
A Parallel Version of Differential Evolution
Based on Resilient Distributed Datasets Model

Changshou Deng(B), Xujie Tan, Xiaogang Dong, and Yucheng Tan

School of Information Science and Technology, JiuJiang University,
Jiujiang 332005, Jiangxi, China

{csdeng,txj2010,xx dongxiaogang,yctan}@jju.edu.cn

Abstract. MapReduce is a popular cloud computing platform which
has been widely applied in large-scale data-intensive fields. However,
when dealing with computation extensive tasks, particularly, iterative
computation, frequent loading Map and Reduce processes will lead to
overhead. Resilient distributed datasets model which has been imple-
mented in Spark, is an in-memory clustering computing which can over-
come this shortcoming efficiently. In this paper, we attempt to use
resilient distributed datasets model to parallelize Differential Evolution
algorithm. A wide range of benchmark problems have been adopted to
conduct numerical experiment, and the speedup of PDE due to use of
resilient distributed datasets model is demonstrated. The results show us
that resilient distributed datasets model is a potential way to parallelize
evolutionary algorithm.

Keywords: Parallel differential evolution · Spark · Resilient distributed
datasets · Transformation operation · Action operation

1 Introduction

Evolutionary algorithms (EAs) have been successfully applied in solving numer-
ous optimization problems in diverse fields. Among them, Differential evolution
(DE) algorithm is a simple powerful population-based stochastic search tech-
nique, which is an efficient and effective global optimizer in the continuous field
[1]. Comparing with classical EAs such as Genetic Algorithm (GA), Evolutionary
Strategy (ES), and the Swarm Intelligence Optimization algorithm i.e. particle
swarm optimization (PSO), it has been claimed that DE exhibited an overall
excellent performance for a wide range of benchmark problems [2]. Since its
inception, DE has been applied to many real-world problems successfully [3,4].

Inspired by the great success of the classic DE, numerous variants of DE have
been developed for solving different types of optimization problems such as noisy,
constrained, and dynamic optimization problems. Recently, several enhanced DE
has been proposed to improve the performance of DE [5–7]. However, in many
engineering applications, each evaluation of the quality of solution is very time
consuming. The use of parallel computing is a remedy in reducing the computing
c© Springer-Verlag Berlin Heidelberg 2015
M. Gong et al. (Eds.): BIC-TA 2015, CCIS 562, pp. 84–93, 2015.
DOI: 10.1007/978-3-662-49014-3 8

A PDE Based on Resilient Distributed Datasets Model 85

time required for complex problems. Due to DE maintaining a lot of individuals
in the population, DE has an implicit parallel and distributed nature. Therefore,
several parallelization techniques of EAs have been reported [8]. Actually, a
parallel implementation of multi-population DE has been proposed with parallel
virtual machine [9]. Recently, Graphics Processing Unit (GPU) was used to
implement parallel DE [10,11]. MapReduce is a programming model which was
originally designed to simplify the development of distributed application for
large scale data processing by Google [12]. There have been several attempts at
using MapReduce model to parallelize EAs [13–16]. However, EAs are iterative
algorithms working in loops, with output of each iteration being input for next
iteration. By contrary, MapReduce is designed to run only once and produce
final outputs immediately. Thus, parallelizing EAs with MapReduce leads to
restart a MapReduce process during each generation of EAs. Frequent calling
MapReduce process will increase much overhead. Previous works have proved
that overhead decreased performance gaining from adding new nodes [16].

In this paper, a parallel implementation of DE based on resilient distributed
datasets (RDD) [17] model is proposed. RDD is a distributed memory abstrac-
tion that allows programmers to perform in-memory computations on large clus-
ters while retaining the fault tolerance of data flow models as MapReduce [19].
RDD supports iterative operations and interactive data mining. To overcome the
shortcoming of parallelized DE with MapReduce, we parallelize DE using RDD.

The remainder of the paper is organized as follows. Section 2 describes the
conventional DE. Resilient distributed datasets (RDD) model is presented in
Sect. 3. With RDD model, the parallel implementation of DE (PDE) is proposed
in Sect. 4. Comparing with DE, the performance of PDE is evaluated through
numerical experiment in Sect. 5. Finally, Sect. 6 concludes this paper.

2 Differential Evolution

DE is a heuristic approach for minimizing continuous optimization problem
which is possibly nonlinear and non-differentiable. DE maintains a population
of D-dimensional vectors and requires few control variables. It is robust, easy
to use and lends itself very well to parallel computation. The four operations,
namely initialization, mutation, crossover and selection, in classical DE [1], are
given as follows. Initialization in DE is according to Eq. (1).

xij(G) = xl
j + randj(0, 1)(xu

j − xl
j). (1)

Where G = 0, i = 1, 2, ..., NP, j = 1, 2, ...,D, xu
j denotes the upper con-

straints, and xl
j denotes the lower constraints.

After being initialized, for each target vector Xi,G, i = 1, 2, ..., NP , a mutant
vector is produced according to Eq. (2)

vi,G+1 = xr1,G + F (xr2,G − xr3,G). (2)

86 C. Deng et al.

where i, r1, r2, r3 ∈ {1, 2, ..., NP} are randomly chosen and have to be mutually
exclusive. And F is the scaling factor for the difference between the individual
xr2 and xr3.

In order to increase the diversity of population, DE introduces the crossover
operation to generate a trial vector which is the mixture of the target vector
and the mutation vector. In traditional DE, the uniform crossover is defined as
follows:

ui,G+1 =

⎧
⎨

⎩

vi,G+1 if rand ≤ CR or j = rand(i)

xi,G otherwise
(3)

where i = 1, 2, ..., NP, j = 1, 2, ...,D,CR ∈ [0, 1] is the crossover probability and
rand(i) ∈ (0, 1, 2, ...,D) is the randomly selected number which ensures that the
trial vector (ui,G+1) gets at least one element from the mutation vector (vi,G).

To decide which one will survive in the next generation, the target vector
(xi,G) is compared with the trial vector (ui,G+1) in terms of objective value
according to

xi,G+1 =

⎧
⎨

⎩

ui,G+1, if f(ui,G+1) < f(xi,G)

xi,G otherwise.
(4)

3 Resilient Distributed Datasets (RDD)

Cloud computing represents a pool of virtual resources for information process-
ing. High level cloud computing models like MapReduce [12] and Dryad [18]
have been widely used to process the growing big data. These computing cluster
systems are based on an acyclic data flow model which does not support for
working set. Thus the applications based on an acyclic data flow model have
to write data to disk and reload it on each iteration operation with current
systems, leading to significant overhead. RDD allow programmers to explicitly
cache working sets in memory across iteration operation, leading to substantial
speedups on future use.

3.1 RDD Abstraction

RDD provides an abstraction that supports applications with working set. RDD
not only supports data flow models, but also be capable of efficiently expressing
computations with working sets. During operation on a working set, RDD only
supports coarse-grained transformations, where a single operation can be applied
to many records. Formally, an RDD is a collection of elements partitioned across
the nodes of the cluster that can be operated on in parallel. RDDs can be
created only through two ways: (1) either by starting with an existing file in
stable storage, or (2) by an existing Scala collection in the driver program and
transforming it.

A PDE Based on Resilient Distributed Datasets Model 87

3.2 Programming Model in Spark

Spark is the first system allowing an efficient, general purpose programming lan-
guage to be used interactively to analyze datasets on clusters [17]. In Spark,
RDDs are represented by objects, and transformations are invoked using meth-
ods on these objects. After defining one or more RDDs, transformation oper-
ations are used to transform these RDDs. Then action operations are used to
return value to driver program or export data to disk storage. The programming
model is presented in Fig. 1.

Fig. 1. RDD model in spark

3.3 RDD Operations in Spark

RDD includes mainly three types of operations: transformation operations, con-
trol operations and action operations. Transformations create a new dataset from
an existing one, and control operations can persist an RDD in memory with cache
method, in such case Spark will keep the elements around on the cluster for much
faster access the next time you query it. Action operations return a value to the
driver program after running a computation on the dataset.

4 Parallel DE

4.1 Procedure of PDE

RDD is a fault-tolerant abstraction for in-memory cluster computing. With the
transformations available in Spark, a parallel version of DE is proposed. For
many optimization problems, the evaluation of their objective function is costly.

88 C. Deng et al.

Thus, in our proposed PDE, we only use cluster computing to compute the
fitness values of the individuals. The Steps of the PDE is depicted as follows.

Algorithm. PDE

Input: NP; F; CR; MaxIt(Maximum number of iterations); 1: Randomly
initialize population P with NP individuals 2: Creation of RDD 3:
Evaluate the objective function value f for each individuals
in parallel way

4: gengeration=0
5: while generation < MaxIt do
6: for i=1:NP
7: Mutation operation according to Eq.(2)
8: Crossover operation according to Eq.(3)
9: Creation of RDD for mutation operation U
10: Evaluate the objective function value f for each
individuals (U) in parallel way

11: Selection operation according to Eq.(4)
12:end for
13:generation=generation+1
14: end while
Output: the best individual with smallest fitness

The core of Spark is implemented in Scala language. Thus we follow Spark
to use Scala language to implement PDE. Our example codes for evaluate the
objective function in parallel way are as follows:

val point = sc.parallelize(pop,numSlices).cache()
var popf = points.map(
p = >(p.x,getFitness(p.y,ifun+1),p.y)).collect()
In the codes, the first line is the process of creation of RDD from population

individuals denoted by pop, and the second line is the demonstration of map
transformation and collect action to conduct the evaluation of objective function
in parallel way.

4.2 Inspection of PDE

First of all, EAs spend the majority of the computational time for evaluating the
objective function values when applied to real-world applications. With RDD,
the proposed PDE distributes the objective function evaluation to predefined
partitions. Then, all individuals in PDE can be evaluated in parallel way. Con-
sequently, the proposed PDE can be regarded as an efficient program. Comparing
DE with PDE, there is no significant difference in the procedure. Therefore, PDE
can be regarded as an efficient algorithm. Furthermore, the steps of PDE can be
implemented by Scala, Java, or Python programming language. Therefore, the
proposed PDE is portable.

A PDE Based on Resilient Distributed Datasets Model 89

5 Numerical Experiment

5.1 Benchmark Problems

In order to evaluate the performance of PDE, the benchmark problems used in
this paper are listed in Table 1. Functions f1 and f2 are unimodal, while functions
f3, f4, f5 and f6 are multimodal. In our experiment, all the benchmark problems
have D = 30 dimensional real-parameters.

Table 1. Benchmark problems

Name Expression Value Range

Sphere function f1 = D
i=1 x2

j [-100,100]

Schwefel’s Ridge
function

f2 = D
i=1(

j
k=1 xk)2 [-100,100]

Rosenbrock function f3 = D−1
j=1 (100(xj+1 − x2

j)
2 + (xj − 1)2) [-30,30]

Rastrigin function f4 = D
j=1(x

2
j − 10cos(2πxj) + 10) [-5.12,5.12]

Ackley function
f5 = −20 exp(−0.2 1

D
D
j=0 x2

j

− exp(1
D

D
j=1 cos(2πxj))

[-32,32]

Griewank function f6 = 1
4000

D
j=1 x2

j − D
j=1 cos(

xj√
j
) + 1 [-600,600]

5.2 Experimental Results

PDE and DE are applied to the six benchmark problems. The setting of para-
meters used in PDE and DE are NP = 10 ∗ D,F = 0.5, CR = 0.9 and
MaxIT = 10000. Twenty independent runs are carried out for the two algo-
rithms in each function. In our experiment, Dell computers with 3.4 Ghz Intel
Core i7-3770 CPU and 8G of RAM are used to construct the computing cluster.
Spark1.2.0 is adopted as experimental platform. In PDE, we choose four differ-
ent numbers of partition of RDD, namely, 2, 4, 8, and 15. Table 2 shows the
objective function values of the best solutions obtained by PDE with different
partition number, and DE.

In order to evaluate the speedup of the proposed PDE effectively, we add
some delay in each objective function. The speedup metric mentioned in [19]
was used in this paper. The speedup of PDE is defined as follows:

Sm(Np) =
Tm(1)
Tm(Np)

(5)

In Eq. (5) Tm(1) denotes the execution time of DE averaged over m times
with one partition, while Tm(Np) denotes the averaged execution time of the
proposed PDE achieved with Np partitions in RDD. In this paper, m = 5.

The speedup curves achieved by the proposed PDE for the six benchmark
problems are plotted in from Figs. 2, 3, 4, 5, 6 and 7 respectively.

90 C. Deng et al.

Table 2. Objective function value

Function PDE DE

(2) (4) (8) (15)

f1 7.80E − 073 4.30E − 073 1.55E − 072 3.98E − 073 1.80E − 071

f2 6.48E − 014 5.92E − 014 5.36E − 014 6.61E − 014 8.43E − 012

f3 0.00E + 000 0.00E + 000 0.00E + 000 0.00E + 000 0.00E + 000

f4 9.74E + 001 1.16E + 002 1.26E + 002 1.08E + 002 1.43E + 002

f5 4.00E − 015 4.00E − 015 4.00E − 015 4.00E − 015 4.44E − 015

f6 0.00E + 000 0.00E + 000 0.00E + 000 0.00E + 000 0.00E + 000

5.3 Discussion of Experimental Results

From Table 2, there is not a significant difference between PDE, and DE in the
quality of solutions for functions f3 and f6. For the remainder two functions f1,
f2, f4 andf5, the results of PDE are slightly better than those of DE.

From the speedup carves shown in Figs. 2, 3, 4, 5, 6 and 7, we can confirm
that the speedup is larger than one in every instance. Therefore, the proposed
PDE reduces the computational time with different numbers of partitions. The
speedup achieved by PDE increases as the number of partitions increases steady

Fig. 2. Speedup by PDE on function: f1 Fig. 3. Speedup by PDE on function: f2

Fig. 4. Speedup by PDE on function: f3 Fig. 5. Speedup by PDE on function: f4

A PDE Based on Resilient Distributed Datasets Model 91

Fig. 6. Speedup by PDE on function: f5 Fig. 7. Speedup by PDE on function: f6

until Np = 16 in all benchmark problems. The speedup will decrease when the
number of partitions is larger than 16. Spark runs one task for each partition of
the cluster. When more partitions are involved, the communication cost between
nodes will decrease the speedup. There is no significant difference in speedup
between the three maximum iterations(MaxIt) for each instance. The speedup
of PDE actually depends on the cost of evaluate the objective function. We
can expect that the proposed PDE is useful specially for solving the real-world
applications that spend the majority of the computational time for evaluating
their objective function values.

6 Conclusion

In order to utilize the cloud computing platform to parallelize DE, Spark, an
open source cloud computing platform which supports iterative computation,
was adopted. The proposed PDE was based on resilient distributed datasets
model. In our PDE, the computation of objective function was parallelized.
Therefore, we could expect the computational time was reduced by using the
proposed PDE on Spark. From the numerical experiment conducted on a vari-
ety of benchmark problems, it was confirmed that the speedup achieved by PDE
generally increased as the number of computing partitions increased under cer-
tain range.

In our future work, we need to parallelize the three operators, i.e., muta-
tion, crossover, and selection and the evaluation of objective function together.
Besides, we would like to utilize PDE with more partitions to solve expensive
problems such as CEC 2010 large scale benchmark problems [20] which need
more than two hundred hours to finish the optimization task with single com-
puter. And parallelizing other EAs with RDD is also very interesting work.

Acknowledgments. This work is partially supported by Natural Science Foundation
of China under grant No. 61364025, State Key Laboratory of Software Engineering
Foundation under grant No. SKLSE2012-09-39 and the Science and Technology Foun-
dation of Jiangxi Province, China under grant No. GJJ13729 and No. GJJ14742.

92 C. Deng et al.

References

1. Store, R., Price, K.V.: Differential evolution CA simple and efficient heuristic for
global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

2. Vesterstrom, J., Thomsen, R.: A comparative study of differential evolution, par-
ticle swarm optimization, and evolutionary algorithms on numerical benchmark
problems, pp. 1980–1987 (2007)

3. Yousefi, H., Handroos, H., Soleymani, A.: Application of differential evolution in
system identification of a servo-hydraulic system with a flexible load. Mechatron.
18(9), 513–528 (2008)

4. Rocca, P., Oliveri, G., Massa, A.: Differential evolution as applied to electromag-
netics. Antennas Propag. Mag. 53(1), 38–49 (2011)

5. Wang, Y., Li, H.X., Huang, T.: Differential evolution based on covariance matrix
learning and bimodal distribution parameter setting. Appl. Softw. Comput. 18,
232–247 (2014)

6. Wang, Y., Cai, Z., Zhang, Q.: Enhancing the search ability of differential evolution
through orthogonal crossover. Inf. Sci. 185(1), 153–177 (2012)

7. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector
generation strategies and control parameters. IEEE Trans. Evol. Comput. 15(1),
55–66 (2011)

8. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans.
Evol. Comput. 6(5), 443–462 (2002)

9. Zaharie, D., Petcu, D.: Parallel implementation of multi-population differential
evolution. Concurrent Inf. Process. Comput. 48, 223–232 (2005)

10. Wang, H., Rahnamayan, S., Wu, Z.: Parallel differential evolution with self-
adapting control parameters and generalized opposition-based learning for solving
high-dimensional optimization problems. J. Parallel Distrib. Comput. 73(1), 62–73
(2013)

11. Fabris, F., Krohling, R.A.: A co-evolutionary differential evolution algorithm for
solving minCmax optimization problems implemented on GPU using C-CUDA.
Expert Syst. Appl. 39(12), 10324–10333 (2012)

12. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
Commun. ACM. 51(1), 107–113 (2008)

13. Zhou, C.: Fast parallelization of differential evolution algorithm using MapReduce.
In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Com-
putation, pp. 1113–1114, Dubin, Ireland (2011)

14. Pavlech, M.: Framework for development of distributed evolutionary algorithms
based on MapReduce. In: Proceedings of the 22nd International DAAAM Sym-
posium on Intelligent Manufacturing and Automation: Power of Knowledge and
Creativity, pp. 1475–1476, Vienna (2011)

15. McNabb, A.W., Monson, C.K., Seppi, K.D.: Parallel PSO using mapreduce. In:
Proceedings of IEEE Congress on Evolutionary Computation, pp. 7–14. IEEE,
Singapore (2007)

16. Verma, A., Llora, X., Goldberg, D.E.: Scaling genetic algorithms using mapre-
duce. In: Proceedings of the Ninth International Conference on Intelligent Systems
Design and Applications, pp. 13–18. IEEE, Pisa (2009)

17. Zaharia, M., Chowdhury, M., Das, T.: Resilient distributed datasets: a fault-
tolerant abstraction for in-memory cluster computing. In: The 9th USENIX Confer-
ence on Networked Systems Design and Implementation, 2012, pp. 1–16. USENIX
Association, Berkeley (2012)

A PDE Based on Resilient Distributed Datasets Model 93

18. Isard, M., Budiu, M., Yu, Y., et al.: Dryad: distributed data-parallel programs
from sequential building blocks. ACM SIGOPS Operating Syst. Rev. 41(3), 59–72
(2007)

19. Kiyouharu, T., Takashi, I.: Concurrent differential evolution based on MapReduce.
Int. J. Comput. 4(4), 161–168 (2010)

20. Tang, K., Li, X., Suganthan, K.: Benchmark Functions for the CEC’2010 Special
Session and Competition on Large Scale Global Optimization. Technical report,
IEEE (2009)

	A Parallel Version of Differential Evolution Based on Resilient Distributed Datasets Model
	1 Introduction
	2 Differential Evolution
	3 Resilient Distributed Datasets (RDD)
	3.1 RDD Abstraction
	3.2 Programming Model in Spark
	3.3 RDD Operations in Spark

	4 Parallel DE
	4.1 Procedure of PDE
	4.2 Inspection of PDE

	5 Numerical Experiment
	5.1 Benchmark Problems
	5.2 Experimental Results
	5.3 Discussion of Experimental Results

	6 Conclusion
	References

