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Abstract. Ad exchanges are an emerging platform for trading adver-
tisement slots on the web with billions of dollars revenue per year. Every
time a user visits a web page, the publisher of that web page can ask an
ad exchange to auction off the ad slots on this page to determine which
advertisements are shown at which price. Due to the high volume of
traffic, ad networks typically act as mediators for individual advertisers
at ad exchanges. If multiple advertisers in an ad network are interested
in the ad slots of the same auction, the ad network might use a “local”
auction to resell the obtained ad slots among its advertisers.

In this work we want to deepen the theoretical understanding of these
new markets by analyzing them from the viewpoint of combinatorial auc-
tions. Prior work studied mostly single-item auctions, while we allow the
advertisers to express richer preferences over multiple items. We develop
a game-theoretic model for the entanglement of the central auction at the
ad exchange with the local auctions at the ad networks. We consider the
incentives of all three involved parties and suggest a three-party compet-
itive equilibrium, an extension of the Walrasian equilibrium that ensures
envy-freeness for all participants. We show the existence of a three-party
competitive equilibrium and a polynomial-time algorithm to find one for
gross-substitute bidder valuations.

Keywords: Ad-exchange · Combinatorial auctions · Gross substi-
tute · Walrasian equilibrium · Three-party equilibrium · Auctions with
mediators

1 Introduction

As advertising on the web becomes more mature, ad exchanges (AdX) play a
growing role as a platform for selling advertisement slots from publishers to
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advertisers. Following the Yahoo! acquisition of Right Media in 2007, all major
web companies, such as Google, Facebook, and Amazon, have created or acquired
their own ad exchanges. Other major ad exchanges are provided by the Rubicon
Project, OpenX, and AppNexus. In 2012 the total revenue at ad exchanges
was estimated to be around two billion dollars [4]. Every time a user visits a
web page, the publisher of that web page can ask an ad exchange to auction
off the ad slots on this page. Thus, the goods traded at an ad exchange are
ad impressions. This process is also known as real-time bidding (RTB). A web
page might contain multiple ad slots, which are currently modeled to be sold
separately in individual auctions. Individual advertisers typically do not directly
participate in these auctions but entrust some ad network to bid on their behalf.
When a publisher sends an ad impression to an exchange, the exchange usually
contacts several ad networks and runs a (variant of a) second-price auction [13]
between them, potentially with a reserve price under which the impression is
not sold. An ad network (e.g. Google’s Display Network [6]) might then run
a second, “local” auction to determine the allocation of the ad slot among its
advertisers. We study this interaction of a central auction at the exchange and
local auctions at the ad networks.1

We develop a game-theoretic model that considers the incentives of the fol-
lowing three parties: (1) the ad exchange, (2) the ad networks, and (3) the
advertisers. As the ad exchange usually charges a fixed percentage of the rev-
enue and hands the rest to the publishers, the ad exchange and the publishers
have the same objective and can be modeled as one entity. We then study equi-
librium concepts of this new model of a three-party exchange. Our model is
described as an ad exchange, but it may also model other scenarios with media-
tors that act between bidders and sellers, as noted already by Feldman et al. [5].
The main differences between our model and earlier models (discussed in detail
at the end of this section) are the following: (a) We consider the incentives of
all three parties simultaneously. (b) While most approaches in prior work use
Bayesian assumptions, we apply worst-case analysis. (c) We allow auctions with
multiple heterogeneous items, namely combinatorial auctions, in contrast to the
single-item auctions studied so far. Multiple items arise naturally when selling
ad slots on a per-impression basis, since there are usually multiple advertisement
slots on a web page.

To motivate the incentives of ad networks and exchanges, we compare next
their short and long-term revenue considerations, following Mansour et al. [13]
and Muthukrishnan [14]. Ad exchanges and ad networks generate revenue as
follows: (1) An ad exchange usually receives some percentage of the price paid
by the winner(s) of the central auction. (2) An ad network can charge a higher
price to its advertisers than it paid to the exchange or it can be paid via direct
contracts with its advertisers. Thus both the ad exchange and the ad networks
(might) profit from higher prices in their auctions. However, they also have a
motivation not to charge too high prices as (a) the advertisers could stick to

1 In this work an auction is an algorithm to determine prices of items and their allo-
cation to bidders.
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alternative advertising channels such as long-term contracts with publishers,
and (b) there is a significant competition between the various ad exchanges and
ad networks, as advertisers can easily switch to a competitor. Thus, lower prices
(might) increase advertiser participation and, hence, the long-term revenue of ad
exchanges and ad networks. We only consider a single auction (of multiple items)
and leave it as an open question to study changes over time. We still take the
long-term considerations outlined above into account by assuming that the ad
exchange aligns its strategic behavior with its long-term revenue considerations
and only desires for each central auction to sell all items.2 In our model the incen-
tive of an ad network to participate in the exchange comes from the opportunity
to purchase some items at a low price and then resell them at a higher price.
However, due to long-term considerations, our model additionally requires the
ad networks to “satisfy their advertisers” by faithfully representing the adver-
tisers’ preferences towards the exchange, while still allowing the ad networks to
extract revenue from the competition between the advertisers in their network.
An example for this kind of restriction for an ad network is Google’s Display
Network [6] that guarantees its advertisers that each ad impression is sold via a
second-price auction, independent of whether an ad exchange is involved in the
transaction or not [13].

To model a stable outcome in a three-party exchange, we use the equilib-
rium concept of envy-freeness for all three types of participants. A participant is
envy-free if he receives his most preferred set of items under the current prices.
Envy-freeness for all participants is a natural notion to express stability in a
market, as it implies that no coalition of participants would strictly profit from
deviating from the current allocation and prices (assuming truthfully reported
preferences). Thus an envy-free equilibrium supports stability in the market
prices, which in turn facilitates, for example, revenue prediction for prospective
participants and hence might increase participation and long-term revenue. For
only two parties, i.e., sellers and buyers, where the sellers have no intrinsic value
for the items they sell, envy-freeness for all participants is equal to a competitive
or Walrasian equilibrium [20], a well established notion in economics to char-
acterize an equilibrium in a market where demand equals supply. We provide a
generalization of this equilibrium concept to three parties.

Our Contribution. We introduce the following model for ad exchanges. A central
seller wants to sell k items. There are m mediators Mi, each with her own ni

bidders. Each bidder has a valuation function over the items. In the ad exchange
setting, the central seller is the ad exchange, the items are the ad slots shown to
a visitor of a web page, the mediators are the ad networks, and the bidders are
the advertisers. A bidder does not have any direct “connection” to the central
seller. Instead, all communication is done through the mediators. A mechanism
for allocating the items to the bidders is composed of a central auction with
mediators acting as bidders, and then local auctions, one per mediator, in which

2 Our model and results can be adapted to include reserve prices under which the ad
exchange is not willing to sell an item.
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every mediator allocates the set of items she bought in the central auction; that
is, an auction where the bidders of that mediator are the only participating
bidders and the items that the mediator received in the central auction are the
sole items. The prices of the items obtained in the central auction provide a
lower bound for the prices in the local auctions, i.e., they act as reserve prices
in the local auctions. We assume that the central seller and the bidders have
quasi-linear utilities, i.e., utility functions that are linear in the price, and that
their incentive is to maximize their utility. For the central seller this means that
his utility from selling a set of slots is just the sum of prices of the items in the
set. The utility of a bidder on receiving a set of items S is his value for S minus
the sum of the prices of the items in S.

The incentive of a mediator, however, is not so straightforward and needs
to be defined carefully. In our model, to “satisfy” her bidders, each mediator
guarantees her bidders that the outcome of the local auction will be minimal
envy free, that is, for the final local price vector, the item set that is allocated
to any bidder is one of his most desirable sets over all possible item sets (even
sets that contain items that were not allocated to his mediator, i.e., each bidder
is not only locally, but globally envy-free) and there is no (item-wise) smaller
price vector that fulfills this requirement. We assume that each mediator wants
to maximize her revenue3 and define the revenue of a mediator for a set of items
S as the difference between her earnings when selling S with this restriction and
the price she has to pay for S at the central auction.

For this model we define a new equilibrium concept, namely the three-party
competitive equilibrium. At this equilibrium all three types of participants are
envy-free. Envy-free solutions for the bidders always exist, as one can set the
prices of all items high enough so that no bidder will demand any item. Addi-
tionally, we require that there is no envy for the central seller, meaning that all
items are sold. If there were no mediators, then a two-party envy-free solution
would be exactly a Walrasian equilibrium, which for certain scenarios can be
guaranteed [11]. However, with mediators it is not a-priori clear that a three-
party competitive equilibrium exists as, additionally, the mediators have to be
envy-free. We show that for our definition of a mediator’s revenue (a) the above
requirements are fulfilled and (b) a three-party competitive equilibrium exists
whenever a Walrasian equilibrium for the central auction exists or whenever
a two-party equilibrium exists for the bidders and the central seller without
mediators. Interestingly, we show that for gross-substitute bidder valuations the
incentives of this kind of mediator can be represented with an or-valuation
over the valuations of her bidders. This then leads to the following result: For
gross-substitute bidder valuations a three-party competitive equilibrium can be
computed in polynomial time. In particular, we will show how to compute the
three-party competitive equilibrium with minimum prices.

Related Work. The theoretical research on ad exchanges was initialized by a
survey of Muthukrishnan [14] that lists several interesting research directions.

3 For the purpose of this paper, the terms revenue and utility are interchangeable.
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Our approach specifically addresses his 9th problem, namely to enable the adver-
tisers to express more complex preferences that arise when multiple advertise-
ment slots are auctioned off at once as well as to design suitable auctions for
the exchange and the ad networks to determine allocation and prices given these
preferences.

The most closely related work with respect to the model of the ad exchange is
Feldman et al. [5]. It is similar to our work in two aspects: (1) The mediator bids
on behalf of her bidders in a central auction and the demand of the mediator
as well as the tentative allocation and prices for reselling to her bidders are
determined via a local auction. (2) The revenue of the mediator is the price
she can obtain from reselling minus the price she paid in the central auction.
The main differences are: (a) Only one item is auctioned at a time and thus
the mediator can determine her valuation with a single local auction. (b) Their
work does not consider the incentives of the bidders, only of the mediators and
the central seller. (c) A Bayesian setting is used where the mediators and the
exchange know the probability distributions of the bidders’ valuations. Based
on this information, the mediators and the exchange choose reserve prices for
their second-price auctions to maximize their revenue. The work characterizes
the equilibrium strategies for the selection of the reserve prices.

Mansour et al. [13] (mainly) describe the auction at the DoubleClick
exchange. Similar to our work advertisers use ad networks as mediators for the
central auction. They observe that if mediators that participate in a single-item,
second-price central auction are only allowed to submit a single bid, then it is
not possible for the central auction to correctly implement a second-price auc-
tion over all bidders as the bidders with the highest and the second highest value
might use the same mediator. Thus they introduce the Optional Second Price
auction, where every mediator is allowed to optionally submit the second high-
est bid with the highest bid. In such an auction each mediator can guarantee to
her bidders that if one of them is allocated the item, then he pays the (global)
second-price for it. For the single-item setting, the bidders in their auction and
in our auction pay the same price. If the mediator of the winning bidder did not
specify an optional second price, then her revenue will equal the revenue of our
mediator. If she did, her revenue will be zero and the central seller will receive
the gain between the prices in the local and the central auction.

Stavrogiannis et al. [18] consider a game between bidders and mediators,
where the bidders can select mediators (based on Bayesian assumptions of each
other’s valuations) and the mediators can set the reserve prices in the second-
price local auction. The work presents mixed Nash equilibrium strategies for
the bidders to select their mediator. In [19] the same authors compare different
single-item local auctions with respect to the achieved social welfare and the
revenue of the mediators and the exchange.

Balseiro et al. (2013) introduced a setting that does not include mediators [1].
Instead, they see the ad exchange as a game between publishers, who select para-
meters such as reserve prices for second-price auctions, and advertisers, whose
budget constraints link different auctions over time. They introduced a new equi-
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librium concept for this game and used this to analyze the impact of auction
design questions such as the selection of a reserve price. Balseiro et al. (2014)
studied a publisher’s trade-off between using an ad exchange versus fulfilling
long-term contracts with advertisers [2].

Equilibria in trading networks (such as ad exchanges) are also addressed in
the “matching with contracts” literature. Hatfield and Milgrom [10] presented
a new model where instead of bidders and items there are agents and trades
between pairs of agents. The potential trades are modeled as edges in a graph
where the agents are represented by the nodes. Agent valuations are then defined
over the potential trades and assumed to be monotone substitute. They proved
the existence of an (envy-free) equilibrium when the agent-trades graph is bipar-
tite. Later this was improved to directed acyclic graphs by Ostrovsky [16] and
to arbitrary graphs by Hatfield et al. [9]. They did not show (polynomial-time)
algorithms to reach equilibria. Our model can be reduced to this model, hence
a three-party equilibrium exists when all bidders are monotone gross substitute.
The result of this reduction (not stated here) is not polynomial in the number
of bidders and items.

2 Preliminaries

Let Ω denote a set of k items. A price vector is an assignment of a non-negative
price to every element of Ω. For a price vector p = (p1, ..., pk) and a set S ⊆ Ω
we use p(S) =

∑
j∈S pj . For any two price vectors p, r an inequality such as

p ≥ r as well as the operations min(p, r) and max(p, r) are meant item-wise.
We denote with 〈Ωb〉 = 〈Ωb〉b∈B an allocation of the items in Ω such that

for all bidders b ∈ B the set of items allocated to b is given by Ωb and we have
Ωb ⊆ Ω and Ωb ∩ Ωb′ = ∅ for b′ 	= b, b′ ∈ B. Note that some items might not be
allocated to any bidder.

A valuation function vb of a bidder b is a function from 2Ω to R, where 2Ω

denotes the set of all subsets of Ω. We assume throughout the paper vb(∅) = 0.
Unless specified otherwise, for this work we assume monotone valuations, that
is, for S ⊆ T we have vb(S) ≤ vb(T ). This assumption is made for ease of
presentation. We use {vb} to denote a collection of valuation functions. The
(quasi-linear) utility of a bidder b from a set S ⊆ Ω at prices p ≥ 0 is defined
as ub,p(S) = vb(S) − p(S). The demand Db(p) of a bidder b for prices p ≥ 0 is
the set of subsets of items S ⊆ Ω that maximize the bidder’s utility at prices p.
We call a set in the demand a demand representative. Throughout the paper we
omit subscripts if they are clear from the context.

Definition 1 (Envy Free). An allocation 〈Ωb〉 of items Ω to bidders B is envy
free (on Ω) for some prices p if for all bidders b ∈ B, Ωb ∈ Db(p). We say that
prices p are envy free (on Ω) if there exists an envy-free allocation (on Ω) for
these prices.

There exist envy-free prices for any valuation functions of the bidders, e.g., set
all prices to maxb,S vb(S). For these prices the allocation which does not allocate
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any item is envy free. Thus also minimal envy-free prices always exist, but are
in general not unique.

Definition 2 (Walrasian Equilibrium (WE)). A Walrasian equilibrium (on
Ω) is an envy-free allocation 〈Ωb〉 (on Ω) with prices p such that all prices are
non-negative and the price of unallocated items is zero. We call the allocation
〈Ωb〉 a Walrasian allocation (on Ω) and the prices p Walrasian prices (on Ω).

We assume that the central seller has a value of zero for every subset of the
items; thus (with quasi-linear utility functions) selling all items makes the seller
envy free. In this case a Walrasian equilibrium can be seen as an envy-free two-
party equilibrium, i.e., envy free for the buyers and the seller. Note that for a
Walrasian price vector there might exist multiple envy-free allocations.

2.1 Valuation Classes

A unit demand valuation assigns a value to every item and defines the value of
a set as the maximum value of an item in it. An additive valuation also assigns
a value to every item but defines the value of a set as the sum of the values
of the items in the set. Non-negative unit demand and non-negative additive
valuations both have the gross-substitute property (defined below) and are by
definition monotone.

Definition 3 (Gross Substitute (GS)). A valuation function is gross substi-
tute if for every two price vectors p(2) ≥ p(1) ≥ 0 and every set D(1) ∈ D(p(1)),
there exists a set D(2) ∈ D(p(2)) with j ∈ D(2) for every j ∈ D(1) with p

(1)
j = p

(2)
j .

For gross-substitute valuations of the bidders a Walrasian equilibrium is guar-
anteed to exist in a two-sided market [11] and can be computed in polynomial
time [15,17]. Further, gross substitute is the maximal valuation class containing
the unit demand class for which the former holds [7]. Several equivalent defini-
tions are known for this class [7,17]. We will further use that for gross-substitute
valuations the Walrasian prices form a complete lattice [7].

We define next an or-valuation. Lehmann et al. [12] showed that the or of
gross-substitute valuations is gross substitute.

Definition 4 (OR-player). The or of two valuations v and w is defined as
(v or w)(S) = maxR,T⊆S,R∩T=∅(v(R) + w(T )). Given a set of valuations {vb}
for bidders b ∈ B we say that the or-player is a player with valuation vor(S) =
max〈Sb〉

∑
b∈B vb(Sb) .

3 Model and Equilibrium

There are k items to be allocated to m mediators. Each mediator Mi represents
a set Bi of bidders, where |Bi| = ni. Each bidder is connected to a unique
mediator. Each bidder has a valuation function over the set of items and a
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quasi-linear utility function. A central auction is an auction run on all items
with mediators as bidders. After an allocation 〈Ωi〉 and prices r at the central
auction are set, another m local auctions are conducted, one by each mediator.
In the local auction for mediator Mi the items Ωi that were allocated to her in
the central auction are the sole items and the bidders Bi are the sole bidders.
A solution is an assignment of central-auction and local-auction prices to items
and an allocation of items to bidders and hence, by uniqueness, also to mediators.
We define next a three-party equilibrium based on envy-freeness.

Definition 5 (Equilibrium). A three-party competitive equilibrium is an
allocation of items to bidders and a set of m + 1 price vectors r, p1, p2, . . . , pm

such that the following requirements hold. For 1 ≤ i ≤ m

1. every mediator4 Mi is allocated a set Ωi in her demand at price r,
2. every item j with non-zero price r is allocated to a mediator,
3. the price pi coincides with r for all items not in Ωi,
4. and every bidder b ∈ Bi is allocated a subset of Ωi that is in his demand at

price pi.

In other words, the allocation to the bidders in Bi with prices pi must be envy-free
for the bidders, the allocation to the mediators with prices r must be envy free for
the mediators and for the central seller, i.e., must be a Walrasian equilibrium;
and the prices pi must be equal to the prices r for all items not assigned to
mediator Mi.

Note that the allocation of the items to the mediators and prices r are the
outcome of a central auction run by the central seller, while the allocation to the
bidders in Bi and prices pi correspond to the outcome of a local auction run by
mediator Mi. These auctions are connected by the demands of the mediators
and Requirement 3.

We next present our mediator model. The definition of an Envy-Free Medi-
ator, or ef-mediator for short, reflects the following idea: To determine her
revenue for a set of items S at central auction prices r, the mediator simulates
the local auction she would run if she would obtain the set S at prices r. Given
the outcome of this “virtual auction”, she can compute her potential revenue
for S and r as the difference between the virtual auction prices of the items
sold in the virtual auction and the central auction prices for the items in S.
However, as motivated in the introduction, the mediator is required to represent
the preferences of her bidders and therefore not every set S is “allowed” for the
mediator, that is, for some sets the revenue of the mediator is set to −1. The sets
that maximize the revenue are then in the demand of the mediator at central
auction prices r. To make the revenue of a mediator well-defined and to follow
our motivation that a mediator should satisfy her bidders, the virtual auctions
specifically compute minimal envy-free price vectors.

Definition 6 (Envy-Free Mediator). An ef-mediator Mi determines her
demand for a price vector r ≥ 0 as follows. For each subset of items S ⊆ Ω she
4 Regardless of any demand definition.
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runs a virtual auction with items S, her bidders Bi, and reserve prices r. We
assume that the virtual auction computes minimal envy-free prices pS ≥ r and
a corresponding envy-free allocation 〈Sb〉.5 We extend the prices pS to all items
in Ω by setting pS

j = rj for j ∈ Ω \ S, and define the revenue Ri,r(S) of the
mediator for a set S as follows. If the allocation 〈Sb〉 is envy free for the bidders
Bi and prices pS on Ω, then Ri,r(S) =

∑
b∈Bi

pS(Sb) − r(S); otherwise, we set
Ri,r(S) = −1. The demand Di(r) of Mi is the set of all sets S that maximize
the revenue of the mediator for the reserve prices r. The local auction of Mi for
a set Ωi allocated to her in the central auction at prices r is equal to her virtual
auction for Ωi and r.

Following the above definition, we say that a price vector is locally envy free
if it is envy free for the bidders Bi on the subset Ωi ⊆ Ω assigned to mediator
Mi and globally envy free if it is envy free for the bidders Bi on Ω. Note that if
pS is envy free on Ω, then it is minimal envy free ≥ r on Ω for the bidders Bi.

An interesting property of ef-mediators is that every Walrasian equilibrium
in the central auction can be combined with the outcome of the local auctions
of ef-mediators to form a three-party competitive equilibrium.

Theorem 1. Assume all mediators are ef-mediators. Then a Walrasian equi-
librium in the central auction with allocation 〈Ωi〉 together with the allocation
and prices computed in the local auctions of the mediators Mi on their sets Ωi

(not necessarily Walrasian) form a three-party competitive equilibrium.

Further, with ef-mediators a three-party competitive equilibrium exists
whenever a Walrasian eq. exists for the bidders and items without the medi-
ators.

Theorem 2. Assume all mediators are ef-mediators and a Walrasian equilib-
rium exists for the set of bidders and items (without mediators). Then there
exists a three-party competitive equilibrium.

The proof of Theorem 2 only shows the existence of trivial three-party equi-
libria that basically ignores the presence of mediators. However, three-party
equilibria and ef-mediators allow for richer outcomes that permit the mediators
to gain revenue from the competition between their bidders while still repre-
senting the preferences of their bidders towards the central seller. In the next
section we show how to find such an equilibrium provided that the valuations
of all bidders are gross substitute. Recall that gross-substitute valuations are
the most general valuations that include unit demand valuations for which a
Walrasian equilibrium exists [7]; and that efficient algorithms for finding a
Walrasian equilibrium are only known for this valuation class.

4 An Efficient Algorithm for Gross-substitute Bidders

In this section we will show how to find, in polynomial time, a three-party
competitive equilibrium if the valuations of all bidders are gross substitute.
5 If there are multiple envy-free allocations on S for the prices pS , the mediator chooses

one that maximizes
∑

b∈Bi
pS(Sb).
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The prices the bidders have to pay at equilibrium, and thus the utilities they
achieve, will be the same as in a Walrasian equilibrium (between bidders and
items) with minimum prices (see full version). The price the bidders pay is split
between the mediators and the exchange. We show how to compute an equilib-
rium where this split is best for the mediators and worst for the exchange. In turn
the computational load can be split between the mediators and the exchange as
well. The algorithm will be based on existing algorithms to compute Walrasian
equilibria for gross-substitute bidders.

The classical (two-party) allocation problem is the following: We are given
k items and n valuation functions and we should find an equilibrium allocation
(with or without equilibrium prices) if one exists. Recall that in general a val-
uation function has a description of size exponential in k. Therefore, the input
valuation functions can only be accessed via an oracle, defined below. An effi-
cient algorithm runs in time polynomial in n and k (where the oracle access is
assumed to take constant time).

Given an algorithm that computes a Walrasian allocation for gross-substitute
bidders, by a result of Gul and Stacchetti [7] minimum Walrasian prices can be
computed by solving the allocation problem k +1 times. A Walrasian allocation
can be combined with any Walrasian prices to form a Walrasian equilibrium [7].
Thus we can assume for gross-substitute valuations that a polynomial-time algo-
rithm for the allocation problem also returns a vector of minimum prices that
support the allocation.

Two main oracle definitions that were considered in the literature are the
valuation oracle, where a query is a set of items S and the oracle replies with
the exact value of S; and the demand oracle, where a query is a price vector p
and the oracle replies with a demand representative D [3].

It is known that a demand oracle is strictly stronger than a valuation oracle,
i.e., a valuation query can be simulated by a polynomial number of demand
queries but not vice versa. For gross-substitute valuations, however, these two
query models are polynomial-time equivalent, see Paes Leme [17]. The two-party
allocation problem is efficiently solvable for gross-substitute valuations [15,17].

We define the three-party allocation problem in the same manner. We are
given k items, n valuation functions over the items and m mediators, each asso-
ciated with a set of unique bidders. We are looking for a three-party equilibrium
allocation (and equilibrium prices) if one exists. We will assume that the input
valuations are given through a valuation oracle.

The algorithm will be based on the following central result: For gross substi-
tute valuations of the bidders an ef-mediator and an or-player over the valua-
tions of the same bidders are equivalent with respect to their demand and their
allocation of items to bidders. Thus in this case ef-mediators can be considered
as if they have a gross-substitute valuation. Note that for general valuations this
equivalence does not hold.

Theorem 3. If the valuation functions of a set of bidders Bi are gross substitute,
then the demand of an ef-mediator for Bi is equal to the demand of an or-
player for Bi. Moreover, the allocation in a virtual auction of the ef-mediator
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for reserve prices r and a set of items S in the demand is an optimal allocation
for the or-player for S and r and vice versa.

To this end, we will first show for the virtual (and local) auctions that a
modified Walrasian equilibrium, the reserve-we(r), exists for gross-substitute
valuations with reserve prices. For this we will use yet another reduction to a
(standard) Walrasian equilibrium without reserve prices but with an additional
additive player6.

Definition 7 (WalrasianEquilibriumwithReservePrices r (RESERVE-
WE(r)) [8]). A Walrasian equilibrium with reserve prices r ≥ 0 (on Ω) is an
envy-free allocation 〈Ωb〉 (on Ω) with prices p such that p ≥ r, and the price
of every unallocated item is equal to its reserve price, i.e., pj = rj for j 	∈ ∪bΩb.
We say that 〈Ωb〉 is a reserve-we(r) allocation (on Ω) and p are reserve-
we(r) prices (on Ω).

4.1 Properties of Walrasian Equilibria with Reserve Prices

In this section we generalize several results about Walrasian equilibria to
Walrasian equilibria with reserve prices. Similar extensions were shown for unit
demand valuations in [8].

We first define a suitable linear program. The reserve-lp(r) is a linear
program obtained from a reformulation of the dual of the LP-relaxation of the
welfare maximization integer program after adding reserve prices r ≥ 0. More
details on this reformulation are given in the full version of the paper.

For an integral solution to the reserve-lp(r) we can interpret this reformu-
lation as a solution to a welfare-lp with an additional additive player whose
value for an item is equal to that item’s reserve price. We will use this interpre-
tation to extend known results for Walrasian equilibria to Walrasian equilibria
with reserve prices. The results are summarized in Theorem 4 below. We use the
following definition.

Definition 8 (Additional Additive Player). Let {vb} be a set of valuation
functions over Ω for bidders b ∈ B, and let r ≥ 0 be reserve prices for the items
in Ω. Let {v′

b′} be the set of valuation functions when an additive bidder a is
added, i.e., for the bidders b′ ∈ B′ = B ∪ {a} with v′

b′(S) = vb′(S) for b′ 	= a
and v′

a(S) =
∑

j∈S rj for all sets S ⊆ Ω. For an allocation 〈Ωb〉b∈B we define
〈Ω′

b′〉b′∈B′ with Ω′
b′ = Ωb′ for b′ 	= a and Ω′

a = Ω \ ∪bΩb.

Theorem 4. (a) The allocation 〈Ωb〉 and the prices p are a reserve-we(r)
for r ≥ 0 and bidders B if and only if the allocation 〈Ω′

b′〉 and prices p′ are a
we for the bidders B′, where we have pj = p′

j for j ∈ ∪b∈BΩb and pj′ = rj′ for
j′ ∈ Ω \∪b∈BΩb (a1 ). The allocation 〈Ωb〉 is a reserve-we(r) allocation if and
only if 〈Ωb〉 is an integral solution to the reserve-lp(r) (a2 ).

6 Such a player was introduced by Paes Leme [17] to find the demand of an or-player
(with a slightly different definition of or).
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(b) If the valuations {v} are gross substitute, then (b1 ) there exists a
reserve-we(r) for {v} and (b2 ) the reserve-we(r) price vectors form a com-
plete lattice.

Theorem 4 will be used in the next section to characterize the outcome of the
virtual auctions of an ef-mediator. It also provides a polynomial-time algorithm
to compute a reserve-we(r) when the bidders in B have gross-substitute valu-
ations, given a polynomial-time algorithm for a we for gross-substitute bidders.

4.2 The Equivalence of the EF-mediator and the OR-player
for Gross-substitute Valuations—Proof Outline

In this section we outline the proof of Theorem 3, the complete proof can be
found in the full version of the paper. The proof proceeds as follows. We first
characterize the demand of an ef-mediator for bidders with gross-substitute
valuations. As a first step we show that for such bidders an ef-mediator actually
computes a reserve-we(r) with minimum prices in each of her virtual auctions.
The minimality of the prices implies that whenever the virtual auction prices
for an item set S are globally envy-free, they are also minimum reserve-we(r)
prices for the set of all items Ω and the bidders in Bi. Thus, given reserve
prices r, all virtual auctions of an ef-mediator result in the same price vector
p as long as they are run on a set S with non-negative revenue. With the help
of some technical lemmata we then completely characterize the demand of an
ef-mediator and show that the mediator does not have to run multiple virtual
auctions to determine her demand; it suffices to run one virtual auction on Ω
where the set of allocated items is a set in the demand of the ef-mediator. Thus
for gross-substitute bidders the mediator can efficiently answer demand queries
and compute the outcome of her local auction.

Finally we compare the utility function of the or-player to the optimal value
of the reserve-lp(r) to observe that they have to be equal (up to an additive
constant) for item sets that are in the demand of the or-player. Combined with
the above characterization of the demand of the mediator, we can then relate
both demands at central auction prices r to optimal solutions of the reserve-
lp(r) for r and Ω and hence show the equality of the demands for these two
mediator definitions for gross-substitute valuations of the bidders. Recall that an
or-player over gross-substitute valuations has a gross-substitute valuation [12].
Thus in this case we can regard the ef-mediator as having a gross-substitute
valuation. This implies that a Walrasian equilibrium for the central auction
exists and, with the efficient demand oracle defined above, can be computed
efficiently when all bidders have gross-substitute valuations and all mediators
are ef-mediators.

4.3 Computing an Equilibrium

The basic three-party auction is simple: First run the central auction at the
exchange, then the local auctions at the mediators. In this section we summa-
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rize the details and analyze the time needed to compute a three-party compet-
itive equilibrium. We assume that all bidders have gross-substitute valuations
and that their valuations can be accessed via a demand oracle. We assume, for
simplicity, that there are m ef-mediators, each with n/m distinct bidders. We
will use known polynomial-time auctions for the two-party allocation problem,
see [17] for a recent survey. Theorem 4 shows how such an auction can be mod-
ified to yield a reserve-we(r) instead of a Walrasian equilibrium.

Let A be a polynomial-time algorithm that can access n gross-substitute
valuations over k items Ω via a demand oracle and outputs a Walrasian price
vector p ∈ R

k and a Walrasian allocation 〈Ωi〉i∈[n]. Let the runtime of A be
T (n, k) = O(nαkβ) for constants α, β.

Although we can assume oracle access to the bidders’ valuations, we cannot
assume it for the mediators’ (gross-substitute) valuations, as they are not part of
the input. However, as outlined in the previous section, a mediator can determine
a set in her demand by running a single virtual auction to compute a reserve-
we(r), i.e., there is an efficient demand oracle for the mediators. Hence, solving
the allocation problem for the central auction can be done in time T (m, k) ·
T (n/m, k) = O(nαk2β). Further, the local auctions for all mediators take time
O(m · T (n/m, k)) and thus the total time to compute a three-party competitive
equilibrium is O(nαk2β).7

5 Short Discussion

We proposed a new model for auctions at ad exchanges. Our model is more
general than previous models in the sense that it takes the incentives of all
three types of participants into account and that it allows to express preferences
over multiple items. Interestingly, at least when gross-substitute valuations are
considered, this generality does not come at the cost of tractability, as shown by
our polynomial-time algorithm. Note that this is the most general result we could
expect in light of the classical (two-sided) literature on combinatorial auctions.8
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