest of this section, we will decorate variables that
correspond to a Ĝ-commitment with a hat (e.g., Ŵ ).

The Equations for π1. Equations for the disjunction S1 ∨ S2 can be derived
using standard techniques. However, if we optimize a little, we obtain the fol-
lowing equations for S1 ∨ S2:

A
̂U = g

̂V (B1/B0)
̂U = (pk1/pk0)

̂V f̂(M) = W · Ŵ W = Ŵ + Û .

(For instance, if we want to prove S2, we can set Û = V̂ = 0 and W = Ŵ such
that f(M) = W 2.) The involved variables from the verification key are α̂ and β̂

(used to homomorphically construct f̂(M)). The variables whose commitments
are placed in the signature are Û , V̂ ,W, Ŵ . All of these variables are committed
to using CRS1.

The Equations for π2. Similarly, we obtain the following equations for S3:

A = g
̂S B0 = pk

̂S
0 · gZ .

The variables are Z (committed to in vk) and Ŝ (from σ), both committed to
using CRS2.

Remarks and Efficiency Summary. We emphasize that hence, the proofs
π1 and π2 are independent (and in particular do not share commitments). Fur-
thermore, thanks to the composability of Groth-Sahai proofs, the commitments
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Cα, Cβ , CZ to α, β, Z that are placed in the verification key can be directly
(re-)used in proofs. Each commitment occupies 2 group elements. In total, the
equations above comprise 4 linear equations over G, and 2 quadratic equations
over Zp. Thus, π1 contains 4 · 2 + 2 · 1 + 2 · 4 = 18 group elements (12 of them
from Ĝ), and π2 contains 1 · 2 + 2 · 1 = 4 group elements (2 of them from Ĝ).

5.2 The Exact Groth-Sahai Equations for the Proofs in Ciphertexts

We now detail the proof π in ciphertexts from PKE. Recall that π shall prove
the statement

Z′
0 = Z′

1
︸ ︷︷ ︸

S1′

∨
(

(

Z0 = Z1
︸ ︷︷ ︸

S2′

∨ f(H(ovk)) ∈ QRp ∪ {0}
︸ ︷︷ ︸

S3′

) ∧ (Z0 = Z
︸ ︷︷ ︸

S4′

∨ Z = 0
︸ ︷︷ ︸

S5′

)

)

. (29)

The variables in (29) refer to the messages encrypted in PKEeg-ciphertexts from
the public parameters and the PKE-ciphertext at hand. We make these PKEeg-
ciphertexts explicit as

C0 = Enceg(pk0, g
Z0 ;R) = (A,B0) C ′

0 = Enceg(pk ′
0, g

Z′
0 ;R′) = (A′, B′

0)

C1 = Enceg(pk1, g
Z1 ;R) = (A,B1) C ′

1 = Enceg(pk ′
1, g

Z′
1 ;R′) = (A′, B′

1)

CZ = Enceg(pk0, g
Z ;RZ) = (AZ , BZ).

Besides, a PKEeg-ciphertext Cf = Enceg(pk0, g
f(H(ovk));Rf ) = (Af , Bf ) that

determines the variable f(H(ovk)) can be homomorphically computed from the
ciphertexts Cα, Cβ , and H(ovk).

The Statements S1′-S5′. Let us take a closer look at the individual statements
S1′-S5′:

S1′, S2′. These statements can be formalized like statement S1 for SIG. For
instance, S1′ holds if and only if (g, pk ′

1/pk
′
0, A

′, B′
1/B′

0) is a Diffie-
Hellman tuple; a suitable witness is R′.

S4′, S5′. Similarly, S4′ holds precisely if (g, pk0, A/AZ , B0/BZ) is a Diffie-
Hellman tuple; a witness is R − RZ . (Statement S5′ can be formalized
analogously, with a witness RZ .)

S3′. As with SIG, S3′ holds if and only if there is a W ∈ Zp with
f(H(ovk)) = W 2 mod p. A suitable witness consists of W , and the
encryption randomness Rf of Cf .

A Reformulation. The composed statement from (29) is equivalent to
(
S1′ ∨ S2′ ∨ S3′) ∧ (

S1′ ∨ S4′ ∨ S5′).

By the above, the first sub-statement S1′ ∨S2′ ∨S3′ is implied by the equations

A
̂U = g

̂V A′̂U ′
= g

̂V ′
A
̂Uf

f = g
̂Vf

(B1/B0)
̂U = (pk1/pk0)

̂V (B′
1/B′

0)
̂U ′

= (pk ′
1/pk

′
0)
̂V ′

B
̂Uf

0 = pk
̂Vf

0 · g
̂F

F̂ = W · Ŵ W = Ŵ 1 = Û + Û ′ + Ûf

(30)
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for new variables Û , V̂ , Û ′, V̂ ′, Ûf , V̂f , F̂ ,W, Ŵ . (We adopt the notation from
Sect. 5.1 to decorate variables in Ĝ with a hat.) Roughly, the last equation guar-
antees that one of Û , Û ′, Ûf is nonzero, and in fact that Ûf = 1 once Û = Û ′ = 0.
Furthermore, we have Û ′ 	= 0 ⇒ S1′, and Û 	= 0 ⇒ S2′, and Ûf 	= 0 ⇒ S3′.
Finally, a witness for (30) can be produced from either a witness for S1′, or for
S2′, or for S3′. (For instance, we can set Û ′ = V̂ ′ = 0 whenever a witness for
S1′ is not available.)

Similarly, sub-statement S1′ ∨ S4′ ∨ S5′ yields additional equations

(A/AZ)̂U0 = g
̂V0 A

̂UZ

Z = g
̂VZ Û ′ + Û0 + ÛZ = 1

(B0/BZ)̂U0 = pk
̂V0
0 B

̂UZ

Z = pk
̂VZ
0

for new variables Û0, V̂0, ÛZ , V̂Z .

Summary. Summing up, π contains commitments to 13 variables (12 of them
from Ĝ), and proves 10 G-linear, 2 Zp-linear, and 3 quadratic equations over Zp.
This yields a proof of 13 · 2 + 10 · 1 + 3 · 4 = 48 group elements (30 of them from
Ĝ) and 2 · 1 = 2 exponents from Zp.

Acknowledgments. The author would like to thank Eike Kiltz, Julia Hesse, Willi
Geiselmann, and the anonymous reviewers for helpful feedback.

A Illustration of proof strategy for Theorem 2

In this section, we give a brief overview over the steps used to prove Theorem 2.

# CRS2 Z π2 Z0 = Z1 forgery check remark
1 binding X(�) proof of S3 X(�) — EUF-mCMA

2 binding X(�) proof of S3 X(�) Deceg(sk
∗
0, C0) = X∗ GS soundness

3 hiding X(�) proof of S3 X(�) Deceg(sk
∗
0, C0) = X∗ GS CRS indist.

4 hiding 1 Sim-output X(�) Deceg(sk
∗
0, C0) = X∗ GS simulation

5 hiding 1 Sim-output R(�)(M) Deceg(sk
∗
0, C0) = R(�)(M∗) see Fig. 2

Fig. 1. Outline of the main proof, see Theorem 2. Boxes denote changes compared
to the previous game. The first column denotes the game number, CRS2 denotes the
setup of the Groth-Sahai common reference string CRS2, and Z denotes the value
committed to in CZ in verification keys. Column π2 describes how proofs are prepared
in signatures. Z0, Z are the messages encrypted in C0, C1 in signatures generated for
A. forgery check describes an additional check required for a forgery to pass as valid
(beyond being valid in the sense of Ver). The core of the proof is the transition from
Game 4 to Game 5 (with the previous transitions preparing the ground), see also Fig. 2.
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Abstract. About three decades ago it was realized that implement-
ing private channels between parties which can be adaptively corrupted
requires an encryption scheme that is secure against selective opening
attacks. Whether standard (IND-CPA) security implies security against
selective opening attacks has been a major open question since. The
only known reduction from selective opening to IND-CPA security loses
an exponential factor. A polynomial reduction is only known for the
very special case where the distribution considered in the selective open-
ing security experiment is a product distribution, i.e., the messages are
sampled independently from each other.

In this paper we give a reduction whose loss is quantified via the
dependence graph (where message dependencies correspond to edges) of
the underlying message distribution. In particular, for some concrete dis-
tributions including Markov distributions, our reduction is polynomial.

Keywords: Public-key encryption · Selective opening security ·
Markov · IND-CPA · IND-SO-CPA

1 Introduction

Security Under Selective Opening Attacks. Consider a scenario where
many parties 1, . . . , n send messages to one common receiver. To transmit a
message mi, party i samples fresh randomness ri and sends the ciphertext
ci = Encpk (mi; ri) to the receiver. Consider an adversary A that does not only
eavesdrop on the sent ciphertexts (c1, . . . , cn), but corrupts a set I ⊆ [n] of the
sender’s systems, thus learning the encrypted message mi and the randomness
ri used to encrypt mi. The natural question to ask is whether the messages of
uncorrupted parties remain confidential. Such attacks are referred to as selective
opening (SO) attacks (under sender corruption).

Selective opening attacks naturally occur in multi-party computation where
we assume secure channels between parties. Since a party might become cor-
rupted, we would need the encryption on the channels to be selective opening
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secure. In practice the same argument applies to a server that establishes secure
connections that shall remain secure if users are corrupted.

Difficulty of Proving Security Under Selective Opening Attacks. The
widely accepted standard notion for public-key encryption schemes is indistin-
guishability under chosen-plaintext attacks (IND-CPA security). At first sight
one might consider a straight-forward hybrid argument to show that IND-CPA
security already implies security against selective opening attacks since every
party samples fresh randomness independently. However, so far nobody has been
able to bring forward such a hybrid argument in general. Notice that revealing
randomness ri allows a selective opening adversary to verify that a corrupted
ciphertext ci is an encryption of mi. The adversary’s possibility to corrupt par-
ties introduces a difficulty in proving that standard (IND-CPA) security already
implies selective opening security. It seems that the reduction has to know (i.e.
guess) the complete set I of all corruptions going to be made by A in order
to serve its security game before A actually announces the senders it wishes to
corrupt. Since I might be any subset of {1, . . . , n}, a direct approach would
lead to an exponential loss in the reduction. A main technical obstacle is that
the encrypted messages may depend on each other. If, for example, they are
encrypted and sent sequentially, message mi may depend on mi−1 and all pre-
vious messages. Thus, corrupting some parties might already leak some infor-
mation on messages sent by parties that have not been corrupted.

Until today, the only result in the standard model, given in [3,8], shows
that IND-CPA implies selective opening security for the special case of a product
distribution, i.e., when all messages m1, . . . ,mn are sampled independently from
each other. Intuitively, this holds since corrupting some ciphertext cannot reveal
information on related messages if there are no related messages at all and
the hybrid argument one might expect to work goes through. This leaves the
following open question:

Does standard security imply selective opening security for any non-
trivial message distribution?

1.1 Our Contributions

We present the first non-trivial positive results in the standard model, namely
we show that IND-CPA security implies IND-SO-CPA security for a class of mes-
sage distributions with few dependencies. Here IND-SO-CPA security refers to
the indistinguishability-based definition of selective opening security sometimes
referred to as weak IND-SO-CPA security [4].

IND-SO-CPA requires that a passive adversary that obtains a vector of cipher-
texts (c1, . . . , cn) and has access to a ciphertext opening oracle, revealing the
underlying message mi of some ciphertext ci and the randomness used to encrypt
mi, cannot distinguish the originally encrypted messages from freshly resampled
messages that are as likely as the original messages given the messages of opened
ciphertexts.
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We consider graph-induced distributions where dependencies among messages
correspond to edges in a graph and show that IND-CPA implies IND-SO-CPA
security for all graph-induced distributions that satisfy a certain low connectivity
property.

In particular, our result holds for the class of Markov distributions, i.e. dis-
tributions on message vectors (m1, . . . ,mn) where all information relevant for
the distribution of mi is present in mi−1. We prove that any IND-CPA secure
public-key encryption scheme is IND-SO-CPA secure if the messages are sam-
pled from a Markov distribution. Our results cover for instance distributions
where message mi contains all previous messages (e.g. email conversations) or
distributions where messages are increasing, i.e., m1≤ m2 ≤ . . .≤ mn.

Note that a positive result on “weak” IND-SO-CPA security for all IND-CPA-
secure encryption schemes for certain distributions is the best we can hope for
due to the negative result of Bellare et al. [1] ruling out such an implication for
SIM-SO-CPA security.

Details. Think of a vector of n messages sampled from some distribution D as
a graph G on n vertices {1, . . . , n} where we have an edge from message mi to
message mj if the distribution of mj depends on mi. Further, fix any subset
I ⊆ {1, . . . , n} of opening queries made by some adversary. The main observa-
tion is that removing I and all incident edges, G decomposes into connected
components C1, . . . , Cn′ that can be resampled independently, since the distrib-
ution of messages on Ck solely depends on the messages in the neighborhood of
Ck and D.

To argue that there is no efficient adversary ASO that distinguishes sampled
and resampled messages in the selective opening experiment, we proceed in a
sequence of hybrid games, starting in a game where after receiving encryptions of
sampling messages and replies to opening queries, ASO obtains the sampled mes-
sages. In each hybrid step we use IND-CPA security to replace sampled messages
on a connected component Ck with resampled messages without ASO noticing.
To this end, the reduction from IND-CPA to the indistinguishability of two con-
secutive hybrids has to identify Ck to embed its own challenge before ASO makes
any opening query.

We consider two approaches for guessing Ck. The first will consider graphs
that have only polynomially many connected subgraphs; hence, the reduction
can guess Ck right away. The second approach studies graphs for which every
connected subgraph has a neighborhood of constant size; this allows the reduc-
tion to guess Ck by guessing its neighborhood. We show that the first approach
ensures a reduction with polynomial loss for a strictly greater class of graphs
than the second one.

Additionally, when the distribution is induced by an acyclic graph, we give
a more sophisticated hybrid argument for the second approach, where in each
hybrid transition only a single sampled message is replaced by a resampled mes-
sage, allowing for a tighter reduction. Due to the definition of the hybrids, it will
suffice to guess on fewer vertices of Ck’s neighborhood.
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1.2 Previous Work

There are three not polynomially equivalent definitions of SO-secure encryp-
tion [4]. Since messages in the IND-SO experiment have to be resampled
conditioned on opened messages, there are two notions based on indistinguisha-
bility: Weak IND-SO restricts to distributions that support efficient conditional
resampling. Bellare et al. [2] gave an indistinguishability-based notion for passive
adversaries, usually referred to as IND-SO-CPA. Full IND-SO allows for arbitrary
distributions on the messages and is due to Böhl et al. [4], who adopted a notion
for commitment schemes from [2] to encryption.

SIM-SO captures semantic security and demands that everything an adver-
sary can output can be computed by a simulator that only sees the messages of
corrupted parties, whereas it does not see the public key, any ciphertext or any
randomness. The notion dates back to Dwork et al. [8], who studied the selective
decommitment problem, and does not suffer from a distribution restriction like
weak IND-SO, since it does not involve resampling.

The first IND-SO-CPA-secure encryption scheme in the standard model was
given in [2] based on lossy encryption. Selective opening secure encryption can
be constructed from deniable encryption [6] as well as non-committing encryp-
tion [7]. Bellare et al. [1,3] separated SIM-SO-CPA from IND-CPA security and
showed that IND-CPA security implies weak IND-SO-CPA security if the messages
are (basically) sampled independently. The same result was already established
for commitment schemes in [8].

To date, this is the only positive result that shows that IND-CPA implies
weak IND-SO-CPA in the standard model. Full IND-SO-CPA and SIM-SO-CPA
security were separated in [4]; neither of them implies the other. Hofheinz et al.
[10] proved that IND-CPA implies weak IND-SO-CPA in the generic group model
for a certain class of encryption schemes and separated IND-CCA from weak
IND-SO-CCA security.

Recently, Hofheinz et al. [9] constructed the first (even IND-CCA-secure) PKE
that is not weakly IND-SO-CPA secure. Their result relies on the existence of
public-coin differing-inputs obfuscation and certain correlation intractable hash
functions. Their scheme employs “secret-sharing message distributions” whose
messages are evaluations of some polynomial. It is easily seen that such distrib-
utions have too many dependencies to be covered by our positive result. There
is a gap between their result and ours, that is, distributions for which it is still
open whether IND-CPA implies IND-SO-CPA.

2 Preliminaries

We denote by λ the security parameter. A function f is polynomial in n, f(n) =
poly(n), if f(n) = O(nc) for some c > 0. Let 0 < n := n(λ) = poly(λ). A
function f(n) is negligible in n, f(n) = negl(n), if f(n) = O(n−c) for all c > 0.
Any algorithm receives the unary representation 1λ of the security parameter as
first input. We say that an algorithm is a PPT algorithm if it runs in probabilistic
polynomial time (in λ). For a finite set S we denote the sampling of a uniform
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random element a by a ←$ S, and the sampling according to some distribution D
by a ← D. For a, b ∈ N, a ≤ b, let [a, b] := {a, a + 1, . . . , b} and [a] := [1, a].
For a < b let [b, a] := ∅. For I ⊆ [n] let I := [n] \ I. We use boldface letters to
denote vectors, which are of length n if not indicated otherwise. For a vector m
and i ∈ [n] let mi denote the i-th entry of m and |m| the number of entries
in m. For a set I = {i1, . . . , i|I|}, i1 < . . . < i|I| let mI denote the projection
of m to its I-entries: mI := (mi1 , . . . ,mi|I|). For an event E let E denote the
complementary event.

2.1 Games

A game G is a collection of procedures or oracles {Initialize,P1,P2, . . . ,Pt,
Finalize} for t ≥ 0. Procedures P1 to Pt and Finalize might require some
input parameters. We implicitly assume that boolean flags are initialized to
false, numerical types are initialized to 0, sets are initialized to ∅, while strings
are initialized to the empty string ε. An adversary A is run in game G if A calls
Initialize. During the game A may run some procedure Pi as often as allowed
by the game.

For each game in this paper, the “Open” procedure may be called an arbi-
trary number of times, while every other procedure is called once during the
execution.

The interface of the game is provided by the challenger. If A calls P, the
output of P is returned to A, except for the Finalize procedure. On A’s call of
Finalize the game ends and outputs whatever Finalize returns. Let GA ⇒ out
denote the event that G runs A and outputs out. The advantage Adv(GA,HA)
of A in distinguishing games G and H is defined as

∣
∣Pr[GA ⇒ 1] − Pr[HA ⇒ 1]

∣
∣.

We let Bad denote the event that a boolean flag Bad was set to true during the
execution of some game.

2.2 Public-Key Encryption Schemes

A public-key encryption scheme consists of three PPT algorithms. Gen generates
a key pair (pk, sk) ← Gen(1λ) on input 1λ. The public key pk implicitly contains
1λ and defines three finite sets: the message space M, the randomness space R,
and the ciphertext space C. Given pk, a message m ∈ M and randomness r ∈ R,
Enc outputs an encryption c = Encpk (m; r) ∈ C of m under pk. The decryption
algorithm Dec takes a secret key sk and a ciphertext c ∈ C as input and outputs
a message m = Decsk (c) ∈ M, or a special symbol ⊥ 
∈ M indicating that c is
not a valid ciphertext. In the following we let PKE = (Gen,Enc,Dec) denote a
public-key encryption scheme.

We require PKE to be correct: for all security parameters λ, for all (pk , sk) ←
Gen(1λ), and for all m ∈ M we have Pr[Decsk (Encpk (m; r)) = m] = 1 where the
probability is taken over the choice of r. We apply Enc and Dec to message
vectors m = (m1, . . . ,mn) and randomness r = (r1, . . . , rn) as Enc(m; r) :=
(Enc(m1; r1), . . . ,Enc(mn; rn)).
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Procedure Initialize

(pk , sk) ← Gen(1λ)
Return pk

Procedure Challenge(m0,m1)

c ← Encpk (m
b)

Return c

Procedure Finalize(b′)

Return b′

Fig. 1. Game mult-IND-CPAPKE,b; Bmult must submit m0,m1 ∈ Ms

2.3 IND-CPA and Mult-IND-CPA Security

We revise the standard notion of IND-CPA security and give a definition of indis-
tinguishable ciphertext vectors under chosen-plaintext attacks that will allow for
cleaner proofs of our results.

Definition 1 (mult-IND-CPA security). For PKE, an adversary Bmult, s ∈ N

and a bit b we consider game mult-IND-CPABmult

PKE,b as given in Fig. 1. Bmult may
only submit message vectors m0, m1 ∈ Ms. To PKE, Bmult and λ we associate
the following advantage function

Advmult-IND-CPA
PKE (Bmult, λ) := Adv

(
mult-IND-CPABmult

PKE,0,mult-IND-CPABmult

PKE,1

)
.

PKE is mult-IND-CPA secure if Advmult-IND-CPA
PKE (Bmult, λ) is negligible for all PPT

adversaries Bmult.

For an adversary BCPA, we obtain the definition of IND-CPA security by letting
s := 1 and write AdvIND-CPA

PKE (BCPA, λ) instead of Advmult-IND-CPA
PKE (BCPA, λ). A

standard hybrid argument proves the following lemma.

Lemma 2. For any adversary Bmult sending message vectors from Ms to the
mult-IND-CPA game there exists an IND-CPA adversary BCPA with roughly the
same running time as Bmult such that

Advmult-IND-CPA
PKE (Bmult, λ) ≤ s · AdvIND-CPA

PKE (BCPA, λ).

2.4 IND-SO-CPA Security

In this section we recall an indistinguishability-based definition for selective
opening security under chosen-plaintext attacks and discuss the existing notions
of SO security.

Definition 3 (Efficiently resamplable distribution). Let M be a finite set.
A family of distributions {Dλ}λ∈N

over Mn = Mn(λ) is efficiently resamplable
if the following properties hold for every λ ∈ N:

Length consistency. For every i ∈ [n] : Prm1,m2←Dλ

[|m1
i | = |m2

i |
]

= 1.
Resamplability. There exists a PPT resampling algorithm ResampDλ

(·, ·) that
runs on (m, I) for m ∈ Mn, I ⊆ [n] and outputs a Dλ-distributed vector
m′ ∈ Mn conditioned on m′I = mI .
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Procedure Initialize

(pk , sk) ← Gen(1λ)
Return pk

Procedure Enc(D,ResampD)

m0 ← D

r ←$ Rn

c = Encpk (m
0; r)

Return c

Procedure Open(i)

I := I ∪ {i}
Return (m0

i , ri)

Procedure Challenge

m1 ← ResampD(m0, I)
Return mb

Procedure Finalize(b′)

Return b′

Fig. 2. Game IND-SO-CPAPKE,b

A class of families of distributions D is efficiently resamplable if every family
{Dλ}λ∈N

∈ D is efficiently resamplable.

Since the security parameter uniquely specifies an element of a family Dλ we
write D instead of Dλ whenever the security parameter is already fixed.

Definition 4. For PKE, a bit b, an adversary ASO and a class of families of
distributions D over Mn we consider game IND-SO-CPAASO

PKE,b in Fig. 2. Run in
the game, ASO calls Enc once right after Initialize and has to submit D ∈ D
along with a PPT resampling algorithm ResampD. ASO may call Open multiple
times and invokes Challenge once after its last Open query before calling
Finalize. We define the advantage of ASO run in game IND-SO-CPAPKE,b as

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) := Adv

(
IND-SO-CPAASO

PKE,0, IND-SO-CPAASO

PKE,1

)
.

PKE is IND-SO-CPA secure w.r.t. D if AdvIND-SO-CPA
PKE (ASO,Dλ, λ) is negligible

for all PPT ASO.

Notions of Selective Opening Security. Definition 4 is in the spirit of [2] but
we allow for adaptive corruptions and let the adversary choose the distribution,
as done by Böhl et al. [4]. The latter renamed IND-SO-CPA to weak IND-SO-CPA
and introduced a strictly stronger notion, called full IND-SO-CPA, where ASO

may submit any distribution (even one not efficiently resamplable) and need not
provide a resampling algorithm.1 We consider the name weak IND-SO-CPA unfor-
tunate and simply refer to the security notion in Definition 4 as IND-SO-CPA
security.

3 Selective Opening for Graph-Induced Distributions

This section considers graph-induced distributions and identifies connectivity
properties so that IND-CPA entails IND-SO-CPA security. We introduce some
1 E.g., for a one-way function OWF a distribution (m,OWF(m)) may not support

efficient resampling.
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notation in Sect. 3.1. Sections 3.2 and 3.3 discuss a hybrid argument that con-
siders the connected components of GI , switching one of them from sampled to
resampled in each transition. Section 3.4 discusses a different hybrid argument
that will allow for tighter proofs if the distribution-inducing graph is acyclic.

3.1 Graphs

A directed graph G consists of a set of vertices V , identified with [n] for n > 0 and
a set of edges E ⊆ V 2\{(v, v) : v ∈ V }, i.e. we do not allow loops. G is undirected
if (v2, v1) ∈ E for each (v1, v2) ∈ E. For V ′ ⊆ V let GV ′ := (V ′, E′) denote the
induced subgraph of G where E′ := E ∩ (V ′)2. For G = (V,E) we obtain its
undirected version, G↔ = (V,E↔) where E↔ ⊇ E is obtained by adding the
minimum number of edges to E so that the graph becomes undirected. For
V ′ ⊆ V let N(V ′) := {v ∈ V \ V ′ : ∃v′ ∈ V ′ s.t. (v, v′) ∈ E↔} denote the (open)
neighborhood of V ′ in G. For a vertex v, we denote by P (v) = {j : (j, v) ∈ E}
the set of its parents.

A path from v1 to v� in G is a list of at least two vertices (v1, . . . , v�) where
vi ∈ V for i ∈ [�] and (vi, vi+1) ∈ E for all i ∈ [� − 1]. If there is a path from u
to v then u is a predecessor of v. Let pred(v) denote the set of all predecessors
of v. A cycle is a path where v� = v1. If G contains no cycles, it is acyclic. A
directed, acyclic graph is called DAG.

A non-empty subset V ′ ⊆ V is connected in G if for every pair of distinct
vertices (v1, v2) ∈ V ′ there exists a path form v1 to v2 in G↔. G is connected if
V is connected in G. G is disconnected if G is not connected. We assume G to
be connected if not stated otherwise. A (set-)maximal connected set of vertices
of G is called connected component.

Notational Convention. We do not distinguish between the i-th message of
an n-message vector and vertex i in a graph on n vertices.

We start with defining Markov distributions, which are distributions on vectors
of random variables reflecting processes, that is, variables with higher indices
depend on ones with lower indices. A distribution is Markov if it is memoryless
in the sense that all relevant information for the distribution of a value Mi is
already present in Mi−1, although the latter itself depends on its predecessor.

Definition 5. Let {Dλ}λ∈N
be a family of distributions over Mn. Let M =

(M1, . . . ,Mn) denote a vector of M-valued random variables. We say {Dλ}λ∈N

is Markov if the following holds for all λ ∈ N and all m ∈ Mn:

Pr
M←Dλ

[
Mi = mi

∣
∣
∣

i−1∧

j=1

Mj = mj

]
= Pr

M←Dλ

[
Mi = mi

∣
∣
∣Mi−1 = mi−1

]
.

Markov distribution can be seen as “induced” by a chain graph M1 → M2 →
. . . → Mn, where edges represent dependencies. We will now generalize this
to arbitrary graphs and still require (a generalization of) “memorylessness”.
We say that a graph G induces a distribution D if whenever the distribution
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of Mj depends on Mi then there is a path from i to j in G. As for Markov
distributions, we require that the distribution of a message only depends on its
parents; in particular, for all λ ∈ N, all j ∈ [n] and M = (M1, . . . ,Mn) ← Dλ

the distribution of Mj only depends on its parents in Gλ, i.e. the set P (j), rather
than all its predecessors pred(j).

Definition 6 (Graph-induced distribution). Let {Dλ}λ∈N
be a family of

distributions over Mn and let {Gλ}λ∈N
be a family of graphs on n vertices. We

say that {Dλ}λ∈N
is {Gλ}λ∈N

-induced if the following holds for all λ ∈ N:

– For all i 
= j ∈ [n] if for Dλ the distribution of Mj depends on Mi then there
is a path from i to j in Gλ.

– For all j ∈ [n] and all m ∈ Mn we have

Pr
M←Dλ

[
Mj = mj

∣
∣
∣

∧

i∈pred(j)

Mi = mi

]
= Pr

M←Dλ

[
Mj = mj

∣
∣
∣

∧

i∈P (j)

Mi = mi

]
.

We demand that for any λ ∈ N one can efficiently reconstruct Gλ from Dλ.

As with a family of distributions, we drop the security parameter and say that
D is G-induced whenever λ is already fixed. Note that G may contain cycles
and may be undirected. Further note that Markov distributions can be seen as
graph-induced distributions where the graph G = (V,E) is a chain on n vertices,
that is, V = [n] and E = {(i − 1, i) : i ∈ [n]}.

Although our proof ideas can be applied to disconnected graphs directly,
Sects. 3.2, 3.3, and 3.4 consider connected graphs for simplicity. A hybrid argu-
ment over the connected components of a graph as given in Sect. 3.5 extends all
our results to disconnected graphs.

3.2 A Bound Using Connected Subgraphs

Definition 7 (Number of connected subgraphs). Let G = (V,E). We
define the number of connected subgraphs of G:

S(G) := |{V ′ ⊆ V : V ′ connected}| .

For example, for a chain graph on n vertices we have S(G) = 1
2 · n · (n + 1) and

for the complete graph Cn on n vertices we have S(Cn) = 2n − 1.

Theorem 8. Let PKE be IND-CPA secure. Then PKE is IND-SO-CPA secure
w.r.t. the class of efficiently resamplable and G-induced distribution families over
Mn where S(G) = poly(n) and G is connected.

Precisely, for any adversary ASO run in game IND-SO-CPAPKE there exists
an IND-CPAPKE adversary BCPA with roughly the running time of ASO plus two
executions of Resamp such that

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤ n · (n − 1) · S(Gλ) · AdvIND-CPA

PKE (BCPA, λ).
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Procedure Challenge

m1 ← ResampD(m0, I)

mi :=

{
m1

i for i ∈ ⋃k
j=1 Cj

m0
i else

Return m = (m1, . . . ,mn)

Fig. 3. Challenge procedure of hybrid game Hk. Ci denotes the i-th connected com-
ponent of GI . The challenge vector contains resampled messages in the first k batches
C1, . . . , Ck while the other messages remain sampled.

Proof Idea. Recall game IND-SO-CPAPKE,b given in Fig. 2. During Challenge

the game sends mb, where m0
I consists of messages sampled at the beginning,

while m1
I is resampled (conditioned on m1

I = m0
I). We will define hybrid games

H0,H1, . . . ,Hn. For this, let S ⊆ 2V denote all the connected subgraphs of G.
We have |S| = S(G).

Note that GI consists of connected components C1, . . . , Cn′ ⊆ S for some
n′ ≤ n − 1. (This upper bound is attained by the star graph when I consists
of the internal node.) We assume those components to be ordered, e.g. by the
smallest vertex contained in each.

Thus, if b = 1 in game IND-SO-CPA then the challenger can resample m1
I in

n′ batches m1
C1

, . . . ,m1
Cn′ (as I =

⋃n′

i=1 Ci). Moreover, each batch m1
Ci

can be
resampled independently, i.e., as a function of m0

I and D, but not m1
Cj

, j 
= i.

Proof (Theorem 8). For k = 0, . . . , n we define hybrid game Hk as a modified
game IND-SO-CPAPKE, in which the messages of the first k batches C1, . . . , Ck

are resampled during Challenge while the remaining batches stay sampled.
Every procedure except Challenge remains as in Definition 4, and

Challenge is given in Fig. 3. Clearly, H0 is the (real) game IND-SO-CPAPKE,0

and Hn′ for some n′ ≤ n − 1 is the (random) game IND-SO-CPAPKE,1. Note that
for k, j ∈ [n′, n] hybrids Hk and Hj are identical. We have

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) = Adv

(
HASO

0 ,HASO

n′
) ≤

n′−1∑

k=0

Adv
(
HASO

k ,HASO

k+1

)
.

We now upper-bound the distance between two consecutive hybrids using the
following lemma.

Lemma 9. For every adversary ASO that distinguishes hybrids Hk and Hk+1

there exists a mult-IND-CPA adversary Bmult with roughly the running time of
ASO plus two executions of Resamp such that

Adv
(
HASO

k ,HASO

k+1

) ≤ S(G) · Advmult-IND-CPA
PKE (Bmult, λ).

Proof. We construct adversary Bmult as follows (cf. Fig. 4):
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Procedure Initialize

pk ← Initializemult-IND-CPA(1λ)
Return pk

Procedure Enc(D,ResampD)

C∗
k+1 ←$ S

m0 ← D

m1 ← ResampD(m0, N(C∗
k+1))

cC∗
k+1

← Challengemult-IND-CPA(m0
C∗

k+1
,m1

C∗
k+1

)

r ←$ Rn

ci =

{
ci for i ∈ C∗

k+1

Encpk (m
0
i ; ri) else

Return c = (c1, . . . , cn)

Procedure Open(i)

if i ∈ C∗
k+1

Bad :=true
I := I ∪ {i}
Return (m0

i , ri)

Procedure Challenge

if C∗
k+1 �= Ck+1

Bad :=true
m̃1 ← ResampD(m0, I)

mi =

{
m̃1

i for i ∈ ⋃k
j=1 Cj

m0
i else

Return m = (m1, . . . ,mn)

Procedure Finalize(b′)

Finalizemult-IND-CPA(b′)

Fig. 4. ASO’s game interface as provided by Bmult run in game mult-IND-CPA. Bmult

interpolates between hybrids Hk, Hk+1 for k ∈ [0, n − 1].

Bmult forwards pk to ASO and picks C∗
k+1 ←$ S uniformly at random (trying to

guess Ck+1) after receiving (D,ResampD). Bmult samples m0 ← D and resamples
m1 keeping the neighborhood of C∗

k+1 fixed. It submits (m0
C∗

k+1
,m1

C∗
k+1

) to its
mult-IND-CPA challenger, obtains ciphertexts for positions in C∗

k+1, picks ran-
domness and uses it to encrypt each message in C∗

k+1. Bmult sends (c1, . . . , cn)
to ASO, embedding its challenge at positions C∗

k+1 and answers opening queries
honestly if they do not occur on C∗

k+1. If ASO issues such a query, Bmult cannot
answer and sets Bad := true since it guessed Ck+1 wrong. During Challenge,
Bmult verifies that it guessed Ck+1 correctly and sets Bad := true if not. Bmult

resamples messages m̃1 that are sent in the first k batches while messages from
m0 are sent in every other position. Bmult outputs ASO’s output.

In the following we use m ≡ m′ if m and m′, interpreted as random variables,
are identically distributed where the probability is taken over all choices in the
computation of m, m′, respectively.

Assume, Bmult guessed correctly, i.e. C∗
k+1 = Ck+1. Clearly, Bmult perfectly

simulates hybrids Hk and Hk+1 for messages and ciphertexts at positions in
Ck+1. Run in mult-IND-CPAPKE,0, Bmult obtains Encpk (m0

Ck+1
) and ASO there-

fore receives encryptions of sampled messages. During Challenge the (k + 1)-
th batch contains sampled messages m0

Ck+1
, thus Bmult perfectly simulates

hybrid Hk.
When Bmult is run in mult-IND-CPAPKE,1, ASO obtains encryptions of resam-

pled messages Encpk (m1
Ck+1

) while it expects encrypted sampled messages:
Encpk (m0

Ck+1
). During Challenge ASO expects resampled messages m̃1

Ck+1
but

obtains sampled m0
Ck+1

. Thus, the sampled and resampled messages change roles
on Ck+1.
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However, they are equally distributed, i.e., m0
Ck+1

≡ m1
Ck+1

since the mes-
sages in N(Ck+1) were fixed when resampling m1 and the distribution of mes-
sages in Ck+1 depends on D and messages in positions N(Ck+1) only. Likewise,
m1

Ck+1
≡ m̃1

Ck+1
for m1 ← ResampD(m0, N(Ck+1)) and m̃1 ← ResampD(m0, I)

since the distribution of messages in Ck+1 solely depends on D and messages in
N(Ck+1) ⊆ I and ASO’s view is identical to hybrid Hk+1. We have

Pr[mult-IND-CPABmult

PKE,0 ⇒ 1] = Pr[HASO

k ⇒ 1 ∧ Bad] and

Pr[mult-IND-CPABmult

PKE,1 ⇒ 1] = Pr[HASO

k+1 ⇒ 1 ∧ Bad] .

Observe that Bad does not happen when Bmult guessed Ck+1 correctly. Since Bad
is independent of ASO’s output in a hybrid and |S| = S(G), we have

Advmult-IND-CPA
PKE (Bmult, λ) ≥ 1

S(G)
· Adv

(
HASO

k ,HASO

k+1

)
,

which concludes the proof. ��
We proceed with the proof of Theorem 8. Using Lemma 9 we have

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤

n′−1∑

k=0

Adv
(
HASO

k ,HASO

k+1

)

≤
n′−1∑

k=0

S(Gλ) · Advmult-IND-CPA
PKE (Bmult, λ).

Bmult sends message vectors of length |C∗
k+1| ≤ n to its mult-IND-CPA challenger.

Using Lemma 2, we have

≤
n′−1∑

k=0

n ·S(Gλ) ·AdvIND-CPA
PKE (BCPA, λ) ≤ n ·(n−1) ·S(Gλ) ·AdvIND-CPA

PKE (BCPA, λ),

since n′ ≤ n − 1, which completes the proof of Theorem 8. ��
Markov Distributions. Markov distributions (Definition 5) are induced by the
chain graph (V = [n], E = {(i − 1, i) : i ∈ [n]}), for which S(G) = 1

2 · n · (n + 1).
We thus immediately obtain the following corollary from Theorem 8.

Corollary 10. Let PKE be IND-CPA secure. Then PKE is IND-SO-CPA secure
w.r.t. efficiently resamplable Markov distributions over Mn.

Precisely, for any adversary ASO run in game IND-SO-CPAPKE there exists
an IND-CPAPKE adversary BCPA with roughly the running time of ASO plus two
executions of Resamp such that

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤ 1

2 · n2 · (n2 − 1) · AdvIND-CPA
PKE (BCPA, λ).
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3.3 A Bound Using the Maximum Border

Definition 11 (Maximum border). Let G = (V,E). We define the maximum
border of G as the maximal size of the neighborhood of any connected subgraph
in G.

B(G) := max
{ |N(V ′)| : V ′ ⊆ V connected

}
.

For example, if G is an n-path for n ≥ 3 then B(G) = 2. For the complete graph
or star graph on n vertices we have B(G) = n − 1. Notice that B(G) < n.

In the reduction in Sect. 3.2 we guessed a connected component in GI that
would be switched from sampled to resampled in a hybrid transition. Alterna-
tively, we can guess a connected component in GI via its neighborhood. The
following theorem expresses S(G) in terms of B(G).

Theorem 12. Let G be a connected graph. Then the following bound on S(G)
holds:

S(G) ≤ 2
(B(G) − 1)!

· nB(G) for all 0 < B(G) ≤ n − 2
3

.

We begin with a simple observation before proving the theorem.

Lemma 13. Let G = (V,E) and V1 
= V2 each of them connected in G such
that N(V1) = N(V2). Then V1 ∩ V2 = ∅.
Proof. Assume V1 ∩ V2 
= ∅. As V1 
= V2 we have V1 \ V2 
= ∅ without loss
of generality. Because V1 is connected, there exist vertices v∩ ∈ V1 ∩ V2 and
v1 ∈ V1 \ V2 such that (v1, v∩) ∈ E↔. Since v1 /∈ V2, v∩ ∈ V2 and (v1, v∩) ∈ E↔,
we see that v1 ∈ N(V2). As N(V2) = N(V1) it follows that v1 ∈ N(V1); a
contradiction since v1 ∈ V1. ��
Proof (Theorem 12). Let B := B(G). We have

S(G) =
B∑

i=0

∣
∣{V ′ ⊆ V : V ′ connected ∧ |N(V ′)| = i

}∣
∣ .

For i = 0 we count the connected components of G.

= 1 +
B∑

i=1

∣
∣{V ′ ⊆ V : V ′ connected ∧ |N(V ′)| = i

}∣
∣

= 1 +
B∑

i=1

∑

Vi⊆V
|Vi|=i

∣
∣{V ′ ⊆ V : V ′ connected ∧ N(V ′) = Vi

}∣
∣ .

Let Vi ⊆ V be non-empty and {V ′ ⊆ V : V ′ connected ∧ N(V ′) = Vi} =
{V ′

1 , . . . , V
′
k} for appropriate k. Applying Lemma 13 to V ′

1 , . . . , V
′
k, we see that

those sets V ′
j are pairwise disjoint. Fix any vertex vi ∈ Vi. Since N(V ′

j ) = Vi for
j ∈ [k] and all V ′

j are pairwise disjoint, there exists at least one vertex v′
j in each
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V ′
j such that (v′

j , vi) ∈ E for all j ∈ [k]. Thus, N(vi) ≥ k, i.e. B ≥ k. Hence,
k ≤ B for given B and we obtain an upper bound for the number of possible
sets V ′ for each fixed Vi. It follows

S(G) ≤ 1 +
B∑

i=1

∑

Vi⊆V
|Vi|=i

B = 1 + B ·
B∑

i=1

(
n

i

)
≤ B ·

B∑

i=0

(
n

i

)
. (1)

To bound the sum in (1) we use the geometric series and upper-bound the
quotient of two consecutive binomial coefficients by 1

2 :
(
n
i

)
(

n
i+1

) =
i + 1
n − i

≤ 1
2

⇔ i ≤ n − 2
3

.

Hence

B ·
B∑

i=0

(
n

i

)
≤ B ·

B∑

i=0

1
2i

(
n

B

)
≤ B ·

(
n

B

)
·

∞∑

i=0

1
2i

≤ 2 · B · nB

B!
=

2
(B − 1)!

· nB

for B(G) ≤ n−2
3 , which concludes the proof. ��

Theorems 8 and 12 together now yield the following corollary.

Corollary 14. Let PKE be IND-CPA secure. Then PKE is IND-SO-CPA secure
w.r.t. the class of efficiently resamplable and G-induced distribution families over
Mn where B(G) = const, n ≥ 3 · B(G) + 2 and G is connected.

Concretely, for any adversary ASO in game IND-SO-CPAPKE there exists an
IND-CPAPKE adversary BCPA with roughly the running time of ASO plus two
executions of Resamp such that

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤ 2 · (n − 1)

(B(Gλ) − 1)!
· nB(Gλ)+1 · AdvIND-CPA

PKE (BCPA, λ).

Since Corollary 14 ensures a polynomial loss in the reduction for B(G) = const
and we are interested in asymptotic statements, we do not consider the restriction
to n ≥ 3 ·B(G)+ 2 grave. One can easily obtain a version of Theorem 12 that is
weaker by a factor of roughly B(G) but holds for all B(G) < n. To this end one
bounds the sum of binomial coefficients in (1) in terms of the incomplete upper
gamma function Γ to get

B∑

i=1

(
n

i

)
≤

B∑

i=1

ni

i!
=

enΓ (B + 1, n)
B!

− 1.

Using a nice bound on Γ due to [11] that can be found in [5] we obtain a bound
for B(G) < n.
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Procedure Challenge

m1 ← ResampD(m0, [k+1, n] ∪ I)
Return mb

Fig. 5. Challenge procedure of hybrid game Hk. For k = n we have [n + 1, n] = ∅.

Think of a direct reduction for proving Corollary 14 as implicitly guessing Ck+1

via guessing N(Ck+1) by picking up to B(G) vertices in G and guessing one of
at most B(G) connected subgraphs that have the guessed neighborhood.

Note that Corollary 14 cannot provide a tighter bound on the loss than
Theorem 8. In particular, there are (even connected) graphs for which Theorem 8
ensures an at most polynomial loss, while Corollary 14 does not. For instance,
let G be the star graph on log n vertices attached to the chain graph of n− log n
vertices, then S(G) = poly(n), but B(G) > const.

3.4 A Tighter Reduction for Acyclic Graphs

While we considered graph-induced distributions for arbitrary graphs in
Sects. 3.2 and 3.3, we now consider DAG-induced distributions for which we
obtain a tighter reduction than what is guaranteed by Corollary 14.

For a DAG G we require that the vertices are semi-ordered in such a way that
there is no directed path from i to j for i < j. Such an ordering always exists as
G has no cycles. Note that the dependencies now go the other way as for Markov
distributions, but this will allow us to replaced sampled messages by resampled
ones from left to right as in the previous hybrids. We will traverse dependencies
backwards, that is, if message mi depends on mj then mi is switched from sam-
pled to resampled before mj is switched. So, as in the previous proofs, messages
m1, . . . ,mi will be resampled in the i-th hybrid.

Theorem 15. Let PKE be IND-CPA secure. Then PKE is IND-SO-CPA secure
w.r.t. the class of efficiently resamplable and G-induced distribution families over
Mn where B(G) = const and G is a connected DAG.

Precisely, for any adversary ASO run in game IND-SO-CPAPKE there exists
an IND-CPAPKE adversary BCPA with roughly the running time of ASO plus three
executions of Resamp such that

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤ 3 · nB(Gλ)+1 · AdvIND-CPA

PKE (BCPA, λ).

Proof. We proceed in a sequence of hybrid games H0,H1, . . . ,Hn and switch
message mk+1 from sampled to resampled in hybrid transition Hk to Hk+1.
Hybrid Hk will return the sampled messages for all positions [k + 1, n] ∪ I, but
resampled messages on all positions [k] \ I where the resampling is conditioned
on every message in [k + 1, n] ∪ I. The code for Challenge in given in Fig. 5,
every other procedure stays as in Fig. 2.
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left middle rightk+1

Fig. 6. Structure of G. Edges between particular sets cannot exist if there is no arrow
depicted. If right �= ∅, there is at least one edge from right to middle since G is connected.
left and middle are disconnected in GI .

Hybrid H0 is identical to game IND-SO-CPAPKE,0, and Hn is identical to
IND-SO-CPAPKE,1, hence

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) = Adv

(
HASO

0 ,HASO
n

) ≤
n−1∑

k=0

Adv
(
HASO

k ,HASO

k+1

)
. (2)

We bound the distance between two consecutive hybrids Hk, Hk+1 and proceed
with the following lemma.

Lemma 16. For every adversary ASO that distinguishes hybrids Hk and Hk+1

there exists a mult-IND-CPA adversary Bmult with roughly the running time of
ASO plus three executions of Resamp such that

Adv
(
HASO

k ,HASO

k+1

) ≤ Pr[Badk]−1 · Advmult-IND-CPA
PKE (Bmult, λ),

where Pr[Badk]−1 =
∑B(Gλ)−1

i=0

(
k
i

)
for k < n − 1 and Pr[Badk]−1 =

∑B(Gλ)
i=0

(
k
i

)

for k = n − 1.

Proof Idea: We construct a mult-IND-CPA adversary Bmult that interpolates
between hybrids Hk and Hk+1. Ideally, Bmult embeds its own challenge at position
k + 1, but might have to resample some already resampled messages in m[k] to
avoid inconsistencies. Let middle denote the connected component in G[k+1]\I
that contains mk+1. Let right := [k + 2, n], and left := (middle ∪ right). Observe
that it is sufficient to resample middle again to obtain consistent resampled
messages. In particular, there is no need to resample any right message due to
the semi-order imposed on the vertices, as a message in right does not depend
on any message in right (cf. Fig. 6). The reduction will guess middle to embed
its mult-IND-CPA challenge, while it waits for all opening queries to happen to
resample the left messages. Note that middle and left are disconnected in GI , thus
can be resampled independently of each other only depending on their respective
neighborhood. Since right messages are fixed while resampling, it suffices to guess
N(middle) ∩ [k]. Further, G is connected, i.e. N(middle) contains at least one
vertex from right = [k +2, n] as long as k < n− 1. Hence, for k < n− 1, we have
|N(middle) ∩ [k]| ≤ B(G) − 1.

Proof (Lemma 16). For k ∈ [0, n] and i ∈ [n] let Openk(i) denote the event
that ASO calls Open(i) in hybrid Hk. Two arbitrary hybrids only differ in the
Challenge procedure, hence Pr[Opens(i)] = Pr[Opent(i)] for all s, t ∈ [0, n],
for all i ∈ [n]. Additionally, two consecutive hybrids Hk, Hk+1 only differ in the
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Procedure Initialize

pk ← Initializemult-IND-CPA(1λ)
Return pk

Procedure Enc(D,ResampD)

if k < n − 1
N∗ ←$ {V ′ ⊆ [k] : |V ′| ∈ [0, B(G) − 1]}

else
N∗ ←$ {V ′ ⊆ [k] : |V ′| ∈ [0, B(G)]}

Let middle∗ denote the connected com-
ponent in G[k+1]\N∗ that contains k+1.

m0 ← D

m1,0 ← ResampD(m0, N∗ ∪ right)
m1,1 ← ResampD(m0, N∗ ∪ right ∪ {k + 1})

cmiddle∗ ← Challengemult-IND-CPA(m1,0
middle∗ ,m

1,1
middle∗)

r ←$ Rn

ci =

{
ci for i ∈ middle∗

Encpk (m
0
i ; ri) else

Return c = (c1, . . . , cn)

Procedure Open(i)

if i ∈ middle∗ \ {k + 1}
Bad :=true

I := I ∪ {i}
Return (m0

i , ri)

Procedure Challenge

if N∗ I⊆�
Bad :=true

m1 ← ResampD(m0, I ∪ right)

mi =

{
m1

i for i ∈ left

m0
i else

Return m = (m1, . . . ,mn)

Procedure Finalize(b′)

Finalizemult-IND-CPA(b′)

Fig. 7. ASO’s game interface as provided by Bmult run in game mult-IND-CPA. Bmult

interpolates between hybrids Hk, Hk+1 for k ∈ [0, n − 1].

(k+1)-th message returned during Challenge unless ASO calls Open(k +1) in
game Hk+1. Thus, we have

Pr[HASO

k ⇒ 1 ∧ Openk(k + 1)] = Pr[HASO

k+1 ⇒ 1 ∧ Openk+1(k + 1)]

and obtain

Adv
(
HASO

k ,HASO

k+1

)
=

∣
∣
∣Pr[HASO

k+1 ⇒ 1 ∧ Openk+1(k + 1)] − Pr[HASO

k ⇒ 1 ∧ Openk(k + 1)]
∣
∣
∣ . (3)

We describe Bmult (cf. Fig. 7): It passes pk on to ASO; obtaining (D,ResampD),
Bmult makes a guess for middle (labeled middle∗) by making a guess (labeled
N∗) of middle’s neighborhood in G[k+1] and samples m0 ← D. Bmult resam-
ples m1,0 fixing N∗ ∪ right and resamples m1,1 fixing N∗ ∪ right ∪ {k + 1}.
Bmult sends (m1,0

middle∗ ,m1,1
middle∗) to its mult-IND-CPA challenger, receives cmiddle∗ ,

samples fresh randomness to encrypt messages in middle∗ on its own and for-
wards (c1, . . . , cn) to ASO. Bmult sets Bad := true if ASO calls Open(i) for some
i ∈ middle∗ \{k+1} since it cannot answer those queries.2 Other opening queries
are answered honestly. On ASO’s call of Challenge, Bmult checks if N∗ ⊆ I. If
not, Bmult guessed middle wrong and sets Bad to true. Otherwise, Bmult resamples
messages fixing those at positions I ∪ right to obtain resampled messages m1

2 Equation (3) directly accounts for ASO calling Open(k + 1).
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and sends m1
i for all left positions and m0

i for all remaining positions to ASO.
Bmult outputs whatever ASO outputs.

Assume that Bmult guessed correctly, i.e. N∗ is the neighborhood of middle
in G[k]. Then middle∗ = middle holds and by definition of middle, Bad cannot
happen.

Clearly, Bmult correctly simulates ASO’s hybrid view in all left and right posi-
tions. Note that ASO obtains resampled encryptions Encpk (m1,b

middle) during Enc,
but expects sampled encryptions Encpk (m0

middle), while receiving sampled m0
middle

when calling Challenge, expecting resampled mmiddle. Thus, sampled middle
messages become resampled middle messages from ASO’s view and vice versa.

However, we have mmiddle ≡ m0
middle since N(middle) ⊆ I ∪ right, whereby

I ∪ right is fixed when resampling mmiddle.
For Bmult run in game mult-IND-CPAPKE,0, ASO receives Encpk (m1,0

middle) where
m1,0

middle ≡ m0
middle since N∗ ∪ right = N ∪ right is fixed when m1,0 is resampled.

Hence, all middle messages sent during Challenge look resampled and ASO’s
view is identical to hybrid Hk+1.

When Bmult is run in mult-IND-CPAPKE,1, it forwards Encpk (m1,1
middle) to ASO

where m1,1
middle ≡ m1

middle for the same reason as for b = 0. In particular, we have
m0

k+1 = m1,1
k+1 since m0

k+1 is fixed while resampling. Consequently, each message
in middle except the (k + 1)-th looks resampled during Challenge and ASO’s
view is identical to hybrid Hk.

Bmult outputs 1 in its game mult-IND-CPA if ASO outputs 1 in its respective
hybrid and ASO does not open ciphertext ck+1 and Bad does not happen. We
thus have

Advmult-IND-CPA
PKE (Bmult, λ) ≥

∣
∣
∣Pr[mult-IND-CPABmult

PKE,0 ⇒ 1] − Pr[mult-IND-CPABmult

PKE,1 ⇒ 1]
∣
∣
∣

=
∣
∣
∣Pr[HASO

k+1 ⇒ 1 ∧ Openk+1(k+1) ∧ Bad] − Pr[HASO

k ⇒ 1 ∧ Openk(k+1) ∧ Bad]
∣
∣
∣ .

Since Bad is independent of HASO
i ⇒ 1 ∧ Openi(k + 1) for i ∈ {k, k + 1} we have

= Pr[Bad] ·
∣
∣
∣Pr[HASO

k+1 ⇒ 1 ∧ Openk+1(k + 1)] − Pr[HASO

k ⇒ 1 ∧ Openk(k + 1)]
∣
∣
∣

= Pr[Bad] · Adv
(
HASO

k ,HASO

k+1

)
,

by Eq. (3). Bmult picks N∗ from a set of size
∑B(Gλ)−1

i=0

(
k
i

)
for k < n − 1, and of

size
∑B(Gλ)

i=0

(
k
i

)
for k = n − 1, respectively, which proves Lemma 16. ��

The remaining proof consists of tedious computations. From Eq. (2) and
Lemma 16 we have

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤

n−1∑

k=0

Pr[Badk]−1 · Advmult-IND-CPA
PKE (Bmult, λ).
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Let B := B(G). Since Bmult submits message vectors of length |middle∗| ≤ k + 1
to its mult-IND-CPA challenger and by Lemma 2:

AdvIND-SO-CPA
PKE (ASO,Dλ, λ)≤
(

n−2∑

k=0

(k+1) ·
B−1∑

i=0

(
k

i

)
+n ·

B∑

i=0

(
n−1

i

))

· AdvIND-CPA
PKE (Bmult, λ). (4)

We upper-bound the loss in (4). Let 2 ≤ B < n.

n−2∑

k=0

(k + 1) ·
B−1∑

i=0

(
k

i

)
+ n ·

B∑

i=0

(
n − 1

i

)

=
B−1∑

i=0

(
0
i

)
+ 2 ·

B−1∑

i=0

(
1
i

)
+

n−2∑

k=2

(k + 1) ·
B−1∑

i=0

(
k

i

)
+ n ·

B∑

i=0

(
n − 1

i

)

≤ 5 +
n−2∑

k=2

(k + 1) ·
B−1∑

i=0

ki + n ·
B∑

i=0

(
n − 1

i

)

= 5 +
n−2∑

k=2

(k + 1) · kB − 1
k − 1

+ n ·
B∑

i=0

(
n − 1

i

)

= 5 +
n−2∑

k=2

k + 1
k − 1︸ ︷︷ ︸

≤3

·(kB − 1) + n ·
B∑

i=0

(
n − 1

i

)

≤ 5 + 3 ·
n−2∑

k=2

(kB − 1) + n ·
B∑

i=0

(
n − 1

i

)

= 5 + 3 ·
n−2∑

k=2

kB − 3 · (n − 3) + n ·
B∑

i=0

(
n − 1

i

)

= 14 − 3n + 3 ·
n−2∑

k=2

kB + n ·
B∑

i=0

(
n − 1

i

)

= 11 − 3n + 3 ·
n−2∑

k=0

kB + n ·
B∑

i=0

(
n − 1

i

)
since B ≥ 1

≤ 11 − 3n + 3 ·
n−2∑

k=0

kB + n ·
B∑

i=0

ni = 11 − 3n + 3 ·
n−2∑

k=0

kB + n · nB+1 − 1
n − 1

= 11 − 3n + 3 ·
n−2∑

k=0

kB +
n

n − 1︸ ︷︷ ︸
≤2

·(nB+1 − 1) since n ≥ 2

≤ 9 − 3n + 3 ·
n−2∑

k=0

kB + 2 · nB+1 ≤ 9 − 3n + 3 ·
n∫

0

kBdk + 2 · nB+1
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= 9 − 3n + 3 · nB+1

B + 1
+ 2 · nB+1 = 9 − 3n +

(
2 +

3
B + 1

)
· nB+1

≤ 9 − 3n + 3 · nB+1 since B ≥ 2

≤ 3 · nB+1 since n ≥ 3 .

Since G is connected we have B = 0 ⇔ n = 1, B = 1 ⇔ n = 2. Thus, it is easily
verified that the bound holds for (B,n) ∈ {(0, 1), (1, 2)} as well. ��
Because Markov distributions are DAG-induced by chain graphs and the max-
imum border of a chain graph is at most 2 we immediately obtain a tighter
version of Corollary 10 whose proof directly follows from Theorem 15.

Corollary 17. Let PKE be IND-CPA secure. Then PKE is IND-SO-CPA secure
with respect to efficiently resamplable Markov distributions over Mn.

In particular, for any adversary ASO run in game IND-SO-CPAPKE there
exists an IND-CPAPKE adversary BCPA with roughly the running time of ASO

plus three executions of Resamp such that

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤ 3 · n3 · AdvIND-CPA

PKE (BCPA, λ).

Applying the proof of Theorem 15 directly to the Markov case gives a slightly
better bound on the loss, namely n·(n+1)·(2n+1)/6, since N(middle)∩[n−1] = 1
even for the last transition Hn−1 to Hn. Hence, the loss in Eq. (4) decreases to∑n−1

k=0 (k + 1)2.
Recall that the hybrids in the proof of Theorem 15 saved us a factor of n

because it suffices to guess a set of size at most B(G) − 1 instead of B(G) for
k < n − 1 as at least one vertex of the neighborhood of middle is contained in
right.

The same hybrids can be used to strengthen Theorem 8 as it suffices to guess
a connected subgraph in [k + 1] (instead of [n]) containing vertex k + 1.

Since G is connected, there is at least a path in {k + 1} ∪ right that contains
k + 1, i.e. at least n − k connected subgraphs in right ∪ {k + 1}. Thus, there
exist at least n − k connected subgraphs in G that contain vertex k + 1 and are
identical if restricted to [k +1]. Hence the probability that the reduction guesses
Ck+1 correctly can be increased from 1/S(G) to (n − k)/S(G), bringing the loss
from O(n2) · S(G) down to O(n · log n) · S(G).

3.5 A Hybrid Argument for Disconnected Graphs

Let G be a graph with z′ connected components. Fix any semi-order on them, e.g.
ordered by the smallest vertex in each component and let V1, . . . , Vz′ denote the
sets of vertices of the connected components of G. For j ∈ [z′ + 1, n] let Vj := ∅.
We define a security game where an adversary plays the IND-SO-CPA game on a
connected component of the graph that induced the distribution chosen by the
adversary.
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Procedure Initialize

(pk , sk) ← Gen(1λ)
Return pk

Procedure Enc(D,ResampD)

m0 ← D

r ←$ Rn

c = Encpk (m
0
Vz

; rVz
)

Return c

Procedure Open(i)

I := I ∪ {i}
Return (m0

i , ri)

Procedure Challenge

m1 ← ResampD(m0, I)
Return mb

Vz

Procedure Finalize(b′)

Return b′

Fig. 8. BG-SO’s interface in game G-IND-SO-CPAPKE,b,z.

Definition 18. For a public-key encryption scheme PKE := (Gen,Enc,Dec), a
bit b, a family F of efficiently resamplable, G-induced distributions over Mn,
z ∈ [n] and an adversary BG-SO we consider game G-IND-SO-CPABG-SO

PKE,b,z given
in Fig. 8. Run in the game, BG-SO calls Enc once right after Initialize and
submits D ∈ F along with a PPT resampling algorithm ResampD. BG-SO may
call Open multiple times but only for i ∈ Vz and invokes Challenge once after
its last Open query before calling Finalize. We define the advantage of BG-SO

run in IND-SO-CPAPKE,b,z as

AdvG-IND-SO-CPA
PKE,z (BG-SO,Dλ, λ) :=

Adv
(
G-IND-SO-CPABG-SO

PKE,0,z,G-IND-SO-CPABG-SO

PKE,1,z

)
.

PKE is G-IND-SO-CPAz secure w.r.t. F if AdvIND-SO-CPA
PKE,z (BG-SO,Dλ, λ) is neg-

ligible for all PPT adversaries BG-SO. PKE is G-IND-SO-CPA secure w.r.t. F if
PKE is G-IND-SO-CPAz secure w.r.t. F for all z ∈ [n].

We have AdvG-IND-SO-CPA
PKE,z (BG-SO,Dλ, λ) = 0 for z ∈ [z′ + 1, n].

Theorem 19. Let PKE be G-IND-SO-CPA secure w.r.t. a family F of efficiently
resamplable and G-induced distributions over Mn, then PKE is IND-SO-CPA
secure w.r.t F .

Proof. Again, the main idea is that connected components can be dealt with
independently. We give a hybrid argument over the connected components of
Gλ using G-IND-SO-CPAz security for switching connected component z from
sampled to resampled. See Fig. 9 for code of Challenge in hybrid Hz; every
other procedure stays as in IND-SO-CPAPKE,b (cf. Fig. 2).

Note that H0 is identical to game IND-SO-CPAPKE,0 and Hz′ is identical to
IND-SO-CPAPKE,1. Thus

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) = Adv

(
HASO

0 ,HASO

z′
) ≤

z′−1∑

z=0

Adv
(
HASO

z ,HASO
z+1

)
.

We proceed with the following Lemma.
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Procedure Challenge

m1 ← ResampD(m0, I)

mi =

{
m1

i for i ∈ ⋃z
j=1 Vj

m0
i else

Return m = (m1, . . . ,mn)

Fig. 9. Hybrid Hz. The first z connected components are already resampled conditioned
on opening queries, while the rest remain sampled.

Lemma 20. For every adversary ASO distinguishing hybrids Hz and Hz+1 there
exists an adversary BG-SO run in game G-IND-SO-CPAPKE,z+1 with roughly the
running time plus one executions of Resamp such that

Adv
(
HASO

z ,HASO
z+1

) ≤ AdvG-IND-SO-CPA
PKE,z+1 (BG-SO,Dλ, λ).

Proof. We construct an adversary BG-SO that interpolates between hybrids Hz

and Hz+1 for ASO. BG-SO proceeds as follows (cf. Fig. 10).
BG-SO forwards pk to ASO. On ASO’s call of Enc, BG-SO calls EncG-IND-SO-CPAz+1

to obtain an encryption cVz+1
of messages in the component Vz+1. BG-SO sam-

ples messages m0 ← D on its own and encrypts the messages in Vz+1. BG-SO

sends c = (c1, . . . , cn) to ASO. BG-SO answers opening queries on its own unless
they occur on Vz+1, where it invokes its OpenG-IND-SO-CPAz+1 oracle to answer.
On Challenge, BG-SO receives a challenge message vector mVz+1

by calling
ChallengeG-IND-SO-CPAz+1 and resamples m1 conditioned on I. BG-SO returns
resampled messages m1 on

⋃z
j=1 Vj , its challenge messages mVz+1

and sampled
messages m0 for

⋃n
j=z+2 Vj to ASO. BG-SO outputs whatever ASO outputs.

Obviously BG-SO simulates the hybrids correctly during Enc since it always
returns encryptions of sampled messages. On ASO’s call of Challenge the mes-
sages in the first z connected components are already resampled while the mes-
sages in the last n−z−1 connected components are sampled as in hybrids Hz and
Hz+1. When BG-SO is run in game G-IND-SO-CPAPKE,0,z+1, it obtains sampled
messages for the (z + 1)-th connected component; thus it runs ASO in hybrid
Hz. When run in G-IND-SO-CPAPKE,1,z+1, BG-SO receives resampled messages for
Vz+1; hence running ASO in hybrid Hz+1. Thus

Pr[G-IND-SO-CPABG-SO
PKE,0,z+1 ⇒ 1] = Pr[HASO

z ⇒ 1] and

Pr[G-IND-SO-CPABG-SO
PKE,1,z+1 ⇒ 1] = Pr[HASO

z+1 ⇒ 1].

Lemma 20 follows. ��
We obtain

AdvIND-SO-CPA
PKE (ASO,Dλ, λ) ≤

z′
∑

z=1

AdvG-IND-SO-CPA
PKE,z (BG-SO,Dλ, λ)

and Theorem 19 follows immediately since z′ ≤ n. ��
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Procedure Initialize

pk ← GenG-IND-SO-CPAz+1(1
λ)

Return pk

Procedure Enc(D,ResampD)

cVz+1
← EncG-IND-SO-CPAz+1(D,ResampD)

m0 ← D

r ←$ Rn

ci =

{
ci for i ∈ Vz+1

Encpk (m
0
i ; ri) else

Return c = (c1, . . . , cn)

Procedure Finalize(b′)

FinalizeG-IND-SO-CPA(b′)

Procedure Open(i)

I := I ∪ {i}
if i ∈ Vz+1

Return OpenG-IND-SO-CPAz+1(i)
else

Return (m0
i , ri)

Procedure Challenge

mVz+1
← ChallengeG-IND-SO-CPAz+1

m1 ← ResampD(m0, I)

mi =

⎧⎪⎨⎪⎩
m1

i for i ∈ ⋃z
j=1 Vj

mi for i ∈ Vz+1

m0
i else

Return m = (m1, . . . ,mn)

Fig. 10. Reduction run by BG-SO to simulate Hz (or Hz+1) when BG-SO is run in
G-IND-SO-CPAPKE,0,z+1 (or G-IND-SO-CPAPKE,1,z+1).

In particular, we achieve versions of Theorem 8, Corollary 14 and Theorem 15
for disconnected graphs, where

S(G) =
z′

∑

i=1

S(Ci) and B(G) = max
i∈[z′]

{B(Ci)}

for a graph G consisting of connected components C1, . . . , Cz′ .

Moreover, for G = ([n], ∅), G-induced distributions become product distribu-
tions, i.e. the messages are sampled independently. Hence, the positive result of
[3] can be seen as a special case of Theorem 19.
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Abstract. In a seminal paper, Dolev et al. [15] introduced the notion of
non-malleable encryption (NM-CPA). This notion is very intriguing since
it suffices for many applications of chosen-ciphertext secure encryption
(IND-CCA), and, yet, can be generically built from semantically secure
(IND-CPA) encryption, as was shown in the seminal works by Pass et al.
[29] and by Choi et al. [9], the latter of which provided a black-box
construction. In this paper we investigate three questions related to NM-
CPA security:

1. Can the rate of the construction by Choi et al. of NM-CPA from
IND-CPA be improved?

2. Is it possible to achieve multi-bit NM-CPA security more efficiently
from a single-bit NM-CPA scheme than from IND-CPA?

3. Is there a notion stronger than NM-CPA that has natural applications
and can be achieved from IND-CPA security?

We answer all three questions in the positive. First, we improve the rate
in the scheme of Choi et al. by a factor O(λ), where λ is the security
parameter. Still, encrypting a message of size O(λ) would require cipher-
text and keys of size O(λ2) times that of the IND-CPA scheme, even in
our improved scheme. Therefore, we show a more efficient domain exten-
sion technique for building a λ-bit NM-CPA scheme from a single-bit
NM-CPA scheme with keys and ciphertext of size O(λ) times that of the
NM-CPA one-bit scheme. To achieve our goal, we define and construct a
novel type of continuous non-malleable code (NMC), called secret-state
NMC, as we show that standard continuous NMCs are not enough for
the natural “encode-then-encrypt-bit-by-bit” approach to work.

Finally, we introduce a new security notion for public-key encryp-
tion that we dub non-malleability under (chosen-ciphertext) self-destruct
attacks (NM-SDA). After showing that NM-SDA is a strict strengthen-
ing of NM-CPA and allows for more applications, we nevertheless show
that both of our results—(faster) construction from IND-CPA and domain

c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part I, LNCS 9562, pp. 306–335, 2016.
DOI: 10.1007/978-3-662-49096-9 13
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extension from one-bit scheme—also hold for our stronger NM-SDA secu-
rity. In particular, the notions of IND-CPA, NM-CPA, and NM-SDA secu-
rity are all equivalent, lying (plausibly, strictly?) below IND-CCA security.

1 Introduction

Several different security notions for public-key encryption (PKE) have been pro-
posed. The most basic one is that of indistinguishability under chosen-plaintext
attacks (IND-CPA) [21], which requires that an adversary with no decryption
capabilities be unable to distinguish between the encryption of two messages.
Although extremely important and useful for a number of applications, in many
cases IND-CPA security is not sufficient. For example, consider the simple setting
of an electronic auction, where the auctioneer U publishes a public key pk, and
invites several participants P1, . . . , Pq to encrypt their bids bi under pk. As was
observed in the seminal paper of Dolev et al. [15], although IND-CPA security
of encryption ensures that P1 cannot decrypt a bid of P2 under the ciphertext
e2, it leaves open the possibility that P1 can construct a special ciphertext e1
which decrypts to a related bid b1 (e.g., b1 = b2 + 1). Hence, to overcome such
“malleability” problems, stronger forms of security are required.

The strongest such level of PKE security is indistinguishability under chosen-
ciphertext attacks (IND-CCA), where the adversary is given unrestricted, adap-
tive access to a decryption oracle (modulo not being able to ask on the “challenge
ciphertext”). This notion is sufficient for most natural applications of PKE, and
several generic [5,15,25,28,31] and concrete [13,14,22,24] constructions of IND-
CCA secure encryption schemes are known by now. Unfortunately, all these
constructions either rely on specific number-theoretic assumptions, or use much
more advanced machinery (such as non-interactive zero-knowledge proofs or
identity-based encryption) than IND-CPA secure encryption. Indeed, despite
numerous efforts (e.g., a partial negative result [20]), the relationship between
IND-CPA and IND-CCA security remains unresolved until now. This motivates
the study of various “middle-ground” security notions between IND-CPA and
IND-CCA, which are sufficient for applications, and, yet, might be constructed
from simpler basic primitives (e.g., any IND-CPA encryption).

One such influential notion is non-malleability under chosen-plaintext attacks
(NM-CPA), originally introduced by Dolev et al. [15] with the goal of precisely
addressing the auction example above, by demanding that an adversary not be
able to maul ciphertexts to other ciphertexts encrypting related plaintexts. As
was later shown by Bellare and Sahai [4] and by Pass et al. [30], NM-CPA is
equivalent to security against adversaries with access to a non-adaptive decryp-
tion oracle, meaning that the adversary can only ask one “parallel” decryption
query. Although NM-CPA appears much closer to IND-CCA than IND-CPA
security, a seminal result by Pass et al. [29] showed that one can generically build
NM-CPA encryption from any IND-CPA-secure scheme, and Choi et al. [9] later
proved that this transformation can also be achieved via a black-box construc-
tion. Thus, NM-CPA schemes can be potentially based on weaker assumptions
than IND-CCA schemes, and yet suffice for important applications.
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Our Work. We investigate three questions related to NM-CPA security:

1. Can the efficiency of the construction by Choi et al. of NM-CPA from IND-
CPA be improved?

2. Is it possible to achieve multi-bit NM-CPA security more efficiently from a
single-bit NM-CPA scheme than from IND-CPA?

3. Is there a notion stronger than NM-CPA that has natural applications and
can be achieved from IND-CPA security?

We answer all three questions positively. We start with Question 3, as it will
also allow us to achieve stronger answers for Questions 1 and 2. In a recent
paper, Coretti et al. [10] introduced a new middle-ground security notion for
encryption—termed indistinguishability under (chosen-ciphertext) self-destruct
attacks (IND-SDA) in this paper1—where the adversary gets access to an adap-
tive decryption oracle, which, however, stops decrypting after the first invalid
ciphertext is submitted. Applying this notion to the auction example above, it
means that the auctioneer can reuse the secret key for subsequent auctions, as
long as all the encrypted bids are valid. Unfortunately, if an invalid ciphertext
is submitted, even the results of the current auction should be discarded, as
IND-SDA security is not powerful enough to argue that the decryptions of the
remaining ciphertexts are unrelated w.r.t. prior plaintexts.

Motivated by the above, we introduce a new security notion that we dub
non-malleability under (chosen-ciphertext) self-destruct attacks (NM-SDA). This
notion (see Definition 3) naturally combines NM-CPA and IND-SDA, by allowing
the adversary to ask many adaptive “parallel” decryption queries (i.e., a query
consists of many ciphertexts) up to the point when the first invalid ciphertext
is submitted. In such a case, the whole parallel decryption query containing an
invalid ciphertext is still answered in full, but no future decryption queries are
allowed. By being stronger (as we show below) than both NM-CPA and IND-
SDA, NM-SDA security appears to be a strongest natural PKE security notion
that is still weaker (as we give evidence below) than IND-CCA—together with
q-bounded CCA-secure PKE [12], to which it seems incomparable. In particular,
it seems to apply better to the auction example above: First, unlike with basic
NM-CPA, the auctioneer can reuse the same public key pk, provided no invalid
ciphertexts were submitted. Second, unlike IND-SDA, the current auction can be
safely completed, even if some ciphertexts are invalid. Compared to IND-CCA,
however, the auctioneer will still have to change its public key for subsequent
auctions if some of the ciphertexts are invalid. Still, one can envision situations
where parties are penalized for submitting such malformed ciphertexts, in which
case NM-SDA security might be practically sufficient, leading to an implementa-
tion under (potentially) lesser computational assumptions as compared to using
a full-blown IND-CCA PKE.

Having introduced and motivated NM-SDA security, we provide a compre-
hensive study of this notion, and its relationship to other PKE security notions.
The prior notions of NM-CPA and IND-SDA are incomparable, meaning that
1 The original name used in [10] is self-destruct chosen-ciphertext attacks security.
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there are (albeit contrived) schemes that satisfy the former but not the latter
notion and vice versa. This is shown in the full version of this work and implies
that NM-SDA security is strictly stronger than either of the two other notions.

We turn to Question 2 above and answer it affirmatively even for our stronger
notion of NM-SDA security; indeed, our security proof is easily seen to carry over
to the simpler case of NM-CPA security. Finally, we also simultaneously answer
Questions 1 and 3, by presenting a generalization of the Choi et al. [9] construc-
tion from IND-CPA encryption which: (a) allows us to improve the plaintext-
length to ciphertext-length rate by a factor linear in the security parameter as
compared to the construction of [9] (which is a special case of our abstraction,
but with sub-optimal parameters); (b) generically achieves NM-SDA security
(with or without the efficiency improvement). We detail these results below.

Domain Extension. For several security notions in public-key cryptography, is is
known that single-bit public-key encryption implies multi-bit public-key encryp-
tion. For IND-CPA, this question is simple [21], since the parallel repetition of
a single-bit scheme (i.e., encrypting every bit of a message separately) yields
an IND-CPA secure multi-bit scheme. For the other notions considered in this
paper, i.e., for NM-CPA, IND-SDA, and NM-SDA, as well as for IND-CCA, the
parallel repetition (even using independent public keys) is not a scheme that
achieves the same security level as the underlying single-bit scheme. However,
Coretti et al. [10] provide a single-to-multi-bit transformation for IND-SDA secu-
rity based on non-malleable codes [17] (see below), and Myers and Shelat [27],
as well as Hohenberger et al. [23], provide (much) more complicated such trans-
formations for IND-CCA security. To complement these works, we answer the
question of domain extension for NM-SDA and NM-CPA in the affirmative. In
particular we show the following result:

Theorem 1 (Informal). Let λ be the security parameter. Then there is a black-
box construction of a λ-bit NM-SDA (resp. NM-CPA) PKE scheme from a single-
bit NM-SDA (resp. NM-CPA) PKE scheme, making O(λ) calls to the underlying
single-bit scheme.2

The proof of Theorem 1 can be found in Sect. 4. Our approach follows that
for IND-SDA [10] and combines single-bit PKE with so-called non-malleable
codes (NMCs), introduced by Dziembowski et al. [17]. Intuitively, NMCs pro-
tect encoded messages against a tampering adversary, which tampers with the
codeword by means of applying functions f from a particular function class F
to it, in the sense that the decoding results in either the original message or a
completely unrelated value.

Our construction has the following simple structure (see also Fig. 4): The
plaintext m is first encoded using an appropriate non-malleable code into an
encoding c, which is in turn encrypted bit-by-bit (under independent public
keys) with the single-bit NM-SDA scheme.3 The fact that NM-SDA security
2 For longer than λ-bit messages, one can also use standard hybrid encryption.
3 Technically, this scheme only achieves a relaxation of NM-SDA security, called
replayable NM-SDA security, but the latter can be easily transformed into the former.
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guarantees that an attacker can either leave a ciphertext intact or replace it,
which results in an unrelated message, translates to the following capability of
an adversary w.r.t. decryption queries: It can either leave a particular bit of the
encoding unchanged, or fix it to 0 or to 1. Therefore, the tamper class against
which the non-malleable code must be resilient is the class Fset of functions
that tamper with each bit of an encoding individually and can either leave it
unchanged or set it to a fixed value.

The main new challenge for our construction is to deal with the parallel
decryption queries: in order for the combined scheme to be NM-SDA secure,
the NMC needs to be resilient against parallel tamper queries as well. Unfor-
tunately, we show that no standard non-malleable code (as originally defined
by Dziembowski et al. [17] and Faust et al. [18]) can achieve this notion (see
Sect. 4.6). Fortunately, we observe that the NMC concept can be extended to
allow the decoder to make use of (an initially generated) secret state, which sim-
ply becomes part of the secret key in the combined scheme. This modification of
NMCs—called secret-state NMCs—allows us to achieve resilience against paral-
lel tampering and may be of independent interest. This reduces our question to
building a secret-state non-malleable code resilient against continuous parallel
tampering attacks from Fset. We construct such a code in Sect. 4.3, by combin-
ing the notion of linear error-correcting secret sharing (see [17]) with the idea
of a secret “trigger set” [9]. This construction forms one of the main technical
contributions of our work.

IND-CCA

NM-SDA

NM-CPA IND-SDA

IND-CPA

Fig. 1. Diagram of the main relationships between the security notions considered in
this paper. X → Y means that X implies Y ; X � Y indicates a separation between X
and Y . Notions with the same color are equivalent under black-box transformations;
notions with different colors are not known to be equivalent.

NM-SDA from IND-CPA. Next, we show:

Theorem 2 (Informal). There exists a black-box construction of an NM-SDA-
secure PKE scheme from an IND-CPA-secure PKE.
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Hence, the notions of IND-CPA, NM-CPA, IND-SDA, and NM-SDA security are
all equivalent, lying (plausibly, strictly?) below IND-CCA security. See Fig. 1.

The proof of Theorem2 appears in Sect. 5. In fact, we show that a generaliza-
tion of the construction by Choi et al. already achieves NM-SDA security (rather
than only NM-CPA security). Our proof much follows the pattern of the original
one, except for one key step in the proof, where a brand new proof technique is
required. Intuitively, we need to argue that no sensitive information about the
secret “trigger set” is leaked to the adversary, unless one of the ciphertexts is
invalid. This rather general technique (for analyzing security of so called “par-
allel stateless self-destruct games”) may be interesting in its own right (e.g., it
is also used in the security proof of our non-malleable code in Sect. 4), and is
detailed in Sect. 6.

Along the way, we also manage to slightly abstract the transformation of [9],
and to re-phrase it in terms of certain linear error-correcting secret-sharing
schemes (LECSSs) satisfying a special property (as opposed to using Reed-
Solomon codes directly as an example of such a scheme). Aside from a more
modular presentation (which gives a more intuitive explanation for the elegant
scheme of Choi et al. [9]), this also allows us to instantiate the required LECSS
more efficiently and thereby improve the rate of the transformation of [9] by a
factor linear in the security parameter (while also arguing NM-SDA, instead of
NM-CPA, security), giving us the positive answer to Question 1.4

2 Preliminaries

This section introduces notational conventions and basic concepts that we use
throughout the work.

Bits and Symbols. Let � ∈ N. For any multiple m = t� of �, an m-bit string
x = (x[1], . . . , x[m]) = (x1, . . . , xt) can be seen as composed of its bits x[j] or
its symbols xi ∈ {0, 1}�. For two m-bit strings x and y, denote by dH(x, y) their
hamming distance as the number of symbols in which they differ.

Oracle Algorithms. Oracle algorithms are algorithms that can make special ora-
cle calls. An algorithm A with an oracle O is denoted by A(O). Note that oracle
algorithms may make calls to other oracle algorithms (e.g., A(B(O))).

Distinguishers and Reductions. A distinguisher is an (possibly randomized) ora-
cle algorithm D(·) that outputs a single bit. The distinguishing advantage on
two (possibly stateful) oracles S and T is defined by

ΔD(S, T ) := |P[D(S) = 1] − P[D(T ) = 1]|,
4 Note that Choi et al. [9] consider the ciphertext blow-up between the underlying IND-

CPA scheme and the resulting scheme as quality measure of their construction, while
we consider the rate (number of plaintext bits per ciphertext bit) of the resulting
scheme.
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where probabilities are over the randomness of D as well as S and T , respectively.
Reductions between distinguishing problems are modeled as oracle algo-

rithms as well. Specifically, when reducing distinguishing two oracles U and
V to distinguishing S and T , one exhibits an oracle algorithm R(·) such that
R(U) behaves as S and R(V ) as T ; then, ΔD(S, T ) = ΔD(R(U), R(V )) =
ΔD(R(·))(U, V ).

Linear Error-Correcting Secret Sharing. The following notion of a linear error-
correcting secret sharing, introduced by Dziembowski et al. [17], is used in several
places in this paper.

Definition 1 (Linear error-correcting sharing scheme). Let n ∈ N be a
security parameter and F a field of size L = 2� for some � ∈ N. A (k, n, δ, τ)
linear error-correcting secret sharing (LECSS) over F is a pair of algorithms
(E,D), where E : F

k → F
n is randomized and D : F

n × N → F
k ∪ {⊥} is

deterministic, with the following properties:

– Linearity: For any vectors w output by E and any c ∈ F
n,

D(w + c) =

{
⊥ if D(c) = ⊥, and
D(w) + D(c) otherwise.

– Minimum distance: For any two codewords w,w′ output by E, dH(w,w′) ≥ δn.
– Error correction: It is possible to efficiently correct up to δn/2 errors, i.e., for

any x ∈ F
k and any w output by E(x), if dH(c, w) ≤ t for some c ∈ F

n and
t < δn/2, then D(c, t) = x.

– Secrecy: The symbols of a codeword are individually uniform over F and and
τn-wise independent (over the randomness of E).

This paper considers various instantiations of LECSSs, which are described in
Sects. 4.5 and 5.3, where they are used.

One-time Signatures. A digital signature scheme (DSS) is a triple of algorithms
Σ = (KG,S, V ), where the key-generation algorithm KG outputs a key pair
(sk, vk), the (probabilistic) signing algorithm S takes a message m and a signing
key sk and outputs a signature s ← Ssk(m), and the verification algorithm takes
a verification key vk, a message m, and a signature s and outputs a single bit
Vvk(m, s). A (strong) one-time signature (OTS) scheme is a digital signature
scheme that is secure as long as an adversary only observes a single signature.
More precisely, OTS security is defined using the following game GΣ,ots played
by an adversary A: Initially, the game generates a key pair (sk, vk) and hands
the verification key vk to A. Then, A can specify a single message m for which
he obtains a signature s ← Svk(m). Then, the adversary outputs a pair (m′, s′).
The adversary wins the game if (m′, s′) 	= (m, s) and Vvk(m′, s′) = 1. The advan-
tage of A is the probability (over all involved randomness) that A wins the game,
and is denoted by ΓA(GΣ,ots).

Definition 2. A DSS scheme Σ is a (t, ε) -strong one-time signature scheme if
for all adversaries A with running time at most t, ΓA(GΣ,ots) ≤ ε.
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Distinguishing Game GΠ,q,p
b

init
ctr ← 0
(pk, sk) ← KG
output pk

on (chall, m0, m1) with |m0| = |m1|
e ← Epk(mb)
output e

on (dec, e(1), . . . , e(p))
ctr ← ctr + 1
for j ← 1 to p

m(j) ← Dsk(e
(j))

if e(j) = e

m(j) ← test

output (m(1), . . . , m(p))

if ∃j : m(j) = ⊥ or ctr ≥ q
self-destruct

Fig. 2. Distinguishing game GΠ,q,p
b , where b ∈ {0, 1}, used to define security of a PKE

scheme Π = (KG, E, D). The numbers q, p ∈ N specify the maximum number of
decryption queries and their size, respectively. The command self − destruct results
in all future decryption queries being answered by ⊥.

3 Non-Malleability Under Self-Destruct Attacks

A public-key encryption (PKE) scheme with message space M ⊆ {0, 1}∗ and
ciphertext space C is defined as three algorithms Π = (KG,E,D), where the
key-generation algorithm KG outputs a key pair (pk, sk), the (probabilistic)
encryption algorithm E takes a message m ∈ M and a public key pk and outputs
a ciphertext c ← Epk(m), and the decryption algorithm takes a ciphertext c ∈
C and a secret key sk and outputs a plaintext m ← Dsk(c). The output of
the decryption algorithm can be the special symbol ⊥, indicating an invalid
ciphertext. A PKE scheme is correct if m = Dsk(Epk(m)) (with probability 1
over the randomness in the encryption algorithm) for all messages m and all key
pairs (pk, sk) generated by KG.

Security notions for PKE schemes in this paper are formalized using the
distinguishing game GΠ,q,p

b , depicted in Fig. 2: The distinguisher (adversary) is
initially given a public key and then specifies two messages m0 and m1. One of
these, namely mb, is encrypted and the adversary is given the resulting challenge
ciphertext. During the entire game, the distinguisher has access to a decryption
oracle that allows him to make at most q decryption queries, each consisting of
at most p ciphertexts. Once the distinguisher specifies an invalid ciphertext, the
decryption oracle self-destructs, i.e., no further decryption queries are answered.

The general case is obtained when both q and p are arbitrary (denoted by
q = p = ∗), which leads to our main definition of non-malleability under (chosen-
ciphertext) self-destruct attacks (NM-SDA). For readability, set GΠ,nm-sda

b :=
GΠ,∗,∗

b for b ∈ {0, 1}. Formally, NM-SDA is defined as follows:

Definition 3 (Non-malleability under self-destruct attacks). A public-
key encryption scheme Π is (t, q, p, ε)-NM-SDA-secure if for all distinguishers
D with running time at most t and making at most q decryption queries of size
at most p each, ΔD(GΠ,nm-sda

0 , GΠ,nm-sda
1 ) ≤ ε.

All other relevant security notions in this paper can be derived as special
cases of the above definition, by setting the parameters q and p appropriately.
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Chosen-Plaintext Security (IND-CPA). In this variant, the distinguisher is
not given access to a decryption oracle, i.e., q = p = 0. For readability, set
GΠ,ind-sda

b := GΠ,0,0
b for b ∈ {0, 1} in the remainder of this paper. We say that Π

is (t, ε)-IND-CPA-secure if it is, in fact, (t, 0, 0, ε)-NM-SDA-secure.

Non-malleability (NM-CPA). A scheme is non-malleable under chosen-plaintext
attacks [29], if the adversary can make a single decryption query consisting of
arbitrarily many ciphertexts, i.e., q = 1 and p arbitrary (denoted by p = ∗).
Similarly to above, set GΠ,nm-cpa

b := GΠ,1,∗
b for b ∈ {0, 1}. We say that Π is

(t, p, ε)-NM-CPA-secure if it is, in fact, (t, 1, p, ε)-NM-SDA-secure.5

Indistinguishability Under Self-Destruct Attacks (IND-SDA). This variant,
introduced in [10], allows arbitrarily many queries to the decryption oracle, but
each of them may consist of a single ciphertext only, i.e., q arbitrary (denoted
by q = ∗) and p = 1. Once more, set GΠ,ind-sda

b := GΠ,∗,1
b . We say that Π is

(t, q, ε)-IND-SDA-secure if it is, in fact, (t, q, 1, ε)-NM-SDA-secure.

Chosen-Ciphertext Security (IND-CCA). The standard notion of IND-CCA
security can be obtained as a strengthening of NM-SDA where q = ∗, p = 1, and
the decryption oracle never self-destructs. We do not define this notion formally,
as it is not the main focus of this paper.

Asymptotic Formulation. To allow for concise statements, sometimes we pre-
fer to use an asymptotic formulation instead of stating concrete parameters.
More precisely, we will say that a PKE scheme Π is X-secure for X ∈
{IND-CPA,NM-CPA, IND-SDA,NM-SDA} if for all efficient adversaries the
advantage ε in the distinguishing game is negligible in the security parameter.

Non-malleable CPA vs. Indistinguishable SDA. We provide a separation between
the notions of NM-CPA and IND-SDA security; a corresponding theorem and
proof can be found in the full version of this work. Given such a separation, our
notion of NM-SDA security (see Definition 3) is strictly stronger than either of
the two other notions.

4 Domain Extension

This section contains one of our main technical results. We show how single-bit
NM-SDA PKE can be combined with so-called secret-state non-malleable codes
resilient against continuous parallel tampering, which we believe is an interesting
notion in its own right, to achieve multi-bit NM-SDA-secure PKE. We construct
such a code and prove its security. In the full version of this paper, we additionally
5 Note that the way NM-CPA is defined here is stronger than usual. This is due to

the adversary’s ability to ask a parallel decryption query at any time—as opposed
to only after receiving the challenge ciphertext in earlier definitions (cf., e.g., [29]).
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Game RF
init

s ← Gen

on (encode, x)
c ←$ Enc(x)

on (tamper, (f (1), . . . , f (p)))
for j ← 1 to p

c′ ← f (j)(c)

x(j) ← Dec(c′, s)
output (x(1), . . . , x(p))

if ∃j : x(j) = ⊥
self-destruct

Game SF,sim

on (encode, x)
store x

on (tamper, (f (1), . . . , f (p)))

(x(1), . . . , x(p)) ←$ sim((f (1), . . . , f (p)))

for all x(j) = same

x(j) ← x

output (x(1), . . . , x(p))

if ∃j : x(j) = ⊥
self-destruct

Fig. 3. Distinguishing game (RF , SF,sim) used to define non-malleability of a secret-
state coding scheme (Gen, Enc, Dec). The command self − destruct has the effect
that all future queries are answered by ⊥.

show that no code without secret state can achieve security against parallel
tampering unconditionally.6

4.1 A New Flavor of Non-Malleable Codes

Non-malleable codes were introduced by Dziembowski et al. [17]. Intuitively, they
protect encoded messages in such a way that any tampering with the codeword
causes the decoding to either output the original message or a completely unre-
lated value. The original notion can be extended to include the aforementioned
secret state in the decoder as follows:

Definition 4 (Code with secret state). A (k, n)-code with secret state
(CSS) is a triple of algorithms (Gen,Enc,Dec), where the (randomized) state-
generation algorithm Gen outputs a secret state s from some set S, the (ran-
domized) encoding algorithm Enc takes a k-bit plaintext x and outputs an n-bit
encoding c ← Enc(x), and the (deterministic) decoding algorithm Dec takes an
encoding as well as some secret state s ∈ S and outputs a plaintext x ← Dec(c, s)
or the special symbol ⊥, indicating an invalid encoding.

Tampering attacks are captured by functions f , from a certain function class
F , that are applied to an encoding. The original definition by [17] allows an
attacker to apply only a single tamper function. In order to capture continuous
parallel attacks, the definition below permits the attacker to repeatedly specify
parallel tamper queries, each consisting of several tamper functions. The process
ends as soon as one of the tamper queries leads to an invalid codeword.

The non-malleability requirement is captured by considering a real and an
ideal experiment. In both experiments, an attacker is allowed to encode a message
of his choice. In the real experiment, he may tamper with an actual encoding of
6 The question whether the notion is achievable by a computationally-secure code

remains open for future work.
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that message, whereas in the ideal experiment, the tamper queries are answered
by a (stateful) simulator. The simulator is allowed to output the special symbol
same, which the experiment replaces by the originally encoded message. In either
experiment, if a component of the answer vector to a parallel tamper query is
the symbol ⊥, a self-destruct occurs, i.e., all future tamper queries are answered
by ⊥. The experiments are depicted in Fig. 3.

Definition 5 (Non-malleable code with secret state). Let q, p ∈ N and ε >
0. A CSS (Gen,Enc,Dec) is (F , q, p, ε)-non-malleable if the following properties
are satisfied:

– Correctness: For each x ∈ {0, 1}k and all s ∈ S output by Gen, correctness
means Dec(Enc(x), s) = x with probability 1 over the randomness of Enc.

– Non-Malleability: There exists a (possibly stateful) simulator sim such that for
any distinguisher D asking at most q parallel queries, each of size at most p,
ΔD(RF , SF,sim) ≤ ε.

We remark that for codes without secret state (as the ones considered in [17]),
one obtains the standard notion of non-malleability [17] by setting q = p = 1,
and continuous non-malleability [18] by letting p = 1 and q arbitrary (i.e., q = ∗).

4.2 Combining Single-Bit PKE and Non-Malleable Codes

Our construction of a multi-bit NM-SDA-secure PKE scheme Π ′ from a single-
bit NM-SDA-secure scheme Π and a secret-state non-malleable (k, n)-code fol-
lows the approach of [10]: It encrypts a k-bit message m by first computing
an encoding c = (c[1], . . . , c[n]) of m and then encrypting each bit c[j] under
an independent public key of Π; it decrypts by first decrypting the individual
components and then decoding the resulting codeword using the secret state of
the non-malleable code; the secret state is part of the secret key. The scheme is
depicted in detail in Fig. 4.

Intuitively, NM-SDA security (or CCA security in general) guarantees that
an attacker can either leave a message intact or replace it by an indepen-
dently created one. For our construction, which separately encrypts every bit
of an encoding of the plaintext, this translates to the following capability
of an adversary w.r.t. decryption queries: It can either leave a particular
bit of the encoding unchanged or fix it to 0 or to 1. Therefore, the tam-
per class against which the non-malleable code must be resilient is the class
Fset ⊆ {f | f : {0, 1}n → {0, 1}n} of functions that tamper with each bit of an
encoding individually and can either leave it unchanged or set it to a fixed
value. More formally, f ∈ Fset can be characterized by (f [1], . . . , f [n]), where
f [j] : {0, 1} → {0, 1} is the action of f on the jth bit and f [j] ∈ {zero, one, keep}
with the meaning that it either sets the jth bit to 0 (zero) or to 1 (one) or leaves
it unchanged (keep).

Before stating the theorem about the security of our construction Π ′, it needs
to be pointed out that it achieves only the so-called replayable variant of NM-
SDA security. The notion of replayable CCA (RCCA) security (in general) was
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PKE Scheme Π ′ = (KG ′, E′, D′)

Key Generation KG ′

for i ← 1 to n
(pki, ski) ←$ KG

pk ← (pk1, . . . , pkn)
sk ← (sk1, . . . , skn)
s ← Gen
return (pk, (sk, s))

Encryption E′
pk(m)

c = (c[1], . . . , c[n]) ← Enc(m)

for i ← 1 to n
ei ←$ Epki(c[i])

return e = (e1, . . . , en)

Decryption D′
(sk,s)(e)

(e1, . . . , en) ← e
for i ← 1 to n

c[i] ←$ Dski(ei)
if c[i] = ⊥

return ⊥
m ← Dec(c[1] · · · c[n], s)
return m

Fig. 4. The k-bit PKE scheme Π ′ = (KG′, E′, D′) built from a 1-bit PKE scheme
Π = (KG, E, D) and a (k, n)-coding scheme with secret state (Gen, Enc, Dec).

introduced by Canetti et al. [6] to deal with the fact that for many applications
(full) CCA security is unnecessarily strict. Among other things, they provide a
MAC-based generic transformation of RCCA-secure schemes into CCA-secure
ones, which we can also apply in our setting (as we show) to obtain a fully
NM-SDA-secure scheme Π ′′.

Theorem 3. Let q, p ∈ N and Π be a (t + t1bit, q, p, ε1bit)-NM-SDA-secure
1-bit PKE scheme, (T, V ) a (t + tmac, 1, qp, εmac)-MAC, and (Gen,Enc,Dec)
a (Fset, q, p, εnmc)-non-malleable (k, n)-code with secret state. Then, Π ′′ is
(t, q, p, ε)-NM-SDA-secure PKE scheme with ε = 2(3(nε1bit + εnmc) + qp · 2−� +
εmac), where t1bit and tmac are the overheads incurred by the corresponding reduc-
tions and � is the length of a verification key for the MAC.

The full proof of Theorem3 can be found in the full version; here we only
provide a sketch. We stress that an analogous statement as the one of the above
theorem works for domain extension of NM-CPA, i.e., for constructing a multi-
bit NM-CPA scheme out of a single-bit NM-CPA scheme. The proof is very
similar to the one of Theorem 3 and therefore omitted.

Proof (Sketch). The proof considers a series of n hybrid experiments. In very
rough terms, the ith hybrid generates the challenge ciphertext by computing an
encoding c = (c[1], . . . , c[n]) of the challenge plaintext and by replacing the first i
bits c[i] of c by random values c̃[i] before encrypting the encoding bit-wise, lead-
ing to the challenge (c∗

1, . . . , c
∗
n). Moreover, when answering decryption queries

(c′
1, . . . , c

′
n), if c′

j = c∗
j for j ≤ i, the ith hybrid sets the outcome of c′

j ’s decryption
to be the corresponding bit c[j] of the original encoding c, whereas if c′

j 	= c∗
j ,

it decrypts normally (then it decodes the resulting n-bit string normally). This
follows the above intuition that a CCA-secure PKE scheme guarantees that if
a decryption query is different from the challenge ciphertext, then the plaintext
contained in it must have been created independently of the challenge plaintext.
The indistinguishability of the hybrids follows from the security of the underlying
single-bit scheme Π.

In the nth hybrid, the challenge consists of n encryptions of random values.
Thus, the only information about the encoding of the challenge plaintext that
an attacker gets is that leaked through decryption queries. But in the nth hybrid
there is a 1-to-1 correspondence between decryption queries and the tamper
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function f = (f [1], . . . , f [n]) applied to the encoding of the challenge plaintext:
The case c′

j = c∗
j corresponds to f [j] = keep, and the case c′

j 	= c∗
j corresponds

to f [j] = zero or f [j] = one, depending on whether c′
j decrypts to zero or to one.

This allows a reduction to the security of the non-malleable code. �

4.3 Non-Malleable Code Construction

It remains to construct a non-malleable code (with secret state) resilient against
parallel tampering. The intuition behind our construction is the following: If a
code has the property (as has been the case with previous schemes secure against
(non-parallel) bit-wise tampering) that changing a single bit of a valid encoding
results in an invalid codeword, then the tamper function that fixes a particular
bit of the encoding and leaves the remaining positions unchanged can be used to
determine the value of that bit; this attack is parallelizable, and thus a code of
this type cannot provide security against parallel tampering. A similar attack is
also possible if the code corrects a fixed (known) number of errors. To circumvent
this issue, our construction uses a—for the lack of a better word—“dynamic”
error-correction bound: The secret state (initially chosen at random) determines
the positions of the encoding in which a certain amount of errors is tolerated.

Construction. Let F = GF(2) and α > 0. Let (E,D) be a (k, n, δ, τ)-LECSS (cf.
Definition 1) with minimum distance δ and secrecy τ over F such that:7

– Minimum distance: δ > 1/4 + 2α and δ/2 > 2α.
– Constant rate: k/n = Ω(1).
– Constant secrecy: τ = Ω(1).

In the following, we assume that α ≥ τ , an assumption that can always be made
by ignoring some of the secrecy. Consider the following (k, n)-code with secret
state (Gen,Enc,Dec):

– Gen: Choose a subset T of [n] of size τn uniformly at random and output it.
– Enc(x) for x ∈ {0, 1}k: Compute c = E(x) and output it.
– Dec(c, T ) for c ∈ {0, 1}n: Find codeword w = (w[1], . . . , w[n]) with dH(w, c) ≤

αn. If no such w exists, output ⊥. If w[j] 	= c[j] for some j ∈ T , output ⊥ as
well. Otherwise, decode w to its corresponding plaintext x and output it.

We prove the following theorem:

Theorem 4. For all q, p ∈ N, (k, n)-code (Gen,Enc,Dec) based on a (k, n, δ, τ)-
LECSS satisfying the three conditions above is (Fset, q, p, εnmc)-non-malleable
with εnmc = p(O(1) · e−τn/16 + e−τ2n/4) + pe−τ2n.

7 The reasons for these restrictions become apparent in the proof; of course, α must
be chosen small enough in order for these constraints to be satisfiable.
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Instantiating the Construction. Section 4.5 details how a LECSS satisfying the
above properties can be constructed by combining high-distance binary codes
with a recent result by Cramer et al. [11] in order to “add” secrecy. The resulting
LECSS has secrecy τ = Ω(1) and rate ρ = Ω(1) (cf. Corollary 1 in Sect. 4.5).
The secrecy property depends on the random choice of a universal hash function.
Thus, the instantiated code can be seen as a construction in the CRS model.
When combined with the single-bit PKE as described above, the description of
the hash function can be made part of the public key.

By combining Theorems 3, and 4, and Corollary 1, we obtain a 1-to-k-bit
black-box domain extension for NM-SDA (and NM-CPA) making O(k) calls to
the underlying 1-bit scheme, therefore establishing Theorem1.8

4.4 Proof of the Non-Malleable Code Construction

For the proof of Theorem 4, fix q, p ∈ N and a distinguisher D making at most
q tamper queries of size p each. Set F := Fset for the rest of the proof. In the
following, we assume that α ≥ τ , an assumption that can always be made by
ignoring some of the secrecy. The goal is to show ΔD(RF , SF,sim) ≤ εnmc =
p(O(1) · e−τn/16 + e−τ2n/4) + pe−τ2n for a simulator sim to be determined.

On a high level, the proof proceeds as follows: First, it shows that queries
that interfere with too many bits of an encoding and at the same time do not
fix enough bits (called middle queries below) are rejected with high probability.
The effect of the remaining query types (called low and high queries) on the
decoding process can always be determined from the query itself and the bits of
the encoding at the positions indexed by the secret trigger set T . Since the size
of T is τn, these symbols are uniformly random and independent of the encoded
message, which immediately implies a simulation strategy for sim.

Tamper-Query Types. Recall that f ∈ Fset is characterized by (f [1], . . . , f [n]),
where f [j] : {0, 1} → {0, 1} is the action of f on the jth bit, for f [j] ∈
{zero, one, keep}, with the meaning that it either sets the jth bit to 0 (zero) or to
1 (one) or leaves it unchanged (keep). Define A(f) to be the set of all indices j
such that f [j] ∈ {zero, one}, and let q(f) := |A(f)|. Moreover, let val(zero) := 0
and val(one) := 1.

A tamper query f is a low query if q(f) ≤ τn, a middle query if τn < q(f) <
(1 − τ)n, and a high query if q(f) ≥ (1 − τ)n.

Analyzing Query Types. The following lemma states that an isolated middle
query is rejected with high probability.

Lemma 1. Let f ∈ Fset be a middle query. Then, for any x ∈ {0, 1}k,

P[Dec(f(Enc(x))) 	= ⊥] ≤ O(1) · e−τn/16 + e−τ2n/4

8 For the construction to be secure, it is necessary that n = Ω(λ) and, therefore, due
to the constant rate of the LECSS, the plaintext length is k = Ω(λ) as well.
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where the probability is over the randomness of Enc and the choice of the secret
trigger set T .

Proof. Fix x ∈ {0, 1}k and a middle query f = (f [1], . . . , f [n]). Suppose first that
q(f) ≥ n/2. Define W := {w ∈ F

n | w is codeword ∧ ∃r : dH(f(E(x; r)), w) ≤
αn}, where r is the randomness of E. That is, W is the set of all codewords that
could possibly be considered while decoding an encoding of x tampered with via
f . Consider two distinct codewords w,w′ ∈ W. From the definition of W it is
apparent that w[j] 	= val(f [j]) for at most αn positions j ∈ A(f) (and similarly
for w′), which implies that w and w′ differ in at most 2αn positions j ∈ A(f).
Therefore, w and w′ differ in at least (δ − 2α)n positions j /∈ A(f).

For w ∈ W, let w̃ be the projection of w onto the unfixed positions j /∈ A(f)
and set W̃ := {w̃ | w ∈ W}. The above distance argument implies that |W| =
|W̃|. Moreover, W̃ is a binary code with block length n − q(f) and relative
distance at least

(δ − 2α)n
n − q(f)

≥ (δ − 2α)n
n/2

= 2δ − 4α > 1/2,

where the last inequality follows from the fact that δ and α are such that δ−2α >
1/4. Therefore, by the Plotkin bound (a proof can, e.g., be found in [26, p. 41]),9

|W| = |W̃| ≤ O(1).

Denote by c = (c[1], . . . , c[n]) and c̃ = (c̃[1], . . . , c̃[n]) the (random variables
corresponding to the) encoding c = Enc(x) and the tampered encoding c̃ = f(c),
respectively. For an arbitrary (n-bit) codeword w ∈ W,

E[dH(c̃, w)] =
n∑

j=1

E[dH(c̃[j], w[j])] ≥
∑

j∈J

E[dH(c̃[j], w[j])],

where J ⊆ [n] is the set containing the indices of the first τn bits not fixed by f .
Note that by the definition of middle queries, there are at least that many, i.e.,
|J | = τn.

Observe that for j ∈ J , dH(c̃[j], w[j]) is an indicator variable with expectation
E[dH(c̃[j], w[j])] ≥ 1

2 , since c[j] is a uniform bit. Thus, E[dH(c̃, w)] ≥ τn
2 .

Additionally, (dH(c̃[j], w[j]))j∈J are independent. Therefore, using a standard
Chernoff bound, for ε > 0

P[dH(c̃, w) < (1 − ε)τn/2] ≤ e−τε2n/4.

Therefore, the probability that there exists w ∈ W for which the above does not
hold is at most |W| · e−τε2n/4 ≤ O(1) · e−τε2n/4, by a union bound.

Suppose now that dH(c̃, w) ≥ (1 − ε)τn/2 for all codewords w ∈ W. Then,
over the choice of T ,10

P[∀j ∈ T : dH(c̃[j], w[j]) = 0] ≤ (1 − (1 − ε)τ/2)τn ≤ e−(1−ε)τ2n/2.

9 The size constant absorbed by O(1) here depends on how close 2δ − 4α is to 1/2.
10 Recall that |T | = τn.
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The lemma now follows by setting ε := 1
2 .

If q(f) < n/2 an analogous argument can be made for the difference d := c−c̃
between the encoding and the tampered codeword, as such a query f fixes at
least half of the bits of d (to 0, in fact) and D(d) 	= ⊥ implies D(c̃) 	= ⊥. �

It turns out that low and high queries always result in ⊥ or one other value.

Lemma 2. Low queries f ∈ Fset can result only in ⊥ or the originally encoded
message x ∈ {0, 1}k. High queries f ∈ Fset can result only in ⊥ or one other
value xf ∈ {0, 1}k, which solely depends on f . Furthermore, xf , if existent, can
be found efficiently given f .

Proof. The statement for low queries is trivial, since a low query f cannot change
the encoding beyond the error correction bound αn.

Consider now a high query f and the following efficient procedure:

1. Compute c̃f ← f(0n).
2. Find codeword wf with dH(wf , c̃f ) ≤ 2αn (this is possible since 2α < δ/2).
3. Output wf or ⊥ if none exists.

Consider an arbitrary encoding c and let c̃ ← f(c) be the tampered encoding.
Assume there exists w with dH(w, c̃) ≤ αn. Since a high query f fixes all but τn
bits, dH(c̃, c̃f ) ≤ τn ≤ αn, and, thus, dH(w, c̃f ) ≤ 2αn, by the triangle inequality.
Hence, w = wf .

In other words, if the decoding algorithm Dec on c̃ finds a codeword w = wf ,
one can find it using the above procedure, which also implies that high queries
can only result in ⊥ or one other message xf = D(wf ). �

Handling Middle Queries. Consider the hybrid game H1 that behaves as RF ,
except that it answers all middle queries by ⊥.

Lemma 3. ΔD(RF ,H1) ≤ p(O(1) · e−τn/16 + e−τ2n/4).

The proof of Lemma 3 follows a generic paradigm, at whose core is the so-called
self-destruct lemma, which deals with the indistinguishability of hybrids with
the self-destruct property and is explained in detail in Sect. 6. Roughly, this
lemma applies whenever the first hybrid (in this case RF ) can be turned into the
second one (in this case H1) by changing (“bending”) the answers to a subset (the
“bending set”) of the possible queries to always be ⊥, and when additionally non-
bent queries have a unique answer (cf. the statement of Lemma 10). Intuitively,
the lemma states that parallelism and adaptivity do not help distinguish (much)
in such cases, which allows using Lemma 1.

Proof. The lemma is proved conditioned on the message x encoded by D . To
use the self-destruct lemma, note first that both RF and H1 answer parallel
tamper queries in which each component is from the set X := F by vectors
whose components are in Y := {0, 1}k ∪ {⊥}. Moreover, both hybrids use as
internal randomness a uniformly chosen element from R := {0, 1}ρ ×S, where ρ



322 S. Coretti et al.

is an upper bound on the number of random bits used by Enc and S is the set
of all τn-subsets T of [n]. RF answers each component of a query f ∈ X by

g(f, (r, T )) := Dec(f(Enc(x; r)), T ).

Define B ⊆ X to be the set of all middle queries; H1 is the B-bending of RF (cf.
Definition 7).

Observe that queries f /∈ B are either low or high queries. For low queries
f , the unique answer is yf = x, and for high queries f , yf = xf (cf. Lemma 2).
Thus, by Lemmas 10 and 1,

ΔD(RF ,H1) ≤ p·max
f∈B

P[g(f, (r, T )) 	= ⊥] ≤ p(O(1)·e−τn/16+e−τ2n/4),

where the probability is over the choice of (r, T ). �

Handling High Queries. Consider the following hybrid game H2: It differs from
H1 in the way it decodes high queries f . Instead of applying the normal decoding
algorithm to the tampered codeword c̃, it proceeds as follows:

1. Find wf (as in the proof of Lemma 2).
2. If wf does not exist, return ⊥.
3. If c̃[j] = wf [j] for all j ∈ T , return Dec(w). Otherwise, return ⊥.

Lemma 4. ΔD(H1,H2) ≤ pe−τ2n.

Proof. The lemma is proved conditioned on the message x encoded by D and
the randomness r of the encoding. For the remainder of the proof, r is therefore
considered fixed inside H1 and H2. The proof, similarly to that of Lemma3,
again uses the self-destruct lemma.

Set X := F and Y := {0, 1}k ∪ {⊥}. However, this time, let R := S. For
f ∈ X and T ∈ R, define

g(f, T ) := Dec(c̃, T ),

where c̃ := f(Enc(x; r)). The bending set B ⊆ X is the set of all high queries
f such that wf exists and dH(wf , c̃) > αn.11 It is readily verified that H2 is a
parallel stateless self-destruct game (cf. Definition 6) that behaves according to
g, and that H1 is its B-bending.

Consider a query f /∈ B. If f is a low query, the unique answer is yf = x;
if it is a middle query, yf = ⊥; if it is a high query, yf = xf (cf. Lemma 2).
Therefore,

ΔD(H1,H2) ≤ max
f∈B

P[g(f, T ) 	= ⊥] ≤ pe−τ2n,

where the first inequality follows from Lemma 10 and the second one from the
fact that dH(xf , c̃) > τn for queries f ∈ B, and therefore the probability over
the choice of T that it is accepted is at most (1 − τ)τn ≤ e−τ2n. �
11 These are queries potentially accepted by H2 but not by H1.
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Simulation. By analyzing hybrid H2, one observes that low and high queries can
now be answered knowing only the query itself and the symbols of the encoding
indexed by the secret trigger set T ∈ S.

Lemma 5. Consider the random experiment of distinguisher D interacting with
H2. There is an efficiently computable function Dec′ : Fset × S × {0, 1}τn →
{0, 1}k ∪ {same,⊥} such that for any low or high query f , any fixed message x,
any fixed encoding c thereof, and any output T of Gen,

[
Dec′(f, T, (c[j])j∈T )

]
same/x

= Dec(f(c)),

where [·]same/x is the identity function except that same is replaced by x and where
(c[j])j∈T are the symbols of c specified by T .

Proof. Consider a low query f . Due to the error correction, Dec(f(c)) is the
message originally encoded if no bit indexed by T is changed and ⊥ otherwise.
Which one is the case can clearly be efficiently computed from f , T , and (c[j])j∈T .

For high queries f the statement follows by inspecting the definition of H2

and Lemma 2. �
In H2, by the τn-secrecy of the LECSS, the distribution of the symbols

indexed by T is independent of the message x encoded by D . Moreover, the dis-
tribution of T is trivially independent of x. This suggests the following simulator
sim: Initially, it chooses a random subset T from

(
[n]
τn

)
and chooses τn random

symbols (c[j])j∈T . Every component f of any tamper query is handled as follows:
If f is a low or a high query, the answer is Dec′(f, T, (c[j])j∈T ); if f is a middle
query, the answer is ⊥. This implies:

Lemma 6. H2 ≡ SF,sim.

Proof (Theorem 4). From Lemmas 3, 4, and 6 and a triangle inequality. �

4.5 LECSS for the Non-Malleable Code

Let F = GF(2) and α > 0. In this section we show how to construct a (k, n, δ, τ)-
LECSS (E,D) (cf. Definition 1 in Sect. 2) with minimum distance δ and secrecy
τ over F and the following properties (as required in Sect. 4.3):

– Minimum distance: δ > 1/4 + 2α and δ/2 > 2α.
– Constant rate: k/n = Ω(1).
– Constant secrecy: τ = Ω(1).

The construction combines high-distance binary codes with a recent result by
Cramer et al. [11], which essentially allows to “add” secrecy to any code of
sufficient rate.

Let C be a (n, l)-code with rate R = l
n over F. In the following we write C(x) for

the codeword corresponding to x ∈ F
l and C−1(c, e) for the output of the efficient
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error-correction algorithm attempting to correct up to e errors on c, provided that
e < δn/2;12 the output is ⊥ if there is no codeword within distance e of c.

Adding Secrecy. Let l be such that k < l < n. The construction by [11] combines
a surjective linear universal hash function h : F

l → F
k with C to obtain a LECSS

(E,D) as follows:13

– E(x) for x ∈ {0, 1}k: Choose s ∈ {0, 1}l randomly such that h(s) = x and
output c = C(s).

– D(c, e) for c ∈ {0, 1}n and e < δn/2: Compute s = C−1(c, e). If s = ⊥, output
⊥. Otherwise, output x = h(s).

The resulting LECSS has rate ρ = k
ln and retains all distance and error-correction

properties of C. Additionally, if R is not too low, the LECSS has secrecy. More
precisely, Cramer et al. prove the following theorem:

Theorem 5 ([11]). Let τ > 0 and η > 0 be constants and H be a family of
linear universal hash functions h : F

l → F
k. Given that R ≥ ρ + η + τ + h(τ),

there exists a function h ∈ H such that (E,D) achieves secrecy τ . Moreover, such
a function h can be chosen randomly with success probability 1 − 2−ηn.

The version of the above theorem presented in [11] does not claim that any
τn bits of an encoding are uniform and independent but merely that they are
independent of the message encoded. Yet, by inspecting their proof, it can be
seen that uniformity is guaranteed if τn ≤ l − k, which is the case if and only if
τ ≤ l

n − k
n = R − ρ, which is clearly implied by the precondition of the theorem.

Zyablov Bound. For code C, we use concatenated codes reaching the Zyablov
bound:

Theorem 6. For every δ < 1/2 and all sufficiently large n, there exists a code
C that is linear, efficiently encodable, of distance at least δn, allows to efficiently
correct up to δn/2 errors, and has rate

R ≥ max
0≤r≤1−h(δ+ε)

r

(
1 − δ

h−1(1 − r) − ε

)
,

for ε > 0 and where h(·) is the binary entropy function.

The Zyablov bound is achieved by concatenating Reed-Solomon codes with linear
codes reaching the Gilbert-Varshamaov bound (which can be found by brute-
force search in this case). Alternatively, Shen [32] showed that the bound is also
reached by an explicit construction using algebraic geometric codes.
12 This assumes that C is efficiently decodable up to relative distance δ/2. However, while

the codes we consider here have this property, for our non-malleable code construction,
it would be sufficient to have efficient error correction up to distance 2α for whatever
particular choice of the constant α.

13 Note that we switched the roles of l and k here in order to remain consistent with
the notation in this paper.
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Choice of Parameters. Set α := 1/200 and δ := 1/4+2α+ ε for ε := 1/500, say.
Then, δ−2α > 1/4, as required. Moreover, the rate of the Zyablov code with said
distance δ can be approximated to be R ≥ 0.0175. Setting, τ := 1/1000 yields
τ + h(τ) ≤ 0.0125, leaving a possible rate for the LECSS of up to ρ ≈ 0.005 − η.
Hence:

Corollary 1. For any α > 0 there exists a (k, n, δ, τ)-LECSS (E,D) with the
following properties:

– Minimum distance: δ > 1/4 + 2α and δ/2 > 2α.
– Constant rate: k/n = Ω(1).
– Constant secrecy: τ = Ω(1).

4.6 Impossibility for Codes Without State

We show that codes without secret state (as, e.g., the ones in [1,2,7,10,16,17,19])
cannot achieve (unconditional) non-malleability against parallel tampering. Spe-
cifically, we prove the following theorem:

Theorem 7. Let F := Fset. Let (Enc,Dec) be a (k, n)-code without secret state
and noticeable rate. There exists a distinguisher D asking a single parallel tam-
pering query of size n6 such that, for all simulators sim and all n large enough,
ΔD(RF , SF,sim) ≥ 1/2.

The above impossibility result requires that the rate of the code not be too
small (in fact n = o(2k/6) suffices, see the full version for the exact parameters).
The distinguisher D is inefficient, so it might still be possible to construct a non-
malleable code against parallel tampering with only computational security. We
leave this as an interesting open question for future research.

Here, we outline an attack for the case where Dec is deterministic. A full proof
and a generalization to the setting where Dec uses (independent) randomness
for (each) decoding is in the full version.

Proof (Sketch). A possible attack works as follows: There exists an (inefficient)
extraction algorithm that, by suitably tampering with an encoding in the real
experiment RF , is able to recover the original plaintext with high probability.
Since (modulo some technicalities) this is not possible in the ideal experiment
SF,sim (for any simulator sim), this constitutes a distinguishing attack.

For simplicity, suppose that the decoding algorithm Dec is deterministic.
The extraction relies on the fact that for any position i ∈ [n] with relevance in
the decoding, there exist two codewords c′

i and c′′
i with Dec(c′

i) 	= Dec(c′′
i ) and

differing in position i only. From the result of a tamper query fixing all but the
ith position to correspond with the bits of c′

i (or c′′
i ) one can therefore infer the

value of the ith bit of the encoding. This extraction is an independent process for
every (relevant) position and thus parallelizable. In other words, a single parallel
tamper query can be used to recover every relevant position of an encoding (from
which the original message can be computed by filling the non-relevant positions
with arbitrary values and applying the decoding algorithm). �
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5 Construction from CPA Security

In this section we show that NM-SDA security can be achieved in a black-box
fashion from IND-CPA security. Specifically, we prove that a generalization using
LECSS (cf. Sect. 2) of the scheme by Choi et al. [9] (dubbed the CDMW construc-
tion in the remainder of this section) is NM-SDA secure. Using a constant-rate
LECSS allows to improve the rate of the CDMW construction from Ω(1/λ2) to
Ω(1/λ), where λ is the security parameter. This abstraction might also give a
deeper understanding of the result of [9]. The main difficulty in the analysis is
to extend their proof to deal with adaptively chosen parallel decryption queries
(with self-destruct).

5.1 The CDMW Construction

The CDMW construction uses a randomized Reed-Solomon code, which is cap-
tured as a special case by the notion of a linear error-correcting secret sharing
(LECSS) (E,D) (cf. Sect. 2). For ease of description, we assume that the decoding
algorithm returns not only the plaintext x but also the corresponding codeword
w, i.e., (x,w) ← D(c, e), where e ∈ N specifies the number of errors to correct;
moreover, the output is (x,w) = (⊥,⊥) if c is not within distance e of any
codeword.

The LECSS has to satisfy an additional property, which is that given a cer-
tain number of symbols chosen uniformly at random and independently and a
plaintext x, one can efficiently produce an encoding that matches the given sym-
bols and has the same distribution as E(x). It is described in more detail in the
proof of Lemma 9, where it is needed.14

Let Π = (KG,E,D) be a PKE scheme with message space M = {0, 1}� (we
assume � = Ω(λ)), and let Σ = (KGots, S, V ) be a one-time signature scheme
with verification keys of length κ = O(λ). Moreover, let α > 0 be any constant
and (E,D) a (k, n, δ, τ)-LECSS over GF(2�) with δ > 2α.

The CDMW construction (cf. Fig. 5), to encrypt a plaintext m ∈ {0, 1}k�,
first computes an encoding (c1, . . . , cn) ← E(m) and then creates the (κ × n)-
matrix C in which this encoding is repeated in every row. For every entry Cij

of this matrix, there are two possible public keys pkb
i,j ; which of them is used

to encrypt the entry is determined by the ith bit v[i] of the verification key
verk = (v[1], . . . , v[κ]) of a freshly generated key pair for Σ. In the end, the
encrypted matrix E is signed using verk, producing a signature σ. The ciphertext
is (E, verk, σ).

The decryption first verifies the signature. Then, it decrypts all columns
indexed by a set T ⊂ [n], chosen as part of the secret key, and checks that each
column consists of a single value only. Finally, it decrypts the first row and tries
to find a codeword with relative distance at most α. If so, it checks whether the
codeword matches the first row in the positions indexed by T . If all checks pass,
it outputs the plaintext corresponding to the codeword; otherwise it outputs ⊥.
14 Of course, the Reed-Solomon-based LECSS from [9] has this property.
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PKE Scheme Π ′ = (KG ′, E′, D′)

Key Generation KG ′

for (b, i, j) ∈ {0, 1} × [κ] × [n]

(pkb
i,j , sk

b
i,j) ← KG

PK ← (pkb
i,j)b,i,j

SK ← (skb
i,j)b,i,j

T ←$
[n]
τn

)
return (PK, (SK, T ))

Encryption E′
PK(m)

(c1, . . . , cn) ← E(m)
(verk, sigk) ← KGots

(v[1], . . . , v[κ]) ← verk
for (i, j) ∈ [κ] × [n]

ei,j ← E
pk

v[i]
i,j

(cj)

E ← (ei,j)i,j

σ ← Ssigk(E)
return (E, verk, σ)

Decryption D′
(SK,T )(E, verk, σ)

if Vverk(E, σ) = 0
return ⊥

for j ∈ T

decrypt jth column of E
if not all entries identical

return ⊥
decrypt first row of E to c
(m, w) ← D(c, αn)
if w = ⊥ or ∃j ∈ T : cj �= wj

return ⊥
return m

Fig. 5. The CDMW PKE scheme Π ′ based on a CPA-secure scheme Π [9].

In the remainder of this section, we sketch the proof of the following theorem,
which implies Theorem 2.

Theorem 8. Let t ∈ N and Π be a (t+tcpa, εcpa)-IND-CPA-secure PKE scheme,
α > 0, (E,D) a (k, n, δ, τ)-LECSS with δ > 2α, and Σ a (t + tots, εots)-secure
OTS scheme with verification-key length κ. Then, for any q, p ∈ N, PKE scheme
Π ′ is (t, q, p, ε)-NM-SDA-secure with

ε = (1 − τ)κn · εcpa + 2 · εots + 4 · p(1 − τ)αn,

where tcpa and tots represent the overhead incurred by corresponding reductions.

Instantiating the Construction. Note that the security proof below does not
use the linearity of the LECSS. The CDMW construction can be seen as using a
Reed-Solomon-based LECSS with rate O(1/κ). If the construction is instantiated
with a constant-rate LECSS, the final rate improves over CDMW by a factor
of Ω(κ) = Ω(λ). More concretely, assuming a constant-rate CPA encryption, a
ciphertext of length O(λ3) can encrypt a plaintext of length Ω(λ2) as compared
to Ω(λ) for plain CDMW. As shown in Sect. 5.3, the LECSS can be instantiated
with constructions based on Reed-Solomon or algebraic geometric codes (which
also satisfy the additional property mentioned above), both with constant rate.
Among the constant-rate codes, algebraic geometric codes allow to choose the
parameters optimally also for shorter plaintexts.

5.2 Security Proof of the CDMW Construction

The proof follows the original one [9]. The main change is that one needs to
argue that, unless they contain invalid ciphertexts, adaptively chosen parallel
queries do not allow the attacker to obtain useful information, in particular on
the secret set T . This is facilitated by using the self-destruct lemma (cf. Sect. 6).
The proof proceeds in three steps using two hybrid games Hb and H ′

b:
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– The first hybrid Hb gets rid of signature forgeries for the verification key used
to create the challenge ciphertext. The indistinguishability of the hybrid from
GΠ′,nm-sda

b follows from the security of the OTS scheme and requires only
minor modifications compared to the original proof.

– The second hybrid H ′
b uses an alternative decryption algorithm. The indis-

tinguishability of H ′
b and Hb holds unconditionally; this step requires new

techniques compared to the original proof.
– Finally, the distinguishing advantage between H ′

0 and H ′
1 is bounded by a

reduction to the IND-CPA security of the underlying scheme Π; the reduction
again resembles the one in [9].

Dealing with Forgeries. For b ∈ {0, 1}, hybrid Hb behaves as GΠ′,nm-sda
b but

generates the signature key pair (sigk∗, verk∗) used for the challenge ciphertext
initially and rejects any decryption query (E′, σ′, verk′) if verk′ = verk∗.

Lemma 7. For b ∈ {0, 1}, there exists a reduction R′
b(·) such that for all dis-

tinguishers D, ΔD(GΠ′,nm-sda
b ,Hb) ≤ ΓR′

b(D)(GΣ,ots).

Proof. R′
b(·) is a standard reduction to the unforgeability of Σ. �

Alternative Decryption Algorithm. For b ∈ {0, 1}, hybrid H ′
b behaves as Hb but

for the way it answers decryption queries (E′, σ′, verk′): As before, it first verifies
the signature σ′ and checks that each column of E′ consists of encryptions of
a single value. Then, it determines the first position i at which verk′ and verk∗

differ, i.e., where v′[i] 	= v∗[i]. It decrypts the ith row of E and checks if there is
a codeword w within distance 2αn.15 If such w does not exist or else if w does
not match the first row in a position indexed by T , the check fails. Otherwise,
the plaintext corresponding to w is output.

Lemma 8. For b ∈ {0, 1} and all distinguishers D, ΔD(Hb,H
′
b) ≤ 2·p(1−τ)αn.

The proof of Lemma 8 shows that the original and alternative decryption
algorithms are indistinguishable not just for a single parallel query (as is sufficient
for NM-CPA) but even against adaptively chosen parallel queries (with self-
destruct). It is the main technical contribution of this section.

At the core of the proof is an analysis of how different types of encoding
matrices C are handled inside the two decryption algorithms. To that end, one
can define two games B and B′ (below) that capture the behaviors of the original
and the alternative decryption algorithms, respectively. The proof is completed
by bounding Δ(B,B′) (for all distinguishers) and showing the existence of a
wrapper Wb such that Wb(B) behaves as Hb and Wb(B′) as H ′

b (also below). This
proves the lemma since ΔD(Hb,H

′
b) = ΔD(Wb(B),Wb(B′)) = ΔD(Wb(·))(B,B′).

The games B and B′ behave as follows: Both initially choose a random size-
τ subset of [n]. Then, they accept parallel queries with components (C, i) for
C ∈ F

κ×n and i ∈ [κ]. The answer to each component is computed as follows:
15 Recall that the actual decryption algorithm always decrypts the first row and tries

to find w within distance αn.
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1. Both games check that all columns indexed by T consist of identical entries.
2. Game B tries to find a codeword w with distance less than αn from the first

row (regardless of i), whereas B′ tries to find w within 2αn of row i. Then,
if such a w is found, both games check that it matches the first row of C in
the positions indexed by T .

3. If all checks succeed, the answer to the (component) query is w; otherwise, it
is ⊥.

Both games then output the answer vector and implement the self-destruct, i.e.,
if any of the answers is ⊥, all future queries are answered by ⊥.

Claim. For b ∈ {0, 1} and all distinguishers D , ΔD(B,B′) ≤ 2 · p(1 − τ)αn.

Encoding Matrices. Towards a proof of Claim 5.2, consider the following partition
of the set of encoding matrices C (based on the classification in [9]):

1. There exists a codeword w within αn of the first row of C, and all rows have
distance at most αn.

2. (a) There exist two rows in C with distance greater than αn.
(b) The rest; in this case the first row differs in more than αn positions from

any codeword.

Observe that queries (C, i) with C of type 1 are treated identically by both B
and B′: A codeword w within αn of the first row of C is certainly found by B;
since all rows have distance at most αn, w is within 2αn of row i and thus also
found by B′. Furthermore, note that if C is of type 2b, it is always rejected by
B (but not necessarily by B′).

Consider the hybrids C and C ′ that behave as B and B′, respectively, but
always reject all type-2 queries. Since type-1 queries are treated identically, C
and C ′ are indistinguishable. Moreover:

Claim. For all distinguishers D , ΔD(B,C) ≤ p(1 − τ)αn and ΔD(C ′, B′) ≤
p(1 − τ)αn.

The proof of Claim 5.2 follows a generic paradigm, at whose core is the so-
called self-destruct lemma, which deals with the indistinguishability of hybrids
with the self-destruct property and is explained in detail in Sect. 6. Roughly,
this lemma applies whenever the first hybrid (in this case B resp. B′) can be
turned into the second one (in this case C resp. C ′) by changing (“bending”) the
answers to a subset (the “bending set”) of the possible queries to always be ⊥,
and when additionally non-bent queries have a unique answer (cf. the statement
of Lemma 10). Intuitively, the lemma states that parallelism and adaptivity do
not help distinguish (much) in such cases.

Proof. To use the self-destruct lemma, note that B, C, C ′, and B′ all answer
queries from X := F

κ×n × [κ] by values from Y := F
n. Moreover, note that they

use as internal randomness a uniformly chosen element T from the set R :=
(
[n]
τn

)

of size-τn subsets of [n].
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Consider first B and C. Let g : X × R → Y correspond to how B answers
queries (C, i) (see above). Let B be the set B of all type-2a-queries. Then, C
is its B-bending (cf. Definition 7). Observe that queries x = (C, i) /∈ B are
either of type 1 or 2b. For the former, the unique answer yx is the code-
word w within αn of the first row of C; for the latter, yx is ⊥. Therefore,
using the self-destruct lemma (Lemma 10), for all distinguishers D , ΔD(B,C) ≤
p · max(C,i)∈B P[g((C, i), T ) 	= ⊥], where the probability is over the choice of T .
Since type-2a queries have two rows with distance greater than αn, the proba-
bility over the choice of T that this remains unnoticed is at most (1 − τ)αn.

For the second part of the claim, consider B′ and C ′. Now, let g : X ×R → Y
correspond to how B′ answers queries (C, i) (see above again), and let B be the
set B of all type-2-queries. Then, C ′ is the B-bending of B′.

Note that all queries x = (C, i) /∈ B′ are of type 1, and the unique answer yx

is the codeword w within 2αn of row i of C. Therefore, using Lemma 10 again,
for all distinguishers D , ΔD(B′, C ′) ≤ p ·max(C,i)∈B′ P[g′((C, i), T ) 	= ⊥], where
the probability is again over the choice of T . Since type-2a queries have two rows
with distance greater than αn and in type-2b queries the first row differs in more
than αn positions from any codeword, the probability over the choice of T that
this remains unnoticed is at most (1 − τ)αn. �
Proof (Claim 5.2). The proof follows using the triangle inequality:

ΔD(B,B′) ≤ ΔD(B,C)+ΔD(C,C ′)+ΔD(C ′, B′) ≤ 2 ·p(1− τ)αn. �

Wrapper. It remains to show that there exists a wrapper Wb such that Wb(B)
behaves as Hb and Wb(B′) as H ′

b. The construction of Wb is straight forward:
Hb and H ′

b generate all keys and the challenge in the identical fashion; therefore,
Wb can do it the same way. Wb answers decryption queries (E′, verk′, σ′) by first
verifying the signature σ′ and rejecting queries if σ′ is invalid or if verk′ is iden-
tical to the verification key verk∗ chosen for the challenge, decrypting the entire
matrix E′ to C′ and submitting (C′, i) to the oracle (either B or B′), where i
is the first position at which verk′ and verk∗ differ, and decoding the answer w
and outputting the result or simply forwarding it if it is ⊥. Moreover, Wb imple-
ments the self-destruct. By inspection it can be seen that Wb(B) implements the
original decryption algorithm and Wb(B′) the alternative one.

Reduction to IND-CPA Security. We prove:

Lemma 9. There exists a reduction R(·) such that for all distinguishers D,

ΔD(H ′
0,H

′
1) = (1 − τ)κn · ΔD(R(·))(G ind-cpa

Π 0,G ind-cpa
Π 1).

Proof (Sketch). The proof is a straight-forward generalization of the original
proof by [9]; the only difference is that it needs to process multiple parallel
decryption queries and implement the self-destruct feature appropriately. For
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ease of exposition, we describe the reduction to a many-public-key version of the
CPA game for Π.16

Reduction R(·) initially chooses the secret set T and creates the challenge
OTS key pair with verification key verk∗ = (v∗[1], . . . , v∗[κ]) and all key pairs
(pkb

i,j , sk
b
i,j) with j ∈ T or b 	= v∗[i]. The remaining (1 − τ)κn key pairs are

generated by the CPA game.
Recall that the LECSS is assumed to satisfy the following property: Given

τn symbols (ci)i∈T chosen uniformly at random and independently and any
plaintext x ∈ F

k, one can efficiently sample symbols (ci)i/∈T such that (c1, . . . , cn)
has the same distribution as E(x). Using this fact, R(·) creates the challenge for
m0 and m1 as follows: It picks the random symbols (ci)i∈T and completes them
to two full encodings cm0 and cm1 with the above procedure, once using m0

and once using m1 as the plaintext. Let Cm0 and Cm1 be the corresponding
matrices (obtained by copying the encodings κ times). Observe that the two
matrices match in the columns indexed by T . These entries are encrypted by
R(·), using the public key pkb

i,j for entry (i, j) for which b 	= v∗[i]. Denote by
C′

m0
and C′

m1
the matrices Cm0 and Cm1 with the columns in T removed. The

reduction outputs (chall,C′
m0

,C′
m1

) to its oracle and obtains the corresponding
ciphertexts, which it combines appropriately with the ones it created itself to
form the challenge ciphertext.

Finally, since the reduction knows all the secret keys pkb
i,j with b 	= v∗[i], it

can implement the alternative decryption algorithm (and the self-destruct). �

Overall Proof. Finally, one obtains:

Proof (Theorem 8). Let tcpa be the overhead caused by reduction R(·) and tots
the larger of the overheads caused by R′

0(·) and R′
1(·). Moreover, let D be a

distinguisher with running time at most t. Using the triangle inequality, and
Lemmas 7, 8, and 9,

ΔD(GΠ′,nm-sda
0 , GΠ′,nm-sda

1 ) ≤ ΔD(GΠ′,nm-sda
0 ,H0) + ΔD(H0,H

′
0)

+ ΔD(H ′
0,H

′
1) + ΔD(H ′

1,H1)

+ ΔD(H1, G
Π′,nm-sda
1 )

≤ ΓD(R′
0(·))(GΣ,ots) + 2 · p(1 − τ)αn

+ (1 − τ)κn · ΔD(R(·))(G ind-cpa
Π 0,G ind-cpa

Π 1)

+ 2 · p(1 − τ)αn + ΓD(R′
1(·))(GΣ,ots)

≤ εots + 2 · p(1 − τ)αn

+ (1 − τ)κn · εcpa + 2 · p(1 − τ)αn + εots.

�
16 In the many-public-key version of the CPA game, an attacker can play the CPA game

for several independently generated public keys simultaneously; this is equivalent to
the normal formulation by a standard hybrid argument [3].
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5.3 LECSS for the CDMW Construction

In this section we show how to instantiate the LECSS used for the CDMW
construction in Sect. 5. Let F be a finite field of size L = 2�, where � is the
plaintext length of the IND-CPA scheme used in the construction. Then, there
are the following variants of a (k, n, δ, τ)-LECSS:

– CDMW Reed-Solomon codes: The original CDMW construction can be seen
as using a Reed-Solomon-based LECSS with rate Θ(1/λ), which is suboptimal
(see next item).

– Constant-Rate Reed-Solomon codes: Cheraghchi and Guruswami [8] provide
a LECSS based on a construction by Dziembowski et al. [17] and on Reed-
Solomon (RS) codes with � = Θ(log n). One can show that it achieves the
following parameters (not optimized): α = 1/8, τ = 1/8 and rate k/n ≥ 1/4
(i.e., all constant).

– Algebraic geometric codes: Using algebraic geometric (AG) codes, Cramer
et al. [12] provide a LECSS with � = O(1) and still constant error correc-
tion, secrecy, and rate (but with worse concrete constants than Reed-Solomon
codes).

Note that asymptotically, RS and AG codes are equally good: both have constant
rate, distance, and secrecy. However, since with AG codes � is constant (i.e.,
they work over an alphabet of constant size), the minimal plaintext length can
be shorter than with RS codes.

6 A General Indistinguishability Paradigm

A recurring issue in this paper are proofs that certain self-destruct games answer-
ing successive parallel decryption/tampering queries are indistinguishable. We
formalize such games as parallel stateless self-destruct games.

Definition 6. An oracle U is a parallel stateless self-destruct (PSSD) game if

– it accepts parallel queries in which each component is from some set X and
answers them by vectors with components from some set Y,

– ⊥ ∈ Y,
– there is a function g : X × R → Y such that every query component x ∈ X is

answered by g(x, r), where r ∈ R is the internal randomness of U , and
– the game self-destructs, i.e., after the first occurrence of ⊥ in an answer vector

all further outputs are ⊥.

A PSSD game can be transformed into a related one by “bending” the
answers to some of the queries x ∈ X to the value ⊥. This is captured by
the following definition:

Definition 7. Let U be a PSSD game that behaves according to g and let B ⊆ X .
The B -bending of U , denoted by U ′, is the PSSD game that behaves according
to g′, where

g′(x, r) =

{
⊥ if x ∈ B,

g(x, r) otherwise.
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The self-destruct lemma below states that in order to bound the distinguish-
ing advantage between a PSSD and its bending, one merely needs to analyze
a single, non-parallel query, provided that all non-bent queries x can only be
answered by a unique value yx or ⊥.

Lemma 10. Let U be a PSSD game and U ′ its B-bending for some B ⊆ X . If for
all x /∈ B there exists yx ∈ Y such that {g(x, r) | r ∈ R} = {yx,⊥}, then, for all
distinguishers D, ΔD(U,U ′) ≤ p · maxx∈B P[g(x,R) 	= ⊥], where the probability
is over the choice of R.

Proof. Fix a distinguisher D and denote by R and R′ the random variables
corresponding to the internal randomness of U and U ′, respectively. Call a value
x ∈ X dangerous if x ∈ B and a query dangerous if it contains a dangerous
value.

In the random experiment corresponding to the interaction between D and
U , define the event E that the first dangerous query contains a dangerous value
X with g(X,R) 	= ⊥ and that the self-destruct has not been provoked yet.
Similarly, define the event E′ for the interaction between D and U ′ that the first
dangerous query contains a dangerous value X ′ with g(X ′, R′) 	= ⊥ and that the
self-destruct has not been provoked yet.17

Clearly, U and U ′ behave identically unless E resp. E′ occur. Thus, it remains
to bound P[E] = P[E′]. To that end, note that adaptivity does not help in
provoking E. For any distinguisher D , there exists a non-adaptive distinguisher
D̃ such that whenever D provokes E, so does D ′. D ′ proceeds as follows: First,
it interacts with D only. Whenever D asks a non-dangerous query, D ′ answers
every component x /∈ B by yx. As soon as D specifies a dangerous query, D ′

stops its interaction with D and sends all queries to U .
Fix all randomness in experiment D ′(U), i.e., the coins of D (inside D ′) and

the randomness r of U . Suppose D would provoke E in the direct interaction
with U . In such a case, all the answers by D ′ are equal to the answers by U , since,
by assumption, the answers to components x /∈ B in non-dangerous queries are
yx or ⊥ and the latter is excluded if E is provoked. Thus, whenever D provokes
E, D ′ provokes it as well.

The success probability of non-adaptive distinguishers D is upper bounded
by the probability over R that their first dangerous query provokes E, which is
at most p · maxx∈B P[g(x,R) 	= ⊥]. �
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11. Cramer, R., Damg̊ard, I.B., Döttling, N., Fehr, S., Spini, G.: Linear secret sharing
schemes from error correcting codes and universal hash functions. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 313–336. Springer,
Heidelberg (2015)

12. Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A.,
Vaikuntanathan, V.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007)

13. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

14. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

15. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput.
30(2), 391–437 (2000)

16. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable Codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol.
8043, pp. 239–257. Springer, Heidelberg (2013)



Non-Malleable Encryption: Simpler, Shorter, Stronger 335

17. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS, pp. 434–
452 (2010)

18. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014)

19. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014)

20. Gertner, Y., Malkin, T., Myers, S.: Towards a separation of semantic and CCA
security for public key encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol.
4392, pp. 434–455. Springer, Heidelberg (2007)

21. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

22. Hofheinz, D., Kiltz, E.: Practical chosen ciphertext secure encryption from factor-
ing. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer,
Heidelberg (2009)

23. Hohenberger, S., Lewko, A., Waters, B.: Detecting dangerous queries: a new app-
roach for chosen ciphertext security. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 663–681. Springer, Heidelberg (2012)

24. Kurosawa, K., Desmedt, Y.G.: A new paradigm of hybrid encryption scheme.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer,
Heidelberg (2004)

25. Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under
general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 241–254. Springer, Heidelberg (2003)

26. MacWilliams, F., Sloane, N.: The Theory of Error-Correcting Codes, 2nd edn.
North-holland Publishing Company, Amsterdam (1978)

27. Myers, S., Shelat, A.: Bit encryption is complete. In: FOCS, pp. 607–616 (2009)
28. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen

ciphertext attacks. In: STOC, pp. 427–437 (1990)
29. Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a non-malleable encryp-

tion scheme from any semantically secure one. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006)

30. Pass, R., Shelat, A., Vaikuntanathan, V.: Relations among notions of non-
malleability for encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol.
4833, pp. 519–535. Springer, Heidelberg (2007)

31. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS, pp. 543–553 (1999)

32. Shen, B.: A Justesen construction of binary concatenated codes that asymptotically
meet the Zyablov bound for low rate. IEEE Trans. Inf. Theory 39(1), 239–242
(1993)



Verifiable Random Functions from Standard
Assumptions

Dennis Hofheinz1(B) and Tibor Jager2

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
dennis.hofheinz@kit.edu

2 Ruhr-University Bochum, Bochum, Germany
tibor.jager@rub.de

Abstract. The question whether there exist verifiable random functions
with exponential-sized input space and full adaptive security based on a
non-interactive, constant-size assumption is a long-standing open prob-
lem. We construct the first verifiable random functions which achieve all
these properties simultaneously.

Our construction can securely be instantiated in groups with symmet-
ric bilinear map, based on any member of the (n− 1)-linear assumption
family with n ≥ 3. This includes, for example, the 2-linear assumption,
which is also known as the decision linear (DLIN) assumption.

1 Introduction

A verifiable random function (VRF) Vsk is essentially a pseudorandom function,
but with the additional feature that it is possible to create a non-interactive
and publicly verifiable proof π that a given function value Y was computed
correctly as Y = Vsk (X). VRFs are useful ingredients for applications as various
as resettable zero-knowledge proofs [37], lottery systems [38], transaction escrow
schemes [31], updatable zero-knowledge databases [34], or e-cash [4,5].

Desired Properties of VRFs. The standard security properties required from
VRFs are pseudorandomness (when no proof is given, of course) and unique
provability. The latter means that for each X there is only one unique value Y
such that a proof for the statement “Y = Vsk (X)” exists. Unique provability
is a very strong requirement, because not even the party that creates sk (pos-
sibly maliciously) may be able to create fake proofs. For example, the natural
attempt of constructing a VRF by combining a pseudorandom function with a
non-interactive zero-knowledge proof system fails, because zero-knowledge proofs
are simulatable, which contradicts uniqueness.

Most known constructions of verifiable random functions allow an only poly-
nomially bounded input space, or do not achieve full adaptive security, or are
based on an interactive complexity assumption. In the sequel, we will say that
a VRF has all desired properties, if is has an exponential-sized input space and a
proof of full adaptive security under a non-interactive complexity assumption.
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VRFs with all Desired Properties. All known examples of VRFs that possess
all desired properties are based on so-called Q-type complexity assumptions. For
example, the VRF of Hohenberger and Waters [28] relies on the assumption that,
given a list of group elements

(g, h, gx, . . . , gxQ−1
, gxQ+1

, . . . , gx2Q

, t) ∈ G
2Q+1 × GT

and a bilinear map e : G×G → GT , it is computationally infeasible to distinguish
t = e(g, h)xQ

from a random element of GT with probability significantly better
than 1/2. Note that the assumption is parametrized by an integer Q, which
determines the number of group elements in a given problem instance.

The main issue with Q-type assumptions is that they get stronger with
increasing Q, as demonstrated by Cheon [18]. For example, the VRF described
in [28] is based on a Q-type assumption with Q = Θ(q ·k), where k is the security
parameter and q is the number of function evaluations queried by the attacker
in the security experiment. Constructions from weaker Q-type assumptions were
described by Boneh et al. [11] and Abdalla et al. [2], both require Q = Θ(k). A
VRF-security proof for the classical verifiable unpredictable function of Lysyan-
skaya [35], which requires a Q-type assumption with only Q = O(log k), was
recently given in [29]. Even though this is complexity assumption is relatively
weak, it is still Q-type.

In summary, the construction of a VRF with all desired security properties,
which is based on a standard, constant-size assumption (like the decision-linear
assumption, for example) is a long-standing open problem, posed for example
in [28,29]. Some authors even asked if it is possible to prove that a Q-type
assumption is inherently necessary to construct such VRFs [28]. Indeed, by
adopting the techniques of [30] to the setting of VRFs, one can prove [33] that
some known VRF-constructions are equivalent to certain Q-type assumptions,
which means that a security proof under a strictly weaker assumption is impos-
sible. This includes the VRFs of Dodis-Yampolskiy [20] and Boneh et al. [11].
It is also known that it is impossible to construct verifiable random functions
from one-way permutations [13] or even trapdoor permutations in a black-box
manner [23].

Our Contribution. We construct the first verifiable random functions with
exponential-sized input space, and give a proof of full adaptive security under any
member of the (n−1)-linear assumption family with n ≥ 3 in symmetric bilinear
groups. The (n − 1)-linear assumption is a family of non-interactive, constant-
size complexity assumptions, which get progressively weaker with larger n [42].
A widely-used special case is the 2-linear assumption, which is also known as
the decision-linear (DLIN) assumption [10].

Recently, a lot of progress has been made in proving the security of cryp-
tosystems which previously required a Q-type assumption, see [16,26,43], for
example. Verifiable random functions with all desired properties were one of
the last cryptographic applications that required Q-type assumptions. Our work
eliminates VRFs from this list.
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The New Construction and Proof Idea. The starting point for our construc-
tion is the VRF of Lysyanskaya [35]. Her function is in fact the Naor-Reingold
pseudorandom function [40] with

Vsk (X) = g
∏k

i=1 ai,xi ,

where X = (x1, . . . , xk), and the ai,b are randomly chosen exponents. How-
ever, unlike [40], Lysyanskaya considers this function in a “Diffie-Hellman gap
group”.1 The corresponding verification key consists of all gai,xi . Relative to this
verification key, an image y can be proven to be of the form g

∏k
i=1 ai,xi by pub-

lishing all “partial products in the exponent”, that is, all values π� := g
∏�

i=1 ai,xi

for � ∈ {2, . . . , k − 1}. (Since the Decisional Diffie-Hellman problem is assumed
to be easy, these partial products can be checked for consistency with the gai,b

one after the other.)
Note that pseudorandomness of this construction is not obvious. Indeed,

Lysyanskaya’s analysis requires a computational assumption that offers k group
elements in a computational challenge. (This “size-k” assumption could be
reduced to a “size-(log(k))” assumption recently [29].) One reason for this appar-
ent difficulty lies in the verifiability property of a VRF. For instance, the original
Naor-Reingold analysis of [40] (that shows that this Vsk is a PRF ) can afford to
gradually substitute images given to the adversary by random images, using a
hybrid argument. Such a proof is not possible in a setting in which the adver-
sary can ask for “validity proofs” for some of these images. (Note that by the
uniqueness property of a VRF, we cannot expect to be able to simulate such
validity proofs for non-images.) As a result, so far security proofs for VRFs have
used “one-shot reductions” to suitable computational assumptions (which then
turned out to be rather complex).

We circumvent this problem by a more complex function (with more com-
plex public parameters) that can be modified gradually, using simpler com-
putational assumptions. Following [22], in the sequel we will write gu, where
u = (u1, . . . , un)� ∈ Z

n
p is a vector, to denote the vector gu := (gu1 , . . . , gun).

We will also extend this notation to matrices in the obvious way. To explain our
approach, consider the function

Gsk (X) = gu
�·∏k

i=1 Mi,xi

for random (quadratic) matrices Mi,xi
and a random vector u. The function

Gsk will not be the VRF Vsk we seek, but it will form the basis for it. (In fact,
Vsk will only postprocess Gsk ’s output, in a way we will explain below.) Vsk ’s
verification key will include gu and the gMi,b . As in the VRF described above,
validity proofs of images contain all partial products gu

�·∏�
i=1 Mi,xi . (However,

note that to check proofs, we now need a bilinear map, and not only an efficient
DDH-solver, as with Lysyanskaya’s VRF.)
1 In a Diffie-Hellman gap group, the Decisional Diffie-Hellman problem is easy, but

the Computational Diffie-Hellman is hard. A prominent candidate of such groups
are pairing-friendly groups.
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To show pseudorandomness, let us first consider the case of selective security
in which the adversary A first commits to a challenge preimage X∗. Then, A
receives the verification key and may ask for arbitrary images Vsk (X) and proofs
for X �= X∗. Additionally, A gets either Vsk (X∗) (without proof), or a random
image, and has to decide which it is.

In this setting, we can gradually adapt the gMi,b given to A such that∏k
i=1 Mi,xi

has full rank if and only if X = X∗. To this end, we choose Mi,b as
a full-rank matrix exactly for b = x∗

i . (This change can be split up in a number
of local changes, each of which changes only one Mi,b and can be justified with
the (n−1)-linear assumption, where n is the dimension of Mi,b.) Even more: we
show that if we perform these changes carefully, and in a “coordinated” way, we
can achieve that v� := u� ∏k

i=1 Mi,xi
lies in a fixed subspace U� if and only

if X �= X∗. In other words, if we write v =
∑n

i=1 βibi for a basis {bi}n
i=1 such

that {bi}n−1
i=1 is a basis of U, then we have that βn = 0 if and only if X �= X∗.

Put differently: v has a bn-component if and only if X = X∗.
Hence, we could hope to embed (part of) a challenge from a computational

hardness assumption into bn. For instance, to obtain a VRF secure under the
Bilinear Decisional Diffie-Hellman (BDDH) assumption, one could set Vsk (X) =
e(Gsk (X), gα)β for a pairing e and random α, β. A BDDH challenge can then be
embedded into bn, α, and β. (Of course, also validity proofs need to be adapted
suitably.)

In the main part of the paper, we show how to generalize this idea simultane-
ously to adaptive security (with a semi-generic approach that employs admissible
hash functions), and based on the (n − 1)-linear assumption for arbitrary n ≥ 3
(instead of the BDDH assumption).

We note that we pay a price for a reduction to a standard assumption: since
our construction relies on matrix multiplication (instead of multiplication of
exponents), it is less efficient than previous constructions. For instance, compared
to Lysyanskaya’s VRF, our VRF has less compact proofs (by a factor of about
n, when building on the (n − 1)-linear assumption), and requires more pairing
operations (by a factor of about n2) for verification.

Programmable Vector Hash Functions. The proof strategy sketched above
is implemented by a new tool that we call programmable vector hash functions
(PVHFs). Essentially, PVHFs can be seen as a variant of programmable hash
functions of Hofheinz and Kiltz [27], which captures the “coordinated” setup of
Gsk described above in a modular building block. We hope that this building
block will be useful for other cryptographic constructions.

MoreRelatedWork.VRFs were introduced by Micali, Rabin, and Vadhan [36].
Number-theoretic constructions of VRFs were described in [1,2,11,19,20,28,29,
35,36]. Abdalla et al. [1,2] also gave a generic construction from a special type of
identity-based key encapsulation mechanisms. Most of these either do not achieve
full adaptive security for large input spaces, or are based on interactive complexity
assumptions, the exceptions [2,11,28,29] were mentioned above. We wish to avoid
interactive assumptions to prevent circular arguments, as explained by Naor [39].
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The notion of weak VRFs was proposed by Brakerski et al. [13], along with
simple and efficient constructions, and proofs that neither VRFs, nor weak VRFs
can be constructed (in a black-box way) from one-way permutations. Several
works introduced related primitives, like simulatable VRFs [15] and constrained
VRFs [25].

Other Approaches to Avoid Q-type Assumptions. One may ask whether
the techniques presented by Chase and Meiklejohn [16], which in certain appli-
cations allow to replace Q-type assumption with constant-size subgroup hiding
assumptions, give rise to alternative constructions of VRFs from constant-size
assumptions. This technique is based on the idea of using the dual-systems app-
roach of Waters [43], and requires to add randomization to group elements. This
randomization makes it difficult to construct VRFs that meet the unique prov-
ability requirement. Consequently, Chase and Meiklejohn were able to prove that
the VRF of Dodis and Yampolski [20] forms a secure pseudorandom function
under a static assumption, but not that it is a secure VRF.

Open Problems. The verifiable random functions constructed in this paper
are relatively inefficient, when compared to the q-type-based constructions
of [2,11,28,29], for example. An interesting open problem is therefore the con-
struction of more efficient VRFs from standard assumptions. In particular, it is
not clear whether the constructions in this paper can also be instantiated from
the SXDH assumption in asymmetric bilinear groups. This would potentially
yield a construction with smaller matrices, and thus shorter proofs.

2 Certified Bilinear Group Generators

In order to be able to prove formally that a given verifiable random function
satisfies uniqueness in the sense of Definition 8, we extend the notion of certified
trapdoor permutations [7,8,32] to certified bilinear group generators. Previous
works on verifiable random functions were more informal in this aspect, e.g., by
requiring that group membership can be tested efficiently and that each group
element has a unique representation.

Definition 1. A bilinear group generator is a probabilistic polynomial-time
algorithm GrpGen that takes as input a security parameter k (in unary) and out-
puts Π = (p,G,GT , ◦, ◦T , e, φ(1)) $← GrpGen(1k) such that the following require-
ments are satisfied.

1. p is prime and log(p) ∈ Ω(k).
2. G and GT are subsets of {0, 1}∗, defined by algorithmic descriptions of maps

φ : Zp → G and φT : Zp → GT .
3. ◦ and ◦T are algorithmic descriptions of efficiently computable (in the security

parameter) maps ◦ : G × G → G and ◦T : GT × GT → GT , such that
(a) (G, ◦) and (GT , ◦T ) form algebraic groups and
(b) φ is a group isomorphism from (Zp,+) to (G, ◦) and
(c) φT is a group isomorphism from (Zp,+) to (GT , ◦T ).
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4. e is an algorithmic description of an efficiently computable (in the security
parameter) bilinear map e : G×G → GT . We require that e is non-degenerate,
that is,

x �= 0 =⇒ e(φ(x), φ(x)) �= φT (0)

Definition 2. We say that group generator GrpGen is certified, if there exists
a deterministic polynomial-time algorithm GrpVfy with the following properties.

Parameter Validation. Given a string Π (which is not necessarily generated
by GrpGen), algorithm GrpVfy(Π) outputs 1 if and only if Π has the form

Π = (p,G,GT , ◦, ◦T , e, φ(1))

and all requirements from Definition 1 are satsified.
Recognition and Unique Representation Elements of G. Furthermore,

we require that each element in G has a unique representation, which can be
efficiently recognized. That is, on input two strings Π and s, GrpVfy(Π, s)
outputs 1 if and only if GrpVfy(Π) = 1 and it holds that s = φ(x) for some
x ∈ Zp. Here φ : Zp → G denotes the fixed group isomorphism contained in
Π to specify the representation of elements of G (see Definition 1).

3 Programmable Vector Hash Functions

Notation. As explained in the introduction, for a vector u = (u1, . . . , un)� ∈
Z

n
p we will write gu to denote the vector gu := (gu1 , . . . , gun), and we will

generalize this notation to matrices in the obvious way. Moreover, whenever the
reference to a group generator g ∈ G is clear (note that a generator g = φ(1)
is always contained in the group parameters Π generated by GrpGen), we will
henceforth follow [22] and simplify our notation by writing [x] := gx ∈ G for an
integer x ∈ Zp, [u] := gu ∈ G

n for a vector u ∈ Z
n
p , and [M] := gM ∈ G

n×n for
a matrix M ∈ Z

n×n
p . We also extend our notation for bilinear maps: we write

e([A], [B]) (for matrices A = (ai,j)i,j ∈ Zn1×n2
p and B = (bi,j)i,j ∈ Zn2×n3

p ) for
the matrix whose (i, j)-th entry is

∏n2
�=1 e([ai,�], [b�,j ]). In other words, we have

e([A], [B]) = e(g, g)AB.
For a vector space U ⊆ Zn×n

p of column vectors, we write U� := {u� | u ∈ U}
for the respective set of row vectors. Furthermore, we write U� ·M := {u� ·M |
u� ∈ U�} for an element-wise vector-matrix multiplication. Finally, we denote
with GLn(Zp) ⊂ Zn×n

p the set of invertible n-by-n matrices over Zp. Recall that
a uniformly random M ∈ Zp is invertible except with probability at most n/p.
(Hence, the uniform distributions on GLn(Zp) and Zn×n

p are statistically close.)

3.1 Vector Hash Functions

Definition 3. Let GrpGen be group generator algorithm and let n ∈ N be a
positive integer. A verifiable vector hash function (VHF) for GrpGen with domain
{0, 1}k and range G

n consists of algorithms (GenVHF,EvalVHF,VfyVHF) with the
following properties.
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– GenVHF takes as input parameters Π
$← GrpGen(1k) and outputs a verification

key vk and an evaluation key ek as (vk , ek) $← GenVHF(Π).
– EvalVHF takes as input an evaluation key ek and a string X ∈ {0, 1}k. It

outputs ([v] , π) ← EvalVHF(ek ,X), where [v] = ([v1] , . . . , [vn])� ∈ G
n is the

function value and π ∈ {0, 1}∗ is a corresponding proof of correctness.
– VfyVHF takes as input a verification key vk, vector [v] ∈ G

n, proof π ∈ {0, 1}∗,
and X ∈ {0, 1}k, and outputs a bit: VfyVHF(vk , [v] , π,X) ∈ {0, 1}.

We require correctness and unique provability in the following sense.

Correctness. We say that (GenVHF,EvalVHF,VfyVHF) is correct, if for all Π
$←

GrpGen(1k), all (vk , ek) $← GenVHF(Π), and all X ∈ {0, 1}k holds that

Pr
[
VfyVHF(vk , [v] , π,X) = 1 : (vk , ek) $← GenVHF(Π),

([v] , π) ← EvalVHF(ek ,X)

]
= 1

Unique Provability. We say that a VHF has unique provability, if for all
strings vk ∈ {0, 1}∗ (not necessarily generated by GenVHF) and all X ∈
{0, 1}k there does not exist any tuple ([v0] , π0, [v1] , π1) with [v0] �= [v1]
and [v0] , [v1] ∈ G

n such that

VfyVHF(vk , [v0] , π0,X) = VfyVHF(vk , [v1] , π1,X) = 1

3.2 Selective Programmability

Definition 4. We say that VHF (GenVHF,EvalVHF,VfyVHF) is selectively pro-
grammable, if additional algorithms TrapVHF = (TrapGenVHF,TrapEvalVHF) exist,
with the following properties.

– TrapGenVHF takes group parameters Π
$← GrpGen(1k), matrix [B] ∈ G

n×n,
and X(0) ∈ {0, 1}k. It computes (vk , td) $← TrapGenVHF(Π, [B] ,X(0)), where
vk is a verification key with corresponding trapdoor evaluation key td.

– TrapEvalVHF takes as input a trapdoor evaluation key td and a string X ∈
{0, 1}k. It outputs a vector β ← TrapEvalVHF(td ,X) with β ∈ Z

n
p and a proof

π ∈ {0, 1}k.

We furthermore have the following requirements.

Correctness. For all Π
$← GrpGen(1k), all [B] ∈ G

n×n, and all X,X(0) ∈
{0, 1}k we have

Pr

⎡

⎣VfyVHF(vk , [v] ,X) = 1 :
(vk , td) $← TrapGenVHF(Π, [B] ,X(0))
(β, π) ← TrapEvalVHF(td ,X)
[v] := [B] · β

⎤

⎦ = 1
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O0(X) :

(v, π) ← EvalVHF(ek , X)
Return ([v] , π)

O1(X) :

(β, π) ← TrapEvalVHF(td , X)
[v] := [B] · β

Return ([v] , π)

Ocheck(X) :

(β, π) ← TrapEvalVHF(td , X)
(β1, . . . , βn) := β

If βn �= 0 then Return 1
Else Return 0

Fig. 1. Definition of oracles O0, O1, and Ocheck.

Indistinguishability. Verification keys generated by TrapGenVHF are computa-
tionally indistinguishable from keys generated by GenVHF. More precisely, we
require that for all PPT algorithms A = (A0,A1) holds that

Advvhf−sel−ind
VHF,TrapVHF

(k) := 2 · Pr

⎡

⎢
⎢
⎢
⎣

Π
$← GrpGen(1k); (X(0), st) $← A0(1k)

(vk0, ek) $← GenVHF(Π); B $← GLn(Zp)
(vk1, td) $← TrapGenVHF(Π, [B] ,X(0))
b

$← {0, 1}; AOb
1 (st , vk b) = b

⎤

⎥
⎥
⎥
⎦

− 1

is negligible, where oracles O0 and O1 are defined in Fig. 1.
Well-distributed Outputs. Let q = q(k) ∈ N be a polynomial, and let β

(i)
n

denote the n-th coordinate of vector β(i) ∈ Z
n
p . There exists a polynomial

poly such that for all (X(0), . . . , X(q)) ∈ ({0, 1}k)q+1 with X(0) �= X(i) for
i ≥ 1 holds that

Pr

⎡

⎢
⎢
⎢
⎣

β
(0)
n �= 0 ∧ β

(i)
n = 0

∀i ∈ {1, . . . , q} :

Π
$← GrpGen(1k)

B $← GLn(Zp)
(vk , td) $← TrapGenVHF(Π, [B] ,X(0))
(β(i), π) ← TrapEvalVHF(td ,X(i)) ∀i

⎤

⎥
⎥
⎥
⎦

≥ 1
poly(k)

We note that in our security definitions, B is always a random invertible
matrix, although TrapGenVHF would also work on arbitrary B.

Furthermore, note that we only require a noticeable “success probability” in
our “well-distributed outputs” requirement above. This is sufficient for our appli-
cation; however, our (selectively secure) PVHF construction achieves a success
probability of 1. (On the other hand, our adaptively secure construction only
achieves well-distributedness in the sense above, with a significantly lower – but
of course still noticeable – success probability.)

3.3 Adaptive Programmability

Definition 5. We say that VHF (GenVHF,EvalVHF,VfyVHF) is (adaptively) pro-
grammable, if algorithms TrapVHF = (TrapGenVHF,TrapEvalVHF) exist, which
have exactly the same syntax and requirements on correctness, indistinguisha-
bility, and well-formedness as in Definition 4, with the following differences:
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– TrapGenVHF(Π, [B]) does not take an additional string X(0) as input.
– In the indistinguishability experiment, A0 is the trivial algorithm, which out-

puts the empty string ∅, while A1 additionally gets access to oracle Ocheck (see
Fig. 1). We stress that this oracle always uses td to compute its output, inde-
pendently of b. We denote with Advvhf−ad−ind

VHF,TrapVHF
(k) the corresponding advantage

function.

4 A PVHF Based on the Matrix-DDH Assumption

Overview. In this section, we present a programmable vector hash function,
whose security is based upon the “Matrix-DDH” assumption introduced in [22]
(which generalizes the matrix-DDH assumption of Boneh et al. [12] and the
matrix d-linear assumption of Naor and Segev [41]). This assumption can be
viewed as a relaxation of the (n−1)-linear assumption, so that in particular our
construction will be secure under the (n − 1)-linear assumption with n ≥ 3.

Assumption 6. The n-rank assumption states that [Mn−1]
c≈ [Mn], where

Mi ∈ Zn×n
p is a uniformly distributed rank-i matrix, i.e., that

Advn−rank
A (k) := Pr [A([Mn−1]) = 1] − Pr [A([Mn]) = 1]

is negligible for every PPT adversary A.

4.1 The Construction

Assume a bilinear group generator GrpGen and an integer n ∈ N as above.
Consider the following vector hash function VHF:

– GenVHF(GrpGen) uniformly chooses 2k invertible matrices Mi,b ∈ Z
n×n
p (for

1 ≤ i ≤ k and b ∈ {0, 1}) and a nonzero vector u� ∈ Z
n
p \ {0}. The output is

(vk , ek) with

vk =
(
([Mi,b])1≤i≤k,b∈{0,1}, [u]

)
ek =

(
(Mi,b)1≤i≤k,b∈{0,1},u

)
.

– EvalVHF(ek ,X) (for X = (x1, . . . , xk)) computes and outputs an image [v] =
[vk] ∈ Gn and a proof π = ([v1], . . . , [vk−1]) ∈ (Gn)k−1, where

v�
i = u� ·

i∏

j=1

Mj,xj
. (1)

– VfyVHF(vk , [v], π,X) outputs 1 if and only if

e([v�
i ], [1]) = e([v�

i−1], [Mi,xi
]), (2)

holds for all i with 1 ≤ i ≤ k, where we set [v0] := [u] and [vk] := [v].
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Theorem 1 (Correctness and Uniqueness of VHF). VHF is a vector hash
function. In particular, VHF satisfies the correctness and uniqueness conditions
from Definition 3.

Proof. First, note that (2) is equivalent to v�
i = v�

i−1 · Mi,xi
. By induction, it

follows that (2) holds for all i if and only if v�
i = u� · ∏i

j=1 Mj,xj
for all i. By

definition of EvalVHF, this yields correctness. Furthermore, we get that VfyVHF
outputs 1 for precisely one value [v] = [vk] (even if the Mi,b are not invertible).
In fact, the proof π is uniquely determined by vk and X.

4.2 Selective Security

We proceed to show the selective security of VHF:

Theorem 2 (Selectively Programmabability of VHF). VHF is selectively
programmable in the sense of Definition 4.

The Trapdoor Algorithms. We split up the proof of Theorem2 into three
lemmas (that show correctness, well-distributed outputs, and indistinguishabil-
ity of VHF). But first, we define the corresponding algorithms TrapGenVHF and
TrapEvalVHF.

– TrapGenVHF(Π, [B],X(0)) first chooses k+1 subspaces Ui of Zn
p (for 0 ≤ i ≤ k),

each of dimension n − 1. Specifically,
• the first k subspaces Ui (for 0 ≤ i ≤ k − 1) are chosen independently and

uniformly,
• the last subspace Uk is the subspace spanned by the first n−1 unit vectors.

(That is, Uk contains all vectors whose last component is 0.)
Next, TrapGenVHF uniformly chooses u ∈ Zn

p \ U0 and 2k matrices Ri,b (for
1 ≤ i ≤ k and b ∈ {0, 1}), as follows:

R
i,1−x

(0)
i

uniformly of rank n − 1 subject to U�
i−1 · R

i,1−x
(0)
i

= U�
i

R
i,x

(0)
i

uniformly of rank n subject to U�
i−1 · R

i,x
(0)
i

= U�
i .

(3)

Finally, TrapGenVHF sets

Mi,b = Ri,b for 1 ≤ i ≤ k − 1

[Mk,0] = [Rk,0 · B�] [Mk,1] = [Rk,1 · B�],
(4)

and outputs

td =
(
(Ri,b)i∈[k−1],b∈{0,1},u, [B]

)
vk =

(
([Mi,b])i∈[k],b∈{0,1}, [u]

)
.

– TrapEvalVHF(td ,X) first computes an image [v] = [vk], along with a corre-
sponding proof π = [v1, . . . ,vk−1] exactly like EvalVHF, using (1). (Note that
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TrapEvalVHF can compute all [vi] from its knowledge of u, all Ri,b, and [B].)
Next, observe that the image [v] satisfies

v� = v�
k = u� ·

k∏

j=1

Mj,xj
=

(
u� ·

k∏

j=1

Rj,xj

︸ ︷︷ ︸
=:β�

)
· B�. (5)

Hence, TrapEvalVHF outputs (β, π).

Lemma 1 (Correctness of TrapVHF). The trapdoor algorithms TrapGenVHF
and TrapEvalVHF above satisfy correctness in the sense of Definition 4.

Proof. This follows directly from (5).

Lemma 2. (Well-distributedness of TrapVHF). The above trapdoor algo-
rithms TrapGenVHF and TrapEvalVHF enjoy well-distributed outputs in the sense
of Definition 4.

Proof. Fix any preimage X(0) = (x(0)
i )k

i=1 ∈ {0, 1}k, matrix [B] ∈ G
n×n, and

corresponding keypair (td , vk) $← TrapGenVHF(Π, [B],X(0)). We will show first
that for all X = (xi)k

i=1 ∈ {0, 1}k, the corresponding vectors v�
i computed

during evaluation satisfy

u� ·
i∏

j=1

Ri,xi
∈ U�

i ⇐⇒ xj �= x
(0)
j for some j ≤ i. (6)

Equation (6) can be proven by induction over i. The case i = 0 follows from the
setup of u /∈ U0. For the induction step, assume (6) holds for i − 1. To show (6)
for i, we distinguish two cases:

– If xi = x
(0)
i , then Ri,xi

has full rank, and maps U�
i−1 to U�

i . Thus, u� ·
∏i

j=1 Rj,xj
∈ U�

i if and only if u� · ∏i−1
j=1 Rj,xj

∈ U�
i−1.

2 By the induction

hypothesis, and using xi = x
(0)
i , hence, u� · ∏i

j=1 Rj,xj
∈ U�

i if and only if

xj �= x
(0)
j for some j ≤ i. This shows (6).

– If xi �= x
(0)
i , then Ri,xi

has rank n − 1. Together with U�
i−1 · Ri,xi

= U�
i , this

implies that in fact (Zn
p )� · Ri,xi

= U�
i . Hence, both directions of (6) hold.

This shows that (6) holds for all i. In particular, if we write

β� = (β1, . . . , βn) = u� ·
k∏

j=1

Ri,xi

(as in (5)), then β ∈ Uk if and only if X �= X(0). By definition of Uk, this means
that βn = 0 ⇔ X �= X(0). Well-distributedness as in Definition 4 follows.
2 Recall our notation from Sect. 3.
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Lemma 3 (Indistinguishability of TrapVHF). If the n-rank assumption holds
relative to GrpGen, then the above algorithms TrapGenVHF and TrapEvalVHF satisfy
the indistinguishability property from Definition 4. Specifically, for every adver-
sary A, there exists an adversary B (of roughly the same complexity) with

Advvhf−sel−ind
VHF,TrapGenVHF,TrapEvalVHF,A(k) = k · Advn−rank

G,n,B (k) + O(kn/p).

Proof. Fix an adversary A. We proceed in games.

Game 0. Game 0 is identical to the indistinguishability game with b = 0. In
this game, A first selects a “target preimage” X(0), and then gets a verification
key vk generated by GenVHF, and oracle access to an evaluation oracle O. Let
G0 denote A’s output in this game. (More generally, let Gi denote A’s output
in Game i.) Our goal will be to gradually change this setting such that finally,
vk is generated by TrapGenVHF(GrpGen, [B],X(0)) (for an independently uniform
invertible B), and O uses the corresponding trapdoor to generate images and
proofs. Of course, A’s output must remain the same (or change only negligibly)
during these transitions.

Game 1.� (for 0 ≤ � ≤ k). In Game 1.� (for 0 ≤ � ≤ k), vk is generated in
part as by TrapGenVHF, and in part as by GenVHF. (O is adapted accordingly.)
Specifically, Game 1.� proceeds like Game 0, except for the following changes:

– Initially, the game chooses � + 1 subspaces Ui (for 0 ≤ i ≤ �) of dimension
n − 1 independently and uniformly, and picks u ∈ Zn

p \ U0. (Note that unlike
in an execution of TrapGenVHF, also Uk is chosen uniformly when � = k.)

– Next, the game chooses 2k matrices Ri,b (for 1 ≤ i ≤ k and b ∈ {0, 1}), as fol-
lows. For i ≤ �, the Ri,b are chosen as by TrapGenVHF, and thus conform to (3).
For i > �, the Ri,b are chosen uniformly and independently (but invertible).

– Finally, the game sets up Mi,b := Ri,b for all i, b. (Again, note the slight
difference to TrapGenVHF, which follows (4).)

The game hands the resulting verification key vk to A; since all Mi,b are known
over Zp, oracle O can be implemented as EvalVHF.

Now let us take a closer look at the individual games Game 1.�. First, observe
that Game 1.0 is essentially Game 0: all Mi,b are chosen independently and
uniformly, and O calls are answered in the only possible way (given vk). The
only difference is that u is chosen independently uniformly from Z

n
p \{0} in Game

0, and from Z
n
p \U0 (for a uniform dimension-(n− 1) subspace U0) in Game 1.0.

However, both choices lead to the same distribution of u, so we obtain

Pr [G0 = 1] = Pr [G1.0 = 1] . (7)

Next, we investigate the change from Game 1.(� − 1) to Game 1.�. We claim
the following:

Lemma 4. There is an adversary B on the n-rank problem with

k∑

�=1

Pr [G1.� = 1] − Pr
[
G1.(�−1) = 1

]
= k · Advn−rank

G,n,B (k) + O(kn/p). (8)
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We postpone a proof of Lemma4 until after the main proof.

Game 2. Finally, in Game 2, we slightly change the way Uk and the matrices
Mk,b (for b ∈ {0, 1}) are set up:

– Instead of setting up Uk uniformly (like all other Ui), we set up Uk like
TrapGenVHF would (i.e., as the subspace spanned by the first n−1 unit vectors).

– Instead of setting up Mk,b = Rk,b, we set Mk,b = Rk,b · B� for an indepen-
dently and uniformly chosen invertible B , exactly like TrapGenVHF would.

Observe that since B is invertible, these modifications do not alter the distribu-
tion of the matrices Mk,b (compared to Game 1.�). Indeed, in both cases, both
Mk,b map U�

k−1 to the same uniformly chosen (n − 1)-dimension subspace. In
Game 1.�, this subspace is Uk, while in Game 2, this subspace is the subspace
spanned by the first n − 1 columns of B . We obtain:

Pr [G1.� = 1] = Pr [G2 = 1] . (9)

Finally, it is left to observe that Game 2 is identical to the indistinguishability
experiment with b = 1: vk is prepared exactly as with TrapGenVHF(Π, [B],X(0))
for a random B , and O outputs the images and proofs uniquely determined by
vk . Hence,

Advvhf−sel−ind
VHF,TrapVHF,A(k) = Pr [G2 = 1] − Pr [G0 = 1]

(7),(9)
= Pr [G1.k = 1] − Pr [G1.0 = 1]

=
k∑

�=1

Pr [G1.� = 1] − Pr
[
G1.(�−1) = 1

]

(8)
= k · Advn−rank

G,n,A (k) + O(kn/p)

as desired.
It remains to prove Lemma 4.

Proof (Proof of Lemma 4). We describe an adversary B on the n-rank problem. B
gets as input a matrix [A] “in the exponent,” such that A is either of rank n, or
of rank n − 1. Initially, B uniformly picks � ∈ {1, . . . , k}. Our goal is construct B
such that it internally simulates Game 1.(� − 1) or Game 1.�, depending on A ’s
rank. To this end, B sets up vk as follows:

– Like Game 1.(� − 1), B chooses � subspaces U0, . . . ,U�−1, and u ∈ Zn
p \ U0 uni-

formly.
– For i < �, B chooses matrices Ri,b like TrapGenVHF does, ensuring (3). For i > �,

all Ri,b are chosen independently and uniformly but invertible. The case i = �
is more complicated and will be described next.

– To set up M�,0 and M�,1, B first asks A for its challenge input X(0) = (x(0)
i )k

i=1.
Next, B embeds its own challenge [A] as [R

�,1−x
(0)
�

] := [A]. To construct
an [R

�,x
(0)
�

] that achieves (3) (for i = �), B first uniformly chooses a basis
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{c1, . . . , cn} of Zn
p , such that {c1, . . . , cn−1} forms a basis of U�−1. (Note that B

chooses the subspace U�−1 on its own and over Zp, so this is possible efficiently
for B.) In the sequel, let C be the matrix whose i-th row is c�

i , and let C−1 be
the inverse ofC. Jumping ahead, the purpose ofC−1 is to help translate vectors
from U�−1 (as obtained through a partial product u� ∏�−1

j=1 Mj,xj
) to a “more

accessible” form.
Next, B samples n − 1 random vectors [c′

i] (for 1 ≤ i ≤ n − 1) in the image of
[A] (e.g., by choosing random r�

i and setting [c′
i] = r�

i · [A]). Furthermore, B
samples c′

n ∈ Z
n
p randomly. Let [C′] be the matrix whose i-th row is [c′

i
�]. The

purpose of C′ is to define the image of R
�,x

(0)
�

. Specifically, B computes

[R
�,x

(0)
�

] := C−1 · [C′].

(Note thatB can compute [R
�,x

(0)
�

] efficiently, sinceC−1 is known “in the clear.”)

We will show below that, depending on the rank of A, either U�
�−1 · R

�,x
(0)
�

=

U�
�−1 · A, or U�

�−1 · R
�,x

(0)
�

is an independently random subspace of dimension
n − 1.

– Finally, B sets [Mi,b] = [Ri,b] for all i, b, and hands A the resulting verification
key vk .

Furthermore, B implements oracle O as follows: if A queries O with some X =
(xi)k

i=1 ∈ {0, 1}k, then B can produce the (uniquely determined) image and proof
from the values

[v�
i ] = [u� ·

i∏

j=1

Mj,xj
]. (10)

On the other hand, B can compute all [v�
i ] efficiently, since it knows all factors in

(10) over Zp, except for (at most) one factor [M�,x�
].

Finally, B outputs whatever A outputs.
We now analyze this simulation. First, note that vk and O are simulated exactly

as in both Game 1.(� − 1) and Game 1.�, except for the definition of [R
�,x

(0)
i

] and
[R

�,1−x
(0)
i

]. Now consider how these matrices are set up depending on the rank of
B’s challenge A.

– If A is of rank n, then R
�,x

(0)
�

and R
�,1−x

(0)
�

are (statistically close to) indepen-

dently and uniformly random invertible matrices. Indeed, then each row c′
i
�

of C′ is independently and uniformly random: c′
1, . . . , c

′
n−1 are independently

random elements of the image of A (which is Zn
p ), and c′

n is independently ran-
dom by construction. Hence, C′ is independently and uniformly random (and
thus invertible, except with probability n/p). On the other hand, R

�,x
(0)
�

= A
is uniformly random and invertible by assumption.

– If A is of rank n − 1, then R
�,x

(0)
�

and R
�,1−x

(0)
�

are (statistically close to) dis-
tributed as in (3). Indeed, then the rank of R

�,1−x
(0)
�

= A is n − 1, and the rank
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of R
�,x

(0)
�

= C−1 ·C′ is n, except with probability at most n/p.3 Moreover, if we

write U�
� := (Zn

p )� · A, then by construction (Zn
p )� · R

�,1−x
(0)
�

= U�
� , but also

(Zn
p )� · R

�,x
(0)
�

= W� · C′ = U�
� ,

whereW is the vector space spanned by the first n−1 unit vectors. Furthermore,
R

�,x
(0)
�

and R
�,1−x

(0)
�

are distributed uniformly with these properties.

Hence, summarizing, up to a statistical defect of at most 2/p, B simulates
Game 1.(� − 1) if A is of rank n, and Game 1.� if A is of rank n − 1.
This shows (8).

4.3 Adaptive Security

The idea behind the adaptively-secure construction is very similar to the selective
case. Both the construction and the security proof are essentially identical, except
that we apply an admissible hash function (AHF) AHF : {0, 1}k → {0, 1}�AHF (cf.
Definition 7) to the inputs X of EvalVHF and TrapEvalVHF before computing the
matrix products. (We mention that suitable AHFs with �h = O(k) exist [24,35].)
Correctness and unique provability follow immediately. In order to prove well-
distributedness, we rely on the properties of the admissible hash function. By
a slightly more careful, AHF-dependent embedding of low-rank matrices in the
verification key, these properties ensure that, for any sequence of queries issued
by the adversary, it holds with non-negligible probability that the vector

[
v(0)

]

assigned to input X(0) does not lie in the subspace generated by (b1, . . . ,bn−1),
while all vectors

[
v(i)

]
assigned to input X(i) do, which then yields the required

well-distributedness property.

Admissible Hash Functions. To obtain adaptive security, we rely on a semi-
blackbox technique based on admissible hash functions (AHFs, [3,9,14,24,35]). In
the following, we use the formalization of AHFs from [24]:

Definition 7 (AHF). For a function AHF : {0, 1}k → {0, 1}�AHF (for a polyno-
mial �AHF = �AHF(k)) and K ∈ ({0, 1,⊥})�AHF , define the function FK : {0, 1}k →
{CO, UN} through

FK(X) = UN ⇐⇒ ∀i : Ki = AHF(X)i ∨ Ki = ⊥,

where AHF(X)i denotes the i-th component of AHF(X). We say that AHF is q-
admissible if there exists a PPT algorithm KGen and a polynomial poly(k), such
that for all X(0), . . . , X(q) ∈ {0, 1}k with X(0) �∈ {X(i)},

Pr
[
FK(X(0)) = UN ∧ FK(X(1)) = · · · = FK(X(q)) = CO

]
≥ 1/poly(k), (11)

3 To see this, observe that except with probability (n−1)/p, the first n−1 columns ofC′

are linearly independent (as they are random elements in the image of the rank-(n−1)
matrix A). Further, the last row (which is independently and uniformly random) does
not lie in the span of the first n − 1 rows except with probability at most 1/p.
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where the probability is over K
$← KGen(1k). We say that AHF is an admissible

hash function (AHF) if AHF is q-admissible for all polynomials q = q(k).

There are efficient constructions of admissible hash functions [24,35] with
�AHF = O(k) from error-correcting codes.

AHashed Variant of VHF. Fix an AHF AHF : {0, 1}k → {0, 1}�AHF and a corre-
sponding KGen algorithm. Essentially, we will hash preimages (using AHF) before
feeding them into VHF to obtain a slight variant VHF′ of VHF that we can prove
adaptively secure. More specifically, let VHF′ be the verifiable hash function that
is defined like VHF, except for the following differences:

– Gen′
VHF(GrpGen) proceeds like GenVHF(GrpGen), but samples 2�AHF (not 2k)

matrices Mi,b.
– Eval′VHF(ek ,X) (for X ∈ {0, 1}k), first computes X ′ = (x′

i)
�AHF
i=1 = AHF(X) ∈

{0, 1}�AHF , and then outputs an image [v] = [v�AHF ] and a proof

π = ([v1], . . . , [v�AHF−1])

where v�
i = u� · ∏i

j=1 Mj,x′
j
.

– Vfy′
VHF(vk , [v], π,X) computes X ′ = (x′

i)
�AHF
i=1 = AHF(X) ∈ {0, 1}�AHF and

outputs 1 if and only if e([v�
i ], [1]) = e([v�

i−1], [Mi,x′
i
]) holds for all i with

1 ≤ i ≤ �AHF, where [v0] := [u] and [v�AHF ] := [v].

Theorem 3 (AdaptiveProgrammabability ofVHF’).VHF′ is adaptively pro-
grammable in the sense of Definition 5.

TheTrapdoorAlgorithms.We proceed similarly to the selective case and start
with a description of the algorithms TrapGen′

VHF and TrapEval′VHF.

– TrapGen′
VHF(Π, [B]) proceeds like algorithm TrapGenVHF from Sect. 4.2, except

that
• TrapGen′

VHF initializes K
$← KGen(1k) and includes K in td .

• TrapGen′
VHF chooses �AHF+1 (and not k+1) subspaces Ui (for 0 ≤ i ≤ �AHF).

(The last subspace U�AHF is chosen in a special way, exactly like Uk is chosen
by TrapGenVHF.)

• TrapGen′
VHF chooses 2�AHF (and not 2k) matrices Ri,b (for 1 ≤ i ≤ �AHF and

b ∈ {0, 1}), as follows:
If Ki = b, then Ri,b is chosen uniformly of rank n − 1, subject to

U�
i−1 · R

i,1−x
(0)
i

= U�
i

If Ki �= b, then Ri,b is chosen uniformly of rank n, subject to

U�
i−1 · R

i,x
(0)
i

= U�
i

– TrapEval′VHF(td ,X) proceeds like algorithm TrapEvalVHF on input a preimage
AHF(X) ∈ {0, 1}�AHF . Specifically, TrapEval′VHF computes [v] = [vk], along with
a corresponding proof π = [v1, . . . ,vk−1] exactly like Eval′VHF. Finally, and anal-
ogously to TrapEvalVHF, TrapEval

′
VHF outputs (β, π) for β� := u� · ∏k

j=1 Rj,xj
.
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Correctness and indistinguishability follow as for TrapGenVHF and TrapEvalVHF, so
we state without proof:

Lemma 5 (Correctness of Trap′
VHF). The trapdoor algorithms TrapGen′

VHF and
TrapEval′VHF above satisfy correctness in the sense of Definition 5.

Lemma 6 (Indistinguishability of Trap′
VHF). If the n-rank assumption holds

relative to GrpGen, then the above algorithms TrapGen′
VHF and TrapEval′VHF satisfy

the indistinguishability property from Definition 5. Specifically, for every adversary
A, there exists an adversary B (of roughly the same complexity) with

Advvhf−sel−ind
VHF′,Trap′

VHF,A(k) = �AHF · Advn−rank
G,n,B (k) + O(�AHFn/p).

The (omitted) proof of Lemma 6 proceeds exactly like that Lemma 3, only adapted
to AHF-hashed inputs. Note that the additional oracle Ocheck an adversary gets in
the adaptive indistinguishability game can be readily implemented with the key
K generated by TrapGen′

VHF. (The argument from the proof of Lemma3 does not
rely on a secret X(0), and so its straightforward adaptation could even expose the
full key K to an adversary.)

Lemma 7 (Well-distributedness of Trap′
VHF). The above trapdoor algorithms

TrapGen′
VHF and TrapEval′VHF have well-distributed outputs in the sense of

Definition 5.

Proof. First, we make an observation. Fix a matrix [B], and a corresponding key-
pair (td , vk) $← TrapGenVHF(Π, [B]). Like (6), we can show that for all X ′ =
(x′

i)
�AHF
i=1 , the corresponding vectors v�

i computed during evaluation satisfy

u� ·
i∏

j=1

Ri,xi
∈ U�

i ⇐⇒ xj = Kj for some j ≤ i.

Hence, β ∈ U�AHF (and thus βn = 0) for the value β that is computed by
TrapEval′VHF(td ,X) if and only ifFK(X) = CO. By property (11) ofAHF, the lemma
follows.

5 VRFs fromVerifiable PVHFs

Let (GenVRF,EvalVRF,VfyVRF) be the following algorithms.

– Algorithm (vk , sk) $← GenVRF(1k) takes as input a security parameter k and out-
puts a key pair (vk , sk). We say that sk is the secret key and vk is the verification
key.

– Algorithm (Y, π) $← EvalVRF(sk ,X) takes as input secret key sk and X ∈
{0, 1}k, and outputs a function value Y ∈ Y, where Y is a finite set, and a proof
π. We write Vsk (X) to denote the function value Y computed by EvalVRF on
input (sk ,X).
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Initialize(1k) :

b
$← {0, 1}

(vk , sk)
$← GenVRF(1

k)
Return vk

Evaluate(X) :

(Y, π)
$← EvalVRF(sk , X)

Return (Y, π)

Challenge(X∗) :

(Y0, π)
$← EvalVRF(sk , X∗)

Y1
$← Y

Return Yb

ExpVRFA (1k) :

vk
$← Initialize(1k)

X∗ $← AEvaluate

Yb
$← Challenge(X∗)

B
$← AEvaluate

Return (B = b)

Fig. 2. The VRF security experiment.

– Algorithm VfyVRF(vk ,X, Y, π) ∈ {0, 1} takes as input verification key vk , X ∈
{0, 1}k, Y ∈ Y, and proof π, and outputs a bit.

Definition 8. We say that a tuple of algorithms (GenVRF,EvalVRF,VfyVRF) is a ver-
ifiable random function (VRF), if all the following properties hold.

Correctness. Algorithms GenVRF, EvalVRF, VfyVRF are polynomial-time algo-
rithms, and for all (vk , sk) $← GenVRF(1k) and all X ∈ {0, 1}k holds: if
(Y, π) $← EvalVRF(sk ,X), then we have VfyVRF(vk ,X, Y, π) = 1.

Unique Provability. For all strings (vk , sk) (which are not necessarily generated
by GenVRF) and all X ∈ {0, 1}k, there does not exist any (Y0, π0, Y1, π1) such
that Y0 �= Y1 and VfyVRF(vk ,X, Y0, π0) = VfyVRF(vk ,X, Y1, π1) = 1.

Pseudorandomness. Let ExpVRFB be the security experiment defined in Fig. 2,
played with adversary B. We require that the advantage function

AdvVRFB (k) := 2 · Pr
[
ExpVRFB (1k) = 1

]
− 1

is negligible for all PPT B that never query Evaluate on input X∗.

5.1 A Generic Construction from Verifiable PVHFs

Let (GenVHF,EvalVHF,VfyVHF) be a vector hash function according to Definition 3,
and let (GrpGen,GrpVfy) be a certified bilinear group generator according to
Definitions 1 and 2. Let (GenVRF,EvalVRF,VfyVRF) be the following algorithms.

Key Generation. GenVRF(1k) runs Π
$← GrpGen(1k) to generate bilinear group

parameters, and then (ek , vk ′) $← GenVHF(Π). Then it chooses a randomvector
w $← (Z∗

p)
n, defines sk := (Π, ek ,w) and vk := (Π, vk ′, [w]), and outputs

(vk , sk).
Function Evaluation. On input sk := (Π, ek ,w) with w = (w1, . . . , wn)� ∈

(Z∗
p)

n and X ∈ {0, 1}k, algorithm EvalVRF(sk ,X) first runs

([v] , π′) ← EvalVHF(ek ,X).
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Then it computes the function value Y and an additional proof [z] ∈ G
n as

Y :=
n∏

i=1

[
vi

wi

]
and [z] :=

[
(z1, . . . , zn)�]

:=

[(
v1
w1

, . . . ,
vn

wn

)�]

Finally, it sets π := ([v] , π′, [z]) and outputs (Y, π).
Proof Verification. On input (vk ,X, Y, π), VfyVRF outputs 0 if any of the follow-

ing properties is not satisfied.

1. vk has the form vk = (Π, vk ′, [w]), such that [w] = ([w1] , . . . , [wn]) and
the bilinear group parameters and group elements contained in vk are valid.
That is, it holds that GrpVfy(Π) = 1 and GrpVfy(Π, [wi]) = 1 for all i ∈
{1, . . . , n}.

2. X ∈ {0, 1}k.
3. π has the form π = ([v] , π′, [z]) with VfyVHF(vk

′, [v] , π′,X) = 1 and both
vectors [v] and [z] contain only validly-encoded group elements, which can
be checked by running GrpVfy.

4. It holds that and [zi] = [vi/wi] for all i ∈ {1, . . . , n} and Y = [
∑n

i=1 vi/wi].
This can be checked by testing

e ([zi] , [wi])
?= e([vi] , [1]) ∀i ∈ {1, . . . , n} and Y

?=
n∏

i=1

[zi]

If all the above checks are passed, then VfyVRF outputs 1.

5.2 Correctness, Unique Provability, and Pseudorandomness

Theorem 4 (Correctness and Unique Provability). The triplet of algo-
rithms (GenVRF,EvalVRF,VfyVRF) forms a correct verifiable random function, and
it satisfies the unique provability requirement in the sense of Definition 8.

Proof. Correctness is straightforward to verify, therefore we turn directly to
unique provability. We have to show that there does not exist any (Y0, π0, Y1, π1)
such that Y0 �= Y1 and VfyVRF(vk ,X, Y0, π0) = VfyVRF(vk ,X, Y1, π1) = 1. Let us
first make the following observations.

– First of all, note that VfyVRF on input ((Π, vk ′, [w]),X, Y, ([v] , π′, (z)) checks
whether Π contains valid certified bilinear group parameters by running
GrpVfy(Π). Moreover, it checks whether all group elements contained in [w],
[v], and [z] are valid group elements with respect to Π. Thus, we may assume in
the sequel that all these group elements are valid and have a unique encoding.
In particular, [w] is uniquely determined by vk .

– Furthermore, it is checked that X ∈ {0, 1}k. The unique provability prop-
erty of the vector hash function (GenVHF,EvalVHF,VfyVHF) guarantees that for
all strings vk ′ ∈ {0, 1}∗ and all X ∈ {0, 1}k there does not exist any tuple
([v0] , π0, [v1] , π1) with [v0] �= [v1] and [v0] , [v1] ∈ G

n such that

VfyVHF(vk
′, [v0] , π0,X) = VfyVHF(vk

′, [v1] , π1,X) = 1
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Thus, we may henceforth use that there is only one unique vector of group ele-
ments [v] which passes the testVfyVHF(vk

′, [v] , π′,X) = 1 performed byVfyVRF.
Thus, [v] is uniquely determined by X and the values Π and vk ′ contained in vk .

– Finally, note that VfyVRF tests whether [zi] = [vi/wi] holds. Due to the fact
that the bilinear group is certified, which guarantees that each group element
has a unique encoding and that the bilinear map is non-degenerate, for each
i ∈ {1, . . . , n} there exists only one unique group element encoding [zi] such
that the equality [zi] = [vi/wi] holds.

Therefore the value Y =
∏n

i=1 [zi] is uniquely determined by [v] and [w], which in
turn are uniquely determined by X and the verification key vk .

Assumption 9. The (n − 1)-linear assumption states that [c,d,
∑n

i=1 di/ci]
c≈

[c,d, r], where c = (c1, . . . , cn)� ∈ (Z∗
p)

n, d = (d1, . . . , dn)� ∈ Zn
p , and r ∈ Zp

are uniformly random. That is, we require that

Adv
(n−1)−lin
A (k) := Pr

[

A([c,d,

n∑

i=1

di/ci]) = 1

]

− Pr [A([c,d, r]) = 1]

is negligible for every PPT adversary A.

We remark that the above formulation is an equivalent formulation of the stan-
dard (n − 1)-linear assumption, cf. [21, Page 9], for instance.

Theorem 5 (Pseudorandomness). If (GenVHF,EvalVHF,VfyVHF) is an adap-
tivly programmable VHF in the sense of Definition 3 and the (n−1)-linear assump-
tion holds relative toGrpGen, then algorithms (GenVRF,EvalVRF,VfyVRF) form a ver-
ifiable random function which satisfies the pseudorandomness requirement in the
sense of Definition 8.

Proof Sketch. The proof is based on a reduction to the indistinguishability and
well-distributedness of the programmable vector hash function. The well-distri-
butedness yields a leverage to embed the given instance of the (n − 1)-linear
assumption in the view of the adversary, following the approach sketched already
in the introduction. Given the PVHF as a powerful building block, the remain-
ing main difficulty of the proof lies in dealing with the fact that the “partitioning”
proof technique provided by PVHFs is incompatible with “decisional” complex-
ity assumptions. This is a well-known difficulty, which appeared in many previ-
ous works. It stems from the fact that different sequences of queries of the VRF-
adversary may lead to different abort probabilities in the security proof. We can
overcome this issue by employing the standard artificial abort technique [44], which
has also been used to prove security of Waters’ IBE scheme [44] and the VRF of
Hohenberger and Waters [28], for example.

Proof. Let A be an adversary in the VRF security experiment from Definition 8.
We will construct an adversary B on the (n − 1)-linear assumption, which simu-
lates the VRF pseudorandomness security experiment for A. However, before we
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can construct this adversary, we have to make some changes to the security exper-
iment. Consider the following sequence of games, where we let Expi

A(1k) denote
the experiment executed in Game i and we write Advi

A(k) := Pr
[
Expi

A(1k) = 1
]

to denote the advantage of A in Game i.

Game 0. This is the original VRF security experiment, executed with algorithms
(GenVRF,EvalVRF,VfyVRF) as constructed above. Clearly, we have

Adv0A(k) = AdvVRFA (k)

In the sequel we write vk ′
0 to denote the VHF-key generated by (vk ′

0, ek) $←
GenVHF(Π) in the experiment.

Game 1. This game proceeds exactly as before, except that it additionally sam-
ples a uniformly random invertible matrix B $← GLn(Zp) and generates an addi-
tional key for the vector hash function as (vk ′

1, td) $← TrapGenVHF(Π, [B]), which
is not given to the adversary. That is, the adversary in Game 1 receives as input a
VRF verification key vk = (Π, vk ′

0, [w]), where vk ′
0 is generated byGenVHF, exactly

as in Game 0.
Whenever A issues an Evaluate(X(i))-query on some input X(i), the exper-

iment proceeds as in Game 0, and additionally computes ((β1, . . . , βn), π) $←
TrapEvalVHF(td ,X(i)). If βn �= 0, then the experiment aborts and outputs a ran-
dom bit. Moreover, when A issues a Challenge(X(0))-query, then the experiment
computes ((β1, . . . , βn), π) $← TrapEvalVHF(td ,X(0)). If βn = 0, then the experi-
ment aborts and outputs a random bit.

The well-distributedness of the PVHF guarantees that there is a polynomial
poly such that for all possible queries X(0),X(1), . . . , X(q) the probability that the
experiment is not aborted is at least

Pr
[
β(0)

n = 0 ∧ β(i)
n �= 0 ∀i ∈ {1, . . . , q}

]
≥ 1/poly(k) ≥ λ

where λ is a non-negligible lower bound on the probability of not aborting.

Artificial Abort. Note that the probability that the experiment aborts depends on
the particular sequence of queries issued by A. This is problematic, because differ-
ent sequences of queries may have different abort probabilities (cf. AppendixA).
Therefore the experiment in Game 1 performs an additional artificial abort step,
which ensures that the experiment is aborted with always the (almost) same prob-
ability 1−λ, independent of the particular sequence of queries issued by A. To this
end, the experiment proceeds as follows.

After A terminates and outputs a bit B, the experiment estimates the concrete
abort probability η(X) for the sequence of queriesX := (X(0), . . . , X(q)) issued by
A. To this end, the experiment:

1. Computes an estimate η′ of η(X), by R-times repeatedly sampling trapdoors
(vk ′

j , td j)
$← TrapGenVHF(Π, [B]) and checking whether β

(0)
n = 0 or β

(i)
n �= 0,

where

((β(i)
1 , . . . , β(i)

n ), π) ← TrapEvalVHF(td j ,X
(i)) for i ∈ {0, . . . , q}
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for sufficiently large R. Here ε is defined such that 2 · ε is a lower bound on the
advantage of A in the original security experiment.

2. If η′ ≥ λ, then the experiment aborts artificially with probability (η′ − λ)/η′,
and outputs a random bit.

Note that if η′ was exact, that is, η′ = η(X), then the total probability of not
aborting would always be η(X)·(1−(η′−λ)/η′) = λ, independent of the particular
sequence of queries issued by A. In this case we would haveAdv1A(k) = λ·Adv0A(k).
However, the estimate η′ of η(X) is not necessarily exact. By applying the standard
analysis technique from [44] (see also [17,28]), one can show that setting R :=
O(ε−2 ln(1/ε)λ−1 ln(1/λ)) is sufficient to obtain

Adv1A(k) ≥ O(ε · λ) · Adv0A(k).

Game 2. The experiment now provides the adversary with the trapdoor VHF
verification key vk ′

1, by including it in the VRF verification key vk = (Π, vk ′
1, [z])

in place of vk ′
0. Moreover, the experiment now evaluates the VHF on inputs X by

running (β, π) $← TrapEvalVHF(td ,X) and then computing [v] := [B] · β. The rest
of the experiment proceeds exactly as before.

We claim that any adversary A distinguishing Game 2 from Game 1 implies an
adversaryB breaking the indistinguishability of the VHF according toDefinition 5.
Adversary BOb,Ocheck(vk ′

b) receives as input a verification key vk ′
b, which is either

generated by GenVHF(Π) or TrapGenVHF(Π, [B]) for a uniformly invertible random
matrix B. It simulates the security experiment from Game 2 for A as follows.

– The given VHF verification key vk ′
b is embedded in the VRF verification key

vk = (Π, vk ′
b, [z]), where b is the random bit chosen by the indistinguishabil-

ity security experiment played by B. All other values are computed exactly as
before.

– In order to evaluate the VHF on input X, B is able to query its oracle Ob, which
either computes and returns ([v] , π) ← EvalVHF(ek ,X) (in case b = 0), or it
computes (β, π) ← TrapEvalVHF(td ,X) and returns [v] := [B] ·β (in case b = 1).

– To test whether a given value X requires a (non-artificial) abort, B queries
Ocheck(X), which returns 1 if and only if ((β1, . . . , βn), π) ← TrapEvalVHF(td)
with βn �= 0.

– The artificial abort step is performed by B exactly as in Game 1.

Note that if b = 0, then the view of A is identical to Game 1, while if b = 1 then it
is identical to Game 2. Thus, by the adaptive indistinguishability of the VHF, we
have

Adv2A(k) ≥ Adv1A(k) − negl(k)

for some negligible function negl(k).

Game 3. Finally, we have to make one last technical modification before we are
able to describe our reduction to the (n − 1)-linear assumption. Game 3 proceeds
exactly as before, except that matrix [B] has a slightly different distribution. In
Game 2, B $← GL(

nZp) is chosen uniformly random (and invertible). In Game 3,
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we instead choose matrix B by sampling b1, . . . ,bn−1
$← (Z∗

p)
n and bn

$← Z
n
p ,

defining B := (b1, . . . ,bn), and then computing [B]. Thus, we ensure that the
first n − 1 vectors do not have any component which equals the identity element.
This is done to adjust the distribution of [B] to the distribution chosen by our
reduction algorithm.

By applying the union bound, we have
∣
∣Adv3A(k) − Adv2A(k)

∣
∣ ≤ n2/p. Since n

is polynomially bounded and log(p) ∈ Ω(k), we have

Adv3A(k) ≥ Adv2A(k) − negl(k)

for some negligible function negl(k).

The Reduction to the (n− 1)-Linear Assumption. In this game, we describe
our actual reduction algorithm B. Adversary B receives as input a (n − 1)-linear
challenge [c,d, t], where c = (c1, . . . , cn)� $← (Z∗

p)
n, d $← Z

n
p , and either t =

∑n
i=1 di/ci or t

$← Zp. It simulates the VRF security experiment exactly as in
Game 3, with the following differences.

Initialization and Set-up of Parameters. Matrix [B] is computed as follows.
First, B chooses n(n − 1) random integers αi,j

$← Z
∗
p for i ∈ {1, . . . , n − 1} and

j ∈ {1, . . . , n}. Then it sets [bi] := (αi,1c1, . . . , αi,n, cn)� and [bn] := [d], and
finally [B] := [b1, . . . ,bn]. Vector [w] is set to [w] := [c].

Note that matrix [B] and vector [w] are distributed exactly as in Game 3.
Observe also that the first n − 1 column vectors of [B] depend on c, while the
last vector is equal to d.

AnsweringEvaluate-Queries.Whenever A issues anEvaluate-query on input
X(j), then B computes β = (β1, . . . , βn)� ← TrapEvalVHF(td ,X(j)). If βn �= 0,
then B aborts and outputs a random bit. Otherwise it computes

[v] := [B · β] =
[
(b1, . . . ,bn−1) · (β1, . . . , βn−1)�]

=
[
(γ1c1, . . . , γncn)�]

for integers γ1, . . . , γn, which are efficiently computable from β and the αi,j-values
chosen by B above. Here we use that βn = 0 holds for all Evaluate-queries that
do not cause an abort.

Next, B computes the proof elements in [z] by setting [zi] := [γi] for all i ∈
{1, . . . , n}. Note that, due to our setup of [w], it holds that

[γi] =
[
γici

ci

]
=

[
vi

wi

]

thus all proof elements can be computed correctly by B. Finally, B sets

Y :=
n∏

i=1

[zi] =

[
n∑

i=1

zi

]

which yields the correct function value. Thus, all Evaluate-queries can be
answered by B exactly as in Game 3.
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Answering theChallenge-Query.When A issues aChallenge-query on input
X(0), then B computes β = (β1, . . . , βn)� ← TrapEvalVHF(td ,X(0)). If βn =
0, then B aborts and outputs a random bit. Otherwise again it computes the
γi-values in

[v] := [B · β] =
[
(b1, . . . ,bn−1) · (β1, . . . , βn−1)� + bn · βn

]

=
[
(γ1c1, . . . , γncn)� + d · βn

]

Writing vi and di to denote the i-th component of v and d, respectively, it thus
holds that vi = γici + diβn. Observe that then the function value is

Y =

[
n∑

i=1

vi

ci

]

=

[
n∑

i=1

γici + diβn

ci

]

B computes and outputs [t · βn] · [
∑n

i=1 γi] = [t · βn +
∑n

i=1 γi]. Observe that
if [t] = [

∑n
i=1 di/ci], then it holds that

[

t · βn +
n∑

i=1

γi

]

=

[

βn ·
n∑

i=1

di

ci
+

n∑

i=1

γici

ci

]

=

[
n∑

i=1

γici + diβn

ci

]

= Y

Thus, if [t] = [
∑n

i=1 di/ci], then B outputs the correct function value Y . However,
if [t] is uniformly random, then B outputs a uniformly random group element.

Finally, B performs an artificial abort step exactly as in Game 2. Note that B
provides a perfect simulation of the experiment in Game 3, which implies that

Adv
(n−1)−lin
B (k) = Adv3A(k)

which is non-negligible, if AdvVRFA (k) is.

A TheNeed for an Artificial Abort

The “artificial abort” technique of Waters [44] has become standard for security
proofs that combine a “partitioning” proof technique with a “decisional” complex-
ity assumption. For example, it is also used to analyze Waters’ IBE scheme [44],
the verifiable random function of Hohenberger and Waters [28], and many other
works.

Unfortunately, the artificial abort is necessary, because our (n−1)-linear reduc-
tion algorithm B is not able to use the output of A directly in case the experiment
it not aborted. This is because the abort probability may depend on the particular
sequence of queries issued by A. For example, it may hold that Pr [B = b] = 1/2+ε
for some non-negligible ε, which means that A has a non-trivial advantage in break-
ing the VRF-security, while Pr [B = b | ¬abort] = 1/2, which means that B does
not have any non-trivial advantage in breaking the (n − 1)-linear assumption.
Essentially, the artificial abort ensures that B aborts for all sequences of queries
made by A with approximately the same probability.
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Alternatively, we could avoid the artificial abort by following the approach of
Bellare and Ristenpart [6], which yields a tighter (but more complex) reduction.
To this end, we would have to define and construct a PVHF which guarantees suf-
ficiently close upper and lower bounds on the abort probability. This is possible by
adopting the idea of balanced admissible hash functions (AHFs) from [29] to “bal-
anced PVHFs”. Indeed, instantiating our adaptively-secure PVHF with the bal-
ancedAHF from [29] yields such a balancedPVHF.However, thiswould havemade
the definition of PVHFs much more complex. We preferred to keep this novel defi-
nition as simple as possible, thus used the artificial abort approach of Waters [44].
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Abstract. We show that homomorphic evaluation of any non-trivial
functionality of sufficiently many inputs with respect to any CPA secure
homomorphic encryption scheme cannot be implemented by circuits of
polynomial size and constant depth, i.e., in the class AC0. In contrast, we
observe that there exist ordinary public-key encryption schemes of qua-
sipolynomial security in AC0 assuming noisy parities are exponentially
hard to learn. We view this as evidence that homomorphic evaluation is
inherently more complex than basic operations in encryption schemes.

1 Introduction

A central objective in the theory of cryptography is to classify the relative
complexity of various cryptographic tasks. One common way of arguing that
task B is of comparable easiness to task A is to give a black-box implemen-
tation of B using A as a primitive. Notable examples include the construction
of pseudorandom generators from one-way permutations [GL89] and one-way
functions [HILL99,HRV10].

But how should we argue that task B is “more complex” than task A?
In the generic setting, one looks for the existence of a black-box separa-
tion [IR89,RTV04], or a lower bound on the query complexity of a black-box
reduction [GT00]. However such black box impossibility results are not always a
good indicator of the relative complexity of the two tasks in the real world (under
suitable complexity assumptions). For example, although collision-resistant hash
functions cannot be constructed from one-way functions in a black-box man-
ner [Sim98], both objects have simple, local (NC0) implementations under stan-
dard assumptions [AIK07].

An alternative way to argue that task B is more complex than task A is to
provide a concrete complexity model in which one can implement A (under plau-
sible assumptions), but not B. For example, Applebaum et al. [AIK07] show that
under plausible complexity assumptions, nontrivial pseudorandom generators
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can be implemented in the complexity class NC0. However, it is not difficult to
see that this class does not contain pseudorandom functions; in fact, Linial, Man-
sour, and Nisan [LMN93] show that pseudorandom functions cannot be imple-
mented even in AC0. Taken together, these results may be viewed as concrete
evidence that pseudorandom functions are more complex than pseudorandom
generators, despite the existence of a black-box reduction [GGM86] and the lack
of lower bounds on the complexity of such reductions [MV11].

In this work we give concrete complexity-theoretic evidence that homomor-
phic evaluation of essentially any non-trivial functionality is more complex than
the basic cryptographic operations of key generation, encryption, and decryp-
tion. Our main result (Theorem 2) shows that homomorphic evaluation of any
non-trivial functionality (for example the AND function) that depends on suf-
ficiently many inputs cannot be implemented by circuits of constant depth and
subexponential size with respect to any CPA secure encryption scheme. In Sect. 4
we show that encryption schemes in AC0 of super-polynomial CPA security exist
assuming Learning Noisy Parities is exponentially hard.

Thus constant-depth circuits provide sufficient computational power for
implementing operations in both ordinary private and public-key encryption
schemes (under a previously studied assumption), but not for realizing homo-
morphic evaluation of any non-trivial functionality.

2 Definitions

In this section we give a definition of what it means for an algorithm E to homo-
morphically evaluate a given functionality f . A fairly weak requirement is that
a homomorphic evaluator for f(m1, . . . ,mk) should take as inputs encryptions
of m1, . . . ,mk and output a ciphertext that decrypts to f(m1, . . . ,mk).

We will allow for the evaluation algorithm to err on some fraction of the
encryptions. This takes into account the possibility that the encryption scheme
itself may produce incorrect encryptions with some probability.

Definition 1. Let (Gen,Enc,Dec) be a private-key encryption scheme over
message set Σ with ciphertexts in {0, 1}n. We say a circuit E is a homomorphic
evaluator of f : Σk → Σ with error δ if for all m1, . . . ,mk ∈ Σ,

Pr[DecSK(E(EncSK(m1, R1), . . . ,EncSK(mk, Rk))) = f(m1, . . . ,mk)] ≥ 1 − δ,

where SK ∼ Gen is a uniformly chosen secret key and R1, . . . , Rk are indepen-
dent random seeds.

In the public-key setting, we are given an encryption scheme (Gen,Enc,
Dec) and require that

Pr[DecSK(E(PK,EncPK(m1, R1), . . . ,EncPK(mk, Rk)))
= f(m1, . . . ,mk)] ≥ 1 − δ.

where (PK,SK) ∼ Gen is a random key pair.
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We point out one challenge that this natural definition poses in the context
of ruling out the existence of homomorphic evaluators. When k is much smaller
than n, the definition allows for plausible encryption schemes that admit trivial
homomorphic evaluators, by “outsourcing” the homomorphic evaluation to the
decryption algorithm. For example suppose that the meaningful portion of an
encryption is only captured in the first n/k bits of the ciphertext. Then the
homomorphic evaluator can simply copy the meaningful portion of its k encryp-
tions in non-overlapping parts of the output. Upon seeing a ciphertext of this
form, the decryption algorithm can easily compute the value f(m1, . . . ,mk) by
first decrypting the ciphertext corresponding to each of the k encryptions and
then evaluating f .

Thus our negative result will only apply to functions whose number of rele-
vant inputs k is sufficiently large in terms of n. Beyond this requirement, we do
not make any assumption on f .

The requirement we make on the encryption scheme is CPA message indis-
tinguishability. A private-key encryption scheme is (s, d, ε) CPA message indis-
tinguishable if for every pair of messages m,m′ ∈ Σ and every distinguishing
oracle circuit D? of size s and depth d,

|PrSK,R[DEnc(SK,·)(EncSK(m,R)) = 1]

− PrSK,R[DEnc(SK,·)(EncSK(m′, R)) = 1]| ≤ ε.

In the public key setting CPA security follows from ordinary message indistin-
guishability:

|PrPK,R[D(PK,EncPK(m, R)) = 1] − PrPK,R[D(PK,EncPK(m′, R)) = 1]| ≤ ε.

3 Homomorphic Evaluation Requires Depth

Theorem 2. Suppose (Gen,Enc,Dec) is an (2s + k + O(1), d + 1, 1/6(k + 1))
CPA message indistinguishable private-key (resp. public-key) encryption scheme.
Let E be a homomorphic evaluator of size s and depth d with error at most 1/3
for some f : Σk → Σ that depends on all of its inputs with respect to this scheme.
Then s > 2Ω((k/6n)1/(d−1)).

For notational simplicity, we present the proof for the private key variant.
Since f depends on all its inputs, for every i ∈ [k] there is a pair of messages m
and m′ that differ only in coordinate i such that f(m) �= f(m′). Now suppose
E is a homomorphic evaluator for f with error 1/3. Then

Pr[Dec(E(Enc(m1, R1), . . . ,Enc(mi, Ri), . . . ,Enc(mk, Rk))) �= f(m)] ≤ 1/3

and

Pr[Dec(E(Enc(m1, R1), . . . ,Enc(m′
i, R

′
i), . . . ,Enc(mk, Rk))) �= f(m′)] ≤ 1/3,
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where the probability is taken over the choice of secret key SK (which we omit
to simplify notation) and the randomness R1, . . . , Ri, R

′
i, . . . , Rk used in the

encryption. Since f(m) �= f(m′), it follows that

Pr[Dec(E(Enc(m1, R1), . . . ,Enc(mi, Ri), . . . ,Enc(mk, Rk)))
�= Dec(E(Enc(m1, R1), . . . ,Enc(m′

i, R
′
i), . . . ,Enc(mk, Rk)))] ≥ 1/3.

Therefore it must be that

Pr[E(Enc(m1, R1), . . . ,Enc(mi, Ri), . . . ,Enc(mk, Rk))
�= E(Enc(m1, R1), . . . ,Enc(m′

i, R
′
i), . . . ,Enc(mk, Rk))] ≥ 1/3.

By CPA message indistinguishability and a hybrid argument, we can replace
m1, . . . ,mi,m

′
i, . . . ,mk by 0 to obtain

Pr[E(Enc(0, R1), . . . ,Enc(0, Ri), . . . ,Enc(0, Rk))
�= E(Enc(0, R1), . . . ,Enc(0, R′

i), . . . ,Enc(0, Rk))] ≥ 1/6. (1)

Lemma 3. Let D1, . . . , Dk be any distributions over {0, 1}n. Let g :
({0, 1}n)k → {0, 1} be a circuit of size s and depth d where s ≤ 2(εk)1/(d−1)/K for
some absolute constant K. Then

Pr[g(X1, . . . , Xi, . . . , Xk) �= g(X1, . . . , X
′
i, . . . , Xk)] < ε

where the randomness is taken over the choice of i ∼ [k] and independent samples
X1 ∼ D1, . . . , Xi,X

′
i ∼ Di, . . . , Xk ∼ Dk.

We apply this lemma with Di equal to the distribution of encryptions of 0
and ε = 1/6n to each of the n outputs of E and take a union bound to conclude
that (1) is violated unless s > 2Ω((k/6n)1/(d−1)).

Proof (of Lemma 3). Fix any pair Z,Z ′ ∈ ({0, 1}n)k. For any w ∈ {0, 1}k, let
Zw ∈ ({0, 1}n)k be the string such that

the i-th block of Zw =

{
the i-th block of Z, if wi = 0
the i-th block of Z ′, if wi = 1.

Let hZ,Z′(w) = g(Zw). Then h is of size at most s and depth at most d. By
Boppana [Bop97], for every Z and Z ′ we have

PrW,i[hZ,Z′(W ) �= hZ,Z′(W + ei)] ≤ (K log s)d−1/k

for some constant K, where W and i are uniform over {0, 1}k and [k] respec-
tively, and ei is the i-th indicator vector. Therefore for Z,Z ′ sampled inde-
pendently from D1 × · · · × Dk we can rewrite Pr[g(X1, . . . , Xi, . . . , Xk) �=
g(X1, . . . , X

′
i, . . . , Xk)] as

EZ,Z′ [PrW,i[hZ,Z′(W ) �= hZ,Z′(W + ei)]] ≤ EZ,Z′ [(K log s)d−1/k]

= (K log s)d−1/k.

It follows that if this probability is at most ε, then s ≤ 2(εk)1/(d−1)/K .
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Lemma 3 bounds the total influence of shallow circuits under independent
inputs chosen from an arbitrary distribution. Our proof is based on ideas of
Blais, O’Donnell, and Wimmer [BOW10], who bound the noise sensitivity of
such circuits.

4 On CPA-Secure Encryption Schemes in AC0

In this section we show that encryption schemes in AC0 of super-polynomial
CPA security exist assuming Learning Noisy Parities over {0, 1}n requires time
2Ω(nδ) for some constant δ > 0.

To begin with, we observe that asymptotically super-polynomial security
cannot be achieved by NC0 decryption circuits: If every output of the decryption
circuit depends on at most d bits of the ciphertext, then for any message m the
decryption circuit on the distribution of encryptions of m can be PAC-learned
in time Od(nd), violating CPA security.

We obtain candidate encryption schemes in AC0 by applying the following
reduction:

Lemma 4. For every d > 0, every (public or private key) encryption scheme of
size S and depth D can be implemented in size S2D ·2d·D·S1/d

and depth 2d + 1.

In particular, encryption schemes in the class NC2 can be simulated by
constant-depth circuit families of size 2O(nε) for any constant ε > 0.

Two such schemes are the private-key one of Gilbert et al. [GRS08] and
the public-key one of Alekhnovich [Ale11, Cryptosystem1]. The key generation,
encryption, and decryption algorithms for these schemes apply linear algebra
over F2 and thus admit NC2 implementations [Ber84]. The security of these two
schemes is based on the hardness of Learning Noisy Parities.

Noisy Parities over F
n
2 with noise rate η can be learned by brute force in

time poly(n) · ( n
ηn

)
. A slight improvement in the exponent is achievable for high

noise rates using the algorithm of Blum, Kalai, and Wasserman [BKW03]. Its
running time is 2Θ(n/ log n). Assuming noisy parities are hard to learn in time
2Ω(nδ) for some constant δ > 0, it follows from Lemma 4 that the above schemes
have constant-depth implementations whose security is super-polynomial in their
size. The error rate can be assumed constant in the cryptosystem of Gilbert
et al. and 1/

√
n in the cryptosystem of Alekhnovich.

The cryptosystems of Gilbert et al. and Alekhnovich have noticeable encryp-
tion error. The error can be reduced to negligible by encrypting the message
independently multiple times. While some of the multiple encryptions may be
erroneous, with all but negligible probability at least 2/3 of them will be correct.
The errors can be corrected by taking approximate majority at the decryption
stage, which can be implemented using circuits of depth 3 [Ajt83], thereby pre-
serving the constant depth complexity of the implementation.

Proof (of Lemma 4). We show that the conclusion holds for every circuit of size
S and depth D, so in particular it holds for the key generation, encryption,
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and decryption circuits (where the circuits are viewed as functions of both their
input and their randomness). This is folklore and was recently used in [LV15].
We sketch the proof for completeness.

First, every circuit of size S and depth D can be simulated by a branching
program of length S and width 2D by traversing the circuit in depth first order
while maintaining the value of the evaluated subtree at each level.

Second, for every k, every branching program of length S and width W can
be written as an OR of W k ANDs of k branching programs of length S/k and
width W . This representation is obtained by factoring the branching program
over its states at time S/k, 2S/k, up to (k − 1)S/k.

Applying this transformation recursively d times, we obtain a simulation of
a size S, depth D circuit by a size (kW k)d, depth 2d circuit whose inputs are
branching programs of length S/kd and width w. Each such branching program
can be trivially simulated by a CNF of size WS/kd

. Putting this together, we
obtain a simulation of size S, depth D circuits by size kdW dk+S/kd

, depth 2d + 1
circuits. Setting k = S1/d proves the lemma.

Acknowledgment. We thank Yuval Ishai for sharing his insights on encryption
schemes in AC0.
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Abstract. The possibility of basing the security of cryptographic
objects on the (minimal) assumption that NP � BPP is at the
very heart of complexity-theoretic cryptography. Most known results
along these lines are negative, showing that assuming widely believed
complexity-theoretic conjectures, there are no reductions from an NP-
hard problem to the task of breaking certain cryptographic schemes. We
make progress along this line of inquiry by showing that the security
of single-server single-round private information retrieval schemes can-
not be based on NP-hardness, unless the polynomial hierarchy collapses.
Our main technical contribution is in showing how to break the security
of a PIR protocol given an SZK oracle. Our result is tight in terms of
both the correctness and the privacy parameter of the PIR scheme.

1 Introduction

The possibility of basing the security of cryptographic objects on the (mini-
mal) assumption that NP � BPP is at the very heart of complexity-theoretic
cryptography. Somewhat more precisely, “basing primitive X on NP-hardness”
means that there is a construction of primitive X and a probabilistic polynomial-
time oracle algorithm (a reduction) R such that for every oracle A that “breaks
the security of X”, Pr[RA(φ) = 1] ≥ 2/3 if φ ∈ SAT and Pr[RA(φ) = 1] ≤ 1/3
otherwise.

There are a handful of impossibility results which show that, assuming widely
believed complexity-theoretic conjectures, the security of various cryptographic
objects cannot be based on NP-hardness. We discuss these results in detail in
Sect. 1.2. In this work, we make progress along these lines of inquiry by showing
that (single server) private information retrieval (PIR) schemes cannot be based
on NP-hardness, unless the polynomial hierarchy collapses.

Main Theorem 1 (Informal). If there is a probabilistic polynomial time
reduction from solving SAT to breaking a single-server, one round, private infor-
mation retrieval scheme, then NP ⊆ coAM.
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Our result rules out security reductions from SAT that make black-box use
of the adversary that breaks a PIR scheme. Other than being black-box in the
adversary, the security reduction can be very general, in particular, it is allowed to
make polynomially many adaptively chosen calls to the PIR-breaking adversary.

Our result is tight in terms of both the correctness and the privacy parameter
of the PIR scheme. Namely, information-theoretically secure PIR schemes exist
for those choice of parameters that are not ruled out by our result. We refer the
reader to Sect. 3 for a formal statement of our result.

Private Information Retrieval. Private information retrieval (PIR) is a protocol
between a database D holding a string x ∈ {0, 1}n, and a user holding an index
i ∈ [n]. The user wishes to retrieve the i-th bit xi from the database, without
revealing any information about i. Clearly, the database can rather inefficiently
accomplish this by sending the entire string x to the user. The objective of PIR,
then, is to achieve this goal while communicating (significantly) less than n bits.

Chor, Goldreich, Kushilevitz and Sudan [CKGS98], who first defined PIR,
also showed that non-trivial PIR schemes (with communication less than n bits)
require computational assumptions. Subsequently, PIR has been shown to imply
one-way functions [BIKM99], oblivious transfer [CMO00] and collision-resistant
hashing [IKO05], placing it in cryptomania proper.

On the other hand, there have been several constructions of PIR with
decreasing communication complexity under various cryptographic assumptions
[KO97,CMS99,Lip05,BGN05,GR05,Gen09,BV11].

In particular, Kushilevitz and Ostrovsky [KO97] were the first to show a con-
struction of PIR with O(nε) communication (for any constant ε > 0) assuming
the existence of additively homomorphic encryption schemes. Some of the later
constructions of PIR [CMS99,Lip05,GR05,BV11] achieve polylog(n) communi-
cation under number-theoretic assumptions such as the Phi-hiding assumption
and the LWE assumption. Notably, all of them are single-round protocols, involv-
ing one message from the user to the server and one message back.

1.1 Our Techniques

The core of our proof is an attack against any single-server one-round PIR pro-
tocol given access to an SZK oracle. In particular, we show that given an oracle
to the entropy difference (ED) problem, which is complete for SZK, one can
break any single-server one-round PIR protocol. Once we have this result, the
rest follows from a beautiful work of Mahmoody and Xiao [MX10] who show that
BPPSZK ⊆ AM ∩ coAM. That is, if there is a reduction from deciding SAT
to breaking single-server one-round PIR, then SAT ∈ BPPSZK and therefore,
by [MX10], SAT ∈ AM ∩ coAM. In turn, from the work of Boppana, H̊astad
and Zachos [BHZ87], this means that the polynomial hierarchy collapses to the
second level.

The intuition behind the attack against PIR protocols is simple. Assume
that the database is uniformly random and the user’s query is fixed. Let X be
a random variable that denotes the database, and let A be a random variable
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that denotes the PIR answer (on input a query q from a user trying to retrieve
the i-th bit). We have two observations.

1. The answer enables the user to learn the i-th bit. In other words, the mutual
information between the i-th database bit Xi and the answer A has to be
large. Indeed, we show that if the PIR protocol is correct with probability
1 − ε, then this mutual information is at least 1 − h(ε), where h is the binary
entropy function.

2. The answer does not contain a large amount of information about all the
database entries. Indeed, the entropy of the answer is limited by its length
which is much shorter than the size of the database. We show that for most
indices j, the answer contains little information about the j-th bit, that is
the mutual information between A and Xj is small.

We then proceed as follows. Given the user’s query q, an efficient adversary
can construct a circuit sampling from joint distribution (X;A). Armed with the
entropy difference ED oracle, the adversary can estimate I(Xj ;A) for any index
j. Since I(Xi;A) is close to 1 (where i is the index underlying the query q) and
I(Xj ;A) is small for most indices j, the adversary can predict i much better
than random guessing. This breaks the security of PIR.

We refer the reader to Theorem 3.1 for the formal statement, and to
Proposition 2.8 which shows that the parameters of Theorem 3.1 are tight.

1.2 Related Work

Brassard [Bra79] showed that one-way permutations cannot be based on NP-
hardness. Subsequently, Goldreich and Goldwasser [GG98], in the process of clar-
ifying Brassard’s work, showed that public-key encryption schemes that satisfy
certain very special properties cannot be based on NP-hardness. In particular,
one of their conditions require that it should be easy to certifying an invalid key
as such.

Akavia, Goldreich, Goldwasser and Moshkovitz [AGGM06], and later
Bogdanov and Brzuska [BB15], showed that a special class of one-way func-
tions called size-verifiable one-way functions cannot be based on NP-hardness.
A size-verifiable one-way function, roughly speaking, is one in which the size of
the set of pre-images can be efficiently approximated via an AM protocol.

Most recently, Bogdanov and Lee [BL13a] showed that (even simple) homo-
morphic encryption schemes cannot be based on NP-hardness. This includes
additively homomorphic encryption as well as homomorphic encryption schemes
that only support the majority function, as special cases. While PIR schemes
can be constructed from additively homomorphic encryption, we are not aware
of a way to use PIR to obtain any type of non-trivial homomorphic encryption
scheme.

Several works have also explored the problem of basing average-case hardness
on (worst case) NP-hardness, via restricted types of reductions, most notably
non-adaptive reductions that make all its queries to the oracle simultaneously.
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The work of Feigenbaum and Fortnow, subsequently strengthened by Bogdanov
and Trevisan [BT06], show that there cannot be a non-adaptive reduction from
(worst-case) SAT to the average-case hardness of any problem in NP, unless
PH ⊆ Σ2 (that is, the polynomial hierarchy collapses to the second level).
In contrast, our results rule out even adaptive reductions (to much stronger
primitives).

2 Definitions

2.1 Information Theory Background

A random variable X over a finite set S is defined by its probability mass function
pX : S → [0, 1] such that

∑
x∈S pX(x) = 1. We use uppercase letters to denote

random variables. The Shannon entropy of a random variable X, denoted H(X),
is defined as

H(X) =
∑

x

pX(x) log2
1

pX(x)
.

Let Bern(p) denote the Bernoulli distribution on {0, 1} which assigns a prob-
ability of p to 1 and 1 − p to 0. We will denote by h(p) = H(Bern(p)) =
p log2

1
p + (1 − p) log2

1
1−p the Shannon entropy of the distribution Bern(p).

Let X and Y be two (possibly dependent) random variables. The conditional
entropy of Y given X, denoted H(Y |X), is defined as H(Y |X) = H(XY ) −
H(X), where XY denotes the joint distribution of X and Y . Informally, H(Y |X)
measures the (residual) uncertainty of Y when X is known.

The mutual information between random variables X and Y is

I(X;Y ) = H(X) + H(Y ) − H(XY ) = H(Y ) − H(Y |X) = H(X) − H(X|Y )

which measures the information that X reveals about Y (and vice versa). In par-
ticular, if two random variables X,Y are independent, their mutual information
is zero.

The conditional mutual information between random variables X and Y
given Z, denoted I(X;Y |Z), is defined as

I(X;Y |Z) = H(X|Z) + H(Y |Z) − H(XY |Z).

We will use without proof that entropy, conditional entropy, mutual infor-
mation, conditional mutual information are non-negative.

We will need the following simple propositions.

Proposition 2.1. Let X ∼ Bern( 12 ) be a random variable uniformly distributed
in {0, 1}, let N ∼ Bern(ε) be a noise that is independent from X, and let X̂ =
X ⊕ N be the noisy version of X. Then I(X̂;X) = 1 − h(ε). Moreover, for any
random variable X ′ satisfying Pr[X ′ = X] ≥ 1 − ε,

I(X ′;X) ≥ 1 − h(ε).
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Proof. Clearly, I(X̂;X) = H(X)−H(X|X̂) = 1−h(ε). Furthermore, the random
variable X̂ = X ⊕ N minimizes the mutual information I(X̂;X) under the
constraint that Pr[X̂ = X] ≥ 1 − ε. In particular, we have

I(X ′; X) = H(X) − H(X|X ′) = 1 − H(X ⊕ X ′|X ′) ≥ 1 − H(X ⊕ X ′) ≥ 1 − h(ε)

for any random variable X ′ satisfying Pr[X ′ = X] ≥ 1 − ε. 
�
Proposition 2.2 (Conditioning Decreases Entropy). For any random
variables X,Y,Z, it holds that H(X) ≥ H(X|Y ) ≥ H(X|Y Z).

In general, conditioning can increase or decrease mutual information, but when
conditioning on an independent variable, mutual information increases.

Proposition 2.3 (Conditioning on Independent Variables Increases
Mutual Information). For random variables X,Y,Z such that Y and Z are
independent, I(X;Y |Z) ≥ I(X;Y ).

Proof. As Y,Z are independent, H(Y |Z) = H(Y ).

I(X;Y |Z) = H(Y |Z) − H(Y |XZ) ≥ H(Y ) − H(Y |X) = I(X;Y ). 
�
Proposition 2.4 (Data Processing for Mutual Information). Assume
random variables X,Y,Z satisfies X → Y → Z, i.e. X and Z are independent
conditional on Y , then I(X;Y ) ≥ I(X;Z).

Proof. Since X and Z are independent conditional on Y (meaning I(X;Z|Y ) =
0), we have H(X|Y Z) = H(X|Y ). Thus

I(X; Y ) = H(X) − H(X|Y ) = H(X) − H(X|Y Z) ≥ H(X) − H(X|Z) = I(X; Z). ��

Proposition 2.5 (Chain Rule for Mutual Information). For random vari-
ables X1, . . . , Xn, Y , it holds that

I(X1 . . . Xn;Y ) =
n∑

i=1

I(Xi;Y |X1 . . . Xi−1).

2.2 Single-Server One-Round Private Information Retrieval

In a single-server private information retrieval (PIR) protocol, the database holds
n bits of data x ∈ {0, 1}n. The user, given an index i ∈ [n], would like to retrieve
the i-th bit from the server, without revealing any information about i. The user
does so by generating a query based on i using a randomized algorithm; the
server responds to the query with an answer. The user, given the answer and the
randomness used to generate the query, should be able to learn the i-th bit xi.

We specialize our definitions to the case of single round protocols.

Definition 2.6 (Private Information Retrieval). A single-server one round
private information retrieval (PIR) scheme is a tuple (Qry,Ans,Rec) of algo-
rithms such that
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– The query algorithm Qry is a probabilistic polynomial-time algorithm such
that Qry(1n, i) → (q, σ), where i ∈ [n]. Here, q is the PIR query and σ is the
secret state of the user (which, without loss of generality, is the randomness
used by the algorithm).

– The answer algorithm Ans is a probabilistic polynomial-time algorithm such
that Ans(x, q) → a, where x ∈ {0, 1}n. Let � denote the length of the answer,
i.e. a ∈ {0, 1}�.

– The reconstruction algorithm Rec is a probabilistic polynomial-time algorithm
such that Rec(a, σ) → b where b ∈ {0, 1}.

Correctness. A PIR scheme (Qry,Ans,Rec) is (1 − ε)-correct if for any x ∈
{0, 1}n and for any i,

Pr
[
Qry(1n, i) → (q, σ),Ans(x, q) → a : Rec(a, σ) = xi

]
≥ 1 − ε(n)

where the probability is taken over the random tapes of Qry,Ans,Rec. We call
ε the error probability of the PIR scheme.

Privacy. The standard definition of computational privacy for PIR requires that
the database cannot efficiently distinguish between queries for different indices.
Formally, a PIR scheme is δ-IND-secure (for some δ = δ(n)) if for any probabilis-
tic polynomial-time algorithm A = (A1,A2), there exists a negligible function δ
such that

Pr

⎡

⎢
⎢
⎣

A1(1n) → (i0, i1, τ)

b
$← {0, 1}

Qry(1n, ib) → (q, σ)
A2(1n, q, τ) → b′

: b′ = b

⎤

⎥
⎥
⎦ <

1
2

+ δ(n) (1)

(Here and in the sequel, τ will denote the state that A1 passes on to A2).
The adversary in this privacy definition is interactive, which introduces dif-

ficulties in defining an oracle that breaks PIR. To make our task easier, we
consider an alternative, non-interactive definition which is equivalent to (1).

We call a PIR scheme δ-GUESS-secure if for any probabilistic polynomial-
time algorithm A, there exists a negligible function δ such that

Pr

⎡

⎣
j

$← [n]
Qry(1n, j) → (q, σ)

A(1n, q) → j′
: j′ = j

⎤

⎦ <
1
n

(
1 + δ(n)

)
(2)

These two definitions of privacy are equivalent up to a polynomial factor in n,
as we show in the next proposition.

Proposition 2.7. If a PIR scheme is δ1-IND-secure (according toDefinition (1)),
then it is δ2-GUESS-secure (according to Definition (2)) where δ2 = nδ1. Similarly,
if a PIR scheme is δ2-GUESS-secure, then it is δ1-IND-secure where δ1 = δ2/2.
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Proof. Assume that a probabilistic polynomial-time (p.p.t.) adversary algorithm
A breaks δ2-privacy according to Definition (2). We construct an adversary B =
(B1,B2) that breaks Definition (1).

The algorithm B1(1n) picks two random indices i0 and i1 and outputs i0, i1
and τ = (i0, i1), algorithm B2(1n, q, τ = (i0, i1)) calls A(1n, q) to get an index i,
and outputs 0 if and only if i = i0. Then,

Pr

⎡

⎢

⎢

⎣

B1(1
n) → (i0, i1, τ)

b
$← {0, 1}

Qry(1n, ib) → (q, σ)
B2(1

n, q, τ) → b′

: b′ = b

⎤

⎥

⎥

⎦

= Pr

⎡

⎢

⎢

⎢

⎣

i0, i1
$← [n]

b
$← {0, 1}

Qry(1n, ib) → (q, σ)
A(1n, q) → i

:
i = i0, b = 0

or
i �= i0, b �= 0

⎤

⎥

⎥

⎥

⎦

=
1

2
Pr

⎡

⎣

i0, i1
$← [n]

Qry(1n, i0) → (q, σ)
A(1n, q) → i

: i = i0

⎤

⎦+
1

2
Pr

⎡

⎣

i0, i1
$← [n]

Qry(1n, i1) → (q, σ)
A(1n, q) → i

: i �= i0

⎤

⎦

≥ 1

2

1

n

(

1 + δ2(n)
)

+
1

2

(

1 − 1

n

)

=
1

2

(

1 +
δ2(n)

n

)

Thus, (B1,B2) breaks δ2
n -privacy according to Definition (1).

In the other direction, assume that a p.p.t. adversary algorithm A = (A1,A2)
breaks δ1-privacy according to Definition (1). We construct an adversary B that
works as follows. B runs A1 to get (i0, i1, τ) ← A1(1n), gets a challenge query q
and runs A2 to get b ← A2(1n, q, τ). B simply outputs ib. Then, we have:

Pr

⎡

⎣
j

$← [n]
Qry(1n, j) → (q, σ)

B(1n, q) → j′
: j′ = j

⎤

⎦ = Pr

⎡

⎢
⎢
⎣

A1(1n) → (i0, i1, τ)

j
$← [n]

Qry(1n, j) → (q, σ)
A2(1n, q, τ) → b

: j = ib

⎤

⎥
⎥
⎦

=
2
n

Pr

⎡

⎢
⎢
⎣

A1(1n) → (i0, i1, τ)

j
$← {i0, i1}

Qry(1n, j) → (q, σ)
A2(1n, q, τ) → b

: j = ib

⎤

⎥
⎥
⎦ ≥ 2

n

(1
2

+ δ1(n)
)

=
1
n

(
1 + 2δ1(n)

)

Thus, B breaks 2δ1-privacy according to Definition (2). 
�
Answer Communication Complexity. We define the answer communication com-
plexity of the PIR scheme to be the number of bits in the server’s response to
a PIR query. (This is denoted by � in Definition 2.6). Similarly, we call the bit-
length of the query as the query communication complexity, and their sum as the
total communication complexity. In this work, we are interested in PIR proto-
cols with a “small” answer communication complexity (regardless of their query
communication complexity). Since our main result is a lower bound, this only
makes it stronger.

Typically, we are interested in PIR schemes with answer communication com-
plexity � = o(n). Otherwise, e.g. when � = n, there is a trivial PIR protocol with
perfect privacy, where the user sends nothing and the server sends the whole
database x. The following proposition shows a tradeoff between the correctness
error and answer communication complexity of perfectly private PIR schemes.



On Basing Private Information Retrieval on NP-Hardness 379

Proposition 2.8. There exists a PIR scheme with perfect information-theoretic
privacy, error probability ε, and answer communication complexity � = n · (1 −
h(ε) + O(n−1/4)).

Consider a PIR scheme where the user sends nothing and the server sends
the whole database to the user, incurring an answer communication complexity
of n bits. The query contains no information about the index i, and this achieves
perfect privacy and correctness. The idea is that given the possibility of a cor-
rectness error of ε, the server can compress the database into � < n bits, such
that the user can still recover the database with at most ε error.

This is a fundamental problem in information theory, called “lossy source
coding” [Sha59]. Let X be a uniform random Bernoulli variable. Proposition 2.1
says that for any random variable X̂ such that Pr[X̂ = X] ≥ 1 − ε, I(X̂,X) ≥
1−h(ε). Therefore, to compress a random binary string and to recover the string
from the lossy compression with (1 − ε) accuracy, the compression ratio need to
be at least 1 − h(ε).

There exists a lossy source coding scheme almost achieves the information
theoretical bound [Ari09,KU10], i.e., when � = n · (1 − h(ε) + O(n−1/4)), there
exists efficient algorithms E : {0, 1}n → {0, 1}� and D : {0, 1}� → {0, 1}n, such
that for randomly chosen X ∈ {0, 1}n and for any index i ∈ [n],

Pr
X

[X̂ = D(E(X)) : X̂i = Xi] ≥ 1 − ε.

Therefore, if the server sends E(x) as the answer, then the PIR scheme achieves
(1− ε) correctness on a random database. Moreover, we can extend this to work
for any database by the following scheme which has a query communication
complexity of n bits and an answer communication complexity of � bits.

– User sends a query m, which is a random string in {0, 1}n;
– Server answers by a = E(m ⊕ x);
– User retrieves the whole database by x̂ = D(a) ⊕ m.

Then for any database and any index i ∈ [n], Pr[x̂i = xi] ≥ 1 − ε.

Reduction to Breaking PIR. What does it mean for a reduction to decide a
language L assuming that there is a p.p.t. adversary that breaks PIR? For any
language L, we say L can be reduced to breaking the δ-GUESS-security of PIR
scheme (Qry,Ans,Rec) if there exists a probabilistic polynomial-time oracle
Turing machine (OTM) M such that for all x and for all “legal” oracles OPIR

δ ,

Pr[MOPIR
δ (x) = 1] ≥ 2/3 if x ∈ L

Pr[MOPIR
δ (x) = 1] ≤ 1/3 if x /∈ L

where the probability is taken over the coins of the machine M and the oracle
OPIR

δ . We stress that M is allowed to make adaptive queries to the oracle.
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By a legal δ-breaking oracle OPIR
δ , we mean one that satifies

Pr

⎡

⎣
j ← [n]

Qry(1n, j) → (q, σ)
OPIR

δ (q) → j′
: j = j′

⎤

⎦ ≥ 1
n

(1 + δ) (3)

where the probability is taken over the coins used in the experiment, including
those of Qry and OPIR

δ .

2.3 Entropy Difference

Entropy Difference (ED) is a promise problem that is complete for SZK [GV99].
Entropy Difference is a promise problem defined as

– YES instances: (X,Y ) such that H(X) ≥ H(Y ) + 1
– NO instances: (X,Y ) such that H(Y ) ≥ H(X) + 1

where X and Y are distributions encoded as circuits which sample from them.
We list a few elementary observations regarding the power of an oracle that

decides the entropy difference problem.
First, given an entropy difference oracle, a polynomial-time algorithm can

distinguish between two distributions X and Y such that either H(X) ≥ H(Y )+
1
s or H(Y ) ≥ H(X) + 1

s for any polynomial function s. That is, one can solve
the entropy difference problem up to any inverse-polynomial precision. This can
be done as follows: For distributions X,Y , we query the Entropy Difference
oracle with (X1 . . . Xs, Y1 . . . Ys), where Xi ∼ X,Yi ∼ Y and X1, . . . , Xs are
i.i.d. and Y1, . . . , Ys are i.i.d. Then we would be able to distinguish between
H(X) ≥ H(Y ) + 1

s and H(Y ) ≥ H(X) + 1
s .

Similarly, a polynomial-time algorithm can use the Entropy Difference oracle
to distinguish between H(X) ≥ ĥ+ 1

s and H(X) ≤ ĥ− 1
s for a given ĥ. This can

be done as follows: construct a distribution Y that 2sĥ − 1 < H(Y ) < 2sĥ + 1
and query the Entropy Difference oracle with the distributions X1 . . . X2s and
Y , where X1, . . . , X2s are independent copies of X. Therefore, a polynomial-
time algorithm given Entropy Difference oracle can estimate H(X) to within
any additive inverse-polynomial precision by binary search.

Finally, assume that X and Y are random variables encoded as a circuit
which samples from their joint distributions. Then, a polynomial-time algorithm
given an Entropy Difference oracle can also estimate the conditional entropy
H(X|Y ), mutual information I(X;Y ) to any inverse-polynomial precision. Here
the precision is measured by absolute additive error.

3 PIR and NP-Hardness

Theorem 3.1 (Main Theorem). Let Π = (Qry,Ans,Rec) be any (1 − ε)-
correct PIR scheme with n-bit databases and answer communication complexity
�. Let L be any language. If
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1. there exists a reduction from L to breaking the δ-privacy of Π in the sense of
Equation (2); and

2. there is a polynomial p(n) such that

� · (1 + δ) ≤ n · (1 − h(ε)) − 1/p(n)

then L ∈ AM ∩ coAM.

In particular, using the result of [BHZ87], this tells us that unless the polyno-
mial hierarchy collapses, there is no reduction from SAT to breaking the privacy
of a PIR scheme with parameters as above.

We note that the bound in the lemma is tight. As Proposition 2.8 shows,
there is in fact a perfectly (information-theoretically) private PIR protocol with
a matching answer communication complexity of n · (1 − h(ε)) + o(n).

We prove our main theorem by combining the following two lemmas. The
first lemma is our main ingredient, and says that if there is a reduction from
deciding a language L to breaking a PIR scheme, and the PIR scheme has a
low answer communication complexity, then L can be reduced to the entropy
difference problem (defined in Sect. 2.3).

Lemma 3.2 (BPPOPIR
δ ⊆ BPPED). Let Π = (Qry,Ans,Rec) be any (1 − ε)-

correct PIR scheme with answer communication complexity � and let L be any
language. If there exists a reduction from L to δ-breaking the privacy of a PIR
protocol such that

1 − h(ε)
�

− 1 + δ

n
≥ 1

p(n)

for some polynomial function p(n), then there exists a probabilistic polynomial
time reduction from L to ED.

As noted in Proposition 2.8, this condition is tight as there exists a PIR
scheme achieving perfect privacy (δ = 0) if � ≈ n · (1 − h(ε)).

The next lemma, originally shown in [MX10] and used in [BL13b], states
that any language decidable by a randomized oracle machine with access to an
entropy difference oracle is in AM ∩ coAM.

Lemma 3.3 (BPPED ⊆ AM∩coAM [MX10]). For any language L, if there
exists an OTM M such that for any oracle O solving entropy difference

Pr[MO(x) = 1] ≥ 2/3 if x ∈ L

Pr[MO(x) = 1] ≤ 1/3 if x /∈ L,

then L ∈ AM ∩ coAM.

3.1 Proof of the Main Theorem

Assume that there exists a reduction from deciding a language L to breaking PIR
with parameters as stated in Theorem3.1. In other words, there is a reduction
from L to δ-breaking PIR where
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1
n

(1 + δ) ≤ 1 − h(ε)
�

− 1
n · � · p(n)

.

where the inequality is using the hypothesis in Theorem3.1 that � · (1 + δ) ≤
n · (1 − h(ε)) − 1/p(n).

Then, by Lemma 3.2, there is a reduction from deciding L to solving the
entropy difference problem ED. Combined with Lemma 3.3, we deduce that L ∈
AM ∩ coAM.

3.2 Proof of Lemma 3.2

We start with two claims that are central to our proof. The first claim says that
because of (1 − ε)-correctness of the PIR scheme, the PIR answer a on a query
q ← Qry(1n, i) has to contain information about the ith bit of the database xi.

Claim. Let Π = (Qry,Ans,Rec) be a PIR scheme which is (1− ε)-correct. Fix
any index i ∈ [n]. Let X denote a random n-bit database; (Q,Σ) ← Qry(1n, i);
and A ← Ans(X,Q). Then,

I(A;Xi|Q) ≥ 1 − h(ε). (4)

Proof. Define the random variable X̂i ← Rec(A,Σ). Since the PIR scheme is
(1 − ε)-correct, Pr[X̂i = Xi] ≥ 1 − ε. Since Xi is a uniform Bernoulli variable,
we know from Proposition 2.1 that I(X̂i;Xi) ≥ 1 − h(ε).

As Xi is independent from Q, we know from Proposition 2.3 that

I(X̂i;Xi|Q) ≥ I(X̂i;Xi).

Next, we claim that conditioning on Q, we have Xi → A → X̂i, in other
words, I(Xi; X̂i|A,Q) = 0. This is because when A and Q are given, one can
sample a random Σ consistent with Q, then compute X̂i from Σ and A, with
no knowledge of Xi. Now, Proposition 2.4 (data processing inequality for mutual
information) shows that I(A;Xi|Q) ≥ I(X̂i;Xi|Q).

Combining what we have,

I(A;Xi|Q) ≥ I(X̂i;Xi|Q) ≥ I(X̂i;Xi) ≥ 1 − h(ε).

This completes the proof. 
�
Claim. Let Π = (Qry,Ans,Rec) be a PIR scheme with an answer com-
munication complexity of � bits. Let X denote a random n-bit database;
(Q,Σ) ← Qry(1n, i); and A ← Ans(X,Q). Then, for any potential query q,

n∑

j=1

I(A;Xj |Q = q) ≤ �. (5)

Proof. Recall that, by definition,

I(A;Xi|Q) = E
Q

[
I(A;Xi|Q)

]
=

∑

q

I(A;Xi|Q = q) Pr[Q = q]
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For any potential query q, the event Q = q is independent from X. In particular,
for any index j, random variable Xj is independent from X1 . . . Xj−1 given
Q = q. So for any q,

n∑

j=1

I(A;Xj |Q = q) ≤
n∑

j=1

I(A;Xj |X1 . . . Xj−1, Q = q)

= I(A;X1 . . . Xn|Q = q)
≤ H(A|Q = q) ≤ �

where the first inequality is implied by the Proposition 2.3 and the second equal-
ity is Proposition 2.5 (chain rule for mutual information). 
�

Equations (4) and (5) are the core of the proof of Lemma 3.2. Equation (4)
shows that, when retrieving the i-th bit, the mutual information between Xi and
server’s answer A is large. Equation (5) shows that, the sum of mutual information
between each bit Xj and server’s answer A is bounded by the answer communi-
cation complexity. Therefore, if we could measure the mutual information by an
Entropy Difference oracle, we would have a pretty good knowledge of i.

In particular, we proceed as follows. Assume language L can be solved by a
probabilistic polynomial-time oracle Turing machine M given any oracle OPIR

δ

that breaks the δ-GUESS-security of the PIR scheme (Qry,Ans,Rec) where

1 + δ

n
≤ 1 − h(ε)

�
− 1

p(n)
(6)

where p(·) is a fixed polynomial. We construct an efficient oracle algorithm (see
Algorithm 1) that solves L given an Entropy Difference oracle OED.

For any query q and index i, when OPIR
δ (q) is simulated,

Pr
[̂
i ← OPIR

δ (q) : î = i
]

=
μ̂i∑
j μ̂j

≥
μi − 1

2n·p(n)∑
j μj + 1

2p(n)

≥
μi − 1

2p(n)

� + 1
2p(n)

≥ μi

�

1 − 1
2p(n)

1 + 1
2p(n)

≥ μi

�

(
1 − 1

p(n)

)
≥ μi

�
− 1

p(n)

Assuming q is generated from q ← Qry(1n, i), then E[μi] = I(Xi;A|Q) ≥ 1 −
h(ε). So

Pr
[
q ← Qry(1n, i), î ← OPIR

δ (q) : î = i
]

= E
q←Qry(1n,i)

[
Pr[̂i = i|Q = q]

]

≥ E
q←Qry(1n,i)

[μi

�
− 1

p(n)

]

=
Eq←Qry(1n,i)[μi]

�
− 1

p(n)



384 T. Liu and V. Vaikuntanathan

Algorithm 1. Solving L given ED oracle on input x

1. Simulate MOPIR
δ (x)

2. Whenever M queries OPIR
δ (q), do the following:

(a) For each index j = 1, . . . , n, use the entropy difference oracle to estimate

μj = I(A; Xj |Q = q)

to 1
2n·p(n)

precision. More precisely, construct a circuit C = Cq,j such that

Cq,j(x, r) = (xj ,Ans(x, q, r))

and estimate the mutual information between the two components of C’s out-
put. Let μ̂j ∈ [0, 1] denote the estimation.

(b) Sample a random value î ∈ [n] according to probability distribution p(̂i) =
μ̂î/
∑

j μ̂j

(c) Answer M’s query by î
3. Output what M output

≥ 1 − h(ε)
�

− 1
p(n)

≥ 1
n

(1 + δ)

4 Discussion and Open Questions

We show that any non-trivial single-server single-round PIR scheme can be bro-
ken in SZK. Since languages that can be decided with (adaptive) oracle access
to SZK live in AM ∩ coAM, this shows that there cannot be a reduction from
SAT to SZK, and therefore also from SAT to breaking single-server single-round
PIR.

The crucial underlying feature of single-round PIR schemes that we use is
the ability to “re-randomize”. By this, we mean that given a user query q for
an index i, one can generate not just a single transcript, but the distribution
over all transcripts where the database is uniformly random and the prefix of
the transcript is q. This ability to generate a transcript distribution of the same
index and random database allows the adversary to break a PIR scheme with
an SZK oracle.

Indeed, this is reminiscent of the work of Bogdanov and Lee who show that
breaking homomorphic encryption is not NP-hard [BL13b]. Their main con-
tribution is to show that any homomorphic encryption (whose homomorphic
evaluation process produces a ciphertext that is statistically close to a fresh
encryption) can be turned into a (weakly) re-randomizable encryption scheme.
Once this is done, an SZK oracle can be used to break the scheme in much the
same way as we do.
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A natural question arising from our work is to extend our results to multi-
round PIR. The key technical difficulty that arises is in sampling a random
“continuation” of a partial transcript. We conjecture that our lower bound can
nevertheless be extended to the multi-round case, and leave this as an interesting
open problem.
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Abstract. A family of hash functions is called “correlation intractable”
if it is hard to find, given a random function in the family, an input-
output pair that satisfies any “sparse” relation, namely any relation
that is hard to satisfy for truly random functions. Indeed, correlation
intractability is a strong and natural random-oracle-like property. How-
ever, it was widely considered unobtainable. In fact for some parameter
settings, unobtainability has been demonstrated [26]. We construct a
correlation intractable function ensemble that withstands all relations
with a priori bounded polynomial complexity. We assume the existence
of sub-exponentially secure indistinguishability obfuscators, puncturable
pseudorandom functions, and input-hiding obfuscators for evasive cir-
cuits. The existence of the latter is implied by Virtual-Grey-Box obfus-
cation for evasive circuits [13].

1 Introduction

To what extent can we construct efficient function families that “behave like
random functions”? This is an intriguing question in cryptography. One of the
most elusive properties of random functions is correlation intractability, proposed
by Canetti, Goldreich and Halevi [26]. Roughly speaking, correlation intractable
functions guarantee that it is infeasible to find input-output pairs that satisfy
some “rare” relation. A bit more precisely, a binary relation R is called sparse,
if for each value x, only a negligible fraction of y values satisfy (x, y) ∈ R.
A function family F is correlation intractable if, for any sparse relation R, it
is infeasible for the adversary to find, given the full description of a random
function f in F , a value x such that (x, f(x)) is in the relation.

The only known results regarding the existence of correlation intractable
functions are negative. Specifically, for some settings of the parameters (e.g. when
the key is shorter than the input), correlation intractable functions were shown
not to exist. This observation was used in [26] to demonstrate the uninstantia-
bility of the random oracle model [9]. However, whether correlation intractable
functions exist for other settings of the parameters, and based on what assump-
tions, remains open.

c© International Association for Cryptologic Research 2016
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DOI: 10.1007/978-3-662-49096-9 17



390 R. Canetti et al.

Beyond the foundational appeal, correlation intractability is desirable in real
world applications. For example, consider the hash function used to build the
block chain in the Bitcoin protocol [47]. Its main security property, needed to
obtain proofs of work, can be stated as correlation intractability with respect
to a specific set of relations, which come from protocol-defined constraints on
the input and the output. (Specifically, the input needs to contain appropriate
transaction information and the output needs to begin with the correct number of
zeros.) It should be noted that we do not claim that our result directly applies to
the Bitcoin protocol: in this paper we consider only relations that are negligibly
sparse, while for Bitcoin and other proof-of-work applications, it is necessary to
consider relations that are moderately sparse and to define a more precise analog
of correlation intractability (in which the difficulty of finding (x, f(x)) ∈ R is
closely related to the density of R).

More generally, consider a multi-party game which uses the value returned
by a random oracle, applied to the previous moves of players, as a substitute for
public randomness. Correlation intractable functions can potentially be used to
instantiate the random oracle in such a game without significant change in the
properties of the game.

Alternative Approaches to Obtaining Hash Functions with Random Oracle Like
Properties. Several alternative notions have been proposed in attempt to capture
random-oracle-like properties of hash functions. These notions include entropy
preservation [7], seed incompressibility [41], perfect one-wayness [23,28], non-
malleability [16], correlation robustness [43], correlated input security [38], and
universal computational extractors [8]. Their relations to correlation intractabil-
ity will be discussed later in Sect. 1.4. Still, to the best of our knowledge, none
of the known results regarding these notions shed light on the question of the
existence of correlation intractable functions.

Obfuscated Pseudorandom Functions. A natural approach to constructing func-
tions with random-oracle-like properties is to obfuscate pseudorandom functions
(PRFs). Indeed, if the obfuscation was perfect, then the adversary would be
unable to take advantage of the code any more than by merely having oracle
access to the function. This would render the function random-oracle-like. Strong
security definitions of obfuscation are formalized in the work of Hada [39] and
Barak et al. [6], e.g. Virtual-black-box (VBB) Obfuscation. However, they also
show that VBB obfuscation is impossible for many function families. In particu-
lar, Barak et al. [6] explicitly construct a PRF such that given any program (no
matter how obfuscated) that computes the PRF, the adversary can find an input
which evaluates to a fixed value. This certainly breaks correlation intractability.

We also know that no pseudorandom function family can be VBB obfuscated
with respect to auxiliary inputs [12,37]. However, these results do not rule out
the possibility that there exist pseudorandom functions whose obfuscated version
is correlation intractable.

A reasonable next step may thus be to consider PRFs with additional
properties, such as constrained or puncturable PRFs [18,19,44]. Indeed, as
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demonstrated by multiple works, starting with the ingenious work of Sahai and
Waters [51], puncturable PRFs are an extremely powerful tool when combined
with obfuscation of general programs. In particular, puncturable PRFs have been
used together with iO to instantiate some random-oracle-like hash functions,
including universal hardcore functions [10], universal computational extractors
[22], and functions used for the full-domain-hash construction [42]. Furthermore,
the constructions of [10,22] are simply obfuscating puncturable PRFs. It is thus
natural to ask:

Are obfuscated puncturable PRFs correlation intractable?
If so, under what assumptions?

1.1 Our Results

We make progress towards answering the above questions. Specifically, we show
that puncturable pseudorandom functions, obfuscated using an indistinguishabil-
ity obfuscator, satisfy bounded correlation intractability. Here “bounded” means
that there is a polynomial upper bound on the computational complexity of the
sparse relations considered, and the complexity of the function family depends on
that bound. (We stress that this bound applies only to the relation. The adver-
sary runs in arbitrary polynomial time.) Bounded correlation intractability is
indeed a qualitatively weaker property than full correlation intractability (see
definitions in Sect. 3). Still, even in its bounded form, correlation intractability
is a very strong notion that has not been constructed before. In particular, in
many specific applications, such as Bitcoin, an upper bound on the complexity
of the sparse relation is known.

Our result holds under the assumption of sub-exponentially secure general iO
and puncturable PRFs, and also requires the existence of Input-Hiding Obfus-
cation (IHO) for evasive circuit families, which we now explain. Recall that a
boolean circuit family is evasive if for any input, only negligibly many circuits
in the family evaluate to a non-zero value. An obfuscator on evasive circuits
achieves the “input-hiding” property, if it is infeasible for a polytime adversary
to find, given an obfuscated version of a random function in the family, a preim-
age of non-zero output for that function. (Note that no subexponential hardness
is assumed here.) Candidate IHOs for general evasive circuits are proposed by
Bitansky et al. [13] and Badrinarayanan et al. [3] (see Sect. 1.3). Our main the-
orem is thus the following:

Theorem 1 (Bounded correlation intractable function ensembles,
informal). Assume existence of input-hiding obfuscation for evasive circuits,
subexponentially secure indistinguishability obfuscation, and subexponentially
secure puncturable pseudorandom functions. Then there is a p(n)-bounded cor-
relation intractable function ensemble for any polynomial p(n).

Note that if we only consider relations R where for any x, there are only very
few y values in the range satisfy R(x, y), and allow the range to be larger than
the domain, then correlation intractability becomes easy to obtain. Indeed, for
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such a R and a 1-universal function f there will with high probability not exist
inputs x such that R(x, f(x)) holds. However, we argue that this case is of less
interest. Rather, we are interested in general sparse relations where the “bad
inputs” exist, but are hard to find. Our solution is able to handle the general
case. For further discussions of the parameters and other special relations, we
refer the readers to the end of Sect. 3.

1.2 Our Techniques

Our goal is to prove correlation intractability of certain function family. At a
high level, our approach is to show, given a relation R, that a function f sam-
pled randomly from the initial function family is indistinguishable from another
function, fR, that is constructed specifically so as to make it hard to find “bad
inputs” with respect to the given relation R.

However, the definition of this function fR, and moreover showing that it
is indistinguishable from the original function f , needs to be done with care.
In particular, the “naive” methodology of simply puncturing f at all the bad
points, so as to obtain a function where no bad points for relation R exist, fails.
We start by briefly explaining this failure.

Failure of the “Standard” Puncturing Methodology. Recall that a PRF is punc-
turable if for any key K and input value x it is possible to generate a key
K{x} that is “punctured” at x, such that FK(x) remains pseudorandom even
given K{x}, and yet K{x} allows evaluating FK at all points other than x. To
prove security of constructions that use puncturable PRFs obfuscated with iO,
the “standard” methodology proceeds in two steps to get an indistinguishable
game that an adversary cannot win (thus showing, by indistinguishability, that
the adversary also fails in the original game). In the first step (whose indistin-
guishability is proven via iO), one typically punctures the key at the bad inputs
that threaten the security of the scheme, and hardwires the output values for the
punctured inputs. In the second step (whose indistinguishability is proven via
the puncturable PRF), the output values at the punctured inputs are changed
to ensure the adversary can’t exploit them.

In our scenario, given a relation R, the “bad” inputs are those x values
that satisfy R(x, FK(x)) = 1, where K is randomly sampled after R is fixed.
However, it is not clear how puncturing at these bad points helps here, since
it is not clear how to argue that changing the output values so as to avoid R
is indistinguishable. (In fact, it can be seen from our analysis that such change
may well be distinguishable overall.)

Said otherwise, the “standard” puncturing technique is geared toward the
case where the bad input values are fixed before the PRF key K is chosen,
whereas for correlation intractability, the bad points are determined by K.

A “Counterintuitive” Puncturing Strategy. To get around this difficulty, we start
from the following observation: for any sparse relation, the “bad” inputs x (i.e.,
those for which R(x, FK(x)) = 1) are rare—in fact, they can be recognized by
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a circuit from an evasive circuit family. All we need to do in order to prove
correlation intractability is show an indistinguishable function in which those
rare inputs are hidden from the adversary. We do so by decomposing the PRF
into two branches: one defined on the bad inputs, which form an evasive set,
the other defined on the “innocent” inputs. Then we apply an input-hiding
obfuscator to the bad branch. However, the input-hiding obfuscator cannot work
in the presence of auxiliary information given by the innocent branch: the value
of the function on the innocent inputs may permit the adversary to find the
evasive inputs. We therefore puncture the key and change the function at every
input that belongs to the innocent branch. To avoid increasing the circuit size
beyond polynomial as we puncture at exponentially many points, we build an
alternative function family FR that is designed to avoid R. The details of the
key-switching strategy form the technical heart of the proof.

The Proof in a Nutshell. To better illustrate the main idea, we present an
overview of the proof. The analysis goes through 3 hybrids, as will be presented
by the games between the adversary and the challenger. Hybrid 0 represents the
original game. Hybrid 1, 2, and 3 are intermediate games that are indistinguish-
able by the adversary. Finally we will show that the adversary cannot break
correlation intractability in hybrid 3, therefore concluding that the adversary
also fails in hybrid 0, since hybrids 0 and 3 are indistinguishable.

We note that the circuits being iOed shall be padded to the same size, which is
possible in our construction if an a priori bound on the size of the relation is given.
Under this limitation, our techniques suffice to prove only a bounded version of
correlation intractability. For the simplicity of the overview, we postpone the
details of padding to the formal proof and now present the hybrids.

For any sparse relation R that is recognizable by some bounded polynomial
sized circuit:

0. The challenger samples a key K of puncturable PRF F and obfuscates it:

h0
k(·) = iO(FK(·))

The adversary wins if it outputs x such that (x, h0
k(x)) ∈ R. This is the

original game. The only thing that changes in subsequent games is the circuit
obfuscated iO.

1. The challenger samples a key K of puncturable PRF F , and embeds the
relation R into the description of the function:

h1
k(x) = iO

(
if R(x, FK(x)) = 1, return FK(x) ; the “bad” branch
else, return FK(x) ; the “innocent” branch

)

Note that h1 has the same functionality as h0, and therefore it is indistinguish-
able from the original function by iO. (Recall that an iO scheme iO guarantees
that iO(C) ≈ iO(C ′) for any two circuits C,C ′ that have the same size and
functionality.) This is a preparation step, which enables us to partition the
function as described above.
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2. Replace the key that is evaluated on the innocent branch with a freshly gen-
erated key K ′ for a different puncturable PRF FR parameterized by R:

h2
k(x) = iO

(
if R(x, FK(x)) = 1, return FK(x) ; the “bad” branch
else, return FR

K′(x) ; the “innocent” branch

)

where FR is designed such that there is no x such that (x, FR
K′(x)) ∈ R

with high probability. To generate a key K ′ for FR, we sample a set of
independent puncturable PRF keys K1, ..., KT (n) from F . The function FR

K′

executes in a “rejection sampling” fashion, such that for input x, it goes
through the keys K1, ..., KT (n) one by one, evaluates on the first key Ki for
which (x, FKi

(x)) is not in the relation. Setting T to be linear in l (in fact,
even slightly sublinear) is enough to make sure that x not in the relation is
found except with exponentially small probability. A similar construction was
proposed in [49] (the results are included in [26]) to achieve “relation-specific”
correlation intractable functions.

To prove the indistinguishability of h1 and h2, we show that both of them
are subexponentially secure puncturable PRFs, based on the subexponential
security assumption on the underlying puncturable PRF F . We then use the
following lemma (derived from the proof methodology in the work of Canetti
et al. [27]) to show that, h1 and h2 are indistinguishable after being obfuscated
by subexponentially secure iO.

Lemma 1 (Informal). If h1 and h2 are subexponentially secure punctured
PRFs and iO is subexponentially secure, then iO(h1) and iO(h2) are indistin-
guishable.

3. Wrap the first “if-trigger”, together with the underlying evasive function, by
input-hiding obfuscation. The function h3

k is then generated as:

h3
k(x) = iO

⎛

⎜
⎜
⎝

y ← IHO

(
if R(x, FK(x)) = 1, return FK(x)
else, return ⊥

)
; “bad”

if y = ⊥, y ← FR
K′(x) ; “innocent”

return y

⎞

⎟
⎟
⎠

h3 is indistinguishable from h2 because they are functionally equivalent and
obfuscated by iO.

Finally, we note that finding the x values that trigger the non-zero values
on the “input-hiding-box” is hard, given R and an “innocent” function FR

K′

generated independently (even if not obfuscated). Since the adversary cannot
distinguish whether she is given the original function h0 or the function h3,
and finding an input on h3 that satisfies the relation is hard, it should also be
infeasible for the adversary to break correlation intractability on the original
function.
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1.3 More on Input-Hiding Obfuscation for Evasive Functions

Our result depends on the existence of input-hiding obfuscation (IHO) for evasive
circuits. In this section we survey the state of the art regaring the existence of
such obfuscation.

IHO for the class NC1 can be obtained as follows. Start with a primitive called
strong indistinguishability obfuscation (siO), which guarantees that if two circuits
C0 and C1 are drawn from two distributions that are concentrated on the same
function, then siO(C0) is indistinguishable from siO(C1). We show in Sect. 2.1
that siO for evasive circuit class C implies input-hiding obfuscation for C. Thus,
it is enough get siO for NC1. Bitansky et al. [13] show that siO is equivalent to
worst-case VGB obfuscation, and that siO/VGB for NC1 circuits can be obtained
under the assumptions that certain graded encoding schemes satisfy a strong
form of semantic security [50]. Therefore, under the same assumption as made
in [13] plus the assumption that puncturable PRFs exist in NC1 [17], we obtain
correlation intractable functions w.r.t. relations recognizable by NC1 circuits.

IHO for larger circuit classes is currently is not known to follow from simpler
primitives. Still, one can simply assume (similarly to [13]) that existing candidate
obfuscators for P/poly are IHO. This assumption is not contradicted by known
impossibility results: for evasive (as opposed to general [6]) circuits, there are
no impossibility results known even for such a strong notion as average-case
VBB [4].

Alternatively, IHO can be built in idealized models. In fact, both VBB obfus-
cation and IHO for P/poly were shown possible in a model with idealized graded
encodings [2,5,20,54]. Furthermore, IHO for P/poly was shown possible by Badri-
narayanan et al. [3] in a more relaxed idealized model, which avoids the devas-
tating zeroing attack [29] on the candidate graded encodings [30,34].

Proposing simpler constructions of IHO without going through the full-
fledged VGB, or basing IHO on simpler assumptions is an interesting open
problem.

1.4 More on Related Work

Correlation Intractability and Constant-Round Public-Coin Zero-Knowledge
Proofs. Hada and Tanaka show that the existence of correlation intractable
hash functions (w.r.t. relations that are not necessarily efficient) implies 3 round
public-coin auxiliary-input zero-knowledge proofs exist only for languages in BPP
[40]. The key observation is based on the relation R/∈L defined as

(x||α, β) ∈ R/∈L ⇔ x /∈ L ∧ ∃γ,Pr[Ver(x, α, β, γ) = Accept] ≥ non.negl.

where x is the instance, α, β, γ are the 3 messages in the protocol. The relation
is sparse due to the statistical soundness of the underlying proof. Given the fact
that the bounded simulator cannot break the correlation intractability, it should
be able to decide the membership of the instance.

However, deciding the membership in the relation R/∈L requires (at least)
an auxiliary string γ in addition to the instance x, input α, and output β,
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whereas the construction of correlation intractable function proposed in this
paper can only handle relations that takes exactly one input and one output.
An alternative way of describing the relation is proposed by Halevi et al. [41]
who define the relation with multiple invocations, and set γ as part of the inputs
of the additional invocations. Our construction hasn’t been proved to work for
relations with multiple invocations.

Entropy-Preserving Hashing. The notion of “entropy-preserving hashing”, for-
malized by Barak, Lindell and Vadhan [7] as being sufficient to achieve Fiat-
Shamir heuristics for proofs [32], is closely related to correlation intractability.
Roughly speaking, the definition requires that after the adversary is given the
key and chooses the input, the output conditioned on the input has high entropy.

We show (in AppendixA) that entropy preservation and correlation
intractability implies each other. However, the connections are shown w.r.t. rela-
tions that are not necessarily decidable by poly-size circuits. Therefore, our
construction is not necessarily entropy-preserving. The existence of entropy-
preserving hash functions remains open. In fact Bitansky et al. show that
entropy preservation is impossible to prove from black-box reduction to falsi-
fiable assumptions [14]. As a corollary, correlation intractability w.r.t. possibly
inefficient relations is impossible to obtain from black-box reduction to falsifi-
able assumptions. We don’t know if the same impossibility holds for CI w.r.t.
efficiently recognizable relations.

Alternative Approaches to Instantiating Random Oracles. Several alternative
definitions have been proposed in order to capture the random-oracle-like prop-
erties. These notions include perfect one-wayness [23,28], non-malleability [16],
seed incompressibility (SI) [41], correlation robustness [43], correlated input secu-
rity (CIH) [38], and universal computational extractors (UCE) [8]. These defi-
nitions are quite different from correlation intractability. In particular, SI, CIH
and UCE model the security game in two stages, where the adversary in the
first stage doesn’t get full access to the description of the function, to avoid
the impossibility results in [26]. It turns out that one can separate correlation
intractability and each of these notions. An example is given in AppendixA that
separates CIH/UCE and correlation intractability.

Separations, of course, do not show incompatibility: indeed, a construction
may naturally satisfy many security definitions simultaneously. For example,
essentially the same construction as in this paper (obfuscated puncturable PRFs)
was shown to also satisfy a subclass of UCE by Brzuska and Mittelbach [22].
Further exploring constructions that satisfy multiple definitions simultaneously
(and, in particular, gaining a better understanding of puncturable PRFs) is an
interesting future direction.

Additional Related Work. A canonical construction of a PRF from a pseudoran-
dom generator (PRG), now known as the GGM PRF, was given by Goldreich,
Goldwasser and Micali [36]. Suppose we simply publish a GGM PRF seed in
the clear to allow public evaluation, without any obfuscation. Is such a function
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correlation intractable? This questions was posed in the 1990s and answered
negatively by Goldreich [35]. He constructed a specialized PRG, such that the
GGM PRF built on this PRG is not correlation intractable. In fact one can find
a preimage of 0m(n) with non-negligible probability.

Correlation intractability is a natural criterion for designing efficient ciphers
and hash functions. For example, it is used by Mandal et al. [46] to analyze the 6-
round Feistel construction. In particular, they show that the 6-round Feistel con-
struction is sequentially indifferentiable from a random invertible permutation,
which implies that it is correlation intractable under an idealized assumption on
the Feistel round function.

2 Preliminaries

Many experiments and probability statements in this paper contain randomized
algorithms (such as obfuscators or adversaries) within them. The probability
of success of an experiment is always taken over the random coins used by
the relevant randomized algorithms; therefore, we do not mention these coins
explicitly.

A function ensemble F has a key generation function g : S → K; on seeds
s of length σ(n), g produces a key k of length κ(n) for a function with input
length l(n) and output length m(n):

F = {fk : {0, 1}l(n) → {0, 1}m(n), k = g(s), s ∈ {0, 1}σ(n)}n∈N

By default we denote k
$← Fn (sometimes abbreviated as k in the equations) as

sampling a key k uniformly random from Fn.
For any definition based on computational indistinguishability, we will say

that the relevant security notion is subexponential if for every distinguisher there
exists ε > 0 such that the distinguisher’s advantage is 2−nε

, where n is the
security parameter.

2.1 Obfuscation

In this work we use indistinguishability obfuscation for all circuits, and input-
hiding obfuscation for all evasive circuit collections. Both obfuscators considered
in this paper perfectly preserve the functionality, and cause a polynomial blow-
up on the size of the function description. To be precise, for the circuit family
F = {f : {0, 1}l(n) → {0, 1}m(n)}f∈Fn

, a probabilistic algorithm Obf is an
obfuscator, if

1. The string Obf(f) describes a circuit that computes the same function as f ;
2. There is a polynomial B(·) such that |Obf(f)| ≤ B(|f |).
The difference lies in the security properties: indistinguishability obfuscation
guarantees that the obfuscation of any functionally equivalent circuits cannot be
distinguished; whereas input-hiding obfuscation only applies on evasive circuits,
and promises to hide all the inputs which lead to non-zero outputs.
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Definition 1 (Indistinguishability Obfuscation [6]). Obf is an indistin-
guishability Obfuscator (iO) for F if for any feasible adversary A, there is a
negligible function negl(·) such that for all circuits f0 and f1 that have identical
functionalities, and are of the same size, it holds that

|Pr[A(iO(f0)) = 1] − Pr[A(iO(f1)) = 1]| ≤ negl(n)

Definition 2 (Evasive circuit collections). Let F = {fk : {0, 1}l(n) →
{0, 1}m(n)}n∈N be a circuit collection, we say Fn is evasive if there is a neg-
ligible function negl(·) such that for all x ∈ {0, 1}l(n):

Pr
k

[fk(x) �= 0m(n)] ≤ negl(n)

Definition 3 (Input-hiding Obfuscation for evasive circuits [4]). An
obfuscator for a evasive circuit collection F is input-hiding (IHO) if for every
p.p.t. adversary A there exist a negligible function negl(·) s.t. for every auxiliary
input z ∈ {0, 1}poly(n):

Pr
k

[fk(A(IHO(fk), z)) �= 0m(n)] ≤ negl(n)

The notion of IHO (unlike iO) is inherently average-case, i.e., the function fk is
random and independent of the auxiliary input z (see [4, Sect. 2] for a discussion
of this issue). In particular, impossibility results, such as [21], for notions of
obfuscation that allow a related auxiliary input, do not apply.

Remark 1. The original definitions of evasive circuit collections and the corre-
sponding obfuscators proposed by Barak et al. [4] are stated for circuits with
1-bit output; whereas our definition of evasive circuit collections is for multi-
bit output. For the case of input-hiding obfuscation, the existence of IHO for
all evasive circuits with 1-bit output implies the existence of IHO for all eva-
sive circuits with multi-bit output: for circuit C(x) with m-bit output, we can
obfuscate the circuit C(x; i) = C(x)(i) that returns the i-th output bit, and run
IHO(C(x; i)) with i ∈ [m]. This transformation is mentioned by Bitansky et al.
[13] for VGB obfuscation for all circuits. We note that the transformation also
works for certain restricted circuit classes including NC1.

Throughout this paper, we will assume the existence of IHO for all evasive cir-
cuits with 1-bit output, and use IHO for evasive circuits with possibly multi-bit
output without loss of generality.

Input-Hiding Obfuscation from VGB Obfuscation. We introduce one of
the known approaches to designing input-hiding obfuscation for evasive circuits.
As a corollary of the result from [13], IHO is implied by Virtual-Grey-Box (VGB)
obfuscation, or equivalently, strong indistinguishability obfuscation (siO).

Definition 4 (Concentrated/Evasive function distribution). Let F =
{fk : {0, 1}l(n) → {0, 1}}n∈N be a function ensemble, F̃n be a distribution on
Fn. Let majF̃n

(x) = Ef←F̃n
f(x) be the common output on x for functions drawn

from F̃n.
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1. F̃n is concentrated if there is a negligible function negl(·) that

max
x∈{0,1}l(n)

Pr
f←F̃n

[f(x) �= majF̃n
(x)] ≤ negl(n)

2. (Rephrasing Definition 2 for 1-bit output) F̃n is evasive if it is concentrated,
and ∀x ∈ {0, 1}l(n), majF̃n

(x) = 0.

Definition 5 (Strong indistinguishability Obfuscator [13]). An obfuscator
is a strong indistinguishability Obfuscator (siO) for F if for any two concentrated
distribution ensembles F̃0

n, F̃1
n on Fn s.t. majF̃0

n
≡ majF̃1

n
, and for any p.p.t.

adversary A, there is a negligible function negl(·):
∣
∣
∣
∣
∣

Pr
f0←F̃0

n

[A(siO(f0)) = 1] − Pr
f1←F̃1

n

[A(siO(f1)) = 1]

∣
∣
∣
∣
∣
≤ negl(n)

Definition 6 (Virtual-Grey-Box Obfuscation [11]). Obf is a Virtual-Grey-
Box (VGB) Obfuscator for F if for any feasible adversary A, there is a simulator
S, and a negligible function negl(·) such that for all f ∈ F :

|Pr[A(Obf(f)) = 1] − Pr[Sf (1|f |) = 1]| ≤ negl(|f |)

where the running time of S is computationally unbounded, but only sends poly-
nomially many queries to f (such a simulator is usually called “semi-bounded”).

Theorem 2 ([13]). An obfuscator is siO for F iff it is worst-case VGB obfus-
cator for F .

Theorem 3 (SiO implies IHO for evasive functions). Let F = {fk :
{0, 1}l(n) → {0, 1}}n∈N be an evasive function ensemble, Obf be a strong iO
for F , then Obf is an input-hiding obfuscator for F .

Proof. Let F̃0
n be the uniform distribution on F and F̃1

n be the one-element
distribution consisting of the zero function. Then majF̃0

n
≡ majF̃1

n
≡ 0. Therefore

Pr
f0←F̃0

n

[f0(A(siO(f0), z)) = 1] ≤ Pr
f1←F̃1

n

[f1(A(siO(f1), z)) = 1]+negl(n) = negl(n).

2.2 Puncturable Pseudorandom Functions

Definition 7 (Puncturable PRF [18,19,44,51]). Let l(n) and m(n) be the
input and output lengths. A family of puncturable pseudorandom functions
F = {FK} is given by a triple of efficient functions (Gen,Eval,Puncture), where
Gen(1n) generates the key K, such that FK maps from {0, 1}l(n) to {0, 1}m(n);
Eval(K,x) takes a key K, an input x, outputs FK(x); Puncture(K,x∗) takes a
key and an input x∗, outputs a punctured key K{x∗}.

It satisfies the following conditions:
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Functionality Preserved Over Unpunctured Points: For all x∗ and
keys K, if K{x∗} = Puncture(K,x∗), then for all x �= x∗,Eval(K,x) =
Eval(K{x∗}, x).

Pseudorandom on the Punctured Points: For every input x∗, the value of
F on x∗ is indistinguishable from random in the presence of the key punctured
at x∗. That is, the following two distributions are indistinguishable for every x∗:

(x∗,K{x∗}, FK(x∗)) and (x∗,K{x∗}, r∗),

where K is output by Gen(1n),K{x∗} is output by Puncture(K,x∗), and r∗ is
uniform in {0, 1}m(n).

Theorem 4 ([18,19,36,44]). If one-way function exists, then for all length para-
meters l(n), m(n), there is a puncturable PRF family that maps from l(n) bits
to m(n) bits.

3 Correlation Intractability

We recall the definitions of correlation intractability, initially proposed in [25,26].

Definition 8 (Sparse relations1). A binary relation R is sparse with respect
to length parameters l(n), m(n), if there is a negligible function δ(·) such that
for every x ∈ {0, 1}l(n):

Pr
y∈{0,1}m(n)

[R(x, y) = 1] ≤ δ(n)

In some cases, we quantitatively describes the relations as δ(n)-sparse, and even
more precisely, δx(n)-sparse when specifying the density on the input x.

Definition 9 (Correlation intractability). A family of functions H = {hk :
{0, 1}l(n) → {0, 1}m(n)}n∈N is correlation intractable (CI) if for all (nonuniform,
p.p.t.) adversary A, for all sparse relations R, there’s a negligible function negl(·)
such that:

Pr
k

$←Hn

[x ← A(k) : R(x, hk(x)) = 1] < negl(n)

1 This is called (l(n),m(n))-restricted sparse relation in [26], as opposed to the “unre-
stricted” version where the input length is not prescribed. In this paper we remove
the “restriction” in the term, since the case where the input length is unbounded
is shown to be impossible (cf. Claim 3), and the “restricted” definition is indeed a
natural and interesting setting. Also, in [26] and subsequently in [40,41,46], they
also define “evasive” relations, which is equivalent to sparse for relations with 1-
invocation, and with non-uniform adversaries. Throughout this paper, we only define
and use “sparse” relations, since we focus on 1-invocation relations. The term “eva-
sive” only serves the definition of “evasive circuit collections” [4] (cf. Definition 2) to
avoid confusion.
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In the definition above, the sparse relations may not be efficiently recognizable. A
reasonable weakening on Definition 9 is to restrict the relations to be recognizable
by poly-size circuits:

Definition 10 (CI-P/poly2). The definition is same as Definition 9 except that
we restrict the relations to be recognizable by poly-size circuits

C : {0, 1}l(n)+m(n) → {0, 1}

s.t. C(x, y) = 1 iff R(x, y) = 1.

This definition can be further weakened by giving an a priori bound p(n) on
the size of the circuit that defines the relation, instead of allowing circuits of
arbitrary polynomial size.

Definition 11 (Bounded correlation intractability). Given a polynomial
p(·). A family of functions H = {hk : {0, 1}l(n) → {0, 1}m(n)}n∈N is p(n)-
bounded correlation intractable (bounded CI, or p(·)-CI) if for all (non-uniform,
p.p.t.) adversary A, for all sparse relations R that can be recorgnized by a circuit
of size smaller or equal to p(n), there’s a negligible function negl(·) such that:

Pr
k

$←Hn

[x ← A(k) : R(x, hk(x)) = 1] < negl(n)

On the Length Parameters. It is shown in [26] that a function family cannot
be correlation intractable when the key length κ(n) of the function is short
compared to the input length l(n):

Claim ([26]). Hn is not correlation intractable w.r.t. poly-size relations when
κ(n) ≤ l(n).

Proof. Consider the diagonalization relation R = {(k, hk(k))|k ∈ K} (pad k
with 0s to get length l(n) if κ(n) < l(n)). The attacker outputs k (padded with
0s to length l(n) as the x).

If κ(n) > l(n), then there is no way to pad k to get x. However, some extensions
of the impossibility result are still possible; we refer the readers to [26] for the
details.

As opposed to the relation between input and key lengths, the relation
between input and outputs lengths is not restricted. The only requirement is
that the output length m(n) shall be super-logarithmic, i.e. m(n) ≥ ω(log(n)).
Although CI is meant to model cryptographic hash functions (which have short
outputs), the definition of CI is also meaningful for the functions whose output
is longer than their input. In fact, our construction works for both cases.

We note that a function family that is correlation intractable against a more
general class of sparse relations captures an essential feature of random oracles
better. However, if one is interested in defending against certain restricted types
2 This notion is called “weak correlation intractability” in [26].
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of sparse relations, we may have simpler constructions based on standard crypto-
graphic assumptions. For example, Ajtai’s function [1], based on the hardness of
approximating the Short Independent Vector Problem for Lattice in the worst
case, suffices to prevent the adversary from finding the preimage of any fixed
output. We also note that any 1-universal hash function family is correlation
intractable, if one only considers very sparse relations — more specifically rela-
tions where, for any x, the number of y’s that stand in the relation with x is at
most a negligible fraction of the ratio between the size of the range and the size
of the domain of functions in the family. Indeed, in this case with high probabil-
ity a random function from the 1-universal hashing family has no input-output
pairs in the relation. (We note that in this case the output is inherently longer
than the input.)

4 Bounded Correlation Intractability from Obfuscating
Puncturable PRF

In this section we give the construction of correlation intractable function ensem-
bles with respect to all the sparse relations recognizable by circuits of size up to
a given polynomial p(·).
Construction 5 (Bounded CI). Let F = {FK : {0, 1}l(n) → {0, 1}m(n)}n∈N

be a puncturable pseudorandom function. Let the function ensemble H = {hk :
{0, 1}l(n) → {0, 1}m(n)}n∈N be constructed as

hk(·) = iO(FK(·), padding(n))

where K
$← Fn, for some length of padding.

Theorem 6 (Bounded CI). Let p(n) be a polynomial in the security parame-
ter n. Assuming the existence of input-hiding obfuscation for all evasive cir-
cuits, sub-exponentially secure indistinguishability obfuscation for P/poly, and
sub-exponentially secure puncturable PRF, there is an appropriate polynomial
size of padding such that the family H is p(n)-bounded correlation intractable.

The size of padding (which represents arbitrary gates that do not change the
functionality of the circuit) will be discussed at the end of the proof (see
Remark 2). In short, it depends on p and the blow-up due to input-hiding obfus-
cation. In the proof below, we drop the explicit mention of padding from the
construction in order to simplify notation.

Proof of Theorem 6: The proof in this section follows the outline presented in
Sect. 1.2. The proof goes through 3 hybrids. From the original game which cap-
tures the security definition of correlation intractability, we move to intermediate
games 1, 2, and 3 that are indistinguishable by the adversary. Finally we will
show that the adversary cannot win in game 3 except for negligible probability.
We conclude that the adversary also fails in game 0, since the adversary cannot
distinguish game 0 and game 3.

More specifically, fix an adversary and a δ(n)-sparse relation R. Then:
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Game 0: The Original Game. The adversary receives the key of the function h0
k

constructed by the challenger:

h0
k(·) = iO(FK(·)) (0)

The adversary wins if he outputs an x such that R(x, h0
k(x)) = 1. The win-

ning condition is the same in each subsequent game; what changes is that h0

is replaced by h1, h2, and h3, which are computed as obfuscations of different
circuits, each described in the corresponding game below.

Game 1: Embed the Relation into the Description Without Changing the Func-
tionality. The challenger samples a puncturable key K, then generates h1

k which
has the relation R embedded:

h1
k(x) = iO

(
if R(x, FK(x)) = 1, return FK(x)
else, return FK(x)

)
(1)

The hybrids h0
k and h1

k have identical functionality. Therefore, because both h0
k

and h1
k are obfuscated by iO, they are indistinguishable for any p.p.t. adversary.

Game 2: Switch to a Function Where the “Innocent” Branch is Generated Inde-
pendently from the “Bad” Branch and Avoids R. The challenger constructs a
new function family FR that always avoids R, as described below, and generates
h2

k as:

h2
k(x) = iO

(
if R(x, FK(x)) = 1, return FK(x)
else, return FR

K′(x)

)
(2)

where FK
$← Fn and FR

K′
$← FR. The function family FR is constructed as

follows:

Construction 7 (FR). Let FR = {FR
K′ : {0, 1}l(n) → {0, 1}m(n)}n be a func-

tion family, where each FR
K′ is constructed as follows:

FR
K′(x) =

⎛

⎜
⎜
⎝

K ′ = (K1,K2, . . . ,KT (n))
for i = 1 to T (n) :

if R(x, FKi
(x)) = 0, return FKi

(x)
return ⊥

⎞

⎟
⎟
⎠ (2.else)

where T (n) = l(n)
log(n) . The functions FK1 , ..., FKT (n) are sampled independently

from any puncturable PRF family F .

The functionality of FR
K′ is to output, given an input x, the pseudorandom value

FKi
(x), where Ki is the first key among K1, ...,KT (n) s.t. R(x, FKi

(x)) = 0 (if
no such Ki exists, output ⊥). The iteration bound T (n) is set large enough to
make sure that FR

K′ outputs ⊥ with probability less than 2−l(n) · negl(n) (we
prove and use this fact in Lemma2).



404 R. Canetti et al.

To prove that h2
k is indistinguishable from h1

k, let g2k be the same as h2
k but

without the iO:

g2k(x) =
{

if R(x, FK(x)) = 1, return FK(x)
else, return FR

K′(x) (2.inner)

First, using subexponential security of FK , we show in Lemma 2 that the g2k
is also a subexponentially secure puncturable PRF. Then, in Lemma3 (whose
proof methodology is derived from the work of Canetti et al. [27]), we show
that any two subexponentially secure puncturable PRFs are indistinguishable
after being obfuscated by subexponentially secure iO. This makes hk

2 = iO(g2k)
indistinguishable from hk

0 = iO(FK), and therefore also indistinguishable from
hk
1 . (Note that technically hk

1 is not needed at all—we can move directly from
hk
0 to hk

2 ; but we believe that moving to hk
1 first clarifies presentation.)

Lemmas 2 and 3 below are based on the sub-exponential hardness of punc-
turability and iO, respectively. Let εPuncture be the adversary’s advantage of win-
ning the puncturability game of F and εiO be the advantage of distinguishing
the iO of two identical functions. We need to set

εPuncture = εiO = 2−l(n) · negl(n)

This level of security can always be achieved from subexponential hardness by
setting the security parameter λ for the puncturable PRF and for iO sufficiently
high, but still polynomial in n: if the security of these two objects is 2−λε

for
security parameter λ, then setting λ = (2l(n))1/ε is sufficient.

Lemma 2. Assume that F is a subexponentially secure puncturable PRF with
the advantage of distinguishing being εPuncture = 2−l(n)·negl(n). Then the function
g2k (i.e., the function being obfuscated in h2

k) is also a subexponentially secure
puncturable PRF with the advantage of distinguishing at most 2−l(n) · negl(n).

Proof. To puncture g2k on input x∗, we puncture all the inner PRF keys K, K1,
..., KT (n) on x∗, and construct the punctured function as follows:

k{x∗} = (R,K{x∗},K ′{x∗} = (K1{x∗}, . . . , KT (n){x∗}))

gk{x∗}(x) =
(

if R(x, FK{x∗}(x)) = 1, return FK{x∗}(x)
else, return FR

K′{x∗}(x)

)
(2.p)

where FR
K′{x∗} is constructed as:

FR
K′{x∗}(x) =

⎛

⎜
⎜
⎝

K ′{x∗} = (K1{x∗}, . . . ,KT (n){x∗})
for i = 1 to T (n) :

if R(x, FKi{x∗}(x)) = 0, return FKi{x∗}(x)
return ⊥

⎞

⎟
⎟
⎠ (2.else.p)

By the puncturability of F , the outputs of FK{x∗} and FKi{x∗} on the punctured
points are indistinguishable from random even given k{x∗}. More precisely,

(
k{x∗}, FK(x∗), FK1(x

∗), ..., FKT (n)(x
∗)

) ≈ (
k{x∗}, U0, U1, . . . , UT (n)

)
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(where (U0, U1, ..., UT (n))
$← {0, 1}(T (n)+1)·m(n)). The advantage of any p.p.t.

adversary to distinguish these two tuples is

(T (n) + 1) · εPuncture = (T (n) + 1) · 2−l(n) · negl(n) = 2−l(n) · negl(n)

Construct the distribution Vx∗ by sampling random U0, . . . , UT (n) and computing

Vx∗ =

⎛

⎜
⎜
⎝

if R(x∗, U0) = 1, return U0

else : for i = 1 to T (n) :
if R(x∗, Ui) = 0, return Ui

return ⊥

⎞

⎟
⎟
⎠

From the indistinguishability of FK(x∗) and FKi
(x∗) from uniform, it follows

that Vx∗ is indistinguishable from g2k(x∗):
(
k{x∗}, g2k(x∗)

) ≈ (k{x∗}, Vx∗)

and the advantage of any p.p.t. adversary to distinguish these two pairs is 2−l(n) ·
negl(n). To complete the proof, we will show that Vx∗ is very close to uniform
over {0, 1}m(n): it differs from uniform by the probability that Vx∗ = ⊥. Indeed,

– For all y ∈ {0, 1}m(n) such that R(x∗, y) = 1,

Pr[Vx∗ = y] = Pr[U0 = y] = 2−m(n)

– Pr[Vx∗ = ⊥] = (1 − δx∗(n))δx∗(n)T (n)

– For all y ∈ {0, 1}m(n) such that R(x∗, y) = 0 (note that there are 2m(n)(1 −
δx∗(n)) such values)

Pr[Vx∗ = y]
= Pr[Vx∗ = y|R(x∗, Vx∗) �= 1 ∧ Vx∗ �= ⊥] Pr[R(x∗, Vx∗) �= 1 ∧ Vx∗ �= ⊥]

=
1

2m(n)(1 − δx∗(n))
(1 − Pr[Vx∗ �= ⊥ ∧ R(x∗, Vx∗) = 1] − Pr[Vx∗ = ⊥])

=
1

2m(n)(1 − δx∗(n))
(1 − δx∗(n) − (1 − δx∗(n))δx∗(n)T (n))

= 2−m(n) ·
(

1 − (1 − δx∗(n))δx∗(n)T (n)

1 − δx∗(n)

)
= 2−m(n) ·

(
1 − δx∗(n)T (n)

)

Thus, the statistical difference between Vx∗ and the uniform distribution on
{0, 1}m(n) (which is a bound on any distinguisher’s advantage) is

1
2

∑

y∈{⊥}∪{0,1}n

|Pr[Vx∗ = y] − Pr[U = y]| (U is uniform over {0, 1}m(n))

=
1
2

⎛

⎝(1 − δx∗(n))δx∗(n)T (n)

+
∑

y s.t. R(x∗,y)=0

(
2−m(n) − 2−m(n) ·

(
1 − δx∗(n)T (n)

))
⎞

⎠

= (1 − δx∗(n))δx∗(n)T (n) ≤ δx∗(n)T (n)
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We thus obtain that Vx∗ can be distinguished from uniform with advantage at
most δx∗(n)T (n) = 2−l(n) ·negl(n), because T (n) = l(n)

log(n) and δx(n) is a negligible
function.

Vx∗ is independent of k{x∗}. Therefore, the advantage of any adversary in
distinguishing (k{x∗}, Vx∗) from (k{x∗}, U) is 2−l(n) · negl(n). And we already
know the same is true for distinguishing (k{x∗}, g2k(x∗)) from (k{x∗}, Vx∗). Thus,
even given k{x∗}, g2k cannot be distinguished from uniform with advantage better
than 2−l(n) · negl(n), which concludes the proof.

Next we show that for arbitrary puncturable PRF families F1,F2 : {0, 1}l(n)

→ {0, 1}m(n) that are 2−l(n) · negl(n)-secure, the pseudorandom functions sam-
pled independently from these families are indistinguishable after being obfus-
cated by 2−l(n) · negl(n)-secure indistinguishability obfuscation. The following
lemma is derived from the “piO” proof methodology developed in the work of
Canetti et al. [27].

Lemma 3. Let F1,F2 : {0, 1}l(n) → {0, 1}m(n) be 2−l(n) · negl(n)-secure punc-
turable PRF families, iO be εiO = 2−l(n) · negl(n)-secure indistinguishability

obfuscation. Let FK1

$← F1, FK2

$← F2, then iO(FK1) and iO(FK2) are indis-
tinguishable.

Proof. We prove the indistinguishability via 2l(n) + 1 intermediate hybrids, one
for each input. More precisely, for z∗ ∈ {0, 1, ..., 2l(n) − 1, 2l(n)}, we construct
fz∗ as

fz∗(x) = iO

⎛

⎝
if x = z∗, return FK1(x)

else, return
(

if x > z∗, return FK1(x)
else, return FK2(x)

)
⎞

⎠

Note that f0 is functionally equivalent to FK1 , therefore, they are 2−l(n) ·negl(n)
indistinguishable after being obfuscated by iO. Likewise, f2l(n) is functionally
equivalent to FK2 , hence being 2−l(n) · negl(n)-indistinguishable following iO.

Next we show that each intermediate pairs fz∗ and fz∗+1, z∗ ∈ {0, 1, ..., 2l(n) −
1}, are 2−l(n) · negl(n)-indistinguishable. We introduce 3 more sub-hybrids:

fz∗,y∗(x) = iO

⎛

⎝
if x = z∗, return y∗

else, return
(

if x > z∗, return FK1{z∗}(x)
else, return FK2{z∗}(x)

)
⎞

⎠

where y∗ equals to FK1(z
∗), U

$← {0, 1}m(n), and FK2(z
∗) respectively.

Note that fz∗,FK1 (z
∗) is functionally equivalent to fz∗ ; fz∗,FK2 (z

∗) is func-
tionally equivalent to fz∗+1. They are 2−l(n) ·negl(n)-indistinguishable following
iO. In between, fz∗,FK1 (z

∗) is indistinguishable from fz∗,U and fz∗,U is indis-
tinguishable from fz∗,FK2 (z

∗), following the 2−l(n) · negl(n)-puncturability of K1

and K2.
To conclude, fz∗ and fz∗+1 are 4 · 2−l(n) · negl(n)-indistinguishable following

the 2−l(n) · negl(n) security of F1, F2, and iO. Summing up all the 2l(n) + 1
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intermediate hybrids, the total advantage of distinguishing iO(FK1) and iO(FK2)
is negligible.

Combining Lemmas 2 and 3, h1
k is indistinguishable from h2

k.

Game 3: Wrap the “Bad” Branch by Input-Hiding Obfuscation, Without Chang-
ing the Functionality. The challenger generates h3

k that is functionally equiv-
alent to h2

k but is computed differently. The difference is that in game 3, the
challenger first wraps the if statement together with the true branch with input-
hiding obfuscation (the challenger also applies iO to the entire function, just like
in the previous games, which ensures that h2

k is indistinguishable from h3
k):

h3
k(x) = iO

⎛

⎜
⎜
⎝

y ← IHO

(
if R(x, FK(x)) = 1, return FK(x)
else, return ⊥

)

if y = ⊥ , y ← FR
K′(x)

return y

⎞

⎟
⎟
⎠ (3)

Let ER
K(x) denote

(
if R(x, FK(x)) = 1, return FK(x)
else, return ⊥

)
.

Proposition 1. ER = {ER
K : {0, 1}l(n) → {0, 1}m(n)}n∈N is an evasive circuit

family.

Proof. Assume, for contradiction, that there is an input x′ ∈ {0, 1}l(n) on which
there are non-negligibly many keys that evaluate to a value other than ⊥. We can
then build a (non-uniform) adversary that distinguishes the PRF FK(x) from
a truly random function with non-neglible advantage. The adversary simply
queries input x′ to the function and checks if the output y satisfies R(x′, y).

Note that h2
k and h3

k are functionally equivalent. Therefore, by indistinguisha-
bility obfuscation, the adversary cannot distinguish game 2 and game 3.

Finally, in Game 3: Suppose that there is a p.p.t. adversary A who gets h3
k,

finds an input x such that R(x, h3
k(x)) = 1 with non-negligible probability η(n),

we build an adversary A′ that breaks IHO for evasive circuit family ER: A′

gets IHO(ER
K(·)), samples FR

K′ independently, and creates h3
k as described in

construction (3), sends it to A. For adversary A, finding an input x to h3 such
that R(x, h3

k(x)) = 1 is equivalent to finding such an input to IHO(ER
K(·)) that

evaluates to an non-bottom value, because FR
K′ is independently generated and

always avoids R (FR
K′ outputs ⊥ rather than hit R).

The advantage of adversary A′ is thus the following:

Pr
K

[A′(IHO(ER,K(·))) → x : ER,K(x) �= ⊥]

= Pr
K,K′

[A(IHO(ER,K(·)), R, FR
K′) → x : ER,K(x) �= ⊥]

≥Pr
k

[A(h3
k(·)) → x : R(x, h3

k(x)) = 1] ≥ η(n)

which forms the contradiction.
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If a p.p.t. adversary could find x such R(x, h0
k(x)) = 1, then she could dis-

tinguish h0 from h3 (because testing R is polynomial-time). Thus, we complete
the proof that H is correlation intractable. ��
Remark 2 (The size of padding). Let κF (n) be the key size of Fn, κ∗

F (n) be the
punctured key size of Fn, B(·) be the maximum blow-up of the input-hiding
obfuscation. The size of FR

K′ is T (n) · (p(n) + 2 · κF (n)). The maximum size of
IHO(ER,K) is B(p(n) + 2 · κF (n)). The size of padding is bounded by

|padding(n)|
≤ B(p(n) + 2 · κF (n)) + T (n) · (p(n) + 2 · κF (n)) + (T (n) + 2) · κ∗

F (n)
= poly(n)

As the analysis suggests, the key size of the function inherently exceeds the
maximum size of R. The existence of correlation intractable functions with a
prescribed description size that works for all poly-size relations (i.e. CI-P/poly)
remains an open problem.
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Appendix

A Correlation Intractability Versus Other Notions

We explore the relation between correlation intractability and other security
definitions for cryptographic hash functions.

A.1 Relations with Entropy-Preserving Hashing

Recall the definition of Entropy Preserving (EP) from [7]:

Definition 12 (Entropy preservation). A family of hash function H = {hk :
{0, 1}l(n) → {0, 1}m(n), k = g(s), s ∈ {0, 1}σ(n)}n∈N ensures conditional entropy3

greater than δ(n) if for all (non-uniform, p.p.t.) adversary A:

H(hk(A(k))|A(k)) > δ(n)
3 The entropy of a random variable X is defined as H(X) = E

x
$←X

[log 1
Pr[X=x]

]. For

jointly distributed random variables (X,Y ), the conditional entropy of X given Y is
defined to be E

y
$←Y

[H(X|Y =y)], where X|Y =y denotes the conditional distribution

of X given that Y = y.
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Equivalently:
Ek,A[H(hk(X)|X=A(k))] > δ(n)

Notice that in order to get meaningful (i.e. non-zero) conditional entropy, the
length of the key κ(n) must be bigger then the length of the input l(n), oth-
erwise the adversary could always output the key (i.e. A(k) → k) so that the
conditional entropy will be zero (same to the diagonalization attack of correla-
tion intractability [26]). In other words, we hope that there are multiple choices
of keys that could lead the adversary to return the same input, and hk(x) on
these candidate seeds and fixed input has different values.

[7] proposed 3 bounds for δ(n), each being interested on its own:

– (Best possible) δ(n) > m(n) − O(log n). If achievable, would imply that
constant-round public-coin auxiliary-input zero-knowledge proofs exist only
for languages in BPP.

– (Somewhat) δ(n) > 1/poly(n), also interesting. If achievable, would imply that
3-round public-coin auxiliary-input optimally sound zero-knowledge proofs
exist only for languages in BPP.

– (Minimum/Weakest) δ(n) > 0, still interesting. Even the existance of the
weakest entropy-preserving hash functions implies that the parallel composi-
tion of some classic protocols (e.g. Blum’s protocol [15]) is not auxiliary-input
zero-knowledge.

An equivalent formalization of the minimum/weakest notion:

Conjecture 1 ([7]). There is a polynomial p(·) such that the following holds: For
every non-uniform deterministic polynomial-time algorithm A and all sufficiently
large n, there are circuits C1, C2 of size at most p(n) such that α = A(C1) =
A(C2) but C1(α) �= C2(α).

Note that even the construction of the weakest notion of entropy-preservation is
unknown. In fact it is shown by Bitansky et al. to be impossible to obtain from
black-box reduction to falsifiable assumptions [14].

Connections with CI. We show that correlation intractability (where the sparse
relations are not necessarily efficiently recognizable) impies entropy preservation;
and entropy preservation implies a weaker variant of correlation intractability in
which if the adversary exists, it breaks correlation intractability with probability 1.

Theorem 8. If a function family H is correlation intractable, then it is also
entropy-preserving, i.e. for all p.p.t. adversary A:

H(hk(A(k))|A(k)) > m(n) − O(log(n))

Proof. Assume by contradiction that H is not entropy-preserving, then there’s
an Adv A, such that

H(hk(A(k))|A(k)) < m(n) − ω(log(n))
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We define a relation by enumerating the keys, and query A on each key to get x,
and the corresponding y = hk(x), then adding (x, y) into the relation. Formally,
let R be:

R = {(x, hk(x)) | x = A(k), k = g(s), s ∈ {0, 1}σ(n)}
R is sparse since the adversary can always break entropy-preservation, which
means the portion of the possible outputs conditioned on the adversary’s choice
of the input is negligible.

Notice that this relation is not likely to be efficiently recognizable, which means
our construction of bounded correlation intractable functions is not necessarily
entropy-preserving.

Definition 13 (Weak correlation intractability4). A family of functions
H = {hk : {0, 1}l(n) → {0, 1}m(n)}n∈N is weak correlation intractable (wCI) if
for all (non-uniform, p.p.t.) adversary A, for all sparse relations R, there’s a
non-negligible function non.negl(·) such that:

Pr
k

$←Hn

[x ← A(k) : R(x, hk(x)) = 1] < 1 − non.negl(n)

Theorem 9. If a function family H guarantees the best possible entropy preser-
vation, i.e. for all p.p.t. adversary A:

H(hk(A(k))|A(k)) > m(n) − O(log(n))

then it is weakly correlation intractable.

Proof. If H is not weakly correlation intractable, which means there is a sparse
relation R, an adversary A that:

Pr
k

[x ← A(k) : (x, hk(x)) ∈ R] = 1

Since R is sparse, which means for all x, the possible y values form a negligibly
small subset of the range. Therefore the conditional entropy is:

H(hk(A(k))|A(k)) < m(n) − ω(log(n))

which forms a contradiction.

A.2 Separations Between Correlation Intractability and Other
Notions

Several random-oracle-like notions are defined in an “indistinguishability” fash-
ion. These definitions attempt to capture the intuition that, given only limited
4 This notion is different from the “weak correlation intractability” in [26]. The

“weak correlation intractability” in [26] is redefined as CI-P/poly in this article,
cf. Definition 10.
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access to or partial information from the function, it is hard for the adversary
to distinguish whether the information is obtained from the hash function or
a truly random function. The notions defined in this way include correlation
robustness5 [43], seed-incompressibility6 [41], correlated input security (CIH)
[38], and universal computational extractor (UCE) [8].

These notions are quite different from correlation intractability. In the next
few paragraphs, we demonstrate the difference by showing that a simple version
of correlated-input hash function (defined by [38], rephrased by [8] as a sub-
class of UCE and by [22] as q-CIH) is separated from correlation intractability.
We emphasize that the purpose of showing separations is to demonstrate the
properties of these definitions on their own, rather than showing incompatibil-
ity. In fact, there is evidence that these notions are compatible with correlation
intractability: the same construction that we show to be correlation intractable
(iO of puncturable PRFs with appropriate padding) was shown to satisfy a sub-
class of UCE by Brzuska and Mittelbach [22].

Definition 14 (q-CIH [8,22,38]). Let q be a polynomial. For a hash function
family H = {hk : {0, 1}l(n) → {0, 1}m(n)}n∈N, consider the following game
between the p.p.t. adversary A = (A1, A2) and the challenger:

1. The challenger samples a hash function from the family hk
$← Hn.

2. A1 samples q(n) (possibly correlated) inputs xi, i ∈ [q(n)].
3. The challenger tosses a coin b. If b = 0, then let yi = hk(xi), i ∈ [q(n)]; if

b = 1, then let yi
$← {0, 1}m(n), i ∈ [q(n)].

4. A2 gets hk, yi, i ∈ [q(n)], outputs b′ ∈ {0, 1}, and wins if b′ = b.

H is called q-CIH if any p.p.t. adversary A = (A1, A2) wins with probability less
than 1/2 + negl(n).

Theorem 10. If q-CIH exists, then there is a function ensemble that is q-CIH
but not correlation intractable. If correlation intractable function ensemble exists,
then there is a function ensemble that is correlation intractable but not q-CIH.

Proof. The constructions that demonstrate the separation of CIH and correlation
intractability are very similar to the ones in ([8], Sect. 4.4) where they are used
to separate UCE from other notions including collision resistance.

Consider the following constructions:

Construction 11. Let H = {hk : {0, 1}l(n) → {0, 1}m(n)}n∈N be q-CIH. We
construct H′ by adding a uniformly random string u ∈ {0, 1}l(n) as the prefix of
the key, and define h′

k′ = h′
u||k as:

h′
u||k(x) =

{
if x = u, return 0m(n) ;
else, return hk(x) .

5 Correlation robustness is defined for keyless hash functions, unlike the other notions
in this article.

6 [41] discussed both indistinguishability-style and correlation intractability-style def-
initions, when the adversary is only given partial information of the key (e.g. with
an a priori bound on the length).
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Lemma 4. H′ is q-CIH but not correlation intractable.

Proof. To break correlation intractability, the adversary outputs u which is a
preimage of 0m(n).

To show H′ is q-CIH, assume by contradiction that there is an adversary
A′ = (A′

1, A
′
2) that wins the q-CIH game with probability 1/2 + η(n) where η is

non-negligible. We use the exact same adversary to break the q-CIH of H: note
that with probability (1−2−l(n))q(n), A′

1 won’t sample an input that equals to u,
beyond which the view of A′

2 will be exactly the same for H and H′. Therefore,
A′ wins the q-CIH game for H with probability no less than

(1 − 2−l(n))q(n) · (1/2 + η(n)) ≥ 1/2 + η(n) − q(n) · 2−l(n)

where η(n) − q(n) · 2−l(n) is non-negligible, thus forming a contradiction.

Construction 12. Let H = {hk : {0, 1}l(n) → {0, 1}m(n)−1, k = g(s), s ∈
{0, 1}σ(n)}n∈N be a correlation intractable function ensemble, we construct H′

by padding an 1-bit at the end of the output:

h′
k′(x) = hk(x)||1

Lemma 5. H′ is correlation intractable but not q-CIH.

Proof. To break q-CIH, the adversary outputs 0 if all the yi, i ∈ [q(n)] end with
1; otherwise, the adversary outputs 1.

To show H′ is correlation intractable, assume by contradiction that there is an
attacker A′, a sparse relation R′ : {0, 1}l(n)+m(n) → {0, 1}, and a non-negligible
function η(·) such that

Pr
k′

[x ← A′(k′) : R′(x, h′
k′(x)) = 1] > η(n)

Then we build an adversary A and a sparse relation R : {0, 1}l(n)+m(n)−1 →
{0, 1} against H: the relation R is defined as

R = {(x, y) | R′(x, y||1) = 1, x ∈ {0, 1}l(n), y ∈ {0, 1}m(n)−1}

The density of R is at most twice as much as the density of R′, so it is sparse.
Given the key k, A constructs h′

k′ by padding a bit ‘1’ at the end of the output
of hk, then sends h′

k′ to A′ and outputs the answer of A′. The probability that
A breaks R is exactly the probability that A′ breaks R′, which contradicts the
assumption that H is correlation intractable.

Note that this transformation works regardless of the efficiency of checking
the relation.

The proof completes by combining Constructions 11 and 12 and Lemmas 4
and 5.
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Abstract. We put forward the concept of a reconfigurable cryptosystem.
Intuitively, a reconfigurable cryptosystem allows to increase the security
of the system at runtime, by changing a single central parameter we
call common reference string (CRS). In particular, e.g., a cryptanalytic
advance does not necessarily entail a full update of a large public-key
infrastructure; only the CRS needs to be updated. In this paper we
focus on the reconfigurability of encryption and signature schemes, but
we believe that this concept and the developed techniques can also be
applied to other kind of cryptosystems.

Besides a security definition, we offer two reconfigurable encryption
schemes, and one reconfigurable signature scheme. Our first reconfig-
urable encryption scheme uses indistinguishability obfuscation (however
only in the CRS) to adaptively derive short-term keys from long-term
keys. The security of long-term keys can be based on a one-way func-
tion, and the security of both the indistinguishability obfuscation and the
actual encryption scheme can be increased on-the-fly, by changing the
CRS. We stress that our scheme remains secure even if previous short-
term secret keys are leaked.

Our second reconfigurable encryption scheme has a similar structure
(and similar security properties), but relies on a pairing-friendly group
instead of obfuscation. Its security is based on the recently introduced
hierarchy of k-SCasc assumptions. Similar to the k-Linear assumption,
it is known that k-SCasc implies (k + 1)-SCasc, and that this implica-
tion is proper in the generic group model. Our system allows to increase
k on-the-fly, just by changing the CRS. In that sense, security can be
increased without changing any long-term keys.

We also offer a reconfigurable signature scheme based on the same
hierarchy of assumptions.

Keywords: Long-term security · Security definitions · Public-key
cryptography

1 Introduction

Motivation. Public-key cryptography plays an essential role in security and
privacy in wide networks such as the internet. Secure channels are usually
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established using hybrid encryption, where the exchange of session keys for fast
symmetric encryption algorithms relies on a public key infrastructure (PKI).
These PKIs incorporate public keys from large groups of users. For instance, the
PKI used by OpenPGP for encrypting and signing emails consists of roughly
four million public keys. This PKI is continuously growing, especially so since
the Snowden leaks multiplied the amount of newly registered public keys.

One drawback of large PKIs is that they are slow to react to security inci-
dents. For instance, consider a PKI that predominantly stores 2048-bit RSA
keys, and imagine a sudden cryptanalytic advance that renders 2048-bit RSA
keys insecure. In order to change all keys to, say, 4096-bit keys, every user would
have to generate new keypairs and register the new public key. Similarly, expen-
sive key refresh processes are necessary in case, e.g., a widely deployed piece
of encryption software turns out to leak secret keys, the assumed adversarial
resources the system should protect from suddenly increase (e.g., from the com-
puting resources of a small group of hackers to that of an intelligence agency), etc.

In this paper, we consider a scenario where key updates are triggered by a
central authority for all users/devices participating in a PKI (and not by the
individuals themselves), e.g., such as a large company maintaining a PKI for its
employees who wants the employees to update their keys every year or when
new recommendations on minimal key lengths are released. Other conceivable
examples include operators of a PKI for wireless-sensor networks or for other
IoT devices. We do not consider the problem of making individually initiated
key updates more efficient.
Reconfigurable Cryptography. This paper introduces the concept of recon-
figurable cryptography. In a nutshell, in a reconfigurable cryptographic scheme,
there are long-term and short-term public and secret keys. Long-term public
and secret keys are generated once for each user, and the long-term public key
is publicized, e.g., in a PKI. Using a central and public piece of information (the
common reference string or CRS), long-term keys allow to derive short-term
keys, which are then used to perform the actual operation. If the short-term
keys become insecure (or leak), only the central CRS (but not the long-term
keys) needs to be updated (and certified). Note that the long-term secret keys
are only needed for the process of deriving new short-term secret keys and not for
the actual decryption process. Thus, they can be kept “offline” at a secure place.

We call the process of updating the CRS reconfiguration. An attack model
for a reconfigurable cryptography scheme is given by an adversary who can ask
for short-term secret keys derived from the PKI and any deprecated CRSs. After
that, the adversary is challenged on a fresh short-term key pair. This models the
fact that short-term key pairs should not reveal any information about the long-
term secret keys of the PKI and thus, after their leakage, the whole system can
be rescued by updating only the central CRS. Note that for most such schemes
(except some trivial ones described below), the entity setting up the CRS needs
to be trusted not to keep a trapdoor allowing to derive short-term secret keys
for all users and security levels. In order to mitigate this risk however, a CRS
could also be computed in a distributed fashion using MPC techniques.
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Related Concepts and First Examples. An objection to our approach that
might come to mind when first thinking about long-term secure encryption is
the following: why do we not follow a much simpler approach like letting users
exchange sufficiently long symmetric encryption keys once (which allow for fast
encryption/decryption), using a (slow) public key scheme with comparable secu-
rity? Unfortunately, it quickly turns out that there are multiple drawbacks with
this approach: advanced encryption features known only for public-key encryp-
tion (e.g., homomorphic encryption) are excluded; each user needs to maintain a
secure database containing the shared symmetric keys with his communication
partners; the long-term secret key of the PKE scheme needs to be kept “online”
in order to be able to decrypt symmetric keys from new communication partners,
etc. Hence, we do not consider this a satisfying approach to long-term security.

A first attempt to create a scheme which better complies with our concept
of reconfigurable encryption could be the following: simply define the long-term
keys as a sequence of short-term keys. For instance, a long-term public key
could consist of RSA keys of different lengths, say, of 2048, 4096, and 8192 bits.
The CRS could be an index that selects which key (or, keylength) to use as a
short-term key. If a keylength must be considered broken, simply take the next.
This approach is perfectly viable, but does not scale well: only an a-priori fixed
number (and type) of keys can be stored in a long-term key, and the size of such
a long-term key grows (at least) linearly in the number of possible short-term
keys.

A second attempt might be to use identity-based techniques: for instance,
the long-term public and secret key of a user of a reconfigurable encryption
scheme could be the master public and secret key of an identity-based encryption
(IBE [6,17,21]) scheme. The CRS selects an IBE identity (used by all users), and
the short-term secret key is the IBE user secret key for the identity specified by
the CRS. Encryptions are always performed to the current identity (as specified
by the CRS), such that the short-term secret key can be used to decrypt. In case
(some of) the current short-term secret keys are revealed, simply change the
identity specified in the CRS. This scheme scales much better to large numbers
of reconfigurations than the trivial scheme above. Yet, security does not increase
after a reconfiguration. (For instance, unlike in the trivial example above, there
is no obvious way to increase keylengths through reconfiguration.)

Finally, we note that our security requirements are somewhat orthogonal to
the ones found in forward security [4,9,10]. Namely, in a forward-secure scheme,
we would achieve that revealing a current (short-term) secret key does not harm
the security of previous instances of the scheme. In contrast, we would like to
achieve that revealing the current (and previous) short-term secret keys does not
harm the security of future instances of the scheme. Furthermore, we are inter-
ested in increasing the security of the scheme gradually, through reconfigurations
(perhaps at the cost of decreased efficiency).
Our Contribution. We introduce the concept of reconfigurable cryptography.
For this purpose, it is necessary to give a security definition for a cryptographic
scheme defined in two security parameters, a long-term and a short-term security
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parameter. This definition needs to capture the property that security can be
increased by varying the short-term security parameter. As it turns out, finding
a reasonable definition which captures our notion and is satisfiable at the same
time is highly non-trivial. Ultimately, here we present a non-uniform security
definition based on an asymptotic version of concrete security introduced by
Bellare et al. in [2,3]. The given definition is intuitive and leads to relatively
simple proofs. Consequently, also our building blocks need to be secure against
non-uniform adversaries (what can be assumed when building on non-uniform
complexity assumptions). Alternatively, also a uniform security definition is con-
ceivable which, however, would lead to more intricate proofs.

Besides a security definition, we offer three constructions: two reconfigurable
public-key encryption schemes (one based on indistinguishability obfuscation
[1,12,20], the other based on the family of SCasc assumptions [11] in pairing-
friendly groups), and a reconfigurable signature scheme based on arbitrary fam-
ilies of matrix assumptions (also in pairing-friendly groups).

To get a taste of our solutions, we now sketch our schemes.
Some Notation. We call λ ∈ N the long-term security parameter, and k ∈ N
the short-term security parameter. λ has to be fixed at setup time, and intuitively
determines how hard it should be to retrieve the long-term secret key from the
long-term public key. (As such, λ gives an an upper bound of the security of the
whole system. In particular, we should be interested in systems in which breaking
the long-term public key should be qualitatively harder than breaking short-
term keys.) In contrast, k can (and should) increase with each reconfiguration.
Intuitively, a larger value of k should make it harder to retrieve short-term keys.
Our Obfuscation-Based Reconfigurable Encryption Scheme. Our first
scheme uses indistinguishability obfuscation [1,12,20], a pseudorandom genera-
tor PRG, and an arbitrary public-key encryption scheme PKE. As a long-term
secret key, we use a value x ∈ {0, 1}λ; the long-term public key is PRG(x). A CRS
consists of the obfuscation of an algorithm Gen, that inputs either a long-term
public key PRG(x) or a long-term secret key x, and proceeds as follows:

– Gen(PRG(x)) generates a PKE public key, using random coins derived from
PRG(x) for PKE key generation,

– Gen(x) generates a PKE secret key, using random coins derived from PRG(x).

Note that Gen(x) outputs the matching PKE secret key to the public key output
by Gen(PRG(x)). Furthermore, we use λ + k as a security parameter for the
indistinguishability obfuscation, and k for the PKE key generation. (Hence, with
larger k, the keys produced by Gen become more secure.)

We note that the long-term security of our scheme relies only on the security
of PRG. Moreover, the short-term security (which relies on the obfuscator and
PKE) can be increased (by increasing k and replacing the CRS) without changing
the PKI. Furthermore, we show that releasing short-term secret keys for previous
CRSs does not harm the security of the current instance of the scheme. (We
remark that a similar setup and technique has been used by [7] for a different
purpose, in the context of non-interactive key exchange.)



420 J. Hesse et al.

Reconfigurable Encryption in Pairing-Friendly Groups. We also present
a reconfigurable encryption scheme in a cyclic group G = 〈g〉 that admits a
symmetric pairing e : G × G → GT into some target group GT = 〈gT 〉. Both
groups are of prime order p > 2λ. The long-term assumption is the hardness of
computing discrete logarithms in G, while the short-term assumption is the k-
SCasc assumption from [11] over G (with a pairing).1 To explain our scheme in a
bit more detail, we adopt the notation of [11] and write [x] ∈ G (resp. [x]T ∈ GT )
for the group element gx (resp. gx

T ), and similarly for vectors [�u] and matrices
[A] of group elements.

A long-term secret key is an exponent x, and the corresponding long-term
public key is [x]. A CRS for a certain value k ∈ N is a uniform vector [�y] ∈ Gk of
group elements. The induced short-term public key is a matrix [Ax] ∈ G(k+1)×k

derived from [x], and the short-term secret key is a vector [�r] ∈ Gk+1 satisfying
�r� · Ax = �y. An encryption of a message m ∈ GT is of the form

c = ( [Ax · �s], [�y� · �s]T · m )

for a uniformly chosen [�s] ∈ Gk. Intuitively, the k-SCasc assumption states that
[Ax · �s] is computationally indistinguishable from a random vector of group
elements. This enables a security proof very similar to that for (dual) Regev
encryption [13,18] (see also [8]).

Hence, the long-term security of the above scheme is based on the discrete
logarithm problem. Its short-term security relies on the k-SCasc assumption,
where k can be adapted at runtime, without changing keys in the underlying
PKI. Furthermore, we show that revealing previous short-term keys [�r] does not
harm the security of the current instance.2

We remark that [11] also present a less complex generalization of ElGamal
to the k-SCasc assumption. Although they do not emphasize this property, their
scheme allows to dynamically choose k at encryption time. However, their scheme
does not in any obvious way allow to derive a short-term secret key that would
be restricted to a given value of k. In other words, after, e.g., a key leakage, their
scheme becomes insecure for all k, without the possibility of a reconfiguration.

1 The k-SCasc assumption states that it is hard to distinguish vectors of group ele-
ments from a certain linear subspace from vectors of independently uniform group
elements. Here, the parameter k determines the size of vectors, and – similar to the
k-Linear assumption –, it is known that the k-SCasc assumption implies the (k +1)-
SCasc assumption. In the generic group model, the (k +1)-SCasc assumption is also
strictly weaker than the k-SCasc assumption [11]. Hence, increasing k leads to (at
least generically) weaker assumptions.

2 Currently, the best way to solve most problems in cyclic groups (such as k-SCasc
or k-Linear instances) appears to be to compute discrete logarithms. In that sense,
it would seem that the long-term and short-term security of our scheme are in a
practical sense equivalent. Still, we believe that it is useful to offer solutions that
give progressively stronger provable security guarantees (such as in our case with
the k-SCasc assumption), if only to have fallback solutions in case of algorithmic
advances, say, concerning the Decisional Diffie-Hellman problem.
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Our Reconfigurable Signature Scheme. We also construct a reconfigurable
signature scheme in pairing-friendly groups. Its long-term security is based on the
Computational Diffie-Hellman (CDH) assumption, and its short-term security
can be based on any matrix assumption (e.g., on k-SCasc). Of course, efficient
(non-reconfigurable) signature schemes from the CDH assumption already exist
(e.g., Waters’ signature scheme [23]). Compared to such schemes, our scheme
still offers reconfigurability in case, e.g., short-term secret keys are leaked.
Roadmap. We start with some preliminaries in Sect. 2, followed by the def-
inition of a reconfigurable encryption scheme and the security experiment in
Sect. 3. In Sect. 4, we give the details of our two constructions for reconfigurable
encryption. Finally, we treat reconfigurable signature schemes in Sect. 5.

2 Preliminaries

Notation. Throughout the paper, λ, k, � ∈ N denote security parameters. For
a finite set S, we denote by s ← S the process of sampling s uniformly from S.
For a probabilistic algorithm A, we denote with RA the space of A’s random
coins. y ← A(x; r) denotes the process of running A on input x and with uniform
randomness r ∈ RA, and assigning y the result. We write y ← A(x) for y ←
A(x; r) with uniform r. If A’s running time, denoted by T(A), is polynomial in
λ, then A is called probabilistic polynomial-time (PPT). We call a function η
negligible if for every polynomial p there exists λ0 such that for all λ ≥ λ0 holds
|η(λ)| ≤ 1

p(λ) .

Concrete Security. To formalize security of reconfigurable encryption schemes,
we make use of the concept of concrete security as introduced in [2,3]. Here
one considers an explicit function for the adversarial advantage in breaking an
assumption, a primitive, a protocol, etc. which is parameterized in the adversarial
resources. More precisely, as usual let AdvxP,A(λ) denote the advantage function
of an adversary A in winning some security experiment ExpxP,A(λ) defined for
some cryptographic object P (e.g., a PKE scheme, the DDH problem, etc.) in
the security parameter λ. For an integer t ∈ N, we define the concrete advantage
CAdvxP(t, λ) of breaking P with runtime t by

CAdvxP(t, λ) := max
A

{AdvxP,A(λ)}, (1)

where the maximum is over all A with time complexity t. It is straightforward
to extend this definition to cryptographic objects defined in two security para-
meters which we introduce in this paper. In the following, if we are given an
advantage function AdvxP,A(λ) for a cryptographic primitive P that we consider,
the definition of the concrete advantage can then be derived as in (1). Asymptotic
security (against non-uniform adversaries and when only one security parameter
is considered) then means that CAdvxP(t(λ), λ) is negligible for all polynomials
t in λ. Hence, if we only give the usual security definition for a cryptographic
building block in the following its concrete security is also defined implicitly as
described above.
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Implicit Representation. Let G be a cyclic group of order p generated by
g. Then by [a] := ga we denote the implicit representation of a ∈ Zp in G. To
distinguish between implicit representations in two groups G and GT , we use [·]
and [·]T , respectively. The notation naturally extends to vectors and matrices of
group elements.
Matrix-Vector Products. Sometimes, we will need to perform simple oper-
ations from linear algebra “in the exponent”, aided by a pairing operation as
necessary. Concretely, we will use the following operations: If a matrix [A] =
[(ai,j)i,j ] ∈ Gm×n is known “in the exponent”, and a vector �u = (ui)i ∈ Zn

p is
known “in plain”, then the product [A · �u] ∈ Gm can be efficiently computed as
[(vi)i] for [vi] =

∑n
j=1 uj ·[ai,j ]. Similarly, inner products [�u� ·�v] can be computed

from [�u] and �v (or from �u and [�v]). Finally, if only [A] and [�u] are known (i.e.,
only “in the exponent”), still [A · �u]T can be computed in the target group, as
[(vi)i]T for [vi]T =

∑n
j=1 e([ai,j ], [uj ]).

Symmetric Pairing-Friendly Group Generator. A symmetric pairing-
friendly group generator is a probabilistic polynomial time algorithm G that
takes as input a security parameter 1λ and outputs a tuple G := (p,G, g,GT , e)
where

– G and GT are cyclic groups of prime order p, 	log2(p)
 = λ and 〈g〉 = G
– e : G × G −→ GT is an efficiently computable non-degenerate bilinear map.

The Matrix Diffie-Hellman Assumption ([11]). Let k, q ∈ N and Dk be an
efficiently samplable matrix distribution over Z

(k+1)×k
q . The Dk-Diffie-Hellman

assumption (Dk-MDDH) relative to a pairing-friendly group generator G states
that for all PPT adversaries A it holds that

AdvDk-MDDH
G,A (λ) := |Pr[A(G, [A,A�w]) = 1] − Pr[A(G, [A, �u]) = 1]|

is negligible in λ, where the probability is over the random choices A ← Dk, �w ←
Zk

q and �u ← Zk+1
q , G := (p,G, g,GT , e) ← G and the random coins of A.

Examples of Dk-MDDH assumptions are the k-Lin assumption and the compact
symmetric k-cascade assumption (k-SCasc or SCk-MDDH). For the latter the
matrix distribution SCk samples matrices of the form

Ax :=

⎛

⎜
⎝

x 0 ... 0 0
1 x ... 0 0
0 1 0 0
.
.
.

. . .
. . .

0 0 ... 1 x
0 0 ... 0 1

⎞

⎟
⎠ ∈ Z(k+1)×k

n (2)

for uniformly random x ← Zn. In Sect. 4.2, we will consider a version of the
SCasc assumption defined in two security parameters.
PKE Schemes. A public-key encryption (PKE) scheme PKE with message
space M consists of three PPT algorithms Gen,Enc,Dec. Key generation Gen(1�)
outputs a public key pk and a secret key sk . Encryption Enc(pk ,m) takes pk
and a message m ∈ M, and outputs a ciphertext c. Decryption Dec(sk , c) takes
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sk and a ciphertext c, and outputs a message m. For correctness, we want
Dec(sk , c) = m for all m ∈ M, all (pk , sk) ← Gen(1�), and all c ← Enc(pk ,m).
IND-CPA and IND-CCA Security. Let PKE be a PKE scheme as above. For
an adversary A, consider the following experiment: first, the experiment samples
(pk , sk) ← Gen(1k) and runs A on input pk . Once A outputs two messages
m0,m1, the experiment flips a coin b ← {0, 1} and runs A on input c∗ ←
Enc(pk ,mb). We say that A wins the experiment iff b′ = b for A’s final output b′.
We denote A’s advantage with Advind-cpaPKE,A(k) := |Pr [A wins] − 1/2| and say that
PKE is IND-CPA secure iff Advind-cpaPKE,A(k) is negligible for all PPT A. Similarly,
write Advind-ccaPKE,A(k) := |Pr [A wins] − 1/2| for A’s winning probability when A
additionally gets access to a decryption oracle Dec(sk , ·) at all times. (To avoid
trivialities, A may not query Dec on c∗, though.)
PRGs. Informally, a pseudorandom generator (PRG) is a deterministic algo-
rithm that maps a short random bit string (called seed) to a longer pseudo-
random bitstring. More formally, let p(·) be a polynomial such that p(λ) > λ for
all λ ∈ N and let PRG be a deterministic polynomial-time algorithm which on
input of a bit string in {0, 1}λ returns a bit string in {0, 1}p(λ) (also denoted by
PRG : {0, 1}λ → {0, 1}p(λ)). The security of PRG is defined through

AdvprgPRG,D(λ) := |Pr[1 ← D(PRG(x))] − Pr[1 ← D(r)]| ,

where D is a distinguisher, x ← {0, 1}λ and r ← {0, 1}p(λ).
Indistinguishability Obfuscation (iO). For our construction in Sect. 4.1, we
make use of indistinguishability obfuscators for polynomial-size circuits. Intu-
itively, such an algorithm is able to obfuscate two equivalent circuits in a way
such that a PPT adversary who receives the two obfuscated circuits as input is
not able to distinguish them. The following definition is taken from [12].

Definition 1 (Indistinguishability Obfuscator). A uniform PPT machine
iO is called an indistinguishability obfuscator for a circuit class {C�} if the fol-
lowing conditions are satisfied:

– For all security parameters � ∈ N, for all C ∈ C�, for all inputs x, we have
that

Pr[C ′(x) = C(x) : C ′ ← iO(�, C)] = 1

– For any (not necessarily uniform) PPT distinguisher D, there exists a neg-
ligible function α such that the following holds: For all security parameters
� ∈ N, for all pairs of circuits C0, C1 ∈ C�, we have that if C0(x) = C1(x) for
all inputs x, then

AdvioiO,D(�) := |Pr[1 ← D(iO(�, C0))] − Pr[1 ← D(iO(�, C1))]| ≤ α(�)

Note that an iO candidate for circuit classes {C�}, where the input size as
well as the maximum circuit size are polynomials in � has been proposed in [12].
Puncturable PRF. Informally speaking, a puncturable (or constrained) PRF
FK : {0, 1}n(�) → {0, 1}p(�) is a PRF for which it is possible to constrain the key
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K (i.e., derive a new key KS) in order to exclude a certain subset S ⊂ {0, 1}n(�)

of the domain of the PRF. (Note that this means that FKS
(x) is not defined for

x ∈ S and equal to FK(x) for x �∈ S.) Given the punctured key KS , an adversary
may not be able to distinguish FK(x) from a random y ∈ {0, 1}p(�) for x ∈ S.
The following definition adapted from [19] formalizes this notion.

Definition 2. A puncturable family of PRFs F is given by three PPT algorithms
GenF , PunctureF , and EvalF , and a pair of computable functions (n(·), p(·)),
satisfying the following conditions:

– For every S ⊂ {0, 1}n(�), for all x ∈ {0, 1}n(�) where x �∈ S, we have that:

Pr[EvalF (K,x) = EvalF (KS , x) : K ← GenF (1�),KS ← PunctureF (K,S)] = 1

– For every PPT adversary A such that A(1�) outputs a set S ⊂ {0, 1}n(�)

and a state state, consider an experiment where K ← GenF (1�) and KS =
PunctureF (K,S). Then the advantage AdvpprfF,A(�) of A defined by

∣
∣Pr[1 ← A(state,KS ,EvalF (K,S))] − Pr[1 ← A(state,KS , Up(�)·|S|)]

∣
∣

is negligible, where EvalF (K,S) denotes the concatenation of EvalF (K,xi),
i = 1, ...,m, where S = {x1, . . . , xm} is the enumeration of the elements in S
in lexicographic order, and Ut denotes the uniform distribution over t bits.

To simplify notation, we write FK(x) instead of EvalF (K,x). Note that if one-
way functions exist, then there also exist a puncturable PRF family for any
efficiently computable functions n(�) and p(�).

3 Definitions

The idea behind our concept of a reconfigurable public key cryptosystem is very
simple: instead of directly feeding a PKI into the algorithms of the cryptosystem,
we add some precomputation routines to derive a temporary short-term PKI.
This PKI is then used by the cryptosystem. Instructions on how to derive and
when to update the short-term PKI are given by a trusted entity. Our concept
is quite modular and, thus, is applicable to other cryptosystems as well. In this
section, we consider the case of reconfigurable encryption.

In Definition 3, we give a formal description of a reconfigurable public key
encryption (RPKE) scheme. An RPKE scheme is a multi-user system which is
setup (once) by some trusted entity generating public system parameters given
a long-term security parameter 1λ. Based on these public parameters, each user
generates his long-term key pair. Moreover, the entity uses the public parameters
to generate a common reference string defining a certain (short-term) security
level k. Note that only this CRS is being updated when a new short-term secu-
rity level for the system should be established. The current CRS is distributed to
all users, who derive their short-term secret and public keys for the correspond-
ing security level from their long-term secret and public keys and the CRS.
Encryption and decryption of messages works as in a standard PKE using the
short-term key pair of a user.
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Definition 3. A reconfigurable public-key encryption (RPKE) scheme RPKE
consists of the following PPT algorithms:

– Setup(1λ) receives a long-term security parameter 1λ as input, and returns
(global) long-term public parameters PP.

– MKGen(PP) takes the long-term public parameters PP as input and returns
the long-term public and private key (mpk ,msk) of a user.

– CRSGen(PP, 1k) is given the long-term public parameters PP, a short-term
security parameter 1k, and returns a (global) short-term common reference
string CRS. We assume that the message space M is defined as part of CRS.

– PKGen(CRS ,mpk) takes the CRS CRS as well as the long-term public key
mpk of a user as input and returns a short-term public key pk for this user.

– SKGen(CRS ,msk) takes the CRS CRS as well as the long-term secret key msk
of a user as input and returns a short-term secret key sk for this user.

– Enc(pk ,m) receives a user’s short-term public key pk and a message m ∈ M
as input and returns a ciphertext c.

– Dec(sk , c) receives a user’s short-term secret key sk and a ciphertext c as input
and returns m ∈ M ∪ {⊥}.

We call RPKE correct if for all values of λ, k ∈ N,PP ← Setup(1λ), (mpk ,msk) ←
MKGen(PP), CRS ← CRSGen(PP, 1k), m ∈ M, pk ← PKGen(CRS ,mpk),
sk ← SKGen(CRS ,msk), and all c ← Enc(pk ,m), it holds that Dec(sk , c) = m.

Security. Our security experiment for RPKE systems given in Fig. 1 is inspired
by the notion of IND-CCA (IND-CPA) security, extended to the more involved
key generation phase of a reconfigurable encryption scheme. Note that we pro-
vide the adversary with a secret key oracle for deprecated short-term keys. The
intuition behind our security definition is that we can split the advantage of
an adversary into three parts. One part (called f1 in Definition 4) reflects its
advantage in attacking the subsystem of an RPKE that is only responsible for
long-term security (λ). Another part (f2) represents its advantage in attacking
the subsystem that is only responsible for short-term security (k). The remain-
ing part (f3) stands for its advantage in attacking the subsystem that links the
long-term with the short-term security subsystem (e.g., short-term key deriva-
tion). We demand that all these advantages are negligible in the corresponding
security parameter, i.e., part one in λ, part two in k, and part three in both λ
(where k is fixed) and in k (where λ is fixed).

Note that it is not reasonable to demand that the overall advantage is
negligible in λ and in k. For instance, consider the advantage function CAdv
(t(λ, k), λ, k) ≤ 2−λ + 2−k + 2−(λ+k). Intuitively, we would like to call an RPKE
exhibiting this bound secure. Unfortunately, it is neither negligible in λ nor in k.

Definition 4. Let RPKE be an RPKE scheme according to Definition 3. Then
we define the advantage of an adversary A as

Advr-ind-ccaRPKE,A(λ, k) :=
∣
∣
∣
∣Pr[Expr-ind-ccaRPKE,A(λ, k) = 1] − 1

2

∣
∣
∣
∣
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where Expr-ind-ccaRPKE,A is the experiment given in Fig. 1. The concrete advantage
CAdvr-ind-ccaRPKE (t, λ, k) of adversaries against RPKE with time complexity t follows
canonically (cf. Sect. 2).

An RPKE scheme RPKE is then called R-IND-CCA secure if for all polyno-
mials t(λ, k), there exist positive functions f1 : N2 → R

+
0 , f2 : N2 → R

+
0 , and

f3 : N3 → R
+
0 as well as polynomials t1(λ, k), t2(λ, k), and t3(λ, k) such that

CAdvr-ind-ccaRPKE (t(λ, k), λ, k) ≤ f1(t1(λ, k), λ) + f2(t2(λ, k), k) + f3(t3(λ, k), λ, k)

for all λ, k, and the following conditions are satisfied for f1, f2, f3:

– For all k ∈ N it holds that f1(t1(λ, k), λ) is negligible in λ
– For all λ ∈ N it holds that f2(t2(λ, k), k) is negligible in k
– For all k ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in λ
– For all λ ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in k

We define R-IND-CPA security analogously with respect to the modified exper-
iment Expr-ind-cpaRPKE,A (λ, k), which is identical to Expr-ind-ccaRPKE,A(λ, k) except that A has
no access to an Dec-Oracle.

In Sect. 1 we already sketched an IBE-based RPKE scheme that would be
secure in the sense of Definition 4. However, for this RPKE f2 and f3 can be
set to be the zero function, meaning that the adversarial advantage cannot be
decreased by increasing k. In this paper we are not interested in such schemes.

Of course, one can think of several reasonable modifications to the security
definition given above. For instance, one may want to omit the “learn” stage in
the experiment and instead give the algorithm access to the Break-Oracle during

Fig. 1. R-IND-CCA experiment for reconfigurable PKE.



Reconfigurable Cryptography: A Flexible Approach to Long-Term Security 427

the “select” and “guess” stages. Fortunately, it turned out that most of these
reasonable, slight modifications lead to a definition which is equivalent to the
simple version we chose.

4 Constructions

4.1 Reconfigurable Encryption from Indistinguishability
Obfuscation

We can build a R-IND-CCA (R-IND-CPA) secure reconfigurable encryption
scheme from any IND-CCA (IND-CPA) secure PKE using indistinguishable
obfuscation and puncturable PRFs. The basic idea is simple: We obfuscate a
circuit which on input of the long-term public or secret key, where the public
key is simply the output of a PRG on input of the secret key, calls the key gen-
erator of the PKE scheme using random coins derived by means of the PRF. It
outputs the public key of the PKE scheme if the input to the circuit was the
long-term public key and the secret key if the input was the long-term secret key.
Ingredients. Let PKECCA = (GenCCA,EncCCA,DecCCA) be an IND-CCA secure
encryption scheme. Assuming the first component of the key pair that GenCCA(1�)
outputs is the public key, we define the PPT algorithms PKGenCCA(1�) :=
#1(GenCCA(1�)) and SKGenCCA(1k) := #2(GenCCA(1k)) which run GenCCA(1�)
and output only the public key or the secret key, respectively. By writing
GenCCA(1k; r), PKGenCCA(1k; r), SKGenCCA(1k; r) we will denote the act of fixing
the randomness used by GenCCA for key generation to be r, a random bit string
of sufficient length. For instance, r could be of polynomial length p(k), where p
equals the runtime complexity of GenCCA. We allow r to be longer than needed
and assume that any additional bits are simply ignored by GenCCA.3 Further-
more, let PRG : {0, 1}λ → {0, 1}2λ be a pseudo-random generator and F be a
family of puncturable PRFs mapping n(�) := 2� bits to p(�) bits. For i ∈ N
we define padi : {0, 1}∗ → {0, 1}∗ as the function which appends i zeroes to a
given bit string. As a last ingredient, we need an indistinguishability obfuscator
iO(�, C) for a class of circuits of size at most q(�), where q is a suitable poly-
nomial in � = λ + k which upper bounds the size of the circuit Gen(a, b) to be
defined as part of CRSGen.4

Our Scheme. With the ingredients described above our RPKE RPKEiO can be
defined as in Fig. 2. Note that the security parameter � used in the components
for deriving short-term keys from long-term keys, i.e., F and iO, is set to λ + k.
That means, it increases (and the adversarial advantage becomes negligible) with
both, the long-term and the short-term security parameter. (Alternative choices
with the same effect like � = λ

2 + k are also possible.) Since the components
which generate and use the short-term secrets depend on k, the security of the
3 Equivalently, we could always apply a truncate function truncp(k) : {0, 1}∗ →

{0, 1}p(k) which outputs the p(k) most significant bits of a given input.
4 Note that actually q must be chosen as an upper bound of both Gen and Gen′, where

the latter is defined in the security proof.
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Fig. 2. Our iO-based RPKE scheme RPKEiO

scheme can be increased by raising k. As a somewhat disturbing side-effect of
our choice of �, the domain of F, which is used to map the long-term public key
mpk ∈ {0, 1}2λ to a pseudo-random string to be used by GenCCA, is actually
too large. Hence, we have to embed 2λ-bit strings into 2(λ + k)-bit strings by
applying pad2k.
Security. R-IND-CCA security of RPKEiO follows from the following Lemma.

Lemma 1. Let a t ∈ N be given and let t′ denote the maximal runtime of
the experiment Expr-ind-ccaRPKEiO,·(λ, k) involving arbitrary adversaries with runtime t.
Then it holds that

CAdvr-ind-ccaRPKEiO (t, λ, k) ≤ 1
2λ + CAdvprgPRG(s1, λ) + CAdvind-ccaPKECCA

(s2, k)
+ CAdvpprfF (s3, λ + k) + CAdvioiO(s4, λ + k)

(3)

where t′ ≈ s1 ≈ s2 ≈ s3 ≈ s4.

Proof. The following reduction will be in the non-uniform adversary setting.
Consider an adversary A against RPKEiO for fixed security parameters λ and k
who has an advantage denoted by Advr-ind-ccaRPKEiO,A(λ, k). We will first show that A
can be turned into adversaries
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– B against PRG for fixed security parameter λ with advantage AdvprgPRG,Bk
(λ),

– C against iO for fixed security parameter λ+k with advantage AdvioiO,C(λ+k),
– D against F for fixed security parameter λ + k with advantage AdvpprfF,D(λ + k),
– E against PKECCA for fixed security parameter k with advantage Advind-ccaPKECCA,E(k)

such that the advantage Advr-ind-ccaRPKEiO,A(λ, k) is upper bounded by

1
2λ

+ AdvprgPRG,B(λ) + Advind-ccaPKECCA,E(k) + AdvioiO,C(λ + k) + AdvpprfF,D(λ + k). (4)

After that, we will argue that from Eq. 4 the upper bound on the concrete
advantage stated in Eq. 3 from our Lemma follows.

Throughout the reduction proof, let AdvGamei

RPKEiO,A(λ, k) denote the advantage
of A in winning Game i for fixed λ, k.

Game 1 is the real experiment Expr-ind-ccaRPKEiO,A. So we have

Advr-ind-ccaRPKEiO,A(λ, k) = AdvGame1
RPKEiO,A(λ, k). (5)

Game 2 is identical to Game 1 except that a short-term secret key returned
by the Break-Oracle on input k′ < k is computed by executing

SKGenCCA(1k′
;FK(pad2k′(mpk)))

instead of calling SKGen(CRSk′ ,msk), where CRSk′ ← CRSGen(PP, 1k′
) and

K ← GenF(1λ+k′
) is the corresponding PRF key generated in the scope of

CRSGen(PP, 1k′
). Similarly, the challenge secret key sk∗ is computed by the

challenger by executing

SKGenCCA(1k;FK∗(pad2k(mpk))),

and not by calling SKGen(CRS∗,msk), where CRS∗ denotes the challenge CRS
and K∗ the PRF key used in the process of generating CRS∗ by applying
CRSGen(PP, 1k). In this way, msk is not used in the game anymore after mpk =
PRG(msk) has been generated. Obviously, this change cannot be noticed by A
and so we have

AdvGame2
RPKEiO,A(λ, k) = AdvGame1

RPKEiO,A(λ, k). (6)

Game 3 is identical to Game 2 except that the challenge long-term public
key is no longer computed as mpk = PRG(msk) but set to be a random bit
string r ← {0, 1}2λ. Note with the change introduced in Game 2, we achieved
that this game only depended on PRG(msk) but not on msk itself. Hence, we can
immediately build an adversary B against PRG for (fixed) security parameter λ
from a distinguisher between Games 1 and 2 with advantage

AdvprgPRG,Bk
(λ) =

∣
∣
∣AdvGame2

RPKEiO,A(λ, k) − AdvGame3
RPKEiO,A(λ, k)

∣
∣
∣ . (7)

As a consequence, in Game 3 nothing at all is leaked about msk .
The PRG adversary B receives a bit string y ∈ {0, 1}2λ from the PRG chal-

lenger which is either random (as in Game 3) or the output of PRG(x) for
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x ← {0, 1}λ (as in Game 3). It computes PP ← Setup(1λ), CRS∗ ← CRSGen
(PP, 1k), and sets mpk := y. Note that due to the changes in Game 2 the key
msk (which would be the unknown x) is not needed to execute the experiment.
Then it runs A on input PP and mpk . A Break-Query is handled as described in
Game 2, i.e., sk is computed by B based on mpk . The challenge short-term key
sk∗ is computed in the same way from mpk . In this way, B can perfectly simulate
the Dec-Oracle when it runs A on input CRS∗. When receiving two messages m0

and m1 from the adversary, B returns c∗ ← Enc(pk∗,mb) for random b where pk∗

has been generated as usual from mpk . Then B forwards the final output of A.
Clearly, if y was random B perfectly simulated Game 3, otherwise it simulated
Game 2.

To introduce the changes in Game 4, let

K∗
{pad2k(mpk)} := PunctureF(K∗, {pad2k(mpk)})

denote the key K∗ (used in the construction of CRS∗) where we punctured out
mpk (represented as an element of {0, 1}2(λ+k)). This implies that FK∗

{pad2k(mpk)}(a)
is no longer defined for a = pad2k(mpk). Now, we set r := FK∗(pad2k(mpk))
and the challenge short-term keys pk∗ := PKGenCCA(1k; r) and sk∗ := SKGenCCA
(1k; r). Those keys are computed in the experiment immediately after the genera-
tion of the long-term key pair (mpk ,msk). This is equivalent to the way these keys
have been computed in Game 2. Additionally, we replace Gen(a, b) in CRSGen for
the challenge security level k by

Gen′(a, b) :=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pk∗, b = 0 ∧ a = mpk

PKGenCCA(1
k;FK∗

{pad2k(mpk)}
(pad2k(a))), b = 0 ∧ a ∈ {0, 1}2λ \ {mpk}

SKGenCCA(1
k;FK∗

{pad2k(mpk)}
(pad2k(PRG(a)))), b = 1 ∧ a ∈ {0, 1}λ

⊥, else

CRS∗ will now include the obfuscated circuit iOGen′ ← iO(λ + k,Gen′(a, b)).
We now verify that the circuits Gen and Gen′ are indeed equivalent (most of

the time). Obviously, it holds that Gen(a, 0) = Gen′(a, 0) for all a ∈ {0, 1}2λ: the
precomputed value pk∗ results from running PKGenCCA(1λ+k; FK∗(pad2k(mpk)))
which is exactly what Gen(mpk , 0) would run too. Moreover, we have

FK∗(pad2k(a)) = FK∗
{pad2k(mpk)}(pad2k(a))

for all a ∈ {0, 1}2λ \ {mpk}. Let us now consider Gen′(a, 1) for a ∈ {0, 1}λ.
Remember that starting with Game 3, mpk is a random element from {0, 1}2λ.
That means, with probability at least 1 − 1

2λ we have that mpk is not in the
image of PRG and, thus,

FK∗(pad2k(PRG(a))) = FK∗
{pad2k(mpk)}(pad2k(PRG(a)))

for all a ∈ {0, 1}λ. Hence, with probability 1 − 1
2λ the circuits Gen and Gen′

are equivalent for all inputs. So a distinguisher between Game 4 and Game 3



Reconfigurable Cryptography: A Flexible Approach to Long-Term Security 431

can be turned into an adversary C against iO for security parameter λ + k with
advantage

AdvioiO,C(λ + k) ≥
∣
∣
∣AdvGame3

RPKEiO,A(λ, k) − AdvGame4
RPKEiO,A(λ, k)

∣
∣
∣ − 1

2λ
. (8)

C computes PP ← Setup(1λ) and mpk ← {0, 1}2λ. Then it chooses a PPRF
F : {0, 1}2(λ+k) → {0, 1}p(λ+k) and a corresponding key K∗ ← GenF(1λ+k).
Using these ingredients it sets up circuits C0 := Gen according to the definition
from Game 3 and C1 := Gen′ according to the definition from Game 4. As
explained above, with probability 1 − 1

2λ these circuits are equivalent for all
inputs. CRS∗ is then set as the output of the iO challenger for security parameter
λ + k on input of the circuits C0 and C1.5 sk∗ and pk∗ can either be computed
as defined in Game 3 or as in Game 4. As both ways are equivalent, it does
not matter for the reduction. The remaining parts of Game 3 and Game 4 are
identical. In particular, Break-Queries of A can be handled without knowing
msk . The output bit of the third and final execution of A is simply forwarded
by C to the iO challenger.

Game 5 is identical to Game 4 except that the value r is chosen as a truly
random string from {0, 1}p(λ+k) and not set to FK∗(pad2k(mpk)). As besides r,
Game 4 did not depend on K∗ anymore but only on K∗

{pad2k(mpk)}, a distinguisher
between Game 4 and Game 5 can directly be turned into an adversary D against
the pseudorandomness of the puncturable PRF family for security parameter
λ + k. Thus, we have

AdvpprfF,D(λ + k) =
∣
∣
∣AdvGame4

RPKEiO,A(λ, k) − AdvGame5
RPKEiO,A(λ, k)

∣
∣
∣ . (9)

D computes PP ← Setup(1λ), mpk ← {0, 1}2λ, and chooses a PPRF F :
{0, 1}2(λ+k) → {0, 1}p(λ+k). Then it sends pad2k(mpk) to its challenger who
chooses a key K∗ ← GenF(1λ+k) and computes the punctured key K∗

{pad2k(mpk)}.
Furthermore, the challenger sets r0 := FK∗(pad2k(mpk)) and r1 ← {0, 1}p(λ+k).
It chooses b ← {0, 1} and sends rb along with K∗

{pad2k(mpk)} to D. D sets r := tb,
pk∗ := PKGenCCA(1k; r) and sk∗ := SKGenCCA(1k; r). Using the given punctured
key K∗

{pad2k(mpk)}, D can also generate CRS∗ as described in Game 4. The rest
of the reduction is straightforward. The output bit of the final execution of A is
simply forwarded by C to its challenger. If b = 0, D perfectly simulates Game 4,
otherwise it simulates Game 5.

Now, observe that in Game 5, the keys pk∗ and sk∗ are generated using
GenCCA with a uniformly chosen random string r on its random tape. In par-
ticular, pk∗ and sk∗ are completely independent of the choice of mpk and msk .
After the generation of these short-term keys, the adversary has access to the
Break-Oracle, which, of course, will also not yield any additional information
about them since the output of this oracle only depends on independent ran-
dom choices like mpk and the PRF keys K. The remaining steps of Game 5
5 C0 and C1 are assumed to be of the same size, otherwise the smaller one is padded

accordingly.
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correspond to the regular IND-CCA game for PKECCA except that the adversary
is given the additional input CRS∗, which however only depends on pk∗, and
the independent choices mpk and K∗. So except for pk∗ (which is the output of
PKGen(CRS∗,mpk)), the adversary does not get any additional useful informa-
tion from CRS∗ (which he could not have computed by himself). Hence, it is easy
to construct an IND-CCA adversary E against PKECCA for security parameter k
from A which has the same advantage as A in winning Game 5, i.e.,

Advind-ccaPKECCA,E(k) = AdvGame5
RPKEiO,A(λ, k). (10)

E computes PP ← Setup(1λ) and mpk ← {0, 1}2λ. Break-Queries from A can
be answered by E only based on mpk (as described in Game 2). Then E receives
pk∗ generated using GenCCA(1k) from the IND-CCA challenger. To compute
CRS∗, E chooses a PPRF F : {0, 1}2(λ+k) → {0, 1}p(λ+k), the corresponding
key K∗ ← GenF(1λ+k) and sets the punctured key K∗

{pad2k(mpk)}. Using these
ingredients, Gen′ can be specified as in Game 4 and its obfuscation equals CRS∗.
When E runs A on input CRS∗, A’s queries to the Dec-Oracle are forwarded
to the IND-CCA challenger. Similarly, the messages m0 and m1 that A outputs
are sent to E ’s challenger. When E receives c∗ from its challenger, it runs A on
this input, where Dec-Oracle calls are again forwarded, and outputs the output
bit of A.

Putting Eqs. 5–10 together, we obtain Eq. 4.
From Eq. 4 to Eq. 3. Let t denote the runtime of A and t′ the maximal
runtime of the experiment Expr-ind-ccaRPKEiO,·(λ, k) in volving an arbitrary adversary
with runtime t. Furthermore, note that the reduction algorithms B, C, D, E
are uniform in the sense that they perform the same operations for any given
adversary A of runtime t. Let s1, s2, s3, and s4 denote the maximal runtime
of our PRG, IND-CCA, PPRF, and iO reduction algorithm, respectively, for
an RPKE adversary with runtime t. As all these reduction algorithms basically
execute the R-IND-CCA experiment (including minor modifications) with the
RPKE adversary, we have that t′ ≈ s1 ≈ s2 ≈ s3 ≈ s4. Clearly, the runtime of
our reduction algorithms are upper bounded by the corresponding values ti and
thus it follows

Advr-ind-ccaRPKEiO,A(λ, k) ≤ 1
2λ + CAdvprgPRG(s1, λ) + CAdvind-ccaPKECCA

(s2(λ, k), k)
+CAdvpprfF (s3(λ, k), λ, k) + CAdvioiO(s4, λ + k).

(11)

Finally, since the same upper bound (on the right-hand side of Eq. 11) on the
advantage holds for any adversary A with runtime t, this is also an upper bound
for CAdvr-ind-ccaRPKEiO (t, λ, k).

Theorem 1. Let us assume that for any polynomial s(�), the concrete advan-
tages CAdvprgPRG(s(�), �), CAdvioiO(s(�), �), CAdvpprfF (s(�), �) and CAdvind-ccaPKECCA

(s(�), �)
are negligible. Then RPKEiO is R-IND-CCA secure.

Proof. Let t(λ, k) be a polynomial and let us consider the upper bound on
CAdvr-ind-ccaRPKEiO (t(λ, k), λ, k) given by Lemma 1. First, note that since RPKE is effi-
cient there is also a polynomial bound t′(λ, k) on the runtime complexity of
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the experiment and thus s1(λ, k), s2(λ, k), s3(λ, k), and s4(λ, k) will be poly-
nomial as t′(λ, k) ≈ s1(λ, k) ≈ s2(λ, k) ≈ s3(λ, k) ≈ s4(λ, k) for all λ, k ∈ N.
Furthermore, let t1(λ, k) := s1(λ, k), t2(λ, k) := s2(λ, k), and t3(λ, k) be a poly-
nomial upper bound on s3(λ, k) and s4(λ, k). Now, consider the following parti-
tion of CAdvr-ind-ccaRPKEiO (t(λ, k), λ, k) as demanded in Definition 4: f1(t1(λ, k), λ) :=
1
2λ + CAdvprgPRG(t1(λ, k), λ), f2(t2(λ, k), k) := CAdvind-ccaPKECCA

(t2(λ, k), k), and

f3(t3(λ, k), λ, k) := CAdvioiO(t3(λ, k), λ + k) + CAdvpprfF (t3(λ, k), λ + k)

Obviously, for all fixed k ∈ N, t1(λ, k) is a polynomial in a single variable,
namely λ, and thus f1(t1(λ, k), λ) is negligible in λ by assumption. Similarly, for
all fixed λ ∈ N, f2(t2(λ, k), k) is negligible in k by assumption. Moreover, for all
fixed k ∈ N and for all fixed λ ∈ N, t3(λ, k) becomes a polynomial in λ and in k,
respectively, and the advantages CAdvioiO(t3(λ, k), λ+k) and CAdvpprfF (t3(λ, k), λ+
k) are negligible in λ and in k by assumption.

Versatility of Our iO-Based Construction. As one can easily see, the iO-
based construction of an RPKE we presented above is very modular and generic:
there was no need to modify the standard cryptosystem (the IND-CCA secure
PKE) itself to make it reconfigurable but we just added a component “in front”
which fed its key generator with independently-looking randomness. Thus, the
same component may be used to make other types of cryptosystems reconfig-
urable in this sense. Immediate applications would be the construction of an
iO-based R-IND-CPA secure RPKE from an IND-CPA secure PKE or of an
R-EUF-CMA secure reconfigurable signature scheme (cf. Definition 6) from an
EUF-CMA secure signature scheme. The construction is also very flexible in the
sense that it allows to switch to a completely different IND-CCA secure PKE
(or at least to a more secure algebraic structure for the PKE) on-the-fly when
the short-term security level k gets increased. One may even use the same long-
term keys to generate short-term PKIs for multiple different cryptosystems (e.g.,
a signature and an encryption scheme) used in parallel. We leave the security
analysis of such extended approaches as an open problem.

4.2 Reconfigurable Encryption from SCasc

Our second construction of a R-IND-CPA secure reconfigurable encryption
scheme makes less strong assumptions than our construction using iO. Namely,
it uses a pairing-friendly group generator G as introduced in Sect. 2 and the only
assumption is (a suitable variant of) the SCk-MDDH assumption with respect
to G. Our construction is heavily inspired by Regev’s lattice-based encryption
scheme [18] (in its “dual variant” [13]). However, instead of computing with noisy
integers, we perform similar computations “in the exponent”. (A similar adap-
tation of lattice-based constructions to a group setting was already undertaken
in [8], although with different constructions and for a different purpose.)

A Two-Parameter Variant of the SCk-MDDH Assumption. For our pur-
poses, it will be useful to consider the SCk-MDDH assumption as an assumption
in two security parameters, λ and k. Namely, let
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AdvSCG,B(λ, k) := AdvDk-MDDH
G,A (λ)

where Dk = SCk as defined by Eq. 2 in Sect. 2. Note that this also defines the
concrete advantage CAdvSCG (t, λ, k) (generically defined in Sect. 2).

It is not immediately clear how to define asymptotic security with this two-
parameter advantage function. To do so, we follow the path taken for our recon-
figurable security definition, with λ as a long-term, and k as a short term
security parameter: We say that the SCasc assumption holds relative to G iff
CAdvSCG (t, λ, k) can be split up into three components, as follows. We require
that for every polynomial t = t(λ, k), there exist nonnegatively-valued functions
f1 : N2 → R

+
0 , f2 : N2 → R

+
0 , f3 : N3 → R

+
0 and polynomials t1(λ, k), t2(λ, k),

t3(λ, k) such that

CAdvSCG (t(λ, k), λ, k) ≤ f1(t1(λ, k), λ) + f2(t2(λ, k), k) + f3(t3(λ, k), λ, k)

and the following conditions are satisfied for f1, f2, f3:

– For all k ∈ N it holds that f1(t1(λ, k), λ) is negligible in λ
– For all λ ∈ N it holds that f2(t2(λ, k), k) is negligible in k
– For all k ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in λ
– For all λ ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in k.

The interpretation is quite similar to reconfigurable security: we view λ (which
determines, e.g., the group order) as a long-term security parameter. On the
other hand, k determines the concrete computational problem considered in this
group, and we thus view k as a short-term security parameter. (For instance, it is
conceivable that an adversary may successfully break one computational problem
in a given group, but not a potentially harder problem. Hence, increasing k may
be viewed as increasing the security of the system.) It is not hard to show
that CAdvSCG (t, λ, k) holds in the generic group model, although, the usual proof
technique only allows for a trivial splitting of the adversarial advantage into the
f1, f2 and f3.
Choosing Subspace Elements. We will face the problem of sampling a vector
[�r] ∈ Gk+1 satisfying �r� ·Ax = �y� for given Ax ∈ Z

(k+1)×k
p (of the form of Eq. 2)

and [�y] ∈ Gk. One efficient way to choose a uniform solution [�r] = [(ri)i] is as
follows: choose r1 uniformly, and set [ri+1] = [yi] − x · [ri] for 2 ≤ i ≤ k + 1.

Our Scheme RPKESC . Now our encryption scheme has message space GT and
is given by the following algorithms:

Setup(1λ): sample (p,G, g,GT , e) ← G(1λ) and return PP := (p,G, g,GT , e).
MKGen(PP): sample x ← Zp and return mpk := [x] ∈ G and msk := x.
CRSGen(PP, 1k): sample �y ← Zk

p and return CRS := (1k,PP, [�y�] ∈ Gk).
PKGen(CRS ,mpk): compute [Ax] from mpk = [x], return pk := (CRS , [Ax]).
SKGen(CRS ,msk): compute Ax from msk = x and sample a uniform solution

[�r] ∈ Gk+1 of �r� · Ax = �y�, and return sk := (CRS , [�r]).
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Enc(pk ,m): sample �s ← Zk
p, return c = ([�R], [S]T ) = ([Ax · �s], [�y� · �s]T · m) ∈

Gk+1 × GT

Dec(sk , c): return m = [S]T − [�r� · �R]T ∈ GT .

Correctness and Security. Correctness follows from

Dec(sk , c) = [S]T − [�r� · �R]T =
(
[�y� · �s]T − [�r� · Ax · �s]T

) · m,

since �y� = �r� · Ax by definition. For security, consider

Lemma 2. Let t ∈ N be given and let t′ denote the maximal runtime of the exper-
iment Expr-ind-ccaRPKESC ,·(λ, k) involving arbitrary adversaries with runtime t. Then it
holds that

CAdvr-ind-cpaRPKESC
(t, λ, k) ≤ 1

2λ
+ CAdvSCG (s, λ, k) (12)

where t′ ≈ s.

Proof. Similar to the proof of Lemma 1, the following reduction will be in the
non-uniform setting, where we consider an adversary A against RPKESC for fixed
security parameters λ and k. We show that A can be turned into an algorithm
B solving SCasc for fixed λ and k with advantage AdvSCG,B(λ, k) such that

Advr-ind-cpaRPKESC ,A(λ, k) ≤ 1
2λ

+ AdvSCG,B(λ, k). (13)

We proceed in games, with Game 1 being the Expr-ind-cpaRPKESC ,A experiment. Let
AdvGamei

RPKESC ,A(λ, k) denote the advantage of A in Game i. Thus, by definition,

Advr-ind-ccaRPKESC ,A(λ, k) = AdvGame1
RPKESC ,A(λ, k). (14)

In Game 2, we implement the Break(PP,msk , ·) oracle differently for A.
Namely, recall that in Game 1, upon input k′ < k, the Break-Oracle chooses a
CRS CRSk′ = (1k′

,PP, [�y�] ← Gk′
), then computes a secret key skk′ = [�r] ∈

Gk′+1 with �r�Ax = �y�, and finally returns CRSk′ and skk′ to A.
Instead, we will now let Break first choose �r ∈ Zk′+1

p uniformly, and then
compute [�y�] = [�r�Ax] from �r and set CRSk′ = (1k′

,PP, [�y�]). This yields
exactly the same distribution for skk′ and CRSk′ , but only requires knowledge
about [Ax] (and not Ax). Hence, we have

AdvGame1
RPKESC ,A(λ, k) = AdvGame2

RPKESC ,A(λ, k). (15)

In Game 3, we prepare the challenge ciphertext c∗ differently for A. As a
prerequisite, we let the game also choose CRS∗ like the Break oracle from Game
2 chooses the CRSk′ . In other words, we set up CRS∗ = [�y�] = [�r∗�

Ax] for
uniformly chosen �r∗. This way, we can assume that sk∗ = (CRS∗, [�r∗]) is known
to the game, even for an externally given [Ax].

Next, recall that in Game 2, we have first chosen �s ← Zk
p and then computed

c∗ = ([�R], [S]T ) = ([Ax · �s], [�y� · �s]T · mb). In Game 3, we still first choose �s and
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compute [�R] = [Ax · �s]. However, we then compute [S]T = [�r∗� · R]T · mb in a
black-box way from [�R], without using �s again.

These changes are again purely conceptual, and we get

AdvGame2
RPKESC ,A(λ, k) = AdvGame3

RPKESC ,A(λ, k). (16)

Now, in Game 4, we are finally ready to use the SCasc assumption. Specifi-
cally, instead of computing the value [�R] of c∗ as [�R] = [Ax · �s] for a uniformly
chosen �s ∈ Zk

p, we sample [�R] ∈ Gk+1 independently and uniformly. (By our
change from Game 3, then [S]T is computed from [�R] using sk∗.)

Our change hence consists in replacing an element of the form [Ax · �s] by a
random vector of group elements. Besides, at this point, our game only requires
knowledge of [Ax] (but not of Ax). Hence, a straightforward reduction to the
SCasc assumption yields an adversary B with

AdvSCG,B(λ, k) =
∣
∣
∣AdvGame4

RPKESC ,A(λ, k) − AdvGame3
RPKESC ,A(λ, k)

∣
∣
∣ . (17)

Finally, it is left to observe that in Game 4, the challenge ciphertext is (statis-
tically close to) independently random. Indeed, recall that the challenge cipher-
text is chosen as c∗ = ([�R], [S]T ) for uniform �R ∈ Zk+1

p , and [S]T = [�r∗� ·R]T ·mb.
Suppose now that �R does not lie in the image of Ax. (That is, �R cannot be
explained as a combination of columns of Ax.) Then, for random �r, the values
�r∗�

Ax and �r∗� · R are independently random. In particular, even given [Ax]
and CRS∗, the value [�r∗� · R]T looks independently random to A.

Hence, A’s view is independent of the encrypted message mb (at least when
conditioned on �R not being in the image of Ax). On the other hand, since �R is
uniformly random in Game 4, it lies in the image of Ax only with probability
1/p. Thus, we get

AdvGame4
RPKESC ,A(λ, k) ≤ 1

p
. (18)

Putting Eqs. 14–18 together (and using that p ≥ 2λ), we obtain Eq. 13.

From Eq. 13 to Eq. 12. Let t denote the runtime of A and t′ the maximal
runtime of the experiment Expr-ind-ccaRPKESC ,·(λ, k) involving an arbitrary adversary
with runtime t. Note that the reduction algorithm B is uniform in the sense
that it performs the same operations for any given adversary A of runtime t.
Let s denote the maximal runtime of our SCasc algorithm for an RPKE adver-
sary with runtime t. As the SCasc algorithm basically executes the R-IND-CCA
experiment (including minor modifications) with the RPKE adversary, we have
that t′ ≈ s. Clearly, the runtime of B is upper bounded by s and thus it follows

Advr-ind-ccaRPKESC ,A(λ, k) ≤ 1
2λ

+ CAdvSCG (s, λ, k). (19)

Finally, since the same upper bound (on the right-hand side of Eq. 19) on the
advantage holds for any adversary A with runtime t, this is also an upper bound
for CAdvr-ind-ccaRPKESC

(t, λ, k).
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Theorem 2. If the two-parameter variant of the SCasc assumption holds, then
RPKESC is R-IND-CPA secure.

Proof. Let t(λ, k) be a polynomial. Since RPKESC is efficient, t′(λ, k) will be
polynomial and so s(λ, k). As s(λ, k) is polynomial, according to the SCasc
assumption there exist functions g1, g2, and g3 as well as polynomials s1(λ, k),
s2(λ, k), and s3(λ, k) such that

CAdvSCG (s(λ, k), λ, k) ≤ g1(s1(λ, k), λ) + g2(s2(λ, k), k) + g3(s3(λ, k), λ, k).

Now consider the following partition of CAdvr-ind-ccaRPKESC
(t(λ, k), λ, k): f1(s1(λ, k),

λ) := 1
2λ +g1(s1(λ, k), λ, k), f2(s2(λ, k), k) := g2(s2(λ, k), λ, k), and f3(s3(λ, k), λ,

k) = g3(s3(λ, k), λ, k). The properties demanded for f1, f2, f3 by Definition 4
immediately follow from the SCasc assumption.

5 Reconfigurable Signatures

The concept of reconfiguration is not restricted to encryption schemes. In this
section, we consider the case of reconfigurable signatures. We start with some
preliminaries, define reconfigurable signatures and a security experiment (both
in line with the encryption case) and finally give a construction.

5.1 Preliminaries

Signature Schemes. A signature scheme SIG with message space M consists of
three PPT algorithms Setup,Gen,Sig,Ver. Setup(1λ) outputs public parameters
PP for the scheme. Key generation Gen(PP) outputs a verification key vk and
a signing key sk . The signing algorithm Sig(sk ,m) takes the signing key and
a message m ∈ M, and outputs a signature σ. Verification Ver(vk , σ,m) takes
the verification key, a signature and a message m and outputs 1 or ⊥. For
correctness, we require that for all m ∈ M and all (vk , sk) ← Gen(1k) we have
Ver(sk ,Sig(sk ,m),m) = 1.
EUF-CMA Security. The EUF-CMA-advantage of an adversary A on SIG
is defined by Adveuf-cma

SIG,A (λ) := Pr[Expeuf-cma
SIG,A (λ) = 1] for the experiment Expeuf-cma

SIG,A
described below. In Expeuf-cma

SIG,A , first, PP ← Setup(1λ) and (pk , sk) ← Gen(PP)
is sampled. The we run A on input pk , where A also has access to a signa-
ture oracle. The experiment returns 1 if for A’s output (σ∗,m∗) it holds that
Ver(pk, σ∗,m∗) = 1 and m∗ was not sent to the signature oracle. A signature
scheme SIG is called EUF-CMA-secure if for all PPT algorithms A the advantage
Adveuf-cma

SIG,A (λ) is negligible.
Non-Interactive Proof Systems. A non-interactive proof system for a lan-
guage L consists of three PPT algorithms (CRSGen,Prove,Ver). CRSGen(L) gets
as input information about the language and outputs a common reference string
(CRS). Prove(CRS , x, w) with statement x and witness w outputs a proof π,
and Ver(CRS , π, x) outputs 1 if π is a valid proof for x ∈ L, and ⊥ otherwise.
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The proof system is complete if Ver always accepts proofs if x is contained in L,
and it is perfectly sound if Ver always rejects proofs if x is not in L.
Witness Indistinguishability (WI). Suppose a statement x ∈ L has more
than one witness. A proof of membership can be generated using any of the
witnesses. If a proof π ← Prove(CRS , x, w) information theoretically hides the
choice of the witness, it is called perfectly witness indistinguishable.
Groth-Sahai (GS) Proofs. In [15], Groth and Sahai introduced efficient non-
interactive proof systems in pairing-friendly groups. We will only give a high
level overview of the properties that are needed for our reconfigurable signature
scheme and refer to the full version [15] for the details of their construction.

In GS proof systems, the algorithm CRSGen takes as input a pairing-friendly
group G := (p,G, g,GT , e) and outputs a CRS suitable for proving satisfiabil-
ity of various types of equations in these groups. Furthermore, CRSGen has two
different modes of operation, producing a CRS that leads to either perfectly wit-
ness indistinguishable or perfectly sound proofs. The two types of CRS can be
shown to be computationally indistinguishable under different security assump-
tions such as subgroup decision, SXDH and 2-Linear.

In both modes, CRSGen additionally outputs a trapdoor. In the WI mode,
this trapdoor can be used to produce proofs of false statements6. In the sound
mode, the trapdoor can be used to extract the witness from the proof. To eas-
ily distinguish the two operating modes, we equip CRSGen with an additional
parameter mode ∈ {wi, sound}.

Statements provable with GS proofs have to be formulated in terms of sat-
isfiability of equations in pairing-friendly groups. For example, it is possible to
prove the statement X := “∃s ∈ Zn : [s]1 = S” for an element S ∈ G1. A witness
for this statement is a value s satisfying the equation [s] = S, i.e., the DL of
S to the basis g1. Furthermore, GS proofs are nestable and thus admit proving
statements about proofs, e.g., Y := “∃π : Ver(CRS , π,X ) = 1”.

5.2 Definitions

Similar to the case of RPKE, we can define reconfigurable signatures.

Definition 5. A reconfigurable signature (RSIG) scheme RSIG consists of algo-
rithms Setup, MKGen, CRSGen, PKGen, SKGen, Sig and Ver. The first five algo-
rithms are defined as in Definition 3. Sig and Ver are the signature generation and
verification algorithms and are defined as in a regular signature scheme. RSIG is
called correct if for all λ, k ∈ N, PP ← Setup(1λ), (mpk ,msk) ← MKGen(PP),
CRS ← CRSGen(PP, 1k), messages m ∈ M, sk ← SKGen(CRS ,msk) and pk ←
PKGen(CRS ,mpk) we have that Ver(pk ,Sig(sk ,m),m) = 1.

6 Actually, the original paper only describes a method for generating proofs for specific
false statements. Arbitrary statements can be proven at the cost of slightly larger
proofs and CRSs, using known methods that apply to WI proofs [14].
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Fig. 3. R-EUF-CMA experiment for a reconfigurable signature scheme RSIG.

We define R-EUF-CMA security for an RSIG scheme RSIG analogously to
R-IND-CCA security for RPKE, where the security experiment Expr-euf-cma

RSIG,A (λ,k)
is defined in Fig. 3.

Definition 6. Let RSIG be an RSIG scheme according to Definition 5. Then we
define the advantage of an adversary A as

Advr-euf-cma
RSIG,A (λ, k) := Pr[Expr-euf-cma

RSIG,A (λ, k) = 1]

where Expr-euf-cma
RSIG,A (λ, k) is the experiment given in Fig. 3. The concrete advantage

CAdvr-euf-cma
RSIG (t, λ, k) of adversaries against RSIG with time complexity t follows

canonically (cf. Sect. 2).
An RSIG scheme RSIG is then called R-EUF-CMA secure if for all polyno-

mials t(λ, k), there exist positive functions f1 : N2 → R
+
0 , f2 : N2 → R

+
0 , and

f3 : N3 → R
+
0 as well as polynomials t1(λ, k), t2(λ, k), and t3(λ, k) such that

CAdvr-euf-cma
RSIG (t(λ, k), λ, k) ≤ f1(t1(λ, k), λ) + f2(t2(λ, k), k) + f3(t3(λ, k), λ, k)

for all λ, k, and the following conditions are satisfied for f1, f2, f3:

– For all k ∈ N it holds that f1(t1(λ, k), λ) is negligible in λ
– For all λ ∈ N it holds that f2(t2(λ, k), k) is negligible in k
– For all k ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in λ
– For all λ ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in k

5.3 Reconfigurable Signatures from Groth-Sahai Proofs

The intuition behind our scheme is as follows. Each user of the system has a
long-term key pair, consisting of a public instance of a hard problem and a
private solution of this instance. A valid signature is a proof of knowledge of
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either knowledge of the long-term secret key or a valid signature of the message
under another signature scheme. The proof system and signature scheme for
generating the proofs of knowledge are published, e.g. using a CRS. We are now
able to reconfigure the scheme by updating the CRS with a new proof system
and a new signature scheme. This way, old short-term secret keys of a user (i.e.,
valid proofs of knowledge of the user’s long-term secret key under deprecated
proof systems) become useless and can thus be leaked to the adversary.

Our reconfigurable signature scheme RSIG with message space M = {0, 1}m is
depicted in Fig. 4. It makes use of a symmetric pairing-friendly group generator G,
a family of GS proof systems PS := {PSk := (CRSGenPSk

,ProvePSk
,VerPSk

)}k∈N

for proving equations in the groups generated by G(1λ) and a family of EUF-CMA-
secure signature schemes SIG := {SIGk := (SetupSIGk

,GenSIGk
,SigSIGk

,VerSIGk
)}k∈N

with message space M, where SetupSIGk
(1λ) outputs G with G ← G(1λ) for all

k ∈ N (i.e., each SIGk can be instantiated using the same symmetric pairing-
friendly groups G).
Two-Parameter Families of GS Proofs and EUF-CMA-Secure Signa-
tures. Let us view PS as a family of GS proof systems and SIG a family of EUF-
CMA-secure signature schemes defined in two security parameters λ and k. Such
families may be constructed based on the (two parameters variant) of the SCasc
assumption or other matrix assumptions. Consequently, we consider a security
experiment where the adversary receives two security parameters and has advan-
tage Advind-crsPS,A (λ, k) and Adveuf-cma

SIG,B (λ, k), respectively. Note that this also defines
the concrete advantages CAdvind-crsPS (t, λ, k) and CAdveuf-cma

SIG (t, λ, k) (as generically
defined in Sect. 2). We define asymptotic security for these families following the
approach taken for our reconfigurable security definition. That means, we call PS
(SIG) secure if for every polynomial t(λ, k) the advantage CAdvind-crsPS (t(λ, k), λ, k)
(CAdveuf-cma

SIG (t(λ, k), λ, k)) can be split up into nonnegatively-valued functions
f1 : N2 → R

+
0 , f2 : N2 → R

+
0 , f3 : N3 → R

+
0 such that for some polynomials

t1(λ, k), t2(λ, k), t3(λ, k) the sum f1(t1(λ, k), λ)+f2(t2(λ, k), k)+f3(t3(λ, k), λ, k)
is an upper bound on the advantage. Furthermore, the following conditions need
to be satisfied for f1, f2, f3:

– For all k ∈ N it holds that f1(t1(λ, k), λ) is negligible in λ
– For all λ ∈ N it holds that f2(t2(λ, k), k) is negligible in k
– For all k ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in λ
– For all λ ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in k.

Correctness of RSIG, in terms of Definition 5, directly follows from the com-
pleteness of the underlying proof system.

Lemma 3. Let a t ∈ N be given and let t′ denote the maximal runtime of
the experiment Expr-euf-cma

RSIG,· (λ, k) involving arbitrary adversaries with runtime t.
Then it holds that

CAdvr-euf-cma
RSIG (t, λ, k) ≤ 2·CAdvind-crsPS (s1, λ, k)+CAdvcdhG (s2, λ)+CAdveuf-cma

SIG (s3, λ, k) (20)

where t′ ≈ s1 ≈ s2 ≈ s3.
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Fig. 4. Our reconfigurable signature scheme

Theorem 3. Let us assume that PS is a secure two-parameter family of Groth-
Sahai proof systems, SIG a secure two-parameter family of EUF-CMA secure
signature schemes and the CDH assumption holds with respect to G. Then RSIG
is R-EUF-CMA secure.

We omit the proof of Theorem 3 as it is analogous to the proof of Lemma 2.
In the remainder of this section, we sketch a proof for Lemma 3.

Proof Sketch: We use a hybrid argument to prove our theorem. Starting with the
R-EUF-CMA security game, we end up with a game in which the adversary has
no chance of winning. It follows that Advr-euf-cma

RSIG,A (λ, k) is smaller than the sum
of advantages of adversaries distinguishing between all subsequent intermediate
games. Throughout the proof, AdvGi

A (λ, k) denotes the winning probability of A
when running in game i.
Game 0: This is the original security game Expr-euf-cma

RSIG,A . Note that the signature
oracle of A is implemented using skk and thus, implicitly, msk as a witness. We
have that Advr-euf-cma

RSIG,A (λ, k) = AdvG0
A (λ, k).
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Game 1: Here we modify the implementation of the signature oracle by letting
the experiment use the formerly unused signing key of the signature scheme
SIGk. More formally, let state denote the output of ABreak(PP,mpk , “learn”).
While running (CRS∗, ṽk

∗
,PP, k) ← CRSGen(PP, 1k), the experiment learns

s̃k
∗
, the signing key corresponding to ṽk

∗
. We now let the experiment answer A’s

oracle queries Sigk(sk∗,m) for m ∈ M with signatures ProvePSk
(CRS∗,Y∗, τ),

where τ ← SigSIGk
(s̃k

∗
,m) and Y∗ := “∃(π∗,Σ∗) : VerPSk

(CRS∗, π∗,X ) = 1 ∨
VerSIGk

(ṽk
∗
,Σ∗,m) = 1”.

Since the proofs generated by PSk are perfectly WI, the A’s view in game 0
and game 1 is exactly the same and thus we have AdvG1

A (λ, k) = AdvG0
A (λ, k).

Game 2: In this game, we want to switch the CRS for which A forges a
message from witness indistinguishable to sound mode. For this, the experiment
runs (CRSPSk

, tdk) ← CRSGenPSk
(sound,PP) and (s̃k

∗
, ṽk

∗
) ← GenSIGk

(PP)
and sets CRS∗ := (CRSPSk

, ṽk
∗
,PP, k).

Claim. For every λ,k and A, there is an adversary B with T(A) ≈ T(B) and
Advind-crsPS,B (λ, k) :=

∣
∣ 1
2 − Pr [B(CRSPSk

) → mode]
∣
∣ =

∣
∣
∣Adv

G1
A (λ,k)−AdvG2

A (λ,k)
2

∣
∣
∣, where

(CRSPSk
, tdk) ← CRSGenPSk

(mode,PP) and mode ∈ {wi, sound}.

Proof. Note that A’s view in game 1 and 2 is exactly the same until he sees
CRS∗. We construct B as follows. B gets CRSPSk

and then plays game 1 with A
until A outputs state. Now B sets CRS∗ := (CRSPSk

, ṽk
∗
,PP, k) and proceeds

the game. Note that this is possible since B does not make use of a trapdoor
for CRSPSk

. B finally outputs wi if A wins the game. If A loses, B outputs
sound.

We now analyze the advantage of B in guessing the CRS mode. For this, note
that if mode = wi, then A’s view is as in game 1, and if mode = sound, then
A’s view is as in game 2. Let Xi denote the event that A wins game i, and thus
AdvGi

A (λ, k) = Pr [Xi]. We have that

Pr [Bwins] = Pr [B wins |mode = wi] + Pr [B wins |mode = sound]

=
1
2

2∑

i=1

(Pr [B wins |Xi] + Pr [B wins |¬Xi])

=
1
2
(1 · AdvG1

A (λ, k) + 0 · (1 − AdvG1
A (λ, k)) + 0 · AdvG2

A (λ, k) + 1 − AdvG2
A (λ, k)

=
1
2
(AdvG1

A (λ, k) + 1 − AdvG2
A (λ, k)) =

1
2

+
AdvG1

A (λ, k) − AdvG2
A (λ, k)

2

⇒
∣
∣
∣
∣Pr [Bwins] − 1

2

∣
∣
∣
∣ =

∣
∣
∣
∣
∣
AdvG1

A (λ, k) − AdvG2
A (λ, k)

2

∣
∣
∣
∣
∣

Game 3: Now, the experiment no longer uses knowledge of msk to pro-
duce answers skk ← SKGen(CRSPSk

,msk) to Break-queries. Instead, we let
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the experiment use the trapdoor of the CRS to generate the proofs. This can
be done since the experiment always answers Break-oracle queries by running
(CRSPSk

, tdk) ← CRSGenPSk
(wi,PP) and, since in wi mode, tdk can be used to

simulate a proof skk without actually using msk . Moreover, the proofs are per-
fectly indistinguishable from the proofs in Game 2 and thus A’s view in Games
2 and 3 are identical and we have AdvG3

A (λ, k) = AdvG2
A (λ, k).

Game 4: We modify the winning conditions of the experiment: A loses if sk∗,
i.e., a solution to a CDH instance, can be extracted from the forgery.

Claim. For every λ and k, and every adversary A, there exists an adversary C
with T(A) ≈ T(C) and

AdvcdhG,C(λ) := Pr [C(G, [x], [y]) = [xy]] ≥
∣
∣
∣AdvG3

A (λ, k) − AdvG4
A (λ, k)

∣
∣
∣ (21)

where G ← G(1λ) and the probability is over the random coins of G and C.

Proof. First note that A’s view is identical in both games, since we only modified
the winning condition. Let E denote the event that sk∗ can be extracted from
the forgery produced by A. Let X3, X4 denote the random variables describing
the output of the experiment in Game 3 and Game 4, respectively. From the
definition of the winning conditions of both games it follows that

Pr [X3 = 1|¬E] = Pr [X4 = 1|¬E] =⇒ |Pr [X3 = 1] − Pr [X4 = 1]| ≤ Pr [E]
≤ Pr [C(G,mpk) = msk ]

where the first inequality follows from the difference lemma [22] and the latter
holds because, since msk is not needed to run the experiment, C can run A and,
since E happened, extract the CDH solution from the forgery.

Game 5: We again modify the winning conditions of A by: A loses the game
if a valid signature under SIGk can be extracted from the forgery.

Claim. For every λ and k, and every adversary A, there exists a D with T(A) ≈
T(D) and

Adveuf-cma
SIGk,D(λ) := Pr

[
Expeuf-cma

SIGk,D(λ) = 1
]

≥ AdvG4
A (λ, k) − AdvG5

A (λ, k) (22)

Proof. The proof proceeds similar to the proof of the last claim. Note that the
signature oracle provided by the EUF-CMA experiment can be used to answer
A’s queries to the oracle Sigk(sk∗, ·).

Now let us determine the chances of A in winning game 5. If A does not
know any of the two witnesses, it follows from the perfect soundness of CRS∗

that A can not output a valid proof and therefore never wins game 5. Collecting
advantages over all games concludes our proof sketch of Theorem 3.
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Instantiation Based on SCasc. Towards an instantiation of our scheme, we
need to choose a concrete family PSk of NIWI proof systems and a family SIGk

of EUF-CMA signature schemes. We seek an interesting instantiation where
reconfiguration of the PKI using a higher value of k (i.e., publishing a new CRS)
leads to a system with increased security.

For this purpose, PSk and SIGk should be based on a family of assumptions
that (presumably) become weaker as k grows such as the Dk-MDDH assump-
tion families from [11]. The k-SCasc assumption family seen in Sect. 2 is one
interesting member of this class.

In the uniform adversary setting, [11,16] shows that any Dk-MDDH assump-
tion family is enough to obtain a family of GS proof system PSk := (CRSGenPSk

,
ProvePSk

,VerPSk
) with computationally indistinguishable CRS modes. More for-

mally, one can show for any k that if Dk-MDDH holds w.r.t. G, then for all PPT
adversaries A, the advantage Advind-crsPSk,A(λ) := |Pr [A(CRSPSk

) = mode] − 1
2 | is

negligible in λ, where CRSPSk
← CRSGenPSk

(G) and G ← G(1λ). If we base
the construction in [11,16] on the two-parameter variant of SCasc as defined
in Sect. 4.2 (or of any other Dk-MDDH assumption, which can be defined in a
straightforward manner), we obtain a family of GS proof systems as required by
our RSIG scheme.

Very recently, the concept of affine MACs was introduced in [5]. Basing
their construction on the Naor-Reingold PRF, whose security follows from any
Dk-MDDH assumption, we can now construct a family of signature schemes SIGk,
where for each k we have that SIGk is is EUF-CMA secure under Dk-MDDH
using the well-known fact that every PR-ID-CPA-secure IBE system implies an
EUF-CMA-secure signature system.7 Furthermore, we claim that using the same
construction we can obtain a family of signature schemes as required by using
the two-parameter variant of SCasc (or of any other Dk-MDDH assumption) as
the underlying assumption.
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Abstract. We provide constructions of multilinear groups equipped
with natural hard problems from indistinguishability obfuscation, homo-
morphic encryption, and NIZKs. This complements known results on the
constructions of indistinguishability obfuscators from multilinear maps
in the reverse direction.

We provide two distinct, but closely related constructions and show
that multilinear analogues of the DDH assumption hold for them. Our
first construction is symmetric and comes with a κ-linear map e : Gκ −→
GT for prime-order groups G and GT . To establish the hardness of the
κ-linear DDH problem, we rely on the existence of a base group for which
the (κ−1)-strong DDH assumption holds. Our second construction is for
the asymmetric setting, where e : G1 × · · · × Gκ −→ GT for a collection
of κ + 1 prime-order groups Gi and GT , and relies only on the standard
DDH assumption in its base group. In both constructions the linearity
κ can be set to any arbitrary but a priori fixed polynomial value in the
security parameter.

We rely on a number of powerful tools in our constructions: (proba-
bilistic) indistinguishability obfuscation, dual-mode NIZK proof systems
(with perfect soundness, witness indistinguishability and zero knowl-
edge), and additively homomorphic encryption for the group Z

+
N . At

a high level, we enable “bootstrapping” multilinear assumptions from
their simpler counterparts in standard cryptographic groups, and show
the equivalence of IO and multilinear maps under the existence of the
aforementioned primitives.

Keywords: Multilinear map · Indistinguishability obfuscation · Homo-
morphic encryption · Decisional Diffie–Hellman · Groth–Sahai proofs

1 Introduction

1.1 Main Contribution

In this paper, we explore the relationship between multilinear maps and obfus-
cation. Our main contribution is a construction of multilinear maps for groups
of prime order equipped with natural hard problems, using indistinguishabil-
ity obfuscation (IO) in combination with other tools, namely NIZK proofs,
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homomorphic encryption, and a base group G0 satisfying a mild cryptographic
assumption. This complements known results in the reverse direction, showing
that various forms of indistinguishability obfuscation can be constructed from
multilinear maps [GGH+13b,CLTV15,Zim15]. The relationship between IO and
multilinear maps is a very natural question to study, given the rich diversity of
cryptographic constructions that have been obtained from both multilinear maps
and obfuscation, and the apparent fragility of current constructions for multi-
linear maps. More on this below.

We provide two distinct but closely related constructions. One is for multi-
linear maps in the symmetric setting, that is non-degenerate multilinear maps
e : G1

κ −→ GT for groups G1 and GT of prime order N . Our construction
relies on the existence of a base group G0 in which the (κ − 1)-SDDH assump-
tion holds—this states that, given a κ-tuple of G0-elements (g, gω, . . . , gωκ−1

),
we cannot efficiently distinguish gωκ

from a random element of G0. Under this
assumption, we prove that the κ-MDDH problem, a natural analogue of the
DDH problem as stated below, is hard.

(The κ-MDDH problem, informal). Given a generator g1 ofG1 and κ+
1 group elements gai

1 in G with ai ←$ ZN , distinguish e(g1, . . . , g1)
∏κ+1

i=1 ai

from a random element of GT .

This problem can be used as the basis for several cryptographic construc-
tions [BS03] including, as the by now the classic example of multiparty non-
interactive key exchange (NIKE) [GGH13a].

Our other construction is for the asymmetric setting, that is multilinear maps
e : G1×· · ·×Gκ −→ GT for a collection of κ groups Gi and GT all of prime order
N . It uses a base group G0 in which we require only that the standard DDH
assumption holds. For this construction, we show that a natural asymmetric
analogue of the κ-MDDH assumption holds (wherein all but two of the κ + 1
group elements input to e come from distinct groups).

In Sect. 7, we also show the intractability of the rank problem for our con-
struction for multilinear maps in the symmetric setting; this is a generalization
of DDH-like problems to matrices that has proven to be useful in cryptographic
constructions [BHHO08,NS09,GHV12,BLMR13,EHK+13].

At a high level, then, our constructions are able to “bootstrap” from rather
mild assumptions in a standard cryptographic group to much stronger multi-
linear assumptions in a group (or groups, in the asymmetric setting) equipped
with a κ-linear map. Here κ is fixed up-front at construction time, but is other-
wise unrestricted. Of course, such constructions cannot be expected to come “for
free,” and we need to make use of powerful tools including probabilistic IO (PIO)
for obfuscating randomized circuits [CLTV15], dual-mode NIZK proofs enjoying
perfect soundness (for a binding CRS), perfect witness indistinguishability (for a
hiding CRS), and perfect zero knowledge, and additive homomorphic encryption
for the group (ZN ,+) (or alternatively, a perfectly correct FHE scheme). It is
an important open problem arising from our work to weaken the requirements
on, or remove altogether, these additional tools.
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1.2 General Approach

Our approach to obtaining multilinear maps in the symmetric setting is as follows
(with many details to follow in the main body). Let G0 with generator g0 be a
group of prime order N in which the (κ − 1)-SDDH assumption holds.

We work with redundant encodings of elements h of the base group G0 of
the form h = gx0

0 (gω
0 )x1 where gω

0 comes from a (κ−1)-SDDH instance; we write
x = (x0, x1) for the vector of exponents representing h. Then G1 consists of all
strings of the form (h, c1, c2, π) where h ∈ G0, ciphertext c1 is a homomorphic
encryption under public key pk1 of a vector x representing h, ciphertext c2 is a
homomorphic encryption under a second public key pk2 of another vector y also
representing h, and π is a NIZK proof showing consistency of the two vectors
x and y, i.e., a proof that the plaintexts x, y underlying c1, c2 encode the
same group element h. Note that each element of the base group G0 is multiply
represented when forming elements in G1, but that equality of group elements
in G1 is easy to test. An alternative viewpoint is to consider (c1, c2, π) as being
auxiliary information accompanying element h ∈ G0; we prefer the perspective
of redundant encodings, and our abstraction in Sect. 3 is stated in such terms.
When viewed in this way, our approach can be seen as closely related to the
Naor–Yung paradigm for constructing CCA-secure PKE [NY90].

Addition of two elements in G1 is carried out by an obfuscation of a circuit
CAdd that is published along with the groups. It has the secret keys sk1, sk2 hard-
coded in; it first checks the respective proofs, then uses the additive homomorphic
property of the encryption scheme to combine ciphertexts, and finally uses the
secret keys sk1, sk2 as witnesses to generate a new NIZK proof showing equality
of encodings. Note that the new encoding is as compact as that of the two input
elements.

The multilinear map on inputs (hi, ci,1, ci,2, πi) for 1 ≤ i ≤ κ is computed
using the obfuscation of a circuit CMap that has sk1 and ω hard-coded in. This
allows CMap to “extract” full exponents of hi in the form (xi,1 + ω · xi,2) from
ci,1, and thereby compute the element g

∏

i(xi,1+ω·xi,2)
0 . This is defined to be

the output of our multilinear map e, and so our target group GT is in fact G0,
the base group. The multilinearity of e follows immediately from the form of the
exponent.

In the asymmetric case, the main difference is that we work with different
values ωi in each of our input groups Gi. However, the groups are all constructed
via redundant encodings, just as above.

This provides a high-level view of our approach, but no insight into why the
approach achieves our aim of building multilinear maps with associated hard
problems. Let us give some intuition on why the κ-MDDH problem is hard in
our setting. We transform a κ-MDDH tuple h = ((gai

1 )i≤κ+1, g
d
T ), where d is

the product of the ai ∈ ZN , g1 is in the “encoded” form above, thus g1 =
(h1, c1, c2, π), and gT is a generator of GT = G0, into another κ-MDDH tuple
h′ with exponents a′

i = ai + ω for i ≤ κ. This means that the exponent of the
challenge element in the target group d′ =

∏κ
1 (ai+ω)aκ+1 can be seen as a degree

κ polynomial in ω. Therefore, with the knowledge of the ai and a (κ− 1)-SDDH
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challenge, with ω implicit in the exponent, we are able to randomize gd′
T replacing

gωκ

T with a uniform value.
Nevertheless, in the preceding simplistic argument we have made two assump-

tions. The first is that we are able to provide an obfuscation of a circuit C ′
Map

that has the same functionality as CMap over G1 without the explicit knowledge
of ω. We resolve this by showing a way of evaluating the κ-linear map on any
elements of G1 using only the powers gωi

0 for 1 ≤ i ≤ κ−1, and vectors extracted
from the accompanying ciphertexts, and then applying IO to the two circuits.1

The second assumption we made is that we can indeed switch from h to h′

without being noticed. In other words, that the vectors xi, yi representing gai

can be replaced (without being noticed) with vectors hi
′ whose second coordinate

is always fixed. Intuitively this is based on the IND-CPA security of the FHE
scheme, but in order to give a successful reduction we also have to change the cir-
cuit CAdd (since CAdd uses both decryption keys). We show two ways to do this:
one is based on probabilistic indistinguishability obfuscation [CLTV15], and the
other uses only (deterministic) indistinguishability obfuscation, and additionally
exploits the specific structure of a particular (pairing-based) NIZK implementa-
tion due to Groth and Sahai [GS08].

We note that in this work we do not construct graded encoding schemes as
in [GGH13a]. That is, we do not construct maps from Gi × Gj to Gi+j . On the
other hand, our construction is noiseless and is closer to multilinear maps as
defined by Boneh and Silverberg [BS03].

1.3 Attacks on Multilinear Maps

Multilinear maps have been in a state of turmoil, with the discovery of
attacks [CHL+15,HJ15,CLR15,MF15,Cor15] against the GGH13 [GGH13a],
CLT [CLT13,CLT15] and GGH15 [GGH15] proposals. Hence, our confidence in
constructions for graded encoding schemes (and thereby multilinear maps) has
been shaken. On the other hand, when IO is constructed from graded encod-
ing schemes via Barrington’s theorem [GGH+13b] or dual-input straddling sets
[AB15,Zim15], then none of the known attacks on graded encoding schemes
seem to apply [CGH+15]. Indeed, when building IO from multilinear maps one
restricts the pool of available operations to an attacker by fixing a circuit a priori
which means that certain “interesting” elements cannot be (easily) constructed.
Hence, currently it is perhaps more plausible to assume that IO exists than it
is to assume that secure multilinear maps exist. However, we stress that more
cryptanalysis of IO constructions is required to investigate what security they
provide.

Moreover, even though current constructions for IO rely on graded encoding
schemes, it is not implausible that alternative routes to achieving IO without
relying on multilinear maps will emerge in due course. And setting aside the novel
applications obtained directly from IO, multilinear maps, and more generally
graded encoding schemes, have proven to be very fruitful as constructive tools
1 This is not trivial since the new method should not lead to an exponential blow-up

in κ.
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in their own right (cf. [BS03,PTT10], resp., [FHPS13,GGH+13c,HSW13] and
[GGSW13,BWZ14,TLL14,BLR+15]). This rich set of applications coupled with
the current uncertainty over the status of graded encoding schemes and multilin-
ear maps provides additional motivation to ask what additional tools are needed
in order to upgrade IO to multilinear maps. As an additional benefit, we upgrade
(via IO) noisy graded encoding schemes to clean multilinear maps—sometimes
now informally called “dream” or “ideal” multilinear maps.

1.4 Related Work

The closest related work to ours is that of Yamakawa et al. [YYHK14,YYHK15];
indeed, their work was the starting point for ours. Yamakawa et al. construct
a self-pairing map, that is a bilinear map from G × G to G; multilinear maps
can be obtained by iterating their self-pairing. Their work is limited to the RSA
setting. It uses the group of signed quadratic residues modulo a Blum integer
N , denoted QR+

N , to define a pairing function that, on input elements gx, gy in
QR+

N , outputs g2xy. In their construction, elements of QR+
N are augmented with

auxiliary information to enable the pairing computation—in fact, the auxiliary
information for an element gx is simply an obfuscation of a circuit for computing
the 2xth power modulo ord(QR+

N ), and the pairing is computed by evaluating
this circuit on an input gy (say). The main contribution of [YYHK14] is in
showing that these obfuscated circuits leak nothing about x or the group order.

A nice feature of their scheme is that the degree of linearity κ that can be
accommodated is not limited up-front in the sense that the pairing output is
also a group element to which further pairing operations (derived from auxiliary
information for other group elements) can be applied. However, the construction
has several drawbacks. First, the element output by the pairing does not come
with auxiliary information.2 Second, the size of the auxiliary information for
a product of group elements grows exponentially with the length of the prod-
uct, as each single product involves computing the obfuscation of a circuit for
multiplying, with its inputs already being obfuscated circuits. Third, the main
construction in [YYHK14] only builds hard problems for the self-pairing of the
computational type (in fact, they show the hardness of the computational ver-
sion of the κ-MDDH problem in QR+

N assuming that factoring is hard). Still,
this is sufficient for several cryptographic applications.

In contrast, our construction is generic with respect to its platform group.
Furthermore, the equivalent of the auxiliary information in our approach does
not itself involve any obfuscation. Consequently, the description of a product
2 The authors of [YYHK14] state that such information can be added in their con-

struction, but what would be needed is the obfuscation of a circuit for computing
4xyth powers. The information available for building this would be obfuscations of
circuits for computing 2xth and 2yth powers, so an obfuscation of a composition of
already obfuscated circuits would be required. Strictly speaking then, the auxiliary
information associated with elements output by their pairing is of a different type
to that belonging to the inputs, making it questionable whether “self-pairing” is the
right description of what is constructed in [YYHK14].
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of group elements stays compact. Indeed, given perfect additive homomorphic
encryption for (Zp,+), we can perform arbitrary numbers of group operations in
each component group Gi. It is an open problem to find a means of augmenting
our construction with the equivalent of auxiliary information in the target group
GT , to make our multilinear maps amenable to iteration and thereby achieve
graded maps as per [GGH13a,CLT13].

2 Background

The security parameter is denoted by λ ∈ N. We assume that λ is an implicit
input given in unary to all algorithms. Given a randomized algorithm A we
denote the action of running A on inputs (x1, . . .) with fresh random coins r and
assigning the output(s) to y1, . . . by (y1, . . .)←$ A(x1, . . . ; r), and for a finite set
X, we denote the action of sampling a uniformly random element x from X
by x←$ X. Vectors are written in boldface x and by slight abuse of notation,
running algorithms on vectors of elements indicates component-wise operation.
A real-valued function μ(λ) is negligible if μ(λ) ∈ O(λ−ω(1)). The set of all
negligible functions is denoted by Negl.

2.1 Homomorphic Public-Key Encryption

Scheme Π := (Gen,Enc,Dec,Eval) denotes a homomorphic public-key encryp-
tion (HPKE) with message space {0, 1}λ, where Eval is a deterministic algo-
rithm. We require Π to be IND-CPA, perfectly correct, and compact, and also
assume that the secret keys are the random coins used in key generation; this
will allow to check key pairs for validity.

2.2 Obfuscators

An algorithm Obf is an obfuscator for circuit class C = {Cλ}λ∈N if for any
m ∈ {0, 1}λ, C ∈ Cλ, and C ←$ Obf(C) we have that C(m) = C(m). The
security of Obf with respect a class C requires that no ppt adversary A :=
(A1,A2) can distinguish the obfuscation of two circuits in C with noticeable
probability. We will consider two notions of obfuscation depending on the class
of permissible adversaries. The first notion is functional equivalence, whereby the
two circuits any sampled circuits C1, C2 must satisfy C(m) = C(m) for all m.
We will write IO for obfuscator whenever this level of security is assumed. The
second notion is X-ind sampling [CLTV15], which, roughly speaking, requires
the existence of a domain subset X of size at most X such that the two circuits
are functionally equivalent outside X and furthermore within X the outputs are
indistinguishable. We will write PIO for this case.

2.3 Dual-Mode NIZK Proof Systems

In our constructions we will be relying on special types of non-interactive zero-
knowledge proof systems [GS08]. These systems have “dual-mode” common
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reference string (CRS) generation algorithms that produce indistinguishable
CRSs in the “binding” and “hiding” modes. The standard prototype for such
schemes are pairing-based Groth–Sahai proofs [GS08], and using a generic NP
reduction to the satisfiability of quadratic equations we can obtain a suitable
proof system for any NP language. We formalize the syntax and security of such
proof systems next.

Syntax. A relation with setup is a pair of ppt algorithms (S,R) such that
S(1λ) outputs (gpk , gsk) and R(gpk , x, w) is a ternary relation and outputs a bit
b ∈ {0, 1}. A dual-mode non-interactive zero-knowledge (NIZK) proof system Σ
for (S,R) consists of five algorithms as follows. (1) Algorithm BCRS(gpk , gsk)
outputs a (binding) common reference string crs and an extraction trapdoor
tdext; (2) HCRS(gpk , gsk) outputs a (hiding) common reference string crs and
a simulation trapdoor tdzk; (3) Prove(gpk , crs, x, w), on input crs, an instance
x, and a witness w for x, outputs a proof π; (4) Verify(gpk , crs, x, π) on input
a bit string crs, an instance x, and a proof π, outputs accept or reject; (5)
WExt(tdext, x, π) on input an extraction trapdoor, an instance x, and a proof π,
outputs a witness w3; and (6) Sim(tdzk, crs, x) on input the simulation trapdoor
tdzk, the CRS crs, and an instance x, outputs a simulated proof π.

Security. We require a dual-mode NIZK to meet the following require-
ments. (1) binding and hiding CRS indistinguishability; (2) perfect completeness
under the hiding and binding modes; (3) perfect soundness under the binding
mode; (4) perfect extractability under the binding mode; (5) perfect witness-
indistinguishability under the hiding mode; and (6) perfect zero-knowledge under
the binding mode.

2.4 Hard Membership Problems

Finally, we will use languages with hard membership problems. More specifically,
we say that a family L = {Lλ} of families Lλ = {L} of languages L ⊆ U in a
universe U = Uλ has a hard subset membership problem if the following holds.
Namely, we require that no ppt algorithm can efficiently distinguish between
x←$ L for L←$ Lλ, and x←$ U = Uλ.

3 Multilinear Groups with Non-unique Encodings

Before presenting our constructions, we formally introduce what we mean by a
multilinear group (MLG) scheme. Our abstraction is a direct adaptation of the
“cryptographic” MLG setting of [BS03] to a setting where group elements have
non-unique encodings. In our abstraction, on top of the procedures needed for
3 We note that extraction in Groth–Sahai proofs does not for all types of statements

recover a witness. (Instead, for some types of statements, only gwi for a witness
variable wi ∈ Zp can be recovered.) Here, however, we will only be interested in
witnesses w = (w1, . . . , wn) ∈ {0, 1}n that are bit strings, in which case extraction
always recovers w. (Specifically, extraction will recover gwi for all i, and thus all wi.).
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generating, manipulating and checking group elements, we introduce an equality-
checking procedure which generalizes that for groups with unique encodings.

Syntax. A multilinear group (MLG) scheme Γ consists of six ppt algorithms
as follows.

Setup(1λ, 1κ): This is the setup algorithm. On input the security parameter
1λ and the multilinearity 1κ, it outputs the group parameters pp. These
parameters include generators g1, . . . , gκ+1, identity elements 11, . . . , 1κ+1,
and integers N1, . . . , Nκ+1 (which will represent group orders). We assume
pp is provided to the various algorithms below.

Vali(h): This is the validity testing algorithm. On input (the group parameters
and) a group index 1 ≤ i ≤ κ + 1 and a string h ∈ {0, 1}∗, it returns
b ∈ {�,⊥}. We define Gi, which is also parameterized by pp, as the set of
all h for which Vali(h) holds. We write h ∈ Gi when Vali(h) holds and
refer to such strings as group elements (since we will soon impose a group
structure on Gi). We require that the bit-strings in Gi have lengths that are
polynomial in 1κ and 1λ, a property that we refer to as compactness.

Eqi(h1, h2): This is the equality testing algorithm. On input two valid group
elements h1, h2 ∈ Gi, it outputs a Boolean value b ∈ {�,⊥}.4 We require
Eqi to define an equivalence relation. We say that the group has unique
encodings if Eqi simply checks the equality of bit strings. We write Gi(h)
for the set of all h′ ∈ Gi such that Eqi(h, h′) = �; for any such h, h′ in Gi we
write h = h′; sometimes we write h = h′ in Gi for clarity. Since “=” refers
to equality of bit-strings as well as equivalence under Eqi we will henceforth
will write “as bit-strings” when we mean equality in that sense. We require
|Gi/Eqi|, the number of equivalence classes into which Eqi partitions Gi,
to be finite and equal to Ni (where Ni comes from pp). Note that equality
testing algorithms Eqi for 1 ≤ i ≤ κ can be derived from one for Eqκ+1

using the multilinear map e defined below, provided Nκ+1 is prime.
Opi(h1, h2): This algorithm will define our group operation. On input two valid

group elements h1, h2 ∈ Gi it outputs h ∈ Gi. We write h1h2 in place
of Opi(h1, h2) for simplicity. We require that Opi respect the equivalence
relations Eqi, meaning that if h1 = h2 in Gi and h ∈ Gi, then h1h = h2h
in Gi. We also demand that h1h2 = h2h1 in Gi (commutativity), for any
third h3 ∈ Gi we require h1(h2h3) = (h1h2)h3 in Gi (associativity) and
h11i = h1 in Gi. These requirements ensure that Gi/Eqi acts as an Abelian
group of order Ni with respect to the operation induced by Opi and identity
element 1i.

The algorithm Op gives rise to an exponentiation algorithm Expi(h, z)
that on input h ∈ Gi and z ∈ N outputs an h′ ∈ Gi such that h′ = h · · · h in
Gi with z occurrences of h. When no h is specified, we assume h = gi. This
algorithm runs in polynomial time in the length of z. We denote Expi(h, z)
by hz and define h0 := 1i. Note that under the definition of Ni for any h ∈ Gi

4 We assume, without loss of generality, that all algorithms return ⊥ when run on
invalid group elements.
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we have that Expi(h,Ni) = 1i.5 This in turn leads to an inversion algorithm
Invi(h) that on input h ∈ Gi outputs hNi−1. We insist that gi in fact has
order Ni, so that (the equivalence class containing) gi generates Gi/Eqi.
We do not treat the case where the Ni are unknown but the formalism is
easily extended to include it by adding an explicit inversion algorithm and
by replacing Ni in pp with an approximation (which may be needed for
sampling purposes).

We use the bracket notion [EHK+13] to denote an element h = gx
i

in Gi with [x]i. When using this notation, we will write the group
law additively. This notation will be convenient in the construction and
analysis of our MLG schemes. For example [z]i + [z′]i succinctly denotes
Opi(Exp(gi, z),Exp(gi, z

′)). Note that when writing [z]i it is not necessar-
ily the case that z is explicitly known.

e(h1, . . . , hκ): This is the multilinear map algorithm. For κ group elements hi ∈
Gi as input, it outputs hκ+1 ∈ Gκ+1. We demand that for any 1 ≤ j ≤ κ
and any h′

j ∈ Gj

e(h1, . . . , hjh
′
j , . . . , hκ) = e(h1, . . . , hj , . . . , hκ)e(h1, . . . , h

′
j , . . . , hκ).

We also require the map to be non-degenerate in the sense that for some
tuple of elements as input the multilinear map outputs an element of Gκ+1

not in the equivalence class of 1κ+1. (This implies that e is surjective onto
Gκ+1/Eqκ+1 when Ni is prime, but need not imply surjectivity when Nκ+1

is composite.) We call an MLG scheme symmetric if the group algorithms are
independent of the group index for 1 ≤ i ≤ κ and the e algorithm is invariant
under permutations of its inputs. That is for any permutation π : [κ] −→ [κ]
we have

e(h1, . . . , hκ) = e(hπ(1), . . . , hπ(κ)).

We refer to all the other cases as being asymmetric. To distinguish the target
group we frequently write GT instead of Gκ+1 (and similarly for 1T and gT in
place of 1κ+1 and gκ+1) as its structure in our construction will be different
from that of the source groups G1, . . . ,Gκ.

Sami(z): This is the sampling algorithm. On input z ∈ N it outputs h ∈ Gi

whose distribution is “close” to that of uniform over the equivalence class
Gi(gz

i ). Here “close” is formalized via computational, statistical or perfect
indistinguishability. We also allow a special input ε to this algorithm, in
which case the sampler is required to output a uniformly distributed h ∈ Gi

together with a z such that h ∈ Gi(gz
i ). When outputting z is not required,

we say that Sami(ε) is discrete-logarithm oblivious. Note that for groups with
unique encodings these algorithms trivially exist. For notational convenience,
for a known a we define [a]i to be an element sampled via Sami(a).

In some applications, we also rely on the following algorithm, which provides
a canonical string for all group elements within an equivalence class.
5 However, note that Ni need not be the least integer with this property.
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Exti(h): This is the extraction algorithm. On input h ∈ Gi it outputs a string
s ∈ {0, 1}p(λ) where p(·) denotes a polynomial function. We demand that for
any h1, h2 ∈ Gi with h1 = h2 in Gi we have that Exti(h1) = Exti(h2) (as
bit-strings). We also require that the distribution of Exti([z]i) is uniform
over {0, 1}p(λ), for [z]i ←$ Sami(ε). For groups with unique encodings this
algorithm trivially exists.

In the full version of the paper we provide possible extensions to this syntax.

Comparison with GGH. Our formalization differs from that of [GGH13a]
which defines a graded encoding scheme. The main difference is that a graded
encoding scheme defines a ei,j algorithm that takes inputs from Gi and Gj and
returns an element in Gi+j such that the result is linear in each input. Moreover,
the abstraction and construction of graded encodings schemes in [GGH13a] do
not provide any validity algorithms; these are useful in certain adversarial sit-
uations such as CCA security and signature verification. Further, all known
candidate constructions of graded encoding schemes are noisy and only permit
a limited number of operations.

4 The Construction

We now present our construction of an MLG scheme Γ according to the syn-
tax introduced in Sect. 3. In the later sections we will consider special cases of
the construction and prove the hardness of analogues of the multilinear DDH
problem under various assumptions.

We rely on the following building blocks in our MLG scheme. (1) A cyclic
group G0 of some order N0 with generator g0 and identity 10; formally we think
of this as a 1-linear MLG scheme Γ0 with unique encodings in which e is triv-
ial; the algorithm Val0 implies that elements of G0 are efficiently recognizable.
(2) A general-purpose obfuscator Obf . (3) An additively homomorphic public-
key encryption scheme Π := (Gen,Enc,Dec,Eval) with plaintext space ZN

(alternatively, a perfectly correct HPKE scheme). (4) A dual-mode NIZK proof
system. (5) A family T D of (families of) languages TDwhich has a hard subset
membership problem, and such that all TDhave efficiently computable witness
relations with unique witnesses.6 (See Sect. 2 for more formal definitions.)

We reserve variables and algorithms with index 0 for the base scheme Γ0;
we also write N = N0. We require that the algorithms of Γ0 except for Setup0

and Sam0 are deterministic. We will also use the bracket notation to denote
the group elements in G0. For example, we write [z]0, [z

′]0 ∈ G0 for two valid
elements of the base group and [z]0 + [z′]0 ∈ G0 for Op0([z]0, [z

′]0). Variables
with nonzero indices correspond to various source and target groups. Given all
of the above components, our MLG scheme Γ consists of algorithms as detailed
in the sections that follow.
6 An example of such a language is the Diffie–Hellman language TD = {(gr

1 , gr
2) | r ∈

N} in a DDH group.
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4.1 Setup

The setup algorithm for Γ samples parameters pp0 ←$ Setup0(1λ) for the base
MLG scheme, generates two encryption key pairs (pk j , sk j)←$ Gen(1λ) (j =
1, 2), and a matrix W = (ω1, . . . ,ωk)t ∈ Z

κ×�
N where κ is the linearity and

� ∈ {2, 3} is a parameter of our construction. It sets

gpk := (pp0, pk1, pk2, [W]0,TD, y),

where [W]0 denotes a matrix of G0 elements that entry-wise is written in the
bracket notation, TD←$ T D, and y is not in TD. In our MLG scheme we set
N1 = · · · = Nκ+1 := N , where N is the group order implicit in pp0. The
setup algorithm then generates a common reference string crs = (crs ′, y) where
crs ′ ←$ BCRS(gpk , gsk) for a relation (S,R) that will be defined in Sect. 4.2. It
also constructs two obfuscated circuits CMap and CAdd which we will describe in
Sects. 4.3 and 4.4. For 1 ≤ i ≤ κ, the identity elements 1i and group generators
gi are sampled using Sami(0) and Sami(xi) respectively for algorithm Sami

described in Sect. 4.5 with xi ∈ [N ] that is co-prime to N . We emphasize that this
approach is well defined since the operation of Sami is defined independently of
the generators and the identity elements and depends only on gpk and crs. We
set 1κ+1 = 10 and gκ+1 = g0. The scheme parameters are

pp := (gpk , crs, CMap, CAdd, g1, . . . , gκ+1, 11, . . . , 1κ+1).

We note that this algorithm runs in polynomial time in λ as long as κ is poly-
nomial in λ.

4.2 Validity and Equality

The elements of Gi for 1 ≤ i ≤ κ are tuples of the form h = ([z]0, c1, c2, π)
where c1, c2 are encryptions of vectors from Z

�
N under , pk1, pk2, respectively

(encryption algorithm Enc extends from plaintext space ZN to Z
�
N in the obvious

way) and where π is a NIZK to be defined below. We refer to (c1, c2, π) as the
auxiliary information for [z]0. The elements of Gκ+1 are just those of G0.

The NIZK proof system that we use corresponds to the following inclu-
sive disjunctive relation (S,R := R1 ∨ R2). Algorithm S(1λ) outputs gpk =
(pp0, pk1, pk2, [W]0,TD) as defined above and sets gsk = (sk1, sk2). Relation
R1 on input gpk , tuple ([z]0, c1, c2), and witness (x,y, r1, r2, sk1, sk2) accepts
iff [z]0 ∈ G0, the representations of [z]0 as x,y ∈ Z

�
N are valid with respect to

[W]0 in the sense that

[z]0 = [〈x,ωi〉]0 ∧ [z]0 = [〈y,ωi〉]0,
(where 〈·, ·〉 denotes inner product) and the following ciphertext validity condi-
tion (with respect to the inputs to the relation) is met:

(c1 = Enc(x, pk1; r1) ∧ c2 = Enc(x, pk2; r2))
∨

(pk1, sk1) = Gen(sk1) ∧ (pk2, sk2) = Gen(sk2)
∧x = Dec(c1, sk1) ∧ y = Dec(c2, sk2))
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Recall that we have assumed the secret key of the encryption scheme to be
the random coins used in Gen. Note that the representation validity check can
be efficiently performed “in the exponent” using [W]0 and the explicit knowledge
of x and y. Note also that for honestly generated keys and ciphertexts the two
checks in the expression above are equivalent (although this not generally the
case when ciphertexts are malformed).

Relation R2 depends on the language TD, and on input gpk , tuple
([z]0, c1, c2), and witness wy accepts iff y ∈ TD.

For 1 ≤ i ≤ κ, the Vali algorithm for Γ , on input ([z]0, c1, c2, π), first checks
that the first component is in G0 using Val0 and then checks the proof π; if
both tests pass, it then returns �, else ⊥. Observe that for an honest choice of
crs = (crs ′, y), the perfect completeness and the perfect soundness of the proof
system ensure that only those elements which pass relation R1 are accepted.
Algorithm Valκ+1 just uses Val0.

The equality algorithm Eqi of Γ for 1 ≤ i ≤ κ first checks the validity of the
two group elements passed to it and then returns true iff their first components
match, according to Eq0, the equality algorithm from the base scheme Γ0. Algo-
rithm Eqκ+1 just uses Eq0. The correctness of this algorithm follows from the
perfect completeness of Σ.

4.3 Group Operations

We provide a procedure that, given as inputs h = ([z]0, c1, c2, π) and h′ =
([z′]0, c1

′, c2
′, π′) ∈ Gi, generates a tuple representing the product h ·h′. This, in

particular, will enable our multilinear map to be run on the additions of group
elements whose explicit representations are not necessarily known. We exploit
the structure of the base group as well as the homomorphic properties of the
encryption scheme to “add together” the first three components. We then use
(sk1, sk2) as a witness to generate a proof π′′ that the new tuple is well formed.
(For technical reasons we check the validity of h and h′ in two different ways:
using proofs π, π′, and also explicitly using (sk1, sk2). Note that, although useful
in the analysis, the explicit check is redundant by the perfect soundness of the
proof system under a binding crs ′.)

In pp we include an obfuscation of the CAdd circuit shown in Fig. 1 (top), and
again we emphasize that steps 5a or 5b are never reached with a binding crs ′ (but
they may be reached with a hiding crs ′ later in the analysis). Either an IO or a
PIO will be used to obfuscate this circuit. Note that although we have assumed
the evaluation algorithm to be deterministic, algorithm Prove is randomized and
we need to address how we deal with its coins. When using PIO to obfuscate
CAdd, the obfuscator directly deals with the needed randomness.7 When using
IO, a random (but fixed) set of coins will be hardwired into the circuit and
hence the same set of coins will be used for all inputs. (As we shall see, when
using IO the proof system has to satisfy extra structural requirements; these
7 Typically, the obfuscated circuit will have a PRF key hardwired in and derives the

required randomness by applying the PRF to the circuit inputs.
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Fig. 1. Top: Circuit for addition of group elements. Explicit randomness r is used with
an IO and is internally generated when using a PIO. Bottom: Circuit implementing
the multilinear map. Recall that here gpk = (pp0, pk1, pk2, [W]0,TD, y).

ensure that using the same coins throughout does not compromise security.)
The Opi algorithm for 1 ≤ i ≤ κ runs the obfuscated circuit on i, the input
group elements. Algorithm Opκ+1 just uses Op0 as usual. The correctness of
this algorithm follows from those of Γ0 and Π, the completeness of Σ and the
correctness, in our sense of, (the possibly probabilistic) obfuscator Obf ; see
Sect. 2 for the definitions.

4.4 The Multilinear Map

The multilinear map for Γ , on input κ group elements hi = [zi]i = ([zi]0, ci,1,
ci,2, πi), uses sk1 to recover the representation xi. It then uses the explicit knowl-
edge of the matrix W to compute the output of the map as

e([z1]1, . . . , [zκ]κ) :=

[
k∏

i=1

〈xi,ωi〉
]

κ+1

.



Multilinear Maps from Obfuscation 459

Recalling that Gκ+1 is nothing other than G0, and gκ+1 = g0, the output of
the map is just the G0-element (g0)

∏k
i=1〈xi,ωi〉. The product in the exponent

can be efficiently computed over ZN for any polynomial level of linearity κ
and any � as it uses xi and ωi explicitly. The multilinearity of the map follows
from the linearity of each of the multiplicands in the above product (and the
completeness of Σ, the correctness of Π, and the correctness of the (possibly
probabilistic) obfuscator Obf). An obfuscation CMap of the circuit implementing
this operation (see Fig. 1, bottom) will be made available through the public
parameters and e is defined to run this circuit on its inputs.

4.5 Sampling and Extraction

Given vectors x and y in Z
�
N satisfying 〈x,ωi〉 = 〈y,ωi〉, we set [z]0 := [〈y,ωi〉]0

(which can be computed using [W]0 and explicit knowledge of x) and

[z]i ← (
[z]0, c1 = Enc(x, pk1; r1), c2 = Enc(y, pk2; r2),

π = Prove(gpk , crs, ([z]i, c1, c2), (x,y, r1, r2)
)
.

If W is explicitly known the vectors x and y can take arbitrary forms subject
to validity. This matrix, however, is only implicitly known, and in our sampling
procedure we set x = y = (z, 0) when � = 2 and x = y = (z, 0, 0) when
� = 3. (We call these the canonical representations.) Note that the outputs of
the sampler are not statistically uniform within Gi([z]i). Despite this, under the
IND-CPA security of the encryption scheme it can be shown that the outputs
are computationally close to uniform.

Since the target group has unique encodings, as noted in Sect. 3, an extraction
algorithm for all groups can be derived from one for the target group. The latter
can be implemented by applying a universal hash function to the group elements
in GT , for example.

5 Indistinguishability of Encodings

In this section we will state two theorems that are essential tools in establishing
the intractability of the κ-MDDH for our MLG scheme Γ constructed in Sect. 4.
These theorems, roughly speaking, state that valid encodings of elements within
a single equivalence class are computationally indistinguishable. We formalize
this property via the κ-Switch game shown in Fig. 2. This game lets an adversary
A choose an element [z]i ∈ Gi by producing two valid representations (x0,y0)
and (x1,y1) for it. The adversary is given an encoding of [z]i generated using
(xb,yb) for a random b, and has to guess the bit b. In this game, besides access
to pp, which contains the obfuscated circuits for the group operation and the
multilinear map, we also provide the matrix W in the clear to the adversary.
This strengthens the κ-Switch game and is needed for our later analysis.

To prove that the advantage of A in the κ-Switch game is negligible we
rely on the security of the obfuscator, the IND-CPA security of the encryption
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Fig. 2. Game formalizing the indistinguishability of encodings with an equivalence
class. This game is specific to our construction Γ . An adversary is legitimate if z =
〈xb, ωi〉 = 〈yb, ωi〉 for b ∈ {0, 1}. We note that A gets explicit access to matrix W
generated during setup.

scheme, and the security of the NIZK proof system. Depending on the type of
the obfuscator and proof system used, we show indistinguishability of encodings
in two incomparable ways: (1) using a probabilistic obfuscator that is secure
against X-IND adversaries and a dual-mode NIZK as defined in Sect. 2; and (2)
using a (standard) indistinguishability obfuscator for deterministic circuits and
a dual-mode NIZK that is required to satisfy a “witness-translation” property
that we formalize in Sect. 5.2.

5.1 Using Probabilistic Indistinguishability Obfuscation

The indistinguishability of encodings using the first set of assumptions above
is conceptually simpler to prove and we start with this case. Intuitively, the
IND-CPA security of the encryption scheme will ensure that the encryptions of
the two representations are indistinguishable. This argument, however, does not
immediately work as the parameters pp contain component CAdd that depends
on both decryption keys. We deal with this by finding an alternative implemen-
tation of this circuit without the knowledge of the secret keys, in the presence
of a slightly different public parameters (which are computationally indistin-
guishable to those described in Sect. 4). The next lemma, roughly speaking, says
that provided parameters pp include an instance y ∈ TD, then there exists an
alternative implementation ĈAdd that does not use the secret keys, and whose
obfuscation is indistinguishable to that of CAdd of Fig. 1 (top) for an adversary
that knows the secret keys. It relies on the security of the obfuscator and the
security of the NIZK proof system. A formal proof is in the full version, we give
an overview of the proof below.

Lemma 1. Let PIO be a secure obfuscator for X-IND samplers, and Σ be a
dual-mode NIZK proof system. Additionally, let parameters p̃p sampled as in
Sect. 4 but with ỹ ∈ TD, and let p̂p sampled as p̃p but with a hiding CRS ĉrs ′,
and an obfuscation of circuit ĈAdd of Fig. 3. Then, for any ppt adversary A,

Pr[A(p̃p, sk1, sk2) = 1 : (sk1, sk2)←$ Gen(1λ)]
− Pr[A(p̂p, sk1, sk2) = 1 : (sk1, sk2)←$ Gen(1λ)] ∈ Negl.
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Fig. 3. Alternative circuit for addition of group elements. Recall that here p̂p includes
gpk = (pp0, pk1, pk2, [W]0,TD, ỹ) where ỹ ∈ TD (also includes a hiding CRS ĉrs ′).
The circuit uses (the) witness wy to ỹ ∈ TD to produce π′′.

Proof (Sketch). The crucial observation is that a witness wy to ỹ ∈ TD is also a
witness to x ∈ R, and therefore ĈAdd can use wy instead of sk1, sk2 to produce
the output proof π′′. Below we provide brief descriptions of the transformation
from CAdd to ĈAdd, as well as some intuition for the justifications of each step.

Game0: We start with (a PIO obfuscation of) circuit CAdd of Fig. 1 and with p̃p
including ỹ ∈ TD and a binding crs ′.

Game1: The circuit has witness wy to ỹ ∈ TD hardcoded. If some input reaches
the “invalid” branches (steps 5a or 5b of CAdd; see Fig. 1 (top)), CAdd does
not extract a witness from the corresponding proof, but instead uses wy

to generate proof π′′. Since the witness wy is unique, and the CRS crs ′

guarantees perfect soundness, this leads to exactly the same behavior of
CAdd in Game 0. Hence, this hop is justified by PIO. Note that Game 1
requires no extraction trapdoor tdext anymore.

Game2: The CRS ĉrs ′ included in the public parameters is now hiding (such
that the generated proofs are perfectly witness-indistinguishable).

Game3: Here, output proofs π′′ for those inputs entering the “valid” branch (step
5c; see Fig. 1) use wy (and not sk1, sk2) as witness. In particular, this game
does not need to perform a explicit validity check (using sk1, sk2) anymore.
This hop is justified by PIO, where the perfect witness indistinguishability of
ĉrs ′ (when constructed as a hiding CRS) guarantees that the CAdd circuits
in Games 2 and 3 have identically distributed outputs.

With the above lemma we can invoke IND-CPA security, and via a sequence
of games obtain the result stated below. The proof can be found in the full
version; here we give a high-level overview of the proof (see also Fig. 4).

Theorem 1 (Switching encodings using PIO). Let Γ be the MLG scheme
constructed in Sect. 4, where PIO is secure for X-IND samplers, Π is an
IND-CPA-secure encryption scheme, and Σ is a dual-mode NIZK proof sys-
tem. Then, encodings of equivalent group elements are indistinguishable. More
precisely, for any ppt adversary A and all λ ∈ N,

Advκ-switch
Γ,A (λ) ∈ Negl.
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Proof (Sketch). The strategy of the proof is as follows. We start replacing para-
meters pp as described in Sect. 4 with parameters p̃p of Lemma 1, the latter
include an instance ỹ ∈ TD, this hop is justified by the hardness of deciding
membership in TD; then we apply Lemma 1 to replace parameters p̃p with p̂p,
including an obfuscation of circuit ĈAdd of Fig. 3; at this point we invoke the
IND-CPA security of the encryption scheme to change the representation vector
encrypted under pk2 of the challenge encoding (the challenge proof π∗ is gener-
ated using simulator trapdoor tdzk, and hence is identically distributed to a real
proof); next, we revert back to parameters pp, including a no-instance y /∈ TD
and an obfuscation of circuit CAdd of Fig. 1, which is justified again by the hard-
ness of TDand Lemma 1; note that now it is possible to use sk2 in CMap, instead
of sk1, invoking the security of PIO (functional equivalence follows from the
perfect soundness of the NIZK with a binding CRS); last, we repeat the same
steps to change the representation vector encrypted under pk1. This completes
the proof. (See Fig. 4 for a sketch of the hybrids.)

5.2 Doing Without Probabilistic Obfuscation

In contrast to the PIO-based approach from Sect. 5.1, we can also only use
(deterministic) indistinguishability obfuscation, but a stronger notion of NIZK
proof system. Concretely, our proof works for any dual-mode NIZK proof system
that enjoys perfect completeness, perfect soundness (when the CRS is generated
using BCRS), perfect WI (when the CRS is generated by HCRS), and meets a
structural requirement we explain below. This requirement is fulfilled by Groth–
Sahai proofs [GS08] based on the DDH or k-Linear assumption.

A structural property. To explain the required structural property, recall
first that perfect WI guarantees that proofs that are honestly generated (under
a hiding CRS) have a distribution that is independent of the used witness. For
our purposes, we require a slightly more specialized property: we require that
a change of the used witness (in Prove) can be compensated with a change of
random coins. In other words, we require that for every hiding CRS crs, and for
every statement x and pair of witnesses w,w′ for x, there is a value Δ such that

∀r : Prove(gpk , crs, x, w; r) = Prove(gpk , crs, x, w′; r + Δ), (
)

where “+” is a suitable homomorphic operation on random coins. Note that Δ
may depend on w and w′, but not on r. Furthermore, we require that Δ can be
efficiently computed from x, w, w′, and the zero-knowledge CRS trapdoor tdzk

output by HCRS.
Again, we stress that Groth–Sahai proofs have the desired property (when

restricting to statements with witnesses w ∈ {0, 1}∗ that are bit strings). We
give more details in the full version of this paper.

The deterministic circuit CAdd. We now comment on a necessary slight
tweak to the multilinear map construction itself. Namely, we have to view both
CAdd and CMap as deterministic circuits (so they can be obfuscated using an
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Fig. 4. Outline of the proof steps of Theorem 1. b is the random bit of the κ-Switch
game (see Fig. 2). Changing between pp and p̃p is justified by the hardness of deciding
membership of TD, and changing between p̃p and p̂p by Lemma 1. The hops relying
on PIO use the perfect soundness under binding crs ′ to argue function equivalence.

indistinguishability obfuscator IO). For CMap, this is trivial, since it already is
deterministic. Furthermore, we can view CAdd as a deterministic circuit that
takes as input (among other things) random coins r, and outputs (among other
things) a NIZK proof π = Prove(gpk , crs, x, w; r) for a fixed witness w hard-
wired into CAdd. For our purposes, we use a slight variation of CAdd that instead
generates π as Prove(gpk , crs, x, w;R), where R is a uniformly random value
that is hardwired (upon creation time) into CAdd. When we want to make the
choice of R explicit, we also write CR

Add.
For this slight variation of our construction, we claim:

Theorem 2 (Switching encodings using IO). Let IO be an indistinguisha-
bility obfuscator, Π an IND-CPA encryption scheme, and Σ the specific dual-
mode NIZK proof system of Groth and Sahai (see [GS08]). Let Γ be the MLG
scheme of Sect. 4 obtained using these primitives. Then, for any ppt adver-
sary A,

Advκ-switch
Γ,A (λ) ∈ Negl.

Here, we only give a brief intuition for the proof. A more detailed proof is given
in the full version.

In a nutshell, the proof of Theorem 2 proceeds like that of Theorem 1, except
of course in those steps that use the security of the probabilistic indistinguishabil-
ity obfuscator PIO. There are two types of such steps (resp. changes of CMap or
CAdd): in the first type, functional equivalence is fully preserved (even when view-
ing CAdd as a deterministic circuit. This type of change occurs in the hop from
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Game0 to Game1 in the proof of Lemma 1, and in the hops from Game5 to Game6

and from Game11 to Game 12 in the proof of Theorem 1. Since the corresponding
deterministic circuits are functionally equivalent (in case of CAdd = CR

Add: when
the same value of R is used), the security of IO can be directly utilized.

The second type of steps lets CAdd use a different witness (e.g., wy instead
of (sk1, sk2), or vice versa) to generate consistency proofs π′′. This type of proof
step occurs in the hop from Game2 to Game3 in the proof of Lemma 1. Note
that at this point, the generated CRS is hiding, and CAdd = CR

Add uses a single
hardcoded random string R as random coins to generate such proofs. By property
(
) above, we have that

CR
Add,1 ≡ CR+Δ

Add,2,

where CAdd,1 and CAdd,2 denote the CAdd variants before and after the step,
and Δ denotes the randomness shift value from (
).

Hence, this change can be justified with a reduction to the (deterministic)
indistinguishability property of IO. Specifically, a suitable circuit sampler would
sample circuits C1 := CR

Add,1 and C2 := CR+Δ
Add,2 for a uniform R, and a Δ

generated from the corresponding witnesses. (We note that during this reduction,
we can of course assume both relevant witnesses (sk1, sk2) and wy to be known.)

The remaining parts of the proof of Theorem 2 (including the proof of
Lemma 1) apply unchanged.

6 The Multilinear DDH Problem

In the full version we show that natural multilinear analogues of the decisional
Diffie–Hellman (DDH) problem are hard for our MLG scheme Γ from Sect. 4. We
will establish this for two specific Setup algorithms which give rise to symmetric
and asymmetric multilinear maps in groups of prime order N . (See Sect. 3 for
the formal definition.) In the symmetric case, we will base hardness on the q-
strong DDH problem [BBS04] and in the asymmetric case on the standard DDH
problem.

6.1 Intractable Problems

We start by formalizing the hard problems that we will be relying on and those
whose hardness we will be proving. We do this in a uniform way using the
language of group schemes of Sect. 3. Informally, the DDH problem requires the
indistinguishability of gxy from a random element given (gx, gy) for random x

and y, the q-SDDH problem requires this for gxq+1
given (gx, gx2

, . . . , gxq

) and
the κ-MDDH problem, whose hardness we will be establishing, generalizes the
standard bilinear DDH problem (and its variants) and requires this for g

a1···aκ+1
T

in the presence of (ga1 , . . . , gaκ+1).

The DDH problem. We say that a group scheme Γ0 is DDH intractable if

Advddh
Γ0,A(λ) := 2 · Pr

[
DDHA

Γ0
(λ)

] − 1 ∈ Negl,

where game DDHA
Γ0

(λ) is shown in Fig. 5 (left).
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Fig. 5. Left: The DDH problem. Middle: The strong DDH problem. Right: The
multilinear DDH problem, where I specifies the available group elements. By slight
abuse of notation, repeated use of [ai]i denotes the same sample.

The q-SDDH problem. For q ∈ N we say that a group scheme Γ0 is q-SDDH
intractable if

Advq-sddh
Γ0,A (λ) := 2 · Pr

[
q-SDDHA

Γ0
(λ)

] − 1 ∈ Negl,

where game q-SDDHA
Γ0

(λ) is shown in Fig. 5 (middle).

The (κ, I)-MDDH problem. For κ ∈ N we say that an MLG scheme Γ is
κ-MDDH intractable with respect to the index set I if

Adv(κ,I)-mddh
Γ,A (λ) := 2 · Pr

[
(κ, I)-MDDHA

Γ (λ)
] − 1 ∈ Negl,

where game (κ, I)-MDDHA
Γ (λ) is shown in Fig. 5 (right). Here I is a set of

ordered pairs of integers (i, j) with 1 ≤ i ≤ κ + 1, 1 ≤ j ≤ κ. The adversary is
provided with challenge group elements [ai]j for (i, j) ∈ I, so that its challenge
elements may lie in any combination of the groups. The standard MDDH problem
corresponds to the case where

I = I∗ := {(1, 1), . . . , (κ, κ), (κ + 1, κ)}.

6.2 The Symmetric Setting

We describe a special variant of our general construction in Sect. 4 which gives
rise to a symmetric MLG scheme as defined in Sect. 3. Recall that in the con-
struction a matrix W was chosen uniformly at random in Z

κ×�
N . We set � := 2

and sample W = (ω1, . . . ,ωκ)t by setting ωi = (1, ω) for a random ω ∈ ZN .
The generators and identity elements for all groups are set to be a single value
generated for the first group. These modifications ensure that the scheme algo-
rithms are independent of the index for 1 ≤ i ≤ κ and that e is invariant under
all permutations of its inputs.
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The following lemma, which provides a mechanism to compute polynomial
values “in the exponent,” will be helpful in the security analysis of our construc-
tions.

Lemma 2 (Horner in the exponent). Let ω = (ω0, ω1, ω2) ∈ ZN , and
xi = (xi,0, xi,1, xi,2) ∈ Z

3
N for i = 1 . . . κ. Define zi := 〈xi,ω〉. Then given only

the implicit values [ωi
0ω

j
1ω

k
2 ]T , for all i, j, k such that i+j+k = κ and the explicit

values xi the element [z1 · · · zn]T can be efficiently computed.

Proof. Let

P (ω0, ω1, ω2) :=
κ∏

i=1

(xi,0 · ω0 + xi,1 · ω1 + xi,2 · ω2) =
∑

i+j+k=κ

pijk · ωi
0ω

j
1ω

k
2 ,

Clearly, if all pijk are known then [P (ω)]T can be computed using [ωi
0ω

j
1ω

k
2 ]T

with polynomially many operations. (There are O(κ2) summands above.) To
obtain these values we apply Horner’s rule. Define

Pi(ω0, ω1, ω2) :=

{
1 if i = 0 ;
(xi,0 · ω0 + xi,1 · ω1 + xi,2 · ω2) · Pi−1(ω0, ω1, ω2) otherwise.

The coefficients of Pκ are the required pijk values. Let ti denote the number of
terms in Pi. It takes at most 3ti multiplications and ti − 1 additions in ZN to
compute the coefficients of Pi from Pi−1 and xi. Since ti ∈ O(κ2), at most O(κ3)
many operations in total are performed. We note that the lemma generalizes to
any (constant) � with computational complexity O(κ�).

A formal statement and proof of the following result is in the full version of
the paper, here we give a high level overview. Below I = I∗ denotes the index
set with all the second components being 1.

Theorem 3 ((κ−1)-SDDH hard =⇒ symmetric (κ, I∗)-MDDH hard). Let
Γ ∗ denote scheme Γ of Sect. 4 constructed using base group Γ0 and an indistin-
guishability obfuscator IO with modifications as described above, and let κ ∈ N.
Then for any ppt adversary A there are ppt adversaries B1, B2 of essentially
the same complexity as A such that

Adv(κ,I∗)-mddh
Γ ∗,A (λ) ≤ 2 · Adv(κ−1)-sddh

Γ0,B1
(λ) + (κ + 1) · Advκ-switch

Γ ∗,B2
(λ) + μ(λ),

for all λ ∈ N and a suitable negligible function μ.

Proof (Sketch). In our reduction, the value ω used to generate W will play the
role of the implicit value in the SDDH problem instance. We therefore change the
implementation of CMap to one that does not know ω in the clear and only uses
the implicit values [ωi]0 (recall that in our construction GT is just G0, so these
elements come from the SDDH instance). Such a circuit C∗

Map can be efficiently
implemented using Horner’s rule above. In more detail, C∗

Map has [ωi]T hard-
coded in, recovers xi from its inputs using sk1, and then applies Lemma 2 with
(ω0, ω1, ω2) := (1, ω, 0) to evaluate the multilinear map.

The proof proceeds along a sequence of κ + 6 games as follows.
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Game0: This is the κ-MDDH problem (Fig. 5, right). We use xi and yi to denote
the representation vectors of ai generated within the sampler SamI(i)(ai),
where (i, I(i)) ∈ I.

Game1–Gameκ: In these games we gradually switch the representations of [ai]1
for i ∈ [κ] so that they are of the form (ai −ω, 1). Each hop can be bounded
via the Switch game. (We have not (yet) changed the representation of
[aκ+1]1.)

Gameκ+1: This game introduces a conceptual change: the ai for i ∈ [κ] are
generated as ai + ω. Note that the distributions of these values are still
uniform and that the exponent of the MDDH challenge when b = 1 is

aκ+1 ·
κ∏

i=1

(ai + ω).

This game prepares us for embedding a (κ−1)-SDDH challenge and then to
stepwise randomize the exponent above.

Gameκ+2: This game switches CMap to C∗
Map as defined above. We use indis-

tinguishability obfuscation and the fact that these circuits are functionally
equivalent to bound this hop. We are now in a setting where ω is only implic-
itly known.

Gameκ+3: This game replaces [ωκ]0 with a random value [τ ]0 in C∗
Map and the

computation of the challenge exponent. This hop can be bounded via the
(κ−1)-SDDH game. Note that at this point the exponent is not information-
theoretically randomized as τ is used within C∗

Map.
Gameκ+4: This game sets the representation of [aκ+1]1 to (aκ+1 − ω, 1). Once

again, this hop can be bounded by the Switch game.
Gameκ+5: This game introduces a conceptual change analogous to that in

Gameκ+1 for aκ+1. Note that a linear factor (aκ+1 + ω) is introduced in
this game. This will help to fully randomize the exponent next.

Gameκ+6: Analogously to Gameκ+3, this game replaces [ωκ]0 with a random
value [σ]0. We bound this hop using the (κ − 1)-SDDH game.

In Gameκ+6, irrespective of the value of b ∈ {0, 1}, the challenge is uniformly
and independently distributed as σ remains outside the view of the adversary.
Hence the advantage of any (unbounded) adversary in this game is 0. This
concludes the sketch proof.

6.3 The Asymmetric Setting

We describe a second variant of the construction in Sect. 4 that results in
an asymmetric MLG scheme. We set � := 2 and choose the matrix W =
(ω1, . . . ,ωκ)t by setting ωi := (1, ωi) for random ωi ∈ ZN .

The following theorem shows that for index set I = {(i, I(i)) : 1 ≤ i ≤ κ+1}
given by an arbitrary function I : [κ + 1] −→ [κ] of range at least 3, this
construction is (κ, I)-MDDH intractable under the standard DDH assumption
in the base group, the security of the obfuscator, and the κ-Switch game in
Sect. 5. We present the proof intuition here and leave the details to the full
version.
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Theorem 4 (DDH hard =⇒ asymmetric (κ, I∗)-MDDH hard). Let Γ ∗

denote scheme Γ of Sect. 4 constructed using base group Γ0 and an indistin-
guishability obfuscator IO with modifications as described above. Let κ ≥ 3 be
a polynomial and I∗ as above. Then for any ppt adversary A there are ppt
adversaries B1 and B2 such that

Adv(κ,I∗)-mddh
Γ ∗,A (λ) ≤ 2 · Advddh

Γ0,B1
(λ) + 3 · Advκ-switch

Γ ∗,B2
(λ) + μ(λ),

for a all λ ∈ N and suitable negligible function μ.

Proof (Sketch). The general proof strategy is similar to that of the symmetric
case, and proceeds along a sequence of 8 games as follows.

Game0: This is the (κ, I)-MDDH problem. Without loss of generality we assume
that I(i) = i for i ∈ [3].

Game1–Game3: In these games we gradually switch the representation vectors
of [ai]i for i = 1, 2, 3 to those of the form (ai −ωi, 1). Each of these hops can
be bounded via the Switch game.

Game4: This game introduces a conceptual change and generates ai as ai + ωi.
The exponent of the MDDH challenge when b = 1 is

(a1 + ω1)(a2 + ω2)(a3 + ω3) ·
κ+1∏

j≥4

aj .

Game5: In this game we change the implementation of CMap to one which uses
all but two of the ωi explicitly, the remaining two implicitly, and additionally
[ω1ω2]0, i.e., ω1ω2 given implicitly in the exponent. The new circuit C∗

Map

will be implemented using Horner’s rule and is functionally equivalent to
the original circuit used in the scheme. We invoke the IO security of the
obfuscator to conclude the hop. This game prepares us to embed a DDH
challenge next.

Game6: In this game we replace all the occurrences of [ω1ω2]0 with a random [τ ]0
and the corresponding implicit values. We bound the distinguishing advan-
tage in this hop down to the DDH game.

Game7: Similarly to Game5, we change the implementation of C∗
Map using [τω3]0

and argue via indistinguishability of obfuscations for functionally equivalent
circuits.

Game8: Finally, using the hardness of DDH, we replace all the occurrences of
[τω3]0 with a random [σ]0.

In Game8, irrespective of the value of b ∈ {0, 1}, the challenge is uniformly and
independently distributed as σ remains outside the view of the adversary. Hence
the advantage of any (possibly unbounded) adversary in this game is 0.

7 The Rank Problem

The RANK problem is a generalization of DDH-like problems to matrices and has
proven to be very useful in cryptographic constructions [BHHO08,NS09,GHV12,
BLMR13,EHK+13]. Here we consider the problem in groups with non-unique
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Fig. 6. The RANK problem parameterized by integers κ, m, n, r0 and r1.

encodings equipped with a multilinear map. Our main result is to show that,
subject to certain restrictions, the intractability of the rank problem for our
construction of an MLG scheme Γ from Sect. 4 follows from that of the q-SDDH
problem for Γ0.

7.1 Formalization of the Problem

The (κ,m, n, r0, r1)-RANK problem. For κ,m, n, r0, r0 ∈ N we say that an
MLG scheme Γ is (κ,m, n, r0, r1)-RANK intractable if

Adv(κ,m,n,r0,r1)-rank
Γ,A (λ) := 2 · Pr

[
(κ,m, n, r0, r1)-RANKA

Γ (λ)
] − 1 ∈ Negl,

where game (κ,m, n, r0, r1)-RANKA
Γ (λ) is shown in Fig. 6.

In the presence of a κ-linear map the (κ,m, n, r0, r1)-RANKA
Γ (λ) problem is

easy for any r0 < r1 < κ, since the determinants of all the rb-minors can be
expressed as forms of degree at most κ, and the multilinear map can be used to
distinguish their images in the target group. However, this does not invalidate
the plausibility of the rank problem for κ ≤ r0 < r1; indeed there are known
reductions to the DDH, the decision linear problems [BHHO08,NS09].

7.2 The RANK Problem with Our MLG Scheme

Let pp denote the public parameters of such an MLG scheme, obtained by run-
ning Setup with input (1λ, 1κ). For simplicity, we focus on the case where N
is prime. Let Rkr(Zm×n

N ) denote the set of m × n matrices over ZN of rank r,
where necessarily r ≤ min(m,n). We use a variant of our construction in Sect. 4,
setting � := 3 and sampling W = (ω1, . . . ,ωκ)t ∈ Z

κ×3
N where ωi = (1, ω, ω2) for

ω ←$ ZN . Note that this results in a symmetric pairing and henceforth we omit
subscripts from source group elements. Let [M] denote a matrix whose (i, j)th
entry contains an encoding of the form [mi,j ] = ([mi,j ]0, ci,j,1, ci,j,2, πi,j), with
mi,j ∈ ZN .

We show that for our construction in Sect. 4, with the modification introduced
above, the rank problem is indeed hard provided κ ≤ r0 < r1. A standard hybrid
argument shows that it is sufficient to establish this for r1 := r0 + 1, with a
polynomial loss in the security. Our main result is stated below. The proof is in
the full version of the paper, here we give only give some intuition.
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Theorem 5 (SDDH =⇒ RANK). Let Γ denote scheme Γ of Sect. 3 with
� := 3 and with respect to the base group Γ0 and an indistinguishability obfuscator
IO. Let κ,m, n, r be integers with r ≥ κ. Then, for any ppt adversary A there
are ppt adversaries B1 and B2 of essentially the same complexity as A such that
for all λ ∈ N and a suitable negligible function μ

Adv(κ,m,n,r,r+1)-RANK
Γ,A (λ) ≤

2κ−1∑

q=1

Advq-sddh
Γ0,B1

(λ) + (mn) ·Advκ-switch
Γ,B2

(λ) + μ(λ).

7.3 Proof Intuition

The main difficulty comes in generating consistent encodings of a rank r challenge
matrix [M] throughout its gradual transformation into a rank r + 1 challenge
matrix. Contrast this with the MDDH reduction of Sect. 6, where the challenge
that is transformed lives in the target group —a group with unique encodings.
As we will see below, having encodings that are represented also with respect to
ω2 will help to overcome this problem and embed a 1-SDDH tuple.

Embedding the SDDH challenge. To reduce the rank problem to 1-SDDH,
consider the following matrix

[W]0 =
[
[1]0 [ω]0
[ω]0 [τ ]0

]
,

which is formed from an 1-SDDH challenge. We will exploit the fact that if τ = ω2

then W has rank 2, and if τ is uniform then it has rank 2 with overwhelming
probability in λ.

Lifting. To obtain an m × n matrix M of rank r ≥ κ or r + 1 we can use the
standard trick of embedding the identity matrix Ir−1 in the diagonal:

M =

⎡

⎣
S
Ir−1

0

⎤

⎦ ,

where 0 denotes padding with zeroes from ZN to bring the matrix up to the
required size. Moreover, via the random self-reducibility of the rank problem the
structure in M can be removed. An important point worth mentioning is that
after the randomization we are still able to generate an encoded matrix [M] even
when ω and τ are only known in the exponent.

Breaking correlation with CMap. We follow a similar strategy to break the
dependent between CMap and ω. Using the powers [h]0 = ([1]0, [ω]0, . . . , [ω2κ]0)
we build circuit functionally equivalent to CMap, indeed a circuit that outputs

[
κ∏

i

(xi,0 + xi,1ω + xi,2ω
2)

]

T



Multilinear Maps from Obfuscation 471

via Lemma 2 (recall that GT = G0), and invoke the security of the obfuscator.
We then use the q-SDDH assumptions for 2 ≤ q ≤ 2κ − 1 in G0 to gradually
transform [h]0 into [q]0 = ([1]0, [ω]0, [ω2]0, [τ3]0, . . . , [τ2κ]0) and embed a 1-SDDH
tuple in the challenge matrix [M] as explained above.
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Abstract. We construct trapdoor permutations based on (sub-
exponential) indistinguishability obfuscation and one-way functions,
thereby providing the first candidate that is not based on the hardness
of factoring.

Our construction shows that even highly structured primitives, such
as trapdoor permutations, can be potentially based on hardness assump-
tions with noisy structures such as those used in candidate constructions
of indistinguishability obfuscation. It also suggest a possible way to con-
struct trapdoor permutations that resist quantum attacks, and that their
hardness may be based on problems outside the complexity class SZK —
indeed, while factoring-based candidates do not possess such security,
future constructions of indistinguishability obfuscation might.

As a corollary, we eliminate the need to assume trapdoor permuta-
tions and injective one-way function in many recent constructions based
on indistinguishability obfuscation.

1 Introduction

In the mid ’70s and early ’80s, powerful number-theoretic constructions related
to factoring and discrete-logs kick-started modern cryptography. As these con-
structions gradually evolved into a comprehensive theory, generic primitives,
such as one-way functions, collision-resistent hash functions, and trapdoor per-
mutations, were defined with the aim of abstracting the properties needed in
different applications. The aforementioned number-theoretic problems provided
instantiations for each of these primitives, but at the same time appeared to offer
a much richer algebraic structure. Whereas this structure is highly fruitful, it
also limits the hardness of the corresponding problems to low complexity classes
such as statistical zero-knowledge (SZK) [GK88] and makes them susceptible to
quantum attacks [Sho97]. Therefore, a fundamental goal is to base cryptographic
primitives on other less structured assumptions.
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In some cases, such as one-way functions, it seems that we can avoid
structured assumptions altogether. Indeed, one-way functions can be constructed
generically from essentially any cryptographic primitive and have candidates
from purely combinatorial assumptions [BFKL93,Gol11,JP00,AC08]. However,
as we consider primitives that intrinsically require some structure, candidates
become more scarce. For example, injective one-way functions are only known
based on assumptions with some algebraic homomorphism, albeit these may fea-
ture noisy structures, such as the ones arising from lattices [PW08]. In particular,
such assumptions can be placed in SZK, but are not known to be susceptible to
quantum attacks. If we also require the one-way function to be a permutation,
candidates become even more scarce, and only known based on the hardness of
discrete-logs and factoring (or RSA) [RSA83,Rab79]. Further, trapdoor permu-
tations (TDPs) are known exclusively based on factoring (or RSA).

Obfuscation. A promising source for new constructions, replacing ones that so far
depended exclusively on specific algebraic assumptions, is program obfuscation —
a method for shielding programs such that their implementation becomes hidden.
Indeed, an ideal notion of obfuscation would allow us to securely express any
required structure in the obfuscated programs. Understanding to what extent
this intuition can be fulfilled requires looking into concrete notions of secure
obfuscation. The question is what is the “right” notion to consider and under
what kind of assumptions it can be achieved.

Of particular interest is the notion of indistinguishability obfuscation (iO),
which have recently found candidate constructions [GGH+13b]. The notion of iO
requires that the obfuscations of any two programs of the same size and function-
ality are indistinguishable. While this notion may not capture ideal obfuscation, it
turns out to be sufficient for many known cryptographic primitives, suggesting an
alternative for previous number theoretic constructions [SW14,BP14,CLTV14].

From an assumption perspective, the existing constructions of iO [GGH+13b,
BR14,BGK+13,AB15,Zim15,AJ15,BV15,GLSW14] are instantiated based on
multi-linear graded encodings [GGH13a,CLT13,CLT15] thus falling into Gen-
try’s [Gen14] world of computing on the edge of chaos — they all rely on noisy
structures in an essential way. Beyond the existing candidates, understanding on
which assumptions iO can be based (and how structured they should be) is an
open question; in particular, as far as we know, future constructions of iO may
be based on problems outside AM ∩ coAM and/or outside BQP.

1.1 This Work

Our main result is a construction of trapdoor permutations based on sub-
exponential indistinguishability obfuscation and one-way functions. As far as we
know, this is the first construction of trapdoor permutations since the intro-
duction of the RSA and Rabin trapdoor permutations [RSA83,Rab79] (and
their variants). We also construct injective one-way functions based on standard
iO and one-way functions. As a tool used in our constructions and a result of
potentially independent interest, we show how to convert any one-way function
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into a sometimes-injective one-way function that is simultaneously injective and
hard-to-invert on some sub-domain of noticeable density.

Properties. Our permutations have the following additional features. First, they
are doubly-enhanced. Additionally, they can be generated so to have any pre-
scribed cycle structure with the necessary property that small cycles are rare
enough. So far this property has only been achieved for pseudo-random permu-
tations [NR02]. Another feature is that inverting the permutation consists of
simple symmetric-key operations (unlike in existing candidates). Finally, like in
the RSA permutation, given the trapdoor it is possible to iterate the permu-
tation (or its inverse) any number of times at the same cost as computing the
function once.

One difference between the trapdoor permutations we construct and those
typically defined in the literature [GR13] is that we only support sampling of
pseudo-uniform elements in the domain rather than elements that are statisti-
cally close to uniform. The sampled elements are pseudo-uniform in a strong
sense, namely, even given the trapdoor or more generally the coins used to sam-
ple the function. The double-enhancement requirement is relaxed in a somewhat
similar manner (see details below). As far as we know, these relaxation are suf-
ficient in known applications. Additionally we note that our permutations are
not certifiable, meaning that we do not know of an efficient way to certify that
a key is well-formed and describes a valid permutation.

iO as a hub. Based on our results, several constructions previously based on
iO and additional structured assumptions, can now be based only on iO and
one-way functions (or rather the assumption that NP �= coRP [KMN+14]).
Examples include: non-interactive commitments [Blu81],1 actively secure two-
message oblivious transfer [SW14], non-interactive witness-indistinguishable
proofs [BP14], obfuscation for Turing machines [KLW14],2 hardness of the com-
plexity class PPAD [BPR15], and more.

1.2 Technical Overview

Trapdoor permutations from obfuscation? Sounds easy. Thinking of obfuscation
in ideal terms gives rise to a natural attempt at constructing TDPs: simply obfus-
cate a pseudo-random permutation. Clearly, with only black-box access to such a
permutation, inversion is as impossible as inverting a random function. However,
ideal virtual black-box obfuscation [BGI+01] of pseudo-random permutations is
unknown, and is in fact subject to strong limitations [BCC+14]. Nevertheless,
we show that some of this intuition can be recovered also when relying on the
(not so ideal) notion of iO.

1 See Appendix A for more details on the construction of non-interactive commitments.
2 Formally, [KLW14] rely on injective PRGs, but these can be replaced with injective
one-way functions using an observation of [BCP14], as explained in Sect. 4.2.
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Outline of the construction. Our starting point is a recent construction suggested
by Bitansky et al. [BPR15] to demonstrate the hardness of the complexity class
PPAD. We observe that their construction can, in fact, be viewed as a trapdoor
permutation family that lacks a crucial property: it does not allow to sample
elements from the permutation’s domain.

Our construction then follows the three steps below:

1. We construct a sampler for domain elements and prove the one-wayness of
the permutation family even given this sampler. This involves extending the
techniques developed in [BPR15].

2. We further augment the permutation family and sampler so that they will
admit the requirements of enhanced and doubly-enhanced TDPs.

3. The construction of [BPR15] relies on injective one-way functions in addition
to iO. We construct such injective one-way functions based on iO and one-way
functions. We find this construction to be of independent interest.

We now elaborate on the construction and analysis in [BPR15], describe
where it falls short of achieving an actual TDP, and then turn to describe our
solutions.

A Closer Look into [BPR15]. Bitansky et al. construct a hard instance of the
end-of-the-line problem based on iO. In the end-of-the-line problem we
consider a sequence of nodes

x1 → x2 → · · · → xT ,

and a program F that maps xi to xi+1 for 1 ≤ i < T . The problem is given the
source node x1 and the program F find the sink node xT . In the construction
of [BPR15], each node xi is a pair (i,PRFS(i)) where PRFS : ZT → {0, 1}λ

is sampled from a family of pseudo-random functions, and T ∈ N is super-
polynomial in the security parameter λ. The instance also contains an obfuscated
program F̃ that maps xi to xi+1 and outputs ⊥ on any other input.

Bitansky et al. show that given strong enough iO and injective one-way func-
tions (used only in the analysis) it is hard to find xT given x1 and the obfuscated
program F̃. Intuitively, the path from x1 to xT can be thought of as an authen-
ticated chain where a signature σ corresponding to some pair (i, σ) cannot be
obtained without first obtaining all previous signatures on the path. It is not
difficult to show that any efficient algorithm that only invokes F̃ as a black box
cannot find the signature PRFS(T ). Their proof shows that the same hardness
holds even given full access to the obfuscated program F̃.

Constructing trapdoor permutations. Indeed, the construction of [BPR15]
described above gives rise to a natural candidate for a trapdoor permutation. A
given permutation is over the set of nodes {xi}i∈ZT

and is defined by the cycle

x1 → x2 → · · · → xT → x1.

The public key describing the permutation consists of the obfuscated program
F̃ that maps xi to xi+1 (where i + 1 is computed modulo T ) and outputs ⊥
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on any other input. The trapdoor is simply the seed S of the pseudo-random
function that allows us to efficiently invert the permutation. However, without
the trapdoor, inverting the permutation on xi is as hard as finding the end of
the chain starting at xi and ending at xi−1.

To obtain a complete construction of a TDP, we need to specify how to
sample random domain elements. The challenge here is that the domain of our
permutation is very sparse and it is not clear how to sample from it without
the trapdoor S. A naive suggestion is to include, as part of the public key, an
obfuscated sampler program that given i outputs the node xi. However, publish-
ing such a program (obfuscated or not) clearly makes the permutation easy to
invert. To explain, how this is solved, we now look more closely into the security
proof of [BPR15].

The proof of [BPR15]. We sketch the argument from [BPR15] showing that
the basic TDPs construction above (without any domain sampler) is one-way.
That is, given F̃ and xi for a random i ∈ ZT , it is hard to obtain xi−1 (in
fact we prove this for every i ∈ ZT ). To prove that finding the node xi−1 is
hard it is sufficient to prove that the obfuscated circuit F̃ is computationally
indistinguishable from a circuit that on input xi−1 returns ⊥, rather than xi as
F̃ would. Indeed, any algorithm that can find xi−1 can also distinguish the two
circuits. We next explain how indistinguishability of these two circuits is shown.

For every α, β ∈ ZT we consider the circuit F̃α,β that is identical to F̃, except
that for every j in the range from α to β (wrapping around T in case that α > β)
F̃α,β on the input xj outputs ⊥. The argument proceeds in two steps.

Step 1: Split the chain into two parts. We show that for a random u ∈ ZT , the
obfuscation F̃u,u is computationally indistinguishable from F̃. Intuitively this
“splits” the authenticated chain into two parts: from xi to xu and from xu+1

to xi−1. The proof of this step relies on the fact that the chain is of super-
polynomial length T and therefore the index u of a random node in the chain is
hard to guess.

Step 2: Erase the second part of the chain. We show that after the chain is
split, is it hard to find any node xj in the second part of the chain. Formally,
we prove that the obfuscated circuits F̃u,u and F̃u,i−1 are computationally indis-
tinguishable. The proof is by a sequence of hybrids: for every j in the range
between u and i − 2, we rely on injective one-way functions and iO with super-
polynomial hardness to show that the obfuscated circuits F̃u,j and F̃u,j+1 are
T−Θ(1)-indistinguishable. To prove that we can indistinguishably change the
output of F̃u,j on the node xj+1 to ⊥, we rely on the fact that in the circuit
F̃u,j the successor of xj is already erased and therefore, the circuit F̃u,j never
explicitly outputs the node xj+1.

Sampling from the Domain. As mentioned before, to allow sampling of
elements in the domain we cannot simply provide a circuit that outputs xi given
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i ∈ ZT , as this would result in an obvious attack — given xi = (i,PRFS(i)),
one can directly obtain the preimage xi−1. The idea is to provide instead an
obfuscation X̃ of a sampler XS that is supported on a very sparse, but still
pseudo-random, subset of the domain. Concretely, XS takes as input a seed s for
a length doubling pseudo-random generator PRG : Z√

T → ZT , and outputs xi

for i = PRG(s).
First, note that by pseudo-randomness, inverting xi+1 where i = PRG(s) is

pseudorandom is as hard as inverting xi+1 when i is chosen truly at random.
Thus, we fucus on showing that inverting xi is hard for a truly random i even
in the presence of the obfuscated sampler X̃.

The one-wayness proof described above, however, fails when the adversary
is given the sampler X̃. The problem is that in the second step, when arguing
that the obfuscated circuits F̃u,j and F̃u,j+1 are indistinguishable, we used the
fact that F̃u,j never explicitly outputs the node xj+1. However, if j + 1 is in the
image of PRG, the sampler X̃ explicitly outputs xj+1 and we can no longer prove
that F̃u,j and F̃u,j+1 are indistinguishable.

Our solution is to consider, instead of the entire chain starting from xi and
ending at xi−1, only a suffix of this chain of length 4

√
T starting from xi− 4√

T and
ending at xi−1. On the one hand, this chain segment is still of super-polynomial
length, and therefore, we can still split the segment following Step 1 above. On
the other hand, the segment is also not too large (of density T−3/4 in ZT ). Since
that segment starts at a random index i− 4

√
T , and since the image of PRG is of

size only
√

T , we have that with overwhelming probability 1−T−1/4 the segment
interval will not contain any nodes in the support of the sampler X̃. When the
segment and the support of X̃ are disjoint, we can again erase the entire chain
segment following Step 2 above.

Enhancements. In applications of TDPs, it is often required that the TDPs
are enhanced or even doubly enhanced [GR13]. We briefly recall these properties
and explain how they are obtained. In enhanced TDPs, we essentially ask that
it is possible to obliviously sample domain elements, without knowing their pre-
images. Translating to our setting, we require that xPRG(s) ← XS is hard to invert,
even given the coins s used to sample it. In the construction above, this may not
be true. Indeed, given the seed s for the pseudo-random generator, we can no
longer argue that inversion is as hard as for a truly uniform element. In fact, the
PRG may be such that given s, it is easy to find s′ such that PRG(s′) = PRG(s)−1
and thus easily invert. We observe that this can be circumvented if we make
sure that PRG has a discrete image where a random image PRG(s) is likely to
be isolated away from any other image. We show how to construct such PRGs
from plain PRGs and pairwise-independent permutations.

In doubly enhanced TDPs, it is typically required that it is possible to sample
an image-preimage pair (x, y) together with random coins used to sample the
preimage y by the usual sampler. In our setting, we would like to sample an
image y = xPRG(s) ← XS together with randomness s and preimage xPRG(s)−1.
We only achieve a relaxed form of this requirement, where s is pseudo-random
rather than truly random, even given the trapdoor, or the coins used to sample
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the function. The idea is to slightly change the pseudo-random generator PRG
in the previous constructions in a way that exploits the specific structure of our
TDP. We only change PRG on a sparse set of seeds that has negligible density,
and thus previous properties are preserved (see more details in Sect. 4.3).

Injective One-Way Functions from iO. We now describe the main ideas
behind constructing injective one-way function from iO and plain one-way func-
tions. We rely on two-message statistically-binding commitment schemes [Nao91]
and puncturable PRFs (both known from any one-way function). In the con-
structed family, every function OWFM1,S is associated with a first message M1

for the commitment scheme and a pseudo-random function PRFS . The public
description of the function contains an obfuscated circuit C̃ that on input x out-
puts a commitment COMM1(x;PRFS(x)) with respect to the first commitment
message M1, plaintext x and randomness PRFS(x). The fact that the function
is injective (with overwhelming probability over M1) follows directly from the
statistical binding of the commitment. We focus on arguing one-wayness.

Our goal is to show that it is hard to recover a random x given C̃ and C̃(x).
We start by considering a hybrid circuit defined similarly to C̃ except that it
contains the punctured key S {x} and given input x, it outputs a hardcoded
commitment; since we did not change the functionality of the circuit indistin-
guishability follows by iO. Using pseudo-randomness at the punctured point x
and the hiding of the commitment we can now argue that the hardcoded com-
mitment hides x, replacing it with a commitment to some arbitrary plaintext,
using true randomness. The problem is that now, even if we unpuncture S {x},
x itself still needs to appear in the clear as part of the code of the circuit in
order to trigger the output of the hardcoded commitment.

Nevertheless, we may try to apply a similar strategy to the one previously
used for our TDPs. Concretely, we note that x is only used to test if an input
x′ satisfies x′ = x, and this comparison can be performed in an “encrypted
form” — instead of hardcoding x in the clear we can hardcode g(x) for some
one-way function g and compare images instead of preimages. Unfortunately,
to argue that this does not change functionality the function g must itself be
injective which seems to bring us back to square one.

The key observation is that we may gain by using a function g that is only
sometimes injective; namely, it is enough that g is simultaneously injective and
hard to invert only on some noticeable subset of its domain. We show that such
functions can be constructed from any one-way function. Now, leveraging the iO
requirement only on the corresponding injective sub-domain, we can show that
the above construction results in a weak one-way function that is fully injective;
indeed, we only invoke sometimes-injective of g in the proof of one-wayness.
Then, to obtain a (strong) injective one-way function, we can apply standard
direct-product amplification [Yao82].

Constructing Sometimes Injective One-Way Functions. We outline the main
idea behind constructing a sometimes-injective one-way function g, as above,
based on any one way function f . First, consider for simplicity the case that the
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function f is r-regular. Roughly, the idea is extract the log(r) bits of randomness
that remain in x conditioned on f(x) and append them to the function output
as in [HILL99]. However, due to their inherent entropy loss, standard random-
ness extractors cannot extract enough random bits to guarantee any meaning-
ful injectiveness. Nevertheless, for our purpose, the extracted bits need not be
statistically-close to uniform, they only need to preserve one-wayness. Accord-
ingly, we use the unpredictability extractors of [DPW14], which allow extracting
more bits so to guarantee injectiveness, while still preserving meaningful one-
wayness.

To deal with f that is not regular, we may set r to be the most frequent
regularity of f . This only shrinks the portion of the domain where f is both
injective and hard to invert by some polynomial factor. A uniform construction
is obtained by choosing r at random.

2 Preliminaries

The cryptographic definitions in the paper follow the convention of modeling
security against non-uniform adversaries. An efficient adversary A is modeled as
a sequence of circuits A = {Aλ}λ∈N

, such that each circuit Aλ is of polynomial
size λO(1) with λO(1) input and output bits; we shall also consider adversaries
of some super polynomial size t(λ) = λω(1). We often omit the subscript λ when
it is clear from the context. The resulting hardness will accordingly be against
non-uniform algorithms. The result can be cast into the uniform setting, with
some adjustments to the analysis.

2.1 Indistinguishability Obfuscation

We define indistinguishability obfuscation (iO) with respect to a give class of
circuits. The definition is formulated as in [BGI+01].

Definition 2.1 (Indistinguishability obfuscation [BGI+01]). A PPT algo-
rithm iO is said to be an indistinguishability obfuscator for a class of circuits
C, if it satisfies:

1. Functionality: for any C ∈ C,

Pr
iO

[∀x : iO(C)(x) = C(x)] = 1.

2. Indistinguishability: for any polysize distinguisher D there exists a negligi-
ble function μ(·), such that for any two circuits C0, C1 ∈ C that compute the
same function and are of the same size λ:

|Pr[D(iO(C0)) = 1] − Pr[D(iO(C1)) = 1]| ≤ μ(λ),

where the probability is over the coins of D and iO.
We further say that iO is (t, δ)-secure, for some function t(·) and concrete

negligible function δ(·), if for all t(λ)O(1) distinguishers the above indistin-
guishability gap μ(λ) is smaller than δ(λ)Ω(1).
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2.2 Puncturable Pseudorandom Functions

We consider a simple case of the puncturable pseudo-random functions (PRFs)
where any PRF may be punctured at a single point. The definition is formulated
as in [SW14], and is satisfied by the GGM [GGM86] PRF [BW13,KPTZ13,
BGI14],

Definition 2.2 (Puncturable PRFs). Let n, k be polynomially bounded length
functions. An efficiently computable family of functions

PRF =
{
PRFS : {0, 1}n(λ) → {0, 1}λ : S ∈ {0, 1}k(λ), λ ∈ N

}
,

associated with an efficient (probabilistic) key sampler KPRF , is a puncturable
PRF if there exists a poly-time puncturing algorithm Punc that takes as input a
key S, and a point x∗, and outputs a punctured key S{x∗}, so that the following
conditions are satisfied:

1. Functionality is preserved under puncturing: For every x∗ ∈
{0, 1}n(λ),

Pr
S←KPRF (1λ)

[∀x �= x∗ : PRFS(x) = PRFS{x∗}(x) : S{x∗} = Punc(S, x∗)
]

= 1.

2. Indistinguishability at punctured points: for any polysize distinguisher
D there exists a negligible function μ(·), such that for all λ ∈ N, and any
x∗ ∈ {0, 1}n(λ),

|Pr[D(x∗, S{x∗},PRFS(x∗)) = 1] − Pr[D(x∗, S{x∗}, u) = 1]| ≤ μ(λ),

where S ← KPRF (1λ), S{x∗} = Punc(S, x∗), and u ← {0, 1}λ.
We further say that PRF is (t, δ)-secure, for some function t(·) and con-

crete negligible function δ(·), if for all t(λ)O(1) distinguishers the above indis-
tinguishability gap μ(λ) is smaller than δ(λ)Ω(1).

2.3 Injective One-Way Functions

We shall also rely on (possibly keyed) injective one-way functions.

Definition 2.3 (Injective OWF). Let k be polynomially bounded length func-
tion. An efficiently computable family of functions

OWF =
{
OWFK : {0, 1}λ → {0, 1}∗ : K ∈ {0, 1}k(λ), λ ∈ N

}
,

associated with an efficient (probabilistic) key sampler KOWF , is an injective
OWF if it satisfies

1. Injectiveness: With overwhelming probability over the choice of K ←
KOWF (1λ), the function OWFK is injective.
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2. One-wayness: For any polysize inverter A there exists a negligible function
μ(·), such that for all λ ∈ N,

Pr
[
A(K,OWFK(x)) = x :

K ← KOWF (1λ)
x ← {0, 1}λ

]
≤ μ(λ).

We further say that OWF is (t, δ)-secure, for some function t(·) and con-
crete negligible function δ(·), if for all t(λ)O(1) inverters the above inversion
probability μ(λ) is smaller than δ(λ)Ω(1).

3 Injective One-Way Functions from iO

In this section, we construct injective one-way functions from iO and plain injec-
tive one-way functions. We start by defining and constructing sometimes injec-
tive one-way functions.

3.1 Sometimes Injective One-Way Functions

For a function f : {0, 1}λ → {0, 1}∗ and any input x ∈ {0, 1}λ, we denote by

Hf (x) := log |{x′ : f(x′) = f(x)}| = H∞
(
x′ ← f−1(f(x))

)
,

Inj(f) := {x : Hf (x) = 0}
the min-entropy of a random preimage of f(x), and the subset of inputs on which
f is injective, respectively.

We next define sometimes-injective OWFs (SIOWFs). Roughly speaking, such
functions are injective and hard to invert over a noticeable fraction of their
domain.

Definition 3.1 (Sometimes-Injective OWF). Let k be polynomially bounded
length function. An efficiently computable family of functions

SIOWF =
{
SIOWFK : {0, 1}λ → {0, 1}∗ : K ∈ {0, 1}k(λ), λ ∈ N

}
,

associated with an efficient (probabilistic) key sampler KSIOWF , is a sometimes
injective OWF if for every key K ∈ {0, 1}k(λ) there exists an injective subset
IK ⊆ Inj(SIOWFK), satisfying the following conditions:

1. Sometimes injectiveness: There exists a polynomial p(·) such that for any
λ ∈ N:

Pr
[
x ∈ IK :

K ← KSIOWF (1λ)
x ← {0, 1}λ

]
≥ 1/p(λ).

2. One-wayness over injective subdomain: for any polysize inverter A there
is a negligible function μ(·) such that for any λ ∈ N:

Pr
[
A(K,SIOWFK(x)) = x : K ← KSIOWF (1λ)

x ← IK

]
≤ μ(λ).

We further say that SIOWF is t-secure, for some super-polynomial function
t(·), if the one-wayness requirement holds for all t(λ)O(1) inverters.



484 N. Bitansky et al.

The Construction. Let f : {0, 1}∗ → {0, 1}∗ be any one-way function. We con-
struct an SIOWF

SIOWF =
{
SIOWFK : {0, 1}λ → {0, 1}∗ : K ∈ {0, 1}k(λ), λ ∈ N

}
,

with a corresponding key sampler KOWF as follows:

– A random key K := (S, e) ← KSIOWF (1λ) consists of a random e ← [λ] and
a random seed S for a hash function hS : {0, 1}λ → {0, 1}e+1 drawn from a
q-wise independent family, where we set q = λ to be the security parameter.

– For x ∈ {0, 1}λ, the function is defined by SIOWFK(x) := (f(x), hS(x)).

Proposition 3.1. SIOWF is a sometimes injective one-way function.

Proof. Throughout, we denote by Ee ⊆ {0, 1}λ the subset of values x such that
Hf (x) ∈ [e − 1, e). For K = (S, e), we define IS,e = Ee ∩ Inj(SIOWFS,e) ⊆
Inj(SIOWFS,e). We start by proving the following preliminary claim saying that
the function is injective with high-probability over the set Ee.

Claim 3.1. For any λ ∈ N, e ∈ [λ], x ∈ Ee

Pr
S

[x ∈ Inj(SIOWFS,e)] ≥ 1
2
.

Proof (Proof of Claim 3.1). Fix any λ ∈ N, e ∈ [λ], x ∈ Ee, and let y = f(x).
Since the output of SIOWFS,e(x) includes y, it suffices to show that x does not
collide with any other x′ ∈ f−1(y). By q-wise independence (in fact, pairwise is
sufficient here), for any such x′,

Pr
S

[hS(x) = hS(x′)] ≤ 2−e−1.

Thus, the expected number of such x′ that collide with x is:

2−e−1(
∣
∣f−1(y)

∣
∣ − 1) ≤ 2−e−1 · 2Hf (x) ≤ 1/2,

and the claim now follows by Markov’s inequality.

Sometimes injectiveness follows directly:

Pr
[
x ∈ IS,e :

(S, e) ← KSIOWF (1λ)
x ← {0, 1}λ

]
≥

Pr
e,x

[x ∈ Ee] · min
e,x∈Ee

Pr
S

[x ∈ Inj(SIOWFS,e)] ≥ 1
2λ

.

where Pre,x [x ∈ Ee] = 1/λ since for any fixed x there is a unique e ∈ [λ] such that
x ∈ Ee, and mine,x∈Ee

PrS [x ∈ Inj(SIOWFS,e)] ≥ 1/2 by the previous claim.
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Next, we prove one-wayness over the injective subdomain. Fix any polysize
inverter A and security parameter λ. Firstly, we notice that

Pr
S,e

x←IS,e

[A(S, e, f(x), hS(x)) = x]

≤ Pr
S,e

x←Ee

[A(S, e, f(x), hS(x)) = x]/ Pr
S,e

x←Ee

[x ∈ IS,e] (1)

≤ 2 Pr
S,e

x←Ee

[A(S, e, f(x), hS(x)) = x],

where we can bound the denominator in Eq. (1) by at least 1
2 by Claim 3.1.

Therefore, it remains to show that Pr S,e
x←Ee

[A(S, e, f(x), hS(x)) = x] is negligible.

To prove this, we rely on a theorem from [DPW14] showing that any q-wise
independent family essentially preserves uninvertability.

Theorem 3.2 ([DPW14, Theorem 4.1] (restated)). Let {hS : {0, 1}n →
{0, 1}m : S ∈ {0, 1}d} be a q-wise independent hashing family. For any
D : {0, 1}m × {0, 1}d → {0, 1} and any random variable X ∈ {0, 1}n with
min-entropy H∞(X) ≥ k, if Pr[D(U, S) = 1] = δ, then Pr[D(hS(X), S) = 1] ≤
O(q2m−k)max{δ, 2−q}.

Using the above theorem, we have:

Pr
S,e

x←Ee

[A(S, e, f(x), hS(x)) = x]

≤ Pr
S,e

x←Ee

[A(S, e, f(x), hS(x)) ∈ f−1(f(x))
]

= Pr
S,e,x←Ee

x′←f−1(f(x))

[A(S, e, f(x), hS(x′)) ∈ f−1(f(x))
]

(2)

= E
e,x←Ee

Pr
S

x′←f−1(f(x))

[A(S, e, f(x), hS(x′)) ∈ f−1(f(x))
]

≤ E
e,x←Ee

O(λ)max
{

Pr
S

[A(S, e, f(x), U) ∈ f−1(f(x))
]
, 2−λ

}
(3)

≤ E
e,x←Ee

O(λ)
(

Pr
S

[A(S, e, f(x), U) ∈ f−1(f(x))
]
+ 2−λ

)

≤ O(λ)2−λ + O(λ) Pr
S,e

x←Ee

[A(S, e, f(x), U) ∈ f−1(f(x))
]

≤ O(λ)2−λ + O(λ)
PrS,e,x

[A(S, e, f(x), U) ∈ f−1(f(x))
]

Pre,x[x ∈ Ee]
≤ μ(λ). (4)

Equation (2) follows since we can think of sampling the pair x, f(x) as equiv-
alent to sampling x′, f(x) where x ← Ee, x

′ ← f−1(f(x)). Equation (2) fol-
lows by applying Theorem 3.2 with the variable x′ ← f−1(f(x)) having entropy
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k = Hf (x) ≥ e − 1 and with hash output-length m = e + 1 and independence
q = λ. To apply the theorem, we think of a distinguisher DA,e,f(x) that given (z, S)
tests whether A(S, e, f(x), z) inverts f(x). In the equation, the random variable
U is uniformly random e + 1 bit string. In Eq. (4) we can bound the numerator
PrS,e,x

[A(S, e, f(x), U) ∈ f−1(f(x))
]
by some negligible by the one-wayness of f

and we can bound the denominator Pre,x[x ∈ Ee] ≥ 1/λ by the same argument
we used previously. Therefore μ(λ) is negligible as we wanted to show.

Remark 3.1 (super-polynomial security). In the above construction, starting
from a one-way function f that is t-secure directly yields t-security of SIOWF .

3.2 Injective OWFs from iO and SIOWFs

We now construct a family of injective one-way functions based on iO and one-
way functions. We first construct a weak but (fully) injective one-way function,
and then use standard direct product amplification.

Ingridients. Let iO be an indistinguishability obfuscator for P/poly, and let
PRF be a family of puncturable pseudo-random functions, where for S ←
KPRF (1λ), PRFS maps {0, 1}λ → {0, 1}λ. Let (COM1,COM2) be a two mes-
sage statistically-binding commitment scheme, where COM1(1λ) samples a first
message M1, and COM2(x,M1; r) computes a commitment M2 to plaintext
x ∈ {0, 1}λ, with respect to the first message M1 and random coins r ∈ {0, 1}λ.

The Function Family. For M1 ← COM1(1λ), S ← KPRF (1λ), consider the
circuit CM1,S : {0, 1}λ → {0, 1}∗ defined by

CM1,S(x) := COM2(x,M1;PRFS(x)),

padded to some polynomial size �(λ) to be determined later in the analysis.

The constructed family of one-way functions OWF consists of all obfusca-
tions of such circuits:

1. A random key OWFK ← KOWF (1λ) consists of an obfuscation C̃ ←
iO(CM1,S), for a first commitment message M1 ← COM1(1λ) and PRF seed
S ← KPRF (1λ).

2. The function is given by OWFK(x) = C̃(x).

The fact that the construction gives an injective family follows directly from
the statistical binding of the commitment. We next show that it is also weakly
one-way.

Proposition 3.2. Assume there exists a family SIOWF of sometimes-injective
one-way functions. Then the above construction is a weak one-way function.

Proof. (Proof sketch.). Let IK and p(·) be as in Definition 3.1 such that SIOWF
has an injective sub-domain IK of density 1/p(λ). We show that any poly-size
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adversary A fails to invert the constructed OWF with probability at least 1
p(λ) −

μ(λ) for some negligible μ(·). For this purpose we consider a sequence of hybrids.

Hyb1: The real experiment. Here A is given as input C̃, C̃(x) for a random input
x ← {0, 1}λ and random key C̃ ← KOWF (1λ) and tries to obtain x.

Hyb2: Here C̃ is an obfuscation of an augmented circuit. In the new circuit,
the PRF seed S is replaced with S {x}, which is punctured at x. In addition,
M2 = COM2(x,M1;PRFS(x)) is hardwired as the output on input x (the input
x itself is also hardwired). This circuit computes the same function as the pre-
vious CM1,S , thus by the iO guarantee, A inverts the function with the same
probability up to a negligible difference.

Hyb3: Here M2 = COM2(x,M1; r) is generated with truly uniform randomness r,
rather than PRFS(x). (This includes both the hardwired M2 as well as the output
of the function C̃(x) = M2 given to A.) By pseudorandomness at punctured
points, the inversion probability is again maintained up to a negligible difference.

Hyb4: Here M2 = COM2(0λ,M1; r) is a commitment to 0λ, rather than to x. By
the computational hiding of the commitment, the inversion probability is again
maintained up to a negligible difference.

Hyb5: Here we unpuncture S. The point x itself is still hardwired into the circuit
in the clear. This does not change functionality, and thus the inversion proba-
bility is maintained, up to a negligible difference, by iO.

Hyb6: In this hybrid, we also sample a random key K ← KSIOWF (1λ) for a
sometimes-injective OWF, and instead of sampling x ← {0, 1}λ uniformly at
random, we sample it from the injective sub-domain x ← IK . Since the density
of IK is at least 1/p(λ),

Pr [A fails to obtain x in Hyb5] ≥ 1
p

· Pr [A fails to obtain x in Hyb6]

Hyb7: In this hybrid, instead of storing x in the clear and comparing it to the
input (in order to decide whether to return M2), we store its image SIOWFK(x).
Comparison of x with an input x′ is now done by first computing SIOWF(x′)
and then comparing the images. Since x ∈ IK ⊆ Inj(SIOWFK) this does not
change functionality and the inversion probability is preserved by iO.

Finally, we note that in Hyb7 the view of A can be efficiently simulated from
K,SIOWFK(x). Thus, from one-wayness SIOWF over IK , it follows that A fails
to obtain x in this hybrid with except with negligible probability. Therefore,
overall, we deduce that A fails to obtain x in the original experiment with
probability at least 1

p(λ) − μ(λ), for some negligible μ(λ), as required.

The Padding Parameter. �(λ) is chosen to be the maximum size among all
circuits we went through in the analysis, so that iO can always be applied.
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4 Trapdoor Permutations from iO

In this section we define Trapdoor Permutations (TDPs) and their enhance-
ments, and construct them from sub-exponentially-secure iO. At large the defi-
nitions follow [GR13], with some exceptions discussed below.

4.1 Standard TDPs

We start by defining standard (non-enhanced) TDPs.

Definition 4.1 (TDP). Let k be polynomially bounded length function. An effi-
ciently computable family of functions

T DP =
{
TDPPK : DPK → DPK : PK ∈ {0, 1}k(λ), λ ∈ N

}
,

associated with efficient (probabilistic) key and domain samplers (K,S), is a
(standard) TDP if it satisfies

1. Trapdoor invertibility: For any (PK,SK) in the support of K(1λ), the
function TDPPK is a permutation of a corresponding domain DPK . The
inverse TDP−1

PK(y) can be efficiently computed for any y ∈ DPK , using the
trapdoor SK.

2. Domain sampling: S(PK) samples a pseudo-uniform element in the
domain DPK ; that is, for any polysize distinguisher D, there exists a neg-
ligible μ(·) such that for all λ ∈ N,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎣D(rK, x) = 1 :
rK ← {0, 1}poly(λ)

(PK,SK) ← K(1λ; rK)
x ← S(PK)

⎤

⎦

−Pr

⎡

⎣D(rK, x) = 1 :
rK ← {0, 1}poly(λ)

(PK,SK) ← K(1λ; rK)
x ← DPK

⎤

⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ μ(λ).

3. One-wayness: For any polysize inverter A there exists a negligible function
μ(·), such that for all λ ∈ N,

Pr
[
A(PK,TDPPK(x)) = x : (PK,SK) ← K(1λ)

x ← S(PK)

]
≤ μ(λ).

The above definition is similar to the one in [GR13] with the exception that
S(PK) in [GR13] is required to sample a domain element that is statistically
close to a uniform domain element, whereas we only require computational indis-
tinguishability. Importantly, we require that computational-indistinguishability
holds even given the random coins used to generate (PK,SK). This property
is required in applications (e.g., the EGL oblivious transfer protocol) and fol-
lows automatically (and thus not required explicitly) in the case of statistical-
indistinguishability.

Also, we note that like in trapdoor permutations with statistical (rather than
computational) domain sampling, the one-wayness requirement can be restated
in any of the following equivalent forms:
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3.a. The pre-image x is sampled uniformly from the domain:

Pr
[
A(PK,TDPPK(x)) = x : (PK,SK) ← K(1λ)

x ← DPK

]
≤ μ(λ).

3.b. The adversary inverts a random domain element x:

Pr
[
A(PK, x) = TDP−1

PK(x) : (PK,SK) ← K(1λ)
x ← DPK

]
≤ μ(λ).

3.c. The adversary inverts a domain element sampled by S(PK):

Pr
[
A(PK, x) = TDP−1

PK(x) : (PK,SK) ← K(1λ)
x ← S(PK)

]
≤ μ(λ).

The Construction. We now proceed to describe the construction of a TDP.
The construction relies on super-polynomial hardness assumptions; for a conve-
nient setting of parameters we assume that the underlying cryptographic prim-
itives are sub-exponentially hard. In Sect. 4.4, we discuss relaxations to more
mild (but still super-polynomial) hardness.

Ingredients. Fix any constant ε < 1, and let T = T (λ) = 2λε/2
. We require the

following primitives:

– iO is a (λ, 2−λε

)-secure indistinguishability obfuscator for P/poly.
– PRF is a (λ, 2−λε

)-secure family of puncturable pseudo-random functions,
which for λ ∈ N maps ZT to {0, 1}λ.

– OWF is a (2λε

, 2−λε

)-secure family of injective one-way functions, which for
λ ∈ N maps {0, 1}λ to {0, 1}∗. (Will only come up in the analysis, and not in
the construction itself.)

– PRG is a (polynomially-secure) length-doubling pseudo-random generator.

The Function Family. The core of the construction will be obfuscations of cir-
cuits (FS ,XS) for computing the function forward and sampling domain ele-
ments, respectively. These obfuscations will be embedded in the function key
PK and their corresponding secret S will be the trapdoor. The circuits are
defined next. For S ← KPRF (1λ):

1. FS(i, σ): takes as input i ∈ ZT and σ ∈ {0, 1}λ and checks whether σ =
PRFS(i). If so it returns i + 1,PRFS(i + 1), where i + 1 is computed modulo
T . Otherwise it returns ⊥.

2. XS(s): takes as input a seed s ∈ {0, 1}log
√

T and outputs
(i, σ) = (PRG(s),PRFS(PRG(s))), where i is interpreted as a residue in ZT .

Both circuits are padded so that their total size is �(λ), for a fixed polynomial
�(·) specified later.
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The constructed family T DP is now defined as follows.

1. A random key PK consists of obfuscations F̃ ← iO(FS) and X̃ ← iO(XS), for
S ← KPRF (1λ). The corresponding trapdoor SK is S.

2. The domain DPK is {(i, σ) : i ∈ ZT , σ = PRFS(i)}.
3. To compute TDPPK(i, σ), return F̃(i, σ).
4. To compute TDP−1

PK(i, σ) given SK, return (i − 1,PRFS(i − 1)), where i − 1
is computed modulo T .

5. The domain sampler S(PK; s) takes as input PK and randomness s ∈
{0, 1}log

√
T and outputs X̃(s).

Proposition 4.1. The above construction of T DP is a trapdoor permutation.

Proof. The fact that TDP is trapdoor-invertible follows readily from the con-
struction. The fact that the domain sampler S(PK) samples domain elements
that are computationally-indistinguishable from uniform domain elements, even
given the coins of K used to generate (PK,SK), follows directly from the pseudo-
randomness guarantee of PRG.

From hereon, we focus on showing one-wayness. It would be simplest to work
with the formulation (3.b) of the one-wayness requirement. Concretely, fix any
polysize A, we show that there exists a negligible μ(·) such that for every λ ∈ N,

Pr

⎡

⎢
⎢
⎣PRFS(i − 1) ← A(F̃, X̃, i,PRFS(i)) :

S ← KPRF (1λ)
F̃ ← iO(FS)
X̃ ← iO(XS)

i ← ZT

⎤

⎥
⎥
⎦ ≤ μ(λ).

We show that except with sub-exponentially-small probability A(F̃, X̃, i,

PRFS(i)) cannot output σ∗ such that F̃(i − 1, σ∗) �= ⊥, which is equivalent to
showing that σ∗ �= PRFS(i − 1). We prove this via a sequence of indistinguishable
hybrid experiments where the obfuscated F̃ is gradually augmented to return ⊥ on
an increasing interval, until it eventually returns ⊥ on some interval [i − u, i − 1]
(for every possible signature), meaning in particular that A(F̃, X̃, i,PRFS(i)) can-
not find an accepting signature σ∗ for i − 1. Throughout the hybrids we change
the obfuscated circuits and assume that they are always padded so that their total
size is �(λ), for a fixed polynomial �(·) specified later.

Hyb1: The original experiment.

Hyb2: Here F̃ is an obfuscation of a circuit F
(2)
i,v,S,K′ . The circuit has hardwired

a key K ′ ← KOWF (1λ′
) for and injective OWF defined on inputs of length

λ′ = log 4
√

T , and a random image v = OWFK′(u), for u ← {0, 1}λ′ ∼= Z 4√
T . The

circuit behaves like F, with the exception that given any input (k, σ) such that
k ∈ [i − 4

√
T , i − 1] and OWFK′(i − k) = v, the circuit returns ⊥.

Hyb3,j , j ∈ [0, 4
√

T −1]: Here F̃ is an obfuscation of a circuit F(3,j)
i,u,S . The circuit has

a random index u ← Z 4√
T . On any input (k, σ), it returns ⊥ if k ∈ [i−u, i−u+j],
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where we truncate j so that j = min {j, u − 1}. On any other input it behaves
just like FS .

Hyb4,j , j ∈ [0, 4
√

T − 1]: Here F̃ is an obfuscation of a circuit F(4,j)
i,u,S{i−u+j},σi−u+j

.

The circuit is the same as F
(3,j)
i,u,S , only that it has a punctured PRF key S{i −

u + j}, and the value σi−u+j = PRFS(i − u + j) is hardwired. In addition, X̃ is
an obfuscation of a circuit X

(4,j)
S{i−u+j}. The circuit is the same as XS , only that

it has the punctured S{i− u + j}, and whenever PRFS(i − u + j) is required the
circuit returns ⊥ (no value is hardwired instead).

Hyb5,j , j ∈ [0, 4
√

T − 1]: Here F̃ is an obfuscation of a circuit F(5,j)
i,u,S{i−u+j},σi−u+j

.

The circuit is the same as F
(4,j)
i,u,S{i−u+j},σi−u+j

, only that the hardwired σi−u+j

is not set to PRFS(i − u + j), but sampled uniformly at random from {0, 1}λ.

Hyb6,j , j ∈ [0, 4
√

T − 1]: Here F̃ is an obfuscation of a circuit F
(6,j)
i,u,S,v,K . The

circuit is the same as F
(5,j)
i,u,S{i−u+j},σi−u+j

, only that instead of storing σi−u+j

in the clear v = OWFK(σi−u+j) is stored, and comparison of σ and σi−u+j is
done by comparing OWFK(σ) and OWFK(σi−u+j). Here K ← KOWF (1λ) is a
key for an injective OWF from the family OWF . Also, the PRF seed S is no
longer punctured. In addition, X̃ is again an obfuscation of XS (where S is no
longer punctured).

We prove the following:

Claim 4.1. For any polysize distinguisherD, allλ ∈ N, and all j ∈ [0, 4
√

T (λ)−1]:

1. |Pr[D(Hyb1) = 1] − Pr[D(Hyb2) = 1]| ≤ 2−Ω(λε2 ),
2.

∣
∣Pr[D(Hyb2) = 1] − Pr[D(Hyb3,0) = 1]

∣
∣ ≤ 2−Ω(λε),

3.
∣
∣Pr[D(Hyb3,j) = 1] − Pr[D(Hyb4,j) = 1]

∣
∣ ≤ T−1/2 + 2−Ω(λε),

4.
∣
∣Pr[D(Hyb4,j) = 1] − Pr[D(Hyb5,j) = 1]

∣
∣ ≤ 2−Ω(λε),

5.
∣
∣Pr[D(Hyb5,j) = 1] − Pr[D(Hyb6,j) = 1]

∣
∣ ≤ T−1/2 + 2−Ω(λε),

6.
∣
∣Pr[D(Hyb6,j) = 1] − Pr[D(Hyb3,j+1) = 1]

∣
∣ ≤ 2−Ω(λε),

where the view of D in each hybrid consists of the corresponding obfuscated F̃, X̃
and (i,PRFS(i)).

Proving the above claim will conclude the proof of Proposition 4.1 since it implies
that

Pr

⎡

⎢
⎢
⎣

σ ← A(F̃, X̃, i,PRFS(i))
F(i − 1, σ) �= ⊥ :

S ← KPRF (1λ)
F̃ ← iO(FS)
X̃ ← iO(XS)

i ← ZT

⎤

⎥
⎥
⎦ ≤
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Pr

⎡

⎢
⎢
⎢
⎢
⎣

σ ← A(F̃, X̃, i,PRFS(i))
F(i − 1, σ) �= ⊥ :

S ← KPRF (1λ)

F̃ ← iO(F(3,
4√

T )
i,S,u )

X̃ ← iO(XS)
i ← ZT

⎤

⎥
⎥
⎥
⎥
⎦

+ λ−ω(1) + 2−Ω(λε2 ) + 4
√

T · (T−1/2 + 2−Ω(λε)) =

0 + λ−ω(1) + 2−Ω(λε2 ) + 2λ
ε
2 /4 · (2−λ

ε
2 /2 + 2−Ω(λε)) =

λ−ω(1),

where the first to last equality follows from the fact that F
(3,

4√
T )

S,u (i − 1, σ) = ⊥
for any σ.

Proof (Proof of Claim 4.1.). We prove each of the items in the claim. The proof
is at most part similar to the one in [BPR15], with several exceptions.

Proof of 1 and 6. Recall that here we need to show that

1. |Pr[D(Hyb1) = 1] − Pr[D(Hyb2) = 1]| ≤ 2−Ω(λε2 ),
6.

∣
∣Pr[D(Hyb6,j) = 1] − Pr[D(Hyb3,j+1) = 1]

∣
∣ ≤ 2−Ω(λε).

In both cases, one obfuscated program differs from the other on exactly a single
point, which is the unique (random) preimage of the corresponding image v (in
the first case v = OWFK′(u), and in the second v = OWFK(σi−u+j)).

To prove the claim, we rely on a lemma proven in [BCP14] that roughly shows
that, for circuits that only differ on a single input, iO implies what is known as
differing input obfuscation [BGI+01], where it is possible to efficiently extract
from any iO distinguisher an input on which the underlying circuits differ.

Lemma 4.1 (special case of [BCP14]). Let iO be a (t, δ)-secure indistin-
guishability obfuscator for P/poly. There exists a PPT oracle-aided extractor E,
such that for any tO(1)-size distinguisher D, and two equal size circuits C0, C1

differing on exactly one input x∗, the following holds. Let C ′
0, C

′
1 be padded ver-

sions of C0, C1 of size s ≥ 3 · |C0|.

If |Pr[D(iO(C ′
0) = 1] − Pr[D(iO(C ′

1) = 1]| = η ≥ δ(s)o(1),

then Pr
[
x∗ ← ED(·)(11/η, C0, C1)

]
≥ 1 − 2−Ω(s).

Using the lemma, we show that if either item 2 or 7 do not hold, we can invoke
the distinguisher D to invert the underlying one-way function. The argument is
similar in both cases up to different parameters; for concreteness, we focus on
the first.

Assume that for infinitely many λ ∈ N, D distinguishes Hyb0 from Hyb1 with

gap η(λ) = 2−o(λε2 ). Then, by averaging, with probability η(λ)/2 over the choice
of (u,K ′), D distinguishes the two distributions conditioned on these choices
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with gap η(λ)/2. Thus, we can invoke the extractor E given by Lemma 4.1 to
invert the one-way function family OWF with probability η(λ)

2 · (1 − 2−Ω(λ)) ≥
2−o(λε2 ) in time tE(λ) · tD(λ) ≤ η(λ)−O(1) · λO(1) = 2O(λε2 ). Note that, indeed,
given the image and the one-way function key, the inverter can construct the
corresponding circuits efficiently. Recall that OWF′

K is defined on inputs of size
λ′ = log 4

√
T = λε/2/4, and is (2−λ′ε

, 2λ′ε
)-secure. Thus we get a contradiction

to its one-wayness.

Proof of 2. Recall that here we need to show that

2.
∣
∣Pr[D(Hyb2) = 1] − Pr[D(Hyb3,0) = 1]

∣
∣ ≤ 2−Ω(λε).

Here the obfuscated F̃ compute the exact same function in both hybrids. Specif-
ically, for any input (k, σ), a comparison in the clear of i−k and u is replaced by
comparison of their corresponding values OWFK′(i−k) and OWFK′(u) under an
injective one-way function. Thus, the required indistinguishability follows from
the (λ, 2−λε

)-security of iO.

Proof of 3. Recall that here we need to show that

3.
∣
∣Pr[D(Hyb3,j) = 1] − Pr[D(Hyb4,j) = 1]

∣
∣ ≤ T−1/2 + 2−Ω(λε).

Here also, the obfuscated F̃ computes the exact same function in both hybrids.
Specifically, rather than computing σi−u+j = PRFS(i − u + j) using the PRF
key S, the value σi−u+j is hardwired and directly compared to σ. For any other
index, the punctured key S {i − u + j} is used.

We now claim that the obfuscated X̃ also computes the same function in
both hybrids with overwhelming probability 1 − T−1/2. Indeed, since XS only
computes PRFS on values in the image of PRG, the probability that XS and
X
(4,j)
S{i−u+j} do not compute the same function can be bounded by the probability

that i − u + j is not in the image of PRG. Recall that i is sampled uniformly
from ZT ; thus, i − u + j is also uniformly random in ZT , and we can bound the
probability that it is in the image of PRG : Z√

T → ZT by
√

T · T−1 = T−1/2.
The required indistinguishability now follows from iO security.

Proof of 4. Recall that here we need to show that

4.
∣
∣Pr[D(Hyb4,j) = 1] − Pr[D(Hyb5,j) = 1]

∣
∣ ≤ 2−Ω(λε).

The only difference between the two obfuscated circuit distributions is that in the
first the hardwired value σi−u+j in F̃ is PRFS(i − u + j), whereas in the second
it is sampled independently uniformly at random. Indistinguishability follows
from the (2λε

, 2−λε

)-pseudo-randomness at the punctured point guarantee. Note
that, indeed, given punctured key S {i − u + j} and σi−u+j , a distinguisher can
construct the corresponding circuits F̃, X̃ efficiently.
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Proof of 5. Recall that here we need to show that

5.
∣
∣Pr[D(Hyb5,j) = 1] − Pr[D(Hyb6,j) = 1]

∣
∣ ≤ T−1/2 + 2−Ω(λε).

Here also, the two obfuscated F̃ in both hybrids compute the exact same func-
tion. First, the comparison of σ and σi−u+j is replaced by comparison of their
corresponding values under an injective one-way function. In addition, the punc-
tured key S {i − u + j} is replaced with a non-punctured key S. This does not
affect functionality as the two keys compute the same function on all points
except i − u + j, and the circuit in the two hybrids treats any input i − u + j, σ,
independently of the PRF key.

Also, X̃ now obfuscates the unpunctured version XS instead of X
(4,j)
S{i−u+j}.

As before this does not change functionality with overwhelming probability 1 −
T−1/2.

Overall, the required indistinguishability follows from iO.

This concludes the proof of the Claim 4.1 and Proposition 4.1.

The Padding Parameter �(λ). We choose �(λ) so that each of the circuits F̃···
···

considered above can be implemented by a circuit of size at most �(λ)/3. (The
extra 1/3 slack is taken to satisfy Lemma 4.1 in the analysis below.)

4.2 Enhanced TDPs

We next define enhanced TDPs. These are basically (standard) TDPs where it
is possible to obliviously sample hard-to-invert images; concretely, given x ←
S(PK; rS), it is hard to find TDP−1

PK(x), even given the coins rS of S.

Definition 4.2 (Enhanced TDP). A TDP family T DP is said to be enhanced
if for any polysize inverter A there exists a negligible function μ(·), such that for
all λ ∈ N,

Pr

⎡

⎣A(PK, rS) = TDP−1
PK(x) :

(PK,SK) ← K(1λ)
rS ← {0, 1}poly(λ)
x ← S(PK; rS)

⎤

⎦ ≤ μ(λ).

Enhancing the Previous Construction. We now describe how to enhance
the construction presented in the previous section.

Is the previous TDP already enhanced? We start by noting that the family T DP
constructed in the previous section may not be enhanced. Specifically, recall that
the randomness rS used by S in the construction is a seed s for PRG which is
extended to an index i, and the corresponding domain element is (i,PRFS(i)).
Note that it may very well be that given the seed s such that i = PRG(s), it
is not hard to find another seed s′ such that PRG(s′) = i − 1. In this case, the
inverter may invoke the sampler S with this randomness and invert (i,PRFS(i)).
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Looking more closely into the analysis, in the previous section, we could
replace i with a truly random index, which with high-probability had no images
of PRG in its close surrounding, due to the sparseness of PRG’s image. This no
longer works, as given the seed s used to generate i, we can no longer replace it
with a truly random index.

Discrete-Image PRGs. To circumvent the above, we rely on a pseudo-random
generator with discrete image, meaning that with overwhelming probability over
the choice of the seed s, the corresponding image PRG(s) has no other image
PRG(s′) in its close surrounding. We show how to construct such pseudo-random
generators from plain pseudo-random generators. More accurately, we construct
a family of pseudo-random generators indexed by some public seed h, where the
discrete image requirement holds with overwhelming probability for a random
seed h.

Definition 4.3 (Discrete-image PRG). Let k and � be polynomially bounded
length functions. An efficiently computable family of functions

PRG =
{
PRGh : {0, 1}λ → {0, 1}�(λ) : h ∈ {0, 1}k(λ), λ ∈ N

}
,

associated with an efficient (probabilistic) key sampler KPRG, is a discrete-image
PRG if it satisfies:

1. Pseudo-randomness: For any polysize distinguisher D there is a negligible
μ such that for any λ ∈ N:

∣
∣
∣
∣
∣
∣
∣
∣

Pr
[
D(h,PRGh(s)) = 1 :

h ← KPRG(1λ)
s ← {0, 1}λ

]

−Pr
[
D(h, u) = 1 :

h ← KPRG(1λ)
u ← {0, 1}�(λ)

]

∣
∣
∣
∣
∣
∣
∣
∣

≤ μ(λ).

2. Discrete image: for any λ ∈ N and any t ∈ Z2�(λ) \ {0}:

Pr

[
∃s′ �= s : PRGh(s) − PRGh(s

′) = t mod 2�(λ) :
h ← KPRG(1λ)
s ← {0, 1}λ

]
≤ 2−�(λ)+λ.

A construction of discrete-image PRGs. Let PRG : {0, 1}λ → {0, 1}�(λ) be a
(plain) pseudo-random generator, and let

Hλ =
{

h : {0, 1}�(λ) → {0, 1}�(λ) : λ ∈ N

}
,

be a family of pair-wise independent permutations. We construct a discrete-
image family

PRG =
{
PRGh : {0, 1}λ → {0, 1}�(λ)

}
,

as follows.
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– The public seed h is a random hash in the family Hλ.
– The generator is given by

PRGh(s) := h(PRG(s)).

Claim 4.2. PRG is a discrete-image pseudo-random generator.

Proof. The pseudo-randomness property follows directly from the fact that PRG
is a pseudo-random generator and h is an efficiently computable permutation.

To prove discrete-image, it suffices to show that for any fixed s ∈ {0, 1}λ and
any t ∈ Z2�(λ) \ {0},

Pr
[
∃s′ �= s : PRGh(s) − PRGh(s′) = t mod 2�(λ) : h ← KPRG(1λ)

]
≤ 2−�(λ)+λ.

Indeed, by pairwise-independence, conditioning on the value of PRGh(s) =
h(PRG(s)), for every s′ ∈ {0, 1}λ such that PRG(s′) �= PRG(s), the value
h(PRG(s′)) is uniformly random in Z2�(λ) and thus h(PRG(s′)) = h(PRG(s)) +
t mod 2�(λ) with probability at most 2−�(λ). Taking union-bound over all s′ ∈
{0, 1}λ, the claim follows.

The Augmented Construction. The construction of enhanced TDPs is now iden-
tical to the one in Sect. 4.1, except that we augment the obfuscated domain
sampling circuit XS to a circuit XS,h that also has hardwired a random public
seed h for a discrete-image PRG. The new sampling circuit is now defined as the
previous ones, except that instead of using a plain PRG : Z√

T → ZT we use the
discrete image PRGh : Z√

T → ZT .

Proposition 4.2. The augmented construction is an enhanced trapdoor permu-
tation.

Proof (Proof sketch). The proof is identical to that of Proposition 4.1 with two
exceptions to the proof of one-wayness. Whereas in Proposition 4.1, we consider,
in Hyb1 an adversary that tries to invert (i,PRFS(i)) for a truly uniform i ← ZT .
Now, i ← PRGh(s) ∈ ZT is a pseudo-random element, and the adversary also
obtains the seed s, which are the coins of the sampler S(PK).

The second difference is when switching between XS,h and XS{i−u+j},h (in
the proofs of items 3 and 5). In Proposition 4.1, we relied on the fact that i is
uniformly random and thus i − u + j mod T is not in the image of PRG with
probability T−1/2, implying that puncturing does not affect functionality and
letting us invoke the iO guarantee. Now i is no longer random, but the same holds
based on the discrete image property of PRGh (when choosing t = u−j mod T ).

4.3 Doubly Enhanced TDPs

We now define doubly-enhanced TDPs. These are enhanced TDPs where given
the key PK, it is possible to sample coins rS together with a preimage x of
y = S(PK, rS). In [GR13], it is required that rS is distributed as uniformly
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random coins for S. We relax this requiring that rS is only pseudo-random
even given the randomness used to sample (PK,SK). Indeed, this relaxation
suffices for applications of doubly-enhanced TDPs such as non-interactive zero-
knowledge.

Definition 4.4 (Doubly-enhanced TDP). An enhanced TDP family T DP
is said to be doubly-enhanced there exists a sampler R satisfying the following
two requirements.

1. Correlated preimage sampling. For any PK in the support of K(1λ):

(x, rS) ← R(PK) such that TDPPK(x) = S(PK, rS).

2. Pseudorandomness. For any polysize distinguisher D there is a negligible
μ such that for any λ ∈ N:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr
[
D(x, rS , rK) = 1 : PK ← K(1λ, rK)

(x, rS) ← R(PK)

]

−Pr

⎡

⎢
⎢
⎣D(x, rS , rK) = 1 :

PK ← K(1λ; rK)
rS ← {0, 1}poly(λ)
y ← S(PK, rS)
x ← TDP−1

PK(y)

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ μ(λ).

Doubly Enhancing the Previous Construction. To make the previous
construction doubly enhanced we show how to slightly augment the discrete-
image PRG used in the construction on some sparse subset of seeds (thus not
hurting previous properties), while taking advantage of the particular structure
of our TDP.

Concretely, we augment the code of PRGh to compute a new PRG∗
h as follows.

Let PRG′ : Z 4√
T → Z√

T be a length doubling pseudorandom generator that
expands small seeds s′ ∈ Z 4√

T to longer seeds s ∈ Z√
T for PRGh. PRG∗

h acts as
follows:

Given a (private) seed s ∈ Z√
T as input, parse it as (s′, r′) ∈ Z 4√

T × Z 4√
T .

1. If r′ = 0, compute PRG′(s′), and output PRG∗
h(s′, r′) := PRGh(PRG′(s′)) −

1 mod T .
2. Otherwise, output as before PRG∗

h(s′, r′) = PRGh(s′, r′).

The Augmented Construction. The construction of doubly-enhanced TDPs is
now identical to the one of enhanced TDPs, except that we instantiate the
pseudo-random generator with the new PRG∗ = {PRG∗

h}.

Proposition 4.3. The augmented construction is a doubly-enhanced trapdoor
permutation.
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Proof (Proof sketch). First notice that we did not harm the pseudo-randomness
and discrete-image properties of the original family PRG. Indeed, the augmented
PRG∗

h only behaves differently from PRGh on the set {s = (s′, r′) : r′ = 0}, which
has negligible density T−1/4. The pseudo-randomness and discrete-image prop-
erties, however, are defined for a uniformly random (s′, r′) ∈ Z 4√

T × Z 4√
T , and

thus remain unaffected.

We can now define the sampler R(PK):

1. Pick a random (short) seed s′ ← Z 4√
T .

2. Compute rS = PRG′(s′) ∈ Z 4√
T × Z 4√

T and rx
S = (s′, 0) ∈ Z 4√

T × Z 4√
T .

3. Return (x, rS) where x = S(PK; rx
S).

The pseudorandomness of rS , conditioned on (rK, x), follows directly from the
pseudo-randomness guarantee of PRG′. We now note that x is the preimage
of y = S(PK, rS). We shall assume for simplicity that PRG′(s′) never outputs
s = (s′′; r′′) such that r′′ = 0 (PRG′ can always be augmented to satisfy this prop-
erty). Then, by construction x = (i− 1,PRFS(i− 1)) where i = PRGh(PRG′(s′))
and y = (i,PRFS(i)).

This completes the proof.

4.4 Relaxing Subexponential Security

In all constructions above, we assumed all cryptographic primitives are sub-
exponentially hard. We now explain how this can be relaxed, and what are
the tradeoffs between the hardness of the different primitives. Let f(·), g(·), h(·)
be sub-linear functions and assume that OWF is (2f(λ), 2−f(λ))-secure, PRF
is (λ, 2−g(λ))-secure, and iO is (λ, 2−h(λ))-secure. We can restate Claim 4.1 as
follows.

Claim 4.3 (Claim 4.1 generalized). For any polysize distinguisher D, all λ ∈
N, and all j ∈ [0, 4

√
T ]:

1. |Pr[D(Hyb1) = 1] − Pr[D(Hyb2) = 1]| ≤ 2−Ω(f(log
4√

T )) + 2−Ω(h(λ)),
2.

∣
∣Pr[D(Hyb2) = 1] − Pr[D(Hyb3,0) = 1]

∣
∣ ≤ 2−Ω(h(λ)),

3.
∣
∣Pr[D(Hyb3,j) = 1] − Pr[D(Hyb4,j) = 1]

∣
∣ ≤ T−1/2 + 2−Ω(h(λ)),

4.
∣
∣Pr[D(Hyb4,j) = 1] − Pr[D(Hyb5,j) = 1]

∣
∣ ≤ 2−Ω(g(λ)),

5.
∣
∣Pr[D(Hyb5,j) = 1] − Pr[D(Hyb6,j) = 1]

∣
∣ ≤ T−1/2 + 2−Ω(h(λ)),

6.
∣
∣Pr[D(Hyb6,j) = 1] − Pr[D(Hyb3,j+1) = 1]

∣
∣ ≤ 2−Ω(f(λ)) + 2−Ω(h(λ)).

The overall inversion probability can be bounded by

2−Ω(f(log
4√

T )) + 4
√

T · (T−1/2 + 2−Ω(f(λ)) + 2−Ω(g(λ)) + 2−Ω(h(λ))).

In particular, letting m(λ) = min {f(λ), g(λ), h(λ)}, we can guarantee hard-
ness of the resulting TDP as long as
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1. T (λ) = λ−ω(1).
2. m(λ) = ω(log(T )).
3. f(log 4

√
T ) = ω(log λ).

For instance, for any constant ε < 1, we can set

– T = 2(log λ)2/ε

,
– f(λ) = λε (OWF is still sub-exponential),
– g(λ) = h(λ) = (log λ)2+2/ε (PRF and iO are quasi-polynomial).

Alternatively, we can set

– T = 22
(log λ)ε

,

– f(λ) = g(λ) = h(λ) = 2(log λ)
1+ε
2 (all primitives are only 2λo(1)

-secure).

Acknowledgements. We thank Mark Zhandry for bringing to our attention the ques-
tion of injective OWFs from indistinguishability obfuscation.

A On Non-interactive Commitments from iO

As mentioned above, our result allows to remove additional assumptions in iO
based construction of several fundamental primitives including non-interactive
commitments. Here we elaborate on this implication.

In the construction of non-interactive commitments based on injective one-
way functions [Blu81] it is crucial that a malicious sender cannot send a mal-
formed function key defining a function that is not injective. We observe however,
that it is sufficient to require that every key in the support of the key-generation
algorithm defines an injective function. If the function family has this property,
we can modify the decommitment algorithm and have sender present its random
coins, proving that the key is indeed in the support of the key-generation algo-
rithm. While our injective one-way function do not satisfy the above property,
our trapdoor permutations do.
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Abstract. The mission of theoretical cryptography is to define and con-
struct provably secure cryptographic protocols and schemes. Without
proofs of security, cryptographic constructs offer no guarantees what-
soever and no basis for evaluation and comparison. As most security
proofs necessarily come in the form of a reduction between the security
claim and an intractability assumption, such proofs are ultimately only
as good as the assumptions they are based on. Thus, the complexity
implications of every assumption we utilize should be of significant sub-
stance, and serve as the yard stick for the value of our proposals.

Lately, the field of cryptography has seen a sharp increase in the
number of new assumptions that are often complex to define and diffi-
cult to interpret. At times, these assumptions are hard to untangle from
the constructions which utilize them.

We believe that the lack of standards of what is accepted as a reason-
able cryptographic assumption can be harmful to the credibility of our
field. Therefore, there is a great need for measures according to which
we classify and compare assumptions, as to which are safe and which are
not. In this paper, we propose such a classification and review recently
suggested assumptions in this light. This follows the footsteps of Naor
(Crypto 2003).

Our governing principle is relying on hardness assumptions that are
independent of the cryptographic constructions.

1 Introduction

Conjectures and assumptions are instrumental for the advancement of science.
This is true in physics, mathematics, computer science, and almost any other
discipline. In mathematics, for example, the Riemann hypothesis (and its exten-
sions) have far reaching applications to the distribution of prime numbers. In
computer science, the assumption that P �= NP lies in the foundations of com-
plexity theory. The more recent Unique Games Conjecture [40] has been instru-
mental to our ability to obtain tighter bounds on the hardness of approximation
of several problems. Often, such assumptions contribute tremendously to our
understanding of certain topics and are the force moving research forward.

Assumptions are paramount to cryptography. A typical result constructs
schemes for which breaking the scheme is an NP computation. As we do not
c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part I, LNCS 9562, pp. 505–522, 2016.
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know that P �= NP, an assumption to that effect (and often much more) must
be made. Thus, essentially any cryptographic security proof is a reduction from
the existence of an adversary that violates the security definition to dispelling
an underlying conjecture about the intractability of some computation. Such
reductions present a “win-win” situation which gives provable cryptography its
beauty and its power: either we have designed a scheme which resists all poly-
nomial time adversaries or an adversary exists which contradicts an existing
mathematical conjecture. Put most eloquently, “Science wins either way1”.

Naturally, this is the case only if we rely on mathematical conjectures whose
statement is scientifically interesting independently of the cryptographic appli-
cation itself. Most definitely, the quality of the assumption determines the value
of the proof.

Traditionally, there were a few well-studied computational assumptions under
which cryptographic schemes were proven secure. These assumptions can be
partitioned into two groups: generic and concrete. Generic assumptions include
the existence of one-way functions, the existence of one-way permutations, the
existence of a trapdoor functions, and so on. We view generic assumptions as
postulating the existence of a cryptographic primitive. Concrete assumptions
include the universal one-way function assumption [31],2 the assumption that
Goldreich’s expander-based function is one-way [32], the Factoring and RSA
assumptions [47,49], the Discrete Log assumption over various groups [24], the
Quadratic Residuosity assumption [37], the DDH assumption [24], the parity
with Noise (LPN) assumption [2,10], the Learning with Error (LWE) assump-
tion [48], and a few others.

A construction which depends on a generic assumption is generally viewed as
superior to that of a construction from a concrete assumption, since the former
can be viewed as an unconditional result showing how abstract cryptographic
primitives are reducible to one another, setting aside the question of whether
a concrete implementation of the generic assumption exists. And yet, a generic
assumption which is not accompanied by at least one proposed instantiation by a
concrete assumption is often regarded as useless. Thus, most of the discussion in
this paper is restricted to concrete assumptions, with the exception of Sect. 2.5,
which discusses generic assumptions.

Recently, the field of cryptography has been overrun by numerous assump-
tions of radically different nature than the ones preceding. These assumptions are
often nearly impossible to untangle from the constructions which utilize them.
The differences are striking. Severe restrictions are now assumed on the class of
algorithms at the disposal of any adversary, from assuming that the adversary is
only allowed a restricted class of operations (such as the Random Oracle Model
restriction, or generic group restrictions), to assuming that any adversary who
breaks the cryptosystem must do so in a particular way (this includes various

1 Silvio Micali, private communication.
2 A universal one-way function is a candidate one-way function f such that if one-

way functions exist then f itself is one-way [31]. The universal one-way function
assumption asserts that this universal f is indeed one-way.
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knowledge assumptions). The assumptions often make mention of the crypto-
graphic application itself and thus are not of independent interest. Often the
assumptions come in the form of an exponential number of assumptions, one
assumption for every input, or one assumption for every size parameter. Over-
all, whereas the constructions underlied by the new assumptions are ingenious,
their existence distinctly lacks a “win-win” consequence.

Obviously, in order to make progress and move a field forward, we should
occasionally embrace papers whose constructions rely on newly formed assump-
tions and conjectures. This approach marks the birth of modern cryptography
itself, in the landmark papers of [24,49]. However, any conjecture and any new
assumption must be an open invitation to refute or simplify, which necessitates
a clear understanding of what is being assumed in the first place. The latter has
been distinctly lacking in recent years.

Our Thesis. We believe that the lack of standards in what is accepted as a rea-
sonable cryptographic assumption is harmful to our field. Whereas in the past, a
break to a provably secure scheme would lead to a mathematical breakthrough,
there is a danger that in the future the proclaimed guarantee of provable secu-
rity will lose its meaning. We may reach an absurdum, where the underlying
assumption is that the scheme itself is secure, which will eventually endanger
the mere existence of our field.

We are in great need of measures which will capture which assumptions are
“safe”, and which assumptions are “dangerous”. Obviously, safe does not mean
correct, but rather captures that regardless of whether a safe assumption is
true or false, it is of interest. Dangerous assumptions may be false and yet of
no independent interest, thus using such assumptions in abundance poses the
danger that provable security will lose its meaning.

One such measure was previously given by Naor [43], who classified assump-
tions based on the complexity of falsifying them. Loosely speaking,3 an assump-
tion is said to be falsifiable, if one can efficiently check whether an adversary is
successful in breaking it.

We argue that the classification based on falsifiability alone has proved to
be too inclusive. In particular, assumptions whose mere statement refers to the
cryptographic scheme they support can be (and have been) made falsifiable.
Thus, falsifiability is an important feature but not sufficient as a basis for eval-
uating current assumptions,4 and in particular, it does not exclude assumptions
that are construction dependent.

In this position paper, we propose a stricter classification. Our governing
principle is the goal of relying on hardness assumptions that are independent of
the constructions.

3 We refer here to the notion of falsifiability as formalized by Gentry and Wichs [30],
which is slightly different from the original notions proposed by Naor. We elaborate
on these notions, and on the difference between them, in Sect. 2.6 and in Appendix A.

4 We note that this was also explicitly pointed out by Naor who advocated falsifiability
as an important feature, not as a sufficient one.
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2 Our Classification

We formalize the notion of a complexity assumption, and argue that such assump-
tions is what we should aim for.

Intuitively, complexity assumptions are non-interactive assumptions that pos-
tulate that given an input, distributed according to an efficiently sampleable
distribution D, it is hard to compute a valid “answer” (with non-negligible advan-
tage), where checking the validity of the answers can be done in polynomial time.

More specifically, we distinguish between two types of complexity assumptions:

1. Search complexity assumptions, and
2. Decision complexity assumptions.

Convention: Throughout this manuscript, for the sake of brevity, we refer to
a family of poly-size circuits M = {Mn} as a polynomial time non-uniform
algorithm M.

2.1 Search Complexity Assumptions

Each assumption in the class of search complexity assumptions consists of a
pair of probabilistic polynomial-time algorithms (D,R), and asserts that there
does not exist an efficient algorithm M that on input a random challenge x,
distributed according D, computes any value y such that R(x, y) = 1, with
non-negligible probability. Formally:

Definition 1. An assumption is a search complexity assumption if it consists
of a pair of probabilistic polynomial-time algorithms (D,R), and it asserts that
for any efficient5 algorithm M there exists a negligible function μ such that for
every n ∈ N,

Pr
x←D(1n)

[M(x) = y s.t. R(x, y) = 1] ≤ μ(n). (1)

Note that in Definition 1 above, we require that there is an efficient algo-
rithm R that takes as input a pair (x, y) and outputs 0 or 1. One could consider
a more liberal definition, of a privately-verifiable search complexity assumption,
which is similar to the definition above, except that algorithm R is given not
only the pair (x, y) but also the randomness r used by D to generate x.

Definition 2. An assumption is a privately-verifiable search complexity assump-
tion if it consists of a pair of probabilistic polynomial-time algorithms (D,R), and
it asserts that for any efficient algorithm M there exists a negligible function μ
such that for every n ∈ N,

Pr
r←{0,1}n

[M(x) = y s.t. R(x, y, r) = 1 | x = D(r)] ≤ μ(n). (2)

5 “Efficient” can be interpreted in several ways. We elaborate on the various interpre-
tations below.
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The class of privately-verifiable search complexity assumptions is clearly more
inclusive.

What is an Efficient Algorithm? Note that in Definitions 1 and 2 above, we
restricted the adversary M to be an efficient algorithm. One can interpret the
class of efficient algorithms in various ways. The most common interpretation
is that it consists of all non-uniform polynomial time algorithms. However, one
can interpret this class as the class of all uniform probabilistic polynomial time
algorithms, or parallel NC algorithms, leading to the notions of search complexity
assumption with uniform security or with parallel security, respectively. One can
also strengthen the power of the adversary M and allow it to be a quantum
algorithm.

More generally, one can define a (t, ε) search complexity assumption exactly
as above, except that we allow M to run in time t(n) (non-uniform or uni-
form, unbounded depth or bounded depth, with quantum power or without)
and require that it cannot succeed with probability ε(n) on a random chal-
lenge x ← D(1n). For example, t(n) may be sub-exponentially large, and ε(n)
may be sub-exponentially small. Clearly the smaller t is, and the larger ε is, the
weaker (and thus more reasonable) the assumption is.

Uniformity of (D,R). In Definition 1 above, we require that the algorithms D
and R are uniform probabilistic polynomial-time algorithms. We could have con-
sidered the more general class of non-uniform search complexity assumptions,
where we allow D and R to be non-uniform probabilistic polynomial-time algo-
rithms. We chose to restrict to uniform assumptions for two reasons. First, we
are not aware of any complexity assumption in the cryptographic literature that
consists of non-uniform D or R. Second, allowing these algorithms to be non-
uniform makes room for assumptions whose description size grows with the size
of the security parameter, which enables them to be construction specific and
not of independent interest. We would like to avoid such dependence. We note
that one could also consider search complexity assumptions where D and R are
allowed to be quantum algorithms, or algorithms resulting from any biological
process.

Examples. The class of (publicly-verifiable) search complexity assumptions
includes almost all traditional search-based cryptographic assumptions, includ-
ing the Factoring and RSA assumptions [47,49], the strong RSA assump-
tion [6,26], the Discrete Log assumption (in various groups) [24], the Learning
Parity with Noise (LPN) assumption [10], and the Learning with Error (LWE)
assumption [48]. An exception is the computational Diffie-Hellman assumption
(in various groups) [24], which is a privately-verifiable search complexity assump-
tion, since given (gx, gy, z) it is hard to test whether z = gxy, unless we are given
x and y, which constitutes the randomness used to generate (gx, gy).
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We note that the LPN assumption and the LWE assumption each consists
of a family of complexity assumptions,6 one assumption for each m, where m is
the number of examples of noisy equations given to the adversary. However, as
was observed by [29], there is a reduction between the LPN (repectively LWE)
assumption with a fixed m to the LPN (repectively LWE) assumption with an
arbitrary m, that incurs essentially no loss in security.

t-Search Complexity Assumptions. The efficient algorithm R associated
with a search complexity assumption can be thought of as an NP relation algo-
rithm. We believe that it is worth distinguishing between search complexity
assumptions for which with overwhelming probability, x ← D(1n) has at most
polynomially many witnesses, and assumptions for which with non-negligible
probability, x ← D(1n) has exponentially many witnesses. We caution that the
latter may be too inclusive, and lead to an absurdum where the assumption
assumes the security of the cryptographic scheme itself, as exemplified below.

Definition 3. For any function t = t(n), a search complexity assumption (D,R)
is said to be a t-search complexity assumption if there exists a negligible func-
tion μ such that

Pr
x←D(1n)

[|{y : (x, y) ∈ R}| > t] ≤ μ(n) (3)

Most traditional search-based cryptographic assumptions are 1-search com-
plexity assumptions; i.e., they are associated with a relation R for which every
x has a unique witness. Examples include the Factoring assumption, the RSA
assumption, the Discrete Log assumption (in various groups), the LPN assump-
tion, and the LWE assumption. The square-root assumption in composite order
group is an example of a 4-search complexity assumption, since each element
has at most 4 square roots modulo N = pq.

An example of a traditional search complexity assumption that is a t-search
assumption only for an exponentially large t, is the strong RSA assumption.
Recall that this assumption assumes that given an RSA modulus N and a ran-
dom element y ← Z

∗
N , it is hard to find any exponent e ∈ Z

∗
N together with

the e’th root ye−1
mod N . Indeed, in some sense, the strong RSA assumption is

“exponentially” stronger, since the standard RSA assumption assumes that it is

6 Loosely speaking, the LPN assumption with error parameter p ∈ (0, 1) (where p
is a constant), asserts that for any poly-size adversary that observes polynomially

many noisy linear equations of the form {(ai, ai · x + ei)}poly(n)
i=1 , outputs x with at

most negligible probability, where x ∈R {0, 1}n is random, all the linear equations
ai ∈R {0, 1}n are independent and random, and each ei is an independent Bernoulli
random variable, where ei = 1 with probability p and ei = 0 otherwise. The LWE
assumption is similar to the LPN assumption, except that it is associated with
a (possibly large) field F. It assumes that as above, given noisy linear equations

{(ai, ai · x + ei)}poly(n)
i=1 it is hard to find x, where now the equations are over the

field F, and x ∈R F, each ai ∈R F
n, and each error ei is independently distributed

according to a discrete Gaussian distribution. We refer the reader to [48] for the
precise definition.
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hard to find the e’th root, for a single e, whereas the strong RSA assumption
assumes that this is hard for exponentially many e’s.

Whereas the strong RSA assumption is considered quite reasonable in our
community, the existence of exponentially many witnesses allows for assumptions
that are overly tailored to cryptographic primitives, as exemplified below.

Consider for example the assumption that a given concrete candidate two-
message delegation scheme for a polynomial-time computable language L is
adaptively sound. This asserts that there does not exist an efficient non-uniform
algorithm M that given a random challenge from the verifier, produces an
instance x �∈ L together with an accepting answer to the challenge. By our defi-
nition, this is a t-complexity assumption for an exponential t, which is publicly
verifiable if the underlying delegation scheme is publicly verifiable, and is pri-
vately verifiable if the underlying delegation scheme is privately verifiable. Yet,
this complexity assumption is an example of an absurdum where the assumption
assumes the security of the scheme itself. This absurdum stems from the fact
that t is exponential. If we restricted t to be polynomial this would be avoided.

We emphasize that we are not claiming that 1-search assumptions are nec-
essarily superior to t-search assumptions for exponential t. This is illustrated in
the following example pointed out to us by Micciancio and Ducas. Contrast the
Shortest Integer Solution (SIS) assumption [41], which is a t-search assumption
for an exponential t, with the Learning with Error (LWE) assumption, which is
1-complexity assumption. It is well known that the LWE assumption is reducible
to the SIS assumption [48]. Loosely speaking, given an LWE instance one can use
an SIS breaker to find short vectors in the dual lattice, and then use these vec-
tors to solve the LWE instance. We note that a reduction in the other direction
is only known via a quantum reduction [53].

More generally, clearly if Assumption A possesses properties that we consider
desirable, such as being 1-search, falsifiable, robust against quantum adversaries,
etc., and Assumption A is reducible to Assumption B, then the latter should be
considered at least as reasonable as the former.

2.2 Decisional Complexity Assumptions

Each assumption in the class of decisional complexity assumptions consists of
two probabilistic polynomial-time algorithms D0 and D1, and asserts that there
does not exist an efficient algorithm M that on input a random challenge x ← Db

for a random b ← {0, 1}, outputs b with non-negligible advantage.

Definition 4. An assumption is a decisional complexity assumption if it is
associated with two probabilistic polynomial-time distributions (D0,D1), such
that for any efficient7 algorithm M there exists a negligible function μ such
that for any n ∈ N,

Pr
b←{0,1},x←Db(1n)

[M(x) = b] ≤ 1
2

+ μ(n). (4)

7 “Efficient algorithms” can be interpreted in several ways, as we elaborated on in
Sect. 2.1.
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Example 1. This class includes all traditional decisional assumptions, such as the
DDH assumption [24], the Quadratic Residuosity (QR) assumption [37], the N ’th
Residuosity assumption [44], the decisional LPN assumption [2], the decisional
LWE assumption [48], the decisional linear assumption over bilinear groups [11],
and the Φ-Hiding assumption [15]. Thus, this class is quite expressive. The Multi-
linear Subgroup Elimination assumption, which was recently proposed and used
to construct IO obfuscation in [28], is another member of this class. To date,
however, this assumption has been refuted in all proposed candidate (multi-
linear) groups [18,19,42].

An example of a decisional assumption that does not belong to this class is
the strong DDH assumption over a prime order group G [16]. This assumption
asserts that for every distribution D with min-entropy k = ω(log n), it holds that

(gr, gx, grx) ≈ (gr, gx, gu),

where x ← D and r, u ← Zp, where p is the cardinality of G, and g is a genera-
tor of G.

This assumption was introduced by Canetti [16], who used it to prove the
security of his point function obfuscation construction. Since for point function
obfuscation the requirement is to get security for every point x, it is impossible
to base security under a polynomial complexity assumption. This was shown by
Wee [54], who constructed a point function obfuscation scheme under a complex-
ity assumption with an extremely small ε. We note that if instead of requiring
security to hold for every point x, we require security to hold for every distrib-
ution on inputs with min-entropy nε, for some constant ε > 0, then we can rely
on standard (polynomial) complexity assumptions, such as the LWE assump-
tion [36], and a distributional assumption as above is not necessary.

Many versus two distributions. One can consider an “extended” decision com-
plexity assumption which is associated with polynomially many distributions,
as opposed to only two distributions. Specifically, one can consider the decision
complexity assumption that is associated with a probabilistic polynomial-time
distribution D that encodes t = poly(n) distributions, and the assumption is
that for any efficient algorithm M there exists a negligible function μ such that
for any n ∈ N,

Pr
i←[t],x←D(1n,i)

[M(x) = i] ≤ 1
t

+ μ(n). (5)

We note however that such an assumption can be converted into an equivalent
decision assumption with two distributions D0 and D1, using the Goldreich-Levin
hard-core predicate theorem [34], as follows: The distribution D0 will sample at
random i ← [t], sample at random x ← D(1n, i), sample at random r ← [t], and
output (x, r, r · i). The algorithm D1 will similarly sample i, x, r but will output
(x, r, b) for a random bit b ← {0, 1}.



Cryptographic Assumptions: A Position Paper 513

2.3 Worst-Case vs. Average-Case Hardness

Note that both Definitions 1 and 4 capture average-case hardness assumptions,
as opposed to worst-case hardness assumptions. Indeed, at first sight, rely-
ing on average-case hardness in order to prove the security of cryptographic
schemes seems to be necessary, since the security requirements for cryptographic
schemes require adversary attacks to fail with high probability, rather than in the
worst case.

One could have considered the stricter class of worse-case (search or decision)
complexity assumptions. A worst-case search assumption, is associated with a
polynomial time computable relation R, and requires that no polynomial-time
non-uniform algorithm M satisfies that for every x ∈ {0, 1}∗, R(x,M(x)) = 1.
A worst-case decisional assumption is a promise assumption which is associated
with two sets of inputs S0 and S1, and requires there is no polynomial-time
non-uniform algorithm M, that for every x ∈ {0, 1}∗, given the promise that it
is in S0 ∪ S1, guesses correctly whether x ∈ S0 or x ∈ S1.

There are several cryptographic assumptions for which there are random
self-reductions from worst-case to average-case for fixed-parameter problems8.
Examples include the Quadratic-Residuosity assumption, the Discrete Loga-
rithm assumption, and the RSA assumption [37]. In fact, the Discrete Log
assumption over fields of size 2n has a (full) worst-case to average case reduc-
tion [7].9 Yet, we note that the Discrete Log assumption over fields of small
characteristic (such as fields of size 2n) have been recently shown to be solvable
in quasi-polynomial time [5], and as such are highly vulnerable.

There are several lattice based assumptions that have a worst-case to average-
case reduction [1,13,46,48]. Such worst-case assumptions are usable for cryptog-
raphy, and include the GapSVP assumption [33] and the assumption that it is
hard to approximate the Shortest Independent Vector Problem (SIVP) within
polynomial approximation factors [41].

Whereas being a worst-case complexity assumption is a desirable property
and average to worst case reductions are a goal in itself, we believe that at this
point in the life-time of our field establishing the security of novel cryptographic
schemes (e.g., IO obfuscation) based on an average case complexity assumption
would be a triumph. We note that traditionally cryptographic hardness assump-
tions were average-case assumptions (as exemplified above).

2.4 Search versus Decision Complexity Assumptions

An interesting question is whether search complexity assumptions can always be
converted to decision complexity assumptions and vice versa.
8 By a “worst-case to average-case reduction for a fixed-parameter problem”, we think

of a problem instance as a pair (n, x) and a reduction which holds per fixed n.
9 More generally, such a worst-case to average case reduction exists if the security

parameter determines the field, its representation, and a generator of the field. As was
shown by Shoup in [50,51], finding a representation (i.e., an irreducible polynomial)
and a generator for fields of small characteristic can be done in polynomial time.
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We note that any decision complexity assumption can be converted into a
privately-verifiable search complexity assumption that is sound assuming the
decision assumption is sound, but not necessarily into a publicly verifiable search
complexity assumption. Consider, for example, the DDH assumption. Let fDDH

be the function that takes as input n tuples (where n is the security parame-
ter), each tuple is either a DDH tuple or a random tuple, and outputs n bits,
predicting for each tuple whether it is a DDH tuple or a random tuple. The
direct product theorem [39] implies that if the DDH assumption is sound then it
is hard to predict fDDH except with negligible probability. The resulting search
complexity assumption is privately-verifiable, since in order to verify whether
a pair ((x1, . . . , xn), (b1, . . . , bn)) satisfies that (b1, . . . , bn) = fDDH(x1, . . . , xn),
one needs the private randomness used to generate (x1, . . . , xn).

In the other direction, it would seem at first that one can map any (privately-
verifiable or publicly verifiable) search complexity assumption into an equiva-
lent decision assumption, using the hard-core predicate theorem of Goldreich
and Levin [34]. Specifically, given any (privately-verifiable) search complexity
assumption (D,R), consider the following decision assumption: The assumption
is associated with two distributions D0 and D1. The distribution Db generates
(x, y), where x ← D(1n) and where R(x, y) = 1, and outputs a triplet (x, r, u)
where r is a random string, and if b = 0 then u = r · y(mod 2) and if b = 1 then
u ← {0, 1}. The Goldreich-Levin hard-core predicate theorem states that the
underlying search assumption is sound if and only if x ← D0 is computationally
indistinguishable from x ← D1. However, D0 and D1 are efficiently sampleable
only if generating a pair (x, y), such that x ← D(1n) and R(x, y) = 1, can
be done efficiently. Since the definition of search complexity assumptions only
assures that D is efficiently sampleable and does not mandate that the pair
(x, y) is efficiently sampleable, the above transformation from search to decision
complexity assumption does not always hold.

2.5 Concrete versus Generic Assumptions

The examples of assumptions we mentioned above are concrete assumptions.
Another type of assumption made in cryptography is a generic assumption, such
as the assumption that one-way functions exist, collision resistant hash families
exist, or IO secure obfuscation schemes exist.

We view generic assumptions as cryptographic primitives in themselves, as
opposed to cryptographic assumptions. We take this view for several reasons.
First, in order to ever make use of a cryptographic protocol based on a generic
assumption, we must first instantiate it with a concrete assumption. Thus, in a
sense, a generic assumption is only as good as the concrete assumptions it can
be based on. Second, generic assumptions are not falsifiable. The reason is that
in order to falsify a generic assumption one needs to falsify all the candidates.

The one-way function primitive has the unique feature that it has a universal
concrete instantiation, and hence is falsifiable. Namely, there exists a (universal)
concrete one-way function candidate f such that if one-way functions exist then f
itself is one-way [31]. This state of affairs would be the gold standard for any
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generic assumption; see discussion in Sect. 2.7. Moreover, one-way functions can
be constructed based on any complexity assumption, search or decision.

In the other extreme, there are generic assumptions that have no instantia-
tion under any (search or decisional) complexity assumption. Examples include
the generic assumption that there exists a 2-message delegation scheme for NP,
the assumption that P-certificates exist [20], the assumption that extractable col-
lision resistant hash functions exist [8,21,23], and the generic assumption that
IO obfuscation exists.10

2.6 Falsifiability of Complexity Assumptions

Naor [43] defined the class of falsifiable assumptions. Intuitively, this class
includes all the assumptions for which there is a constructive way to demon-
strate that it is false, if this is the case. Naor defined three notions of falsifiabil-
ity: efficiently falsifiable, falsifiable, and somewhat falsifiable. We refer the reader
to Appendix A for the precise definitions.

Gentry and Wichs [30] re-formalized the notion of a falsifiable assumption.
They provide a single formulation, that arguably more closely resembles the
intuitive notion of falsifiability. According to [30] an assumption is falsifiable if
it can be modeled as an interactive game between an efficient challenger and
an adversary, at the conclusion of which the challenger can efficiently decide
whether the adversary won the game. Almost all followup work that use the
term of falsifiable assumptions use the falsifiability notion of [30], which captures
the intuition that one can efficiently check (using randomness and interaction)
whether an attacker can indeed break the assumption. By now, when researchers
say that an assumption is falsifiable they most often refer to the falsifiability
notion of [30]. In this paper we follow this convention.

Definition 5. [30] A falsifiable cryptographic assumption consists of a proba-
bilistic polynomial-time interactive challenger C. On security parameter n, the
challenger C(1n) interacts with a non-uniform machine M(1n) and may out-
put a special symbol win. If this occurs, we say that M(1n) wins C(1n). The
assumption states that for any efficient non-uniform M,

Pr[M(1n)wins C(1n)] = negl(n),

where the probability is over the random coins of C. For any t = t(n) and
ε = ε(n), an (t, ε) assumption is falsifiable if it is associated with a probabilistic
polynomial-time C as above, and for every M of size at most t(n), and for every
n ∈ N,

Pr[M(1n)wins C(1n)] ≤ ε(n).

The following claim is straightforward.

Claim 1. Any (search or decision) complexity assumption is also a falsifiable
assumption (according to Definition 5), but not vice versa.
10 We note that this assumption was recently reduced to the subgroup elimination

assumption [28], which is a new decisional complexity assumptions. To date, however,
this assumption has been refuted in all proposed candidate (multi-linear) groups.
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2.7 Desirable Properties of Complexity Assumptions

We emphasize that our classification described above is minimal and does not
take into account various measures of how “robust” the assumption is. We men-
tion two such robustness measures below.

Robustness to auxiliary inputs. One notion of robustness that was considered
for search assumptions is that of robustness to auxiliary inputs.

Let us consider which auxiliary inputs may be available to an adversary of
a complexity assumption. Recall that search complexity assumptions are asso-
ciated with a pair of probabilistic polynomial time algorithms (D,R) where the
algorithm D generates instances x ← D and the assumption is that given x ← D
it is computationally hard to find y such that (x, y) ∈ R. As it turns out however,
for all known search assumptions that are useful in cryptography, it is further
the case that one can efficiently generate not only an instance x ← D, but pairs
(x, y) such that (x, y) ∈ R. Indeed, it is what most often makes the assumption
useful in a cryptographic context. Typically, in a classical adversarial model, y is
part of the secret key, whereas x is known to the adversary. Yet due to extensive
evidence a more realistic adversarial model allows the adversary access to partial
knowledge about y which can be viewed generally as access to an auxiliary input.

Thus, one could have defined a search complexity assumption as a pair (D,R)
as above, but where the algorithm D generates pairs (x, y) (as opposed to only x),
such that (x, y) ∈ R and the requirement is that any polynomial-size adversary
who is given only x, outputs some y′ such that (x, y′) ∈ R, only with negligible
probability. This definition is appropriate when considering robustness to auxil-
iary information. Informally, such a search assumption is said to be resilient to
auxiliary inputs if given an instance x sampled according to D, and given some
auxiliary information about the randomness used by D (and in particular, given
some auxiliary information about y), it remains computationally hard to find y′

such that (x, y′) ∈ R.

Definition 6. A search complexity assumption (D,R) as above is said to be
resilient to t(n)-hard-to-invert auxiliary inputs if for any t(n)-hard-to-invert
function L : {0, 1}n → {0, 1}∗,

Pr
r←{0,1}n,(x,y)←D(r)

[M(x,L(r)) = y′ s.t. R(x, y′) = 1] ≤ μ(n), (6)

where L is said to be t(n)-hard-to-invert if for every t(n)-time non-unform algo-
rithm M there exists a negligible μ such that for every n ∈ N,

Pr
z←L(Un)

[M(z) = r : L(r) = z] = μ(n). (7)

It was shown in [36] that the decisional version of the LWE assumption is
resilient to t(n)-hard-to-invert auxiliary inputs for t(n) = 2nδ

, for any constant
δ > 0. In particular, this implies that the LWE assumption is robust to leakage
attacks. In contrast, the RSA assumptions is known to be completely broken
even if only 0.27 fraction of random bits of the secret key are leaked [38].
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Universal assumptions. We say that a (concrete) complexity assumption A is
universal with respect to a generic assumption if the following holds: If A is false
then the generic assumption is false. In other words, if the generic assumption has
a concrete sound instantiation then A is it. Today, the only generic assumption
for which we know a universal instantiation is one-way functions [31].

Open Problem: We pose the open problem of finding a universal instantia-
tions for other generic assumptions, in particular for IO obfuscation, witness
encryption, or 2-message delegation for NP.

3 Recently Proposed Cryptographic Assumptions

Recently, there has been a proliferation of cryptographic assumptions. We next
argue that many of the recent assumptions proposed in the literature, even the
falsifiable ones, are not complexity assumptions.

IO Obfuscation constructions. Recently, several constructions of IO obfuscation
have been proposed. These were proved under ad-hoc assumptions [27], meta
assumptions [45], and ideal-group assumptions [4,14]. These assumptions are
not complexity assumptions, for several reasons: They are either overly tailored
to the construction, or artificially restrict the adversaries.

The recent result of [28] constructed IO obfuscation under a new complexity
assumption, called Subgroup Elimination assumption. This is a significant step
towards constructing IO under a standard assumption. However, to date, this
assumption is known to be false in all candidate (multi-linear) groups.

Assuming IO obfuscation exists. A large body of work which emerged since the
construction of [27], constructs various cryptographic primitives assuming IO
obfuscation exists. Some of these results require only the existence of IO obfus-
cation for circuits with only polynomially many inputs (eg., [9]). Note that any
instantiation of this assumption is falsifiable. Namely, the assumption that a
given obfuscation candidate O (for circuits with polynomially many inputs) is
IO secure, is falsifiable. The reason is that to falsify it one needs to exhibit two
circuits C0 and C1 in the family such that C0 ≡ C1, and show that it can dis-
tinguish between O(C0) and O(C1). Note that since the domain of C0 and C1

consists of polynomially many elements one can efficiently test whether indeed
C0 ≡ C1, and of course the falsifier can efficiently prove that O(C0) �≈ O(C1) by
showing that one can distinguish between these two distributions. On the other
hand, this is not a complexity assumption. Rather, such an assumption consists
of many (often exponentially many) decision complexity assumptions: For every
C0 ≡ C1 in the family Cn (there are often exponentially many such pairs), the
corresponding decision complexity assumption is that O(C0) ≈ O(C1). Thus,
intuitively, such an assumption is exponentially weaker than a decisional com-
plexity assumption.
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Artificially restricted adversaries assumptions. We next consider the class of
assumptions that make some “artificial” restriction on the adversary. Examples
include the Random Oracle Model (ROM) [25] and various generic group mod-
els [12,52]. The ROM restricts the adversary to use a given hash function only in
a black-box manner. Similarly, generic group assumptions assume the adversary
uses the group structure only in an “ideal” way. Another family of assump-
tions that belongs to this class is the family knowledge assumptions. Knowledge
assumptions artificially restrict the adversaries to compute things in a certain
way. For example, the Knowledge-of-Exponent assumption [22] assumes that any
adversary that given (g, h) computes (gz, hz), must do so by “first” computing z
and then computing (gz, hz).

We note that such assumptions cannot be written even as exponentially many
complexity assumptions. Moreover, for the ROM and the generic group assump-
tions, we know of several examples of insecure schemes that are proven secure
under these assumptions [3,17,35].

We thus believe that results that are based on such assumption should be
viewed as intermediate results, towards the goal of removing such artificial con-
straints and constructing schemes that are provably secure under complexity
assumptions.

4 Summary

Theoretical cryptography is in great need for a methodology for classifying
assumptions. In this paper, we define the class of search and decision complexity
assumptions. An overall guiding principle in the choices we made was to rule out
hardness assumptions which are construction dependent.

We believe that complexity assumptions as we defined them are general
enough to capture all “desirable” assumptions, and we are hopeful that they
will suffice in expressive power to enable proofs of security for sound construc-
tions. In particular, all traditional cryptographic assumptions fall into this class.

We emphasize, that we do not claim that all complexity-based complexity
assumptions are necessarily desirable or reasonable. For example, false complex-
ity assumptions are clearly not reasonable. In addition, our classification does
not incorporate various measures of how “robust” an assumption is, such as: how
well studied the assumption is, whether it is known to be broken by quantum
attacks, whether it has a worst-case to average-case reduction, or whether it is
known to be robust to auxiliary information.
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A Falsifiable Assumptions

Naor [43] defined three notions of falsifiability: efficiently falsifiable, falsifiable,
and somewhat falsifiable.

Definition 7. A (t, ε) assumption is efficiently falsifiable if there exists a family
of distributions {Dn}n∈N, a verifier V : {0, 1}∗ × {0, 1}∗ → {0, 1}, such that the
following holds for any parameter δ > 0:

1. If the assumption is false then there exists a falsifier B that satisfies

Pr
x→Dn

[B(x) = y s.t. V (x, y) = 1] ≥ 1 − δ. (A.1)

Moreover, the runtime of B is polynomial in the runtime of the adversary that
breaks the assumption and polynomial in n, log 1/ε, log 1/δ.

2. The runtime of V and the time it takes to sample an element from Dn is
poly(n, log 1/ε, log 1/δ).

3. If there exists a falsifier B that runs in time t and solves random challenges
x ← Dn with probability γ, then there exists an adversary A that runs in time
poly(t) and breaks the original assumption with probability poly(γ).

Definition 8. A (t, ε) assumption is falsifiable if everything is as in Definition 7
except that the runtime of V and of sampling Dn may depend on 1/ε (as opposed
to log 1/ε).

Definition 9. A (t, ε) assumption is somewhat falsifiable if everything is as in
Definition 7 except that the runtime of V and of sampling Dn may depend on
1/ε (as opposed to log 1/ε), and on the runtime of B. In particular, this means
that V may simulate B.

Remark 1. We note that any efficiently falsifiable assumption is also a relation-
based complexity assumption. However, we find the notion of efficiently falsifiable
to be very restrictive, since intuitively it only includes assumptions that are
random self reducible. The definition of falsifiable is less restrictive, however a
falsifiable assumption is not necessarily a complexity assumption, since in order
to verify a break of the assumption one needs to run in time 1/ε which is super-
polynomial. We view the notion of somewhat falsifiable to be too weak. Allowing
the runtime of the verifier to depend on the runtime of the falsifier B makes this
class very inclusive, and it includes many interactive assumptions (we refer the
reader to [43] for details).
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learning with errors. In: Symposium on Theory of Computing Conference, STOC
2013, 1–4 June 2013, Palo Alto, CA, USA, pp. 575–584 (2013)

14. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014)

15. Cachin, C., Micali, S., Stadler, M.A.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

16. Canetti, R.: Towards realizing random oracles: hash functions that hide all partial
information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–
469. Springer, Heidelberg (1997)

17. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004). http://doi.acm.org/10.1145/1008731.1008734

18. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
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Abstract. A multiparty computation protocol is said to be adaptively
secure if it retains its security in the presence of an adversary who can
adaptively corrupt participants as the protocol proceeds. This is in con-
trast to a static corruption model where the adversary is forced to choose
which participants to corrupt before the protocol begins. A central tool
for constructing adaptively secure protocols is non-committing encryp-
tion (Canetti, Feige, Goldreich and Naor, STOC ’96). The original pro-
tocol of Canetti et al. had ciphertext expansion O(k2) where k is the
security parameter, and prior to this work, the best known constructions
had ciphertext expansion that was either O(k) under general assump-
tions, or alternatively O(log(n)), where n is the length of the message,
based on a specific factoring-based hardness assumption.

In this work, we build a new non-committing encryption scheme from
lattice problems, and specifically based on the hardness of (Ring) Learn-
ing With Errors (LWE). Our scheme achieves ciphertext expansion as
small as polylog(k). Moreover when instantiated with Ring-LWE, the
public-key is of size O(npolylog(k)). All previously proposed schemes
had public-keys of size Ω(n2polylog(k)).
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1 Introduction

Secure multiparty computation (MPC) allows a group of players to compute any
joint function of their private inputs, even when some of the players are adver-
sarial [GMW87,BGW88,CCD88]. MPC protocols are often categorized based
on the security properties they offer. One natural and well-studied distinction
is between protocols which are secure against an adaptive adversary, and those
which are only secure when the adversary is static. A static adversary is one who
chooses which parties to corrupt before the protocol begins, while an adaptive
adversary can choose which parties to corrupt on the fly, and thus the corruption
pattern may depend on the messages exchanged during the protocol. Adaptive
security is desirable as it models real-world adversarial behavior more honestly.
Unfortunately, adaptively secure protocols are significantly harder to construct
as several techniques from the literature for proving security in the static model
do not seem to carry over to the adaptive model.

Adaptively Secure MPC. The information-theoretic MPC protocol of [BGW88]
is adaptively secure when each pair of parties is connected by a secure channel
(so communication between honest parties may not be observed by the adver-
sary). Roughly, this is because for a security threshold of t, the views of any
t players are statistically independent of the secret inputs of all other parties.
Thus the information the adversary obtains from corrupting fewer than t parties
can be simulated and so adaptively choosing new parties to corrupt does not
provide an advantage. One might hope to obtain an adaptively secure protocol
in the plain model (i.e. without ideal channels) by using semantically secure
encryption. Specifically, each pair of parties might first exchange public keys
and then communicate “privately” by publicly broadcasting encryptions of their
messages. The ideal adversary might then be able to emulate a real interaction
by broadcast encryptions of zero, and prove indistinguishability using semantic
security. However, as pointed out in [CFGN96], this intuition does not exactly
work. Essentially the problem is that the ciphertext in ordinary encryption “com-
mits” the sender to one message. An ideal adversary, therefore, would be unable
to open an encryption of zero to anything except zero. This is problematic for
adaptive security because if a party is corrupted after it has already sent encryp-
tions, then upon learning the secret keys and previously used randomness, the
adversary will be able to tell if it is in the ideal or real world based on whether the
entire communication is encryptions of zero or not. [CFGN96] goes on to define
and construct a stronger type of encryption called non-committing encryption
(NCE) which allows the above intuition to go through.

Non-Committing Encryption. An encryption scheme is non-committing if a
simulator can geterate a public key/ciphertext pair that is indistinguishable
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from a real public key/ciphertext, but for which it can later produce a secret
key/encryption randomness pair which “explains” the ciphertext as an encryp-
tion of any adversarily chosen message. This provides a natural method for cre-
ating adaptively secure MPC protocols: first design a statically secure protocol
in the private channels model, then instantiate the private channels with NCE.

Prior Work on NCE. The original work of [CFGN96] gives an NCE protocol
based on the existence of a special type of trapdoor permutations and is relatively
inefficient: requiring a sender to send a ciphertext of size O(k2) to encrypt a
single bit (for security parameter k). In other words, its ciphertext expansion
factor is O(k2). Choi, Dachman-Soled, Malkin and Wee [CDSMW09] construct
an NCE protocol with ciphertext expansion O(k) starting from any obvliviously-
samplable cryptosystem. The paradigm of using obliviously-samplable encryption
to achieve adaptive security goes back to [DN00] who give a three-round protocol
which adaptively, securely realizes the ideal message transmission functionality
(thus, allowing for adaptively secure MPC). [DN00] show how to instantiate
obvliviously-samplable encryption based on a variety of assumptions, building
on an earlier work of Beaver [Bea97], which essentially constructs obvliviously-
samplable encryption assuming DDH. Very recently, Hemenway, Ostrovsky and
Rosen [HOR15] construct an NCE protocol with logarithmic expansion based
on the Φ−hiding assumption, which is related to (though generally believed to
be stronger than) RSA.

See Fig. 1 for a comparison of past and current work on NCE.

Reference Rounds CT Expansion Public-Key Size Assumption

[CFGN96] 2 O(k2) O(n3polylog(k)) Common-Domain TDPs

[Bea97] 3 O(k) O(n2polylog(k)) DDH

[DN00] 3 O(k) O(n2polylog(k)) Oblivious samplable PKE

[CDSMW09] 2 O(k) O(n2polylog(k)) Oblivious samplable PKE

[HOR15] 2 O(log n) O(n2polylog(k)) Φ-hiding

This work 2 polylog(k) O(n2polylog(k)) LWE

This work 2 polylog(k) O(n polylog(k)) Ring-LWE

Fig. 1. Comparison to prior work. The parameter k denotes the security parameter,
and n denotes the message length.

1.1 Our Contribution

In this work, we construct an NCE scheme with polylogarithmic ciphertext
expansion and which improves upon the recent work of [HOR15] in a number
of ways.

Assumption: Learning with errors (LWE) [Reg09] is known to be as hard as
worst-case lattice problems, and is widely accepted as a cryptographic hard-
ness assumption. Its ring variant is as hard as worst-case problems on ideal
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lattices and is widely used in practice as it allows representing a vector con-
sicely as a single ring element. For comparison, the Φ−hiding assumption is
not as widely used or accepted, and certain choices of parameters must be
carefully avoided as they are susceptible to polynomial time attacks.

Smaller Public Keys: When instantiated with Ring-LWE, the public-key of
our scheme is of size O(npolylog(k)). All previously proposed schemes had
public-keys of size Ω(n2polylog(k)).

No Sampling Issues: One subtle shortcoming of the [HOR15] work is that the
non-committing property of their encryption scheme necessitates the exis-
tence of a public modulus N whose factorization is not known. This means
that in order to attain full simulatability the modulus N will have to be
sampled jointly by the parties, using a secure protocol (which itself needs to
be made adaptively secure). Our current work, in contrast, does not suffer
from this shortcoming and does not necessitate joint simulation of the public
parameters.

1.2 Our Construction

For this high-level description of our protocol we assume familiarity with the def-
inition of non-committing encryption as well as Regev’s LWE-based encryption
scheme [Reg09], and Micciancio-Peikert trapdoors for LWE [MP12]. We refer the
reader to Sect. 2 or the papers themselves for more information on these topics.

KeyGen. Let q,m, k be LWE parameters and n a parameter linear in the message
length �. The receiver chooses a random subset IR ⊂ {1, . . . , n} of size n/8, a
matrix A ∈ Z

m×k
q and vectors v1, . . . ,vn ∈ Z

m
q , where vi is an LWE instance

if i ∈ IR and is random otherwise. The public key is
(
A,v1, . . . ,vn

)
and the

secret key is
(
IR, {si}i∈IR

)
where si ∈ Z

k
q is the LWE secret for vi. So receiver

has generated n Regev public keys, but for which it only knows n/8 of the
corresponding secret keys.

Enc. Let msg ∈ {0, 1}� be a plaintext, and let y = (y1, . . . , yn) = ECC(msg) ∈
{0, 1}n be the image of msg under a suitable error-correcting code. The sender
chooses a random subset IS ⊂ {1, . . . , n} of size n/8 and generates Regev encryp-
tions, under public key (A,vi) of yi if i ∈ IS or of a random bit if i /∈ IS .
Important for the efficiency of our protocol is that these encryptions be gener-
ated using shared randomness. Specifically, the sender chooses a random short
r ∈ Z

m
q and constructs the ciphertext (u, w1, . . . , wn) where u = rtA ∈ Z

k
q

and wi = rtvi + ei +
(
q/2

)
zi where zi = yi if i ∈ IS and is random otherwise

(the ei are short Gaussian errors). So sender has encrypted a string z ∈ {0, 1}n

which agrees with y in 9n/16 of the positions on expectation. The encryption
randomness consists of r, IS as well as the Gaussian errors.

Dec. Given a ciphertext (u, w1, . . . , wn) and secret key
(
IR, {si}i∈IR

)
, receiver

constructs y′ ∈ {0, 1}n by setting y′
i =

⌊(
2/q

)
(wi − utsi)

⌉
if i ∈ IR and y′

i to be
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a random bit otherwise. Then receiver decodes y′
i and outputs msg′ ∈ {0, 1}�.

So receiver is decrypting the ciphertexts for which he knows the secret key, and
is completing this to a string in {0, 1}n by filling in the remaining positions
randomly.

Correctness. Let y = ECC(msg) ∈ {0, 1}n be the coded message and let y′ ∈
{0, 1}n be the string obtained during decryption. Note that whenever i ∈ IR∩IS ,
yi = y′

i with high probability, and whenever i /∈ IR ∩ IS yi = y′
i with probability

1/2. Therefore, yi = y′
i for 65n/128 of the values i ∈ {1, . . . , n} on expectation.

It can be shown using the tail bound (Lemma 1), that there exists a constant
δ > 0 such that yi = y′

i for at least (1/2 + δ)n values of i with high probability.
By our choice of error correcting code, we can decode given such a tampered
codeword.

Adversary’s Real World View. The non-committing adversary receives the secret
key and encryption randomness and tries to use these values to distinguish the
real and ideal worlds. The most difficult aspects of the real world view to simulate
are the subsets IR, IS ⊂ {1, . . . , n}. In the real world, both sets are random of size
n/8 and so the size of their intersection is a hypergeometric random variable.
This must be replicated in the ideal world in order for indistinguishability to
hold. To complicate matters, it is important that the right number of i ∈ IR ∩IS

are such that yi = 0 and y′
i = 0. Likewise, we must make sure that the right

number of i ∈ IR ∩ IS are such that yi = 0 and y′
i = 1, and so on. This involves

carefully computing the multivariate hypergeometric distribution which arises
from the real world execution so that we may emulate it in the ideal world.
We will leave out most of the details for this overview; the specifics are given
in Sect. 3.

Simulating the Public Key and Ciphertext. The simulator chooses a partition
Igood ∪ Ibad = {1, . . . , n} at random, and chooses vectors v1, . . . ,v ∈ Z

m
q so it

knows an LWE secret si for vi whenever i ∈ Igood, and so that it knows an MP
trapdoor for the matrix Â =

[
A|V]

where the columns of V are {vi}i∈Ibad . The
sets Igood and Ibad correspond to the i ∈ {1, . . . , n} for which it knows/doesn’t
know a secret key. It is important for simulation that Igood is much larger than
IR. A good choice, for example is |Igood| = 3n/4. The simulator then sets its
public key to (A,v1, . . . ,vn). It further partitions Igood into Igood,0 ∪ Igood,1

and sets the ciphertext (u, w1, . . . , wn) to be so that u = rtA and wi is a
valid Regev encryption of 0 (resp. 1) if i ∈ Igood,0 (resp. i ∈ Igood,1), and wi is
random if i ∈ Ibad.

Simulating the Secret Key and Decryption Randomness. Upon receiving msg, the
simulator sets (y1, . . . , yn) = ECC(msg) ∈ {0, 1}n and must produce IR, IS ⊂
{1, . . . , n}, string y′ ∈ {0, 1}n and short r ∈ Z

m
q which look like the quantities

which arise from a real world execution (we ignore the Gaussian errors in this
discussion). The simulator must choose IR ⊂ Igood since the vi for i ∈ Ibad
are “lossy” and so have no secret keys (this is why we chose Igood much larger
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than IR). The simulator must also choose y′
i = b for i ∈ Igood,b, since these wi

are valid encryptions of b. More subtly, the simulator must make sure to choose
y′ so that the number of i for which y′

i = 0 and i ∈ IR is as in the real world.
As mentioned above, this more delicate than one might think; see the paragraph
below for an example. Finally, the simulator sets IS to be a subset of {i : yi = y′

i}
of appropriate size and so the sizes of its intersections with the sets chosen so far
are distributed as in the real world. Finally, the simulator sets y′

i for i ∈ Ibad to
be as needed to complete the real world view. Note the simulator has a trapdoor
for Â and so may choose short r ∈ Z

m
q so that rtÂ is as he chooses.

We conclude this discussion with an example which illustrates the care required
to make the above proof go through. For ease of this discussion, we let y′ = y,
even though this is not true for our construction (which makes it even more com-
plicated). Consider only the choice of IR and the number of i ∈ IR such that
yi = 0. In the real world, IR is chosen randomly from {1, . . . , n}, and since yi = 0
for exactly n/2 of the i ∈ {1, . . . , n} (ECC is balanced), #{i ∈ IR : yi = 0} is
distributed according to the hypergeometric distribution H

(
n
8 , n

2 , n
)
. In the ideal

world, IR is chosen randomly from Igood which is itself partitioned into Igood,0

and Igood,1 of equal size so that yi = b for all i ∈ Igood,b. Therefore, in the ideal
world #{i ∈ IR : yi = 0} is distributed according to the hypergeometric dis-
tribution H

(
n
8 , 3n

8 , 3n
4

)
. While the expectations are equal, the random variables

themselves are not and so IR must be chosen in the ideal world carefully in order
to emulate the real world successfully. Details are in Sect. 3.

2 Preliminaries

2.1 Notation

If A is a Probabilistic Polynomial Time (PPT) machine, then we use a
$← A to

denote running the machine A and obtaining an output, where a is distributed
according to the internal randomness of A. If R is a set, we use r

$← R to
denote sampling uniformly from R. If R and X are sets then we use the notation
Prr,x

[
A(x, r) = c

]
to denote the probability that A outputs c when x is sampled

uniformly from X and r is sampled uniformly from R. A function is said to be
negligible if it vanishes faster than the inverse of any polynomial. For simplicity,
we often suppress random inputs to functions. In such cases, we use a semicolon
to separate optional random inputs. Thus c

$← Enc(pk,m) and c = Enc(pk,m; r)
both indicate an encryption of m under the public key pk, but in the first case,
we consider Enc as a randomized algorithm, and in the second we consider Enc
as a deterministic algorithm depending on the randomness r.

2.2 Non-Committing Encryption

Non-committing encryption was introduced by Canetti, Feige, Goldreich and
Naor in [CFGN96] as a primitive which allows one compile a protocol which
is adaptively secure as long as all pairs of parties are connected with a secure
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channel, into an adaptively secure protocol in the plain model. The following
definition is from [DN00] and is consistent with this viewpoint.

Definition 1 (Non-Committing Encryption). We say that a two party pro-
tocol Π is a non-committing encryption scheme if it adaptively, securely realizes
the message transmission functionality:

f(m,⊥) = (⊥,m).

The following indistinguishability based definition is sufficient and easier to
work with. In our proof of security we will this second definition in its game
form.

Definition 2. A cryptosystem PKE = (Gen,Enc,Dec) is called non-committing,
if there exists a PPT simulator Sim = (Sim1,Sim2) with the following properties:

1. Efficiency: The algorithms Gen,Enc,Dec and Sim are all PPT.
2. Correctness: For any message m ∈ M(pp)

Pr
[
Dec(sk, c) = m : (pk, sk) $← Gen(1k), c $← Enc(pk,m)

]
= 1 − negl

3. Simulatability: For any PPT adversary A, the distributions ΛIdeal and ΛReal

are computationally indistinguishable where

ΛIdeal = {(m, pk, c, r1, r2) : (pk, c, t)
$← Sim1(1

k), m
$← A(pk), (sk, r1, r2)

$← Sim2(m, t)}

and

ΛReal = {(m, pk, c, r1, r2) : (pk, sk)
$← Gen(pp; r1), m

$← A(pk), c
$← Enc(pk, m; r2)}

Note that semantic security follows from simulatability.

2.3 Learning with Errors

The learning with errors (LWE) problem [Reg09] is specified by the security
parameter k, a modulus q and an error distribution χ over Zq. In this paper our
errors will be drawn exclusively from discrete Gaussians. We specify the discrete
Gaussian with standard deviation σ by χσ. In its decisional form, the problem
asks one to distinguish, for a random s ∈ Z

k
q , between the distribution As,χ

from Unif
(
Z

k
q × Zq

)
where As,χ =

{
(a, 〈a, s〉 + e)

}
a←Zk

q ,e←χ
. Several important

results [Reg09,Pei09,BLP13] establish the hardness of decisional LWE based on
worst-case lattice problems. The following fact is standard.

Fact 1. Let q = kω(1) be superpolynomial in the security parameter k. Let
B, σ < q be such that σ/B = kω(1), and let χ be a B−bounded distribution.
Then with high probability over e ← χ, we have χσ ≈s e + χσ.



532 B. Hemenway et al.

Ring LWE. The ring variant of LWE [LPR13] is often used in practice as it
allows representing vectors succinctly as ring elements. The vectors in the usual
LWE problem formulated above are replaced by elements in the quotient ring
R = Z[x]/Φ(x) for an irreducible cyclotomic polynomial Φ (often Φ(x) = x� + 1
for � a power of 2). Cryptographic schemes instantiated using ring LWE often are
considerably more efficient than the corresponding constructions over ordinary
LWE. If we instantiate our basic NCE scheme (which is based on LWE) on
top of ring LWE instead, we can shrink the public key size from Õ(k2) to Õ(k).
Finally, we remark that the hardness of ring LWE can be based on the worst-case
hardness of lattice problems on ideal lattices.

Trapdoors for LWE. Micciancio and Peikert [MP12] show how to embed a trap-
door into a matrix A ∈ Z

m×k
q which allows solving several tasks which are

usually believed to be hard. In their construction, the trapdoor of A is a matrix
T ∈ {0, 1}(k log q)×m such that TA = G, where G ∈ Z

(k log q)×k
q is the so-called

“gadget matrix”. To be precise, [MP12] shows (among other things) how to
sample the pair (A,T) in such a way so that (1) A is statistically close to uni-
form in Z

m×k
q and (2) there is an efficient algorithm Sampleσ which takes as

input the tuple (u,A,T) where u ∈ Z
k
q is arbitrary and outputs a vector r ∈ Z

m
q

from a distribution which is statistically close to Dσ,u,A, the discrete Gaussian
of standard deviation σ on the lattice

Λu(A) = {v ∈ Z
m
q : vtA = ut}.

Their construction carries over to the ring setting as well.

2.4 Error Correcting Codes

Our construction makes use of constant-rate binary codes which are uniquely
and efficiently decodeable from a

(
1/2−δ

)−fraction of computationally bounded
errors. Such codes are constructed in [MPSW05] by using efficient list-decodeable
codes along with computationally secure signatures. We will further assume that
our codes are balanced, in the sense that exactly half of the bits of all codewords
are 0 s and the other half are 1s. This can be arranged, for example, by concate-
nating a list decodeable code with a suitable binary error correcting code.

2.5 The Binomial and Hypergeometric Distributions

Binomial Distribution. A binomial random variable Xp,n is equal to the number
of successes when an experiment with success probability p is independently
repeated n times. The density function is given by Pr(Xp,n = k) =

(
n
k

)
pk(1 −

p)n−k with expectation E
[
Xp,n

]
= pn. We denote the binomial distribution by

Bp(n).

Hypergeometric Distribution. Our construction involves the randomized process:
given a, b < n independently choose random subsets A,B ⊂ {1, . . . , n} of sizes a
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and b. We will be interested in the size of the intersection A∩B, which defines a
hypergeometric random variable Xa,b,n with density function Pr(Xa,b,n = k) =(

b
k

)(
n−b
a−k

)/(
n
a

)
and expectation E

[
Xa,b,n

]
= ab/n. We denote the hypergeometric

distribution of Xa,b,n by H(a, b, n).

Multivariate Hypergeometric Distribution. We will also use a variant of the above
process when {1, . . . , n} has been partitioned {1, . . . , n} = B1 ∪ · · · ∪ Bt where
|Bi| = bi. Then if A ⊂ {1, . . . , n} of size a is chosen randomly, independent of
the partition, the tuple

(|A∩B1|, . . . , |A∩Bt|
)

is a multivariate hypergeometric
random variable Xa,{bi},n with density function

Pr
(
Xa,{bi},n = (k1, . . . , kt)

)
=

(
b1
k1

) · · · (bt
kt

)

(
n
a

) ,

where k1 + · · · + kt = a. The expectation is
(
ab1/n, . . . , abt/n

)
. We denote

the multivariate hypergeometric distribution Ht
(
a, {b1, . . . , bt}, n

)
. Note that the

single variable hypergeometric distribution H(a, b, n) is the same as H2
(
a, {b, n−

b}, n
)

corresponding to the partition {1, . . . , n} = B ∪ B. We will make use
of the following tail bounds on Bp(n), H(a, b, n) and Ht

(
a, {bi}, n

)
proved by

Hoeffding [Hoe63].

Lemma 1 (Tail Bounds). Let α, β, ε ∈ (0, 1) be constants. Also for a constant
t, choose constants β1, . . . , βt ∈ (0, 1) such that β1 + · · · + βt = 1. Set a = αn,
b = βn and bi = βin.

1. Let X be a random variable drawn either from Bαβ(n) or H(a, b, n). Then

Pr
(
X ≥ (αβ + ε)n OR X ≤ (αβ − ε)n

)
= e−Ω(n)

2. Let (X1, . . . , Xt) be a random variable drawn from Ht
(
a, {b1, . . . , bt}, n

)
. Then

Pr
(∃ i st Xi ≥ (αβi + ε)n OR Xi ≤ (αβi − ε)n

)
= e−Ω(n).

The constants hidden by Ω depend quadratically on ε.

3 Non-Committing Encryption from LWE

3.1 The Basic Scheme

Params. Our scheme involves the following parameters:

– integers k, n, q and m > 2k log q;
– real numbers σ, σ′ such that 2

√
k < σ < σ′ < q/

√
k and such that σ2/σ′ =

negl(k);
– integers cR, cS ≤ n and δ ∈ (0, 1) such that δ < cRcS/2n2. To be concrete, we

set cR = cS = n/8.
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KeyGen. Draw A $← Z
m×k
q and let IR ⊂ {1, . . . , n} be a random subset of size

cR. Define vectors vi ∈ Z
m
q for i = 1, . . . , n:

vi =
{
Asi + ei, i ∈ IR

uniform in Z
m
q , i /∈ IR

where si
$← Z

k
q and ei

$← χm
σ . Output (pk, sk) =

(
(A,v1, . . . ,vn); {si}i∈IR

)
.

Encryption. Given msg ∈ {0, 1}� and pk = (A,v1, . . . ,vn), let y = (y1, . . . , yn) =
ECC(msg) ∈ {0, 1}n where ECC is a balanced binary error-correcting code
with constant rate, which is uniquely decodeable from a

(
1/2 − δ

)−fraction
of computationally bounded errors, as described in Sect. 2.3. Choose a random
subset IS ⊂ {1, . . . , n} of size cS . Also, for each i /∈ IS , choose a random bit
zi ← {0, 1}. Finally, choose r ← χm

σ and e′
1, . . . , e

′
n ← χσ′ . Output ciphertext

ct = (u, w1, . . . , wn) where ut = rtA ∈ Z
1×k
q , and wi ∈ Zq is given by

wi =
{
rtvi + e′

i + (q/2)yi, i ∈ IS

rtvi + e′
i + (q/2)zi, i /∈ IS

.

The encryption randomness is
(
IS , {zi}i/∈IS , r, e′

1, . . . , e
′
n

)
.

Decryption. Given ct = (u, w1, . . . , wn) and sk = {si}i∈IR , set

y′
i =

⌊
2(wi − utsi)

q

⌉

for all i ∈ IR, and extend to a string y′ ∈ {0, 1}n via y′
i

$← {0, 1} when
i /∈ IR. Output msg′ ∈ {0, 1}� obtained by applying the decoding algorithm
of ECC to y′.

3.2 Correctness and Real World Subsets

Correctness. Let y′ = (y′
1, . . . , y

′
n) ∈ {0, 1}n be the faulty codeword obtained

during decryption. We must show that the decoding algorithm correctly outputs
msg with overwhelming probability. We have:

– i ∈ IR ∩ IS : then y′
i = yi. The number of such i is k ← H(cR, cS , n).

– i /∈ IR ∩ IS : then y′
i = yi with probability 1/2 independently of all other i.

It follows that the codeword y′ has k′ errors and n − k′ correct symbols where
k′ ← B1/2(n − k). Fix a constant ε > 0 with 3ε < cRcS/n2 − 2δ. We have, by
Lemma 1, that with all but negligible probability in n,

k′ ≤ (1/2 + ε)(n − k) ≤ n(1/2 + ε)(1 + ε − cRcS/n2) ≤ n(1/2 − δ).

In this case, the fraction of errors in the faulty codeword y′ is less than 1/2 − δ
and so y′ decodes correctly and decryption succeeds.
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Efficiency. The ciphertext size of our scheme is (n + k) log q = O(
npolylog(k)

)
,

while the public key is of size m(k+n) log q = O(
k2polylog(k)

)
. We remark that

when this construction is instantiated using a ring-LWE based encryption scheme
as described in [LPR13], the public key size can be reduced to O(

kpolylog(k)
)
.

This requires using the ring based version of the trapdoors from [MP12].

Real World Subsets. The most technically delicate issue with our construction is
that the faulty codeword y′ produced in simulation must have the same distrib-
ution of errors as in the real world. In particular, the adversary learns four sets

– ECC0 : The set of coordinates where the codeword is 0.
– IS : The set of coordinates “honestly” generated by the sender.
– D0 : The set of coordinates outside of IS that “randomly” encrypt a 0.
– IR : The set of coordinates where the receiver has the decryption key.

These sets also define their complements, ECC0 = ECC1 is the set of coordinates
where the codeword is one, and D1 is the set of coordinates that were random
encryptions of a one, thus D0 ∩ D1 = IS . Note that ECC0 and ECC1 are defined
by the message, IS , D0 and D1 are defined by the sender’s randomness and
IR is defined by the receiver’s randomness. Therefore, in an honest execution,
the sets IS ,D0,D1 will be independent of ECC0, and IR will be independent
of everything. We let Freal be the resulting distribution on (IR, IS ,D0,D1). So
whenever |IR| = cR, |IS | = cS and {1, . . . , n} = IS ∪ D0 ∪ D1 is a partition, the
probability density function is given by

Pr
(
Freal = (IR, IS ,D0,D1)

)
=

1
2n

(
n
cR

)(
n
cS

) .

Even though Freal is independent of msg, we often write (IR, IS ,D0,D1) ←
Freal(msg) when we are interested in how the sets intersect ECC0 and ECC1,
defined by msg. The three different partitions

{1, . . . , n} = ECC0 ∪ ECC1 = IS ∪ D0 ∪ D1 = IR ∪ IR,

let us further partition {1, . . . , n} into 12 subsets by choosing one set from each
partition. We compute now the sizes of the various intersections as this informa-
tion will be important in defining our simulator.

As the error correcting code is balanced, we have |ECC0| = |ECC1| = n
2 . We

have, therefore, that |IS ∩ ECC0| = k ← H
(
cS , n

2 , n
)
, and |IS ∩ ECC1| = cS − k.

Similarly, |D0 ∩ ECC0| = k′ ← B1/2

(
n
2 − k

)
and |D0 ∩ ECC1| = k′′ ← B1/2

(
n
2 −

cS +k
)

which fixes |D1 ∩ECC0| = n
2 −k −k′ and |D1 ∩ECC1| = n

2 − cS +k −k′′.
As IR is chosen independently to be a random subset of {1, . . . , n} of size cR, if
we set

αb = |IR ∩ IS ∩ ECCb|; βb = |IR ∩ D0 ∩ ECCb|; γb = |IR ∩ D1 ∩ ECCb|,
(thus fixing |IR ∩ IS ∩ ECC0| = k − α0 and so on), then

(α0, β0, γ0, α1, β1, γ1) ←− H6

(
cR,

{
k, k′,

n

2
−k−k′, cS−k, k′′,

n

2
−cS+k−k′′

}
, n

)
.

This calculation will be useful when building our simulator.
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3.3 The Simulator

Simulated Public Key and Ciphertext. Fix cgood = 3n/4. The simulator chooses
Â ∈ Z

m×(k+n−cgood)
q along with a trapdoor T ∈ {0, 1}n log q×m such that TÂ =

G according to [MP12]. He picks a random subset Igood ⊂ {1, . . . , n} of size
cgood, and sets Ibad = {1, . . . , n} − Igood. Write Â =

[
A

∣
∣V

]
where A ∈ Z

m×k
q

and V ∈ Z
m×(n−cgood)
q . For i ∈ Igood, draw si ← Z

k
q and ei ← χm

σ and define
v1, . . . ,vn ∈ Z

m
q :

vi =
{
Asi + ei, i ∈ Igood
column of V, i ∈ Ibad

,

so that the vectors {vi}i∈Ibad are the columns of V. The public key is pk =
(A,v1, . . . ,vn) and the data {si}i∈Igood is stored as it will be used when gener-
ating the secret key: IR will be a proper subset of Igood.

The simulater then chooses r $← χm
σ , e∗

i
$← χσ′ for i ∈ Igood, and randomly

partitions Igood into subsets of equal size Igood,0 and Igood,1. The ciphertext is
ct = (u, w1, . . . , wn) where ut = rtA ∈ Z

1×k
q and

wi =

⎧
⎨

⎩

rtvi + e∗
i , i ∈ Igood,0

rtvi + e∗
i +

(
q/2

)
, i ∈ Igood,1

w′ $← Zq, i ∈ Ibad

The subsets Igood,0, Igood,1, Ibad are stored for use when generating the encryption
randomness.

Simulated Secret Key and Randomness. S draws (IR, IS ,D0,D1) ←
Fideal(msg, Igood,0, Igood,1), where the ideal world subset function Fideal is defined
below (so in particular, |IR| = cR, |IS | = cS and IS ,D0,D1 is a partition of
{1, . . . , n}). The simulator then sets the secret key to {si}i∈IR using the vec-
tors {si}i∈Igood computed during public key generation. To compute the ran-
domness, S sets zi = b for all i ∈ Db. Then for each i ∈ Ibad, it draws
e′

i ← χσ′ and uses the trapdoor T to sample a Gaussian r ∈ Z
m
q such

that rtA = u and rtvi = wi − e′
i − (q/2)zi for all i ∈ Ibad. Finally, for

i ∈ Igood, S sets e′
i = e∗

i + (r − r)tei and defines the encryption randomness
rand =

(
IS , {zi}i/∈IS , r, e′

1, . . . , e
′
n

)
.

Ideal World Subsets. We now describe the distribution Fideal which the simulator
chooses to define the sets IR, IS , D0, D1. For simplicity, we assume that the
target message msg is given at the beginning before all random choices are made.
This is not exactly what happens in the ideal world, where the non-committing
adversary A gets to see pk before specifying msg. However, it follows directly
from the hardness of LWE that A cannot gain advantage by specifying msg after
seeing pk.

Upon receiving msg ∈ {0, 1}� as input, Fideal sets y = (y1, . . . , yn) =
ECC(msg) ∈ {0, 1}n to be the target codeword, defining ECC0 = {i : yi = 0}
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and ECC1 = {i : yi = 1}. It then chooses a random Igood ⊂ {1, . . . , n} of size
cgood and Ibad = {1, . . . , n} − Igood as in the real world. It further divides Igood
randomly into two halves Igood,0 and Igood,1 defining two partitions

{1, . . . , n} = ECC0 ∪ ECC1 = Igood,0 ∪ Igood,1 ∪ Ibad.

The resulting six intersections have sizes:

– |Igood,0 ∩ ECC0| = t ← H
(

n
2 ,

cgood
2 , n

)
; |Igood,0 ∩ ECC1| = cgood

2 − t;
– |Igood,1 ∩ ECC0| = t′ ← H

(
n
2 − t,

cgood
2 , n − cgood

2

)
; |Igood,1 ∩ ECC1| = cgood

2 − t′;
– |Ibad ∩ ECC0| = n

2 − t − t′; |Ibad ∩ ECC1| = n
2 − cgood + t + t′.

Fideal needs to output IR, IS ,D0,D1 ⊂ {1, . . . , n} such that the various intersec-
tions have the same sizes as in the real world. It proceeds as follows:

1. Fideal draws random variables k ← H
(
cS , n

2 , n
)
, k′ ← B1/2

(
n
2 − k

)
, k′′ ←

B1/2

(
n
2 − cS + k

)
and (α0, β0, γ0, α1, β1, γ1) ← H6

(
cR, {k, k′, n

2 − k − k′, cS −
k, k′′, n

2 − cS + k − k′′}, n
)
.

2. Fideal defines:
– IR ∩ IS ∩ ECCb : a random subset of Igood,b ∩ ECCb of size αb;
– IR ∩ D0 ∩ ECCb : a random subset of Igood,0 ∩ ECCb of size βb;
– IR ∩ D1 ∩ ECCb : a random subset of Igood,1 ∩ ECCb of size γb;
in such a way so that all six sets are disjoint. We prove in Claim 3.3 that
the subsets Igood,b ∩ ECCb′ are large enough to allow the above definitions
with high probability. This fully defines IR, but not IS , D0, D1 (we still need
their intersections with IR). Let Remb ⊂ Igood,b be the i ∈ Igood,b that remain
unassigned after this process.

Remark: As IR is now fully defined, we will not need the secret keys for the
i ∈ Rem0 ∪ Rem1. The only difference moving forward between Rem0, Rem1

and Ibad is that the ciphertexts vi for i ∈ Remb can only be decrypted to b,
whereas the ciphertexts vi for i ∈ Ibad can be decrypted to 0 or 1 as they were
generated with lossy public keys.

3. The sizes computed so far, along with the requirements |IS | = cS , |IS ∩
ECC0| = k, |D0 ∩ ECC0| = k′, and |D0 ∩ ECC1| = k′′ determine the sizes of
the remaining six sets. For example,

|IR ∩ IS ∩ ECC0| = |IS ∩ ECC0| − |IR ∩ IS ∩ ECC0| = k − α0.

Fideal sets
– IR ∩ IS ∩ ECCb : subset of (Remb ∪ Ibad) ∩ ECCb;
– IR ∩ D0 ∩ ECCb : subset of (Rem0 ∪ Ibad) ∩ ECCb;
– IR ∩ D1 ∩ ECCb : subset of (Rem1 ∪ Ibad) ∩ ECCb;
randomly such that (1) all six sets are disjoint and of the required size, (2)
Remb ∩ ECCb is fully contained in IR ∩ (IS ∪ Db) ∩ ECCb, Remb ∩ ECC1−b is
fully contained in IR ∩ Db ∩ ECC1−b. We prove in Claim 3.3 below that this
is possible whp.

4. Fideal outputs (IR, IS ,D0,D1).
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Claim. If we set cgood = 3n/4, cR = cS = n/8 then whp over the choice of
Igood,0, Igood,1 and the random variables drawn in step 1, it is possible to define
the subsets in steps 2 and 3 above.

Proof. Step 2 requires

(IR ∩ (IS ∪Db)∩ECCb) ⊂ Igood,b ∩ECCb; (IR ∩D1−b ∩ECCb) ⊂ Igood,1−b ∩ECCb

for b = 0, 1 which is possible if and only if the four inequalities are satisfied:

α0 + β0 ≤ t; α1 + γ1 ≤ cgood
2

− t′; γ0 ≤ t′; β1 ≤ cgood
2

− t.

To see that all four are satisfied with high probability, note that the expectation
of each right side is cgood/4, while the largest expectation of a left side is cR +
3cRcS/2n.

On the other hand, step 3 requires

Remb ∩ ECCb ⊂ IR ∩ (IS ∪ Db) ∩ ECCb; Rem1−b ∩ ECCb ⊂ IR ∩ D1−b ∩ ECCb,

for b = 0, 1, which is possible if and only if the four inequalities are satisfied:

t ≤ k + k′;
cgood

2
− t′ ≤ n

2
− k′′; t′ ≤ n

2
− k − k′;

cgood
2

− t ≤ k′′.

The expectations of all four left hand sides is cgood/4, while the smallest right
hand side has expectation (n − cS)/4. If we set ε = 1/64 then cgood = 3n/4,
cR = cS = n/8 satisfy

cR +
3cRcS

2n
+ εn <

cgood
4

<
n − cS

4
− εn,

and so the tail bound in Lemma 1, implies that all of the inequalities are satisfied
with high probability.

We note that while ε = 1/64 might be unsatisfactory in practice since the
confidence offered by Lemma 1 is 1−exp

(−ε2n/2
)

(recall n is the message length
which is a large constant times the security parameter, so ε = 1/64 might well
be fine), different values of ε may be obtained by varying cR, cS , and cgood.

Claim. The subsets IR, IS ,D0,D1 output by the above process are distributed
within negligible statistical distance of the corresponding subsets which arise in
the real world, with high probability.

Proof. We compute the probability that the tuple (IR, IS ,D0,D1) is output in
the ideal worlds and check that it equals

1
2n

(
n
cR

)(
n
cS

) ,

like in the real world. We make two observations. Note first that for any msg ∈
{0, 1}� which defines ECC0 and ECC1, a process which outputs (IR, IS ,D0,D1)
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can be equivalently thought of as a process which outputs 12 pairwise disjoint
subsets corresponding to the twelve intersections of the three partitions

{1, . . . , n} = ECC0 ∪ ECC1 = IS ∪ D0 ∪ D1 = IR ∪ IR.

The second observation is that choosing a random subset A ⊂ {1, . . . , n} of size
a and then outputting a random subset B ⊂ A of size b is the same as just
outputting a random subset of {1, . . . , n} of size b. With these observations in
mind, it is not difficult to complete the computation that

Prideal(IR, IS ,D0,D1) =
1

2n
(

n
cR

)(
n
cS

) ,

for any msg ∈ {0, 1}�. The details are left to the reader.

3.4 Proof of Security

H0 −The Ideal World.

– C chooses a random Igood ⊂ {1, . . . , n} of size cgood and Â =
[
A|V] ∈

Z
m×(k+n−cgood)
q along with a trapdoor T ∈ {0, 1}n log q×m such that TÂ = G

according to [MP12]. Then for each i ∈ Igood, C draws si ← Z
n
q and ei ← χm

σ

and sets vi = Asi + ei. For i ∈ Ibad C lets vi be a column of V. C sets
pk = (A,v1, . . . ,vn) and saves {si}i∈Igood .

– C randomly partitions Igood into two halves of equal sizes Igood,0 and Igood,1

and chooses r ← χm
σ , setting ut = rtA ∈ Z

1×k
q . For i ∈ Igood,b, C sets wi =

rtvi+e∗
i +(q/2)b where each e∗

i ← χσ′ . For i ∈ Ibad, C lets wi ∈ Zq be random.
C sets ct = (u, w1, . . . , wn).

– C sends pk to A and receives msg.
– C computes (IR, IS ,D0,D1) ← Fideal(msg, Igood,0, Igood,1) and sets sk =(

IR, {si}i∈IR

)
.

– Finally, for each i ∈ Ibad ∩ Db, C draws e′
i ← χσ′ and sets w′

i = wi − e′
i −

(q/2)b, then C draws r ← Sampleσ

(
u′, Â,T

)
according to [MP12] where u′ =

(
u, {w′

i}i∈Ibad

) ∈ Z
k+n−cgood
q . For each i ∈ Igood, C sets e′

i = e∗
i + (r − r)tei.

Lastly, for each i ∈ Db, C sets zi = b. He collects all of this information into
rand =

(
IS , {zi}i/∈IS , r, e′

1, . . . , e
′
n

)
.

– C sends (ct, sk, rand).

H1 − The main difference between this world and H0 is that here C does not
choose ct until after he sends pk to A and receives msg. This allows us to avoid
selecting r or the e∗

i .

– C chooses Igood ⊂ {1, . . . , n}, Â =
[
A|V] ∈ Z

m×(k+n−cgood)
q , {si}i∈Igood and

{ei}i∈Igood and {vi}i=1,...,n just as in H0 and sets pk = (A,v1, . . . ,vn), saving
{si}i∈Igood .

– C sends pk to A and receives msg.
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– C randomly chooses Igood,0 and Igood,1 and computes (IR, IS ,D0,D1) ←
Fideal(msg, Igood,0, Igood,1), and sets sk =

(
IR, {si}i∈IR

)
.

– C chooses r ← χm
σ and for i ∈ (IS ∩ Igood,b) ∪ Db, sets zi = b and wi = rtvi +

e′
i+(q/2)zi. C sets ct = (u, w1, . . . , wn) and rand = (IS , {zi}i/∈IS , r, e′

1, . . . , e
′
n).

– C sends (ct, sk, rand).

Claim. H1 ≈s H0.

Proof. We must show that the pair
(
r, {e′

i}i=1,...,n

) ← H0 is statistically close to(
r, {e′

i}i

) ← H1. Note that r is chosen by first drawing r ← χm
σ and then using

the trapdoor preimage sampler to draw Gaussian r such that rtÂ = rtÂ. The
induced distribution on r is statistically close to simply drawing r ← χm

σ as in
H1. Second note that e′

i ← χσ′ for all i in H1, while in H0, this is only the case
for i ∈ Ibad. For i ∈ Igood, e′

i = e∗
i + (r − r)tei where e∗

i ← χσ′ and ei ← χm
σ .

This is statistically close to χσ′ as σ2/σ′ = negl(k), using Fact 1.

H2 − In this world we draw A ∈ Z
m×k
q and {vi}i∈Ibad randomly instead of along

with a trapdoor.

– C chooses Igood ⊂ {1, . . . , n}, A ∈ Z
m×k
q , and sets vi = Asi + ei for i ∈ Igood

and v ← Z
m
q for i ∈ Ibad, where {si}i∈Igood and {ei}i∈Igood are as in H1. C sets

pk = (A,v1, . . . ,vn), and saves {si}i∈Igood .
– C sends pk to A and receives msg.
– C randomly chooses Igood,0 and Igood,1 and computes (IR, IS ,D0,D1) ←

Fideal(msg, Igood,0, Igood,1), and sets sk =
(
IR, {si}i∈IR

)
.

– C chooses r ← χm
σ and for i ∈ (IS ∩ Igood,b) ∪ Db, sets zi = b and wi = rtvi +

e′
i+(q/2)zi. C sets ct = (u, w1, . . . , wn) and rand = (IS , {zi}i/∈IS , r, e′

1, . . . , e
′
n).

– C sends (ct, sk, rand).

Claim. H2 ≈s H1.

Proof. This follows immediately from the fact that matrices drawn along with
their trapdoors as in [MP12] are statistically close to uniform. As we weren’t
using the trapdoor in H1 anyway, changing Â to a uniform matrix, this does not
affect anything functionally.

H3 −The Real World. In this world we change the way the subsets
(IR, IS ,D0,D1) are drawn; we draw them from Freal instead of Fideal.

– C draws (IR, IS ,D0,D1) ← Freal and a random A ∈ Z
m×k
q and sets vi =

Asi + ei for i ∈ IR and v ← Z
m
q for i /∈ IR, where {si}i∈IR and {ei}i∈IR are

as in H2. C sets pk = (A,v1, . . . ,vn), and sk = {si}i∈IR .
– C sends pk to A and receives msg and sets y = ECC(msg).
– C draws r ← χm

σ and sets ut = rtA and wi = rtvi + e′
i + (q/2)yi for i ∈ IS ,

where e′
i ← χσ′ . Then for each i ∈ Db, C sets zi = b and wi = rtvi+e′

i+(q/2)zi.
Finally C sets ct = (u, w1, . . . , wn) and rand = (IS , {zi}i/∈IS , r, e′

1, . . . , e
′
n).

– C sends (ct, sk, rand).
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Claim. H3 ≈c H2.

Proof Sketch. This follows from Claim 3.3, which states that the (IR, IS ,D0,D1)
from Freal is identical to the tuple drawn from Fideal, combined with the fact that
a PPT adversary cannot gain advantage by choosing msg after seeing pk rather
than before or else it can be used to break LWE.
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Abstract. We present a new constant round additively homomorphic
commitment scheme with (amortized) computational and communica-
tion complexity linear in the size of the string committed to. Our scheme
is based on the non-homomorphic commitment scheme of Cascudo et al.
presented at PKC 2015. However, we manage to add the additive homo-
morphic property, while at the same time reducing the constants. In fact,
when opening a large enough batch of commitments we achieve an amor-
tized communication complexity converging to the length of the message
committed to, i.e., we achieve close to rate 1 as the commitment proto-
col by Garay et al. from Eurocrypt 2014. A main technical improvement
over the scheme mentioned above, and other schemes based on using error
correcting codes for UC commitment, we develop a new technique which
allows to based the extraction property on erasure decoding as opposed
to error correction. This allows to use a code with significantly smaller
minimal distance and allows to use codes without efficient decoding.

Our scheme only relies on standard assumptions. Specifically we
require a pseudorandom number generator, a linear error correcting code
and an ideal oblivious transfer functionality. Based on this we prove our
scheme secure in the Universal Composability (UC) framework against
a static and malicious adversary corrupting any number of parties.

On a practical note, our scheme improves significantly on the non-
homomorphic scheme of Cascudo et al. Based on their observations in
regards to efficiency of using linear error correcting codes for commit-
ments we conjecture that our commitment scheme might in practice be
more efficient than all existing constructions of UC commitment, even
non-homomorphic constructions and even constructions in the random
oracle model. In particular, the amortized price of computing one of our
commitments is less than that of evaluating a hash function once.
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1 Introduction

Commitment schemes are the digital equivalent of a securely locked box: it allows
a sender Ps to hide a secret from a receiver Pr by putting the secret inside the
box, sealing it, and sending the box to Pr. As the receiver cannot look inside we
say that the commitment is hiding. As the sender is unable to change his mind
as he has given the box away we say the commitment is also binding. These
simple, yet powerful properties are needed in countless cryptographic protocols,
especially when guaranteeing security against a malicious adversary who can
arbitrarily deviate from the protocol at hand. In the stand-alone model, com-
mitment schemes can be made very efficient, both in terms of communication
and computation and can be based entirely on the existence of one-way func-
tions. These can e.g. be constructed from cheap symmetric cryptography such
as pseudorandom generators [Nao90].

In this work we give an additively homomorphic commitment scheme secure
in the UC-framework of [Can01], a model considering protocols running in a
concurrent and asynchronous setting. The first UC-secure commitment schemes
were given in [CF01,CLOS02] as feasibility results, while in [CF01] it was also
shown that UC-commitments cannot be instantiated in the standard model and
therefore require some form of setup assumption, such as a CRS. Moreover a con-
struction for UC-commitments in such a model implies public-key cryptography
[DG03]. Also, in the UC setting the previously mentioned hiding and binding
properties are augmented with the notions of equivocality and extractability,
respectively. These properties are needed to realize the commitment function-
ality we introduce later on. Loosely speaking, a scheme is equivocal if a single
commitment can be opened to any message using special trapdoor information.
Likewise a scheme is extractable if from a commitment the underlying message
can be extracted efficiently using again some special trapdoor information.

Based on the above it is not surprising that UC-commitments are sig-
nificantly less efficient than constructions in the stand-alone model. Never-
theless a plethora of improvements have been proposed in the literature,
e.g. [DN02,NFT09,Lin11,BCPV13,Fuj14,CJS14] considering different number
theoretic hardness assumptions, types of setup assumption and adversarial mod-
els. Until recently, the most efficient schemes for the adversarial model con-
sidered in this work were that of [Lin11,BCPV13] in the CRS model and
[HMQ04,CJS14] in different variations of the random oracle model [BR93].

Related Work. In [GIKW14] and independently in [DDGN14] it was considered
to construct UC-commitments in the OT-hybrid model and at the same time
confining the use of the OT primitive to a once-and-for-all setup phase. After
the setup phase, the idea is to only use cheap symmetric primitives for each
commitment thus amortizing away the cost of the initial OTs. Both approaches
strongly resembles the “MPC-in-the-head” line of work of [IKOS07,HIKN08,
IPS08] in that the receiver is watching a number of communication channels
not disclosed to the sender. In order to cheat meaningfully in this paradigm
the sender needs to cheat in many channels, but since he is unaware where the
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receiver is watching he will get caught with high probability. Concretely these
schemes build on VSS and allow the receiver to learn an unqualified set of shares
for a secret s. However the setup is such that the sender does not know which
unqualified set is being “watched”, so when opening he is forced to open to
enough positions with consistent shares to avoid getting caught. The scheme of
[GIKW14] focused primarily on the rate of the commitments in an asymptotic
setting while [DDGN14] focused on the computational complexity. Furthermore
the secret sharing scheme of the latter is based on Reed-Solomon codes and the
scheme achieved both additive and multiplicative homomorphisms.

The idea of using OTs and error correction codes to realize commitments was
also considered in [FJN+13] in the setting of two-party secure computation using
garbled circuits. Their scheme also allowed for additively homomorphic operations
on commitments, but requires a code with a specific privacy property. The authors
pointed to [CC06] for an example of such a code, but it turns out this achieves
quite low constant rate due to the privacy restriction. Care also has to be taken
when using this scheme, as binding is not guaranteed for all committed messages.
The authors capture this by allowing some message to be “wildcards”. However,
in their application this is acceptable and properly dealt with.

Finally in [CDD+15] a new approach to the above OT watch channel para-
digm was proposed. Instead of basing the underlying secret sharing scheme on
a threshold scheme the authors proposed a scheme for a particular access struc-
ture. This allowed realization of the scheme using additive secret sharing and any
linear code, which achieved very good concrete efficiency. The only requirement
of the code is that it is linear and the minimum distance is at least 2s+1 for sta-
tistical security s. To commit to a message m it is first encoded into a codeword
c. Then each field element ci of c is additively shared into two field elements
c0i and c1i and the receiver learns one of these shares via an oblivious transfer.
This in done in the watch-list paradigm where the same shares c0i are learned
for all the commitments, by using the OTs only to transfer short seeds and then
masking the share c0i and c1i for all commitments from these pairs of seeds. This
can be seen as reusing an idea ultimately going back to [Kil88,CvT95]. Even
if the adversary commits to a string c′ which is not a codeword, to open to
another message, it would have to guess at least s of the random choice bits
of the receiver. Furthermore the authors propose an additively homomorphic
version of their scheme, however at the cost of using VSS which imposes higher
constants than their basic non-homomorphic construction.

Motivation. As already mentioned, commitment schemes are extremely useful
when security against a malicious adversary is required. With the added sup-
port for additively homomorphic operations on committed values even more
applications become possible. One is that of maliciously secure two-party com-
putation using the LEGO protocols of [NO09,FJN+13,FJNT15]. These proto-
cols are based on cut-and-choose of garbled circuits and require a large amount
of homomorphic commitments, in particular one commitment for each wire of all
garbled gates. In a similar fashion the scheme of [AHMR15] for secure evaluation
of RAM programs also make use of homomorphic commitments to transform
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Fig. 1. Ideal functionality FROT.

garbled wire labels of one garbled circuit to another. Thus any improvement in
the efficiency of homomorphic commitments is directly transferred to the above
settings as well.

Our Contribution. We introduce a new, very efficient, additively homomor-
phic UC-secure commitment scheme in the FROT-hybrid model. The FROT-
functionality is fully described in Fig. 1. Our scheme shows that:

1. The asymptotic complexity of additively homomorphic UC commitment is
the same as the asymptotic complexity of non-homomorphic UC commitment,
i.e., the achievable rate is 1 − o(1). In particular, the homomorphic property
comes for free.

2. In addition to being asymptotically optimal, our scheme is also more prac-
tical (smaller hidden constants) than any other existing UC commitment
scheme, even non-homomorphic schemes and even schemes in the random
oracle model.

In more detail our main contributions are as follows:

– We improve on the basic non-homomorphic commitment scheme of [CDD+15]
by reducing the requirement of the minimum distance of the underlying lin-
ear code from 2s + 1 to s for statistical security s. At the same time our
scheme becomes additively homomorphic, a property not shared with the above
scheme. This is achieved by introducing an efficient consistency check at the end
of the commit phase, as described now. Assume that the corrupted sender com-
mits to a string c′ which has Hamming distance 1 to some codeword c0 encoding
message m0 and has Hamming distance s−1 to some other codeword c1 encod-
ing message m1. For both the scheme in [CDD+15] and our scheme this means
the adversary can later open to m0 with probability 1

2 and to m1 with prob-
ability 2−s+1. Both of these probabilities are considered too high as we want
statistical security 2−s. So, even if we could decode c′ to for instance m0, this
might not be the message that the adversary will open to later. It is, however,
the case that the adversary cannot later open to both m0 and m1, except with
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probability 2−s as this would require guessing s of the random choice bits. The
UC simulator, however, needs to extract which of m0 and m1 will be opened to
already at commitment time. We introduce a new consistency check where we
after the commitment phase ask the adversary to open a random linear com-
bination of the committed purported codewords. This linear combination will
with overwhelming probability in a well defined manner “contain” information
about every dirty codeword c′ and will force the adversary to guess some of
the choice bits to successfully open it to some close codeword c. The trick is
then that the simulator can extract which of the choice bits the adversary had
to guess and that if we puncture the code and the committed strings at the
positions at which the adversary guessed the choice bits, then the remaining
strings can be proven to be codewords in the punctured code. Since the adver-
sary guesses at most s−1 choice bits, except with negligible probability 2−s we
only need to puncture s−1 positions, so the punctured code still has distance 1.
We can therefore erasure decode and thus extract the committed message. If the
adversary later open to another message he will have to guess additional choice
bits, bringing him up to having guessed at least s choice bits. With the minimal
distance lowered the required code length is also reduced and therefore also the
amount of required initial OTs. As an example, for committing to messages of
size k = 256 with statistical security s = 40 this amounts to roughly 33 % less
initial OTs than required by [CDD+15].

– We furthermore propose a number of optimizations that reduce the com-
munication complexity by a factor of 2 for each commitment compared to
[CDD+15] (without taking into account the smaller code length required).
We give a detailed comparison to the schemes of [Lin11,BCPV13,CJS14] and
[CDD+15] in Sect. 4 and show that for the above setting with k = 256 and
s = 40 our new construction outperforms all existing schemes in terms of
communication if committing to 304 messages or more while retaining the
computational efficiency of [CDD+15]. This comparison includes the cost of
the initial OTs. If committing to 10,000 messages or more we see the total
communication is around 1/3 of [BCPV13], around 1/2 of the basic scheme of
[CDD+15] and around 1/21 of the homomorphic version.

– Finally we give an extension of any additively homomorphic commitment
scheme that achieves an amortized rate close to 1 in the opening phase. Put
together with our proposed scheme and breaking a long message into many
smaller blocks we achieve rate close to 1 in both the commitment and open
phase of our protocol. This extension is interactive and is very similar in
nature to the introduced consistency check for decreasing the required mini-
mum distance. Although based on folklore techniques this extension allows for
very efficiently homomorphic commitment to long messages without requiring
correspondingly many OTs.

2 The Protocol

We use κ and s to denote the computational and statistical security parameter
respectively. This means that for any fixed s and any polynomial time bounded
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adversary, the advantage of the adversary is 2−s + negl(κ) for a negligible func-
tion negl. i.e., the advantage of any adversary goes to 2−s faster than any inverse
polynomial in the computational security parameter. If s = Ω(κ) then the advan-
tage is negligible. We will be working over an arbitrary finite field F. Based on
this, along with s, we define ŝ = �s/ log2(|F|)�.

We will use as shorthand [n] = {1, 2, . . . , n}, and e ∈R S to mean: sample
an element e uniformly at random from the set S. When r and m are vectors
we write r‖m to mean the vector that is the concatenation of r and m. We
write y←P (x) to mean: perform the (potentially randomized) procedure P on
input x and store the output in variable y. We will use x := y to denote an
assignment of x to y. We will interchangeably use subscript and bracket notation
to denote an index of a vector, i.e. xi and x[i] denotes the i’th entry of a vector
x which we will always write in bold. Furthermore we will use πi,j to denote
a projection of a vector that extracts the entries from index i to index j, i.e.
πi,j(x) = (xi, xi+1, . . . , xj). We will also use πl(x) = π1,l(x) as shorthand to
denote the first l entries of x.

In Fig. 2 we present the ideal functionality FHCOM that we UC-realize in
this work. The functionality differs from other commitment functionalities in
the literature by only allowing the sender Ps to decide the number of values
he wants to commit to. The functionality then commits him to random values
towards a receiver Pr and reveals the values to Ps. The reason for having the
functionality commit to several values at a time is to reflect the batched nature
of our protocol. That the values committed to are random is a design choice
to offer flexibility for possible applications. In AppendixA we show an efficient
black-box extension of FHCOM to chosen-message commitments.

2.1 Protocol ΠHCOM

Our protocol ΠHCOM is cast in the FROT-hybrid model, meaning the parties are
assumed access to the ideal functionality FROT in Fig. 1. The protocol UC-realizes
the functionality FHCOM and is presented in full in Figs. 4 and 5. At the start
of the protocol a once-and-for-all Init step is performed where Ps and Pr only
need to know the size of the committed values k and the security parameters.
We furthermore assume that the parties agree on a [n, k, d] linear code C in
systematic form over the finite field F and require that the minimum distance
d ≥ s for statistical security parameter s. The parties then invoke n copies of the
ideal functionality FROT with the computational security parameter κ as input,
such that Ps learns n pairs of κ-bit strings l0i , l

1
i for i ∈ [n], while Pr only learns

one string of each pair. In addition to the above the parties also introduce a
commitment counter T which simply stores the number of values committed to.
Our protocol is phrased such that multiple commitment phases are possible after
the initial ROTs have been performed, and the counter is simply incremented
accordingly.

Next a Commit phase is described where at the end, Ps is committed
to γ pseudorandom values. The protocol instructs the parties to expand the
previously learned κ-bit strings, using a pseudorandom generator PRG, into
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Fig. 2. Ideal functionality FHCOM.

row-vectors s̄b
i ∈ F

T +γ+1 for b ∈ {0, 1} and i ∈ [n]. The reason for the extra
length will be apparent later. We denote by J = {T + 1, . . . , T + γ + 1} the set
of indices of the γ + 1 commitments being setup in this invocation of Com-
mit. After the expansion Ps knows all of the above 2n row-vectors, while Pr

only knows half. The parties then view these row-vectors as matrices S0 and
S1 where row i of Sb consists of the vector s̄b

i . We let sb
j ∈ F

n denote the j’th
column vector of the matrix Sb for j ∈ J . These column vectors now determine
the committed pseudorandom values, which we define as rj = r0j + r1j where
rb

j = πk(sb
j) for j ∈ J . The above steps are also pictorially described in Fig. 3.

The goal of the commit phase is for Pr to hold one out of two shares of each
entry of a codeword of C that encodes the vector rj for all j ∈ J . At this point of
the protocol, what Pr holds is however not of the above form. Though, because
the code is in systematic form we have by definition that Pr holds such a sharing
for the first k entries of each of these codewords. To ensure the same for the rest
of the entries, for all j ∈ J , Ps computes tj←C(rj) and lets c0j = πk+1,n(s0j ). It
then computes the correction value c̄j = πk+1,n(tj) − c0j − πk+1,n(s1j ) and sends
this to Pr. Figure 3 also gives a quick overview of how these vectors are related.

When receiving the correction value c̄j , we notice that for the columns s0j
and s1j , Pr knows only the entries wi

j = sbi
j [i] where bi is the choice-bit it received

from FROT in the i’th invocation. For all l ∈ [n − k], if bk+l = 1 it is instructed
to update its entry as follows:

wk+l
j := c̄j [l] + wk+l

j = tj [k + l] − c0j [l] − s1j [k + l] + wk+l
j = tj [k + l] − c0j [l] .

Due to the above corrections, it is now the case that for all l ∈ [n−k] if bk+l = 0,
then wk+l

j = c0j [l] and if bk+l = 1, wk+l
j = tj [k + l] − c0j [l]. This means that at
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Fig. 3. On the left hand side we see how the initial part of the Commit phase of
ΠHCOM is performed by Ps when committing to γ messages. On the right hand side we
look at a single column of the two matrices S0,S1 and how they define the codeword
tj for column j ∈ J , where J = {T + 1, . . . , T + γ + 1}.

this point, for all j ∈ J and all i ∈ [n], Pr holds exactly one out of two shares
for each entry of the codeword tj that encodes the vector rj .

The Open procedure describes how Ps can open to linear combinations of
previously committed values. We let C be the indices to be opened and αc for c ∈
C be the corresponding coefficients. The sender then computes r0 =

∑
c∈C αc·r0c ,

r1 =
∑

c∈C αc ·r1c , and c0 =
∑

c∈C αc ·c0c and sends these to Pr. When receiving
the three values, the receiver computes the codeword t←C(r0 + r1) and from
c0 and t it computes c1. It also computes w =

∑
c∈C αc · wc and verifies that

r0, r1, c0, and c1 are consistent with these. If everything matches it accepts
r0 + r1 as the value opened to.

If the sender Ps behaves honestly in Commit of ΠHCOM, then the scheme is
UC-secure as it is presented until now. In fact it is also additively homomorphic
due to the linearity of the code C and the linearity of additive secret sharing.
However, this only holds because Pr holds shares of valid codewords. If we con-
sider a malicious corruption of Ps, then the shares held by Pr might not be of
valid codewords, and then it is undefined at commitment time what the value
committed to is.

2.2 Optimizations over [CDD+15]

The work of [CDD+15] describes two commitment schemes, a basic and a homo-
morphic version. For both schemes therein the above issue of sending correct
shares is handled by requiring the underlying code C with parameters [n, k, d]
to have minimum distance d ≥ 2s + 1, as then the committed values are always
defined to be the closest valid codewords of the receivers shares. This is how-
ever not enough to guarantee binding when allowing homomorphic operations.
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Fig. 4. Protocol ΠHCOM UC-realizing FHCOM in the FROT-hybrid model – part 1.
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Fig. 5. Protocol ΠHCOM UC-realizing FHCOM in the FROT-hybrid model – part 2.

To support this, the authors propose a version of the scheme that involves the
sender Ps running a “MPC-in-the-head” protocol based on a verifiable secret
sharing scheme of which the views of the simulated parties must be sent to Pr.

Up until now the scheme we have described is very similar to the basic scheme
of [CDD+15]. The main difference is the use of FROT as a starting assumption
instead of FOT and the way we define and send the committed value corrections.
In [CDD+15] the corrections sent are for both the 0 and the 1 share. This means
they send 2n field elements for each commitment in total. Having the code in
systematic form implies that for all j ∈ J and i ∈ [k] the entries wi

j are already
defined for Pr as part of the output of the PRG, thus saving 2k field elements of
communication per commitment. Together with only sending corrections to the
1-share, we only need to send n−k field elements as corrections. Meanwhile this
only commits the sender to a pseudorandom value, so to commit to a chosen
value another correction of k elements needs to be sent. In total we therefore
save a factor 2 of communication from these optimizations.

However the main advantage of our approach comes from ensuring that the
shares held by Pr binds the sender Ps to his committed value, while only requir-
ing a minimum distance of s. On top of that our approach is also additively
homomorphic. The idea is that Pr will challenge Ps to open a random linear
combination of all the committed values and check that these are valid accord-
ing to C. Recall that γ + 1 commitments are produced in total. The reason for
this is to guarantee hiding for the commitments, even when Pr learns a ran-
dom linear combination of them. Therefore, the linear combination is “blinded”
by a pseudorandom value only used once and thus it appears pseudorandom to
Pr as well. This consistency check is sufficient if |F|−1 ≤ 2−s, however if the
field is too small then the check is simply repeated ŝ = �s/log2(|F|)� times such
that |F|−ŝ ≤ 2−s. In total this approach requires setting up commitments to ŝ
additional values for each invocation of Commit.
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The intuition why the above approach works is that if the sender Ps sends
inconsistent corrections, it will get challenged on these positions with high prob-
ability. In order to pass the check, Ps must therefore guess which choice-bit
Pr holds for each position for which it sent inconsistent values. The challenge
therefore forces Ps to make a decision at commitment time which underlying
value to send consistent openings to, and after that it can only open to that
value successfully. In fact, the above approach also guarantees that the scheme
is homomorphic. This is because all the freedom Ps might have had by sending
maliciously constructed corrections is removed already at commitment time for
all values, so after this phase commitments and shares can be added together
without issue.

To extract all committed values when receiving the opening to the linear
combination the simulator identifies which rows of S0 and S1 Ps is sending
inconsistent shares for. For these positions it inserts erasures in all positions of
tj (as defined by S0,S1, c̃j and C). As there are at most s − 1 positions where
Ps could have cheated and the distance of the linear code is d ≥ s the simulator
can erasure decode all columns to a unique value, and this is the only value Ps

can successfully open to.1

2.3 Protocol Extension

The protocol ΠHCOM implements a commitment scheme where the sender com-
mits to pseudorandom values. In many applications however it is needed to
commit to chosen values instead. It is know that for any UC-secure commitment
scheme one can easily turn a commitment from a random value into a commit-
ment of a chosen one using the random value as a one-time pad encryption of
the chosen value. For completeness, in AppendixA, we show this extension for
any protocol implementing FHCOM.

In addition we also highlight that all additively homomorphic commitment
schemes support the notion of batch-opening. For applications where a large
amount of messages need to be opened at the same time this has great implica-
tions on efficiency. The technique is roughly that Ps sends the values he wants to
open directly to Pr. To verify correctness the receiver then challenges the sender
to open to ŝ random linear combinations of the received messages. For the same
reason as for the consistency check of Commit this optimization retains bind-
ing. Using this method the overhead of opening the commitments is independent
of the number of messages opened to and therefore amortizes away in the same
manner as the consistency check and the initial OTs. However this way of open-
ing messages has the downside of making the opening phase interactive, which
is not optimal for all applications. See AppendixA for details.

The abovementioned batch-opening technique also has applicability when
committing to large messages. Say we want to commit to a message m of length
M . The naive approach would be to instantiate our scheme using a [nM ,M, s]
code. However this would require nM ≥ M initial OTs and in addition only
1 All linear codes can be efficiently erasure decoded if the number of erasures is ≤ d−1.
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achieve rate M/(M+nM ) ≥ 1/2 in the opening phase. Instead of the above, the idea
is to break the large message of length M into blocks of length l for l << M .
There will now be N = �M/l� of these blocks in total. We then instantiate our
scheme with a [ns, l, s] code and commit to m in blocks of size l. When required to
open we use the above-mentioned batch-opening to open all N blocks of m. It is
clear that the above technique remains additively homomorphic for commitments
to the large messages. In [GIKW14] they show an example for messages of size
230 where they achieve rate 1.046−1 ≈ 0.95 in both the commit and open phase.
In AppendixA we apply our above approach to the same setting and conclude
that in the commit phase we achieve rate ≈ 0.974 and even higher in the opening
phase. This is including the cost of the initial OTs.

3 Security

In this section we prove the following theorem.

Theorem 1. The protocol ΠHCOM in Figs. 4 and 5 UC-realizes the FHCOM

functionality of Fig. 2 in the FROT-hybrid model against any number of static
corruptions.

Proof. We prove security for the case with a dummy adversary, so that the simu-
lator is outputting simulated values directly to the environment and is receiving
inputs directly from the environment. We focus on the case with one call to
Commit. The proof trivially lifts to the case with multiple invocations. The
case with two static corruptions is trivial. The case with no corruptions follows
from the case with a corrupted receiver, as in the ideal functionality FHCOM the
adversary is given all values which are given to the receiver, so one can just sim-
ulate the corrupted receiver and then output only the public transcript of the
communication to the environment. We now first prove the case with a corrupted
receiver and then the case with a corrupted sender.

Assume that Pr is corrupted. We use P̆r to denote the corrupted receiver.
This is just a mnemonic pseudonym for the environment Z. The main idea
behind the simulation is to simply run honestly until the opening phase. In the
opening phase we then equivocate the commitment to the value received from
the ideal functionality FHCOM by adjusting the bits s̄1−bi

j not being watched by
the receiver. This will be indistinguishable from the real world as the vectors
s̄1−bi

i are indistinguishable from uniform in the view of P̆r and if all the vectors
s̄1−bi

i were uniform, then adjusting the bits not watched by P̆r would be perfectly
indistinguishable.

We first describe how to simulate the protocol without the step Consistency
Check. We then discuss how to extend the simulation to this case.

The simulator S will run Init honestly, simulating FROT to P̆r. It then runs
Commit honestly. On input

(
opened, sid, {(c, αc)}c∈C , r

)
it must simulate an

opening.
In the simulation we use the fact that in the real protocol Pr can recompute

all the values received from Ps given just the value r and the values wc, which it
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already knows, and assuming that the checks rbi [i] = w[i] and cbk+l [l] = w[k+ l]
at the end of Fig. 5 are true. This goes as follows: First compute w =

∑
c∈C αc ·

wc, t = C(r) and c = πk+1,n(t), as in the protocol. Then for i ∈ [k] and l ∈ [n−k]
define

rbi [i] = w[i] , cbk+l [l] = w[k + l] . (1)

r1−bi [i] = r[i] − rbi [i] , c1−bk+l [l] = c[l] − cbk+l [l] . (2)

In (1) we use that the checks are true. In (2) we use that r = r0 + r1 and
c1 = c− c0 by construction of Pr. This clearly correctly recomputes (r0, r1, c0).

On input
(
opened, sid, {(c, αc)}c∈C , r

)
from FHCOM, the simulator will com-

pute (r0, r1, c0) from r and the values wc known by P̆r as above and send(
opening, {c, αc}c∈C ,

(
r0, r1, c0

))
to P̆r.

We now argue that the simulation is computationally indistinguishable from
the real protocol. We go via two hybrids.

We define Hybrid I as follows. Instead of computing the rows s̄1−bi
i from the

seeds l1−bi
i the simulator samples s̄1−bi

i uniformly at random of the same length.
Since P̆r never sees the seeds l1−bi

i and Ps only uses them as input to PRG, we
can show that the view of P̆r in the simulation and Hybrid I are computationally
indistinguishable by a black box reduction to the security of PRG.

We define Hybrid II as follows. We start from the real protocol, but instead of
computing the rows s̄1−bi

i from the seeds l1−bi
i we again sample s̄1−bi

i uniformly
at random of the same length. As above, we can show that the view of P̆r in the
protocol and Hybrid II are computationally indistinguishable.

The proof then concludes by transitivity of computational indistinguishabil-
ity and by observing that the views of P̆r in Hybrid I and Hybrid II are perfectly
indistinguishable. The main observation needed for seeing this is that in Hybrid
I all the bits rj [i] are chosen uniformly at random and independently by FHCOM,
whereas in Hybrid II they are defined by rj [i] = r0j [i] + r1j [i] = rbi

j [i] + r1−bi
j [i],

where all the bits r1−bi
j [i] are chosen uniformly at random and independently

by S. This yields the same distributions of the values rj . All other value clearly
have the same distribution.

We now address the step Consistency Check. The simulation of this step
follows the same pattern as above. Define r̃ = r̃0 + r̃1. This is the value from
which t̃ is computed in Step 7 in Fig. 4. In the simulation and Hybrid I, instead
pick r̃ uniformly at random and then recompute the values sent to P̆r as above.
In Hybrid II compute r̃ as in the protocol (but still starting from the uniformly
random s̄1−bi

i ). Then simply observe that r̃ has the same distribution in Hybrid
I and Hybrid II. In Hybrid I it is uniformly random. In Hybrid II it is computed
as r̃0 + r̃1 = (r0T +γ+1 + r1T +γ+1) +

∑γ
j=1 xjrT +j , and it is easy to see that

r0T +γ+1 + r1T +γ+1 is uniformly random and independent of all other values in
the view of P̆r.

We now consider the case where the sender is corrupted who we denote
P̆s. The simulator will run the code of Ps honestly, simulating also FROT hon-
estly. It will record the values (bi, l

0
i , l

1
i ) from Init. The remaining job of the
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simulator is then to extract the values r̃j to send to FHCOM in the command(
corrupt-commit, sid, {r̃j}j∈J

)
. This should be done such that the probability

that the receiver later outputs (opened, sid, {(c, αc)}c∈C , r) for r �= ∑
c∈C αcr̃c

is at most 2−s. We first describe how to extract the values r̃j and then show
that the commitments are binding to these values.

We use the Consistency Check performed in the second half of Fig. 4 to define
a set E ⊆ {1, . . . , n}. We call this the erasure set. This name will make sense
later, but for now think of E as the set of indices for which the corrupted sender
P̆s after the consistency checks knows the choice bits bi for i ∈ E and for which
the bits bi for i �∈ E are still uniform in the view of P̆s.

Define the column vectors s0j and s1j as in the protocol. This is possible as
the seeds from FROT are well defined. Following the protocol, and adding a few
more definitions, define

r0j =πk(s0j ) , r1j = πk(s1j ) , rj = r0j + r1j , u0
j = πk+1,n(s0j ) , u1

j = πk+1,n(s1j ) ,

uj = u0
j + u1

j , tj = C(rj) , cj = πk+1,n(tj) , c0j = u0
j , c1j = cj − c0j ,

d0
j =u0

j , d1
j = u1

j + c̄j , dj = d0
j + d1

j = uj + c̄j , w0
j = r0j‖d0

j , w1
j = r1j‖d1

j .

Notice that if Ps is honest, then c̄j = cj − uj and therefore dj = d0
j + d1

j =
u0

j +u1
j + c̄j = cj . Hence d0

j and d1
j are the two shares of the non-systematic part

cj the same way that r0j and r1j are the two shares of the systematic part rj .
If the sender was honest we would in particular have that w0

j + w1
j = rj‖dj =

rj‖cj = C(rj), i.e., w0
j and w1

j would be the two shares of the whole codeword.
We can define the values that an honest Ps should send as

r̃0 = r0T +γ+1 +
∑

j

xjr
0
j , r̃1 = r1T +γ+1 +

∑

j

xjr
1
j , c̃0 = c0T +γ+1 +

∑

j

xjc
0
j .

These values can be used to define values

r̃ = r̃0 + r̃1 , t̃ = C(r̃) , c̃ = πk+1,n(t̃) ,

c̃1 = c̃ − c̃0 , w̃0 = r̃0‖c̃0 , w̃1 = r̃1‖c̃1 .

We use (r̆0, r̆1, c̆0) to denote the values actually sent by P̆s and we let the
following denote the values computed by Pr (plus some extra definitions).

r̆ = r̆0 + r̆1 , t̆ = C(r̆) , c̆ = πk+1,n(t̆) ,

c̆1 = c̆−c̆0 , w̆0 = r̆0‖c̆0 , w̆1 = r̆1‖c̆1 , w̆ = w̆0 + w̆1 .

The simulator computes

w̃ = wT +γ+1 +
∑

j

xjwT +j (3)
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as Pr in the protocol. For later use, define w̃0 = w0
T +γ+1 +

∑
j xjw

0
T +j and

w̃1 = w1
T +γ+1 +

∑
j xjw

1
T +j .

The check performed by Pr is then simply to check for u = 1, . . . , n that

w̆bu [u] = w̃[u] . (4)

Notice that in the protocol we have that wj = b ∗ (w1
j − w0

j ) + w0
j , where ∗

denotes the Schur product also known as the positionwise product of vectors. To
see this notice that (b∗(w1

j −w0
j )+w0

j )[i] = bi(w1
j [i]−w0

j [i])+w0
j [i] = wbi

j [i]. In
other words, wj [i] = wbi

j [i]. It then follows from (3) that w̃ = b∗(w̃1−w̃0)+w̃0,
from which it follows that w̃[u] = w̃bu [u]. From (4) it then follows that P̆s passes
the consistency check if and only if for u = 1, . . . , n it holds that w̆bu [u] = w̃bu [u].
We make some definitions related to this check. We say that a position u ∈ [n]
is silly if w̆0[u] �= w̃0[u] and w̆1[u] �= w̃1[u]. We say that a position u ∈ [n]
is clean if w̆0[u] = w̃0[u] and w̆1[u] = w̃1[u]. We say that a position u ∈ [n]
is probing if it is not silly or clean. Let E denote the set of probing positions
u. Notice that if there is a silly position u, then w̆bu [u] �= w̃bu [u] so P̆s gets
caught. We can therefore assume without loss of generality that there are no
silly positions. For the probing positions u ∈ E, there is by definition a bit cu

such that w̆1−cu [u] �= w̃1−cu [u] and such that w̆cu [u] = w̃cu [u]. This means that
P̆s passes the test only if cu = bu for all u ∈ E. Since P̆s knows cu it follows that
if P̆s does not get caught, then it can guess bu for u ∈ E with probability 1.

Before we proceed to describe the extractor, we are now going to show two
facts about E. First we will show that |E| < s, except with probability 2−s. This
follows from the simple observation that each bu for u ∈ E is uniformly random
and P̆s passes the consistency test if and only if cu = bu for u ∈ E and the only
information that P̆s has on the bits bu is via the probing positions. Hence P̆s

passes the consistency test with probability at most 2−|E|.
Second, let C−E be the code obtained from C by puncturing at the positions

u ∈ E, i.e., a codeword of C−E can be computed as t = C(r) and then outputting
t−E , i.e., the vector t where we remove the positions u ∈ E. We show that for
all j = T + 1, . . . , T + γ it holds that (w0

j + w1
j )−E ∈ C−E(Fk), except with

probability 2−s. To see this, assume for the sake of contradiction that there
exists such j where (w0

j + w1
j )−E �∈ C−E(Fk). Then the probability that it

does not happen that (w̃0 + w̃1)−E �∈ C−E(Fk) is at most |F|−1, as a random
linear combination of non-codewords become a codeword with probability at
most |F|−1.2 We repeat this test a number ŝ of times such that |F|−ŝ ≤ 2−s.
Since the tests succeed independently with probability at most |F|−1 it follows
that (w̃0+w̃1)−E �∈ C−E(Fk) except with probability 2−s. Since by construction
w̆0+w̆1 ∈ C(Fk), we have that (w̆0+w̆1)−E ∈ C−E(Fk), so when (w̃0+w̃1)−E �∈
C−E(Fk) we either have that (w̃0)−E �= (w̆0)−E or (w̃1)−E �= (w̆1)−E . Since
there are no silly positions, this implies that we have a new probing position
u �∈ E, a contradiction to the definition of E.
2 In it easy to see that in general, a random linear combination of vectors from outside

some linear subspace will end up in the subspace with probability at most |F|−1.
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We can now assume without loss of generality that |E| < s and that (w0
j +

w1
j )−E ∈ C−E(Fk). From |E| < s and C having minimal distance d ≥ s we

have that C−E has minimal distance ≥ 1. Hence we can from each j and each
(w0

j + w1
j )−E ∈ C−E(Fk) compute r̃j ∈ F

k such that (w0
j + w1

j )−E = C−E(r̃j).
These are the values that S will send to FHCOM.

We then proceed to show that for all {(c, αc)}c∈C the environment can open
to (opened, sid, {(c, αc)}c∈C , r̃) for r̃ =

∑
c∈C αcr̃c with probability 1. The rea-

son for this is that if P̆s computes the values in the opening correctly, then clearly
(w̆0)−E = (w̃0)−E and (w̆1)−E = (w̃1)−E . Furthermore, for the positions u ∈ E
it can open to any value as it knows bu. It therefore follows that if P̆s can open to
(opened, sid, {(c, αc)}c∈C , r) for r �= ∑

c∈C αcr̃c, then it can open {(c, αc)}c∈C

to two different values. Since the code has distance d ≥ s, it is easy to see that
after opening some {(c, αc)}c∈C to two different values, the environment can
compute with probability 1 at least s of the choice bits bu, which it can do with
probability at most 2−s, which is negligible. ��

4 Comparison with Recent Schemes

In this section we compare the efficiency of our scheme to the most efficient
schemes in the literature realizing UC-secure commitments with security against
a static and malicious adversary. In particular, we compare our construction to
the schemes of [Lin11,BCPV13,CJS14,CDD+15].

The scheme of [BCPV13] (Fig. 6) is a slightly optimized version of [Lin11]
(Protocol 2) which implement a multi-commitment ideal functionality. Along
with [CJS14] these schemes support commitments between multiple parties
natively, a property not shared with the rest of the protocols in this compar-
ison. We therefore only consider the two party case where a sender commits
to a receiver. The schemes of [Lin11,BCPV13] are in the CRS-model and their
security relies on the DDH assumption. As the messages to be committed to are
encoded as group elements the message size and the level of security are coupled
in these schemes. For large messages this is not a big issue as the group size would
just increase as well, or one can break the message into smaller blocks and com-
mit to each block. However, for shorter messages, it is not possible to decrease
the group size, as this would weaken security. The authors propose instantiating
their scheme over an elliptic curve group over a field size of 256-bits so later
in our comparison we also consider committing to values of this length. This is
optimal for these schemes as the overhead of working with group elements of
256-bits would become more apparent if committing to smaller values.

The scheme of [CJS14] in the global random oracle model can be based on
any stand-alone secure trapdoor commitment scheme, but for concreteness we
compare the scheme instantiated with the commitment scheme of [Ped92] as also
proposed by the authors. As [Ped92] is also based on the DDH assumption we
use the same setting and parameters for [CJS14] as for the former two schemes.

We present our detailed comparison in Table 1. The table shows the costs of
all the previously mentioned schemes in terms of OTs required, communication,
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number of rounds and computation. For the schemes of [CDD+15] we have fixed
the sharing parameter t to 2 and 3 for the basic and homomorphic version,
respectively. To the best of our knowledge this is also the optimal choice in
all settings. Also for the scheme of [CJS14] we do not list the queries to the
random oracle in the table, but remark that their scheme requires 6 queries
per commitment. For our scheme, instead of counting the cost of sending the
challenges (x1, x2, . . . , xγ) ∈ F, we assume the receiver sends a random seed of
size κ instead. This is then used as input to a PRG whose output is used to
determine the challenges.

Table 1. Comparison of the most efficient UC-secure schemes for committing to γ
messages of k components. Sizes are in bits. Legend: g is size of a group element, l is
size of a scalar in the exponent, h is the output length of the random oracle, f is the
size of a finite field element, ŝ is the number of consistency checks performed, Exp.
denotes the number of modular exponentiations, Enc. denotes the number of encoding
procedures of the corresponding codes which have length n and n. The schemes of
[CDD+15] are presented with the sharing parameter t set to 2 for the basic and 3 for
the homomorphic.

To give a flavor of the actual numbers we compute Table 1 for specific para-
meters in Table 2. We fix the field to F2 and look at computational security
κ = 128, statistical security s = 40 and instantiate the random oracle required
by [CJS14] with SHA-256. As the schemes of [Lin11,BCPV13,CJS14] rely on
the hardness of the DDH assumption, a 256-bit EC group is assumed sufficient
for 128-bit security [SRG+14]. As already mentioned we look at message length
k = 256 as this is well suited for these schemes.3 The best code we could find
for the schemes of [CDD+15] in this setting has parameters [631, 256, 81] and
is a shortened BCH code. For our scheme, the best code we have identified for
the above parameters is a [419, 256, 40] expurgated BCH code [SS06]. Also, we
recall the experiments performed in [CDD+15] showing that exponentiations in
a EC-DDH group of the above size require roughly 500 times more computa-
tion time compared to encoding using a BCH code for parameters of the above
type.4 In their brief comparison with [HMQ04], another commitment scheme in
3 We here assume a perfect efficient encoding of 256-bit values to group elements of a

256-bit EC group.
4 They run the experiments with a shortened BCH code with parameters

[796, 256, 121], which therefore suggests their observations are also valid for our choice
of parameters.
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Table 2. Concrete efficiency comparison of the most efficient UC-secure schemes for
committing to messages of size k = 256, κ = 128, h = 256 and s = 40 where the field is
F2 and hence ŝ = 40. In the table γ represents the number of commitments the parties
perform. These numbers include the cost of performing the initial OTs, both in terms
of communication and computation.

the random oracle model, the experiments showed that one of the above BCH
encodings is roughly 1.6 times faster than 4 SHA-256 invocations, which is the
number of random oracle queries required by [HMQ04]. This therefore suggests
that one BCH encoding is also faster than the 6 random oracle queries required
by [CJS14] if indeed instantiated with SHA-256.

To give as meaningful comparisons as possible we also instantiate the initial
OTs and include the cost of these in Table 2. As the homomorphic version of
[CDD+15] require 2-out-of-3 OTs in the setup phase, using techniques described
in [LOP11,LP11], we have calculated that these require communicating 26 group
elements and 44 exponentiations per invocation. The standard 1-out-of-2 OTs
we instantiate with [PVW08] which require communicating 6 group elements
and computing 11 exponentiations per invocation.

In Table 2 we do not take into consideration OT extension techniques [Bea96,
IKNP03,Nie07,NNOB12,Lar15,ALSZ15,KOS15], as we do so few OTs that even
the most efficient of these schemes might not improve the efficiency in practice.
We note however that if in a setting where OT extension is already used, this
would have a very positive impact on our scheme as the OTs in the setup phase
would be much less costly. On a technical note some of the ideas used in this
work are very related to the OT extension techniques introduced in [IKNP03]
(and used in all follow-up work that make black-box use of a PRG). However
an important and interesting difference is that in our work we do not “swap”
the roles of the sender and receiver for the initial OTs as otherwise the case for
current OT extension protocols. This observation means that the related work
of [GIKW14], which makes use of OT extension, would look inherently different
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from our protocol, if instantiated with one of the OT extension protocols that
follow the [IKNP03] blueprint.

As can be seen in Table 2, our scheme improves as the number of committed
values γ grows. In particular we see that at around 304 commitments, for the
above message sizes and security parameters, our scheme outperforms all pre-
vious schemes in total communication, while at the same time offering additive
homomorphism.

A Protocol Extension

As the scheme presented in Sect. 2 only implements commitments to random val-
ues we here describe an efficient extension to chosen message commitments. Our
extension ΠEHCOM is phrased in the FHCOM-hybrid model and it is presented in
Fig. 6. The techniques presented therein are folklore and are known to work for
any UC-secure commitment scheme, but we include them as a protocol extension
for completeness. The Chosen-Commit step shows how one can turn a com-
mitment of a random value into a commitment of a chosen value. This is done
by simply using the committed random value as a one-time pad on the chosen
value and sending this to Pr. The Extended-Open step describes how to open
to linear combinations of either random commitments, chosen commitments or
both. It works by using FHCOM to open to the random commitments and the
commitments used to one-time pad the chosen commitments. Together with the
previously sent one-time pad the receiver can then learn the designated linear
combination.

Finally we present a Batch-Open step that achieves very close to optimal
amortized communication complexity for opening to a set of messages. The tech-
nique is similar to the consistency check of ΠHCOM. When required to open to a
set of messages, the sender Ps will start by sending the messages directly to the
receiver Pr. Next, the receiver challenges the sender to open to a random lin-
ear combination of all the received messages. When receiving the opening from
FHCOM, Pr verifies that it is consistent with the previously received messages
and if this is the case it accepts these. For the exact same reasons as covered in
the proof of Theorem1 it follows that this approach of opening values is secure.
For clarity and ease of presentation the description of batch-opening does not
take into account opening to linear combinations of random and chosen commit-
ments. However the procedure can easily be extended to this setting using the
same approach as in Extended-Open.

In terms of efficiency, to open N commitments with message-size l, the sender
needs to send lN field elements along with the verification overhead ŝÔ + κ
where Ô is the cost of opening to a commitment using FHCOM. Therefore if the
functionality is instantiated with the scheme ΠHCOM, the total communication
for batch-opening is ŝ(k + n)f + κ + kNf bits where k is the length of the
message, n is the length of the code used, f is the size of a field element and ŝ
is the number of consistency checks needed.

We now elaborate on the applicability of batch-opening for committing to
large messages as mentioned in Sect. 2.3. Recall that there we split the large
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Fig. 6. Protocol ΠEHCOM in the FHCOM-hybrid model.
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message m of size M into N blocks of size l and the idea is to instantiate ΠHCOM

with a [ns, l, s] code and commit to m in blocks of size l. This requires ns initial
OTs to setup and requires sending (2ŝns)f+κ+lNf bits to commit to all blocks.
For a fixed s this has rate close to 1 for large enough l. In the opening phase
we can then use the above batch-opening technique to open to all the blocks of
the original message, and thus achieve a rate of Mf/ŝ(l+ns)f+κ+lNf ≈ 1 in the
opening phase as well.

In [GIKW14] the authors present an example of committing to strings of
length 230 with statistical security s = 30 achieving rate 1.046−1 ≈ 0.95 in both
the commit and open phase. To achieve these number the field size is required
to be very large as well. The authors propose techniques to reduce the field
size, however at the cost of reducing the rate. We will instantiate the approach
described above using a binary BCH code over the field F2 and recall that these
have parameters [n − 1, n − �d−1

2 � log(n + 1),≥ d]. Using a block length of 213

and s = 30 therefore gives us a code with parameters [8191, 7996, 30]. Thus we
split the message into 134, 285 = �230/7996� blocks. In the commitment phase
we therefore achieve rate 230/2·30·8191+128+8191·134,285 ≈ 0.976. Using the batch-
opening technique the rate in the opening phase is even higher than in the
commit phase, as this does not require any “blinding” values. In the above
calculations we do not take into account the 8191 initial OTs required to setup
our scheme. However using the OT-extension techniques of [KOS15], each OT for
κ-bit strings can be run using only κ initial “seed” OTs and each extended OT
then requires only κ bits of communication. Instantiating the seed OTs with the
protocol of [PVW08] for κ = 128 results in 6 · 256 · 128 + 8191 · 128 = 1, 245, 056
extra bits of communication which lowers the rate to 0.974.

Finally, based on local experiments with BCH codes with the above parame-
ters, we observe that the running time of an encoding operation using the above
larger parameters is roughly 2.5 times slower than an encoding using a BCH code
with parameters [796, 256, 121]. This suggests that the above approach remains
practical for implementations as well.
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Abstract. We introduce a simplified universally composable (UC) secu-
rity framework in our thesis (2005). In this paper we present an updated
more comprehensive and illustrated version. The introduction of our
simplified model is motivated by the difficulty to describe and analyze
concrete protocols in the full UC framework due to its generality and
complexity.

The main differences between our formalization and the general UC
security framework are that we consider: a fixed number of parties, static
corruption, and simple ways to bound the running times of the adver-
sary and environment. However, the model is easy to extend to adaptive
adversaries. Authenticated channels become a trivial ideal functionality.

We generalize the framework to allow protocols to securely realize
other protocols. This allows a natural and modular description and analy-
sis of protocols.

We introduce invertible transforms of models that allow us to reduce
the proof of the composition theorem to a simple special case and trans-
form any hybrid protocol into a hybrid protocol with at most one ideal
functionality. This factors out almost all of the technical details of our
framework to be considered when relating our framework to any other
security framework, e.g., the UC framework, and makes this easy.

1 Introduction

Canetti [3], and independently Pfitzmann and Waidner [11] propose security
frameworks for reactive processes. Both frameworks have composition theo-
rems, and are based on older definitional work. The initial ideal-model based
definitional approach for secure function evaluation is informally proposed by
Goldreich, Micali, and Wigderson in [6]. The first formalizations appear in
Goldwasser and Levin [7], Micali and Rogaway [10], and Beaver [1]. Canetti [2]
presents the first definition of security that is preserved under composition. See
[2,3] for an excellent background.

The basic approach of all these models is the same. An ideal functionality
is defined that implicitly captures the functionality and security properties we
expect from a real protocol. The real protocol is then said to be secure if it
is indistinguishable from the ideal functionality by any efficient distinguisher.
However, in an execution of the real protocol the adversary may influence the
execution or extract information that it passes on to the distinguisher. Thus,
we introduce an simulation adversary (simulator) that is given the same task,
c© International Association for Cryptologic Research 2016
E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part I, LNCS 9562, pp. 566–595, 2016.
DOI: 10.1007/978-3-662-49096-9 24



Simplified Universal Composability Framework 567

but when interacting with the ideal functionality. The ideal functionality is secure
by inspection, so the simulation adversary can by definition not attack the ideal
functionality in any meaningful way. Instead it must simulate a real attack to
the distinguisher. The definition of security then says that if for every real adver-
sary there exists an simulation adversary such that no efficient distinguisher can
distinguish: (1) an interaction with the real protocol and the real adversary from
(2) an interaction with the ideal functionality and the simulation adversary, then
the real protocol is said to securely realize the ideal functionality.

The UC framework is an ambitious attempt to capture the security of a wide
range of settings in a uniform way, but the original UC framework was flawed in
several ways. The most recent version of the online paper [3] contains a discussion
about the issues and pointers to relevant literature. However, the core ideas of
the UC framework are correct, and there are no flaws in the basic instantiations
needed to prove the security of practical protocols. In this paper we detail one
possible instantiation, but before we do so, we point out the main areas where
our particular instantiation is more restricted, and hence less complex, than the
general framework.

Canetti assumes the existence of an “operating system” that takes care of the
instantiation of subprotocols when needed. This is necessary to handle dynam-
ically instantiated subprotocols, but in our application we may assume that all
subprotocols are instantiated at the start of the execution. This means that we
can view each instance of a subprotocol as a separate Turing machine that exists
from scratch that interacts with the invoking protocol with a predefined session
identifier.

Canetti models an asynchronous communication network, where the adver-
sary has the power to delete, modify, and insert any messages of his choice. To
do this he is forced to give details for exactly what the adversary is allowed to do
to messages passed in different ways between interactive Turing machines, which
quickly becomes quite complex. We instead factor out all aspects of the commu-
nication network into a separate concrete “communication model”-machine. The
real, ideal, and hybrid models are then defined solely by how certain machines
are linked. The adversary is defined as any interactive Turing machine, and how
the adversary can interact with other machines also follows implicitly from the
definitions of the real and ideal communication models. With our approach there
is also no need for session identifiers.

The above means that the real, ideal, and hybrid models can not only be
illustrated by a graph of connected parties, they are graphs of Turing machines
in a very tangible way, which makes the composition theorem almost trivial.

There are several ways to model corruption in cryptographic protocols. In this
paper, we only consider static corruption, i.e., the adversary must decide which
parties to corrupt before the execution starts. However, it is straightforward
to extend the model to adaptive corruption as explained in Remark 2. Even
dynamic adversaries could be handled in a similar way, so there is no inherent
restriction to static adversaries.
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1.1 Contribution

We present a precise and workable security framework using modularized defin-
itions that are easily verified to be sound. Abstractions emerge in a natural way
that are firmly grounded in the underlying definitions. Although our treatment
may initially seem more complex than the description of the UC framework,
the actual content is captured faithfully in simple drawings that are enough to
understand the framework, and the composition theorem becomes almost trivial.

Explicit invertible transforms are introduced that can turn any hybrid model
into a hybrid model with a single ideal functionality (or a real model). Thus,
it suffices to consider how the security of such a protocol in our simplified UC
framework relates to its security in any other security framework, in particular
the UC framework. This also immediately generalizes the single composition
theorem to allow multiple compositions.

We introduce a novel generalization the UC framework and other frameworks
we are aware of in that the definition of security captures the case where a
hybrid protocol securely realizes another hybrid protocol, and not only ideal
functionalities. This allows a novel type of proof that is not only based on securely
realizing ideal functionalities and applying the composition theorem. We give
natural examples where this technique is applicable.

The essential restriction in our framework compared to general UC is that the
set of parties and the protocol, including all subprotocols and ideal functionalities
used, are determined at the start of the execution.

1.2 Related Work

Several frameworks have been proposed today, but we only mention two frame-
works that perhaps are closest to our framework at a philosphical level.

Constructive cryptography was developed and proposed by Maurer and
Renner [8,9] independently of our work. The design of cryptographic primi-
tives and protocols in this framework is viewed as the construction of an ideal
resource from assumed or real resources. It shares with our framework the aims
of achieving simplicity and eliminating irrelevant artefacts. We have not carried
out a detailed analysis of the relations between their model and ours, but we are
currently corresponding with the authors.

In subsequent, but independent work, Canetti et al. [4] propose an alternative
formalization of a simplified UC framework motivated by the same problems as
we do, and to some extent they use also the same approach as we do. Their moti-
vation and the restrictions they introduce compared to the full UC framework
are the same. Several features of the formalization that distinguishes it from the
UC framework are also similar, e.g., their explicit “router” corresponds to our
“communication model”.

We consider the main difference between our framework and theirs to be
that they use top-down approach, whereas we gradually build the model from
the bottom up. They explicitly relate their model to the general UC model.
We instead provide transforms that allow us to relate our framework to any
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other framework with ease, since today there are many proposals of security
framework and it is nearly impossible to understand each framework sufficiently
well to perform a valid comparison.

That said, we hope that the reader takes the time to read both papers, since
they both attempt to capture the core ideas of the UC framework in a way that
is easier to understand and use.

2 Interactive Turing Machines

Parties and algorithms are modeled as probabilistic Turing machines, but to be
able to talk about multiple parties that interact with each other we need to
augment this model with a notion of communication. We follow the approach
of Goldreich [5] and Canetti [3] and define interactive Turing machines, but
we replace the activation bit used by Goldreich by a slightly more complicated
gadget to allow seamless treatment of multiparty protocols.

Definition 1 (Interactive TuringMachine). An interactive Turing machine
(ITM) is a Turing machine with the following tapes and tape heads in addition to
its work tapes: a read-only identity tape, a read-only security parameter tape,
a read-once input tape, a write-once output tape, a read-once random tape, a
write-once send head s, a read-once receive head r, and two single-bit read/write
activity heads as and ar. The following restrictions apply to an ITM, where we
use brackets to indicate the value stored in the cell pointed at by a tape head.

1. If ([as], [ar]) ∈ {(0, 0), (1, 0)}, then it is inactive and can not change its state
in a state transition, or read, write, or move on any tape.

2. If ([as], [ar]) = (0, 1), then it is active and can change its state in a state
transition.

3. A special instruction allows it to atomically: set ([as], [ar]) = (1, 0) and become
inactive.

Note that a single ITM is not a complete computational model, since some
tape heads do not have matching tapes. Two ITM’s are connected by adding

· · · · · ·
s r

M0

as ar

ar as

M1

r s

· · · · · ·

Fig. 1. The ITM’s M0 and M1 share activation and send/receive tapes. The send head
of M0 points to same tape as the receive head of M1 and vice versa. A corresponding
configuration is used for the activation tapes. The figure does not contain the other
tapes of the ITM’s.
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the missing tapes and pairing the write-once send head of one party with the
read-once receive head of the other and the activity head as of one party with
the activity head ar of the other. Intuitively, the activation tapes implement an
“activation token” that is passed back and forth between the parties. This is
illustrated in Fig. 1. We denote the set of all ITM’s by ITM.

3 Graph of Interactive Turing Machines

To connect multiple ITM’s with each other without introducing extra tapes
for each machine and thereby change the computational model, we introduce a
gadget that plays the role of a router. A router is a Turing machine with several
sets of tape heads that can share tapes with interactive Turing machines (ITM)
or other routers.

Definition 2 (Router). An l-router is a Turing machine with write-once send
heads denoted s0, . . . , sl, read-once receive heads, denoted r0, . . . , rl, and single-
bit read/write activity heads as,i and ar,i for i = [0, l] such that

∑k
i=0([as,i] +

[ar,i]) ∈ {0, 1}.
Active. If [ar,i] = 1 for some i ∈ [0, k], then it is active and proceeds as follows.

1. To form a string w it reads and stores symbols from its ith receive tape using
ri until it encounters ⊥.

2. If i = 0 then
• if |w| ≥ n and the last n bits of w is an integer j ∈ [k], then it writes w

except the last n bits to its jth send tape using sj, and
• otherwise it writes ♦‖w to its 0th send tape using s0.
If i �= 0, then it sets j = 0 and writes w and a n-bit representation of i to its
0th send tape using s0.

3. It sets ([as,j ], [ar,i]) = (1, 0) (as an atomic operation) to pass the activity
token to the jth party.

Inactive. If [ar,i] = 0 for all i ∈ [0, k], then it is inactive and keeps its state
and does not read, write, or move on any tape.

The use of routers inbetween ITM’s makes sure that an ITM activates another
ITM (indirectly through the router) if and only if it first sends it a message. The
message may of course be empty to simply pass activation. Note that the address
of a message is appended to the end of the message. This may seem odd, but it
turns out to be useful for technical reasons (see AppendixA.4 for details).

Due to the test in step 2, a message can only be copied from the 0th receive
tape to the ith send tape for i > 0, or from the ith receive tape for i > 0 to the
0th send tape. Furthermore, data written to or read from the 0th tape contains
the index of another pair of tapes as an n-bit appendix, whereas it does not for
other tapes. Thus, data written to the 0th write-once tape may be badly formed
in which case the data is simply written back to the 0th write-once tape with the
prefix ♦. This prefix is a special symbol used only for this purpose that indicates
badly formed inputs.



Simplified Universal Composability Framework 571

Remark 1 (Concatenation). Concatenations such as that in Step 2 are common
in this chapter and the chapters that follows. Care has to be taken to avoid that
such concatenation, directly or indirectly, give rise to strings that can not be
decoded uniquely into the original components. We can not solve this by simply
stating that concatenation is a short hand for an invertible encoding algorithm,
since we need the associative property of concatenation to prove that routers
and communication models “commute”. Fortunately, it is easy to see that there
is no risk of ambiguous representations for most uses of concatenation.

To connect routers and ITM’s with each other we let them share tapes pair-
wise. We formalize this as follows.

Definition 3 (Slot of Interactive Turing Machine or Router). A tuple
of heads of an ITM (s, r, as, ar) or a tuple of heads of a router (si, ri, as,i, ar,i)
is a slot. (Using notation from Definitions 1 and 2.)

Definition 4 (Linked). Two slots (s, r, as, ar) and (s′, r′, a′
s, a

′
r) are linked if

there are four tapes such that the heads of each pair (s, r′), (s′, r), (as, a
′
r), and

(a′
s, ar) point to the same tape and no other heads point to any of these tapes.

An ITM graph is simply a number of ITM’s that are linked to each other
indirectly using routers. Note that a router of which the 0th slot is linked to an
ITM effectively increases the number of slots of the ITM. From now on we take
this view. A basic requirement of an ITM graph to be executable, is that no
ITM has any “dangling” tape heads.

Definition 5 (ITM Graph). An ITM graph is a set V of ITM’s, a set R of
routers, and a set of additional tapes such that the slot of each ITM is linked
to the 0th slot of a router, the 0th slot of each router is linked to the slot of an
ITM, and every other slot of every router in R is linked to a slot of a different
router in R. The set of all ITM graphs is denoted GITM.

In other words, we use the routers to increase the number of slots of ITM’s
and then link the slots of routers to each other to allow the ITM’s to commu-
nicate. Figure 2 illustrates this. The idea behind this approach is to restrict the
notion of an ITM to Turing machines that have a fixed number of tapes. This
avoids the need to change the computational model by adding tapes for parties
in a protocol depending on how many parties there are.

Definition 6 (Initializing an ITM Graph). To initialize an ITM graph with
ITM’s M1, . . . ,Mk, the identity tape of Mj is assigned the integer j in binary,
every cell of every activity tape is set to zero, every cell of every random tape is
set to a randomly chosen bit, every cell of every other tape is set to ⊥, and tape
heads pointing to the same tape are set to point to the same cell.

We say that a tape of an initialized ITM graph is assigned a string x when
we fill the consecutive cells starting at the cell pointed to by the tape heads
with x. This is done in the reachable direction for directed tape heads and in
some canonical direction for other tape heads.
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M1 M2

M3

Fig. 2. An ITM graph consisting of parties M1, M2, and M3 linked by three unnamed
routers providing three slots each. The 0th slot of each router is marked by an arrow.
We use this convention throughout this paper.

To simplify the analysis of running times, we ignore the state transitions
occuring in routers when stating running times. This does not change any results
about concrete protocols in any essential way, since only a small constant number
of routers are used and they all run in linear time in the messages forwarded.

Definition 7 (Executing an ITM Graph). An ITM graph with ITM’s
M1, . . . ,Mk, that has been initialized, is executed starting at M1 on security
parameter n and input z to M1 as follows.

1. Assign 1n to the security parameter tape of Mj for j ∈ [k].
2. Set the input tape of M1 to z.
3. Set [ar] = 1, where ar is the receiving activity head of M1.
4. Repeatedly execute the transition functions of all ITM’s in unison.

Note that due to the demand that an ITM or a router is active to change
its state, or read, write, or move on a tape, this effectively means that a single
machine is executing at any time.

Definition 8 (Bounding the Running Time). Let G be an ITM graph and
let X be a subset of the ITM’s in G. We say that the running time of G is
bounded at X by TX if the number of active state transitions taking place in
ITM’s in X is bounded by TX .

The above gives a solid foundation for defining a simple and explicit version
of the UC framework, but the notation is cumbersome. From now on we say
that two ITM’s are linked if two or more slots of their routers are linked. This
allows us to take an abstract view of an ITM graph as a set of ITM’s V and
a set of links E describing how the ITM’s are connected. If two machines are
linked, then they can exchange messages and activate each other.

However, an ITM with a set of slots not only expects to be linked to some
other ITM’s, it expects that particular slots are used to form links to particular
slots of other ITM’s. Thus, we must label the slots of each ITM and introduce
notation for forming a link using two such slots. Suppose that the ITM’s M1 and
M2 have slots [a] and [b] respectively. Then 〈M1[a],M2[b]〉 denotes a link formed
between slot [a] of M1 and slot [b] of M2. Due to the restrictions on ITM’s,
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the definition of a router, and the starting state of an initialized ITM graph,
this guarantees that exactly one ITM is active at any given time. In figures, we
now draw the machines as circles instead of squares to indicate that we have
abstracted from the details of communication.

Throughout we use the convention that a small letter in a slot, e.g., a in [a],
is a variable over the set of all labels of slots, and a capital letter is the label
given verbatim, e.g., M in [M].

4 Entities of Models

Before we introduce the real, ideal, and hybrid models, we introduce the ITM’s
used to form these models. To be able to talk about different types of ITM’s
below without ambiguity we mark them. This can be formalized by adding an
additional read-only tape on which the marking is written when the ITM is
initialized, but we avoid formalizing this to avoid cluttering. Furthermore, each
ITM of a given type has dedicated named slots.

An implementation of a function in software typically checks that the input
is of a given form and returns an error code or throws an exception otherwise.
It is then the responsibility of the caller of the function to deal with the error
or exception. We mirror this in that if an ITM receives a message w on a slot [a]

that does not match the explicitly stated format of valid messages, then ♦‖w is
written to [a]. We have already used this convention in Definition 2.

A communication model captures how the parties of a protocol can commu-
nicate in the presence of an adversary.

Definition 9 (Communication Model). A k-communication model C is an
ITM marked as a “communication model” with one ideal functionality slot [F ],
party slots [P1], . . . , [Pk], and an adversary slot [A]. If ♦‖w is read from [Pi] or [F ],
then ♦‖w is written to [A].

The adversary slot is used by an adversary to influence the behaviour of the
communication model, e.g., if the communication model represents the Internet,
then the adversary can insert, delay, or remove messages. The party slots are
used by parties to communicate through the communication model. The ideal
functionality slot is used to communicate with an ideal functionality. Note that
the above definition implies that whenever a party or an ideal functionality
refuses to accept an input, then the adversary is informed about this incident
and activated. When no ideal functionality is needed we tacitly assume that an
ideal functionality that refuses any input is used.

Definition 10 (Ideal Functionality). An ideal functionality F is an ITM
marked as an “ideal functionality” with a single communication slot [C].

The communication slot is used by the ideal functionality both to accept inputs
and to return outputs.

Definition 11 (Party). An f-party P is an ITM marked “party” with an envi-
ronment slot [Z], a communication slot [C], f subparty slots [U1], . . . , [Uf ], and an
adversary slot [A]. When f = 0 we simply say that P is a party.
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The subprotocol slots are used in the hybrid model to formalize access to
subprotocols and ideal functionalities. The adversary slot is only used by cor-
rupted parties. If it is not used in the formation of a model, then we assume that
it is simply linked to an ITM that does not accept any input.

Definition 12 (Protocol). A (k, f)-protocol π is a list (P1, . . . ,Pk) of f-
parties. When f = 0 we simply say that π is a k-protocol (or protocol when
k is clear from the context).

Definition 13 (Adversary). A (k, f)-adversary A is an ITM marked as an
“adversary” with a communication slot [C], an environment slot [Z], f subadver-
sary slots [A1], . . . , [Af ], and k corrupted party slots [P∗

1 ], . . . , [P∗
k ]. When f = 0 we

simply say that A is a k-adversary.

The corrupted party slots are used to communicate with corrupted parties
in protocols. Depending on which parties, and how many parties, are corrupted
some of these slots may remain unused. To meet the requirement that a model
is an ITM graph we assume that each such slot is linked to an ITM that does
not accept any input. Figures 3 and 4 illustrate a communication model, an ideal
functionality, a party, an adversary, and a corrupt party.

C [A]

[P1] [P2] [P3]

[F ] F [C] P [C]

[Z]

[U1] [U2]

Fig. 3. To the left a 3-communication model C with ideal functionality slot [F], adver-
sary slot [A], and party slots [P1], [P2], and [P3]. In the middle an ideal functionality F
with a single communication slot [C]. To the right a 2-party with subparty slots [U1] and
[U2], communication slot [C], and environment slot [Z].

A[C]

[A1] [A2]

[Z]

[P∗
1 ] [P∗

2 ] [P∗
3 ]

P∗ [C]

[Z]

[U1] [U2]

[A]

Fig. 4. To the left a (3, 2)-adversary with a communication slot [C], subadversary slots
[A1] and [A2], an environment slot [Z], and corrupted party slots [P∗

1 ], [P∗
2 ], and [P∗

3 ]. To
the right a corrupted 2-party P∗ with a communication slot [C], subparty slots [U1] and
[U2], an adversary slot [A], and an environment slot [Z].
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5 Real Free Models

The real communication model formalizes a network in which the adversary can
read, delete, modify, and insert any message of its choice. The Internet is an
example of such a network.

Definition 14 (Real Communication Model). The real k-communication
model Nk is defined as follows.

• If w is read from [Pi], where i ∈ [k], then Pi‖w is written to [A].
• If Pi‖w is read from [A], where i ∈ [k], then w is written to [Pi].

A real free model describes a protocol that executes over a real communica-
tion model. We define a map that combines a communication model, parties, and
an adversary into a graph of linked ITM’s. Recall that 〈M0[a],M1[b]〉 denotes a
link between slot [a] of M0 and slot [b] of M1.

Definition 15 (Real Model Map). The real (k, I, f)-model map is the map
Rk,I,f : (π,A, π∗) 	→ (V,E), where π = (P1, . . . ,Pk) is a (k, f)-protocol, A is an
f-adversary, and π∗ = {P∗

i }i∈I is a set of corrupted f-parties, defined by

V ={Nk,A} ∪
⋃

i/∈I
{Pi} ∪

⋃

i∈I
{P∗

i } and

E =
{〈A[C],Nk [A]〉} ∪

⋃

i/∈I

{〈Pi[C],Nk [Pi]〉}

∪
⋃

i∈I

{〈P∗
i
[C],Nk [Pi]〉, 〈P∗

i
[A],A[Pi]〉}.

Definition 16 (Real Free Model). A real free (k, I, f)-model M is an output
of the real free (k, I, f)-model map. If f = 0, then we simply say that M is a
real free (k, I)-model.

We say that the real model is free, since the parties and the adversary in it
have free environment slots (and possibly free subparty or subadversary slots),
i.e., a real free model is not an ITM graph and can not be executed. Figures 5
and 6 illustrate real free models without and with corruption.

N3

P1 P2 P3

A

Fig. 5. A real free (3, ∅)-model R3,∅,0(π, A, ∅) with a real 3-communication model N3,
3-protocol π = (P1, P2, P3), and real 3-adversary A.
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N3

P1 P2 P∗
3

A

Fig. 6. The real (3, I)-model R3,I,0(π, A, π∗) with indices of corrupted parties I =
{3}, real 3-communication model N3, 3-protocol π = (P1, P2, P3), real 3-adversary A,
and set of corrupted parties π∗ = {P∗

3 }. Note the link between A and the corrupted
party P∗

3 .

6 Ideal Free Models

The ideal model formalizes a protocol execution in an ideal world where there
is an ideal functionality, i.e., a trusted party that performs some service. The
trusted party is simply an ITM executing a program, and it communicates with
the parties through the ideal communication model.

The ideal communication model below captures the fact that the adversary
may decide if and when it would like to deliver a message from the ideal function-
ality to a party, but it cannot read the contents of the communication between
parties and the ideal functionality.

Definition 17 (Ideal Communication Model). The ideal k-communication
model Ik is defined as follows.

• If F‖m is read from [A], then S‖m is written to [F ].
• If S‖m is read from [F ], then F‖m is written to [A].
• If w is read from [Pi], then Pi‖w is written to [F ].
• If w‖(Pj , wj)j∈J‖e is read from [F ], where J ⊂ [k], then for j ∈ J :

1. τj is chosen randomly, and
2. (Pj , wj‖e) is stored in a database under τj.
Then w‖(Pj , τj)j∈J‖e is written to [A].

• If τ is read from [A] and (Pj , w‖e) is stored under τ in the database, then w‖e
is written to [Pj ].

In our thesis we use an authenticated bulletin board for communica-
tion. Authenticated channels are trivial to define using an ideal functionality.
Although we could absorb this into a separate communication model, this makes
little sense.

Definition 18 (Authenticated Channels Functionality). The authen-
ticated channels functionality Fauth repeatedly reads an input of the form
Pi‖(Pj ,m) from [C] and writes (Pj ,Pi‖m)‖(Pj ,Pi‖m) to [C].
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In most formalizations the lengths of messages are provided to the simulation
adversary by the communication model. This is needed to prove the security of
most protocols, since without it the ideal functionality could hide the lengths
of messages from the simulation adversary (something that would be impossible
to achieve in a real protocol). Our formalization requires the definition of each
ideal functionality to provide the lengths explicitly. However, for concrete pro-
tocols this is rarely needed, since the lengths of messages can be derived by the
simulation adversary from the security parameter.

Definition 19 (Dummy Party). A dummy party is a party that writes any
input on [Z] to [C], and writes any input on [C] to [Z].

Dummy parties are introduced to provide identical interfaces to the parties
in real models and to ideal functionalities. There may be many copies of the
dummy party. Dummy parties are denoted by Qi to distinguish them from real
parties and may be thought of as labels for links. We denote a dummy k-protocol
by (Q1, . . . ,Qk).

The ideal free model below captures the setup one wishes to realize, i.e.,
the environment may interact with the ideal functionality F , except that the
adversary S has some control over how the communication model behaves.

Definition 20 (Ideal Free Model Map). The ideal free (k, I)-model map
is the map Ik,I : (F ,S, σ∗) 	→ (V,E), where I ⊂ [k] is a set of indices of
corrupted parties, F is an ideal functionality, S is a simulation k-adversary,
and σ∗ = {Q∗

i }i∈I is a set of corrupted parties, defined by

V ={Ik,F ,S} ∪
⋃

i/∈I
{Qi} ∪

⋃

i∈I
{Q∗

i }, and

E =
{〈Ik[F ],F [C]〉, 〈S [C], Ik[A]〉} ∪

⋃

i/∈I

{〈Qi[C], Ik[Pi]〉}

∪
⋃

i∈I

{〈Q∗
i
[C], Ik [Pi]〉, 〈Q∗

i
[A],S [Pi]〉}.

I3

Q1 Q2 Q3

S
F

Fig. 7. An ideal free (3, ∅)-model I3,∅(F , S, ∅) with ideal 3-communication model I3,
dummy 3-protocol (Q1, Q2, Q3), ideal functionality F , and simulation 3-adversary S.

Definition 21 (Ideal Free Model). An ideal free (k, I)-model is an output
of the ideal free (k, I)-model map.

Figure 7 illustrate an ideal free model without corruption.
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7 Hybrid Free Models

A hybrid free model formalizes the execution of a real protocol that has access
to other real subprotocols, ideal functionalities, or hybrid protocols. It can both
be used to describe protocols that need setup assumptions (or trusted parties)
for specific tasks and as a tool to construct protocols in a modular way.

Note that the following definitions give a joint inductive definition of the
hybrid free model map and hybrid free models.

Definition 22 (Hybrid Free Model). A hybrid free (k, I, f)-model is an out-
put of the hybrid free k-model map Hk,I,f of Definition 26 below. We drop f from
our notation if it is zero.

Definition 23 (Free Model). A free (k, I, f)-model is a real free (k, I, f)-
model, a hybrid free (k, I, f)-model, or provided f = 0, an ideal free (k, I)-model.

A free model is complete if it does not have any dangling subparty slots. Thus,
every free ideal model and every real/hybrid (k, I)-model is complete.

Definition 24 (Complete Free Model). A free (k, I, 0)-model is complete.

Definition 25 (Root of Free Model). The root of a free (k, I, f)-model
(V,E) is the unique pair of a protocol and adversary ((X1, . . . ,Xk),A) such that
Xi ∈ V is a party with a free slot [Z] for i ∈ [k] and A ∈ V is an adversary with
a free slot [Z].

We stress that if i ∈ I, then Xi is a corrupted party usually denoted P∗
i (or

Q∗
i ), and otherwise it is an uncorrupted party Pi (or Qi) defined by the original

protocol or dummy protocol of the ideal functionality.

Definition 26 (Hybrid Free Model Map). The hybrid free (k, I, f)-model
map is the map Hk,I,f with f > 0 that takes as input:

• A real free (k, I, f)-model (V,E) with root ((X1, . . . ,Xk),A).
• A complete free (k, I)-model (Vj , Ej) with root ((Xj,1, . . . ,Xj,k),Aj) for j ∈

[f ].

and outputs a complete free model (V ′, E′) where

V ′ = V ∪
⋃

j∈[f ]
Vj and

E′ = E ∪
⋃

j∈[f ]

(
Ej ∪ {〈A[Aj ],Aj [Z]〉} ∪

⋃

i∈[k]

{〈Xi[Uj ],Xj,i[Z]〉}
)

.

8 Environments and Models

To be able to execute a free model we need an environment that connects to the
free slots of the root protocol and root adversary. We formalize the environment
in which a protocol is executed as an ITM (Fig. 8).
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N3

P1 P2 P3

S

A

I3

Q1 Q2 Q3

F

Fig. 8. A hybrid free model H3,I,1

(

R3,I,1(π, A, ∅),I3,I(F , S, ∅)
)

with indices of cor-
rupted parties I = ∅, real 3-communication model N3, root (3, 1)-protocol π =
(P1, P2, P3), root (3, 1)-adversary A, ideal 3-communication model I3, dummy 3-
protocol (Q1, Q2, Q3), ideal functionality F , and simulation 3-subadversary S.

Definition 27 (Environment). A k-environment is an ITM marked as an
“environment” with party slots [P1], . . . , [Pk] and an adversary slot [A].

Figure 9 illustrates an environment. The environment provides the data used
by the parties in the protocol and is always the first ITM to be activated during
the execution of the model.

Z

[P1] [P2] [P3]

[A]

Fig. 9. A k-environment with party slots [P1], [P2], and [P3], and an adversary slot [A].

Definition 28 (Environment Map). The (k, I)-environment map Zk :
(M,Z) 	→ (V ′, E′) takes a complete free (k, I)-model M = (V,E) with root(
(X1, . . . ,Xk),A)

and a k-environment Z as input and outputs (V ′, E′) where

V ′ = V ∪ {Z} and

E′ = E ∪ {〈Z [A],A[Z]〉} ∪
⋃

i∈[k]

{〈Z [Pi],Xi[Z]〉}.

Definition 29 (Model). A (k, I)-model is an output of the (k, I)-environment
map.

Note that a model is an ITM graph, which means that it can be executed.
In an execution of a model the environment is always activated first with some
auxiliary input. Figures 10, 11, and 12 illustrate a real model, an ideal model,
and a hybrid model respectively. We abuse notation and write Rk,I,f (π,A, π∗,Z)
instead of Zk(Rk,I,f (π,A, π∗),Z) and correspondingly for ideal and hybrid free
model maps.
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N3

P1 P2 P3

A

Z

Fig. 10. A real (3, ∅)-model R3,∅,0(π, A, ∅, Z) with real 3-communication model N3,
3-protocol π = (P1, P2, P3), real 3-adversary A, and 3-environment Z.

I3

Q1 Q2 Q3

S

Z

F

Fig. 11. An ideal (3, ∅)-model I3,∅(F , S, ∅, Z) with ideal 3-communication model I3,
dummy 3-protocol (Q1, Q2, Q3), ideal functionality F , simulation 3-adversary S, and
3-environment Z.

N3

P1 P2 P3

S

A

Z

I3

Q1 Q2 Q3

Z

F

Fig. 12. A hybrid model H3,I,1

(

R3,I,1(π, A, ∅),I3,I(F , S, ∅), Z) with real 3-
communication model N3, root (3, 1)-protocol π = (P1, P2, P3), root (3, 1)-adversary
A, ideal 3-communication model I3, dummy 3-protocol (Q1, Q2, Q3), ideal functional-
ity F , simulation 3-subadversary S, and 3-environment Z.
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9 Classes of Adversaries

We need to bound the running times of the adversary, the simulation adversary,
and the environment to give a definition of security. Several ways to do this have
been proposed in the literature. We choose a simple solution that gives concrete
bounds on the security reductions. Given a model M = (V,E) with an adversary
H (real, ideal, or hybrid) and environment Z we say that:

1. H has running time TH if the running time of M is bounded by TH at V \{Z}.
2. Z has running time TZ if the running time of M is bounded by TZ at {Z}.

We remark that this approach differs from the simpler approach used in our
thesis [12] and in [4], where the running time of each ITM was simply bounded by
a polynomial in the security parameter. The advantage with the current approach
is that ideal functionalities and protocols never halt until they are explicitly asked
to by the adversary or the environment. However, both approaches are possible
in our formalization.

10 Simplified Notation

At this point we have defined the models of the simplified UC framework rigor-
ously, but it is convenient to introduce some alternative notation more in line
with the literature to emphasize protocols, ideal functionalities, and adversaries
instead of the technical details of how these are linked. We stress that we do not
abandon the original notation; the freedom to change notation when convenient
greatly simplifies describing and analyzing protocols.

It is easy to see that we may assume that all corrupted parties and all adver-
saries except the one linked to the environment are simulations of the router of
Definition 2 with a suitable number of heads. This is illustrated in Fig. 13.

The subprotocols and ideal functionalities of a hybrid model are arranged
in a tree of subprotocols where every ideal functionality is a leaf. Thus, given
the set of indices of corrupted parties and the tree of subprotocols and ideal
functionalities, an adversary, and an environment we can introduce an indexing
scheme and recover the hybrid model. We denote a tree of subprotocols and ideal
functionalities by inductively applying the rules that:

1. An ideal free model based on an ideal functionality F is denoted by F .
2. A real free model based on a protocol π is denoted by π.
3. A hybrid free model based on a real protocol π, and complete free models

based on hybrid protocols ρ1, . . . , ρt is denoted π(ρ1, . . . , ρt).

We may consider the set of indices of corrupted parties to be embedded in the
description of the adversary and simply say that we consider an adversary that
corrupts a certain set of parties. This convention gives less concrete notation
than the original, but it is more in line with the literature.

Suppose that ρ is such a description of a protocol, Z is an environment, and
A is an adversary (where the indices of corrupted parties have been encoded).
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N3

P1 P2

A

Z

I3

Q1 Q2

Z

F

Fig. 13. A modification of a hybrid free model with corruption, where Q∗
3, P∗

3 , and
S are replaced by routers and A′ is a corresponding modification of A, but with an
environment Z turning it into a model. The 0th slot of each router is marked by an
arrow. We stress that strictly speaking each router is simulated by an ITM to adhere
to our definitions. The routers needed for this ITM to have multiple links are hidden
by our abstractions.

Then we denote by Zz(ρ,A) the output of the environment Z running on auxil-
iary input z when executing the model recovered from ρ, Z, and A. Sometimes
we structure the adversary to match the topology of the protocols and ideal func-
tionalities, i.e., we denote each simulation subadversary by S and each hybrid
or real subadversary by A with suitable subscripts.

We remark that in hybrid models the number of dummy parties linked to
any ideal functionalities that are used is easily derived. Thus, there is no need
to state this explicitly. This is not the case for ideal models, but the number of
parties is always clear from the context.

Example 1. Suppose that π is a protocol that uses real subprotocols π0 and
π1, and an ideal functionality F , where π1 in turn uses an ideal functional-
ity F1. Suppose further that A is the overall adversary that attacks π, and
orchestrates: (1) subadversaries S and S1 of F and F1 respectively, and (2)
real subadversaries A1 and A2 of π1 and π2 respectively. Then the output
of the corresponding model executed with auxiliary input z is denoted by
Zz

(
π(π0, π1(F1),F),A(A0,A1(S1),S)

)
. If we are not interested in the internal

structure of A, then we simply write A instead of A(A0,A1(S1),S).

11 Definition of Security

Following the approach outlined at the beginning of the paper we now formalize
the security of protocols. In this paper we only consider static corruption, i.e.,
an adversary may only choose a set of parties to corrupt before execution starts.
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Remark 2. Adaptive corruption is easy to add to our framework as follows. (1)
Add a link between each party and the adversary. There are already slots pre-
pared for this. (2) Wrap each party in an ITM that simulates the party until it
receives “corrupt” from the adversary, at which point it writes the state of the
party to the adversary, and waits for a new ITM with a given state in return
that it executes instead. The adversary may now use the link to the wrapped
replacement freely. (3) Stipulate to which sets of parties the adversary may send
“corrupt”. Another wrapper of the adversary can be used to enforce this to avoid
restrictions when quantifying over adversaries.

One would typically assume a uniform adversarial structure for subprotocols
as for static corruption, but the approach works even when this is not the case.

Most proofs of security only hold as long as the adversary does not corrupt
certain parties or some subsets of parties. An adversarial structure is a collection
of sets, where each set is a set of indices of parties that the adversary can corrupt.
We use J to denote an adversarial structure.

Example 2. If we have five parties P1, . . . ,P5 in a protocol and we are able to prove
that the protocol is secure provided that at most one out of P1 and P2 is corrupted
and two out of P3, P4, and P5 are corrupted. Then the adversarial structure we
consider is J = {{1, 3, 4}, {1, 4, 5}, {1, 3, 5}, {2, 3, 4}, {2, 4, 5}, {2, 3, 5}}.

Here we only consider the case where corruption takes place in a uniform
way in all free models within a model, i.e., if a party is corrupted, then so are
all its subparties recursively. However, it is quite natural to generalize this in
certain situations.

We use A to denote a class of adversaries with running time bounded by
TA, where the number of parties k and the topology of hybrid adversaries are
implicit. Furthermore, the subset of such adversaries that corrupt the parties
with indices in a set J are denoted by AJ . We use the same conventions for a
class of simulation adversaries S and the corresponding class SJ of adversaries
that corrupt dummy parties with indices in J . Finally, we use Z to denote a class
of environments with running time bounded by TZ. Given two classes A and A′

of adversaries with the same topology, we simply write A+A′ to denote the class
of adversaries with the same topology and running time TA + TA′ .

For standard asymptotic security we can simply require that TA, TS, and TZ

are polynomially bounded, but for concrete security claims we can give explicit
upper bounds.

Definition 30 (Secure Realization). A protocol ρ is a (J,A,S,Z, μ)-secure
realization of a target protocol τ if for every J ∈ J and every adversary A ∈ AJ ,
there exists a simulation adversary S ∈ SJ such that for every environment
Z ∈ Z and every auxiliary input z ∈ {0, 1}∗:

|Pr [Zz(ρ,A) = 1] − Pr [Zz(τ,S) = 1]| ≤ μ.

The above definition is considerably more general than other flavours of the
UC framework in that a protocol can securely realize another protocol and not
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only an ideal functionality. This may seem contrived at first glance, but is in
fact an important generalization that simplifies the description and analysis of
concrete protocols.

Consider for example an ideal functionality for distributed key generation and
decryption. It outputs a public key and can then be used to decrypt ciphertexts
if asked to do so by the parties using its service. This works well with a CCA2-
secure cryptosystem, but for IND-CPA secure cryptosystems the functionality
can not be securely realized, since a simulator has no way of limiting access to
the plaintexts needed to simulate decryption. Thus, any application of such a
functionality must ensure that this information is otherwise available, but there
are several ways to do this, e.g., a trusted party, secret sharing, and proofs
of knowledge, and these are actually used in various electronic voting systems
(see [13] for a discussion).

We can formalize an intuitive ideal functionality F for distributed key gen-
eration and decryption, and several different ideal functionalities F1, . . . ,Fl for
submitting a ciphertext as an input to the ideal functionality. The individual
functionalities may be impossible to securely realize in isolation, but we can
consider a hybrid protocol π(F ,Fi), where π forces any inputs to F to first be
processed by Fi (possibly along with other information or through interaction)
in such a way that Fi, and hence the simulator, knows the plaintext of any
ciphertexts decrypted by F . This hybrid protocol can then be securely realized
by a protocol of the form π(σ, σi), where σ and σi are the natural and often
classic implementations in practice. The hybrid protocol π(F ,Fi) may either be
viewed as a type of ideal functionality that is secure by inspection, in which
π should be a “thin” middle layer that is trivial to understand, or there could
be another ideal functionality F ′ that it securely realizes. Thus, this approach
avoids some of the artificial complexity of the UC framework and allows a more
modular approach.

12 Universal Composition Theorem

Canetti [3] proves a powerful composition theorem. Loosely speaking it says that
if a protocol π securely realizes some functionality F , then the protocol π can
be used instead of the ideal functionality regardless of how the functionality F
is employed. The general composition theorem can handle polynomially many
instances of a constant number of ideal functionalities for many different adver-
sarial models, but we only need the following weaker special case due to the
results in AppendixA.

Theorem 1 (Special Universal Composition Theorem). If ρ0 is a
(J,A,S,Z, μ)-secure realization of τ0 and π(τ0,F1) is a (J,A + S,S′,Z, μ)-secure
realization of τ , then π(ρ0,F1) is a (J,A,S′,Z, μ + μ′)-secure realization of τ .

Proof. The triangle inequality implies that for every simulation adversary S0,
every hybrid adversary A(A0,S1), every simulation adversary S, every environ-
ment Z and every auxiliary input z ∈ {0, 1}∗
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∣
∣Pr

[Zz

(
π(ρ0,F1),A(A0,S1)

)
= 1

] − Pr [Zz(τ,S) = 1]
∣
∣

≤ ∣
∣Pr

[Zz

(
π(ρ0,F1),A(A0,S1)

)
= 1

] − Pr
[Zz

(
π(τ0,F1),A(S0,S1)

)
= 1

]∣∣

+
∣
∣Pr

[Zz

(
π(τ0,F1),A(S0,S1)

)
= 1

] − Pr [Zz(τ,S) = 1]
∣
∣ (1)

We now denote by Zz(A,S1) the environment that simulates the environment
Z on auxiliary input z, the real free model Rk,J,2(π,A, π∗), and the ideal free
model Ik,J(F1,S1, σ

∗
1). Here π∗ and σ∗

1 are the sets of corrupted subparties, but
without loss of generality we may assume that they are routers. This allows us
to rewrite the right side of Inequality (1) as

|Pr [Zz(A,S1)(ρ0,A0) = 1] − Pr [Zz(A,S1)(τ0,S0) = 1]|
+

∣
∣Pr

[Zz

(
π(τ0,F1),A(S0,S1)

)
= 1

] − Pr [Zz(τ,S) = 1]
∣
∣ ,

without restricting the quantification.
Note that if A(A0,S1) ∈ AJ and S0 ∈ SJ , then A0 ∈ AJ and A(S0,S1) ∈ AJ+

SJ . Morover, if Z(A,S1) ∈ Z, then Z ∈ Z. From the hypothesis of the theorem we
know that for every hybrid adversary A(A0,S1) ∈ AJ there exists a simulation
adversary S0 ∈ SJ such that for the hybrid adversary A(S0,S1) ∈ (AJ + SJ)
there exists a simulation adversary S ∈ S′

J such that for every environment
Zz(A,S1) ∈ Z and every auxiliary input z ∈ {0, 1}∗

|Pr [Zz(A,S1)(ρ0,A0) = 1] − Pr [Zz(A,S1)(τ0,S0) = 1]| ≤ μ and
∣
∣Pr

[Zz

(
π(τ0,F1),A(S0,S1)

)
= 1

] − Pr [Zz(τ,S) = 1]
∣
∣ ≤ μ′.

We conclude that for every A(A0,S1) ∈ AJ there exists a simulation adversary
S ∈ S′ such that for every Z ∈ Z and every auxiliary input z ∈ {0, 1}∗

∣
∣Pr

[Zz

(
π(ρ0,F1),A(A0,S1)

)
= 1

] − Pr [Zz(τ,S) = 1]
∣
∣ ≤ μ + μ′.

13 Transforms of Models

It is intuitively clear that we can absorb any real subprotocols into the main
protocol by simply combining each real party and its subparties into single new
real party, but this does not give a valid model according to our definitions,
since each such party is linked to multiple real communication models. A similar
problem appears when bundling multiple ideal communication models.

In AppendixA we describe and analyze three explicit faithful transforms that
allow us to: (1) simulate multiple ITM’s in a single ITM, (2) simulate multiple
links between two ITM’s using a single link, and (3) simulate multiple identical
communication models using a single communication model. The first two are
straightforward, but the third depends on the details of the definitions of the
communication models. A transform is faithful if it is invertible and preserves
functionality.

These transforms give us the freedom to view protocols with subprotocols
and ideal functionalities in the most convenient way for each situation without
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sacrificing rigor. In particular, it means that we can apply Theorem 1 to protocols
with more than two ideal functionalities. More precisely, we can transform any
protocol and adversary into a protocol of the form π(F0,F1), as required by
the composition theorem and a corresponding adversary A. Suppose that π0

securely realizes F0. Then, due to the composition theorem we know that there is
a simulation adversary S which shows that π(π0,F1) securely realizes π(F0,F1).
Due to faithfulnesss, we may then recover the original protocol along with a
modified simulation adversary S ′, which implies that the composition is secure
for the original protocol. We provide details in AppendixA.

14 Relation to Other Security Frameworks

It is natural to ask if the simplified UC framework captures the same notion of
security as other security frameworks. Instead of providing relations and proofs
for particular other frameworks we exploit our transforms to make this easy for
any security framework.

The faithful transforms allow us to turn any protocol into a protocol with at
most one ideal functionality. If a protocol securely realizes an ideal functional-
ity, then its transform does as well. Thus, proving that it securely realizes the
functionality in another security framework is reduced to the special case where
the protocol has at most one ideal functionality. More precisely, to relate the
simplified UC framework to an alternative framework it suffices that: (1) pro-
tocols with at most one ideal functionality can be expressed in the alternative
framework (with suitable restrictions), and (2) if there is an adversary that con-
tradicts the security of such a protocol in the alternative framework, then there
is an adversary that violates the security in the simplified UC framework.

In particular, relating the simplified UC framework to any reasonable presen-
tation of the UC framework is straightforward. This should be contrasted with
the analysis of Canetti et al. [4] which relates their presentation of the simplified
UC framework with a particular presentation of the UC framework. Determining
if their proof still holds after further modifications of the UC framework or for
other alternative presentations is cumbersome.

A Transforms of Models

This section is dedicated to define and analyze the transforms informally
described in the body of the paper. Although the definitions are somewhat tech-
nical in nature, the ideas and concepts are simple and illustrated in Figs. 14, 15,
16, 17, and 18. For all practical purposes, i.e., when analyzing concrete protocols,
browsing these illustrations should be enough.

Throughout, we assume without loss of generality that if a Turing machine Mi

simulates some other Turing machines for i = 1, . . . , m and M is said to simulate
the Mi’s, then during execution M instead simulates the machines simulated by
each Mi directly. Thus, we may freely argue in terms of nested simulations
without any computational penalty. To avoid cluttering we also assume that
simulation of multiple Turing machines can be done without any overhead.
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A.1 Faithful Transforms of ITM Graphs

We are interested in transforms of ITM graphs that preserve the functionality
of the original, but we must also be able to invert each transform and recover
the original ITM graph. Below we give rigorous definitions that captures these
properties, but for all our transforms it is straightforward to see that this is
the case.

Intuitively, the first component of an input to a transform is the ITM graph
to be transformed and the second component parametrizes the transform, e.g.,
it may pinpoint particular ITMs to remove, move, or link in a specific way.

Definition 31 (Transform). An ITM graph transform is a map Φ : S →
GITM, where S ⊂ GITM × ITM∗.

Given an ITM graph G = (V,E) we may assume that we can list the ITMs
in V in a canonical order. Thus, it is meaningful to view any inputs and random
tapes of these ITMs as lists m = (m1, . . . ,m|V |) and r = (r1, . . . , r|V |), respec-
tively, and denote by ZG(n,m, r) the output of Z ∈ V in an execution of G
starting at Z, using security parameter n, on inputs m and random tapes r.

We need to argue about the behaviour of both an ITM graph and its trans-
form on the “same” random tapes, but the latter may have more or less ITMs.
Thus, for every integers a, b > 0, we need a bijection ε : ({0, 1}∗)a → ({0, 1}∗)b

such that both ε and its inverse are efficiently computable. Such bijections are
readily constructed, e.g., we can use interleaving of bits.

Definition 32 (Faithful Transforms). An ITM graph transform Φ : S →
GITM is faithful if

1. Preservation of functionality. For every (G,C) ∈ S, where G = (V,E)
with communication models U , every Z ∈ V , every security parameter n,
every random tapes r ∈ ({0, 1}∗)|V |−|U | to non-communication models, and
every inputs m ∈ ({0, 1}∗)|V | the transformed ITM graph Φ(G,C) computes
the same function at Z with overwhelming probability, i.e.,

Pr
[ZG(n,m, r) = ZΦ(G,C)(n,m′, r′)

]
< 2−poly(n),

where m′ = ε(m), r′ = ε(r), and the probability is taken over the random
tapes of the communication models.

2. Invertibility. There exists a transform Θ : S → GITM that computes the
original ITM graph, i.e., for every (G,C) ∈ S we have Θ(Φ(G,C), C) = G.

In the following we compose transforms and it is not possible in general to
invert each step without access to the parameter C used in the transform, e.g.,
we may modify different parts of an ITM graph and it is impossible to know
afterwords which part was modified first.

However, for composed transforms we may view the sequence of parameters
used as a transcript and recover the previous ITM graph of each step due to
the invertibility property. Thus, if G′ = Φ(G,C), then without loss of generality
we abuse notation and simply write G = Φ−1(G′) instead of G = Θ(G′, C) and
assume that the parameter C is available.
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A.2 Simulating Multiple Interactive Turing Machines

The most obvious simplification of the description of an ITM graph is to let a
single ITM simulate several other ITMs as well as their links. This is illustrated in
Fig. 14 and defined below. Given subsets A and B of a set V of ITMs, we denote
by E(A,B) the set of links between slots of ITMs in A and B respectively and
set E(A) = E(A,A).

Definition 33 (Simulation of ITMs). Let G = (V,E) be an ITM graph and
let A ⊂ V . Denote by SX the set of slots of X ∈ A that are not part of a link
in E(A). Then ΩITM (A) denotes the ITM that simulates all ITMs in A with
slots

⋃
X∈A

⋃
[a]∈SX {[X|a]}, where [X|a] is identified with the slot [a] of X in the

simulation for every X ∈ A.

Definition 34 (Simulation Transform). Define the simulation transform
ΦITM (G,A) = (V ′, E′), where G = (V,E) is an ITM graph and A ⊂ V , by

B = V \ A

XA = ΩITM (A)
V ′ = B ∪ {XA}
E′ = E(B) ∪

⋃

〈X [a],Y[b]〉∈E(A,B)
{〈XA[X|a],Y [b]〉}.

We abuse notation and write G′ = ΦITM (G,A1, A2) instead of the more
cumbersome G′ = ΦITM (ΦITM (G,A1), A2) and correspondingly for multiple sets
A1, . . . , Al.

Theorem 2. The simulation transform is faithful.

Proof. It is clear that the transform is faithful, since the parties in A are simply
simulated and we merely replace the links to parties outside A with correspond-
ing links with differently labeled slots.

X1 X2

X

[a]

[b]

[X1|a]

[X1|b]

[c]

[d]

[e]

[X2|c]

[X2|d]

[X2|e]

Fig. 14. Two ITMs X1 and X2 with links to other ITMs (not shown in the figure) are
simulated by a single ITM X that inherits the links of all the original parties. More
precisely, the slots [a] and [b] of X1 are exposed as the slots [X1|a] and [X1|b], and the
slots [c] and [d], and [e] of X2 are exposed as [X2|c], [X2|d], and [X2|e].
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A.3 Simulate Multiple Links

Suppose that two ITMs have multiple direct links between them. Then we simply
plug in two routers and absorb these routers into the respective ITMs using
wrappers. This is illustrated in Fig. 15.

X1 X2

X1 X2X1 X2

Fig. 15. The upper part shows two ITMs X1 and X2 that are linked by three links.
The lower part shows how two routing wrappers can be used to form slightly modified
ITMs X ′

1 and X ′
2 that are connected by a single link.

Definition 35 (Wrapper). Let X be an ITM with slots [a1], . . . , [al], let
R be an l-router, define links E = {〈X [aj ],R[j]〉}j∈[l], and define X ′ =
Ωwrap(X , ([a1], . . . , [al]), [a]) to be the wrapper ITM that simulates X and R
including the links in E, and identifies R[0] with a new slot [a] of X ′. All other
slots of X are exposed by X ′.

Definition 36 (Swap). Let G = (V,E) be an ITM graph, let X ∈ V , and
define Ωswap (E,X ,Y), where L is the set of common labels of slots of X and
Y, by

Ωswap (E,X ,Y) =
⋃

a∈L

⋃

〈X [a],Z[a]〉∈E
{〈Y [a],Z [a]〉}.

We generalize Ωswap to lists of ITMs in the natural way, i.e., we simply
write Ωswap (E, (X1,X2), (Y1,Y2)) instead of Ωswap (Ωswap (E,X1,Y1) ,X2,Y2)
and similarly for longer lists.

Definition 37 (Link Simulation Transform). Define the link simulation
transform Φlinks(G,A) = (V ′, E′), where G = (V,E) is an ITM graph and A =
{X1,X2} with A ⊂ V and EA = E(X1,X2) = {〈X1[ai],X2[bi]〉}i∈[l], by

X ′
1 = Ωwrap(X1, ([ai])i∈[l], [a]) where [a] is not a slot of X1

X ′
2 = Ωwrap(X2, ([bi])i∈[l], [b]) where [b] is not a slot of X2

V ′ = (V \ A) ∪ {X ′
1,X ′

2}
E′ = E(V \ A) ∪ Ωswap (E \ EA, (X1,X2), (X ′

1,X ′
2)) ∪ {〈X ′

1
[a],X ′

2
[b]〉} .

Theorem 3. The link simulation transform is faithful.
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Proof. The flow of information between slots [ai] and [bi] is identical in the original
ITM graph and its transform, since routers are deterministic and take no input,
and we can recover the original ITM graph from its transform given A.

We abuse notation and simply write Φlinks(G) for the repeated application
of the link simulation transform to, starting from G, a sequence of ITM graphs
and any pair of ITMs with multiple links in it until no such pair exists.

A.4 Redundant Communication Models

Even if we absorb subparties into real parties and simulate multiple links with a
single link as explained above we still need to combine multiple communication
models into one to turn an ITM graph into a model. This is illustrated in Figs. 16
and 17 and formalized in the next definition.

Definition 38 (Redundant Communication Models). Let G = (V,E) be
an ITM graph and let B = {Ck,1, . . . , Ck,l} be a set of ideal/real communication
models in V . Then B is a set of l-redundant ideal/real k-communication models
of G if l > 1 and there is a subset A = {X1, . . . ,Xk,H,Y} of V , such that
E(A ∪ B) is of the form

⋃

j∈[l]

{〈H[cj ], Ck,j [A]〉, 〈Y [cj ], Ck,j [F ]〉} ∪
⋃

i∈[k]

{〈Ck,j [Pi],Xi[cj ]〉
}
.

Note that Xj plays the role of a party, except that it is linked to multiple
communication models. Similarly, H and Y represent an adversary and an ideal
functionality, respectively, except that they are linked to multiple communication
models.

We stress that the definition should be interpreted to say that all communi-
cation models of a set of redundant communication models must either be ideal
or real and never a mix of both.

Definition 39 (Redundant Communication Model Transform). Define
the redundant communication model transform Φred (G,B) = (V ′, E′), where
G = (V,E) is an ITM graph with a set of l-redundant k-communication models
B (with notation from Definition 38), c = ([c1], . . . , [cl]), [ci] �= [C], and Ck is a
k-communication model, by

X ′
i = Ωwrap(Xi, c, [C]),H′ = Ωwrap(H, c, [C]), and Y ′ = Ωwrap(Y, c, [C]),

V ′ = (V \ A) ∪ {Ck,X ′
1, . . . ,X ′

k,H′,Y ′}
E′ = {〈H′[C], Ck[A]〉, 〈Y ′[C], Ck [F ]〉} ∪

⋃

i∈[k]
{〈X ′

i
[C], Ck [Pi]〉}

∪Ωswap (E, (H,Y,X1, . . . ,Xk), (H′,Y ′,X ′
1, . . . ,X ′

k)) .

Note that if the redundant communication models are ideal, then each Xi

is the result of a combining multiple dummy parties with the simulation trans-
form, which means that X ′

i is equivalent to a single dummy party. We abuse
notation and simply write Φred(G) for the repeated application of the redundant
communication model transform until there is no longer any set of redundant
communication models.
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A

N3

P1 P2 P3

H

N3,1 N3,2 N3,3

X1 X2 X3

Fig. 16. The left side shows a real free model except that each party and the adversary
is linked by a set of 3-redundant real 3-communication models. The right side shows
how a single equivalent real communication model can be formed. Here it is understood
in the figure that the routers with multiple links to a party or adversary would be
absorbed into the party to reduce the number of links.

F S

I3

Q1 Q2 Q3

Y H

I3,1 I3,2 I3,3

X1 X2 X3

Fig. 17. The left side shows an ideal free model except that each party and the simu-
lation adversary is linked by a set of 3-redundant ideal 3-communication models. The
right side shows how a single equivalent ideal communication model can be formed.
Here it is understood that the routers with multiple links to a party or adversary would
be absorbed into the party.

Theorem 4. The redundant communication model transform is faithful.

Proof. Note that a communication model is routing messages based on the pre-
fixes of messages. The routers used in the wrappers on the other hand route
messages based on the postfixes of messages. This means that adding/removing
a prefix commutes with adding/removing a postfix. Ideal communication models
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behave in the same way. The probability that the same randomly chosen tag
appears in two ideal communication models is exponentially small. (This is where
we need the extra leg room in the definition of preservation of functionality.)

Remark 3. Consider a dummy party Q and two routers R and R′ with the same
number of slots l. If a slot [a] of Q is linked to the 0th slot of R and the ith slot
of R is linked to the ith slot of R′ for i ∈ [l], then an ITM Q′ that simulates
Q, R, and R′ and exposes the 0th slot of R′ as [a] is equivalent to Q. Thus, if
multiple dummy parties are simulated by a single ITM and then the correspond-
ing redundant ideal communication models are combined, then we may view the
resulting ITMs as dummy parties. We tacitly ignore this technicality below.

Given an ITM graph with multiple links between some parties or redundant
communication models it is natural to simplify it by eliminating them. Thus, we
define the simplifying transform as a short hand for cleaning up an ITM graph

Φsim(G) = Φred(Φlinks(G)).

A.5 Transforms of Models

We are now ready to introduce transforms that turn one model into another. We
begin with a transform that takes several free models, ideal or real, and applies
the simulation transform to the adversaries, the subparties for each index, and
the ideal functionalities if there are any.

Definition 40 (Combining Transform). Define the combining transform by

Φcom(G,H) = Φsim(ΦITM (G,H,X1, . . . , Xk, F ))

where G is a (k, I)-model, H = {H1, . . . ,Hl} is a set of real/simulation subad-
versaries with the same real parent adversary, Xj,i is the ith party linked to the
same communication model Ck,j as Hj, and Xi = {X1,i, . . . ,Xl,i}. Furthermore,
if the communication models are ideal, then Fj is the ideal functionality linked
to Ck,j and F = {F1, . . . ,Fl}, and otherwise F = ∅.

We stress that the definition must be interpreted to say that the input adver-
saries are either all real or all ideal and never a mix. We sometimes abuse nota-
tion and write Φcom(G,F ), where F is a set of ideal functionalities, to denote
Φcom(G,H) where H is the set of simulation adversaries linked to the ideal
communication models linked to the ideal functionalities in F . We also write
Φcom(G) to denote the transform that repeatedly applies the combining trans-
form to a sequence of models starting with G until there are no real/simulation
subadversaries with the same parent in a model.

Definition 41 (Absorbing Transform). Define the absorbing transform by

Φabs(G,A) = Φsim(ΦITM (G,A, P1, . . . , Pk))

where G is a (k, I)-model, A = {A1, . . . ,Al} is a set of real subadversaries such
that Aj+1 is a real subadversary of Aj for j = 1, . . . , l − 1, Pj,i is the ith party
linked to the same real communication model as Aj, and Pi = {P1,i, . . . ,Pl,i}.
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Note that the absorbing transform not only absorbs the subprotocol. It also
absorbs real subadversaries into the root adversary. We abuse notation and write
Φabs(G) for the transform that repeatedly applies the absorbing transform to a
sequence of models starting with G until no real subadversary exists in a resulting
model. We say that a model without subprotocols is normalized, i.e., a model
for which the absorbing transformation can not be applied.

Definition 42 (Normalized Model). A (k, I)-model is normalized if it has
no subprotocols, or equivalently no real subadversaries.

Another natural transform is to collapse parts of models. This is useful to
focus on particular parts of a model and allows generalizing the composition
theorem.

Definition 43 (Collapsing Transform). Define the collapsing transform
Φcol(G, ρ), where G is a (k, I)-model and ρ is a hybrid protocol embedded in
G, as the transform that repeatedly applies the combining and/or the absorbing
transforms to G except the free model uniquely identified by ρ until no longer
possible.

Note that if G is a model, then Φcol(G, ρ) has at most one ideal functionality
outside of the free model in G based on ρ, i.e., the corresponding protocol is of the
form π(ρ,F) for some root protocol π and ideal functionality F . In particular,
we can use the collapsing transform without restriction to put a model into a
minimal form where all ideal functionalities have been combined into a single
ideal functionality and all subprotocols have been absorbed.

Definition 44 (Minimal Model). A (k, I)-model is minimal if it is normal-
ized and has at most one ideal functionality.

A.6 Adversary Converter

We need an explicit way to map an arbitrary adversary (not constructed through
our transforms) for a transformed protocol back into an equivalent adversary of
the protocol.

Fortunately, the transforms leave a blue print for what to do. Note that
a template adversary resulting from our transforms of models consists of an
original adversary and routers forming trees where the leaves of the trees are
linked to the original adversary and the roots of the trees are exposed as slots
of the adversary. We may think of the trees as mapped onto an annulus where
the inner circle represents the original adversary and the outer circle represents
the template adversary. This is illustrated in Fig. 18 and made precise below.

To convert an adversary with identical slots to the template adversary, we
simply fold the annulus inside out, link the roots of the trees of routers to the
adversary and relabel the slots of the leaves of the trees of routers to the labels
of the original adversary. If we plug this converted adversary into the original
model and transform it, then we get a transformed converted adversary that is
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Fig. 18. The left side illustrates a template adversary T resulting from applying some
of the above transforms on an original adversary O that does not corrupt any parties.
The original model could for example have had two subprotocols that were absorbed
and two ideal functionalities that were combined.

equivalent to the adversary, since each tree of routers is effectively canceled by
its mirror embedded in the converted adversary.

We say that a set of routers form a tree if exactly one router has a free 0th
slot and the 0th slot of every other router is linked to the ith slot of another
router for some i > 0. We say that the free 0th slot is the root of the tree and
all other free slots are leaves of the tree.

Definition 45 (Adversary Converter). The adversary converter Φadv is
defined as follows. Let T be an adversary that simulates an original adversary
O and trees t1, . . . , tr of routers with roots exposed as slots [a1], . . . , [ar ] of T
and leaves [bj,1], . . . , [bj,sj ] of tj linked to slots [cj,1], . . . , [cj,sj ] of O. Let A be an
adversary with slots [a1], . . . , [ar ]. Then Φadv (T ,A) is the adversary that simulates
A and t1, . . . , tr with the set of links

{〈A[aj ], tj [0]〉
}

j∈[r]
and exposes [bj,i] as [cj,i]

for j = 1, . . . , r and i ∈ 1, . . . , sj.

The importance of the adversary converter can be illustrated as follows. Sup-
pose we are given a model M and wish to prove that its embedded hybrid pro-
tocol securely realizes some ideal functionality F . To do this we need to show
that for every adversary A, there is a suitable simulator S. Given an adversary
we can of course apply our transforms and get a new model M ′ along with a
transformed adversary A′ for which the simulator is still suitable.

More interesting is to consider the transformed protocol of M ′ directly. If this
securely realizes F , then for every adversary A′ in M ′, there exists a suitable
simulator S ′. We may plug in a place-holder adversary O and apply the trans-
forms to get a template adversary T as in the definition. Then we can use this
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to construct an adversary A such that if we transform M with A we will recover
M ′ and an adversary that is functionally identical to A′.

Thus, we can safely prove the security for any transformed protocol and
conclude that any other transformation of it is secure as well.
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Abstract. A major challenge in the study of cryptography is charac-
terizing the necessary and sufficient assumptions required to carry out
a given cryptographic task. The focus of this work is the necessity of
a broadcast channel for securely computing symmetric functionalities
(where all the parties receive the same output) when one third of the
parties, or more, might be corrupted. Assuming all parties are connected
via a peer-to-peer network, but no broadcast channel (nor a secure setup
phase) is available, we prove the following characterization:

– A symmetric n-party functionality can be securely computed facing
n/3 ≤ t < n/2 corruptions (i.e., honest majority), if and only if it
is (n − 2t)-dominated ; a functionality is k-dominated, if any k-size
subset of its input variables can be set to determine its output.

– Assuming the existence of one-way functions, a symmetric n-party
functionality can be securely computed facing t ≥ n/2 corruptions
(i.e., no honest majority), if and only if it is 1-dominated and can be
securely computed with broadcast.

It follows that, in case a third of the parties might be corrupted, broad-
cast is necessary for securely computing non-dominated functionalities
(in which “small” subsets of the inputs cannot determine the output),
including, as interesting special cases, the Boolean XOR and coin-flipping
functionalities.
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1 Introduction

Broadcast (introduced by Lamport et al. [20] as the Byzantine Generals prob-
lem) allows any party to deliver a message of its choice to all parties, such that all
honest parties will receive the same message even if the broadcasting party is cor-
rupted. Broadcast is an important resource for implementing secure multiparty
computation. Indeed, much can be achieved when broadcast is available (here-
after, the broadcast model); in the computational setting, assuming the existence
of oblivious transfer, every efficient functionality can be securely computed with
abort,1 facing an arbitrary number of corruptions [15,25]. Some functionalities
can be computed with full security,2 e.g., Boolean OR and three-party majority
[17], or 1/p-security,3 e.g., coin-flipping protocols [18,21]. In the information-
theoretic setting, considering ideally-secure communication lines between the
parties, every efficient functionality can be computed with full security against
unbounded adversaries,4 facing any minority of corrupted parties [24].

The above drastically changes when broadcast or a secure setup phase are not
available.5 Specifically, when considering multiparty protocols (involving more
than two parties), in which the parties are connected only via a peer-to-peer
network (hereafter, the point-to-point model) and one third of the parties, or
more, might be corrupted.6 Considering authenticated channels and assuming
the existence of oblivious transfer, every efficient functionality can be securely
computed with abort, facing an arbitrary number of corruptions [12]. In the full-
security model, some important functionalities cannot be securely computed
(e.g., Byzantine agreement [22] and three-party majority [9]), whereas other
functionalities can (e.g., weak Byzantine agreement [12] and Boolean OR [9]).
The characterization of many other functionalities, however, was unknown. For
instance, it was unknown whether the coin-flipping functionality or the Boolean
XOR functionality can be computed with full securely, even when assuming an
honest majority.
1 An efficient attack in the real world is computationally indistinguishable, via a sim-

ulator, from an attack on an “ideal computation”, in which malicious parties are
allowed to prematurely abort.

2 The malicious parties in the “ideal computation” are not allowed to prematurely
abort.

3 The real model is 1/p-indistinguishable from an “ideal computation” without abort.
4 The real and ideal models are statistically close: indistinguishable even in the eyes

of an all-powerful distinguisher.
5 In case a secure setup phase is available, authenticated broadcast can be computed

facing t < n corrupted parties; Authenticated broadcast exists in the computational
setting over authenticated channels assuming one-way functions exist [10] and in
the information-theoretic setting over secure channels assuming a limited access to
a broadcast channel in the offline phase [23].

6 For two-party protocols, the broadcast model is equivalent to the point-to-point
model (and thus all the results mentioned in the broadcast model hold also in the
point-to-point model). If less than a third of the parties are corrupted, broadcast
can be implemented using a protocol, and every functionality can be computed with
information-theoretic security [2,5].



598 R. Cohen et al.

1.1 Our Result

A protocol is t-consistent, if in any execution of the protocol, in which at most
t parties are corrupted, all honest parties output the same value. Our main
technical result is the following attack on consistent protocols.

Lemma 1 (main lemma, informal). Let n ≥ 3, t ≥ n
3 and let s = n −

2t if t < n
2 and s = 1 otherwise. Let π be an efficient n-party, t-consistent

protocol in the point-to-point model with secure channels. Then, there exists an
efficient adversary that by corrupting any s-size subset I of the parties can do
the following: first, before the execution of π, output a value y∗ = y∗(I). Second,
during the execution of π, force the remaining honest parties to output y∗.

The lemma extends to expected polynomial-time protocols, and to proto-
cols that only guarantee consistency to hold with high probability. We prove
the lemma by extending the well-known hexagon argument of Fischer et al.
[11], originally used for proving the impossibility of reaching (strong and weak)
Byzantine agreement in the point-to-point model.

A corollary of Lemma 1 is the following lower bound on symmetric func-
tionalities (i.e., all parties receive the same output value). A functionality is
k-dominated, if there exists an efficiently computable value y∗ such that any
k-size subset of the functionality input variables, can be manipulated to make
the output of the functionality be y∗ (e.g., the Boolean OR functionality is 1-
dominated with value y∗ = 1).

Corollary 1 (Informal). Let n ≥ 3, t ≥ n
3 , and let s = n − 2t if t < n

2
and s = 1 otherwise. A symmetric n-party functionality that can be computed
with full security in the point-to-point model with secure channels, facing up to
t corruptions, is s-dominated.7

Interestingly, the above lower bound is tight. Cohen and Lindell [9] (fol-
lowing Fitzi et al. [12]) showed that assuming one-way functions exist, any 1-
dominated functionality (e.g., Boolean OR) that can be securely computed in the
broadcast model with authenticated channels, can be securely computed in the
point-to-point model with authenticated channels. This shows tightness when
an honest majority is not assumed. We generalize the approach of [9], using the
two-threshold detectable precomputation of Fitzi et al. [13], to get the following
upper bound.

Proposition 1 (Informal). Let n ≥ 3 and n
3 ≤ t < n

2 . Assuming up to t cor-
ruptions, any efficient symmetric n-party functionality that is (n−2t)-dominated
can be computed in the secure-channels point-to-point model with information-
theoretic security.

7 Stating the lower bound in the secure-channels model is stronger than stating it
in the authenticated-channels model, since if a functionality can be computed with
authenticated channels then it can be computed with secure channels.
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Combining Corollary 1, Proposition 1 and [9, Theorem 7], yields the following
characterization of symmetric functionalities.

Theorem 1 (main theorem, informal). Let n ≥ 3, t ≥ n
3 and let f be an

efficient symmetric n-party functionality.

1. For t < n
2 , f can be t-securely computed (with information-theoretic secu-

rity) in the secure-channels point-to-point model, if and only if f is (n − 2t)-
dominated.

2. For t ≥ n
2 , assuming one-way functions exist, f can be t-securely com-

puted (with computational security) in the authenticated-channels point-to-
point model, if and only if f is 1-dominated and can be t-securely computed
(with computational security) in the authenticated-channels broadcast model.

Another application of Lemma1 regards coin-flipping protocols. A coin-
flipping protocol [3] allows the honest parties to jointly flip an unbiased coin,
where even a coalition of (efficient) cheating parties cannot bias the outcome
of the protocol by too much. We focus on protocols in which honest parties
must output the same bit. Although Theorem1 shows that fully-secure coin
flipping cannot be achieved facing one-third corruptions, we provide a stronger
impossibility result under a weaker security requirement that only assumes n

3 -
consistency and a non-trivial bias. In particular, we show that 1/p-secure coin
flipping cannot be achieved using consistent protocols in case a third of the
parties might be corrupted.

Corollary 2 (impossibility of many-party coin flipping in the point-
to-point model, informal). In the secure-channels point-to-point model, there
exists no (n ≥ 3)-party coin-flipping protocol that guarantees a non-trivial bias
(i.e., smaller than 1

2) against an efficient adversary controlling one third of the
parties.

The above is in contrast to the broadcast model, in which coin flipping can be
computed with full security if an honest majority exists [4,6], and 1/p-security
when no honest majority is assumed [1,7,18].

1.2 Our Technique

We present the ideas underlying our main technical result, showing that the
following holds in the point-to-point model. For any efficient consistent protocol
involving more than two parties, if one third of the parties (or more) might
be corrupted, then there exists an efficient adversary that can make the honest
parties output a predetermined value. In the following discussion we focus on
three-party protocols with a single corrupted party.

Let π = (A,B,C) be an efficient 1-consistent three-party protocol, and let q
be its round complexity on inputs of fixed length κ. Consider the following ring
network R = (A1,B1,C1, . . . ,Aq,Bq,Cq), where each two consecutive parties, as
well as the first and last, are connected via a secure channel, and party Pj , for
P ∈ {A,B,C}, has the code of P (see Fig. 1).
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A2

P∗
> q

Fig. 1. The original 3-party protocol π = (A,B,C) is on the left. On the right is the 3q-
Ring — q copies of π concatenated. Communication time between parties of opposite
sides is larger than 3q/2 > q.

Consider an execution of R on input w = (w1
A, w1

B, w1
C, . . . , wq

A, wq
B, wq

C) ∈
({0, 1}κ)3q (i.e., party Pi has input wi

P, containing its actual input and random
coins). A key observation is that the view of party Aj , for instance, in this
execution, is a valid view of the party A on input wj

A in an interaction of π in
which B acts honestly on input wj

B. It is also a valid view of A, on input wj
A, in

an interaction of π in which C acts honestly on input w
j−1 (mod q)
C . Hence, the

consistency of π yields that any two consecutive parties in R output the same
value, and thus all parties of R output the same value.

Consider for concreteness an attack on the parties {A,B}. The efficient adver-
sary D first selects a value w ∈ ({0, 1}κ)3q, emulates (in its head) an execution
of R on w, and sets y∗ to be the output of the party P∗ = Aq/2 in this execution.
To interact with the parties {A,B} in π, the adversary D corrupts party C and
emulates an execution of R, in which all but

{
A1,B1

}
have their inputs according

to w (the roles of all parties but
{
A1,B1

}
are played by the corrupted C), and

{A,B} take (without knowing it) the roles of
{
A1,B1

}
.

We claim that the output of {A,B} under the above attack is y∗. Observe
that the emulation of R, induced by the interaction of D with {A,B}, is just a
valid execution of R on some input w′ (not completely known to the adversary).
Hence, by the above observation, all parties in R (including {A,B}) output the
same value at the end of this emulation. Since the execution of R ends after at
most q rounds, and since the number of communication links between

{
A1,B1

}

and P∗ is ≈ 3q/2 > q, the actions of
{
A1,B1

}
have no effect on the view of P∗.

In particular, the output of P∗ in the attack is also y∗, and by the above this is
also the output of {A,B}.

Extension to Expected Polynomial-Time Protocols. The above attack works per-
fectly if π runs in (strict) polynomial time. For expected polynomial-time proto-
cols, one has to work slightly harder to come up with an attack that is (almost)
as good.
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Let q be the expected round complexity of π. That is, an honest party
of π halts after q rounds in expectation, regardless of what the other par-
ties do, where the expectation is over its random coins. Consider the ring
R = (A1,B1,C1, . . . ,Am,Bm,Cm), for m = 2q. By Markov bound, in a random
execution of R, a party halts after m rounds with probability at least 1

2 .
The adversary D attacking {A,B} is defined as follows. For choosing a

value for y∗, it emulates an execution of R on arbitrary inputs and uniformly-
distributed random coins. If the party P∗ = Am/2 halts in at most m rounds, D
sets y∗ to be P∗’s output, and continues to the second stage of the attack. Oth-
erwise, it emulates R on new inputs and random coins. Note that in k attempts,
D finds a good execution with probably (at least) 1 − 2−k. After finding y∗, the
adversary D continues as in the strict polynomial case discussed above.

The key observation here is that in the emulated execution of R, induced
by the interaction of D with {A,B}, the party P∗ never interacts in more than
m communication rounds. Therefore, again, being far from {A,B}, their actions
do not affect P∗ in the first m rounds, and so do not affect it at all. Hence, P∗

outputs y∗ also in the induced execution, and so do the parties {A,B}.

1.3 Additional Related Work

Negative Results. In their seminal work, Lamport et al. [20] defined the problem
of simulating a broadcast channel in the point-to-point model in terms of the
Byzantine agreement problem. They showed that a broadcast protocol exists if
and only if more than two-thirds of the parties are honest. Lamport [19] defined
the weak Byzantine agreement problem, and showed that even this weak variant
of agreement cannot be computed, using deterministic protocols, facing one-third
corruptions. Fischer et al. [11] presented simpler proofs to the above impossibility
results using the so-called hexagon argument, which is also the basis of our lower
bound (see Sect. 1.2). They assumed a protocol exists for the three-party case,
and composed multiple copies of this protocol into a ring system that contains
an internal conflict. Since the ring system cannot exist, it follows that the three-
party protocol does not exist. We remark that the result of [11] extends to
public-coins protocols, where parties have access to a common random string. It
follows that coin flipping is not sufficient for solving Byzantine agreement, and
thus the impossibility result for coin flipping stated in Corollary 2 is not implied
by the aforementioned impossibility of Byzantine agreement.

Cohen and Lindell [9] analyzed the relation between security in the broadcast
model and security in the point-to-point model, and showed that some (non 1-
dominated) functionalities, e.g., three-party majority, that can be computed in
the broadcast model cannot be securely computed in the point-to-point model,
since they imply the existence of broadcast.

Positive Results. If the model is augmented with a trusted setup phase, e.g., a
public-key infrastructure (PKI), then Byzantine agreement can be computed fac-
ing any number of corrupted parties [20]. Pfitzmann and Waidner [23] presented
an information-theoretic broadcast protocol assuming a temporary broadcast
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channel is available during the setup phase. Fitzi et al. [12] presented a prob-
abilistic protocol that securely computes weak Byzantine agreement facing an
arbitrary number of corrupted parties. Cohen and Lindell [9] showed (using the
protocol from [12]) that assuming the existence of one-way functions, any 1-
dominated functionality that can be securely computed in the broadcast model,
can also be securely computed in the point-to-point model.

Goldwasser and Lindell [16] presented a weaker definition for MPC without
agreement, in which non-unanimous abort is permitted, i.e., some of the hon-
est parties may receive output while other honest parties might abort. Using
this weaker definition, they utilized non-consistent protocols and constructed
secure protocols in the point-to-point model, assuming an arbitrary number of
corrupted parties.

1.4 Open Questions

Our result for the non honest-majority case (second item of Theorem1), requires
the existence of one-way functions. In particular, given a protocol π for comput-
ing a 1-dominated functionality f with full security in the broadcast model,
one-way functions are used for compiling π into a protocol for computing f with
full security in the point-to-point model.8 It might be, however, that the exis-
tence of such a broadcast-model protocol (for non-trivial functionalities) implies
the existence of one-way functions, and thus adding this extra assumption is not
needed.

A different interesting challenge is characterizing which non-symmetric func-
tionalities can be computed in the point-to-point model, in the spirit of what
we do here for symmetric functionalities. For example, can a three-party coin
flipping in which only two parties learn the outcome coin, be computed with full
security facing a single corruption?

Paper Organization. Basic definitions can be found in Sect. 2. Our attack is
described in Sect. 3, and its applications are given in Sect. 4. The characterization
is presented in Sect. 5.

2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables, low-
ercase for values, boldface for vectors, and sans-serif (e.g., A) for algorithms
(i.e., Turing Machines). For n ∈ N, let [n] = {1, · · · , n}. Let poly denote the
set all positive polynomials and let ppt denote a probabilistic algorithm that
runs in strictly polynomial time. A function ν : N �→ [0, 1] is negligible, denoted
ν(κ) = neg(κ), if ν(κ) < 1/p(κ) for every p ∈ poly and large enough κ.
8 For some trivial functionalities, e.g., constant functions, there exist information-

theoretically secure protocols in the point-to-point model that are not based on such
a compilation, and this extra assumption is not needed.
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The statistical distance between two random variables X and Y over a finite
set U , denoted SD(X,Y ), is defined as 1

2 · ∑
u∈U |Pr [X = u] − Pr [Y = u]|. We

say that X and Y are δ-close if SD(X,Y ) ≤ δ and statistically close (denoted
X

s≡ Y ) is they are δ-close and δ is negligible.
Two distribution ensembles X = {X(a, κ)}a∈{0,1}∗,κ∈N

and Y =

{Y (a, κ)}a∈{0,1}∗,κ∈N
are computationally indistinguishable (denoted X

c≡ Y )
if for every non-uniform polynomial-time distinguisher D there exists a function
ν(κ) = neg(κ), such that for every a ∈ {0, 1}∗ and all sufficiently large κ’s

|Pr [D(X(a, κ), 1κ) = 1] − Pr [D(Y (a, κ), 1κ) = 1]| ≤ ν(κ).

2.2 Protocols

An n-party protocol π = (P1, . . . ,Pn) is an n-tuple of probabilistic interactive
TMs. The term party Pi refers to the i’th interactive TM. Each party Pi starts
with input xi ∈ {0, 1}∗ and random coins ri ∈ {0, 1}∗. Without loss of generality,
the input length of each party is assumed to be the security parameter κ. An
adversary D is another interactive TM describing the behavior of the corrupted
parties. It starts the execution with input that contains the identities of the
corrupted parties and their private inputs, and possibly an additional auxiliary
input. The parties execute the protocol in a synchronous network. That is, the
execution proceeds in rounds: each round consists of a send phase (where parties
send their message from this round) followed by a receive phase (where they
receive messages from other parties).

In the point-to-point (communication) model, which is the one we assume by
default, all parties are connected via a fully-connected point-to-point network.
We consider two models for the communication lines between the parties: In the
authenticated-channels model, the communication lines are assumed to be ideally
authenticated but not private (and thus the adversary cannot modify messages
sent between two honest parties but can read them). In the secure-channels
model, the communication lines are assumed to be ideally private (and thus the
adversary cannot read or modify messages sent between two honest parties). In
the broadcast model, all parties are given access to a physical broadcast channel in
addition to the point-to-point network. In both models, no preprocessing phase
is available.

Throughout the execution of the protocol, all the honest parties follow the
instructions of the prescribed protocol, whereas the corrupted parties receive
their instructions from the adversary. The adversary is considered to be mali-
cious, meaning that it can instruct the corrupted parties to deviate from the
protocol in any arbitrary way. At the conclusion of the execution, the honest
parties output their prescribed output from the protocol, the corrupted parties
output nothing and the adversary outputs an (arbitrary) function of its view of
the computation (containing the views of the corrupted parties). The view of a
party in a given execution of the protocol consists of its input, its random coins,
and the messages it sees throughout this execution.
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2.2.1 Time and Round Complexity
We consider both strict and expected bounds on time and round complexity.

Definition 1 (time complexity). Protocol π = (P1, . . . ,Pn) is a T -time pro-
tocol, if for every i ∈ [n] and every input xi ∈ {0, 1}∗, random coins ri ∈ {0, 1}∗,
and sequence of messages Pi receives during the course of the protocol, the run-
ning time of an honest party Pi is at most T (|xi|). If T ∈ poly, then π is of
(strict) polynomial time.

Protocol π has an expected running time T , if for every i ∈ [n], every input
xi ∈ {0, 1}∗ and sequence of messages Pi receives during the course of the pro-
tocol, the expected running time of an honest party Pi, over its random coins ri,
is at most T (|xi|). If T ∈ poly, then π has expected polynomial running time.

Definition 2 (round complexity). Protocol π = (P1, . . . ,Pn) is a q-round
protocol, if for every i ∈ [n] and every input xi ∈ {0, 1}∗, random coins ri ∈
{0, 1}∗, and sequence of messages Pi receives during the course of the protocol,
the round number in which an honest party Pi stops being active (i.e., stops
sending and receiving messages) is at most q(|xi|). If q ∈ poly, then π has
(strict) polynomial round complexity.

Protocol π has an expected round complexity q, if for every i ∈ [n], every
input xi ∈ {0, 1}∗ and sequence of messages Pi receives during the course of
the protocol, the expected round number in which an honest party Pi stops being
active, over its random coins ri, is at most q(|xi|). If q ∈ poly, then π has
expected polynomial round complexity.

3 Attacking Consistent Protocols

In this section, we present a lower bound for secure protocols in the secure-
channels point-to-point model. Protocols in consideration are only assumed to
have a very mild security property (discussing the more standard notion of secu-
rity is deferred to Sect. 4). Specifically, we only require the protocol to be consis-
tent – all honest parties output the same value. We emphasize that in a consistent
protocol, a party may output the special error symbol ⊥ (i.e., abort), but it can
only do so if all honest parties output ⊥ as well.

Definition 3 (consistent protocols). A protocol π is (δ, t)-consistent against
C-class (e.g., polynomial-time, expected polynomial-time) adversaries, if the fol-
lowing holds. Consider an execution of π on security parameter κ, and any vector
of inputs of length κ for the parties, in which a C-class adversary controls at most
t parties. Then with probability at least δ(κ), all honest parties output the same
value, where the probability is taken over the random coins of the adversary and
of the honest parties.

We now present an attack on consistent protocols whose round complexity
is strictly bounded. An extension of the attack to consistent protocols with a
bound on their expected number of rounds appears in the full version of this
paper [8].
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Lemma 2. Let n ≥ 3, let t ≥ n
3 , and let s = n−2t if t < n

2 and s = 1 otherwise.
Let π be an n-party, T -time, q-round protocol in the secure-channels point-to-
point model that is (1 − δ, t)-consistent against (TD = 2nqT )-time adversaries.
Then, there exists a TD-time adversary D such that given the control over any
s-size subset I of parties, the following holds: on security parameter κ, D first
outputs a value y∗ = y∗(I). Next, D interacts with the remaining honest parties
of π on inputs of length κ, and except for probability at most

(
3
2 · q(κ) + 1

) ·δ(κ),
the output of every honest party in this execution is y∗.9

For a polynomial-time protocol that is (1 − neg, t)-consistent against ppt

adversaries and assuming an honest majority, Lemma 2 yields a ppt adversary
that by controlling n−2t of the parties can manipulate the outputs of the honest
parties (i.e., forcing them all to be y∗) with all but a negligible probability. If an
honest majority is not assumed, the adversary can manipulate the outputs of the
honest parties, by controlling any single party, except for a negligible probability.

We start by proving the lemma for three-party protocols, and later prove the
multiparty case using a reduction to the three-party case. We actually prove a
stronger statement for the three-party case, where the value y∗ is independent
of the set of corrupted parties.

Lemma 3. Let π be a 3-party, q-round protocol in the secure-channels point-
to-point model, let T be the combined running-time of all three parties.10 If π
is (1 − δ, 1)-consistent against (TD = 2qT )-time adversaries, then there exists
a TD-time adversary D such that the following holds. On security parameter κ,
D first outputs a value y∗. Next, given the control over any non-empty set of
parties, D interacts with the remaining honest parties of π on inputs of length κ,
and except for probability at most 3

2 · q(κ) · δ(κ), the output of every honest party
in this execution is y∗.

Proof. We fix the input-length parameter κ and omit it from the notation when
its value is clear from the context. Let π = (A,B,C) and let m = q (assume for
ease of notation that m is even). Consider, without loss of generality, that a single
party is corrupted (the case of two corrupted parties follows from the proof) and
assume for concreteness that the corrupted party is C. Consider the following
ring network R = (A1,B1,C1, . . . ,Am,Bm,Cm), in which each two consecutive
parties, as well as the first and last, are connected via a secure channel, and
party Pj , for P ∈ {A,B,C}, has the code of P. Let v = κ+T (κ), and consider an
execution of R with arbitrary inputs and uniformly-distributed random coins for
the parties being w = (w1

A, w1
B, w1

C, . . . , wm
A , wm

B , wm
C ) ∈ ({0, 1}v)3m (i.e., party

Pi has input wi
P, containing its actual input and random coins).

A key observation is that the point of view of the party Aj , for instance, in
such an execution, is a valid view of the party A on input wj

A in an execution of
9 We would get slightly better parameters using an attack in which at least one honest

party (but not necessarily all) outputs y∗.
10 This is more general than T -time 3-party protocols, as it captures asymmetry

between the running time of the parties; this measure will turn out to be useful
for proving Lemma 2.
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π in which B acts honestly on input wj
B. It is also a valid view of A, on input

wj
A, in an execution of π in which C acts honestly on input w

j−1 (mod m)
C . This

observation yields the following consistency property of R.

Claim 1. Consider an execution of R on joint input w ∈ ({0, 1}v)3m, where the
parties’ coins in w are chosen uniformly at random, and the parties’ (actual)
inputs are chosen arbitrarily. Then parties of distance d in R, measured by the
(minimal) number of communication links between them, as well as all d − 1
parties between them, output the same value with probability at least 1 − dδ.

Proof. Consider the pair of neighboring parties
{
Aj ,Bj

}
in the ring R (an anal-

ogous argument holds for any two neighboring parties). Let D be an adversary,
controlling the party C of π that interacts with {A,B} by emulating an execu-
tion of R on arbitrary inputs and uniform random coins (apart from the roles of{
Aj ,Bj

}
), and let {A,B} take (without knowing that) the roles of

{
Aj ,Bj

}
in

this execution. The joint view of {A,B} in this emulation has the same distrib-
ution as the joint view of

{
Aj ,Bj

}
in an execution of R with uniform random

coins. Hence, the (1− δ)-consistency of π yields that Aj and Bj output the same
value in an execution of R on w ∈ ({0, 1}v)3m (where the random coins within
w of each party are chosen uniformly at random) with probability at least 1− δ.
The proof follows by a union bound.

The adversary D first selects a value for w ∈ ({0, 1}v)3m, consisting of arbi-
trary input values (e.g., zeros) and uniformly-distributed random coins, and sets
y∗ to be the output of P∗ = Am/2 in the execution of R on w. To interact with
{A,B} in π, D emulates an execution of R in which all but

{
A1,B1

}
have their

inputs according to w, and {A,B} take the roles of
{
A1,B1

}
. The key observa-

tion is that the view of party P∗ in the emulation induced by the above attack,
is the same as its view in the execution of R on w (regardless of the inputs of
{A,B}). This is true since the execution of R ends after at most m communica-
tion rounds. Thus, the actions of {A,B} have no effect on the view of P∗, and
therefore the output of P∗ is y∗ also in the emulated execution of R. Finally,
since all the parties in the emulated execution of R have uniformly-distributed
random coins, and since the distance between P∗ and {A,B} is (less than) 3m

2 ,
Claim 1 yields that with probability at least 1 − 3m

2 · δ, the output of {A,B}
under the above attack is y∗.

Note that the value y∗ does not depend on the identity of the corrupted
party, since in the first step y∗ is set independently of C, and in the second step
the attack follows without any change when the honest parties play the roles of{
B1,C1

}
if A is corrupted or

{
A2,C1

}
if B is corrupted.

We now proceed to prove Lemma 2 in the many-party case.

Proof. Let π = (P1, . . . ,Pn) be a T -time, q-round, n-party protocol that is (1 −
δ, t)-consistent against 2nqT -time adversaries. We will show an adversary that
by controlling any s corrupted parties, manipulates all honest parties to output
a predetermine value. We separately handle the case that n

3 ≤ t < n
2 and the

case n
2 ≤ t < n.



Characterization of Secure Multiparty Computation Without Broadcast 607

Case n
3 ≤ t < n

2 . Let I ⊆ [n] be a subset of size s = n − 2t, representing the
indices of the corrupted parties in π. Consider the three-party protocol π′ =
(A′,B′,C′), defined by partitioning the set [n] into three subsets {IA′ , IB′ , I},
where IA′ and IB′ are each of size t, and letting A′ run the parties {Pi}i∈IA′ , B

′

run the parties {Pi}i∈IB′ and C′ run the parties {Pi}i∈I . Each of the parties in
π′ waits until all the virtual parties it is running halt, arbitrarily selects one of
them and outputs the virtual party’s output value.

Since the subsets IA′ , IB′ , I are of size at most t, the q-round, 3-party proto-
col π′ is (1 − δ, 1)-consistent against 2nqT -adversaries (otherwise there exists a
2nqT -time adversary against the consistency of π, corrupting at most t parties).
In addition, since the combined time complexity of all three parties is nT , by
Lemma 3 there exists a 2nqT -time adversary D′ that first determines a value y∗,
and later, given control over any party in π′ (in particular C′), can force the two
honest parties to output y∗ with probability at least 1 − 3qδ

2 .
The attacker D for π, controlling the parties indexed by I, is defined as

follows: In the first step, D runs D′ and outputs the value y∗ that D′ outputs.
In the second step, D interacts with the honest parties in π by simulating the
parties {A′,B′} to D′, i.e., D runs D′ and sends every message it receives from
D′ to the corresponding honest party in π, and similarly, whenever D receives
a message from an honest party in π it forwards it to D′. It is immediate that
there exists i ∈ IA′ such that Pi outputs y∗ in the execution of π with the
same probability that A′ outputs y∗ in the execution of π′, i.e., with probability
at least 1 − 3qδ

2 . From the consistency property of π, all honest parties output
the same value with probability at least 1 − δ, and using the union bound we
conclude that the output of all honest parties in π under the above attack is y∗

with probability at least 1 − ( 3qδ
2 + δ).

Case n
2 ≤ t < n. Let i∗ ∈ [n] be the index of the corrupted party in π and

consider the three-party protocol π′ = (A′,B′,C′) defined by partitioning the set
[n] into three subsets {IA′ , IB′ , {i∗}}, for |IA′ | =

⌈
n−1
2

⌉
and |IB′ | =

⌊
n−1
2

⌋
. As

in the previous case, the size of each subset IA′ , IB′ , {i∗} is at most t, and the
proof proceeds as above.

4 Impossibility Results for Secure Computation

In this section, we present applications of the attack of Sect. 3 to secure multi-
party computations in the secure-channels point-to-point model.11 In Sect. 4.1,
we show that the only symmetric functionalities that can be securely realized,
according to the real/ideal paradigm, in the presence of n/3 ≤ t < n/2 cor-
rupted parties (i.e., honest majority), are (n − 2t)-dominated functionalities.
The only symmetric functionalities that can be securely realized in the presence
of n/2 ≤ t < n corrupted parties (i.e., no honest majority), are 1-dominated

11 Note that a lower bound in the secure-channels model is stronger than in the
authenticated-channels model.
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functionalities. In Sect. 4.2, we show that non-trivial (n > 3)-party coin-flipping
protocols, in which the honest parties must output a bit, are impossible when
facing t ≥ n/3 corrupted parties.

For concreteness, we focus on strict polynomial-time protocols secure against
strict polynomial-time adversaries, but all the results readily extend to the
expected polynomial-time regime.

4.1 Symmetric Functionalities Secure According to the Real/Ideal
Paradigm

The model of secure computation we consider is defined in Sect. 4.1.1, dominated
functionalities are defined in Sect. 4.1.2 and the impossibility results are stated
and proved in Sect. 4.1.3.

4.1.1 Model Definition
We provide the basic definitions for secure multiparty computation according
to the real/ideal paradigm, for further details see [14]. Informally, a protocol is
secure according to the real/ideal paradigm, if whatever an adversary can do
in the real execution of protocol, can be done also in an ideal computation, in
which an uncorrupted trusted party assists the computation. We consider full
security, meaning that the ideal-model adversary cannot prematurely abort the
ideal computation.

Functionalities.

Definition 4 (functionalities). An n-party functionality is a random process
that maps vectors of n inputs to vectors of n outputs.12 Given an n-party func-
tionality f : ({0, 1}∗)n �→ ({0, 1}∗)n, let fi(x) denote its i’th output coordinate,
i.e., fi(x) = f(x)i. A functionality f is symmetric, if the output values of all
parties are the same, i.e., for every x ∈ ({0, 1}∗)n, f1(x) = f2(x) = . . . = fn(x).

Real-Model Execution. A real-model execution of an n-party protocol proceeds
as described in Sect. 2.2.

Definition 5 (real-model execution). Let π = (P1, . . . ,Pn) be an n-party
protocol and let I ⊆ [n] denote the set of indices of the parties corrupted
by D. The joint execution of π under (D, I) in the real model, on input vec-
tor x = (x1, . . . , xn), auxiliary input z and security parameter κ, denoted
REALπ,I,D(z)(x, κ), is defined as the output vector of P1, . . . ,Pn and D(z) result-
ing from the protocol interaction, where for every i ∈ I, party Pi computes its
messages according to D, and for every j /∈ I, party Pj computes its messages
according to π.

12 We assume that a functionality can be computed in polynomial time.
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Ideal-Model Execution. An ideal computation of an n-party functionality f on
input x = (x1, . . . , xn) for parties (P1, . . . ,Pn) in the presence of an ideal-model
adversary D controlling the parties indexed by I ⊆ [n], proceeds via the following
steps.

Sending inputs to trusted party: An honest party Pi sends its input xi to the
trusted party. The adversary may send to the trusted party arbitrary inputs
for the corrupted parties. Let x′

i be the value actually sent as the input of
party Pi.

Trusted party answers the parties: If x′
i is outside of the domain for Pi, for

some index i, or if no input was sent for Pi, then the trusted party sets x′
i

to be some predetermined default value. Next, the trusted party computes
f(x′

1, . . . , x
′
n) = (y1, . . . , yn) and sends yi to party Pi for every i.

Outputs: Honest parties always output the message received from the trusted
party and the corrupted parties output nothing. The adversary D outputs
an arbitrary function of the initial inputs {xi}i∈I , the messages received by
the corrupted parties from the trusted party {yi}i∈I and its auxiliary input.

Definition 6 (ideal-model computation). Let f : ({0, 1}∗)n �→ ({0, 1}∗)n be
an n-party functionality and let I ⊆ [n]. The joint execution of f under (D, I)
in the ideal model, on input vector x = (x1, . . . , xn), auxiliary input z to D and
security parameter κ, denoted IDEALf,I,D(z)(x, κ), is defined as the output vector
of P1, . . . ,Pn and D(z) resulting from the above described ideal process.

Security Definition. Having defined the real and ideal models, we can now define
security of protocols according to the real/ideal paradigm.

Definition 7. Let f : ({0, 1}∗)n �→ ({0, 1}∗)n be an n-party functionality, and
let π be a probabilistic polynomial-time protocol computing f. The protocol π
t-securely computes f (with computational security), if for every non-uniform
polynomial-time real-model adversary D, there exists a non-uniform (expected)
polynomial-time adversary S for the ideal model, such that for every I ⊆ [n] of
size at most t, it holds that
{

REALπ,I,D(z)(x, κ)
}

(x,z)∈({0,1}∗)n+1,κ∈N

c≡
{

IDEALf,I,S(z)(x, κ)
}

(x,z)∈({0,1}∗)n+1,κ∈N

.

The protocol π t-securely computes f (with information-theoretic security), if for
every real-model adversary D, there exists an adversary S for the ideal model,
whose running time is polynomial in the running time of D, such that for every
I ⊆ [n] of size at most t,
{

REALπ,I,D(z)(x, κ)
}

(x,z)∈({0,1}∗)n+1,κ∈N

s≡
{

IDEALf,I,S(z)(x, κ)
}

(x,z)∈({0,1}∗)n+1,κ∈N

.

4.1.2 Dominated Functionalities
A special class of symmetric functionalities are those with the property that
every subset of a certain size can fully determine the output. For example, the
multiparty Boolean AND and OR functionalities both have the property that
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every individual party can determine the output (for the AND functionality
any party can always force the output to be 0, and for the OR functionality
any party can always force the output to be 1). We distinguish between the
case where there exists a single value for which every large enough subset can
force the output and the case where different subsets can force the output to be
different values.

Definition 8 (dominated functionalities). A symmetric n-party function-
ality f is weakly k-dominated, if for every k-size subset I ⊆ [n] there exists
a polynomial-time computable value y∗

I , for which there exist inputs {xi}i∈I ,
such that f(x1, . . . , xn) = y∗

I for any complementing subset of inputs {xj}j /∈I .
The functionality f is k-dominated, if there exists a polynomial-time computable
value y∗ such that for every k-size subset I ⊆ [n] there exist inputs {xi}i∈I , for
which f(x1, . . . , xn) = y∗ for any subset of inputs {xj}j /∈I .

Example 1. The function f(x1, x2, x3, x4) = (x1∧x2)∨(x3∧x4) is an example of
a 4-party function that is weakly 2-dominated but not 2-dominated. Every pair
of input variables can be set to determine the output value. However, there is
no single output value that can be determined by all pairs, for example, {x1, x2}
can force the output to be 1 (by setting x1 = x2 = 1) whereas {x1, x3} can force
the output to be 0 (by setting x1 = x3 = 0). The function

f2-of-4(x1, x2, x3, x4) = (x1∧x2)∨(x1∧x3)∨(x1∧x4)∨(x2∧x3)∨(x2∧x4)∨(x3∧x4)

is 2-dominated with value y∗ = 1.

Claim 2. Let f be an n-party functionality and let m ≤ n
3 . If f is weakly m-

dominated, then it is m-dominated.

Proof. Let I1, I2 ⊆ [n] be two subsets of size m. In case I1 and I2 are dis-
joint, consider the corresponding sets of input variables {xi}i∈I1

and {xi}i∈I2
,

and fix an arbitrary complementing subset of inputs {xj}j /∈I1∪I2
. On the one

hand it holds that f(x1, . . . , xn) = y∗
I1

and on the other hand it holds that
f(x1, . . . , xn) = y∗

I2
, hence y∗

I1
= y∗

I2
.

In case I1 and I2 are not disjoint, it holds that |I1 ∪ I2| < 2m ≤ 2n
3 and

since m ≤ n
3 , there exists a subset I3 ⊆ [n] \ (I1 ∪ I2) of size m. Denote by y∗

I3

the output value that can be determined by the input variables {xi}i∈I3
(y∗

I3
is

guaranteed to exist since f is weakly m-dominated). I3 is disjoint from I1 and
from I2, so it follows that y∗

I1
= y∗

I3
and y∗

I2
= y∗

I3
, therefore y∗

I1
= y∗

I2
.

4.1.3 The Lower Bound

Lemma 4. Let n ≥ 3, let t ≥ n
3 and let f be a symmetric n-party functionality

that can be t-securely computed in the secure-channels point-to-point model.

1. If n
3 ≤ t < n

2 , then f is (n − 2t)-dominated.
2. If n

2 ≤ t < n, then f is 1-dominated.
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Proof. Assume that n
3 ≤ t < n

2 (the proof for n
2 ≤ t < n is similar). Let

π be a protocol that t-securely computes f in the point-to-point model with
secure channels. Since f is symmetric, all honest parties output the same value
(except for a negligible probability), hence π is (1 − neg, t)-consistent; let D be
the ppt adversary guaranteed from Lemma 2 and let I ⊆ [n] be any subset of
size n − 2t. It follows that given control over {Pi}i∈I , D can first fix a value y∗

I ,
and later force the output of the honest parties to be y∗

I (except for a negligible
probability). Since π t-securely computes f and n− 2t ≤ t, there exists an ideal-
model adversary S that upon corrupting {Pi}i∈I , can force the output of the
honest parties in the ideal-model computation to be y∗

I . All S can do is to select
the input values of the corrupted parties, hence, there must exist input values
{xi}i∈I that determine the output of the honest parties to be y∗

I , i.e., f is weakly
(n − 2t)-dominated. Since n − 2t ≤ n

3 and following Claim 2 we conclude that f
is (n − 2t)-dominated.

4.2 Coin-Flipping Protocols

A coin-flipping protocol [3] allows the honest parties to jointly flip an unbiased
coin, where even a coalition of cheating (efficient) parties cannot bias the outcome
of the protocol by much. Our focus is on coin flipping, where the honest parties
must output a bit. Although Lemma4 immediately shows that coin flipping
cannot be securely computed according to the real/ideal paradigm, we present
a stronger impossibility result by considering weaker security requirements.

Definition 9. A polynomial-time n-party protocol π is a (γ, t)-bias coin-flipping
protocol, if the following holds.

1. π is (1, t)-consistent against ppt adversaries.13

2. When interacting on security parameter κ (for sufficiently large κ’s) with a
ppt adversary controlling at most t corrupted parties, the common output of
the honest parties is γ(κ)-close to the being a uniform bit.14

The following is a straightforward application of Lemma2.

Lemma 5. In the secure-channels point-to-point model, for n ≥ 3 and γ(κ) <
1
2 − 2−κ, there exists no n-party, (γ,

⌈
n
3

⌉
)-bias coin-flipping protocol.

Proof. Let π be a point-to-point n-party (γ,
⌈

n
3

⌉
)-bias coin-flipping protocol.

Let D be the ppt adversary that is guaranteed by Lemma 2 (since π is (1,
⌈

n
3

⌉
)-

consistent against ppt adversaries). Consider some fixed set of
⌈

n
3

⌉
corrupted

parties of π and let Y (κ) denote the random variable of D(κ)’s output in the
first step of the attack. Without loss of generality, for infinitely many values of
κ it holds that Pr [Y (κ) = 0] ≤ 1

2 . Consider the adversary D′ that on security

13 Our negative result readily extends to protocols where consistency is only guaranteed
to hold with high probability.

14 In particular, the honest parties are allowed to output ⊥, or values other than {0, 1},
with probability at most γ.
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parameter κ, repeats the first step of D(κ) until the resulting value of y∗ is
non-zero or κ failed attempts have been reached, where if the latter happens
D′ aborts. Next, D′ continues the non-zero execution of D to make the honest
parties of π output y∗. It is immediate that for infinitely many values of κ, the
common output of the honest parties under the above attack is 0 with probability
at most 2−κ, and hence the common output of the honest parties is 1

2 − 2−κ far
from uniform. Thus, π is not a (γ,

⌈
n
3

⌉
)-bias coin-flipping protocol.

5 Characterizing Secure Computation Without
Broadcast

In this section we show that the lower bounds presented in Lemma 4 is tight.
We treat separately the case where an honest majority is assumed and the case
where no honest majority is assumed.

5.1 No Honest Majority

Cohen and Lindell [9, Theorem 7] showed that, assuming the existence of one-
way functions, any 1-dominated functionality that can be t-securely computed
in the broadcast model with authenticated channels, can also be t-securely com-
puted in the point-to-point model with authenticated channels.15 Combining
with Lemma 4, we establish the following result.

Theorem 2 (restating second part of Theorem 1). Let n ≥ 3, let n
2 ≤ t <

n and assume that one-way functions exist. An n-party functionality can be t-
securely computed in the authenticated-channels point-to-point model, if and only
if it is 1-dominated and can be t-securely computed in the authenticated-channels
broadcast model.

Proof. Immediately by Lemma 4 and Cohen and Lindell [9, Theorem 7].

5.2 Honest Majority

Proposition 2. Let n ≥ 3, let n
3 ≤ t < n

2 , and let f be a symmetric n-party
functionality. If f is (n − 2t)-dominated, then it can be t-securely computed in
the secure-channels point-to-point model with information-theoretic security.

To prove Proposition 2 we use the two-threshold multiparty protocol of Fitzi
et al. [13, Theorem 6]. This protocol with parameters t1, t2 runs in the point-to-
point model with secure channels, and whenever t1 ≤ t2 and t1 + 2t2 < n, the
following holds. Let I be the set of parties that the (computationally unbounded)

15 The result in [9] is based on the computationally-secure protocol in [12, Theorem2].
In the authenticated-channels point-to-point model, this protocol requires one-way
functions for constructing a consistent public-key infrastructure between the parties,
to be used for authenticated broadcast.
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adversary corrupts. If |I| ≤ t1, then the protocol computes f with full security.
If t1 < |I| ≤ t2, then the protocol securely computes f with fairness (i.e., the
adversary may force all honest parties to output ⊥, provided that it learns no
new information). In Sect. 5.2.1, we formally define the notion of two-threshold
security. This notion captures the security achieved by the protocol of Fitzi et al.
[13, Theorem 6].

Theorem 3 [13, Theorem 6]. Let n ≥ 3, let t1, t2 be parameters such that t1 ≤ t2
and t1 + 2t2 < n, and let f be an n-party functionality. Then, f can be (t1, t2)-
securely computed in the secure-channels point-to-point model with information-
theoretic security.

We now proceed to the proof of Proposition 2.

Proof (Proof of Proposition 2). Let f be an (n − 2t)-dominated functionality
with default output value y∗. If n − 2t = 1, then f is 1-dominated, and since
t < n

2 , f can be t-securely computed with information-theoretic security in the
secure-channels broadcast model (e.g., using Rabin and Ben-Or [24]). Hence, the
proposition follows from [9, Theorem 7].16

For n−2t ≥ 2, set t1 = n−2t−1 and t2 = t, and let π′ be the n-party protocol,
guaranteed to exist by Theorem 3, that (t1, t2)-securely computes f . We define π
to be the following n-party protocol for computing f in the point-to-point model
with secure channels.

Protocal 1 (π)

1. The parties run the protocol π′. Let yi be the output of Pi at the end of the
execution.

2. If yi �= ⊥, party Pi outputs yi, otherwise it outputs y∗.

Let D be an adversary attacking the execution of π and let I ⊆ [n] be a
subset of size at most t. It follows from Theorem 3 that there exists a (possibly
aborting) adversary S′ for D in the t1-threshold ideal model such that
{
REALπ′,I,D(z)(x, κ)

}
(x,z)∈({0,1}∗)n+1,κ∈N

s≡
{
IDEAL

t1
f,I,S′(z)(x, κ)

}
(x,z)∈({0,1}∗)n+1,κ∈N

.

Using S′, we construct the following non-aborting adversary S for the full-
security ideal model. On inputs {xi}i∈I and auxiliary input z, S starts by emu-
lating S′ on these inputs, playing the role of the trusted party (in the t1-threshold
ideal model). If S′ sends an abort command, it is guaranteed that |I| ≥ n − 2t
and since f is (n − 2t)-dominated, there exist input values {x′

i}i∈I that deter-
mine the output of f to be y∗. So in this case, S sends these {x′

i}i∈I to the
trusted party (in the full-security ideal model) and returns ⊥ to S′. Otherwise,
S′ does not abort and S forwards the message from S′ to the trusted party and
16 When an honest majority is assumed, the result in [9] can be adjusted to use the

information-theoretically secure protocol in [12, Theorem3]. In the secure-channels
point-to-point model, this protocol uses information-theoretically pseudo-signatures
[23] for computing a setup, to be used for authenticated broadcast.
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the answer from the trusted party back to S′. In both cases S outputs whatever
S′ outputs and halts.

A main observation is that the views of the adversary D in an execution of π
and in an execution of π′ (with the same inputs and random coins) are identical.
This holds since the only difference between π and π′ is in the second step of π
that does not involve any interaction. It follows that in case the output of the
parties in Step 1 of π is not ⊥, the joint distribution of the honest parties’ output
and the output of D in π is statistically close to the output of the honest parties
and of S in the full-security ideal model (since the later is exactly the output of
the honest parties and of S′ in the t1-threshold ideal model). If the output in
Step 1 of π is ⊥, then all honest parties in π output y∗. In this case S′ sends
abort (except for a negligible probability) and since S sends to the trusted party
the input values {x′

i}i∈I that determine the output of f to be y∗, the honest
parties’ output is y∗ also in the ideal computation. We conclude that
{

REALπ,I,D(z)(x, κ)
}

(x,z)∈({0,1}∗)n+1,κ∈N

s≡
{

IDEALf,I,S(z)(x, κ)
}

(x,z)∈({0,1}∗)n+1,κ∈N

.

Theorem 4 (restating the first part of Theorem 1). Let n ≥ 3 and n
3 ≤

t < n
2 . A symmetric n-party functionality can be t-securely computed in the

secure-channels point-to-point model, if and only if it is (n − 2t)-dominated.

Proof. Immediately follows by Lemma 4 and Proposition 2.

5.2.1 Defining Two-Threshold Security
We present a weaker variant of the ideal model that allows for a premature
(and fair) abort, in case sufficiently many parties are corrupted. Next, we define
two-threshold security of protocols.

Threshold Ideal-Model Execution. A t-threshold ideal computation of an n-party
functionality f on input x = (x1, . . . , xn) for parties (P1, . . . ,Pn), in the pres-
ence of an ideal-model adversary D controlling the parties indexed by I ⊆ [n],
proceeds via the following steps.

Sending inputs to trusted party: An honest party Pi sends its input xi to the
trusted party. The adversary may send to the trusted party arbitrary inputs
for the corrupted parties. If |I| > t, then the adversary may send a special
abort command to the trusted party. Let x′

i be the value actually sent as the
input of party Pi.

Trusted party answers the parties: If the adversary sends the special abort com-
mand (specifically, |I| > t), then the trusted party sends ⊥ to all the parties.
Otherwise, if x′

i is outside of the domain for Pi, for some index i, or if no
input is sent for Pi, then the trusted party sets x′

i to be some predetermined
default value. Next, the trusted party computes f(x′

1, . . . , x
′
n) = (y1, . . . , yn)

and sends yi to party Pi for every i.
Outputs: Honest parties always output the message received from the trusted

party and the corrupted parties output nothing. The adversary D outputs
an arbitrary function of the initial inputs {xi}i∈I , the messages received by
the corrupted parties from the trusted party {yi}i∈I and its auxiliary input.
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Definition 10 (Threshold ideal-model computation). Let f : ({0, 1}∗)n �→
({0, 1}∗)n be an n-party functionality and let I ⊆ [n]. The joint execution of f
under (D, I) in the t-threshold ideal model, on input vector x = (x1, . . . , xn),
auxiliary input z to D and security parameter κ, denoted IDEAL

t
f,I,D(z)(x, κ), is

defined as the output vector of P1, . . . ,Pn and D(z) resulting from the above
described ideal process.

Definition 11. Let f : ({0, 1}∗)n �→ ({0, 1}∗)n be an n-party functionality, and
let π be a probabilistic polynomial-time protocol computing f . The protocol π
(t1, t2)-securely computes f (with information-theoretic security), if for every real-
model adversary D, there exists an adversary S for the t1-threshold ideal model,
whose running time is polynomial in the running time of D, such that for every
I ⊆ [n] of size at most t2
{

REALπ,I,D(z)(x, κ)
}

(x,z)∈({0,1}∗)n+1,κ∈N

s≡
{

IDEAL
t1
f,I,S(z)(x, κ)

}

(x,z)∈({0,1}∗)n+1,κ∈N

.
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