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Abstract. The inefficiency of the Wardrop equilibrium of nonatomic
routing games can be eliminated by placing tolls on the edges of a net-
work so that the socially optimal flow is induced as an equilibrium flow.
A solution where the minimum number of edges are tolled may be prefer-
able over others due to its ease of implementation in real networks. In this
paper we consider the minimum tollbooth (MINTB) problem, which
seeks social optimum inducing tolls with minimum support. We prove
for single commodity networks with linear latencies that the problem
is NP-hard to approximate within a factor of 1.1377 through a reduc-
tion from the minimum vertex cover problem. Insights from network
design motivate us to formulate a new variation of the problem where,
in addition to placing tolls, it is allowed to remove unused edges by the
social optimum. We prove that this new problem remains NP-hard even
for single commodity networks with linear latencies, using a reduction
from the partition problem. On the positive side, we give the first exact
polynomial solution to the MINTB problem in an important class of
graphs—series-parallel graphs. Our algorithm solves MINTB by first
tabulating the candidate solutions for subgraphs of the series-parallel
network and then combining them optimally.

1 Introduction

Traffic congestion levies a heavy burden on millions of commuters across the
globe. The congestion cost to the U.S. economy was measured to be $126 billion
in the year 2013 with an estimated increase to $186 billion by year 2030 [16].
Currently the most widely used method of mitigating congestion is through
congestion pricing, and one of the most common pricing schemes is through
placing tolls on congested roads that users have to pay, which makes these roads
less appealing and diverts demand, thereby reducing congestion.

Mathematically, an elegant theory of traffic congestion was developed starting
with the work of Wardrop [18] and Beckman et al. [6]. This theory considered
a network with travel time functions that are increasing in the network flow, or
the number of users, on the corresponding edges. Wardrop differentiated between
two main goals: (1) user travel time is minimized, and (2) the total travel time
of all users is minimized. This led to the investigation of two different resulting
traffic assignments, or flows, called a Wardrop equilibrium and a social or system
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optimum, respectively. It was understood that these two flows are unfortunately
often not the same, leading to tension between the two different objectives.
Remarkably, the social optimum could be interpreted as an equilibrium with
respect to modified travel time functions, that could in turn be interpreted as
the original travel time functions plus tolls.

Consequently, the theory of congestion games developed a mechanism design
approach to help users routing along minimum cost paths reach a social optimum
through a set of optimal tolls that would be added to (all) network edges. Later,
through the works of Bergendorff et al. [7] and Hearn & Ramana [12], it was
understood that the set of optimal tolls is not unique and there has been work
in diverse branches of literature such as algorithmic game theory, operations
research and transportation on trying to limit the toll cost paid by users by
limiting the number of tolls placed on edges.

Related Work. The natural question of what is the minimum number of edges
that one needs to place tolls on so as to lead selfish users to a social optimum,
was first raised by Hearn and Ramana [12]. The problem was introduced as the
minimum tollbooth (MINTB) problem and was formulated as a mixed integer
linear program. This initiated a series of works which led to new heuristics for the
problem. One heuristic approach is based on genetic algorithms [3,8]. In 2009, a
combinatorial benders cut based heuristic was proposed by Bai and Rubin [2].
The following year, Bai et al. proposed another heuristic algorithm based on
LP relaxation using a dynamic slope scaling method [1]. More recently, Ste-
fanello et al. [15] have approached the problem with a modified genetic algorithm
technique.

The first step in understanding the computational complexity of the problem
was by Bai et al. [1] who proved that MINTB in multi commodity networks
is NP-hard via a reduction from the minimum cardinality multiway cut prob-
lem [10]. In a related direction, Harks et al. [11] addressed the problem of induc-
ing a predetermined flow, not necessarily the social optimum, as the Wardrop
equilibrium, and showed that this problem is APX-hard, via a reduction from
length bounded edge cuts [4]. Clearly, MINTB is a special case of that prob-
lem and it can be deduced that the hardness results of Harks et al. [11] do not
carry forward to the MINTB problem. A related problem is imposing tolls on
a constrained set of edges to minimize the social cost under equilibrium [13].

The latest work stalls at this point leaving open both the question of whether
approximations for multi commodity networks are possible, and what the hard-
ness of the problem is for single commodity networks or for any meaningful
subclass of such networks.

Our Contribution. In this work, we make progress on this difficult problem by
deepening our understanding on what can and cannot be computed in polyno-
mial time. In particular, we make progress in both the negative and positive
directions by providing NP-hardness and hardness of approximation results for
the single commodity network, and a polynomial-time exact algorithm for com-
puting the minimum cardinality tolls on series-parallel graphs.
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Specifically, we show in Theorem 1 that the minimum tollbooth problem for
single commodity networks and linear latencies is hard to approximate to within
a factor of 1.1377, presenting the first hardness of approximation result for the
MINTB problem.

Further, motivated by the observation that removing or blocking an edge
in the network bears much less cost compared to the overhead of toll place-
ment, we ask: if all unused edges under the social optimum are removed, can we
solve MINTB efficiently? The NP-hardness result presented in Theorem 2 for
MINTB in single commodity networks with only used edges, settles it nega-
tively, yet the absence of a hardness of approximation result creates the possi-
bility of a polynomial time approximation scheme upon future investigation.

Observing that the Braess structure is an integral part of both NP-hardness
proofs, we seek whether positive progress is possible for the problem in series-
parallel graphs. We propose an exact algorithm for series-parallel graphs with
O(m3) runtime, m being the number of edges. Our algorithm provably (see
Theorem 4) solves the MINTB problem in series-parallel graphs, giving the
first exact algorithm for MINTB on an important class of graphs.

2 Preliminaries and Problem Definition

We are given a directed graph G(V,E) with edge delay or latency functions
(�e)e∈E and demand r that needs to be routed between a source s and a sink t. We
will abbreviate an instance of the problem by the tuple G = (G(V,E), (�e)e∈E , r).
For simplicity, we usually omit the latency functions, and refer to the instance as
(G, r). The function �e : R≥0 → R≥0 is a non-decreasing cost function associated
with each edge e. Denote the (non-empty) set of simple s − t paths in G by P.

Flows. Given an instance (G, r), a (feasible) flow f is a non-negative vector
indexed by the set of feasible s − t paths P such that

∑
p∈P fp = r. For a flow

f , let fe =
∑

p:e∈p fp be the amount of flow that f routes on each edge e. An
edge e is used by flow f if fe > 0, and a path p is used by flow f if it has strictly
positive flow on all of its edges, namely mine∈p{fe} > 0. Given a flow f , the cost
of each edge e is �e(fe) and the cost of path p is �p(f) =

∑
e∈p �e(fe).

Nash Flow. A flow f is a Nash (equilibrium) flow, if it routes all traffic on
minimum latency paths. Formally, f is a Nash flow if for every path p ∈ P with
fp > 0, and every path p′ ∈ P, �p(f) ≤ �p′(f). Every instance (G, r) admits at
least one Nash flow, and the players’ latency is the same for all Nash flows (see
e.g., [14]).

Social Cost and Optimal Flow. The Social Cost of a flow f , denoted C(f),
is the total latency C(f) =

∑
p∈P fp�p(f) =

∑
e∈E fe�e(fe) . The optimal flow

of an instance (G, r), denoted o, minimizes the total latency among all feasible
flows.

In general, the Nash flow may not minimize the social cost. As discussed in
the introduction, one can improve the social cost at equilibrium by assigning
tolls to the edges.
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Tolls and Tolled Instances. A set of tolls is a vector Θ = {θe}e∈E such that
the toll for each edge is nonnegative: θe ≥ 0. We call size of Θ the size of the
support of Θ, i.e., the number of edges with strictly positive tolls, |{e : θe > 0}|.
Given an instance G = (G(V,E), (�e)e∈E , r) and a set of tolls Θ, we denote the
tolled instance by Gθ = (G(V,E), (�e + θe)e∈E , r). For succinctness, we may also
denote the tolled instance by (Gθ, r). We call a set of tolls, Θ, opt-inducing for
an instance G if the optimal flow in G and the Nash flow in Gθ coincide.

Opt-inducing tolls need not be unique. Consequently, a natural problem is
to find a set of optimal tolls of minimum size, which is the problem we consider
here.

Definition 1 (Minimum Tollbooth problem (MINTB)). Given instance
G and an optimal flow o, find an opt-inducing toll vector Θ such that the support
of Θ is less than or equal to the support of any other opt-inducing toll vector.

The following definitions are needed for Sect. 4.

Series-Parallel Graphs. A directed s−t multi-graph is series-parallel if it con-
sists of a single edge (s, t) or of two series-parallel graphs with terminals (s1, t1)
and (s2, t2) composed either in series or in parallel. In a series composition, t1 is
identified with s2, s1 becomes s, and t2 becomes t. In a parallel composition, s1
is identified with s2 and becomes s, and t1 is identified with t2 and becomes t.

A series-parallel (SP ) graph G with n nodes and m edges can be efficiently
represented using a parse tree decomposition of size O(m), which can be con-
structed in time O(m) due to Valdes et al. [17].

Series-Parallel Parse Tree. A series-parallel parse tree T is a rooted binary
tree representation of a given SP graph G that is defined using the following
properties:

1. Each node in the tree T represents a SP subgraph H of G, with the root
node representing the graph G.

2. There are three type of nodes: ‘series’ nodes, ‘parallel’ nodes, which have two
children each, and the ‘leaf’ nodes which are childless.

3. A ‘series’ (‘parallel’) node represents the SP graph H formed by the ‘series
combination’ (‘parallel combination’) of its two children H1 and H2.

4. The ‘leaf’ node represents a parallel arc network, namely one with two ter-
minals s and t and multiple edges from s to t.

For convenience, when presenting the algorithm, we allow ‘leaf’ nodes to be
multi-edge/parallel-arc networks. This will not change the upper bounds on the
time complexity or the size of the parse tree.

3 Hardness Results for MINTB

In this section we provide hardness results for MINTB. We study two versions
of the problem. The first one considers arbitrary instances while the second
considers arbitrary instances where the optimal solution uses all edges, i.e. ∀e ∈
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E : oe > 0. Recall that the motivation for separately investigating the second
version comes as a result of the ability of the network manager to make some
links unavailable.

3.1 Single-Commodity Network with Linear Latencies

We give hardness results on finding and approximating the solution of MINTB
in general instances with linear latencies. In Theorem 1 we give an inapprox-
imability result by a reduction from a Vertex Cover related NP-hard problem
and as a corollary (Corollary 1) we get the NP-hardness of MINTB on single
commodity networks with linear latencies. The construction of the network for
the reduction is inspired by the NP-hardness proof of the length bounded cuts
problem in [4].

Theorem 1. For instances with linear latencies, it is NP-hard to approximate
the solution of MINTB by a factor of less than 1.1377.

Proof. The proof is by a reduction from an NP-hard variant of Vertex Cover
(V C) due to Dinur and Safra [9]. Reminder: a Vertex Cover of an undirected
graph G(V,E) is a set S ⊆ V such that ∀{u, v} ∈ E : S ∩ {u, v} 	= ∅.

Given an instance V of V C we are going to construct an instance G of
MINTB which will give a one-to-one correspondence (Lemma 1) between Ver-
tex Covers in V and opt-inducing tolls in G. The inapproximability result will
follow from that correspondence and an inapproximability result concerning Ver-
tex Cover by [9]. We note that we will not directly construct the instance of
MINTB. First, we will construct a graph with edge costs that are assumed to
be the costs of the edges (used or unused) under the optimal solution and then
we are going to assign linear cost functions and demand that makes the edges
under the optimal solution to have costs equal to the predefined costs.

We proceed with the construction. Given an instance Gvc(Vvc, Evc) of V C,
with nvc vertices and mvc edges, we construct a directed single commodity net-
work G(V,E) with source s and sink t as follows:

1. For every vertex vi ∈ Vvc create gadget graph Gi(Vi, Ei), with Vi = {ai, bi, ci,
di} and Ei = {(ai, bi), (bi, ci), (ci, di), (ai, di)}, and assign costs equal to 1 for
edges e1,i = (ai, bi) and e3,i = (ci, di), 0 for edge e2,i = (bi, ci), and 3 for edge
e4,i = (ai, di). All edges e1,i ,e2,i,e3,i and e4,i are assumed to be used.

2. For each edge ek = {vi, vj} ∈ Evc add edges g1,k = (bi, cj) and g2,k = (bj , ci)
with cost 0.5 each. Edges g1,k and g2,k are assumed to be unused.

3. Add source vertex s and sink vertex t and for all vi ∈ Vvc add edges s1,i =
(s, ai) and t1,i = (di, t) with 0 cost, and edges s2,i = (s, bi) and t2,i = (ci, t)
with cost equal to 1.5. Edges s1,i and t1,i are assumed to be used and edges
s2,i and t2,i are assumed to be unused.

The construction is shown in Fig. 1 where the solid lines represent used edges
and dotted lines represent unused edges. The whole network consists of (2+4nvc)
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Fig. 1. Gadgets for the reduction from V C to MINTB. The pair of symbols on each
edge corresponds to the name and the cost of the edge respectively. Solid lines represent
used edges and dotted lines represent unused edges.

nodes and (8nvc + 2mvc) edges, therefore, it can be constructed in polynomial
time, given Gvc.

We go on to prove the one-to-one correspondence lemma.

Lemma 1. (I) If there is a Vertex Cover in Gvc with cardinality x, then there
are opt-inducing tolls for G of size nvc + x.
(II) If there are opt-inducing tolls for G of size nvc + x, then there is a Vertex
Cover in Gvc with cardinality x.

Proof. Readers are referred to the proof of Lemma 1 in [5].

Statement (I) in the above lemma directly implies that if the minimum Vertex
Cover of Gvc has cardinality x then the optimal solution of the MINTB instance
has size at most nvc + x.

From the proof of Theorem 1.1 in [9] we know that there exist instances Gvc

where it is NP-hard to distinguish between the case where we can find a Vertex
Cover of size nvc ·(1−p+ε), and the case where any vertex cover has size at least
nvc · (1 − 4p3 + 3p4 − ε), for any positive ε and p = (3 − √

5)/2. We additionally
know that the existence of a Vertex Cover with cardinality in between the gap
implies the existence of a Vertex Cover of cardinality nvc · (1 − p + ε).1

Assuming that we reduce from such an instance of V C, the above result
implies that it is NP-hard to approximate MINTB within a factor of 1.1377 <
2−4p3+3p4−ε

2−p+ε (we chose an ε for inequality to hold). To reach a contradiction
assume the contrary, i.e. there exists a β-approximation algorithm Algo for
MINTB, where β≤1.1377 < 2−4p3+3p4−ε

2−p+ε . By Lemma 1 statement (I), if there

1 The instance they create will have either a Vertex Cover of cardinality nvc ·(1−p+ε)
or all Vertex Covers with cardinality ≥ nvc · (1 − 4p3 + 3p4 − ε).
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exists a Vertex Cover of cardinality x̂ = nvc · (1 − p + ε) in Gvc, then the car-
dinality in an optimal solution to MINTB on the corresponding instance is
OPT ≤ nvc + x̂. Further, Algo produces opt-inducing tolls with size nvc + y,
from which we can get a Vertex Cover of cardinality y in the same way as we
did inside the proof of statement (II) of Lemma1. Then by the approximation
bounds and using x̂ = nvc · (1 − p + ε) we get

nvc + y

nvc + x̂
≤ nvc + y

OPT
≤ β <

2 − 4p3 + 3p4 − ε

2 − p + ε
⇒ y < (1 − 4p3 + 3p4 − ε)nvc

The last inequality would answer the question whether there exists a Vertex
Cover with size nvc · (1 − p + ε), as we started from an instance for which we
additionally know that the existence of a Vertex Cover with cardinality y <
(1 − 4p3 + 3p4 − ε)nvc implies the existence of a Vertex Cover of cardinality
nvc · (1 − p + ε).

What is left for concluding the proof is to define the linear cost functions
and the demand so that at an optimal solution all edges have costs equal to the
ones defined above.

Define the demand to be r = 2nvc and assign: for every i the cost functions
�0(x) = 0 to edges s1,i, t1,i and e2,i, the cost function �1(x) = 1

2x + 1
2 to edges

e1,i and e3,i, the cost function �2(x) = 1.5 to edges s2,i and t2,i, and the cost
function �3(x) = 3 to edge e4,i, and for each k, the cost function �4(x) = 0.5 to
edges g1,k and g2,k. The optimal solution will assign for each Gi one unit of flow
to path s−ai − bi − ci −di − t and one unit of flow to s−ai −di − t. This makes
the costs of the edges to be as needed, as the only non constant cost is �1 and
�1(1) = 1.

To verify that this is indeed an optimal flow, one can assign to each edge
e instead of its cost function, say �e(x), the cost function �e(x) + x�′

e(x). The
optimal solution in the initial instance should be an equilibrium for the instance
with the pre-described change in the cost functions (see e.g. [14]). This will hold
here as under the optimal flow and with respect to the new cost functions the
only edges changing cost will be e1,i and e3,i, for each i, and that new cost will
be 1.5 (�1(1) + 1�′

1(1) = 1.5). �
Consequently, we obtain the following corollary.

Corollary 1. For single commodity networks with linear latencies, MINTB is
NP-hard.

Proof. By following the same reduction, by Lemma 1 we get that solving
MINTB in G gives the solution to V C in Gvc and vice versa. Thus, MINTB is
NP-hard. �

3.2 Single-Commodity Network with Linear Latencies and All
Edges Under Use

In this section we turn to study MINTB for instances where all edges are used
by the optimal solution. Note that this case is not captured by Theorem1, as
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in the reduction given for proving the theorem, the existence of unused paths in
network G was crucially exploited. Nevertheless, MINTB remains NP hard for
this case.

Theorem 2. For instances with linear latencies, it is NP-hard to solve MINTB
even if all edges are used by the optimal solution.

Proof. The proof comes by a reduction from the partition problem (PARTI-
TION) which is well known to be NP-complete (see e.g. [10]). PARTITION is:
Given a multiset S = {α1, α2, . . . , αn} of positive integers, decide (YES or NO)
whether there exists a partition of S into sets S1 and S2 such that S1 ∩ S2 = ∅
and

∑
αi∈S1

αi =
∑

αj∈S2
αj =

∑n
i=1 αi

2 .
Given an instance of PARTITION we will construct an instance of MINTB

with used edges only and show that getting the optimal solution for MINTB
solves PARTITION . Though, we will not directly construct the instance. First
we will construct a graph with edge costs that are assumed to be the costs of
the edges under the optimal solution and then we are going to assign linear cost
functions and demand that makes the edges under the optimal solution to have
costs equal to the predefined costs. For these costs we will prove that if the
answer to PARTITION is YES, then the solution to MINTB puts tolls to 2n
edges and if the answer to PARTITION is NO then the solution to MINTB
puts tolls to more than 2n edges. Note that the tolls that will be put on the
edges should make all s-t paths of the MINTB instance having equal costs, as
all of them are assumed to be used.

Next, we construct the graph of the reduction together with the costs of
the edges. Given the multi-set S = {α1, α2, . . . , αn} of PARTITION , with∑n

i=1 αi = 2B, construct the MINTB instance graph G(V,E), with source s
and sink t, in the following way:

1. For each i, construct graph Gi = (Vi, Ei), with Vi = {ui, wi, xi, vi} and
Ei = {(ui, wi), (wi, vi), (ui, xi), (xi, vi), (wi, xi), (wi, xi)}. Edges ai = (ui, wi)
and bi = (xi, vi) have cost equal to αi, edges c1,i = (wi, xi) and c2,i = (wi, xi)
have cost equal to 2αi and edges qi = (wi, vi) and gi = (ui, xi) have cost equal
to 4αi.

2. For i = 1 to n − 1 identify vi with ui+1. Let the source vertex be s = u1 and
the sink vertex be t = vn.

3. Add edge h = (s, t) to connect s and t directly with cost equal to 11B.

The constructed graph is presented in Fig. 2. It consists of (3n + 1) vertices
and 6n + 1 edges and thus can be created in polynomial time, given S.

We establish the one-to-one correspondence between the two problems in the
following lemma.

Lemma 2. (I) If the answer to PARTITION on S is YES then the size of
opt-inducing tolls for G is equal to 2n.
(II) If the answer to PARTITION on S is NO then the size of opt-inducing
tolls for G is strictly greater than 2n.
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Fig. 2. The graph for MINTB, as it arises from PARTITION . The pair of symbols
on each of Gi’s edges correspond to the name and the cost of the edge respectively.

Proof. The proof is identical to the proof of Lemma2 in [5].

What is left for concluding the proof is to define the linear cost functions
and the demand so that at the optimal solution all edges have costs equal to the
ones defined above.

Define the demand to be r = 4 and assign the cost function �h = 11B to edge
h and for each i, the cost function �1i (x) = 1

4αix + 1
2αi to edges ai, bi, the cost

function �2i (x) = αix + 3
2αi to edges c1,i and c2,i, and the constant cost function

�3i (x) = 4αi to edges qi and gi. The optimal flow then assigns 1 unit of flow to
edge h which has cost 11B, and the remaining 3 units to the paths through Gi.
In each Gi, 1 unit will pass through ai − qi, 1 unit will pass through gi − bi, 1/2
units will pass through ai − c1,i − bi, and 1/2 unit will pass through ai − c2,i − bi.
This result to ai and bi costing αi, to c1,i and c2,i costing 2αi, and to qi and
gi costing 4αi, as needed. We can easily verify that it is indeed an optimal flow
using a technique similar to the one used in Theorem 1.

4 Algorithm for MINTB on Series-Parallel Graphs

In this section we propose an exact algorithm for MINTB in series-parallel
graphs. We do so by reducing it to a solution of an equivalent problem defined
below.

Consider an instance G = {G(V,E), (�e)e∈E , r} of MINTB, where G(V,E)
is a SP graph with terminals s and t. Since the flow we want to induce is fixed,
i.e. the optimal flow o, by abusing notation, let length �e denote �e(oe), for each
e ∈ E, and let used edge-set, Eu = {e ∈ E : oe > 0}, denote the set of used edges
under o. For G, we define the corresponding �-instance (length-instance) to be
S(G) = {G(V,E), {�e}e∈E , Eu}. We may write simply S, if G is clear form the
context. By the definition below and the equilibrium definition, Lemma3 easily
follows.

Definition 2. Given an �-instance S = {G(V,E), {�e}e∈E , Eu}, inducing a
length L in G is defined as the process of finding �′

e ≥ �e, for all e ∈ E, such
that when replacing �e with �′

e: (i) all used s − t paths have length L and (ii) all
unused s − t paths have length greater or equal to L, where a path is used when
all of its edges are used, i.e. they belong to Eu.
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Algorithm 1. MAKELISTPL
Input: Parallel link network: P , List: lstP (Global)
Output: Processed list: lstP
1 Reorder the m edges such that

�1 ≤ �2 ≤ · · · ≤ �m ;
2 Append �m+1 = ∞ to the lengths;
3 Let �max be the max length of used edges;
4 The minimum number of edges to be tolled,

i0 ← min{i : �i+1 ≥ �max, 0 ≤ i ≤ m + 1};
5 for i ← i0 to m do
6 Create the new element α
7 (α·η, α·�) ← (i, �i+1);
8 Insert α in lstP
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Fig. 3. Example of list

Lemma 3. Consider an instance G on a SP graph G(V,E) with corresponding
�-instance S. L is induced in G with modified lengths �′

e if and only if {�′
e−�e}e∈E

is an opt-inducing toll vector for G.
We call edges with �′

e > �e tolled edges as well. Under these characterizations,
observe that finding a toll vector Θ that solves MINTB for instance G with
graph G, is equivalent to inducing length L in G with minimum number of
tolled edges, where L is the common equilibrium cost of the used paths in Gθ.
In general, this L is not known in advance and it might be greater than �max,
i.e. the cost of the most costly used path in G, see e.g. Fig. 4. Though, for SP
graphs we prove (Lemma 4) a monotonicity property that ensures that inducing
length �max results in less or equal number of tolled edges than inducing any
�′ > �max. Our algorithm relies on the above equivalence and induces �max with
minimum number of tolled edges.

Algorithm for Parallel Link Networks: Before introducing the algorithm
for MINTB on SP graphs, we consider the problem of inducing a length L in a
parallel link network P using minimum number of edges. It is easy to see that all
edges with length less than the maximum among used edges, say �max, should
get a toll. Similarly, to induce any length � > �max, all edges with cost less than
� are required to be tolled.

Define an ‘edge-length’ pair as the pair (η, �) such that by using at most η
edges a length � can be induced in a given graph. Based on the above observations
we create the ‘edge-length’ pair list, lstP , in Algorithm 1. By reordering the edges
in increasing length order, let edge k have length �k for k = 1 to m. Also let
there be i0 number of edges with length less than �max. The list gets the first
entry (i0, �max) and subsequently for each i = i0+1 to m, gets the entry (i, �i+1),
where �m+1 = ∞.

To induce any length �, starting from the first ‘edge-length’ pair in list lstP
we linearly scan the list until for the first time we encounter the ‘edge-length’ pair
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with η edges and length strictly greater than �. Clearly (η − 1) is the minimum
number of edges required to induce � as illustrated in Fig. 3.

Algorithm Structure: The proposed algorithm for MINTB proceeds in a
recursive manner on a given parse tree T of the SP graph G of an �-instance S,
where we create S given instance G and optimal flow o. Recall that for each node
v of the parse tree we have an associated SP subgraph Gv with the terminals sv

and tv. The two children of node v, whenever present, represent two subgraphs of
Gv, namely G1 and G2. Similar to the parallel link graph our algorithm creates
an ‘edge-length’ pair list for each node v. Due to lack of space the algorithms
are presented in the full version of this paper [5]. From hereon Algorithm i in
this paper will refer to Algorithm i in [5], for all i ≥ 2.

Central Idea. Beginning with the creation of a list for each leaf node of the parse
tree using Algorithm 1 we keep on moving up from the leaf level to the root level.
At every node the list of its two children, lst1 and lst2, are optimally combined
to get the current list lstv. For each ‘edge-length’ pair (η, �) in a current list we
maintain two pointers (p1, p2) to point to the two specific pairs, one each from
its descendants, whose combination generates the pair (η, �). Hence each element
in the list of a ‘series’ or ‘parallel’ node v is given by a tuple, (η, �, p1, p2).

The key idea in our approach is that the size of the list lstv for every node v,
is upper bounded by the number of edges in the subgraph Gv. Furthermore, for
each series or parallel node, we devise polynomial time algorithms, Algorithm 5
and Algorithm 6 respectively, which carry out the above combinations optimally.

Optimal List Creation. Specifically, we first compute the number of edges nec-
essary to induce the length of maximum used path between sv and tv, which
corresponds to the first ‘edge-length’ pair in lstv. Moreover, the size of the list is
limited by the number of edges necessary for inducing the length ∞, as computed
next. Denoting the first value by s and the latter by f , for any ‘edge-length’ pair
(η, �) in lstv, η ∈ {s, s + 1, . . . , f}.

Considering an η in that range we may use η′ edges in subgraph G1 and η−η′

edges in subgraph G2 to induce some length, which gives a feasible division of η.
Let η′ induce �1 in G1 and η −η′ induce �2 in G2. In a ‘series’ node the partition
induces � = �1 + �2 whereas in a ‘parallel’ node it induces � = min{�1, �2}.

Next we fix the number of edges to be η and find the feasible division that
maximizes the induced length in G and subsequently a new ‘edge-length’ pair
is inserted in lstv. We repeat for all η, starting from s and ending at f . This
gives a common outline for both Algorithms 5 and 6. A detailed description is
provided in Theorem 3.

Placing Tolls on the Network. Once all the lists have been created, Algorithm
4 traverses the parse tree starting from its root node and optimally induces the
necessary lengths at every node. At the root node the length of the maximum
used path in G is induced. At any stage, due to the optimality of the current
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list, given a length � that can be induced there exists a unique ‘edge-length’
pair that gives the optimal solution. In the recursive routine after finding this
specific pair, we forward the length required to be induced on its two children.
For a ‘parallel’ node the length � is forwarded to both of its children, whereas in
a ‘series’ node the length is appropriately split between the two. Following the
tree traversal the algorithm eventually reaches the leaf nodes, i.e. the parallel
link graphs, where given a length � the optimal solution is to make each edge
e with length �e < � equal to length � by placing toll � − �e. A comprehensive
explanation is presented under Lemma5 in [5].

4.1 Optimality and Time Complexity of Algorithm SolMINTB

Proof Outline: The proof of Theorem 4 which states that the proposed algo-
rithm solves the MINTB problem in SP graphs in polynomial time, is split
into Lemmas 4 and 5 and Theorem 3. The common theme in the proofs is the
use of an inductive reasoning starting from the base case of parallel link net-
works, which is natural given the parse tree decomposition. Lemma4 gives a
monotonicity property of the number of edges required to induce length � in a
SP graph guiding us to induce the length of maximum used path to obtain an
optimal solution.

The key Theorem 3 is essentially the generalization of the ideas used in the
parallel link network to SP graphs. It proves that the lists created by Algorithm
2 follow three desired properties. (1) The maximality of the ‘edge-length’ pairs
in a list, i.e. for any ‘edge-length’ pair (η, �) in lstv it is not possible to induce
a length greater than � in Gv using at most η edges. (2) The ‘edge-length’ pairs
in a list follows an increasing length order which makes it possible to locate the
optimal solution efficiently. (3) Finally the local optimality of a list at any level
of the parse tree ensures that the ‘series’ or ‘parallel’ combination preserves the
same property in the new list.

In Lemma 5 we prove that the appropriate tolls on the edges can be placed
provided the correctness of Theorem 3. The basic idea is while traversing down
the parse tree at each node we induce the required length in a locally optimal
manner. Finally, in the leaf nodes the tolls are placed on the edges and the
process inducing a given length is complete. Exploiting the linkage between the
list in a specific node and the lists in its children we can argue that these local
optimal solutions lead to a global optimal solution.

Finally, in our main theorem, Theorem4, combining all the elements we prove
that the proposed algorithm solves MINTB optimally. In the second part of the
proof of Theorem 4, the analysis of running time of the algorithm is carried out.
The creation of the list in each node of the parse tree takes O(m2) time, whereas
the number of nodes is bounded by O(m), implying that Algorithm 2 terminates
in O(m3) time. Here m is the number of edges in the SP graph G.

Proof of Correctness: In what follows we state the key theorems and lemmas,
while interested readers are referred to [5] for the complete proofs.
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Lemma 4. In an �-instance S, with SP graph G and maximum used (s, t) path
length �max, any length L can be induced in G if and only if L ≥ �max. Moreover
if length L is induced optimally with T edges then length �max ≤ � ≤ L can be
induced optimally with t ≤ T edges.

A

B

C

Fig. 4. Counter Example

Note: The above lemma breaks in general
graphs. As an example, in the graph in Fig. 4
to induce a length of 3 we require 3 edges,
whereas to induce a length of 4 only 2 edges
are sufficient.

Theorem 3. Let S be an �-instance and G be the associated SP graph with
parse tree representation T . For every node v in T , let the corresponding SP
network be Gv and �max,v be the length of the maximum used path from sv to
tv. Algorithm 3 creates the list, lstv, with the following properties.

1. For each ‘edge-length’ pair (ηi, �i), i = 1 to mv, in lstv, �i is the maximum
length that can be induced in the network Gv using at most ηi edges.

2. For each ‘edge-length’ pair (ηi, �i) in the list lstv, we have the total ordering,
i.e. ηi+1 = ηi + 1 for all i = 1 to mv − 1, and �max,v = �1 ≤ �2 ≤ · · · ≤
�mv

= ∞.
3. In Gv, length � is induced by minimum ηî edges if and only if � ≥ �1 and

î = arg min{ηj : (ηj , �j) ∈ lstv ∧ �j ≥ �}.

Lemma 5. In an �-instance S with SP graph G, suppose we are given lists lstv,
for all nodes v in the parse tree T of G, all of which satisfy properties 1, 2 and
3 in Theorem3. Algorithm 4 induces any length �in ≥ �1 optimally in G, where
�1 is the length of the first ‘edge-length’ pair in lstr, r being the root node of T .
Moreover, it specifies the appropriate tolls necessary for every edge.

Theorem 4. Algorithm 2 solves the MINTB problem optimally in time O (
m3

)

for the instance G = {G(V,E), (�e)e∈E , r}, where G(V,E) is a SP graph with
|V | = n and |E| = m.

5 Conclusion

In this paper we consider the problem of inducing the optimal flow as network
equilibrium and show that the problem of finding the minimum cardinality toll,
i.e. the MINTB problem, is NP-hard to approximate within a factor of 1.1377.
Furthermore we define the minimum cardinality toll with only used edges left
in the network and show in this restricted setting the problem remains NP-hard
even for single commodity instances with linear latencies. We leave the hardness
of approximation results of the problem open. Finally, we propose a polynomial
time algorithm that solves MINTB in series-parallel graphs, which exploits
the parse tree decomposition of the graphs. The approach in the algorithm
fails to generalize to a broader class of graphs. Specifically, the monotonicity
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property proved in Lemma4 holds in series-parallel graphs but breaks down in
general graphs revealing an important structural difficulty inherent to MINTB
in general graphs. Future work involves finding approximation algorithms for
MINTB. The improvement of the inapproximability results presented in this
paper provides another arena to this problem, e.g. finding stronger hardness of
approximation results for MINTB in multi-commodity networks.
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