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Preface

This volume contains the papers and extended abstracts presented at WINE 2015: The
11th Conference on Web and Internet Economics, held during December 9–12, 2015,
at Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands.

Over the past decade, researchers in theoretical computer science, artificial intelli-
gence, and microeconomics have joined forces to tackle problems involving incentives
and computation. These problems are of particular importance in application areas like
the Web and the Internet that involve large and diverse populations. The Conference on
Web and Internet Economics (WINE) is an interdisciplinary forum for the exchange of
ideas and results on incentives and computation arising from these various fields.
WINE 2015 built on the success of the Conference on Web and Internet Economics
series (named Workshop on Internet and Network Economics until 2013), which was
held annually from 2005 to 2014.

WINE 2015 received 142 submissions, which were all rigorously peer-reviewed
and evaluated on the basis of originality, soundness, significance, and exposition. The
Program Committee decided to accept only 38 papers, reaching a competitive accep-
tance ratio of 27%. To accommodate the publishing traditions of different fields, authors
of accepted papers could ask that only a one-page abstract of the paper appears in the
proceedings. Among the 38 accepted papers, the authors of eight papers opted for the
publication as a one-page abstract. The program also included four invited talks by
Michal Feldman (Tel Aviv University, Israel), Paul Goldberg (University of Oxford,
UK), Ramesh Johari (Stanford University, USA), and Paul Milgrom (Stanford
University, USA). In addition, WINE 2015 featured three tutorials on December 9:
“Some Game-Theoretic Aspects of Voting” by Vincent Conitzer (Duke University,
USA), “Polymatroids in Congestion Games” by Tobias Harks (University of Augsburg,
Germany), and “Polymatrix Games: Algorithms and Applications” by Rahul Savani
(University of Liverpool, UK).

We would like to thank DIAMANT, EATCS, Facebook, Google, Microsoft, NWO,
and Springer for their generous financial support and CWI for hosting the event. We
thank Susanne van Dam for her excellent local arrangements work and Irving van
Heuven van Staereling, Chris Wesseling, and Niels Nes for their help with the con-
ference website and online registration site.

We also acknowledge the work of the 37 members of the Program Committee,
Krzysztof Apt for organizing the tutorials, Anna Kramer and Alfred Hofmann at
Springer for helping with the proceedings, and the EasyChair paper management
system.

December 2015 Evangelos Markakis
Guido Schäfer
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Resolving Combinatorial Markets
via Posted Prices
(Invited Talk)

Michal Feldman

Blavatnic School of Computer Science,
Tel-Aviv University, Tel Aviv-Yafo, Israel
michal.feldman@cs.tau.ac.il

Abstract. In algorithmic mechanism design, we would like desired economic
properties to cause no (or modest) additional loss in social welfare beyond the
loss already incurred due to computational constraints. In this talk we review
two recent results showing black-box reductions from welfare approximation
algorithms to mechanisms that preserve desired economic properties. In par-
ticular: (1) we give a poly-time dominant strategy incentive compatible mech-
anism for Bayesian submodular (and more generally, fractionally subadditive)
combinatorial auctions that approximates the social welfare within a constant
factor. (2) we give a poly-time mechanism for arbitrary (known) valuation
functions that, given a black-box access to a social welfare algorithm, provides a
conflict free outcome that preserves at least half of its welfare. Both mechanisms
are based on posted prices.



Approximate Nash Equilibrium Computation
(Invited Talk)

Paul W. Goldberg

University of Oxford, Oxford, UK
paul.goldberg@cs.ox.ac.uk

Abstract. Nash equilibrium computation is complete for the complexity class
PPAD, even for two-player normal-form games. Should we understand this to
mean that the computational challenge is genuinely hard? In this talk, I explain
PPAD, what PPAD-completeness means for equilibrium computation, and
possible ways to escape the worst-case hardness. Following the
PPAD-completeness results, attention turned to the complexity of computing
approximate Nash equilibria. In an approximate equilibrium, the usual “no
incentive to deviate” requirement is replaced with “bounded incentive to devi-
ate”, where a parameter epsilon denotes a limit on any player’s incentive to
deviate. I review some of the progress that was made, and reasons to hope for a
polynomial-time approximation scheme. I also discuss recent work suggesting
that a quasi-polynomial time algorithm is the best thing we can hope to achieve.



Algorithms and Incentives in the Design
of Online Platform Markets

(Invited Talk)

Ramesh Johari

Stanford University, Stanford, USA
rjohari@stanford.edu

Abstract. Since the advent of the first online marketplaces nearly two decades
ago, commerce in nearly every sector of the industry is being transformed:
transportation (Lyft, Uber), lodging (Airbnb), delivery (Instacart, Postmates),
labor markets (Amazon Mechanical Turk, LinkedIn, Taskrabbit, Upwork), etc.
In this talk, we will survey challenges and opportunities that arise in the design
of these markets, with an emphasis on how operational and algorithmic chal-
lenges interlace with incentives to dictate market outcomes.



Adverse Selection and Auction Design
for Internet Display Advertising

(Invited Talk)

Paul Milgrom

Department of Economics, Stanford University, Stanford, USA
milgrom@stanford.edu

Abstract. We model an online display advertising environment in which
“performance” advertisers can measure the value of individual impressions,
whereas “brand” advertisers cannot. If advertiser values for ad opportunities are
positively correlated, second-price auctions for impressions can be very ineffi-
cient. Bayesian-optimal auctions are complex, introduce incentives for
false-name bidding, and disproportionately allocate low-quality impressions to
brand advertisers. We introduce “modified second bid” auctions as the unique
auctions that overcome these disadvantages. When advertiser match values are
drawn independently from heavy tailed distributions, a modified second bid
auction captures at least 94.8% of the first-best expected value. In that setting
and similar ones, the benefits of switching from an ordinary second-price auc-
tion to the modified second bid auction may be large, and the cost of defending
against shill bidding and adverse selection may be low.
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Sequential Posted Price Mechanisms
with Correlated Valuations

Marek Adamczyk1, Allan Borodin2, Diodato Ferraioli3(B),
Bart de Keijzer1, and Stefano Leonardi1

1 Sapienza University of Rome, Rome, Italy
{adamczyk,dekeijzer,leonardi}@dis.uniroma1.it

2 University of Toronto, Toronto, Canada
bor@cs.toronto.edu

3 University of Salerno, Fisciano, SA, Italy
dferraioli@unisa.it

Abstract. We study the revenue performance of sequential posted price
mechanisms and some natural extensions, for a general setting where
the valuations of the buyers are drawn from a correlated distribution.
Sequential posted price mechanisms are conceptually simple mechanisms
that work by proposing a “take-it-or-leave-it” offer to each buyer. We
apply sequential posted price mechanisms to single-parameter multi-unit
settings in which each buyer demands only one item and the mechanism
can assign the service to at most k of the buyers. For standard sequential
posted price mechanisms, we prove that with the valuation distribution
having finite support, no sequential posted price mechanism can extract
a constant fraction of the optimal expected revenue, even with unlim-
ited supply. We extend this result to the case of a continuous valuation
distribution when various standard assumptions hold simultaneously. In
fact, it turns out that the best fraction of the optimal revenue that is
extractable by a sequential posted price mechanism is proportional to
the ratio of the highest and lowest possible valuation. We prove that for
two simple generalizations of these mechanisms, a better revenue perfor-
mance can be achieved: if the sequential posted price mechanism has for
each buyer the option of either proposing an offer or asking the buyer
for its valuation, then a Ω(1/ max{1, d}) fraction of the optimal revenue
can be extracted, where d denotes the “degree of dependence” of the
valuations, ranging from complete independence (d = 0) to arbitrary
dependence (d = n − 1). When we generalize the sequential posted price
mechanisms further, such that the mechanism has the ability to make a
take-it-or-leave-it offer to the i-th buyer that depends on the valuations of
all buyers except i, we prove that a constant fraction (2−√

e)/4 ≈ 0.088
of the optimal revenue can be always extracted.

This work is supported by the EU FET project MULTIPLEX no. 317532, the ERC
StG Project PAAl 259515, the Google Research Award for Economics and Market
Algorithms, and the Italian MIUR PRIN 2010-2011 project ARS TechnoMedia –
Algorithmics for Social Technological Networks.

c© Springer-Verlag Berlin Heidelberg 2015
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2 M. Adamczyk et al.

1 Introduction

A large body of literature in the field of mechanism design focuses on the design of
auctions that are optimal with respect to some given objective function, such as
maximizing the social welfare or the auctioneer’s revenue. This literature mainly
considered direct revelation mechanisms, in which each buyer submits a bid that
represents his valuation for getting the service, and the mechanism determines
the winners and the payments. The reason for this is the revelation principle (see,
e.g., [9]), which implies that one may study only direct revelation mechanisms for
many purposes. Some of the most celebrated mechanisms follow this approach,
such as the VCG mechanism [12,17,29] and the Myerson mechanism [23].

A natural assumption behind these mechanisms is that buyers will submit
truthfully whenever the utility they take with the truthful bid is at least as
high as the utility they may take with a different bid. However, it has often
been acknowledged that such an assumption may be too strong in a real world
setting. In particular, Sandholm and Gilpin [27] highlight that this assumption
usually fails because of: (1) a buyer’s unwillingness to fully specify their values,
(2) a buyer’s unwillingness to participate in ill understood, complex, unintuitive
auction mechanisms, and (3) irrationality of a buyer, which leads him to underbid
even when there is nothing to be gained from this behavior.

This has recently motivated the research about auction mechanisms that are
conceptually simple. Among these, the class of sequential posted price mecha-
nisms [11] is particularly attractive. First studied by Sandholm and Gilpin [27]
(and called “take-it-or-leave-it mechanisms”), these mechanisms work by itera-
tively selecting a buyer that has not been selected previously, and offering him a
price. The buyer may then accept or reject that price. When the buyer accepts,
he is allocated the service. Otherwise, the mechanism does not allocate the ser-
vice to the buyer. In the sequential posted-price mechanism we allow both the
choice of buyer and the price offered to that buyer to depend on the decisions of
the previously selected buyers (and the prior knowledge about the buyers’ valu-
ations). Also, randomization in the choice of the buyer and in the charged price
is allowed. Sequential posted price mechanisms are thus conceptually simple and
buyers do not have to reveal their valuations. Moreover, they possess a trivial
dominant strategy (i.e., buyers do not have to take strategic decisions) and are
individually rational (i.e., participation is never harmful to the buyer).

Sequential posted price mechanisms have been mainly studied for the set-
ting where the valuations of the buyers are each drawn independently from
publicly known buyer-specific distributions, called the independent values set-
ting. In this paper, we study a much more general setting, and assume that the
entire vector of valuations is drawn from one publicly known distribution, which
allows for arbitrarily complex dependencies among the valuations of the buyers.
This setting is commonly known as the correlated values setting. Our goal is to
investigate the revenue guarantees of sequential posted price mechanisms in the
correlated value setting. We quantify the quality of a mechanism by comparing
its expected revenue to that of the optimal mechanism, that achieves the highest
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expected revenue among all dominant strategy incentive compatible and ex-post
individually rational mechanisms (see the definitions below).

We assume a standard Bayesian, transferable, quasi-linear utility model and
we study the unit demand, single parameter, multi-unit setting: there is one
service (or type of item) being provided by the auctioneer, there are n buyers
each interested in receiving the service once, and the valuation of each buyer
consists of a single number that reflects to what extent a buyer would profit
from receiving the service provided by the auctioneer. The auctioneer can charge
a price to a bidder, so that the utility of a bidder is his valuation (in case he
gets the service), minus the charged price. In this paper, our focus is on the k-
limited supply setting, where service can be provided to at most k of the buyers.
This is an important setting because it is a natural constraint in many realistic
scenarios, and it contains two fundamental special cases: the unit supply setting
(where k = 1), and the unlimited supply setting where k = n.

Related Work. There has been substantial work [5,14,19,20,26] on simple
mechanisms. Babaioff et al. [5] highlight the importance of understanding the
strength of simple versus complex mechanisms for revenue maximization.

As described above, sequential posted price mechanisms are an example of
such a simple class of mechanisms. Sandholm and Gilpin [27] have been the
first ones to study sequential posted price mechanisms. They give experimental
results for the case in which values are independently drawn from the uniform
distribution in [0, 1]. Moreover, they consider the case where multiple offers can
be made to a bidder, and study the equilibria that arise from this. Blumrosen and
Holenstein [8] compare fixed price (called symmetric auctions), sequential posted
price (called discriminatory auctions) and the optimal mechanism for valuations
drawn from a wide class of i.i.d. distributions. Babaioff et al. [3] consider prior-
independent posted price mechanisms with k-limited supply for the setting where
the only information known is that all valuations are independently drawn from
the same distribution with support [0, 1]. Posted-price mechanisms have also
been previously studied in [6,7,21], albeit for a non-Bayesian, on-line setting.
In a recent work Feldman et al. [16] study on-line posted price mechanisms for
combinatorial auctions when valuations are independently drawn.

The works of Chawla et al. [11] and Gupta and Nagarajan [18] are clos-
est to our present work, although they only consider sequential posted price
mechanisms in the independent values setting. In particular, Chawla et al. [11]
prove that such mechanisms can extract a constant factor of the optimal rev-
enue for single and multiple parameter settings under various constraints on the
allocations. They also consider on-line (called order-oblivious in [11]) sequential
posted price mechanisms in which the order of the buyers is fixed and adversar-
ially determined. They use on-line mechanisms to establish results for the more
general multi-parameter case. Yan [30], and Kleinberg and Weinberg [22] build
on this work and strengthen some of the results of Chawla et al. [11].

GuptaandNagarajan [18] introduceamoreabstractstochasticprobingproblem
that includes Bayesian sequential posted price mechanisms. Their approximation
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bounds were later improved by Adamczyk et al. [1] who in particular matched the
approximation of Chawla et al. [11] for single matroid settings.

All previous work only consider the independent setting. In this work we
instead focus on the correlated setting. The lookahead mechanism of Ronen [24]
is a fundamental reference for the correlated setting. It also resembles some
of the mechanisms considered in this work. However, as we will indicate, it
turns out to be different in substantial ways. Cremer and McLean [13] made a
fundamental contribution to auction theory in the correlated value setting, by
exactly characterizing for which valuation distributions it is possible to extract
the full optimal social welfare as revenue. Segal [28] gives a characterization of
optimal ex-post incentive compatible and ex-post individually rational optimal
mechanisms. Roughgarden and Talgam-Cohen [25] study the even more general
interdependent setting. They show how to extend the Myerson mechanism to
this setting for various assumptions on the valuation distribution. There is now
a substantial literature [10,15,25] that develops mechanisms with good approx-
imation guarantees for revenue maximization in the correlated setting. These
mechanisms build on the lookahead mechanism of Ronen [24] and thus they also
differ from the mechanisms proposed in this work.

Contributions and Outline. We first define some preliminaries and nota-
tion. In Sect. 2 we give a simple sequence of instances which demonstrate that
for (unrestricted) correlated distributions, sequential posted price (SPP) mech-
anisms cannot obtain a constant approximation with respect to the revenue
obtained by the optimal dominant strategy incentive compatible and ex-post
individually rational mechanism. This holds for any value of k (i.e., the size
of the supply). We extend this impossibility result by proving that a constant
approximation is impossible to achieve even when we assume that the valuation
distribution is continuous and satisfies all of the following conditions simultane-
ously: the valuation distribution is supported everywhere, is entirely symmetric,
satisfies regularity, satisfies the monotone hazard rate condition, satisfies affilia-
tion, all the induced marginal distributions have finite expectation, and all the
conditional marginal distributions are non-zero everywhere.

Given these negative results, we consider a generalization of sequential posted
price mechanisms that are more suitable for settings with limited dependence
among the buyers’ valuations: enhanced sequential posted price (ESPP) mech-
anisms. An ESPP mechanism works by iteratively selecting a buyer that has
not been selected previously. The auctioneer can either offer the selected buyer
a price or ask him to report his valuation. As in sequential posted price mech-
anisms, if the buyer is offered a price, then he may accept or reject that price.
When the buyer accepts, he is allocated the service. Otherwise, the mechanism
does not allocate the service to the buyer. If instead, the buyer is asked to report
his valuation, then the mechanism does not allocate him the service. Note that
the ESPP mechanism requires that some fraction of buyers reveal their valu-
ation truthfully. Thus, the property that the bidders not have to reveal their
preferences is partially sacrificed, for a more powerful class of mechanisms and
(as we will see) a better revenue performance. For the ESPP mechanisms, again
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there are instances in which the revenue is not within a constant fraction of the
optimal revenue. However, these mechanisms can extract a fraction Θ(1/n) of
the optimal revenue, regardless of the valuation distribution.

This result seems to suggest that to achieve a constant approximation of the
optimal revenue it is necessary to collect all the bids truthfully. Consistent with
this hypothesis, we prove that a constant fraction of the optimal revenue can be
extracted by dominant strategy IC blind offer mechanisms: these mechanisms
inherit all the limitations of sequential posted price mechanisms (i.e., buyers
are considered sequentially in an order independent of any bids; buyers are only
offered a price when selected; and the buyer gets the service only if he accepts
the offered price), except that the price offered to a bidder i may now depend
on the bids submitted by all players other than i. This generalization sacrifices
entirely the property that buyers valuations need not be revealed. Blind offer
mechanisms are thus necessarily direct revelation mechanisms. However, this
comes with the reward of a revenue that is only a constant factor away from
optimal. In conclusion, blind offer mechanisms achieve a constant approximation
of the optimal revenue, largely preserve the conceptual simplicity of sequential
posted price mechanisms, and are easy to grasp for the buyers participating in the
auction. In particular, buyers have a conceptually simple and practical strategy:
to accept the price if and only if it is not above their valuation, regardless of how
the prices are computed. We stress that, even if blind offer mechanisms sacrifice
some simplicity (and practicality), we still find it theoretically interesting that a
mechanism that allocates items to buyers in any order and thus not necessarily
in an order that maximizes profit, say as in [24], is able to achieve a constant
approximation of the optimal revenue even with correlated valuations. Moreover,
blind offer mechanisms provide the intermediate step en-route to establishing
revenue approximation bounds for other mechanisms. We will show how blind
offer mechanisms serve this purpose in Sect. 3.

We highlight that our positive results do not make any assumptions on the
marginal valuation distributions of the buyers nor the type of correlation among
the buyers. However, in Sect. 3 we consider the case in which the degree of depen-
dence among the buyers is limited. In particular, we introduce the notion of
d-dimensionally dependent distributions. This notion informally requires that for
each buyer i there is a set Si of d other buyers such that the distribution of i’s val-
uation when conditioning on the vector of other buyers’ valuations can likewise be
obtained by only conditioning on the valuations of Si. Thus, this notion induces a
hierarchy of n classes of valuation distributions with increasing degrees of depen-
dence among the buyers: for d = 0 the buyers have independent valuations, while
the other extreme d = n−1 implies that the valuations may be dependent in arbi-
trarily complex ways. Note that d-dimensional dependence does not require that
the marginal valuation distributions of the buyers themselves satisfy any partic-
ular property, and neither does it require anything from the type of correlation
that may exist among the buyers. This stands in contrast with commonly made
assumptions such as symmetry, affiliation, the monotone-hazard rate assumption,
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and regularity, that are often encountered in the auction theory and mechanism
design literature.

Our main positive result for ESPP mechanisms then states that if the valua-
tion distribution is d-dimensionally dependent, there exists an ESPP mechanism
that extracts an Ω(1/d) fraction of the optimal revenue. The proof of this result
consists of three key ingredients: (i) An upper bound on the optimal ex-post IC,
ex-post IR revenue in terms of the solution of a linear program. This part of the
proof generalizes a linear programming characterization introduced by Gupta
and Nagarajan [18] for the independent distribution setting. (ii) A proof that
incentive compatible blind offer mechanisms are powerful enough to extract a
constant fraction of the optimal revenue of any instance. This makes crucial use
of the linear program mentioned above. (iii) A conversion lemma showing that
blind offer mechanisms can be turned into ESPP mechanisms while maintaining
a fraction Ω(1/d) of the revenue of the blind offer mechanism.

Many proofs and various important parts of the discussion have been omitted
from this version of our paper, due to space constraints. We refer the reader to
[2] for full proofs and a complete discussion of our work and results.

Preliminaries. For a ∈ N, [a] denotes the set {1, . . . , a}. For a vector �v and an
arbitrary element a, let (a,�v−i) be the vector obtained by replacing vi with a.

We face a setting where an auctioneer provides a service to n buyers, and
is able to serve at most k of the buyers. The buyers have valuations for the
service offered, which are drawn from a valuation distribution π, i.e., a probability
distribution on R

n
≥0. We will assume throughout this paper that π is discrete,

except where otherwise stated.
We will use the following notation for conditional and marginal probabil-

ity distributions. Let π be a discrete finite probability distribution on R
n, let

i ∈ [n], S ⊂ [n] and �v ∈ R
n. For an arbitrary probability distribution π, denote

by supp(π) the support of π, by �vS the vector obtained by removing from �v the
coordinates in [n] \ S, by πS the distribution induced by drawing a vector from
π and removing the coordinates corresponding to index set [n] \ S, by π�vS

the
distribution of π conditioned on the event that �vS is the vector of values on the
coordinates corresponding to index set S, and by πi,�vS

the marginal distribu-
tion of the coordinate of π�vS

that corresponds to buyer i. In the subscripts we
sometimes write i instead of {i} and −i instead of [n] \ {i}.

An instance is a triple (n, π, k), where n is the number of participating buy-
ers, π is the valuation distribution, and k ∈ N≥1 is the supply, i.e., the number of
services that the auctioneer may allocate to the buyers. A deterministic mecha-
nism f is a function from ×i∈[n]Σi to {0, 1}n×R

n
≥0, for any choice of strategy sets

Σi, i ∈ [n]. When Σi = supp(πi) for all i ∈ [n], mechanism f is called a determin-
istic direct revelation mechanism. A randomized mechanism M is a probability
distribution over deterministic mechanisms. For i ∈ [n] and �s ∈ ×j∈[n]Σj , we
will denote i’s expected allocation Ef∼M [f(�s)i] by xi(�s) and i’s expected payment
Ef∼M [f(�s)n+i] by pi(�s). For i ∈ [n] and �s ∈ ×j∈[n]Σj , the expected utility of
buyer i is xi(�s)vi −pi(�s). The auctioneer is interested in maximizing the revenue
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∑
i∈[n] pi(�s), and is assumed to have full knowledge of the valuation distribution,

but not of the actual valuations of the buyers.
Mechanism M is dominant strategy incentive compatible (dominant strategy

IC) iff for all i ∈ [n] and �v ∈ ×j∈[n]supp(πj) and �v ∈ supp(π), xi(vi, �v−i)vi −
pi(vi, �v−i) ≥ xi(�v)vi − pi(�v). Mechanism M is ex-post individually rational (ex-
post IR) iff for all i ∈ [n] and �v ∈ supp(π), xi(v)vi−pi(v) ≥ 0. For convenience we
usually will not treat a mechanism as a probability distribution over outcomes,
but rather as the result of a randomized procedure that interacts with the buyers.
In this case we say that a mechanism is implemented by that procedure.

A sequential posted price (SPP) mechanism for an instance (n, π, k) is any
mechanism that is implementable by iteratively selecting a buyer i ∈ [n] that has
not been selected in a previous iteration, and proposing a price pi for the service,
which the buyer may accept or reject. If i accepts, he gets the service and pays
pi, resulting in a utility of vi − pi for i. If i rejects, he pays nothing and does
not get the service, resulting in a utility of 0 for i. Once the number of buyers
that have accepted an offer equals k, the process terminates. Randomization in
the selection of the buyers and prices is allowed. We will initially be concerned
with only sequential posted price mechanisms. Later in the paper we define the
two generalizations of SPP mechanisms that we mentioned in the introduction.

Our focus in this paper is on the maximum expected revenue of the SPP
mechanisms, and some of its generalizations. Note that each buyer in a SPP
mechanism has an obvious dominant strategy: he will accept whenever the price
offered to him does not exceed his valuation, and he will reject otherwise. Also,
a buyer always ends up with a non-negative utility when participating in a SPP
mechanism. Thus, by the revelation principle (see, e.g., [9]), a SPP mechanism
can be converted into a dominant strategy IC and ex-post IR direct revelation
mechanism with the same expected revenue. Therefore, we compare the maxi-
mum expected revenue REV (M) achieved by an SPP mechanism M to OPT ,
where OPT is defined as the maximum expected revenue that can be obtained
by a mechanism that is dominant strategy IC and ex-post IR.

A more general solution concept is formed by the ex-post incentive compat-
ible, ex-post individually rational mechanisms. Specifically, let (n, π, k) be an
instance and M be a randomized direct revelation mechanism for that instance.
Mechanism M is ex-post incentive compatible (ex-post IC) iff for all i ∈ [n],
si ∈ supp(πi) and �v ∈ supp(π), xi(�v)vi − pi(�v) ≥ xi(si, �v−i)vi − pi(si, �v−i). In
other words, a mechanism is ex-post IC if it is a pure equilibrium for the buy-
ers to always report their valuation. In this work we sometimes compare the
expected revenue of our (dominant strategy IC and ex-post IR) mechanisms to
the maximum expected revenue of the more general class of ex-post IC, ex-post
IR mechanisms. This strengthens our positive results. We refer the reader to [25]
for a further discussion of and comparison between various solution concepts.

2 Sequential Posted Price Mechanisms

We are interested in designing a posted price mechanism that, for any given n
and valuation distribution π, achieves an expected revenue that is a constant
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approximation of the optimal expected revenue achievable by a dominant strat-
egy IC, ex-post IR mechanism. Theorem 1 shows that this is impossible.

Theorem 1. For all n ∈ N≥2, there exists a valuation distribution π such that
for all k ∈ [n] there does not exist a sequential posted price mechanism for
instance (n, π, k) that extracts a constant fraction of the expected revenue of the
optimal dominant strategy IC, ex-post IR mechanism.

Proof sketch. Fix m ∈ N≥1 arbitrarily, and consider the case where n = 1 and
the valuation v1 of the single buyer is taken from {1/a : a ∈ [m]} distributed
so that π1(1/a) = 1/m for all a ∈ [m]. In this setting, an SPP mechanism will
offer the buyer a price p, which the buyer accepts iff v1 ≥ p. After that, the
mechanism terminates. We show that this mechanism achieve only a fraction

1
H(m) of the social welfare. We then extend this example to a setting where the
expected revenue of the optimal dominant strategy IC, ex-post IR mechanism is
equal to the expected optimal social welfare. ��

The above impossibility result holds also in the continuous case, even if a
large set of popular assumptions hold simultaneously, namely, the valuation dis-
tribution π has support [0, 1]n; the expectation E�v∼π[vi] is finite for any i ∈ [n]; π
is symmetric in all its arguments; π is continuous and nowhere zero on [0, 1]n; the
conditional marginal densities πi|�v−i

are nowhere zero for any �v−i ∈ [0, 1]n−1 and
any i ∈ [n]; π has a monotone hazard rate and is regular; π satisfies affiliation.

Roughgarden and Talgam-Cohen [25] showed that when all these assumptions
are simultaneously satisfied, the optimal ex-post IC and ex-post IR mechanism
is the Myerson mechanism that is optimal also in the independent value setting.
Thus, these conditions make the correlated setting in some sense similar to the
independent one with respect to revenue maximization. Yet our result show
that, whereas SPP mechanism can achieve a constant approximation revenue
for independent distributions, this does not hold for correlated ones.

A Revenue Guarantee for Sequential Posted Price Mechanisms. More
precisely, in our lower bound instances constructed in the proof of Theorem 1, it
is the case that the expected revenue extracted by every posted price mechanism
is a Θ(1/ log(r)) fraction of the optimal expected revenue, where r is the ratio
between the highest valuation and the lowest valuation in the support of the
valuation distribution. A natural question that arises is whether this is the worst
possible instance in terms of revenue extracted, as a function of r. It turns out
that this is indeed the case, asymptotically. The proofs use a standard bucketing
technique (see, e.g., [4]) and can be found in the full paper [2].

We start with the unit supply case. For a valuation distribution π on R
n, let

vmax
π and vmin

π be max{vi : v ∈ supp(π), i ∈ [n]} and min{max{vi : i ∈ [n]} : v ∈
supp(π)} respectively. Let rπ = vmax

π /vmin
π be the ratio between the highest and

lowest coordinate-wise maximum valuation in the support of π.

Proposition 1. Let n ∈ N≥1, and let π be a probability distribution on R
n. For

the unit supply case there exists a SPP mechanism that, when run on instance
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(n, π, 1), extracts in expectation at least an Ω(1/ log(rπ)) fraction of the expected
revenue of the optimal social welfare (and therefore also of the expected revenue
of the optimal dominant strategy IC and ex-post IR auction).

This result can be generalized to yield revenue bounds for the case of k-limited
supply, where k > 1. The above result does not always guarantee a good revenue;
for example in the extreme case where vmin

π = 0. However, it is easy to strengthen
the above theorem such that it becomes useful for a wide class of of distributions.

3 Enhanced Sequential Posted Price Mechanisms

We propose a generalization of sequential posted price mechanisms, in such a
way that they possess the ability to retrieve valuations of some buyers.

Specifically, an enhanced sequential posted price (ESPP) mechanism for an
instance (n, π, k) is a randomized mechanism that can be implemented by itera-
tively selecting a buyer i ∈ [n] that has not been selected in a previous iteration,
and performing exactly one of the following actions on buyer i:

– Propose service at price pi to buyer i, which the buyer may accept or reject.
If i accepts, he gets the service and pays pi, resulting in a utility of vi − pi

for i. If i rejects, he pays nothing and does not get the service, resulting in a
utility of 0 for i.

– Ask i for his valuation. (Buyer i pays nothing and does not get service.)

This generalization is still dominant strategy IC and ex-post IR.
Next we analyze the revenue performance of ESPP mechanisms. For this class

of mechanisms we prove that, it is unfortunately still the case that no constant
fraction of the optimal revenue can be extracted. Specifically, the next theorem
establishes an O(1/n) bound for ESPP mechanisms.

Theorem 2. For all n ∈ N≥2, there exists a valuation distribution π such that
for all k ∈ [n] there does not exist a ESPP mechanism for instance (n, π, k)
that extracts more than a O(1/n) fraction of the expected revenue of the optimal
dominant strategy IC, ex-post IR mechanism.

Proof sketch. Let n ∈ N and m = 2n. We specify an instance In with n buy-
ers, and prove that limn→0 RM(In)/OR(In) = 0, where RM(In) is the largest
expected revenue achievable by any ESPP mechanism on In, and OR(In) is the
largest expected revenue achievable by a dominant strategy IC, ex-post IR mech-
anism. In is defined as follows. Fix ε such that 0 < ε < 1/nm2. The valuation
distribution π is the one induced by the following process: (i) Draw a buyer i�

from the set [n] uniformly at random; (ii) Draw numbers {cj : j ∈ [n] \ {i�}}
independently from [m] uniformly at random; (iii) For all j ∈ [n] \ {i�}, set
vj = cjε; (iv) Set vi� = ((

∑
j∈[n]\{i�} cj)mod m + 1)−1. ��

However, ESPP mechanisms turn out to be more powerful than the standard
sequential posted price. Indeed, contrary to SPP mechanisms, the ESPP mecha-
nisms can be shown to extract a fraction of the optimal revenue that is indepen-
dent of the valuation distribution. More precisely, the O(1/n) bound turns out
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to be asymptotically tight. Our main positive result for ESPP mechanisms is
that when dependence of the valuation among the buyers is limited, then a con-
stant fraction of the optimal revenue can be extracted. Specifically, we will define
the concept of d-dimensional dependence and prove that for a d-dimensionally
dependent instance, there is an ESPP mechanism that extracts an Ω(1/d) frac-
tion of the optimal revenue.

It is natural to identify the basic reason(s) why, in the case of general corre-
lated distributions, standard and enhanced sequential posted price mechanisms
may fail to achieve a constant approximation of the optimum revenue. There are
two main limitations of these mechanisms: (i) such mechanisms do not solicit
bids or values from all buyers, and (ii) such mechanisms award items in a sequen-
tial manner. Although it is crucial to retrieve the valuation of all (but one of
the) buyers, we show that it is possible to achieve a constant fraction of the
optimum revenue by a mechanism that allocates items sequentially in an on-line
manner, in contrast to previously known approximation results.

Randomized mechanism M is a blind offer mechanism iff it can be imple-
mented as follows. Let (n, π, k) be an instance and let �b be the submitted bid
vector. Then,

1. Terminate if �b �∈ supp(π).
2. Either terminate or select a buyer i from the set of buyers that have not yet

been selected, such that the choice of i does not depend on �b.
3. Offer buyer i the service at price pi, where pi is drawn from a probability

distribution that depends only on πi,�b−i
(hence the distribution of pi is deter-

mined by �b−i and in particular does not depend on bi).
4. Restart if the number of buyers who have accepted offers does not exceed k.

Note that the price offered to a buyer is entirely determined by the valuations
of the remaining buyers, and is independent of what is reported by buyer i him-
self. Also the iteration in which a buyer is picked cannot be influenced by his bid.
Nonetheless, blind offer mechanisms are in general not incentive compatible due to
the fact that a bidder may be incentivized to misreport his bid in order to increase
the probability of supply not running out before he is picked. However, blind offer
mechanisms can easily be made incentive compatible as follows: let M be a non-IC
blind offer mechanism, let �b be a bid vector and let zi(�b) be the probability that
M picks bidder i before supply has run out. When a bidder is picked, we adapt M
by skipping that bidder with a probability pi(�b) that is chosen in a way such that
zi(�b)pi(�b) = min{zi(bi

�b−i) : bi ∈ supp(πi)}. This is a blind offer mechanism in
which buyer i has no incentive to lie, because now the probability that i is made an
offer is independent of his bid.Doing this iteratively for all buyers yields a dominant
strategy IC mechanism M ′. Note that the act of skipping a bidder can be imple-
mented by offering a price that is so high that a bidder will never accept it, thus
M ′ is still a blind offer mechanism. Moreover, if the probability that any bidder in
M is made an offer is lower bounded by a constant c, then in M ′ the probability
that any bidder is offered a price is at least c. We apply this principle in the proof
of Theorem 3 below in order to obtain a dominant strategy IC mechanism with a
constant factor revenue performance.
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It is not hard to see that the classical Myerson mechanism for the independent
single-item setting belongs to the class of blind offer mechanisms. Thus blind
offer mechanisms are optimal when buyers’ valuations are independent. We will
prove next that when buyer valuations are correlated, blind offer mechanisms can
always extract a constant fraction of the optimal revenue, even against the ex-
post IC, ex-post IR solution concept. Other mechanisms that achieve a constant
approximation to the optimal revenue have been defined by Ronen [24], and
then by Chawla et al. [10] and Dobzinski et al. [15]. However, these mechanisms
allocate the items to profit-maximizing buyers. Thus, they are different from
blind offer mechanisms in which the allocation is on-line.

Theorem 3. For every instance (n, π, k), there is a dominant strategy IC blind
offer mechanism for which the expected revenue is at least a (2 − √

e)/4 ≈ 0.088
fraction of the maximum expected revenue that can be extracted by an ex-post
IC, ex-post IR mechanism.

We need to establish some intermediate results in order to build up to a proof for
the above theorem. First, we derive an upper bound on the revenue of the opti-
mal ex-post IC, ex-post IR mechanism. For a given instance (n, π, k), consider
the linear program with variables (yi(�v))i∈[n],�v∈supp(π) where the objective is
max

∑
i∈[n]

∑

�v−i∈supp(π−i)

π−i(�v−i)
∑

vi∈supp(πi,�v−i
)

Pr
v′

i∼πi,�v−i

[v′
i ≥ vi]viyi(vi, �v−i) sub-

ject to the constraints ∀i ∈ [n], �v−i ∈ supp(π−i) :
∑

vi∈supp(πi,�v−i
) yi(�v) ≤ 1; ∀�v ∈

supp(π) :
∑

i∈[n]

∑
v′

i∈supp(πi,�v−i
) : v′

i≤vi
yi(v′

i, �v−i) ≤ k; �v ∈ supp(π) : yi(�v) ≥ 0
∀i ∈ [n]. The next lemma states that the solution to this linear program forms
an upper bound on the revenue of the optimal mechanism.

Lemma 1. For any instance (n, π, k), above linear program upper bounds the
maximum expected revenue achievable by an ex-post IC, ex-post IR mechanism.

Proof sketch. We first prove that a monotonicity constraint holds on the set of
possible allocations that a ex-post IC, ex-post IR mechanism can output. More-
over, we show that the prices charged by the mechanism cannot exceed a certain
upper bound given in terms of allocation probabilities. Then, we formulate a new
linear program whose optimal value equals the revenue of the optimal ex-post
IC, ex-post IR mechanism. We finally rewrite this new linear program into the
one given above. This proof adapts the approach introduced in [18]. ��

We can now proceed to prove our main result about blind offer mechanisms.
Let (n, π, k) be an arbitrary instance. Let (y∗

i (�v))i∈[n] be the optimal solution
to the linear program given above corresponding to this instance. Let Mk

π be
the blind offer mechanism that does the following: let �v be the vector of sub-
mitted valuations. Iterate over the set of buyers such that in iteration i, buyer
i is picked. In iteration i, select one of the following options: offer service to
buyer i at a price p for which it holds that y∗

i (p,�b−i) > 0, or skip buyer i.
The probabilities with which these options are chosen are as follows: Price p
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is offered with probability y∗
i (p,�b−i)/2, and buyer i is skipped with probabil-

ity 1 − ∑
p′∈supp(π

i,�b−i
) y∗

i (p,�b−i)/2. The mechanism terminates if k buyers have

accepted an offer, or at iteration n + 1.

Proof sketch (of Theorem 3). We will show that the expected revenue of Mk
π

is at least 2−√
e

4 ·∑i∈[n]

∑
�v−i∈supp(π−i)

π−i(�v−i)
∑

vi∈supp(πi,�v−i
) Prv′

i∼πi,�v−i
[v′

i ≥
vi]viy

∗
i (vi, �v−i), which, by Lemma 1 and the LP above, is a (2 − √

e)/4 fraction
of the expected revenue of the optimal ex-post IC, ex-post IR mechanism.

For a vector of valuations �v ∈ supp(π) and a buyer i ∈ [n], denote by Di,�v−i

the probability distribution from which mechanism Mk
π (�v) draws a price that

is offered to buyer i, in case iteration i ∈ [n] is reached. We let V be a num-
ber that exceeds max{vi : i ∈ [n], �v ∈ supp(π)} and represent by V the option
where Mk

π (�v) chooses to skip buyer i, so that Di,�v−i
is a probability distribu-

tion on the set {V } ∪ {vi : y∗
i (vi, �v−i) > 0}. Then, E�v∼π[revenue of Mk

π (�v)] ≥
∑

i∈[n]

∑

�v∈supp(π)

π(�v)
∑

pi∈supp(Di,�v−i
)

: pi≤vi

piy
∗
i (pi, �v−i)

2
Pr

pi∼Di,�v−i

[|{j ∈ [n − 1] : pj ≤ vj}| <

k]. Then, by applying a Chernoff bound, we can prove that Pr∀i:pi∼Di,�v−i
[|{j ∈

[n − 1] : pj ≤ vj}| < k] ≥ 1 − (
e
4

)k/2 ≥ 1 − (
e
4

)1/2 = 2−√
e

2 . Hence, we have a
lower bound of (2 − √

e)/2 on the probability that all players get selected. The
theorem follows by combining this with the principle explained above that allows
us to transform Mk

π into a dominant strategy IC blind offer mechanism. ��

Revenue Guarantees for ESPP Mechanisms. Finally, in this section we
evaluate the revenue guarantees of the ESPP mechanisms in the presence of
a form of limited dependence that we will call d-dimensional dependence, for
d ∈ N. These are probability distributions for which it holds that the valuation
distribution of a buyer conditioned on the valuations of the rest of the buyers
can be retrieved by only looking at the valuations of a certain subset of d buyers.
Formally, a probability distribution π on R

n is d-dimensionally dependent iff for
all i ∈ [n] there is a subset Si ⊆ [n] \ {i}, |Si| = d, such that for all �v−i ∈
supp(π−i) it holds that πi,�vSi

= πi,�v−i
. Note that if d = 0, then π is a product

of n independent probability distributions on R. On the other hand, the set of
(n−1)-dimensionally dependent probability distributions on R

n equals the set of
all probability distributions on R

n. This notion is useful in practice for settings
where it is expected that a buyer’s valuation distribution has a reasonably close
relationship with the valuation of a few other buyers. As an example of one
of these practical settings consider the case that there exists a true objective
valuation v for the item or service, an expert buyer that knows this valuation
precisely, and remaining buyers whose valuation is influenced by independent
noise. It is then sufficient to know the valuation of a single buyer, namely the
expert one, in order to retrieve the conditional distribution of any other buyer.

In general, d-dimensional dependence is relevant to many practical settings
in which it is not necessary to have complete information about the valuations
of all the other buyers in order to say something useful about the valuation of
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a particular buyer. This rules out the extreme kind of dependence defined in
the proof of Theorem 2; there the distributions are not (n − 2)-dimensionally
dependent, because for each buyer i it holds that the valuations of all buyers [n]\
{i} are necessary in order to extract the valuation distribution of i conditioned
on the others’ valuations.

It is important to realize that the class of d-dimensionally dependent dis-
tributions is a strict superset of the class of Markov random fields of degree d.
A Markov random field of degree d is a popular model to capture the notion of
limited dependence. Anyway, d-dimensionally dependent distributions are more
general: we show in [2] that there are distributions on R

n that are 1-dimensionally
dependent, but are not a Markov random field of degree less than n/2.

Theorem 4. For every instance (n, π, k) where π is d dimensionally dependent,
there exists an ESPP mechanism of which the expected revenue is at least a
(2 − √

e)/(16d) ≥ 1/(46d) ∈ Ω(1/d) fraction of the maximum expected revenue
that can be extracted by an ex-post IC, ex-post IR mechanism.

As a corollary we have that the bound of Theorem 2 is asymptotically tight.
Theorem 4 follows by combining Theorem 3 with the following lemma.

Lemma 2. Let α ∈ [0, 1] and let (n, π, k) be an instance such that π is d-
dimensionally dependent. If there is a blind offer mechanism that extracts in
expectation at least an α fraction of the expected revenue of the optimal domi-
nant strategy IC, ex-post IR mechanism, then there is an ESPP mechanism that
extracts in expectation at least a α/max{4d, 1} fraction of the expected revenue
of the optimal ex-post IC, ex-post IR mechanism.

4 Open Problems

Besides improving approximation bounds established in the present paper, there
are many other interesting further research directions. For example, it would be
interesting to investigate revenue guarantees under the additional constraint that
the sequential posted price mechanism be on-line, i.e., the mechanism has no con-
trol over which buyers to pick, and should perform well for any possible ordering.
We are also interested in the role of randomization in our ESPP mechanism that
extracts O(1/d) of the optimal revenue: in the current proof buyers are picked
uniformly at random. Does there exist a deterministic ESPP mechanism that
attains the same revenue guarantee, or is randomness a necessity?

An obvious and interesting research direction is to investigate more general
auction problems. In particular, to what extent can ESPP mechanisms be applied
to auctions having non-identical items? Additionally, can such mechanisms be
applied to more complex allocation constraints or specific valuation functions
for the buyers? The agents may have, for example, a demand of more than one
item, or there may be a matroid feasibility constraint.

Acknowledgments. WethankJoannaDrummond,BrendanLucier,TimRoughgarden
and anonymous referees for their constructive comments.
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Abstract. We study the efficiency of allocations in large markets with
a network structure where every seller owns an edge in a graph and every
buyer desires a path connecting some nodes. While it is known that sta-
ble allocations can be very inefficient, the exact properties of equilibria
in markets with multiple sellers are not fully understood, even in single-
source single-sink networks. In this work, we show that for a large class
of buyer demand functions, equilibrium always exists and allocations can
often be close to optimal. In the process, we characterize the structure
and properties of equilibria using techniques from min-cost flows, and
obtain tight bounds on efficiency in terms of the various parameters gov-
erning the market, especially the number of monopolies M .

Although monopolies can cause large inefficiencies in general, our main
results for single-source single-sink networks indicate that for several nat-
ural demand functions the efficiency only drops linearly with M . For
example, for concave demand we prove that the efficiency loss is at most
a factor 1+ M

2
from the optimum, for demand with monotone hazard rate

it is at most 1 + M , and for polynomial demand the efficiency decreases
logarithmically with M . In contrast to previous work that showed that
monopolies may adversely affect welfare, our main contribution is show-
ing that monopolies may not be as ‘evil’ as they are made out to be.
Finally, we consider more general, multiple-source networks and show
that in the absence of monopolies, mild assumptions on the network
topology guarantee an equilibrium that maximizes social welfare.

1 Introduction

The mechanism governing large decentralized markets is often straightforward:
sellers post prices for their goods and buyers buy bundles that meet their require-
ments. Given this framework, the challenge faced by researchers has been to
characterize the equilibrium states at which these markets operate. More con-
cretely, consider a market with multiple sellers that can be represented by a
directed graph G as follows:

– Every seller owns an item, which is a link in the network.
– Every infinitesimal buyer seeks to purchase a path in the network (set of

items) connecting some pair of nodes.
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In addition to actual bandwidth markets where users purchase capacity on
links for routing traffic, networks are commonly used in the literature to model
combinatorial markets where the items are a mix of substitutes and comple-
ments [3,14,18]. For instance, in a computer market, each link could represent
some component (e.g., a processor or video card) and buyers require a set of parts
to assemble a complete computer system. In ad-markets, the buyers (advertis-
ers) may want to purchase ads from a satisfactory combination of websites to
reach a target audience. Our goal in this paper is to analyze the effects of price
competition in such networked markets, i.e., the pricing strategies employed by
competing sellers and their effect on equilibrium welfare.

An extensive body of work has culminated in the design of pricing mech-
anisms for a variety of markets with a single central seller (for example,
see [9,15,17] and the references therein). In contrast, there has been very little
focus on even simple decentralized markets where multiple price-setting sellers
operate, and buyers require bundles of goods. With the exception of a few spe-
cific but incomparable settings (homogeneous goods [7,8], single buyer [10]), our
understanding of how different parameters affect equilibrium in markets with
price competition is quite limited. With this in mind, we seek to answer the
following questions:

1. What conditions on the market structure guarantee equilibrium existence?
2. How efficient are the equilibrium allocations and how do they depend on buyer

demand and network topology?

Model and Equilibrium Concept. We model the interaction between buyers
and sellers as a two-stage pricing game. Each seller e controls a single good
or link in a network G; he can produce any quantity x of this good incurring
a production cost of Ce(x). Every buyer i in the market wants to purchase an
infinitesimal amount of some path connecting a source and a sink node for which
she receives a value vi. For the majority of this work, we will focus on single-
source, single-sink networks, i.e., markets where every buyer wants to purchase
a path between the same source node s and sink node t. Such networks capture
combinatorial markets where buyers are interested in a single type of good; e.g.,
all buyers desire a computer but may have different valuations (vi) for the same.

We consider a full information game where sellers can estimate the aggregate
demand. In the first stage of the game, sellers set prices on the edges and in the
second stage, buyers buy edges along a path. For any seller e, if at a price of pe

per unit amount of the good, a population xe of buyers purchase the good, then
the profit is pexe − Ce(xe). The buyer’s utility is vi minus the total price paid.
A solution is said to be a Nash Equilibrium if (i) Every buyer receives a utility
maximizing bundle, i.e., the cheapest s-t path with price at most vi, (ii) No seller
can unilaterally change his price and improve his profit at the new allocation.

Bertrand Competition with Monopolies. Our work is most closely related
to the model of Bertrand Competition in networks with supply limited sellers
studied in [14] and later in [13]. Our model is more general as the production



18 E. Anshelevich and S. Sekar

costs (that we consider) are a substantial generalization of limited supply. The
behavior of Bertrand networks with seller costs was posed as an open question
in [14]. We address this question by applying techniques from the theory of
min-cost flows. The above papers also considered the efficiency of supply-limited
markets and showed that in the worst case the equilibrium solution can be
arbitrarily worse than the social optimum, and in some special cases it decreases
exponentially with the length of longest s-t path in the network. Our paper
provides a nuanced understanding of efficiency in terms of the buyer demand
and the network topology. One of our high-level contributions in this paper is
breaking down the dependence of efficiency on topology into a single parameter
M : the number of monopoly edges in the graph G = (V,E).

(Setofmonopolies inG)M := {e | (s, t) are disconnected in (V,E − {e})}.

Monopolies offer a natural market interpretation: these are the items which
are not substitutable. It is not surprising, although also not obvious, that monop-
olies are the main cause of inefficiencies in markets where the items are a mix of
substitutes and complements. What may be extremely surprising, and what we
view as one of the main contributions of our paper, is that in many reasonable
settings the effect of the monopolies on equilibrium efficiency is very limited.
Our results show that having a few monopolies is still not so bad: high ineffi-
ciency only occurs when the number of monopolies is large. This is in contrast to
conventional wisdom that monopolies are ‘evil’, and even a single monopoly can
cause a significant loss in social welfare [22]. More concretely, our main result is
that for a large class of natural demand functions, equilibrium not only exists,
but the loss in efficiency is at most a factor (1+M) from the optimum solution.
We interpret this as a positive result for the following reason:

– Given previous results [13,14] that in the worst-case, social welfare can drop
exponentially as M increases, a linear loss in welfare for many natural market
types establishes a crucial separation between theoretical worst-case analysis
and settings that are more likely to arise.

The Inverse Demand Function. In this work, our primary focus will be on
single-source single-sink networks where every buyer has a different value vi,
although we do look at more general models in Sect. 5. In markets with many
buyers, it is common to consider a ‘full information in the large’ game where the
sellers know exactly how many buyers value the s-t path at v or more. This can be
estimated, for instance, using prior data. Formally, we define an inverse demand
function λ(x) such that for any v, λ(x) = v implies that exactly x amount of
buyers value the path at v or larger. For example, suppose that λ(x) = 1 − x.
Then, λ(0.25) = 0.75, i.e., one-fourth of the buyers have a value of 0.75 or more
for the s-t paths.

1.1 Our Contributions

Our objective in this paper is to characterize the quality of equilibrium in terms
of the inverse demand function, and specifically to show the effect of monopolies
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on efficiency. Therefore, our efficiency bounds depend only on the number of
monopolies M = |M|. Note that we define efficiency to be the ratio of the
optimum social welfare of the market to that at equilibrium.

Single-Source Single-Sink Networked Markets
Our first results concern existence and uniqueness. We show that:

1. There exists a Nash Equilibrium Pricing in every market under a very mild
assumption on the demand function. Moreover, there exists a Nash Equi-
librium Pricing satisfying several desirable properties, including individual
rationality, Pareto-optimality, and robustness to small perturbations. We call
such a solution a focal equilibrium.

2. We further prove the uniqueness of focal equilibria. Our result is constructive:
we explicitly characterize the prices and allocations in the focal equilibrium
and provide an algorithm to efficiently compute them.

Since the focal equilibrium solution is the unique one satisfying many properties
that one would expect from a market equilibrium, we believe that this is the
correct equilibrium to study, and the one which is likely to arise in a real system.
Because of this we mainly focus on analyzing the efficiency of focal equilibria.

Efficiency. We consider the following hierarchy of inverse demand functions

Uniform ⊂ Polynomial ⊂ Concave ⊂ Log-Concave = MHR.

Our main result is that for every function in this hierarchy, the efficiency of
the focal equilibrium drops only linearly as the number of monopolies increases.
Specifically, we show the following,

(Informal Theorem). If the inverse demand function has a monotone hazard
rate (MHR), the loss in efficiency at equilibrium is bounded by a factor of 1+M .

This result is quite general as the MHR class encapsulates all demand func-
tions satisfying log-concavity. Moreover, some of the popular demand functions
considered in the literature happen to be Concave or Polynomial (see Sect. 2 for
examples). We show improved efficiency bounds for these classes, namely,

– (Uniform Demand) The Nash equilibrium maximizes welfare.
– (Polynomial Demand) Efficiency drops logarithmically as M increases.
– (Concave Demand) The efficiency loss is 1 + M

2 .

All of our efficiency bounds are tight. The main conclusion to draw from this
is that monopolies do not completely destroy efficiency: it crucially depends on
the nature of buyer demand and the number of these monopolies. We reiterate
that since production costs strictly generalize limited supply, all of our efficiency
bounds hold for the type of market considered in [13,14] as well. We make
absolutely no assumption on the production cost function other than convexity,
which is standard in the literature.

Multiple-Source Networks. We provide a first step towards understanding
efficiency in multiple-source networked markets by tackling a question of special
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interest: what conditions cause equilibrium to be fully efficient in such markets?
Our main result is the following: even when buyers desire different paths, as long
as the network has a series-parallel topology, the absence of monopolies guaran-
tees an efficient equilibrium. In contrast, without the series-parallel structure,
even simple networks with no monopolies may have inefficient equilibria. We
also show conditions on the buyer demand that lead to optimal equilibrium. We
briefly discuss our novel contributions and the techniques that enable our results:

1. Production costs are a non-trivial addition to the Bertrand model. In par-
ticular, the pricing strategies used in [13,14] do not extend to our model as
we cannot price all non-monopoly edges at zero and choose equal prices for
the monopolies. Instead, we extensively apply techniques from the theory of
min-cost flows to compute equilibrium prices. Specifically, the property that
the flow is ‘balanced’ across paths is utilized to set prices on the edges.

2. In order to show efficiency bounds for MHR demand, we establish a new
connection between the sellers’ profit and the ‘lost welfare’ at equilibrium.
This approach may be useful in other settings involving MHR functions.

Relation to Other Concepts. For markets with multiple buyers and sellers,
the standard solution concept used in the literature is the Walrasian Equilibrium:
a set of prices such that when both buyers and sellers act as ‘price-takers’, the
market clears. Walrasian Equilibria are indeed attractive: they always exist in
large markets [6] and are often guaranteed to be optimal. However, the idea that
prices are just ‘handed out’ so that the market clears may not be applicable
in a decentralized market. In contrast, the body of work on price-setting sellers
(e.g., [2,7,21]) takes the view that the sellers control their own prices in order
to maximize profit. Therefore, our motivation is to analyze the two-stage game
where sellers set prices and buyers purchase bundles. Our work also differs from
the papers in Mechanism Design that study settings with strategic buyers and a
single seller [17]. Instead, we consider a market with many strategic sellers and
a continuum of buyers. In such a model, it is reasonable to assume that buyers
behave as price-taking agents since their individual demand is infinitesimal.

1.2 Related Work

As mentioned earlier, the study of Bertrand competition in networks was ini-
tiated in [13,14], which gave worst case bounds on efficiency over all demand
functions. Despite our model being more general, we show that for many impor-
tant classes of demand, the efficiency is much better than the bound shown in the
above papers. Price competition between sellers was also studied in [10], where
it was shown that in markets with a single buyer, equilibrium allocations are effi-
cient. The Uniform demand case that we study is similar in spirit to what they
consider, but our main results are for more complex demand functions. Finally,
our work bears broad similarities to recent papers that also study existence or
efficiency in somewhat specific settings with multiple sellers [7,8,19]. However,
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their models are not comparable to ours. In [8], all sellers possess a single homo-
geneous good but buyers may not have access to all of them; in [7,19], there is a
single buyer but sellers may own more than one good. In contrast, we consider a
market with multiple buyers where every seller controls one good but the goods
are not homogeneous.

Some researchers have also considered more sophisticated pricing mecha-
nisms like non-linear pricing(see [16,18]). While complex mechanisms do some-
times lead to an improvement in efficiency, they are not commonly used as they
impose a large overhead on buyers who have to anticipate the change in price
due to others’ demands. In this work, we study the more natural fixed pricing
mechanism and attempt to provide additional insight on the quality of equilib-
rium.

Finally, one line of research that has gained traction in recent years [2,3] is
pricing in networked markets with congestion, i.e., buyers pay the price on each
edge, but also incur a delay due to congestion. In contrast, we share the view
taken by Shenker et al. [21] that ‘congestion costs are inherently inaccessible
to the network’. Due to the underlying complexities of this model, most of the
results are only known for simple networks such as parallel paths. One exception
is [20], which considers a unique one-sided model where the routing decisions are
taken locally by sellers and not buyers as in our paper. They show that in the
absence of monopolies, local decisions by sellers can result in efficient solutions.

2 Definitions and Preliminaries

An instance of our two-stage game is specified by a directed graph G = (V,E),
a source and a sink (s, t), an inverse demand function λ(x) and a cost function
Ce(x) on each edge. There is a population T of infinitesimal buyers; every buyer
wants to purchase edges on some s-t path and x amount of buyers hold a value
of λ(x) or more for these paths. A buyer is satisfied if she purchases all the edges
on some path connecting s and t and is indifferent among the different paths.

We define M to be the number of monopolies in the market: an edge e is a
monopoly if removing it disconnects the source and sink. We make the following
standard assumptions on the demand and cost functions.

1. The inverse demand function λ(x) is continuous on [0, T ] and non-increasing,
implying that demand decreases as price increases.

2. Ce(x) is non-decreasing and convex ∀e, which is the standard way to model
production costs. Moreover, Ce(x) is continuous, differentiable, and its deriv-
ative ce(x) = d

dxCe(x) satisfies ce(0) = 0.

Nash Equilibrium Pricing. A solution of our two-stage game is a vector of
prices on each item p and an allocation or flow x of the amount of each s-t path
purchased, representing the strategies of the sellers and buyers respectively. The
total flow or market demand is equal to the number of buyers with non-zero
allocation x =

∑
P∈P

xP , where P is the set of s-t paths. We can also decompose
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this flow x into the amount of each edge purchased by the buyers (xe)e∈E .
Given this solution, the total utility of the sellers is

∑
e∈E(pexe − Ce(xe)) and

the aggregate utility of the buyers is
∫ x

t=0
λ(t)dt−∑

e∈E pexe. The social welfare
is simply

∫ x

t=0
λ(t)dt − ∑

e Ce(xe), i.e., prices are intrinsic to the system and do
not appear in the welfare.

We use the standard definition of Nash equilibrium for two-stage games to
model the stable states of our market. Formally, an allocation x is said to be a
best-response by the buyers to prices p if buyers only buy the cheapest paths
and for any cheapest path P , λ(x) =

∑
e∈P pe. That is, buyers act as price-takers

and any buyer whose value is at least the price of the cheapest path will purchase
some such path. A solution (p,x) is a Nash equilibrium if x is a best-response
allocation to the prices and, ∀e if the seller unilaterally changes his price from
pe to p′

e, then for every feasible best-response flow (x′
e) for the new prices, seller

e’s profit cannot increase, i.e., pexe − Ce(xe) ≥ p′
ex

′
e − Ce(x′

e). Our notion of
equilibrium is quite strong as the seller does not have to anticipate the resulting
flow: for every best-response by the buyers, the seller’s profit should not increase.

Classes of inverse demand functions that we are interested in For ease of
exposition, we assume that both the inverse demand and the production costs are
continuously differentiable. However, all our results hold exactly even without
this assumption. Note that λ′(x) cannot be positive since λ(x) is non-increasing.
The reader is asked to refer to the full version of this paper [5] for additional
discussion on these classes of demand.

Uniform Demand: λ(x) = λ0 > 0 for x ≤ T . In other words, a population of
T buyers all have the same value λ0 for the bundles.

Polynomial Demand: λ(x) = λ0(a − xα) for α ≥ 1. Polynomial demand
functions are quite popular [11], especially linear inverse demand (λ(x) =
a − x).

Concave Demand: λ′(x) is a non-increasing function of x.
Monotone Hazard Rate (MHR) Demand: λ′(x)

λ(x) is non-increasing or h(x) =
|λ′(x)|
λ(x) is non-decreasing in x. This is equivalent to the class of log-concave

functions [4] where log(λ(x)) is concave. Example function: λ(x) = e−x.

It is not hard to see that Uniform1 ⊂ Polynomial ⊂ Concave ⊂ MHR. We
remark that the MHR and Concave classes are quite general whereas Uniform
or Polynomial demand are more common due their tractability.

Min-Cost Flows and the Social Optimum: Since an allocation vector x is
equivalent to a s-t flow, we briefly dwell upon minimum cost flows. Formally, we
define R(x) to be the cost

∑
e Ce(xe) of the min-cost flow of magnitude x ≥ 0

and r(x), its derivative, i.e., r(x) = d
dxR(x). Both the flow and its cost can be

computed via a simple convex program given the graph. The min-cost function
R(x) obeys several desirable properties that we use later including:

1 Uniform = limα→∞ λ0(1 − xα).
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Proposition 1. R(x) is continuous, non-decreasing, differentiable, and convex.

From the KKT conditions, we have that for a min-cost flow x, r(x) =∑
e∈P ce(xe) for any path P with non-zero flow. Using this property, we obtain

the following characterization of the welfare maximizing solution in terms of
R(x).

Proposition 2. The solution maximizing social welfare is a min-cost flow of
magnitude x∗ satisfying λ(x∗) ≥ r(x∗). Moreover, λ(x∗) = r(x∗) unless x∗ = T .

3 Existence, Uniqueness, and Computation

In this section, we prove that a Nash equilibrium is guaranteed to exist under the
very mild assumption that the demand function has a monotone price elasticity.
Moreover, we show that there always exists a unique ‘focal equilibrium’ that
satisfies several desirable properties. We also provide an algorithm to compute
this important equilibrium.

Before proving our general existence result, it is important to understand
the different types of equilibria that may exist in networked markets. In markets
such as ours, an existence result by itself is meaningless because a large sub-class
of instances admit trivial and unrealistic equilibria.

Trivial Equilibrium: In a networked market where all paths have a length of
at least 2, it is easy to see that every seller setting an unreasonably high price
(say larger than λ(0)) would result in a Nash equilibrium with zero flow. The
existence of such unrealistic equilibria was also observed in [13], where they were
referred to as trivial equilibria.

Our goal in this paper is to analyze the equilibrium operating states of actual
markets. Given that our model admits such uninteresting equilibria, it is impor-
tant that any existence result be characterized by properties that one might
come to expect from equilibria that are likely to arise in practice; for example,
one might expect that a meaningful equilibrium has non-zero flow, is not domi-
nated by other equilibria and most importantly from the perspective of a large
market, is robust to small perturbations (we define these formally below). Our
main existence result is that under a very mild condition on the demand, there
exists a ‘nice’ equilibrium that satisfies many such desiderata.

We first formally define what it means for the price elasticity of a demand
function to be monotone. This condition is quite minimal: it is obeyed by almost
all of the demand functions in the literature (for example: [1,4,11,13]).

Definition 3. Monotone Price Elasticity (MPE) An inverse demand func-
tion λ(x) is said to have a monotone price elasticity if its price elasticity x|λ′(x)|

λ(x)

is a non-decreasing function of x which approaches zero as x → 0.

All the classes of demand functions listed in the previous section satisfy the MPE
condition. At a high level, the MPE condition simply implies that a market’s
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responsiveness at low prices cannot be too large compared to its responsiveness
at a high price. Even more intuitively, MPE functions are concave if plotted on
a log-log plot, and are essentially all functions which are “less convex” than x−r.

Theorem 4. For any given instance of a networked market where the inverse
demand function λ(x) has a monotone price elasticity, there exists a Nash Equi-
librium (p)e∈E , (x̃)e∈E satisfying the following properties

1. Non-Trivial Pricing (Non-zero flow)
2. Recovery of Production Costs (Individual Rationality)
3. Pareto-Optimality
4. Local Dominance (Robustness to small perturbations)

We now formally define these properties and argue why it is reasonable to
expect an actual market equilibrium to satisfy them. For example, although they
are not stable solutions for our price-setting sellers, it is not hard to see that
Walrasian Equilibria satisfy all of these properties.

1. (Non-Trivial Pricing): Every edge that does not admit flow must be priced
at 0. This guarantees that the equilibrium has non-zero flow.

2. (Recovery of Production Costs): Given an equilibrium (p,x), every
item’s price is at least ce(xe). This property is similar in spirit to individ-
ual rationality and ensures that the prices are fair to the sellers. Suppose
that pe < ce(xe), this means that the seller is selling at least some fraction
of his items at price smaller than its cost of production, and therefore, would
have no incentive to produce the given quantity of items.

3. (Pareto-Optimality): A Pareto-optimal solution over the space of equilib-
ria is an equilibrium solution such that for any other equilibrium, at least
one agent (buyer or seller) prefers the former solution to the latter. Pareto-
Optimality is often an important criterion in games with multiple equilibria;
research suggests that in Bertrand Markets, Pareto optimal equilibria are the
solutions that arise in practice [12].

4. (Local Dominance): Given an equilibrium (p,x), consider a different flow
assignment for the same prices (p,x′), differing only in which cheapest paths
are taken by the buyers. Local Dominance means that the profit of each seller
must be larger at the equilibrium solution than at any (p,x′). The essence of
this property is that the solution is resilient against small buyer perturbations.
In other words, if instead of changing his price (which we know no seller would
do at equilibrium), a seller instead convinced some buyers to take different
paths of the same total price, then this seller still could not benefit from the
resulting new flow. If this were not the case, then a seller may be able to
attract a small fraction of buyers towards his item and improve his profit,
indicating that the original equilibrium is not robust.

(Proof Sketch of Theorem 4) The proof proceeds by analyzing the behavior of
monopolies and non-monopolies at equilibrium: every monopoly behaves as if it is
a part of a two-link serial network where the rest of the network can be composed
into a single serial link. This allows us to derive a sufficient condition on a
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monopoly’s price at equilibrium that is independent of every other link (namely,
pe = ce(x̃) + x̃|λ′(x̃)|). In contrast, non-monopolies at equilibrium behave as
if they are a part of a two-edge parallel network. A crucial ingredient of our
result is the application of min-cost flows to link the behavior of monopolies and
non-monopolies. Namely, the property that the (marginal) flow cost is balanced
across all paths is used to choose the price of every edge. Once we have explicitly
constructed the equilibrium prices, the rest of the theorem involves showing
that these prices result in a non-trivial best-response flow. Note that standard
techniques such as fixed point theorems cannot be used here since the solution
space is not convex: small changes in price may result in large deviations. �
The full proofs of all the theorems can be found in a full version of this paper [5].
The next corollary, which is the main ingredient in all of our efficiency bounds
essentially characterizes the equilibrium structure by expressing the equilibrium
flow (x̃) as a function of only the number of monopolies in the network.

Corollary 5. For any demand λ satisfying the MPE condition, ∃ a Nash equi-
librium with a min-cost flow (x̃e) of size x̃ ≤ x∗ such that,

Either
λ(x̃) − r(x̃)

M
= x̃|λ′(x̃)| or x̃ = x∗, the optimum solution.

We now show that the equilibrium from Theorem4 (which we will refer to as
the focal equilibrium) is the unique solution that satisfies the useful desiderata
defined above. In order to truly understand the equilibrium efficiency of our
two-stage game, it does not make sense to show a blanket bound on all stable
solutions since some of these are highly unrealistic (for example, Price of Anarchy
is almost always unbounded due to the presence of trivial equilibria). However,
since the focal equilibrium solution is the unique one satisfying many properties
that one would expect from a market equilibrium, we focus on analyzing its
efficiency in the rest of this paper.

Theorem 6. For any given instance with strictly monotone MPE demand and
non-zero costs, we are guaranteed that one of the following is always true:

1. There is a unique non-trivial equilibrium that satisfies Local Dominance. (or)
2. All non-trivial equilibria that satisfy Local Dominance maximize welfare.

Moreover, we can compute this equilibrium efficiently.

For the purposes of studying efficiency, the above theorem provides a useful
baseline: either all equilibria are fully efficient or it suffices to bound the efficiency
of the unique equilibrium that satisfies Corollary 5 (which we do in Sect. 4).
As always in the case of real-valued settings (e.g., convex programming, etc.),
“computing” a solution means getting within arbitrary precision of the desired
solution; the exact solution could be irrational.
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4 Effect of Monopolies on the Efficiency of Equilibrium

In this paper, we are interested in settings where approximately efficient out-
comes are reached despite the presence of self-interested sellers with monopo-
lizing power. While for general functions λ(x) obeying the MPE condition, the
efficiency can be exponentially bad, we show that for many natural classes of
functions it is much better, even in the presence of monopolies.

We begin with a more fundamental result that reinforces the fact that even in
arbitrarily large networks (not necessarily parallel links), competition results in
efficiency, i.e., when M = 0, the efficiency is 1. This result is only a starting point
for us since it is the addition of monopolies that leads to interesting behavior.

Claim 7. In any network with no monopolies (i.e., you cannot disconnect s, t
by removing any one edge), there exists a focal Nash Equilibrium maximizing
social welfare.

We remark that our notion of a “no monopoly” graph is weaker than what
has been considered in some other papers [16,20] and therefore, our result is
stronger. We are now in a position to show our main theorem. The largest class
of inverse demand functions that we consider are the MHR or Log-Concave
functions. Note that all MHR functions satisfy the MPE condition and thus
existence is guaranteed. Our main result is that for all demand functions in this
class, the efficiency loss compared to the optimum solution is 1+M . We believe
that this result has strong implications. First, log-concavity is a very natural
assumption on the demand; these functions have received considerable attention
in Economics literature(see [4] and follow-ups). Secondly, it is reasonable to
assume that even in multi-item markets, the number of purely monopolizing
goods is not too large: in such cases the equilibrium quality is high.

Theorem 8. The social welfare of the Nash equilibrium from Sect. 3 is always
within a factor of 1 + M of the optimum for MHR λ, and this bound is tight.

(Proof Sketch). The proof relies crucially on our characterization of equilibria
obtained in Corollary 5, and the following interesting claim for MHR functions
linking the welfare loss at equilibrium to the profit made by all the sellers: ‘the
loss in welfare is at most a factor M times the total profit in the market at
equilibrium’. In addition, it is also not hard to see that in any market, the profit
cannot exceed the total social welfare of a solution.

Why is this claim useful? Using profit as an intermediary, we can now com-
pare the welfare lost at equilibrium to the welfare retained. This implies that
the welfare loss cannot be too high because that would mean that the profit
and hence the welfare retained is also high. But then, the sum of welfare lost +
retained is the optimum welfare and is bounded. Therefore, we can immediately
bound the overall efficiency. Mathematically, our key claim is,

Lost Welfare =
∫ x∗

x̃

λ(x)dx − [R(x∗) − R(x̃)] ≤ M(px̃ − R(x̃)),
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where p is the payment made by every buyer, x̃ is the amount of buyers in the
equilibrium solution and x∗, in the optimum. The integral in the LHS can be
rewritten as

∫ x∗

x̃
(λ(x)− r(x))dx. Now, we apply some fundamental properties of

MHR functions (λ) and show that for all x ≥ x̃, the following is true, λ(x)−r(x)
|λ′(x)| ≤

λ(x̃)−r(x̃)
|λ′(x̃)| = Mx̃. The final equality comes from our equilibrium characterization

in Corollary 5. Therefore, we can prove the key claim as follows:
∫ x∗

x̃

(λ(x) − r(x))dx ≤ Mx̃

∫ x∗

x̃

|λ′(x)|dx

≤ Mx̃(λ(x̃) − λ(x∗)) ( λ(x)is non-increasing and x̃ ≤ x∗)
≤ M(λ(x̃)x̃ − R(x̃)) (λ(x∗)x̃ ≥ r(x∗)x̃ ≥ r(x̃)x̃ ≥ R(x̃))

The total payment p on any path must exactly equal λ(x̃) �
Tighter Bounds for Sub-classes. We now consider log-concave demand func-
tions that satisfy additional requirements, namely Uniform, Polynomial, and
Concave demand. For these classes, we show much stronger bounds on the effi-
ciency loss at equilibrium.

Theorem 9. The following bounds on the efficiency are tight

– Every instance with Uniform demand admits a fully efficient focal Nash equi-
librium.

– For any instance with Polynomial demand, the inefficiency of focal equilib-
rium is at most (1 + Mα)

1
α , where α ≥ 1 is the degree of the polynomial.

When α ≥ M , this quantity is approximately 1 + log(Mα)
α .

– When the demand is Concave, the inefficiency of focal equilibrium is 1+ M
2 .

The efficiency bound for Polynomial demand extends to more general poly-
nomials of the form λ(x) = a0 − ∑k

i=1 aix
αi with α now defined as mini αi.

Concave-Log Demand. In this paper, we considered MPE functions (concave
on a log-log plot) and log-concave functions (concave on a semi-log plot). For
the sake of completeness, we also consider functions that are not log-concave but
still obey the MPE condition. One such important class consists of Concave-Log
demand functions, which are in some sense the opposite of log-concave functions;
in other words λ(x) is concave against a logarithmically varying buyer demand
(i.e., λ(log(x)) is concave). This class of functions was considered in [13], where
an efficiency bound of eD was shown: D being the length of the longest s-t path
in the network which could potentially be much larger than M . We generalize
their results to markets with cost functions, and further are able to improve
upon the bound in [13].

Claim 10. For any instance with concave-log demand, the inefficiency of the
focal equilibrium is at most M

M−1eM−1 for M ≥ 2.

We reiterate here that all of our results require no assumption on the graph
structure and only the ones mentioned in Sect. 2 for the cost functions.
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5 Generalizations: Multiple-Source Networks

We now move on to more general networks where different buyers have different
si-ti paths that they wish to connect and the demand function can be different
for different sources. Unfortunately, our intuition from the previous sections
does not carry over. Even when buyers have Uniform demand, Nash equilibrium
may not even exist whereas in the single-source case, equilibrium was efficient.
Perhaps more surprisingly, we give relatively simple examples in which perfect
efficiency is no longer achieved in the absence of monopolies. Nevertheless, we
prove that for some interesting special cases, fully efficient Nash equilibrium
still exists even when buyers desire different types of bundles. In particular, we
believe that our result on series-parallel networks is an important starting point
for truly understanding multiple-source networks.

Claim 11. There exist simple instances with two sources and one sink such that

1. Nash equilibrium may not exist even when the buyers at each source have
Uniform demand.

2. All Nash equilibria are inefficient even when no edge is a monopoly.

Series-Parallel Networks: In some sense, Claim 7 embodies the very essence
of the Bertrand paradox, the fact that competition leads to efficiency. So it is
surprising that this does not hold in general networks. However, we now show
that for a large class of markets which have the series-parallel structure, the
absence of monopolies still gives us efficient equilibria. Series-Parallel networks
have been commonly used [16,18] to model the substitute and complementary
relationship that exists between various products in combinatorial markets.

We define a multiple-source single-sink graph to be a series-parallel graph
if the super graph of the given network obtained by adding a super-source and
connecting it to all the sources has the series-parallel structure. The notion of
“no-monopolies” for a complex network has the same idea as a single-source
network: there is no edge in the graph such that its removal would disconnect
any source from the sink. We are now in a position to show our result.

Theorem 12. A multiple-source single-sink series-parallel network with no
monopolies admits a welfare-maximizing Nash Equilibrium for any given
demand.

Finally, we show additional conditions on both the network topology and
demand that lead to efficient equilibria, even in the presence of monopolies.

Claim 13. There exists a fully efficient equilibrium in multiple-source multiple-
sink networks with Uniform demand buyers at each source if one of the following
is true: (i) Buyers have a large demand and production costs are strictly convex,
(ii) Every source node is a leaf in the network.

The second case commonly arises in several telecommunication networks, where
the last mile between a central hub and the final user is often controlled by a
local monopoly and thus the source is a leaf.
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6 Conclusions

In this work, we initiate the study of Bertrand price competition in networked
markets with production costs. Our results provide an improved understanding of
how monopolies affect welfare in large, decentralized markets. Our main contri-
bution is that as long as the inverse demand obeys a natural condition (monotone
hazard rate), the efficiency loss is at most 1 + M for single-source single-sink
networks, with stronger results for other important classes. Cast in the light of
previous work [13,14], our result establishes that the inefficiency for commonly
used demand is much better than the worst-case exponential inefficiency. Finally,
for markets where buyers desire different paths, we identify series-parallel net-
works topology as a condition for efficiency. We believe this result is a useful first
step in understanding the impact of monopolies on multiple-source networks. In
a full version of this paper [5], we extend all our results to markets without a
network structure where all buyers desire the same bundles.
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Abstract. Consider a setting where selfish agents are to be assigned to
coalitions or projects from a set P. Each project k ∈ P is character-
ized by a valuation function; vk(S) is the value generated by a set S of
agents working on project k. We study the following classic problem in
this setting: “how should the agents divide the value that they collec-
tively create?”. One traditional approach in cooperative game theory is
to study core stability with the implicit assumption that there are infi-
nite copies of one project, and agents can partition themselves into any
number of coalitions. In contrast, we consider a model with a finite num-
ber of non-identical projects; this makes computing both high-welfare
solutions and core payments highly non-trivial.

The main contribution of this paper is a black-box mechanism that
reduces the problem of computing a near-optimal core stable solution to
the well-studied algorithmic problem of welfare maximization; we apply
this to compute an approximately core stable solution that extracts one-
fourth of the optimal social welfare for the class of subadditive valua-
tions. We also show much stronger results for several popular sub-classes:
anonymous, fractionally subadditive, and submodular valuations, as well
as provide new approximation algorithms for welfare maximization with
anonymous functions. Finally, we establish a connection between our set-
ting and simultaneous auctions with item bidding; we adapt our results
to compute approximate pure Nash equilibria for these auctions.

1 Introduction

“How should a central agency incentivize agents to create high value, and then
distribute this value among them in a fair manner?” – this question forms the
central theme of this paper. Formally, we model a combinatorial setting consist-
ing of a set P of projects. Each project is characterized by a valuation function;
vk(S) specifies the value generated when a set S of self-interested agents work on
project k. The problem that we study is the following: compute an assignment of
agents to projects to maximize social welfare, and provide rewards or payments
to each agent so that no group of agents deviate from the prescribed solution.

For example, consider a firm dividing its employees into teams to tackle
different projects. If these employees are not provided sufficient remuneration,
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then some group could break off, and form their own startup to tackle a niche
task. Alternatively, one could imagine a funding agency incentivizing researchers
to tackle specific problems. More generally, a designer’s goal in such a setting
is to delicately balance the twin objectives of optimality and stability : forming
a high-quality solution while making sure this solution is stable. A common
requirement that binds the two objectives together is budget-balancedness: the
payments provided to the agents must add up to the total value of the given
solution.

Cooperative Coalition Formation. The question of how a group of agents
should divide the value they generate has inspired an extensive body of research
spanning many fields [4,8,16,20]. The notion of a ‘fair division’ is perhaps best
captured by the Core: a set of payments so that no group of agents would be
better off forming a coalition by themselves. Although the Core is well under-
stood, implicit in the papers that study this notion is the underlying belief that
there are infinite copies of one single project [2,7], which is often not realistic. For
example, a tacit assumption is that if the payments provided are ‘not enough’,
then every agent i can break off, and simultaneously generate a value of v(i) by
working alone; such a solution does not make sense when the number of projects
or possible coalitions is limited. Indeed, models featuring selfish agents choos-
ing from a finite set of distinct strategies are the norm while modeling real-life
phenomena such as technological coordination, and opinion formation [12,14].

The fundamental premise of this paper is that many coalition formation set-
tings feature multiple non-identical projects, each with its own (subadditive)
valuation vk(S). Although our model allows for duplicate projects, the inher-
ently combinatorial nature of our problem makes it significantly different from
the classic problem with infinite copies of a single project. For example, in the
classic setting with a single valuation v(S), the welfare maximization problem
is often trivial (complete partition when v is subadditive), and the stabilizing
core payments are exactly the dual variables to the allocation LP [6]. This is
not the case in our setting where even the welfare maximization problem is NP-
Hard, and known approximation algorithms for this problem use LP-rounding
mechanisms, which are hard to reconcile with stability. Given this, our main con-
tribution is a poly-time approximation algorithm that achieves stability without
sacrificing too much welfare.

Our Model. Given an instance (N ,P, (vk)k∈P) with N agents (N ) and m
projects, a solution is an allocation S = (S1, . . . , Sm) of agents to projects along
with a vector of payments (p̄)i∈N . With unlimited copies of a project, core
stability refers to the inability of any set of agents to form a group on their own
and obtain more value than the payments they receive. The stability requirement
that we consider is a natural extension of core stability to settings with a finite
number of fixed projects. That is, when a set T of agents deviate to project k,
they cannot displace the agents already working on that project (Sk). Therefore,
the payments of the newly deviated agents (along with the payments of everyone
else on that project) must come from the total value generated, vk(Sk ∪T ). One
could also take the Myersonian view [20] that ‘communication is required for



Computing Stable Coalitions: Approximation Algorithms for Reward Sharing 33

negotiation’ and imagine that all the agents choosing project k (Sk ∪T ) together
collaborate to improve their payments. Formally, we define a solution (S, p̄) to
be core stable if the following two conditions are satisfied,

(Stability) No set of agents can deviate to a project and obtain more total
value for everyone in that project than their payments, i.e., for every set of
agents T and project k,

∑
i∈T∪Sk

p̄i ≥ vk(T ∪ Sk).
(Budget-Balance) The total payments sum up to the social welfare (i.e., total

value) of the solution:
∑

i∈N p̄i =
∑

k∈P vk(Sk).

It is not hard to see from the above properties that the value created from a
project will go to the agents on that project only. Finally, we consider a full-
information setting as it is reasonable to expect the central authority to be
capable of predicting the value generated when agents work on a project.

(Example 1) We begin our work with an impossibility result: even for simple
instances with two projects and four agents, a core stable solution need not
exist. Consider P = {1, 2}, and define v1(N ) = 4 and v1(S) = 2 otherwise;
v2(S) = 1 + ε for all S ⊆ N (v1(∅) = v2(∅) = 0). If all agents are assigned to
project 1, then in a budget-balanced solution at least one agent has to have a
payment of at most 1; such an agent would deviate to project 2. Instead, if some
agents are assigned to project 2, then it is not hard to see that they can deviate
to project 1 and the total utility goes from 3 + ε to 4.

Approximating the Core. Our goal is to compute solutions that guarantee a
high degree of stability. Motivated by this, we view core stability under the lens
of approximation. Specifically, as is standard in cost-sharing literature [21], we
consider relaxing one of the two requirements for core stability while retaining
the other one. First, suppose that we generalize the Stability criterion as follows:

(α-Stability) For every set of agents T and every project k, vk(Sk∪T ) ≤
α

∑
i∈Sk∪T p̄i.

α-stability captures the notion of a ‘switching cost’ and is analogous to an
Approximate Equilibrium; in our example, one can imagine that employees do
not wish to quit the firm unless the rewards are at least a factor α larger. In
the identical projects literature, the solution having the smallest value of α is
known as the Multiplicative Least-Core [6]. Next, suppose that we only relax
the budget-balance constraint,

(β-Budget Balance) The payments are at most a factor β larger than
the welfare of the solution.

This generalization offers a natural interpretation: the central authority can
subsidize the agents to ensure high welfare, as is often needed in other settings
such as public projects or academic funding [4]. In the literature, this parameter
β has been referred to as the Cost of Stability [1,19].

We do not argue which of these two relaxations is the more natural one:
clearly that depends on the setting. Fortunately, it is not difficult to see that these
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two notions of approximation are equivalent. In other words, every approximately
core stable solution with α-stability can be transformed into a solution with α-
budget balancedness by scaling the payments of every player by a factor α.
Therefore, in the rest of this paper, we will use the term α-core stable without
loss of generality to refer to either of the two relaxations. All our results can be
interpreted either as forming fully budget-balanced payments which are α-stable,
or equivalently as fully stable payments which are α-budget balanced. Finally,
the problem that we tackle in this paper can be summarized as follows:

(Problem Statement) Given an instance with subadditive valuation
functions, compute an α-core stable solution (S, (p̄)i∈N ) having as small
a value of α as possible, that approximately maximizes social welfare.

1.1 Our Contributions

The problem that we face is one of bi-criteria approximation: to simultaneously
optimize both social welfare and the stability factor α (α = 1 refers to a core
stable solution). For the rest of this paper, we will use the notation (α, c)-Core
stable solution to denote an α-Core solution that is also a c-Approximation to
the optimum welfare. In a purely algorithmic sense, our problem can be viewed as
one of designing approximation algorithms that require the additional property
of stabilizability.

Main Result. Our main result is the following black-box reduction that reduces
the problem of finding an approximately core stable solution to the purely algo-
rithmic problem of welfare maximization,

(Informal Theorem). For any instance where the projects have subadditive
valuations, any LP-based α-approximation to the optimum social welfare can be
transformed in poly-time to a (2α, 2α)-core stable solution.

The strength of this result lies in its versatility: our algorithm can stabilize
any input allocation at the cost of half the welfare. The class of subadditive
valuations is very general, and includes many well-studied special classes all of
which use LP-based algorithms for welfare maximization; one can simply plug-
in the value of α for the corresponding class to derive an approximately core
stable solution. In particular, for general subadditive valuations, one can use the
2-approximation algorithm of Feige [11] and obtain a (4, 4)-Core stable solution.
As is standard in the literature [10], we assume that our subadditive functions
are specified in terms of a demand oracle (see Sect. 2 for more details).

For various sub-classes of subadditive valuations, we obtain stronger results
by exploiting special structural properties of those functions. These results are
summarized in Table 1. The classes that we study are extremely common and
have been the subject of widespread interest in many different domains.

Lower Bounds. All of our results are ‘almost tight’ with respect to the the-
oretical lower bounds for both welfare maximization and stability. Even with
anonymous functions, a (2−ε) core may not exist; thus our (2, 2)-approximation
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Table 1. Our results for different classes of complement-free valuations where
Submodular ⊂ XoS ⊂ Subadditive, and Anonymous ⊂ Subadditive. The results are
mentioned in comparison to known computational barriers for welfare maximization
for the same classes, i.e., lower bounds on c.

Valuation function class Our results: (α, c)-Core Lower bound for c

Subadditive (4, 4) 2 [11]

Anonymous Subadditive (2, 2) 2 [11]

Fractionally Subadditive (XoS) (1 + ε, 1.58) 1.58 [10]

Submodular (1 + ε, 1.58) and (1, 2) 1.58 [22]

for this class is tight. For general subadditive functions, one cannot compute
better than a 2-approximation to the optimum welfare efficiently [11], and so
our (4, 4) result has only a gap of 2 in both criteria. Finally, for XoS and Sub-
modular functions, we get almost stable solutions ((1 + ε)-Core) that match the
lower bounds for welfare maximization.

Welfare Maximization for Anonymous Subadditive Functions. We
devise a greedy 2-approximation algorithm for anonymous functions that may
be of independent algorithmic interest. The only known 2-approximation algo-
rithm even for this special class is the rather complex LP rounding mechanism
for general subadditive functions [11]. In contrast, we provide an intuitive greedy
algorithm that obtains the same approximation factor for welfare maximization.

Ties to Combinatorial Auctions with Item Bidding. We conclude by
pointing out a close relationship between our setting and simultaneous auctions
where buyers bid on each item separately [5,9]. Consider ‘flipping’ an instance of
our problem to obtain the following combinatorial auction: every project k ∈ P
is a buyer with valuation vk, and every i ∈ N is an item in the market. We prove
an equivalence between Core stable solutions in our setting and Pure Nash equi-
librium for the corresponding flipped simultaneous second price auction. Adapt-
ing our lower bounds to the auction setting, we make a case for approximate
Nash equilibrium by constructing instances where every exact Nash equilibrium
requires buyers to overbid by a large factor (O(

√
N)). Finally, we apply our

earlier algorithms to efficiently compute approximate equilibria with small over-
bidding for two settings, namely, (i) a 1

2 -optimal, 2-approximate equilibrium when
buyers have anonymous subadditive valuations, and (ii) a (1− 1

e )-optimal, 1+ ε-
approximate equilibrium for submodular buyers.

1.2 Related Work

Despite the staggering body of research on the Core, its non-existence in many
important settings has prompted researchers to devise several natural relax-
ations: of these, the Cost of Stability [1,4,19], and the Multiplicative Least-
Core [6] are the solution concepts that are directly analogous to our notion of
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an α-core stable solution. The overarching difference between our model, and
almost all of the papers studying the core and its relatives is that while they
study settings with duplicate projects having the same superadditive valua-
tion, our model captures settings with multiple dissimilar projects where each
project is a fixed resource with a subadditive valuation.

Although cooperative games traditionally do not involve any optimization, a
number of papers have studied well-motivated games where the valuation or cost
function is derived from an underlying combinatorial optimization problem [8,16]
such as vertex cover. Such settings are fundamentally different from ours because
the hardness arises from the fact that the value of the cost function cannot be
computed efficiently.

In the cooperative game theory literature, our setting is perhaps closest to the
work studying coalitional structures where instead of forming the grand coalition,
agents are allowed to arbitrarily partition themselves [1] or form overlapping
coalitions [7]. This work has yielded some well-motivated extensions of the Core.
Our work is similar in spirit to games where agents form coalitions to tackle
specific tasks, e.g., threshold task games [7] or coalitional skill games [2]. In
these games, there is still a single valuation function v(S) which depends on the
tasks that the agents in S can complete. Once again, the tacit assumption in
these papers is that there are an infinite number of copies of each task.

Recently, there has been a lot of interest in designing cost-sharing mechanisms
that satisfy strategy-proofness in settings where a single service is to be provided
to a group of agents who hold private values for the same [15,21]. In contrast, we
look at a full information game with different projects where the central agency
can exactly estimate the output due to a set of agents working on a project.
Finally, [3] provides upper bounds on the efficiency of coalitional sink equilibria
in transferable-utility settings; however, their results may not applicable here as
it seems unlikely that our games are coalitionally smooth for general subaddi-
tive valuations. Moreover, their model of decentralized coalitional dynamics is
somewhat orthogonal to our objective of computing stabilizable payments.

2 Model and Preliminaries

We consider a transferable-utility coalition formation game with a set P of m
projects and a set N of N agents. Each project k ∈ P is specified by a monotone
non-decreasing valuation function vk : 2N → R

+∪{0} with vk(∅) = 0. A solution
consists of an allocation of agents to projects S = (S1, . . . , Sm), and a payment
scheme (p̄)i∈N and is said to be (α, c)-core stable for α ≥ 1, c ≥ 1 if

– The payments are fully budget-balanced, and for every project k, and set T
of agents, vk(Sk ∪ T ) ≤ α

∑
i∈Sk∪T p̄i. An equivalent condition is that the

payments are at most a factor α times the social welfare of the solution, and
we have full stability, i.e., vk(Sk ∪ T ) ≤ ∑

i∈Sk∪T p̄i.
– The allocation S is a c-approximation to the optimum allocation, i.e., the

welfare of the solution S is at least 1
c times the optimum welfare.
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Throughout this paper, we will use OPT to denote the welfare maximizing
allocation as long as the instance is clear. Given an allocation S = (S1, . . . , Sm),
we use SW (S) =

∑m
k=1 vk(Sk) to denote the social welfare of this allocation.

Our solution concept is a reasonable extension of the Core for the setting at
hand. Suppose that a set T of agents deviate to project k. Since, they cannot
displace the agents already working on that project (Sk), the new welfare due
to project k must come from both Sk and T (vk(Sk ∪ T )). No matter how this
welfare is divided among these agents, our solution concept guarantees that
not all agents will be happy after the deviation; implicit in this definition is
the assumption that the agents in T cannot ‘steal’ the original utility (for e.g.,
funding) guaranteed to the agents in Sk by the central authority. Finally, in
contrast to Strong Nash Equilibria [3], our solution concept does not impose a
large communication overhead on the agents, for instance, when researchers (T )
jointly choose projects, it is natural to prefer simple deviations (collaboration on
a single project) instead of complex coordinations across many different projects.

Valuation Functions. Our main focus in this paper will be on monotone subad-
ditive valuation functions. A valuation function v is said to be subadditive if for
any two sets S, T ⊆ N , v(S∪T ) ≤ v(S)+v(T ), and monotone if v(S) ≤ v(S∪T ).
The class of subadditive valuations encompasses a number of popular and well-
studied classes of valuations, but at the same time is significantly more general
than all of these classes. It is worth noting that when there are an unlimited
number of allowed groups, subadditive functions are almost trivial to deal with:
both the maximum welfare solution and the stabilizing payments are easily com-
putable. For our setting, however, computing OPT becomes NP-Hard, and a fully
core-stable solution need not exist. In addition, we are able to show stronger
results for the following two commonly studied sub-classes of valuations.

Submodular Valuations For any two sets S, T with T ⊆ S, and any agent i,
v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ).

Fractionally Subadditive (also called ‘XoS’) Valuations ∃ a set of addi-
tive functions (a1, . . . , ar) such that for any T ⊆ N , v(T ) = maxr

j=1 aj(T ).
These additive functions are referred to as clauses.

Recall that an additive function aj has a single value aj(i) for each i ∈ N so
that for a set T of agents, aj(T ) =

∑
i∈T aj(i). The reader is asked to refer

to [10,11,18] for alternative definitions of the XoS class and an exposition on
how both these classes arise naturally in many interesting applications.

Anonymous Subadditive Functions. In many project assignment settings in
the literature [17,19], it is reasonable to assume that the value from a project
depends only on the number of users working on that project. Mathematically,
a valuation function is said to be anonymous or symmetric if for any two subsets
S, T with |S| = |T |, we have v(S) = v(T ). One of our main contributions in this
paper is a fast algorithm for the computation of Core stable solutions when the
projects have anonymous subadditive functions. We remark here that anonymous
subadditive functions form an interesting sub-class of subadditive functions that
are quite different from submodular and XoS functions.
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Demand Oracles. The standard approach in the literature while dealing with
set functions (where the input representation is often exponential in size) is to
assume the presence of an oracle that allows indirect access to the valuation by
answering specific types of queries. In particular, when dealing with a subad-
ditive function v, it is typical to assume that we are provided with a demand
oracle that when queried with a vector of payments p, returns a set T ⊆ N
that maximizes the quantity v(T ) − ∑

i∈T pi [10]. Demand oracles have natural
economic interpretations, e.g., if p represents the vector of potential payments
by a firm to its employees, then v(T ) − ∑

i∈T pi denotes the assignment that
maximizes the firm’s revenue or surplus.

In this paper, we do not explicitly assume the presence of a demand ora-
cle; our constructions are quite robust in that they do not make any demand
queries. However, any application of our black-box mechanism requires as input
an allocation which approximates OPT, and the optimum dual prices, both of
which cannot be computed without demand oracles. For example, it is known [10]
that one cannot obtain any reasonable approximation algorithm for subadditive
functions in the absence of demand queries. That said, for several interesting
valuations, these oracles can be constructed efficiently. For example, for XoS
functions, this can be done in time polynomial in the number of input clauses.

2.1 Warm-Up Result: (1, 2)-Core for Submodular Valuations

We begin with an easy result: an algorithm that computes a core stable solution
when all projects have submodular valuations, and also retains half the opti-
mum welfare. Although this result is not particularly challenging, it serves as a
useful baseline to highlight the challenges involved in computing stable solutions
for more general valuations. Later, we show that by sacrificing an ε amount of
stability, we can improve upon this result significantly.

Claim 1 We can compute in poly-time a (1, 2)-Core stable solution for any
instance with submodular project valuations.

The above claim also implies that for every instance with submodular project
valuations, there exists a Core stable solution. In contrast, for subadditive valu-
ations, even simple instances (Example 1) do not admit a Core stable solution.

Proof: The proof uses the popular greedy half-approximation algorithm for sub-
modular welfare maximization [18]. Initialize the allocation X to be empty. At
every stage, add an agent i to project k so that the value vk(Xk ∪{i})−vk(Xk) is
maximized. Set i’s final payment p̄i to be exactly the above marginal value. Let
the final allocation once the algorithm terminates be S, so

∑
i∈Sk

p̄i = vk(Sk).
Consider any group of agents T , and some project k: by the definition of the
greedy algorithm, and by submodularity, it is not hard to see that ∀i ∈ T ,
p̄i ≥ vk(Sk∪{i})−vk(Sk). Therefore, we have that

∑
i∈T p̄i ≥ vk(Sk∪T )−vk(Sk),

and since the payments are budget-balanced, the solution is core-stable. �
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3 Computing Approximately Core Stable Solutions

In this section, we show our main algorithmic result, namely a black-box mecha-
nism that reduces the problem of finding a core stable solution to the algorithmic
problem of subadditive welfare maximization. We use this black-box in conjunc-
tion with the algorithm of Feige [11] to obtain a (4, 4)-Core stable solution, i.e.,
a 4-approximate core that extracts one-fourth of the optimum welfare. Using
somewhat different techniques, we form stronger bounds ((2, 2)-Core) for the
class of anonymous subadditive functions. Our results for the class of anony-
mous functions are tight: there are instances where no (2 − ε, 2 − ε)-core stable
solution exists. This indicates that our result for general subadditive valuations
is close to tight (up to a factor of two).

We begin by stating the following standard linear program relaxation for the
problem of computing the welfare maximizing allocation. Although the primal
LP contains an exponential number of variables, the dual LP can be solved using
the Ellipsoid method where the demand oracle serves as a separation oracle [10].
The best-known approximation algorithms for many classes of valuations use LP-
based rounding techniques; of particular interest to us is the 2-approximation
for Subadditive valuations [11], and e

e−1 -approximation for XoS valuations [10].

max
M∑

k=1

∑

S⊆N
xk(S)vk(S) (D) min

N∑

i=1

pi +
M∑

k=1

zk

s.t.
M∑

k=1

∑

S�i

xk(S) ≤ 1 ∀i ∈ N s.t.
∑

i∈S

pi + zk ≥ vk(S) ∀S, k

∑

S⊆N
xk(S) ≤ 1, ∀k ∈ P pi ≥ 0, ∀i ∈ N

xk(S) ≥ 0, ∀S,∀k zk ≥ 0, ∀k ∈ P
(1)

As long as the instance is clear from the context, we will use (p∗, z ∗) to
denote the optimum solution to the Dual LP, referring to p∗ as the dual prices,
and z ∗ as the slack.

Main Result. We are now in a position to show the central result of this
paper. The following black-box mechanism assumes as input an LP-based α-
approximate allocation, i.e., an allocation whose social welfare is at most a fac-
tor α smaller than the value of the LP optimum for that instance. LP-based
approximation factors are a staple requirement for black-box mechanisms that
explicitly make use of the optimum LP solution [15]. Along these lines, we make
the assumption that the optimum dual variables (for the given instance) are
available to the algorithm along with an input allocation.

Theorem 2. Given any α-approximate solution to the LP optimum, we can
construct a (2α, 2α)-Core Stable Solution in polynomial time as long as the
projects have subadditive valuations.
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The above theorem in conjunction with the 2-approximation algorithm for
general subadditive functions proposed in [11] yields the following corollary.

Corollary 3. We can compute in poly-time a (4, 4)-Core stable solution for any
instance with subadditive projects.

Technical Challenges for Subadditive Valuations. At the heart of finding
a Core allocation lies the problem of estimating ‘how much is an agent worth
to a coalition’. Unfortunately, the idea used in Claim1 does not extend to more
general valuations as the marginal value is no longer representative of an agent’s
worth. One alternative approach is to use the dual variables to tackle this prob-
lem: for example, in the classic setting with duplicate projects, every solution
S along with the dual prices as payments yields an α-budget balanced core.
Therefore, the challenge there is to bound the factor α using the integrality gap.
However, this is no longer true in our combinatorial setting as there is no clear
way of dividing the dual variables due to the presence of slack.
(Proof Sketch of Theorem 2): Since we cannot find every agent’s exact worth,
we will attempt to approximate this problem by identifying a ‘small set of heavy
users’ who contribute significantly to the social welfare and providing large pay-
ments only to these users. The proof proceeds constructively via the following
algorithm: initialize each user’s payment to p∗

i , and then divide the slack z∗
k

equally among all users on project k. Now, follow this up with a best-response
(BR) phase, where agents are allowed to deviate to empty projects. Unfortu-
nately, the BR phase may lead to a large welfare loss. However, we show that
the projects which incur a significant loss in social welfare after the best-response
phase lose at most half of the agents originally assigned to it, they form the set
of heavy users. Therefore, we return these heavy agents to their original projects
and provide them payments equal to their best available outside option. While
this bounds the loss in welfare, the payments to the non-heavy users may no
longer be enough to stabilize them. Therefore, in the final round, we once again
do a best-response phase with the these agents to obtain core-stability. Note that
in contrast to the traditional setting, we only use the dual variables as a ‘guide’
in the first BR step to ensure that ∀k ∈ P, the payment given to users on that
project is at least a good fraction of the value they generate. �

3.1 Anonymous Functions

Our other main result in this paper is a (2, 2)-Core stable solution for the class
of subadditive functions that are anonymous. Recall that for an anonymous
valuation v, v(T1) = v(T2) for any |T1| = |T2|. We begin with some existential
lower bounds for approximating the core. From Example (1), we already know
that the core may not exist even in simple instances. Extending this example,
we show a much stronger set of results.

Claim 4 (Lower Bounds). There exist instances having only two projects with
anonymous subadditive functions such that
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1. For any ε > 0, no (2 − ε, c)-core stable solution exists for any value c.
2. For any ε > 0, no (α, 2 − ε)-core stable solution exists for any constant α.

(Proof of Part 1) We show that no (2 − ε)-budget-balanced core stable solution
exists for a given ε > 0. Consider an instance with N buyers. The valuations for
the two projects are v1(S) = N

2 ∀S ⊂ N , and v1(N ) = N ; v2(S) = 2 ∀S ⊆ N .
Assume by contradiction that there is a (2 − ε)-core stable solution, then this
cannot be achieved when all of the agents are assigned to project 1 because they
would each require a payment of 2 to prevent them from deviating to project 2.
On the other hand, suppose that some agents are assigned to project 2, then the
social welfare of the solution is at most N

2 + 2. If these agents cannot deviate
to project 1, then, their payments would have to be at least v1(N ) = N . For a
sufficiently large N , we get that the budget-balance is N

N/2+2 > 2 − ε. �
We now describe an intuitive 2-approximation algorithm for maximizing wel-
fare that may be of independent interest. To the best of our knowledge, the only
previously known approach that achieves a 2-approximation for anonymous sub-
additive functions is the LP-based rounding algorithm for general subadditive
functions [11]. Our result shows that for the special class of anonymous functions,
the same factor can be achieved by a much faster, greedy algorithm.

Algorithm: Starting with all agents unassigned, at each step we choose
a set of agents T and project k maximizing vk(T∪Sk)−vk(Sk)

|T | . Assign the
agents to that project, i.e., Sk = Sk ∪ T .

The next result uses the approximation algorithm to compute an approx-
imately core stable solution. Although the Algorithm is straight-forward, the
proof of the approximation factor is somewhat involved.

Theorem 5. For any instance with anonymous subadditive projects, the allo-
cation S returned by the greedy algorithm along with suitably chosen payments
constitute a (2, 2)-core stable solution.

Envy-Free Payments. One interpretation for projects having anonymous val-
uations is that all the agents possess the same level of skill, and therefore, the
value generated from a project depends only on the number of agents assigned
to it. In such scenarios, it may be desirable that the payments given to the dif-
ferent agents are ‘fair’ or envy-free, i.e., all agents assigned to a certain project
must receive the same payment. We remark that the payments computed by
Theorem 5 are also envy-free.

3.2 Submodular and Fractionally Subadditive (XoS) Valuations

Submodular and fractionally subadditive valuations are arguably the most popu-
lar classes of subadditive functions, and we show several interesting and improved
results for these sub-classes. For instance, for XoS valuations, we can com-
pute a (1 + ε)-core using demand and XoS oracles (see [10] for a treatment of
XoS oracles), whereas without these oracles, we can still compute a ( e

e−1 )-core.
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For submodular valuations, we provide an algorithm to compute a (1 + ε)-core
even without a demand oracle. All of these solutions retain at least a fraction
(1 − 1

e ) of the optimum welfare, which matches the computational lower bound
for both of these classes. We begin with a simple existence result for XoS val-
uations, that the optimum solution along with payments obtained using a XoS
oracle form an exact core stable solution.

Proposition 6. There exists a (1, 1)-core stable solution for every instance
where the projects have XoS valuations.

Since Submodular ⊂ XoS, this result extends to submodular valuations as well.
Unfortunately, it is known that the optimum solution cannot be computed effi-
ciently for either of these classes unless P= NP [10]. However, we show that one
can efficiently compute approximately optimal solutions that are almost-stable.

Theorem 7. 1. For any instance where the projects have XoS valuations, we
can compute (1+ε, e

e−1 )-core stable solution using Demand and XoS oracles,
and a ( e

e−1 , e
e−1 )-core stable solution without these oracles.

2. For submodular valuations, we can compute a (1+ε, e
e−1 )-core stable solution

using only a Value oracle.

Note that for both the classes, a (1+ε)-core can be computed in time polynomial
in the input, and 1

ε . We conclude by pointing out that the results above are much
better than what could have been obtained by plugging in α = e

e−1 in Theorem 2
for Submodular or XoS valuations.

4 Relationship to Combinatorial Auctions

We now change gears and consider the seemingly unrelated problem of Item
Bidding Auctions, and establish a surprising equivalence between Core stable
solutions and pure Nash equilibrium in Simultaneous Second Price Auctions.
Following this, we adapt some of our results specifically for the auction setting
and show how to efficiently compute approximate Nash equilibrium when buyers
have anonymous or submodular functions.

In recent years, the field of Auction Design has been marked by a paradigm
shift towards ‘simple auctions’; one of the best examples of this is the growing
popularity of Simultaneous Combinatorial Auctions [5,9]. The auction mecha-
nism is simple: every buyer submits one bid for each of the N items, the auc-
tioneer then proceeds to run N -parallel single-item auctions (usually first-price
or second-price). In the case of Second Price Auctions, each item is awarded to
the highest bidder (for that item) who is then charged the bid of the second
highest bidder. Each buyer’s utility is her valuation for the bundle she receives
minus her total payment.

We begin by establishing that for every instance of our utility sharing prob-
lem, there is a corresponding combinatorial auction, and vice-versa. Formally,
given an instance (N ,P, (v)k∈P), we define the following ‘flipped auction’: there
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is a set N of N items, and a set P of m buyers. Every buyer k ∈ P has a valua-
tion function vk for the items. In the simultaneous auction, the strategy of every
buyer is a bid vector bk ; bk(i) denotes buyer k’s bid for item i ∈ N . A profile of
bid vectors along with an allocation is said to be a pure Nash equilibrium of the
simultaneous auction if no buyer can unilaterally change her bids and improve
her utility at the new allocation.

Over-Bidding. Nash equilibrium in simultaneous auctions is often accompa-
nied by a rather strong no-overbidding condition that a player’s aggregate bid
for every set S of items is at most her valuation vk(S) for that set. In this
paper, we study the slightly less stringent weak no-overbidding assumption con-
sidered in [13] which states that ‘a player’s total bid for her winning set is at
most her valuation for that set’. Finally, to model buyers who overbid by small
amounts, we focus on the following natural relaxation of no-overbidding known
as γ-conservativeness that was defined by Bhawalkar and Roughgarden [5].

Definition 8. (Conservative Bids) [5] For a given buyer k ∈ P, a bid vector bk
is said to be γ-conservative if for all T ⊆ N , we have

∑
i∈T bk(i) ≤ γ · vk(T ).

We now state our main equivalence result that is based on a simple black-
box transformation to convert a Core stable solution (S, p̄) to a profile of bids
(bk )k∈P that form a Nash Equilibrium: bk(i) = p̄i if i ∈ Sk, and bk(i) = 0
otherwise.

Theorem 9. Every Core stable solution for a given instance of our game can
be transformed into a Pure Nash Equilibrium (with weak no-overbidding) of the
corresponding ‘flipped’ simultaneous second price auction, and vice-versa.

A case for Approximate Equilibrium. The exciting connection between the
two solution concepts unfortunately extends to negative results as well. One can
extend our lower bound examples to show that even when all buyers have anony-
mous subadditive functions, there exist instances where every Nash equilibrium
requires O(

√
N)-conservative bids. The expectation that buyers will overbid by

such a large amount appears to be unreasonable. In light of these impossibility
results and the known barriers to actually compute a (no-overbidding) equi-
librium [9], we argue that in many auctions, it seems reasonable to consider
α-approximate Nash equilibrium that guarantee that buyers’ utilities cannot
improve by more than a factor α when they change their bids. In the following
result, we adapt our previous algorithms to compute approximate equilibria with
high social welfare for two useful settings. Moreover, these solutions require small
over-bidding, and can be obtained via simple mechanisms, so it seems likely that
they would actually arise in practice when pure equilibria either do not exist or
require a large amount of overbidding.

Claim 10 Given a Second Price Simultaneous Combinatorial Auction, we can
compute in time polynomial in the input (and 1

ε for a given ε > 0)

1. A 2-approximate Nash equilibrium that extracts half the optimal social welfare
as long as the buyers have anonymous subadditive valuations.
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2. A (1 + ε)-approximate Nash equilibrium that is a e
e−1 -approximation to the

optimum welfare when the buyers have submodular valuations.

The first solution involves 4-conservative bids, and the second solution
involves (1 + ε)-conservative bids.

We conclude by remarking that despite the large body of work in Simultaneous
Auctions, our theorems do not follow from any known results in that area, and we
hope that our techniques lead to new insights for computing auction equilibria.
Detailed proofs of all of our results can be found in the full version of this paper
available at http://arxiv.org/abs/1508.06781.
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4. Bejan, C., Gómez, J.C.: Theory Core extensions for non-balanced TU-games. Int.
J. Game 38(1), 3–16 (2009)

5. Bhawalkar, K., Roughgarden, T.: Welfare guarantees for combinatorial auctions
with item bidding. In: Proceedings of SODA (2011)

6. Bousquet, N., Li, Z., Vetta, A.: Coalition games on interaction graphs: a horticul-
tural perspective. In: Proceedings of EC (2015)

7. Chalkiadakis, G., Elkind, E., Markakis, E., Polukarov, M., Jennings, N.R.: Coop-
erative games with overlapping coalitions. J. Artif. Intell. Res. (JAIR) 39, 179–216
(2010)

8. Deng, X., Ibaraki, T., Nagamochi, H.: Algorithmic aspects of the core of combina-
torial optimization games. Math. Oper. Res. 24(3), 751–766 (1999)

9. Dobzinski, S., Fu, H., Kleinberg, R.D.: On the complexity of computing an equi-
librium in combinatorial auctions. In: Proceedings of SODA (2015)

10. Dobzinski, S., Nisan, N., Schapira, M.: Approximation algorithms for combinatorial
auctions with complement-free bidders. Math. Oper. Res. 35(1), 1–13 (2010)

11. Feige, U.: On maximizing welfare when utility functions are subadditive. SIAM J.
Comput. 39(1), 122–142 (2009)

12. Feldman, M., Friedler, O.: A unified framework for strong price of anarchy in
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Abstract. We consider two-sided matching markets, and study the
incentives of agents to circumvent a centralized clearing house by signing
binding contracts with one another. It is well-known that if the clearing
house implements a stable match and preferences are known, then no
group of agents can profitably deviate in this manner.

We ask whether this property holds even when agents have incomplete
information about their own preferences or the preferences of others. We
find that it does not. In particular, when agents are uncertain about the
preferences of others, every mechanism is susceptible to deviations by
groups of agents. When, in addition, agents are uncertain about their
own preferences, every mechanism is susceptible to deviations in which
a single pair of agents agrees in advance to match to each other.

1 Introduction

In entry-level labor markets, a large number of workers, having just completed
their training, simultaneously seek jobs at firms. These markets are especially
prone to certain failures, including unraveling, in which workers receive job offers
well before they finish their training, and exploding offers, in which job offers
have incredibly short expiration dates. In the medical intern market, for instance,
prior to the introduction of the centralized clearing house (the National Resi-
dency Matching Program, or NRMP), medical students received offers for resi-
dency programs at US hospitals two years in advance of their employment date.
In the market for law clerks, law students have reported receiving exploding
offers in which they were asked to accept or reject the position on the spot (for
further discussion, see Roth and Xing [17]).

In many cases, including the medical intern market in the United States and
United Kingdom and the hiring of law students in Canada, governing agencies
try to circumvent these market failures by introducing a centralized clearing
house which solicits the preferences of all participants and uses these to recom-
mend a matching. One main challenge of this approach is that of incentivizing
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participation. Should a worker and firm suspect they each prefer the other to
their assignment by the clearing house, then they would likely match with each
other and not participate in the centralized mechanism. Roth [15] suggests that
this may explain why clearing houses that fail to select a stable match have often
had difficulty attracting participants.

Empirically, however, even clearing houses which produce stable matches may
fail to prevent early contracting. Examples include the market for Canadian law
students (discussed by Roth and Xing [17]) and the American gastroenterology
match (studied by Niederle and Roth [12] and McKinney et al. [11]). This is per-
haps puzzling, as selecting a stable match ensures that no group of participants
can profitably circumvent the clearing house ex-post.

Our work offers one possible explanation for this phenomenon. While stable
clearing houses ensure that for fixed, known preferences, no coalition can prof-
itably deviate, in most natural settings, participants contemplating deviation do
so without complete knowledge of others’ preferences (and sometimes even their
own preferences). Our main finding is that in the presence of such uncertainty, no
mechanism can prevent agents from signing mutually beneficial side contracts.

We model uncertainty in preferences by assuming that agents have a com-
mon prior over the set of possible preference profiles, and may in addition know
their own preferences. We consider two cases. In one, agents have no private
information when contracting, and their decision of whether to sign a side con-
tract depends only on the prior (and the mechanism used by the clearing house).
In the second case, agents know their own preferences, but not those of others.
When deciding whether to sign a side contract, agents consider their own prefer-
ences, along with the information revealed by the willingness (or unwillingness)
of fellow agents to sign the proposed contract.

Note that with incomplete preference information, agents perceive the part-
ner that they are assigned by a given mechanism to be a random variable. In
order to study incentives for agents to deviate from the centralized clearing
house, we must specify a way for agents to compare lotteries over match part-
ners. One seemingly natural model is that each agent gets, from each potential
partner, a utility from being matched to that partner. When deciding between
two uncertain outcomes, agents simply compare their corresponding expected
utilities. Much of the previous literature has taken this approach, and indeed, it
is straightforward to discover circumstances under which agents would rationally
contract early (see the full version of the paper for an example). Such cases are
perhaps unsurprising; after all, the central clearing houses that we study solicit
only ordinal preference lists, while the competing mechanisms may be designed
with agents’ cardinal utilities in mind.

For this reason, we consider a purely ordinal notion of what it means for
an agent to prefer one allocation to another. In our model, an agent debating
between two uncertain outcomes chooses to sign a side contract only if the rank
that they assign their partner under the proposed contract strictly first-order
stochastically dominates the rank that they anticipate if all agents participate in
the clearing house. This is a strong requirement, by which we mean that it is easy
for a mechanism to be stable under this definition, relative to a definition relying
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on expected utility. For instance, this definition rules out examples of beneficial
deviations, where agents match to an acceptable, if sub-optimal, partner in order
to avoid the possibility of a “bad” outcome.

Despite the strong requirements we impose on beneficial deviations, we show
that every mechanism is vulnerable to side contracts when agents are initially
uncertain about their preferences or the preferences of others. On the other
hand, when agents are certain about their own preferences but not about the
preferences of others, then there do exist mechanisms that resist the formation
of side contracts, when those contracts are limited to involving only a pair of
agents (i.e., one from each side of the market).

2 Related Work

Roth [14] and Roth and Rothblum [16] are among the first papers to model
incomplete information in matching markets. These papers focus on the strategic
implications of preference uncertainty, meaning that they study the question of
whether agents should truthfully report to the clearinghouse. Our work, while
it uses a similar preference model, assumes that the clearing house can observe
agent preferences. While this assumption may be realistic in some settings, we
adopt it primarily in order to separate the strategic manipulation of matching
mechanisms (as studied in the above papers) from the topic of early contracting
that is the focus of this work.

Since the seminal work of Roth and Xing [17], the relationship between sta-
bility and unraveling has been studied using observational studies, laboratory
experiments, and theoretical models. Although work by Roth [15] and Kagel
and Roth [5] concluded that stability plays an important role in encouraging
participation, other papers note that uncertainty may cause unraveling even if
a stable matching mechanism is used.

A common theme in these papers is that unraveling is driven by the motive
of “insurance.” For example, the closely related models of Li and Rosen [6],
Suen [19], and Li and Suen [7,8] study two-sided assignment models with trans-
fers in which binding contracts may be signed in one of two periods (before or
after revelation of pertinent information). In each of these papers, unraveling
occurs (despite the stability of the second-round matching) because of agents’
risk-aversion: when agents are risk-neutral, no early matches form. Yenmez [20]
also considers notions of interim and ex-ante stability in a matching market
with transferable utility. He establishes conditions under which stable, incentive
compatible, and budget-balanced mechanisms exist.

Even in models in which transfers are not possible (and so the notion of
risk aversion has no obvious definition), the motive of insurance often drives
early matching. The models presented by Roth and Xing [17], Halaburda [4],
and Du and Livne [2] assume that agents have underlying cardinal utilities for
each match, and compare lotteries over matchings by computing expected util-
ities. They demonstrate that unraveling may occur if, for example, workers are
willing to accept an offer from their second-ranked firm (foregoing a chance to
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be matched to their top choice) in order to ensure that they do not match to a
less-preferred option.1

While insurance may play a role in the early contracting observed by Roth
and Xing [17], one contribution of our work is to show that it is not necessary
to obtain such behavior. In this work, we show that even if agents are unwilling
to forego top choices in order to avoid lower-ranked ones, they might rationally
contract early with one another. Put another way, we demonstrate that some
opportunities for early contracting may be identified on the basis of ordinal infor-
mation alone (without making assumptions about agents’ unobservable cardinal
utilities).

Manjunath [10] and Gudmundsson [3] consider the stochastic dominance
notion used in this paper; however they treat only the case (referred to in this
paper as “ex-post”) where the preferences of agents are fixed, and the only ran-
domness comes from the assignment mechanism. One contribution of our work
is to define a stochastic dominance notion of stability under asymmetric infor-
mation. This can be somewhat challenging, as agents’ actions signal information
about their type, which in turn might influence the actions of others.2

Perhaps the paper that is closest in spirit to ours is that of Peivandi and
Vohra [13], which considers the operation of a centralized exchange in a two-
sided setting with transferable utility. One of their main findings is that every
trading mechanism can be blocked by an alternative; our results have a similar
flavor, although they are established in a setting with non-transferrable utility.

3 Model and Notation

In this section, we introduce our notation, and define what it means for a match-
ing to be ex-post, interim, or ex-ante stable. There is a (finite, non-empty) set
M of men and a (finite, non-empty) set W of women.

Definition 1. Given M and W , a matching is a function μ : M∪W → M∪W
satisfying:

1. For each m ∈ M , μ(m) ∈ W ∪ {m}
1 In many-to-one settings, Sönmez [18] demonstrates that even in full-information

environments, it may be possible for agents to profitably pre-arrange matches (a
follow-up by Afacan [1] studies the welfare effects of such pre-arrangements). In
order for all parties involved to strictly benefit, it must be the case that the firm
hires (at least) one inferior worker in order to boost competition for their remaining
spots (and thereby receive a worker who they would be otherwise unable to hire).
Thus, the profitability of such an arrangement again relies on assumptions about
the firm’s underlying cardinal utility function.

2 Liu et al. [9] have recently grappled with this inference procedure, and defined a
notion of stable matching under uncertainty. Their model differs substantially from
the one considered here: it takes a matching μ as given, and assumes that agents
know the quality of their current match, but must make inferences about potential
partners to whom they are not currently matched.
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2. For each w ∈ W , μ(w) ∈ M ∪ {w}
3. For each m ∈ M and w ∈ W , μ(m) = w if and only if μ(w) = m.

We let M(M,W ) be the set of matchings on M,W .

Given a set S, define R(S) to be the set of one-to-one functions mapping
S onto {1, 2, . . . , |S|}. Given m ∈ M , let Pm ∈ R(W ∪ {m}) be m’s ordinal
preference relation over women (and the option of remaining unmatched). Sim-
ilarly, for w ∈ W , let Pw ∈ R(M ∪ {w}) be w’s ordinal preference relation over
the men. We think of Pm(w) as giving the rank that m assigns to w; that is,
Pm(w) = 1 implies that matching to w is m’s most-preferred outcome.

Given sets M and W , we let P(M,W ) =
∏

m∈M R(W ∪{m})×∏
w∈W R(M∪

{w}) be the set of possible preference profiles. We use P to denote an arbi-
trary element of P(M,W ), and use ψ to denote a probability distribution over
P(M,W ). We use PA to refer to the preferences of agents in the set A under
profile P , and use Pa (rather than the more cumbersome P{a}) to refer to the
preferences of agent a.

Definition 2. Given M and W , and P ∈ P(M,W ), we say that matching μ is
stable at preference profile P if and only if the following conditions hold.

1. For each a ∈ M ∪ W , Pa(μ(a)) ≤ Pa(a).
2. For each m ∈ M and w ∈ W such that Pm(μ(m)) > Pm(w), we have

Pw(μ(w)) < Pw(m).

This is the standard notion of stability; the first condition states that agents
may only be matched to partners whom they prefer to going unmatched, and
the second states that whenever m prefers w to his partner under μ, it must be
that w prefers her partner under μ to m.

In what follows, we fix M and W , and omit the dependence of M and P on
the sets M and W . We define a mechanism to be a (possibly random) mapping
φ : P → M. We use A′ to denote a subset of M ∪ W .

We now define what it means for a coalition of agents to block the mechanism
φ, and what it means for a mechanism (rather than a matching) to be stable.
Because we wish to consider randomized mechanisms, we must have a way for
agents to compare lotteries over outcomes. As mentioned in the introduction,
our notion of blocking relates to stochastic dominance. Given random variables
X,Y ∈ N, say that X first-order stochastically dominates Y (denoted X � Y )
if for all n ∈ N, Pr(X ≤ n) ≥ Pr(Y ≤ n), with strict inequality for at least one
value of n.

An astute reader will note that this definition reverses the usual inequalities;
that is, X � Y implies that X is “smaller” than Y . We adopt this convention
because below, X and Y will represent the ranks assigned by each agent to their
partner (where the most preferred option has a rank of one), and thus by our
convention, X � Y means that X is preferred to Y .

Definition 3 (Ex-Post Stability). Given M,W and a profile P ∈ P(M,W ),
coalition A′ blocks mechanism φ ex-post at P if there exists a mechanism φ′

such that for each a ∈ A′,
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1. Pr(φ′(P )(a) ∈ A′) = 1, and
2. Pa(φ′(P )(a)) � Pa(φ(P )(a)).

Mechanism φ is ex-post stable at profile P if no coalition of agents blocks φ
ex-post at P .
Mechanism φ is ex-post stable if it is ex-post stable at P for all P ∈ P(M,W ).
Mechanism φ is ex-post pairwise stable if for all P , no coalition consisting
of at most one man and at most one woman blocks φ ex post at P .

Note that in the above setting, because P is fixed, the mechanism φ′ is really
just a random matching. The first condition in the definition requires that the
deviating agents can implement this alternative (random) matching without the
cooperation of the other agents; the second condition requires that for each agent,
the random variable denoting the rank of his partner under the alternative φ′

stochastically dominates the rank of his partner under the original mechanism.
Note that if the mechanism φ is deterministic, then it is ex-post pairwise

stable if and only if the matching it produces is stable in the sense of Definition 2.
The above notions of blocking and stability are concerned only with cases

where the preference profile P is fixed. In this paper, we assume that at the time
of choosing between mechanisms φ and φ′, agents have incomplete information
about the profile P that will eventually be realized (and used to implement a
matching). We model this incomplete information by assuming that it is common
knowledge that P is drawn from a prior ψ over P. Given a mechanism φ, each
agent may use ψ to determine the ex-ante distribution of the rank of the partner
that they will be assigned by φ. This allows us to define what it means for a
coalition to block φ ex-ante, and for a mechanism φ to be ex-ante stable.

Definition 4 (Ex-Ante Stability). Given M,W and a prior ψ over P(M,W ),
coalition A′ blocks mechanism φ ex-ante at ψ if there exists a mechanism φ′

such that if P is drawn from the prior ψ, then for each a ∈ A′,

1. Pr(φ′(P )(a) ∈ A′) = 1, and
2. Pa(φ′(P )(a)) � Pa(φ(P )(a)).

Mechanism φ is ex-ante stable at prior ψ if no coalition of agents blocks φ
ex-ante at ψ.
Mechanism φ is ex-ante stable if it is ex-ante stable at ψ for all priors ψ.
Mechanism φ is ex-ante pairwise stable if, for all priors ψ, no coalition
consisting of at most one man and at most one woman blocks φ ex-ante at ψ.

Note that the only difference between ex-ante and ex-post stability is that
the randomness in Definition 4 is over both the realized profile P and the match-
ing produced by φ, whereas in Definition 3, the profile P is deterministic. Put
another way, the mechanism φ is ex-post stable if and only if it is ex-ante stable
at all deterministic distributions ψ.

The notions of ex-ante and ex-post stability defined above are fairly straight-
forward because the information available to each agent is identical. In order
to study the case where each agent knows his or her own preferences but not
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the preferences of others, we must define an appropriate notion of a blocking
coalition. In particular, if man m decides to enter into a contract with woman
w, m knows not only his own preferences, but also learns about those of w from
the fact that she is willing to sign the contract. Our definition of what it means
for a coalition to block φ in the interim takes this into account.

In words, given the common prior ψ, we say that a coalition A′ blocks φ in the
interim if there exists a preference profile P that occurs with positive probability
under ψ such that when preferences are P , all members of A′ agree that the
outcome of φ′ stochastically dominates that of φ, given their own preferences and
the fact that other members of A′ also prefer φ′. We formally define this concept
below, where we use the notation ψ(·) to represent the probability measure
assigned by the distribution ψ to the argument.

Definition 5 (Interim Stability). Given M,W , and a prior ψ over P(M,W ),
coalition A′ blocks mechanism φ in the interim if there exists a mechanism
φ′, and for each a ∈ A′, a subset of preferences Ra satisfying the following:

1. For each P ∈ P, Pr(φ′(P )(a) ∈ A′) = 1.
2. For each agent a ∈ A′ and each preference profile P̃a, P̃a ∈ Ra if and only if

(a) ψ(Ya(P̃a)) > 0, where Ya(P̃a) = {P : Pa = P̃a} ∩ {P : Pa′ ∈ Ra′ ∀a′ ∈
A′\{a}}

(b) When P is drawn from the conditional distribution of ψ given Ya(P̃a), we
have Pa(φ′(P )(a)) � Pa(φ(P )(a)).

Mechanism φ is interim stable at ψ if no coalition of agents blocks φ in the
interim at ψ.
Mechanism φ is interim stable if it is interim stable at ψ for all distributions ψ.
Mechanism φ is interim pairwise stable if, for all priors ψ, no coalition
consisting of at most one man and at most one woman blocks φ in the interim
at ψ.

To motivate the above definition of an interim blocking coalition, consider a game
in which a moderator approaches a subset A′ of agents, and asks each whether
they would prefer to be matched according to the mechanism φ (proposed by the
central clearing house) or the alternative φ′ (which matches agents in A′ to each
other). Only if all agents agree that they would prefer φ′ is this mechanism used.
Condition 1 simply states that the mechanism φ′ generates matchings among the
(potentially) deviating coalition A′.

We think of Ra as being a set of preferences for which agent a agrees to
use mechanism φ′. The set Ya(P̃a) is the set of profiles which agent a considers
possible, conditioned on the events Pa = P̃a and the fact that all other agents
in A′ agree to use mechanism φ′. Condition 2 is a consistency condition on the
preference subsets Ra: (2a) states that agents in A′ should agree to φ′ only if
they believe that there is a chance that the other agents in A′ will also agree
to φ′ (that is, if ψ assigns positive mass to Ya); moreover, (2b) states that in
the cases when Pa ∈ Ra and the other agents select φ′, it should be the case
that a “prefers” the mechanism φ′ to φ (here and in the remainder of the paper,
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when we write that agent a prefers φ′ to φ, we mean that given the information
available to a, the rank of a’s partner under φ′ stochastically dominates the rank
of a’s partner under φ).

4 Results

We begin with the following observation, which states that the three notions of
stability discussed above are comparable, in that ex-ante stability is a stronger
requirement than interim stability, which is in turn a stronger requirement than
ex-post stability.

Lemma 1. If φ is ex-ante (pairwise) stable, then it is interim (pairwise) stable.
If φ is interim (pairwise) stable, then it is ex-post (pairwise) stable.

Proof. We argue the contrapositive in both cases. Suppose that φ is not ex-post
stable. This implies that there exists a preference profile P , a coalition A′, and a
mechanism φ′ that only matches agents in A′ to each other, such that all agents
in A′ prefer φ′ to φ, given P . If we take ψ to place all of its mass on profile P ,
then (trivially) A′ also blocks φ in the interim, proving that φ is not interim
stable.

Suppose now that φ is not interim stable. This implies that there exists a
distribution ψ over P, a coalition A′, a mechanism φ′ that only matches agents in
A′ to each other, and preference orderings Ra satisfying the following conditions:
the set of profiles Y = {P : ∀a ∈ A′, Pa ∈ Ra} has positive mass ψ (Y ) > 0; and
conditioned on the profile being in Y , agents in A′ want to switch to φ′ , i.e.,
for all a ∈ A′ and for all Pa ∈ Ra agent a prefers φ′ to φ conditioned on the
profile being in Y . Thus, agent a must prefer φ′ even ex ante (conditioned only
on P ∈ Y ).

If we take ψ′ to be the conditional distribution of ψ given P ∈ Y , it follows
that under ψ′, all agents a ∈ A′ prefer mechanism φ′ to mechanism φ ex-ante,
so φ is not ex-ante stable.

4.1 Ex-Post Stability

We now consider each of our three notions of stability in turn, beginning with ex-
post stability. By Lemma 1, ex-post stability is the easiest of the three conditions
to satisfy. Indeed, we show there not only exist ex-post stable mechanisms, but
that any mechanism that commits to always returning a stable matching is ex-
post stable.

Theorem 1. Any mechanism that produces a stable matching with certainty is
ex-post stable.

Note that if the mechanism φ is deterministic, then (trivially) it is ex-post sta-
ble if and only if it always produces a stable matching. Thus, for deterministic
mechanisms, our notion of ex-post stability coincides with the “standard” defin-
ition of a stable mechanism. Theorem 1 states further that any mechanism that
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randomizes among stable matchings is also ex-post stable. This fact appears as
Proposition 3 in [10].3

We next show in Example 1 that the converse of Theorem 1 does not hold.
That is, there exist randomized mechanisms φ which sometimes select unstable
matches but are nevertheless ex-post stable. In this and other examples, we use
the notation Pm : w1, w2, w3 as shorthand indicating that m ranks w1 first,
w2 second, w3 third, and considers going unmatched to be the least desirable
outcome.

Example 1.
Pm1 : w1, w2, w3 Pw1 : m3,m2,m1

Pm2 : w1, w3, w2 Pw2 : m2,m1,m3

Pm3 : w2, w1, w3 Pw3 : m3,m2,m1

There is a unique stable match, given by {m1w2,m2w3,m3w1}.

Lemma 2. For the market described in Example 1, no coalition blocks the mech-
anism that outputs a uniform random matching.

Proof. Because the random matching gives each agent their first choice with
positive probability, if agent a is in a blocking coalition, then it must be that
the agent that a most prefers is also in this coalition. Furthermore, any blocking
mechanism must always match all participants, and thus any blocking coalition
must have an equal number of men and women. Thus, the only possible block-
ing coalitions are {m2,m3, w1, w2} or all six agents. The first coalition cannot
block; if the probability that m2 and w2 are matched exceeds 1/3, m2 will not
participate. If the probability that m3 and w2 are matched exceeds 1/3, then w2

will not participate. But at least one of these quantities must be at least 1/2.
Considering a mechanism that all agents participate in, for any set of weights

on the six possible matchings, we can explicitly write inequalities saying that
each agent must get their first choice with probability at least 1/3, and their last
with probability at most 1/3. Solving these inequalities indicates that any random
matching μ that (weakly) dominates a uniform random matching must satisfy

Pr(μ = {m1w1,m2w2,m3w3}) = Pr(μ = {m1w2,m2w3,m3w1})
= Pr(μ = {m1w3,m2w1,m3w2}),

Pr(μ = {m1w1,m2w3,m3w2}) = Pr(μ = {m1w2,m2w1,m3w3})
= Pr(μ = {m1w3,m2w2,m3w1}).

But any such mechanism gives each agent their first, second and third choices
with equal probability, and thus does not strictly dominate the uniform random
matching.

Finally, the following lemma establishes a simple necessary condition for ex-
post incentive compatibility. This condition will be useful for establishing non-
existence of stable outcomes under other notions of stability.
3 We thank an anonymous reviewer for the reference.
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Lemma 3. If mechanism φ is ex-post pairwise stable, then if man m and woman
w rank each other first under P , it follows that Pr(φ(P )(m) = w) = 1.

Proof. This follows immediately: if φ(P ) matches m and w with probability less
than one, then m and w can deviate and match to each other, and both strictly
benefit from doing so.

4.2 Interim Stability

The fact that a mechanism which (on fixed input) outputs a uniform random
matching is ex-post stable suggests that our notion of a blocking coalition, which
relies on ordinal stochastic dominance, is very strict, and that many mechanisms
may in fact be stable under this definition even with incomplete information. We
show in this section that this intuition is incorrect: despite the strictness of our
definition of a blocking coalition, it turns out that no mechanism is interim
stable.

Theorem 2. No mechanism is interim stable.

Proof. In the proof, we refer to permutations of a given preference profile P ,
which informally are preference profiles that are equivalent to P after a relabeling
of agents. Formally, given a permutation σ on the set M ∪ W which satisfies
σ(M) = M and σ(W ) = W , we say that P ′ is the permutation of P obtained
by σ if for all a ∈ M ∪ W and a′ in the domain of Pa, it holds that Pa(a′) =
P ′

σ(a)(σ(a′)).

The proof of Theorem 2 uses the following example.

Example 2. Suppose that each agent’s preferences are iid uniform over the other
side, and consider the following preference profile, which we denote P :

Pm1 : w1, w2, w3 Pw1 : m1,m2,m3

Pm2 : w1, w3, w2 Pw2 : m1,m3,m2

Pm3 : w3, w1, w2 Pw3 : m3,m1,m2

Note that under profile P , m1 and w1 rank each other first, as do m3 and w3. By
Lemma 1, if φ is interim stable, it must be ex-post stable. By Lemma 3, given this
P , any ex-post stable mechanism must produce the match {m1w1,m2w2,m3w3}
with certainty. Furthermore, if preference profile P ′ is a permutation of P ,
then the matching φ(P ′) must simply permute {m1w1,m2w2,m3w3} accord-
ingly. Thus, on any permutation of P , φ gives four agents their first choices, and
two agents their third choices.

Define the mechanism φ′ as follows:

– If P ′ is the permutation of P obtained by σ, then

φ′(P ′) = {σ(m1)σ(w2), σ(m2)σ(w1), σ(m3)σ(w3)}.

– On any profile that is not a permutation of P , φ′ mimics φ.
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Note that on profile P , φ′ gives four agents their first choices, and two agents
their second choices. If each agent’s preferences are iid uniform over the other
side, then each agent considers his or herself equally likely to play each role
in the profile P (by symmetry, this is true even after agents observe their own
preferences, as they know nothing about the preferences of others). Thus, con-
ditioned on the preference profile being a permutation of P , all agents’ interim
expected allocation under φ offers a 2/3 chance of getting their first choice and
a 1/3 chance of getting their third choice, while their interim allocation under
φ′ offers a 2/3 chance of getting their first choice and a 1/3 chance of getting
their second choice. Because φ′ and φ are identical on profiles which are not
permutations of P , it follows that all agents strictly prefer φ′ to φ ex-ante.

The intuition behind the above example is as follows. Stable matchings may
be “inefficient”, meaning that it might be possible to separate a stable partner-
ship (m1, w1) at little cost to m1 and w1, while providing large gains to their
new partners (say m2 and w2). When agents lack the information necessary to
determine whether they are likely to play the role of m1 or m2, they will gladly
go along with the more efficient (though ex-post unstable) mechanism.

In addition to proving that no mechanism is interim stable for all priors,
Example 2 demonstrates that when the priori ψ is (canonically) taken to be
uniform on P, there exists no mechanism which is interim stable at the prior ψ.
Indeed, if φ sometimes fails to match pairs who rank each other first, then such
pairs have a strict incentive to deviate; if φ always matches mutual first choices,
then all agents prefer to deviate to the mechanism φ′ described above.

Theorem 2 establishes that it is impossible to design a mechanism φ that elim-
inates profitable deviations, but the deviating coalition in Example 2 involves six
agents, and the contract φ′ is fairly complex. In many settings, such coordinated
action may seem implausible. One might ask whether there exist mechanisms
that are at least immune to deviations by pairs of agents. The following theo-
rem shows that the complexity of Example 2 is necessary: any mechanism that
always produces a stable match is indeed interim pairwise stable.4

Lemma 4. Any mechanism that produces a stable match with certainty is
interim pairwise stable.

Proof. Seeking a contradiction, suppose that φ always produces a stable match.
Fix a man m, and a woman w with whom he might block φ in the interim. Note
that m must prefer w to going unmatched; otherwise, no deviation with w can
strictly benefit him. Thus, the best outcome (for m) from a contract with w is
that they are matched with certainty. According to the definition of an interim
blocking pair, m must believe that receiving w with certainty stochastically
dominates the outcome of φ; that is to say, m must be certain that φ will give

4 This result relies crucially on the fact that we’re using the notion of stochastic dom-
inance to determine blocking pairs. If agents instead evaluate lotteries over matches
by computing expected utilities, it is easy to construct examples where two agents
rank each other second, and both prefer matching with certainty to the risk of getting
a lower-ranked alternative from φ (see the full version of the paper for an example).
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him nobody better than w. Because φ produces a stable match, it follows that
in cases where m chooses to contract with w, φ always assigns to w a partner
that she (weakly) prefers to m, and thus she will not participate.

4.3 Ex-Ante Stability

In some settings, it is natural to model agents as being uncertain not only about
the rankings of others, but also about their own preferences. One might hope
that the result of Theorem 4 extends to this setting; that is, that if φ produces a
stable match with certainty, it remains immune to pairwise deviations ex-ante.
Theorem 3 states that this is not the case: ex-ante, no mechanism is even pairwise
stable.

Theorem 3. No mechanism is ex-ante pairwise stable.

Proof. The proof of Theorem 3 uses the following example.

Example 3. Suppose that there are three men and three women, and fix p ∈
(0, 1/4). The prior ψ is that preferences are drawn independently as follows:

Pm1 =

⎧
⎨

⎩

w1, w3, w2 w.p. 1 − 2p
w2, w1, w3 w.p. p
w3, w2, w1 w.p. p

Pw1 =

⎧
⎨

⎩

m1,m3,m2 w.p. 1 − 2p
m2,m1,m3 w.p. p
m3,m2,m1 w.p. p

Pm2 = w1, w2 Pw2 = m1,m2

Pm3 = w3 Pw3 = m3

Because m3 and w3 always rank each other first, we know by Lemmas 1
and 3 that if mechanism φ is ex-ante pairwise stable, it matches m3 and w3

with certainty. Applying Lemma 3 to the submarket ({m1,m2}, {w1, w2}), we
conclude that

1. Whenever m1 prefers w2 to w1, φ must match m1 with w2 (and m2 with w1)
with certainty.

2. Whenever w1 prefers m2 to m1, φ must match w1 with m2 (and m1 with w2)
with certainty.

3. Whenever m1 prefers w1 to w2 and w1 prefers m1 to m2, φ must match m1

with w1.

After doing the relevant algebra, we see that w1 and m1 each get their first
choice with probability 1 − 3p + 4p2, their second choice with probability p, and
their third choice with probability 2p− 4p2. If w1 and m1 were to match to each
other, they would get their first choice with probability 1−2p, their second with
probability p, and their third with probability p; an outcome that they both
prefer. It follows that φ is not ex-ante pairwise stable, completing the proof.

The basic intuition for Example 3 is similar to that of Example 2. When
m1 ranks w1 first and w1 does not return the favor, it is unstable for them to
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match and m1 will receive his third choice. In this case, it would (informally) be
more “efficient”(considering only the welfare of m1 and w1) to match m1 with
w1; doing so improves the ranking that m1 assigns his partner by two positions,
while only lowering the ranking that w1 assigns her partner by one. Because men
and women play symmetric roles in the above example, ex-ante, both m1 and
w1 prefer the more efficient solution in which they always match to each other.

5 Discussion

In this paper, we extended the notion of stability to settings in which agents
are uncertain about their own preferences and/or the preferences of others. We
observed that when agents can sign contracts before preferences are fully known,
every matching mechanism is susceptible to unraveling. While past work has
reached conclusions that sound similar, we argue that our results are stronger
in several ways.

First, previous results have assumed that agents are expected utility maxi-
mizers, and relied on assumptions about the utilities that agents get from each
potential partner. Our work uses the stronger notion of stochastic dominance to
determine blocking coalitions, and notes that there may exist opportunities for
profitable circumvention of a central matching mechanism even when agents are
unwilling to sacrifice the chance of a terrific match in order to avoid a poor one.

Second, not only can every mechanism be blocked under some prior, but also,
for some priors, it is impossible to design a mechanism that is interim stable at
that prior. This striking conclusion is similar to that of Peivandi and Vohra [13],
who find (in a bilateral transferable utility setting) that for some priors over
agent types, every potential mechanism of trade can be blocked.

In light of the above findings, one might naturally ask how it is that many
centralized clearing houses have managed to persist. One possible explanation is
that the problematic priors are “unnatural” and unlikely to arise in practice. We
argue that this is not the case: Example 2 shows that blocking coalitions exist
when agent preferences are independent and maximally uncertain, Example 3
shows that they may exist even when the preferences of most agents are known,
and in the full version of the paper we show that they may exist even when one
side has perfectly correlated (i.e. ex-post identical) preferences.

A more plausible explanation for the persistence of centralized clearing houses
is that although mutually profitable early contracting opportunities may exist,
agents lack the ability to identify and/or act on them. To take one example, even
when profitable early contracting opportunities can be identified, agents may
lack the ability to write binding contracts with one another (whereas our work
assumes that they possess such commitment power). We leave a more complete
discussion of the reasons that stable matching mechanisms might persist in some
cases and fail in others to future work.
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Abstract. A classical trading experiment consists of a set of unit
demand buyers and unit supply sellers with identical items. Each agent’s
value or opportunity cost for the item is their private information and
preferences are quasi-linear. Trade between agents employs a double oral
auction (DOA) in which both buyers and sellers call out bids or offers
which an auctioneer recognizes. Transactions resulting from accepted
bids and offers are recorded. This continues until there are no more
acceptable bids or offers. Remarkably, the experiment consistently termi-
nates in a Walrasian price. The main result of this paper is a mechanism
in the spirit of the DOA that converges to a Walrasian equilibrium in
a polynomial number of steps, thus providing a theoretical basis for the
above-described empirical phenomenon. It is well-known that computa-
tion of a Walrasian equilibrium for this market corresponds to solving
a maximum weight bipartite matching problem. The uncoordinated but
rational responses of agents thus solve in a distributed fashion a maxi-
mum weight bipartite matching problem that is encoded by their private
valuations. We show, furthermore, that every Walrasian equilibrium is
reachable by some sequence of responses. This is in contrast to the well
known auction algorithms for this problem which only allow one side to
make offers and thus essentially choose an equilibrium that maximizes
the surplus for the side making offers. Our results extend to the setting
where not every agent pair is allowed to trade with each other.

1 Introduction

Chamberlin reported on the results of a market experiment in which prices failed
to converge to a Walrasian equilibrium [5]. Chamberlin’s market was an instance
of the assignment model with homogeneous goods. There is a set of unit demand
buyers and a set of unit supply sellers, and all items are identical. Each agent’s
value or opportunity cost for the good is their private information and prefer-
ences are quasi-linear. Chamberlin concluded that his results showed competitive
theory to be inadequate. Vernon Smith, in an instance of insomnia, recounted
in [18] demurred:

“The thought occurred to me that the idea of doing an experiment was
right, but what was wrong was that if you were going to show that competitive
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equilibrium was not realizable . . . you should choose an institution of exchange
that might be more favorable to yielding competitive equilibrium. Then when
such an equilibrium failed to be approached, you would have a powerful result.
This led to two ideas: (1) why not use the double oral auction procedure, used
on the stock and commodity exchanges? (2) why not conduct the experiment in
a sequence of trading days in which supply and demand were renewed to yield
functions that were daily flows?”

Instead of Chamberlin’s unstructured design, Smith used a double oral auc-
tion (DOA) scheme in which both buyers and sellers call out bids or offers
which an auctioneer recognizes [17]. Transactions resulting from accepted bids
and offers are recorded. This continues until there are no more acceptable bids
or offers. At the conclusion of trading, the trades are erased, and the market
reopens with valuations and opportunity costs unchanged. The only thing that
has changed is that market participants have observed the outcomes of the previ-
ous days trading and may adjust their expectations accordingly. This procedure
was iterated four or five times. Smith was astounded: “I am still recovering from
the shock of the experimental results. The outcome was unbelievably consistent
with competitive price theory” [18](p. 156).

As noted by Daniel Friedman [8], the results in [17], replicated many times,
are something of a mystery. How is it that the agents in the DOA overcome
the impediments of both private information and strategic uncertainty to arrive
at the Walrasian equilibrium? A brief survey of the various (early) theoretical
attempts to do so can be found in Chap. 1 of [8]. Friedman concluded his survey
of the theoretical literature with a two-part conjecture. “First, that competitive
(Walrasian) equilibrium coincides with ordinary (complete information) Nash
Equilibrium (NE) in interesting environments for the DOA institution. Second,
that the DOA promotes some plausible sort of learning process which eventually
guides the both clever and not-so-clever traders to a behavior which constitutes
an ‘as-if’ complete-information NE.”

Over the years, the first part of Friedman’s conjecture has been well studied
(see, e.g., [7]) but the second part of the conjecture is still left without a satisfying
resolution. The focus of this paper is on the second part of Friedman’s conjecture.
More specifically, we design a mechanism which simulates the DOA, and prove
that this mechanism always converges to a Walrasian equilibrium in polynomially
many steps. Our mechanism captures the following four key properties of the
DOA.

1. Two-sided market: Agents on either side of the market can make actions.
2. Private information: When making actions, agents have no other information

besides their own valuations and the bids and offers submitted by others.
3. Strategic uncertainty: The agents have the freedom to choose their actions

modulo mild rationality conditions.
4. Arbitrary recognition: The auctioneer (only) recognizes bids and offers in an

arbitrary order.

Among these four properties, mechanisms that allow agents on either side
to make actions (two-sided market) and/or limit the information each agent
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has (private information) have received more attention in the literature (see
Sect. 1.1). However, very little is known for mechanisms that both work for
strategically uncertain agents and recognize agents in an arbitrary order. Note
that apart from resolving the second part of Friedman’s conjecture, having a
mechanism with these four properties itself is of great interest for multiple rea-
sons. First, in reality, the agents are typically unwilling to share their private
information to other agents or the auctioneer. Second, agents naturally prefer to
act freely as oppose to being given a procedure and merely following it. Third, in
large scale distributed settings, it is not always possible to find a real auctioneer
who is trusted by every agent, and is capable of performing massive computa-
tion on the data collected from all agents. In the DOA (or in our mechanism)
however, the auctioneer only recognizes actions in an arbitrary order, which can
be replaced by any standard distributed token passing protocol, where an agent
can take an action only when he is holding the token. In other words, our mecha-
nism serves more like a platform (rather than a specific protocol) where rational
agents always reach a Walrasian equilibrium no matter their actual strategy. To
the best of our knowledge, no previous mechanism enables such a ‘platform-like’
feature. In the rest of this section, we summarize our results and discuss in more
detail the four properties of the DOA in context of previous work.

1.1 Our Results and Related Work

We design a mechanism that simulates the DOA by simultaneously capturing
two-sided market, private information, strategic uncertainty, and arbitrary recog-
nition. More specifically, following the DOA, at each iteration of our mechanism,
the auctioneer maintains a list of active price submission and a tentative assign-
ment of buyers to sellers that ‘clears’ the market at the current prices (note that
this can also be distributedly maintained by the agents themselves). Among
the agents who wish to make or revise an earlier submission, an arbitrary one
is recognized by the auctioneer and a new tentative assignment is formed. An
agent can submit any price that strictly improves his payoff given the current
submissions (rather than being forced to make a ‘best’ response, which is to
submit the price that maximizes payoff). We show that as long as agents make
myopically better responses, the market always converges to a Walrasian equilib-
rium in polynomial number of steps. Furthermore, every Walrasian equilibrium
is the limit of some sequence of better responses. We should remark that the fact
that an agent always improves his payoff does not imply that the total payoff
of all agents always increases. For instance, a buyer can increase his payoff by
submitting a higher price and ‘stealing’ the current match of some other buyer
(whose payoff would drop).

To the best of our knowledge, no existing mechanism captures all four prop-
erties for the DOA that we proposed in this paper. For most of the early work on
auction based algorithms (e.g., [2,6,7,12,16]), unlike the DOA, only one side of
the market can make offers. By permitting only one side of the market to make
offers, the auction methods essentially pick the Walrasian equilibrium (equilibria
are not unique) that maximizes the total surplus of the side making the offers.
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For two-sided auction based algorithms [3,4], along with the ‘learning’ based
algorithms studied more recently [10,13], agents are required to follow a spe-
cific algorithm (or protocol) that determines their actions (and hence violates
strategic uncertainty). For example, [4] requires that when an agent is activated,
a buyer always matches to the ‘best’ seller and a seller always matches to the
‘best’ buyer (i.e., agents only make myopically best responses, which is not the
case for the DOA). [10] has agents submit bids based on their current best alter-
native offer and prices are updated according to a common formula relying on
knowledge of the agents opportunity costs and marginal values. [13], though not
requiring agents to always make myopically best responses, has agents follow a
specific (randomized) algorithm to submit conditional bids and choose matches.
We should emphasize that agents acting based on some random process is differ-
ent from agents being strategically uncertain. In particular, for the participants
of the original DOA experiment (of [17]), there is no a priori reason to believe
that they were following some specific random procedure during the experiment.
On the contrary, as stated in Friedman’s conjecture, there are clever and not-
so-clever participants, and hence different agents could have completely differ-
ent strategies and their strategies might even change when, for instance, seeing
more agents matching with each other, or by observing the strategies of other
agents. Therefore, analyzing a process where agents are strategically uncertain
can be distinctly more complex than analyzing the case where agents behave in
accordance with a well-defined stochastic process. In this paper, we consider an
extremely general model of the agents: the agents are acting arbitrarily while
only following some mild rationality conditions. Indeed, proving fast convergence
(or even just convergence) for a mechanism with agents that are strategically
uncertain is one of the main challenges of this work.

Arbitrary recognition is another critical challenge for designing our mech-
anism. For example, the work of [13,14] deploys randomization in the process
of recognizing agents. This is again in contrast to the original DOA experi-
ment, since the auctioneer did not use a randomized procedure when recognizing
actions, and it is unlikely that the participants decide to make an action follow-
ing some random process (in fact, some participants might be more ‘active’ than
others, which could lead to the ‘quieter’ participants barely getting any chance
to make actions, as long as the ‘active’ agents are still making actions).

The classical work on the stable matching problem [9] serves as a very good
illustration for the importance of arbitrary recognition. Knuth [11] proposed
the following algorithm for finding a stable matching. Start with an arbitrary
matching; if it is stable, stop; otherwise, pick a blocking pair and match them;
repeat this process until a stable matching is found. Knuth showed that the
algorithm could cycle if the blocking pair is picked arbitrarily. Later, [15] showed
that picking the blocking pairs at random suffices to ensure that the algorithm
eventually converges to a stable matching, which suggests that it is the arbitrary
selection of blocking pairs that causes Knuth’s algorithm to not converge.
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The setting of Knuth’s algorithm is very similar to the process of the DOA in
the sense that in any step of the DOA, a temporary matching is maintained and
agents can make actions to (possibly) change the current matching. But perhaps
surprisingly, we show that arbitrary recognition does not cause the DOA to suffer
from the same cycling problem as Knuth’s algorithm. The main reason, or the
main difference between the two models is that our assignment model involves
both matching and prices, while Knuth’s algorithm only involves matchings.
As a consequence, in our mechanism, the preferences of the agents change over
time (since an agent always favors the better price submission, the preferences
could change when new prices are submitted). In the instance that leads Knuth’s
algorithm to cycle (see [11]), the fundamental cause is that the preferences of all
agents form a cycle. However, in our mechanism, preferences (though changing)
are always consistent for all agents.

Based on this observation, we establish the limit of the DOA by introducing
a small friction into the market: restricting the set of agents on the other side
that each agent can trade with1. We show that in this case, there is an instance
with a specific adversarial order of recognizing agents such that following this
order, the preferences of the agents (over the entire order) form a cycle and the
DOA may never converge. Finally, we complete the story by showing that if
we change the mechanism to recognize agents randomly, with high probability,
a Walrasian equilibrium will be reached in polynomial number of steps. This
further emphasizes the distinction between random recognition and arbitrary
recognition for DOA-like mechanisms.

Organization: The rest of the paper is organized as follows. In Sect. 2, we
formally introduce the model of the market and develop some concepts and
notation used throughout the paper. Our main results are presented in Sect. 3.
We describe our DOA style mechanism and show that in markets with no trading
restrictions, it converges in a number of steps polynomial in the number of
agents. We then show that when each agent is restricted to trade only with an
arbitrary subset of agents on the other side, the mechanism need not converge.
A randomized variant of our mechanism is then presented to overcome this issue.
Finally, we conclude with some directions for future work in Sect. 4.

2 Preliminaries

We will use the terms ‘player’ and ‘agent’ interchangeably throughout the paper.
We use B to represent a buyer, S for a seller, and Z for either of them. Also, b
is used as the bid submitted by a buyer and s as the offer from a seller.

Definition 1 (Market). A market is denoted by G(B, S, E, val), where B and
S are the sets of buyers and sellers, respectively. Each buyer B ∈ B is endowed

1 In Chamberlin’s experiment, buyers and sellers had to seek each other out to deter-
mine prices. This search cost meant that each agent was not necessarily aware of all
prices on the other side of the market.
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with a valuation of the item, and each seller S ∈ S has an opportunity cost for
the item. We slightly abuse the terminology and refer to both of these values as
the valuation of the agent for the item. The valuation of any agent Z is chosen
from range [0, 1], and denoted by val(Z). Finally, E is the set of undirected edges
between B and S, which determines the buyer-seller pairs that may trade.

Let m = |E| and n = |B| + |S|.
Definition 2 (Market State). The state of a market at time t is denoted
St(P t,Πt) (S(P ,Π ) for short, if time is clear or not relevant), where P is a
price function revealing the price submission of each player and Π is a matching
between B and S, indicating which players are currently paired. In other words,
the bid (offer) of a buyer B (seller S) is P (B) (P (S)), and B, S are paired in
Π iff (B,S) ∈ Π. In addition, we denote a player Z ∈ Π iff Z is matched with
some other player in Π, and denote his match by Π(Z).

Furthermore, the state where each buyer submits a bid of 0, each seller sub-
mits an offer of 1, and no player is matched is called the zero-information state.

We use the term zero-information because no player reveals non-trivial infor-
mation about his valuation in this state.

Definition 3 (Valid State). A state is called valid iff (a1) the price submitted
by each buyer (seller) is lower (higher) than his valuation, (a2) two players are
matched only when there is an edge between them, and (a3) for any pair in the
matching, the bid of the buyer is no smaller than the offer of the seller.

In the following, we restrict attention to states that are valid.

Definition 4 (Utility). For a market G(B, S, E, val)at state S(P ,Π ), the util-
ity of a buyer is defined as val(B) − P (B), if B receives an item, and zero oth-
erwise. Similarly, the utility of a seller is defined as P (S) − val(S), if S trades
his item, and zero otherwise.

Note that what we have called utility is also called surplus.

Definition 5 (Stable State). A stable state of a market G(B, S, E, val) is a
state S(P ,Π ) s.t. (a1) for all (B,S) ∈ E, P (B) ≤ P (S) (a2) if Z /∈ Π, then
P (Z) = val(Z), and (a3) if (B,S) ∈ Π, then P (B) = P (S).

Suppose S(P ,Π ) is not stable. Then, one of the following must be true.

1. There exists (B,S) ∈ E such that P (B) > P (S). Then, both B and S could
strictly increase their utility by trading with each other using the average of
their prices.

2. There exists Z �∈ Π such that P (Z) �= val(Z). This agent could raise his bid
(if a buyer) or lower his offer (if a seller), without reducing his utility and
having a better opportunity to trade.

3. There exists (B,S) ∈ Π such that P (B) > P (S) (P (B) < P (S) results in an
invalid state). One of the agents could do better by either raising his offer or
lowering his bid.
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Definition 6 (ε-Stable State). For any ε ≥ 0, a state S(P ,Π ) of a market
G(B, S, E, val) is ε-stable iff (a1) for any (B,S) ∈ E, P (B) − P (S) ≤ ε (a2) if
player Z /∈ Π, P (Z) = val(Z), and (a3) if (B,S) ∈ Π, P (B) = P (S).

Note that the only difference between a stable state and an ε-stable state lies in
the first property. At any ε-stable state, no matched player will have a move to
increase his utility by more than ε.

Definition 7 (Social Welfare). For a market G(B, S, E, val) with a matching
Π, the social welfare (SW) of this matching is defined as the sum of the valuation
of the matched buyers minus the total opportunity cost of the matched sellers.
We denote by SWΠ the SW of matching Π.

Definition 8 (ε-approximate SW). For any market, a matching Π is said to
give an ε-approximate SW if SWΠ ≥ SWΠ∗ − nε for any Π∗ that maximizes SW.
In other words, on average, the social welfare collected from each player using
Π is at most ε less than that collected using Π∗.

The following connection between (ε-)stable state and (ε-approximate) SW
is well known in the literature (see the full version [1] Theorems 3.1 and 3.2 for
a self contained proof.)

Theorem 2.1. For any market G(B, S, E, val), (a1) a state is stable iff it max-
imizes SW, (a2) for any ε > 0, any ε-stable state realizes an ε-approximate SW,
and (a3) if we define δ = min{|val(Z1) − val(Z2)| | Z1, Z2 ∈ B ∪ S, val(Z1) �=
val(Z2)}, then for 0 ≤ ε < δ/n, any ε-stable state maximizes SW.

3 Convergence to a Stable State

We establish our main results in this section. We will start by describing a
mechanism in the spirit of DOA, and show that for any well-behaved stable
state, there is a sequence of agent moves that leads to this state. When the
trading graph is a complete bipartite graph, i.e., the case of the DOA expriment,
we show that convergence to a stable state occurs in number of steps that is
polynomially bounded in the number agents. However, convergence to a stable
state is not guaranteed when the trading graph is an incomplete bipartite graph.
We propose a natural randomized extension of our mechanism, and show that
with high probability, the market will converge to a stable state in number of
steps that is polynomially bounded in the number of agents.

3.1 The Main Mechanism

To describe our mechanism, we need the notion of an ε-interested player.

Definition 9 (ε-Interested Player). For a market at state S(P ,Π ) with any
parameter ε > 0, a seller S is said to be ε-interested in his neighbor B iff either
(a) P (B) ≥ P (S) and S /∈ Π, or (b) P (B) − P (S) ≥ ε and S ∈ Π. The set of
buyers interested in a seller S is defined analogously.
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When the parameter ε is clear from the context, we will simply refer to an
ε − interested player as an interested player.

Mechanism 1 (with input parameter ε > 0)

– Activity Rule: Among the unmatched buyers, any buyer that neither submits
a new higher bid nor has a seller that is interested in him, is labeled as inactive.
All other unmatched buyers are labeled as active. An active (inactive) seller
is defined analogously. An inactive player changes his status iff some player
on the other side matches with him.2

– Minimum Increment: Each submitted price must be an integer multiple of ε.3

– Recognition: Among all active players, an arbitrary one is recognized.
– Matching: After a buyer B is recognized, B will choose an interested seller

to match with if one exists. If the offer of the seller is lower than the bid b, it
is immediately raised to b. The seller action is defined analogously.

– Tie Breaking: When choosing a player on the other side to match to, an
unmatched player is given priority (the unmatched first rule).

In each iteration, players are partitioned into two sets based on whether they
are matched or not. The unmatched players are further partitioned into active
players and inactive players. The only players with a myopic incentive to revise
their submissions are those that are not matched.

Observe that since a buyer will never submit a bid higher than his valuation,
and a seller will never make an offer below his own opportunity cost, by submit-
ting only prices that are integer multiples of ε, an agent might not be able to
submit his true valuation. However, since an agent can always submit a price at
most ε away from the true valuation, if we pretend that the ‘close to valuation’
prices are true valuations, the maximum SW will decrease by at most nε. By
picking ε′ = ε/2, if the market converges to an ε′-stable state, we still guarantee
that the SW of the final state is at most nε away from the maximum SW.

When a buyer B chooses to increase his current bid: if s denotes the lowest
offer in the neighborhood of B, and s′ denotes the lowest offer of any unmatched
seller in the neighborhood of B, then the new bid of B can be at most min{s +
ε, s′}. We refer to this as the increment rule. This may be viewed as a consequence
of rationality – there is no incentive for a buyer to bid above the price needed
to make a deal with some seller. A similar rule applies to sellers. With a slight
abuse of the terminology, we call either rules increment rule. Notice, a player
indifferent between submitting a new price and keeping his price unchanged will
be assumed to break ties in favor of activity.

Note that the role of the auctioneer in Mechanism (1) is restricted to recognize
agent actions, but never select actions for agents. In fact, the existence of an
auctioneer is not even necessary for the mechanism to work. Minimum increment
can be interpreted as setting the currency of the market to be ε. Arbitrary
recognition can be achieved by a first come, first served principle. Activity rule

2 This is common for eliminating no trade equilibria.
3 This is part of many experimental implementations of the DOA.
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and matching are both designed to ensure that players will keep making actions
(submitting a new price or forming a valid match) if one exists.

If a state S(P ,Π ) satisfies ∀(B,S) ∈ E,P (B) ≤ P (S), then we call it a valid
starting state. It is not difficult to verify the following property of Mechanism (1)
(see the full version [1], Claim 4.2 for a detailed discussion).

Claim 3.1 For any market, if we use Mechanism (1) and begin with a valid
starting state, then any final state of the market is ε-stable.

Note that by Theorem 2.1, if a market converges to an ε-stable state, it
always realizes ε-approximate SW.

Definition 10 (Well-behaved). A stable state S(P ,Π ), is well-behaved iff
(a1) for any (B,S) ∈ E, if B /∈ Π and S /∈ Π, then P (B) < P (S). An ε-stable
state S(P ,Π ), is well-behaved iff not only property (a1) is satisfied but also (a2)
for any (B,S) ∈ E, if either B /∈ Π or S /∈ Π, then P (B) ≤ P (S).

Note that the only states that are not well-behaved are the corner cases where
a buyer-seller pair having the same valuation (thus having no contribution to
SW) are not chosen in the matching, or players who can obtain utility at most
ε stop attempting to match with others. We establish that any well-behaved
(ε-stable) state is reachable (see the full version [1], Theorem 4.3 for a proof):

Theorem 3.2. For any ε > 0, if we use Mechanism (1), and start from the zero-
information state, any well-behaved ε-stable state can be reached via a sequence
of at most n moves. Hence, any well-behaved stable state is also reachable.

3.2 Complete Bipartite Graphs

We now prove that market with complete bipartite trading graph will always
converge when using Mechanism (1).

Theorem 3.3. For a market whose trading graph is a complete bipartite graph,
if we use Mechanism (1) with any input parameter ε > 0, and begin with any
valid starting state, then the market will converge to an ε-stable state after at
most n3/ε steps.

We need the following lemma to prove Theorem 3.3 (see the full version [1],
Lemma 4.1 for a proof).

Lemma 1. For a market G(B, S, E, val) whose trading graph is a complete
bipartite graph, if we use Mechanism (1) with any input parameter ε > 0, then
at any state S(P ,Π ) reached from a valid starting state, for any (B,S) ∈ E, if
P (B) > P (S), then both B and S are matched.

Definition 11 (γ-feasible). A market state S(P ,Π ) is said to be γ-feasible iff
there are exactly γ matches in Π.



Fast Convergence in the Double Oral Auction 69

Proof (of Theorem 3.3). Assume at any time t, the state St of the market is
γt-feasible. Define the following potential function

ΦP =
∑

Si∈S

P (Si) +
∑

Bi∈B

(1 − P (Bi))

Note that the value of ΦP is always an integer multiple of ε. We will first
show that γt forms a non-decreasing sequence over time, and then argue that, for
any γ, the market can stay in a γ-feasible state for a bounded number of steps.
Specifically, we will show that, if γ does not change, ΦP is a non-increasing
function and can stay unchanged for at most γ steps. Since the maximum value
of ΦP is bounded by n, it follows that after at most (γn)/ε steps, the market
moves from a γ-feasible state to a (γ + 1)-feasible state (or converges).

We argue that γt forms a non-decreasing sequence over time. Since any recog-
nized player is unmatched, if the action of an unmatched player Z results in a
change in the matching, Z either matches with another unmatched player, or
matches to a player that was already matched. In either case, the total number
of matched pairs does not decrease.

Furthermore, we prove if γ does not change, then ΦP is non-increasing. More-
over, the number of successive steps that ΦP stay unchanged is at most γ.

To see that ΦP is non-increasing, first note that ΦP can increase only
when either a buyer decreases his bid or a seller increases his offer. Assume
an unmatched buyer B is recognized (seller case is analogous), and the price
function before his move is P . To increase ΦP , since B can only increase his bid,
he must increase an offer by overbidding and matching with a seller S, resulting
in the two of them submitting the same price b. The buyer bid increases by
b − P (B) and the seller offer increases by b − P (S). Since B is unmatched, by
Lemma 1, P (B) ≤ P (S), and hence ΦP will not increase.

We now bound the maximum number of steps for which ΦP could remain
unchanged. A move from a buyer B that does not change ΦP occurs only when B
overbids a matched seller S, where the bid and the offer are equal both before and
after the move. We call this a no-change buyer move. By analogy, a no-change
seller move can be defined.

In the remainder of the proof, we first argue that a no-change buyer move
can never be followed by a no-change seller move, and vice versa. After that, we
prove the upper bound on the number of consecutive no-change moves to show
that ΦP will eventually decrease (by at least ε).

Assume at time t1, a buyer Bt1 made a no-change move and matched with
a seller St1 , who was originally paired with the buyer B′

t1 .
4 We prove that no

seller can make a no-change move at time t1 + 1. The case that a seller makes a
no-change move first can be proved analogously. Suppose at time t1 + 1, a seller
St1+1 is recognized and decreases his offer by ε. Since Bt1 made a no-change
move, we have

P t1(B′
t1) = P t1(Bt1) (1)

4 An action at time time t will take effect at the time t+1, and P t is the price function
before any action is made at time t.
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Denote the lowest seller offer (highest buyer bid) at any time t by st (bt). By
Lemma 1, P t1(Bt1) ≤ P t1(S) for any seller S, hence P t1(Bt1) ≤ st1 . Moreover,
since P t1(Bt1) = P t1(St1) ≥ st1 , we have

P t1(Bt1) = st1 (2)

In other words, a buyer can make a no-change move, only if his bid is equal to
the lowest offer. Similarly, if St1+1 can make a no-change move at time t1 + 1,
his offer is equal to the highest bid. Since the highest bid at time t1 (bt1) is at
most st1 + ε (property (a1) of ε-stable states), after Bt1 submits a bid of st1 + ε,
he will be submitting the highest bid at time t1 + 1. Hence

P t1+1(St1+1) = bt+1 = P t1+1(Bt1) = P t1+1(B′
t1) + ε (3)

Therefore, at time t1 + 1, after St1+1 decreases his offer by ε, the unmatched
buyer B′

t1 is interested in St1+1. By the unmatched first rule, St1+1 will match
with an unmatched player, hence this cannot be a no-change move.

This proves that a no-change seller move can never occur after a no-change
buyer move and vice versa. We now prove the upper bound on the number of
consecutive no-change buyer moves.

For any sequence of consecutive no-change buyer moves, if there exists a
time t2 such that st2 > st2−1, for any unmatched buyer B at time t2, P t2(B) ≤
st2−1 < st2 . By Eq. (2), no buyer can make any more no-change move. Moreover,
since any no-change buyer move will increase the submission of a matched seller
who is submitting the lowest offer, after at most γ steps, the lowest offer must
increase, implying that the length of the sequence is at most γ.

To conclude, the total number of steps that the market could stay in γ-
feasible states is bounded by (n/ε)γ. As γ ≤ n, the total number of steps before
market converges is at most n3/ε. �	

3.3 General Bipartite Graphs

In this section, we study the convergence of markets with an arbitrary bipartite
trading graph. Although by Theorem 3.2, using Mechanism (1), the market can
reach any well-behaved ε-stable state, when the trading graph of a market can
be an arbitrary bipartite graph, there is no guarantee that Mechanism (1) will
actually converge.

Claim 3.4. In a market whose trading graph is an arbitrary bipartite graph,
Mechanism (1) may never converge.

Consider the market shown in Fig. 1. In this market, there are four buyers (B1

to B4) all with valuation 1 and four sellers (S1 to S4) all with opportunity cost
0. Moreover, the trading graph is a cycle of length 8, as illustrated by the first
graph in Fig. 1. Assume at some time t, the market enters the state illustrated
by the second graph, where B1, B2, S1, B3, S2 are submitting 5ε, S3, B4, S4 are
submitting 6ε, and pairs (B2, S1), (B3, S2) and (B4, S4) are matched.
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Fig. 1. Unstable market with general trading graph and Mechanism (1)

At time t+1, since B1 is unmatched, he can be recognized and submit 6ε. S1

is the only interested seller, hence B1, S1 will match and the offer of S1 increases
to 6ε, which leads to the state shown in the third graph. Similarly, at time
t+2, since S3 is unmatched, he can be recognized and submit 5ε. B4 is the only
interested buyer, hence B4, S3 will match and bid of B4 increases to 6ε, which
leads to the state shown in the fourth graph.

Notice that the states at time t and t + 2 are isomorphic. By shifting the
indices and repeating above two steps, the market will never converge.

Observe that the cycle described in Claim 3.4 is caused by an adversarial coor-
dination between the actions of various agents. To break this pathological coor-
dination, we introduce Mechanism (2) which is a natural extension of Mechanism
(1) that uses randomization. We first define this mechanism, and then prove that
on any trading graph, with high probability, the mechanism leads to convergence
in a number of steps that is polynomially bounded in the number of agents.

Mechanism 2 (with input parameter ε > 0)

– Activity Rule: Among the unmatched buyers, any buyer that neither submits
a new higher bid nor has a seller that is interested in him, is labeled as inactive.
All other unmatched buyers are labeled as active. An active (inactive) seller
is defined analogously. An inactive player changes his status iff some player
on the other side matches with him.

– Minimum Increment: Each submitted price must be an integer multiple of ε.
– Bounded Increment Rule: In each step, a player is only allowed to change

his price by ε.
– Recognition: Among all players who are active, one is recognized uniformly

at random.
– Matching: After a player, say a buyer B, is recognized, if B does not submit

a new price, then B will match to an interested seller if one exists. If the offer
of the seller is lower than the bid b, it is immediately raised to b. The seller
action is defined analogously.

– Tie Breaking: When choosing a player on the other side to match to, an
unmatched player is given priority (unmatched first rule).

Notice that we ask players to move cautiously through the bounded increment
rule. Players can either change the price by ε or match with an interested seller,
and always favor being active. Note that, any move in Mechanism (1) can be
simulated by at most (1/ε+1) moves in Mechanism (2) (1/ε for submitting new



72 S. Assadi et al.

price and 1 for forming a match). The following is an immediate consequence of
results shown in Sect. 3.1.

Corollary 3.5. For any market, if we use Mechanism (2), (i) starting from the
zero-information state, any well-behaved ε-stable state can be reached in n(1/ε+
1) steps, and (ii) beginning with a valid starting state, properties (a1) and (a3)
of ε-stable states always hold, and the final state is ε-stable.

We establish as our second main result that for any trading graph, with high
probability, Mechanism (2) converges to a ε-stable state in a number of steps
polynomial in the number of agents. We prove this result using the summation
of the prices submitted by all agents as a potential function (denoted by Φ).
Although Φ is clearly not monotone, the design of Mechanism (2) implies that
Φ acts like a random walk on a line. Then, using a standard fact about random
walks, we are able to analyze the behavior of Φ and argue fast convergence of
the market (see the full version [1], Theorem 4.8 for a complete proof).

Theorem 3.6. For any market G(B, S, E, val), if we use Mechanism (2) with
any input parameter ε > 0, and begin with a valid starting state, the market
will converge to an ε-stable state after at most O((n3/ε2) log n) steps with high
probability.

4 Conclusions

We resolved the second part of Friedman’s conjecture by designing a mechanism
which simulates the DOA and proving that this mechanism always converges to a
Walrasian equilibrium in polynomially many steps. Our mechanism captures four
key properties of the DOA: agents on either side can make actions; agents only
have limited information; agents can choose any better response (as opposed to
the best response); and the submissions are recognized in an arbitrary order. An
important aspect of our result is that, unlike previous models, every Walrasian
equilibrium is reachable by some sequence of better responses.

For markets where only a restricted set of buyer-seller pairs are able to trade,
we show that the DOA may never converge. However, if submissions are recog-
nized randomly, and players only change their bids and offers by a small fixed
amount, convergence is guaranteed. It is unclear that the latter condition is
inherently necessary, and perhaps a convergence result can be established for a
relaxed notion of bid and offer changes where players can make possibly large
adjustments as long as they are consistent with the increment rule.
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Abstract. It is often observed that agents tend to imitate the behav-
ior of their neighbors in a social network. This imitating behavior might
lead to the strategic decision of adopting a public behavior that differs
from what the agent believes is the right one and this can subvert the
behavior of the population as a whole.

In this paper, we consider the case in which agents express prefer-
ences over two alternatives and model social pressure with the majority
dynamics: at each step an agent is selected and its preference is replaced
by the majority of the preferences of her neighbors. In case of a tie, the
agent does not change her current preference. A profile of the agents’
preferences is stable if the each agent’s preference coincides with the
preference of at least half of the neighbors (thus, the system is in equi-
librium).

We ask whether there are network topologies that are robust to social
pressure. That is, we ask whether there are graphs in which the majority
of preferences in an initial profile s always coincides with the majority
of the preference in all stable profiles reachable from s. We completely
characterize the graphs with this robustness property by showing that
this is possible only if the graph has no edge or is a clique or very close to
a clique. In other words, except for this handful of graphs, every graph
admits at least one initial profile of preferences in which the majority
dynamics can subvert the initial majority. We also show that deciding
whether a graph admits a minority that becomes majority is NP-hard
when the minority size is at most 1/4-th of the social network size.
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1 Introduction

Social scientists are greatly interested in understanding how social pressure can
influence the behavior of agents in a social network. We consider the case in which
agents connected through a social network must choose between two alternatives
and, for concreteness, we consider two competing technologies: the current (or
old) technology and a new technology. To make their decision, the agents take
into account two factors: their personal relative valuation of the two technologies
and the opinions expressed by their social neighbors. Thus, the public action
taken by an agent (i.e., adopting the new technology or staying with the old) is
the result of a mediation between her personal valuation and the social pressure
derived from her neighbors.

The first studies concerning the adoption of new technologies date back to
the middle of 20-th century, with the analysis of the adoption of hybrid seed
corn among farmers in Iowa [16] and of tetracycline by physicians in US [6].

We assume that agents receive an initial signal about the quality of the
new technology that constitutes the agent’s initial preference. This signal is
independent from the agent’s social network; e.g., farmers acquired information
about the hybrid corn from salesman and physicians acquired information about
tetracycline from scientific publications. After the initial preference is formed,
an agent tends to conform her preference to the one of her neighbors and thus
to imitate their behavior, even if this disagrees with her own initial preference.
This imitating behavior can be explained in several ways: an agent that sees a
majority agreeing on an opinion might think that her neighbors have access to
some information unknown to her and hence they have made the better choice;
also agents can directly benefit from adopting the same behavior as their friends
(e.g., prices going down).

Thus, the natural way of modeling the evolution of preferences in networks
is through a majority dynamics: each agent has an initial preference and at each
time step a subset of agents updates their opinion conforming to the majority of
their neighbors in the network. As a tie-breaking rule it is usual to assume that
when exactly half of the neighbors adopted the new technology, the agent decides
to stay with her current choice to avoid the cost of a change. Thus, the network
undergoes an opinion formation process where agents continue to update their
opinions until a stable profile is reached, where each agent’s behavior agrees
with the majority of her neighbors. Notice that the dynamics does not take into
account the relative merits of the two technologies and, without loss of generality,
we adopt the convention that the technology that is preferred by the majority
of the agents in the initial preference profile is the new technology.

In the setting described above, it is natural to ask whether and when the
social pressure of conformism can change the opinion of some of the agents so that
the initial majority is subverted. In the case of the adoption of a new technology,
we are asking whether a minority of agents supporting the old technology can
orchestrate a campaign and convince enough agents to reject the new technology,
even if the majority of the agents had initially preferred the new technology.
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This problem has been extensively studied in the literature. If we assume
that updates occur sequentially, one agent at each time step, then it is easy to
design graphs (e.g., a star) where the old technology, supported by an arbitrarily
small minority of agents, can be adopted by most of the agents. Berger [2] proved
that such a result holds even if at each time step all agents concurrently update
their actions. However, Mossel et al. [13] and Tamuz and Tessler [17] proved that
there are graphs for which, both with concurrent and sequential updates, at the
end of the update process the new technology will be adopted by the majority
of agents with high probability.

In [9,13] it is also proved that when the graph is an expander, agents will
reach a consensus on the new technology with high probability for both sequen-
tial and concurrent updates (the probability is taken on the choice of initial con-
figurations with a majority of new technology adopters). Thus, expander graphs
are particularly efficient in aggregating opinions since, with high probability,
social pressure does not prevent the diffusion of the new technology.

In this paper, we will extend this line of research by taking a worst-case
approach instead of a probabilistic one. We ask whether there are graphs that are
robust to social pressure, even when it is driven by a carefully and adversarially
designed campaign. Specifically, we want to find out whether there are graphs in
which no subset of the agents preferring the old technology (and thus consisting
of less than half of the agents) can manipulate the rest of the agents and drive
the network to a stable profile in which the majority of the agents prefers the
old technology. This is easily seen to hold for two extreme graphs: the clique and
the graph with no edge. In this paper, we prove that these are essentially1 the
only graphs where social pressure cannot subvert the majority.

In particular, our results highlight that even for expander graphs, where it
is known that agents converge with high probability to consensus on the new
technology, it is possible to fix a minority and orchestrate a campaign that brings
the network into a stable profile where at least half of the agents decide to not
adopt the new technology.
Overview of our contribution. We consider the following sequential dynamics.
We have n agents and at any given point the system is described by the profile
s in which s(i) ∈ {0, 1} is the preference of the i-th agent. We say that agent i is
unhappy in profile s if the majority of her neighbors have a preference different
from s(i). Profiles evolve according to the dynamics in which an update consists
of non-deterministically selecting an unhappy agent and changing its preference.
A profile in which no agent is unhappy is called stable.

In Sect. 2 (see Theorems 1 and 2), we characterize the set of social networks
(graphs) where a majority can be subverted by social pressure. More specifically,
we show that for each of these graphs it is possible to select a minority of agents
not supporting the new technology and a sequence of updates (a campaign) that
leads the network to a stable profile where the majority of the agents prefers the
old technology. As described above, we will prove that this class is very large
1 It turns out that for an even number of nodes, there are a few more very dense

graphs enjoying such a property.
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and contains all graphs except a small set of forbidden graphs, consisting of the
graph with no edges and of other graphs that are almost cliques. Proving this
fact turned out to be a technically challenging task and it is heavily based on
properties of local optima of graph bisections.

Then we turn our attention to related computational questions. First we show
that we can compute in polynomial time an initial preference profile, where the
majority of the agents supports the new technology, and a sequence of update
that ends in a stable profile where at least half of the agents do not adopt the new
technology. This is done through a polynomial-time local-search computation of
a bisection of locally minimal width.

We actually prove a stronger result. In principle, it could be that from the
starting profile the system needs to undergo a long sequence of updates, in which
the minority gains and loses member to eventually reach a stable profile in which
the minority has become a majority. Our algorithm shows that this can always
be achieved by means of a short sequence of at most two updates after which
any sequence of updates will bring the system to a stable profile in which the
initial minority has become majority. This makes the design of an adversarial
campaign even more realistic, since such a campaign only has to identify the few
“swing” agents and thus it turns out to be very simple to implement.

However, the simplicity of the subverting campaign comes at a cost. Indeed,
our algorithm always computes an initial preferences profile that has very large
minorities, consisting of

⌊
n−1
2

⌋
agents. We remark that, even in case of large

minorities, it is not trivial to give a sequence of update steps that ends in a
stable profile where the majority is subverted. Indeed, even if the large minority
of the original profile makes it easy to find a few agents of the original majority
that prefer to change their opinions, this is not sufficient in order to prove that
the majority has been subverted, since we have also to prove that there are no
other nodes in the original minority that prefer to change their preference.

Moreover, we observe that, even if there are cases in which such a large
minority is necessary, the idea behind our algorithm can be easily turned into
an heuristic that checks whether the majority can be subverted by a smaller
minority (e.g., by considering unbalanced partitions in place of bisections).

On the other side, we show that a large size of the minority in the initial
preference profile seems to be necessary in order to quickly compute a subverting
minority and its corresponding sequence of updates. Indeed, given a n-node social
network, deciding whether there exists a minority of less than n/4 nodes and a
sequence of update steps that bring the system to a stable profile in which the
majority has been subverted is an NP-hard problem (see Theorem 4).

The main source of computational hardness seems to arise from the compu-
tation of the initial preference profile. Indeed, if this profile is given, computing
the maximum number of adopters of the new technology (and, hence, deciding
whether majority can be subverted) and the corresponding sequence of updates
turns out to be possible in polynomial time (see Theorem 5).
Related work. There is a vast literature on the effect that social pressure has
on the behavior of a system as a whole. In many works, influence is modeled
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by agents simply following the majority [2,9,13,17]. A generalization of this
imitating behavior is discussed in [13].

A different approach is taken in [14], where each agent updates her behavior
according to a Bayes rule that takes in account its own initial preference and
what is declared by neighbors on the network.

Yet another approach assumes that agents are strategic and rational. That
is, they try to maximize some utility function that depends on the level of coor-
dination with the neighbors on the network. Here, the updates occur according
to a best response dynamics or some other more complex game dynamics. Along
this direction, particularly relevant to our works are the ones considering best-
response dynamics from truthful profiles in the context of iterative voting, e.g.,
see [4,12]. In particular, closer to our current work is the paper of Brânzei et al.
[4] who present bounds on the quality of equilibria that can be reached from a
truthful profile using best-response play and different voting rules. The impor-
tant difference is that there is no underlying network in their work.

Our work is also strictly related with a line of work in social sciences that
aims to understand how opinions are formed and expressed in a social context.
A classical simple model in this context has been proposed by Friedkin and
Johnsen [11] (see also [7]). Its main assumption is that each individual has a
private initial belief and that the opinion she eventually expresses is the result
of a repeated averaging between her initial belief and the opinions expressed by
other individuals with whom she has social relations. The recent work of Bindel
et al. [3] assumes that initial beliefs and opinions belong to [0, 1] and interprets
the repeated averaging process as a best-response play in a naturally defined
game that leads to a unique equilibrium.

An obvious refinement of this model is to consider discrete initial beliefs and
opinions by restricting them, for example, to two discrete values (see [5,10]).
Clearly, the discrete nature of the opinions does not allow for averaging anymore
and several nice properties of the opinion formation models mentioned above
— such as the uniqueness of the outcome — are lost. In contrast, in [10] and
in [5], it is assumed that each agent is strategic and aims to pick the most
beneficial strategy for her, given her internal initial belief and the strategies of
her neighbors. Interestingly, it turns out that the majority rule used in this work
for describing how agents update their behavior can be seen as a special case
of the discrete model of [5,10], in which agents assign a weight to the initial
preference smaller than the one given to the opinion of the neighbors.

Studies on social networks consider several phenomena related to the spread
of social influence such as information cascading, network effects, epidemics, and
more. The book of Easley and Kleinberg [8] provides an excellent introduction
to the theoretical treatment of such phenomena. From a different perspective,
problems of this type have also been considered in the distributed computing
literature, motivated by the need to control and restrict the influence of failures in
distributed systems; e.g., see the survey by Peleg [15] and the references therein.
Preliminaries. We formally describe our model as follows. There are n agents;
we use [n] = {1, 2, ..., n} to denote their set. Each agent corresponds to a distinct
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node of a graph G = (V,E) that represents the social network; i.e., the network
of social relations between the agents. Agent i has an initial preference s0(i) ∈
{0, 1}. At each time step, agent i can update her preference to s(i) ∈ {0, 1}.
A profile is a vector of preferences, with one preference per agent. We use bold
symbols for profiles; i.e., s = (s(1), . . . , s(n)). In particular, we sometimes call the
profile of initial preferences (s0(1), . . . , s0(n)) as the truthful profile. Moreover,
for any y ∈ {0, 1}, we denote as y the negation of y; i.e., y = 1 − y.

A graph G is mbM (minority becomes majority) if there exists a profile s0
of initial preferences such that: the number of nodes that prefer 0 is a strict
majority, i.e., |{x ∈ V : s0(x) = 0}| > n/2; and there is a subverting sequence of
updates that starts from s0 and reaches a stable profile s in which the number of
nodes that prefer 0 is not a majority, i.e., |{x ∈ V : s(x) = 0}| ≤ n/2. A profile of
initial preferences that witnesses a graph being mbM will be also termed mbM.

2 Characterizing the mbM Graphs

The main result of this section is a characterization of the mbM graphs. More
formally, we have the following definition. A graph G with n nodes is forbidden
if one of the following conditions is satisfied:
F1: G has no edge;
oF2: G has an odd number of nodes, all of degree n − 1 (that is, G is a clique);
eF2: G has an even number of nodes and all its nodes have degree at least n−2;
eF3: G has an even number of nodes, n − 1 nodes of G form a clique, and the
remaining node has degree at most 2;
eF4: G has an even number of nodes, n − 1 nodes of G have degree n − 2 but
they do not form a clique, and the remaining node has degree at most 4.

We begin by proving the following statement.

Theorem 1. No forbidden graph is mbM.

Proof. We will distinguish between cases for a forbidden graph G. Clearly, if G
is F1, then it is not mbM since no node can change its preference. Now assume
that G is eF2 (respectively, oF2) and consider a profile in which there are at
least n

2 + 1 (respectively, n+1
2 ) agents with preference 0. Then, every node x

with initial preference 0 has at most n
2 − 1 neighbors with initial preference

1 and at least n
2 − 1 neighbors with initial preference 0 (respectively, at most

n−1
2 neighbors with initial preference 1 and at least n−1

2 neighbors with initial
preference 0). Hence, x is not unhappy and stays with preference 0.

Now, consider the case where G is eF3 and let u be the node of degree at
most 2. Consider profile s0 of initial preferences in which there are at least n

2 +1
agents with preference 0. First observe that in the truthful profile s0 any node x
other than u that has preference 0 is adjacent to at most n

2 −1 nodes with initial
preference 1 and to at least n

2 − 1 nodes with initial preference 0. Then, x is not
unhappy and stays with preference 0. Hence, u is the only node that may want to
switch from 0 to 1. But this is possible only if all nodes in the neighborhood of u
have preference 1, which implies that the neighborhood of any node with initial
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preference 0 does not change after the switch of u, i.e., nodes with preference 0
still are not unhappy and thus they have no incentive to switch to 1. Then, any
node with preference 1 that is not adjacent to u has at most n

2 − 2 neighbors
with preference 1 and at least n

2 neighbors with preference 0. Also, any node with
preference 1 that is adjacent to u has n

2 − 1 neighbors with preference 1 and n
2

neighbors with preference 0. So, every node with preference 1 will eventually
switches to 0.

It remains to consider the case where G is eF4; let u be the node of degree
at most 4. Actually, it can be verified that u can have degree either 2 or 4 and
its neighbors form pair(s) of non-adjacent nodes. Consider a truthful profile in
which there are at least n

2 + 1 agents with preference 0. Observe that a node
different from u that has initial preference 0 has at most n

2 − 1 neighbors with
preference 1 and at least n

2 −1 neighbors with preference 0. So, it is not unhappy
and has no incentive to switch to preference 1. The only node that might do so
is u, provided that the strict majority of its neighbors (i.e., both of them if u has
degree 2 and at least three of them if u has degree 4) have preferences 1. This
switch cannot trigger another switch of the preference of an agent from 0 node
to 1. Indeed, there is at most one agent with preference 0 that can be adjacent
to u. Since this node is not adjacent to one of the neighbors of u with preference
1, it has at most n

2 −1 neighbors with preference 1 (and at least n
2 −1 neighbors

with preference 0). Hence, it has no incentive to switch to preference 1 either.
Now, consider two neighbors of u with preference 1 that are not adjacent (these
nodes certainly exist). Each of them is adjacent to n

2 − 2 nodes with preference
1 and n

2 nodes with preference 0. Hence, they have an incentive to switch to 0.
Then, the number of nodes with preference 1 is at most n

2 − 2 and eventually all
nodes will switch to preference 0. ��

The following is the main result of this section.

Theorem 2. Every non-forbidden graph is mbM.

We next give the proof for the simpler case of graphs with an odd number of
nodes and postpone the full proof to the full version [1]. Let us start with the
following definitions. A bisection S = (S, S) of a graph G = (V,E) with n nodes
is simply a partition of the nodes of V into two sets S and S of sizes �n/2� and
�n/2	, respectively. We will refer to S and S as the sides of bisection S. The width
W (S, S) of a bisection S is the number of edges of G whose endpoints belong
to different sides of the partition. The minimum bisection S of G has minimum
width among all partitions of G. We extend notation W (A,B) to any pair (A,B)
of subsets of nodes of G in the obvious way. When A = {x} is a singleton we will
write W (x,B) and similarly for B. Thus, if nodes x and y are adjacent, then
W (x, y) = 1; otherwise W (x, y) = 0. For a bisection S = (S, S), we define the
deficiency defS(x) of node x w.r.t. bisection S as defS(x) = W (x, S)−W (x, S) if
x ∈ S, and defS(x) = W (x, S)−W (x, S) if x ∈ S. Let S = (S, S) be a minimum
bisection of a graph G with n nodes. Then it is not hard to see that minimality
of S implies that for every x ∈ S and y ∈ S, defS(x) + defS(y) + 2W (x, y) ≥ 0.
Moreover if n is odd, defS(x) ≥ 0.
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We have the following technical lemma.

Lemma 1. Suppose that a graph G admits a bisection S = (S, S) in which S
consists of nodes with non-negative deficiency and includes at least one node with
positive deficiency. Then G is mbM.

Proof. Let v be the node with positive deficiency in S and consider profile s0
of initial preferences in which any node in S except v has preference 1 and
remaining nodes have preference 0. Hence, in s0 there is a majority of �n/2�
agents with preference 0. Observe also that in s0, v is adjacent to W (v, S) nodes
with preference 1 and to W (v, S) nodes with preference 0. Since defS(v) > 0
then v is unhappy with preference 0 and updates her preference to 1. We thus
reach a profile s1 in which �n/2� nodes have preference 1 (that is, all nodes in
S). We conclude the proof of the lemma by showing that every node of S is
not unhappy and thus it stays with preference 12. This is obvious for v. Let
us consider u ∈ S and u �= v. Then u has W (u, S) neighbors with preference
1 and W (u, S) neighbors with preference 0. Since defS(u) ≥ 0, we have that
W (u, S) ≥ W (u, S). Hence, the number of neighbors of u with preference 0 is
not a majority. Then, u is not unhappy, and thus stays with preference 1. ��

We are now ready to prove Theorem 2 for odd-sized graphs. We remind the
reader that the (more complex) proof for even-size graphs is in the full version [1].

Proposition 3. Non-forbidden graphs with an odd number of nodes are mbM.

Proof. Let G be a non-forbidden graph with an odd number of nodes and let
S = (S, S) be a minimum bisection for G. By minimality of S, we have that
defS(x) ≥ 0, for all x ∈ S. If S contains at least a node v with defS(v) > 0 then,
by minimality of S, G is mbM. So assume that defS(x) = 0 for all x ∈ S.

Minimality of S implies that if defS(v) < 0 for v ∈ S then defS(v) ≥ −2
and v is connected to all nodes in S. Therefore W (v, S) = �n/2� and, since
W (v, S) ≤ �n/2	 − 1, defS(v) = −2. We denote by A the set of all the nodes
y ∈ S with defS(x) = −2; therefore, all nodes y ∈ S \ A have defS(y) ≥ 0.

Let us first consider the case in which A �= ∅ and there are two non-adjacent
nodes u,w ∈ S. Then pick any node v ∈ A and consider partition T = (T, T )
with T = S ∪ {v} \ {u}. We have that W (v, T ) = W (v, S) − 1 = �n/2� − 1 and
W (v, T ) = W (v, S)+1 = �n/2	+1 and hence defT (v) = 0. For any x ∈ T \{v, w},
we have defT (x) ≥ defS(x) = 0. Node w is connected to v but not to u and,
thus, defT (w) ≥ defS(w) + 2 = 2. Then, by Lemma 1, G is mbM.

Assume now that A �= ∅ and S is a clique. That is, W (x, S) = �n/2� − 1 for
every x ∈ S, and, since defS(x) = 0, it must be that W (x, S) = W (x, S) and
thus x is connected to all nodes in S. Therefore, for all y ∈ S, W (y, S) = �n/2�
2 This is sufficient since the switch of nodes in S that are unhappy with preference

0 only increases the number of nodes with preference 1. Moreover, if some nodes
in S switch their preferences, then the number of nodes with preference 1 in the
neighborhood of any node in S can only increase.
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and, since defS(y) ≥ −2 it must be that W (y, S) ≥ �n/2�− 2 = |S|−1. In other
words, every node of S is connected to every node of S and thus G is a clique.

Finally, assume that A = ∅; that is, defS(y) ≥ 0 for any y ∈ S. If for some
v ∈ S, we have defS(v) > 0, then consider partition T = (T, T ) with T = S∪{u},
where u is any node from S. For any x ∈ T ∩ S, defT (x) ≥ defS(x) ≥ 0,
defT (u) = −defS(u) = 0 and defT (v) ≥ defS(v) ≥ 1. By Lemma 1, G is mbM.

Finally, we consider the case in which defS(y) = 0 for every node x of G.
Since G is not empty, there exists at least one edge in G and, since the endpoints
of this edge have defS = 0 there must be at least node v ∈ S with a neighbor
w ∈ S. Now, consider partition T = (T, T ) with T = S ∪ {w}. We have that
every node x ∈ T ∩ S, has defT (x) ≥ defS(x) = 0, defT (w) = −defS(w) = 0,
and defT (w) > defS(w) = 0. The claim again follows by Lemma 1. ��

We note that the only property required is local minimality. Since a local-
search algorithm can compute a locally minimal bisection in polynomial time,
we can make constructive the proof of Proposition 3, and quickly compute the
subverting minority and the corresponding updates.

3 Hardness for Weaker Minorities

We next show that deciding if it is possible to subvert the majority starting from
a weaker minority is a computationally hard problem.

Theorem 4. For every constant 0 < ε < 1
8 , given a graph G with n nodes, it

is NP-hard to decide whether there exists an mbM profile of initial preferences
with at most n

(
1
4 − ε

)
nodes with initial preference 1.

Proof. We will use a reduction from the NP-hard problem 2P2N-3SAT, the prob-
lem of deciding whether a 3SAT formula in which every variable appears as pos-
itive in two clauses and as negative in two clauses has a truthful assignment or
not (the NP-hardness follows by the results of [18]).

Given a Boolean formula φ with C clauses and V variables that is an instance
of 2P2N-3SAT (thus 3C = 4V and C is a multiple of 4), we will construct a graph
G(φ) with n nodes such that there exists a profile of initial preferences with at
most n

(
1
4 − ε

)
nodes of G(φ) with preference 1 such that a sequence of updates

can lead to a stable profile in which at least n/2 nodes have preference 1 if and
only if φ has a satisfying assignment.

The graph G(φ) has the following nodes and edges. For each variable x of
φ, G(φ) includes a variable gadget for x consisting of 25 nodes and 50 edges.
The nodes of the variable gadget for x are the literal nodes, x and x, nodes
v1(x), . . . , v7(x), nodes v1(x), . . . , v7(x), nodes v0(x) and w0(x), and nodes w1(x),
. . . , w7(x). The edges are (x, vi(x)) and (x, vi(x)) for i = 1, . . . , 7, (vi(x), vi+1(x))
and (vi(x), vi+1(x)) for i = 1, . . . , 6, (v0(x), v7(x)), (v0(x), v7(x)), (v0(x), w0(x)),
(w0(x), vi(x)), (w0(x), vi(x)) and (w0(x), wi(x)) for i = 1, . . . , 7. For each clause
c of φ, graph G(φ) includes a clause gadget for c consisting of 18 nodes and 32
edges. The nodes of the gadget are the clause node c, nodes u1(c), u2(c), and
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nodes υ1(c), . . . , υ15(c). The 32 edges are (c, u1(x)), (c, u2(x)), and (ui(c), υj(c))
with i = 1, 2 and j = 1, . . . , 15. In G(φ), for every clause c, the clause node c
is connected to the three literal nodes corresponding to the literals that appear
in clause c in φ. Therefore, each literal node is connected to the two clauses in
which it appears. Graph G(φ) includes a clique of even size N , with 12C ≤ N ≤
95C
16ε − 123C

4 ; the clique is disconnected from the rest of the graph. Graph G(φ)
includes N + 99C

4 additional isolated nodes. Overall, the total number of nodes
in G(φ) is n = 2N + 99C

4 + 25V + 18C = 2N + 123C
2 .

A profile of initial preferences to the nodes of G(φ) is called proper if: for
every variable x, it assigns preference 1 to node w0(x) and to exactly one literal
node of the gadget of x; for every clause c, it assigns preference 1 to nodes u1(c)
and u2(c); it assigns preference 1 to exactly N

2 nodes of the clique; it assigns
preference 0 to all the remaining nodes. Hence, in a proper profile the number
of nodes with preference 1 is 2V + 2C + N

2 = 7C
2 + N

2 ≤ n( 14 − ε); the inequality
follows from the upper bound in the definition of N .

We now prove that G(φ) has a proper profile of initial preferences that leads
to a majority of nodes with preference 1 if and only φ is satisfiable. First observe
that every clique node switches her preference to 1 (as the strict majority of its
neighbors has initially preference 1 and this number gradually increases until all
clique nodes switch to 1).

We next prove that starting from a proper profile of initial preferences, there
is a sequence of updates that leads to a stable profile in which 17 nodes of
every variable gadget have preference 1. To see this, consider a proper profile
that assigns preference 1 to x (and to w0(x)) and the following sequence of
updates: node v1(x) switches from 0 to 1; then, for i = 1, . . . , 6, node vi+1(x)
switches to 1 immediately after node vi(x); node v0(x) switches to 1 after node
v7(x); finally, w1(x), . . . , w7(x) can switch in any order. Observe that in this
sequence any switching node is unhappy since it has a strict majority of nodes
with preference 1 in its neighborhood. Also, the resulting profile where the 17
nodes w0(x), w1(x), . . . , w7(x), v0(x), v1(x), . . . , v7(x), and x have preference 1
is stable, i.e., no node in the gadget is unhappy. Indeed, for each node with
preference 1, the strict majority of the preferences of its neighbors is 1. Hence, the
node has no incentive to switch to preference 0. For each of the remaining nodes
(with preference 0), at least half of its neighbors is 0. Hence, this node has no
incentive to switch to preference 1 either. A similar sequence can be constructed
for a proper profile that assigns preference 1 to node x (and w0(x)) of the gadget
for variable x. Intuitively, the two proper profiles of initial preferences simulate
the assignment of values True and False to variable x, respectively.

In addition, it is easy to see that starting from a proper profile, there is no
sequence of updates that reaches a stable profile where more than 17 nodes in a
variable gadget have preference 1 (the observation needed here is the same that
guarantees that we reach a stable profile above).

Let us now consider the clause gadgets associated with clause c of φ. We
observe that, starting from a proper profile of initial preferences, there exists
a sequence of updates that leads to a stable profile in which 17 nodes of the
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clause gadget have preference 1. Indeed, starting from the proper assignment of
preference 1 to nodes u1(c) and u2(c), nodes υ1(c), . . . , υ15(c) will switch from 0
to 1 in arbitrary order (for each of them both neighbors have preference 1). After
these updates, at least 15 out of 17 neighbors of u1(c) and u2(c) have preference
1 and both neighbors of the nodes υ1(c), . . . , υ15(c) have preference 0. Hence,
none among these nodes have any incentive to switch to preference 0.

Let us now focus on the clause nodes and observe that node c in the corre-
sponding clause gadget will switch to 1 if and only if at least one of the literal
nodes corresponding to literals that appear in c have preference 1 (since the
degree of a clause node is five and nodes u1(c) and u2(c) have preference 1).
This switch cannot trigger any other switch in literal nodes or in nodes of clause
gadgets since the preference of these nodes coincides with a strict majority of
preferences in its neighborhood. Hence, the fact that a clause node has prefer-
ence 1 (respectively, 0) corresponds to the clause being satisfied (respectively,
not satisfied) by the Boolean assignment induced by the proper profile of initial
preferences. Eventually, the updates lead to an additional number of C clause
nodes adopting preference 1 in the stable profile if and only if φ is satisfiable.

In conclusion, we have that if φ is satisfiable there is a sequence of updates
converging to a profile with 17V +17C +N +C = N +123C/4 = n/2 nodes with
preference 1. Otherwise, if φ is not satisfiable, any sequence of updates converges
to a stable profile with strictly less than n/2 nodes having preference 1.

We conclude the proof by showing that it is sufficient to restrict to proper
assignments as non-proper assignments will never lead to a stable profile with
a majority of nodes with preference 1. First observe that if the total number of
clique and isolated nodes with preference 1 is strictly less than N

2 , then no clique
and isolated nodes with preference 0 will adopt preference 1. Thus, in this case,
even counting all nodes in variable and clause gadgets, any sequence of updates
converges to a stable profile with at most 25V + 18C + N

2 − 1 < n
2 nodes with

preference 1 (where we used that N ≥ 12C).
Let us now focus on a profile of initial preferences that assigns preference 1

to at most 7C/2 = 2C + 2V nodes from variable and clause gadgets. Suppose
that this profile of initial preferences is such that a sequence of updates leads
to a stable profile with at least n/2 nodes with preference 1. We will show that
this profile of initial preferences must be proper.

First, observe that if at most one node in a variable gadget is assigned pref-
erence 1, then all nodes in the gadget will eventually adopt preference 0 after a
sequence of updates. Indeed, a literal node will have at least six neighbors with
preference 0 and at most three with preference 1, and any non-literal node will
have at most one out of at least three of its neighbors with preference 0.

Consider now profiles of initial preferences that assign preference 1 to two
nodes of the variable gadget of x in a non-proper way. We show that any sequence
of updates leads to a profile in which all nodes of the gadget adopt preference 0.

Indeed, assume that w0(x) has preference 1 and both x and x have preference 0.
Clearly, the nodes w1(x),. . . , w7(x) can switch from 0 to 1 in any order. Among the
non-literal nodes vi(x) and vi(x), only one among the degree-3 nodes v0(x), v1(x),
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and v1(x) can switch from 0 to 1; this can only happen if the second node with pref-
erence 1 is in the neighborhood of one of these nodes (i.e., some of the nodes v7(x),
v7(x), v2(x), or v2(x)). But then, the literal nodes will have at most four neighbors
with preference 1 and they cannot switch to 1. So, no other node has any incentive
to switch from 0 to 1. Then, w0(x) has at least 13 among its 22 neighbors with pref-
erence 0 and will switch from 1 to 0, followed by the nodes w1(x), ..., w7(x) that will
switch back to 0 as well. Then, there are at most two nodes with preference 1 among
the nodes vi(x) and vi(x) that will eventually switch to 0 as well (since they have
degree at least three).

Assume now that literal node x has preference 1 (the case for x is symmet-
ric) and that w0(x) has preference 0. Then, only the degree-3 node v1(x) that is
adjacent to x can switch to 1 provided that the second node with preference 1 is
node v2(x). Now notice that no other node can switch from 0 to 1. Even worse,
the literal node x has at least five (out of nine) neighbors of preference 0 and will
switch from 1 to 0. And then, we are left with at most two nodes with preference
1 among the nodes vi(x) and vi(x) that will eventually switch to 0 as well.

Finally, we consider the case in which w0(x) and the two literal nodes have
preference 0. Now the only node that can initially switch from 0 to 1 is v0(x)
provided that the two nodes with preference 1 are v7(x) and v7(x). But then,
there is no other node that can switch from 0 to 1 and, eventually, nodes v7(x)
and v7(x) will switch to 0 and finally node v0(x) will switch back to 0.

We have covered all possible cases in which a variable gadget has a non-
proper assignment of preference 1 to two nodes and shown that in all of these
cases, all nodes of the gadget will switch to preference 0. On the other hand, as
discussed above, a proper profile of initial preferences can end up with preference
1 in 17 nodes of the variable gadget.

Now, observe that if at most one node in a clause gadget has preference 1
(or two nodes are assigned preference 1 in a non-proper way), then all the 17
non-clause nodes in the gadget will end up with preference 0. This is due to the
fact that none among the nodes υ1(c), ..., υ15(c) can switch from 0 to 1 since at
least one of their neighbors will have preference 0. But this means that nodes
u1(c) and u2(c) are adjacent to many (i.e., at least 13) nodes with preference 0;
so, they will also switch to 0. And then, if there is still some node υi(c) with
preference 1, it will switch to 0 since both its neighbors have preference 1.

Now, by denoting with V0, V1, V3 the number of variable gadgets that have 0, 1
or at least 3 nodes with preference 1 and by V2p and V2n the number of variable
gadgets with proper and non-proper assignment of preference 1 to exactly two
nodes, we have V = V0 +V1 +V2n +V2p +V3 and, by denoting with C0, C1, and
C3 the number of clause gadgets with 0, 1, and at least 3 nodes with preference
1 in nodes other than the clause node and by C2p and C2n the number of clause
gadgets with two nodes with preference 1 assigned in a proper and non-proper
way, we have C = C0+C1+C2n+C2p+C3. Since the total number of nodes with
preference 1 does not exceed 2V +2C, we have V1+2V2n+2V2p+3V3+C1+2C2n+
2C2p + 3C3 ≤ 2V + 2C from which we get V3 + C3 ≤ 2C0 + C1 + 2V0 + V1. Now
consider the difference between the number of nodes with preference 1 in any
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stable profile reached after a sequence of updates and the quantity 17V + 18C.
It is at most 17V2p + 25V3 + C0 + C1 + C2n + 18C2p + 18C3 − 17V − 18C =
−17V0 −17V1 −17V2n +8V3 −17C0 −17C1 −17C2n ≤ −V0 −9V1 −17V2n −C0 −
9C1 − 17C2n − 8C3. Hence, if at least one of V0, V1, V2n, C0, C1, C2n, and C3 is
positive, the proof follows since the number of nodes with preference 1 will be
strictly less than N + 17V + 18C = n/2. Otherwise, i.e., if all these quantities
are 0, this implies that C = C2p and V = V2p + V3 which in turn implies that
V3 = 0 since the number of nodes with preference 1 cannot exceed 2C + 2V .
Hence, the only case where a sequence of updates may lead to a stable profile
with at least N + 17V + 18C nodes having preference 1 is when the profile of
initial preferences is proper. The claim follows. ��
Checking whether minority can become majority. We next show that, given a
graph G and a profile of initial preferences s0, it is possible to decide whether
s0 is mbM for G in polynomial time. Moreover, if this is the case, then there is
an efficient algorithm that computes the subverting sequence of updates. This
algorithm was used in [5] for bounding the price of stability. Due to page limit,
the proof of Theorem 5 is only sketched. We refer the interested reader to the
full version of the paper [1].

Theorem 5. There is a polynomial time algorithm that, given a graph G =
(V,E) and a profile of initial preferences s0, decides whether s0 is mbM for
graph G and, if it is, it outputs a subverting sequence of updates.

Proof (Sketch). Consider the algorithm used in [5] for bounding the price of
stability. The running time of the algorithm is polynomial in the size of the
input graph, since each node updates its preference at most twice. The fact
that the profile s′

0 returned by the algorithm is a stable profile is proved in [5,
Lemma 3.3]. We next show that s′

0 is actually the stable profile that maximizes
the number of nodes with preference 1. Specifically, consider a sequence σ of
updates leading to a stable profile s that maximizes the number of nodes with
preference 1. We will show that there is another sequence of updates that has
the form computed by the algorithm described above and converges to a stable
profile in which the agents with preference 1 are at least as many as in s. ��

4 Conclusions and Open Problems

In this work we showed that, for any social network topology except very few
and extreme cases, social pressure can subvert a majority. We proved this with
respect to a very natural majority dynamics in the case in which agents must
express preferences. We also showed that, for each of these graphs, it is possible
to compute in polynomial time an initial majority and a sequence of updates
that subverts it. The initial majority constructed in this way consists of only
�(n+1)/2� agents. On the other hand, our hardness result proves that it may be
hard to compute an initial majority of size at least 3n/4 that can be subverted
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by the social pressure. The main problem that this work left open is to close
this gap.

Even if computational considerations rule out a simple characterization of the
graphs for which a large majority can be subverted, it would be still interesting
to gain knowledge on these graphs. Specifically, can we prove that the set of
graphs for which large majority can be subverted can be easily described by
some simple (but hard to compute) graph-theoretic measure? We believe that
our ideas can be adapted (e.g., by considering unbalanced partitions in place of
bisections), for gaining useful hints in this direction.
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Abstract. The inefficiency of the Wardrop equilibrium of nonatomic
routing games can be eliminated by placing tolls on the edges of a net-
work so that the socially optimal flow is induced as an equilibrium flow.
A solution where the minimum number of edges are tolled may be prefer-
able over others due to its ease of implementation in real networks. In this
paper we consider the minimum tollbooth (MINTB) problem, which
seeks social optimum inducing tolls with minimum support. We prove
for single commodity networks with linear latencies that the problem
is NP-hard to approximate within a factor of 1.1377 through a reduc-
tion from the minimum vertex cover problem. Insights from network
design motivate us to formulate a new variation of the problem where,
in addition to placing tolls, it is allowed to remove unused edges by the
social optimum. We prove that this new problem remains NP-hard even
for single commodity networks with linear latencies, using a reduction
from the partition problem. On the positive side, we give the first exact
polynomial solution to the MINTB problem in an important class of
graphs—series-parallel graphs. Our algorithm solves MINTB by first
tabulating the candidate solutions for subgraphs of the series-parallel
network and then combining them optimally.

1 Introduction

Traffic congestion levies a heavy burden on millions of commuters across the
globe. The congestion cost to the U.S. economy was measured to be $126 billion
in the year 2013 with an estimated increase to $186 billion by year 2030 [16].
Currently the most widely used method of mitigating congestion is through
congestion pricing, and one of the most common pricing schemes is through
placing tolls on congested roads that users have to pay, which makes these roads
less appealing and diverts demand, thereby reducing congestion.

Mathematically, an elegant theory of traffic congestion was developed starting
with the work of Wardrop [18] and Beckman et al. [6]. This theory considered
a network with travel time functions that are increasing in the network flow, or
the number of users, on the corresponding edges. Wardrop differentiated between
two main goals: (1) user travel time is minimized, and (2) the total travel time
of all users is minimized. This led to the investigation of two different resulting
traffic assignments, or flows, called a Wardrop equilibrium and a social or system
c© Springer-Verlag Berlin Heidelberg 2015
E. Markakis and G. Schäfer (Eds.): WINE 2015, LNCS 9470, pp. 89–103, 2015.
DOI: 10.1007/978-3-662-48995-6 7
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optimum, respectively. It was understood that these two flows are unfortunately
often not the same, leading to tension between the two different objectives.
Remarkably, the social optimum could be interpreted as an equilibrium with
respect to modified travel time functions, that could in turn be interpreted as
the original travel time functions plus tolls.

Consequently, the theory of congestion games developed a mechanism design
approach to help users routing along minimum cost paths reach a social optimum
through a set of optimal tolls that would be added to (all) network edges. Later,
through the works of Bergendorff et al. [7] and Hearn & Ramana [12], it was
understood that the set of optimal tolls is not unique and there has been work
in diverse branches of literature such as algorithmic game theory, operations
research and transportation on trying to limit the toll cost paid by users by
limiting the number of tolls placed on edges.

Related Work. The natural question of what is the minimum number of edges
that one needs to place tolls on so as to lead selfish users to a social optimum,
was first raised by Hearn and Ramana [12]. The problem was introduced as the
minimum tollbooth (MINTB) problem and was formulated as a mixed integer
linear program. This initiated a series of works which led to new heuristics for the
problem. One heuristic approach is based on genetic algorithms [3,8]. In 2009, a
combinatorial benders cut based heuristic was proposed by Bai and Rubin [2].
The following year, Bai et al. proposed another heuristic algorithm based on
LP relaxation using a dynamic slope scaling method [1]. More recently, Ste-
fanello et al. [15] have approached the problem with a modified genetic algorithm
technique.

The first step in understanding the computational complexity of the problem
was by Bai et al. [1] who proved that MINTB in multi commodity networks
is NP-hard via a reduction from the minimum cardinality multiway cut prob-
lem [10]. In a related direction, Harks et al. [11] addressed the problem of induc-
ing a predetermined flow, not necessarily the social optimum, as the Wardrop
equilibrium, and showed that this problem is APX-hard, via a reduction from
length bounded edge cuts [4]. Clearly, MINTB is a special case of that prob-
lem and it can be deduced that the hardness results of Harks et al. [11] do not
carry forward to the MINTB problem. A related problem is imposing tolls on
a constrained set of edges to minimize the social cost under equilibrium [13].

The latest work stalls at this point leaving open both the question of whether
approximations for multi commodity networks are possible, and what the hard-
ness of the problem is for single commodity networks or for any meaningful
subclass of such networks.

Our Contribution. In this work, we make progress on this difficult problem by
deepening our understanding on what can and cannot be computed in polyno-
mial time. In particular, we make progress in both the negative and positive
directions by providing NP-hardness and hardness of approximation results for
the single commodity network, and a polynomial-time exact algorithm for com-
puting the minimum cardinality tolls on series-parallel graphs.
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Specifically, we show in Theorem 1 that the minimum tollbooth problem for
single commodity networks and linear latencies is hard to approximate to within
a factor of 1.1377, presenting the first hardness of approximation result for the
MINTB problem.

Further, motivated by the observation that removing or blocking an edge
in the network bears much less cost compared to the overhead of toll place-
ment, we ask: if all unused edges under the social optimum are removed, can we
solve MINTB efficiently? The NP-hardness result presented in Theorem 2 for
MINTB in single commodity networks with only used edges, settles it nega-
tively, yet the absence of a hardness of approximation result creates the possi-
bility of a polynomial time approximation scheme upon future investigation.

Observing that the Braess structure is an integral part of both NP-hardness
proofs, we seek whether positive progress is possible for the problem in series-
parallel graphs. We propose an exact algorithm for series-parallel graphs with
O(m3) runtime, m being the number of edges. Our algorithm provably (see
Theorem 4) solves the MINTB problem in series-parallel graphs, giving the
first exact algorithm for MINTB on an important class of graphs.

2 Preliminaries and Problem Definition

We are given a directed graph G(V,E) with edge delay or latency functions
(�e)e∈E and demand r that needs to be routed between a source s and a sink t. We
will abbreviate an instance of the problem by the tuple G = (G(V,E), (�e)e∈E , r).
For simplicity, we usually omit the latency functions, and refer to the instance as
(G, r). The function �e : R≥0 → R≥0 is a non-decreasing cost function associated
with each edge e. Denote the (non-empty) set of simple s − t paths in G by P.

Flows. Given an instance (G, r), a (feasible) flow f is a non-negative vector
indexed by the set of feasible s − t paths P such that

∑
p∈P fp = r. For a flow

f , let fe =
∑

p:e∈p fp be the amount of flow that f routes on each edge e. An
edge e is used by flow f if fe > 0, and a path p is used by flow f if it has strictly
positive flow on all of its edges, namely mine∈p{fe} > 0. Given a flow f , the cost
of each edge e is �e(fe) and the cost of path p is �p(f) =

∑
e∈p �e(fe).

Nash Flow. A flow f is a Nash (equilibrium) flow, if it routes all traffic on
minimum latency paths. Formally, f is a Nash flow if for every path p ∈ P with
fp > 0, and every path p′ ∈ P, �p(f) ≤ �p′(f). Every instance (G, r) admits at
least one Nash flow, and the players’ latency is the same for all Nash flows (see
e.g., [14]).

Social Cost and Optimal Flow. The Social Cost of a flow f , denoted C(f),
is the total latency C(f) =

∑
p∈P fp�p(f) =

∑
e∈E fe�e(fe) . The optimal flow

of an instance (G, r), denoted o, minimizes the total latency among all feasible
flows.

In general, the Nash flow may not minimize the social cost. As discussed in
the introduction, one can improve the social cost at equilibrium by assigning
tolls to the edges.
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Tolls and Tolled Instances. A set of tolls is a vector Θ = {θe}e∈E such that
the toll for each edge is nonnegative: θe ≥ 0. We call size of Θ the size of the
support of Θ, i.e., the number of edges with strictly positive tolls, |{e : θe > 0}|.
Given an instance G = (G(V,E), (�e)e∈E , r) and a set of tolls Θ, we denote the
tolled instance by Gθ = (G(V,E), (�e + θe)e∈E , r). For succinctness, we may also
denote the tolled instance by (Gθ, r). We call a set of tolls, Θ, opt-inducing for
an instance G if the optimal flow in G and the Nash flow in Gθ coincide.

Opt-inducing tolls need not be unique. Consequently, a natural problem is
to find a set of optimal tolls of minimum size, which is the problem we consider
here.

Definition 1 (Minimum Tollbooth problem (MINTB)). Given instance
G and an optimal flow o, find an opt-inducing toll vector Θ such that the support
of Θ is less than or equal to the support of any other opt-inducing toll vector.

The following definitions are needed for Sect. 4.

Series-Parallel Graphs. A directed s−t multi-graph is series-parallel if it con-
sists of a single edge (s, t) or of two series-parallel graphs with terminals (s1, t1)
and (s2, t2) composed either in series or in parallel. In a series composition, t1 is
identified with s2, s1 becomes s, and t2 becomes t. In a parallel composition, s1
is identified with s2 and becomes s, and t1 is identified with t2 and becomes t.

A series-parallel (SP ) graph G with n nodes and m edges can be efficiently
represented using a parse tree decomposition of size O(m), which can be con-
structed in time O(m) due to Valdes et al. [17].

Series-Parallel Parse Tree. A series-parallel parse tree T is a rooted binary
tree representation of a given SP graph G that is defined using the following
properties:

1. Each node in the tree T represents a SP subgraph H of G, with the root
node representing the graph G.

2. There are three type of nodes: ‘series’ nodes, ‘parallel’ nodes, which have two
children each, and the ‘leaf’ nodes which are childless.

3. A ‘series’ (‘parallel’) node represents the SP graph H formed by the ‘series
combination’ (‘parallel combination’) of its two children H1 and H2.

4. The ‘leaf’ node represents a parallel arc network, namely one with two ter-
minals s and t and multiple edges from s to t.

For convenience, when presenting the algorithm, we allow ‘leaf’ nodes to be
multi-edge/parallel-arc networks. This will not change the upper bounds on the
time complexity or the size of the parse tree.

3 Hardness Results for MINTB

In this section we provide hardness results for MINTB. We study two versions
of the problem. The first one considers arbitrary instances while the second
considers arbitrary instances where the optimal solution uses all edges, i.e. ∀e ∈
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E : oe > 0. Recall that the motivation for separately investigating the second
version comes as a result of the ability of the network manager to make some
links unavailable.

3.1 Single-Commodity Network with Linear Latencies

We give hardness results on finding and approximating the solution of MINTB
in general instances with linear latencies. In Theorem 1 we give an inapprox-
imability result by a reduction from a Vertex Cover related NP-hard problem
and as a corollary (Corollary 1) we get the NP-hardness of MINTB on single
commodity networks with linear latencies. The construction of the network for
the reduction is inspired by the NP-hardness proof of the length bounded cuts
problem in [4].

Theorem 1. For instances with linear latencies, it is NP-hard to approximate
the solution of MINTB by a factor of less than 1.1377.

Proof. The proof is by a reduction from an NP-hard variant of Vertex Cover
(V C) due to Dinur and Safra [9]. Reminder: a Vertex Cover of an undirected
graph G(V,E) is a set S ⊆ V such that ∀{u, v} ∈ E : S ∩ {u, v} 	= ∅.

Given an instance V of V C we are going to construct an instance G of
MINTB which will give a one-to-one correspondence (Lemma 1) between Ver-
tex Covers in V and opt-inducing tolls in G. The inapproximability result will
follow from that correspondence and an inapproximability result concerning Ver-
tex Cover by [9]. We note that we will not directly construct the instance of
MINTB. First, we will construct a graph with edge costs that are assumed to
be the costs of the edges (used or unused) under the optimal solution and then
we are going to assign linear cost functions and demand that makes the edges
under the optimal solution to have costs equal to the predefined costs.

We proceed with the construction. Given an instance Gvc(Vvc, Evc) of V C,
with nvc vertices and mvc edges, we construct a directed single commodity net-
work G(V,E) with source s and sink t as follows:

1. For every vertex vi ∈ Vvc create gadget graph Gi(Vi, Ei), with Vi = {ai, bi, ci,
di} and Ei = {(ai, bi), (bi, ci), (ci, di), (ai, di)}, and assign costs equal to 1 for
edges e1,i = (ai, bi) and e3,i = (ci, di), 0 for edge e2,i = (bi, ci), and 3 for edge
e4,i = (ai, di). All edges e1,i ,e2,i,e3,i and e4,i are assumed to be used.

2. For each edge ek = {vi, vj} ∈ Evc add edges g1,k = (bi, cj) and g2,k = (bj , ci)
with cost 0.5 each. Edges g1,k and g2,k are assumed to be unused.

3. Add source vertex s and sink vertex t and for all vi ∈ Vvc add edges s1,i =
(s, ai) and t1,i = (di, t) with 0 cost, and edges s2,i = (s, bi) and t2,i = (ci, t)
with cost equal to 1.5. Edges s1,i and t1,i are assumed to be used and edges
s2,i and t2,i are assumed to be unused.

The construction is shown in Fig. 1 where the solid lines represent used edges
and dotted lines represent unused edges. The whole network consists of (2+4nvc)
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Vertex gadget for : (3)
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(0.5)Edge 
Gadget 
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Fig. 1. Gadgets for the reduction from V C to MINTB. The pair of symbols on each
edge corresponds to the name and the cost of the edge respectively. Solid lines represent
used edges and dotted lines represent unused edges.

nodes and (8nvc + 2mvc) edges, therefore, it can be constructed in polynomial
time, given Gvc.

We go on to prove the one-to-one correspondence lemma.

Lemma 1. (I) If there is a Vertex Cover in Gvc with cardinality x, then there
are opt-inducing tolls for G of size nvc + x.
(II) If there are opt-inducing tolls for G of size nvc + x, then there is a Vertex
Cover in Gvc with cardinality x.

Proof. Readers are referred to the proof of Lemma 1 in [5].

Statement (I) in the above lemma directly implies that if the minimum Vertex
Cover of Gvc has cardinality x then the optimal solution of the MINTB instance
has size at most nvc + x.

From the proof of Theorem 1.1 in [9] we know that there exist instances Gvc

where it is NP-hard to distinguish between the case where we can find a Vertex
Cover of size nvc ·(1−p+ε), and the case where any vertex cover has size at least
nvc · (1 − 4p3 + 3p4 − ε), for any positive ε and p = (3 − √

5)/2. We additionally
know that the existence of a Vertex Cover with cardinality in between the gap
implies the existence of a Vertex Cover of cardinality nvc · (1 − p + ε).1

Assuming that we reduce from such an instance of V C, the above result
implies that it is NP-hard to approximate MINTB within a factor of 1.1377 <
2−4p3+3p4−ε

2−p+ε (we chose an ε for inequality to hold). To reach a contradiction
assume the contrary, i.e. there exists a β-approximation algorithm Algo for
MINTB, where β≤1.1377 < 2−4p3+3p4−ε

2−p+ε . By Lemma 1 statement (I), if there

1 The instance they create will have either a Vertex Cover of cardinality nvc ·(1−p+ε)
or all Vertex Covers with cardinality ≥ nvc · (1 − 4p3 + 3p4 − ε).
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exists a Vertex Cover of cardinality x̂ = nvc · (1 − p + ε) in Gvc, then the car-
dinality in an optimal solution to MINTB on the corresponding instance is
OPT ≤ nvc + x̂. Further, Algo produces opt-inducing tolls with size nvc + y,
from which we can get a Vertex Cover of cardinality y in the same way as we
did inside the proof of statement (II) of Lemma1. Then by the approximation
bounds and using x̂ = nvc · (1 − p + ε) we get

nvc + y

nvc + x̂
≤ nvc + y

OPT
≤ β <

2 − 4p3 + 3p4 − ε

2 − p + ε
⇒ y < (1 − 4p3 + 3p4 − ε)nvc

The last inequality would answer the question whether there exists a Vertex
Cover with size nvc · (1 − p + ε), as we started from an instance for which we
additionally know that the existence of a Vertex Cover with cardinality y <
(1 − 4p3 + 3p4 − ε)nvc implies the existence of a Vertex Cover of cardinality
nvc · (1 − p + ε).

What is left for concluding the proof is to define the linear cost functions
and the demand so that at an optimal solution all edges have costs equal to the
ones defined above.

Define the demand to be r = 2nvc and assign: for every i the cost functions
�0(x) = 0 to edges s1,i, t1,i and e2,i, the cost function �1(x) = 1

2x + 1
2 to edges

e1,i and e3,i, the cost function �2(x) = 1.5 to edges s2,i and t2,i, and the cost
function �3(x) = 3 to edge e4,i, and for each k, the cost function �4(x) = 0.5 to
edges g1,k and g2,k. The optimal solution will assign for each Gi one unit of flow
to path s−ai − bi − ci −di − t and one unit of flow to s−ai −di − t. This makes
the costs of the edges to be as needed, as the only non constant cost is �1 and
�1(1) = 1.

To verify that this is indeed an optimal flow, one can assign to each edge
e instead of its cost function, say �e(x), the cost function �e(x) + x�′

e(x). The
optimal solution in the initial instance should be an equilibrium for the instance
with the pre-described change in the cost functions (see e.g. [14]). This will hold
here as under the optimal flow and with respect to the new cost functions the
only edges changing cost will be e1,i and e3,i, for each i, and that new cost will
be 1.5 (�1(1) + 1�′

1(1) = 1.5). �
Consequently, we obtain the following corollary.

Corollary 1. For single commodity networks with linear latencies, MINTB is
NP-hard.

Proof. By following the same reduction, by Lemma 1 we get that solving
MINTB in G gives the solution to V C in Gvc and vice versa. Thus, MINTB is
NP-hard. �

3.2 Single-Commodity Network with Linear Latencies and All
Edges Under Use

In this section we turn to study MINTB for instances where all edges are used
by the optimal solution. Note that this case is not captured by Theorem1, as



96 S. Basu et al.

in the reduction given for proving the theorem, the existence of unused paths in
network G was crucially exploited. Nevertheless, MINTB remains NP hard for
this case.

Theorem 2. For instances with linear latencies, it is NP-hard to solve MINTB
even if all edges are used by the optimal solution.

Proof. The proof comes by a reduction from the partition problem (PARTI-
TION) which is well known to be NP-complete (see e.g. [10]). PARTITION is:
Given a multiset S = {α1, α2, . . . , αn} of positive integers, decide (YES or NO)
whether there exists a partition of S into sets S1 and S2 such that S1 ∩ S2 = ∅
and

∑
αi∈S1

αi =
∑

αj∈S2
αj =

∑n
i=1 αi

2 .
Given an instance of PARTITION we will construct an instance of MINTB

with used edges only and show that getting the optimal solution for MINTB
solves PARTITION . Though, we will not directly construct the instance. First
we will construct a graph with edge costs that are assumed to be the costs of
the edges under the optimal solution and then we are going to assign linear cost
functions and demand that makes the edges under the optimal solution to have
costs equal to the predefined costs. For these costs we will prove that if the
answer to PARTITION is YES, then the solution to MINTB puts tolls to 2n
edges and if the answer to PARTITION is NO then the solution to MINTB
puts tolls to more than 2n edges. Note that the tolls that will be put on the
edges should make all s-t paths of the MINTB instance having equal costs, as
all of them are assumed to be used.

Next, we construct the graph of the reduction together with the costs of
the edges. Given the multi-set S = {α1, α2, . . . , αn} of PARTITION , with∑n

i=1 αi = 2B, construct the MINTB instance graph G(V,E), with source s
and sink t, in the following way:

1. For each i, construct graph Gi = (Vi, Ei), with Vi = {ui, wi, xi, vi} and
Ei = {(ui, wi), (wi, vi), (ui, xi), (xi, vi), (wi, xi), (wi, xi)}. Edges ai = (ui, wi)
and bi = (xi, vi) have cost equal to αi, edges c1,i = (wi, xi) and c2,i = (wi, xi)
have cost equal to 2αi and edges qi = (wi, vi) and gi = (ui, xi) have cost equal
to 4αi.

2. For i = 1 to n − 1 identify vi with ui+1. Let the source vertex be s = u1 and
the sink vertex be t = vn.

3. Add edge h = (s, t) to connect s and t directly with cost equal to 11B.

The constructed graph is presented in Fig. 2. It consists of (3n + 1) vertices
and 6n + 1 edges and thus can be created in polynomial time, given S.

We establish the one-to-one correspondence between the two problems in the
following lemma.

Lemma 2. (I) If the answer to PARTITION on S is YES then the size of
opt-inducing tolls for G is equal to 2n.
(II) If the answer to PARTITION on S is NO then the size of opt-inducing
tolls for G is strictly greater than 2n.
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Fig. 2. The graph for MINTB, as it arises from PARTITION . The pair of symbols
on each of Gi’s edges correspond to the name and the cost of the edge respectively.

Proof. The proof is identical to the proof of Lemma2 in [5].

What is left for concluding the proof is to define the linear cost functions
and the demand so that at the optimal solution all edges have costs equal to the
ones defined above.

Define the demand to be r = 4 and assign the cost function �h = 11B to edge
h and for each i, the cost function �1i (x) = 1

4αix + 1
2αi to edges ai, bi, the cost

function �2i (x) = αix + 3
2αi to edges c1,i and c2,i, and the constant cost function

�3i (x) = 4αi to edges qi and gi. The optimal flow then assigns 1 unit of flow to
edge h which has cost 11B, and the remaining 3 units to the paths through Gi.
In each Gi, 1 unit will pass through ai − qi, 1 unit will pass through gi − bi, 1/2
units will pass through ai − c1,i − bi, and 1/2 unit will pass through ai − c2,i − bi.
This result to ai and bi costing αi, to c1,i and c2,i costing 2αi, and to qi and
gi costing 4αi, as needed. We can easily verify that it is indeed an optimal flow
using a technique similar to the one used in Theorem 1.

4 Algorithm for MINTB on Series-Parallel Graphs

In this section we propose an exact algorithm for MINTB in series-parallel
graphs. We do so by reducing it to a solution of an equivalent problem defined
below.

Consider an instance G = {G(V,E), (�e)e∈E , r} of MINTB, where G(V,E)
is a SP graph with terminals s and t. Since the flow we want to induce is fixed,
i.e. the optimal flow o, by abusing notation, let length �e denote �e(oe), for each
e ∈ E, and let used edge-set, Eu = {e ∈ E : oe > 0}, denote the set of used edges
under o. For G, we define the corresponding �-instance (length-instance) to be
S(G) = {G(V,E), {�e}e∈E , Eu}. We may write simply S, if G is clear form the
context. By the definition below and the equilibrium definition, Lemma3 easily
follows.

Definition 2. Given an �-instance S = {G(V,E), {�e}e∈E , Eu}, inducing a
length L in G is defined as the process of finding �′

e ≥ �e, for all e ∈ E, such
that when replacing �e with �′

e: (i) all used s − t paths have length L and (ii) all
unused s − t paths have length greater or equal to L, where a path is used when
all of its edges are used, i.e. they belong to Eu.
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Algorithm 1. MAKELISTPL
Input: Parallel link network: P , List: lstP (Global)
Output: Processed list: lstP
1 Reorder the m edges such that

�1 ≤ �2 ≤ · · · ≤ �m ;
2 Append �m+1 = ∞ to the lengths;
3 Let �max be the max length of used edges;
4 The minimum number of edges to be tolled,

i0 ← min{i : �i+1 ≥ �max, 0 ≤ i ≤ m + 1};
5 for i ← i0 to m do
6 Create the new element α
7 (α·η, α·�) ← (i, �i+1);
8 Insert α in lstP
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Fig. 3. Example of list

Lemma 3. Consider an instance G on a SP graph G(V,E) with corresponding
�-instance S. L is induced in G with modified lengths �′

e if and only if {�′
e−�e}e∈E

is an opt-inducing toll vector for G.
We call edges with �′

e > �e tolled edges as well. Under these characterizations,
observe that finding a toll vector Θ that solves MINTB for instance G with
graph G, is equivalent to inducing length L in G with minimum number of
tolled edges, where L is the common equilibrium cost of the used paths in Gθ.
In general, this L is not known in advance and it might be greater than �max,
i.e. the cost of the most costly used path in G, see e.g. Fig. 4. Though, for SP
graphs we prove (Lemma 4) a monotonicity property that ensures that inducing
length �max results in less or equal number of tolled edges than inducing any
�′ > �max. Our algorithm relies on the above equivalence and induces �max with
minimum number of tolled edges.

Algorithm for Parallel Link Networks: Before introducing the algorithm
for MINTB on SP graphs, we consider the problem of inducing a length L in a
parallel link network P using minimum number of edges. It is easy to see that all
edges with length less than the maximum among used edges, say �max, should
get a toll. Similarly, to induce any length � > �max, all edges with cost less than
� are required to be tolled.

Define an ‘edge-length’ pair as the pair (η, �) such that by using at most η
edges a length � can be induced in a given graph. Based on the above observations
we create the ‘edge-length’ pair list, lstP , in Algorithm 1. By reordering the edges
in increasing length order, let edge k have length �k for k = 1 to m. Also let
there be i0 number of edges with length less than �max. The list gets the first
entry (i0, �max) and subsequently for each i = i0+1 to m, gets the entry (i, �i+1),
where �m+1 = ∞.

To induce any length �, starting from the first ‘edge-length’ pair in list lstP
we linearly scan the list until for the first time we encounter the ‘edge-length’ pair
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with η edges and length strictly greater than �. Clearly (η − 1) is the minimum
number of edges required to induce � as illustrated in Fig. 3.

Algorithm Structure: The proposed algorithm for MINTB proceeds in a
recursive manner on a given parse tree T of the SP graph G of an �-instance S,
where we create S given instance G and optimal flow o. Recall that for each node
v of the parse tree we have an associated SP subgraph Gv with the terminals sv

and tv. The two children of node v, whenever present, represent two subgraphs of
Gv, namely G1 and G2. Similar to the parallel link graph our algorithm creates
an ‘edge-length’ pair list for each node v. Due to lack of space the algorithms
are presented in the full version of this paper [5]. From hereon Algorithm i in
this paper will refer to Algorithm i in [5], for all i ≥ 2.

Central Idea. Beginning with the creation of a list for each leaf node of the parse
tree using Algorithm 1 we keep on moving up from the leaf level to the root level.
At every node the list of its two children, lst1 and lst2, are optimally combined
to get the current list lstv. For each ‘edge-length’ pair (η, �) in a current list we
maintain two pointers (p1, p2) to point to the two specific pairs, one each from
its descendants, whose combination generates the pair (η, �). Hence each element
in the list of a ‘series’ or ‘parallel’ node v is given by a tuple, (η, �, p1, p2).

The key idea in our approach is that the size of the list lstv for every node v,
is upper bounded by the number of edges in the subgraph Gv. Furthermore, for
each series or parallel node, we devise polynomial time algorithms, Algorithm 5
and Algorithm 6 respectively, which carry out the above combinations optimally.

Optimal List Creation. Specifically, we first compute the number of edges nec-
essary to induce the length of maximum used path between sv and tv, which
corresponds to the first ‘edge-length’ pair in lstv. Moreover, the size of the list is
limited by the number of edges necessary for inducing the length ∞, as computed
next. Denoting the first value by s and the latter by f , for any ‘edge-length’ pair
(η, �) in lstv, η ∈ {s, s + 1, . . . , f}.

Considering an η in that range we may use η′ edges in subgraph G1 and η−η′

edges in subgraph G2 to induce some length, which gives a feasible division of η.
Let η′ induce �1 in G1 and η −η′ induce �2 in G2. In a ‘series’ node the partition
induces � = �1 + �2 whereas in a ‘parallel’ node it induces � = min{�1, �2}.

Next we fix the number of edges to be η and find the feasible division that
maximizes the induced length in G and subsequently a new ‘edge-length’ pair
is inserted in lstv. We repeat for all η, starting from s and ending at f . This
gives a common outline for both Algorithms 5 and 6. A detailed description is
provided in Theorem 3.

Placing Tolls on the Network. Once all the lists have been created, Algorithm
4 traverses the parse tree starting from its root node and optimally induces the
necessary lengths at every node. At the root node the length of the maximum
used path in G is induced. At any stage, due to the optimality of the current
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list, given a length � that can be induced there exists a unique ‘edge-length’
pair that gives the optimal solution. In the recursive routine after finding this
specific pair, we forward the length required to be induced on its two children.
For a ‘parallel’ node the length � is forwarded to both of its children, whereas in
a ‘series’ node the length is appropriately split between the two. Following the
tree traversal the algorithm eventually reaches the leaf nodes, i.e. the parallel
link graphs, where given a length � the optimal solution is to make each edge
e with length �e < � equal to length � by placing toll � − �e. A comprehensive
explanation is presented under Lemma5 in [5].

4.1 Optimality and Time Complexity of Algorithm SolMINTB

Proof Outline: The proof of Theorem 4 which states that the proposed algo-
rithm solves the MINTB problem in SP graphs in polynomial time, is split
into Lemmas 4 and 5 and Theorem 3. The common theme in the proofs is the
use of an inductive reasoning starting from the base case of parallel link net-
works, which is natural given the parse tree decomposition. Lemma4 gives a
monotonicity property of the number of edges required to induce length � in a
SP graph guiding us to induce the length of maximum used path to obtain an
optimal solution.

The key Theorem 3 is essentially the generalization of the ideas used in the
parallel link network to SP graphs. It proves that the lists created by Algorithm
2 follow three desired properties. (1) The maximality of the ‘edge-length’ pairs
in a list, i.e. for any ‘edge-length’ pair (η, �) in lstv it is not possible to induce
a length greater than � in Gv using at most η edges. (2) The ‘edge-length’ pairs
in a list follows an increasing length order which makes it possible to locate the
optimal solution efficiently. (3) Finally the local optimality of a list at any level
of the parse tree ensures that the ‘series’ or ‘parallel’ combination preserves the
same property in the new list.

In Lemma 5 we prove that the appropriate tolls on the edges can be placed
provided the correctness of Theorem 3. The basic idea is while traversing down
the parse tree at each node we induce the required length in a locally optimal
manner. Finally, in the leaf nodes the tolls are placed on the edges and the
process inducing a given length is complete. Exploiting the linkage between the
list in a specific node and the lists in its children we can argue that these local
optimal solutions lead to a global optimal solution.

Finally, in our main theorem, Theorem4, combining all the elements we prove
that the proposed algorithm solves MINTB optimally. In the second part of the
proof of Theorem 4, the analysis of running time of the algorithm is carried out.
The creation of the list in each node of the parse tree takes O(m2) time, whereas
the number of nodes is bounded by O(m), implying that Algorithm 2 terminates
in O(m3) time. Here m is the number of edges in the SP graph G.

Proof of Correctness: In what follows we state the key theorems and lemmas,
while interested readers are referred to [5] for the complete proofs.
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Lemma 4. In an �-instance S, with SP graph G and maximum used (s, t) path
length �max, any length L can be induced in G if and only if L ≥ �max. Moreover
if length L is induced optimally with T edges then length �max ≤ � ≤ L can be
induced optimally with t ≤ T edges.

A

B

C

Fig. 4. Counter Example

Note: The above lemma breaks in general
graphs. As an example, in the graph in Fig. 4
to induce a length of 3 we require 3 edges,
whereas to induce a length of 4 only 2 edges
are sufficient.

Theorem 3. Let S be an �-instance and G be the associated SP graph with
parse tree representation T . For every node v in T , let the corresponding SP
network be Gv and �max,v be the length of the maximum used path from sv to
tv. Algorithm 3 creates the list, lstv, with the following properties.

1. For each ‘edge-length’ pair (ηi, �i), i = 1 to mv, in lstv, �i is the maximum
length that can be induced in the network Gv using at most ηi edges.

2. For each ‘edge-length’ pair (ηi, �i) in the list lstv, we have the total ordering,
i.e. ηi+1 = ηi + 1 for all i = 1 to mv − 1, and �max,v = �1 ≤ �2 ≤ · · · ≤
�mv

= ∞.
3. In Gv, length � is induced by minimum ηî edges if and only if � ≥ �1 and

î = arg min{ηj : (ηj , �j) ∈ lstv ∧ �j ≥ �}.

Lemma 5. In an �-instance S with SP graph G, suppose we are given lists lstv,
for all nodes v in the parse tree T of G, all of which satisfy properties 1, 2 and
3 in Theorem3. Algorithm 4 induces any length �in ≥ �1 optimally in G, where
�1 is the length of the first ‘edge-length’ pair in lstr, r being the root node of T .
Moreover, it specifies the appropriate tolls necessary for every edge.

Theorem 4. Algorithm 2 solves the MINTB problem optimally in time O (
m3

)

for the instance G = {G(V,E), (�e)e∈E , r}, where G(V,E) is a SP graph with
|V | = n and |E| = m.

5 Conclusion

In this paper we consider the problem of inducing the optimal flow as network
equilibrium and show that the problem of finding the minimum cardinality toll,
i.e. the MINTB problem, is NP-hard to approximate within a factor of 1.1377.
Furthermore we define the minimum cardinality toll with only used edges left
in the network and show in this restricted setting the problem remains NP-hard
even for single commodity instances with linear latencies. We leave the hardness
of approximation results of the problem open. Finally, we propose a polynomial
time algorithm that solves MINTB in series-parallel graphs, which exploits
the parse tree decomposition of the graphs. The approach in the algorithm
fails to generalize to a broader class of graphs. Specifically, the monotonicity
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property proved in Lemma4 holds in series-parallel graphs but breaks down in
general graphs revealing an important structural difficulty inherent to MINTB
in general graphs. Future work involves finding approximation algorithms for
MINTB. The improvement of the inapproximability results presented in this
paper provides another arena to this problem, e.g. finding stronger hardness of
approximation results for MINTB in multi-commodity networks.
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H., Skutella, M.: Length-bounded cuts and flows. ACM Trans. Algorithms (TALG)
7(1), 4 (2010)

5. Basu, S., Lianeas, T., Nikolova, E.: New complexity results and algorithms for the
minimum tollbooth problem (2015). http://arxiv.org/abs/1509.07260

6. Beckmann, M., McGuire, C., Weinstein, C.: Studies in the Economics of Trans-
portation. Yale University Press, New Haven (1956)

7. Bergendorff, P., Hearn, D.W., Ramana, M.V.: Congestion toll pricing of traffic
networks. In: Pardalos, P.M., Heam, D.W., Hager, W.W. (eds.) Network Opti-
mization. LNEMS, vol. 450, pp. 51–71. Springer, Heidelberg (1997)

8. Buriol, L.S., Hirsch, M.J., Pardalos, P.M., Querido, T., Resende, M.G., Ritt, M.:
A biased random-key genetic algorithm for road congestion minimization. Optim.
Lett. 4(4), 619–633 (2010)

9. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann.
Math. 162, 439–485 (2005)

10. Garey, M.R., Johnson, D.S.: Computers and intractability, vol. 29. W.H. Freeman
(2002)
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Abstract. Ad exchanges are an emerging platform for trading adver-
tisement slots on the web with billions of dollars revenue per year. Every
time a user visits a web page, the publisher of that web page can ask an
ad exchange to auction off the ad slots on this page to determine which
advertisements are shown at which price. Due to the high volume of
traffic, ad networks typically act as mediators for individual advertisers
at ad exchanges. If multiple advertisers in an ad network are interested
in the ad slots of the same auction, the ad network might use a “local”
auction to resell the obtained ad slots among its advertisers.

In this work we want to deepen the theoretical understanding of these
new markets by analyzing them from the viewpoint of combinatorial auc-
tions. Prior work studied mostly single-item auctions, while we allow the
advertisers to express richer preferences over multiple items. We develop
a game-theoretic model for the entanglement of the central auction at the
ad exchange with the local auctions at the ad networks. We consider the
incentives of all three involved parties and suggest a three-party compet-
itive equilibrium, an extension of the Walrasian equilibrium that ensures
envy-freeness for all participants. We show the existence of a three-party
competitive equilibrium and a polynomial-time algorithm to find one for
gross-substitute bidder valuations.

Keywords: Ad-exchange · Combinatorial auctions · Gross substi-
tute · Walrasian equilibrium · Three-party equilibrium · Auctions with
mediators

1 Introduction

As advertising on the web becomes more mature, ad exchanges (AdX) play a
growing role as a platform for selling advertisement slots from publishers to
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advertisers. Following the Yahoo! acquisition of Right Media in 2007, all major
web companies, such as Google, Facebook, and Amazon, have created or acquired
their own ad exchanges. Other major ad exchanges are provided by the Rubicon
Project, OpenX, and AppNexus. In 2012 the total revenue at ad exchanges
was estimated to be around two billion dollars [4]. Every time a user visits a
web page, the publisher of that web page can ask an ad exchange to auction
off the ad slots on this page. Thus, the goods traded at an ad exchange are
ad impressions. This process is also known as real-time bidding (RTB). A web
page might contain multiple ad slots, which are currently modeled to be sold
separately in individual auctions. Individual advertisers typically do not directly
participate in these auctions but entrust some ad network to bid on their behalf.
When a publisher sends an ad impression to an exchange, the exchange usually
contacts several ad networks and runs a (variant of a) second-price auction [13]
between them, potentially with a reserve price under which the impression is
not sold. An ad network (e.g. Google’s Display Network [6]) might then run
a second, “local” auction to determine the allocation of the ad slot among its
advertisers. We study this interaction of a central auction at the exchange and
local auctions at the ad networks.1

We develop a game-theoretic model that considers the incentives of the fol-
lowing three parties: (1) the ad exchange, (2) the ad networks, and (3) the
advertisers. As the ad exchange usually charges a fixed percentage of the rev-
enue and hands the rest to the publishers, the ad exchange and the publishers
have the same objective and can be modeled as one entity. We then study equi-
librium concepts of this new model of a three-party exchange. Our model is
described as an ad exchange, but it may also model other scenarios with media-
tors that act between bidders and sellers, as noted already by Feldman et al. [5].
The main differences between our model and earlier models (discussed in detail
at the end of this section) are the following: (a) We consider the incentives of
all three parties simultaneously. (b) While most approaches in prior work use
Bayesian assumptions, we apply worst-case analysis. (c) We allow auctions with
multiple heterogeneous items, namely combinatorial auctions, in contrast to the
single-item auctions studied so far. Multiple items arise naturally when selling
ad slots on a per-impression basis, since there are usually multiple advertisement
slots on a web page.

To motivate the incentives of ad networks and exchanges, we compare next
their short and long-term revenue considerations, following Mansour et al. [13]
and Muthukrishnan [14]. Ad exchanges and ad networks generate revenue as
follows: (1) An ad exchange usually receives some percentage of the price paid
by the winner(s) of the central auction. (2) An ad network can charge a higher
price to its advertisers than it paid to the exchange or it can be paid via direct
contracts with its advertisers. Thus both the ad exchange and the ad networks
(might) profit from higher prices in their auctions. However, they also have a
motivation not to charge too high prices as (a) the advertisers could stick to

1 In this work an auction is an algorithm to determine prices of items and their allo-
cation to bidders.
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alternative advertising channels such as long-term contracts with publishers,
and (b) there is a significant competition between the various ad exchanges and
ad networks, as advertisers can easily switch to a competitor. Thus, lower prices
(might) increase advertiser participation and, hence, the long-term revenue of ad
exchanges and ad networks. We only consider a single auction (of multiple items)
and leave it as an open question to study changes over time. We still take the
long-term considerations outlined above into account by assuming that the ad
exchange aligns its strategic behavior with its long-term revenue considerations
and only desires for each central auction to sell all items.2 In our model the incen-
tive of an ad network to participate in the exchange comes from the opportunity
to purchase some items at a low price and then resell them at a higher price.
However, due to long-term considerations, our model additionally requires the
ad networks to “satisfy their advertisers” by faithfully representing the adver-
tisers’ preferences towards the exchange, while still allowing the ad networks to
extract revenue from the competition between the advertisers in their network.
An example for this kind of restriction for an ad network is Google’s Display
Network [6] that guarantees its advertisers that each ad impression is sold via a
second-price auction, independent of whether an ad exchange is involved in the
transaction or not [13].

To model a stable outcome in a three-party exchange, we use the equilib-
rium concept of envy-freeness for all three types of participants. A participant is
envy-free if he receives his most preferred set of items under the current prices.
Envy-freeness for all participants is a natural notion to express stability in a
market, as it implies that no coalition of participants would strictly profit from
deviating from the current allocation and prices (assuming truthfully reported
preferences). Thus an envy-free equilibrium supports stability in the market
prices, which in turn facilitates, for example, revenue prediction for prospective
participants and hence might increase participation and long-term revenue. For
only two parties, i.e., sellers and buyers, where the sellers have no intrinsic value
for the items they sell, envy-freeness for all participants is equal to a competitive
or Walrasian equilibrium [20], a well established notion in economics to char-
acterize an equilibrium in a market where demand equals supply. We provide a
generalization of this equilibrium concept to three parties.

Our Contribution. We introduce the following model for ad exchanges. A central
seller wants to sell k items. There are m mediators Mi, each with her own ni

bidders. Each bidder has a valuation function over the items. In the ad exchange
setting, the central seller is the ad exchange, the items are the ad slots shown to
a visitor of a web page, the mediators are the ad networks, and the bidders are
the advertisers. A bidder does not have any direct “connection” to the central
seller. Instead, all communication is done through the mediators. A mechanism
for allocating the items to the bidders is composed of a central auction with
mediators acting as bidders, and then local auctions, one per mediator, in which

2 Our model and results can be adapted to include reserve prices under which the ad
exchange is not willing to sell an item.
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every mediator allocates the set of items she bought in the central auction; that
is, an auction where the bidders of that mediator are the only participating
bidders and the items that the mediator received in the central auction are the
sole items. The prices of the items obtained in the central auction provide a
lower bound for the prices in the local auctions, i.e., they act as reserve prices
in the local auctions. We assume that the central seller and the bidders have
quasi-linear utilities, i.e., utility functions that are linear in the price, and that
their incentive is to maximize their utility. For the central seller this means that
his utility from selling a set of slots is just the sum of prices of the items in the
set. The utility of a bidder on receiving a set of items S is his value for S minus
the sum of the prices of the items in S.

The incentive of a mediator, however, is not so straightforward and needs
to be defined carefully. In our model, to “satisfy” her bidders, each mediator
guarantees her bidders that the outcome of the local auction will be minimal
envy free, that is, for the final local price vector, the item set that is allocated
to any bidder is one of his most desirable sets over all possible item sets (even
sets that contain items that were not allocated to his mediator, i.e., each bidder
is not only locally, but globally envy-free) and there is no (item-wise) smaller
price vector that fulfills this requirement. We assume that each mediator wants
to maximize her revenue3 and define the revenue of a mediator for a set of items
S as the difference between her earnings when selling S with this restriction and
the price she has to pay for S at the central auction.

For this model we define a new equilibrium concept, namely the three-party
competitive equilibrium. At this equilibrium all three types of participants are
envy-free. Envy-free solutions for the bidders always exist, as one can set the
prices of all items high enough so that no bidder will demand any item. Addi-
tionally, we require that there is no envy for the central seller, meaning that all
items are sold. If there were no mediators, then a two-party envy-free solution
would be exactly a Walrasian equilibrium, which for certain scenarios can be
guaranteed [11]. However, with mediators it is not a-priori clear that a three-
party competitive equilibrium exists as, additionally, the mediators have to be
envy-free. We show that for our definition of a mediator’s revenue (a) the above
requirements are fulfilled and (b) a three-party competitive equilibrium exists
whenever a Walrasian equilibrium for the central auction exists or whenever
a two-party equilibrium exists for the bidders and the central seller without
mediators. Interestingly, we show that for gross-substitute bidder valuations the
incentives of this kind of mediator can be represented with an or-valuation
over the valuations of her bidders. This then leads to the following result: For
gross-substitute bidder valuations a three-party competitive equilibrium can be
computed in polynomial time. In particular, we will show how to compute the
three-party competitive equilibrium with minimum prices.

Related Work. The theoretical research on ad exchanges was initialized by a
survey of Muthukrishnan [14] that lists several interesting research directions.

3 For the purpose of this paper, the terms revenue and utility are interchangeable.
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Our approach specifically addresses his 9th problem, namely to enable the adver-
tisers to express more complex preferences that arise when multiple advertise-
ment slots are auctioned off at once as well as to design suitable auctions for
the exchange and the ad networks to determine allocation and prices given these
preferences.

The most closely related work with respect to the model of the ad exchange is
Feldman et al. [5]. It is similar to our work in two aspects: (1) The mediator bids
on behalf of her bidders in a central auction and the demand of the mediator
as well as the tentative allocation and prices for reselling to her bidders are
determined via a local auction. (2) The revenue of the mediator is the price
she can obtain from reselling minus the price she paid in the central auction.
The main differences are: (a) Only one item is auctioned at a time and thus
the mediator can determine her valuation with a single local auction. (b) Their
work does not consider the incentives of the bidders, only of the mediators and
the central seller. (c) A Bayesian setting is used where the mediators and the
exchange know the probability distributions of the bidders’ valuations. Based
on this information, the mediators and the exchange choose reserve prices for
their second-price auctions to maximize their revenue. The work characterizes
the equilibrium strategies for the selection of the reserve prices.

Mansour et al. [13] (mainly) describe the auction at the DoubleClick
exchange. Similar to our work advertisers use ad networks as mediators for the
central auction. They observe that if mediators that participate in a single-item,
second-price central auction are only allowed to submit a single bid, then it is
not possible for the central auction to correctly implement a second-price auc-
tion over all bidders as the bidders with the highest and the second highest value
might use the same mediator. Thus they introduce the Optional Second Price
auction, where every mediator is allowed to optionally submit the second high-
est bid with the highest bid. In such an auction each mediator can guarantee to
her bidders that if one of them is allocated the item, then he pays the (global)
second-price for it. For the single-item setting, the bidders in their auction and
in our auction pay the same price. If the mediator of the winning bidder did not
specify an optional second price, then her revenue will equal the revenue of our
mediator. If she did, her revenue will be zero and the central seller will receive
the gain between the prices in the local and the central auction.

Stavrogiannis et al. [18] consider a game between bidders and mediators,
where the bidders can select mediators (based on Bayesian assumptions of each
other’s valuations) and the mediators can set the reserve prices in the second-
price local auction. The work presents mixed Nash equilibrium strategies for
the bidders to select their mediator. In [19] the same authors compare different
single-item local auctions with respect to the achieved social welfare and the
revenue of the mediators and the exchange.

Balseiro et al. (2013) introduced a setting that does not include mediators [1].
Instead, they see the ad exchange as a game between publishers, who select para-
meters such as reserve prices for second-price auctions, and advertisers, whose
budget constraints link different auctions over time. They introduced a new equi-
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librium concept for this game and used this to analyze the impact of auction
design questions such as the selection of a reserve price. Balseiro et al. (2014)
studied a publisher’s trade-off between using an ad exchange versus fulfilling
long-term contracts with advertisers [2].

Equilibria in trading networks (such as ad exchanges) are also addressed in
the “matching with contracts” literature. Hatfield and Milgrom [10] presented
a new model where instead of bidders and items there are agents and trades
between pairs of agents. The potential trades are modeled as edges in a graph
where the agents are represented by the nodes. Agent valuations are then defined
over the potential trades and assumed to be monotone substitute. They proved
the existence of an (envy-free) equilibrium when the agent-trades graph is bipar-
tite. Later this was improved to directed acyclic graphs by Ostrovsky [16] and
to arbitrary graphs by Hatfield et al. [9]. They did not show (polynomial-time)
algorithms to reach equilibria. Our model can be reduced to this model, hence
a three-party equilibrium exists when all bidders are monotone gross substitute.
The result of this reduction (not stated here) is not polynomial in the number
of bidders and items.

2 Preliminaries

Let Ω denote a set of k items. A price vector is an assignment of a non-negative
price to every element of Ω. For a price vector p = (p1, ..., pk) and a set S ⊆ Ω
we use p(S) =

∑
j∈S pj . For any two price vectors p, r an inequality such as

p ≥ r as well as the operations min(p, r) and max(p, r) are meant item-wise.
We denote with 〈Ωb〉 = 〈Ωb〉b∈B an allocation of the items in Ω such that

for all bidders b ∈ B the set of items allocated to b is given by Ωb and we have
Ωb ⊆ Ω and Ωb ∩ Ωb′ = ∅ for b′ 	= b, b′ ∈ B. Note that some items might not be
allocated to any bidder.

A valuation function vb of a bidder b is a function from 2Ω to R, where 2Ω

denotes the set of all subsets of Ω. We assume throughout the paper vb(∅) = 0.
Unless specified otherwise, for this work we assume monotone valuations, that
is, for S ⊆ T we have vb(S) ≤ vb(T ). This assumption is made for ease of
presentation. We use {vb} to denote a collection of valuation functions. The
(quasi-linear) utility of a bidder b from a set S ⊆ Ω at prices p ≥ 0 is defined
as ub,p(S) = vb(S) − p(S). The demand Db(p) of a bidder b for prices p ≥ 0 is
the set of subsets of items S ⊆ Ω that maximize the bidder’s utility at prices p.
We call a set in the demand a demand representative. Throughout the paper we
omit subscripts if they are clear from the context.

Definition 1 (Envy Free). An allocation 〈Ωb〉 of items Ω to bidders B is envy
free (on Ω) for some prices p if for all bidders b ∈ B, Ωb ∈ Db(p). We say that
prices p are envy free (on Ω) if there exists an envy-free allocation (on Ω) for
these prices.

There exist envy-free prices for any valuation functions of the bidders, e.g., set
all prices to maxb,S vb(S). For these prices the allocation which does not allocate
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any item is envy free. Thus also minimal envy-free prices always exist, but are
in general not unique.

Definition 2 (Walrasian Equilibrium (WE)). A Walrasian equilibrium (on
Ω) is an envy-free allocation 〈Ωb〉 (on Ω) with prices p such that all prices are
non-negative and the price of unallocated items is zero. We call the allocation
〈Ωb〉 a Walrasian allocation (on Ω) and the prices p Walrasian prices (on Ω).

We assume that the central seller has a value of zero for every subset of the
items; thus (with quasi-linear utility functions) selling all items makes the seller
envy free. In this case a Walrasian equilibrium can be seen as an envy-free two-
party equilibrium, i.e., envy free for the buyers and the seller. Note that for a
Walrasian price vector there might exist multiple envy-free allocations.

2.1 Valuation Classes

A unit demand valuation assigns a value to every item and defines the value of
a set as the maximum value of an item in it. An additive valuation also assigns
a value to every item but defines the value of a set as the sum of the values
of the items in the set. Non-negative unit demand and non-negative additive
valuations both have the gross-substitute property (defined below) and are by
definition monotone.

Definition 3 (Gross Substitute (GS)). A valuation function is gross substi-
tute if for every two price vectors p(2) ≥ p(1) ≥ 0 and every set D(1) ∈ D(p(1)),
there exists a set D(2) ∈ D(p(2)) with j ∈ D(2) for every j ∈ D(1) with p

(1)
j = p

(2)
j .

For gross-substitute valuations of the bidders a Walrasian equilibrium is guar-
anteed to exist in a two-sided market [11] and can be computed in polynomial
time [15,17]. Further, gross substitute is the maximal valuation class containing
the unit demand class for which the former holds [7]. Several equivalent defini-
tions are known for this class [7,17]. We will further use that for gross-substitute
valuations the Walrasian prices form a complete lattice [7].

We define next an or-valuation. Lehmann et al. [12] showed that the or of
gross-substitute valuations is gross substitute.

Definition 4 (OR-player). The or of two valuations v and w is defined as
(v or w)(S) = maxR,T⊆S,R∩T=∅(v(R) + w(T )). Given a set of valuations {vb}
for bidders b ∈ B we say that the or-player is a player with valuation vor(S) =
max〈Sb〉

∑
b∈B vb(Sb) .

3 Model and Equilibrium

There are k items to be allocated to m mediators. Each mediator Mi represents
a set Bi of bidders, where |Bi| = ni. Each bidder is connected to a unique
mediator. Each bidder has a valuation function over the set of items and a
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quasi-linear utility function. A central auction is an auction run on all items
with mediators as bidders. After an allocation 〈Ωi〉 and prices r at the central
auction are set, another m local auctions are conducted, one by each mediator.
In the local auction for mediator Mi the items Ωi that were allocated to her in
the central auction are the sole items and the bidders Bi are the sole bidders.
A solution is an assignment of central-auction and local-auction prices to items
and an allocation of items to bidders and hence, by uniqueness, also to mediators.
We define next a three-party equilibrium based on envy-freeness.

Definition 5 (Equilibrium). A three-party competitive equilibrium is an
allocation of items to bidders and a set of m + 1 price vectors r, p1, p2, . . . , pm

such that the following requirements hold. For 1 ≤ i ≤ m

1. every mediator4 Mi is allocated a set Ωi in her demand at price r,
2. every item j with non-zero price r is allocated to a mediator,
3. the price pi coincides with r for all items not in Ωi,
4. and every bidder b ∈ Bi is allocated a subset of Ωi that is in his demand at

price pi.

In other words, the allocation to the bidders in Bi with prices pi must be envy-free
for the bidders, the allocation to the mediators with prices r must be envy free for
the mediators and for the central seller, i.e., must be a Walrasian equilibrium;
and the prices pi must be equal to the prices r for all items not assigned to
mediator Mi.

Note that the allocation of the items to the mediators and prices r are the
outcome of a central auction run by the central seller, while the allocation to the
bidders in Bi and prices pi correspond to the outcome of a local auction run by
mediator Mi. These auctions are connected by the demands of the mediators
and Requirement 3.

We next present our mediator model. The definition of an Envy-Free Medi-
ator, or ef-mediator for short, reflects the following idea: To determine her
revenue for a set of items S at central auction prices r, the mediator simulates
the local auction she would run if she would obtain the set S at prices r. Given
the outcome of this “virtual auction”, she can compute her potential revenue
for S and r as the difference between the virtual auction prices of the items
sold in the virtual auction and the central auction prices for the items in S.
However, as motivated in the introduction, the mediator is required to represent
the preferences of her bidders and therefore not every set S is “allowed” for the
mediator, that is, for some sets the revenue of the mediator is set to −1. The sets
that maximize the revenue are then in the demand of the mediator at central
auction prices r. To make the revenue of a mediator well-defined and to follow
our motivation that a mediator should satisfy her bidders, the virtual auctions
specifically compute minimal envy-free price vectors.

Definition 6 (Envy-Free Mediator). An ef-mediator Mi determines her
demand for a price vector r ≥ 0 as follows. For each subset of items S ⊆ Ω she
4 Regardless of any demand definition.
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runs a virtual auction with items S, her bidders Bi, and reserve prices r. We
assume that the virtual auction computes minimal envy-free prices pS ≥ r and
a corresponding envy-free allocation 〈Sb〉.5 We extend the prices pS to all items
in Ω by setting pS

j = rj for j ∈ Ω \ S, and define the revenue Ri,r(S) of the
mediator for a set S as follows. If the allocation 〈Sb〉 is envy free for the bidders
Bi and prices pS on Ω, then Ri,r(S) =

∑
b∈Bi

pS(Sb) − r(S); otherwise, we set
Ri,r(S) = −1. The demand Di(r) of Mi is the set of all sets S that maximize
the revenue of the mediator for the reserve prices r. The local auction of Mi for
a set Ωi allocated to her in the central auction at prices r is equal to her virtual
auction for Ωi and r.

Following the above definition, we say that a price vector is locally envy free
if it is envy free for the bidders Bi on the subset Ωi ⊆ Ω assigned to mediator
Mi and globally envy free if it is envy free for the bidders Bi on Ω. Note that if
pS is envy free on Ω, then it is minimal envy free ≥ r on Ω for the bidders Bi.

An interesting property of ef-mediators is that every Walrasian equilibrium
in the central auction can be combined with the outcome of the local auctions
of ef-mediators to form a three-party competitive equilibrium.

Theorem 1. Assume all mediators are ef-mediators. Then a Walrasian equi-
librium in the central auction with allocation 〈Ωi〉 together with the allocation
and prices computed in the local auctions of the mediators Mi on their sets Ωi

(not necessarily Walrasian) form a three-party competitive equilibrium.

Further, with ef-mediators a three-party competitive equilibrium exists
whenever a Walrasian eq. exists for the bidders and items without the medi-
ators.

Theorem 2. Assume all mediators are ef-mediators and a Walrasian equilib-
rium exists for the set of bidders and items (without mediators). Then there
exists a three-party competitive equilibrium.

The proof of Theorem 2 only shows the existence of trivial three-party equi-
libria that basically ignores the presence of mediators. However, three-party
equilibria and ef-mediators allow for richer outcomes that permit the mediators
to gain revenue from the competition between their bidders while still repre-
senting the preferences of their bidders towards the central seller. In the next
section we show how to find such an equilibrium provided that the valuations
of all bidders are gross substitute. Recall that gross-substitute valuations are
the most general valuations that include unit demand valuations for which a
Walrasian equilibrium exists [7]; and that efficient algorithms for finding a
Walrasian equilibrium are only known for this valuation class.

4 An Efficient Algorithm for Gross-substitute Bidders

In this section we will show how to find, in polynomial time, a three-party
competitive equilibrium if the valuations of all bidders are gross substitute.
5 If there are multiple envy-free allocations on S for the prices pS , the mediator chooses

one that maximizes
∑

b∈Bi
pS(Sb).



Ad Exchange: Envy-Free Auctions with Mediators 113

The prices the bidders have to pay at equilibrium, and thus the utilities they
achieve, will be the same as in a Walrasian equilibrium (between bidders and
items) with minimum prices (see full version). The price the bidders pay is split
between the mediators and the exchange. We show how to compute an equilib-
rium where this split is best for the mediators and worst for the exchange. In turn
the computational load can be split between the mediators and the exchange as
well. The algorithm will be based on existing algorithms to compute Walrasian
equilibria for gross-substitute bidders.

The classical (two-party) allocation problem is the following: We are given
k items and n valuation functions and we should find an equilibrium allocation
(with or without equilibrium prices) if one exists. Recall that in general a val-
uation function has a description of size exponential in k. Therefore, the input
valuation functions can only be accessed via an oracle, defined below. An effi-
cient algorithm runs in time polynomial in n and k (where the oracle access is
assumed to take constant time).

Given an algorithm that computes a Walrasian allocation for gross-substitute
bidders, by a result of Gul and Stacchetti [7] minimum Walrasian prices can be
computed by solving the allocation problem k +1 times. A Walrasian allocation
can be combined with any Walrasian prices to form a Walrasian equilibrium [7].
Thus we can assume for gross-substitute valuations that a polynomial-time algo-
rithm for the allocation problem also returns a vector of minimum prices that
support the allocation.

Two main oracle definitions that were considered in the literature are the
valuation oracle, where a query is a set of items S and the oracle replies with
the exact value of S; and the demand oracle, where a query is a price vector p
and the oracle replies with a demand representative D [3].

It is known that a demand oracle is strictly stronger than a valuation oracle,
i.e., a valuation query can be simulated by a polynomial number of demand
queries but not vice versa. For gross-substitute valuations, however, these two
query models are polynomial-time equivalent, see Paes Leme [17]. The two-party
allocation problem is efficiently solvable for gross-substitute valuations [15,17].

We define the three-party allocation problem in the same manner. We are
given k items, n valuation functions over the items and m mediators, each asso-
ciated with a set of unique bidders. We are looking for a three-party equilibrium
allocation (and equilibrium prices) if one exists. We will assume that the input
valuations are given through a valuation oracle.

The algorithm will be based on the following central result: For gross substi-
tute valuations of the bidders an ef-mediator and an or-player over the valua-
tions of the same bidders are equivalent with respect to their demand and their
allocation of items to bidders. Thus in this case ef-mediators can be considered
as if they have a gross-substitute valuation. Note that for general valuations this
equivalence does not hold.

Theorem 3. If the valuation functions of a set of bidders Bi are gross substitute,
then the demand of an ef-mediator for Bi is equal to the demand of an or-
player for Bi. Moreover, the allocation in a virtual auction of the ef-mediator
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for reserve prices r and a set of items S in the demand is an optimal allocation
for the or-player for S and r and vice versa.

To this end, we will first show for the virtual (and local) auctions that a
modified Walrasian equilibrium, the reserve-we(r), exists for gross-substitute
valuations with reserve prices. For this we will use yet another reduction to a
(standard) Walrasian equilibrium without reserve prices but with an additional
additive player6.

Definition 7 (WalrasianEquilibriumwithReservePrices r (RESERVE-
WE(r)) [8]). A Walrasian equilibrium with reserve prices r ≥ 0 (on Ω) is an
envy-free allocation 〈Ωb〉 (on Ω) with prices p such that p ≥ r, and the price
of every unallocated item is equal to its reserve price, i.e., pj = rj for j 	∈ ∪bΩb.
We say that 〈Ωb〉 is a reserve-we(r) allocation (on Ω) and p are reserve-
we(r) prices (on Ω).

4.1 Properties of Walrasian Equilibria with Reserve Prices

In this section we generalize several results about Walrasian equilibria to
Walrasian equilibria with reserve prices. Similar extensions were shown for unit
demand valuations in [8].

We first define a suitable linear program. The reserve-lp(r) is a linear
program obtained from a reformulation of the dual of the LP-relaxation of the
welfare maximization integer program after adding reserve prices r ≥ 0. More
details on this reformulation are given in the full version of the paper.

For an integral solution to the reserve-lp(r) we can interpret this reformu-
lation as a solution to a welfare-lp with an additional additive player whose
value for an item is equal to that item’s reserve price. We will use this interpre-
tation to extend known results for Walrasian equilibria to Walrasian equilibria
with reserve prices. The results are summarized in Theorem 4 below. We use the
following definition.

Definition 8 (Additional Additive Player). Let {vb} be a set of valuation
functions over Ω for bidders b ∈ B, and let r ≥ 0 be reserve prices for the items
in Ω. Let {v′

b′} be the set of valuation functions when an additive bidder a is
added, i.e., for the bidders b′ ∈ B′ = B ∪ {a} with v′

b′(S) = vb′(S) for b′ 	= a
and v′

a(S) =
∑

j∈S rj for all sets S ⊆ Ω. For an allocation 〈Ωb〉b∈B we define
〈Ω′

b′〉b′∈B′ with Ω′
b′ = Ωb′ for b′ 	= a and Ω′

a = Ω \ ∪bΩb.

Theorem 4. (a) The allocation 〈Ωb〉 and the prices p are a reserve-we(r)
for r ≥ 0 and bidders B if and only if the allocation 〈Ω′

b′〉 and prices p′ are a
we for the bidders B′, where we have pj = p′

j for j ∈ ∪b∈BΩb and pj′ = rj′ for
j′ ∈ Ω \∪b∈BΩb (a1 ). The allocation 〈Ωb〉 is a reserve-we(r) allocation if and
only if 〈Ωb〉 is an integral solution to the reserve-lp(r) (a2 ).

6 Such a player was introduced by Paes Leme [17] to find the demand of an or-player
(with a slightly different definition of or).
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(b) If the valuations {v} are gross substitute, then (b1 ) there exists a
reserve-we(r) for {v} and (b2 ) the reserve-we(r) price vectors form a com-
plete lattice.

Theorem 4 will be used in the next section to characterize the outcome of the
virtual auctions of an ef-mediator. It also provides a polynomial-time algorithm
to compute a reserve-we(r) when the bidders in B have gross-substitute valu-
ations, given a polynomial-time algorithm for a we for gross-substitute bidders.

4.2 The Equivalence of the EF-mediator and the OR-player
for Gross-substitute Valuations—Proof Outline

In this section we outline the proof of Theorem 3, the complete proof can be
found in the full version of the paper. The proof proceeds as follows. We first
characterize the demand of an ef-mediator for bidders with gross-substitute
valuations. As a first step we show that for such bidders an ef-mediator actually
computes a reserve-we(r) with minimum prices in each of her virtual auctions.
The minimality of the prices implies that whenever the virtual auction prices
for an item set S are globally envy-free, they are also minimum reserve-we(r)
prices for the set of all items Ω and the bidders in Bi. Thus, given reserve
prices r, all virtual auctions of an ef-mediator result in the same price vector
p as long as they are run on a set S with non-negative revenue. With the help
of some technical lemmata we then completely characterize the demand of an
ef-mediator and show that the mediator does not have to run multiple virtual
auctions to determine her demand; it suffices to run one virtual auction on Ω
where the set of allocated items is a set in the demand of the ef-mediator. Thus
for gross-substitute bidders the mediator can efficiently answer demand queries
and compute the outcome of her local auction.

Finally we compare the utility function of the or-player to the optimal value
of the reserve-lp(r) to observe that they have to be equal (up to an additive
constant) for item sets that are in the demand of the or-player. Combined with
the above characterization of the demand of the mediator, we can then relate
both demands at central auction prices r to optimal solutions of the reserve-
lp(r) for r and Ω and hence show the equality of the demands for these two
mediator definitions for gross-substitute valuations of the bidders. Recall that an
or-player over gross-substitute valuations has a gross-substitute valuation [12].
Thus in this case we can regard the ef-mediator as having a gross-substitute
valuation. This implies that a Walrasian equilibrium for the central auction
exists and, with the efficient demand oracle defined above, can be computed
efficiently when all bidders have gross-substitute valuations and all mediators
are ef-mediators.

4.3 Computing an Equilibrium

The basic three-party auction is simple: First run the central auction at the
exchange, then the local auctions at the mediators. In this section we summa-
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rize the details and analyze the time needed to compute a three-party compet-
itive equilibrium. We assume that all bidders have gross-substitute valuations
and that their valuations can be accessed via a demand oracle. We assume, for
simplicity, that there are m ef-mediators, each with n/m distinct bidders. We
will use known polynomial-time auctions for the two-party allocation problem,
see [17] for a recent survey. Theorem 4 shows how such an auction can be mod-
ified to yield a reserve-we(r) instead of a Walrasian equilibrium.

Let A be a polynomial-time algorithm that can access n gross-substitute
valuations over k items Ω via a demand oracle and outputs a Walrasian price
vector p ∈ R

k and a Walrasian allocation 〈Ωi〉i∈[n]. Let the runtime of A be
T (n, k) = O(nαkβ) for constants α, β.

Although we can assume oracle access to the bidders’ valuations, we cannot
assume it for the mediators’ (gross-substitute) valuations, as they are not part of
the input. However, as outlined in the previous section, a mediator can determine
a set in her demand by running a single virtual auction to compute a reserve-
we(r), i.e., there is an efficient demand oracle for the mediators. Hence, solving
the allocation problem for the central auction can be done in time T (m, k) ·
T (n/m, k) = O(nαk2β). Further, the local auctions for all mediators take time
O(m · T (n/m, k)) and thus the total time to compute a three-party competitive
equilibrium is O(nαk2β).7

5 Short Discussion

We proposed a new model for auctions at ad exchanges. Our model is more
general than previous models in the sense that it takes the incentives of all
three types of participants into account and that it allows to express preferences
over multiple items. Interestingly, at least when gross-substitute valuations are
considered, this generality does not come at the cost of tractability, as shown by
our polynomial-time algorithm. Note that this is the most general result we could
expect in light of the classical (two-sided) literature on combinatorial auctions.8
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Abstract. We consider the problem of computing approximate Nash
equilibria in monotone congestion games with polynomially decreasing
cost functions. This class of games generalizes the one of network con-
gestion games, while polynomially decreasing cost functions also include
the fundamental Shapley cost sharing value. We design an algorithm
that, given a parameter γ > 1 and a subroutine able to compute ρ-
approximate best-responses, outputs a γ(1/p + ρ)-approximate Nash
equilibrium, where p is the number of players. The computational com-
plexity of the algorithm heavily depends on the choice of γ. In partic-
ular, when γ ∈ O(1), the complexity is quasi-polynomial, while when
γ ∈ Ω(pε), for a fixed constant ε > 0, it becomes polynomial. Our algo-
rithm provides the first non-trivial approximability results for this class
of games and achieves an almost tight performance for network games in
directed graphs. On the negative side, we also show that the problem of
computing a Nash equilibrium in Shapley network cost sharing games is
PLS-complete even in undirected graphs, where previous hardness results
where known only in the directed case.

1 Introduction

In the last years, with the advent of the Internet, considerable research inter-
est has been devoted to modeling and analysing behavioral dynamics in non-
cooperative networks, where selfish users compete for limited resources. One of
the most natural and investigated frameworks in this setting is that of the con-
gestion games introduced by Rosenthal [16], in which the set of the strategies of
each player corresponds to some collection of subsets of a given set of common
resources (when the set of resources is given by the set of edges of a graph, we
speak of network congestion games). The cost of a strategy is the sum of the
costs of the selected resources, where the cost of each single resource depends
c© Springer-Verlag Berlin Heidelberg 2015
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on its congestion, i.e., the number of players using it. These games are partic-
ularly suited to model selfish routing in unregulated networks as well as the
phenomenon of spontaneous network formation. In the former case, the cost of
each resource is assumed to increase with its congestion, whereas in the latter
the cost decreases. Rosenthal proved that each congestion game admits an exact
potential function, that is, a real-valued function on the set of all possible strat-
egy profiles such that the difference in the potential between two strategy profiles
that differ in the strategic choice of a single player is equal to the difference of
the costs experienced by this player in the two profiles. This implies that each
congestion game has a pure Nash equilibrium [14] (from now on, simply, Nash
equilibrium), that is a strategy profile in which no player can decrease her cost
by unilaterally deviating to a different strategy. Moreover, it also follows that a
Nash equilibrium can always be reached by the so called Nash dynamics, that
is, the iterative process in which, at each step, an unsatisfied player is allowed
to switch to a better strategy, i.e. lowering her cost. Monderer and Shapley [13]
proved that the class of congestion games and that of exact potential games
are equivalent. Questions related to the performance of Nash equilibria, such as
price of anarchy [12] and price of stability [3], have been extensively addressed
in the context of congestion games and some of their variations. In this paper,
we focus on the problem of computing (approximate) Nash equilibria in a vari-
ant of congestion games, that we name monotone congestion games , which
includes the class of the network congestion games.

Related Work. The complexity of computing (approximate) Nash equilib-
ria in (network) congestion games with increasing cost functions is fairly well-
understood. Fabrikant et al. [8] prove that computing a Nash equilibrium is
PLS-complete in both network games and general games in which the players
share the same set of strategies (symmetric games). Ackermann et al. [1] shows
that PLS-completeness holds even for network games with linear cost functions.
For the special case of symmetric network congestion games, instead, Fabrikant
et al. [8] show how to efficiently compute a Nash equilibrium by solving a min-
cost flow problem. These impossibility results together with the fact that in many
real-life applications it may be the case that a player incurs a cost for changing
her strategy, have naturally led researchers to consider the notion of approxi-
mate Nash equilibria. An ε-approximate Nash equilibrium, for some ε ≥ 1, is a
strategy profile in which no player can improve her payoff by a multiplicative
factor of at least ε by unilaterally deviating to a different strategy. Skopalik
and Vöcking [17] prove that computing an ε-approximate Nash equilibrium is
PLS-complete for any polynomial time computable ε ≥ 1. Moreover they also
show that ε-approximate better-response dynamics can require an exponential
number of steps to converge. This PLS-hardness result implies that any dynam-
ics for reaching an approximate equilibrium that requires only polynomial-time
computation per iteration does not always converge in a polynomial number of
iterations, unless PLS ⊆ P. On the positive side, Chien and Sinclair [7] show
that, in symmetric games with positive delays, an ε-approximate Nash equilib-
rium can be reached after a polynomial number of steps of the Nash dynamics.
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Chen et al. [6] extended the result of [7] to symmetric games with only negative
delays, while showed that the problem becomes PLS-complete if both positive
and negative delays are present. Finally, Caragiannis et al. [4] provide a poly-
nomial time algorithm that computes a (2 + γ)-approximate Nash equilibrium
(for arbitrary small γ > 0) for games with linear cost functions and a dO(d)-
approximate Nash equilibrium for games with polynomial cost functions with
constant maximum degree d.

Much less is known about the complexity of computing (approximate) Nash
equilibria in congestion games with decreasing cost functions. Indeed, there are
results only for special cases of network games under the Shapley cost sharing
protocol [3], i.e., games in which each resource has a cost which is equally split
among all the players using it. Specifically, given a graph each player i wants
to connect a pair of nodes (si, ti). Syrgkanis [18] shows that computing a Nash
equilibrium in these games is PLS-complete if the underlying graph is directed.
Albers and Lenzner [2] consider the case in which the graph is undirected and
si = s for each player i and prove that any optimal network (i.e., a minimum cost
Steiner tree whose set of terminals is given by the union of the source-destination
nodes of all the players) is an Hp-approximate Nash equilibrium, where p is
the number of players. We stress that the algorithm proposed by Caragiannis
et al. [4] cannot be extended to deal with decreasing cost functions since it
strongly exploits the following facts (here, linear functions are considered, but a
similar discussion can be made for polynomial functions): (i) if, given a game,
some players are frozen on some strategies, the resulting game is a congestion
game with less players and different cost functions, but always belonging the the
class of linear cost functions; (ii) the potential value of an ε-approximate Nash
equilibrium approximates the minimum of the potential function by a factor or
order ε. It can be easily verified as neither property (i) nor property (ii) are
verified by congestion games with decreasing cost functions. Thus, there exists
a tremendous theoretical gap between positive and negative results regarding
the computability of (approximate) Nash equilibria in network games under the
Shapley cost sharing protocol.

Our Contribution. Our aim is to address the class of network congestion
games with polynomially decreasing cost functions. Since network games have
the property that, whenever a given strategy (subset of edges) s fulfills the
connectivity requirement of a player, then any superset s′ ⊃ s with redundant
edges also does, we introduce the general class of the monotone congestion
games, that properly includes that of network congestion games. In these games,
the strategy set of each player is closed under resource addition. We remark
that this feature, while indifferent for plain Nash equilibria, as no strategy at
equilibrium will contain redundant resources, can be profitably exploited in order
to get low factor approximate Nash equilibria.

Building upon this observation, we consider the complexity of computing
(approximate) Nash Equilibria in monotone congestion games with polynomi-
ally decreasing cost functions, providing both positive and negative results. In
particular, we consider the case in which each resource j has a cost cj and the
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cost that each player incurs when using j is given by cj/xα for some constant
α > 0, where x is the number of players using j. Observe that, for α = 1, we
recover the Shapley cost sharing protocol, so that our model widely generalizes
the models previously studied in the literature.

On the positive side, we design an algorithm that computes an approximate
Nash equilibrium with provable performance guarantee. In particular, assuming
that a ρ-approximate best-response for the game can be computed in time t, for
a fixed parameter γ ∈ (1, rp), our algorithm returns a γ(p−1 + ρ)-approximate
Nash equilibrium in time t · (rp)O(α log p

log γ ), where r is the number of resources
and p the number of players. Such a result has several implications for network
congestion games, that we describe in detail in Sect. 4. On the negative side, we
prove that the problem of computing a Nash equilibrium in network games under
the Shapley cost sharing protocol is PLS-complete even for undirected graphs,
thus closing a long standing open question which had been answered before by
Syrgkanis [18] only for the case of directed graphs.

2 Model

A congestion game with polynomially decreasing latency functions is a tuple
(P,R, (Si)i∈P , (cj)j∈R, α), where P is a set of p players, R a set of r resources,
Si ⊆ 2R \ {∅} is the set of strategies of player i ∈ P , cj > 0 is the cost of
resource j ∈ R and α > 0 is a real value. A strategy profile σ = (σ1, . . . , σp) is
the outcome in which each player i ∈ P chooses strategy σi ∈ Si. The cost that
player i experiences in strategy profile σ is defined as costi(σ) =

∑
j∈σi

cj

pj(σ)α ,
where pj(σ) = |{i ∈ P : j ∈ σi}| denotes the number of players using resource j
in σ.

Given a strategy profile σ, a player i ∈ P and a strategy S ∈ Si, we denote
with σ−i �S the strategy profile obtained from σ when i switches from strategy
σi to strategy S. A strategy profile σ is a Nash equilibrium if, for each i ∈ P
and S ∈ Si, costi(σ) ≤ costi(σ−i � S), that is, no player can lower her cost
by unilaterally switching to a different strategy. More generally, given a value
ε ≥ 1, σ is an ε-approximate Nash equilibrium if, for each i ∈ P and S ∈ Si,
costi(σ) ≤ ε · costi(σ−i � S), that is, no player can lower her cost of a factor
of more than ε by unilaterally switching to a different strategy. Clearly, a Nash
equilibrium is an ε-approximate Nash equilibrium with ε = 1.

For a fixed strategy profile σ and a player i ∈ P , a best-response for i in σ is
a strategy bri(σ) ∈ Si such that costi(σ−i � bri(σ)) = minS∈Si

{costi(σ−i � S)}.
A strategy S ∈ Si is an ε-approximate best-response for i in σ if costi(σ−i �S) ≤
ε · costi(σ−i � bri(σ)). It follows that σ is an ε-approximate Nash equilibrium if
and only if each player i ∈ P is playing an ε-approximate best-response. Given
a game G, we denote with Πbr(G) the problem of computing a best-response for
a generic player i ∈ P in a generic strategy profile σ of G. As we will see, there
are games for which such a problem is in P and others for which it is NP-hard.

Let Φ : ×i∈P Si → R+ be the function such that Φ(σ) =
∑

j∈R

∑pj(σ)
i=1

cj

iα .
Function Φ, originally defined by Rosenthal [16] for the general class of the
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congestion games, is an exact potential function, that is Φ(σ−i � S) − Φ(σ) =
costi(σ−i � S) − costi(σ) for each strategy profile σ and strategy S ∈ Si.

We say that a congestion game is monotone if, for each player i ∈ P , the
set of strategies Si is closed under resource addition, that is, for each S ∈ Si

and R′ ⊆ R, it holds that S ∪ R′ ∈ Si. In such a case, given two strategies
S, S′ ∈ Si, we say that S′ is dominated by S if S ⊂ S′. Note that, by definition,
no player ever plays a dominated strategy in a Nash equilibrium, whereas, for
suitable values of ε, this cannot be a priori excluded in an ε-approximate Nash
equilibrium.

An interesting and well-studied class of monotone congestion games is rep-
resented by network congestion games. In these games, the set of resources is
represented by the set of edges of a weighted graph G = (V,E, c) (thus |E| = r),
where |V | = n, which may be either directed or undirected, and the set of strate-
gies for each player is defined in intensive form as follows: each player i ∈ P is
associated with a set of ki subsets of nodes Vij ⊆ V for j = 1, . . . , ki that she
wishes to serve in some way (for instance, by providing them a connection, a
fault-tolerant connection, a point-to-point connection, etc.). Note that differ-
ently from classical congestion game, here the representation of the game does
not need to keep the whole set of strategies explicitly. Several interesting sub-
cases, all of them assuming ki = 1 for any i ∈ P , have been considered so far
in the literature, such as multi-source games in which |Vi1| = |Vi| = 2 for each
i ∈ P , multicast games in which, in addition, Vi ∩Vi′ = {s} for each i, i′ ∈ P and
broadcast games in which, as a further restriction, one has

⋃
i∈P Vi = V . Finally,

Shapley games are congestion games with polynomially decreasing latency func-
tions in which α = 1. Note that Πbr(G) is NP-hard for several network congestion
games G.

3 The Approximation Algorithm

Fix a monotone congestion game with polynomially decreasing latency functions
G. Throughout this section we assume, without loss of generality, that G is nor-
malized in such a way that cj ≥ 1 for each j ∈ R. For any set of resources R′ ⊆ R,
define c(R′) =

∑
j∈R′ cj and, for each player i ∈ P , let S∗

i = argminS∈Si
{c(S)}

be the minimum cost strategy for player i. Finally, let cmax = maxj∈R{cj}. For
a fixed parameter γ ∈ (1, rp), set Δ = rpα+1

γ . Since both γ > 1 and Δ > 1, it
follows that logγ x = O(log x) and logΔ x = O(log x) for each x ∈ R.

Definition 1. A player i belongs to class clP� (or is of class clP� ) if c(S∗
i ) ∈

(Δ�−1,Δ�], while a resource j belongs to class clR� if cj ∈ (Δ�−1,Δ�].

Note that the maximum number of player classes is L = logΔ(r · cmax)� =
O(log r + log cmax) which is polynomial in the dimension of G. We denote by
p� = |clP� | the number of players of class clP� , by p� =

∑L
�′=�+3 p�′ the number

of players of class at least 
 + 3 and set P� =
∑�+2

�′=�−2 p�′ , where we use the
convention p−1 = p0 = pL+1 = pL+2 = 0.
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Our approximation algorithm is based on the following idea: the strategy
σi chosen by each player i ∈ P is composed of two parts: a fixed strategy,
denoted as FSi, which is independent of what the other players do and is kept
fixed throughout the whole execution of the algorithm, and a variable strategy,
denoted as VSi, which may change over time and expresses the player’s reaction
to the choices of the others.

For a player i ∈ clP� , let cl(i) denote the index of the player class containing
i, i.e., cl(i) = 
. Similarly, for a resource j ∈ clR� , let cl(j) denote the index of
the resource class containing j, i.e., cl(j) = 
. The fixed strategy of each player
i ∈ P is defined as follows:

FSi =
{∅ if cl(i) ∈ {1, 2},

⋃cl(i)−2
�=1 clR� if cl(i) ≥ 3.

The set of variable strategies available to player i ∈ P is

VSi = {S ⊆ R | ∃S′ ∈ Si : S = S′ \ FSi}.

We denote with VS∗
i = argminS∈VSi

{c(S)} the minimum cost variable strat-
egy for player i, while, for a given strategy profile σ, we denote with

brV
i (σ) = argminS∈VSi

{costi(σ−i � (S ∪ FSi))}
the variable strategy for player i of minimum shared cost. Since Πbr(G) may
be NP-hard, we assume that each player i ∈ P can compute a ρ-approximate
best-response, denoted with b̃r

V

i (σ), by using an algorithm of time complexity
t := t(G). For the sake of brevity, when given a strategy profile σ with σi =
FSi ∪ VSi for each player i ∈ P , we denote with costVi (σ) =

∑
j∈σi\FSi

cj

pj(σ)α

the cost experienced by player i in σ ascribable to resources belonging to her
variable strategy only.

Algorithm 1. It takes as input a monotone congestion game with polynomi-
ally decreasing latency functions and a parameter γ and outputs a γ(p−1 + ρ)-
approximate Nash equilibrium.
1: for each i ∈ P do
2: σ0

i ← FSi ∪ VS∗
i

3: end for
4: h ← 0
5: while there exists a player i s.t. costV

i (σh) > γ · costV
i (σh

−i � (b̃r
V

i (σh) ∪ FSi)) do
6: h ← h + 1

7: σh ← σh−1
−i � (FSi ∪ b̃r

V

i (σh−1))
8: end while
9: return σh

The following theorem bounds the performance of Algorithm 1 as a function
of G, ρ, t and γ.
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Theorem 1. For each γ ∈ (1, rp), Algorithm 1 returns a γ(p−1+ρ)-approximate
Nash equilibrium in time t · (rp)O(α log p

log γ ).

Proof. For a strategy profile σ and a player i ∈ P , denote with VSi(σ) the
variable strategy adopted by player i in σ. We start by proving some useful
facts. The first one says that, during the execution of the algorithm, a resource
of class 
 may belong to the variable strategies of players of class 
−1, 
 or 
+1
only.

Fact 1. Fix a resource j ∈ clR� and a strategy profile σh generated during the
execution of Algorithm 1. Then, for any player i such that j ∈ VSi(σh), cl(i) ∈
{
 − 1, 
, 
 + 1}.
Proof. For a fixed resource j ∈ clR� , let us assume, by way of contradiction, that
there exist a strategy profile σh generated during the execution of Algorithm 1
and a player i such that j ∈ VSi(σh), for which cl(i) /∈ {
 − 1, 
, 
 + 1}.

Consider first the case in which cl(i) > 
 + 1. This implies that clR� ⊆ FSi

which contradicts the hypothesis that j ∈ VSi(σh).
Then consider the case in which cl(i) < 
−1. This implies that c(S∗

i ) ≤ Δ�−2

so that, by construction of σ0, it has to be h > 0. Since resource j is of class

, its cost has to be greater than Δ�−1. Moreover, since j can be shared by
at most p (i.e., all) players, costVi (σh) > Δ�−1

pα . On the one hand, by line 7
of the algorithm, we have j ∈ brV

i (σh−1); on the other hand, since γ < rp,
costVi (σh) > Δ�−1

pα > Δ�−2 ≥ c(S∗
i ), thus contradicting the fact that brV

i (σh−1)
is the variable strategy for player i of minimum shared cost. ��

The second fact says that, during the execution of the algorithm, a resource
belonging to any variable strategy of a player of class 
 may belong to the variable
strategies of players of class 
 − 2, 
 − 1, 
, 
 + 1 or 
 + 2 only.

Fact 2. Fix a strategy profile σh generated during the execution of Algorithm 1,
a player i ∈ clP� and a resource j ∈ VSi(σh). Then, for any player i′ such that
j ∈ VSi′(σh), cl(i′) ∈ {
 − 2, 
 − 1, 
, 
 + 1, 
 + 2}.
Proof. By applying twice Fact 1, we first obtain that cl(j) ∈ {
− 1, 
, 
+1} and
then that cl(i′) ∈ {
 − 2, 
 − 1, 
, 
 + 1, 
 + 2}. ��

We now partition the set of player classes into two subsets: light and heavy
classes. Both of them will be proved to have different properties that can be
suitable exploited in order to show the correctness and the running time of our
algorithm.

Definition 2. A player class clP� is light if p� ≥ p�+P�

γ1/α , otherwise it is heavy.

The good property of a light class clP� is that the p� players whose fixed
strategies contain all the resources that may belong to the variable strategy of
any player i ∈ clP� are enough to guarantee that during the execution of the
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algorithm no player i ∈ clP� ever performs a deviation; so that σh
i = FSi ∪ VS∗

i

for each strategy profile σh generated during the execution of the algorithm. Let
us denote with P̃ the set of players who are selected at least once at step 5 of
Algorithm 1 for updating their strategy.

Fact 3. For each player i ∈ P̃ , player class clPcl(i) is heavy.

Proof. Assume, for the sake of contradiction, that there exists a player i ∈ P̃
such that clPcl(i) is light. Let σh be strategy profile at which i performs her first
deviation from strategy FSi ∪ VS∗

i . By line 5 of the algorithm, it must be

costVi (σh) > γ · costVi (σh
−i � (brV

i (σh) ∪ FSi)). (1)

By σh
i = FSi ∪ VS∗

i , we have

costVi (σh) ≤ c(VS∗
i )

pα
cl(i)

, (2)

while, by the minimality of VS∗
i and Fact 2, we get

costVi (σh
−i � (brV

i (σh) ∪ FSi)) ≥ c(VS∗
i )

(pcl(i) + Pcl(i))α
. (3)

By using (2) and (3) in (1), we obtain

c(VS∗
i )

pα
cl(i)

>
γc(VS∗

i )
(pcl(i) + Pcl(i))α

,

which, after rearranging, yields γpα
cl(i) < (pcl(i) + Pcl(i))α thus contradicting the

assumption that clPcl(i) is light. ��
By Fact 3, we know that only players belonging to heavy classes are involved

in the dynamics generated by lines 5–9 of Algorithm 1. Our next task is to
bound the number of deviations in this dynamics. To this aim, we first bound
the number of heavy classes. The peculiar property of a heavy class clP� is that
P�, that is the number of players belonging to classes going from clP�−2 to clP�+2, is
a significant fraction of the p�+3 players belonging to the classes of index at least

 + 3, so that the total number of heavy classes remains bounded as a function
of p, γ and α as follows.

Lemma 1. The number of heavy classes is at most 5
⌈

α log p
log γ

⌉
.

Proof. A pseudo-sequence of heavy classes is an ordered sequence 〈clP�1 , . . . , clP�k
〉

of heavy classes whose mutual distance is at least five, that is, such that 
i+1 −

i ≥ 5 for each 1 ≤ i < k. Clearly, denoted with k∗ the length of the longest
pseudo-sequence of heavy classes, it immediately follows that the total number
of heavy classes is at most 5k∗. Thus, in the remaining of the proof, we show
that k∗ ≤

⌈
α log p
log γ

⌉
. Before bounding k∗, we need to introduce some useful facts.
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Fact 4. Fix a pseudo-sequence of heavy classes 〈clP�1 , . . . , clP�k
〉. For each 1 ≤ i <

k, p�i
+ P�i

≤ p�i−1
.

Proof. By definition, we have p�i−1
=

∑L
j=�i−1+3 clPj and

p�i
+ P�i

=
L∑

j=�i+3

clPj +
�i+2∑

j=�i−2

clPj =
L∑

j=�i−2

clPj .

The claim then follows since 
i − 
i−1 ≥ 5 implies that 
i−1 + 3 ≤ 
i − 2. ��
Fact 5. Fix a pseudo-sequence of heavy classes 〈clP�1 , . . . , clP�k

〉. For each 1 ≤ i ≤
k, p�i

< p
γi/α .

Proof. The proof is by induction on i. As a base case, we have p�1 <
p�1

+P�1

γ1/α ≤
p

γ1/α , where the first inequality follows from the definition of heavy classes. For

i > 1, we have p�i
<

p�i
+P�i

γ1/α <
p�i−1

γ1/α < p
γi/α , where the first inequality follows

from the definition of heavy classes, the second one follows from Fact 4 and the
last one follows from the inductive hypothesis. ��

We can now conclude the proof of the lemma. Because of Fact 5, we have
that p�k∗ < p

γk∗/α . Assume that k∗ > log α
√

γ p�. Since k∗ is an integer, we get
p�k∗−1

< 1, i.e., p�k∗−1
= 0. This means that all player classes with index at least


k∗−1 + 3 are empty. Since 
k∗ ≥ 
k∗−1 + 5, it holds that P�k∗ = 0 and therefore,
by Definition 2, class 
k∗ is light, thus rising a contradiction. Hence it must be
k∗ ≤ log α

√
γ p� =

⌈
α log p
log γ

⌉
. ��

We now proceed by grouping heavy and light classes into zones according to
the following definition.

Definition 3. A zone z is a maximal set of contiguous player classes, starting
and ending with a heavy class and such that no two contiguous classes are both
light.

By Lemma 1 and the definition of zones, we have that there exist at most
5
⌈

α log p
log γ

⌉
zones (because each zone has to contain at least a heavy class) and

that each zone contains at most 10
⌈

α log p
log γ

⌉
classes (because in the worst-case

heavy and light classes are interleaved in a zone, given that two light classes
cannot be contiguous). Moreover, again by the definition of zones and by Fact
2, it follows that, for any two players i and i′ such that clPcl(i) and clPcl(i′) are
two heavy classes belonging to two different zones, S ∩ S′ = ∅ for each S ∈ VSi

and S′ ∈ VSi′ , that is, the congestion of the resources belonging to the variable
strategies of the players in a certain zone are not influenced by the choices of the
players outside the zone, so that the Nash dynamics inside each zone, generated
by Algorithm 1, is an independent process.
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Consider a zone z starting at class 
 and containing x classes (from class 

to class 
 + x − 1). After line 3 of Algorithm 1, the total contribution to the
potential Φ(σ0) of the resources that may be involved in the dynamics of the
players belonging to classes in z is rΔ�+xp, because, by Fact 1, any variable
strategy of a player of class 
 + x − 1 can contain resources of classes 
 + x − 2,

 + x − 1 and 
 + x. Since each deviation decreases the potential of at least
Δ�

pα

(
1 − 1

γ

)
, at most rΔ�+xp

Δ�

pα (1− 1
γ )

= rγΔxp1+α

γ−1 deviations can be performed by the

players belonging to classes in z. Thus, since x ≤ 10
⌈

α log p
log γ

⌉
, γ ∈ (1, rp) and

each deviation requires time at most t, we have that Algorithm 1 terminates in
time t · (rp)O(α log p

log γ ).
It remains to show that it returns a γ(p−1 + ρ)-approximate Nash equilib-

rium. By the condition at line 5, we know that, with respect to the variable
strategies, all players are in γρ-equilibrium in the strategy profile σ returned by
Algorithm 1. Moreover, for any player i of class 
, the cost due to the resources
in FSi can be upper bounded by rΔ�−2. Since a best response for player i has
to cost at least Δ�−1

pα (in the most optimistic case the minimum cost strategy S∗
i

is shared by all players), by recalling the definition of Δ, we have that

rΔ�−2 ≤ γ

p
· Δ�−1

pα
. (4)

Therefore,

costi(σ) =
∑

j∈σi∩FSi

cj

pj(σ)α
+

∑

j∈σi\FSi

cj

pj(σ)α

≤ rΔ�−2 +
∑

j∈σi\FSi

cj

pj(σ)α

≤ γ

p
· Δ�−1

pα
+ γρ · costVi (σ−i � (brV

i (σ) ∪ FSi)) (5)

≤ γ

p
· costi(σ−i � bri(σ)) + γρ · costi(σ−i � bri(σ))

= γ(p−1 + ρ)costi(σ−i � bri(σ)),

where (5) follows from (4) and from line 5 of Algorithm 1. ��

4 Applications to Network Congestion Games

In this section, we discuss the application of our approximation algorithm to
network congestion games with polynomially decreasing latency functions. We
recall that for these games no positive results have been achieved so far in the
literature, except the ones provided by Albers and Lenzner [2] for some Shapley
games on undirected graphs. In particular, they show that, for multicast games, a
minimum cost network is a Hp-approximate Nash equilibrium. Here, a minimum
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cost network coincides with a minimum Steiner tree, whose computation is an
NP-hard problem and the authors do not discuss whether an approximation of
the minimum cost network can still provide an approximate Nash equilibrium
with provably good performance guarantee. Thus, if we drift apart from merely
existential results to focus on practical (i.e., efficiently computable) ones, we
have that an Hp-approximate Nash equilibrium can be computed only in the
case of broadcast Shapley games on undirected graphs.

We observe that, given a network congestion game G defined over a graph
G, if there exists an algorithm computing a ρ(G)-approximate Nash equilibrium
for G within time t(G), then the same algorithm can be used to approximate
Πbr(G) within a factor of ρ(G) with the same running time. To this aim, fix a
graph G and a problem Π on G and define G in such a way that there is a unique
player whose set of strategies is given by all the feasible solutions of problem Π.
Clearly, a ρ(G)-approximate Nash equilibrium for G computed in time at most
t(G) provides also a ρ(G)-approximate solution to Π in time at most t(G). More-
over, it is worth noticing that a similar result can be obtained for games with
an arbitrary number p of players, by simply adding p − 1 dummy players whose
available strategies have all cost zero and involve edges not belonging to E(G):
such players cannot share any edge with the first player in any ε-approximate
Nash equilibrium. It follows that, if we denote by ρt

LB(Π) and ρt
KN (Π) the lower

bound on the approximability of problem Π and the performance guarantee of
the best-known approximation algorithm for Π, respectively, when considering
a time constraint t, each algorithm having a time complexity at most t cannot
compute an approximate Nash equilibrium for game G with performance guar-
antee better than ρt

LB(Πbr(G)) and that, given the current state-of-the-art, it
is unlikely to design an algorithm of time complexity at most t computing an
approximate Nash equilibrium for game G with performance guarantee better
than ρt

KN (Πbr(G)).
As an example, consider the family of games FG in which each player wants

to connect a subset of nodes of a directed graph G. Since a fairly easy reduction
from the set cover problem shows that it is hard to approximate the directed
Steiner tree within a factor better than O(log n) [9], we obtain that, unless
NP ⊆ DTIME[nlog log n], it is hard to compute an O(log n)-approximate Nash
equilibrium for each G ∈ FG. Moreover, since the best-known approximation
guarantee for the directed Steiner tree problem is O(log2 n) in quasi-polynomial
time and O(nε), for any given ε > 0, in polynomial time [5], an algorithm
computing an approximate Nash equilibrium for each G ∈ FG achieving the
same asymptotical performance guarantees within the same time constraints
have to be considered fully satisfactory.

Now consider the application of our algorithm to a network congestion games
G. If we want an equilibrium with considerably good performance guarantee, we
can run Algorithm 1 with γ = 1 + ε, for an arbitrarily small ε > 0, to obtain a
(1 + ε + o(1))ρt

KN (Πbr(G))-approximate Nash equilibrium in quasi-polynomial
time (provided that also t is a quasi-polynomial function). For instance, if we
consider a game G ∈ FG, we achieve an O(log2 n)-approximate Nash equilibrium.
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Conversely, if one wants efficiently computable solutions, by setting γ = pε, it
is possible to obtain an O(pε)ρt

KN (Πbr(G))-approximate Nash equilibrium in
polynomial time (provided that also t is a polynomial function), for any constant
ε > 0. Again, for any game G ∈ FG, we achieve an O(pεnε)-approximate Nash
equilibrium. If n and p are polynomially related, by properly setting ε and ε′, our
algorithm provides an O(pεnε′

) = O(nε′′
)-approximate Nash equilibrium for any

ε′′ > 0, meaning that in polynomial time it is possible to match the performance
of the best known approximation algorithm for the directed Steiner tree problem.

With similar arguments, it is possible to show that, if ρt
KN (Πbr(G)) = O(nc)

where c > 0 is a constant and t is a polynomial function, our algorithm com-
putes an O(nc+ε)-approximate Nash equilibrium in polynomial time and, by
the above discussion, this means that we are almost optimal (with respect to
the best-known approximation ratio). For instance, this situation happens when
considering games G such that Πbr(G) coincides with the problem of computing
the minimum directed steiner forest [10], or the maximum clique.

5 Hardness of Computing a Nash Equilibrium in
Multi-Source Shapley Games on Undirected Graphs

The existence of a potential function for congestion games allows us to cast
searching for a Nash equilibrium as a local search problem. The states, that is the
strategy profiles of the players, are the feasible solutions, and the neighborhood of
a state consists of all authorized changes in the strategy of a single player. Then
local optima correspond to states where no player can improve individually her
cost, that is exactly to Nash equilibria. The potential of a state can be evaluated
in polynomial time, and similarly a neighboring state of lower potential can
be exhibited, provided that there exists one. This means that the problem of
computing a Nash equilibrium in a congestion game belongs to the complexity
class PLS (Polynomial Local Search) defined in [11,15].

Syrgkanis [18] proved that computing a Nash equilibrium in multi-source
Shapley games played on directed graphs is a PLS-complete problem. Syrgkanis’s
proof works as follows: starting from an instance G = (V,E,w) of the MAX CUT
problem under the flip neighborhood, he constructs a (non-network) Shapley
game G with n = |V | players and exactly two strategies, namely sA

i and sB
i , for

each player i ∈ [n] such that, given a Nash equilibrium for G, it is possible to
construct in polynomial time a local maximum for the MAX CUT problem defined
by G. Then, starting from G, a multi-source Shapley game Ĝ played by n players
on a directed network is constructed with the property that the set of strategies
that each player i ∈ [n] can eventually adopt in any Nash equilibrium (i.e.,
non-dominated strategies) is restricted to at most two strategies that simulate
strategies sA

i and sB
i in G, so that there is a natural one-to-one correspondence

between Nash equilibria of Ĝ and Nash equilibria of G.
Syrgkanis also shows how to suitably extend Ĝ to a multi-source game G̃

played on an undirected network guaranteeing again a one-to-one correspondence
between Nash equilibria of G̃ and Nash equilibria of Ĝ. Anyway, in order to
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achieve this last step, he needs to impose latency functions of the form ce(x)
x

(where ce(x) is a non-decreasing concave function) on some edges of the graph
defining G̃, so that his reduction does not apply to the Shapley cost sharing
protocol.

We show that the problem of computing a Nash equilibrium in multi-source
Shapley games played on undirected graphs remains PLS-complete by elabo-
rating on Syrgkanis’s proof as follows: starting from G, we directly construct a
multi-source Shapley game G̃ played on an undirected network, where we add a
significant number of dummy players (but still polynomial in the dimensions of
the MAX CUT instance G) allowing us to restrict the choice of each of the non-
dummy player i ∈ [n] at any Nash equilibrium to only at most two strategies,
so as to simulate again strategies sA

i and sB
i in G.

Theorem 2. The problem of computing a Nash equilibrium in the class of multi-
source Shapley games played on undirected networks is PLS-complete.
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Abstract. We investigate the efficiency of some Stackelberg strategies
in congestion games with affine latency functions. A Stackelberg strat-
egy is an algorithm that chooses a subset of players and assigns them
a prescribed strategy with the purpose of mitigating the detrimental
effect that the selfish behavior of the remaining uncoordinated players
may cause to the overall performance of the system. The efficiency of a
Stackelberg strategy is measured in terms of the price of anarchy of the
pure Nash equilibria they induce. Three Stackelberg strategies, namely
Largest Latency First, Cover and Scale, were already considered in the lit-
erature and non-tight upper and lower bounds on their price of anarchy
were given. We reconsider these strategies and provide the exact bound
on the price of anarchy of both Largest Latency First and Cover and a
better upper bound on the price of anarchy of Scale.

1 Introduction

Congestion games are, perhaps, the most famous class of non-cooperative games
due to their capability to model several interesting competitive scenarios (such
as selfish routing, facility location, machine scheduling), while maintaining some
nice properties. In these games, there is a set of players sharing a set of resources,
where each resource has an associated latency (or cost) function which depends
on the number of players using it (the so-called congestion). Each player has an
available set of strategies, where each strategy is a non-empty subset of resources,
and aims at choosing a strategy minimizing her cost which is defined as the sum
of the latencies experienced on all the selected resources.

Congestion games have been introduced by Rosenthal [13]. He proved that
each such a game admits a bounded potential function whose set of local min-
ima coincides with the set of pure Nash equilibria of the game, that is, strategy
profiles in which no player can decrease her cost by unilaterally changing
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her strategic choice. This existence result makes congestion games particularly
appealing especially in all those applications in which pure Nash equilibria are
elected as the ideal solution concept.

In these contexts, the study of the performance of pure Nash equilibria,
usually measured by the social welfare, that is, the sum of the costs experienced
by all players, has affirmed as a fervent research direction. To this aim, the notion
of price of anarchy (Koutsoupias and Papadimitriou [11]) is widely adopted. It
compares the social welfare of the worst pure Nash equilibrium with that of an
optimal solution, called the social optimum, that could be potentially enforced
by a dictatorial authority. Several recent works have given bounds on the price
of anarchy of different variants of congestion games in which the resource latency
functions are polynomially bounded in their congestion [1–6,9,12,15,16].

An interesting intermediate situation, usually referred to as Stackelberg
games, happens when a central authority, called the leader, is granted the power
of dictating the strategies of a subset of players. The leader’s purpose is to deter-
mine a good Stackelberg strategy, which is an algorithm that carefully chooses
the subset of players (called coordinated players) and their assigned strategies,
so as to mitigate as much as possible the effects caused by the selfish behavior
of the uncoordinated players, that is, to lower as much as possible the price of
anarchy of the resulting game.

Fotakis [8] considers the application of three Stackelberg strategies, namely
Largest Latency First, Cover and Scale, to congestion games with affine latency
functions and gives upper and lower bounds on their worst-case price of anarchy.
In this work, we improve these results by deriving the exact value of the worst-
case price of anarchy of Largest Latency First and Cover and a better upper bound
on the worst-case price of anarchy of Scale.

Related Work. Efficient Stackelberg strategies have been intensively studied
within the context of non-atomic congestion games, that is, the case in which
there are infinitely many players so that each player contributes for a negligible
fraction to the resources congestion. The works of Roughgarden [14], Swamy [17],
Correa and Stier-Moses [7], and Karakostas and Kolliopoulos [10] investigate the
price of anarchy achieved in these games by the Stackelberg strategies Largest
Latency First and Scale as a function of the fraction of the coordinated players,
denoted as α. These two strategies, introduced by Roughgarden in [14], are
defined as follows: Largest Latency First assigns the coordinated players to the
largest cost strategies in the social optimum, while Scale simply employs the
social optimum scaled by α.

The case of our interest, that is (atomic) congestion games with affine latency
functions, has been considered before in the literature by Fotakis [8]. For the
price of anarchy of the Stackelberg strategy Largest Latency First, he gives an
upper bound of min{(20 − 11α)/8, (3 − 2α +

√
5 − 4α)/2} and a lower bound of

5(2−α)/(4+α) with the latter holding even for the restricted case of symmetric
strategies, i.e., the case in which all players share the same strategic space. He
then considers a randomized variant of Scale (since the deterministic one may
be infeasible in the realm of atomic games) and shows that the expected price
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of anarchy is upper bounded by max{(5 − 3α)/2, (5 − 4α)/(3 − 2α)} and lower
bounded by 2/(1 + α) with the latter holding even for the restricted case of
symmetric strategies. He also introduces the Stackelberg strategy λ-Cover which
assigns to every resource either at least λ or as many coordinated players as the
resource has in the social optimum. For the price of anarchy of this strategy,
he proves an upper bound of (4λ − 1)/(3λ − 1) for affine latency functions and
an upper bound of 1 + 1/(2λ) for linear latency functions. Finally, he also gives
upper bounds for strategies obtained by combining λ-Cover with either Largest
Latency First or Scale and upper bounds for games played on parallel links.

Our Contribution. We reconsider the three Stackelberg strategies studied by
Fotakis in [8] and give either exact or improved bounds on their price of anarchy.
In particular, we achieve the following results: for Largest Latency First, we show
that the price of anarchy is exactly (20 − 11α)/8 for α ∈ [0, 4/7] and (4 − 3α +√

4α − 3α2)/2 for α ∈ [4/7, 1]; for λ-Cover, we show that the price of anarchy is
exactly 4λ−1

3λ−1 for affine latency functions and exactly 1 + (4λ + 1)/(4λ(2λ + 1))
for linear ones; finally, for Scale, we give an improved upper bound of 1 + ((1 −
α)(2h + 1))/((1 − α)h2 + αh + 1), where h is the unique integer such that α ∈
[(2h2 − 3)/(2(h2 − 1)), (2h2 + 4h − 1)/(2h(h + 2))].

Paper Organization. Next section contains all necessary definitions and nota-
tion, as well as some preliminary result aimed at simplifying the analysis carried
out in Sect. 3: the technical part of the paper in which we prove our bounds of
the price of anarchy achieved by the three Stackelberg strategies considered in
this work. Due to space limitations, some proofs have been omitted.

2 Model, Definitions, Notation and Preliminaries

For an integer n ≥ 1, set [n] := {1, . . . , n}. We use boldface letters to denote
vectors and, given a vector x, we denote with xi its ith component and with
x−i � y the vector obtained from x by replacing its ith component with y.

A congestion game is a tuple CG = (N,R, (Σi)i∈N , (�j)j∈R), where N is a
set of n ≥ 2 players, R is a set of resources, Σi ⊆ 2R \ {∅} is the set of strategies
available to each player i ∈ N and �j : N → R

+ is the latency (or cost) function
associated with each resource j ∈ R. The set Σ := ×i∈NΣi denotes the set of
all the strategy profiles which can be realized in CG, so that a strategy profile σ
models the state of the game in which each player i ∈ N is adopting strategy
σi. Given a strategy profile σ, the congestion of resource j ∈ R, defined as
nj(σ) := |{i ∈ N : j ∈ σi}|, denotes the number of players using resource j in
σ. The cost of player i in σ is defined as ci(σ) =

∑
j∈σi

�j(nj(σ)).
A strategy profile σ is a pure Nash equilibrium if, for each i ∈ N and strategy

s ∈ Σi, ci(σ) ≤ ci(σ−i � s), that is, no player can lower her cost by unilaterally
switching to a different strategy. Each congestion game admits a pure Nash
equilibrium by Rosenthal’s Theorem [13].

The social welfare of a strategy profile is measured by the function SUM :
Σ → R

+ such that SUM(σ) =
∑

i∈N ci(σ). Let o(CG) be the social optimum of
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CG, that is, a strategy profile of CG minimizing SUM and denote with NE(CG)
the set of pure Nash equilibria of CG. The price of anarchy of game CG is defined
as the worst-case ratio between the social welfare of a pure Nash equilibrium and
that of the social optimum. Formally, PoA(CG) = maxσ∈NE(CG)

SUM(σ)
SUM(o(CG)) .

Given a congestion game CG and a Stackelberg strategy A, let PA be the set
of coordinated players chosen by A and si be the prescribed strategy assigned
by A to each player i ∈ PA. The congestion game CGA, obtained from CG by
coordinating the choices of the players in PA, is the same as CG with the only
difference that, for each player i ∈ PA, CGA has Σi = {si}, that is, each coor-
dinated player becomes a selfish player who has no alternatives except for her
prescribed strategy. A Stackelberg strategy is optimal-restricted if the coordi-
nated players are assigned the strategy they adopt in a social optimum o, so
that si = oi for each coordinated player i. For each optimal-restricted Stackel-
berg strategy A, since o(CGA) = o(CG), the price of anarchy of CGA becomes
PoA(CGA) = maxσ∈NE(CGA)

SUM(σ)
SUM(o(CG)) .

In this work, we analyze three optimal-restricted Stackelberg strategies which
have been previously considered in the literature, see [8]. The first two ones are
deterministic, while the latter is randomized, hence, its price of anarchy will be
evaluated in expectation. Moreover, in the first and third strategy the number
of coordinated players is assumed to be equal to αn for some α ∈ [0, 1] with
αn ∈ N, i.e., the leader controls a fraction α of the players in the game. For a
fixed congestion game CG and social optimum o := o(CG), they are defined as
follows:

• LLF(α): for each α ∈ [0, 1] such that αn ∈ N, the set of coordinated players is
chosen equal to the set of the αn players with the highest cost in o, breaking
ties arbitrarily. LLF stands for Largest Latency First.

• λ-Cover: for each λ ∈ N \ {0}, the set of coordinated players P is chosen so as
to guarantee that |{i ∈ P : j ∈ oi}| ≥ min{λ, nj(o)} for each j ∈ R. Note that
one such a set P might not exist in CG, so that this strategy is not always
applicable.

• Scale(α): for each α ∈ [0, 1] such that αn ∈ N, the set of coordinated players
is randomly chosen with uniform probability among the set of all subsets of
N having cardinality αn.

A congestion game is affine if the latency function of each resource j ∈ R can
be expressed as �j(x) = ajx+ bj , with aj , bj ≥ 0; moreover, it is linear whenever
bj = 0 for each j ∈ R. For a given optimal-restricted Stackelberg strategy A,
our aim is to focus on the characterization of the price of anarchy of game CGA,
when CG is an affine congestion game.

Let us say that two games CG and CG′ defined on the same set of players [n]
are equivalent if, for each player i ∈ [n], there exists a bijection πi between the
set of strategies of player i in CG and the set of strategies of the same player
in CG′ such that, for each strategy profile σ of CG, we have ci(σ) = ci(π(σ)),
where π(σ) = (π1(σ1), . . . , πn(σn)). The following lemma, proved in [4], will be
of fundamental importance in our analysis.
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Lemma 1 ([4]). For each affine congestion game CG, there exists an equivalent
linear congestion game CG′.

Unfortunately, the transformation from affine to linear congestion games used
in the proof of the above lemma invalidates the applicability of λ-Cover, so that,
for this particular Stackelberg strategy, we will have to consider the cases of
affine and linear latency functions separately.

Let G be any subclass of the class of congestion games. We define the price
of anarchy of Stackelberg strategy A in the class of games G as PoAG(A) =
supCG∈G PoA(CGA). Now let ACG and LCG be the class of affine congestion
games and that of linear congestion games, respectively. By Lemma 1, it follows
that for each affine congestion game CG with PoA(CGA) = x there exists a linear
congestion game CG′ with PoA(CG′

A) = x. Hence, it is possible to conclude that,
for any Stackelberg strategy A ∈ {LLF(α),Scale(α)},

PoAACG(A) = PoALCG(A). (1)

As a consequence of (1), we will be allowed to restrict our attention only to the
class of linear congestion games when bounding the price of anarchy of these two
Stackelberg strategies in the class of affine congestion games. Moreover, we will
use the simplified notation PoA(A) to denote the value PoAACG(A) = PoALCG(A)
when considering A ∈ LLF(α),Scale(α).

We conclude this section by observing that, given a linear congestion game
CG and a strategy profile σ ∈ Σ, the social value of σ can be expressed as
follows: SUM(σ) =

∑
i∈N ci(σ) =

∑
i∈N

∑
j∈σi

ajnj(σ) =
∑

j∈R ajnj(σ)2.

3 Bounding the Price of Anarchy

In this section, we provide the exact values of both PoA(LLF(α)) and
PoA(λ-Cover) and give a better upper bound for PoA(Scale(α)).

3.1 Largest Latency First

Fotakis shows in [8] that PoA(LLF(α)) ≤ min
{

20−11α
8 , 3−2α+

√
5−4α

2

}
and

PoA(LLF(α)) ≥ 5(2−α)
4+α , where the lower bound holds even for the restricted case

of symmetric players. We close this gap for non-symmetric players by proving
that PoA(LLF(α)) = 20−11α

8 for α ∈ [0, 4/7] and PoA(LLF(α)) = 4−3α+
√
4α−3α2

2
for α ∈ [4/7, 1].

For the characterization of the upper bound, we use the primal-dual method
introduced by Bilò in [4]. To this aim, fix a linear congestion game CG, a social
optimum o := o(CG) and a pure Nash equilibrium σ induced by LLF(α). Let P be
the set of αn coordinated players chosen by LLF(α). For the sake of conciseness,
for each j ∈ R, we set xj := nj(σ), oj := nj(o) and sj := |{i ∈ P : j ∈ oi}|.
Clearly, we have sj ≤ min{xj , oj} for each j ∈ R.
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We obtain the following primal linear program PP(σ,o) defined over the
latency functions of the resources in R:

max
∑

j∈R

ajx
2
j

subject to∑

j∈σi

ajxj −
∑

j∈oi

aj(xj + 1) ≤ 0 ∀i ∈ N \ P,

∑

j∈oi

ajoj −
∑

j∈ok

ajoj ≤ 0 ∀i ∈ N \ P, k ∈ P,

∑

j∈R

ajo
2
j = 1

aj ≥ 0 ∀j ∈ R,

where the first family of constraints is satisfied since each uncoordinated player
cannot lower her cost by switching to the strategy she adopts in o and the
second one is satisfied because LLF(α) selects the set of |P | = αn players with
the highest cost in o.

The dual program DP(σ,o), obtained by associating the variables (yi)i∈N\P

with the first family of constraints, the variables (zik)i∈N\P,k∈P with the second
family of constraints and the variable γ with the last constraint, is the following:

min γ
subject to∑

i∈N\P :j∈σi

yixj −
∑

i∈N\P :j∈oi

yi(xj + 1)

+
∑

i∈N\P,k∈P :j∈oi

zikoj −
∑

i∈N\P,k∈P :j∈ok

zikoj + γo2j ≥ x2
j ∀j ∈ R,

yi ≥ 0 ∀i ∈ N \ P,
zik ≥ 0 ∀i ∈ N \ P, k ∈ P

Any feasible solution for DP(σ,o) which is independent of the choices of σ and o,
i.e., satisfying the dual constraint for each possible pair of integers (xj , oj) ∈ {N∪
{0}}2, will provide an upper bound on PoA(CGLLF(α)) which, by the generality
of CG, gives an upper bound on PoA(LLF(α)). We get the following result.

Theorem 1. For each α ∈ [0, 1],

PoA(LLF(α)) ≤
{ 20−11α

8 for α ∈ [0, 4/7],
4−3α+

√
4α−3α2

2 for α ∈ [4/7, 1].

Proof. The 20−11α
8 upper bound was already established by Fotakis in [8]. For

the second bound, set θ =
√

4α − 3α2, yi = 1 + α
θ for each i ∈ N \ P , zik =

1
2n

(
3 + 3α−2

θ

)
for each i ∈ N \P and k ∈ P , and γ = 4−3α+θ

2 . With these values,
by using |{i ∈ N \ P : j ∈ σi}| = xj − sj , |{i ∈ N \ P : j ∈ oi}| = oj − sj , |{i ∈
N\P, k ∈ P : j ∈ oi}| = αn(oj−sj) and |{i ∈ N\P, k ∈ P : j ∈ ok}| = (1−α)nsj ,
the generical dual constraint becomes f(xj , oj , sj) := 2αx2

j − 2(α + θ)(xjoj +
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oj − sj)− (3θ +3α−2)ojsj +2(α+2θ)o2j ≥ 0. We show that f(xj , oj , sj) ≥ 0 for
any triple of non-negative integers (xj , oj , sj) such that sj ≤ min{xj , oj}. Let us
first compute the derivative δf

δxj
(xj , oj , sj) = 4αxj − 2(α + θ)oj . This is a linear

function on xj which is negative for xj = 0, hence f(xj , oj , sj) is minimized
for xj = (α+θ)oj

2α . By substituting, we get that f(xj , oj , sj) ≥ 0 if g(oj , sj) :=

f
(

(α+θ)oj

2α , oj , sj

)
= 2(3α+3θ−2)o2j −2((3α+3θ−2)sj+2(α+θ))oj+4(α+θ)sj ≥

0. Again, let us compute the derivative δg
δsj

(oj , sj) = 4(α+θ)−2(3α+3θ−2)oj .
Since α+θ−1 ≥ 0 for each α ∈ [4/7, 1], this function is non-increasing for oj ≥ 2,
so that g (oj , sj) is minimized for sj = oj when oj ≥ 2. By substituting, we get
g (oj , oj) ≥ 0 as desired. For the leftover cases of oj ≤ 1, we have f(xj , 0, 0) =
2αx2

j ≥ 0 and f(xj , 1, sj) = 2αx2
j − 2(α + θ)xj + (2 − α − θ)sj + 2θ. Since

2 − α − θ ≤ 0 for each α ∈ [4/7, 1], we have that this last function is minimized
for sj = 0. Hence, we need to show that f(xj , 1, 0) = 2αx2

j −2(α+θ)xj +2θ ≥ 0.
By solving for xj , we get f(xj , 1, 0) ≥ 0 when xj ≤ 1 or xj ≥ θ/α. Since,
θ/α ≤ 2 for each α ∈ [4/7, 1], f(xj , 1, 0) ≥ 0 for each non-negative integer xj

and the proof is complete. �
We now prove matching lower bounds.

Theorem 2. For each α ∈ [0, 4/7], PoA(LLF(α)) ≥ 20−11α
8 , while for each α ∈

[4/7, 1], PoA(LLF(α)) ≥ 4−3α+
√
4α−3α2

2 .

Proof. For a fixed α ∈ [0, 4/7], let n be an integer such that αn ∈ N, αn ≥ 2
and (1 − α)n ≥ 3. Consider the linear congestion game CG defined as follows.
The set of players is N = N1 ∪ N2, where |N1| = (1 − α)n and |N2| = αn.
The set of resources is R = U ∪ V ∪ W , where U = {uj : j ∈ [(1 − α)n]},
V = {vj : j ∈ [(1 − α)n]} and W = {wj,k : j ∈ [(1 − α)n], k ∈ [αn]}. Each
resource in U has latency function �U (x) = (4−α)n

2 x, each resource in V has
latency function �V (x) = (4−7α)n

2 x and each resource in W has latency function
�W (x) = x. Note that α ∈ [0, 4/7] guarantees (4−7α)n

2 ≥ 0. Each player i ∈ N1

has two available strategies: the first strategy {ui, vi} and the second strategy
{ui+1, vi+1, vi+2} ∪ ⋃

k∈[αn]{wi,k}, where the sums over the indices have to be
interpreted circularly so that, for instance, u(1−α)n+1 = u1. Each player i ∈
N2 has only one available strategy given by

⋃
k∈[(1−α)n]{wk,i, wk+1,i}, where

again the sums over the indices have to be interpreted circularly so that, for
instance, w(1−α)n+1,i = w1,i. Note that, by αn ≥ 2, the number of resources in
W belonging to the strategy of each player in N2 is exactly 2(1−α)n; moreover,
by (1 − α)n ≥ 3, the first and second strategy of each player in N1 are disjoint.

First of all, it is not difficult to see that the strategy profile o in which each
player in N1 adopts her first strategy is a social optimum for CG. Now note
that, for each player i ∈ N1, ci(o) = (4−α)n

2 + (4−7α)n
2 = 4(1 − α)n, whereas, for

each player i ∈ N2, ci(o) = 4(1 − α)n since each player in N2 uses 2(1 − α)n
resources in W each having congestion equal to 2. Hence, it follows that LLF(α)
may choose N2 as the set of coordinated players. We now show that, under
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this hypothesis, the strategy profile σ in which each player i ∈ N1 adopts her
second strategy is a pure Nash equilibrium for CGLLF(α). For each player i ∈ N1,
ci(σ) = (4−α)n

2 + 4 (4−7α)n
2 + 3αn = (20−23α)n

2 since each player i ∈ N1 uses 1
resource in U having congestion 1, 2 resources in V both having congestion 2
and αn resources in W each having congestion 3. Let σ′ be the strategy profile
obtained from σ when player i deviates to her second strategy. In this case,
ci(σ′) = 2 (4−α)n

2 + 3 (4−7α)n
2 = (20−23α)n

2 since player i uses 1 resource in U
having congestion 2 and 1 resource in V having congestion 3. Hence, it follows
that σ is a pure Nash equilibrium for CGLLF(α).

We are now left to compute the ratio SUM(σ)
SUM(o) . To this aim, note that nj(σ) =

nj(o) = 1 for each resource j ∈ U , nj(σ) = 2 and nj(o) = 1 for each resource
j ∈ V , while, for each resource j ∈ W , nj(σ) = 3 and nj(o) = 2. We get

SUM(σ)
SUM(o)

=
(1 − α)n

(
(4−α)n

2 + 4 (4−7α)n
2

)
+ 9α(1 − α)n2

(1 − α)n
(

(4−α)n
2 + (4−7α)n

2

)
+ 4α(1 − α)n2

=
20 − 11α

8

and the claim follows because PoA(LLF(α)) ≥ PoA(CGLLF(α)).
For a fixed α ∈ [4/7, 1], set θ =

√
4α − 3α2 and let n be an integer such

that αn
2 ∈ N, (θ−α)n

4 ∈ N and (1 − α)n ≥ 2. Note that, for each α ∈ [4/7, 1],
θ − α ≥ 0 so that n is well defined. Consider the linear congestion game CG
defined as follows. The set of players is N = N1 ∪N2, where |N1| = (1−α)n and
|N2| = αn. The set of resources is R = U∪W , where U = {uj : j ∈ [(1−α)n]} and
W = {wj,k : j ∈ [(1 − α)n], k ∈ [αn]}. Each resource in U has latency function
�U (x) = α2(1−α)n3

4 x and each resource in W has latency function �W (x) = x.
Each player i ∈ N1 has two available strategies: the first strategy {ui} and
the second strategy {ui+1} ∪ ⋃

k∈[αn],j∈[ (θ−α)n
4 ]{wi+j−1,k}, where again the sums

over the indices have to be interpreted circularly. Note that, for each α ∈ [4/7, 1],
(θ−α)n

4 ≤ (1−α)n so that the number of resources in W belonging to the second

strategy of each player in N1 is exactly α(θ−α)n2

4 ; moreover, by (1 − α)n ≥ 2,
the first and second strategy of each player are disjoint. Each player i ∈ N2 has
only one available strategy given by

⋃
k∈[(1−α)n],j∈[αn

2 ]{wk,i+j−1}, where again
the sums over the indices have to be interpreted circularly.

First of all, it is not difficult to see that the strategy profile o in which
each player in N1 adopts her first strategy is a social optimum for CG. Now
note that, for each player i ∈ N1, ci(o) = α2(1−α)n3

4 , whereas, for each player

i ∈ N2, ci(o) = α2(1−α)n3

4 since each player in N2 uses αn
2 (1 − α)n resources

in W each having congestion equal to αn
2 . Hence, it follows that LLF(α) may

choose N2 as the set of coordinated players. We now show that, under this
hypothesis, the strategy profile σ in which each player i ∈ N1 adopts her second
strategy is a pure Nash equilibrium for CGLLF(α). For each player i ∈ N1, ci(σ) =
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Fig. 1. Comparison between the exact value of PoA(LLF(α)) and the upper and lower
bounds previously known in the literature for the case of α ∈ [4/7, 1].

α2(1−α)n3

4 + α(θ−α)n2

4
(θ+α)n

4 = α2(1−α)n3

2 since each player i ∈ N1 uses 1 resource

in U having congestion 1 and α(θ−α)n2

4 resources in W each having congestion
(θ+α)n

4 . Let σ′ be the strategy profile obtained from σ when player i deviates to

her second strategy. In this case, ci(σ′) = 2α2(1−α)n3

4 = α2(1−α)n3

2 , since player
i uses 2 resources in U both having congestion 2. Hence, it follows that σ is a
pure Nash equilibrium for CGLLF(α).

We are now left to compute the ratio SUM(σ)
SUM(o) . To this aim, note that nj(σ) =

nj(o) = 1 for each resource j ∈ U , while, for each resource j ∈ W , nj(σ) =
(θ+α)n

4 and nj(o) = αn
2 . We get

SUM(σ)
SUM(o)

=
(1 − α)nα2(1−α)n3

4 + α(1 − α)n2 (α+θ)2n2

16 )

(1 − α)nα2(1−α)n3

4 + α(1 − α)n2 α2n2

4

=
4 − 3α +

√
4α − 3α2

2

and the claim follows because PoA(LLF(α)) ≥ PoA(CGLLF(α)). �
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Our findings, compared with the previous results given by Fotakis in [8],
can be summarized as follows. For α ∈ [0, 4/7], we have shown that the upper
bound given by Fotakis is indeed tight by providing a matching lower bound
(Theorem 2). For α ∈ [4/7, 1], we obtain the exact bound (Theorems 1 and 2)
by simultaneously improving either the upper and the lower bounds previously
given by Fotakis. For a quantitative comparison of the values in this case, see
Fig. 1.

3.2 λ-Cover

Fotakis shows in [8] that PoAACG(λ-Cover) ≤ 4λ−1
3λ−1 and that PoALCG(λ-Cover) ≤

1 + 1
2λ , while no lower bounds are provided. We exactly characterize the perfor-

mance of λ-Cover by showing that, for each λ ∈ N\{0}, PoAACG(λ-Cover) = 4λ−1
3λ−1

and PoALCG(λ-Cover) = 1 + 4λ+1
4λ(2λ+1) .

In order to show the upper bound for linear latency functions, we make use
again of the primal-dual method. To this aim, fix a linear congestion game CG,
a social optimum o and a pure Nash equilibrium σ induced by λ-Cover applied
on a particular choice of the set of coordinated players P . Again, for each j ∈ R,
we set xj := nj(σ), oj := nj(o) and sj := |{i ∈ P : j ∈ oi}|. In this case, by the
definition of λ-Cover, we have sj ≥ min{λ, oj} for each j ∈ R.

We obtain the following primal linear program PP(σ,o):

max
∑

j∈R

ajx
2
j

subject to∑

j∈σi

ajxj −
∑

j∈oi

aj(xj + 1) ≤ 0 ∀i ∈ N \ P,

∑

j∈R

ajo
2
j = 1

aj ≥ 0 ∀j ∈ R

Observe that the proposed program is a subprogram of the one defined for LLF
and does not depend on λ. This must not be surprising, since the parameter λ
does not affect the players’ costs directly, but only gives us an additional property
on the resources congestion which can be suitably exploited in the analysis of
the dual constraints. The dual program DP(σ,o), obtained by associating the
variables (yi)i∈N\P with the first family of constraints and the variable γ with
the last constraint, is the following:

min γ
subject to∑

i∈N\P :j∈σi

yixj −
∑

i∈N\P :j∈oi

yi(xj + 1) + γo2j ≥ x2
j ∀j ∈ R,

yi ≥ 0 ∀i ∈ N \ P

We get the following result.



142 V. Bilò and C. Vinci

Theorem 3. For each λ ∈ N \ {0}, PoALCG(λ-Cover) ≤ 1 + 4λ+1
4λ(2λ+1) .

Proof. For each λ ∈ N\{0}, set yi = 4λ+1
2λ+1 for each i ∈ N\P , and γ = 1+ 4λ+1

4λ(2λ+1) .
With these values, the generical dual constraint becomes

4λ + 1
2λ + 1

⎛

⎝
∑

i∈N\P :j∈σi

xj −
∑

i∈N\P :j∈oi

xj + 1

⎞

⎠ +
(

1 +
4λ + 1

4λ(2λ + 1)

)

o2j ≥ x2
j ,

which is non-negative whenever f(xj , oj , sj) := 2λx2
j − (4λ + 1)(xjoj + oj −

sj) + 8λ2+8λ+1
4λ o2j ≥ 0. We show that f(xj , oj , sj) ≥ 0 for any triple of non-

negative integers (xj , oj , sj) such that sj ≥ min{λ, oj}. First, observe that
f(xj , oj , sj) is an increasing function in sj so that it is minimized for either
sj = λ or sj = oj . For sj = oj , we get that f(xj , oj , sj) ≥ 0 if g(xj , oj) :=
f(xj , oj , oj) = 8λ2x2

j − 4(4λ + 1)(xjojλ) + (8λ2 + 8λ + 1)o2j ≥ 0. By solving
the associated equality for xj , we obtain that the discriminant is negative thus
showing g(xj , oj) > 0 in any case. For sj = λ, we get that f(xj , oj , sj) ≥ 0 if
g(xj , oj) := f(xj , oj , λ) = 2λx2

j − (4λ + 1)(xjoj + oj − λ) + 8λ2+8λ+1
4λ o2j ≥ 0. The

derivative δg
δxj

(xj , oj) = 4λxj − (4λ + 1)oj is a linear function on xj which is

negative for xj = 0, hence g(xj , oj) is minimized for xj = (4λ+1)oj

4λ . Similarly,
δg
δoj

(xj , oj) = 8λ2+8λ+1
2λ oj −(4λ+1)(xj +1) is a linear function on oj which is neg-

ative for oj = 0, hence g(xj , oj) is minimized for oj = 2λ(4λ+1)(xj+1)
8λ2+8λ+1 . It follows

that g(xj , oj) has a unique stationary point (x∗, o∗) =
(

(4λ+1)2

8λ+1 ; 4λ(4λ+1)
8λ+1

)
which

is a global minimum. Anyway, the values of x∗ and o∗ are not integral, as it can
be easily verified that x∗, o∗ ∈ (2λ, 2λ + 1). Since g(xj , oj) is continuous in both
xj and oj , it follows that the point in N

2 minimizing g(xj , oj) belongs to the
set {(2λ, 2λ), (2λ, 2λ + 1), (2λ + 1, 2λ), (2λ + 1, 2λ + 1)}. We get g(2λ, 2λ) = 0,
g(2λ, 2λ + 1) = 16λ2+8λ+1

4λ , g(2λ + 1, 2λ) = 0 and g(2λ + 1, 2λ + 1) = 4λ+1
4λ as

needed. �
We now show a matching lower bound.

Theorem 4. For each λ ∈ N \ {0}, PoALCG(λ-Cover) ≥ 1 + 4λ+1
4λ(2λ+1) .

In this case, we obtain the exact value of PoALCG(λ-Cover) by improving the
upper bound previously given by Fotakis in [8] and providing matching lower
bounding instances whereas no trivial lower bounds were previously known. For
a quantitative comparison of the values, see Fig. 2.

For affine latency functions, we achieve the exact characterization of the
price of anarchy by showing that the upper bound given by Fotakis in [8] is
asymptotically tight.

Theorem 5. For each λ ∈ N \ {0} and ε > 0, there exists an affine congestion
game CG such that PoA(CGλ-Cover) ≥ 4λ−1

3λ−1 − ε.
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Fig. 2. Comparison between the exact value of PoALCG(λ-Cover) and the upper bound
previously known in the literature.

3.3 Scale

Fotakis shows in [8] that PoA(Scale(α)) ≤ max
{

5−3α
2 , 5−4α

3−2α

}
and

PoA(Scale(α)) ≥ 2
1+α , where the lower bound holds for any randomized optimal-

restricted Stackelberg strategy even when applied to symmetric players.
For each integer h ≥ 1, define rL(h) = 2h2−3

2(h2−1) and rU (h) = 2h2+4h−1
2h(h+2) , with

rL(0) := 0. Note that, since rL(0) = 0, rU (∞) = 1, and rL(h + 1) = rU (h)
for each h ≥ 1, it follows that, for each α ∈ [0, 1], there exists a unique integer
h := h(α) ≥ 1 such that α ∈ [rL(h), rU (h)]. We show that, for each α ∈ [0, 1],
PoA(Scale(α)) ≤ 1+ (1−α)(2h+1)

(1−α)h2+αh+1 . For h = 1, which covers the case α ∈ [0, 5/6],
and for h = ∞, which covers the case α = 1, our upper bounds coincide with
the ones given by Fotakis, while, in all the other cases, they are better.

Also in this case we make use of the primal-dual method. To this aim, fix a
linear congestion game CG and a social optimum o. For each of the β :=

(
n

αn

)

possible choices of the set of coordinated players P , let σ(P ) be a pure Nash
equilibrium for the induced game. For each j ∈ R, we set xj(P ) := nj(σ(P )),
oj := nj(o) and sj(P ) := |{i ∈ P : j ∈ oi}|, so that sj(P ) ≤ min{xj(P ), oj} for
each j ∈ R and for each P ∈ P, where P denotes the set of all the β subsets of
N having cardinality αn.
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We obtain the following primal linear program PP ((σ(P ))P∈P ,o):

max β−1
∑

P∈P

∑

j∈R

ajxj(P )2

subject to∑

j∈σi(P )

ajxj(P ) −
∑

j∈oi

aj(xj(P ) + 1) ≤ 0 ∀P ∈ P, i ∈ N \ P,

∑

j∈R

ajo
2
j = 1

aj ≥ 0 ∀j ∈ R

The dual program DP ((σ(P ))P∈P ,o), obtained by associating the variables
(yi,P )P∈P,i∈N\P with the first family of constraints and the variable γ with
the last constraint, is the following:

min γ
subject to

∑

P∈P

⎛

⎝
∑

i∈N\P :j∈σi(P )

yi,P xj(P ) −
∑

i∈N\P :j∈oi

yi,P (xj(P ) + 1)

⎞

⎠

+γo2j ≥ β−1
∑

P∈P
xj(P )2 ∀j ∈ R,

yi,P ≥ 0 ∀P ∈ P, i ∈ N \ P

We get the following result.

Theorem 6. For each α ∈ [0, 1], PoA(Scale(α)) ≤ 1 + (1−α)(2h+1)
(1−α)h2+αh+1 .

We obtain better upper bounds with respect to those provided by Fotakis for
the case of α ∈ (5/6, 1); for a quantitative comparison of the values, see Fig. 3.
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Fig. 3. Comparison between our upper bounds on PoA(Scale(α)) and the upper and
lower bounds previously known in the literature for the case of α ∈ [5/6, 1].
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Abstract. We study mechanisms that select members of a set of agents
based on nominations by other members and that are impartial in the
sense that agents cannot influence their own chance of selection. Prior
work has shown that deterministic mechanisms for selecting any fixed
number of agents are severely limited, whereas randomization allows for
the selection of a single agent that in expectation receives at least 1/2 of
the maximum number of nominations. The bound of 1/2 is in fact best
possible subject to impartiality. We prove here that the same bound can
also be achieved deterministically by sometimes but not always selecting
a second agent. We then show a separation between randomized mech-
anisms that make exactly two or up to two choices, and give upper and
lower bounds on the performance of mechanisms allowed more than two
choices.

1 Introduction

We consider the setting of impartial selection first studied by Alon et al. [1] and
by Holzman and Moulin [6]. The goal in this setting is to select members of a
set of agents based on nominations cast by other members of the set, under the
assumption that agents will reveal their true opinion about other agents as long
as they cannot influence their own chance of selection.

Formally, the impartial selection problem can be modeled by a directed graph
with n vertices, one for each agent, in which edges correspond to nominations.
A selection mechanism then chooses a set of vertices for any given graph, and
it is impartial if the chances of a particular vertex to be chosen do not depend
on its outgoing edges. As impartiality may prevent us from simply selecting the
vertices with maximum indegree, corresponding to the most highly nominated
agents, it is natural to instead approximate this objective. For an integer k, a
selection mechanism is called a k-selection mechanism, if it selects at most k
vertices of any input graph. A k-selection mechanism is called α-optimal, for
α ≤ 1, if for any input graph the overall indegree of the selected vertices is at
least α times the sum of indegree of the k vertices with highest indegrees.
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E. Markakis and G. Schäfer (Eds.): WINE 2015, LNCS 9470, pp. 146–158, 2015.
DOI: 10.1007/978-3-662-48995-6 11



Impartial Selection and the Power of up to Two Choices 147

In prior work, a striking separation was shown between mechanisms that do
not use randomness and those that do. On the one hand, no deterministic exact
α-optimal mechanism exists for selecting any fixed number of agents and any
α > 0 [1]. On the other, a mechanism that considers agents along a random
permutation and selects a single agent with a maximum number of nominations
from its left achieves a bound of α = 1/2 [5]. This bound is in fact best possible
subject to impartiality [1].

Our Contribution. We show that randomness can in fact be replaced by the abil-
ity to sometimes but not always select a second agent: using a fixed permutation
instead of a random one but selecting an agent for each direction of that permu-
tation is also 1/2-optimal. The factor of 1/2 is again best possible. A minimal
amount of flexibility in the exact number of selected agents is beneficial also in
the realm of randomized mechanisms: given a set of three agents, for example,
a 3/4-optimal mechanism exists selecting two agents or fewer, whereas the best
mechanism selecting exactly two agents is only 2/3-optimal. For an arbitrary
number of agents, we construct a randomized exact 7/12-optimal 2-selection
mechanism and a randomized (non-exact) 2/3-optimal 2-selection mechanism.
Finally, we provide upper and lower bounds on the performance of mechanisms
allowed to make more than two choices. A summary of our current state of
knowledge is shown in Table 1.

Related Work. The theory of impartial decision making was first considered by
de Clippel et al. [4], for the case of a divisible resource to be shared among a set
of agents. The difference between divisible and indivisible resources disappears
for randomized mechanisms, but the mechanisms of de Clippel et al. allow for
fractional nominations and do not have any obvious consequences for our setting.
Impartial selection is a rather fundamental problem in social choice theory, with
applications ranging from the selection of committees to scientific peer review.
The interested reader is referred to the articles of Holzman and Moulin [6] and

Table 1. Bounds on α for α-optimal impartial selection of at most or exactly k agents.
For deterministic exact mechanisms (not shown in the table), there is not α-optimal
mechanism for any α > 0.

k Deterministic Randomized exact Randomized
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2

2 1
2
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Fischer and Klimm [5] for details. Tamura and Ohseto [9] were the first to
consider selection mechanisms selecting more than one agent, and showed that
these can circumvent some of the impossibility results of Holzman and Moulin.
Recently Mackenzie [7] provided a characterization of symmetric randomized
selection mechanisms for the special case that each agent nominates exactly one
other agent. Inspiration for our title, and indeed for relaxing the requirement
to always select the same number of agents, comes from the power of multiple
choices in load balancing, where even two choices can lead to dramatically lower
average load (e.g., [8]).

Open Problems. With the exception of mechanisms that are asymptotically opti-
mal, when many agents are selected [1] or agents receive many nominations [3],
only very little was previously known about the impartial selection of more than
one agent. Our understanding of 2-selection is now much better, with some room
for improvement in the case of randomized mechanisms. About k-selection for
k > 2, in particular about deterministic mechanisms for this task, we still know
relatively little. This lack of understanding is witnessed by the fact that the
optimal deterministic mechanism selecting up to two agents, one for each direc-
tion of a permutation, does not generalize in any obvious way to the selection of
more than two agents. Meanwhile, the existence of a near-optimal mechanism in
the limit of many selected agents suggests that the upper rather than the lower
bounds may be correct.

2 Preliminaries

For n ∈ N, let

Gn =
{

(N,E) : N = {1, . . . , n}, E ⊆ (N × N) \
⋃

i∈N
({i} × {i})

}

be the set of directed graphs with n vertices and no loops. Let G =
⋃

n∈N
Gn.

For G = (N,E) ∈ G and S,X ⊆ N let

δ−
S (X,G) = |{(j, i) ∈ E : G = (N,E), j ∈ S, i ∈ X}|

denote the sum of indegrees of vertices in X from vertices in S. We use δ−(X,G)
as a shorthand for δ−

N (X,G) and denote by Δk(G) = maxX⊆N,|X|=k δ−(X,G).
When X = {i} for a single vertex i, we write δ−

S (i, G) instead of δ−
S ({i}, G).

Most of the time, the graph G will be clear from context. We then write δ−
S (X)

instead of δ−
S (X,G), δ−(X) instead of δ−(X,G), and Δk instead of Δk(G).

For n, k ∈ N , let Xn = {X : X ⊆ {1, . . . , n}} be the set of subsets of the
first n natural numbers and let Xn,k = {X ∈ Xn : |X| = k} be the subset of
these sets with cardinality k. A k-selection mechanism for G is then given by a
family of functions f : Gn → [0, 1]

⋃k
�=0 Xn,� that maps each graph to a probability

distribution on subsets of at most k of its vertices. In a slight abuse of notation,
we use f to refer to both the mechanism and individual functions from the family.
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We call mechanism f deterministic if f(G) ∈ {0, 1}
⋃k

�=0 Xn,� , i.e., if f(G) puts all
probability mass on a single set for all G ∈ G; we call f exact if (f(G))X = 0 for
every n ∈ N, G ∈ Gn, and X ∈ Xn with |X| < k, i.e., the mechanism never selects
a set X of vertices with strictly less than k vertices. Mechanism f is impartial on
G′ ⊆ G if on this set of graphs the probability of selecting vertex i does not depend
on its outgoing edges, i.e., if for every pair of graphs G = (N,E) and G′ = (N,E′)
in G′ and every i ∈ N ,

∑
X∈Xn,i∈X(f(G))X =

∑
X∈Xn,i∈X(f(G′))X whenever

E \ ({i}×N) = E′ \ ({i}×N). When running an impartial selection mechanism,
no agent can modify its probability of being selected by altering its nominations.
Note that this does not rule out the possibility of a selected agent to change the
number of other agents that are selected as well. All mechanisms we consider are
impartial on G, and we simply refer to such mechanisms as impartial mechanisms.
Finally, a k-selection mechanism f is α-optimal on G′ ⊆ G, for α ≤ 1, if for every
graph in G′ the expected sum of indegrees of the vertices selected by f differs
from the maximum sum of indegrees for any k-subset of the vertices by a factor
of at most α, i.e., if

inf
G∈G

Δk(G)>0

EX∼f(G)[δ−(X,G)]
Δk(G)

≥ α.

We call a mechanism α-optimal if it is α-optimal on G.
For randomized mechanisms, and as far as impartiality and α-optimality are

concerned, we can restrict attention to mechanisms that are symmetric, i.e.,
invariant with respect to renaming of the vertices (e.g., [5]). It may further be
convenient to view a k-selection mechanism as assigning probabilities to vertices
rather than sets of vertices, with the former summing up to at most k or exactly
k for each graph. By the Birkhoff-von Neumann theorem [2], the two views are
equivalent.

In the interest of space, we defer most of the proofs to the full version of this
paper.

3 Deterministic Mechanisms

Focusing on the exact case, Alon et al. showed that deterministic k-selection
mechanisms cannot be α-optimal for any k ∈ {1, . . . , n − 1} and any α > 0.
Although a rather simple observation when k = 1, this result is quite surprising
for k > 1. For (n − 1)-selection in particular, any deterministic mechanism that
is both exact and impartial must sometimes exclude precisely the unique vertex
with positive indegree. It is not hard to convince ourselves that relaxing exactness
does not help in the case of 1-selection, but we will see momentarily that it is
possible to guarantee 1/2-optimality when selecting (up to) two 2 agents without
requiring exactness.

Another way to look at this result is that the bound of 1/2 that is best pos-
sible for exact randomized mechanisms, can also be achieved by a deterministic
mechanism when sometimes but not always one additional vertex is selected.
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Input: Graph G = (N, E)
Output: Set {i1, i2} ⊆ N of at most two vertices

1 Let π = (1, . . . , |N |);
2 i1 := Ξπ(G);
3 i2 := Ξπ̄(G);
4 return {i1, i2};

Fig. 1. The bidirectional permutation mechanism

Input: Graph G = (N, E), permutation (π1, . . . , π|N|) of N
Output: Vertex i ∈ N

1 Set i := π1, d := 0;
2 for j = 2, . . . , |N | do
3 if δ−

π<j\{i}(πj) ≥ d then

4 Set i := πj , d := δ−
π<j

(πj);

5 end

6 end
7 return i;

Fig. 2. The extraction mechanism Ξπ

Thus being able to select an additional vertex serves as a perfect substitute for
randomness.

Let N = {1, . . . , n}. For a graph G = (N,E) and a permutation π =
(π1, . . . , πn) of N , denote by

Eπ =
{
(u, v) ∈ E : πi = u, πj = v for some i, j with 1 ≤ i < j ≤ n

}

the set of forward edges of G with respect to π. Denoting by π̄ the permutation
obtained by reading π backwards, such that π̄i = πn+1−i for i = 1, . . . , n. Finally,
for a permutation π and j ∈ {1, . . . , n}, let π<j = {π1, . . . , πj−1}.

The first mechanism we consider, which we call the bidirectional permutation
mechanism, considers the vertices one by one according to a fixed permutation π
and in each step compares the current vertex πj to a single candidate vertex π�

with � < j. In determining the indegree of the candidate vertex π� it takes into
account the outgoing edges of vertices π1, . . . , π�−1. For the indegree of the cur-
rent vertex πj it takes into account the outgoing edges of vertices π1, . . . , πj−1,
with the exception of π�. If the latter is greater than or equal to the former, πj

becomes the new candidate, and the candidate after the final step is the first
vertex selected by the mechanism. The same procedure is then applied with per-
mutation π̄ to find a second vertex. A formal description of the bidirectional
permutation mechanism is given in Fig. 1. It is formulated in terms of the mech-
anism of Fig. 2, which we call the extraction mechanism and which is identical
to a mechanism of Fischer and Klimm except for its use of a given permutation
rather than a random one. It is worth noting that the bidirectional permutation
mechanism may select only one vertex, namely if the same vertex is chosen for
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π1 π2 π3

(a)

π1 π2 π3

(b)

Fig. 3. Graphs for which the bidirectional permutation mechanism returns only one
vertex (a) and is only 1/2-optimal (b)

both directions of the permutation. This happens for example in the graph of
Fig. 3(a).

To see that the bidirectional permutation mechanism is impartial, we first
note that this is true for a single run of the extraction mechanism. Indeed, the
outcome of the latter is influenced by the outgoing edges of any given vertex
only when that vertex can no longer be selected.

Lemma 1. The extraction mechanism is impartial.

Impartiality of the bidirectional permutation mechanism then follows because
the union of the results of k impartial 1-selection mechanisms yields an impartial
k-selection mechanism.

Lemma 2. Let f1, . . . , fk be impartial 1-selection mechanisms. Then the mecha-
nism that selects the vertices selected by at least one of the mechanisms f1, . . . , fk

is an impartial k-selection mechanism.

Proof. By impartiality of f�, � = 1, . . . , k, the outgoing edges of a vertex do not
influence whether this vertex is selected by f�. This holds for any � and any
vertex, so it also holds for the mechanism that selects the vertices selected by at
least one of the mechanisms. ��

We now proceed to show that the bidirectional permutation mechanism is
1/2-optimal, starting from the observation that the vertex selected by Ξπ has a
maximum number of incoming forward edges with respect to π.

Lemma 3. If i = Ξπ(G), then δ−
π<i

(i, G) = maxj=1,...,n{δ−
π<j

(j,G)}.
Proof. It is easy to see that the value of d does not decrease as the mechanism
proceeds, so the number of incoming forward edges of the current candidate
cannot decrease either. Let d∗ = maxj=1,...,n{δ−

π<j
(j)}, and let i∗ be a vertex

with δ−
π<i∗ (i∗) = d∗. When i∗ is considered by the mechanism, so are at least

d∗−1 of its incoming forward edges, one of which may originate from the current
candidate i. If δ−

π<i
(i) = d∗, the selected vertex will have at least d∗ incoming

forward edges and we are done. If, on the other hand, δ−
π<i

(i) ≤ d∗ − 1, then the
i∗ is made the new candidate. Before that, however, also a possible edge from i
to i∗ is considered by the mechanism, so that d = d∗, regardless whether there
is an edge from i to i∗, or not. Again the selected vertex will have at least d∗

incoming forward edges, and the claim follows. ��
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Theorem 1. The bidirectional permutation mechanism is impartial and 1/2-
optimal.

Proof. Impartiality follows directly from Lemmas 1 and 2.
Now consider a graph G = (N,E), a vertex i∗ with δ−(i∗) = Δ1, and let

i1 = Ξπ(G) and i2 = Ξπ̄(G). By Lemma 3, δ−
π<i1

(i1) ≥ δ−
π<i∗ (i∗) and δ−

π̄<i2
(i2) ≥

δ−
π̄<i∗ (i∗), regardless of whether i1 	= i2 or i1 = i2. Thus

δ−({i1, i2}) ≥ δ−
π<i1

(i1) + δ−
π̄<i2

(i2)

≥ δ−
π<i∗ (i∗) + δ−

π̄<i∗ (i∗) = δ−(i∗) = Δ1 ≥ 1
2

Δ2,

as claimed. ��
To see that the analysis is tight, consider the graph in Fig. 3(b). For this graph,
the mechanism selects vertices π3 and π1 with an overall indegree of 1, while
the maximum overall indegree of a set of two vertices is 2. We will see later, in
Theorem 6, that the bound of 1/2 is in fact best possible.

4 Randomized Mechanisms

In light of the results of the previous section, it is natural to ask whether a
relaxation of exactness enables better bounds also for randomized mechanisms.
We answer this question in the affirmative and give the first nontrivial bounds
for both exact and inexact 2-selection mechanisms, as well as an example that
shows a strict separation between the two classes.

We begin by considering an exact mechanism, which we call the 2-partition
mechanism with permutation. The mechanism randomly partitions the set of
vertices into two sets A1 and A2 such that P[i ∈ A1] = P[i ∈ A2] = 1/2 for all
i ∈ N , A1∪A2 = N , and A1∩A2 = ∅. It then selects one vertex from each of the
sets by applying the extraction mechanism with a random permutation, while
also taking into account incoming edges from the respective other set. Figure 4
shows a formal description of the mechanism. It uses a restricted version of the

Input: Graph G = (N, E) with |N | ≥ 2
Output: Vertices i1, i2 ∈ N .

1 Assign each i ∈ N to A1 or A2 independently and uniformly at random;
2 Choose a permutation (π1, . . . , π|N|) of N uniformly at random;
3 for j = 1, 2 do
4 ij := Ξπ,Aj (G);
5 end
6 if A2 = ∅ then choose i2 uniformly at random from A1 \ i1;
7 if A1 = ∅ then choose i1 uniformly at random from A2 \ i2;
8 return {i1, i2};

Fig. 4. The 2-partition mechanism with permutation
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Input: Graph G = (N, E), permutation (π1, . . . , π|N|) of N , set A ⊆ N
Output: Vertex i ∈ N

1 Set i := π1, d := 0;
2 for j = 2, . . . , |N | do
3 S := (N \ A) ∪ (π<j \ {i});

4 if πj ∈ A and δ−
S (πj) ≥ d then

5 Set i := πj , d := δ−
S∪{i}(πj);

6 end

7 end
8 return i;

Fig. 5. The extraction mechanism Ξπ,A restricted to a set A ⊆ N

extraction mechanism, given in Fig. 5 and denoted Ξπ,A for a set A ⊆ N . The
properties of the latter can be summarized in terms of the following two results.

Lemma 4. The restricted extraction mechanism is impartial.

Lemma 5. If i = Ξπ,A(G), then δ−(i, G) ≥ maxj∈A{δ−
(N\A)∪π<j

(j,G)}.
The proofs of these results follow along the same lines as those of Lemmas 1
and 3. We proceed directly with a result for the 2-partition mechanism with
permutation.

Theorem 2. The 2-partition mechanism with permutation is impartial and
7/12-optimal.

Proof. Impartiality follows directly from Lemmas 2 and 4.
Now consider a graph G = (N,E), two distinct vertices i∗1, i

∗
2 ∈ N with

δ−(i∗1) + δ−(i∗2) = Δ2, and let i1 and i2 be the two vertices selected by the
mechanism. We distinguish two cases, depending on whether i∗1 and i∗2 are in the
same set or different sets of the partition (A1, A2).

First assume that i∗1 and i∗2 are in different sets, and without loss of generality
that i∗1 ∈ A1 and i∗2 ∈ A2. In the permutation π used by the mechanism and
chosen uniformly at random, an arbitrary vertex i ∈ N \ {i∗1, i

∗
2} appears before

or after each of i∗1 or i∗2 with equal probability, so

P
[
i ∈ A1 ∩ π<i∗

1

]
= P

[
i ∈ A1 ∩ π̄<i∗

1

]

= P
[
i ∈ A2 ∩ π<i∗

2

]
= P

[
i ∈ A2 ∩ π̄<i∗

2

]
=

1
4
.

When i∗1 is considered by the mechanism, so are any incoming edges from A2

and any incoming edges from vertices in A1 and appearing in π before i∗1. Thus,
by Lemma 5,

E
[
δ−(i1)

] ≥ E
[
δ−
A2∪π<i∗

1
(i∗1)

]
=

∑

i∈N
P
[
i ∈ A2 ∪ (A1 ∩ π<i∗

1
)
] · χ[(i, i∗1) ∈ E],
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where χ denotes the indicator function on Boolean expressions, i.e., χ[φ] = 1
if expression φ holds and χ[φ] = 0 otherwise. By taking i∗2 out of the sum and
using that i∗1 and i∗2 are in different sets of the partition and thus P[i∗2 ∈ A2] = 1,
we obtain

E
[
δ−(i1)

]
=

∑

i∈N\{i∗
2}

(
P[i ∈ A2 ∪ (A1 ∩ π<i∗

1
)] · χ[(i, i∗1) ∈ E]

)

+ P[i∗2 ∈ A2 ∪ (A1 ∩ π<i∗
1
)] · χ[(i∗2, i

∗
1) ∈ E]

≥ 3
4

∑

i∈N

χ[(i, i∗1) ∈ E] =
3
4
δ−(i∗1).

As the same line of reasoning applies to i∗2, we conclude for this case that

E

[
δ−(i1, i2)

Δ2

]

≥ 3
4
.

Now assume that i∗1 and i∗2 are in the same set of the partition, and without
loss of generality that i∗1, i

∗
2 ∈ A1 and δ−(i∗1) ≥ δ−(i∗2). In the permutation π

used by the mechanism and chosen uniformly at random, an arbitrary vertex
i ∈ N \ {i∗1, i

∗
2} appears before, between, or after i∗1 and i∗2 with probability 1/3

each, so

P
[
i ∈ A2

]
=

1
2

and

P
[
i ∈ A1 ∩ π<i∗

1
∩ π<i∗

2

]
=

P
[
i ∈ A1 ∩ ((π<i∗

1
∩ π̄<i∗

2
) ∪ (π̄<i∗

1
∩ π<i∗

2
))

]
=

P
[
i ∈ A1 ∩ π̄<i∗

1
∩ π̄<i∗

2

]
=

1
6
.

If i∗1 ∈ π̄<i∗
2
, a possible edge from i∗2 to i∗1 would be considered by the mechanism,

and by Lemma 5,

E
[
δ−(i1)

] ≥ E
[
δ−
A2∪π<i∗

1
(i∗1)

]
=

(1
2

+
2
6

)
δ−(i∗1).

Analogously, if i∗2 ∈ π̄<i∗
1
,

E
[
δ−(i1))

] ≥ E
[
δ−
A2∪π<i∗

2
(i∗2)

]
=

(1
2

+
2
6

)
δ−(i∗2).

As each of the two events takes places with probability 1/2, we conclude for this
case that

E

[
δ−(i1 ∪ i2)

Δ2

]

≥
1
2

(
5
6δ−(i∗1) + 5

6δ−(i∗2)
)

δ−(i∗1) + δ−(i∗2)
=

5
12

.

Averaging over both cases we finally obtain

α ≥ 1
2

(
3
4

+
5
12

)

=
7
12

as claimed. ��
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Input: Graph G = (N, E)
Output: Vertex i ∈ N

1 Choose a permutation (π1, . . . , π|N|) of N uniformly at random;
2 Invoke the bidirectional permutation mechanism of Figure 1 for G and π

Fig. 6. The randomized bidirectional permutation mechanism
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Fig. 7. A 3/4-optimal impartial mechanism for n = 3 and k = 2 given explicitly by
the selection probabilities for all 16 voting graphs. The bound of 3/4 is best possible
by Theorem 8.

The 2-partition mechanism with permutation improves on the best deter-
ministic mechanism for 2-selection, and it is natural to ask whether it can be
improved upon further by a randomized 2-selection mechanism that is not exact.
The answer to this question is not obvious: while the ability to select fewer ver-
tices may make impartiality easier to achieve, actually selecting fewer vertices
runs counter to the objective of selecting vertices with a large sum of indegrees.
Indeed, in the case of 1-selection, no difference exists between exact and inex-
act mechanisms. For 2-selection, an obvious approach turns out to be effective:



156 A. Bjelde et al.

taking the best deterministic mechanism, which uses both directions of a fixed
permutation, and invoking it for a random permutation. The resulting mech-
anism, which we call the randomized bidirectional permutation mechanism, is
shown in Fig. 6.

Theorem 3. The randomized bidirectional permutation mechanism is impartial
and 2/3-optimal.

It is not hard to see that our analysis of the 2-partition mechanism with
permutation and the bidirectional permutation mechanism is in fact tight.

Theorem 4. The 2-partition mechanism with permutation is at most 7/12-
optimal. The randomized bidirectional permutation mechanism is at most 2/3-
optimal.

As special cases of Theorems 7 and 8 in Sect. 6, we will respectively obtain
upper bounds of 2/3 and 3/4 for 2-selection mechanisms with and without exact-
ness. These bounds suggest that neither the 2-partition mechanism with per-
mutation nor the randomized bidirectional permutation mechanism is the best
mechanism within its class. Figure 7 shows a 3/4-optimal impartial mechanism
selecting at most two of three vertices, which certifies that the randomized bidi-
rectional permutation mechanism is indeed not the best and that relaxing exact-
ness is strictly beneficial.

5 Selecting More Than Two Agents

The central component of our best inexact mechanisms, its use of one or both
of the directions of a random permutation, does not generalize in any obvious
way to the selection of additional vertices. Our understanding of deterministic
mechanisms for the selection of more than two vertices is particularly limited, but
we can obtain a bound of 1/k by observing that the selection of only two instead
of k vertices reduces the guarantee by a factor of at most 2/k and applying this
observation to the bidirectional permutation mechanism.

A better bound for the randomized case, even with exactness, is achieved by a
natural generalization of the 2-partition mechanism with permutation that uses
a partition into k sets. The general mechanism is described formally in Fig. 8.
Its impartiality is easy to see, and we use an argument similar to Lemma 5 to
obtain a performance guarantee that approaches 1 − 1/e as k grows.

Theorem 5. The k-partition mechanism with permutation is impartial and α-
optimal where α = 2k−1

2k

(
1 − (k−1

k )k
)
.

6 Upper Bounds

We conclude by giving upper bounds on the performance of impartial k-selection
mechanisms for any value of k, and for both deterministic mechanisms and ran-
domized mechanisms with and without exactness.



Impartial Selection and the Power of up to Two Choices 157

Input: Graph G = (N, E) with |N | ≥ 2
Output: Vertices i1, . . . , ik ∈ N

1 Assign each i ∈ N independently and uniformly at random to one of k sets
A1, . . . , Ak, such that P[i ∈ A1] = · · · = P[i ∈ Ak] = 1

k
for all i ∈ N ,

A1 ∪ · · · ∪ Ak = N , and Ai ∩ Aj = ∅ for all i = j ∈ N ;
2 Choose a permutation (π1, . . . , π|N|) of N uniformly at random;
3 for j = 1, . . . , k do
4 ij := Ξπ,Aj (G);
5 end
6 for j = 1, . . . , k do
7 if Aj = ∅ then
8 Choose ij uniformly at random from N \ {i1, . . . , ik};
9 end

10 end
11 Return (i1, . . . , ik);

Fig. 8. The k-partition mechanism with permutation

The first set of bounds applies to deterministic mechanisms and shows that
the bidirectional permutation mechanism is the best deterministic mechanism
for k = 2.
Theorem 6. Consider a deterministic k-selection mechanism that is α-optimal
on Gn, where k < n. Then α ≤ (k − 1)/k.

Proof. Consider a graph G = (V,E) with n vertices where k + 1 vertices are
arranged in a directed cycle and the remaining vertices do not have any outgoing
edges, i.e., V = {1, . . . , n} and E = {(i, i + 1) : i = 1, . . . , k} ∪ {(k + 1, 1)}.
Denote by F the set of vertices selected from G by an arbitrary deterministic
k-selection mechanism, and observe that there exists i ∈ {1, . . . , k + 1} \ F . Let
G′ = (V,E\({i}×V )), and observe that by impartiality, the mechanism does not
select i from G′. The mechanism thus selects at most k − 1 out of the k vertices
with positive indegree in G′ and cannot be more than (k − 1)/k-optimal. ��

The next result concerns randomized mechanisms that are exact. It certifies
that the 2-partition mechanism with permutation is best possible within this
class when k = 2 and n = 3, and together with the mechanism of Fig. 7 shows a
strict separation between randomized mechanisms with and without exactness.
It does not preclude improvements over the 2-partition mechanism with permu-
tation when n > 3. The proof requires more effort than that of Theorem8 below
but no additional techniques.
Theorem 7. Consider a k-selection mechanism that is exact, impartial, and
α-optimal on Gn, where k < n. Then

α ≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2 if k = 1
k

k+1 if 2 ≤ k = n − 1
5
7 if 2 = k = n − 2

7k3+5k2−6k+12
7k3+13k2−2k if 3 ≤ k = n − 2

k+1
k+2 otherwise.
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Our final result applies to randomized mechanisms without the requirement
of exactness, and shows that the mechanism of Fig. 7 for the case when k = 2
and n = 3 is best possible. A comparison with Theorem7 further suggests that
the influence of the exactness constraint may be limited to cases where almost
all vertices are selected.

Theorem 8. Consider a k-selection mechanism that is impartial and α-optimal
on Gn, where k < n. Then

α ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2 if k = 1
3
4 if k = 2
2k

2k+1 if 3 ≤ k = n − 1
k+1
k+2 otherwise.
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Abstract. Allocating multiple goods to customers in a way that maxi-
mizes some desired objective is a fundamental part of Algorithmic Mech-
anism Design. We consider here the problem of offline and online alloca-
tion of goods that have economies of scale, or decreasing marginal cost
per item for the seller. In particular, we analyze the case where customers
have unit-demand and arrive one at a time with valuations on items,
sampled iid from some unknown underlying distribution over valuations.
Our strategy operates by using an initial sample to learn enough about
the distribution to determine how best to allocate to future customers,
together with an analysis of structural properties of optimal solutions
that allow for uniform convergence analysis. We show, for instance, if
customers have {0, 1} valuations over items, and the goal of the allocator
is to give each customer an item he or she values, we can efficiently pro-
duce such an allocation with cost at most a constant factor greater than
the minimum over such allocations in hindsight, so long as the marginal
costs do not decrease too rapidly. We also give a bicriteria approximation
to social welfare for the case of more general valuation functions when
the allocator is budget constrained.

1 Introduction

Imagine it is the Christmas season, and Santa Claus is tasked with allocating
toys. There is a sequence of children coming up with their Christmas lists of
toys they want. Santa wants to give each child some toy from his or her list (all
children have been good this year). But of course, even Santa Claus has to be
cost-conscious, so he wants to perform this allocation of toys to children at a
near-minimum cost to himself (call this the Thrifty Santa Problem). Now if it
was the case that every toy had a fixed price, this would be easy: simply allocate
to each child the cheapest toy on his or her list and move on to the next child.
But here we are interested in the case where goods have economies of scale. For
example, producing a millon toy cars might be cheaper than a million times the
cost of producing one toy car. Thus, even if producing a single toy car is more
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expensive than a single Elmo doll, if a much larger number of children want the
toy car than the Elmo doll, the minimum-cost allocation might give toy cars to
many children, even if some of them also have the Elmo doll on their lists.

The problem faced by Santa (or by any allocator that must satisfy a collection
of disjunctive constraints in the presence of economies of scale) makes sense in
both offline and online settings. In the offline setting, in the extreme case of goods
such as software where all the cost is in the first copy, this is simply weighted set-
cover, admitting a Θ(log n) approximation to the minimum-cost allocation. We
will be interested in the online case where customers are iid from some arbitrary
distribution over subsets of item-set I (i.e., Christmas lists), where the allocator
must make allocation decisions online, and where the marginal cost of goods
does not decrease so sharply. We show that for a range of cost curves, including
the case that the marginal cost of copy t of an item is t−α, for some α ∈ [0, 1),
we will be able to get a constant-factor approximation even online so long as the
number of customers is sufficiently large compared to the number of items.

A basic structural property we show is that, if the marginal costs are non-
increasing, the minimum cost allocation can be compactly described as an order-
ing of the possible toys, so that as each child comes, Santa simply gives the child
the first toy in the ordering that appears on the child’s list. We also show that if
the marginal costs do not drop too quickly, then if we are given the lists of all the
children before determining the allocation, we can efficiently find an allocation
that is within a constant factor of the minimum-cost allocation, as opposed to
the logarithmic factor required for the set-cover problem. Since, however, the
problem we are interested in does not supply the lists before the allocations, but
rather requires a decision for each child in sequence, we use ideas from machine
learning, as follows: after processing a small initial number of children, we take
their wish lists as if they were perfectly representative of the future children,
and find an approximately optimal solution based on those, which also will be
an ordering over toys. We then take the ordered list of toys from this solution,
and use it to allocate to future children (allocating to each child the earliest toy
in the ordering that is also on his or her list). We show that, as long as we take a
sufficiently large number of initial children, this procedure will find an ordering
that will be near-optimal for allocating to the remaining children, using the fact
that these compact representations allow for uniform convergence of the cost
estimates to the true costs.

More generally, we can imagine the case where, rather than simple lists of
items, the lists also provide valuations for each item, and we are interested in the
trade-off between maximizing the total of valuations for allocated items while
minimizing the total cost of the allocation. In this case, we might think of the
allocator as being a large company with many different projects, and each project
has some valuations over different resources (e.g., types of laptops for employees
involved in that project), where it could use one or another resource but prefers
some resources over others. One natural quantity to consider in this context is
the social surplus: the difference between the happiness (total of valuations for
the allocation) minus the total cost of the allocation. In this case, it turns out
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the optimal allocation rule can be described by a pricing scheme. In another
words, whatever the optimal allocation is, there always exist prices such that
if the buyers purchase what they most want at those prices, they will actually
produce that allocation. We note that, algorithmically, this is a harder problem
than the list-based problem (which corresponds to binary valuations).

Aside from social surplus, it is also interesting to consider a variant in which
we have a budget constraint, and are interested in maximizing the total valuation
of the allocation, subject to that budget constraint on the total cost of the
allocation. It turns out this latter problem can be reduced to a problem known
as the weighted budget maximum coverage problem. Technically, this problem is
originally formulated for the case in which the marginal cost of a given item drops
to zero after the first item of that type is allocated (as in the set cover reduction
mentioned above); however, viewed appropriately, we are able to formulate this
reduction for arbitrary decreasing marginal cost functions. What we can then do
is run an algorithm for the weighted budget maximum coverage problem, and
then convert the solution into a pricing. As before, this strategy will be effective
for the offline problem, in which all of the valuations are given ahead of time.
However, we can extend it to the online setting with iid valuation functions by
generating a pricing based on an appropriately-sized initial sample of valuation
functions, and then apply that pricing to sequentially generate allocations for
the remaining valuations. As long as the marginal costs are not decreasing too
rapidly, we can obtain an allocation strategy for which the sum of valuations of
the allocated items will be within a constant factor of the maximum possible,
minus a small additive term, subject to the budget constraint on the cost.

Our Results and Techniques: We consider this problem under two, related,
natural objectives. In the first (the “thrifty Santa” objective) we assume cus-
tomers have binary {0, 1} valuations, and the goal of the seller is to give each
customer a toy of value 1, but in such a way that minimizes the total cost to
the seller. We show that so long as the number of buyers n is large compared
to the number of items r, and so long as the marginal costs do not decrease
too rapidly (e.g., a rate 1/tα for some 0 ≤ α < 1), we can efficiently perform
this allocation task with cost at most a constant factor greater than that of the
optimal allocation of items in hindsight. Note that if costs decrease much more
rapidly, then even if all customers’ valuations were known up front, we would be
faced with (roughly) a set-cover problem and so one could not hope to achieve
cost o(log n) times optimal. The second objective we consider, which we apply to
customers of arbitrary unit-demand valuation, is that of maximizing total social
welfare of customers subject to a cost bound on the seller; for this, we also give
a strategy that is constant-competitive with respect to the optimal allocation in
hindsight.

Our algorithms operate by using initial buyers to learn enough about the dis-
tribution to determine how best to allocate to the future buyers. In fact, there
are two main technical parts of our work: the sample complexity and the algo-
rithmic aspects. From the perspective of sample complexity, one key component
of this analysis is examining how complicated the allocation rule needs to be
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in order to achieve good performance, because simpler allocation rules require
fewer samples in order to learn. We do this by providing a characterization of
what the optimal strategies look like. For example, for the thrifty Santa Claus
version, we show that the optimal solution can be assumed wlog to have a simple
permutation structure. In particular, so long as the marginal costs are nonin-
creasing, there is always an optimal strategy in hindsight of this form: order the
items according to some permutation and for each bidder, give it the earliest
item of its desire in the permutation. This characterization is used inside both
our sample complexity results and our algorithmic guarantees. Specifically, we
prove that for cost function cost(t) =

∑t
τ=1 1/τα, for α ∈ [0, 1), running greedy

weighted set cover incurs total cost at most 1
1−αOPT. More generally, if the aver-

age cost is within some factor of the marginal cost, we have a greedy algorithm
that achieves constant approximation ratio. To allocate to new buyers, we simply
give it the earliest item of its desire in the learnt permutation. For the case of
general valuations, we give a characterization showing that the optimal alloca-
tion rule in terms of social welfare can be described by a pricing scheme. That is,
there exists a pricing scheme such that if buyers purchased their preferred item
at these prices, the optimal allocation would result. Algorithmically, we show
that we can reduce to a weighted budgeted maximum coverage problem with
single-parameter demand for which there is a known constant-approximation-
ratio algorithm [7].

Related Work: In this work we focus on the case of decreasing marginal cost.
There have been a large body of research devoted to unlimited supply, which
is implicitly constant marginal cost (e.g., [9] Chap. 13), where the goal is to
achieve a constant competitive ratio in both offline and online models. The case
of increasing marginal cost was studied in [2] where constant competitive ratio
was given.

We analyze an online setting where buyers arrive one at a time, sampled iid
from some unknown underlying distribution over valuations. Other related online
problems with stochastic inputs such as matching problems have been studied
in ad auctions [5,8]. Algorithmically, our work is related to the online set cover
body of work where [1] gave the first O(log m log n) competitive algorithm (here
n is the number of elements in the ground set and m is size of a family of
subsets of the ground set). The problems we study are also related to online
matching problems [3,4,6] in the iid setting; however our problem is more like
the “opposite” of online matching in that the cumulative cost curve for us is
concave rather than convex.

2 Model, Definitions, and Notation

We have a set I of r items. We have a set N = {1, . . . , n} indexing n unit
demand buyers. Our setting can then generally be formalized in the following
terms.

Utility Functions: Each buyer j ∈ N has a weight uj,i for each item i ∈ I.
We suppose the vectors uj,· are sampled i.i.d. according to a fixed (but arbitrary
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and unknown) distribution. In the online setting we are interested in, the buyers’
weight vectors uj,· are observed in sequence, and for each one (before observing
the next) we are required to allocate a set of items Tj ⊆ I to that buyer. The
utility of buyer j for this allocation is then defined as uj(Tj) = maxi∈Tj

uj,i. A
few of our results consider a slight variant of this model, in which we are only
required to begin allocating goods after some initial o(n) number of customers
has been observed (to whom we may allocate items retroactively).

This general setting is referred to as the weighted unit demand setting. We
will also be interested in certain special cases of this problem. In particular,
many of our results are for the uniform unit demand setting, in which every
j ∈ N and i ∈ I have uj,i ∈ {0, 1}. In this case, we may refer to the set
Sj = {i ∈ I : uj,i = 1} as the list of items buyer j wants (one of).

Production Cost: We suppose there are cumulative cost functions costi : N →
[0,∞] for each item i ∈ I, where for t ∈ N, the value of costi(t) represents the
cost of producing t copies of item i. We suppose each costi(·) is nondecreasing.

We would like to consider the case of decreasing marginal cost, where t �→
costi(t + 1) − costi(t) is nonincreasing for each i ∈ I.

A natural class of decreasing marginal costs we will be especially interested
in are of the form t−α for α ∈ [0, 1). That is, costi(t) = c0

∑t
τ=1 τ−α.

Allocation Problems: After processing the n buyers, we will have allocated
some set of items T , consisting of mi(T ) =

∑
j∈N ITj

(i) copies of each item i ∈ I.
We are then interested in two quantities in this setting: the total (production) cost
cost(T ) =

∑
i∈I costi(mi(T )) and the social welfare SW (T ) =

∑
j∈N uj(Tj).

We are interested in several different objectives within this setting, each of
which is some variant representing the trade-off between reducing total produc-
tion cost while increasing social welfare.

In the allocate all problem, we have to allocate to each buyer j ∈ N one item
i ∈ Sj (in the uniform demand setting): that is, SW (T ) = n. The goal is to
minimize the total cost cost(T ), subject to this constraint.

The allocate with budget problem requires our total cost to never exceed a
given limit b (i.e., cost(T ) ≤ b). Subject to this constraint, our objective is to
maximize the social welfare SW (T ). For instance, in the uniform demand setting,
this corresponds to maximizing the number of satisfied buyers (that get an item
from their set Sj).

The objective in the maximize social surplus problem is to maximize the
difference of the social welfare and the total cost (i.e., SW (T ) − cost(T )).

3 Structural Results and Allocation Policies

We now present several results about the structure of optimal (and non-optimal
but “reasonable”) solutions to allocation problems in the setting of decreas-
ing marginal costs. These will be important in our sample-complexity analysis
because they allow us to focus on allocation policies that have inherent com-
plexity that depends only on the number of items and not on the number of
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customers, allowing for the use of uniform convergence bounds. That is, a small
random sample of customers will be sufficient to uniformly estimate the perfor-
mance of these policies over the full set of customers.

Permutation and Pricing Policies: A permutation policy has a permutation
π over I and is applicable in the case of uniform unit demand. Given buyer
j arriving, we allocate to him the minimal (first) demanded item in the per-
mutation, i.e., arg mini∈Sj

π(i). A pricing policy assigns a price pricei to each
item i and is applicable to general quasilinear utility functions. Given buyer j
arriving, we allocate to him whatever he wishes to purchase at those prices, i.e.,
arg maxTj

uj(Tj) − ∑
i∈Tj

pricei.1

We will see below that for uniform unit demand buyers, there always exists
a permutation policy that is optimal for the allocate-all task, and for general
quasilinear utilities there always exists a pricing policy that is optimal for the
task of maximizing social surplus. We will also see that for weighted unit demand
buyers, there always exists a pricing policy that is optimal for the allocate-with-
budget task; moreover, for any even non-optimal solution (e.g., that might be
produced by a polynomial-time algorithm) there exists a pricing policy that sells
the same number of copies each item and has social welfare at least as high (and
can be computed in polynomial time given the initial solution).

Structural Results:

Theorem 1. For general quasilinear utilities, any allocation that maximizes
social surplus can be produced by a pricing policy. That is, if T =
{T1, . . . , Tn} is an allocation maximizing SW (T )−cost(T ) then there exist prices
price1, . . . ,pricer such that buyers purchasing their most-demanded bundle recov-
ers T , assuming that the marginal cost function is strictly decreasing.2

Proof. Consider the optimal allocation OPT. Define pricei to be the marginal
cost of the next copy of item i under OPT, i.e., pricei = costi(#i(OPT) +
1). Suppose some buyer j is assigned set Tj in OPT but prefers set T ′

j under
these prices. Then, uj(T ′

j)−∑
i∈T ′

j
pricei ≥ uj(Tj)−∑

i∈Tj
pricei, which implies

uj(T ′
j)−uj(Tj)+

∑
i∈Tj\T ′

j
pricei−

∑
i∈T ′

j\Tj
pricei ≥ 0. Now, consider modifying

OPT by replacing Tj with T ′
j . This increases buyer j’s utility by uj(T ′

j)−uj(Tj),
incurs an extra purchase cost exactly

∑
i∈T ′

j\Tj
pricei and a savings of strictly

more than
∑

i∈Tj\T ′
j
pricei (because marginal costs are decreasing). Thus, by the

above inequality, this would be a strictly preferable allocation, contradicting the
optimality of OPT. 	

Corollary 1. For uniform unit demand buyers there exists an optimal allocation
that is a permutation policy, for the allocate all task.

1 When more that one subset is applicable, we assume we have the freedom to select
any such set. Note that such policies are incentive-compatible.

2 If the marginal cost function is only non-increasing, we can have the same result,
assuming we can select between the utility maximizing bundles.
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Proof. Imagine each buyer j had valuation vmax on items in Sj where vmax is
greater than the maximum cost of any single item. The allocation OPT that
maximizes social surplus would then minimize cost subject to allocating exactly
one item to each buyer and therefore would be optimal for the allocate-all task.
Consider the pricing associated to this allocation given by Theorem1. Since each
buyer j is uniform unit demand, he will simply purchase the cheapest item in
Sj . Therefore, the permutation π that orders items according to increasing price
according to the prices of Theorem 1 will produce the same allocation. 	


We now present a structural statement that will be useful for the allocate-
with-budget task.

Theorem 2. For weighted unit-demand buyers, for any allocation T there exists
a pricing policy that allocates the same multiset of items T (or a subset of T ) and
has social welfare at least as large as T . Moreover, this pricing can be computed
efficiently from T and the buyers’ valuations.

Proof. Let T be the multiset of items allocated by T . Weighted unit-demand
valuations satisfy the gross-substitutes property, so by the Second Welfare The-
orem (e.g., see [9] Theorem 11.15) there exists a Walrasian equilibrium: a set of
prices for the items in T that clears the market. Moreover, these prices can be
computed efficiently from demand queries (e.g., [9], Theorem 11.24), which can
be evaluated efficiently for weighted unit-demand buyers. Furthermore, these
prices must assign all copies of the same item in T the same price (else the
pricing would not be an equilibrium) so it corresponds to a legal pricing policy.
Thus, we have a legal pricing such that if all buyers were shown only the items
represented in T , at these prices, then the market would clear perfectly (break-
ing any ties in our favor). We can address the fact that there may be items not
represented in T (i.e., they had zero copies sold) by simply setting their price
to infinity. Finally, by the First Welfare Theorem (e.g., [9] Theorem 11.13), this
pricing maximizes social welfare over all allocations of T , and therefore achieves
social welfare at least as large as T , as desired. 	


The above structural results will allow us to use the following sketch of an
online algorithm. First sample an initial set of � buyers. Then, for the allocate-all
problem, compute the best (or approximately best) permutation policy accord-
ing to the empirical frequencies given by the sample. Or, for the allocate-with
budget task, compute the best (or approximately best) allocation according to
these empirical frequencies and convert it into a pricing policy. Then run this
permutation or pricing policy on the remainder of the customers. Finally, using
the fact that these policies have low complexity (they are lists or vectors in
a space that depends only on the number of items and not on the number of
buyers) compute the size of initial sample needed to ensure that the estimated
performance is close to true performance uniformly over all policies in the class.
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4 Uniform Unit Demand and the Allocate-All Problem

Here we consider the allocate-all problem for the setting of uniform unit demand.
We begin by considering the following natural class of decreasing marginal cost
curves such as 1/

√
t.

Definition 1. We say the cost function cost(t) is α-poly if the marginal cost of
item t is 1/tα for α ∈ [0, 1). That is, cost(t) =

∑t
τ=1 1/τα.

Theorem 3. If each cost function is α-poly, then there exists an efficient offline
algorithm that given a set X of buyers produces a permutation policy that incurs
total cost at most 1

1−αOPT.

Proof. We run the greedy set-cover algorithm. Specifically, we choose the item
desired by the most buyers and put it at the top of the permutation π. We
then choose the item desired by the most buyers who did not receive the first
item and put it next, and so on. For notational convenience assume π is the
identity, and let Bi denote the set of buyers that receive item i, For any set
B ⊆ X, let OPT(B) denote the cost of the optimal solution to the subproblem
B (i.e., the problem in which we are only required to cover buyers in B). Clearly
OPT(Br) = cost(|Br|) =

∑|Br|
τ=1 1/τα ≥ ∑|Br|

t=1

∫ |Bt|
1

x−αdx = 1
1−α |Br|1−α − 1,

since any solution using more than one set to cover the elements of Br has at
least as large a cost.

Now, for the purpose of induction, suppose that some k ∈ {2, . . . , r} has
OPT(

⋃r
t=k Bt) ≥ ∑r

t=k |Bt|1−α. Then, since Bk−1 was chosen to be the largest
subset of

⋃r
t=k−1 Bt that can be covered by a single item, it must be that the sets

used by any allocation for the
⋃r

t=k−1 Bt subproblem achieving OPT(
⋃r

t=k−1 Bt)
have size at most |Bk−1|, and thus the marginal costs for each of the elements
of Bk−1 in the OPT(

⋃r
t=k−1 Bt) solution is at least 1/|Bk−1|α.

This implies OPT(
⋃r

t=k−1 Bt) ≥ OPT(
⋃r

t=k Bt) +
∑

x∈Bk−1
1/|Bk−1|α =

OPT(
⋃r

t=k Bt) + |Bk−1|1−α. By the inductive hypothesis, this latter expression
is at least as large as

∑r
t=k−1 |Bt|1−α. By induction, this implies OPT(X) =

OPT(
⋃r

t=1 Bt) ≥ ∑r
t=1 |Bt|1−α. On the other hand, the total cost incurred by the

greedy algorithm is
∑r

t=1

∑|Br|
τ=1 1/τα ≤ ∑r

t=1

∫ |Bt|
0

x−αdx = 1
1−α

∑r
t=1 |Bt|1−α.

By the above argument, this is at most 1
1−αOPT(X). 	


More General Cost Curves: We can generalize the above result to a broader
class of smoothly decreasing cost curves. Due to space constraints, all of the
proofs of these results are deferred to the full version of this paper online. Define
the average cost of item i given to set Bi of buyers as AvgC(i, |Bi|) = cost(|Bi|)

|Bi| .
Define the marginal cost MarC(i, t) = costi(t) − costi(t − 1). Here is a greedy
algorithm.
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Algorithm: GreedyGeneralCost(B)
0. i = arg min AvgC(i, |Bi|), where Bi = {j ∈ B : i ∈ Sj}
1. Call GreedyGeneralCost(B − Bi)

We make the following assumption:

Assumption 4 ∀i, t, AvgC(i, t) ≤ βMarC(i, t), for some β > 0.

For example, for the case of an α-poly cost, we have: MarC(t) = 1
tα and AvgC =

1
t

∑t
τ=1

1
τα ≈ t−α

1−α ; so, therefore we have β = 1
1−α .

Theorem 5. GreedyGeneralCost achieves approximation ratio β.

Additionally, a property of β-nice cost functions we will need to use later is
the following.

Lemma 1. For cost satisfying Assumption 4, ∀x ∈ N, ∀ε ∈ (0, 1), ∀i ≤ r,
costi(εx) ≤ εlog2(1+

1
2β )costi(x).

Generalization Result: Say n is the total number of customers; � is the size
of subsample we do our estimate on; r is the total number of items; α ∈ (0, 1] is
some constant, and the cost is α-poly, so that cost(t) =

∑t
τ=1 1/τα � t1−α

1−α . We
now show the following uniform convergence over permutation policies, which
will justify the use of a near optimal policy for a sample on the larger population.

Theorem 6. Suppose n ≥ � and the cost function is α-poly. With probability at
least 1 − δ(�), for all permutations Π,

cost(Π, �)(1 + ε)−2
(n

�

)1−α

≤ cost(Π,n) ≤ cost(Π, �)(1 + ε)2(1−α)
(n

�

)1−α

,

where δ(�) = r2r(δ1 + δ2 + δ3), with δ1 = exp
{

−ε2
(

ε
r

) 1
1−α n/3

}
, δ2 =

exp
{

−ε2�
(

ε
r

) 1
1−α /3

}
, and δ3 = exp

{
− (

ε
r

) 1
1−α nε2/2

}
. Equivalently, for any

δ ∈ (0, 1), this occurs with probability 1 − δ, so long as � � ( 1
ε2 )( r

ε )
1

1−α ln(2r/δ).

Proof. Fix a permutation Π. Let πj denote the event that a customer buys item
Πj and not covered by items Π1 through Πj−1. Namely, the probability that the
customer set of desired items include j and none of the items 1, . . . , j − 1. Let
qj denote Pr[πj ], and let q̂j denote the fraction of Πj on the initial �-sample.

Item j to is a “Low probability item” if qj <
(

ε
r

) 1
1−α ; and “High probability

items” if qj ≥ (
ε
r

) 1
1−α . Let the set “Low” include all “Low probability items”;

and the set “High” include all “High probability items”.
First we address the case of item j of low probability. The quantity of item

j that will sell is at most
(

ε
r

) 1
1−α n(1 + ε) (Chernoff bound) with probability at

least 1 − δ1 with δ1 = exp{−ε2
(

ε
r

) 1
1−α n/3}. By a union bound, this holds for

all low probability item j, with probability at least 1 − |Low|δ1.
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Next, we suppose j has high probability. In this case, the quantity of item j
will sell is at most qjn(1+ε), with probability at least 1−exp{−ε2qjn/3} ≥ 1−δ1.
Again, a union bound implies this holds for all high probability j with probability
at least 1 − |High|δ1.

We have that (by Chernoff bounds), with probability ≥ 1− exp{−ε2�qj/3}≥
1 − δ2, we have qj/q̂j ≤ (1 + ε). A union bound implies this holds for all high
probability j with probability 1 − rδ2.

Furthermore, noting that qjn(1 + ε) = q̂jn(1 + ε) qj

q̂j
, and upper bound-

ing qj

q̂j
by 1 + ε, we get that qjn(1 + ε) ≤ (1 + ε)2q̂jn, with probability

1 − δ2. Thus, cost(Π,n) ≤ cost(Low) + cost(High) ≤ r
((

ε
r

) 1
1−α n(1 + ε)

)1−α

+
∑

j∈High

(
(1 + ε)2q̂jn

)1−α ≤ ε(1+ε)1−αn1−α+(1+ε)2(1−α)n1−α
∑

j∈High (q̂j)
1−α.

Note that the total cost of all low probability items is at most ε-fraction
of OPT which is at least n1−α

1−α . Also, (1 + ε)2(1−α)n1−α
∑

j∈High (q̂j)
1−α =

(1 + ε)2(1−α)
(

n
�

)1−α ∑
j (q̂j�)

1−α = (1 + ε)2(1−α)
(

n
�

)1−α cost(Π, �), by defini-

tion of cost(Π, �). Therefore we showed, cost(Π,n) ≤ ε(1 + ε)1−α�1−α
(

n
�

)1−α +
(1 + ε)2(1−α) (

n
�

)1−α cost(Π, �) ≤ (1 + 5ε)
(

n
�

)1−α cost(Π, �).

The lower bound is basically similar. For j ∈ Low, we have qj <
(

ε
r

) 1
1−α

and q̂j <
(

ε
r

) 1
1−α (1 + ε) (by Chernoff bounds). So we have:

∑
j(q̂j�)1−α ≤

∑
j

((
ε
r

) 1
1−α (1 + ε)�

)1−α

= r ε
r (1+ ε)1−α�1−α = ε(1+ ε)1−αn1−α

(
�
n

)1−α ≤ε(1+

ε)1−αcost(Π,n)
(

�
n

)1−α
. Thus, cost(Π, �) =

∑
j∈Low (q̂j�)

1−α+
∑

j∈High(q̂j�)
1−α

≤ cost(Π,n)ε
(

�
n

)1−α
(1 + ε)1−α +

∑
j∈High(qjn)1−α

(
�
n

)1−α
(

q̂j

qj

)1−α

≤
cost(Π,n)ε

(
�
n

)1−α
(1 + ε) +

∑
j∈High(qjn)1−α

(
�
n

)1−α
(1 + ε) ≤

(1+ ε)2cost(Π,n)
(

�
n

)1−α
with probability at least 1− exp

{−qjnε2/2
} ≥ 1− δ3.

For low-probability j, the number of item j sold is ≥ (
ε
r

) 1
1−α n(1− ε) with prob-

ability ≥ 1−δ3. A union bound extends these to all j with combined probability
1 − rδ3.

Thus we obtain the upper bound cost(Π,n) ≤ cost(Π, �)(1+ε)2(1−α)
(

n
�

)1−α,
and the lower bound cost(Π,n) ≥ cost(Π, �)(1 + ε)−2

(
n
�

)1−α, with probability
at least 1 − r2r(δ1 + δ2 + δ3).

A naive union bound can be done over all the permutations, which will add
a factor of r!, we can reduce the factor to r2r by noticing that we are only
interested in events of the type πj , namely a given item (say, j) is in the set of
desired items, and another set (say, {1, . . . , j − 1}) is not in that set. This has
only r2r different events we need to perform the union over. 	


Online Performance Guarantees: We define GreedyGeneralCost(�, n) as
follows. For the first � customers it allocates arbitrary items they desire, and
observed their desired sets. Given the sets of the first � customers, it runs
GreedyGeneralCost and computes a permutation Π̂ of the items. For the
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remaining customers it allocates using permutation Π̂. Namely, each customer
is allocated the first item in the permutation Π̂ that is in its desired set. The fol-
lowing theorem bounds the performance of GreedyGeneralCost(�, n) for α-poly
cost functions.

Theorem 7. With probability 1 − δ(�) (for δ(�) as in Theorem6) The cost of
GreedyGeneralCost(�, n) is at most � + (1+ε)4−2α

1−α OPT.

Proof. Let Π̂ be the permutation policy produced by GreedyGeneralCost, after
the � first customers. By Theorem 5, cost(Π̂, �) ≤ 1

1−α min
Π

cost(Π, �). By Theo-

rem 6, min
Π

cost(Π, �) ≤ min
Π

cost(Π,n)(1 + ε)2
(

�
n

)1−α
with probability 1 − δ(�).

Additionally, on this same event, cost(Π̂, n) ≤ cost(Π̂, �)(1 + ε)2(1−α)
(

n
�

)1−α.

Altogether, this implies cost(Π̂, n) ≤ (1+ε)2(1−α)

1−α

(
n
�

)1−α minΠ cost(Π,n)(1 +

ε)2
(

�
n

)1−α
= (1+ε)4−2α

1−α minΠ cost(Π,n). 	


Corollary 2. For any fixed constant δ ∈ (0, 1), for any � ≥ 3
ε2

(
r
ε

) 1
1−α ln

(
3r2r

δ

)
,

and n ≥ (
�
ε

) 1
1−α , with probability at least 1 − δ, GreedyGeneralCost(n, �) is at

most
(

(1+ε)4−2α

1−α + ε
)

OPT.

Generalization for β-nice Costs: We now consider the case of β-nice costs
in the online setting. Due to space constraints, the proofs of these results are
deferred to the full version of this paper online. We begin with a helper lemma.

Lemma 2. For any cost cost satisfying Assumption 4 with a given β, for any
k ≥ 1, the cost cost′ with cost′

i(x) = costi(kx) also satisfies Assumption 4 with
the same β.

Now the strategy is to run GreedyGeneralCost with the rescaled cost function
cost′

i(x) = costi(n
� x). This provides a β-approximation guarantee for the rescaled

problem, which, moreover is a permutation policy. The following shows we have
uniform convergence of estimates to true costs for permutation policies.

Theorem 8. Suppose n ≥ � and the cost function satisfies Assumption 4, and
that ∀i, costi(1) ∈ [1, B], where B ≥ 1 is constant. Let cost′

i(x) = costi(n
� x).

With probability at least 1 − δ(�), for any permutations Π,

cost′(Π, �)
1 − ε

1 + 2ε − ε2
≤ cost(Π,n) ≤ cost′(Π, �)

(1 + ε)2

1 − ε
,

where δ(�) = r22r+1(δ1 + δ2) and δ1 =
exp{− ε3

3rB(1+ε)n
log2(1+

1
2β )}, δ2 = exp{−� ε3

rB(1+ε)n
log2(1+

1
2β )−1/3}.

Using the above uniform convergence result, we find that if we run Greedy-
GeneralCost on the sample of � = o(n) initial buyers and apply it to the entire
population, we achieve near optimal cost.
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Theorem 9. If cost satisfies Assumption 4, and has costj(1) ∈ [1, B] for every
j ≤ r, with probability ≥ 1 − δ, the cost of applying the policy found by
GreedyGeneralCost({1, . . . , �}) to all n customers is at most
β (1+ε)2(1+2ε−ε2)

(1−ε)2 OPT(n), where � =
⌈
n1−log2(1+

1
2β ) 3rB(1+ε)

ε3 ln
(

r22r+2

δ

)⌉
= o(n).

Note that Theorem 9 assumes the initial � = o(n) buyers can be “previewed”
before allocations are made and need not themselves be allocated online.

5 General Unit Demand Utilities

In this section we show how to give a constant approximation for the case of
general unit demand buyers in the offline setting in the case when we have
a budget B to bound the cost we incur and we would like to maximize the
buyers social welfare given this budget constraint. The main tool would be a
reduction of our problem to the budgeted maximum coverage problem. Due to
space constraints, we defer all proofs in this section to the full version of this
paper online.

Definition 2. An instance of the budgeted maximum coverage problem has a
universe X of m elements where each xi ∈ X has an associated weight wi;
there is a collection of m sets B such that each sets Sj ∈ B has a cost cj; and
there is a budget L. A feasible solution is a collection of sets B′ ⊂ B such that∑

Sj∈B′ cj ≤ L. The goal is to maximize the weight of the elements in B′, i.e.,
w(B′) =

∑
xi∈∪S∈B′S wi.

While the budgeted maximum coverage problem is NP-complete there is a
(1−1/e) approximation algorithm [7]. Their algorithm is a variation of the greedy
algorithm, where on the one hand it computes the greedy allocation, where each
time a set which maximizes the ratio between weight of the elements covered
and the cost of the set is added, as long as the budget constraint is not violated.
On the other hand the single best set is computed. The output is the best of the
two alternative (either the single best set of the greedy allocation).

Before we show the reduction from a general unit demand utility to the
budgeted maximum coverage problem, we show a simpler case where for each
buyer j has a value vj such that of any item i either vj = uj,i or uj,i = 0, which
we call buyer-uniform unit demand.

Lemma 3. There is a reduction from the budgeted buyer-uniform unit demand
buyers problem to the budgeted maximum coverage problem. In addition the
greedy algorithm can be computed in polynomial time on the resulting instance.

In the above reduction we used very heavily the fact that each buyer j has a
single valuation vj regardless of which desired item it gets. In the following we
show a slightly more involved reduction which handles the general unit demand
buyers.
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Lemma 4. There is a reduction from the budgeted general unit demand buy-
ers problem to the budgeted maximum coverage problem. In addition the greedy
algorithm can be computed in polynomial time on the resulting instance.

Combining our reduction with approximation algorithm of [7] we have the
following theorem.

Theorem 10. There exists a poly-time algorithm for the budgeted general unit
demand buyers problem which achieves social welfare at least (1 − 1/e)OPT.

Generalization: To extend these results to the online setting, we will use The-
orem 2 to represent allocations by pricing policies, and then use the results from
above to learn a good pricing policy based on an initial sample.

Theorem 11. Suppose every uj,i ∈ [0, C]. With � = O((1/ε2)(r3 log(rC/ε) +
log(1/δ))) random samples, with probability at least 1 − δ, the empirical per-
customer social welfare is within ±ε of the expected per-customer social welfare,
uniformly over all price vectors in [0, C]r.

We also make use of the following result.

Theorem 12. With � ≥ O((1/ε2)(r2 + log(1/δ))) random samples, with prob-
ability at least 1 − δ, the empirical probability of a customer buying item j is
within ±ε of the actual probability, uniformly over all price vectors and j.

Consider an algorithm that does not allocate anything to the first � =
O((C/ε)2(r3 log(rC/ε)+log(1/δ))) customers, then finds a (1−1/e)-approximate
solution to the offline budgeted general unit demand problem on these � cus-
tomers, with budget B, and cost functions cost′

i(x) = costi(x · ((n − �)/�)), via
the reduction to the budgeted maximum coverage problem. The algorithm then
finds a pricing policy price providing at least as good of a social welfare on these
� customers, within this budget B. Let �i denote the number of copies of item
i this pricing policy allocates among the � customers. The algorithm then pro-
ceeds to allocate to the remaining stream of n − � customers using this pricing
policy, but if at any time the item i this pricing policy determines should be
allocated to the next customer has already had �i((n − �)/�) copies allocated to
customers in the past, then the algorithm does not allocate any item to that
customer and simply moves on to the next customer. (As stated, this is not
incentive-compatible: we are assuming that if a buyer enters the store and finds
his most-desired item is sold-out, he just leaves rather than buying some other
item; however, we rectify this in Corollary 3 below.) We have the following result
on the performance of this algorithm. The proof is provided in the full version
of this paper online.

Theorem 13. The allocation given by the above algorithm does not exceed the
budget B, and if n ≥ O((1/ε)�), with probability at least 1−4δ, achieves a social
welfare at least (1 − 1/e)OPT − (2(2 − 1/e)(1 + Cr) + C)εn.
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To make the above procedure incentive-compatible, if at any time the pricing
policy attempts to allocate more than �i((n−�)/�) copies of item i, then for that
customer j we can just allocate the item i′ that has the next-highest uj,i′ −pricei′

among those i′ for which the number of copies of item i′ this policy has attempted
to allocate previously is less than �i′((n − �)/�) (or nothing, if all remaining i′

have uj,i′ − pricei′ < 0). A simple modification of the above proof yields the
following result on the performance of this algorithm; the proof appears in the
full version of this paper online.

Corollary 3. The allocation given by the above algorithm does not exceed the
budget B, and if n ≥ O((1/ε)�), with probability at least 1 − 4δ, the allocation
achieves a social welfare at least (1 − 1/e)OPT − O(Cr2εn).
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Abstract. We study the design of multilateral markets, where agents
with several different roles engage in trade. We first observe that the
modular approach proposed by Dütting et al. [5] for bilateral markets
can also be applied in multilateral markets. This gives a general method
to design Deferred Acceptance mechanisms in such settings; these mech-
anisms, defined by Milgrom and Segal [10], are known to satisfy some
highly desired properties.

We then show applications of this framework in the context of supply
chains. We show how existing mechanisms can be implemented as mul-
tilateral Deferred Acceptance mechanisms, and thus exhibit nice prac-
tical properties (as group strategy-proofness and equivalence to clock
auctions). We use the general framework to design a novel mechanism
that improves upon previous mechanisms in terms of social welfare. Our
mechanism manages to avoid “trade reduction” in some scenarios, while
maintaining the incentive and budget-balance properties.

1 Introduction

Markets are often characterized by multiplicity of participants with diverse char-
acteristics. While much of the mechanism-design literature focuses on bilateral
settings that distinguish between two types of agents - buyers and sellers, many
real life applications require a more complex description of markets. For instance,
dealing with markets in which buyers wish to purchase a bundle of items that
are sold separately by different sellers might require a distinction between dif-
ferent types of sellers. Further and more complex distinctions will be needed as
markets become more complex and involve trade between diversified agents.

In settings of bilateral trade, and nonetheless in more complex settings where
agents engage in several bilateral transactions, it is generally impossible to achieve
an efficient allocation while maintaining agents’ participation constraints, incen-
tive compatibility and budget balance [12]. Therefore, some goals needs to be sac-
rificed in order to fully achieve the others. For instance the VCG mechanism main-
tains agents’ incentives and implements the efficient allocation but is generally not
budget balanced. Other mechanisms relax incentive compatibility to achieve the
efficient allocation and budget balance (see [7] for a survey).

In this paper we devise a family of mechanisms named multilateral deferred-
acceptance (MDA) mechanisms. These mechanisms apply the methodology of

c© Springer-Verlag Berlin Heidelberg 2015
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deferred-acceptance (DA) auctions, introduced by Milgrom and Segal [10], to
multilateral markets. DA auctions set allocations using an iterative process of
rejecting the least attractive bid according to a carefully defined ranking func-
tion. Combining this sort of algorithm with threshold payments yields a mecha-
nism with strong incentive properties - other than being truthful, the DA auction
is also weakly group-strategy proof (WGSP). This means that no coalition of
agents has a joint deviation from truthful bidding that is strictly profitable for
all members of the coalition. Another desired feature of DA auctions is that they
are equivalent to clock auctions, an auction format which is intuitive for bidders
and is thus considered practical. WGSP and equivalence to clock auctions are
desired properties of DA auctions that are not generally attained by other mech-
anisms. For example, the VCG mechanism and greedy mechanisms such as [6]
do not possess these properties.

Dütting et al. [5] took a modular approach to adapt DA auctions to two-
sided markets. We take the general concept introduced in [5] one step forward
and observe that their modular approach can also be applied to multilateral
markets with several types of agents. Similar to [5], the mechanism’s operation
is determined by two elements: separate rankings for each set of agents and
a composition rule. In each period the composition rule selects few classes (or
groups) of agents. The least desirable agent, according to the corresponding
ranking, of each selected class will be rejected. When the mechanism terminates,
all unrejected agents are declared winners and threshold payments are set. We
generalize the result by [5] and show that any mechanism from this family (MDA
mechanisms) is equivalent to a one-sided DA auction; thus, it is strategy-proof,
individually rational, WGSP and equivalent to a clock auction.

After introducing the class of MDA mechanisms, we apply them in the con-
text of supply chains (see, e.g., [16,17]). Supply chains are collections of markets
where each agent engages in at least one bilateral trade, either as a seller of
an item he produces, or as a buyer of items (consumption goods or inputs for
production). Supply chains are thus composed of several two-sided markets and
feature the same impossibilities that exist in bilateral-trade settings of maximiz-
ing social welfare while maintaining agents’ incentives and budget balance.

We study a model for supply chains that was introduced by Babaioff and
Nisan [1] and Babaioff and Walsh [2]. In this model, the supply chain can
be viewed as a directed tree-graph with a node per each good. Ingoing edges
to a node define the inputs for the production of the relevant good, and pro-
ducers incur a manufacturing cost which is private information. [1,2] showed a
dominant-strategy truthful, budget-balanced mechanism that waives only the
least profitable trade (or “procurement set”, which is a minimal trade cycle in a
supply chain and typically involves multiple agents).

Our first result for supply chains shows that the trade reduction mechanisms
of [1,2] can be implemented as MDA mechanisms. Thus, other than being IR,
strategy-proof and budget balanced (as proven in [1,2]), these trade reduction
mechanisms are also WGSP and equivalent to clock auctions. This is shown
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under the assumption of homogeneous demand (i.e., all end consumers demand
the same bundle).1

Our second and main result shows how to use the machinery of MDA mech-
anisms to construct a novel mechanism that provides an improved outcome in
terms of social welfare compared to the above trade reduction mechanisms. It
operates by iteratively rejecting procurement sets, but unlike the trade reduc-
tion mechanism that always waives one procurement set that engages in trade in
an efficient outcome, our mechanism will sometimes result in the efficient allo-
cation (with no reduction of valuable trades). Using the values of agents that
have already been declared losers, we bound the payments of active agents and
identify situations where the efficient outcome can be implemented while main-
taining a balanced budget. In markets where the efficient allocation consists of a
small number of procurement sets, this improvement may be substantial. We ran
computer simulations of simple supply chain networks. In the simulations, our
new mechanism improves upon the trade reduction mechanisms in around 17%
of the instances and saves up to 100% of the overall efficiency. This provides
a good indication that the improvement in efficiency is not a rare phenomenon
and can be significant.

The seminal paper by McAfee [8] introduced the trade reduction technique.2

McAfee’s mechanism was given for two-sided markets with unit-demand buyers
and unit-supply sellers. This mechanism either implements the efficient alloca-
tion or reduces the least valuable profitable trade. [5] proved that the trade reduc-
tion mechanism for two-sided markets (a simplified version of [8] that always
eliminates one valuable trade) can be implemented via a DA mechanism and it
is therefore WGSP and equivalent to a clock auction.3

The paper is organized as follows: Sect. 2 defines deferred acceptance mech-
anisms. Section 3 defines MDA mechanisms and presents their main properties.
Section 4 introduces the applications of MDA mechanisms to supply chains.

2 General Deferred-Acceptance Auctions

Consider a set N of single-parameter agents and let F ⊆ 2N be the set of feasible
sets of agents. An allocation in this setting is represented by a set of winning
1 Our model is a generalization of the linear model in [1]; [2] did not require homoge-

neous demand.
2 There is a vast literature on the efficiency of two-sided auctions that followed [8],

see, e.g., [3,13,14]. The efficiency of DA auctions was studied in [4].
3 Our work is inspired by [8] in several ways. First, we sacrifice efficiency in order to

satisfy incentive constraints and budget balance and our mechanism loses at most
the least valuable procurement set. In addition, McAfee’s mechanism computed a
price as a function of the “best” losing bids, and if this price cleared the market, no
trade reduction would take place. Our mechanism acts in the same spirit and some-
times implements the efficient allocation, but it is not a generalization of McAfee’s
mechanism. In fact, our mechanism always omits one trade when applied to the
degenerate supply chain of a single two-sided market with unit-demand buyers; the
benefits of our mechanism stem in more complex markets.
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agents A ∈ F . Every agent i ∈ N is characterized by a type ti such that given
an allocation A and payments {pi}i∈N ⊆ R, agent i’s utility is ti + pi if i ∈ A
and pi if i /∈ A. An agent’s type is assumed to be private information.

In this setting, [10] define DA auctions. Each agent i ∈ N is required to
submit a single bid from a finite set of possible bids Bi ⊆ R. According to
submitted bids, an iterative process of rejecting agents is preformed and all
agents that are not rejected in the process are declared winners. We now describe
this process in detail.

An agent is considered active in iteration t if he has not been rejected in any
iteration prior to t. Let At ⊆ N denote the set of active agents at the beginning
of iteration t. Each active agent is assigned a score which is a function of his bid
and the bids of all previously rejected agents:

Definition 1. [10] A DA scoring function is a function of the form σt
i :

Bi × BN\At
→ R+ that is non-decreasing in the first argument.

The scoring functions form a ranking over the set of active agents in which
higher ranked agents are considered less attractive. Following this logic, the DA
algorithm iteratively rejects the agents with the highest score, until all agents
have a score of zero. Formally:

Definition 2. [10] Given DA scoring functions, a DA algorithm is defined
as follows: All bidders are initially active. If all active bidders have a score of
zero, the algorithm terminates and the remaining active bidders are declared win-
ners. Otherwise, the algorithm rejects the active bidders with the highest score,
removing them from the active set, and iterates.

A DA auction can now be formally defined as follows. We then define two
desired properties of DA auctions.

Definition 3. [10] A DA auction is a sealed-bid auction that computes an
allocation using a DA algorithm and makes the corresponding threshold payments
to winners.4 Losing agents are paid zero.

Definition 4. A mechanism is weakly group strategy-proof (WGSP) if for
every profile of truthful reports b, every set of agents S ⊆ N and every strategy
profile b′

S of these agents, at least one agent in S has a weakly higher payoff from
the profile of truthful reports b than from the strategy profile (bN\S , b′

S).

Namely, a mechanism is WGSP if no coalition of agents can do strictly better
by misreporting their values, given that all other agents report their true values.

Definition 5. A descending clock auction is a dynamic mechanism that
presents a decreasing sequence of prices to each bidder. Each presentation is
followed by a decision period in which each bidder decides whether to exit or
continue. When the auction ends, the bidders that have never exited are declared
winners and are paid their last (lowest) accepted prices.
4 Threshold payments will be formally defined in the next section. Informally, these

are the highest bids for a winning agent such that he remains a winner.
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Theorem 6. [10] Any DA auction is individually rational (IR), strategy-proof,
WGSP and equivalent to a clock auction.

Milgrom and Segal [10] show that several previously known mechanisms
(e.g., [9,11,15]) can be implemented as DA auctions and thus inherit all the
properties specified in Theorem 6. In Sect. 4.1 we take a similar approach by
showing that the mechanisms in [1,2] can be implemented as MDA mechanisms
and thus inherit their properties.

3 Multilateral Deferred-Acceptance Mechanisms

We now turn to settings of multilateral markets in which agents might differ in
several aspects other than their types. Consider a setting in which agents have
some distinct and known characteristics which allow sorting them into different
classes. Let K be the number of agents’ classes and denote by Nk the set of
agents of class k ∈ {1, ...,K}. Thus, the set of all agents N can be described as
a union of K disjoint sets N = N1 ∪ N2 ∪ · · · ∪ NK .5

3.1 Multilateral Deferred-Acceptance Algorithms

For all i ∈ N let Bi ⊆ R be the finite set of possible bids for bidder i, so the input
for the MDA algorithm is a vector b ∈ Πi∈NBi.6 In the spirit of [5], the MDA
algorithm is composed of two elements: scoring functions and composition
functions. We now define these two elements and describe how they construct
an MDA algorithm. Scoring functions are defined similarly to [10] (Definition 1):

Definition 7. For each k = 1, ...,K and i ∈ Nk ∩ At, agent i’s scoring func-
tion stk,i : Bi×BNk\At

→ R+ is non-decreasing in the first argument and assures
no ties between agents of the same class.7

The scoring of agent i ∈ Nk ∩At is compared to the scores of all other active
agents of class k in period t to form a ranking on the set Nk ∩ At. The “no ties”
5 In a two-sided market with producers and consumers of a homogeneous good, N1

might be the set of producers and N2 might be the set of consumers. In that case
producers’ types will be thought of as production costs, so a producer with a cost
ci will have utility of −ci + pi if i ∈ A, and pi otherwise. Consumers’ types will be
thought of as their value from possessing one item of the traded good.

6 As mentioned in Sect. 2, [10] define DA auctions with finite bid spaces. In order
to use their results, we do the same. This also requires a more delicate definition
of truthfulness and we follow the definition of strategy-proofness in [10] which uses
the standard dominant-strategy truthfulness, only with taking care of the finite bid
space. We refer the readers to [10] for the exact definition.

7 In order to keep notation simple, the scoring functions are denoted with superscript
t yet they are allowed to depend on the entire history of active agents (A1, ..., At)
and not just on the t-period information. In the remainder of the paper, all objects
denoted with superscript t are allowed to be history dependent.
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requirement does not appear in [10] and it is made here as we sometimes wish
to carefully control the number of agents of each class that are rejected. In order
to simplify the presentation of our mechanisms, from now on, whenever possible
ties occur, we assume the existence of a tie-breaking rule instead of formally
defining scoring functions with no ties.

Composition Functions: In each period a different composition function
is defined. Its inputs are the bids of all previously rejected agents and its output
is a subset of {1, ...,K}.

Definition 8. In each period t, a composition function Ct is a function of
the form Ct : BN\At

→ 2K .

Multilateral Deferred-Acceptance Algorithms: Given a set of scoring
functions and composition functions, an MDA algorithm is defined as follows: In
each period t, the composition function Ct(bN\At

) outputs a subset of classes. For
each class k ∈ Ct(bN\At

), the algorithm queries the active agents of class k and
rejects the highest scoring one, according to the scoring functions {stk,i}i∈Nk∩At

.
This means that in period t the number of agents rejected is |Ct(bN\At

)|. If
Ct(bN\At

) = ∅, the algorithm terminates and all active agents are declared
winners. The algorithm’s operation can be described in the following manner:

1. Initialize the algorithm with A1 = N .
2. For each t ≥ 1, if Ct(bN\At

) = ∅, stop. Accept all currently active agents At.
3. If Ct(bN\At

) = Ct 	= ∅, define: At+1 = At \ ⋃
k∈Ct argmax

i∈Nk∩At

stk,i(bi, bNk\At
)

and return to 2.

3.2 Multilateral Deferred-Acceptance Mechanisms

To complete describing the MDA mechanism we now define the payments.

Definition 9. Given an MDA algorithm and a vector of bids b ∈ Πi∈NBi, let
A(b) denote the set of winning agents. The threshold payment of a winning
agent i ∈ A(b) is defined as sup{b′

i ∈ Bi|i ∈ A(b′
i, b−i)}

Definition 10. An MDA mechanism computes allocation using an MDA
algorithm and makes the corresponding threshold payments to winning agents.
Losing agents pay zero.

In the full version of the paper we show that every MDA mechanism can be
implemented as a DA auction. The method we use is similar to the one used
in [5] for the generalization of DA auctions to two-sided markets.

Proposition 11. For every MDA mechanism there is an equivalent DA auction.

Proposition 11 establishes that MDA mechanisms inherit all the properties
of DA auctions. Together with Theorem 6, we conclude that:

Corollary 12. Any MDA mechanism is IR, strategy-proof, WGSP and equiva-
lent to a clock auction.
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4 Applications to Supply Chains

We now present a model of supply chains which follows [2] and generalizes the
linear supply-chain model in [1]. Consider an economy with K types of items,
denoted 1, ..,K. We begin by describing the production of these items, assuming
that all items of a specific type are manufactured in the same manner, using the
same inputs.8

Assumption 1 Each product is manufactured with a unique manufacturing
technology.

Production in this economy can be described as a directed a-cyclical graph
with K nodes representing the K different types of items. In this graph an edge
(j, k) indicates that the production of item k uses item j as an input and the
weight of the edge is the number of items of type j needed for production. Since
any directed a-cyclical graph has a topological ordering,9 assume WLOG that
this ordering is given by the numbering of items’ types. This means that the
manufacturing of a type-k item makes use only of items of types 1, ..., k − 1.

This production structure allows us to characterize the production of a type-
k item with a production vector qk = (q1,k, ..., qK,k)′ ∈ Z

k−1
≤0 × {1} × {0}K−k.

Arguments 1, ..., k − 1 of the production vector are non-positive integers rep-
resenting the quantities of inputs required for production (i.e., −qj,k for j =
1, ..., k − 1 is the weight of the edge (j, k)).10 qk,k = 1 indicates that one unit of
item k is being produced in the process. Items k + 1, ...,K are not involved in
the production of item k, so qk+1,k = · · · = qK,k = 0.

We further assume that each producer in the economy can manufacture a sin-
gle item. Thus, all the producers that manufacture an item of type k ∈ {1, ...,K}
are substitutes and will be regarded as agents of class k. Let ci ∈ [0, c̄k] denote
the production cost of producer i of class k. A producer’s class and production
vector are assumed to be common knowledge but his cost is private information.

We now turn to describe end consumers in the economy. These agents lack
any production abilities but they benefit from consumption. All consumers are
single minded, meaning that each consumer values only one particular bundle of
items and will gain zero utility from consuming any smaller bundle.

Up until now all our assumptions follow the ones made in [2]; We now add
an additional assumption, which was also assumed in [1]:

Assumption 2 Homogeneous demand - All end consumers demand the
same bundle d = (d1, ..., dK)′ ∈ N

K where dk is the demand from item k.
8 In the full paper, we relax the assumption of unique manufacturing technology and

design an MDA mechanism for scenarios where a certain good can be produced from
different types of inputs.

9 A topological ordering of a directed a-cyclical graph is an ordering of the nodes such
that for every edge (j, k), the node j comes before k in that ordering.

10 The assumption that qj,k for j < k is an integer, rather than a real number, is
without loss of generality since any amount of items can be regarded as one unit.
For example, if item j is flour and all items k > j are produced using amounts of
flour in multiples of 0.5 kg, set one unit of item j to be 0.5 kg of flour.
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The demanded bundle d is commonly known but consumer i’s valuation for
this bundle, vi ∈ [0, v̄], is private information. We refer to consumers as agents
of class K + 1.

Define the production matrix as Q = (q1, ..., qK). If there are μk producers
of class k and μ = (μ1, ..., μK)′ then the supply of items is given by the vector
Q ·μ where the k’th argument is the supply of item k. Denote by μ̃k the number
of class-k producers needed to meet the demand d of one consumer, i.e., the
vector μ̃ = (μ̃1, ..., μ̃K) solves Q · μ̃ = d.11

Assume WLOG that initially there is no excess demand of any item, i.e.,
that Q · μ ≥ |NK+1| · d, where μ = (|N1|, ..., |NK |)′. An equivalent requirement
is that μ ≥ |NK+1| · μ̃. If this condition is not met, reject the highest bidding
consumers until there is no excess demand.

A procurement set ([2]) is a set of agents that contains one consumer and the
minimal amount of producers needed to meet his demand. Formally:

Definition 13. A procurement set is a set of agents containing one consumer
and μ̃k producers of class k for every 1 ≤ k ≤ K.

Example 14. Figure 1 depicts a simple supply chain; fabric will be referred to as
item 1, hats as item 2 and shirts as item 3. The production structure is such that
producing either one hat or one shirt requires one roll of fabric. This implies
that the production vectors are q1 = (1, 0, 0)′, q2 = (−1, 1, 0)′, q3 = (−1, 0, 1)′

and the production matrix is Q = (q1, q2, q3).
Each consumer in this example demands a bundle of one hat and two shirts,

i.e., d = (0, 1, 2)′. This implies that μ̃ = Q−1 · d = (3, 1, 2)′ which means that
a procurement set in this example contains one consumer, three producers of
fabric, one producer of hats and two producers of shirts.

Fig. 1. A simple supply chain. The optimal allocation is marked in bold and the Trade
Reduction allocation is marked with asterisks.

Definition 15. [2] Given a set of bids, the Trade Reduction allocation is
obtained from the optimal allocation by reducing one procurement set. The pro-
curement set reduced is the one with the lowest value consumer and the highest
11 Q is a unitriangular matrix with negative integers on the entries above the main

diagonal. Since d ∈ N
K , it can be shown that µ̃ = Q−1 ·d is a vector of non-negative

integers and thus appropriately represents numbers of agents.
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cost producers out of all the procurement sets in the optimal allocation. Together
with threshold payments, determined by submitted bids, this allocation rule estab-
lishes the Trade Reduction mechanism.

Example 16. In Fig. 1 the optimal allocation is marked in bold and the Trade
Reduction allocation is marked with asterisks. The threshold payments for win-
ning agents in the examples: fabric producers are paid 5 each, the hat producer
is paid 12, shirts producers are paid 13 and the consumer pays 90.

Proposition 17. [2] The Trade Reduction mechanism is IR, strategy-proof,
budget balanced and incurs the loss of the least valuable procurement set in the
optimal allocation.

4.1 The MDA Trade Reduction Mechanism

The MDA mechanism we present in this section implements the Trade Reduction
allocation in a process that is equivalent to iterative rejection of procurement
sets. In each iteration, the MDA algorithm examines the most valuable procure-
ment set out of the ones that were rejected so far. The algorithm calculates the
net cost of this procurement set, i.e., the sum of costs of all the producers in the
set minus the value of the consumer in the set. While this net cost is strictly
positive, the algorithm keeps on rejecting more procurement sets. Immediately
after the mechanism rejects one procurement set with a non-negative net cost,
it terminates and accepts all currently active agents. This way only one efficient
procurement set is rejected, but all the rest are accepted.

We now turn to the formal definition of the mechanism. For each k = 1, ...,K
let Bk be a finite set of possible bids for all producers of class k, such that
Bk ⊆ [0, c̄k] and maxBk > c̄k. Let BK+1 ⊆ [−v̄, 0] be a finite set possible bids
for all consumers, such that max BK+1 > 0.12

Scoring Functions: Producers of each class are ranked in an ascending
order of costs and consumers are ranked in a descending order of values, i.e., all
agents are ranked in a descending order of attractiveness. Formally:

∀ t, k ∈ {1, ...,K}, i ∈ At ∩ Nk, stk,i = ci
∀ t, i ∈ At ∩ NK+1, stK+1,i = v̄ − vi

(1)

The composition rule is based on two auxiliary functions:
12 Consumers’ bid spaces are defined as subsets of [−v̄, 0] so we can treat all agents,

producers and consumers, in a similar manner such that higher bidding agents are
less attractive. Thus, the mechanism will determine negative monetary transfers for
consumers and positive transfers for producers. The maximal (minimal) possible
bid of a producer (consumer) is set to be higher (lower) than his highest possible
cost (lowest possible value) to insure that participation is strictly preferable to non-
participation (see [10]).
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1. The Net Cost Function NCt: For each period t, denote by NCt(bN\At
)

the net cost of the most valuable procurement set rejected so far. Formally:

NCt(bN\At
) =

K∑

k=1

µ̃k∑

l=1

ctk,(l) − vt
max (2)

where ctk,(l) is the l’th lowest cost reported in bNk\At
and vt

max is the highest
value reported by a rejected consumer (i.e., −vt

max is the minimal bid in
bNK+1\At

).13

2. The Excess Supply Function ESt: Let μt
k denote the number of active

agents of class k in period t, i.e., μt
k = |Nk ∩ At|. The aggregate demand in

period t is equal to μt
K+1·d and the number of producers of class k ∈ {1, ...,K}

needed to meet it is μt
K+1 · μ̃k. If there are more producers of class k than

that, regard the class-k producers as being in excess. According to this logic,
the excess supply function indicates the classes of producers that are in excess
in period t. Formally, ESt(At) =

{
k|1 ≤ k ≤ K, μt

k > μt
K+1 · μ̃k

}
.

Composition Functions: Now we can define the composition functions,
using the auxiliary functions NCt and ESt. For every period t, define:

Ct(bN\At
) =

⎧
⎨

⎩

ESt(At) if ESt(At) 	= ∅
{1, ...,K + 1} if ESt(At) = ∅ and NCt(bN\At

) > 0
∅ if ESt(At) = ∅ and NCt(bN\At

) ≤ 0
(3)

In words, the algorithm first rejects excess producers, as determined by the
first line in (3). This is repeated until there are no excess producers, i.e., until
ESt = ∅, which means that supply equals demand (recall that we assumed that
initially there is no excess demand). From this point, the algorithm’s operation
can be described as an iteration of three steps:

1. If there is no excess supply (ESt = ∅), examine the net cost of the most valu-
able procurement set rejected so far, NCt. If NCt is non-positive - terminate
(third line in (3)). Otherwise, continue to step 2.

2. Reject one agent of each class 1, ...,K + 1 (second line in (3)).
3. As long as there is excess supply (ESt 	= ∅), reject one agent of each class

k ∈ ESt (first line in (3)). Once ESt = ∅, return to step 1.

It is worth noting that each time steps 1–3 are completed, one procurement
set is rejected. The rejection begins with eliminating the highest bidding agent
of each class and continues with eliminating excess supply. Since each procure-
ment set includes only one consumer, this process is equivalent to rejecting one
procurement set, and that is the highest costing active procurement set.

As we show in the full version of the paper, the MDA trade reduction mech-
anism is in fact equivalent to the Trade Reduction mechanism:
13 For any k = 1, ..,K such that |Nk \ At| < µ̃k, set ctk,(|Nk\At|+1) = ctk,(|Nk\At|+2) =

... = ctk,(µ̃k)
= maxBk and if no consumer was rejected prior to period t, set vtmax =

0. Specifically, for t = 1 set NC1(∅) =
∑K

k=1 µ̃k maxBk.
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Proposition 18. Consider an MDA mechanism that is defined by the scoring
functions (1) and the composition functions (3). This mechanism is equivalent
to the Trade Reduction mechanism (Definition 15).

We can now use Proposition 18 (together with Proposition 11) to infer addi-
tional properties of the Trade Reduction mechanism of [1,2].

Corollary 19. The Trade Reduction mechanism is WGSP and equivalent to a
clock auction.

4.2 The Modified Trade Reduction Mechanism

The class of MDA mechanisms allows considerable freedom in design while main-
taining the incentive properties common to all MDA mechanisms. We use this
feature to modify the Trade Reduction mechanism and improve its social wel-
fare. The improvement is possible since the MDA trade reduction mechanism
(Sect. 4.1) uses an inaccurate measure of the deficit - the net cost of the last
rejected procurement set. This causes the mechanism to reject more trades than
is actually needs in order to keep the budget balanced. The new mechanism uses
a different measure of deficit and thus waives efficient trades less frequently. For
this, we need the following definition:

Definition 20. [10] For each agent i ∈ Nk ∩ At, the t-period threshold pay-
ment ptk,i(bN\At

), is the maximal bid that would have kept i active until iteration
t, holding all other bids fixed.

First note that the mechanism’s final threshold payment for a winning agent
is equal to his T -period threshold payment, where T is the final period. This
follows directly from the definition of threshold payments (Definition 9).

Second, note that for an active agent i ∈ Nk ∩ At, the t-period threshold
payment is determined only by bids of rejected agents of class k. This is true
since agent i’s bid can not affect Ct′

(bN\At
) for t′ < t and thus can not affect

which classes of agents are chosen for rejection prior to period t. The only effect
agent i’s bid has is on his ranking relative to other agents of class k. Furthermore,
in cases where agents are ranked solely by their bids (as will be the case here),
the t-period threshold payment of a class-k agent is equal to the bid of the last
rejected agent of his class. This means that all active agents of class k have the
same t-period threshold payments.

Definition 21. Consider an MDA mechanism in which agents are ranked only
by their bids. For all t and k, the t-period threshold payments for active
agents of class k is:

ptk =

{
min

j∈Nk\At−1

bj if Nk \ At−1 	= ∅
max Bk if Nk \ At−1 = ∅
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We now turn to the formal definition of the Modified Trade Reduction mech-
anism by defining the scoring and composition functions.

Scoring Functions: Similar to Sect. 4.1, producers are ranked in an ascend-
ing order of costs and consumers are ranked in a descending order of values (see
(1) for the formal definition).

The composition rule is similar to the one presented in Sect. 4.1 with the
slight difference that it rejects procurement sets according to a lower bound on
net costs, instead of the net costs themselves. The lower bound, or minimal net
cost, is a function of the t-period threshold payments:

MNCt(bN\At
) =

K∑

k=1

μ̃kp
t
k + ptK+1 (4)

Let the excess supply function ESt be defined as in Sect. 4.1. Now define the
composition function for each period t as follows:

Ct(bN\At
) =

⎧
⎨

⎩

ESt(At) if ESt(At) 	= ∅
{1, ...,K + 1} if ESt(At) = ∅ and MNCt(bN\At

) > 0
∅ if ESt(At) = ∅ and MNCt(bN\At

) ≤ 0
(5)

Definition 22. The Modified Trade Reduction mechanism is an MDA
mechanism with the scoring functions (1) and the composition functions (5).

The Modified Trade Reduction mechanism operates as follows. First it rejects
the least valuable procurement set. Fixing this allocation, the t-period threshold
payments are calculated together with the implied deficit, which is proportional
to MNCt. If the deficit is non-positive, the mechanism terminates. Otherwise,
the least valuable active procurement set is rejected, and so on. The critical stage
of the mechanism comes after it removes enough procurement sets and reaches
an efficient allocation. Then, it computes a “within-class” threshold payments
for each class of agents: the value of the most valuable agent that does not win in
the efficient allocation. It then checks what would happen if all active agents paid
their within-group threshold: if there is no deficit, then the mechanism outputs
the efficient allocation. Otherwise, a trade reduction is performed.14

Theorem 23. The Modified Trade Reduction mechanism satisfies:

1. It is IR, strategy-proof, WGSP and equivalent to a clock auction.
2. It is weakly budget balanced.
3. For every realization of values and costs, the mechanism either sets the opti-

mal allocation or incurs the loss of the least valuable procurement set.
14 Note that this procedure is not equivalent to the following mechanism: run VCG if it

is budget balanced, otherwise run a trade reduction. This mechanism is not truthful,
as the VCG payment of an agent can be determined by agents of other classes (who
therefore can manipulate the outcome). The Modified Trade Reduction mechanism
uses bounds on the payments that are determined only by the agents of each class,
and therefore it is strategy-proof.
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Item 1 holds since the modified mechanism is an MDA mechanism. For the
proof of item 2 see the full version of the paper. Next, we prove item 3.

Note that in each period, ptK+1 = −vt
max and ptk = ctk,(1) for all k = 1, ...,K.

Now use the definitions of NCt(bN\At
) and MNCt(bN\At

) ((2) and (4) respec-
tively) to get that for all t:

NCt(bN\At
) =

K∑

k=1

µ̃k∑

l=1

ctk,(l) − vt
max ≥

K∑

k=1

μ̃kc
t
k,(1) − vt

max =
K∑

k=1

μ̃kp
t
k + ptK+1 = MNCt(bN\At

) (6)

Since the modified mechanism terminates once MNCt ≤ 0 and the MDA trade
reduction mechanism terminates once NCt ≤ 0, the former mechanism termi-
nates (weakly) prior to the latter. Since the procurement sets are ordered in the
same manner in both mechanisms, the allocation determined by the modified
mechanism contains the Trade Reduction allocation but is possibly larger.

According to equation (6), MNCt is a lower bound on the net costs of all
previously rejected procurement sets. While MNCt is positive, all rejected pro-
curement sets have positive net costs and the mechanism rejects more procure-
ment sets. The mechanism terminates once a procurement set with a non-positive
lower bound on its net cost is rejected. By that time all the procurement sets
with positive net costs were rejected. The proof of 3 follows.

The Modified mechanism improves upon the Trade Reduction mechanism in
scenarios where there is variance in the values of agents, such that the “within-
class” threshold is sufficiently far from the values of the next losing agent. It
follows that we need consumers to demand more than one unit of some item for
having a different outcome than the Trade Reduction mechanism. (Indeed, when
applying the modified mechanism to the two-sided market in [8], it identifies with
the Trade Reduction Mechanism and eliminates one efficient trade.)

Simulations: We ran some computer simulations of simple supply chains where
the advantages of the modified mechanism can kick in. Our simulations consid-
ered economies with n = 2, ..., 10 buyers and 2n sellers of a homogeneous good,
where each buyer is interested in a bundle of two units and values were drawn
from the uniform distribution on [0, 1]. The modified mechanism improves upon
the Trade Reduction mechanism in around 17 % of the instances, even when the
market grows substantially. In small economies the improvement can be up to a
100 % of the overall efficiency. More details appear in the full version.

Diverse Manufacturing Technologies: The MDA framework allows us to
explore more general settings of supply chains. Specifically, we are able to relax
the assumption of unique manufacturing technologies (Assumption 1) and exam-
ine a setting in which part of the production process may be conducted with
different types of inputs. The details appear in the full version of the paper.
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Abstract. Given a consumer data-set, the axioms of revealed prefer-
ence proffer a binary test for rational behaviour. A natural (non-binary)
measure of the degree of rationality exhibited by the consumer is the
minimum number of data points whose removal induces a rationalisable
data-set. We study the computational complexity of the resultant con-
sumer rationality problem in this paper. This problem is, in the worst
case, equivalent (in terms of approximation) to the directed feedback ver-
tex set problem. Our main result is to obtain an exact threshold on the
number of commodities that separates easy cases and hard cases. Specif-
ically, for two-commodity markets the consumer rationality problem
is polynomial time solvable; we prove this via a reduction to the vertex
cover problem on perfect graphs. For three-commodity markets, how-
ever, the problem is NP-complete; we prove this using a reduction from
planar 3-sat that is based upon oriented-disc drawings.

1 Introduction

The theory of revealed preference, introduced by Samuelson [24,25], has long
been used in economics to test for rational behaviour. Specifically, given a
set of m commodities with price vector p, we wish to determine whether
the consumer always demands an affordable bundle x of maximum utility.
To test this question, assume we are given a collection of consumer data
{(p1,x1), (p2,x2), . . . , (pm,xm)}. Each pair (pi,xi) denotes the fact that the
consumer purchased the bundle of goods xi ∈ Rn when the prices were pi ∈ Rn.
(Here R = R≥0 denotes the set of non-negative real numbers.) Now, assuming
the consumer is rational, the selection of xi reveals information about the con-
sumer’s preferences; in particular, suppose that pi · xi ≥ pi · xj for some j �= i.
This means that the bundle xj was affordable, and available for selection, when
xi was chosen. In this case, we say xi is directly revealed preferred to xj and
denote this xi � xj . Furthermore, suppose we observe that xi � xj and that
xj � xk. Then, by transitivity of preference, we say xi is indirectly revealed
preferred to xk.

c© Springer-Verlag Berlin Heidelberg 2015
E. Markakis and G. Schäfer (Eds.): WINE 2015, LNCS 9470, pp. 187–200, 2015.
DOI: 10.1007/978-3-662-48995-6 14
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Fig. 1. A rational consumer and an irrational consumer.

For clarity of presentation, we will assume that all the chosen bundles are
distinct and that all revealed preferences are strict (no ties). For a rational
consumer, the data-set should then have the following property:

The Generalized Axiom of Revealed Preference.1

If x1 � x2, x2 � x3, . . . ,xk−2 � xk−1 and xk−1 � xk then xk � x1.
Moreover, Afriat [1] showed that the Generalized Axiom of Revealed Pref-

erence (garp) is also sufficient for the construction of a utility function which
rationalises the data-set. That is, Afriat showed that if the consumer data sat-
isfies garp then one can construct a utility function v : Rn → R such that v is
maximised at xi among the set of affordable bundles at prices pi. Hence, garp
is a necessary and sufficient condition for consumer rationality.

We can represent the preferences revealed by the consumer data via a directed
graph, D� = (V,A). This directed revealed preference graph contains a vertex
xi ∈ V for each data-pair (pi,xi), and an arc from xi to xj if and only if
xi � xj . Observe that garp holds if and only if the revealed preference graph
is acyclic. Consequently, Afriat’s theorem implies that the consumer is rational
if and only if D� contains no directed cycles.

For example, Fig. 1 displays visually two sets of consumer data. Each bundle
xi is paired with its price vector pi, and a dotted line is drawn through xi

perpendicular to pi. Note that pixi ≥ piy if and only if y lies on the opposite
side of the dotted line to the drawing of pi. Hence, for the first consumer (left),
we have x3 � x2, x3 � x1 and x2 � x1. This produces an acyclic revealed
preference graph D� and, therefore, her behaviour can be rationalized. On the
otherhand, the second consumer (right) reveals x3 � x2 � x3. This produces a
directed 2-cycle in D� and, so, her behaviour cannot be rationalised.

1.1 A Measure of Consumer Rationality

We have seen that graph acyclicity can be used to provide a test for consumer
rationality. However such a test is binary and, in practice, leads to the imme-
1 When ties are possible, this formulation is called the strong axiom of revealed pref-
erence; see Houthakker [17]. We refer the reader to the survey by Varian [29] for
details concerning the assorted axioms of revealed preference.
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diate conclusion of irrationality, as observed data sets typically induce cycles
in the revealed preference graph. Consequently, there has been a large body of
experimental and theoretical work designed to measure how close to rational the
behaviour of a consumer is. Examples include measurements based upon best-fit
perturbation errors (e.g. Afriat [2] and Varian [30]), measurements based upon
counting the number of rationality violations present in the data (e.g. Swof-
ford and Whitney [28] and Famulari [15]), and measurements based upon the
maximum size of a rational subset of the data (e.g. Koo [21] and Houtman and
Maks [18]). Gross [11] provides a review and analysis of some of these measures.
Recently new measures have been designed by Echenique et al. [10], Apesteguia
and Ballester [3], and Dean and Martin [6].

Combinatorially, perhaps the most natural measure is simply to count the
number of “irrational”purchases. That is, what is the minimum number of data-
points whose removal induces a rational set of data? The associated decision
problem is called the consumer rationality problem.

CONSUMER RATIONALITY
Instance: Consumer data (p1,x1), . . . , (pm,xm) ∈ Rn ×Rn, and an integer k.
Problem: Is there a sub-collection of at most k data points whose removal

produces a data set satisfying garp?

We note that this consumer rationality problem is dual to the measure
of Houtman and Maks [18]. Using the graphical representation, it can be seen
that the consumer rationality problem is a special case of the directed feed-
back vertex set problem. In fact, as we explain in Sect. 2, when there are
many goods, the two problems are equivalent. However, the consumer rational-
ity problem becomes easier to approximate as the number of commodities falls.
Indeed, the main contribution of this paper is to obtain an exact threshold on
the number of commodities that separates easy cases (polynomial) and hard
cases (NP-complete). In particular, we prove the problem is polytime solvable
for a two-commodity market (Sect. 3), but that it is NP-complete for a three-
commodity market (Sect. 4).

2 The General Case: Many Commodities

In this section we show that the consumer rationality problem in full gen-
erality is computationally equivalent to the directed feedback vertex set
(dfvs) problem.

DIRECTED FEEDBACK VERTEX SET
Instance: A directed graph D = (V,A), and an integer k.
Problem: Is there a set S of at most k vertices such that the induced subgraph

D[V \ S] is acyclic? (Such a set S is called a feedback vertex set.)

First, observe that the consumer rationality problem is a special case of
the directed feedback vertex set problem: we have seen that the dataset
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is rationalizable if and only if the preference graph is acyclic. Thus, the mini-
mum feedback vertex set in the preference graph D� clearly corresponds to the
minimum number of data points that must be removed to create a rationalizable
data-set.

On the other hand, provided the number of commodities is large, dfvs is
a special case of the consumer rationality problem. Specifically, Deb and
Pai [7] show that for any directed graph D there is a data-set on m = n com-
modities whose preference graph is D� = D; for completeness, we include the
short proof of this result.

Lemma 2.1. [7] Given sufficiently many commodities, we may construct any
digraph as a preference graph.

Proof. Let D be any digraph on n nodes. We will construct n pairs in Rn ×Rn

such that D� ∼= D. Denote pi = (pi
1, . . . , p

i
n), and set pi

i = 1, pi
j = 0 for j �= i.

Similarly, denote xi = (xi
1, . . . , x

i
n), and set xi

j = 1 if i = j, 0 if (i, j) ∈ D, and
2 if (i, j) /∈ D. We then have, pi · xi = 1, pi · xj = 0 if we want an arc from i to
j, and pi · xj = 2 if we do not want an arc, as desired. �	

It follows that any lower and upper bounds on approximation for (the opti-
mization version of) dfvs immediately apply to (the optimization version of)
the consumer rationality problem. The exact hardness of approximation for
dfvs is not known. The best upper bound is due to Seymour [26] who gave an
O(log n log log n) approximation algorithm. With respect to lower bounds, the
directed feedback vertex set problem is NP-complete [19]. Furthermore,
as we will see in Sect. 3, the consumer rationality problem is at least as
hard to approximate as vertex cover. It follows that dfvs problem cannot
be approximated to within a factor 1.36 [8] unless P = NP . Also, assuming
the Unique Games Conjecture [20], the minimum directed feedback vertex set
cannot be approximated to within any constant factor [14,27].

Lemma 2.1 shows the equivalence with directed feedback vertex set
applies when the number of commodities is at least the size of the data-set.
However, Deb and Pai [7] also show that for an m-commodity market, there
exists a directed graph on O(2m) vertices that cannot be realised as a preference
graph. This suggests that the hardness of the consumer rationality problem may
vary with the quantity of goods. Indeed, we now prove that this is the case.

3 The Case of Two Commodities

We begin by outlining the basic approach to proving polynomial solvability for
two goods. As described, the consumer rationality problem is a special case
of dvfs. For two goods, however, rather than considering all directed cycles, it
is sufficient to find a vertex hitting set for the set of digons (directed cycles con-
sisting of two arcs). The resulting problem can be solved by finding a minimum
vertex cover in a corresponding auxiliary undirected graph. The vertex cover
problem is, of course, itself hard [8]. But we prove that the auxiliary undirected
graph is perfect, and vertex cover is polytime solvable in perfect graphs.
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3.1 Two-Commodity Markets and the Vertex Cover Problem

So, our first step is to show that it suffices to hit only digons. Specifically, we
prove that every vertex-minimal cycle in the revealed preference graph D� is a
digon. This fact corresponds to the result that for two goods the Weak Axiom
of Revealed Preference is equivalent to the Generalised Axiom of Revealed Pref-
erence. This equivalence was noted by Samuelson [25] and formally proven by
Rose [23] in 1958; for a recent structurally motivated proof see [16].

Lemma 3.1. [23] For two commodities, every minimal cycle is a digon.

A direct graphical proof is presented in the full version of the paper.
Lemma 3.1 implies that a vertex set that intersects every digon will also intersect
each directed cycle of any length. Hence, to solve the consumer rationality
problem for two goods, it suffices to find a minimum cardinality hitting vertex
set for the digons of D�. We can do this by transforming the problem into one
of finding a minimum vertex cover in an undirected graph. Recall the vertex
cover problem is:

VERTEX COVER
instance: Given an undirected graph G = (V,E) and an integer k.
problem: Is there a set S of at most k vertices such that every edge has an

endpoint in S?

The transformation is then as follows: given the directed revealed preference
graph D� we create an auxiliary undirected graph G�. The vertex set V (G�) =
V (D�) so the undirected graph also has a vertex for each bundle xi. There is an
edge (xi,xj) in G� if and only if xi and xj induce a digon in D�. It is easy to
verify that a vertex cover in G� corresponds to a hitting set for digons of D�.

Let’s see some simple examples for the auxiliary graph G�. First consider
Fig. 2(a), where bundles are placed on a concave curve. Now every pair of vertices
xi and xj induce a digon in D�. Thus G� is an undirected clique. Now consider
Fig. 2(b). The vertices on the left induce a directed path in D�; the vertices along
the bottom also induce a directed path in D�. However each pair consisting of
one vertex on the left and one vertex on the bottom induce a digon in D�. Thus
G� is a complete bipartite graph.

3.2 Perfect Graphs

An undirected graph G is perfect if the chromatic number of any induced sub-
graph is equal to the cardinality of the maximum clique in the subgraph. In
1961, Berge [4] made the famous conjecture that an undirected graph is perfect
if and only if it contains neither an odd length hole nor an odd length antihole.
Here a hole is a chordless cycle with at least four vertices. An antihole is the
complement of a chordless cycle with at least four vertices. Berge’s conjecture
was finally proven by Chudnovsky, Robertson, Seymour and Thomas [5] in 2006.
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(a) A Complete Graph (b) A Complete Bipartite Graph

Fig. 2. Examples of the auxiliary undirected graph.

Theorem 3.1 (The Strong Perfect Graph Theorem [5]). An undirected
graph is perfect if and only if it contains no odd holes and no odd antiholes.

There are many important classes of perfect graphs, for example, cliques,
bipartitie graphs, chordal graphs, line graphs of bipartite graphs, and compara-
bility graphs.2 Interestingly, we now show that the class of 2D auxiliary revealed
preference graphs are also perfect. To prove this, we will need the following
geometric lemma, but first, we introduce the required notation.

Let x = (x1, x2) ∈ R2, and define

x↘ := {(y1, y2) ∈ R2 : y1 ≥ x1, y2 ≤ x2} ,

i.e. the points which lie “below and to the right” of x in the plane. Define x↖,
x↗ and x↙ similarly. In addition, define x↘↘ x↖↖, x↗↗ and x↙↙ by replacing
the inequalities with strict inequalities. Furthermore, if � is a line in the plane
of non-positive slope which intersects the positive quadrant, we say a point lies
below � if it lies in the same closed half-plane as the origin. For each data pair
(pi,xi), we define �i to be the line through xi perpendicular to pi. Hence, in
our setting xi � xj if and only if xj lies below �i. Note that, if xi � xj , then
we may not have xj ∈ x↗↗

i since pi is non-negative.

Lemma 3.2. Let {xi, xj , xk}, listed in order, be an induced path in the 2D aux-
iliary revealed preference graph G�. If xi ∈ x↖

j then xk ∈ x↖
j . (Similarly, if

xi ∈ x↘
j then xk ∈ x↘

j .)

Proof. Recall the assumption that the bundles distinct, that is, xi �= xj for all
i �= j. Because {xi, xj} is an edge in the auxiliary undirected graph G�, we
know that xi � xj and xj � xi. Therefore it cannot be the case that xi ∈ x↗↗

j

or xj ∈ x↗↗
i . Thus, either xj ∈ x↖

i or xj ∈ x↘
i , but not both. Similarly, because

{xj , xk} is an edge in G�, either xk ∈ x↖
j or xk ∈ x↘

j .

2 By the (Weak) Perfect Graph Theorem [22], the complements of these classes of
graphs are also perfect.
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xi

xk

j

j

i,k

xj

(a) xj below i,k

xi

xk

i

k

i,k

xj

(b) xj above or on i,k

Fig. 3. Induced path on three vertices.

Now, without loss of generality, let xi ∈ x↖
j . For a contradiction, assume

that xk ∈ x↘
j . Hence, we have xj ∈ x↘

i ∩ x↖
k . Suppose xj lies strictly below

the line �i,k through xi and xk. But then we cannot have both xj � xi and
xj � xk. This is because the line �j must cross the segment of �i,k between xi

and xk if it is to induce either of the two preferences. Thus, the line �j separates
xi and xk and, so, at most one of bundles can lie below the line. This is illustrated
in Fig. 3(a).

On the other hand, suppose xj lies on or above the line �i,k through xi and
xk. Now we know that xi � xj . This implies that xi � xk, as illustrated in
Fig. 3(b). Furthermore, we know that xk � xj which implies that xk � xi.
Thus {xi, xk} is an edge in G�. This contradicts the fact that {xi, xj , xk} is an
induced path. �	
Lemma 3.3. The 2D auxiliary revealed preference graph G� contains no odd
holes on at least 5 vertices.

Proof. Take a hole Ck = {x0,x1, . . . ,xk−1}, listed in order, where k ≥ 5 is odd.
For any 0 ≤ i ≤ k − 1, the three vertices {xi−1,xi,xi+1} induce a path in G�.
Consequently, by Lemma 3.2, either both xi−1 and xi+1 are in x↖

i or both xi−1

and xi+1 are in x↘
i . In the former case, colour xi yellow. In the latter case,

colour xi red. Thus we obtain a 2-coloring of Ck. Since k is odd, there must
be two adjacent vertices, xi and xi+1, with the same colour. Without loss of
generality, let both vertices be yellow. Thus, xi+1 is x↖

i and xi is in x↖
i+1. This

contradicts the distinctness of xi and xi+1. �	
Lemma 3.4. The 2D auxiliary revealed preference graph G� contains no anti-
holes on at least 5 vertices.

Proof. Note that the complement of an odd hole on five vertices is also an odd
hole. Thus, by Lemma 3.3, the graph G� may not contain an antihole on five
vertices.

Next consider an antihole C̄k = {x0,x1, . . . ,xk−1}, listed in order, with
k ≥ 6. The neighbours in C̄k of xi, for any 0 ≤ i ≤ k − 1, are Γi =
{xi+2,xi+3, . . . ,xi−2}. We claim that either every vertex of Γi is in x↖

i or every
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vertex of Γi is in x↘
i . To see this note that (xi+2,xi+3) is not an edge, and there-

fore {xi+2,xi,xi+3} is an induced path in G�. By Lemma 3.2, without loss of
generality, both xi+2 and xi+3 are in x↖

i . But {xi+3,xi,xi+4} is also an induced
path in G�. Consequently, as xi+3 is in x↖

i , Lemma 3.2 implies that xi+4 is
in x↖

i . Repeating this argument through to the induced path {xi−3,xi,xi−2}
gives the claim.

Now consider the three vertices x0,x2 and x4. Since k ≥ 6 these vertices are
pairwise adjacent in C̄k. Without loss of generality, by the claim, Γ0 is in x↖

0 .
Thus, x2 and x4 are in x↖

0 . However x0 is in Γ2 ∩ Γ4. Thus every vertex in Γ2

is in x↘
2 and every vertex in Γ2 is in x↘

4 . Hence, x4 is in x↘
2 and x2 is in x↘

4 ,
a contradiction. �	

Lemmas 3.3 and 3.4 together show, by applying the Strong Perfect Graph
Theorem, that the auxiliary undirected graph is perfect.

Theorem 3.2. The 2D auxiliary revealed preference graph G� is perfect. �	

3.3 A Polynomial Time Algorithm

In classical work, Grötschel, Lovász and Schrijver [12,13] show that the vertex
cover problem in a perfect graph can be solved in polynomial time via the
ellipsoid method.

Theorem 3.3. [12] The vertex cover problem is solvable in polynomial time
on a perfect graph. �	
But by Theorem 3.2, the auxiliary undirected graph is perfect. Since the con-
sumer rationality problem for two commodities corresponds to a vertex cover
problem on this auxiliary undirected graph, we have:

Theorem 3.4. In a two-commodity market, the consumer rationality prob-
lem is solvable in polynomial time. �	

4 The Case of Three Commodities

We have shown that for two commodities, the consumer rationality problem can
be solved in polynomial time. We now prove the problem is NP-complete if there
are three (or more) commodities by presenting a reduction from planar 3-sat.
The proof has three parts: first we transform an instance of planar 3-sat to an
instance of vertex cover in an associated undirected gadget graph. Second, we
show that a vertex cover in the gadget graph corresponds to a directed feedback
vertex set in a directed oriented disc graph. Finally, we prove that every oriented
disc graph corresponds to a preference graph in a three-commodity market.
Consequently, we can solve planar 3-sat using an algorithm for the three-
commodity case of the consumer rationality problem.

We begin by defining the class of oriented-disc graphs. Let {x1, . . . ,xn} be
points in the plane and let {B1, . . . , Bn} be closed discs of varying radii such



Testing Consumer Rationality Using Perfect Graphs and Oriented Discs 195

x1

x2
x3

x1

x2x3

Fig. 4. An oriented disc drawing and its corresponding oriented disc graph.

that Bi contains xi on its boundary. We call this collection of points and discs
an oriented-disc drawing. Given a drawing, we construct a directed graph D =
(V,A) on the vertex set V = {x1, . . . ,xn}. There is an arc from xi to xj in D if
xj , j �= i, is contained in the disc Bi. A directed graph that can be built in this
manner is called an oriented-disc graph.

An example is given in Fig. 4. The oriented-disc drawing is shown on the left
and the the resulting oriented disc graph, a directed cycle on 3 vertices, is shown
on the right. (We remark that, for enhanced clarity in the larger figures that
follow, the boundary circles are drawn half-dotted.) Note that, even if the discs
have uniform radii, the resulting oriented-disc graphs need not be symmetric –
that is, (xi,xj) can be an arc even if (xj ,xi) is not. This is due to the fact
that xi lies on the boundary, not at the centre, of its disc Bi. We now start by
proving the third part of the reduction: every oriented disc graph corresponds
to a preference graph in a three-commodity market.

Lemma 4.1. Every oriented-disc graph corresponds to a preference graph
induced by consumer data in a three-commodity market.

Proof. Let D be any oriented-disc graph. We wish to build a three-commodity
data set whose preference graph is D. Recall that the plane is homomorphic
to the 2-dimensional sphere minus a point. Moreover, the inverse of the stere-
ographic projection is a map from the plane to a sphere which preserves the
shape of circles; see, for example, [9]. This motivates us to attempt to draw the
points and discs on the unit sphere centered at (1, 1, 1) ∈ R3. To do this, we
scale the oriented-disc drawing appropriately and embed it in a small region
on the “underside” of the sphere, that is, around the point where the inwards
normal vector is (1, 1, 1). An example of this, where the oriented-disc graph is
the directed 3-cycle, is shown in Fig. 5(a).

We now need to create the corresponding collection of consumer data. Let
{x1, . . . ,xn} be the n points of some oriented-disc drawing of D embedded onto
the underside of the sphere. Note that the intersection of a sphere and a plane is
a circle. Furthermore, a plane through a point on the sphere will create a circle
containing that point. Thus we may select the xi to be the bundles chosen by
the market and we may choose pi such that the plane with normal pi that passes
through xi intersects the sphere exactly along the boundary of the embedding
of the disc Bi. An example is shown in Fig. 5(b). Because pi is non-negative it
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points into the sphere. Therefore, xi is revealed preferred to every point on the
inside of the embedding of Bi; it is not revealed preferred to any other point
on the sphere. Hence, the preference graph D� is isomorphic to the original
oriented-disc graph, as desired. �	

(a) (b)

Fig. 5. A 3-cycle embedded on a sphere section, and a disc on a sphere.

Now, recall the first part of the reduction: we wish to transform an instance
of planar 3-sat to an instance of vertex cover in an associated undirected
gadget graph. Our gadget graph is based upon a network used by Wang and
Kuo [31] to prove the hardness of maximum independent set in undirected
unit-disc graphs. However, we are able to simplify their non-planar network
by using an instance of planar 3-sat rather than the general 3-sat. This
simplification will be useful when implementing the second part of the reduction.

Let ϕ be an instance of planar 3-sat with variables u1, . . . , un and clauses
C1, . . . , Cm. Recall that ϕ is planar if the bipartite graph Hϕ consisting of a
vertex for each variable, a vertex for each clause, and edges connecting each
clause to its three variables, is planar. The associated, undirected, gadget graph
Gϕ is constructed as shown in Fig. 6. For each clause C = (ui ∨ uj ∨ uk), add
a 3-cycle to the graph whose vertices are labelled by the appropriate literals for
the variables ui, uj and uk. We call these the clause gadgets. For each variable
ui, add a large cycle of even length whose vertices are alternatingly labelled as
the literals ui and ūi. We call these the variable gadgets. Finally, add an edge
from each variable in the clause gadgets to some vertex on the corresponding
variable gadget with the opposite label – we choose a different variable vertex
for each clause it is contained in.

The next lemma is equivalent to the result shown by Wang and Kuo [31]. We
provide a direct proof in the full version of the paper.

Lemma 4.2. [31] The planar 3-sat instance ϕ is satisfiable if and only if Gϕ

has vertex cover set of size at most 2m + 1
2

∑n
i=1 ri, where ri is the number of

vertices in the variable gadget’s cycle for ui.
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ū2

u2

ū1
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Fig. 6. The gadget graph Gϕ for ϕ = (ū1 ∨ u2 ∨ u3) ∧ (u1 ∨ ū2 ∨ u3).

Hence, to solve for the satisfiability of ϕ, it suffices to test whether Gϕ admits
a vertex cover with at most 2m+ 1

2

∑n
i=1 ri vertices. It remains to show the sec-

ond of the three parts of the reduction. That is, we need to show that this
vertex cover problem in the undirected gadget graph can be solved by find-
ing a minimum directed feedback vertex set in an oriented-disc graph Dϕ. The
basic idea is straightforward (albeit that the implementation is intricate). The
oriented-disc graph Dϕ will contain a digon for each edge in some Gϕ. However,
it will also contain a collection of additional arcs. The key fact will be that these
additional arcs form an acyclic subgraph of Dϕ. Thus every cycle in Dϕ must
induce a digon. Consequently, a minimum directed feedback vertex set need only
intersect each digon to ensure that every cycle is hit. As argued previously, hit-
ting the underlying graph formed by the digons of Dϕ corresponds to selecting
a vertex cover in Gϕ, as desired. We now formalise this argument.

Lemma 4.3. For every instance ϕ of planar 3-sat, there exists an oriented-
disc graph Dϕ on which the directed feedback vertex set problem is equiv-
alent to the vertex cover problem on Gϕ.

Proof. We prove this by explicitly constructing the oriented-disc drawing. Recall
the disc graph Dϕ should contain a digon for each edge in Gϕ. To do this,
we begin with sufficiently a large planar drawing of Hϕ, the planar bipartite
network associated with ϕ. At each clause vertex, we place an oriented-disc
construction for the clause gadget. This construction, along with its resulting
graph, is shown in Fig. 7. The figure shows a clause gadget and a section of each
of the neighbouring three variable gadgets to which it is attached. Observe from
the figure that, as claimed, the set of arcs created in Dϕ which are not in a
digon, form an acyclic subgraph of Dϕ.

It remains to construct the large cycles for the variable gadgets, and connect
them to the clause gadgets. However, parts of these cycles are already included
in the clause gadgets. Thus, it suffices to join these cycle segments together via
paths of digons. This can be done via the oriented disc constructions shown in
Fig. 8. To draw the cycle for some variable, say ui, we note that ui’s vertex in
the planar network Hϕ shares and edge with every clause gadget which connects
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Fig. 7. Oriented-disc construction of the clause gadget, and its resulting graph.

(a) Straight line (b) Curve

Fig. 8. Paths of bidirected edges as oriented-disc drawings.

u1 u2

u3
u4

C 1

C 3C 2

Fig. 9. Gϕ as an oriented-disc graph.
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to ui’s gadget. Hence, as illustrated in Fig. 9, we may follow along the edges of
Hϕ to construct the cycle. For example, in the figure, the variable cycle for u1

(highlighted) follows the topology of the edges incident to u1’s vertex, and joins
the clause gadgets (circled) to one another.

Observe that constructions in Fig. 8 produce paths of digons in Dϕ, where
every arc produced is contained in a digon. It follows that the only arcs in Dϕ

that are not in digons are in the neighbourhoods of the clause gadgets and, as we
have seen, these are acyclic. But then, to hit all the cycles in Dϕ, it suffices to hit
all the digons, which, in turn, corresponds to a vertex cover in Gϕ, completing
the proof. �	
This completes all the steps in the reduction and we obtain:

Theorem 4.1. The consumer rationality problem is NP-complete for a
market with at least 3 commodities. �	
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Abstract. The Stackelberg equilibrium is a solution concept that
describes optimal strategies to commit to: Player 1 (the leader) first
commits to a strategy that is publicly announced, then Player 2 (the fol-
lower) plays a best response to the leader’s choice. We study Stackelberg
equilibria in finite sequential (i.e., extensive-form) games and provide
new exact algorithms, approximate algorithms, and hardness results for
finding equilibria for several classes of such two-player games.

1 Introduction

The Stackelberg competition is a game theoretic model introduced by
von Stackelberg [10] for studying market structures. The original formulation
of a Stackelberg duopoly captures the scenario of two firms that compete by
selling homogeneous products. One firm (the leader) first decides the quantity
to sell and announces it publicly, while the second firm (the follower) decides
its own production only after observing the announcement of the first firm. The
leader firm must have a commitment power (e.g., it is the monopoly in an indus-
try) and cannot undo its publicly announced strategy, while the follower firm
(e.g., a new competitor) plays a best response to the leader’s chosen strategy.
The Stackelberg competition has been an important model in economics ever
since and the solution concept of a Stackelberg equilibrium has been studied
in a rich body of literature in computer science with a number of real-world
applications [12].

In this paper, we are interested in the problem of efficient computation of the
optimal strategy that the leader should commit to in an extensive-form game, given
a description of the game. We study this problem for several classes of extensive-
form games (EFGs) and variants of the Stackelberg solution concept (i.e., kinds
of strategies to commit to) giving both efficient algorithms and computational
hardness results. Our results can be classified by the following parameters:
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• Information. Information captures how much a player knows about the oppo-
nent’s moves (past and present). We study turn-based games (TB), where for
each state there is a unique player that can perform an action, and concurrent-
move games (CM), where the players act simultaneously in at least one state.

• Chance. A game with chance nodes allows stochastic transitions between
states; otherwise, the transitions are deterministic (made through actions of
the players).

• Graph. We focus on trees and directed acyclic graphs (DAGs) as the main
representations. Given such a graph, each node represents a different state in
the game, while the edges represent the transitions between states.

• Strategies. We study several major types of strategies that the leader can
commit to, namely pure (P), behavioral (B), and correlated behavioral (C).

All of our results are summarized in Table 1; (1) We design a more efficient
algorithm for computing optimal strategies for turn-based games on DAGs. Com-
pared to the previous state of the art (due to Letchford and Conitzer [6,7]), we
reduce the complexity by a factor proportional to the number of terminal states
(see row 1 in Table 1). (2) We show that correlation often reduces the computa-
tional complexity of finding optimal strategies. In particular, we design several
new polynomial time algorithms for computing the optimal correlated strat-
egy to commit to (see rows 3, 9, 11). (3) We study approximation algorithms
for the NP-hard problems in this framework and provide fully polynomial time
approximation schemes for finding pure and behavioral Stackelberg equilibria
for turn-based games on trees with chance nodes (see rows 7, 8). We leave open

Table 1. Overview of the computational complexity results containing both existing
and new results provided by this paper (marked with *). Information column: TB
stands for turn-based and CM for concurrent moves. Strategies: P stands for pure, B
for behavioral, and C for correlated. Finally, |S| denotes the number of decision points
in the game and |Z| the number of terminal states.

Information Chance Graph Strategies Complexity Source

1.* TB ✗ DAG P O (|S| · (|S| + |Z|)) Theorem 5

2. TB ✗ Tree B O
(|S| · |Z|2) [7]

3.* TB ✗ Tree C O (|S| · |Z|) Theorem 6

4. TB ✗ DAG B NP-hard [6]

5.* TB ✗ DAG C NP-hard Theorem 8

6. TB ✓ Tree B NP-hard [7]

7.* TB ✓ Tree P FPTAS Theorem 12

8.* TB ✓ Tree B FPTAS Theorem 11

9.* TB ✓ Tree C O (|S| · |Z|) Theorem 7

10.* CM ✗ Tree B NP-hard Theorem 9

11.* CM ✓ Tree C polynomial Theorem 10
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the question of finding an approximation for concurrent-move games on trees
without chance nodes (see row 10).

Due to the space constraints we focus on the positive results in this version
of the paper; the proofs for all the results can be found in the full version.

1.1 Related Work

There is a rich body of literature studying the problem of computing Stackelberg
equilibria. The computational complexity of the problem is known for one-shot
games [3], Bayesian games [3], and selected subclasses of extensive-form games [7]
and infinite stochastic games [8]. Similarly, many practical algorithms are also
known and typically based on solving multiple linear programs [3], or mixed-
integer linear programs for Bayesian [9] and extensive-form games [1].

The extension of the Stackelberg notion to correlated strategies appeared
in several works [2,8,13]. Conitzer and Korzhyk analyzed correlated strategies
in one-shot games providing a single linear program for their computation [2].
Letchford et al. showed that the problem of finding optimal correlated strategies
to commit to is NP-hard in infinite discounted stochastic games1 [8]. Xu et al.
focused on using correlated strategies in a real-world security based scenario [13].

2 Preliminaries

We consider finite two-player sequential games. Note that for every finite set K,
Δ(K) denotes probability distributions over K and P(K) denotes the set of all
subsets of K.

Definition 1. A two-player sequential game is given by a tuple G = (N ,S,Z,
ρ,A, u, T , C), where:

– N = {1, 2} is a set of two players;
– S is a set of non-terminal states;
– Z is a set of terminal states;
– ρ : S → P(N ) ∪ {c} is a function that defines which player(s) act in a given

state, or whether the node is a chance node (case in which ρ(s) = c);
– A is a set of actions; we overload the notation to restrict the actions only for

a single player as Ai and for a single state as A(s);
– T : S×∏

i∈ρ(s) Ai → {S∪Z} is a transition function between states depending
on the actions taken by all the players that act in this state. Overloading
notation, T (s) also denotes the children of a state s: T (s) = {s′ ∈ S∪Z | ∃a ∈
A(s); T (s, a) = s′};

– C : Ac → [0, 1] are the chance probabilities on the edges outgoing from each
chance node s ∈ S, such that

∑
a∈Ac(s)

C(a) = 1;
– Finally, ui : Z → R is the utility function for player i ∈ N .

1 To be precise they assumed that the correlated strategies can use a finite history.
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In this paper we study Stackelberg equilibria, thus player 1 will be referred
to as the leader and player 2 as the follower.

We say that a game is turn-based if there is a unique player acting in each
state (formally, |ρ(s)| = 1 ∀s ∈ S) and with concurrent moves if both players
can act simultaneously in some state. Moreover, the game is said to have no
chance if there exist no chance nodes; otherwise the game is with chance.

A pure strategy πi ∈ Πi of a player i ∈ N is an assignment of an action to
play in each state of the game (πi : S → Ai). A behavioral strategy σi ∈ Σi is
a probability distribution over actions in each state σi : A → [0, 1] such that
∀s ∈ S,∀i ∈ ρ(s)

∑
a∈Ai(s)

σi(a) = 1.
The expected utility of player i given a pair of strategies (σ1, σ2) is defined

as follows:
ui(σ1, σ2) =

∑

z∈Z
ui(z)pσ(z),

where pσ(z) denotes the probability that leaf z will be reached if both players
follow the strategy from σ and due to stochastic transitions corresponding to C.

A strategy σi of player i is said to represent a best response to the opponent’s
strategy σ−i if ui(σi, σ−i) ≥ ui(σ′

i, σ−i) ∀σ′
i ∈ Σi. Let BR(σ−i) ⊆ Πi denote the

set of all the pure best responses of player i to strategy σ−i.

Definition 2. A strategy profile σ = (σ1, σ2) is a Stackelberg Equilibrium if σ1

is an optimal strategy of the leader given that the follower best-responds to its
choice. Formally, a Stackelberg equilibrium in pure strategies is defined as

(σ1, σ2) = arg max
σ′
1∈Π1,σ′

2∈BR(σ′
1)

u1(σ′
1, σ

′
2)

while a Stackelberg equilibrium in behavioral strategies is defined as

(σ1, σ2) = arg max
σ′
1∈Σ1,σ′

2∈BR(σ′
1)

u1(σ′
1, σ

′
2)

Next, we describe the notion of a Stackelberg equilibrium where the leader
can commit to a correlated strategy in a sequential game. The concept was
suggested and investigated by Letchford et al. [8], but no formal definition exists.
Formalizing such a definition below, we observe that the definition is essentially
the “Stackelberg analogue” of the notion of Extensive-Form Correlated Equilibria
(EFCE), introduced by von Stengel and Forges [11]. This parallel turns out to
be technically relevant as well.

Definition 3. A probability distribution φ on pure strategy profiles Π is called
a Stackelberg Extensive-Form Correlated Equilibrium (SEFCE) if it maximizes
the leader’s utility (that is, φ = arg maxφ′∈Δ(Π) u1(φ′)) subject to the constraint
that whenever the play reaches a state s where the follower can act, the follower
is recommended an action a according to φ such that the follower cannot gain
by unilaterally deviating from a in state s (and possibly in all succeeding states),
given the posterior on the probability distribution of the strategy of the leader,
defined by the actions taken by the leader so far.
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Fig. 1. An example game with different outcomes depending on whether the leader
commits to behavioral or to correlated strategies. The leader acts in nodes s3 and s4,
the follower acts in nodes s1 and s2. Utility values are shown in the terminal states,
first value is the utility for the leader, second value is the utility of the follower.

Example. We give an example to illustrate both variants of the Stackelberg
solution concept. Consider the game in Fig. 1, where the follower moves first
(in states s1, s2) and the leader second (in states s3, s4). By committing to a
behavioral strategy, the leader can gain utility 1 in the optimal case – leader
commits to play left in state s3 and right in s4. The follower will then prefer
playing right in s2 and left in s1, reaching the leaf with utilities (1, 3). Note that
the leader cannot gain by committing to strictly mixed behavioral strategies.

Now, consider the case when the leader commits to correlated strategies. We
interpret the probability distribution over strategy profiles φ as signals send to
the follower in each node where the follower acts, while the leader is committing
to play with respect to φ and the signals sent to the follower. This can be shown
in node s2, where the leader sends one of two signals to the follower, each with
probability 0.5. In the first case, the follower receives the signal to move left, while
the leader commits to play uniform strategy in s3 and left in s4. In the second
case, the follower receives the signal to move right, while the leader commits to
play right in s4 and left in s3. By using this correlation, the leader is able to
get the utility of 1.5, while ensuring the utility of 2 for the follower; hence, the
follower will follow the only recommendation in node s1 to play left.

The example gives an intuition about the structure of the probability distri-
bution φ in SEFCE. In each state of the follower, the leader sends a signal to
the follower and commits to follow the correlated strategy if the follower admits
the recommendation, while simultaneously committing to punish the follower
for each deviation. This punishment is simply a strategy that minimizes the fol-
lower’s utility and will be useful in many proofs; next we introduce some notation
for it.

Let σm denote a behavioral strategy profile, where in each sub-game the
leader plays a minmax behavior strategy based on the utilities of the follower
and the follower plays a best response. Moreover, for each state s ∈ S, we denote
by μ(s) the expected utility of the follower in the sub-game rooted in state s if
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both players play according to σm (i.e., the value of the corresponding zero-sum
sub-game defined by the utilities of the follower).

Note that being a probability distribution over pure strategy profiles, an
SEFCE is, a priori, an object of exponential size in the size of the description
of the game, when it is described as a tree. This has to be dealt with before we
can consider computing it. The following lemma gives a compact representation
of the correlated strategies in an SEFCE and the proof yields an algorithm for
constructing the probability distribution φ from the compact representation. It
is this compact representation that we seek to compute.

Lemma 4. For any turn-based or concurrent-move game in tree form, there
exists an SEFCE φ ∈ Δ(Π) that can be compactly represented as a behavioral
strategy profile σ = (σ1, σ2) such that ∀z ∈ Z pφ(z) = pσ(z) and φ corresponds
to the following behavior:

– the follower receives signals in each state s according to σ2(a) for each action
a ∈ A2(s)

– the leader chooses the action in each state s according to σ1(a) for each action
a ∈ A1(s) if the state s was reached by following the recommendations

– both players switch to the minmax strategy σm after a deviation by the
follower.

Proof. Let φ′ be an SEFCE. We construct the behavioral strategy profile σ from
φ′ and then show how an optimal strategy φ can be constructed from σ and σm.

To construct σ, it is sufficient to specify a probability σ(a) for each action
a ∈ A(s) in each state s. We use the probability of state s being reached (denoted
φ′(s)) that corresponds to the sum of pure strategy profiles φ′(π) such that the
actions in strategy profile π allow state s to be reached. Formally, there exists a
sequence of states and actions starting at the root s0, a0, . . . , ak−1, sk such that
for every j = 0, . . . , k − 1 it holds that aj = π(sj), sj+1 = T (sj , aj) (or sj+1 is
the next decision node of some player if T (sj , aj) is a chance node), s0 = sroot,
and sk = s. Let us denote Π(s) to be such a set of pure strategy profiles, for
which such a sequence exists for state s. Moreover, we denote Π(s, a) ⊆ Π(s)
to be strategy profiles that not only reach s but prescribe action a to be played

in state s. Now, σ(a) =
∑

π′∈Π(s,a) φ′(π′)
φ′(s) , where φ′(s) =

∑
π′∈Π(s) φ′(π′). In case

φ′(s) = 0, we set behavior strategy in σ arbitrarily.
Now, we construct a strategy φ that corresponds to the desired behavior

and show that it is indeed an optimal SEFCE strategy. We need to specify a
probability for every pure strategy profile π = (π1, π2). Consider the sequence of
states and actions that corresponds to executing the actions from the strategy
profile π. Let sl

0, a
l
0, . . . , a

l
kl−1, skl

be one of q possible sequences of states and
actions (there can be multiple such sequences due to chance nodes), such that
j = 0, . . . , kl −1, al

j = π(sl
j), sl

j+1 = T (sl
j , a

l
j) (or sl

j+1 is one of the next decision
nodes of some player immediately following the chance node(s) T (sl

j , a
l
j)), sl

0 =
sroot, and sl

kl
∈ Z. The probability for the strategy profile π corresponds to the

probability of executing the sequences of actions multiplied by the probability
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that the remaining actions prescribe minmax strategy σm in case the follower
deviates:

φ(π) =

⎛

⎝
q∏

l=1

kl−1∏

j=0

σ(al
j)

⎞

⎠ ·
∏

a′=π(s′)|s′∈S\{s1
0,...,s1

k0−1,s2
0,...,sq

kq−1}
σm(a′).

Correctness. By construction of σ and φ it holds that probability distribution
over leafs remains the same as in φ′; hence, ∀z ∈ Z pφ′(z) = pσ(z) = pφ(z) and
thus the expected utility of φ for the players is the same as in φ′. Second, we need
to show that the follower has no incentive to deviate from the recommendations
in φ. By deviating to some action a′ in state s the follower gains μ(T (s, a′))
since both players play according to σm after a deviation. In φ′, the follower can
get for the same deviation at best some utility value v2(T (s, a′)), which by the
definition of the minmax strategies σm is greater or equal than μ(T (s, a′)). Now
since the expected utility value of the follower for following the recommendations
is the same in φ as in φ′ and the follower has no incentive to deviate in φ′ because
of the optimality, she has no incentive to deviate in φ either. 	


3 Computing Exact Strategies in Turn-Based Games

Theorem 5. There is an algorithm that takes as input a turn-based game in
DAG form with no chance nodes and outputs a Stackelberg equilibrium in pure
strategies. The algorithm runs in time O(|S|(|S| + |Z|)).
Proof. Our algorithm performs three passes through all the nodes in the graph.

First, the algorithm computes the minmax values μ(s) of the follower for
each node in the game by backward induction. Second, the algorithm computes
a capacity for each state in order to determine which states of the game are
reachable (i.e., there exists a commitment of the leader and a best response of
the follower such that the state can be reached by following their strategies).
The capacity of state s, denoted γ(s), is defined as the minimum utility of the
follower that needs to be guaranteed by the outcome of the sub-game starting
in state s in order to make this state reachable. By convention γ(sroot) = −∞
and we initially set γ(S ∪ Z \ {sroot}) = ∞ and mark them as open. Next, the
algorithm evaluates each open state s, parents of which have all been marked
as closed. We distinguish whether the leader, or the follower makes the decision:
(1) in case s is a leader’s node, the algorithm sets γ(s′) = min(γ(s′), γ(s)) for
all children s′ ∈ T (s); (2) in case s is a follower’s node, the algorithm sets
γ(s′) = min(γ(s′),max(γ(s),maxs′′∈T (s)\{s′} μ(s′′))) for all children s′ ∈ T (s).
Finally, we mark state s as closed.

We say that leaf z ∈ Z is a possible outcome, if μ(z) = u2(z) ≥ γ(z). Now, the
solution is such a possible outcome that maximizes the utility of the leader, i.e.
arg maxz∈Z u2(z)≥γ(z) u1(z). The strategy is now constructed by following nodes
from leaf z back to the root while using nodes s′ with capacities γ(s′) ≤ μ(z).
Thanks to the construction of capacities, such a path exists and forms a part of
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the Stackelberg strategy. The leader commits to the strategy leading to max min
utility for the follower in the remaining states that are not part of this path.

Complexity Analysis. Computing the max min values can be done in O(|S|(|S|+
|Z|)) by backward induction due to the fact the graph is a DAG. In the second
pass, the algorithm solves the widest-path problem from a single source to all
leafs. In each node, the algorithm calculates capacities for every child. In nodes
where the leader acts, there is a constant-time operation performed for each
child. However, we need to be more careful in nodes where the follower acts. For
each child s′ ∈ T (s) the algorithm computes a maximum value μ(s′) of all of the
siblings. We can do this efficiently by computing two maximal values of μ(s′) for
all s′ ∈ T (s) (say s1, s2) and for each child then the term maxs′′∈T (s)\{s′} μ(s′′)
equals either to s1 if s′ = s1, or to s2 if s′ = s1. Therefore, the second pass
can again be done in O(|S|(|S|+ |Z|)). Finally, finding the optimal outcome and
constructing the optimal strategy is again at most linear in the size of the graph.
Therefore the algorithm takes at most O(|S|(|S| + |Z|)) steps. 	

Theorem 6. There is an algorithm that takes as input a turn-based game in tree
form with no chance nodes and outputs an SEFCE in the compact representation.
The algorithm runs in time O(|S||Z|).
Proof. We improve the algorithm from the proof of Theorem 4 in [7]. The algo-
rithm contains two steps: (1) a bottom-up dynamic program that for each node
s computes the set of possible outcomes, (2) a downward pass constructing the
optimal correlated strategy in the compact representation.

For each node s we keep set of points Hs in two-dimensional space, where
the x-dimension represents the utility of the follower and the y-dimension repre-
sents the utility of the leader. These points define the convex set of all possible
outcomes of the sub-game rooted in node s (we assume that Hs contains only
the points on the boundary of the convex hull). We keep each set Hs sorted by
polar angle.

Upward Pass. In leaf z ∈ Z, we set Hz = {z}. In nodes s where the leader acts,
the set of points Hs is equal to the convex hull of the corresponding sets of the
children Hw. That is, Hs = Conv(∪w∈T (s)Hw).

In nodes s where the follower acts, the algorithm performs two steps. First,
the algorithm removes from each set Hw of child w the outcomes from which
the follower has an incentive to deviate. To do this, the algorithm uses the
maxmin u2 values of all other children of s except w and creates a new set Ĥw

that we term the restricted set. Formally, the restricted set Ĥw is defined as
an intersection of the convex set representing all possible outcomes Hw and all
outcomes defined by the halfspace restricting the utility x of the follower by
the inequality x ≥ maxw′∈T (s);w′ �=w minp′∈Hw′ u2(p′). Now, Hs is equal to the
convex hull of the corresponding restricted sets Ĥw of the children w. That is,
Hs = Conv(∪w∈T (s)Ĥw).
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Finally, in the root of the game tree, the outcome of the Stackelberg
Extensive-Form Correlated Equilibrium is the point with maximal payoff of
player 1: pSE = arg maxp∈Hsroot

u1(p).

Downward Pass. We now construct the compact representation of commitment
to correlated strategies that ensures the outcome pSE calculated in the upward
pass. The method for determining the optimal strategy in each node is similar to
the method strategy(s, p′′) used in the proof of Theorem 4 in [7]. This method,
given a node s and a point p′′ that lies on the boundary of Hs, specifies how
to commit to correlated strategies in the sub-tree rooted in node s. Moreover,
the previous proof in [7] also showed that it is sufficient to consider mixtures of
at most two actions in each node and allowing correlated strategies does violate
their proof.

In nodes s where the leader acts, the algorithm needs to find two points p, p′

in the boundaries of children Hw and Hw′ , such that the desired point p′′ is a
convex combination of p ∈ Hw and p′ ∈ Hw′ . If w = w′, then the strategy in
node s is to commit to pure strategy leading to node w. If w = w′, then the
strategy to commit to in node s is a mixture: with probability α to play action
leading to w and with probability (1 − α) to play action leading to w′, where
α ∈ [0, 1] such that p′′ = αp + (1 − α)p′. Finally, for every child s′ ∈ T (s) we
call the method strategy with appropriate p (or p′) in case s′ = w (or w′), and
with the threat value corresponding to μ(s′) for every other child.

In nodes s where the follower acts, the algorithm again needs to find two
points p, p′ in the restricted boundaries of children Ĥw and Ĥw′ , such that the
desired point p′′ is a convex combination of p ∈ Ĥw and p′ ∈ Ĥw′ . The reason
for using the restricted sets is because the follower must not have an incentive
to deviate from the recommendation. Similarly to the previous case, if w = w′,
then the correlated strategy in node s is to send the follower signal leading
to node w while committing further to play strategy strategy(w, p) in sub-tree
rooted in node w, and to play the minmax strategy in every other child s′

corresponding to value μ(s′). If w = w′, then there is a mixture of possible
signals: with probability α the follower receives a signal to play the action leading
to w and with probability (1 − α) signal to play the action leading to w′, where
α ∈ [0, 1] is again such that p′′ = αp + (1 − α)p′. As before, by sending the
signal to play certain action, the leader commits to play strategy strategy(w, p)
(or strategy(w′, p′)) in sub-tree rooted in node w (or w′) and committing to play
the minmax strategy leading to value μ(s′) for every other child s′.

Correctness. Due to the construction of the set of points Hs that are maintained
for each node s, these points correspond to the convex hull of all possible out-
comes in the sub-game rooted in node s. In leafs, the algorithm adds the point
corresponding to the leaf. In the leader’s nodes, the algorithm creates a con-
vex combinations of all possible outcomes in the children of the node. The only
places where the algorithm removes some outcomes from these sets are nodes of
the follower. If a point is removed from Hw in node s, there exists an action of
the follower in s that guarantees the follower a strictly better expected payoff
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than the expected payoff of the outcome that correspond to the removed point.
Therefore, such an outcome is not possible as the follower will have an incentive
to deviate. The outcome selected in the root node is the possible outcome that
maximizes the payoff of the leader of all possible outcomes; hence, it is optimal
for the leader. Finally, the downward pass constructs the compact representa-
tion of the optimal correlated strategy to commit to that reaches the optimal
outcome.

Complexity Analysis. Computing boundary of the convex hull Hs takes O(|Z|)
time in each level of the game tree since the children sets Hw are already sorted [4,
p. 6]. Moreover, since we keep only nodes on the boundary of the convex hull,∑

s∈S |Hs| ≤ |Z| for all nodes in a single level of the game tree also bounds the
number of lines that need to be checked in the downward pass. Therefore, each
pass takes at most O(|S||Z|) time. 	

Theorem 7. There is an algorithm that takes as input a turn-based game in
tree form with chance nodes and outputs the compact form of an SEFCE for the
game. The algorithm runs in time O(|S||Z|).
Proof. We can use the proof from Theorem 6, but need to analyze what happens
in chance nodes in the upward pass. The algorithm computes in chance nodes
the Minkowski sum of all convex sets in child nodes and since all sets are sorted
and this is a planar case, this operation can be again performed in linear time [4,
p. 279]. The size of set Hs is again bounded by the number of all leafs [5]. 	

Theorem 8. Given a turn-based game in DAG form and a number α, it is
NP-hard to decide if the leader gets payoff at least α in an SEFCE.

For DAGs, the algorithm described in the previous proofs for trees fails, since it
can prescribe different strategies in a state depending on the path with which
the state is reached. We prove the hardness by following the proof of Theorem 13
from [6] for behavioral strategies and verifying that it holds also for correlated
strategies. The proof can be found in the full version of the paper.

4 Computing Exact Strategies in Concurrent-Move
Games

Theorem 9. Given a concurrent-move games in tree form with no chance nodes
and a number α, it is NP-hard to decide if the leader achieves payoff at least α
in a Stackelberg equilibrium in behavior strategies.

We prove this theorem by a reduction from Knapsack; the proof can be found
in the full version of the paper.

Theorem 10. For a concurrent-move games in tree form, the compact form of
an SEFCE for the game can be found in polynomial time by solving a single
linear program.
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Proof. We construct a linear program (LP) based on the LP for computing
Extensive-Form Correlated Equilibria (EFCE) [11]. We use the compact repre-
sentation of SEFCE strategies (described by Lemma 4) represented by variables
δ(s) that denote a joint probability that state s is reached when both players,
and chance, play according to SEFCE strategies.

The size of the original EFCE LP (both, the number of variables and con-
straints) is quadratic in the number of sequences of players. However, the LP for
EFCE is defined for a more general class of imperfect-information games without
chance. In our case, we can exploit the specific structure of a concurrent-move
game and together with the Stackelberg assumption reduce the number of con-
straints and variables. First, the deviation from a recommended strategy causes
the game to reach a different sub-game in which the strategy of the leader can
be chosen (almost) independently to the sub-game that follows the recommen-
dation. Second, the strategy that the leader should play after the deviations is
a minmax strategy, with which the leader punishes the follower by minimizing
the utility of the follower as much as possible. Thus, by deviating to action a′ in
state s, the follower can get at best the minmax value of the sub-game starting
in node T (s, a′) that we denote as μ(T (s, a′)). The values μ(s) for each state
s ∈ S can be computed beforehand using backward induction.

max
δ,v2

∑

z∈Z
δ(z)u1(z) s.t. (1)

δ(sroot) = 1 (2)
0 ≥ δ(s) ≥ 1 ∀s ∈ S (3)

δ(s) =
∑

s′∈T (s)

δ(s′) ∀s ∈ S; ρ(s) = {1, 2} (4)

δ(T (s, ac)) = δ(s)C(s, ac) ∀s ∈ S ∀a ∈ Ac(s); ρ(s) = {c}(5)
v2(z) = u2(z)δ(z) ∀z ∈ Z (6)

v2(s) =
∑

s′∈T (s)

v2(s′) ∀s ∈ S (7)

∑

a1∈A1(s)

v2(T (s, a1 × a2)) ≥
∑

a1∈A1(s)

δ(T (s, a1 × a2))μ(T (s, a1 × a′
2))

∀s ∈ S ∀a2, a
′
2 ∈ A2(s) (8)

The LP works as follows: Variables δ represent the compact form of the cor-
related strategies. The probability of reaching the root state is 1 (Eq. (2)) and δ
must be between 0 and 1 (Eq. (3)). Next, so called network-flow constraints must
hold: the probability of reaching a state equals the sum of probabilities of reach-
ing all possible children (Eq. (4)) and it must correspond with the probability
of actions in chance nodes (Eq. (5)). The objective ensures finding a correlated
strategy that maximizes the leader’s utility.

Next, we need to guarantee that the follower has no incentive to deviate
from the recommendations given by δ. We use variables v2(s) to represent the
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expected payoff for the follower in a sub-game rooted in node s ∈ S when played
according to δ; defined by Eqs. (6 and 7). Now, each action that is recommended
by δ must guarantee the follower at least the utility she gets by deviating from
the recommendation. This is ensured by Eq. (8), where the expected utility for
recommended action a2 is expressed by the left side of the constraint, while the
expected utility for deviating is expressed by the right side of the constraint.
Note that the expected utility on the right side is calculated by considering the
posterior probability after receiving the recommendation a2 and the minmax
values of children states after playing a′

2; μ(T (s, a1 × a′
2)).

Therefore, variables δ found by solving this linear program correspond to the
compact representation of the optimal SEFCE strategy. 	


5 Approximating Optimal Strategies

In this section, we describe fully polynomial time approximation schemes for
finding a Stackelberg equilibrium in behavioral strategies as well as in pure
strategies for turn based games on trees with chance nodes. We first prove:

Theorem 11. There is an algorithm that takes as input a turn-based game on
a tree with chance nodes and a parameter ε, and computes a behavioral strat-
egy for the leader. That strategy, combined with some best response of the fol-
lower, achieves a payoff that differs by at most ε from the payoff of the leader
in a Stackelberg equilibrium in behavioral strategies. The algorithm runs in time
O(ε−3(UHT )3T ), where U = maxσ,σ′ u1(σ) − u1(σ′), T is the size of the game
tree and HT is its height.

The exact version of this problem was shown to be NP-hard by Letchford
and Conitzer [7]. Their hardness proof was a reduction from Knapsack and
our algorithm is closely related to the classical approximation scheme for this
problem. Due to space constraints, we only present the algorithm, while the
detailed proof of correctness is relegated to the full version of the paper.

Our scheme uses dynamic programming to construct a table of values for
each node in the tree. Each table contains a discretized representation of the
possible tradeoffs between the utility that the leader can get and the utility that
can at the same time be offered to the follower. In the full version of the paper,
we show that the cumulative error in the leaders utility is bounded additively by
the height of the tree. This error only depends on the height of the tree and not
the utility. By an initial scaling of the leader utility by a factor D, the error can
be made arbitrarily small, at the cost of extra computation time. This scaling is
equivalent to discretizing the leaders payoff to multiples of some small δ = 1/D.
For simplicity, we only describe the scheme for binary trees, since nodes with
higher branching factor can be replaced by small equivalent binary trees.

An important property is that only the leader’s utility is discretized, since
we need to be able to reason correctly about the follower’s actions. The tables
are indexed by the leader’s utility and contains values that are the follower’s
utility. More formally, for each sub-tree T we will compute a table AT with the
following guarantee for each index k in each table:
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(a) the leader has a strategy for the game tree T that offers the follower utility
AT [k] while securing utility at least k to the leader.

(b) no strategy of the leader can (starting from sub-tree T ) offer the follower
utility strictly more than AT [k], while securing utility at least k +HT to the
leader, where HT is the height of the tree T .

This also serves as our induction hypothesis for proving correctness. For commit-
ment to pure strategies, a similar table is used with the same guarantee, except
quantifying over pure strategies instead.

We will now examine each type of node, and for each show how the table is
constructed. For each node T , we let L and R denote the two successors (if any),
and we let AT , AL, and AR denote their respective tables. Each table will have
n = HT U/ε entries.

If T is a leaf with utility (u1, u2), the table can be filled directly from the
definition:

AT [k] :=
{

u2 , if k ≤ u1

−∞ , otherwise

Both parts of the induction hypothesis are trivially satisfied by this.
If T is a leader node, and the leader plays L with probability p, followed up

by the strategies that gave the guarantees for AL[i] and AR[j], then the leader
would get an expected pi+(1−p)j, while being able to offer pAL[i]+(1−p)AR[j]
to the follower. For a given k, the optimal combination of the computed tradeoffs
becomes: AT [k] := maxi,j,p{pAL[i] + (1 − p)AR[j] | pi + (1 − p)j ≥ k}. This
table can be computed in time O(n3) by looping over all 0 ≤ i, j, k < n, and
taking the maximum with the extremal feasible values of p.

If T is a chance node, where the probability of L is p, and the leader
combines the strategies that gave the guarantees for AL[i] and AR[j], then the
leader would get an expected pi+(1−p)j while being able to offer pAL[i]+ (1−
p)AR[j] to the follower. For a given k, the optimal combination of the computed
tradeoffs becomes: AT [k] := maxi,j{pAL[i]+(1−p)AR[j] | pi+(1−p)j ≥ k}.
The table AT can thus be filled in time O(n3) by looping over all 0 ≤ i, j, k < n,
and this can even be improved to O(n2) by a simple optimization.

If T is a follower node, then if the leader combines the strategy for AL[i]
in L with the minmax strategy for R, then the followers best response is L
iff AL[i] ≥ μ(R), and similarly it is R if AR[j] ≥ μ(L). Thus, the optimal
combination becomes

AT [k] := max(AL[k] ↓μ(R), AR[k] ↓μ(L)) x ↓μ:=
{

x, if x ≥ μ
−∞, otherwise

The table AT can be filled in time O(n).
Putting it all together, each table can be computed in time O(n3), and there

is one table for each node in the tree, which gives the desired running time. Let
AT be the table for the root node, and let i′ = max{i | AT [i] > −∞}. The
strategy associated with AT [i′] guarantees utility that is at most HT from the



214 B. Bošanský et al.

best possible guarantee in the scaled game, and therefore at most ε from the
best possible guarantee in the original game.

This completes the proof of Theorem 11. Next, we prove the analogous state-
ment for the case of pure strategies (again, the exact problem was shown to be
NP-hard by Conitzer and Letchford).

Theorem 12. There is an algorithm that takes as input a turn-based game on a
tree with chance nodes and a parameter ε, and computes a pure strategy for the
leader. That strategy, combined with some best response of the follower, achieves
a payoff that differs by at most ε from the payoff of the leader in a Stackelberg
equilibrium in pure strategies. The algorithm runs in time O(ε−2(UHT )2T ), where
U = maxσ,σ′ u1(σ) − u1(σ′), T is the size of the game tree and HT is its height.

Proof. (Sketch) In essence, the algorithm is the same as in the case of behavioral
strategies, except that leader nodes only have p ∈ {0, 1}. The induction hypoth-
esis is the same, except the quantifications are over pure strategies instead.
For a given k, the optimal combination of the computed tradeoffs becomes:
AT [k] := max{Ac[i] | i ≥ k ∧ c ∈ {L,R}}. The table AT can be computed
in time O(n). The performance of the algorithm is slightly better than in the
behavioral case, since the most expensive type of node in the behavioral case
can now be handled in linear time. Thus, computing each table now takes at
most O(n2) time, which gives the desired running time. 	
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Abstract. The simultaneous multiple-round auction (SMRA) and the
combinatorial clock auction (CCA) are the two primary mechanisms used
to sell bandwidth. Recently, it was shown that the CCA provides good
welfare guarantees for general classes of valuation functions [7]. This
motivates the question of whether similar welfare guarantees hold for
the SMRA in the case of general valuation functions.

We show the answer is no. But we prove that good welfare guaran-
tees still arise if the degree of complementarities in the bidder valuations
are bounded. In particular, if bidder valuations functions are α-near-
submodular then, under truthful bidding, the SMRA has a welfare ratio
(the worst case ratio between the social welfare of the optimal allocation
and the auction allocation) of at most (1 + α). However, for α > 1, this
is a bicriteria guarantee, to obtain good welfare under truthful bidding
requires relaxing individual rationality. We prove this bicriteria guaran-
tee is asymptotically (almost) tight.

Finally, we examine what strategies are required to ensure individ-
ual rationality in the SMRA with general valuation functions. First, we
provide a weak characterization, namely secure bidding, for individual
rationality. We then show that if the bidders use a profit-maximizing
secure bidding strategy the welfare ratio is at most 1 + α. Consequently,
by bidding securely, it is possible to obtain the same welfare guarantees
as truthful bidding without the loss of individual rationality.

Keywords: Ascending auctions · SMRA · Welfare guarantee ·
Individual rationality · Near-submodular

1 Introduction

The question of how best to allocate spectrum dates back over a century, and
the case in favour of selling bandwidth was first formalized in the academic
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literature as far back as 1959 by Ronald Coase [9]. Over the past twenty years
there have been large number spectrum auctions world-wide and, amongst these,
the Simultaneous Multi-Round Auction (SMRA) and the Combinatorial Clock
Auction (CCA) have proved to be extremely successful.

Both of these multiple-item auctions are based upon the same underlying
mechanism. At time t, each item j has a price pt

j . Given the current prices, each
bidder i then selects her preferred set St

i of items. The price of any item that has
excess demand then rises in the next time period and the process is repeated.
There are important differences between the two auctions however. The SMRA
uses item bidding, that is, the auctioneer views the selection of St

i as a collection
of bids, one bid for every item of St

i . It also utilizes the concept of a standing high
bid [12]. Any item (with a positive price) has a provisional winner. That bidder
will win the item unless a higher bid is received in a later round. If such a bid
is received then the standing high bid is increased and a new provisional winner
assigned (chosen at random in the case of a tie). Item bidding and standing high
bids lead to a major drawback, the exposure problem. Namely, a large set may be
desired but such a bid may result in being allocated only a smaller undesirable
subset. If the bidder valuation functions satisfy the gross-substitutes property
then this problem does not arise. Indeed, given truthful bidding, Milgrom [21]
showed that the SMRA will terminate in a Walrasian Equilibrium that maxi-
mizes social welfare; see also [14,16] who studied a similar auction mechanism.
The exposure problem is also absent when the bidder valuation functions are
submodular. In that case, Fu et al. [13] show that the final allocation, whilst not
necessarily a Walrasiam Equilibrium, does provide at least half of the optimal
social welfare.1 For these classes of valuation function, the SMRA is individually
rational in every time period. That is, if bidder i is provisionally allocated set S
at round t then the value of S to i is at least the price of S.

For broader classes of valuation function that permit complementarities,
though, the exposure problem does arise under the SMRA. This is a practi-
cal issue because in spectrum auctions bidder valuation functions typically do
exhibit complementarities. The CCA [23] was designed to deal with such com-
plementarities. Specifically, the CCA uses package bidding rather than item bid-
ding. A package bid is an all-or-nothing bid. Consequently, a bidder cannot be
allocated a subset of her bid; in particular, a bidder cannot be allocated an
undesirable subset. Unfortunately, the basic CCA mechanism cannot provide
for non-trivial approximate welfare guarantees, even for auctions with additive
valuation functions and a small number of bidders and items [7]. It is perhaps
surprising, then, that a minor adjustment to the CCA mechanism leads to good
welfare guarantees for any class of valuation function. Specifically, if bid incre-
ments are made proportional to excess demand the welfare of the CCA is within
an O(k2 · log n log2 m) factor of the optimal welfare [7]. Here n is the number
of items, m is the number of bidders and k is the maximum cardinality of a
set desired by the bidders. The fact that the CCA can generate high welfare for
general valuation functions motivates the work in this paper. Is it possible that
the SMRA also performs well with general valuation functions?

1 Their proof is not for the SMRA, but it can be adapted to apply there.
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Our Results. The short answer to the question posed above is no, the SMRA
cannot unconditionally guarantee high social welfare for valuation functions that
exhibit complementarities (see for instance [8]).

It turns out however that we can quantify precisely the welfare guarantee
in terms of the magnitude of the complementarities exhibited by the valuation
function. To explain this we require a few definitions. Each bidder i ∈ B has value
vi(S) for any set of items S ⊆ Ω. The valuation function vi(·) is monotonically
non-decreasing (free-disposal). Each bidder has a quasi-linear utility, that is, its
utility for a set S is vi(S)−p(S), where p(S) is the price of S. The social welfare of
an allocation S = {S1, . . . , Sn}, where the Si are pairwise-disjoint subsets of the
items, is ω(S) =

∑
i vi(Si). Next, to quantify the extent of complementarities,

let the degree of submodularity [1] of a function f be

D(f) = min
x∈Ω\B

min
A,B:A⊂B

f(A ∪ x) − f(A)
f(B ∪ x) − f(B)

Note that f is submodular if and only if D(f) ≥ 1. We say that f is α near-
submodular if D(f) ≥ 1

α . A similar concept to near-submodularity, called
bounded complementarity, is introduced by Lehman et al. [18].

The parameter α turns out to be the key in explaining the performance of
the SMRA. To explain this we require one more concept. We say that a bidder
i ∈ B is λ-individually rational if λ · vi(St

i ) ≥ p(St
i ) in each round t. Note that if

λ = 1 then we have individual rationality. We say that an auction mechanism is
λ-individually rational if every bidder is λ-individually rational. We then prove
in Sect. 3:

Theorem 1. If bidders have α near-submodular valuations then, under (condi-
tional) truthful bidding2,
(i) The SMRA outputs an allocation S with ω(S) ≥ 1

1+α · ω(S∗) where S∗ is the
optimal allocation.
(ii) The auction is α-individually rational.

The bi-criteria guarantees in Theorem 1 are (almost) tight. There are exam-
ples with α near-submodular valuations where the SMRA is only α-individually
rational and the welfare guarantee tends to 1

1+α . Despite the fact that SMRA
has arbitrarily poor welfare guarantees, it seems to perform very well in prac-
tice. Theorem 1 provides an explanation for this, and confirms empirical results,
since complementarities exist but are typically bounded in magnitude in most
spectrum auctions. Indeed, the SMRA has been proposed for auctions where
valuation functions have weak complementarities [3].

There are, however, two major drawbacks inherent in Theorem1. The first
drawback is that it relies upon truthful bidding, that is, in each round the bidder
selects the feasible set that maximizes utility. But, as we explain in Sect. 2, there
are many reasons why a bidder will not bid truthfully in the SMRA. One of

2 A detailed discussion on truthful and conditional truthful biddings will follow in
Sect. 2.
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these reasons is that, in a spectrum auction, a bidder may not even know its
own valuation function [11]. Bidders typically can however make comparisons
between similar sets. Thus, a natural method by which a bidder can select a bid
is via local improvement.

We show, in Sect. 4, that local improvement leads to similar guarantees as
truthful bidding (albeit with an additional α factor in the denominator for the
welfare guarantee).

Theorem 2. If bidders have α near-submodular valuations then, under (condi-
tional) local improvement bidding,
(i) The SMRA outputs an allocation S with ω(S) ≥ 1

1+α2 · ω(S∗) where S∗ is
the optimal allocation.
(ii) The auction is α-individually rational.

Again, the bounds in Theorem2 are (almost) tight.
The second drawback is that Theorem 1 shows that the SMRA is not individ-

ually rational. That is, it may produce outcomes which give negative utility to
some bidders. Consequently, in Sect. 5 we provide a detailed study of what bid-
ding strategies are required to ensure the individual rationality of the SMRA, and
what are the consequences for welfare when such strategies are used. Towards
this end, we characterize the individual rationality of the SMRA in terms of
secure bidding. We then prove, in Sect. 5.2, that secure bidding has a good wel-
fare guarantees, provided the bidders make profit maximizing secure bids.

Theorem 3. If bidders have α near-submodular valuations then, under (condi-
tional) profit maximizing secure bidding, the SMRA outputs an allocation S with
ω(S) ≥ 1

1+α · ω(S∗) where S∗ is the optimal allocation. Moreover, the auction is
individually rational.

Consequently, by bidding securely, it is possible to obtain the same welfare guar-
antees as truthful bidding without the loss of individual rationality!

2 The Simultaneous Multiple-Round Ascending Auction

The SMRA was first proposed by Milgrom, Wilson and McAfee for the 1994
FCC spectrum auction. It is an ascending price auction that simultaneously
sells many items. Let B be a set of n bidders and let Ω be a collection of m
items. For each item j ∈ Ω the auction posits an item-price pt

j at the start of
round t. Moreover, the SMRA has a unique standing high bidder for each item
with a positive price. Specifically, at the start of round t, bidder i is the standing
high bidder for a set of items St

i ; we call St
i the provisional (winning) set for

bidder i.

The SMRA Mechanism: Initially p0j = 0 for each item j ∈ Ω, and S0
i = ∅ for

each bidder i ∈ B and t = 0. The auction then iterates over rounds as follows.
In round t, bidder i bids for a set T t

i ⊆ Ω \ St
i under the assumption that the

price of each item j ∈ Ω \St
i is incremented to pt

j + ε. We call T t
i the conditional

bid for i. The term conditional is used as the auction mechanism automatically
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assumes that bidder i also makes a bid of price pt
j for every item j ∈ St

i (recall,
bidder i is the provisional winner of the items St

i ).
The item-prices and provisional sets are then updated. Take an item j and

suppose that j is in exactly k of the conditional bids. If k = 0 then no bidder has
placed a bid on item j at the incremented price pt

j +ε. Thus we set pt+1
j = pt

j and
the standing high bidder for j remains the same, i.e. if j ∈ St

i then j ∈ St+1
i . If

k > 0 (we say that j is in excess demand) then at least one bidder has accepted
the incremented price pt

j + ε. Thus we set pt+1
j = pt

j + ε. The mechanism then
randomly selects a bidder i amongst these k bidders and places j ∈ St+1

i . Note
that, in this case, the standing high bidder must change as the previous standing
high bidder was only assumed to bid the non-increment price pt

j .
The mechanism then proceeds to the next round. The auction terminates

when the conditional bids T t
i of all bidders are empty, at which point each

bidder i is permanently allocated her provisional set St
i for a price

∑
j∈St

i
pt

i.

An extremely important property of the SMRA is that the use of standing
high bidders implies that every item with a positive price is sold.

Observation 4. In an SMRA auction, every item with a positive price is sold. ��
Truthful Bidding in the SMRA. A key factor in determining the practi-
cal success of the auction is accurate price discovery (see, for example Cramton
[10,11]). This, in turn, relies upon bidding that is truthful or, at least, approxi-
mately truthful. There are two pertinent issues here. Firstly, is the SMRA mech-
anism compatible with truthful bidding? Specifically, the use of conditional bid-
ding implicitly implies that bidders are forced to rebid on their provisional sets.
However, suppose that T t

i is the optimal conditional bid, that is

T t
i ∈ argmaxT⊆Ω\St

i

⎛

⎝vi(T ∪ St
i ) − vi(St

i ) −
∑

j∈T

(pt
j + ε)

⎞

⎠

It need not be the case that the implicit bid St
i ∪ T t

i is truthful. In particular,
we may have St

i ∪ T t
i /∈ argmaxT⊆Ω

(
vi(T ) − ∑

j∈T∩St
i
pt

j − ∑
j∈T\St

i
(pt

j + ε)
)
.

Recall, here, that bidder i has a personalized set of prices:
(
(p)St

i
, (p +

ε · 1)Ω\St
i

)
. Indeed, at round t, bidder i has an ε discount on the prices of St

i .
Interestingly, truthful bidding is compatible with the SMRA (for any price

trajectories) precisely if the valuation function satisfies the gross substitutes
property [21]. The gross substitutes property3 was defined by Kelso and Crawford
[16] and used by them to prove the existence of Walrasian equilibrium. Moreover,
with gross substitutes, the SMRA will converge to a Walrasian equilibrium;
furthermore such an equilibrium will maximize social welfare (given negligible
price increments) – see Milgrom [21,22].

3 A valuation function satisfies the gross substitutes property if, given any set of prices,
increasing the price of some goods does not decrease demand for another good.
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Secondly, even if truthful bidding is compatible with the SMRA, it is unlikely
that the bidders will actually bid truthfully. For example, in bandwidth auctions,
firms typically have ranked bandwidth targets and budget constraints that are
more important than profit maximization. Moreover, the valuation function is
often not known in advance, rather it is “learned” as the auction proceeds.
Regardless, the SMRA and the CCA do both incorporate a set of bidding activity
rules to encourage truthful bidding. In the CCA these include revealed preference
bidding rules that are difficult to game [4,6]. However, the bidding rules in the
SMRA are weaker and strategic bidding is common – examples include demand
reduction, parking, and hold-up strategies [11].

Consequently, as well as examining truthful (optimal conditional) bidding, we
will examine the natural strategy of local improvement bidding that consists of
attempting to add one item, delete one item, or replace one item in the current
proposed solution. Gul and Stacchetti [14] prove that this local improvement
method finds an optimal demand set, given any set of prices, if the valuation
function has the gross substitutes property. We examine the quality of outcomes,
for more general valuation functions, when this local search method is used in
the SMRA in Sect. 4.

From now on, we will just consider conditional bidding and then will omit
the term conditional when we refer to conditional truthful bidding or conditional
profit maximizing bidding.

3 Bi-criteria Guarantees for the SMRA Under Truthful
Bidding

We now prove Theorem 1 and show that, under truthful bidding, the worst case
welfare and rationality guarantees are dependent upon the degree of submodu-
larity in the bidder valuation functions.

Theorem 5. Given α-near-submodular truthful bidders, the SMRA outputs an
α-individually rational allocation.

Proof. In order to show α-individual rationality upon termination, let us prove
a stronger result. Specifically, we will show that for any time t and any bidder i,
every set S′ ⊆ St

i satisfies α · vi(S′) ≥ p(S′). We proceed by induction on t. The
statement trivially holds for t = 0. For the induction hypothesis, assume that
bidder i is allocated the set St

i in round t where

α · vi(S′) ≥ pt(S′) ∀S′ ⊆ St
i (1)

We now require the following claim:

Claim. Let X ⊆ St
i ∪ T t

i be such that α · vi(X) ≥ pt(X ∩ St
i ) + pt+1(X \ St

i ).
Then, for every x ∈ T t

i \ X, we have

α · vi(X ∪ x) ≥ pt(X ∩ St
i ) + pt+1(X ∪ x \ St

i )
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Proof. Take any x ∈ T t
i \ X. By α near-submodularity, we have

vi(X ∪ x) − vi(X)
vi(St

i ∪ T t
i ) − vi(St

i ∪ T t
i \ x)

≥ 1
α

Consequently,

α · vi(X ∪ x) − α · vi(X) ≥ vi(St
i ∪ T t

i ) − vi(St
i ∪ T t

i \ x) ≥ pt+1(x) = pt(x) + ε

Here the second inequality follows from truthful bidding. Otherwise, T t
i \ x is a

more profitable bid than T t
i . The equality arises as x /∈ Si.

By the condition in the statement of the claim, we have α · vi(X) ≥ pt(X ∩
St

i ) + pt+1(X \ St
i ). Therefore

α · vi(X ∪ x) ≥ pt(X ∩ St
i ) + pt+1(X \ St

i ) + pt+1(x)
= pt(X ∩ St

i ) + pt+1(X ∪ x \ St
i )

Again, the equality arises as x /∈ Si. ��
By iteratively applying the previous claim over items in a set X̂ ⊆ T t

i \ X,
we obtain

Claim. Let X ⊆ St
i be such that α ·vi(X) ≥ pt(X). Then, for every X̂ ⊆ T t

i \X,
we have α · vi(X ∪ X̂) ≥ pt(X ∩ St

i ) + pt+1(X ∪ X̂ \ St
i ). ��

Now take any Ŝ ⊆ St+1
i . To complete the proof of Theorem 5, we must show

that α · vi(Ŝ) ≥ pt+1(Ŝ). For this purpose, set S′ = Ŝ ∩ St
i and set T ′ = Ŝ \ St

i .
By the induction hypothesis, we have that α · vi(S′) ≥ pt(S′).

Thus we may apply the second claim with X = S′ and X̂ = T ′ to obtain

α · vi(Ŝ) = α · vi(S′ ∪ T ′) ≥ pt(S′ ∩ St
i ) + pt+1((S′ ∪ T ′) \ St

i ) = pt(S′) + pt+1(T ′)

Furthermore, note that S′ ⊆ St
i ∩St+1

i . In order to be the provisional winner
of an item j in both rounds t and t+1, it must be the case that no other bidder
bid for item j at the price pt+1(j). Thus the price of j at time t + 1 remains
pt(j). Hence pt+1(S′) = pt(S′), and so

α · vi(Ŝ) ≥ pt(S′) + pt+1(T ′) = pt+1(S′) + pt+1(T ′) = pt+1(Ŝ)

Theorem 5 follows by induction. ��
We remark that this proof implies a stronger conclusion: if bidder i is truthful

then she is α-individually rational regardless of the strategies of other bidders.
To conclude the proof of Theorem 1, we just have to prove the following:

Theorem 6. Given α-near-submodular truthful bidders, the SMRA outputs an
allocation S = (S1, . . . , Sn) with social welfare ω(S) ≥ 1

1+α · ω(S∗
i ) where S∗ =

(S∗
1 , . . . , S∗

n) is an allocation of maximum welfare.
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Proof. Assume the auction terminates in round t with a set of prices pt. Thus
T t

i = ∅ for each bidder i. In particular, by truthfulness, we have that

vi(Si ∪ (S∗
i \ Si)) − pt(S∗

i \ Si) ≤ vi(Si ∪ ∅) − pt(∅) = vi(Si)

Thus
vi(S∗

i ) ≤ vi(Si ∪ S∗
i ) ≤ vi(Si) + pt(S∗

i \ Si)

We now obtain a (1 + α) factor welfare guarantee.

∑
vi(S∗

i ) ≤
n∑

i=1

(
vi(Si) + pt(S∗

i \ Si)
) ≤

n∑

i=1

vi(Si) +
n∑

i=1

pt(S∗
i )

≤
n∑

i=1

vi(Si) +
n∑

i=1

pt(Si) ≤
n∑

i=1

vi(Si) +
n∑

i=1

α · vi(Si)

= (1 + α) ·
n∑

i=1

vi(Si)

Here the third inequality follows because the SMRA mechanism utilizes pro-
visional winners. This implies that every item with a positive price is sold at
the end of the auction. Consequently,

∑n
i=1 pt(Si) ≥ ∑n

i=1 pt(S∗
i ). The fourth

inequality follows as the auction allocation is α-individual rational, as shown in
Theorem 5. ��

By combining Theorems 5 and 6 we obtain Theorem 1.

Tightness of the Bi-criteria Guarantees. The bounds in Theorem 1 are
almost tight. To see this, consider the following example. There are k items
X = {x1, x2, . . . , xk}. Let there be a large number L of identical bidders. For
any S ⊂ X, each bidder i has a valuation 1 for set S if |S| = 1 and (|S|−1)·α+1)
otherwise. It is easy to verify that this function is α near-submodular.

The optimal welfare is obtained by allocating the entire set X to a single
bidder achieving social welfare (k − 1) · α + 1. Now let us examine the allocation
produced by the SMRA. Initially, all prices are 0 and the truthful bid for each
bidder is to demand the entire set X. Indeed, every bidder keeps bidding on the
entire set (except for the items that she is the standing high bidder) until every
item has price greater than 1

k ((k − 1) · α + 1). At this point, no profitable bids
can be made and all bidders drop out.

In each round, the randomly chosen standing high bidders are all distinct
with probability at least (1 − k−1

L−1 )k. For L >> k, this probability tends to 1.
So by the end of the auction, the k items are allocated to k different bidders
with probability almost 1. Since the social welfare of this allocation is only k,
the expected social welfare of the SMRA is around k. When k goes to infinity,
the welfare ratio tends to α.

Next consider the rationality of this allocation. Each winner was allocated
exactly one item with probability almost 1, and the final price of that item is
1
k ((k − 1) · α + 1). The bidder has only value 1 for the item. When k goes to
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infinity, this tends to α-rationality for the winners. We remark that even for
k = 2 items, the previous example ensures that the welfare guarantee cannot be
improved beyond α

2 since the optimal welfare is (α+1) and the expected welfare
of the SMRA is 2.

4 Bi-criteria Guarantees Under Locally Optimal Bidding

As discussed in Sect. 2, the assumption of truthful bidding is unrealistic in the
SMRA. Consequently, here we examine an alternate natural bidding method.
Given St−1

i , a bid T t
i ⊆ Ω \ St−1

i is locally optimal if vi(St−1
i ∪ T t

i ) − pt(T t
i ) ≥

vi(St−1
i ∪ X) − pt(X) for all X ⊆ Ω \ St−1

i , where |X \ T t
i | ≤ 1 and |T t

i \ X| ≤ 1.
Observe that a locally optimal bid can be obtained via a local improvement
algorithm that, given the current solution, seeks to add one item, delete one
item, or replace one item. Analysing this local improvement method is useful
because local comparison is a key tool used by bidders in real bandwidth auc-
tions. Thus, there are practical reasons to suspect that bidders will not make
bids that are clearly not locally optimal. From the theoretical viewpoint, this
specific local improvement method is interesting because it is guaranteed, given
any set of prices, to output an optimal set if the valuations satisfy the gross
substitute property [14]. Due to space restrictions, the reader is referred to the
full version [8] for a proof of the following result and tight examples.

Theorem 2. If bidders have α-near-submodular valuations and make locally
optimal bids, then the SMRA has welfare ratio 1

1+α2 and is α-individually
rational.

5 Individually Rational Bidding

As shown in Theorems 2 and 5, truthful and locally-optimal bidding can only
ensure approximate individual rationality in the SMRA. Consequently, such bid-
ding strategies are highly risky. In this section, we investigate what bidding
strategies are risk-free and what are the welfare implications of such strategies.

We call a risk-free strategy conservative, and show in Sect. 5.1 that conser-
vative bidding is (weakly) characterized by secure bidding. Specifically, secure
bidding always produces individually rational outcomes. Conversely, if the other
bidders use secure bids then the only way a bidder can ensure an individually
rational solution is by also bidding securely. This result holds even with stronger
assumptions on the bidding strategies of the other bidders, for example, that
they make profit-maximizing secure bids.

We then examine the welfare consequences of secure bidding. Our main result,
in Sect. 5.2, is that then the welfare ratio is at most 1 + α provided the bidders
make profit maximizing secure bids. This result is surprising in that we are
able to match the welfare guarantee of truthful bidding without having to lose
individual rationality.
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5.1 Secure Bidding

We say that a bidding strategy is conservative if it cannot lead to a bidder
having negative utility. Thus, conservative strategies are individually rational.
To understand what strategies are conservative, we first need to understand
what constitutes a bidding strategy. In the SMRA, a bidder can select a bid
based upon the auction history she observed, for example, the sequence of price
vectors, her sequence of conditional bids, and on her sequence of provisional sets
of items. Thus, we consider a bidding strategy to be a function of these three
factors.4

We say that a conditional bid T t
i is secure for bidder i (given the provisional

winning set St
i ) if vi(S′) ≥ p(S′) for every S′ ⊆ St

i ∪ T t
i . A bidding strategy

is secure if every conditional bid it makes is secure. It is easy to verify that
any secure bidding strategy is individually rational. We now show that bidding
securely in every round is essentially the only individually rational strategy.

Lemma 1. Let t be an integer and T t̂
i , S t̂

i , p
t̂ be the conditional bid of bidder

i, the provisional winning set of bidder i and the price vector at round t̂ for
any t̂ ≤ t. If bidder i makes a non-secure bid in round t + 1, then there exist
secure bidders who can bid consistent with the history and ensure that bidder i
has negative utility in the final allocation.

Proof. Assume that the conditional bid T t+1
i of bidder i at some round t is not

secure, then there exists S′ ⊆ St+1
i ∪T t+1

i such that S′ satisfies vi(S′) < pt+1
i (S′).

Let us prove that there exists an auction such that, with high probability, (i) the
set allocated to i is S′, (ii) at any time t̂ ≤ t, the provisional winning set of i is
S t̂

i and (iii) the price vector at round t̂ is pt̂.
The auction is as follows: there are many copies of the same bidder 1 whose

valuation function is v1. Let M be an integer larger than the maximum of the
prices at any round t̂ ≤ t and the maximum valuation of any subset of items for
bidder i. The valuation function v1 of all the copies of bidder 1 is additive5 and
the value of each item is the following:

v1(s) =

⎧
⎪⎨

⎪⎩

M + 2 · ε if s ∈ Ω \ S′

pt(s) if s ∈ S′ \ St
i

pt(s) − ε if s ∈ S′ ∩ St
i

Claim. Assume that i bids on T t̂
i at any round t̂ ≤ t. There is a sequence of

secure bids such that, for every t̂ ≤ t, with high probability

(i) the price vector is exactly pt̂ at the end of round t̂,
(ii) bidder i is the standing high bidder of the set S t̂+1

i .6

4 In some SMRA mechanisms, bidders also know the excess demand of each item.
5 A valuation function v is additive if v(S) =

∑
s∈S v(s).

6 Recall that i is the standing high bidder of S t̂
i at the beginning of round t̂, which

explains the index difference.



226 N. Bousquet et al.

Proof. By induction on t, let us prove that if the copies of bidder 1 use the
following strategy, the conclusion holds. If the price of item s does not increase
from round t̂ to round t̂ + 1 then no copy of bidder 1 bids on it at round t̂; if
the price of item s increases and s ∈ S t̂

i then no copy of bidder 1 bids on it at
round t̂; if the price of s increases and s /∈ S t̂

i then all the copies of bidder 1 bid
on it at round t̂. By construction of the valuation function v1, at any time t̂ ≤ t,
the value of any item s ∈ Ω \ (S′ ∩ St+1

i ) for copies of bidder 1 is at least its
price. Moreover, if s ∈ St

i then copies of bidders 1 do not bid on s at price pt(s)
by construction. It is easy to verify that v1(s) is larger than the price of s at
any round where copies of 1 bid on it. As v1(·) is additive, all bids by copies of
bidder 1 up to round t are secure.

Let us show that items in excess demand are those whose prices increase
between rounds t̂ − 1 and t̂. If the price of an item in Ω \ S t̂

i is distinct in pt̂−1

and pt̂, then all the copies of bidder 1 bid on it, and it is in excess demand. Now
assume s ∈ S t̂

i , if the price of s increases, then s ∈ S t̂
i \ S t̂−1

i (the provisional
winner must change when there is a price increment). Thus bidder i bids on s
and then s is in excess demand.

Now let us show that with high probability, bidder i is the standing high
bidder of the items in S t̂

i . Since the prices of any item s in S t̂−1
i ∩ S t̂

i do not
increase, copies of bidder 1 do not bid on s at round t̂. Thus s is still in S t̂

i .
Moreover, bidder i is the unique bidder in excess demand for the items in S t̂

i \
S t̂−1

i . So the provisional set of bidder i contains S t̂
i . Let us prove that it does not

contain any other item s with high probability. First assume that s ∈ S t̂−1
i \ S t̂

i .
Thus the price of s increases. And since i was the standing high bidders of these
items at round t̂ − 1, she cannot be the standing high bidder anymore at round
t̂. Assume now that i bids on s /∈ S t̂−1

i ∪ S t̂
i . Then by construction, all the other

copies of 1 also bid on s and then, with high probability (since there are many
copies of bidder 1), s is not allocated to bidder i, which completes the proof of
the claim. ��

Now assume that at round t + 1, bidder i decides to bid on T t+1
i . Starting

from round t + 1, copies of bidder 1 securely bid on subsets in the complement
of S′ until the prices of all items in Ω \ S reach M + 2ε. Note that since no copy
of 1 bid on any item in S′, all the items in S′ are in the provisional set of i at
the end of round t + 1. Copies of 1 continue to perform the same bids until they
drop out. On the other hand, bidder i can perform any bid.

Let us first show that the set allocated to i contains S′. At the end of round
t + 1, the price of item s in S′ is pt(s) if s ∈ S′ ∩ St

i and pt(s) + ε if s ∈ S′ \ St
i .

Thus the price of s is above v1(s) and then copies of 1 cannot bid anymore on s
since they make secure bids. Since S′ ⊆ St+1

i , the set of items allocated to i by
the SMRA contains the set S′.

Assume now that s /∈ S′ is allocated to i at the end of the procedure. Since
copies of 1 continue to bid on it until its price is at least M +ε. This implies that
bidder i bids on it at price at least M + ε. Thus the price of the set allocated to
i is at least M + ε, which is above the value of any set for bidder i by definition
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of M . So i is not individually rational. Otherwise, bidder i is allocated the set
S′ and by definition of S′, we have pt(S′) > vi(S′) and then bidder i receives
negative utility. ��

So, if the bids of the other bidders are secure, then performing a non-secure
bid may lead to negative utility. One may ask if a similar statement still holds
if stronger assumptions are made concerning the strategies of the other bidders.
This is indeed the case. The following lemma states that even if we know the other
bidders are truthful (or if they make profit-maximizing secure bids), making
any non-secure bid is not individually rational (the proof is deferred to the full
version [8]).

Lemma 2. Let t be an integer and T t̂
i , S t̂

i , p
t̂ be the conditional bid of bidder i,

the provisional winning set of bidder i and the price vector at round t̂ for any
t̂ ≤ t. Assume that there is an item of value 0 for i with price ε · t̂ at any round
t̂ ≤ t. If bidder i makes a non-secure bid in round t + 1, then there exist truthful
(or profit-maximizing secure) bidders who can bid consistent with the history and
ensure that bidder i has negative utility in the final allocation.

5.2 Social Welfare Under Secure Bidding

The previous results ensure that secure bidding strategies are essentially the
only way to guarantee individual rationality. In this section, we will assume
that bidders strategies are secure. The following simple lemma ensures that any
allocation where each bidder is allocated at least one item can be obtained in
the SMRA with bidders only making secure bids. Due to space restriction, we
refer the reader to the full version [8] for the proofs of the next two lemmas.

Lemma 3. Any allocation where each bidder is allocated at least one item can
be obtained via the SMRA with secure bidders. In particular if each bidder is
allocated at least one item then the optimal allocation can be obtained if bidders
are secure.

Lemma 3 is unsatisfactory in two ways. First, if there are bidders that are
allocated nothing then the situation can be far more complex. Specifically, it may
then be the case, see Lemma 4, that secure bidding cannot provide a guarantee
on welfare.

Lemma 4. If super-additive bidders only make secure bids, then there is no
guarantee on the social welfare of the SMRA.

The second unsatisfactory aspect of Lemma 3 is that the structure of the
bids used there is extremely artificial, since the bidders need to know all the
valuation functions in order to calculate the secure bids. Theorem3 shows we
can circumvent both of these problems if the bidders’ valuation functions are α
near-submodular. Then a good welfare guarantee can be obtained if the bidders
make profit-maximizing secure bids. Namely, in every round every bidder i bids
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on a secure set Ti such that the utility of Si ∪ Ti is maximized over all possible
secure bids.

Theorem 3. If bidders have α near-submodular valuations then, under (condi-
tional) profit maximizing secure bidding, the SMRA outputs an allocation S with
ω(S) ≥ 1

1+α · ω(S∗) where S∗ is the optimal allocation. Moreover, the auction is
individually rational.

Proof. Let S∗ = {S∗
1 , . . . , S∗

n} be the optimal allocation, and let S =
{S1, . . . , Sn} be the assignment output by the SMRA. By assumption, Si is
the most profitable secure set in the final round, and the conditional bid Ti is
empty in the final round and then Si was the provisional set for bidder i in the
penultimate round. Let S∗

i \Si = {x1, x2, . . . , xk} and let Xj = {x1, x2, . . . , xj},
for each j ≤ k.

First, as all bidders use secure bidding strategies, the auction is individually
rational. Now we bound the welfare ratio. For every item xj ∈ Si, since the
conditional bid Ti is empty, there are two possibilities.

– Case 1: {xj} is a secure conditional set but not as profitable as ∅. Then
vi

(
Si ∪ {xj}

) − p(xj) < vi(Si). Let Qij be Si, and we have p(xj) ≥ vi

(
Qij ∪

{xj}
) − vi(Qij).

– Case 2: {xj} is an insecure conditional set. Then there exist a set Q ⊆ Si such
that vi

(
Q ∪ {xj}

)
< p

(
Q ∪ {xj}

)
. On the other hand, since Si is a secure set,

vi

(
Q

) ≥ p
(
Q

)
. Let Qij be Q, and we have p(xj) ≥ vi

(
Qij ∪ {xj}

) − vi(Qij).

In both cases, we have p(xj) ≥ vi

(
Qij ∪{xj}

)−vi(Qij). Using these inequalities,
we can bound vi(S∗

i ).

vi(S∗
i ) ≤ vi(Si ∪ Xk) = vi(Si) +

k∑

j=1

(
vi(Si ∪ Xj) − vi(Si ∪ Xj−1)

)

≤ vi(Si) +
k∑

j=1

α · (
vi

(
Qij ∪ {xj}

) − vi(Qij)
) ≤ vi(Si) + α ·

k∑

j=1

p(xj)

≤ vi(Si) + α · p(S∗
i )

The second inequality is because Qij ⊆ Si and vi(·) is α-near-submodular. The
third inequality is derived from the case analysis above. Finally, we are ready to
bound the welfare ratio.

n∑

i=1

vi(S
∗
i ) ≤

n∑

i=1

vi(Si)+α ·
n∑

i=1

p(S∗
i ) ≤

n∑

i=1

vi(Si)+α ·
n∑

i=1

p(Si) ≤ (1 + α) ·
n∑

i=1

vi(Si)

The second inequality is a consequence of Observation 4. The last inequality
holds because the auction is individually rational. ��

The bound in Theorem3 is almost tight. This can be seen by adapting the
tight example in Sect. 3.

Thus, under secure bidding we are able to match the welfare guarantee of
truthful bidding without having to lose individual rationality.
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Abstract. Combinatorial auctions (CA) are a well-studied area in algo-
rithmic mechanism design. However, contrary to the standard model,
empirical studies suggest that a bidder’s valuation often does not depend
solely on the goods assigned to him. For instance, in adwords auctions
an advertiser might not want his ads to be displayed next to his competi-
tors’ ads. In this paper, we propose and analyze several natural graph-
theoretic models that incorporate such negative externalities, in which
bidders form a directed conflict graph with maximum out-degree Δ. We
design algorithms and truthful mechanisms for social welfare maximiza-
tion that attain approximation ratios depending on Δ.

For CA, our results are twofold: (1) A lottery that eliminates con-
flicts by discarding bidders/items independent of the bids. It allows to
apply any truthful α-approximation mechanism for conflict-free valua-
tions and yields an O(αΔ)-approximation mechanism. (2) For fraction-
ally sub-additive valuations, we design a rounding algorithm via a novel
combination of a semi-definite program and a linear program, resulting
in a cone program; the approximation ratio is O((Δ log log Δ)/ log Δ).
The ratios are almost optimal given existing hardness results.

For adwords auctions, we present several algorithms for the most rele-
vant scenario when the number of items is small. In particular, we design
a truthful mechanism with approximation ratio o(Δ) when the number
of items is only logarithmic in the number of bidders.

1 Introduction

Combinatorial auctions (CA) are an important area in algorithmic mechanism
design due to wide-spread applications in resource allocation and e-commerce,
e.g., spectrum or adwords auctions [5]. In the standard CA, a set of items
is assigned to a set of bidders in order to maximize social welfare, which is
given by the total valuations of bidders for their assigned items. This assumes
that each bidder values exclusively the set of items assigned to him — his
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valuation is independent of the assignment of other items to other bidders. In
many applications (see [20,21] for examples), however, such an assumption is not
justified since bidder preferences have a significant dependence on how items are
assigned to other bidders. Such a dependence is called externality .

Mechanism design for CA with externalities in the most general form
is difficult, primarily due to the huge complexity of bidders’ preferences with
externalities, which then also leads to the computational complexity issue
for (approximately) maximizing social welfare. Prior work has studied more
restricted scenarios, e.g., when there is only one item on sale, or when the
bidders’ preferences are simple (e.g., unit-demand). In this work, we focus on
a simple type of externalities called conflict-based externality , which is readily
motivated by sponsored search auctions (SSA); in our model, there are mul-
tiple items on sale, and the bidders’ preferences might be more complex than
unit-demand ones.

SSA are one of the most popular special cases of CA, where ad slots on a
search result page are assigned to advertisers. Negative externality arises when,
for example, a car-rental company has much smaller value for an ad slot if an ad
of another prominent rental company is shown right next to it. More generally,
for an advertiser there might be a number of competitors, and an assignment
yields value to the bidder only if the ads of competitors are not displayed simul-
taneously. The existence of negative externalities in sponsored search has been
confirmed empirically [11]. Moreover, similar negative externalities also arise in
other prominent applications of CA, e.g., in secondary spectrum auctions where
interferences induce negative externalities; or when selling luxury goods, where
the value of a buyer for items from an exclusive brand drops when other buyers
also obtain items from the same brand. These examples give rise to a natural and
simple graph-based model of externalities: each bidder is a node in a directed
graph, and a directed edge indicates that a bidder sees another bidder as a com-
petitor; assigning an item to a bidder yields value only if none of the competitors
receives any item (or just any “similar” or “better” item).

Negative externalities in auctions have recently received attention, but —
perhaps surprisingly — the natural and simple idea sketched above has not been
analyzed in a rigorous and general fashion. We propose three graph-theoretic
models that incorporate these conflict-based externalities. We study approxi-
mation algorithms and truthful mechanisms under the models. Formally, we
assume there is a directed conflict graph on the set of bidders. Each edge (i, j)
indicates a conflict: i has no value for any assignment in which j receives an item.
More generally, we also consider cases where conflicts arise only among certain
pairs of items, or different values for assignments that include or avoid certain
conflicts. Our algorithms cope with externalities via new extensions of algorith-
mic techniques for independent set problems in combination with algorithms for
conflict-free CA. We also provide additional results for the prominent special
case of SSA. Before we state our results, we proceed with a formal introduction
and discussion of the models on conflict-based externalities treated in this paper.
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Auctions with Conflict-Based Externalities. In all models, we have a bid-
der set B of n bidders and an item set I of m items. Each item can be given to
at most one bidder. For each i ∈ B, there is a valuation function vi : 2I → R

+,
where vi(Si) represents the value for receiving item set Si ⊆ I. In the SSA case,
the items in I are ad slots. Each slot k has a click-through rate αk ≥ 0. Each bid-
der i has a valuation per click of vi ≥ 0 in one slot. Then vi(Si) = maxk∈Si

vi ·αk,
a unit demand valuation function with free disposal.

The valuation vi(Si) will be extended, due to externalities, to vc
i (S), a valu-

ation that depends on the complete allocation S = (S1, · · · , Sn). The goal is to
find an allocation S that maximizes social welfare SW (S) =

∑
i∈B vc

i (S).
CA with Bidder Conflicts. The set of bidders B is the vertex set of a (bidder) con-
flict graph G = (B,E), which is a directed graph. Each bidder i has a valuation
function vi : 2I → R

+. Given a complete allocation S = (S1, · · · , Sn),

vc
i (S) =

{
vi(Si) if

⋃
j:(i,j)∈E Sj = ∅

0 otherwise.

This models the situation that advertiser i is not interested in showing its ad
together with an ad from a competitor j, represented by an edge (i, j) ∈ E.

The introduction of conflicts turns social welfare maximization NP-hard; in
the special case SSA with all vi = 1, all αk = 1, and m = n, it reduces to the
maximum independent set problem.
CA with Bidder and Item Conflicts. There are two conflict structures in this
model, each represented by a directed graph. The bidder set B is the vertex set
of a bidder conflict graph G = (B,E). The item set I is the vertex set of an item
conflict graph GI = (I, EI). Both graphs are directed. Intuitively speaking, if
(i, j) ∈ E and (k, �) ∈ EI , then bidder i has no use for item k if j receives item
�. Formally, for any allocation S, bidder i has a set Di of useless items, defined
as Di := {k ∈ Si | ∃� ∈ Sj : (i, j) ∈ E and (k, �) ∈ EI}, and vc

i (S) := vi(Si \Di).
An intuitive example is ordered conflicts, where ad slots are ordered on a

page top-down, and a bidder has a conflict only if a competitor receives a slot
above him. This can be modelled by numbering slots top-down and EI = {(k, �) |
k, � ∈ I, � < k}. Another intuitive example is neighbor conflicts, where ad slots
are arranged horizontally, and a bidder has conflict only if a competitor receives
a slot right next to him. This can be modelled by numbering slots from left to
right and EI = {(k, �) | k, � ∈ I, |k − �| = 1}.

Note that CA with bidder conflicts is a sub-case of this model, when GI is
the complete digraph.

The results in this paper depend on two parameters Δ and ΔI of the conflict
graphs, which are the maximum out-degrees of the graphs G and GI respectively.
CA with Bidder Conflicts and Conflict Value. In CA with bidder conflicts, we
assume that the valuation of a bidder drops to vi(S) = 0 as soon as a competitor
receives any item. We can generalize this assumption to a second valuation func-
tion wi(Si): if

⋃
j:(i,j)∈E Sj = ∅, then vc

i (S) = vi(Si); otherwise, vc
i (S) = wi(Si).

This model can be reduced to the model with bidder-conflicts only. Given
an instance of CA with bidder conflicts and conflict value, we build an instance



Combinatorial Auctions with Conflict-Based Externalities 233

without conflict value as follows: for each bidder i, we add an auxiliary bidder
ic, where vic

(Si) = wi(Si). In the bidder conflict graph, we add the edges (i, ic)
and (ic, i). This increases Δ by exactly 1. Now if bidder i is conflicted, we can
take all items assigned to it and assign them to bidder ic instead. In this way,
we can transform any allocation into the instance without conflict value and
obtain the same social welfare. It is straightforward to observe that social welfare
maximization in both instances is equivalent. This, however, does not directly
apply to truthfulness.

There are numerous further ways to extend our models, e.g., to combina-
tions of item conflicts and conflict values, weighted conflicts, etc. Studying their
properties are interesting avenues for future work.

Our Contribution. For CA with conflict-based externalities, we design and
analyze poly-time approximation algorithms and truthful mechanisms which pro-
vide almost best possible approximation guarantees of maximizing social welfare.
To state our results, we first define fractionally sub-additive valuations (see [8]).
a valuation function v : 2I → R is fractionally sub-additive if it satisfies the
following property for any S, T1, T2, · · · , Tk ∈ 2I and 0 ≤ α1, α2, · · · , αk ≤ 1:
if for all j ∈ S,

∑
�: j∈T�

α� ≥ 1, then v(S) ≤ ∑k
�=1 α� · v(T�). The class of

fractionally sub-additive valuations is known to strictly contain the more well-
known unit-demand valuations, linear valuations, gross substitute valuations and
submodular valuations.

For CA with bidder conflicts, we use well-known techniques for independent
set problem to eliminate conflicts, which is in a spirit similar to lottery , to give
a reduction to conflict-free CA. Given any α-approximation algorithm for the
unconflicted problem, we obtain an O(αΔ)-approximation algorithm for CA with
bidder conflicts (Theorem 1). If the original algorithm is a truthful mechanism,
our reduction preserves the truthfulness. Moreover, our reduction preserves the
use of randomization (deterministic, universally truthful, truthful in expecta-
tion). If the bidders have fractionally sub-additive valuations, our results extend
to CA with bidder and item conflicts (Theorem 2).

The next natural question to ask is whether one can improve the approxi-
mation ratio to o(Δ). Since our problem generalizes the weighted independent
set (WIS) problem, the ratio must be Ω(Δ/ log4 Δ) [2], even for unit-demand
valuations. We answer the question positively: if the bidders have fractionally
sub-additive valuations and if there is a demand oracle for each bidder, we design
an O((Δ log log Δ)/ log Δ)-approximation algorithm (Theorem 3). This implies,
for example, ratios of O((Δ log log Δ)/ log Δ) for sponsored search, unit-demand,
or more general gross-substitute valuations. The dependence on Δ mirrors the
best-known approximation ratio for WIS. Our algorithm combines an approach
for WIS based on semi-definite programming (SDP) with the standard approach
for CA based on linear programming (LP) to design a cone program relax-
ation and a rounding scheme. To the best of our knowledge, we are the first
to combine an SDP with an LP in this fashion, and to show how to analyze it.
We believe this technique might be of independent interest in other applications.
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It is an interesting open problem if this approach can be turned into a truthful
mechanism, or be generalized to CA with bidder and item conflicts.

We then focus on SSA with bidder conflicts. Even in this special case, the
hardness bound of Ω(Δ/ log4 Δ) applies. We consider a restriction to a small
number of slots that is natural in the context of sponsored search. For the case
of m = O(log n) slots, we present a truthful mechanism based on SDP that
obtains an O(Δ · √

(log log Δ)/(log Δ))-approximation (Theorem 4). To obtain
the desired truthfulness property, the first step of our mechanism is to gather a
statistic from a sampling of bidders who will not be allocated any item, which is
similar the first two steps in the framework of Dobzinski et al. [6] for designing
truthful mechanisms. However, the subsequent steps of our algorithm will be
different from theirs. Also, we get an O(log m)-approximation algorithm based on
partial enumeration that runs in time O((mΔ)m) (Theorem 5); the algorithm can
be turned into truthful-in-expectation mechanisms with the same approximation
guarantee, and it extends to CA with bidder and item conflicts.

Related Work. The study of auctions with externalities was initiated by sem-
inal work of Jehiel et al. [20,21] in the single-item setting. The externality in
this work is identity-dependent , i.e., each bidder can have a different valuation
when different bidders obtain the item. The preference of each bidder can thus
be represented by a low dimensional R

n+1 vector, which reflects the bidder’s
valuation on the (n + 1) possible outcomes. In our model, a bidder is indifferent
between the bidders who he conflicts with, but our model allows multiple items
in an auction.

Gomes et al. [11] gave empirical evidence that externalities exist in real-life
SSA. Externalities in online advertising were investigated by [9] using a proba-
bilistic model. CA with externalities were presented in [4,12,23], and maximizing
social welfare was shown to be NP-hard. In [10] a sponsored search setting was
treated where each advertiser has two valuations, one if his ad is shown exclu-
sively and one if it is shown together with other ads. This is a special case
of our model for CA with bidder conflicts and conflict values. A different line
of work considered bidder-independent externalities in the click-through rates of
SSA [1,22,27]. All this work considered only the unit-demand setting.

Our model of SSA with bidder conflicts has been proposed and studied before
by Papadimitriou and Garcia-Molina [26]. They consider an approach based on
exact optimization algorithms using ILP, implement truthfulness using VCG,
and experimentally evaluate their approach with respect to running time and
revenue on a dataset from the Yahoo! Webscope. However, they do not consider
polynomial-time algorithms, provable approximation ratios, or extensions to CA
with more general valuations.

Our work is related to approximation algorithms for weighted independent
set problem, a central problem in the study of approximation algorithms and
computational hardness over the past four decades. For a survey on some of
the work on approximation algorithms, see, e.g., [13]; here, we just mention
a number of directly related results. The problem is known to be NP-hard
to approximate within a ratio of n1−ε [16], and even in undirected Δ-regular
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graphs it remains hard for a ratio of O(Δ/ log4 Δ) [2]. A trivial greedy algo-
rithm obtains an approximation ratio of (Δ + 1) in undirected graph with max-
imum degree Δ. For directed graphs, which arise in our application, a simple
randomized (4Δ)-approximation algorithm exists. The best-known approxima-
tion algorithms for undirected graphs with maximum degree Δ attain ratios of
O((Δ log log Δ)/ log Δ) [14,15]. They are based on rounding suitable SDP relax-
ations, and below we build on these techniques and their analysis to provide
algorithms for our cases, which involve directed graphs.

More recently, the study of asymmetric and edge-weighted versions of inde-
pendent set has found interest, especially in the context of secondary spectrum
auctions [17–19,28], where bidders are wireless devices that strive to obtain chan-
nel access under interference constraints. In these scenarios, bidders become ver-
tices in a conflict graph. Each channel is an item that can be given to any subset
of bidders representing an independent set in the graph.

2 CA with Bidder and Item Conflicts via Lottery

In this section, we present results for CA with bidder and item conflicts. We
assume that either (i) Δ is bounded and GI is arbitrary, or (ii) ΔI is bounded,
G is arbitrary and bidders have fractionally sub-additive valuations.

Theorem 1. Given a (maximal-in-range) deterministic α-approximation algo-
rithm f for CA without conflicts, there exists a (truthful maximal-in-range)
deterministic (16Δα/3)-approximation algorithm fc for CA with bidder and item
conflicts satisfying condition (i).

The main idea of Theorem 1 is to first generate a “good” conflict-free bid-
der set Bc, and then apply the blackbox algorithm f w.r.t. the bidders in Bc.
Initially, each bidder is in Bc with probability 1/(2Δ). Then, if there are still
bidder conflicts within Bc, we remove those bidders having conflicts. Overall,
each bidder is in Bc with probability of at least 1/(4Δ), and this will translate
into a randomized (4Δα)-approximation algorithm fc.

We derandomize the above algorithm using the standard technique of pair-
wise independent distributions [24]; this will lead to an increase of the approxi-
mation ratio from 4Δα to 16Δα/3. Since no bidder can alter Bc by changing his
valuation, truthfulness is preserved from f to fc. The details of derandomization
is given in the full paper [3].

For case (ii), the ideas are similar, but here we generate a conflict-free item
set Ic using the same technique as in (i). We require fractionally sub-additive
valuations to avoid the existence of complementary goods, which should not be
deleted independently. We obtain the following result; its proof is given in the
full paper [3].

Theorem 2. For CA with bidder and item conflicts satisfying conditions (i)
and (ii), given a (maximal-in-range) deterministic α-approximation algorithm f
for CA without conflicts, there exists a (truthful maximal-in-range) deterministic
(16α/3) · min{Δ,ΔI}-approximation algorithm fc.
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3 CA with Bidder Conflicts via Cone Program Relaxation

We design an approximation algorithm via a combination of (i) an SDP for
WIS problem and (ii) an LP for conflict-free CA. This yields a cone program,
which we round its solution to yield a good allocation. Cone program (CP) is a
generalization of the more well-known LP and SDP. Briefly speaking, a CP is a
program that optimizes a linear function in the intersection of some hyperspaces
and a proper cone. More about CP will be given in the full paper [3].

To the best of our knowledge, we are the first to combine this SDP and a LP
in this fashion. Also, our analysis for the cone program rounding algorithm is
novel, combining of the analyses for (i) and (ii) so as to get the benefits of both.
We prove the following result:

Theorem 3. For CA with bidder conflicts, suppose that the bidders have frac-
tionally sub-additive (FSA) valuations. If there is a demand oracle for each bid-
der (we shall define this soon), then there exists an O ((Δ log log Δ)/ log Δ)-
approximation algorithm of social welfare that runs in poly(m, n)-time.

In the rest of this section, we first include some standard facts about CA
without conflicts, followed by our algorithm and its analysis. We slightly abuse
the notation and use S to denote a subset of I.

CA with No Conflicts. The optimal social welfare of a CA without conflicts
can be represented by the program ILP-NC: maximizing

∑
i∈B

∑
S �=∅ vi(S) · xi,S

subject to three sets of constraints: (i) ∀i ∈ B,
∑

S �=∅ xi,S ≤ 1; (ii) ∀k ∈
I,

∑
S�k

∑
i∈B xi,S ≤ 1; (iii) ∀i ∈ B and ∀S ⊆ I, xi,S ∈ {0, 1}.

In general, solving ILP-NC is NP-hard. The usual remedy is to solve its LP
relaxation LPR-NC, i.e., relaxing (iii) from xi,S ∈ {0, 1} to xi,S ∈ [0, 1], to obtain
a fractional solution, and round it to an integral solution.

There are Ω (2mn) variables in LPR-NC, but it can be solved in poly(m,n)-
time if there is a demand oracle for each bidder: given the prices of the items
p1, p2, · · · , pm, the demand oracle of bidder i returns a set S ⊆ I that maximizes
vi(S)−∑

k∈S pk. The demand oracles serve as separation oracles for the dual of
LPR-NC, thus allow solving LPR-NC efficiently using the ellipsoid algorithm [25].

For CA without conflicts where bidders have FSA valuations, a rounding algo-
rithm called fair contention resolution algorithm (FCRA) [8, Sect. 1.2] attains
approximation ratio 1 − 1

e . In Lemma 1 below, we state the precise result on
FCRA, which will be useful for our conflict setting; we need the following nota-
tion: ∀B′ ⊆ B, let LPR(B′) denote the program LPR-NC with the item set I
and the bidder set restricted to B′. Given any feasible point {xi,S}i∈B′,S⊆I of
LPR(B′), ∀i ∈ B′, let Li ({xi,S}i∈B′,S⊆I) :=

∑
S �=∅ vi(S) · xi,S .

Lemma 1 ([8]). Suppose the bidders in B have FSA valuations. Given any fea-
sible point {xi,S}i∈B,S⊆I of LPR(B), FCRA outputs a randomized allocation in
which each i ∈ B obtains expected welfare of at least

(
1 − 1

e

) ·Li ({xi,S}i∈B,S⊆I).

Let FCRA (B, {xi,S}i∈B,S⊆I) denote the randomized allocation in Lemma 1.
For any B′ ⊆ B, let x̂(B′) denote the optimal solution to LPR(B′).
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Algorithm. Halperin [15] designed an SDP and a rounding scheme for WIS
with approximation guarantee O ((Δ log log Δ)/ log Δ). We conglomerate his
SDP with LPR-NC for our problem, which is equivalent to solving the discrete
program ICP-C below.

As the constraint (1) involves a product of variables, an LP relaxation is not
admissible. As LP is a subclass of SDP, one might think that an SDP relaxation
suffices. However, this is not true. If we use a “fully” SDP relaxation, each
constraint xi,S ≤ 1 will be converted to a non-conic constraint in the SDP
relaxation. This will introduce exponentially many dual variables, prohibiting
an ellipsoid algorithm on its dual to run in poly-time.

Thus, we relax to CPR-C, a “mixture” of LP and SDP; note that in CPR-C,
w0, wi ∈ R

n+1. CPR-C is a CP. In the full paper [3], we show that strong duality
holds between CPR-C and its dual, and we can solve the dual in poly(m,n)-time
using the ellipsoid algorithm, assuming that we have a demand oracle for each
bidder. We then round the fractional solution of CPR-C as in Algorithm 1.

(ICP-C)

max
∑

i∈B

∑

S �=∅
vi(S) · xi,S

subject to
∑

S �=∅
xi,S ≤ 1, ∀i ∈ B

∑

S�k

∑

i∈B

xi,S ≤ 1, ∀k ∈ I

1 + wi

2
=
∑

S �=∅
xi,S , ∀i ∈ B

(1 + wi)(1 + wj) = 0, ∀(i, j) ∈ E (1)
wi ∈ ±1, ∀i ∈ B

xi,S ∈ {0, 1}, ∀i ∈ B, S ⊆ I.

(CPR-C)

max Z :=
∑

i∈B

∑

S �=∅
vi(S) · xi,S

subject to
∑

S �=∅
xi,S ≤ 1

∑

S�k

∑

i∈B

xi,S ≤ 1

1 + w0 · wi

2
=
∑

S �=∅
xi,S (2)

(w0 + wi) · (w0 + wj) = 0 (3)
‖w0‖ = ‖wi‖ = 1. (4)
xi,S ≥ 0.

Intuitions of the Algorithm and its Analysis. Let (Z∗, {x∗}, {w∗}) be the
solution to CPR-C. Fo any B′ ⊆ B, let Z∗(B′) :=

∑
i∈B′

∑
S �=∅ vi(S) · x∗

i,S .
We partition the bidders according to the values of 1+w∗

0 ·w∗
i into three sets

B0, B1 and B2. Items are allocated to one of the sets; the best one is chosen. The
methods of allocating items to B2 and B1 (Steps 3 and 4) are well motivated
by Halperin’s algorithm – first selecting a “good” independent subset of bidders
from them, and then apply FCRA for conflict-free CA; we call this “IS-then-
FCRA”. In the full paper [3], we prove that A2 and A1 attains expected social
welfares of at least

(
1 − 1

e

)
Z∗(B2) and Ω

(
log Δ

Δ log log Δ

)
· Z∗(B1) respectively.

For B0, we face two difficulties which force us to use an approach quite
different from Halperin’s. Firstly, Halperin’s algorithm is for undirected graph
while in our application the graph is directed. Secondly, we notice that the “IS-
then-FCRA” approach will not work for B0, and we ought to do the opposite –
first apply FCRA by ignoring conflicts (see the next paragraph), and then resolve
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Algorithm 1. Approximation Algorithm via Cone Program Relaxation.
Solve CPR-C to obtain the solution (Z∗, {x∗}, {w∗}).1

Set τ ← 3 log log Δ
4 log Δ

, which is less than 1/2. Partition the bidders into three sets2

B0, B1, B2: B0 = {i | 0 ≤ 1 + w∗
0 · w∗

i ≤ 2τ}, B1 = {i | 2τ < 1 + w∗
0 · w∗

i ≤ 1},
B2 = {i | 1 < 1 + w∗

0 · w∗
i ≤ 2}.

Let J2 = B2. A2 ← FCRA(J2, x̂(J2)).3

For the bidders in B1, do as follows:4

– Project all vectors in {w∗
i | i ∈ B1} to (w∗

0)
⊥, the space orthogonal to w∗

0 , then
normalize them. Let {w′

i} denote the projected normal vectors. Note that (w∗
0)

⊥

has dimension n, so we can treat each w′
i as an n-dimensional vector.

– Choose a random n dimensional vector r = (r1, r2, · · · , rn), where each ri follows

the standard normal distribution with density function φ(x) = 1√
2π

e−x2/2.

– Let γ := (1 − 2τ)/(2 − 2τ). Let B′
1 :=

{
i ∈ B1 | w′

i · r ≥
√

2γ
1−γ

log Δ
}

.

– Let J1 := B′
1 \ {i ∈ B′

1 | ∃j ∈ B′
1 such that (i, j) ∈ E}. A1 ← FCRA(J1, x̂(J1)).

For the bidders in B0, do as follows:5

– Let {qi,S}i∈B0,S⊆I denote the following distribution: ∀S 
= ∅, qi,S =
x∗

i,S

2τΔ
, and

qi,∅ = 1 −∑S �=∅ qi,S .
– {Ti}i∈B0 ← FCRA (B0, {qi,S}i∈B0,S⊆I).
– (Conflict handling.) Let A0 denote the following allocation: for each bidder

i ∈ B0, if there exists another bidder j such that (i, j) ∈ E and Tj 
= ∅, bidder i
gets nothing in A0; otherwise bidder i gets Ti in A0.

Return the best allocation among A0, A1, A2.6

any remaining conflicts. These force us to have an analysis for B0 quite different
from Halperin’s one.

We provide more intuitions for B0. The bidders in B0 have low values of
1+w∗

0 ·w∗
i

2 =
∑

S �=∅ x∗
i,S . The values x∗

i,S are typically viewed as probability densi-

ties. Low values of 1+w∗
0 ·w∗

i

2 allow room to “expand” these densities by a factor of
1/τ , where τ < 1

2 . However, to handle conflicts, we ought to “dwell” these densi-
ties by a factor of 1/(2Δ) afterwards. Then we apply FCRA with the “expanded
then dwelled” densities to obtain a sufficiently good allocation to B0.

We show that A0 attains an expected social welfare of Ω
(

log Δ
Δ log log Δ

)
·Z∗ (B0);

a proof sketch is given below, and the complete proof is given in the full
paper [3]. Finally, note that Z∗(B0)+Z∗(B1)+Z∗(B2) = Z∗, so the best among
A0, A1, A2 attains an expected social welfare of Ω

(
log Δ

Δ log log Δ

)
· Z∗.

Analysis sketch on Step 5. Observe that 2τΔ > 1 for sufficiently large Δ, so the
vector q, which collects {qi,S}i∈B0,S⊆I , is a feasible point of LPR(B0).

For the analysis of this step, we need to unwind FCRA. Taking the feasible
point q as input, the algorithm first selects a random set Si for each bidder i as
follows: a non-empty set S is selected with probability qi,S , and the empty set
is selected with probability 1 − ∑

S �=∅ qi,S . Note that S1, S2, · · · , Sn may not be
disjoint, so a resolution scheme is needed to generate disjoint sets T1, T2, · · · , Tn,
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which are the sets stated in Step 5, while ∀i, Ti ⊆ Si. By Lemma 1, E [vi(Ti)],
the expected welfare of bidder i (modulo conflicts), is at least

(
1 − 1

e

) Z∗({i})
2τΔ .

To handle conflicts, the algorithm resets the allocation of some bidders to
the empty set. We will show that for each bidder i ∈ B0, at least half of his
expected welfare (modulo conflicts) is retained after conflict handling.

For every i ∈ B0, let Fi be the event: ∀j with (i, j) ∈ E, Sj = ∅, and let Fi

be the complement of Fi. We will prove in the full paper [3] that for all i ∈ B0,
E [vi(Ti) |Fi] ≥ E

[
vi(Ti) |Fi

]
. Intuitively this inequality depicts that bidder i

gets more when facing less competition from bidders he conflicts with.
Since E [vi(Ti)] = E [vi(Ti) |Fi] · Pr [Fi] + E

[
vi(Ti) |Fi

] · Pr
[
Fi

]
, and

E [vi(Ti) |Fi] ≥ E
[
vi(Ti) |Fi

]
, it follows that E [vi(Ti) |Fi] ≥ E [vi(Ti)].

Next, it is easy to prove that Pr [Fi] ≥ 1/2 ≥ Pr
[
Fi

]
. Observe that bidder i’s

allocation is reset during conflict handling only if Fi holds. Hence, the expected
welfare of bidder i after conflict handling is at least

E [vi(Ti) |Fi] · Pr [Fi] ≥
(

1 − 1
e

)
Z∗ ({i})

2τΔ
· 1
2

= Ω

(
log Δ

Δ log log Δ

)

· Z∗ ({i}) .

Then the expected social welfare is at least
∑

i∈B0
Ω

(
log Δ

Δ log log Δ

)
· Z∗ ({i}) =

Ω
(

log Δ
Δ log log Δ

)
· Z∗ (B0).

We obtain the following proposition as a notable special case.

Proposition 1. There is a poly-time O ((Δ log log Δ)/ log Δ)-approximation
algorithm for the WIS problem in a directed graph G with out-degree at most Δ.

By Theorem 2, we have an O (min{Δ,ΔI})-approximation algorithm for CA
with bidder and item conflicts, in which bidders have FSA valuations. An inter-
esting open problem is whether we can improve the approximation guarantee to
o (min{Δ,ΔI}). We note that if each bidder has linear valuation, the problem
reduces to the WIS problem in the tensor product of the graphs G and GI , which
might be of independent interest. We describe a CP approach for this problem
in the full paper [3], however, we do not succeed to analyze.

4 Sponsored Search with Limited Number of Slots

In this section we consider sponsored search with bidder conflicts. Some of our
results extend to ordered conflicts and more general graph-based slot conflicts.
In light of the application, we concentrate on the case with a small num-
ber m of slots. Note that a trivial enumeration solves the problem in time
O(nm). Moreover, it is unlikely that significantly faster algorithms exist that
solve the problem exactly, even for m ≤ log n; it is W[1]-hard to decide Log-
Independent-Set, i.e., given k ≤ log n, deciding if G has an independent set of
size at least k cannot be done in time f(k) · nc for constant c unless FPT =
W[1] [7]. Thus, we present two approximation algorithms. The first one uses
semi-definite programming and has polynomial running time for m ∈ O(log n).
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Algorithm 2. Sponsored search auction with conflicts
Assign all bidders in B independently with probability 1/2 to set B1 and set1

B2 ← B \ B1. With v1 ≥ v2 ≥ · · · ≥ vn and h = |B1| define the functions
φ : [h] → [n] and χ : [n − h] → [n] such that B1 = {φ(1), . . . , φ(h)} and
φ(j) < φ(j + 1) for j ∈ [h − 1] and B2 = {χ(1), . . . , χ(n − h)} and
χ(j) < χ(j + 1) for j ∈ [n − h − 1];
Set q ← 1 with probability 1

2
and set q ← 2 otherwise;2

if n − h ≥ m
4

� + 1 then t ← χ(m
4

� + 1) else t ← ∞ and vt ← 0;3

if q = 1 then4

Set r1 ← vt; Set B1
1 ← {φ(j)|j ∈ [h] and φ(j) < t};5

if t ≤ m + 1 then set A to the set of all subsets of B1
1 else A ← ∅6

else7

Set r2 ← vt · 1
8
R(Δ); Set B2

1 ← {φ(j)|j ∈ [h] and vφ(j) ≥ r2};8

Set J ← (unweighted) independent set in B2
1 computed by using the WIS9

algorithm (Proposition 1) giving bidders in B2
1 in random order and with

equal weights; A ← {J};

Add m bidders without conflicts and with valuation rq to B and each set in A;10

For each set A ∈ A let M(A) define all the conflict-free matchings of bidders in11

A to slots; define M =
⋃

A∈A M(A);
Select allocation M ′ ∈ arg maxM∈M

∑
i∈B vi(M);12

Every real-bidder a in B pays pa ← maxM∈M
∑

i∈B\{a}(vi(M) − vi(M
′));13

The second one is a partial enumeration approach and runs in polynomial time
if m ∈ O((log n)/(log max(Δ + 1, log n))).

Sponsored Search via Semidefinite Programming. We study sponsored
search with bidder conflicts and m ∈ O(log n). We assume for simplicity that
n ≥ m ≥ 6. If m > n, we could add (m − n) dummy bidders with valuation
zero. We assume consistent tie-breaking among bidders with the same valuation.
Recall that in this setting bidders are unit demanded, and thus we can represent
an allocation S of slots to bidders by a matching MS in a bipartite bidder-
slot-graph. We define vi(MS) = vi(S) for all i ∈ B. We call a matching MS

conflict-free if Di ∩ Si = ∅ for all i ∈ B. Note that for every matching there
exists a conflict-free matching with the same social welfare; we simply unassign
all the slots in

⋃
i∈B Di ∩ Si. Furthermore, we define the expected social welfare

SW (M) := E[
∑

i∈B vi(M)] for a (randomized) matching M . The mechanism
is presented in Algorithm 2. We will provide a proof sketch for analyzing its
approximation guarantee; the complete proof is deferred to the full paper [3].
We use the notation R(Δ) :=

√
log log Δ/ log Δ.

Let t, r1, r2, B1
1 , and B2

1 be defined as in Algorithm 2. We show that if
the optimal conflict-free assignment of bidders to slots OPT was restricted to
a random subset OPT′′ of the t − 1 most valuable edges, where each of those
edges is picked with probability 1/2, then SW (OPT′′) ≥ SW (OPT)/16. Thus,
it suffices to compare the performance of a mechanism with OPT′′. We run two
different mechanisms, ALG1 and ALG2, each with probability 1/2, and receive at
least 1/2 of the maximum of their social welfares SW 1 and SW 2.
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If ALG1 performs very well, i.e., if SW 1 > SW (OPT′′)/(ΔR(Δ)), we achieve
the result promised in Lemma 2. ALG1 tries out all possibilities to find the best
non-conflicting matching for bidders in B1

1 . If ALG1 does not perform very well,
we can show that OPT′′ must get at least a quarter of its social welfare from
bidders in B2

1 \ B1
1 . In this case, we build an (unweighted) independent set J

of all bidders in B2
1 using the WIS algorithm described in Proposition 1, which

guarantees that the number of bidders in J is at least an O(1/(ΔR(Δ)2))-fraction
of the optimal number for bidders in B2

1 \B1
1 . As in OPT′′ every bidder in B2

1 \B1
1

contributes at most with valuation r1 to SW (OPT′′) and in ALG2 every bidder
in J contributes at least with valuation r2 to SW 2, the overall approximation
ratio of ALG2 is O(ΔR(Δ)2 · r1/r2) = O(ΔR(Δ)).

Lemma 2. The matching M ′ computed in Algorithm 2 is in expectation an
O(Δ

√
log log Δ/ log Δ)-approximation of the optimal social-welfare.

We show that the mechanism runs in poly(n,Δ) time for certain restrictions
on the number of slots m, and it is universally truthful. The crucial idea for
showing truthfulness is to prove that no bidder has an incentive to alter the set
of matchings M. Thus, even though the range of allocations M depends on the
valuations of the bidders, no bidder has an incentive to change it.

Theorem 4. For sponsored search with bidder conflicts and m ∈ O(log n), Algo-
rithm 2 is a universally-truthful mechanism that attains approximation guarantee
of O(Δ

√
log log Δ/ log Δ). It runs in time poly(n,Δ).

Sponsored Search via Partial Enumeration. We treat a slightly more gen-
eral small-supply case with m ≤ n/Δ. For this case we observe that the problem
can be solved optimally in linear time when all bidders i have uniform values
vi = v. For non-uniform values vi, we will strive for a truthful mechanism that
solves the problem approximately but much faster than the trivial enumera-
tion that solves the problem exactly in O(nm) time. Note that there is an m-
approximation algorithm that assigns slot 1 to the highest bidder, obtains value
maxk,i αk · vi, and runs in time O(n). Thus, we obtain the following trade-off.

Theorem 5. In sponsored search with bidder and slot conflicts, there is a
universally-truthful mechanism that yields an O(log m)-approximation of social
welfare and runs in time O(n + (m(Δ + 1))m).

Lemma 3. In sponsored search with bidder conflicts, there is an O(log m)-
approximation algorithm that runs in time O(n + (m(Δ + 1))m).

Proof. The algorithm is extremely simple for uniform values vi = v for all i ∈ B
if m ≤ n/(Δ + 1). Initially, every bidder is active. We assign slot 1 to the
bidder i with smallest out-degree, label i and its all out-neighbors to be inac-
tive. We repeat this procedure with slots 2, 3, . . . ,m. Since m ≤ n/(Δ + 1),
we will be able to assign all slots in this way. This yields an optimum solution
and takes time O(n). If the vi are different, we apply logarithmic scaling. Let
vmax = maxi∈B vi. We consider �log2(2m)� classes, where class k contains bid-
ders i with value vi ∈ (vmax/2k, vmax/2k−1]. The unclassified bidders have a value
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which is at most vi ≤ vmax/(2m). Thus, by discarding this set of bidders, we dis-
card at most 1/2 of the optimum value.

For the remaining bidders, we pick k ∈ {1, 2, . . . , �log2(2m)�} uniformly at
random and consider Vk = {i ∈ B | vi > vmax/2k}, the union of all bidders
in classes 1, . . . , k. Let nk = |Vk|. If nk/(Δ + 1) ≥ m, then we can apply the
above algorithm for identical values to Vk. Otherwise, if nk/(Δ + 1) ≤ m, then
nk ≤ (Δ+1)m, and a complete enumeration takes time at most O((m(Δ+1))m).
In either case, we obtain the optimum for Vk under the assumption that every
bidder has value vmax/2k, and hence at least half of the value that the optimum
gets from bidders in class k. In expectation over the random choice of k, this
shows that we recover an O(log m)-fraction of the optimum.

The highest valuation can be found in time O(n). Computing the threshold
and reducing the set of considered bidders can be done in time O(n). Apply-
ing the previous algorithm can be done in time O(n), enumeration takes time
O((m(Δ + 1))m). �

Note that for a particular choice of k, the algorithm described in the proof
of Lemma 3 is applied in the induced subgraph of Vk and produces an optimum
solution under the assumption that all nodes have the same valuation. If this
results from the greedy algorithm for the independent set of bidders, it also
remains an optimum solution with arbitrary additional slot conflicts. If this
results from enumeration, we can apply the enumeration also for additional slot
conflicts within the same running time. Thus, we obtain the same running time
and approximation ratio also for sponsored search with bidder and slot conflicts.

By the sampling arguments in [6,18] we can turn the algorithm into a univer-
sally truthful mechanism with the same asymptotic running time and approx-
imation ratio. The idea is as follows. First, choose a random bit q. If q = 0,
partition B into B1 and B2 randomly and set vmax be the highest valuation in
B1. However, we run the algorithm in Proposition 3 on B2 only; if bidder i ∈ B2

gets assigned slot � he has to pay α� · vmax/2k. If q = 1, we keep the best slot
and remove all others, and run a second price auction among all bidders in B.
This ensures that the claimed approximation ratio even if there is a dominant
bidder, i.e., a bidder who contributes at least a constant fraction of the optimal
social welfare. This completes the proof of Theorem 5.
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Applications of α-Strongly Regular Distributions
to Bayesian Auctions
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Abstract. Two classes of distributions that are widely used in the
analysis of Bayesian auctions are the Monotone Hazard Rate (MHR)
and Regular distributions. They can both be characterized in terms of
the rate of change of the associated virtual value functions: for MHR dis-
tributions the condition is that for values v < v′, φ(v′) − φ(v) ≥ v′ − v,
and for regular distributions, φ(v′) − φ(v) ≥ 0. Cole and Roughgarden
introduced the interpolating class of α-Strongly Regular distributions
(α-SR distributions for short), for which φ(v′) − φ(v) ≥ α(v′ − v), for
0 ≤ α ≤ 1. In this paper, we investigate five distinct auction settings
for which good expected revenue bounds are known when the bidders’
valuations are given by MHR distributions. In every case, we show that
these bounds degrade gracefully when extended to α-SR distributions.
For four of these settings, the auction mechanism requires knowledge of
these distribution(s) (in the other setting, the distributions are needed
only to ensure good bounds on the expected revenue). In these cases we
also investigate what happens when the distributions are known only
approximately via samples, specifically how to modify the mechanisms
so that they remain effective and how the expected revenue depends on
the number of samples.

1 Introduction

Much of the recent computer science research on revenue-maximizing auctions
uses Bayesian analysis to measure auction performance (see [5] for an overview),
although there is also a considerable body of work on worst-case revenue max-
imization (see [6]). Typically the analyses seek to compare the revenue for the
given mechanism to a measure of the optimal revenue, expressing this as an
approximation factor.

In Bayesian analyses the bidders valuations are assumed to be drawn from
one or more distributions, either one common distribution for all the bidders,
or separate distributions for distinct groups of bidders, possibly with each bid-
der being in a distinct group. Almost all previous Bayesian analyses have been
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for one of three settings: all distributions, regular distributions, and Monotone
Hazard Rate (MHR) distributions, with MHR being the more restrictive. For
example, Myerson’s analysis [8] of the expected revenue of the optimal auction
for the sale of a single item is most natural when the buyer values are given by
regular value distributions (different buyers may have values drawn from distinct
distributions). Many other results, including those we will consider in this paper,
are currently known only for MHR distributions, and for the most part do not
extend to regular distributions.

Recently, Cole and Roughgarden [3] introduced the notion of α-Strongly Reg-
ular distributions, α-SR distributions for short; these interpolate between MHR
and Regular distributions. They gave two examples of settings for which results
previously shown for MHR distributions extended smoothly to α-SR distrib-
utions. However, the main focus of their work was to investigate what hap-
pens in auctions, and in Myerson’s auction in particular, when distributions are
known only approximately, rather than exactly, and how to analyze the resulting
expected revenue as a function of the number of samples.

In this paper we carry out a more thorough investigation of α-SR distribu-
tions, and specifically to what extent known results for MHR distributions extend
to α-SR distributions. We consider five auction settings, listed in Table 1. For
each problem, we show that the prior result extends smoothly. In addition, for
four of these problems, the auction uses knowledge of the distribution in its deci-
sion making. For these two settings, we propose variants of the auctions which
allow efficiency in terms of revenue to be maintained, and we also determine how
the expected revenue varies as a function of the number of samples.

The technical challenges in this work were two-fold. First, we had to extend
a variety of results concerning properties of MHR distributions to α-SR distrib-
utions. While some of these results are straightforward extensions of analogous
results for MHR distributions, in other cases new proofs were needed, as the
previous arguments depended on convexity properties that need not hold out-
side the MHR domain. For the most part, once these new results were obtained,
analyzing the auction revenue was simply a matter of replacing an MHR bound
with the corresponding α-SR bound, as illustrated in Sect. 3.

Second, in working with samples we had to adjust some of the mechanisms
to take account of the fact that they were using an approximation of the actual
distributions. For example, for the result in Theorem 9, we take the apparently
optimal solution based on the approximate distributions, and adjust it in a non-
uniform manner; as can be seen in the full version of the paper, the resulting
solution achieves an approximation factor similar to what is obtained given exact
distributions.

In sum, this work strongly suggests that results that hold w.r.t. MHR distri-
butions will often degrade gracefully when extended to α-SR distributions. The
one result we did not succeed in extending was Theorem 3.14 in [4]. It would be
interesting to know if there are problems for which this is provably not the case.
This work also suggests that the optimal mechanism given full knowledge of the
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distributions may need non-trivial modifications to achieve good performance
when faced with sample-based empirical distributions.

In Sect. 2 we review some standard definitions and results. In Sect. 3 we
explain the approach taken to prove Theorems 1–5 and give the analysis for
Theorems 1 and 2. In the full version of the paper we explore what happens when
the distributions are known approximately via samples, proving Theorems 6–9

Table 1. Results for the mechanisms we analyze.

Mechanism MHR α-SR with samples

VCG for downward

closed revenue

approx

3 [7] 2+α
α (Theorem1) n/a

VCG-L mechanism

revenue vs. VCG

welfare

e [4] 1
α1/(1−α) (Theorem2) result below

k-bidders 1
α1/(1−α) · (1+γ)4

1−ξ(1+γ)2(1−kδ)
(Theorem6)

Downward closed,

known budgets

social welfare approx

4(1 + e) [2] 4
α + 2 α+1

α(2−α)/(1−α) (Theorem3) result below

4
α + 2 α+1

α(2−α)/(1−α)(1−ε)(1−kδ)
(Theorem7)

Downward closed,

private budgets,

single parameter

revenue approx

3(1 + e) [2] 3
(
1 + 1

α1/(1−α)

)
(Theorem4) result below

k-bidders 3
1−kδ

(

1 + 1
α1/(1−α)(1−max{

√
8γ/α,4γ+ξ})

)

(Theorem8)

Public budget,

universally IC

revenue approx

192e2 [1] 192
α

(
2−α

α

)1/(1−α)
(Theorem5) see Theorem9

In Table 1, Column 2 gives known results for MHR distributions expressed
as an approximation factor; Column 3 gives the corresponding results for α-
SR distributions, and Column 4, where applicable, the results under sampling
of the distributions. δ, ξ, and γ are parameters used to specify the number
m of samples and which need to satisfy γξm ≥ 4, (1 + γ)2 ≤ 3/2, and m ≥
6(1+γ)

γ2ξ max{ ln 3
γ , ln 3

δ }. Reasonable choices are ξ = δ, δ = γ/k, and γ ≤ 1/5
as small as needed to give the desired approximation factor. All the sampling
results assume there are k classes of bidders each with their own distribution.
Note that when α tends to 1, the limit values for all the bounds in column 3,
are the prior known bounds for MHR distributions.

Our goal with this work is two fold. First, we aim to show that results for
MHR distributions can often be extended to α-SR distributions. Second, by
providing a tool-kit of results about α-SR distributions we hope to encourage
other authors to attempt to extend their MHR results to α-SR distributions.
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2 Preliminaries

Recall that for a distribution F , the virtual valuation φ(v) is given by

φ(v) = v − 1 − F (v)
f(v)

,

where f is the derivative of F . Sometimes, we might define F on a discrete set
{1, . . . , L}, for some L, in which case we define the virtual valuation as

φ(v) = v − 1 − F (v)
F (v) − F (v − 1)

,

where F (0) = 0. Unless otherwise stated, we will assume that F is a continuous
distribution. It is often useful to use the hazard rate, h(v) = f(v)/(1−F (v)) (or
h(v) = (F (v) − F (v − 1))/(1 − F (v)) in the case of a discrete distribution); then
φ(v) = v − 1/h(v). Note that f , F , and h are always non-negative.

Given a value v, it can be useful to refer to the quantile, q(v) = 1 − F (v).
Additionally, we let v(q) be the value at quantile q.

Also recall that the monopoly price is the least price r such that φ(r) ≥ 0.
The following definition of α-SR distributions was introduced in [3].

Definition 1. A distribution F is α-SR if for all x < y,

φ(y) − φ(x) ≥ α(y − x).

Note that monotone-hazard (MHR) rate distributions are 1-SR, and regular
distributions are 0-SR. If F is a continuous distribution, then Definition 1 is
equivalent to stating that dφ

dv ≥ α.
The following worst-case α-SR distributions, first given in [3], will be used

to show that several of our results are tight:

Fα(v) = 1 −
(

1 +
1 − α

α
v

)− 1
1−α

, fα(v) =
1
α

(

1 +
1 − α

α
v

)− 2−α
1−α

.

These distributions have power-law tails with parameter c = 2 + α
1−α , i.e.

fα(v) = θ(v−c) for large v.

3 Approximation Algorithms for α-SR Distributions

The versions of all of Theorems 1–5 for MHR distributions rely on various quan-
titative properties of MHR distributions. The new results depend on generalizing
these properties to α-SR distributions; some of these extensions are quite non-
trivial. We illustrate by proving Theorems 1 and 2, and their associated lemmas.
The formal statements and proofs of the remaining results can be found in the
full version of the paper.
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3.1 Revenue of VCG with Duplicates

Theorem 1 bounds the expected revenue of Vickrey-Clarke-Groves (VCG) with
duplicates as described in [7]. Recall that the VCG mechanism chooses the feasi-
ble set of bidders with the maximum total value to be the winners, and charges
each bidder appropriately. With duplicates, VCG is run on the set of bidders,
along with a single additional copy of each bidder, so that each bidder and its
copy have independent and identical distributions on their valuations, are inter-
changable, and cannot both be part of the winning set of bidders. In Theorem1,
as α tends to 1, our bound on the approximation factor tends to 3, the tight
bound previously achieved for MHR distributions in [7].

Theorem 1. Let 0 < α < 1. For every downward-closed environment with val-
uations drawn independently from distributions that are α-SR, the expected rev-
enue of VCG with duplicates is a

(
2+α

α

)
-approximation to the expected revenue

of the optimal mechanism without duplicates.

Proof. Lemma 1 below replaces Lemma 4.1 in the proof of Theorem 4.2 in [7].
The rest of the proof is unchanged.

Lemma 1. Let 0 < α < 1 and let F be an α-SR distribution, and φ be its virtual
valuation function. Then, for all t,

Ev1,v2∼F [max{v1, v2}|max{v1, v2} ≥ t] ≤
(

2 + α

α

)

Ev1,v2∼F [max(φ(v1), φ(v2))|max{v1, v2} ≥ t].

In Lemma 5 below we prove Lemma 1 for the case t = 0, which it turns
out is when the bound is tightest, as we later show in concluding the proof of
Lemma 1.

To prove Lemma 5 we will use the following structural properties of α-SR
distributions F and their density functions f .

1. A lower bound on f(q) (Lemma 2): for q ≤ q0 ≤ 1, f(q) ≥ f(q0)
(

q
q0

)2−α

.

2. The single crossing property (Lemma 3): if for some v0, F (v0) > Fα(v0),
then F (v) ≥ Fα(v) for all v ≥ v0, where Fα is a tight distribution: f(q) =
f(1) · q2−α.

3. Lemma 4: α
1+α

∫ ∞
0

(1 − F (v))dv ≤ ∫ ∞
0

(1 − F (v))2dv.

Lemma 2. Let F be an α-SR distribution, and let f be the density function for
v. Let q0 ∈ [0, 1]. Then for q ≤ q0,

f(q) ≥ f(q0)
(

q

q0

)2−α

.

Proof. Recall that φ(v) = v − q(v)/f(v) and dv
dq = −1/f(v). Hence dφ

dq = −2
f(v) +

q(v)
f(v)2

df
dq . The condition dφ

dv ≥ α yields dφ
dq = dφ

dv
dv
dq ≤ −α

f(v) . Thus q(v)
f(v)2

df
dq ≤ 2−α

f(v)

or d
dq ln f ≤ 1

q (2 − α). For q ≤ q0, this yields f(q) ≥ f(q0)
(

q
q0

)2−α

as desired.
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Lemma 3. Let F be an α-SR distribution, and let Fα be an α-SR distribution

such that f(q) = f(q0)
(

q
q0

)2−α

for all q0 ∈ [0, 1] and q ≤ q0. If for some v0,
F (v0) > Fα(v0), then F (v) ≥ Fα(v) for all v ≥ v0.

Proof. Assume for a contradiction that the statement of the lemma does not
hold. In particular, assume that there are v2 and v4 with v4 > v2, F (v2) >
Fα(v2), but F (v4) < Fα(v4). Then there must exist v3, with v2 < v3 < v4,
such that the function F (v) − Fα(v) crosses the x-axis from above at v = v3. It
follows that f(v3) − fα(v3) < 0, where f and fα are the density functions, or
derivatives, of F and Fα respectively.

Suppose that the function F (v) − Fα(v) crosses the x-axis from below at
v1 < v2. If no such v1 exists, let v1 = 0. Then it follows that f(v1)− fα(v1) ≥ 0.
This is true even if v1 = 0, as in this case, for all v in the interval [v1, v2],
F (v) − Fα(v) ≥ 0.

Let q(v) be the quantile of v in F , and let qα(v) be the quantile of v in Fα.
Note that q(v1) = qα(v1) and q(v3) = qα(v3). By Lemma 2, for all v ≥ v1,

f(v) ≥ f(v1)
(

q(v)
q(v1)

)2−α

.

Because f(v1) ≥ fα(v1) and q(v1) = qα(v1), the above is bounded below by

fα(v1)
(

q(v)
qα(v1)

)2−α

.

On setting v = v3, as q(v3) = qα(v3), we obtain the bound

f(v3) ≥ fα(v1)
(

qα(v3)
qα(v1)

)2−α

.

However, the right-hand side is equal to fα(v3), which contradicts the statement
that f(v3) − fα(v3) < 0.

Lemma 4. Let 0 < α < 1 and let F be an α-SR distribution. Then

α

1 + α

∫ ∞

0

(1 − F (v))dv ≤
∫ ∞

0

(1 − F (v))2dv.

Proof. We start by defining the distribution G by rescaling F ’s argument so that∫ ∞
0

(1 − G(v))dv = 1. Let

G(v) = F

(

v ·
(∫ ∞

0

(1 − F (w))dw

)−1
)

= F (v · λ)

where λ =
(∫ ∞

0
(1 − F (w))dw

)−1
. Note that

∫ ∞
0

(1 − G(v))dv =
∫ ∞
0

(1 −
F (λv))dv =

∫ ∞
0

(1 − F (w))λdw = 1. As G is obtained by rescaling F ’s argu-
ment, it is easy to see that G is also α-SR, and that
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∫ ∞
0

(1 − G(v))dv
∫ ∞
0

(1 − G(v))2dv
=

∫ ∞
0

(1 − F (v))dv
∫ ∞
0

(1 − F (v))2dv
.

Therefore proving the lemma for G implies the lemma for F .
Let Gα be defined analogously with respect to the worst case distribution

Fα. A straightforward calculation shows that the distribution Gα satisfies the
inequality in the lemma. Therefore it is enough to prove that

∫ ∞
0

(1 − G(v))dv
∫ ∞
0

(1 − G(v))2dv
≤

∫ ∞
0

(1 − Gα(v))dv
∫ ∞
0

(1 − Gα(v))2dv
. (1)

As both G and Gα are normalized so that
∫ ∞
0

(1 − G(v))dv =
∫ ∞
0

(1 −
Gα(v))dv = 1, we can show (1), and consequently the lemma, by showing that

∫ ∞

0

(1 − G(v))2dv ≥
∫ ∞

0

(1 − Gα(v))2dv,

i.e. that ∫ ∞

0

(1 − G(v))2dv −
∫ ∞

0

(1 − Gα(v))2dv ≥ 0

or equivalently that
∫ ∞

0

[(1 − G(v)) − (1 − Gα(v))] · [(1 − G(v)) + (1 − Gα(v))]dv ≥ 0.

We apply Lemma 3 to G and Gα. Because Gα is the normalized version
of the worst case distribution, the conditions of Lemma 3 hold. It follows that
there exists a v0 such that G(v) ≥ Gα(v) when v ≥ v0, and G(v) ≤ Gα(v) when
v < v0. (Possibly v0 = ∞.)

Both 1 − G and 1 − Gα are decreasing functions and hence so is (1 − G) +
(1 − Gα). Thus,

∫ ∞

0

[(1 − G(v)) − (1 − Gα(v))] · [(1 − G(v)) + (1 − Gα(v))]dv

=
∫ ∞

v0

[(1 − G(v)) − (1 − Gα(v))] · [(1 − G(v)) + (1 − Gα(v))]dv

+
∫ v0

0

[(1 − G(v)) − (1 − Gα(v))] · [(1 − G(v)) + (1 − Gα(v))]dv

≥[(1 − G(v0)) + (1 − Gα(v0))]
∫ ∞

v0

[(1 − G(v)) − (1 − Gα(v))]dv

as (1 − G(v)) − (1 − Gα(v)) ≤ 0 when v ≥ v0

+ [(1 − G(v0)) + (1 − Gα(v0))]
∫ v0

0

[(1 − G(v)) − (1 − Gα(v))]dv

as (1 − G(v)) − (1 − Gα(v)) ≥ 0 when v < v0

= [(1 − G(v0)) + (1 − Gα(v0))]
∫ ∞

0

[(1 − G(v)) − (1 − Gα(v))]dv

= 0 as
∫ ∞
0

[(1 − G(v)) − (1 − Gα(v))] = 0.
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Lemma 5. Let 0 < α < 1 and let F be an α-SR distribution. Then,

Ev1,v2∼F [max{v1, v2}] ≤
(

2 + α

α

)

Ev1,v2∼F [min{v1, v2}]

=
(

2 + α

α

)

Ev1,v2∼F [max{φ(v1), φ(v2)}].

Proof. We first note that the equality follows by Myerson’s Lemma [8]. We now
prove the inequality. Note that Pr[max{v1, v2} ≥ x] = 1 − F (x)F (x). Then

Ev1,v2∼F [max{v1, v2}] =
∫ ∞

0

x
d

dx
[F (x)2]dx

=
∫ ∞

0

1 − F (x)F (x)dx (on integrating by parts).

Similarly, Pr[min{v1, v2} ≥ x] = (1 − F (x))(1 − F (x)). Thus

Ev1,v2∼F [min{v1, v2}] =
∫ ∞

0

(1 − F (x))(1 − F (x))dx.

Therefore,

Ev1,v2∼F [max{v1, v2}]
Ev1,v2∼F [min{v1, v2}] =

∫∞
0 1 − F (x)F (x)dx

∫∞
0 (1 − F (x))(1 − F (x))dx

=

∫∞
0 2(1 − F (x)) − (1 − F (x))2dx

∫∞
0 (1 − F (x))2dx

=
2
∫∞
0 (1 − F (x))dx

∫∞
0 (1 − F (x))2dx

− 1.

By applying Lemma 4, we see this is bounded above by
(

2(1 + α)
α

− 1
)

=
2 + α

α
as desired.

Proof (Lemma 1). By Lemma 5, Lemma 1 holds when t = 0. We now prove
the result for t > 0.

Let C(α) =
(
2+α

α

)
, and note that as F is regular, φ is increasing, and

hence max(φ(v1), φ(v2)) = φ(max{v1, v2}). Then, by substituting max{v1, v2}−
1

h(max{v1,v2} for φ(max{v1, v2}) in the statement of Lemma 1, we see that it is
equivalent to

Ev1,v2∼F

[

(C(α) − 1) max{v1, v2} − C(α)
h(max{v1, v2})

∣
∣
∣
∣ max{v1, v2} ≥ t

]

≥ 0.

We rewrite this as

C(α) · Ev1,v2∼F

[

(1 − α)max{v1, v2} − 1

h(max{v1, v2})+
(

α − 1

C(α)

)

max{v1, v2}
∣
∣
∣
∣ max{v1, v2} ≥ t

]

≥ 0.

As dφ
dv ≥ α, d(φ−αv)

dv ≥ 0, and consequently, (1 − α) max{v1, v2}− 1
h(max{v1,v2}) is

always non-decreasing as a function of max{v1, v2}. Additionally, we note that
1/C(α) ≤ α. Therefore, conditioning on the event that max{v1, v2} ≥ t only
increases the expected value.
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3.2 Revenue of the VCG-L Mechanism

The VCG-L mechanism, as defined in [4], is used in settings in which each bidder
has an attribute (a classification) and for each attribute there is a corresponding
known distribution from which the bidder’s valuation is drawn. The VCG-L
mechanism uses the reserve prices, one per bidder, as defined in Sect. 2, as follows.
First, the VCG mechanism is run. Second, all bidders whose valuation is less than
their reserve price are removed. Finally, each winning bidder is charged the larger
of its reserve price and its VCG payment from the first step.

In [4] the expected revenue of the VCG-L mechanism was shown to achieve
a 1/e approximation of the welfare, or efficiency, of the VCG mechanism, for
MHR distributions, which is tight. In Theorem 2 we extend the analysis to α-
distributions; the bound is again tight, as shown by the case of a single bidder
drawn from the worst-case distribution Fα. We note that the mechanism does not
achieve a constant factor approximation in the case of regular distributions [4].

Theorem 2. For every downward-closed environment with valuations drawn
independently from α-SR distributions where 0 < α < 1, the expected efficiency
of the VCG mechanism is at most a 1

α1/(1−α) fraction of the expected revenue of
the VCG-L mechanism with monopoly reserves.

Proof. Lemma 9 below replaces Lemma 3.10 in the proof of Theorem 3.11 in [4].
The rest of the proof is unchanged.

The proof of Lemma 9 uses the fact that (α + 1)/α ≤ α−1/(1−α), shown
in Lemma 6, and lower and upper bounds on the hazard rate h(v), given in
Lemmas 7 and 8, respectively.

Lemma 6. For 0 < α < 1, (α + 1)/α ≤ α−1/(1−α).

Proof. By rearranging the terms, we see that proving the lemma is equivalent
to proving that (α + 1)1−α ≤ (1/α)α. We replace α with 1/x, and therefore it is
enough to prove that for x > 1,

(
1
x

+ 1
)1−1/x

≤ x1/x.

Again, by rearranging terms, it is enough to show that
(

x + 1
x

)x

=
(

1 +
1
x

)x

≤ 1 + x.

The left-hand side is at most e, and therefore the inequality is true when x ≥ e−1.
When x < e − 1, using the power series expansion for the left-hand side, we

can bound it by 1 + 1 + (x − 1)/(2x) = 5/2 − 1/(2x). The right-hand side is
bounded above by 1 + x if and only if 3x − 1 ≤ 2x2, which holds when x > 1, as
desired.
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In the proof of Lemma 9, and other lemmas, we often refer to the cumulative
hazard rate, H(v) =

∫ v

0
h(x)dx. We can relate F and H by the following identity,

which follows by differentiating ln(1 − F (v)).

1 − F (v) = e−H(v). (2)

The following lemma gives a lower bound on h(v) which will be used in
Lemma 9.

Lemma 7. Let 0 ≤ α ≤ 1 and let F be an α-SR distribution with virtual valu-
ation function φ. Then for all v1 ≤ v2,

1
(1 − α)(v2 − v1) + 1/h(v1)

≤ h(v2).

Proof. When α = 1, this states that h(v2) ≥ h(v1) (for φ(v2) − φ(v1) = v2 −
1/h(v2) − (v1 − 1/h(v1)) ≥ v2 − v1 in this case).

By definition, as φ is α-SR, φ(v2) − φ(v1) ≥ α(v2 − v1). Substituting φ(v) =
v − 1/h(v) yields

(

v2 − 1
h(v2)

)

−
(

v1 − 1
h(v1)

)

≥ α(v2 − v1)

i.e.
(1 − α)(v2 − v1) +

1
h(v1)

≥ 1
h(v2)

,

from which the desired inequality follows.

Using almost the same proof as above, we obtain the following upper bound
on h(v), also used in Lemma 9. This was also given in [3] for the special case of
v2 = r.

Lemma 8. Let 0 ≤ α ≤ 1 and let F be an α-SR distribution with virtual valu-
ation function φ. Then for all v1 ≤ v2 such that 1/h(v2) − (1 − α)(v2 − v1) > 0,

h(v1) ≤ 1
1/h(v2) − (1 − α)(v2 − v1)

.

Proof. Again, when α = 1, this states that h(v1) ≤ h(v2).
As in the proof of Lemma 7,

1
h(v1)

≥ 1
h(v2)

− (1 − α)(v2 − v1).

If 1/h(v2) − (1 − α)(v2 − v1) > 0, then taking the reciprocal of both sides yields
the desired inequality.

Note that for continuous distributions, the condition 1/h(v2) − (1 − α)(v2 −
v1) > 0 holds when v2 = r, where r is the reserve price, as 1/h(r) = r. Also note
that Lemmas 7 and 8 hold in the case that F is defined on a discrete set.

We now state and prove Lemma 9
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Lemma 9. Let 0 < α < 1 and let F be an α-SR distribution, with monopoly
price r and revenue function R̂. Let V (t) denote the expected welfare of a single-
item auction with a posted price of t and a single bidder with valuation drawn
from F . For every non-negative number t ≥ 0,

R̂(max{t, r}) ≥ α1/(1−α)V (t).

Proof. As in the proof in [4] of the corresponding lemma for MHR distributions,
we split this into two cases, t ≤ r and t ≥ r. In both cases, we can write the left-
hand side as s ·(1−F (s)) = s ·e−H(s), where H(v) =

∫ v

0
h(v), and s = max{t, r}.

Case 1: t ≤ r.

We start from the fact that V (t) ≤
∫ ∞

0

e−H(v)dv, (3)

as shown in Lemma 3.10 in [4] if h is non-negative, which therefore still applies
for the case of α-SR distributions.

In order to upper bound V (t), we start by lower bounding H(v). Because
h(v) is always non-negative, H(v) is always non-negative. When v ≤ r, this will
be the only lower bound we use. Otherwise, we lower bound H(v) using the lower
bound for h(v) from Lemma 7 when v ≥ r. In particular, if v ≥ r, then

H(v) =
∫ v

0

h(v)dv =
∫ r

0

h(v)dv +
∫ v

r

h(v)dv = H(r) +
∫ v

r

h(v)dv

≥ H(r) +
∫ v

r

1
(1 − α)(v − r) + r

dv (by Lemma 7)

= H(r) +
1

1 − α
ln ((1 − α)v + αr)

∣
∣
∣
∣

v

r

= H(r) +
1

1 − α
ln

(
(1 − α)

v

r
+ α)

)
.

Therefore,

V (t) ≤
∫ ∞

0

e−H(v)dv =
∫ r

0

e−H(v)dv +
∫ ∞

r

e−H(v)dv

≤
∫ r

0

e−H(v)dv + e−H(r)

∫ ∞

r

e− 1
1−α ln((1−α) v

r +α))dv

=
∫ r

0

e−H(v)dv + e−H(r)

∫ ∞

r

[(1 − α)
v

r
+ α]−1/(1−α)dv

=
∫ r

0

e−H(v)dv − e−H(r) 1 − α

α
· r

1 − α
·
(

1 − α

r
v + α

)−α/(1−α)
∣
∣
∣
∣
∣

∞

r

=
∫ r

0

e−H(v)dv − e−H(r) r

α

(
1 − α

r
v + α

)−α/(1−α)
∣
∣
∣
∣
∣

∞

r

=
∫ r

0

e−H(v)dv + e−H(r) r

α
(4)
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We rewrite this as
(

eH(r)

∫ r

0

e−H(v)dv +
r

α

)

e−H(r).

In order to upper bound this, we consider eH(r)
∫ r

0
e−H(v)dv by itself. Note that

if v ≤ r, on applying Lemma 8 with v1 = v and v2 = r,

h(v) ≤ 1
r − (1 − α)(r − v)

=
1

(1 − α)v + αr
.

It follows that H(r) − H(v) =
∫ r

v

h(v)dv ≤
∫ r

v

1
(1 − α)v + αr

dv

=
1

1 − α
ln ((1 − α)v + αr)

∣
∣
∣
∣

r

v

=
1

1 − α
ln

(
r

(1 − α)v + αr

)

.

Therefore, eH(r)

∫ r

0

e−H(v)dv ≤
∫ r

0

e
1

1−α ln( r
(1−α)v+αr )dv

=
∫ r

0

(
(1 − α)v

r
+ α

)−1/(1−α)

dv

= − r

α

(
1 − α

r
v + α

)−α/(1−α)
∣
∣
∣
∣
∣

r

0

=
r

α

(
α−α/(1−α) − 1

)
.

Plugging this into our bound for V (t) yields

V (t) ≤
( r

α

(
α−α/(1−α) − 1

)
+

r

α

)
e−H(r)

= α−1/(1−α) · r · e−H(r)

= R̂(r)α−1/(1−α), (as R̂(r) = re−H(r) by (2))

and as max{t, r} = r in this case, R̂(max{t, r}) ≥ α1/(1−α)V (t) as desired.

Case 2: t ≥ r.
From the proof of Lemma 3.10 in [4],

V (t) = e−H(t) ·
[

t +
∫ ∞

t

e−(H(v)−H(t))dv

]

.
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For v ≥ t, H(v) − H(t) =
∫ v

t

h(v)dv ≥
∫ v

t

1
(1 − α)(v − r) + r

dv

(by Lemma 7 with v2 = v, v1 = r)

=
1

1 − α
ln ((1 − α)v + αr)

∣
∣
∣
∣

v

t

=
1

1 − α
ln

(
(1 − α)v + αr

(1 − α)t + αr

)

.

Therefore,
∫ ∞

t

e−(H(v)−H(t))dv ≤
∫ ∞

t

e
−1
1−α ln( (1−α)v+αr

(1−α)t+αr )dv

=
∫ ∞

t

(
(1 − α)v + αr

(1 − α)t + αr

)−1/(1−α)

dv

=
−(1 − α)

α
· (1 − α)t + αr

1 − α
·
(

(1 − α)v + αr

(1 − α)t + αr

)−α/(1−α)
∣
∣
∣
∣
∣

∞

t

=
(1 − α)t + αr

α
≤ t

α
. (5)

It follows that V (t) = e−H(t) ·
[

t +
∫ ∞

t

e−(H(v)−H(t))dv

]

≤ e−H(t) ·
[

t +
t

α

]

= e−H(t) · t ·
(

α + 1
α

)

(6)

≤ e−H(t) · t · α−1/(1−α) (by Lemma 6)

= R̂(t)α−1/(1−α).
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Abstract. In the “The curse of simultaneity”, Paes Leme et al. show
that there are interesting classes of games for which sequential deci-
sion making and corresponding subgame perfect equilibria avoid worst
case Nash equilibria, resulting in substantial improvements for the price
of anarchy. This is called the sequential price of anarchy. A handful of
papers have lately analysed it for various problems, yet one of the most
interesting open problems was to pin down its value for linear atomic
routing (also: network congestion) games, where the price of anarchy
equals 5/2. The main contribution of this paper is the surprising result
that the sequential price of anarchy is unbounded even for linear sym-
metric routing games, thereby showing that sequentiality can be arbi-
trarily worse than simultaneity for this class of games. Complementing
this result we solve an open problem in the area by establishing that
the (regular) price of anarchy for linear symmetric routing games equals
5/2. Additionally, we prove that in these games, even with two players,
computing the outcome of a subgame perfect equilibrium is NP-hard.

1 Introduction

The concept of the price of anarchy, introduced by Koutsoupias and
Papadimitriou [10], has spurred a lot of research over the past 15 years that
has contributed significantly to establish the area of algorithmic game theory.
Not only Nash equilibria, but also alternative equilibrium concepts have been
addressed. One recent and interesting example of the latter is the sequential
price of anarchy (SPoA), recently introduced by Leme et al. [14], that aims at
understanding the quality of subgame perfect equilibrium outcomes of a game.
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Similar to the price of anarchy (PoA) [10], the sequential price of anarchy
measures the cost of decentralization. However, while the price of anarchy com-
pares the quality of a worst case Nash equilibrium to the quality of an optimal
solution, the sequential price of anarchy considers the possible outcomes of a
game where players choose their strategies sequentially in some arbitrary order.
It then compares the quality of the outcome of the worst possible subgame per-
fect equilibrium [16] to the quality of an optimal solution. Note that for games
with perfect information, subgame perfect equilibria coincide with sequential
equilibria as introduced by Kreps and Wilson [11]. In that sense, subgame per-
fect equilibria are indeed the “right” equilibrium concept for sequential routing
games. It turns out that there are interesting examples of games where this
notion leads to improved worst case guarantees, and in this sense avoid the
“curse of simultaneity” [14] inherent in some simultaneous move games. Indeed,
for a handful of games, the SPoA has indeed been proven to be lower than the
PoA [8,9,14], while for others, this is not the case [1,5].

In this paper we consider one of the most basic types of congestion games,
namely atomic network routing games with linear latencies. Here, the PoA has
long been known to be equal to 5/2 [3,6], while de Jong and Uetz [9] recently
showed that the SPoA is less than the PoA for a small number of players leading
them to conjecture that the SPoA is at most 5/2. Our main result is to disprove
this conjecture. We thereby establish a sharp contrast between the PoA and the
SPoA in network routing games. Indeed, we prove that even in the symmetric
case, i.e. when all players share the same origin and destination, the SPoA is
not bounded by any constant and can be as large as Ω(

√
n), with n being the

number of players.
The crucial part of our proof is a “contingency plan of actions” for every

player and every possible move of all previous players that leads to a subgame
perfect outcome. This is generally very difficult, since the strategies of the players
are of exponential size. We are however able to design a plan leading to an
unbounded SPoA that can be described in a succinct manner: The core idea,
that we believe may be of independent interest, is to design a master plan of
actions that all players are supposed to follow, together with a punishing action
that players only apply when some previous player deviates from the master
plan. The main technical difficulty is to design a construction such that the
punishing actions do not lead to a higher cost for the player applying it, so that
subgame perfection is achieved.

To complement the previous result, we resolve an open problem posed by
Bhawalkar et al. [4] about the PoA for symmetric atomic network routing games
with linear latencies. Indeed, we prove that this equals 5/2, as it is the case for
the nonsymmetric network case [3] and the symmetric case for general congestion
games [6] (not necessarily networked).

Finally, we prove a number of additional results for the symmetric two player
case. We start by observing that even for just two players subgame perfect equi-
libria are more complex than Nash equilibria. In particular, the correspond-
ing outcome is generally not a Nash equilibrium of the simultaneous game, as
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opposed to the crowding games studied by Milchtaich [13]. Furthermore, we show
that computing the outcome of a subgame perfect equilibrium is in general NP-
hard. Although we know from [14] that computing subgame perfect equilibria is
PSPACE-complete in general congestion games, that reduction requires a non-
constant number of players. Our result shows that the problem remains at least
NP-hard even when the number of players is two. To conclude, we pin down
the exact sequential price of anarchy for the symmetric two player case, showing
that it equals 7/5. This constitutes an improvement over the 3/2 upper bound in
the more general non-symmetric case [9], but is higher than the straightforward
4/3 bound for the PoA.

2 Model and Notation

Throughout we consider a special case of atomic congestion games, namely, sym-
metric atomic network routing games with linear latency functions. The input
of an instance I ∈ I consists of a directed graph G = (V,E), with designated
source and target nodes s, t ∈ V , and for each arc e ∈ E a linear latency function
with coefficient de. There are n players that all want to travel from s to t, so
that the possible actions of all players consist of all directed (s, t)-paths in G.
Note that all players have the same set of actions at their disposal, hence the
term symmetric. We will denote by m the number of arcs |E|. We refer to the
possible paths a player can choose the actions and to a vector of paths, one for
each player, A = (A1, . . . , An) as an outcome or action profile.

The cost of a player i for choosing a specific (s, t)-path Ai depends on the
number of players on each arc on that path. Specifically, for an outcome A =
(A1, . . . , An), let ne(A) :=

∑n
i=1 |Ai ∩ {e}| denote the number of players using

arc e, then the cost of that arc for each player using it equals ne(A)de, and
therefore the cost for player i, choosing path Ai, is defined as1

ci(A) =
∑

e∈Ai

de · ne(A) .

This induces the social cost C(A) =
∑n

i=1 ci(A), i.e., the sum of the costs of the
players.2

A pure Nash equilibrium is an outcome A in which no player can decrease her
costs by unilaterally deviating, i.e. switching to an action that is different from
Ai. The price of anarchy PoA [10] measures the quality of any Nash equilibrium
relative to the quality of a globally optimal allocation, OPT . Here OPT is an
outcome minimizing C(·). More specifically, for an instance I,

PoA(I) = max
NE∈NE(I)

C(NE)
C(OPT )

, (1)

1 Our upper bound on the SPoA for two players also holds with affine functions.
2 Note that we consider a utilitarian social cost function. This is one of the standard

models, yet different than the egalitarian makespan objective as studied, e.g., in [10].
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where NE(I) denotes the set of all Nash equilibria for instance I. The price of
anarchy of a class of instances I is defined by PoA(I) = supI∈I PoA(I).

Our goal is to evaluate the quality of subgame perfect equilibria of an induced
extensive form game that we call the sequential version of the game [12,16]. In
the sequential game, players choose an action from the set of (s, t)-paths, but
instead of doing so simultaneously, they choose their actions in an arbitrary pre-
defined order 1, 2, . . . , n, so that the i-th player must choose action Ai, observing
the actions of players preceding i, but of course not observing the actions of the
players succeeding her.3 A strategy Si then specifies for player i the full con-
tingency plan of actions she would choose for each potential choice of actions
A<i := (A1, . . . , Ai−1) chosen by her predecessors. We use Si(A<i) to denote the
action that i plays under strategy Si when A<i is the vector of actions chosen by
players 1, . . . , i − 1. We refer to a choice of strategies S = (S1, . . . , Sn) by each
of the players as a strategy profile. Note the explicit distinction between action
(profile) and strategy (profile). The outcome resulting from S is then the set of
actions chosen by the players when they play according to the strategy profile S.

Subgame perfect equilibria, defined by Selten [16], are defined as strategy
profiles S that induce pure Nash equilibria in any subgame of the extensive
form game. In other words, a strategy profile S is a subgame perfect equilibrium
if for all i and for any choice of actions A<i of players 1, . . . , i − 1, player i
cannot decrease her cost by switching to an action different from Si(A<i), in the
subgame where the actions of 1, . . . , i − 1 are fixed to A<i, and i + 1, . . . , n play
strategies (Si+1, . . . , Sn). Subgame perfect equilibria reflect farsighted strategic
behaviour of players that observe the state of the game and reason strategically
about choices of subsequent players. Analogous to (1), the sequential price of
anarchy of an instance I is defined by

SPoA(I) = max
SPE∈SPE(I)

C(SPE)
C(OPT )

, (2)

where SPE(I) denotes the set of all outcomes of subgame perfect equilibria of
instance I. The sequential price of anarchy of a class of instances I is defined as
in [14] by SPoA(I) = supI∈I SPoA(I). Throughout the paper, when the class of
instances is clear from the context, we write PoA and SPoA.

Extensive form games can be represented in a game tree (see Fig. 1 for an
example), with the nodes on one level representing the possible states of the
game that a single player can encounter, and the arcs emanating from any node
representing the possible actions of that player in the given state. The nodes
of the game tree are called information sets or states. We will refer to a state
by a pair (A<i, i) where A<i is the choice of actions of the players 1, . . . , i − 1
in that state, and i is the next player who has to choose her action. Since we
deal with a game with perfect information, subgame perfect equilibria can be
computed by backward induction. In particular, it is known that subgame perfect
3 However, since players are fully rational and fully informed, at equilibrium they

anticipate the others’ behavior and therefore make optimal choices anticipating the
followers actions.
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equilibria always exist; see e.g. [15]. Note however that, if S is a subgame perfect
equilibrium, the resulting outcome A need not be a Nash equilibrium of the
corresponding strategic form game, as will also be witnessed in the next section.

A11

A21

A12

player 1

player 2

A22 A21 A22

Fig. 1. Game tree for a symmetric sequential game with two players. The nodes are
the states. Note that A11 and A21 are actions of players one and two respectively, but
denote the same action (recall that we have a symmetric game). The same holds for
A12 and A22. Fat lines denote a subgame perfect strategy S = (S1, S2) where S1 = A12,
S2(A11) = A21 and S2(A12) = A22. The outcome resulting from S would be (A12, A22),
i.e., the rightmost path of the game tree.

3 Warm-Up: The Two-Player Case

As a way to illustrate the difficulties behind subgame perfect equilibria in general
we focus for the moment on the two player case and point out two phenomena
that showcase the fundamental difference between the concept of subgame per-
fect equilibrium and that of Nash equilibrium.

First we give an instance in which the resulting actions of a subgame perfect
equilibrium do not correspond to a Nash equilibrium. This contrasts with the
case of parallel links [9], and with the so-called crowding games [13]. Based on this
particular instance we additionally prove that the sequential price of anarchy for
the two player case equals 7/5. This exceeds the price of anarchy (which equals
4/3), but it is smaller than the sequential price of anarchy for the asymmetric
case (which equals 3/2 [9]).4 Secondly, we show that even in the two-player case,
computing the outcome of a subgame perfect equilibrium is NP-hard.

3.1 The Sequential Price of Anarchy

Consider the two-player instance depicted in Fig. 2, with five vertices and eight
arcs. The vertices 1, 2, . . . , 5 are numbered from left to right and from top to
bottom so that s = 1 and t = 5. The linear latency functions are given by the
numbers next to the respective arcs.

It can be easily verified that the following is a subgame perfect equilibrium:
4 In [9] a lower bound example is given for general congestion games which can be

easily transformed to network routing games.
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1
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0

1 0

1

0

4

s t

1

2

4

s

EPSTPO

0

1 0

1

0
t

player 1

player 2

player 1

player 2

Fig. 2. Lower bound example for 2 players. Numbers are arc latencies.

– Player 1 chooses path (1, 2, 3, 4, 5).
– Player 2 chooses:

• (1, 5) if player 1 chooses (1, 2, 3, 4, 5),
• (1, 2, 4, 5) if player 1 chooses (1, 2, 3, 5),
• (1, 2, 3, 5) if player 1 chooses (1, 2, 4, 5),
• Any (best response) path for all remaining choices of player 1.

In this equilibrium outcome player 1 chooses the dashed path on the right,
that is vertices (1, 2, 3, 4, 5), while player 2 chooses the dotted path on the right,
which is simply the straight arc going from 1 to 5. One may think that player 1
has an incentive to deviate to the path (1, 2, 3, 5) since the cost of going straight
from 3 to 5 is 0. However, if player one does this, player two would pick path
(1, 2, 4, 5) and therefore player 1’s cost would still be 3. This implies that indeed
the outcome of the subgame perfect equilibrium is not a Nash equilibrium. Note
furthermore that player 1’s cost is 3 and player 2’s is 4, for a total social cost of
7, while in the socially optimal situation, depicted to the left of the figure, the
social cost is 5. So in particular this shows that the SPoA is at least 7/5.

In the above, the subgame perfect equilibrium is not unique. However, the
latencies can be slightly perturbed so uniqueness is achieved, while the cost of
the equilibrium remains arbitrarily close to 7 and that of the optimum remains
arbitrarily close to 5. To this end consider the same instance but changing the
latency of the (1, 2) arc of latency 2 to 2+ε, that of the (1, 5) arc from 4 to 4+ε,
and those of arcs (2, 4) and (3, 5) from 0 to ε.

With the latter observation not only the sequential price of anarchy but
also the sequential price of stability5 equals 7/5 in the two-player case. This
is because it is possible to prove a matching upper bound, even for the more
general class of symmetric affine congestion games. The proof of this upper
5 Just like the price of stability as defined in [2], the sequential price of stability is the

ratio of the outcome of the best subgame perfect equilibrium over the optimum.
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bound is a bit tedious, and can be found in the full version of this paper. It uses
a proof technique based on linear programming, but is nonetheless fundamentally
different from the technique used in [9] (where linear programming is also used
to derive upper bounds on the SPoA).

3.2 Hardness of Computing Subgame Perfect Equilibria

Notice that the encoding of subgame perfect strategies can, in general, require
super-polynomial space in terms of the input size of a network routing game.
This is even the case for two players, for example if the first player has a super-
polynomial number of possible actions, i.e., (s, t)-paths. Then, for each of these
potential actions of player one, a subgame perfect equilibrium needs to prescribe
the respective actions taken by player two. We head for a meaningful statement,
however, with respect to the input size of a network routing game, and not the
output. Therefore we consider the computational problem to only compute the
outcome resulting from a subgame perfect equilibrium. This exactly corresponds
to a single path in the game tree, which for two players has depth two. This has
polynomial size, as it is just one path per player. The problem to compute such
an equilibrium path in the game tree, however, turns out to be hard.

Theorem 1. Computing an action profile resulting from a subgame perfect equi-
librium of symmetric linear network routing games or symmetric affine conges-
tion games is (strongly) NP-hard for any number of players n ≥ 2.

The proof is by a reduction from the Hamiltonian path problem, and is deferred
to the full version of the paper. Moreover, we can also show NP-completeness
of the decision problem that asks if in a two-player game, the cost of the first
player is below some threshold k in a subgame perfect equilibrium.

4 The n-Player Case

Our main result is as follows.

Theorem 2. The sequential price of anarchy of symmetric linear network rout-
ing games is not bounded by any constant.

We prove the theorem by constructing a sequence of lower bound instances where
the sequential price of anarchy gets arbitrarily large. Intuitively, the construction
of these instances works as follows. To obtain a SPoA of x, an instance consists of
x segments. In OPT , the majority of players chooses only a single free resource
per segment, while in the worst case subgame perfect equilibrium, the majority
of players form groups of

√
x players who choose the same sets of

√
x resources

per segment. Any player who deviates from this strategy is punished by some
of her successors. The tricky part of the construction is to make sure that all
punishing strategies are credible. This is achieved in the following way: There
are slightly more players than disjoint paths. As an effect, the last player has to



The Curse of Sequentiality in Routing Games 265

necessarily share every arc in her chosen path with (at least) one other player.
That will result in the situation that this player can credibly “threaten” any
other player j by choosing the arcs that player j chooses, if player j does not
stick to a certain action. More generally, we extend this idea so that a whole
group of players can force a common predecessor into a certain action. This is
achieved in such a way that the “concerted” threatening is not too expensive for
every single threatener, but very expensive for the common predecessor.

Definition of Instance Γx. Formally, in order to obtain a sequential price
of anarchy of x, where x ≥ 4 is a square number, we construct the following
instance Γx: Let p be a sufficiently large integer. There are n = p

√
x + 5x2

players. The network consists of x segments Ri, i ∈ [x]. Segment Ri consists of
2(1 + p

√
x + 4x2) nodes {i, (2i, 1), (2i, 2), . . . , (2i, p

√
x + 4x2), (2i + 1, 1), (2i +

1, 2), . . . , (2i + 1, p
√

x + 4x2), i + 1}. Note that node i + 1 is in both segments
Ri and Ri+1. There is an arc with latency 0 from node i to node (2i, j) for
all j ∈ {1, . . . , (p

√
x + 4x2)}. There is an arc with latency 1/x, from (2i, j)

to (2i + 1, j) for all j ∈ {1, . . . , (p
√

x + 4x2)}. There is an arc with latency 0
from (2i + 1, j) to i + 1 for all j ∈ {1, . . . , (p

√
x + 4x2)}. There is an arc with

latency 0 from (2i + 1, j) to (2i, k) for all j ∈ {1, . . . , (p
√

x + 4x2)} and for
all k ∈ {j, . . . , (p

√
x + 4x2)}. Note that between any nodes i, i + 1, there exist

2p
√
x+4x2

different paths: one for every subset of arcs with latency 1/x of segment
Ri. For brevity, when we refer from now on to arcs, we mean the arcs of which
the latency function is not identically zero, i.e., arcs with latency 1/x.

Node 1 is the source s, and node x+1 is the sink t. Now any feasible action of
a player consists of at least one arc from each segment Ri, i ∈ [x]. This example
is shown in Fig. 3. In the remainder of the section, we say that in a state (A<i, i),
an arc e is free if no player 1, . . . , i − 1 has chosen e in her path.

Optimal Social Cost of Γx. In the optimal outcome A∗, each player chooses
exactly one arc from each segment, and players share arcs as little as possible.
Straightforward counting based on the above definitions yields that the optimal
social cost is C(A∗) = p

√
x + 3x2 + (2x2)2 = p

√
x + 7x2.

1
x

1
x

1
x

1
x

1
x

1
x

1
x

1
x

1
x

1
x

1
x

1
x

s
t

x2

x segments

p
√
x + 4x2 resources

R1 R2 Rx

Fig. 3. A lower bound instance of a network routing game. Players travel from s to t.
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Definition of Strategy Profile S for Γx. In order to describe our worst-
case subgame perfect equilibrium strategy, we first define the following actions,
relative to the state in which a player must choose her action:

– Greedy : In each segment, choose the single arc chosen by the fewest number
of players. In case of ties, the tie-breaking rule as described below is used.

– Punish(j): Denote by R a segment where all arcs chosen by player j are chosen
by less than x players from [j]. Denote by e an arc from R that is chosen by
the largest number of players among the arcs chosen by j (breaking ties in a
consistent way). The action Punish(j) is then defined as choosing e in R, and
any free arc in each other segment.

– Fill : Choose
√

x free arcs in each segment.
– Copy : Choose exactly the same arcs as the previous player.

Note that the above actions are defined relative to a given state in the game.
The actions Greedy and Copy are well-defined for each state, while the actions
Punish(j) and Fill only exist for a subset of the states.

Using these actions, we now define a bad subgame perfect equilibrium S =
(S1, . . . , Sn) for Γx. For each state (A<i, i), strategy Si prescribes to play an
action Si(A<i), which is determined as follows.
1: if every player j ∈ [i − 1] plays according to Sj then
2: if i has at least 5x2 successors then
3: if i is the first player, or if the previous

√
x−1 players chose Copy then

4: Fill
5: else
6: Copy
7: else
8: Greedy
9: else

10: if exactly 1 player j ∈ [i − 1] does not play according to Sj then
11: if j has chosen less than x2 arcs in each segment then
12: if Sj prescribed j to choose Fill or Copy then
13: if there exists a segment such that all arcs e chosen by j contain

less than x players in total then
14: Punish(j)
15: else
16: Greedy
17: else
18: Greedy

Tie-Breaking Rule: When the strategy Si prescribes that a player i chooses an
arc chosen by the smallest number of players, and there is a set E′ of arcs with
this property, the following tie-breaking rule is used: All predecessors of i are
ordered. The set of all players that deviate from S comes first in this ordering.
After that comes the set of all other players. Within these two sets, the players
are ordered by index from high to low. Now the arcs are ordered as follows: Arc
e is ordered before e′ iff the set of players on e is lexicographically less than the
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set of players on e′ according to the ordering on the players just defined. Finally,
ties are broken by choosing the first arc in this order, among the arcs in E′.

Example 1. As an example to clarify the tie-breaking rule, consider the following
situation: Say player 5 has to choose 2 arcs among arc set {a, b, c, d}, which are
chosen by the smallest number of players. Players 1 and 3 have deviated from
S. Player 1 has chosen (among arcs {a, b, c, d}) arcs b and c, player 2 has chosen
arcs c and d, player 3 has chosen arcs a and d, and player 4 has chosen arcs a
and b. Thus, the players are ordered 3, 1, 4, 2 and the arcs are ordered d, a, c, b,
so player 5 chooses arcs a and d. �

It is straightforward to see that S is a well-defined sequential strategy profile,
i.e., whenever any of the actions Greedy, Copy, Fill, or Punish(j) is prescribed
by S, it is possible for a player to choose this action. A detailed discussion of
this is deferred to the full version of the paper.

Cost of the Outcome A of S. If each player i chooses the action prescribed by
Si, then the social cost is at least (p

√
x)(

√
x
√

x) + 3x2 + (2x2)2 = p
√

xx + 7x2.
We see that limp→∞ C(A)/C(A∗) = limp→∞(px

√
x + 7x2)/(p

√
x + 7x2) = x.

Checking that S is a Subgame Perfect Equilibrium. For a state (A<i, i),
an action Ai is said to be optimal with respect to a strategy profile S iff choosing
Ai minimizes i’s cost when players 1, . . . , i − 1 play A<i, and players i + 1, . . . n
play according to S.

Lemma 1. For each state (A<i, i) of Γx, action Si(A<i) is optimal with respect
to S.

Proof. For each of the possible actions Greedy, Fill, Punish(j) (where j ∈ [i−1]),
and Copy, that Si may prescribe to player i in state (A<i, i), we prove that
deviating from this prescription will not decrease the cost of player i, on the
assumption that all succeeding players i + 1, . . . , n play according to S.

– Suppose player i is prescribed by Si to play Fill or Copy. Then no player in
[i − 1] has deviated from S. Therefore, (assuming that all succeeding players
play according to S as well) the cost of player i when she does not deviate is
x. If player i does deviate, then the subsequent players will play Punish(i),
which makes sure that in each segment one of the arcs chosen by i gets chosen
by at least x players. Her utility will therefore be at least x. Thus, deviating
is not beneficial for player i.

– Suppose player i is prescribed by Si to play Greedy. Then (assuming that
players i + 1, . . . , n all play according to S) observe that by definition of S,
players i+1, . . . , n play Greedy, even if player i deviates from playing Greedy.
We denote by A∗ the outcome that results if i does not deviate from Si. We
show that if i does deviate, then in each segment, i’s costs at least as high
as in A∗. Let j ∈ [x] and consider segment Rj . Let ei and en denote the arcs
from Ri chosen by respectively player i and player n in A∗. Denote by R∗ the
set of arcs in Rj chosen by players i, . . . , n in A∗.
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We denote by c the latency of en in A∗. Any arc e ∈ R∗ has latency either
c/x or (c − 1)/x. (If it were higher, then the last player who chose e would
have chosen en, because she plays greedily.) Specifically the latency of ei is at
most c/x. Also, any arc e ∈ Ri that is not in R∗ is chosen by at least c − 1
players of [i − 1]. (If this were false, then in A∗ player n would have chosen e
instead of en.)
Now consider outcome A′ which occurs when player i deviates from Si. If
player i chooses any arc e′

i that is not in R∗, then this arc has latency at least
c/x. We now show that if e′

i is in R∗, then it has latency at least c/x as well.
In that case, if any player i′ ∈ {i+1, . . . , n} chooses an arc not in R∗ then all
arcs in R∗ would yield cost at least c/x. (Because, if there would be an arc
e′ ∈ R∗ with cost (c − 1)/x, then the tie breaking rule dictates that i′ would
have chosen e′

i instead of e′.) However, if all players i, . . . , n choose an arc in
R∗, then player n has cost at least c/x. Combining this with the tie-breaking
rule, we conclude that e′

i has a latency of at least c/x as well. Therefore, in
all cases the costs of player n′ do not decrease by deviating.

– Suppose player i is prescribed by Si to play Punish(j) for some j ∈ [i−1]. Let
us compute first the cost of i if she would follow this prescription (assuming
that players i+1, . . . , n all play according to S). Then observe that by defini-
tion of S, there is a number of other players succeeding i that play Punish(j)
as well. Let k be this number of players. So: {j+1, . . . , i+k} is the set of play-
ers that play Punish(j). Let � = |{j + 1, . . . , i + k}|. Players {i + k + 1, . . . , n}
play Greedy, again by definition of S. Players in [j − 1] together occupy at
most j − 2 +

√
x arcs in each segment. Player j occupies at most x2 arcs

in each segment. Players j + 1, . . . , i + k all choose Punish(j), so they each
occupy 1 arc per segment. The total number of arcs occupied per segment
by players in [i + k] is therefore j − 2 + x2 + � +

√
x. Therefore, there are

at least F := (p − 1)
√

x + 3x2 − j − � + 2 free arcs per segment after the
first i + k players have chosen their action. The set i + k + 1, . . . , n is of size
G := p

√
x + 5x2 − j − �. We see that G/F ≤ 2 so the Greedy players will

choose only those free arcs. (I.e., by the tie-breaking rule the Greedy players
will not choose arcs of player i). Therefore, player i’s utility is exactly 2−1/x
if she plays Punish(j). (This holds because in x− 1 segments, i chooses 1 free
arc that will not be chosen by any of her successors as we have shown. In the
remaining segment, i chooses an arc that player j has chosen, which will be
chosen by precisely x players.)
Suppose next that i deviates from playing Punish(j). In that case, all suc-
ceeding players will play Greedy. We prove that in each segment, i’s costs are
at least 2/x, so that her total cost is at least 2. All players in [j − 1] together
occupy at least j−1 arcs per segment. This implies that in state (A<i, i) in each
segment there are at least j−1 occupied arcs and at most p

√
x+4x2−j+1 free

arcs. The number of players succeeding i is p
√

x+5x2− i ≥ p
√

x+4x2−j +x,
where the inequality holds because i ≤ j +x2−x (because by the definition of
S, there are at most x2−x players choosing Punish(j)). Therefore, there exist
players among the Greedy players who choose in each segment an arc that is
occupied by at least one player. The tie-breaking rule for the Greedy action
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then makes sure that the first such a Greedy player chooses in each segment
an arc on which i is the sole player, in case such an arc exists. Therefore, when
i deviates, her cost in each segment is at least 2/x. ��
It follows from Lemma 1 that S is a subgame perfect equilibrium of Γx. That

concludes the proof of Theorem2. Although the SPoA is not bounded by any
constant, it is not hard to see that it is trivially upper bounded by the number
of players n. In fact our construction shows a lower bound of SPoA ≥ Ω(

√
n). To

see this, we choose p = x
√

x. Then n = x2 + 5x2 = 6x2 which yields x =
√

n/6.
Now, SPoA ≥ (x3 + 7x2)/(x2 + 7x2) ≥ x3/(8x2) = x/8 =

√
n/(8

√
6).

4.1 The Price of Anarchy

In this section we focus on the regular (i.e., non-sequential) price of anarchy of
symmetric network routing games with linear latencies, and show that it equals
5/2. This resolves an open question regarding the price of anarchy of congestion
games [4]. Surprisingly, the lower bound that we provide is conceptually simpler
than the one previously provided for the more general class of (non-network)
affine congestion games [6].

Theorem 3. The price of anarchy of symmetric linear and affine network rout-
ing games is 5/2.

Proof Sketch. It is known that the price of anarchy for affine (non-symmetric)
congestion games is 5/2 [3,6]. Thus, it suffices to prove that the price of anarchy
of symmetric linear network routing games is at least 5/2.

To this end we construct the following family of instances. For 3 players,
the instance (along with the optimal and equilibrium strategies) is depicted in
Fig. 4. In general, let n be the number of players and consider an instance in
which there are n principal disjoint paths from the source s to the sink t. These
paths are all composed of 2n− 1 arcs (and thus 2n nodes, s being the first and t
being the last), so we denote by ei,j the j-th arc of the i-th path, for i = 1, . . . , n
and j = 1, . . . , 2n − 1, and by vi,j the j-th node of the i-th path, for i = 1, . . . , n
and j = 1, . . . , 2n. There are n · (n − 1) additional connecting arcs that connect
these paths: there is an arc from vi,2k+1 to vi−1,2k for k = 1, . . . , n − 1, where
i − 1 is taken mod (n). This defines the network. The latencies on the arcs are
set as follows. Arcs ei,1 (that start from s) have latency 2, arcs ei,2n−1 (that
end in t) have latency 2, while arcs ei,j with 1 < j < 2n − 1 have latency 1. All
connecting arcs have latency zero.

It is easy to check that the optimal solution in this instance is to route one
player in each of the principal paths, as demonstrated in the top part of Fig. 4. On
the other hand, a Nash equilibrium arises if each of the players make use of the
connecting arcs and use only a segment of at most three consecutive arcs on each
principal path, as demonstrated in the bottom part of Fig. 4. Straightforward
calculations then show that this Nash equilibrium has a social cost that is 5/2
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Fig. 4. A lower bound instance for the PoA. Players travel from s to t.

times worse than the optimal social cost, when we take n (i.e., both the number
of principal paths and the number of players) to infinity. ��

5 Discussion and Open Problems

The central result of this paper states that the sequential price of anarchy
is unbounded for symmetric affine network routing games. One property that
stands out in our constructions is that they admit multiple subgame perfect
equilibria. In fact, there even exists a subgame perfect equilibrium that induces
an optimal strategy profile, and the existence of a poorly performing subgame
perfect equilibrium relies crucially on tie breaking: Whenever a player is indif-
ferent between two strategies, we essentially let the player choose the strategy
that results in the worst social welfare. However, if we consider generic games,
i.e., admitting a unique subgame perfect equilibrium, we do not know whether
the sequential price of anarchy can be made arbitrarily high.

As for our bound on the (regular) price of anarchy: We emphasize that the
existing upper bound of 5/2 for general affine congestion games holds even for
coarse correlated equilibria, which contains the sets of pure, mixed, and corre-
lated equilibria. Therefore, our last result on the price of anarchy implies that
also for symmetric affine network routing games, the price of anarchy for mixed,
correlated, and coarse correlated equilibria is 5/2. An open problem is to charac-
terize the pure price of anarchy for symmetric network affine congestion games
on undirected graphs.

Full length paper. For a version of this paper including all proofs, see [7].
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Abstract. Motivated by the recent emergence of the so-called oppor-
tunistic communication networks, we consider the issue of adaptivity in
the most basic continuous time (asynchronous) rumor spreading process.
In our setting a rumor has to be spread to a population; the service
provider can push it at any time to any node in the network and has
unit cost for doing this. On the other hand, as usual in rumor spreading,
nodes share the rumor upon meeting and this imposes no cost on the ser-
vice provider. Rather than fixing a budget on the number of pushes, we
consider the cost version of the problem with a fixed deadline and ask for
a minimum cost strategy that spreads the rumor to every node. A non-
adaptive strategy can only intervene at the beginning and at the end,
while an adaptive strategy has full knowledge and intervention capabili-
ties. Our main result is that in the homogeneous case (where every pair
of nodes randomly meet at the same rate) the benefit of adaptivity is
bounded by a constant. This requires a subtle analysis of the underlying
random process that is of interest in its own right.

1 Introduction

A basic question in the study of social networks concerns the diffusion of a
rumor, which may refer to adopting a new technology, updating content on a
cell phone, or buying a new product or service. In this setting we are given
a network in which vertices represent agents and edges represent social links.
Initially, a single agent knows the rumor and we would like to estimate the time
by which the full network is informed. The flow of information is governed by
a certain stochastic process which may evolve in discrete or continuous time.
The most widely studied discrete time models are the push model and the pull
model; in the former at each time step a vertex knowing the rumor pushes it to a
random neighbor, while in the latter a vertex not knowing pulls the rumor from
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a random neighbor. On the other hand, in the continuous time (asynchronous)
model, every pair of connected vertices meet at random times following a Poisson
process. The latter model was first formulated by Boyd et al. [8] as a way around
the unrealistic time-synchronization issue implicit in discrete time models.

The diffusion of information through a social network has also posed a num-
ber of fundamental algorithmic questions, particularly in so-called viral market-
ing campaigns. The study of how the initial selection of vertices (who adopt a
new product or gets it for free) influences further adoption through a cascading
effect was pioneered by Domingos and Richardson [14], and rigorously addressed
by Kempe et al. [20], who designed approximation algorithms for the influence
maximization problem subject to a budget constraint on the number of initial
nodes to which the rumor is pushed. Interestingly, these viral marketing ideas
have permeated not only the technological industry, but also more traditional
markets like automotive ones [4]. Unlike the rumor spreading process described
above, Kempe et al. [20] consider “static” diffusion models, particularly the
independent cascade model, in which the spread of the rumor is probabilistic,
but time plays no role. An alternative approach, which we take in this paper
(see also [17]), is to keep the standard rumor spreading process, but rather than
fixing a budget on the initial set of selected vertices, fix a time horizon and only
account for the vertices that receive the rumor within this time.

When working with a dynamic diffusion model a new problem pops up,
namely that of adaptivity. Already Domingos and Richardson [14] identify this
issue and state that: A more sophisticated alternative would be to plan a mar-
keting strategy by explicitly simulating the sequential adoption of a product by
customers given different interventions at different times, and adapting the strat-
egy as new data on customer response arrives. Along these lines, Seeman and
Singer [24] consider a two stage extension of the Kempe et al. model.

The central concern of this paper is that of adaptivity when speeding up
rumor spreading on a social network. More precisely, we are given a network
and a fixed deadline. As stated above, the diffusion model is the standard for
asynchronous rumor spreading. Thus, every pair of connected vertices meet at
random times following a Poisson process, and the rumor is spread whenever,
upon meeting, one vertex knows the rumor and the other one does not. Along
the way we are able to push the rumor to any vertex in order to speed up
the diffusion process. We consider both the profit maximization and the cost
minimization versions of the problem, which are equivalent from an optimization
viewpoint. When maximizing profit we get zero profit for every vertex to which
the rumor is pushed (say because we are giving the product for free) and get
unit profit whenever a vertex gets the rumor through the diffusion process. The
objective is thus to maximize the number of vertices that got the rumor through
the diffusion process within the time horizon. The cost minimization version is
exactly the opposite; every time we push the rumor we make a unit payment and
if a vertex gets the rumor through the diffusion process this cost is not realized.
The goal is to minimize the total payment made by the time horizon subject to
the constraint that everyone should be informed by then.
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A non-adaptive policy does not track the evolution of the process and there-
fore can only push the rumor at the starting time (and also at the deadline in the
cost minimization version). In contrast, an adaptive policy may monitor the evo-
lution of the diffusion process and intervene by pushing the rumor to additional
vertices. The main contribution of this paper is to show that the advantage of
adaptivity is small (in terms of cost or profit) in the setting of homogeneous
networks, where interactions occur at the same rate between any pair of nodes.
While the homogeneous case seems unrealistic, it is already highly nontrivial and
we believe it will be a useful first step towards tackling more general situations.

The seemingly less natural cost minimization version of our problem actually
constitutes our main motivation and finds its roots in opportunistic communi-
cation networks. The widespread adoption of networked mobile devices and the
deployment of new technologies (3G, 4G), through which ever increasing data
intensive services can be delivered, has generated an explosion of mobile data
traffic. This trend is likely to continue, thus exacerbating current cellular network
data overload [12]. Therefore, it is critical for operators and service providers to
design networks and communication mechanisms that can not only handle the
current traffic overload, but also allow rapid data dissemination that will be
required by next-generation mobile-enabled devices and applications. A promis-
ing, less than a decade old, proposal to address the cellular network data overload
consists in offloading traffic through so-called opportunistic communications.
The key idea is for service providers to push mobile application content to a small
subset of interested users through the cellular network and let them opportunis-
tically spread the content to other interested users upon meeting them. Oppor-
tunistic communication can occur when mobile device users are (temporarily) in
each others proximity, making it possible for their devices to establish local peer-
to-peer connections (e.g., via Wifi or Bluetooth). Opportunistic communication
based services have been proposed across several domains. For instance, studies
have been done in the dissemination of dynamic content such as news using real
world data sets, as well as that of traffic update information using dataset of
the municipality of Bologna [19,25]. In several of the aforementioned application
scenarios, the usefulness and/or relevance of the disseminated content crucially
depends on it being opportunely delivered. Moreover, quality of service contrac-
tual obligations in subscription based contexts might entail strict deadlines for
the delivery of data. Another key issue that arises in this context is the presumed
feedback capabilities of network nodes and the service providers’ knowledge of
how data has propagated through the network up to a given moment of time.

Whitbeck et al. [25] were the first to study a fixed deadline scenario. They
propose a Push-and-Track framework, where a subset of users receive the content
from the infrastructure and start disseminating it epidemically. The main feature
of Push-and-Track is the closed control loop, this supervises the injection of
copies of the content via the infrastructure whenever it estimates that the ad
hoc mode alone will fail to achieve full dissemination within the target horizon.
Upon reaching the deadline, the system enters into a “panic zone” and pushes
the content to all nodes that have not yet received it. Sciancalepore et al. [23]
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initiate a more rigorous analysis of Push-and-Track type proposals. In particular,
they derive formulas (although not explicit algebraic expressions) for the optimal
number of nodes to initially push data in order to minimize the overall number
of pushes. Furthermore, they propose a control theory based adaptive heuristic.

Our work is thus motivated by the natural question left open by Sciancalepore
et al. [23]: whether or not an adaptive strategy, that harnesses the accrued informa-
tion of how data has propagated through the network up to any given instant, can
actually outperform an optimal non-adaptive strategy, and to what extent.

Model and Main Contributions. Consider a network of n nodes labeled by
the elements of [n] := {1, . . . , n}. Nodes are presumed mobile and such that the
encounters of any two nodes i and j, i �= j, are governed by a Poisson process
of rate λi,j . Thus the time elapsed between two consecutive encounters of i
and j is distributed as an exponential random variable of rate λi,j , henceforth
denoted by Exp(λi,j). All these random variables are independent, including
those associated to distinct inter-encounter intervals for the same pair of nodes.
As usual, if upon encountering each other one node is informed (i.e., is active)
and the other is not, then the information is spread. We refer to the case where
all the rates are identical as the homogeneous case; our main positive result will
be for this setting.

We assume that there is a service provider who wishes to cost efficiently
disseminate one unit of information to all nodes within a deadline of time τ > 0.
The set of nodes that posses the unit of information at time t will be denoted
S(t) ⊆ [n] and referred to as the set of active notes at time t. Initially (at time
t = 0), the service provider selects a set of nodes S(0) and activates them by
pushing to them the unit of data of interest. Subsequently, nodes become active
by either one of the following two mechanisms:

– Opportunistic communication: If nodes i �= j encounter each other at time
t and either i or j belong to S(t−), say j, then i becomes informed at
time t, i.e., i belongs to S(t′) for all t′ ≥ t. Here we used the convention
S(t−) := ∪0≤t′<tS(t′). When a node becomes informed via opportunistic com-
munication, it signals the service provider that his state has changed.

– Pushes: Because of the network’s feedback capabilities, at any time 0 ≤ t ≤ τ ,
the service provider has full knowledge of the evolution of the set of active
nodes, i.e., of (S(t′))0≤t′<t, and based on this knowledge she decides whether
or not, and which nodes to activate. Formally, at time t a set of nodes C(t) ⊆
[n] \ S(t−) is chosen and added to S(t), in which case we say that at time t
the nodes in C(t) are activated and |C(t)| pushes performed.

For most of the paper we deal with the cost minimization version of the prob-
lem, in which the service provider incurs a unit cost for activating a single node,
independent of the nodes label and the time it happens. When the deadline is
reached, all nodes not in S(τ) must be activated at a total cost of n−|S(τ)|. Note
that this is equivalent, from an optimization perspective, to the maximization
problem where the service provider gets unit profit for each node informed via
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opportunistic communication and zero profit for the pushes she makes. We say
that the service provider’s strategy is non-adaptive if it can only activate nodes
at time t = 0 and t = τ . Otherwise, we say that its strategy is adaptive.

Of course, the cost of an optimal adaptive strategy is at most that of a non-
adaptive strategy that initially activates an optimal number of nodes. A natural
question is thus to determine the adaptivity gap, defined as the ratio between
the cost of an optimal non-adaptive strategy and that of an optimal adaptive
strategy. This question is certainly of practical significance – if the adaptivity
gap turns out to be close to 1 for realistic ranges of the relevant parameters (n,
τ , and λi,j ’s), then at least from a purely cost effective point of view there is
no justification for incurring the overhead of relying in the network’s feedback
capabilities, nor the extra cost required to implement a more computational
demanding adaptive on-line strategy. Our main result is the following.

Theorem 1. In the homogeneous case, i.e., λi,j = λ for all i, j ∈ [n], the adap-
tivity gap is bounded by a small constant, irrespective of n and the deadline.

We also show that the adaptivity gap with respect to the profit objective, defined
in the obvious way, is at most (1 + o(1)).

From a technical viewpoint, our analysis turns out to be significantly different
for small, intermediate and large values of τ .

– For sufficiently large values of τ (say τ ≥ 1
λn (2 + o(1)) log n), activating a

single node initially will cause, with high probability, the entire network to be
active by the deadline. This follows from classical work on stochastic epidemic
models (for an overview, see [16] and [1]). So the optimal nonadaptive policy
pays essentially 1, and the advantage of adaptivity is negligible.

– For the case of small τ we use a coupling argument to formalize the intu-
ition that the process is “too deterministic” for adaptivity to win much. This
already implies a (1 + o(1)) bound on the adaptivity gap of the profit maxi-
mization version of the problem.

– The case of intermediate values of τ is by far the most challenging. Unlike
in the case of small τ , the number of nodes initially activated by an opti-
mal nonadaptive policy is relatively small. The implication of this is that the
behaviour of the process is initially not very concentrated, moreover, fluctua-
tions in the rumor spreading behaviour in this initial phase can have a large
impact on the cost. Since the optimal adaptive policy can be rather compli-
cated, we consider a relaxation of an adaptive strategy which may push for
free when certain conditions (which are always satisfied by an optimal adap-
tive strategy) are met; understanding the optimal behaviour of this relaxation
turns out to be more tractable. The analysis then involves understanding an
underlying martingale accounting for the expected final cost given the current
situation.

The result holds also in the synchronous setting with the push protocol,
in fact the argument is substantially easier than for our asynchronous setting.
The reason for this is that the spreading process is much more predictable,
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even in the initial phase where few nodes are active. For example, the time
required to activate all nodes starting from a single active node is very tightly
concentrated [13], whereas, in the asynchronous case, even the time needed to go
from one to two active nodes has substantial variance. As such, the result follows
along the same lines as the small τ case in the asynchronous model. We defer
further discussion on the synchronous model to the full version of this paper.

More General Networks. The adaptivity gap cannot be bounded by a con-
stant in the general inhomogeneous setting. It can be shown that taking a 2-level,
k-regular tree, with unit rates on the tree and all other rates 0, and a deadline
of k log(k log k), yields an adaptivity gap of Ω(log k/ log log k). A slight variant
of this construction, with higher rates on the edges adjacent to the leaves, yields
an adaptivity gap of Ω(

√
n). Despite this, there remains a large scope for better

understanding what network features affect the adaptivity gap. In particular, we
leave bounds on the adaptivity gaps in the following settings as open questions.

– Good expansion: communicating pairs are described by a graph with good
expansion, and all communicating pairs interact at the same rate. The lower
bound constructions crucially exploit very poor connectivity.

– Metric constraints: the inverse rate λ−1
i,j describing the expected time

between interactions between i and j satisfy the triangle inequality. This cap-
tures the natural idea that if i and j are frequently in the same vicinity, and
likewise for j and k, then i and k are likely also frequently nearby.

Further Related Work. The existing literature on rumor spreading is vast,
particularly in the discrete time (synchronous) model. The natural problem here
is to estimate the time at which every node in the network has the rumor. This
question is quite well understood and extremely precise estimates are known
when the network is a complete graph [13]. These estimates state that the time
is highly concentrated around a logarithmic function of n, depending on the
specific protocol. The arguably more realistic continuous time (asynchronous)
model is not as well understood [8]. This is possibly due to inherent additional
randomness of this process, particularly in the beginning, although logarithmic
estimates for the expected time to activate the whole network, starting with one
node, have been obtained for various classes of graphs [6].

Viral marketing is also an area of much interest, where models for the dif-
fusion of information have received a lot of attention [22]. Closest to our work
is the influence maximization problem, in which the goal is to find a subset,
of at most k nodes, maximizing the total final number of informed nodes. The
most studied underlying diffusion model is that of independent cascades: when
node v becomes informed it has a single chance of informing each currently unin-
formed neighbor w and succeeds with probability pvw. This problem was studied
by Kempe et al. [20], who showed that the underlying optimization problem is
a monotone submodular maximization problem, and therefore can be approx-
imated efficiently within a factor of 1 − 1/e. A long list of follow-up papers
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have studied the problem (see e.g. [7,9,10,21]) as well as several variations (see
e.g. [2,11,15,18,24]).

Note. Due to lack of space, proofs are omitted from this extended abstract.

2 Preliminaries

In this section we further specify the model and the notation we will work with.
While introducing the model we try to build some intuition and elicit how it
behaves. We also establish some basic facts, which both capture some of the
aforementioned intuition and will be needed in subsequent sections.

Recall that our study concerns the homogeneous case, i.e., when the rate λi,j

is a fixed value independent of the pair of nodes i �= j. Moreover, everything is
invariant if the rates and the deadline τ are both scaled by the same amount, so
we assume λi,j = 1/n for all i �= j.

Because of symmetry considerations, the specific labels of active nodes is
irrelevant and only their number at any given time matters. We henceforth
denote by K(t) the number of active nodes at time t for a non-adaptive scheme.
Observe that K(·) is right continuous (i.e., K(t−) ≤ K(t) = K(t+)). Also, define

uk(t) := E(n − K(τ)|K(t) = k),

i.e., the expected number of pushes to be made at the end of the process given
K(t) = k. We will need some information about the optimal non-adaptive choice
kN := kN(τ) for the number of initially active nodes, i.e., the value of k ∈ [n−1]
that minimizes k+uk(0). For small values of n, one can compute kN and ukN(0)
explicitly. To do so, it is convenient to consider the elapsed time between the i-th
and (i+1)-th node activation, henceforth denoted Xi. Since Xi is the minimum
of i(n− i) random variables distributed according to Exp(1/n), well known facts
imply that Xi is distributed as Exp(λi) for λi := i(n − i)/n.

Analogously, let K∗(t) be the number of active nodes at time t for an opti-
mal adaptive scheme, still assuming an explicit deadline τ . Since exponentially
distributed random variables are memoryless, the optimal adaptive scheme is
completely determined by a sequence 0 ≤ t∗0 ≤ . . . ≤ t∗n−1 ≤ τ (depending on
τ), so if at time t ∈ {t∗0, . . . , t

∗
n−1} it holds that K∗(t−) ≤ k, where k is the

largest index for which t∗k = t, then the optimal scheme makes k + 1 − K∗(t−)
pushes at time t. We interpret t∗k as the first time when it is optimal to push
more than k rumors. Let P (t) denote the number of pushes performed by the
optimal scheme up to (and including) time t, but excluding pushes made at the
deadline τ (so P (τ) = P (τ−)). Clearly, the cost of an optimal adaptive scheme
must equal E(n−K∗(τ−)+P (τ−)). Hence, on average E(K∗(τ−)−P (τ−)) nodes
are activated via opportunistic communication.

We can now start formally stating results that will be useful later on. Our
first claim is that an optimal adaptive scheme will not perform pushes once
roughly half the network’s nodes become active. The intuition is that making
a push when i ≥ n/2 nodes are active reduces, to something less than λi, the
rate at which nodes become activated (implying higher expected time between
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successive node activations). Thus, in expectation, there will be less than 1 more
active node at time τ−, a saving that is less than the cost of the push.

Proposition 1. Optimal non-adaptive never starts with more than 	(n − 1)/2

active nodes. Furthermore, an optimal adaptive strategy never pushes at some
time t if K∗(t) ≥ �(n − 1)/2�, i.e., t∗k = τ for all k ≥ �(n − 1)/2�.
We can think of the optimal adaptive scheme as having a target minimum num-
ber of active nodes that depends only on the current time t. Our next result
essentially says that this target is not larger than kN(τ − t), the number of
initial pushes for the optimal non-adaptive strategy with deadline τ − t.

Proposition 2. Let k ∈ [n − 1] and 0 ≤ t < τ . If uk(t) − uk+1(t) < 1, then
t∗k > t, i.e., adaptive will not push at time t if K∗(t−) ≥ k.

To prove these two propositions, we need some information about the optimal
adaptive strategy. For this purpose, it is useful to consider u∗

k(t), defined as
the expected cost incurred by an optimal adaptive scheme K∗(·) in the remain-
ing time, conditioned on K∗(t−) = k. By exploiting certain recurrences involv-
ing the u∗

k’s and their derivatives, we are able to show that u∗
k(t)−u∗

k+1(t) ≤
uk(t)−uk+1(t) for all k ∈ [n − 1], 0 ≤ t ≤ t∗k. Intuitively, this is explained by the
enhanced control an adaptive scheme has over the underlying process, since it
could choose to push immediately after time t, hence the benefit of being given
this extra active node for free at time t is not more than one. From this, the
above propositions follow fairly easily.

3 Estimates on the Evolution of the Non-adaptive
Process

In this section we give a number of useful estimates on the evolution of the non-
adaptive process, as well as characterize the optimal non-adaptive strategy and
its cost.

Proposition 3. If t ∈ [0, τ ] and k ∈ [n−1], then uk(t) =
(1 + o(1))n

1 + k
n−k · eτ−t

+o (1).

This result is essentially well-known (see e.g., [3,5]), so we only briefly sketch
its proof. The evolution of the process starting from (say) n/ log n active nodes,
and all the way until all but n/ log n nodes are active, is highly concentrated.
With very high probability, it closely follows the solution of the deterministic
differential equation dx

dt = x(1 − x), where x(t) denotes the proportion of active
nodes at time t. This yields the logistic curve of the above proposition. When
there are very few active nodes, λi ≈ i, and the process is well approximated by
a linear birth process, for which exact analytic results are available. A similar
approximation holds when there are very few inactive nodes; stitching together
these estimates yields Proposition 3.

We need some more refined estimates on how uk(t) varies with k and t. These
do not follow from Proposition 3, but notice that they would follow immediately
if uk(t) was exactly described by the logistic curve.
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Lemma 1. For all k < n/2, uk(t + h) ≤ uk(t)eh for all h ≤ τ − t. Also, if
τ − t = ω(1), then uk+1(t) = uk(t)

(
1 − 1+o(1)

λk

)
.

The expected cost of a non-adaptive strategy starting with k pushes is k +
uk(0). This cost is in fact a convex function of k. Again, this would follow
immediately if uk(t) was precisely described by the logistic formula.

Lemma 2. For every t ∈ [0, τ ] the sequence {k + uk(t)}k∈[n] is convex. As a
consequence, kN can be taken to be the smallest k such that uk(0)−uk+1(0) < 1.

Now we obtain an estimate of the optimal non-adaptive strategy, i.e., the
number kN of nodes activated at the start. The rates λk are unimodal (increas-
ing until n/2, and then decreasing). Intuitively then, the optimal non-adaptive
strategy aims to have n/2 active nodes at time τ/2, so that the rates are on
average as large as possible during the evolution. The expected amount paid at
the end should be roughly the same as the cost paid at the start; cf. [23] (the
proof follows immediately by optimizing using the estimate of Proposition 3).

Proposition 4. Given a deadline τ , the optimal non-adaptive pick is such that

kN = (1 + o(1))
n

1 + eτ/2
and ukN(0) = kN(1 + o(1)).

Thus, the total expected cost of the optimal non-adaptive strategy is 2(1+o(1))kN.

4 Additive Gap for Small τ

In this section we consider the case in which τ is small, specifically, τ ≤
2 log log n. In this situation, thanks to Proposition 4, the optimal non-adaptive
strategy activates kN = kN(τ) = (1 + o(1)) n

1+eτ/2 = Ω( n
log n ) nodes initially.

This implies that the non-adaptive evolution is highly concentrated. Intuitively,
this should be enough to conclude that adaptive cannot obtain a significant
advantage; we use a coupling argument to make this precise.

Let S be any countable collection of points on R+, with an infinite number
of points, with at least one point at 0, and denote by Si the position of the i-th
point. Associate to S a counting process (KS(t))0≤t≤τ as follows. Let XS

i :=
(Si+1 − Si)/λi, and let TS

i :=
∑i−1

j=1 XS
j , so TS

1 = 0. Then, for i ≤ n − 1, set
KS(t) = i for all t ∈ [TS

i , TS
i+1) ∩ [0, τ ], and KS(t) = n for all t ∈ [TS

n , τ ].
Now, let N be a Poisson point process of unit intensity, and let N ′ be obtained

by adding kN additional points at the origin to N . Since the inter-activation
times XN ′

i are 0 for i < kN, and distributed exponentially of rate λi for kN ≤
i < n, we have that the law of (KN ′

(t) : t ∈ [0, τ ]) is precisely that of the
evolution of the non-adaptive process with kN pushes at time 0.

We can interpret an adaptive strategy directly in this perspective. For each s ∈
R+, it can decide whether to add a new point at position s, but based only on N ∩
[0, s]. In other words, it is a map ϕ that takes a set of points S and returns ϕ(S) ⊇
S, with 0 ∈ ϕ(S), and where ϕ(S) ∩ [0, t] depends only on S ∩ [0, t], for any t.
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The resulting evolution is simply Kϕ(S), where the points in ϕ(S) \ S correspond
to pushes. One can see that this has the correct law of an evolution of an adaptive
process, and that any adaptive strategy can be so described.

This provides a (somewhat non-obvious, but natural) coupling between the
evolution of non-adaptive and adaptive. To exploit this, we relax the provision
that adaptive may only look at the past when making its decisions. We define
a clairvoyant strategy as any function ξ where ξ(S) ⊇ S and 0 ∈ ξ(S). Clearly
the optimal clairvoyant strategy has lower cost than the optimal adaptive one.

Lemma 3. There is an optimal clairvoyant strategy which adds points only at
the origin.

So we are comparing the optimal non-adaptive strategy, which picks some
number kN of initial pushes without any knowledge of N , to the optimal clair-
voyant strategy, which picks some optimal number of initial pushes based on
N . A concentration argument shows that the extra information is very unlikely
to be useful. More precisely, we argue that for any number k of initial pushes,
the probability that the total cost paid is less than 2kN − O(

√
n polylog(n))

is polynomially small, and then apply a union bound to conclude the following
result.

Lemma 4. Let log2 n√
n

< τ ≤ 2 log log n. Then the expected cost of the optimal
clairvoyant strategy applied to N is 2kN − O(

√
n polylog(n)).

Consequences for the Profit Maximization Version. Note that the previ-
ous result already implies that for the profit maximization version of the problem
the adaptivity gap is 1+ o(1). Indeed, if τ ≥ 2 log log n then kN = o(n) and thus
the profit of non-adaptive is n − o(n) while adaptive certainly gets at most n.
On the other hand, if τ ≤ 2 log log n is at least a constant, Lemma 4 implies that
the activations that adaptive and non-adaptive make differ by a sub linear term,
and since both get a profit which is linear in n the ratio is 1 + o(1). Finally, if
τ = o(1) then kN = n/2 − o(n) so that throughout the rumor spreading process
the λi’s equal 4/(n + o(n)) and this cannot be changed by an adaptive strategy.

5 Bounding the Adaptivity Gap

We now consider the case where τ ≥ 2 log log n. Here we need to do more than
exploit the concentration of the evolution of the process. If the optimal non-
adaptive scheme starts with relatively few pushes at the starting time, there will
be a substantial amount of randomness at the beginning of the process, before
the epidemic phase transition. Our goal is to show that an adaptive scheme
cannot substantially exploit this.

The optimal adaptive strategy is difficult to handle, for example, the optimal
choices of t∗k are determined via an intricate recurrence. As in the last section, it
will be very useful to rely on a more tractable lower bound, however, the lower
bound we use here is quite different from the clairvoyant lower bound of Sect. 4.
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As seen in Proposition 2, conditioned on K∗(t−) = k, adaptive does not push
at t if uk(t) − uk+1(t) < 1. We consider a modified set of rules for adaptive.
Suppose it may push for free, however, if there are k active nodes at some
time t, it may only push if k < n/2 and uk(t) − uk+1(t) ≥ 1. Obviously the
optimal adaptive strategy satisfies these restrictions, hence just pays less under
these new rules. So the optimal strategy under these modified rules pays even
less. The optimal “modified adaptive” strategy is very simple to describe: Since
pushes are free, it will push whenever it is allowed to. We will show that the
cost of the optimal modified adaptive strategy, which is simply the expected
number of inactive nodes at time τ , is within a constant factor of the cost of
non-adaptive.

Let K̃(t) be the number of active nodes at time t using this optimal modified
adaptive strategy. Let T̃i := min{t : K̃(t) ≥ i}, and let P̃ (t) denote the number
of pushes up to and including time t. Observe that K̃(0) = kN, since kN is the
first k such that uk(t) − uk+1(t) < 1 by Lemma 2.

If one considers the non-adaptive evolution K(t), uK(t)(t) is precisely the
Doob martingale for the number of inactive nodes at time τ . It will be useful
to look at a variant of this for the modified adaptive process. Specifically at
Ũ(t) := uK̃(t)(t), i.e., the expected number of inactive nodes at time τ , given
that no pushes are made between time t and τ . It is a supermartingale, rather
than a martingale, since any pushes made by the modified adaptive strategy
will decrease the end payment. Since Ũ(0) = ukN(0) = (1 + o(1))kN, we will be
interested in how much smaller (in expectation) Ũ(τ) is compared to Ũ(0).

Define t̃k := inf{t ∈ [0, τ ] : uk(t) − uk+1(t) ≥ 1}, or t̃k = τ in the case the
infimum is taken over the empty set. Then, if K̃(t) = k and t < t̃k, the modified
adaptive strategy clearly cannot push, so t̃k is the first time when it is convenient
to activate more than k nodes. Since uk(t) is a strictly increasing function of t,
we can equivalently state this as: No push will occur at time t if Ũ(t−) < φK̃(t−),
where φk := uk(t̃k) for all k. Conversely, if Ũ(t−) = φK̃(t−), then the optimal
modified adaptive strategy will certainly push. This causes Ũ(t) to jump down
by precisely 1 unit. So we will refer to the values φk as thresholds; the process
Ũ(t) is always below the current threshold φK̃(t) and, if the threshold is reached,
a push will be performed. Moreover, by convexity of the sequence {uk(·)}k, the
times t̃k are increasing, so only a single push occurs at any moment in time.

The following proposition connects the number of pushes made, i.e., the
number of times Ũ reaches the current threshold, with the cost saved by the
modified adaptive strategy.

Proposition 5. The optimal modified adaptive strategy saves one unit of cost
with respect to non-adaptive for each push after t = 0, i.e.,

E(n − K̃(τ)) = ukN(0) − E(P̃ (τ) − P̃ (0)).

We use this as follows. Suppose E(P̃ (τ)− P̃ (0)) ≤ C. Call the non-adaptive cost
cN := kN + ukN(0), from Proposition 4 we know that cN = 2(1 + o(1))ukN(0).
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The adaptivity gap ρ(n, τ) is clearly bounded by cN/E(n − K̃(τ)), so by
Proposition 5

ρ(n, τ) ≤ cN

ukN(0) − E(P̃ (τ) − P̃ (0))
= 2(1 + o(1))

(

1 +
1

ukN(0)/C − 1

)

.

We also have the trivial upper bound ρ(n, τ) ≤ cN = 2(1+o(1))kN, just because
an adaptive strategy will certainly need to push at least once. The required
constant bound on ρ(n, τ) for the case τ ≥ 2 log log n thus follows.

The aim for the rest of the section is to bound E(P̃ (τ)− P̃ (0)) by a constant.
To exploit the characterization of modified adaptive we will use some of the
estimates on uk(t) that we derived in Sect. 3. Recall Lemma 1, which states that
uk+1(t) = uk(t)(1 − 1+o(1)

λk
) and uk(t + h) ≤ uk(t)eh for t + h ≤ τ . This has a

very straightforward interpretation in terms of Ũ(t): Between activations Ũ(t)
grows sub-exponentially, but if at time t there was an activation, then roughly
Ũ(t) is multiplied by the factor 1 − 1/λK̃(t−).

We have now all the ingredients to bound how many times the process Ũ(t)
hits the thresholds φK̃(t), which is exactly the number of pushes. We proceed by
transforming the process in a number of ways. First, given the (sub)exponential
growth, taking logarithms yields a process that between jumps grows no faster
than a linear function with unit slope. Secondly, we locally shift the resulting
process so that the threshold at any moment of time is moved to zero. This
process will always be non-positive; we will be interested in the number of times
that it hits zero. Finally, we locally rescale time, as in Sect. 4, so that the dis-
tribution of the times of random activations are described by a Poisson point
process of unit intensity. We locally rescale the value at the same time, so that
still the process increases linearly at unit rate in between jumps. Formally, we
define the following transformed process H(s):

H(L(t)) := λK̃(t)

(
log Ũ(t) − log φK̃(t)

)
, where L(t) :=

∫ t

0

λK̃(x)dx.

An illustration of the evolution of Ũ and the corresponding transformed
process H is shown in Fig. 1. Notice how upon each random activation or push
the threshold increases, while Ũ jumps down.

We are interested in the number of times that H reaches 0, as this corresponds
to the number of pushes after time 0. It is convenient to consider instead

H ′(L(t)) := H(L(t)) + P̃ (t) − P̃ (0).

The process H jumps down immediately whenever it reaches 0, and in fact
the size of this jump is larger than 1. Very roughly speaking, H ′ cancels out
these jumps (actually it may still jump down, but by a smaller amount), while
the jumps corresponding to random activations are unaffected. It can easily be
shown that the number of pushes is bounded by max{0, 1+sup0≤r≤t H ′(L(r))}.

So all that remains is to bound the expected supremum of H ′. The reason
that this is possible is very simple: Through most of its evolution, the process has
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t

Ũ(t)

φkN

φkN+1

φkN+2

Ũ(0)

t t̃kN+1

L(t)
L(t ) L(t̃kN+1)

H(L(t))

H(0)

Fig. 1. A sample evolution of Ũ , and the corresponding evolution of the transformed
process H. A random activation occurred at time t′, and a push occurred at time t̃kN+1.

a negative drift. More precisely, we have the following proposition. Here and for
the remainder of this section, N will denote a Poisson process of unit intensity.

Proposition 6. For any constant 0 < c ≤ 1/2, there is a c′ = (1 + o(1))c
so that for any σ ≤ L(T̃cn), H ′(s + σ) − H ′(σ) is stochastically dominated by
s − 2(1 − c′)N(s) on the interval [0, L(T̃cn) − σ].

Note in particular that s − 2(1 − c)N(s) has negative drift for any c < 1/2.
Unfortunately, the bound we obtain on the drift gets worse as the number of

active nodes increases. So some care is required; here we will sketch the argument.
First, on the interval [0, L(T̃n/4)], H ′(s) is dominated by s− 3

2N(s). This process
starts from 0 and has negative drift (since E(s− 3

2N(s)) = −s/2). Proving that its
expected maximum value is constant reduces to a straightforward concentration
bound. Since τ ≥ 2 log log n, so that kN = O(n/ log n), this negative drift also
implies that the process will be very negative (below say −n/64) at time L(T̃n/4),
with very high probability. On the interval [L(T̃n/4), L(T̃n/2)], H ′(s) can be dom-
inated by s − N(s) conditioned on N(L(T̃n/4)) = H ′(L(T̃n/4)) ≤ −n/64. Again
a concentration argument shows that with very high probability the process
remains negative in this interval, and so the expected number of further pushes
is again at most a constant.
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Abstract. We study a very general class of games — multi-dimensional
aggregative games — which in particular generalize both anonymous
games and weighted congestion games. For any such game that is also large,
we solve the equilibrium selection problem in a strong sense. In particular,
we give an efficient weak mediator : a mechanism which has only the power
to listen to reported types and provide non-binding suggested actions, such
that (a) it is an asymptotic Nash equilibrium for every player to truth-
fully report their type to the mediator, and then follow its suggested action;
and (b) that when players do so, they end up coordinating on a particular
asymptotic pure strategy Nash equilibrium of the induced complete infor-
mation game. In fact, truthful reporting is an ex-post Nash equilibrium
of the mediated game, so our solution applies even in settings of incom-
plete information, and even when player types are arbitrary or worst-case
(i.e. not drawn from a common prior). We achieve this by giving an effi-
cient differentially private algorithm for computing a Nash equilibrium in
such games. The rates of convergence to equilibrium in all of our results
are inverse polynomial in the number of players n. We also apply our main
results to a multi-dimensional market game.

Our results can be viewed as giving, for a rich class of games, a more
robust version of the Revelation Principle, in that we work with weaker
informational assumptions (no common prior), yet provide a stronger
solution concept (ex-post Nash versus Bayes Nash equilibrium). In com-
parison to previous work, our main conceptual contribution is showing
that weak mediators are a game theoretic object that exist in a wide
variety of games – previously, they were only known to exist in traffic
routing games. We also give the first weak mediator that can implement
an equilibrium optimizing a linear objective function, rather than imple-
menting a possibly worst-case Nash equilibrium.
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1 Introduction

Games with a large number of players are almost always played, but only some-
times modeled, in a setting of incomplete information. Consider, for example,
the problem of selecting stocks for a 401 k portfolio among the companies listed
in the S&P500. Because stock prices are the result of the aggregate decisions
of millions of investors, this is a large multi-player strategic interaction, but
it is so decentralized that it is implausible to analyze it in a complete infor-
mation setting (in which every player knows the types or utilities of all of his
opponents), or even in a Bayesian setting (in which every agent shares common
knowledge of a prior distribution from which player types are drawn). How play-
ers will behave in such interactions is unclear; even under settings of complete
information, there remains the potential problem of coordinating or selecting a
particular equilibrium among many.

One solution to this problem, recently proposed by Kearns et al. [20] and
Rogers and Roth [28], is to modify the game by introducing a weak mediator,
which essentially only has the power to listen and to give advice. Players can
ignore the mediator, and play in the original game as they otherwise would
have. Alternately, they can use the mediator, in which case they can report
their type to it (although they have the freedom to lie). The mediator provides
them with a suggested action that they can play in the original game, but they
have the freedom to disregard the suggestion, or to use it in some strategic way
(not necessarily following it). The goal is to design a mediator such that good
behavior – that is, deciding to use the mediator, truthfully reporting one’s type,
and then faithfully following the suggested action – forms an ex-post Nash equi-
librium in the mediated game, and that the resulting play forms a Nash equi-
librium of the original complete information game, induced by the actual (but
unknown) player types. A way to approximately achieve this goal – which was
shown in Kearns et al. [20], Rogers and Roth [28] – is to design a mediator
which computes a Nash equilibrium of the game defined by the reported player
types under a stability constraint known as differential privacy [12]. Prior to our
work, this was only known to be possible in the special case of large, unweighted
congestion games.

In this paper, we extend this approach to a much more general class of games
known as multi-dimensional aggregative games (which among other things, gen-
eralize both anonymous games and weighted congestion games). In such a game,
there is a vector of linear functions of players’ joint actions called an aggregator .
Each player’s utility is then a possibly non-linear function of the aggregator
vector and their own action. For example, in an investing game, the imbalance
between buyers and sellers of a stock, which is a linear function of actions, may
be used in the utility functions to compute prices, which are a non-linear function
of the imbalances (see the full version). In an anonymous game, the aggregator
function represents the number of players playing each action. In a weighted con-
gestion game, the aggregator function represents the total weight of players on
each of the facilities. Our results apply to any large aggregative game, meaning
that any player’s unilateral change in action can have at most a bounded influ-
ence on the utility of any other player, and the bound on this influence should
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be a diminishing function in the number of players in the game. Conceptually,
our paper is the first to show that weak mediators are a game-theoretic object
that exists in a large, general class of games: previously, although defined, weak
mediators were only known to exist in traffic routing games [28].

This line of work can be viewed as giving robust versions of the Revelation
Principle, which can implement Nash equilibria of the complete information
game using a “direct revelation mediator,” but without needing the existence of a
prior type distribution. Compared to the Revelation Principle, which generically
requires such a distribution and implements a Bayes Nash equilibrium, truth-
telling forms an ex-post Nash equilibrium in our setting. We include a comparison
to previous work in Table 1.

Finally, another important contribution of our work is that we are the first to
demonstrate the existence of weak mediators (in any game) that have the power
to optimize over an arbitrary linear function of the actions, and hence able to
implement near optimal equilibria under such objective functions, rather than
just implementing worst-case Nash equilibria.

Table 1. Summary of truthful mechanisms for various classes of games and solution
concepts. Note that a “weak” mediator does not require the ability to verify player
types. A “strong” mediator does. Weak mediators are preferred.

Mechanism Class of games Common
prior?

Mediator
strength

Equilibrium
implemented

Revelation
principle [24]

Any finite game Yes Weak Bayes Nash

Kearns
et al. [20]

Any large game No Strong Correlated

Rogers and
Roth [28]

Large congestion games No Weak Nash

This work Aggregative games No Weak Nash

1.1 Our Results and Techniques

Our main result is the existence of a mediator which makes truthful reporting of
one’s type and faithful following of the suggested action (which we call the “good
behavior” strategy) an ex-post Nash equilibrium in the mediated version of any
aggregative game, thus implementing a Nash equilibrium of the underlying game
of complete information. Unlike the previous work in this line [20,28], we do
not have to implement an arbitrary (possibly worst-case) Nash equilibrium, but
can implement a Nash equilibrium which optimizes any linear objective (in the
player’s actions) of our choosing. We here state our results under the assumption
that any player’s action has influence bounded by (1/n) on other’s utility, but
our results hold more generally, parameterized by the “largeness” of the game.
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Theorem 1 (Informal). In a d-dimensional aggregative game of n players and
m actions, there exists a mediator that makes good behavior an η-approximate
ex-post Nash equilibrium, and implements a Nash equilibrium of the underlying
complete information game that optimizes any linear objective function to within
η, where

η = O

( √
d

n1/3
· polylog(n,m, d)

)

.

It is tempting to think that the fact that players only have small influence on
one another’s utility function is sufficient to make any algorithm that computes
a Nash equilibrium of the game a suitable weak mediator, but this is not so (see
Kearns et al. [20] for an example). What we need out of a mediator is that any
single agent’s report should have little effect on the algorithm computing the
Nash equilibrium, rather than on the payoffs of the other players.

The underlying tool that we use is differential privacy, which enforces the sta-
bility condition we need on the equilibrium computation algorithm. Our main
technical contribution is designing a (jointly) differentially private algorithm
for computing approximate Nash equilibria in aggregative games. The algo-
rithm that we design runs in time polynomial in the number of players, but
exponential in the dimension of the aggregator function. We note that since
aggregative games generalize anonymous games, where the dimension of the
aggregator function is the number of actions in the anonymous game, this essen-
tially matches the best known running time for computing Nash equilibria in
anonymous games, even non-privately [10]. Computing exact Nash equilibria in
these games is known to be PPAD-complete [7]. Recent work of Barman and
Ligett [5] showed that the equilibrium selection problem is also hard, even for
more general solution concepts — it is NP-hard to compute a coarse correlated
equilibrium that achieves a non-trivial approximation to the optimal welfare.

In the process of proving this result, we develop several techniques which may
be of independent interest. First, we give the first algorithm for computing equi-
libria of multi-dimensional aggregative games (efficient for constant dimensional
games) even in the absence of privacy constraints — past work in this area has
focused on the single dimensional case [4,19]. Second, in order to implement this
algorithm privately, we develop the first technique for solving a certain class of
linear programs under the constraint of joint differential privacy.

We also give similar results for a class of one-dimensional aggregative games
that permit a more general aggregation function and rely on different techniques,
and we show how our main result can be applied to equilibrium selection in a
multi-commodity market. The details are deferred to the full version [9].

1.2 Related Work

Conceptually, our work is related to the classic Revelation Principle of Myer-
son [24], in that we seek to implement equilibrium behavior in a game via a
“mediated” direct revelation mechanism. Our work is part of a line, starting
with Kearns et al. [20] and continuing with Rogers and Roth [28], that attempts
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to give a more robust reduction, without the need to assume a prior on types.
Kearns et al. [20] showed how to privately compute correlated equilibria (and
hence implement this agenda) in arbitrary large games. The private computation
of correlated equilibrium turns out to give the desired reduction to a direct reve-
lation mechanism only when the mediator has the power to verify types. Rogers
and Roth [28] rectified this deficiency by privately computing Nash equilibria,
but their result is limited to large unweighted congestion games. In this paper,
we substantially generalize the class of games in which we can privately com-
pute Nash equilibria (and hence solve the equilibrium selection problem with a
direct-revelation mediator).

This line of work is also related to “strategyproofness in the large,” intro-
duced by Azevedo and Budish [3], which has similar goals. In comparison to this
work, we do not require that player types be drawn from a distribution over the
type-space, do not require any smoothness condition on the set of equilibria of
the game, are algorithmically constructive, and do not require our game to be
nearly as large. Generally, their results require the number of agents n to be
larger than the size of the action set and the size of the type set. In contrast,
we only require n to be as large as the logarithm of the number of actions, and
require no bound at all on the size of the type space (which can even be infinite).

Our work is also related to the literature on mediators in games [22,23]. In
contrast to our main goal (which is to implement solution concepts of the com-
plete information game in settings of incomplete information), this line of work
aims to modify the equilibrium structure of the complete information game. It
does so by introducing a mediator, which can coordinate agent actions if they
choose to opt in using the mediator. Mediators can be used to convert Nash equi-
libria into dominant strategy equilibria [22], or implement equilibrium that are
robust to collusion [23]. Ashlagi et al. [2] considers mediators in games of incom-
plete information, in which agents can misrepresent their type to the mediators.
Our notion of a mediator is related, but our mediators require substantially less
power than the ones from this literature. For example, our mechanisms do not
need the power to make payments [22], or the power to enforce suggested actions
[23]. Like the mediators of Ashlagi et al. [2], ours are designed to work in set-
tings of incomplete information and so do not need the power to verify agent
types — but our mediators are weaker, in that they can only make suggestions
(i.e. players do not need to cede control to our weak mediators).

The computation of equilibria in aggregative games (also known as summa-
rization games) was studied in Kearns and Mansour [19], which gave efficient
algorithms and learning dynamics converging to equilibria in the 1-dimensional
case. Babichenko [4] also studies learning dynamics in this class of games and
shows that in the 1-dimensional setting, sequential best response dynamics con-
verge quickly to equilibrium. Our paper is the first to give algorithms for equi-
librium computation in the multi-dimensional setting, which generalizes many
well studied classes of games, including anonymous games. The running time
of our algorithm is polynomial in the number of players n and exponential in
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the dimension of the aggregation function d, which essentially matches the best
known running time for equilibrium computation in anonymous games [10].

We use a number of tools from differential privacy [12], as well as develop
some new ones. In particular, we use the advanced composition theorem of Dwork
et al. [14], the exponential mechanism from McSherry and Talwar [21], and the
sparse vector technique introduced by Dwork et al. [13] (refined in Hardt and
Rothblum [16] and abstracted into its current form in Dwork and Roth [11]).
We introduce a new technique for solving linear programs under joint differential
privacy, which extends a line of work (solving linear programs under differential
privacy) initiated by Hsu et al. [17].

Finally, our work relates to a long line of work initiated by McSherry and
Talwar [21] using differential privacy as a tool and desideratum in mechanism
design. In addition to works already cited, this includes Blum et al. [6], Chen
et al. [8], Ghosh and Ligett [15], Kannan et al. [18], Nissim et al. [25,26], Xiao [29]
among others. For a survey of this area see Pai and Roth [27].

2 Model and Preliminaries

2.1 Aggregative Games

Consider an n-player game with action set A consisting of m actions and a
(possibly infinite) type space T indexing utility functions. Let x = (xi,x−i)
denote a strategy profile in which player i plays action xi and the remaining
players play strategy profile x−i. Each player i has a utility function, u : T ×
An → [−1, 1], where a player with type ti experiences utility u(ti,x ) when
players play according to x . When it is clear from context, we will use shorthand
and write ui(x ) to denote u(ti,x ), the utility of player i at strategy profile x .

The utility functions in aggregative games can be defined in terms of a
multi-dimensional aggregator function S : An → [−W,W ]d, which represents
a compact “sufficient statistic” to compute player utilities. In particular, each
player’s utility function can be represented as a function only of her own action
xi and the aggregator of the strategy profile x : ui(x ) = ui(xi, S(x )). We also
assume W to be polynomially bounded by n and m. In aggregative games, the
function Sk for each coordinate k ∈ [d], is an additively separable function:
Sk(x ) =

∑n
i=1 fk

i (xi).1

Similar to the setting of Kearns and Mansour [19] and Babichenko [4], we
focus on γ-aggregative games, in which each player has a bounded influence on
the aggregator:

max
i

max
xi,x′

i∈A
‖S(xi,x−i) − S(x′

i,x−i)‖∞ ≤ γ, for all x−i ∈ An−1.

1 In the economics literature, aggregative games have more restricted aggregator func-
tion: Sk(x ) =

∑n
i=1 xi. The games we study are more general, and sometimes referred

to as generalized aggregative games.
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That is, the greatest change a player can unilaterally cause to the aggregator is
bounded by γ. With our motivation to study large games, we assume γ dimin-
ishes with the population size n. We also assume that all utility functions are
1-Lipschitz with respect to the aggregator: for all xi ∈ A, |ui(xi, s) − ui(xi, s

′)| ≤
‖s − s′‖∞.2

For γ-aggregative games, we can express the aggregator more explicitly as

Sk(x ) = γ
n∑

i=1

fk
i (xi),

where fk
i (xi) is the influence of player i’s action xi on the k-th aggregator func-

tion, and also |fk
i (xi)| ≤ 1 for all actions i ∈ [n] and xi ∈ A. Let fk

ij = fk
i (aj),

where aj denotes the j-th action in A.
We say that player i is playing an η-best response to x if ui(x ) ≥ ui(x′

i,x−i)−
η, for all x′

i ∈ A. A strategy profile x is an η-pure strategy Nash equilibrium if
all players are playing an η-best response in x . We also consider mixed strategies,
which are defined by probability distributions over the action set. For any profile
of mixed strategies, given by a product distribution p, we can define expected
utility ui(p) = Ex∼p ui(x ) and the expected aggregator

Sk(p) = E
x∼p

Sk(x ) = γ

n∑

i=1

m∑

j=1

fk
ij pij = γ 〈fk,p〉. (1)

The support of a mixed strategy p, denoted Supp(pi), is the set of actions that
are played with non-zero probabilities. A mixed strategy profile p is a mixed
strategy Nash equilibrium if ui(p) ≥ Ex−i∼p−i

ui(x′
i,x−i) for all i ∈ [n] and

x′
i ∈ A.

For each aggregator s, we define the aggregative best response3 for player i
to s as BAi(s) = arg maxxi∈A{ui(xi, s)}, breaking ties arbitrarily. We define the
η-aggregative best response set for player i to s as

η-BAi(s) = {xi ∈ A|ui(xi, s) ≥ max
x′
i

ui(x′
i, s) − η}

to be the set of all actions that are at most η worse than player i’s exact aggrega-
tive best response.

Remark 1. Note that best response is played against the other players’ actions
x−i, but aggregative best response is played against the aggregator value s.
Aggregative best response ignores the effect of the player’s action on the aggre-
gator, which is bounded by γ; the player reasons about the utility of playing
2 Note that the influence that any single player’s action has on the utility of others is

also bounded by γ. If γ = o(1/n), then any player’s utility is essentially independent
of other players’ actions. Therefore, we further assume that γ = Ω(1/n) for the
problem to be interesting. This will also simplify some statements.

3 Sometimes called best react [4], and apparent best response [19].
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different actions as if the aggregator value were promised to be s. Nevertheless,
aggregative best response and best response can translate to each other with
only an additive loss of γ in the approximation factor. Furthermore, aggregative
best responses to different aggregators can translate to each other as long as
the corresponding aggregators are close. If ‖s − s′‖∞ ≤ α, then the actions in
η-BA(s) are also in (η + 2α)-BA(s′).

2.2 Mediated Games

We now define games modified by the introduction of a mediator. A mediator is
an algorithm M : (T ∪{⊥})n → An which takes as input reported types (or ⊥ for
any player who declines to use the mediator), and outputs a suggested action to
each player. Given an aggregative game G, we construct a new game GM induced
by the mediator M . Informally, in GM , players have several options: they can
opt-out of the mediator (i.e. report ⊥) and select an action independently of it.
Alternately they can opt-in and report to it some type (not necessarily their true
type), and receive a suggested action ri. They are free to follow this suggestion or
use it in some other way: they play an action fi(ri) for some arbitrary function
fi : A → A. Formally, the game GM has an action set Ai for each player i
defined as Ai = A′

i ∪ A′′
i , where

A′
i = {(ti, fi) : ti ∈ T , fi : A → A} and A′′

i = {(⊥, fi) : fi is constant}.

Players’ utilities in the mediated game are simply their expected utilities
induced by the actions they play in the original game. Formally, they have utility
functions u′

i: u′
i(t, f) = Ex∼M(t)[ui(f(x ))]. We are interested in finding mediators

such that good behavior is an ex-post Nash equilibrium in the mediated game.
We first define an ex-post Nash equilibrium.

Definition 1 (Ex-Post Nash Equilibrium). A collection of strategies {σi :
T → Ai}n

i=1 forms an η-approximate ex-post Nash equilibrium if for every type
vector t ∈ T n, and for every player i and action xi ∈ Ai:

u′
i(σi(ti), σ−i(t−i)) ≥ u′

i(xi, σ−i(t−i)) − η

That is, it forms an η-approximate Nash equilibrium for every possible vector of
types.

Note that ex-post Nash equilibrium is a very strong solution concept for incom-
plete information games because it does not require players to know a prior
distribution over types.

In a mediated game, we would like players to truthfully report their type,
and then faithfully follow the suggested action of the mediator. We call this
good behavior. Formally, the good behavior strategy is defined as gi(ti) = (ti, id)
where id : A → A is the identity function – i.e. it truthfully reports a player’s
type to the mediator, and applies the identity function to its suggested action.

In order to achieve this, we use the notion of joint differential privacy defined in
Kearns et al. [20] (adapted from differential privacy, defined in Dwork et al. [12]),
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as a privacy measure for mechanisms on agents’ private data (types). Intuitively,
it guarantees that the output to all other agents excluding player i is insensitive to
i’s private type, so the mechanism protects i’s private information from arbitrary
coalitions of adversaries.

Definition 2 (Joint Differential Privacy [20]). Two type profiles t and t′ are
i-neighbors if they differ only in the i-th component. An algorithm M : T n → An

is (ε, δ)-joint differentially private if for every i, for every pair of i-neighbors
t, t′ ∈ T n, and for every subset of outputs S ⊆ An−1,

Pr[M(t)−i ∈ S] ≤ exp(ε) Pr[M(t′)−i ∈ S] + δ.

If δ = 0, we say that M is ε-jointly differentially private.

We here quote a theorem of Rogers and Roth [28], inspired by Kearns
et al. [20] which motivates our study of private equilibrium computation.

Theorem 2 ([20,28]). Let M be a mechanism satisfying (ε, δ)-joint differential
privacy, that on any input type profile t with probability 1 − β computes an α-
approximate pure strategy Nash equilibrium of the complete information game
G(t) defined by type profile t. Then the “good behavior” strategy g = (g1, . . . , gn)
forms an η-approximate ex-post Nash equilibrium of the mediated game GM for

η = α + 2(2ε + β + δ).

Our private equilibrium computation relies on two private algorithmic tools,
sparse vector mechanism (called Sparse) and exponential mechanism (called
EXP), which allows us to access agents’ types in a privacy-preserving manner.

3 Private Equilibrium Computation

Let G be a d-dimensional γ-aggregative game, and L : An → R be a γ-Lipschitz
linear loss function:

L(x ) = γ
∑

i

	i(xi) and L(p) = γ E
x∼p

L(x ) = γ
∑

i

〈pij , 	ij〉.

where 0 ≤ 	i(aj) ≤ 1 for all actions aj ∈ A, and 	ij = 	i(aj).
Given any ζ ≥ γ

√
8n log(2mn), let E(ζ) be the set of ζ-approximate pure

strategy Nash equilibria in the game G,4 and let

OPT(ζ) = min{L(x ) | x ∈ E(ζ)}.

We give the following main result:

4 We show that E(ζ) is non-empty for ζ ≥ γ
√

8n log(2mn) in the full version.
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Theorem 3. For any ζ ≥ γ
√

8n log(2mn), there exists a mediator M that
makes good behavior an (ζ + η)-approximate ex-post Nash equilibrium of the
mediated game GM , and implements an approximate pure strategy Nash equilib-
rium x of the underlying complete information game with L(x) ≤ OPT(ζ) + η,
where

η = O
(
n1/3γ2/3

√
d · polylog(n,m, d)

)
.

Recall that the quantity γ is diminishing in n; whenever γ = O(1/n1/2+ε) for
ε > 0, the approximation factor η tends towards zero as n grows large. Plugging
in γ = 1/n and ζ = γ

√
8n log(2mn) recovers the bound in Theorem1.

This result follows from instantiating Theorem2 with an algorithm that com-
putes an approximate equilibrium under joint differential privacy as PRESL (Pri-
vate Equilibrium Selection).5 We give here an informal description of our algo-
rithm, absent privacy concerns, and then describe how we implement it privately,
deferring the formal treatment to the full version.

The main object of interest in our algorithm is the set-valued function

Vξ(ŝ) = {S(p) | for each i,Supp(pi) ⊆ ξ-BAi(ŝ)},

which maps aggregator values ŝ to the set of aggregator values that arise when
players are randomizing between ξ-aggregative best responses to ŝ. An approx-
imate equilibrium will yield an aggregator ŝ such that ŝ ∈ Vξ(ŝ), so we wish to
find such a fixed point for Vξ (the value of ξ will be determined in the analy-
sis, see the full version). Note that pure strategy Nash equilibria correspond to
such fixed points, but a-priori, it is not clear that fixed points of this function
(which may involve mixed strategies) are mixed strategy Nash equilibria. This
is because player utility functions need not be linear in the aggregator, and so a
best response to the expected value of the aggregator need not be a best response
to the corresponding distribution over aggregators. However, as we will show, we
can safely round such fixed points to approximate pure strategy Nash equilibria,
because the aggregator will be well concentrated under rounding.

For every fixed value ŝ, the problem of determining whether ŝ ∈ Vξ(ŝ) is
a linear program (because the aggregator is linear), and although Supp(pi) ⊆
ξ-BAi(ŝ) is not a convex constraint in ŝ, the aggregative best responses are fixed
for each fixed value of ŝ. The first step of our algorithm simply searches through
a discretized grid of all possible aggregators X = {−W,−W + α, . . . , W − α}d,
and solves this linear program to check if some point ŝ ∈ Vξ(ŝ). This results
in a set of aggregators S that are induced by the approximate equilibria of
the game. Let pij denote the probability that player i plays the j-th action.

5 In the full version of this paper, we also present details of the non-private algorithm
to compute equilibrium for aggregative games.
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Then the linear program we need to solve is as follows:

∀k ∈ [d], ŝk − α ≤ γ

n∑

i=1

m∑

j=1

fk
ijpij ≤ ŝk + α

∀i ∈ [n], ∀j ∈ ξ-BAi(ŝ), 0 ≤ pij ≤ 1
∀i ∈ [n], ∀j /∈ ξ-BAi(ŝ), pij = 0

(2)

Next, we need to find a particular equilibrium (an assignment of actions to
players) that optimizes our cost-objective function L. This is again a linear pro-
gram (since the objective function is linear) for each ŝ. Hence, for each fixed
point ŝ ∈ Vξ(ŝ) we simply solve this linear program, and out of all of the can-
didate equilibria, output the one with the lowest cost. Finally, this results in
mixed strategies for each of the players, and we round this to a pure strategy
Nash equilibrium by sampling from each player’s mixed strategy. This does not
substantially harm the quality of the equilibrium; because of the low sensitiv-
ity of the aggregator, it is well concentrated around its expectation under this
rounding. The running time of this algorithm is dominated by the grid search
for the aggregator fixed point ŝ, which takes time exponential in d. Solving each
linear program can be done in time polynomial in all of the game parameters.

Making this algorithm satisfy joint differential privacy is more difficult. There
are two main steps. The first is to identify the fixed point ŝ ∈ Vξ(ŝ) that corre-
sponds the lowest cost equilibrium. There are exponentially in d many candidate
aggregators to check, and with naive noise addition we would have to pay for
this exponential factor in our accuracy bound. However, we take advantage of
the fact that we only need to output a single aggregator – the one corresponding
to the lowest objective value equilibrium – and so the sparse vector mechanism
Sparse (described in the full version) can be brought to bear, allowing us to pay
only linearly in d in the accuracy bound.

The second step is more challenging, and requires a new technique: we must
actually solve the linear program corresponding to ŝ, and output to each player
the strategy they should play in equilibrium. The output strategy profile must
satisfy joint differential privacy. To do this, we give a general method for solving a
class of linear programs (containing in particular, LPs of the form (2)) under joint
differential privacy, which may be of independent interest. This algorithm, which
we call DistMW (described in the full version), is a distributed version of the clas-
sic multiplicative weights (MW) technique for solving LPs [1]. The algorithm can
be analyzed by viewing each agent as controlling the variables corresponding to
their own mixed strategies, and performing their multiplicative weights updates
in isolation (and ensuring that their mixed strategies always fall within their
best response set ξ-BAi(ŝ)). At every round, the algorithm aggregates the cur-
rent solution maintained by each player, and then identifies a coordinate in which
the constraints are far from being satisfied. The algorithm uses the exponential
mechanism EXP (described in the full version) to pick such a coordinate while
maintaining the privacy of the players’ actions. The identification of such a coor-
dinate is sufficient for each player to update their own variables. Privacy then
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follows by combining the privacy guarantee of the exponential mechanism with
a bound on the convergence time of the multiplicative weights update rule. The
fact that we can solve this LP in a distributed manner to get joint differential
privacy (rather than standard differential privacy) crucially depends on the fact
that the sensitivity γ of the aggregator is small. The algorithm DistMW will find
a set of strategies that approximately satisfy the linear program – the violation
on each coordinate is bounded by

E = O

(
nγ2

ε
polylog

(

n,m, d,
1
β

,
1
δ

))1/2

.

The algorithm PRESL has the following guarantee:

Theorem 4. Let ζ ≥ γ
√

8n log(2mn), ε, δ, β ∈ (0, 1). PRESL (t, ζ, L, ε, δ, β) sat-
isfies (2ε, δ)-joint differential privacy, and, with probability at least 1 − β, com-
putes a (ζ + 12α)-approximate pure strategy equilibrium x such that L(x) <
OPT(ζ) + 5α, where

α = O

(
(
√

nε + d) γ

ε
polylog (n,m, d, 1/β, 1/δ)

)

.

We defer the full proof and technical details to the full version.

Remark 2. The running time of this algorithm is exponential in d, the dimension
of the aggregative game. For games of fixed dimension (where d is constant),
this yields a polynomial time algorithm. This exponential dependence on the
dimension matches the best known running time for (non-privately) computing
equilibrium in anonymous games by [10], which is a sub-class of aggregative
games.

Theorem 3 follows by instantiating Theorem 2 with PRESL
(
t, ζ, L, n1/3γ2/3

d1/2, 1
n , 1

n

)
– i.e. by setting ε = n1/3γ2/3d1/2 and δ = β = 1

n .
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Abstract. Competitive equilibrium, the central equilibrium notion in
markets with indivisible goods, is based on pricing each good such that
the demand for goods equals their supply and the market clears. This
equilibrium notion is not guaranteed to exist beyond the narrow case of
substitute goods, might result in zero revenue even when consumers value
the goods highly, and overlooks the widespread practice of pricing bundles
rather than individual goods. Alternative equilibrium notions proposed to
address these shortcomings have either made a strong assumption on the
ability to withhold supply in equilibrium, or have allowed an exponential
number of prices.

In this paper we study the notion of competitive bundling equilibrium –
a competitive equilibrium over the market induced by partitioning the
goods into bundles. Such an equilibrium is guaranteed to exist, is succinct,
and satisfies the fundamental economic condition of market clearance. We
establish positive welfare and revenue guarantees for this solution concept:
For welfare we show that in markets with homogeneous goods, there always
exists a competitive bundling equilibrium that achieves a logarithmic frac-
tion of the optimal welfare. We also extend this result to establish nontriv-
ial welfare guarantees for markets with heterogeneous goods. For revenue
we show that in a natural class of markets for which competitive equilib-
riumdoes not guarantee positive revenue, there always exists a competitive
bundling equilibrium that extracts as revenue a logarithmic fraction of the
optimal welfare. Both results are tight.

1 Introduction

Competitive equilibria play a fundamental role in market theory and design –
they capture the market’s steady states, in which each participant maximizes
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his profit at equilibrium prices, and supply equals demand such that the market
clears [14, Parts III and IV].

This paper focuses on the well-known combinatorial markets model, which
consists of a set M of m indivisible goods (or items), and a set N of n consumers.
We consider both the extensively studied case of homogeneous goods, and its
generalization to heterogeneous goods. Each consumer i has a valuation vi :
2M → R

+ over bundles of goods. The standard assumptions are that each vi is
normalized (vi(∅) = 0) and monotone non-decreasing. A competitive equilibrium
is an allocation of the goods to the consumers, denoted by (S1, . . . , Sn), together
with supporting item prices, denoted by pj for good j, such that the following
two conditions hold:

1. Profit Maximization: The profit of every consumer i is maximized by his
allocation Si; i.e., for every alternative set of goods T , vi(Si) − ∑

j∈Si
pj ≥

vi(T ) − ∑
j∈T pj .

2. Market Clearance: All items are allocated; i.e.,
⋃

i Si = M .

Unfortunately, despite their fundamental role, competitive equilibria are only
guaranteed to exist in limited classes of combinatorial markets, most notably
those in which all valuations are gross substitutes [10,16]. Intuitively this means
that consumers do not view the goods as complementary, so that if the price of
one good rises, the demand for other goods does not decline (see Sect. 2 for a
formal definition of gross substitutes and other valuation classes).

The standard market model described above implicitly assumes that the
goods on the market are exogenously determined, yet in many markets this is
not true. For example, there is no inherent reason for beer to be sold in 6-packs
rather than, say, 8-packs. This practice of bundling is ubiquitous in real-life
markets: It is a well-known method for revenue extraction [13] – e.g., for this
reason many airlines set the price of a one-way ticket to be equal to the price of a
round-trip ticket. It is also a common mean for avoiding the “exposure” problem
due to complementarities – e.g., in the online market for concert ticket resale
StubHub.com, a seller holding two tickets may prohibit their separate resale so
that if there is no demand for both, she may still enjoy the concert with a friend.

In this paper we study the role of bundling in steadying the market. We
will see that bundling introduces new equilibria, and thus can recover stability
in markets that lack a competitive equilibrium. The main challenge is whether
“good” bundlings exist, i.e., those which result in nearly optimal social efficiency
and/or revenue extraction.

1.1 Related Work and Definition of Our Equilibrium Concept

There have been several suggestions in the literature as to how to extend com-
petitive equilibria to accommodate bundling. One direction initiated in [3] is
the study of competitive equilibria over bundles that are supported by 2m non-
linear bundle prices, possibly personalized per consumer.1 Auctions that reach
1 In the full version available on arXiv.org we use linear programming to show that

our solution concept actually applies more widely than this one.

www.StubHub.com
www.arXiv.org
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such equilibria with personalized prices are studied in [1,20], while anonymous
supporting prices and auctions that reach them for classes of valuations are
studied in [11,22] (see also [18,19,21,24]).

In contrast to this direction, consider perhaps the simplest possible extension
of competitive equilibria, in which supporting prices are linear and anonymous.
We define a competitive bundling equilibrium to consist of a partition of the
goods into bundles, denoted by B = (B1, . . . , Bm′) and referred to as a bundling,
in addition to an allocation (S1, . . . , Sn) of the bundles to the consumers, and a
price pBj

for each bundle Bj . Similar to competitive equilibria, two conditions
must hold:

1. Profit Maximization: For every consumer i and alternative set of bundles
T , vi(Si) − ∑

Bj∈Si
pBj

≥ vi(T ) − ∑
Bj∈T pBj

.
2. Market Clearance:

⋃
i Si = M .

An advantage of competitive bundling equilibria is that they always exist.
This can be seen, e.g., by naively bundling all goods together and allocating
the bundle to the highest-valuing consumer. The social efficiency, however, may
reach only a 1/n-fraction of that achieved by the optimal allocation. Hence we
will mainly be occupied with seeking better competitive bundling equilibria than
the naive one.

A previously studied notion that is closely related to, and inspires, our com-
petitive bundling equilibrium notion is the solution concept known as combi-
natorial Walrasian equilibrium, introduced in [8]. In this solution concept, only
the profit maximization condition must hold and not the market clearance one,
and in this sense it is closer in spirit to an algorithmic pricing solution than to
a classic market-stabilizing equilibrium.2 The main result in [8] is that if one
ignores the requirement to sell all the goods, then there is always a bundling
together with anonymous and linear bundle prices that achieve at least half of
the optimal welfare. The main open problem posed in [8] is whether their result
can be extended under the market clearance requirement, and in this paper we
address this open question, among others. The open question of [8] received
partial treatment also in [9], but with respect to only two restricted classes of
valuations. In this work we consider a much more general setting, and in passing
generalize the results obtained in [9] for these two classes.3

2 To emphasize this distinction we propose a different name – competitive bundling
equilibrium – for the solution concept we focus on in this paper.

3 The classes addressed in [9] are a strict subclass of budget-additive valuations, and
superadditive valuations. We provide a general treatment of budget-additive valua-
tions in the full version of this paper [6], and re-derive the result for super-additive
valuations as a corollary of a more general argument in the full version: It was
observed in [19] that the linear program introduced by [3] has an integrality gap of
1 for superadditive valuations, guaranteeing the existence of non-linear supporting
prices; we show that an integrality gap of 1 also implies the existence of a competitive
bundling equilibrium with optimal welfare.



Welfare and Revenue Guarantees For Competitive Bundling Equilibrium 303

Applicability. The notion of competitive bundling equilibrium is applicable
when bundling is legally or effectively irrevocable. In the seminal paper of [3]
this property is referred to as “crates cannot be opened”. Retail markets where
bundles are explicitly marked as “not for individual sale” are one example of
markets with this property, as is the market for air tickets mentioned above.
Sterilized products are another case in which the physical packaging cannot be
opened. As another example consider attraction passes – companies like Disney
sell bundles of several day passes which are activated upon first entrance, when
identification is required from the visitor; the rest of the passes can then only
be used by the same visitor. It is even common practice for different producers
to bundle together their goods; for example, a travel website can offer bundles
of air tickets, hotel rooms and car rental.4

A second condition for the applicability of competitive bundling equilibrium
is that the market clears. This condition is sometimes violated in markets domi-
nated by a single monopolist, who may attempt to enforce an outcome in which
goods are withheld despite positive demand (note this will only succeed if, despite
the fact that such markets are often regulated, the monopolist can credibly com-
mit not to sell the goods in the future – see the classic paper of [5] for failure
of a monopolist to do so). In competitive markets, however, market clearance
is necessary for stability. The standard argument is that in uncleared markets,
competing producers have incentive to undercut prices, thus leaving the market
unstable (for a thorough discussion see Sect. 10.B of [14]). In addition, mar-
kets for resources like spectrum or public land will necessarily clear, since the
governmental seller cannot withhold supply arbitrarily.

1.2 Our Results

We establish the existence of competitive bundling equilibria that are approx-
imately optimal with respect to social efficiency and also revenue, where the
approximation factors depend on the size of the combinatorial market’s shorter
side μ = min{n,m}. While our main focus is on existence of good equilibria, our
results are constructive and often tractable.

(I) Welfare for Homogeneous Goods. We refer to combinatorial markets
with homogeneous goods as multi-unit settings; in such settings the consumers’
values depend on the number of units they receive. Multi-unit settings have
been studied extensively in the literature (e.g., [2,4,15,23]), since this model
captures important goods like Treasury bills, electricity and telecommunications
spectrum, as well as online advertising. For a recent survey dedicated to multi-
unit settings see [17].

The classic result of Vickrey [23] shows that if the consumers’ valuations
exhibit decreasing marginal utilities (i.e., the added value from adding a single
unit decreases in the size of the existing bundle), then there always exists a
4 An interesting future direction is trying to better understand the market processes

leading to such bundling.
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competitive equilibrium. This no longer holds in the more general case where
valuations exhibit complements among units. We give a complete analysis for
competitive bundling equilibria in multi-unit settings and establish the following
theorem.

Theorem [Main] (Sect. 4): For every multi-unit market there exists a com-
petitive bundling equilibrium that provides an O(log μ)-approximation to the
optimal welfare. There exist such markets in which the approximation ratio of
every competitive bundling equilibrium is Ω(log μ).

The lower bound in this theorem applies even if all valuations but one exhibit
decreasing marginal utilities, and all are subadditive (see Sect. 2 for a definition).5

(II) Welfare for Heterogeneous Goods. Our techniques developed for
homogeneous goods apply to combinatorial markets with heterogeneous goods
as well, yielding the following results.

Theorem [General Markets] (Sect. 5): For every combinatorial market
there exists a competitive bundling equilibrium that provides an Õ(

√
μ)-

approximation to the optimal welfare. There exist such markets in which the
approximation ratio of every competitive bundling equilibrium is Ω(log μ).

Theorem [Budget-Additive Consumers] (Sect. 6): For every combinator-
ial market with budget-additive valuations there exists a competitive bundling
equilibrium that provides an O(log μ)-approximation to the optimal welfare.
There exist such markets in which the approximation ratio of every competitive
bundling equilibrium is no better than 5

4 .

The gap between the upper and lower bounds is one of two main open questions
that arise from this paper.

Theorem [Two Consumers] (See the Full Version [6]): For every com-
binatorial market with n = 2 consumers there exists a competitive bundling
equilibrium that provides a 3

2 -approximation to the optimal welfare. There exist
such markets in which the approximation ratio of every competitive bundling
equilibrium is no better than 3

2 .

(III) Revenue. We use our techniques to show a positive result for revenue, in
order to highlight the role of bundling in revenue extraction and to demonstrate
how the competitive bundling equilibrium notion can be useful even in gross
5 This shows that even for slightly more complicated valuations than those considered

by Vickrey, not only is it the case that a standard competitive equilibrium may not
exist, but also no competitive bundling equilibrium necessarily provides a constant
fraction of the optimal welfare. In the full version we also show that randomization –
in the form of correlated lotteries – does not improve the logarithmic approximation
factor. This tight and robust bound can be seen as a kind of price of stability result,
which establishes a clear separation between the optimal welfare and the optimal
stable welfare in markets with indivisible items.
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substitutes markets (for which standard equilibria are guaranteed to exist but
may possibly extract zero revenue).

Theorem [Revenue] (See the Full Version [6]): For every combinatorial
market with valuations belonging to a subclass of gross substitutes there exists
a competitive bundling equilibrium that extracts as revenue an Ω(1/ log μ)-
fraction of the optimal welfare. There exist such markets in which the revenue of
every competitive bundling equilibrium is an O(1/ log μ)-fraction of the optimal
welfare.

The second main open question that arises from this paper is whether the above
result extends to the entire class of gross substitutes.

2 Preliminaries

We briefly address the standard issue of valuation representation and review
certain classes of valuations. The expert reader can safely skip this section.

A näıve representation of a valuation is exponential; the standard assumption
is thus that valuations are accessed by a succinct oracle. One standard kind
of oracle is a demand oracle: Given a consumer valuation v and item prices
p, an item set T is in the consumer’s demand set if it maximizes his profit,
i.e., v(T ) − ∑

j∈T pj = maxU⊆M{v(U) − ∑
j∈U pj}. A demand query returns a

member of the demand set under the given prices. The other standard kind of
oracle is a value oracle: For a given valuation and bundle, a value query returns
the value of the bundle. Even in multi-unit settings, demand queries are known
to be strictly stronger than value queries.

An important class of valuations is gross substitutes valuations. A valuation
v is a gross substitutes valuation if for every pair of price vectors q ≥ p, for
every item set T in the demand set of p, there exists an item set U in the
demand set of q such that U includes every item j ∈ T whose price did not
increase. A unit-demand valuation v is a kind of gross substitutes valuation for
which the value of every bundle T is the maximum value of some item in T . A
superclass of gross substitutes valuations is subadditive valuations. A valuation v
is subadditive if for every two bundles T,U it holds that v(T )+v(U) ≥ v(T ∪U).
A class of subadditive valuations that are not gross substitutes is budget-additive
valuations. A valuation v is budget-additive if there exists b such that for every
bundle T we have that v(T ) = min{∑

j∈T v({j}), b}.

3 Technical Tools

In this section we prepare our main workhorses: Lemmas 1 and 2. These lemmas
identify structures – described in Definitions 1 and 2 – from which a competitive
bundling equilibrium with certain welfare guarantees can be found in polynomial
time utilizing a result of [8]. Subsequent sections of the paper devise and analyze
algorithms to construct these structures. We first present the lemmas and then
prove them in Sect. 3.1.
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Definition 1. A high-demand priced bundling consists of a bundling B and
bundle prices p, such that for every bundle B ∈ B, there is a set NB of at least
|B| consumers for whom vi(B) − pB > 0, i.e., B is strictly profitable.

Lemma 1. For every high-demand priced bundling (B,p), there exists a com-
petitive bundling equilibrium with allocation S′ = (S′

1, . . . , S
′
n), whose welfare∑

i∈N vi(S′
i) is at least the sum of prices

∑
B∈B pB. Moreover, it can be found

in poly(m,n) time using demand queries given (B,p).

Definition 2. A bundling B, bundle prices p and allocation S over B form a
partial competitive bundling equilibrium if they constitute a competitive bundling
equilibrium for a consumer subset N ′ ⊆ N .

Lemma 2. For every partial competitive bundling equilibrium with bundling B
and prices p, there exists a competitive bundling equilibrium with allocation
S′ = (S′

1, . . . , S
′
n), whose welfare

∑
i∈N vi(S′

i) is at least the revenue
∑

B∈B pB.
Moreover, it can be found in poly(m,n) time using demand queries given the
partial competitive bundling equilibrium.

3.1 Proofs

The proofs of Lemmas 1 and 2 use the following result that is a reinterpretation
of [8].

Theorem 1 ([8]). In a combinatorial market with general, possibly non-
monotone valuations, let B be a bundling with bundle prices p. There exist
a further bundling B′ over bundles in B6, and prices p’ and an allocation
S = (S1, . . . , Sn) over bundling B′, such that:

1. For every i, let Ti ⊆ B be the set of original bundles Si is combined from, and
let Ui ⊆ B′ be the set of new bundles Si is combined from. Then ΣB∈Ui

p′
B ≥

ΣB∈Ti
pB.

2. Si is in consumer i’s demand set given prices p′, i.e., vi(Si) − ΣB∈Ui
p′

B

maximizes i’s profit among all subsets of B′.
3. For every bundle B ∈ B′ unallocated in S, B ∈ B and p′

B = pB.

The bundling, prices and allocation can be found in poly(m,n) time using
demand queries given B and p.

Note that the bundling, prices and allocation guaranteed to exist by the above
theorem do not form a competitive bundling equilibrium, as they do not satisfy
the market clearance condition.

We will also need the following lemma, which formulates a standard argument
and is proven for completeness in the full version of this paper [6].

6 i.e., a coarser bundling of the original m items.
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Lemma 3 (Bucketing – folklore). For every allocation S = (S1, . . . , Sn) of
items M , there exists a value v and an allocation S′ = (S′

1, . . . , S
′
n) of M ′ ⊆ M ,

such that vi(S′
i) ∈ [v, 2v) for every S′

i 	= ∅, and a logarithmic fraction of the
welfare is maintained, i.e.,

∑
i∈N vi(S′

i) ≥ 1
2(log μ+2)

∑
i∈N vi(Si) where μ =

min{m,n}. The value v and allocation S′ can be found in poly(m,n) time using
value queries given S.

Proof (Lemma 1). We will show that after applying Theorem1 to the high-
demand priced bundling, all bundles in B are allocated. Assume towards con-
tradiction there is a bundle B ∈ B that is not allocated. Then its price remains
unchanged by property (3) of Theorem1. But there are at least |B| consumers for
which B is profitable at this price, hence for property (2) to hold, each of these
consumers must be allocated an alternative bundle (otherwise their profit would
be 0). However, there are only |B| − 1 bundles except for B, a contradiction. 
�
Proof (Lemma 2). Fix some ε > 0. Consider the partial competitive bundling
equilibrium and denote its consumer subset by N ′. For every consumer i ∈ N ′

for which Si is not empty, define a new valuation vε
i that is identical to vi except

for a shift of ε in the value of Si, i.e., vε
i (Si) = vi(Si)+ ε (the new valuation may

no longer be monotone). For every other consumer i simply set vε
i = vi. Observe

that the partial competitive bundling equilibrium is still a partial competitive
bundling equilibrium with respect to the vε

i ’s. Now apply Theorem 1 to get a
bundling B′, allocation (S′

1, . . . , S
′
n) and prices p’ . We show that since we started

with a partial competitive bundling equilibrium, these bundling, allocation and
prices form a competitive bundling equilibrium with respect to the vε

i ’s, that is,
all bundles in B are allocated. By the latter fact and by properties (1) and (2)
of Theorem 1,

∑
i∈N vi(S′

i) ≥ ∑
B∈B pB.

To show that we get a competitive bundling equilibrium, since property (2)
of Theorem 1 is guaranteed, the only missing component is to show market clear-
ance, i.e., that ∪iSi = M . Suppose towards a contradiction that there is a bundle
B ∈ B that was not allocated. Let i be the consumer that was allocated that
bundle in the partial competitive bundling equilibrium. Observe that under the
prices of the partial competitive bundling equilibrium, B is the most profitable
bundle of i. Now since B is unallocated, its price remaines the same by property
(3) of Theorem 1, while the prices of the other bundles can only increase by
properties (1) and (3). Thus B is the most preferred bundle for i (with valuation
vi it is only a most preferred bundle), and by property (2) consumer i must be
allocated this bundle.

We would now like to show the existence of a competitive bundling equi-
librium with respect to the vi’s and not just with respect to the vε

i ’s. When
taking ε to 0, we get an infinite sequence of allocations and prices. Since the
number of allocations is finite and since all prices are bounded between 0 and
max{maxi vi(M),maxB(pB)}, there exists a subsequence in which one allocation
S̃ repeats and the prices converge to a price vector p̃. Note that it still holds
that

∑
i∈N vi(S̃i) ≥ ∑

B∈B pB .
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To finish the proof we now claim that this allocation S̃ and prices p̃ are a
competitive bundling equilibrium with respect to the vi’s. Observe that for every
ε in the converging subsequence, if consumer i receives S̃i, then S̃i is the unique
bundle that maximizes his profit; otherwise, for smaller values of ε, S̃i is no
longer the most profitable bundle for i in contradiction to the assumption that
we have a competitive bundling equilibrium for the vε

i ’s. Since this is true for
every ε > 0, for ε = 0 we get that S̃i is one of the most profitable bundles for i,
which is enough to prove that S̃ and p̃ form a competitive bundling equilibrium
with respect to the bundling B. 
�

4 Welfare for Homogeneous Goods

This section focuses on multi-unit markets, where units of a single good may be
treated by different consumers as both substitutes and complements. We show
existence of a competitive bundling equilibrium that logarithmically approxi-
mates the optimal social welfare; this result is tight even when all valuations are
subadditive.

Theorem 2. For every multi-unit market with n consumers and m items,
there exists a competitive bundling equilibrium that provides an O(log μ)-
approximation to the optimal welfare OPT, where μ = min{m,n}. Moreover,
it can be found in poly(log m,n) time using value queries.7

Proof. Our goal is to show there exists a high-demand priced bundling whose
aggregate price is an O(log μ)-approximation to OPT; the proof of existence then
follows by applying Lemma 1.

Consider a welfare-optimal allocation (O1, . . . , On). We begin by applying
Lemma 3, by which there exist a value v and an allocation (O′

1, . . . , O
′
n) of an

item subset M ′, such that (1) for every consumer i with non-empty alloca-
tion, vi(O′

i) ∈ [v, 2v); (2) a logarithmic fraction of the welfare is preserved, i.e.,∑
i≤n vi(O′

i) ≥ OPT /Θ(log μ).
Without loss of generality assume |O′

1| ≥ · · · ≥ |O′
n|, and let n′ be the largest

index such that O′
n′ 	= ∅. If n′ = 1, the proof is complete by allocating the grand

bundle to consumer 1 for price v1(M). Assuming from now on n′ > 1, we show
how allocation O′ can be used to construct a high-demand priced bundling.

Let B be a partition of all m items into k := �n′/2 ≥ 1 bundles of roughly
equal size – if k does not divide m, place leftover items in one of the bundles
arbitrarily. Observe that every bundle B ∈ B has size at least |O′

k+1|. Set the
price of every such bundle to pB = v − ε for some small ε = ε(v). Then all k
bundles are strictly profitable for consumers k +1, . . . , n′, and since there are at
least k such consumers we have a high-demand priced bundling.

It remains to show that the aggregate price, k(v−ε), is a logarithmic fraction
of OPT: By choosing ε ≤ v/5, we have that k(v − ε) ≥ v(2k + 2)/5. Plugging in

7 A tractable algorithm for multi-unit market runs in time poly(log m, n) and not
poly(m, n) – see [7].
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2k + 2 ≥ n′ we get k(v − ε) ≥ 2vn′/10, which by the fact that vi(O′
i) < 2v is at

least 1
10

∑
i≤n vi(O′

i) ≥ OPT /Θ(log μ), completing the existence proof.
We now sketch the proof of the computational result. Assuming m � n (the

case of interest), we add a preprocessing stage in which units are partitioned
into equal-sized bundles of size m/n2 (ignoring leftovers for simplicity). [7] show
that the welfare-optimal allocation of such bundles achieves a 2-approximation
to the welfare of an optimal unconstrained allocation. Further recall that in any
multi-unit setting, there is a computationally efficient constant-approximation
to OPT. Together with the computational guarantees of Lemmas 1 and 3, this
implies that a competitive bundling equilibrium which provides an O(log μ)-
approximation to the optimal welfare can be found in poly(log m,n) time using
demand queries. It is left to show that a demand query in the new setting can
be simulated by poly(log m,n) value queries. Since the total number of original
units in any bundle is now a multiple of m/n2, one can use dynamic programming
to simulate a demand query as required. 
�
Theorem 3. There exists a multi-unit market where m = n and valuations are
subadditive, such that every competitive bundling equilibrium has welfare that is
a 1/Ω(log m)-fraction of the optimal.

Table 1. A lower bound for multi-unit markets with subadditive consumers

Consumer Valuation

i = 1 vi(B) =

{
2(1 + ε) if B = M

1 + ε if B ⊂ M

i ∈ {2, . . . , n} vi(B) = 1/i for every B ⊆ M

Proof. Consider the multi-unit market in which m = n and consumer valuations
are as described in Table 1. Note that all consumers are subadditive (in fact con-
sumers 2 to n are unit-demand). The optimal allocation in this market allocates
each of the consumers a single unit, achieving welfare Ω(log m). We will show
that in every competitive bundling equilibrium, consumer 1 is allocated all units,
and thus the welfare is only 2 + 2ε.

Consider a competitive bundling equilibrium with allocation S over bundling
B, and bundle prices p. Let i′ be the smallest index of a consumer whose allo-
cation is non-empty. Observe that all bundles B ∈ B must have a common price
p ≤ 1/i′: Clearly consumer i′ cannot be charged more than 1/i′, and if the price
of any bundle > 1/i′, then some consumer’s profit is not being maximized. Now
assume towards contradiction that i′ > 1. By the market clearance property,
|B| ≤ i′, and so the total price for all bundles in B is at most 1. Consumer 1
will thus strictly increase his profit by buying all bundles in B, in contradiction
to the profit maximization property of a competitive bundling equilibrium. This
completes the proof. 
�
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In the full version we strengthen Theorem 3 by showing it holds even when
lotteries are allowed.

5 Welfare for Heterogeneous Goods

In this section we consider general combinatorial markets, and show that for
every such market there exists a competitive bundling equilibrium whose alloca-
tion achieves a Õ(

√
μ)-approximation to the optimal welfare. In the full version

of this paper, we also address computational aspects (see [6]).

Theorem 4. For every combinatorial market with n consumers and m goods,
there exists a competitive bundling equilibrium with welfare that is a Õ(

√
μ)-

approximation to the optimal welfare OPT, where μ = min{m,n}.
Proof. ApplyLemma 3tothewelfare-optimalallocation(O1, . . . , On) togetavalue
v and an allocation S = (S1, . . . , Sn) of items M ′ ⊆ M . Without loss of generality,
assumethatexactly thefirstr allocatedparts inS arenon-empty(rmustbe≤ μ), so
that (1) for every consumer i ∈ [r], vi(Si) ∈ [v, 2v); (2) a logarithmic fraction of the
welfare is preserved, i.e.,

∑
i∈[r] vi(Si) ≥ 1

O(log μ)

∑
i vi(Oi). By applying Lemma 4

below to the value v and allocation S, we get an O(
√

r) = O(
√

μ)-approximation
to the welfare of S, which is an Õ(

√
μ)-approximation to OPT. 
�

The proof of Theorem4 relies on the following lemma.

Lemma 4. Let v be a value and S = (S1, S2, . . . , Sr) an allocation of items
M ′ ⊆ M to the first r consumers, such that ∀i ∈ [r], Si 	= ∅ and vi(Si) ∈
[v, 2v). Then there is a competitive bundling equilibrium that achieves an O(

√
r)-

approximation to the welfare of S.

Proof. We show how to construct a high-demand priced bundling whose aggre-
gate price is an O(

√
r)-approximation to the welfare of S. The proof is then

established by invoking Lemma 1.
Beginning with S1, . . . , Sr, we create new bundles by joining sets of �√r� Sis,

adding leftovers to the last bundle (which contains between �√r� and 2�√r�)
Sis). Items in M\M ′ are also added to the last bundle. Let B denote the resulting
bundling, and set a price pB = v for every B ∈ B. The pair (B,p) is a high-
demand priced bundling: By construction, |B| ≤ √

r, and every bundle B ∈ B
is profitable for at least

√
r consumers (those who were originally allocated the

Sis it contains).
Now, recall that

∑
i∈[r] vi(Si) ≤ 2vr. Since no bundle B ∈ B contains more

than 2�√r� ≤ 2
√

r+2 Sis, then |B| ≥ r/(2
√

r+2), and so the proof is complete:

∑

B∈B
pB = |B|v ≥ rv

2
√

r + 2
≥ 1

4
√

r + 4

∑

i∈[r]

vi(Si).


�
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6 Welfare for Budget-Additive

In Sect. 5 we showed that every combinatorial market admits a competitive
bundling equilibrium that provides an approximation ratio of Õ(

√
m) to the

social welfare. A natural next step is to understand whether we can get better
approximation ratios for specific subclasses. We make progress towards this goal
by showing that if the valuations are all budget-additive then we can get a log-
arithmic approximation. The best lower bound we currently know shows that
no market with budget-additive valuations can achieve an approximation ratio
better than 5

4 (for the proof, see the full version of this paper [6]).

Theorem 5. In every combinatorial market with budget-additive valuations,
there is a competitive bundling equilibrium with welfare that is an O(log m)-
approximation to the optimal welfare.

We henceforth describe a high-level proof of Theorem 5 (see the full version
of this paper [6] for details). Our proof is constructive and proceeds as follows:
We first compute an allocation A = (A1, . . . , An) by running (a slight variation
of) the greedy algorithm of [12] for submodular valuations. This algorithm con-
siders the items one by one in an arbitrary order, and allocates each item to a
consumer that maximizes the marginal value for it given the items he received
until now. This allocation is known to achieve a constant approximation to OPT
for submodular valuations.

Next, our goal is to identify a subset of the bundles (Ai’s) that can be con-
verted into a partial equilibrium on the one hand, and give (at least) a logarith-
mic approximation to OPT on the other hand. Given such a subset, we can then
apply Lemma 2 to complete the proof. The non-trivial challenges are: (1) how
to allocate the items that do not belong to the identified subset of bundles, and
(2) how to price the bundles to ensure profit maximization for the corresponding
consumers.

To address these challenges, we distinguish between two cases: If most of
the welfare of A comes from consumers who have exhausted their budgets (i.e.,
vi(Ai) = bi), we identify a subset of the buyers Sb with budgets bi ∈ (b, 2b]
for some b, who contribute a logarithmic fraction of the welfare of A. Then, for
every consumer i ∈ Sb, we bundle up the items in Ai into a bundle, and add the
remaining items (i.e., those not belonging to any of the consumers in Sb) to an
arbitrary consumer in Sb. We then price each bundle at a uniform price of b. It is
not too difficult to verify that this is a partial competitive bundling equilibrium
with respect to the consumers in Sb.

If most of the welfare of A comes from consumers who have not exhausted
their budgets (i.e., vi(Ai) < bi), for every non-exhaustive consumer i, we bun-
dle up the items in Ai into a bundle, and add the remaining items, T , to the
non-exhaustive consumer i∗ who maximizes the value vi(Ai ∪ T ). We charge
every consumer exactly his valuation for the allocated bundle (so each one gains
zero utility). The greediness of the initial algorithm ensures that every non-
exhaustive consumer maximizes his profit over all allocations Ai given to other
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non-exhaustive consumers. It remains to show that this holds also with respect
to the consumer i∗. But this is clear by the definition of i∗ as the consumer who
maximizes the valuation for this bundle. It follows that this is a partial compet-
itive bundling equilibrium with respect to the non-exhaustive consumers.
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Abstract. We study the complexity of the destructive bribery problem
(an external agent tries to prevent a disliked candidate from winning
by bribery actions) in voting over combinatorial domains, where the set
of candidates is the Cartesian product of several issues. This problem
is related to the concept of the margin of victory of an election which
constitutes a measure of robustness of the election outcome and plays an
important role in the context of electronic voting. In our setting, voters
have conditional preferences over assignments to these issues, modelled
by CP-nets. We settle the complexity of all combinations of this problem
based on distinctions of four voting rules, five cost schemes, three bribery
actions, weighted and unweighted voters, as well as the negative and the
non-negative scenario. We show that almost all of these cases are NP-
complete or NP-hard for weighted votes while approximately half of the
cases can be solved in polynomial time for unweighted votes.

Keywords: Computational social choice · Voting · Bribery · CP-nets ·
Destructive

1 Introduction

Voting in an election is a common procedure to aggregate the preferences of the
parties involved, the voters, over a set of alternatives, the candidates, in order to
find one or more winning alternatives. In many settings, the set of candidates is
the Cartesian product of several issues. One might think of a referendum, where
voters have to approve or disapprove of each issue, or the individual configu-
ration of a product consisting of several components for each of which several
options can be chosen, such as a car where the consumer can choose between
different options for the model, equipment, color, and various other features, or
a computer where different options are available for the operation system, hard-
ware and software components. The number of possible candidates (available
choices, outcomes) is hence exponential in the number of issues or components,
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and it may be an impossible task for voters to express their preferences over the
whole set of available choices by ranking them all.

Additionally, voters might have conditional preferences over the candidates.
The typical example is a meal consisting of several components, such as a main
dish (fish or meat), a side dish (chips or rice), and a drink (beer or wine). A
voter might (unconditionally) prefer meat to fish, and he might prefer wine to
beer given that fish is served for the main dish. In the car example, a consumer
might prefer a station wagon to a hatchback, and he might prefer a black car to
a white one, but only if it is equipped with an air conditioning system.

In view of applications such as e-commerce and other settings on the web
and internet where one has to deal with very large populations, one is inter-
ested in a compact description and efficient communication and aggregation of
these conditional preferences in combinatorial domains. One approach is given
by CP-nets, a graphical model introduced by Boutilier et al. [1] that incorpo-
rates ceteris paribus (cp) statements describing the conditional dependencies.
Preference aggregation in CP-nets was studied by Rossi et al. [24] and various
other authors (e.g., [5,22,27]).

Besides the problem of determining a winner, a central topic in the compu-
tational social choice literature is the study of the computational complexity of
voting problems such as strategic voting (manipulation), election control and
bribery [3,10]. In the bribery problem, initially introduced by Faliszewski et al.
[12] (see also [9,11,13]), voters can be bribed to change their preferences. In the
constructive bribery problem, one asks whether a briber can make his favorite
candidate win the election with these changes, subject to a budget constraint.

Mattei et al. [19] considered several procedures for determining a winner in
voting with CP-nets and investigated the bribery problem in this context. They
introduced and adapted several natural cost schemes for the bribery problem
in the setting of CP-nets and determined the computational complexity of the
problem under the various voting rules and cost schemes, also considering the
level of dependency the briber can affect with his changes. In most of these cases,
they obtained that the bribery problem is solvable in polynomial time. Dorn
and Krüger [7] answered open cases and considered the weighted and negative
versions of the problem. Further investigations of bribery in CP-nets deal with
interaction and influence among voters [18] and with representation of the voters’
preferences via soft constraints [21].

In this work, we study the complexity of the destructive bribery problem in
CP-nets, which asks whether a disliked candidate can be prevented from winning
the election by bribery actions. The study of destructive bribery is also related
to the concept of the margin of victory [17,23,26] of an election. Given a voting
rule and a set of votes, the margin of victory is the minimum number of votes
that must be modified in order to change the winner(s) of the election. If the
voting rule selects a unique winner, then the problem of deciding whether this
number is larger than a given threshold corresponds to the destructive bribery
problem introduced by Faliszewski et al. [12]. The margin of victory is a measure
of robustness of the outcome of an election, specifying the number of errors that
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may occur in an election—be it due to inference or due to fraud—without having
an effect on the outcome. It is of particular interest in the setting of electronic
voting where post-election audits are executed to verify the correctness of the
electronical record [20]. An audit samples ballots and measures the discrepancy
of the sampled electronic votes with respect to their paper record. Risk-limiting
post-election audits seek to minimize the size of the audit when the outcome is
correct [25]. The margin of victory is an important parameter used to determine
the size of an audit for this method.

We study all combinations of voting rules, cost schemes, and bribery actions
considered by Mattei et al. [19], as well as weighted voters and the negative
scenario. The destructive variant has been investigated in various voting prob-
lems [4,6,15], including bribery [13] without combinatorial domains. In all these
settings, for the unique-winner case, the destructive version is at most as hard
as the constructive one. We think that our work might be interesting for several
reasons: First, in our setting, destructive bribery turns out to be harder than
constructive bribery in many cases. Second, the problems we use for our reduc-
tions (two variants of the Satisfiability problem and the Knapsack problem)
are not the typical ones that are often used in the context of voting problems.
An overview of our results is given in Table 1 on page 6.

2 Preliminaries

Almost all our notations and definitions can be found in greater detail and
exemplified in the articles by Mattei et al. [19] and by Dorn and Krüger [7], who
analyzed the constructive case of the same scenario.

This section is structured as follows. First, we present the NP-complete
problems we use for our reductions. Afterwards we define CP-nets and introduce
related notation. This is followed by the introduction of the voting rules we will
work with. We are then ready to define the bribery problem in the setting of
CP-nets and introduce the different cost schemes and allowed bribery actions.
Finally, we give an overview (Table 1) of the results obtained in this paper and
close this section with an example.
For our reductions we use the following NP-complete problems.

(Not-All-Equal) 3-Satisfiability, (NAE-)3SAT [14]
Given: A set U of n variables νi, collection C of m clauses over U such
that each clause γ ∈ C is a subset of U with |γ| = 3.
Question: Is there a truth assignment for U such that each clause in C
has at least one true (and one false) literal?

Knapsack [14]
Given: A set U of n objects (wi, vi) ∈ N

2 of weight wi ∈ N and value
vi ∈ N, positive integers k, b ∈ N.
Question: Is there a subset U ′ ⊆ U of objects with total weight at most
b and total value at least k?
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CP-nets. In our setting, we are given a set of m issues M = {X1, . . . , Xm}, and
each Xi ∈ M has a binary domain D(Xi) = {xi, xi}. A complete assignment to
all issues is called a candidate, so there are 2m different candidates. Each of the
n voters has (possibly) conditional preferences over the values assigned to the
issues; if the preference of an issue X depends on one or more other issues (called
the parents Pa(X)), we call this issue dependent, and independent otherwise.
Formally, a CP-net is defined by a directed graph (with the issues as its vertices
and directed edges going from Pa(X) to X) modeling these dependencies, and a
table for each issue, containing the preference over the assignment to this issue
for each different complete assignment to its parents; each combination of an
assignment to the parents and the corresponding preference over the issue is
called a cp-statement. For example, for a CP-net with issues X and Y , the cp-
statement x > x means that the assignment X = x is unconditionally preferred
to X = x, while the statements x : y > y and x : y > y express that the
assignment Y = y is only preferred to Y = y in the case that X = x (hence,
Pa(Y ) = {X} here). The collection of CP-nets of all voters is called a profile.

CP-nets only define a partial order over the candidates, i.e., some candidates
are incomparable. One way to expand this to strict total orders over the candi-
dates is to give a strict total order over all issues such that no issue depends on
any issue following it in this order. If the same order O works out for all CP-nets
of a profile, the profile is called O-legal [16].

Throughout this work, we assume that the voters’ preferences on the set of
issues are given by compact (the number of parents of each issue is bounded by a
constant) and acyclic (the corresponding graph is acyclic) CP-nets. For acyclic
CP-nets, the most preferred candidate of a voter can be determined efficiently [1].

An example of a profile consisting of three CP-nets is given in Table 2 at the
end of this section. The CP-nets encode conditional preferences for the alterna-
tive options of a menu consisting of a main dish, a side dish and a drink. Alice’s
choice for the drink is dependent of the choice for the main dish: She prefers
beer to wine in case meat is served, and wine to beer if fish is served as a main
dish.

Voting. A voting rule maps a profile to a set of candidates. With One-Step-
k-Approval (OK ), only the k most preferred candidates of each voter obtain
1 point each. The winner of the election is the candidate with the most points
(or all candidates with those points). In particular, we consider the special cases
One-Step-Plurality (OP), where k = 1, and One-Step-Veto (OV ), where
k = 2m − 1. With Sequential majority (SM ), given a total order O for which
the profile is O-legal, we follow this order issue by issue, and execute a majority
vote for each issue. The voters fix the winning value of the corresponding issue
in their CP-net and then go on to the next issue. The winning candidate is the
combination of the winners of the individual steps taken. These rules are also
used by Mattei et al. [19].

Interestingly, it is NP-hard to determine the winner for the voting rule One-
Step-k-Approval (OK) if k is part of the input [8]. Therefore, we restrict our
analysis to efficient cases of OK where k has a value which is polynomial in n
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and m or for O-legal profiles where k is a power of 2. We denote these cases by
OKeff. Here, the winner can be determined in polynomial time using results by
Brafman et al. [2, Theorem 9] and Mattei et al. [19, Lemma 1]. We refer to the
longer version [8] of this work including explanations and concrete algorithms.
In the rest of this work we will focus on OKeff instead of OK.

Bribery. We consider the problem that an external agent, the briber, who knows
the CP-nets of all voters, asks them to execute changes in their cp-statements.
We distinguish the cases that the briber can ask for a change in cp-statements of
independent issues only (IV ), dependent issues only (DV ), or in all (IV + DV )
issues [19]. We consider the following five cost schemes [19]:

– Cequal: Any amount of change in a single CP-net has the same unit cost.
– Cflip: The cost of changing a CP-net is the total number of individual cp-

statements that must be flipped to obtain the desired change.
– Clevel: The cost of a bribery is computed1 as

∑
Xj∈M ′(k + 1 − level(Xj)),

where M ′ ⊆ M is the set of bribed issues for this voter, k is the number of
levels in the CP-net, and level(Xj) corresponds to the depth of issue Xj in
the dependency graph. More precisely,

level(Xj) =

{
1 if Xj is an independent issue
i + 1 else, with i = max{level(Xk) | Xk is a parent of Xj}.

– Cany: The cost is the sum of the flips, each weighted by a specific cost.
– Cdist: This cost scheme requires a fixed order of the issues for each voter (not

necessarily the same for each of them), inducing a strict total order over all
candidates. The cost to bribe a voter to make c his top candidate is the number
of candidates which are better ranked than c in this order.

Additionally, these cost schemes are extended by a cost vector Q ∈ (N)n for an
individual cost factor for each voter. The factor for voter vi is denoted by Q[i]
and is multiplied with the costs calculated by the used cost scheme to obtain
the amount that the briber has to pay to bribe vi.
The destructive (D,A,C)-bribery problem is then defined in the following way:

(D,A,C)-Destructive-Bribery (DB)
Given: A profile of n CP-nets over m common binary issues, a winner
determination voting rule D ∈ {SM,OP,OV,OKeff}, a cost scheme C ∈
{Cequal, Cflip, Clevel, Cany, Cdist}, a bribery action A ∈ {IV,DV, IV +
DV }, a cost vector Q ∈ (N)n, a budget β ∈ N, and a disliked (‘hated’)
candidate h. With SM , we also require O-legality for one common order
and with Cdist, and OKeff up to n given total orders over the issues.
Question: Is it possible to change the cp-statements of the voters such
that the candidate h is not in the set of winners of the bribed election,
without exceeding β?

1 The formula given here differs from the one of Mattei et al. [19]. See the argument
of Dorn and Krüger [7, Remark 1] why both are equivalent.
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We also consider Weighted-(D,A,C)-DB, which is defined in the same
way, but with weighted voters, which is a typical variant for bribery problems
(see the overview of Faliszewski et al. [12]).

Moreover, we also consider weighted and unweighted (D,A,C)-negative-
DB. The notion of negative bribery was introduced by Faliszewski et al. [12]
for the constructive case (to make a candidate win the election) in order to
cover a more inconspicuous way of bribery: the briber wants to make his pre-
ferred candidate p win by not bribing any voter to vote directly for p, therefore
just redistributing the votes for the other candidates through bribery. For the
destructive case we consider in this work, the analogue restriction is to prohibit
bribing voters to vote against the disliked candidate if they have not done so
before (recall that with OK and OV , a voter votes for several candidates).

Sometimes we show that a result holds for both, the negative and the non-
negative case. We indicate this by 〈negative〉 in the problem name.

For all our hardness results we prove only NP-hardness for the corresponding
problems, but immediately obtain NP-completeness due to obvious membership
in NP for all of the problems. Due to space constraints we omit some proofs and
the analysis of some restricted cases and refer to a longer version of this paper [8].

Table 1. Complexity results (P stands for solvability in polynomial time, NP-c
for NP-completeness) for variants of the destructive bribery problem in CP-
nets shown in this paper. These variants are specified by a cost scheme (Cequal,
Cflip, Clevel, Cany, Cdist), given at the top of the corresponding column, and a
voting scheme (SM,OP,OV,OKeff) at the beginning of the corresponding row. The
unweighted variants are given in the top half of the table, the weighted ones are listed
in the bottom half. The given results all hold for the bribery actions IV , DV , and
IV + DV , if not stated differently. The cases that are solvable in polynomial time, if
the entry in the cost vector is identical for every voter, are not included.
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Table 2. Example for three CP-nets of the voters Alice, Bob, and Charlie over the
three issues main dish, side dish, and drinkwith the domains D(main) = {fish,meat},
D(side) = {rice, chips}, and D(drink) = {wine, beer}.

Example. Table 2 shows the CP-nets of the voters Alice (A), Bob (B), and
Charlie (C) over the three issues main dish, side dish, and drinkwith the domains
D(main) = {fish,meat}, D(side) = {rice, chips}, and D(drink) = {wine, beer} to
vote for a joined meal. Additionally, the individual orders of the issues are given
for each voter, implying the following total orders as expansions of the partial
orders defined by the CP-nets:

A: (fish,rice,wine) > (fish,chips,wine) > (fish,rice,beer) > (fish,chips,beer) . . .
B: (fish,chips,beer) > (fish,chips,wine) > (fish,rice,wine) > (fish,rice,beer) . . .
C: (fish,chips,beer) > (meat,chips,beer) > (fish,chips,wine) > (meat,chips,wine) . . .

Using the voting rule OK with k = 3, the candidate (fish, chips,wine) wins
the election, because it is the only one receiving a point from each of the three
voters. With the voting rule OP , the candidate (fish, chips, beer) is the winner,
thanks to the two points from Charlie and Bob. The same candidate wins with
the voting rule SM with respect to the order O : side > main > drink, for which
the given profile is O-legal. In the majority vote on the issue side, Bob and
Charlie prefer chips, so chips is chosen as a side dish. Because of this Charlie
votes—like the other two voters—for fish in the majority vote for the second
issue of order O. Finally Alice gets outvoted in the last issue, so the candidate
(fish, chips, beer) is the winner with the voting rule SM , too. With the voting rule
OV , Alice casts her veto against (meat, chips,wine), Bob casts his veto against
(meat, rice,wine), and Charlie casts his veto against (fish, rice, beer). Therefore,
the remaining five candidates are the winning candidates with this rule. If a
unique winner was needed, a tie-breaking rule could be used.

If the briber wanted to prevent candidate h = (fish, chips, beer) from winning
with voting rule OP , it would be sufficient to bribe Bob to flip his preference in
issue side to rice > chips. This would make (fish, rice,wine) the top candidate
of Bob and, since Alice is voting for the very same candidate in the first place,
the winner of the election. So the briber can reach his goal by this bribery.



Often Harder than in the Constructive Case: Destructive Bribery in CP-nets 321

Note that this flip is only possible with the bribery action IV or IV + DV ,
because side is an independent issue for Bob.

How much does the briber have to pay for this requested flip? For the cost
scheme Cany, this directly depends on the input, since each flip can have its
own costs. With Cflip, the cost factor is 1, since only one cp-statement has
to be flipped. With Clevel, it is 2 for this flip, because Bob’s CP-net has two
levels and the issue side is an independent one. The costs are the same for Cdist,
because Bob only prefers the candidates (fish, rice, beer) and (fish, chips,wine) to
(fish, rice,wine). Finally, with Cequal, bribing Bob has the same prize (assuming
equal cost vector entries) as bribing any other arbitrary voter with a different
top candidate to vote for (fish, rice,wine). To obtain the final costs the briber
has to pay, each of these values is then multiplied by the corresponding entry
of the cost vector Q. Therefore, the briber might sometimes be cheaper off to
bribe a voter with a small cost vector entry to flip a lot of cp-statements, than
one with only a few flips required but having a huge cost vector entry.

3 The Unweighted Case

In this section, we investigate the case where voters are unweighted.

Theorem 1. (SM,A,C)-〈negative〉-DB with bribery action A ∈ {IV,DV ,
IV +DV } and cost scheme C ∈ {Cequal, Cany, Cflip, Clevel, Cdist} is solvable in
polynomial time.

Proof. We start with the negative case. For each issue find the minimum costs to
spend for reaching a majority against h. This can be done by collecting all costs
for one issue, sorting and summing up. Finally the issue which is cheapest to
bribe is chosen. This works for each cost scheme for which it is easy to calculate
the bribery costs for a single flipped issue, which is the case for all cost schemes
used here2.

Note that depending on the allowed bribery action, not every voter may be
bribable in each issue. Similarly, we have to ignore voters who initially vote for
h but who do not vote for h any more after a bribery of the considered issue.
These voters have to be taken into account in the non-negative case, though.
However, this is the only modification needed for this case. ��
Theorem 2. (D,A,C)-negative-DB with D ∈ {OP,OKeff}, A ∈ {IV,DV },
C ∈ {Cequal, Cflip, Clevel, Cany, Cdist} is NP-complete. In addition, (D, IV +
DV,C ′)-negative-DB is NP-complete for C ′ ∈ {Cflip, Clevel, Cany, Cdist}. All
these results hold even if all entries in the cost vector are identical.

Proof. We give a base reduction from NAE-3SAT to prove Theorem 2. For this
reduction we claim that some properties hold, which we will then show to hold
2 This is most unintuitive for Cdist, but identifying the top candidate after bribing

one issue and determining the respective cost can be done in polynomial time as
described by Mattei et al. [19, Theorem 3].
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for the various combinations of allowed bribery action, cost scheme and voting
rule.
Assume we are given an NAE-3SAT instance with m clauses and n variables. For
each variable νi, we create one issue Xi. Since each issue has exactly two possible
assignments, we can establish a one-to-one relation between the full assignments
of the issues Xi and the one of the variables νi. For this relation we say the
assignment of xi to Xi corresponds to the assignment of 1 to variable νi. We will
later on—in the extensions of the base case—create additional gadget-issues.

For each clause γ with the variables νq, νr, νs and each of the six different
satisfying assignments to these variables for γ, we create one voter with the
following preferences: He prefers xi over xi for each issue with i /∈ {q, r, s}. For
the remaining three issues he prefers xl over xl, if 1 is assigned to variable νl in
the satisfying assignment of γ; he prefers xl over xl otherwise. For the considered
clause with variables νq, νr, νs, we obtain 6 voters which we refer to as qrs-voters.
Doing this for all clauses, we obtain 6m voters. Finally, we create m−1 additional
voters, all having h—an arbitrary candidate—as their top-candidate . We set the
entry in the cost vector for each voter to 1.
We assume that the following property holds:

(i) No voter who is voting for h can be bribed to vote against h.

We further assume that for all other voters the following properties apply:

(ii) The preferences within issues associated with the clause the voter was cre-
ated for cannot be changed.

(iii) Changing the preferences within a gadget-issue does not help the briber.
(iv) The preferences within all remaining issues can be bribed freely.

Assuming that properties (i) to (iv) are fulfilled, it is easy to see that the bribery
instance can be solved if and only if the corresponding NAE-3SAT-formula is
satisfiable. Given a satisfying assignment to the formula, we can translate it to
the winning candidate by following the one-to-one relation. Since the assignment
satisfies each clause, the briber can bribe one of the six voters for each clause to
vote for the winning candidate (following (ii) and (iv)). Therefore this candidate
will have m votes in the end, while there are still only m − 1 votes for h. The
other direction can be shown analogously with the help of property (iii).

We will now show the extensions to this base reduction to prove Theorem2.
Property (i) is fulfilled because we are looking at the negative case.

(OP, IV,C): We need one gadget-issue X∗. Each voter is set to prefer x∗

over x∗. For each qrs-voter, the issues Xq,Xr,Xs are changed to depend on X∗,
keeping their original preferences for x∗ and inverted preferences for x∗. Here we
utilize that NAE-3SAT is closed under complement, therefore the assignment
of X∗ is not important at all. This modification ensures the properties (ii)–(iv)
to hold for each cost scheme, since no costs are involved.

(OP,DV,C): Once again we need one gadget-issue X∗. Each voter is set to
prefer x∗ over x∗. Complementary to the case before, for each qrs-voter, each
issue Xi with i /∈ {q, r, s} is changed to depend on X∗, keeping their original
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preferences for x∗ and inverted preferences for x∗. This modification ensures the
properties (ii)–(iv) to hold for each cost scheme, since no costs are involved.

(OP, IV + DV,Cany): With IV + DV we need costs and an appropriate
budget to ensure that the issues Xq,Xr,Xs cannot be bribed for a qrs-voter.
With Cany we can simply set the costs to bribe these issues to 1, and for each
remaining issue to 0. With the budget set to β = 0 this ensures the properties
(ii)–(iv) hold.

(OP, IV + DV,Cflip): We need to add m2(n − 3) gadget-issues, which we
denote as X∗

a,b with 1 ≤ a ≤ m and 1 ≤ b ≤ m(n − 3). For each qrs-voter, each
gadget-issue X∗

j,b with 1 ≤ b ≤ m(n− 3) depends on the issues Xq,Xr,Xs corre-
sponding to the variables of the clause γj . With the most preferred assignment in
these three issues the preference in the gadget-issue is set to x∗

j,b > x∗
j,b, and for

each other assignment to x∗
j,b > x∗

j,b. Finally we set the budget to β = m(n− 3).
This ensures the properties (ii)–(iv) to hold.

(OP, IV + DV,Clevel): We need mn gadget-issues X∗
b for b ∈ {1, . . . ,mn}.

In contrast to Cflip, these issues do not depend on the issues Xq,Xr,Xs cor-
responding to the variables of the clause γj in parallel, but in a queue. So X∗

1

depends on the issues Xq,Xr,Xs for a qrs-voter. Only for the most preferred
assignment within these three issues we set the preference of issue X∗

1 to x∗
1 > x∗

1;
in all other cases we set it to x∗

1 > x∗
1. For each subsequent issue X∗

b of this queue
with 2 ≤ b ≤ mn, we set the preferences x∗

b−1 : x∗
b > x∗

b and x∗
b−1 : x∗

b > x∗
b .

In addition, for all issues Xi with i ∈ {1, . . . , n} \ {q, r, s}, we set x∗
mn : xi > xi

and else xi > xi. Finally we set the budget to β = m(n − 3). This ensures the
properties (ii)–(iv).

(OP, IV + DV,Cdist): We add 	logm
 + 1 gadget-issues, denoted by X∗
a .

Every voter prefers x∗
a > x∗

a for each such issue. For each voter we set the (not
necessarily identical) order as follows. The most important issues are the three
issues corresponding to the variables of the clause γj associated with it, followed
by the gadget-issues, and then by the remaining n − 3 issues. The exact order
within these three blocks is not important. We set the budget to β = m ·2n−3−1.
This ensures that the briber can bribe all of the least important n− 3 issues for
m voters, while the budget is still too low to bribe even only one of the three
most important issues of just one voter. Note that bribing such an issue costs at
least 2n−3+�logm� > β. Therefore the properties (ii)–(iv) hold.

Since OP is the special case of OKeff with k = 1, the NP-completeness
results shown so far carry over to OKeff. ��

We can achieve the same results for the non-negative cases, but for this we
have to drop the constraint that these problems are NP-complete even if the
cost vector contains only identical values.

Corollary 1. (D,A,C)-DB is NP-complete for each combination of a voting
rule D ∈ {OP,OKeff}, a cost scheme C ∈ {Cequal, Cflip, Clevel, Cany, Cdist}
and a bribery action A ∈ {IV,DV }. Moreover, (D, IV + DV,C ′)-DB with cost
scheme C ′ ∈ {Cflip, Clevel, Cany, Cdist} is NP-complete, too.
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Proof. This follows by the same techniques used in the proof of Theorem 2. The
only difference is that property (i) is not automatically satisfied. We can achieve
unbribability of the voters voting for h by setting the entries of the cost vector
for these voters to β + 1. Therefore, NP-completeness follows. ��

For the remaining cases, we omit the proofs and refer to the long version of
this paper [8]. Interestingly, the voting rule OV is another special case of OK
which can be evaluated and solved in polynomial time.

Theorem 3. (D, IV + DV,Cequal)-negative-DB with D ∈ {OP,OKeff} is
solvable in polynomial time.

Corollary 2. (D, IV + DV,Cequal)-DB is solvable in polynomial time with
D ∈ {OP,OKeff}.
Theorem 4. (OV,A,C)-〈negative〉-DB with bribery action A ∈ {IV,DV ,
IV + DV } and cost scheme C ∈ {Cequal, Cflip, Clevel, Cany, Cdist} is in P.

We remark that the combinations of OP , IV + DV , and Cflip, Clevel, Cdist,
and OP, IV,Cflip, each for the unweighted, non-negative case and if all entries
of the cost vector are the same, can be solved in polynomial time, too (see [8]).
This is in line with the observations of Mattei et al. [19, Theorem 7] and Dorn
and Krüger [7, Theorem 7] that sometimes the bribery problem can be solved in
polynomial time when the cost vector has only identical entries.

4 The Weighted Case

In this section, we consider the case of weighted voters, which turns out to be
NP-complete for almost all combinations—with two exceptions. The reductions
we give here are all from the Knapsack problem.

Theorem 5. weighted-(D,A,C)-〈negative〉-DB is NP-complete with vot-
ing rule D ∈ {OP,OKeff}, bribery action A ∈ {IV,DV, IV + DV }, and cost
scheme C ∈ {Cequal, Cflip, Clevel, Cany, Cdist}.
Proof. For the voting rule OP , we use a reduction from Knapsack. Given a
Knapsack instance ({(w1, v1), . . . , (wn, vn)}, k, b) we construct a voting scheme
such that a successful bribery against the candidate h is possible if and only if
the given Knapsack problem can be solved.

First, we use two issues X1 and X2, set h = x1 x2, and the budget β = b. We
create one voter preferring h with weight l+k−1, where l =

∑n
i=1 vi. We set the

entry of the cost vector for this voter to β + 1 in order to make him unbribable
(just to make this proof hold for the non-negative case, too).

For every object (wi, vi) we add a voter preferring x1x2 to all other candi-
dates. This voter is weighted by vi and his entry in the cost vector is set to wi.
Last, we add a single voter of weight l preferring x1x2 to all other candidates.
Since this candidate should win the election, we make this voter unbribable by
setting the entry in the cost vector to β + 1.
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For the bribery actions IV and IV + DV all issues are independent. For
the bribery action DV we let the preferences of the issue X2 depend on the
assignment of issue X1 for each voter created for an object (wi, vi). Such a voter
will therefore prefer x1 independently over x1, and the preference for X2 will be
x1 : x2 > x2, x1 : x2 > x2.

By construction, only voters created for objects can be bribed, and only
changing their favorite candidate to x1x2 is helpful here. Each bribery of one
such voter results in a value of 1 for each cost scheme, which is then multiplied
by the entry of the cost vector. Note that a cost of 1 is obvious in all cases
except Cdist. Here, we have to ensure that the target of our bribery is on the
second position. As the prefered candidate is x1x2 and our potential winner is
x1x2, we have to set X1 before X2 in the order on the issues. The claimed cost
of 1 for this bribery action then holds. It is easy to see that there must exist a
solution to the underlying Knapsack instance in order to be able to prohibit
the candidate h from winning.

Since the briber cannot bribe the single voter voting for h by construction,
this reduction holds for the negative case as well. Because OP is a special case
of OKeff, this result automatically carries over. ��

The main idea of this reduction can be adjusted to show NP-completeness
for the voting rules OV and SM , too. In contrast, the combination of OV with
Cdist can be solved in polynomial time by a greedy-algorithm because all possible
bribery actions are for free. See the long version [8] for the proofs.

Theorem 6. weighted-(OV,A,C)-〈negative〉-DB with a bribery action A ∈
{IV,DV, IV + DV } and cost scheme C ∈ {Cequal, Cflip, Clevel, Cany, Cdist} is
NP-complete, except for the combination A = DV and C = Cdist.

Theorem 7. weighted-(SM,A,C)-〈negative〉-DB is NP-complete for cost
scheme C ∈ {Cequal, Cflip, Clevel, Cany, Cdist} and allowed bribery action A ∈
{IV,DV, IV + DV }.
Theorem 8. weighted-(OV,DV,Cdist)-〈negative〉-DB is solvable in polyno-
mial time.

5 Conclusion

We extensively studied destructive bribery for the weighted, unweighted, neg-
ative and non-negative variations on all cost-, bribery- and evaluation-schemes
introduced by Mattei et al. [19]. Table 1 summarizes our results. The main dif-
ferences can be observed between the weighted and unweighted cases, while the
negative and non-negative cases are very similar—we remark that these cases
may behave differently, however, if the cost vector assigns the same value to
each of the voters. The cost vector is also the tool to mimic the restriction of the
negative setting in the non-negative case: with its help, one can make a voter
unbribable (one cannot use it to affect the bribery actions though).
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It is also interesting to observe that—for an arbitrary cost vector—all combi-
nations in the weighted case for the constructive bribery problem turned out to
be NP-complete [7], whereas in the destructive setting, we have identified two
tractable cases. They occur due to the strange side effect of the combination of
DV and Cdist that sets all reasonable bribery free of charge.

The most interesting observation might be that in the unweighted setting,
only the combination of SM and Cequal was shown to be NP-complete for con-
structive bribery [7,19], while almost half of the combinations for destructive
bribery turned out to be computationally hard - this behavior is rather unusual
for voting problems and is due to the combinatorial structure of the set of can-
didates. If the number of candidates is part of the input (which is the case for
many of the common settings for voting problems), the constructive case of a
voting problem can be directly used to solve the destructive counterpart: If it is
known how to make a designated candidate the only winner of the election, one
can simply run this procedure for all candidates and find out which of them is
the cheapest solution. In the setting of combinatorial domains where the number
of candidates is exponential in the size of the input, one cannot simply check
which of the exponentially many candidates should be chosen to be made the
winner. It might turn out, nevertheless, that the destructive version is not com-
putationally harder, but in our case, we have seen that precluding an alternative
might be more difficult than pushing it through.
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Abstract. We investigate how and to which extent one can exploit risk-
aversion and modify the perceived cost of the players in selfish routing so
that the Price of Anarchy (PoA) is improved. We introduce small ran-
dom perturbations to the edge latencies so that the expected latency
does not change, but the perceived cost of the players increases due
to risk-aversion. We adopt the model of γ-modifiable routing games, a
variant of routing games with restricted tolls. We prove that comput-
ing the best γ-enforceable flow is NP-hard for parallel-link networks
with affine latencies and two classes of heterogeneous risk-averse play-
ers. On the positive side, we show that for parallel-link networks with
heterogeneous players and for series-parallel networks with homogeneous
players, there exists a nicely structured γ-enforceable flow whose PoA
improves fast as γ increases. We show that the complexity of comput-
ing such a γ-enforceable flow is determined by the complexity of com-
puting a Nash flow of the original game. Moreover, we prove that the
PoA of this flow is best possible in the worst-case, in the sense that the
re are instances where (i) the best γ-enforceable flow has the same PoA,
and (ii) considering more flexible modifications does not lead to any
further improvement.

1 Introduction

Routing games provide an elegant and practically useful model of selfish resource
allocation in transportation and communication networks and have been exten-
sively studied (see e.g., [17]). The majority of previous work assumes that the
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players select their routes based on precise knowledge of edge delays. In practical
applications however, the players cannot accurately predict the actual delays due
to their limited knowledge about the traffic conditions and due to unpredictable
events that affect the edge delays and introduce uncertainty (see e.g., [1,12–14]
for examples). Hence, the players select their routes based only on delay esti-
mations and are aware of the uncertainty and the potential inaccuracy of them.
Therefore, to secure themselves from increased delays, whenever this may have
a considerable influence, the players select their routes taking uncertainty into
account (e.g., people take a safe route or plan for a longer-than-usual delay when
they head to an important meeting or to catch a long-distance flight).

Recent work (see e.g., [1,12,13,15] and the references therein) considers rout-
ing games with stochastic delays and risk-averse players, where instead of the
route that minimizes her expected delay, each player selects a route that guaran-
tees a reasonably low actual delay with a reasonably high confidence. There have
been different models of stochastic routing games, each modeling the individual
cost of risk-averse players in a slightly different way. In all cases, the actual delay
is modeled as a random variable and the perceived cost of the players is either
a combination of the expectation and the standard deviation (or the variance)
of their delay [12,13] or a player-specific quantile of the delay distribution [1,14]
(see also [4,18] about the perceived cost of risk-averse players).

No matter the precise modeling, we should expect that stochastic delays and
risk-aversion cannot improve the network performance at equilibrium. Interest-
ingly, [13,15] indicate that in certain settings, stochastic delays and risk-aversion
can actually improve the network performance at equilibrium. Motivated by
these results, we consider routing games on parallel-link and series-parallel net-
works and investigate how one can exploit risk-aversion in order to modify the
perceived cost of the (possibly heterogeneous) players so that the PoA is signif-
icantly improved.

Routing Games. To discuss our approach more precisely, we introduce the
basic notation and terminology about routing games. A (non-atomic) selfish
routing game (or instance) is a tuple G = (G(V,E), (�e)e∈E , r), where G(V,E)
is a directed network with a source s and a sink t, �e : R≥0 → R≥0 is a non-
decreasing delay (or latency) function associated with edge e and r > 0 is the
traffic rate. We let P denote the set of simple s − t paths in G. We say that G
is a parallel-link network if each s − t path is a single edge (or link).

A (feasible) flow f is a non-negative vector on P such that
∑

p∈P fp = r. We
let fe =

∑
p:e∈p fp be flow routed by f on edge e. Given a flow f , the latency of

each edge e is �e(f) = �e(fe), the latency of each path p is �p(f) =
∑

e∈p �e(f)
and the latency of f is L(f) = maxp:fp>0 �p(f).

The traffic r is divided among infinitely many players, each trying to minimize
her latency. A flow f is a Wardrop-Nash flow (or a Nash flow, for brevity), if all
traffic is routed on minimum latency paths, i.e., for any p ∈ P with fp > 0 and
for all p′ ∈ P, �p(f) ≤ �p′(f). Therefore, in a Wardrop-Nash flow f , all players
incur a minimum common latency minp �p(f) = L(f). Under weak assumptions
on delay functions, a Nash flow exists and is essentially unique (see e.g., [17]).
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The efficiency of a flow f is measured by the total latency C(f) of the players,
i.e., by C(f) =

∑
e∈E fe�e(f). The optimal flow, denoted o, minimizes the total

latency among all feasible flows. The Price of Anarchy (PoA) quantifies the
performance degradation due to selfishness. The PoA(G) of a routing game G is
the ratio C(f)/C(o), where f is the Nash flow and o is the optimal flow o of G.
The PoA of a class of routing games is the maximum PoA over all games in the
class. For routing games with latency functions in a class D, the PoA is equal to
PoA(D) = (1 − β(D))−1, where β(D) = sup�∈D,x≥y≥0

y(l(x)−l(y))
xl(x) only depends

on the class of latency functions D [3,17].

Using Risk-Aversion to Modify Edge Latencies. The starting point of
our work is that in some practical applications, we may intentionally introduce
variance to edge delays so that the expected delay does not change, but the
risk-averse cost of the players increases. E.g., in a transportation network, we
can randomly increase or decrease the proportion of time allocated to the green
traffic light for short periods or we can open or close an auxiliary traffic lane.
In a communication network, we might randomly increase or decrease the link
capacity allocated to a particular type of traffic or change its priority. At the
intuitive level, we expect that the effect of such random changes to risk-averse
players is similar to that of refundable tolls (see e.g., [6,11]), albeit restricted in
magnitude due to the bounded variance in edge delays that we can afford.

E.g., let e be an edge with latency �e(x) where we can increase the latency
temporarily to (1 + α1)�e(x) and decrease it temporarily to (1 − α2)�e(x). If we
implement the former change with probability p1 and the latter with probability
p2 < 1−p1, the latency function of e becomes a random variable with expectation
[p1(1+α1)+p2(1−α2)+(1−p1−p2)]�e(x). Adjusting p1 and p2 (and possibly α1

and α2) so that p1α1 = p2α2, we achieve an expected latency of �e(x). However, if
the players are (homogeneously) risk-averse and their perceived delay is given by
an (1−p1+ε)-quantile of the delay distribution (e.g., as in [1,14]), the perceived
latency on e is (1 + α1)�e(x). Similarly, if the individual cost of the risk-averse
players are given by the expectation plus the standard deviation of the delay
distribution (e.g., as in [12]), the perceived latency is (1 +

√
p1α2

1 + p2α2
2 )�e(x).

In both cases, we can achieve a significant increase in the delay perceived by
risk-averse players, while the expected delay remains unchanged.

In most practical situations, the feasible changes in the latency functions are
bounded (and relatively small). Combined with the particular form of risk-averse
individual cost, this determines an upper bound γe on the multiplicative increase
of the delay on each edge e. Moreover, the players may evaluate risk differently
and be heterogeneous wrt. their risk-aversion factors. So, in general, the traffic
rate r is partitioned into k risk-averse classes, where each class i consists of the
players with risk-aversion factor ai and includes a traffic rate ri. If we implement
a multiplicative increase γe on the perceived latency of each edge e, the players
in class i have perceived cost (1 + aiγe)�e(f) on each e and

∑
e∈p(1 + aiγe)�e(f)
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on each path1 p. If the players are homogeneous wrt. their risk-aversion, there
is a single class of players with traffic rate r and risk-aversion factor a = 1.

Contribution. In this work, we assume a given upper bound γ on the maximum
increase in the latency functions and refer to the corresponding routing game as a
γ-modifiable game. We consider both homogeneous and heterogeneous risk-averse
players. We adopt this model as a simple and general abstraction of how one can
exploit risk-aversion to improve the PoA of routing games. Technically, our model
is a variant of restricted refundable tolls considered in [2,9] for homogeneous
players and in [10] for heterogeneous players. However, on the conceptual side
and to the best of our knowledge, this is the first time that risk-aversion is
proposed as a means of implementing restricted tolls, and through this, as a
potential remedy to the inefficiency of selfish routing.

A flow f is γ-enforceable if there is γe-modification on each edge e, with
0 ≤ γe ≤ γ, so that f is a Nash flow of the modified game, i.e., for each player
class i, for every path p used by class i, and for all paths p′,

∑
e∈p(1+aiγe)�e(f) ≤

∑
e∈p′(1 + aiγe)�e(f). In this work, we are interested in computing either the

best γ-enforceable flow, which minimizes total latency among all γ-enforceable
flows, or a γ-enforceable flow with low PoA. We measure the PoA in terms of
the total expected latency (instead of the total perceived delay of the players).
In practical applications, the total expected latency is directly related to many
crucial performance parameters (e.g., to the expected pollution in a transporta-
tion network or to the expected throughput in a communication network) and
thus, it is the quantity that a central planner usually seeks to minimize.

In Sect. 3, we consider routing games on parallel links with homogeneous
players and show that for every γ > 0, there is a nicely structured γ-enforceable
flow whose PoA improves significantly as γ increases. More specifically, based on
a careful rerouting procedure, we show that given an optimal flow o, we can find
a γ-enforceable flow f (along with the corresponding γ-modification) that “mim-
ics” o in the sense that if fe < oe, e gets a 0-modification, while if fe > oe, e gets
a γ-modification (Lemma 1). The proof of Lemma 1 implies that given o, we can
compute such a flow f and the corresponding γ-modification in time O(|E|TNE),
where TNE is the complexity of computing a Nash flow in the original instance.
Generalizing the variational inequality approach of [3], similarly to [2, Sect. 4],
we prove (Theorem 1) that the PoA of the γ-enforceable flow f constructed in
Lemma 1 is at most (1−βγ(D))−1, where D is the class of latency functions and
βγ(D) = sup�∈D,x≥y≥0

y(�(x)−�(y))−γ(x−y)�(x)
x�(x) is a natural generalization of the

quantity β(D) introduced in [3]. E.g., for affine latency functions, the PoA of the
γ-enforceable f is at most (1− (1−γ)2/4)−1 (Corollary 1), which is significantly
less that 4/3 even for small values of γ. We also show that the PoA of such γ-

1 To simplify the model and make it easily applicable to general networks, we assume
that the perceived cost of the players under latency modifications is separable. This
is a reasonable simplifying assumption on the structure of risk-averse costs (see also
[13,15]) and only affects the extension of our results to series-parallel networks.
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enforceable flows is best possible in the worst-case for γ-modifiable games with
latency functions in class D (Theorem 2).

In Sect. 4, we switch to parallel-link games with heterogenous players. We
prove that computing the best γ-enforceable flow is NP-hard for parallel-link
games with affine latencies and only two classes of heterogeneous risk-averse
players (Theorem 3). The proof modifies the construction in [16, Sect. 6], which
shows that the best Stackelberg modification of parallel-link instances is NP-
hard. Our result significantly strengthens [10, Theorem 1], which establishes NP-
hardness of best restricted tolls in general s − t networks with affine latencies.
On the positive side, we apply [10, Algorithm 1] and show (Theorem 5) that
the γ-enforceable flow f of Lemma 1 can be turned into a γ-enforceable flow for
parallel-link instances with heterogeneous players. Since only the γ-modifications
are adjusted for heterogeneous players, but the flow itself does not change, the
PoA of f is bounded as above and remains best possible in the worst case.

In Sect. 5, we extend our approach of finding a γ-enforceable flow that “mim-
ics” the optimal flow to series-parallel networks. Series-parallel networks have
received considerable attention in the literature of refundable tolls, see e.g., [5,7],
but to the best of our knowledge, they have not been explicitly considered in the
setting of restricted tolls. Extending the rerouting procedure of Lemma 1, we
show that for routing games in series-parallel networks with homogeneous play-
ers, there is a γ-enforceable flow with PoA at most (1−βγ(D))−1 (Lemma 2 and
Theorem 6). Such a γ-enforceable flow and the corresponding γ-modifications
can be computed in time polynomially related to the time needed for computing
Nash flows in series-parallel networks (Lemma 3).

In Sect. 6, we consider (p, γ)-modifiable games, where the p-norm of the edge
modifications vector (γe)e∈E is at most γ. This generalization captures applica-
tions where the total variance introduced in the network should be bounded by
γ and could potentially lead to an improved PoA. We prove that the worst-case
PoA under (p, γ)-modifications is essentially identical to the worst-case PoA
under γ/ p

√
m-modifications (Theorem 8). Therefore, even for (p, γ)-modifiable

games, the PoA of the γ/ p
√

m-enforceable flow of Lemma 1 is essentially best
possible. Due to space constraints, we only sketch the main ideas behind our
results and defer the technical details to the full version of this work.

Previous Work. On the conceptual side, our work is closest to those considering
the PoA of stochastic routing games with risk-averse players [1,12,15]. Nikolova
and Stier-Moses [13] recently introduced the price of risk-aversion (PRA), which
is the worst-case ratio of the total latency of the Nash flow for risk-averse players
to the total latency of the Nash flow for risk-neutral players. Interestingly, PRA
can be smaller than 1 and as low as 1 − β(D) for stochastic routing games on
parallel-links (i.e., risk-aversion can improve the PoA to 1 for certain instances).

On the technical side, our work is closest to those investigating the properties
of restricted refundable tolls for routing games [2,9,10]. Bonifaci et al. [2] proved
that for parallel-link networks with homogeneous players, computing the best γ-
enforceable flow reduces to the solution of a convex program. Moreover, they
presented a tight bound of (1−βγ(D))−1 on the PoA of a γ-enforceable flow for
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routing games with latency functions in class D. Jelinek et al. [10] considered
restricted tolls for heterogeneous players and proved that computing the best
γ-enforceable flow for s − t networks with affine latencies is NP-hard. On the
positive side, they proved that for parallel-link games with heterogeneous players,
deciding whether a given flow is γ-enforceable (and finding the corresponding γ-
modification) can be performed in polynomial time. Moreover, they showed how
to compute the best γ-enforceable flow for parallel-link games with heterogeneous
players if the maximum allowable modification on each edge is either 0 or infinite.

2 The Model and Preliminaries

The basic model of routing games is introduced in Sect. 1. Next, we introduce
some more notation and the classes of γ-modifiable and (p, γ)-modifiable games.

γ-Modifiable Routing Games. A selfish routing game with heterogeneous
players in k classes is a tuple G = (G(V,E), (�e)e∈E , (ai)i∈[k], (ri)i∈[k]), where G
is a directed s − t network with m edges, ai is the aversion factor of the players
in class i and ri is the amount of traffic with aversion ai. We assume that a1 = 1
and a1 < a2 < . . . < ak. If the players are homogeneous, there is a single class
with risk aversion a1 = 1 and traffic rate r. Then, an instance is G = (G, �, r).

A flow f is a non-negative vector on P × {1, . . . , k}. We let fai

p be the flow
with aversion ai on path p and fp =

∑
i fai

p be the total flow on path p. Similarly,
fai

e =
∑

p:e∈p fai

p is the flow with aversion ai on edge e and fe =
∑

i fai

p is the
total flow on edge e. We let amin

e (f) (resp. amax
e (f)) be the smallest (resp. largest)

aversion factor in e under f . If e is not used by f , we let amin
e (f) = amax

e (f) = ak.
We say that an edge e (resp. path p) is used by players of type ai if fai

e > 0
(resp. for all e ∈ p). To simplify notation, we may write �e, instead of �e(f).

We say that a routing game G is γ-modifiable if we can select a γe ∈ [0, γ]
for each edge e and change the edge latencies perceived by the players of type
ai from �e(x) to (1 + aiγe)�e(x) using small random perturbations. Any vector
Γ = (γe)e∈E , where γe ∈ [0, γ] for each edge e, is a γ-modification of G. Given
a γ-modification Γ , we let GΓ denote the γ-modified routing game where the
perceived cost of the players is changed according to the modification Γ .

A flow f is a Nash flow of GΓ , if for any path p and any type ai with fai

p > 0
and for all paths p′,

∑
e∈p(1 + aiγe)�e(f) ≤ ∑

e∈p′(1 + aiγe′)�e′(f). Given a
routing game G, we say that a flow f is γ-enforceable, or simply enforceable, if
there exists a γ-modification Γ of G such that f is a Nash flow of GΓ .

Our assumption is that γ-modifications do not change the expected latency.
Therefore, the total latency of f in both GΓ and G is C(f) =

∑
e∈E fe�e(f).

Hence, the optimal flow o of G is also an optimal flow of GΓ . A flow f is the best
γ-enforceable flow of G if for any other γ-enforceable flow f ′ of G, C(f) ≤ C(f ′).
The Price of Anarchy PoA(GΓ ) of the modified game GΓ is equal to C(f)/C(o),
where f is the Nash flow of GΓ . For a γ-modifiable game G, the PoA of G under γ-
modifications, denoted PoAγ(G), is C(f)/C(o), where f is the best γ-enforceable
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flow of G. For routing games with latency functions in class D, PoAγ(D) denotes
the maximum PoAγ(G) over all γ-modifiable games G with latencies in D.

(p,γ)-Modifiable Routing Games. Generalizing γ-modifiable games, we

select a modification γe ≥ 0 for each edge e so that ‖(γe)e∈E‖p = p

√∑
e∈E γp

e ≤
γ, for some given integer p ≥ 1, and change the perceived edge latencies as
above. We refer to such games as (p, γ)-modifiable. All the notation above
naturally generalizes to (p, γ)-modifiable games. The PoA of a game G under
(p, γ)-modifications, denoted PoAp

γ(G), is C(f)/C(o), where f is the best (p, γ)-
enforceable flow of G. Similarly, PoAp

γ(D) is the maximum PoA of all (p, γ)-
modifiable games with latency functions in class D.

Series-Parallel Networks. A directed s − t network G(V,E) is series-parallel
if it either consists of a single edge (s, t) or can be obtained from two series-
parallel networks with terminals (s1, t1) and (s2, t2) composed either in series
or in parallel. In a series composition, t1 is identified with s2, s1 becomes s,
and t2 becomes t. In a parallel composition, s1 is identified with s2 and becomes
s, and t1 is identified with t2 and becomes t (see also [19] for computing the
decomposition of a series-parallel network in linear time).

3 Modifying Routing Games in Parallel-Link Networks

In this section, we study γ-modifiable games on parallel-link networks with
homogeneous risk-averse players. The following is a corollary of [2, Theorem 1]
(see also the main result of [6,11]) and characterizes γ-enforceable optimal flows.

Proposition 1. Let G be a γ-modifiable game on parallel links and let o be the
optimal flow of G. Then, o is γ-enforceable in G if and only if for any link e with
oe > 0 and all links e′ ∈ E, �e(o) ≤ (1 + γ)�e′(o).

Next, we show that for any instance G, there exist a flow f mimicking o and
a γ-modification enforcing f as the Nash flow of the modified instance.

Lemma 1. Let G = (G, �, r) be a γ-modifiable instance on parallel-links with
homogeneous risk-averse players and let o be the optimal flow of G. There is a
feasible flow f and a γ-modification Γ of G such that

(i) f is a Nash flow of the modified instance GΓ .
(ii) for any link e, if fe < oe, then γe = 0, and if fe > oe, then γe = γ.

Moreover, given o, we can compute f and Γ in time O(mTNE), where TNE is
the complexity of computing the Nash flow of any given γ-modification of G.

Proof sketch. The interesting case is where o is not γ-enforceable. Then, we use
induction on the number of links. The base case is obvious. For the inductive step,
let m be a used link with maximum latency in o. Removing m and decreasing
the total traffic rate by om > 0, we obtain an instance G−m = (G−m, �, r − om)
with one link less than G. By induction hypothesis, there are a flow f ′ and a
γ-modification Γ ′ = (γ′

e)e∈E−m
so that properties (i) and (ii) hold for G−m.
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Now we restore link m and the traffic rate to r. The lemma follows directly
from the hypothesis if there is a modification γm so that (1+γm)�m(o) = L(f ′).

Otherwise, we have that �m(o) > L(f ′). Then, we carefully reroute flow from
link m to the remaining links while maintaining properties (i) and (ii) in G−m.
We do so until the latency of m becomes equal to the cost of the equilibrium flow
that we maintain (under rerouting) in G−m . In order to maintain property (ii),
we pay attention to links e where the flow f ′

e reaches oe for the first time and to
links e′ where γ′

e′ reaches γ for the first time. For the former, we stop increasing
flow and start increasing γ′

e, so that the equilibrium property is maintained. For
the latter, we stop increasing γ′

e′ and start increasing the flow again.
More formally, we partition the links in E−m in three classes, according to

property (ii) and to the current equilibrium flow f ′ and modification Γ ′. We let
E1 = {e ∈ E−m : f ′

e < oe and γ′
e = 0}, E2 = {e ∈ E−m : f ′

e = oe and γ′
e < γ}

and E3 = {e ∈ E−m : f ′
e ≥ oe and γ′

e = γ}. We let L = (1 + γ′
e)�e(f ′), where e

is any link with f ′
e > 0, be the cost of the current equilibrium flow f ′ in G−m .

Moreover, we let L1 = mine∈E1 �e(o) be the minimum cost of an equilibrium flow
in G−m that causes some links of E1 to move to E2, let L2 = mine∈E2(1+γ)�e(o)
be the minimum cost of an equilibrium flow in G−m that causes some links of
E2 to move to E3, and let L′ = min{L1, L2} ≥ L.

We reroute flow from link m to the links in E1 ∪ E3 and increase γ′
e’s for

the links in E2 so that we obtain an equilibrium flow in E−m with cost L′. To
this end, we let xe be such that L′ = (1 + γ′

e)�e(f ′
e + xe), for all e ∈ E1 ∪ E3.

Namely, xe is the amount of flow we need to reroute to a link e ∈ E1 ∪ E3 so
that its cost becomes L′. For each link e ∈ E2, we let xe = 0 and increase its
modification factor so that L′ = (1 + γ′

e)�e(o). So the total amount of flow that
we need to reroute from E−m is x =

∑
e∈E−m

xe. Next, we distinguish between
different cases depending on the flow and the latency in link m after rerouting.

If x < om and �m(om −x) ≥ L′, we update the flow on link m to om −x, the
flow on each link e ∈ E−m to f ′

e + xe, and the modification factors of all links
in E2 and apply the rerouting procedure again (in fact, if �m(om − x) = L′, the
procedure terminates). By the definition of L′, every time we apply the rerouting
procedure, either some links e move from E1 to E2 (because after the update
f ′

e = oe) or some links e′ move from E2 to E3 (because after the update γ′
e = γ).

Since links in E3 cannot move to a different class, this rerouting procedure can
be applied at most 2m times (in total, for all induction steps).

If x < om and �m(om − x) < L′, by continuity (see also [8, Sect. 3]), there
is some L′′ ∈ (L,L′) such that updating the flow and the modification factors
with target equilibrium cost L′′ (instead of L′) reroutes flow x′ ≤ x < om from
link m to the links in E−m so that �m(om − x′) = L′′ and L′′ is the cost of
any used link in E−m. Hence, we obtain the desired γ-enforceable flow f and
the corresponding modification Γ . Such a value L′′ can be found by computing
the (unique) equilibrium flow f for the links in E1 ∪ E3 ∪ {m} with total traffic
rate om +

∑
e∈E1∪E3

f ′
e and modifications γe = 0 for all links e ∈ E1 ∪ {m} and

γe = γ for all links e ∈ E3. Moreover, for all links e ∈ E2, we let fe = oe and set
γe so that L′′ = (1 + γe)�e(oe), where γe ≤ γ, because L′′ ≤ L′.
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If x = om and �m(0) < L′, the target equilibrium cost L′′ lies between L and
L′ and we apply the same procedure as above. If x = om and �m(0) ≥ L′, we
let γm = 0 and fm = 0. Then, we apply rerouting as above and set fe = f ′

e and
γe = γ′

e for the remaining links e ∈ E−m.
If x > om and �m(0) ≥ L′, the target equilibrium cost L′′ lies between L and

L′ and link m is not used at equilibrium. So, we let γm = 0 and fm = 0, compute
the equilibrium flow f for the links in E1 ∪E3 with traffic rate r−∑

e∈E2
oe and

modifications γe = 0 for all e ∈ E1 and γe = γ for all e ∈ E3. If L′′ ∈ (L,L′) is
the cost of this equilibrium flow, for all links e ∈ E2, we let fe = oe and set γe so
that L′′ = (1 + γe)�e(oe). If x > om and �m(0) < L′, the target equilibrium cost
L′′ again lies between L and L′, but now link m may be used at equilibrium.
Hence, we apply the same procedure but with link m now included in E1. 	

Price of Anarchy Analysis. We next prove an upper bound on the PoA of
the γ-enforceable flow f of Lemma 1. This also serves as an upper bound on the
PoAγ of the best γ-enforceable flow. The approach is conceptually similar to that
of [3] and exploits the properties (i) and (ii) of Lemma 1. The results are similar
to the results in [2, Sect. 4], although our approach and the γ-modification that
we consider here are different.

Theorem 1. For γ-modifiable instances on parallel-links with latency functions
in class D, PoAγ(D) ≤ (1 − βγ(D))−1, where

βγ(D) = sup
�∈D,x≥y≥0

y(�(x) − �(y)) − γ(x − y)�(x)
x�(x)

Proof sketch. Let G = (G, �, r) be an instance on parallel-links with latency
functions in class D and let o be the optimal solution of G. We consider the γ-
enforceable flow f and the corresponding modification Γ = (γe)e∈E of Lemma 1.
By definition, PoAγ(G) ≤ PoA(GΓ ). We next show an upper bound on PoA(GΓ ).

Similarly to the proof of Lemma 1, we partition the links used by f into sets
E1 = {e ∈ E : 0 < fe < oe}, E2 = {e ∈ E : fe = oe > 0} and E3 = {e ∈ E :
fe > oe}. Using the fact that f is a Nash flow of GΓ , we obtain that

∑

e∈E

fe�e(f) ≤
∑

e∈E

oe�e(o) +
∑

e∈E3

(
oe(�e(f) − �e(o)) − γ(fe − oe)�e(f)

)
(1)

Using the definition of βγ(D), we obtain that:
∑

e∈E

fe�e(f) ≤
∑

e∈E

oe�e(o) + βγ(D)
∑

e∈E3

fe�e(f)

Therefore, PoA(GΓ ) ≤ (1 − βγ(D))−1. 	

Next we give upper bounds on the PoAγ(D) for γ-modifiable instances with

polynomial latency functions. These bounds apply to the γ-enforceable flow f
of Lemma 1 and to the best γ-enforceable flow.
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Corollary 1. For γ-modifiable instances on parallel links with polynomial
latency functions of degree d, we have that PoAγ(d) = 1, for all γ ≥ d, and

PoAγ(d) ≤
(
1 − d(γ+1

d+1 )
d+1

d + γ
)−1

, for all γ ∈ [0, d) .

For affine latency functions, in particular, PoAγ(1) = 1, for all γ ≥ 1, and

PoAγ(1) ≤ (
1 − (1 − γ)2/4

)−1
, for all γ ∈ [0, 1) .

Furthermore, we can show that bounds on the PoAγ of Theorem 1 and
Corollary 1 are best possible in the worst-case.

Theorem 2. For any class of latency functions D and for any ε > 0, there is
a γ-modifiable instance G on parallel links with homogeneous risk-averse players
and latencies in class D so that PoAγ(G) ≥ (1 − βγ(D))−1 − ε.

4 Parallel-Link Games with Heterogeneous Players

In contrast to the case of homogeneous players, computing the best γ-enforceable
flow for heterogeneous risk-averse players is NP-hard, even for affine latencies.

Theorem 3. Given an instance G on parallel links with affine latencies and two
classes of risk-averse players, a γ > 0 and a target cost C > 0, it is NP-hard to
determine whether there is a γ-enforceable flow with total latency at most C.

Proof sketch. The proof is a modification of the construction in [16, Sect. 6],
which shows that the best Stackelberg modification for parallel links with affine
latencies is NP-hard. Intuitively, the players with low aversion factor a1 (resp.
high aversion factor a2) correspond to selfish (resp. coordinated) players in [16].

Specifically, we reduce (1/3, 2/3)-Partition to the best γ-enforceable flow.
An instance of (1/3, 2/3)-Partition consists of n positive integers s1, s2, . . . , sn,
so that S =

∑n
i=1 si is a multiple of 3. The goal is to determine whether there

exists a subset X so that
∑

i∈X si = 2S/3.
Given an instance I of (1/3, 2/3)-Partition, we create a routing game G

with n + 1 parallel links and latencies �i(x) = (x/si) + 4, 1 ≤ i ≤ n, and
�n+1(x) = 3x/S. The traffic rate is r = 2S, partitioned into two classes with
traffic r1 = 3S/2 and r2 = S/2. We set γ = 2/17. Working similarly to [16,
Sect. 6], we show that if a1 = 0 and a2 = 1, I admits a (1/3, 2/3)-partition if
and only if the routing game G admits a γ-enforceable flow f of total latency at
most 35S/4. We show that this holds if a1 is small enough, e.g., if a1 = O(1/S3).
So, we can extend the NP-hardness proof to the case where 1 = a1 < a2. 	

γ-Enforceable Flows with Good Price of Anarchy. Since the best enforce-
able flow is NP-hard, we next establish the existence of an enforceable flow that
“mimics” the optimal flow o, as described by the properties (i) and (ii) in Lemma 1
and achieves a PoA as low as that in Theorem 1. In the following, we assume that
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the links are indexed in increasing order of �i(f), i.e. i < j ⇒ �i(f) ≤ �j(f), with
ties broken in favor of links with fe > 0. We start with a necessary and sufficient
condition for a flow f to be γ-enforceable. [10, Algorithm 1] shows how to efficiently
compute a γ-modification for any flow f that satisfies the following.

Theorem 4. ([10, Theorem 5]) Let G be a γ-modifiable instance on parallel links
with heterogeneous players, let f be a feasible flow and let μ be the maximum
index of a link used by f . Then, f is γ-enforceable if and only if (i) for any used
link i, γ�i(f) ≥ ∑μ−1

l=i
�l+1(f)−�l(f)

amin
l+1

and (ii) for all links i and j, if �i(f) < �j(f),

then amax
i (f) ≤ amin

j (f) (more risk-averse players use links of higher latency).

To obtain a γ-enforceable flow f for an instance with heterogeneous players,
we combine Lemma 1 with Theorem 4 and apply [10, Algorithm 1]. Specifically,
we first ignore player heterogeneity and compute, using Lemma 1, a γ-enforceable
flow f and the corresponding modification Γ so that f is a Nash flow of the
modified game GΓ when all players have the minimum risk-aversion factor a1 =
1. Assuming that the links are indexed in increasing order of their latencies
in f , since f is γ-enforceable with risk-aversion factor a1 = 1 for all players,
Theorem 4 implies that for any used link i, (1 + γ)�i(f) ≥ �μ(f).

Next, we greedily allocate the heterogeneous risk-averse players to f , taking
their risk-averse factors into account, so that each link i receives flow fi and
property (ii) in Theorem 4 is satisfied. Finally, we use [10, Algorithm 1] and
compute a γ-modification that turns f into an equilibrium flow for the modified
instance with heterogeneous players. This is possible because, by construction, f
satisfies condition (i) of Theorem 4. Moreover, since f satisfies the properties of
(i) and (ii) in Lemma 1, the PoA of f can be bounded as in Theorem 1 and (in
Corollary 1, for polynomial and affine latencies). Hence, we obtain the following.

Theorem 5. Let G be a γ-modifiable instance on parallel-links with heteroge-
neous risk-averse players. Given the optimal flow of G, we can compute a fea-
sible flow f and a γ-modification Γ of G in time O(mTNE), where TNE is the
complexity of computing the Nash flow of any given γ-modification of G with
homogeneous risk-averse players. Moreover, the PoAγ , under γ-modifications,
achieved by f is upper bounded as in Theorem 1 and Corollary 1.

5 Modifying Routing Games in Series-Parallel Networks

In this section, we consider γ-modifiable instances on series-parallel networks
with homogeneous players and generalize the results of Sect. 3. We start with
a sufficient and necessary condition for the optimal flow o to be γ-enforceable.
The following generalizes Proposition 1 and is a corollary of [2, Theorem 1].

Proposition 2. Let G be a γ-modifiable instance on a series-parallel network
and let o be the optimal flow of G. Then, o is γ-enforceable if and only if for any
pair of internally vertex-disjoint paths p and q with common endpoints (possibly
different from s and t) and with oe > 0 for all edges e ∈ p, �p(o) ≤ (1 + γ)�q(o).
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We proceed to generalized Lemma 1 to series-parallel networks. The proof is
based on an extension of the rerouting procedure in Lemma 1 combined with a
continuity property of γ-enforceable flows in series-parallel networks.

Lemma 2. Let G = (G, �, r) be a γ-modifiable instance with homogeneous risk-
averse players on a series-parallel network G and let o be the optimal flow of G.
There is a feasible flow f and a γ-modification Γ of G such that

(i) f is a Nash flow of the modified instance GΓ .
(ii) for any edge e, if fe < oe, then γe = 0, and if fe > oe, then γe = γ.

Proof sketch. The proof is by induction on the series-parallel structure of G. For
the base case of a single edge e, the lemma holds without any modifications.

The induction step follows directly from the induction hypothesis if G is
obtained as a series composition of two series-parallel networks. The interesting
case is where G is the result of a parallel composition of series-parallel networks
G1 and G2. By induction hypothesis, for i ∈ {1, 2}, we let fi be a γ-enforceable
flow of rate ri, with r1 + r2 = r, and Γ i be a γ-modification of Gi such that fi is
the Nash flow of GΓ i

i . In the following, we let Li = L(fi) be the equilibrium cost
of flow fi through network Gi with latency functions modified according to Γ i.

If L1 = L2, the claim follows directly from the induction hypothesis. Other-
wise, we assume wlog. that L1 > L2. In this case, we generalize the rerouting
procedure of Lemma 1. Starting with f1 and f2, we reroute flow from used paths
of GΓ 1

1 to GΓ 2
2 , maintaining the equilibrium property on both GΓ 1

1 and GΓ 2
2 and

trying to equalize their equilibrium cost. As in Lemma 1, we have also to main-
tain property (ii), by paying attention to edges e where fe reaches oe for the first
time and to edges e′ where γe′ reaches γ for the first time. For the former, we
stop increasing the flow through any paths including e and start increasing γe,
so that the equilibrium property is maintained. For the latter, we stop increasing
γe′ and start increasing again the flow through paths that include e′.

The idea of the proof is similar to the induction step in Lemma 1. How-
ever, since G1 and G2 are general series-parallel networks connected in parallel,
we need a continuity property, shown in [8, Sect. 3], about the changes in the
equilibrium flow when the traffic rate slightly increases or decreases. 	


Using the properties (i) and (ii), we show that the upper bound on the PoA
in Theorem 1 extends to the γ-enforceable flow f of Lemma 2 and to the PoAγ of
the best γ-enforceable flow in series-parallel networks with homogeneous players.

Theorem 6. For γ-modifiable instances on series-parallel networks with homo-
geneous players and latency functions in class D, PoAγ(D) ≤ (1 − βγ(D))−1.

Given the optimal flow of an instance G on a series-parallel network, we
show how to compute a γ-enforceable flow f and the corresponding modification
so that we achieve a PoA at most (1 − βγ(D))−1. Given o, the running time is
determined by the time required to compute a Nash flow of the original instance.
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We first determine whether the optimal flow o is γ-enforceable. To this end,
we remove from G all edges unused by o and check the feasibility of the following:

0 ≤ γe ≤ γ ∀used edges e∑
e∈p(1 + γe)�e(o) = maxp:op>0 �p(o) ∀used paths p

(Oγ)

If the linear system (Oγ) is not feasible, then o is not γ-enforceable, by
Proposition 2. Otherwise, using the solution of (Oγ) as γe’s for the edges of G
used by o and setting γe = 0 for the unused edges e, we enforce o as a Nash flow
of the modified game GΓ .

If (Oγ) is not feasible and o is not γ-enforceable, we exploit the constructive
nature of the proof of Lemma 2 and find a γ-enforceable flow in time dominated
by the time required to compute a Nash flow in series-parallel networks.

Lemma 3. Let G be a γ-modifiable instance on a series-parallel network with
homogeneous players. Given the optimal flow of G and any ε > 0, we can compute
a feasible flow f and a γ-modification Γ of G with the properties (i) and (ii) of
Lemma 2 in time O(m2TNE log(r/ε)), where TNE is the complexity of computing
the Nash flow of any given γ-modification of G and ε is an accuracy parameter.

6 Parallel-Link Games with Relaxed Restrictions

In this section, we consider (p, γ)-modifiable games on parallel links with hetero-
geneous risk-averse players. Observing that any γ/ p

√
m-modification is a (p, γ)-

modification for a (p, γ)-modifiable game, we next show an upper bound on the
PoA under such modifications.

Theorem 7. For any (p, γ)-modifiable instance G on m parallel links with het-
erogeneous risk-averse players and latency functions in class D, we have that
PoAp

γ(G) ≤ PoAγ0(G) ≤ (1 − βγ0(D))−1, where γ0 = γ/ p
√

m.

The above bound is tight under weak assumptions on the class D of latency
functions. More specifically, we say that a class of latency functions D is of the
form D0 if (a) � is continuous and twice differentiable in (0,+∞), (b) �′(x) >
0, ∀x ∈ (0,+∞) or � is constant, (c) � is semi-convex, i.e. x�(x) is convex in
[0,+∞) and (d) if � ∈ D, then (� + c) ∈ D, for all constants c ∈ R such that for
all x ∈ R≥0, �(x) + c ≥ 02. Then we obtain the following.

Theorem 8. For any class D of the form D0 and any ε > 0, there is an instance
G on m parallel links with homogeneous players and latency functions in class
D, so that PoAp

γ(G) ≥ (1 − βγ0(D))−1 − ε, where γ0 = γ/ p
√

m.

Proof sketch. We consider an instance Im, with m parallel links, where the first
m − 1 links have the same latency function � ∈ D (to be fixed later) and link

2 Property (d) requires that D should be closed under addition of constants, as long
as the resulting function remains nonnegative.
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m has constant latency (1 + γ1)�( r
m−1 ), where γ1 = γ/ p

√
m − 1. The instance

has homogeneous risk-averse players with risk-aversion a1 = 1. Also we let γ0 =
γ/ p

√
m. The proof is an immediate consequence of the following three claims:

Claim 1. For every m ≥ 2 and any latency function � ∈ D with �(0) = 0,
PoAp

γ(Im) = PoAγ1(Im). i.e., Claim 1 states that the best (p, γ)-modification
for the instance Im is the modification that splits γ evenly among the first m−1
edges. The proof follows from an application of KKT optimality conditions.

Claim 2. For every m ≥ 2 and any ε > 0, there is a latency function �ε,m with
�ε,m(0) = 0 such that setting � = �ε,m in the instance Im results in PoAγ1(Im) ≥
(1−βγ1(D))−1 − ε/2. The proof of Claim 2 is similar to the proof of Theorem 2.

Since �ε,m(0) = 0, we can combine claims 1 and 2 and obtain that for any
m ≥ 2 and any ε > 0, PoAp

γ(Im) ≥ (1 − βγ1(D))−1 − ε/2, if we use the latency
function �ε,m.

Claim 3. For every class of latency functions D, any ε > 0 and any γ, there
exists an mε ≥ 2 such that (1 − βγ1(D))−1 ≥ (1 − βγ0(D))−1 − ε/2.

The proof is based on the fact that γ1 tends to γ0 as the number of parallel
links m grows. Therefore, for any ε > 0, there are an mε and a latency function
�ε,mε

such that PoAp
γ(Imε

) ≥ (1 − βγ0(D))−1 − ε. 	
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Abstract. We study the problem of scheduling m tasks to n selfish,
unrelated machines in order to minimize the makespan, where the execu-
tion times are independent random variables, identical across machines.
We show that the VCG mechanism, which myopically allocates each task
to its best machine, achieves an approximation ratio of O

(
lnn

ln lnn

)
. This

improves significantly on the previously best known bound of O
(
m
n

)
for

prior-independent mechanisms, given by Chawla et al. [STOC’13] under
the additional assumption of Monotone Hazard Rate (MHR) distribu-
tions. Although we demonstrate that this is in general tight, if we do
maintain the MHR assumption, then we get improved, (small) constant
bounds for m ≥ n ln n i.i.d. tasks, while we also identify a sufficient
condition on the distribution that yields a constant approximation ratio
regardless of the number of tasks.

1 Introduction

We consider the problem of scheduling tasks to machines, where the processing
times of the tasks are stochastic and the machines are strategic. The goal is to
minimize the expected completion time (a.k.a. makespan) of any machine, where
the expectation is taken over the randomness of the processing times and the
possible randomness of the mechanism. We are interested in the performance,
i.e. the expected maximum makespan, of truthful mechanisms compared to the
optimal mechanism that is not necessarily truthful. This problem, which we call
the Bayesian scheduling problem, was previously considered by Chawla et al. [7].

Scheduling problems constitute a very rich and intriguing area of research
[18]. In one of the most fundamental cases, the goal is to schedule m tasks to
n parallel machines while minimizing the makespan, when the processing times
of the tasks are selected by an adversary in an arbitrary way and can depend
on the machine to which they are allocated. However, the assumption that the
machines will blindly follow the instructions of a central authority (scheduler)
was eventually challenged, especially due to the rapid growth of the Internet and
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its use as a primary computing platform. This motivated a mechanism-design
approach for the scheduling problem which Nisan and Ronen [26] introduced in
their seminal paper: the processing times of the tasks are now private information
of the machines, and each machine declares to the mechanism how much time
it requires to execute each task. The mechanism then outputs the allocation of
tasks to machines, as well as monetary compensations to the machines for their
work, based solely on these declarations. In fact, the mechanism has to decide
the output in advance, for any possible matrix of processing times the machines
can report. Each machine is assumed to be rational and strategic, so, given the
mechanism and the true processing times, its declarations are chosen in order
to minimize the processing time/cost it has to spend for the execution of the
allocated tasks minus the payment it will receive. In this scenario, the goal is to
design a truthful mechanism that minimizes the makespan; truthful mechanisms
define the allocation and payment functions so that the machines don’t have an
incentive to misreport their true processing-time capabilities. We will refer to
this model as the prior free scheduling problem, as opposed to the stochastic
model we discuss next.

In the Bayesian scheduling problem [7], the time a specific machine requires
in order to process a task is drawn from a distribution. We consider one of the
fundamental questions posed by the algorithmic mechanism design literature,
which is about quantifying the potential performance loss of a mechanism due to
the requirement for truthfulness. In the Bayesian scheduling setting, this question
translates to: What is the maximum ratio (for any distribution of processing
times) of the expected maximum makespan of the best truthful mechanism over
the expected optimal makespan (ignoring the requirement for truthfulness)?

In this paper we tackle this question by considering a well known and nat-
ural truthful mechanism, the Vickrey-Clarke-Groves mechanism (VCG). VCG
greedily and myopically allocates each task to a machine that minimizes its
processing time [10,17,31]. It is a well known fact that it is a truthful mecha-
nism in a very strong sense; truth-telling is a dominant strategy for the machines.
Because of the notorious lack of characterization results for truthfulness for
restricted domains such as scheduling, VCG is the standard and obvious choice
to consider for the Bayesian scheduling problem (or slightly more generally, affine
maximizers). We stress here that for the scheduling domain (and for any addi-
tive domain) the VCG allocation and payments can be computed in polynomial
time. Also, it is important to note that VCG is a prior-independent mechanism,
i.e. it does not require any knowledge of the prior distribution from which the
processing times are drawn.

Prior-independence is a very strong property, and is an important feature
for mechanisms used in stochastic settings. Being robust with respect to prior
distributions facilitates applicability in real systems, while at the same time
bypassing the pessimistic inapproximability of worst case analysis. The idea is
that we would like the mechanisms we use, without relying on any knowledge of
the distribution of the processing times of the tasks, to still perform well com-
pared to the optimal mechanism that is tailored for the particular distribution.
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Chawla et al. [7] were the first to examine the Bayesian scheduling prob-
lem while considering the importance for prior-independence. They study the
following two mechanisms:

Bounded overload with parameter c: Allocate tasks to machines such that the
sum of the processing times of all tasks is minimized, subject to placing at
most cm

n tasks at any machine.
Sieve and bounded overload with parameters c, β, and δ: Fix a partition of the

machines into two sets of sizes (1− δ)n and δn. Ignoring all processing times
which exceed1 β (i.e. setting them equal to infinity), run VCG on the first
set of machines. For the tasks that remain unallocated run the bounded
overload mechanism with parameter c on the second set of machines.

The above mechanisms are inspired by maximal-in-range [27] (affine maxi-
mizers) and threshold mechanisms, as these are essentially the only non-trivial
truthful mechanisms we know for the scheduling domain. One would expect that
the simplest of those mechanisms, which is the VCG mechanism, would be the
first to be considered. Indeed, VCG is the most natural, truthful, simple, poly-
nomial time computable, and prior-independent mechanism. Still, the authors in
[7] design the above mechanisms in an attempt to prevent certain bad behaviour
that VCG exhibits on a specific input instance and don’t examine VCG beyond
that point. As we demonstrate in this paper, however, this is the worst case
scenario for VCG and we can identify cases where VCG performs considerably
better, either by placing a restriction on the number of tasks or by making some
additional distributional assumptions.

Our Results. We prove an asymptotically tight bound of Θ
(

lnn
ln lnn

)
for the

approximation ratio of VCG for the Bayesian scheduling problem under the
sole assumption that the machines are a priori identical. This bound is achieved
by showing that the worst case input for VCG is actually one where the tasks
are all of unit weight (point mass distributions). This resembles a balls-in-bins
type scenario from which the bound is implied.

Whenever the processing times of the tasks are i.i.d. and drawn from an
MHR continuous distribution, VCG is shown to be 2

(
1 + n lnn

m

)
-approximate for

the Bayesian scheduling problem. This immediately implies a constant bound at
most equal to 4 when m ≥ n ln n. We also get an improved bound of 1+

√
2 when

m ≥ n2 using a different approach. For the complementary case of m ≤ n ln n, we
identify a property of the distribution of processing times such that VCG again
achieves a constant approximation. We observe that important representatives of
the class of MHR distributions, that is the uniform distribution on [0, 1] as well
as exponential distributions, do satisfy this property, so for these distributions
VCG is 4-approximate regardless of the number of tasks. We note however that
this is not the case for all MHR distributions.

1 Assume you run VCG on the first set of machines plus a dummy machine with
processing time β on all tasks. The case where a task has processing time equal to
β can be ignored without loss of generality for the case of continuous distributions.
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The continuity assumption plays a fundamental role in the above results.
In particular, we give a lower bound of Ω

(
lnn

ln lnn

)
for the case of i.i.d. process-

ing times that uses a discrete MHR distribution. Finally, we also consider the
bounded overload and the sieve and bounded overload mechanisms that were
studied by Chawla et al. [7], and present some instances that lower-bound their
performance.

Related Work. One of the fundamental papers on the approximability of schedul-
ing with unrelated machines is by Lenstra et al. [22] who provide a polynomial
time algorithm that approximates the optimal makespan within a factor of 2.
They also prove that it is NP-hard to approximate the optimal makespan within
a factor of 3/2 in this setting. In the mechanism design setting, Nisan and Ronen
[26] prove that the well known VCG mechanism achieves an n-approximation
of the optimal makespan, while no truthful mechanism can achieve approxima-
tion ratio better than 2. Note that the upper bound immediately carries over
to the Bayesian and the prior-independent scheduling case. The lower bound
has been improved by Christodoulou et al. [9] and Koutsoupias and Vidali [20]
to 2.61, while Ashlagi et al. [2] prove the tightness of the upper bound for
anonymous mechanisms. In contrast to the negative result on the prior free set-
ting presented in [2], truthful mechanisms can achieve sublinear approximation
when the processing times are stochastic. In fact, we prove here that VCG can
achieve a sublogarithmic approximation, and even a constant one for some cases,
while similar bounds for other mechanisms have also been presented by Chawla
et al. [7].

For the special case of related machines, where the private information of
each machine is a single value, Archer and Tardos [1] were the first to give a 3-
approximation truthful in expectation mechanism, while now truthful PTAS are
known by the works of Christodoulou and Kovács [8] and Dhangwatnotai et al.
[13]. Putting computational considerations aside, the best truthful mechanism
in this single-dimensional setting is also optimal. Lavi and Swamy [21] man-
aged to prove constant approximation ratio for a special, yet multi-dimensional
scheduling problem; they consider the case where the processing time of each
task can take one of two fixed values. Yu [32] then generalized this result to
two-range-values, while together with Lu and Yu [24] and Lu [23], they gave
constant (better than 1.6) bounds for the case of two machines.

Daskalakis and Weinberg [11] consider computationally tractable approxima-
tions of the best truthful mechanism when the processing times of the tasks follow
distributions (with finite support) that are known to the mechanism designer. In
fact the authors provide a reduction of this problem to an algorithmic problem.
Chawla et al. [6] showed that there can be no approximation-preserving reduc-
tions from mechanism design to algorithm design for the makespan objective,
however the authors in [11] bypass this inapproximability by considering the
design of bi-criterion approximation algorithms.

Prior-independent mechanisms have been mostly considered in the problem
of optimal auction design, where the goal is to design an auction mechanism that
maximizes the seller’s revenue. Inspired by the work of Dhangwatnotai et al. [14],
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Devanur et al. [12] and Roughgarden et al. [29] independently provide approxi-
mation mechanisms for multi-dimensional settings. Moreover, Dughmi et al. [15]
identify conditions under which VCG obtains a constant fraction of the opti-
mal revenue, while Hartline and Roughgarden [19] prove Bulow-Klemperer type
results for VCG. Prior robust optimization is also discussed by Sivan [30].

Chawla et al. [7] are the first to consider prior-independent mechanisms for
the (Bayesian) scheduling problem. They introduce two variants of the VCG
mechanism and bound their approximation ratios. In particular, the bounded
overload mechanism is prior-independent and achieves a O(mn ) approximation of
the expected optimal makespan when the processing times of the tasks are drawn
from machine-identical MHR distributions. For the case where the process-
ing times of the tasks are i.i.d. from an MHR distribution, the authors prove
that sieve and bounded overload mechanisms can achieve an O(

√
ln n) approx-

imation of the expected optimal makespan, as well as an approximation ratio
of O((ln lnn)2) under the additional assumption that there are at least n ln n
tasks. We note that to achieve these improved approximation ratios, a sieve and
bounded overload mechanism needs to have access to a small piece of information
regarding the distribution of the processing times, in particular the expectation
of the minimum of a certain number of draws; nevertheless, this still breaks the
prior-independence requirement.

The VCG mechanism is strongly represented in the above works. Its simplic-
ity and amenability to practise dictate a detailed analysis of its performance for
the Bayesian scheduling problem.

Due to space limitations, some proofs have been omitted and can be found
in the full version [16] of the paper.

2 Preliminaries and Notation

Assume that we have n unrelated parallel machines and m ≥ n tasks that need
to be scheduled to these machines. Let tij denote the processing time of task
j for machine i. In the Bayesian scheduling problem, each tij is independently
drawn from some probability distribution Di,j . In this paper we mainly consider
the machine-identical setting, that is the processing times of a specific task j are
drawn from the same distribution Dj for all the machines. This is a standard
assumption for the problem (see also [7]). We also consider the case where both
machines and tasks are considered a priori identical, and the processing times tij
are all i.i.d. drawn from the same distribution D. The goal is to design a truthful
mechanism that minimizes the expected makespan of the schedule.

We consider the VCG mechanism, the most natural and standard choice for
a truthful mechanism. Thus, we henceforth assume that the machines always
declare their true processing times. VCG minimizes the total workload by allo-
cating each task to the machine that minimizes its processing time. So, if α
denotes the allocation function of VCG (we omit the dependence on t for clar-
ity of presentation) then, for any task j, αij = 1 for some machine i such that
tij = mini′{ti′,j}, otherwise αij = 0. Without loss of generality we assume that
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in case of a tie, the machine is chosen uniformly at random2. The expected
maximum makespan of VCG is then computed as

E [VCG(t)] = E

⎡

⎣max
i

m∑

j=1

aijtij

⎤

⎦.

In what follows, we use variable Yi,j to denote the processing time of task j on
machine i under VCG, that is Yi,j = αijtij . We also denote by Yi =

∑m
j=1 Yij

the workload of machine i.
Note that in the machine-identical setting αij = 1 with probability 1

n for any
task j. So, VCG exhibits a balls-in-bins type behaviour in this setting, as the
machine that minimizes the processing time of each task, and hence, the machine
that will be allocated the task, is chosen uniformly at random for each task. We
thus know from traditional balls-in-bins analysis, that the expected maximum
number of tasks that will be allocated to any machine will be Θ

(
lnn

ln lnn

)
, whenever

m = Θ(n). For more precise balls-in-bins type bounds see Raab and Steger [28].
We will use the following theorem to prove in Sect. 3 that this is actually the
worst case scenario for VCG:

Theorem 1 (Berenbrink et al. [5]). Assume two vectors w ∈ R
m, w′ ∈ Rm′

with m ≤ m′ and their values in non-increasing order (that is w1 ≥ w2 ≥ . . . ≥
wm and w′

1 ≥ w′
2 ≥ . . . ≥ w′

m′). If the following two conditions hold:

(i)
∑m

j=1 wj =
∑m′

j=1 w′
j, and

(ii)
∑k

j=1 wj ≥ ∑k
j=1 w′

j for all k ∈ [m′],

then the expected maximum load when allocating m balls with weights according
to w is at least equal to the expected maximum load when allocating m′ balls with
weights according to w′ to the same number of bins.

Following [5] we say that vector w majorizes w′ whenever w and w′ satisfy the
conditions (i) and (ii) of Theorem 1.

Probability Preliminaries. We now give some additional notation regarding prop-
erties of distributions that will be used in the analysis.

Let T be a random variable following a probability distribution D. Assuming
we perform n independent draws from D, we use T [r : n] to denote the r-th
order statistic (the r-th smallest) of the resulting values, following the notation
from [7]. In particular, T [1 : n] will denote the minimum of n draws from D,
while T [1 : n][m : m] denotes the maximum value of m independent experiments
where each one is the minimum of n draws from D. Note that for tij ∼ Dj , the
expected processing time of machine i for task j under VCG is

E[Yi,j ] = Pr [αij = 1]E [tij | αij = 1] =
1
n
E[T [1 : n]]. (1)

2 We note here that for continuous distributions, such events of ties occurs with zero
probability.
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In this work we also consider the class of probability distributions that have
a monotone hazard rate (MHR). A continuous distribution with pdf f and cdf
F is MHR if its hazard rate h(x) = f(x)

1−F (x) is a (weakly) increasing function.
The definition of discrete MHR distributions is similar, only the hazard rate of a
discrete distribution is defined as h(x) = Pr[X=x]

Pr[X≥x] (see e.g. Barlow et al. [4]). The
following two technical lemmas demonstrate properties of MHR distributions.

Lemma 1. If T is a continuous MHR random variable, then for every positive
integer n, its first order statistic T [1 : n] is also MHR.

Lemma 2. For any continuous MHR random variable X and any positive inte-
ger r, E[Xr] ≤ r!E[X]r.

We now introduce the notion of k-stretched distributions. The property that
identifies these distributions plays an important role in the approximation ratio
of VCG as we will see later in the analysis (Theorem 5).

Definition 1. Given a function k over integers, we call a distribution k-
stretched if its order statistics satisfy

T [1 : n][n : n] ≥ k(n) · T [1 : n],

for all positive integers n.

We will use the following result by Aven to bound the expected maximum
makespan of VCG.

Theorem 2 (Aven [3]). If X1,X2, . . . , Xn are (not necessarily independent)
random variables with mean μ and variance σ2, then

E[max
i

Xi] ≤ μ +
√

n − 1σ.

Finally, we use the notation introduced in the probability preliminaries to
present some known bounds on the expected optimal makespan among all mech-
anisms, not necessarily truthful ones. So, if given a matrix of processing times t
we denote its optimal makespan by OPT(t), we wish to bound Et [OPT(t)] (we
omit dependence on t for clarity of presentation). Part of the notorious difficulty
of the scheduling problem stems exactly from the lack of general, closed-form for-
mulas for the optimal makespan. However, the following two easy lower bounds
are widely used (see e.g. [7]):

Observation 1. If the processing times are drawn from machine-identical dis-
tributions, then the expected maximum makespan of the optimal mechanism is
bounded by

E[OPT] ≥ max

⎧
⎨

⎩
E

[

max
j

Tj [1 : n]
]

,
1
n

m∑

j=1

E [Tj [1 : n]]

⎫
⎬

⎭
,

where Tj follows the distribution corresponding to task j.
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3 Upper Bounds

In this section we provide results on the performance of the VCG mechanism for
the Bayesian scheduling problem for different assumptions on the number of tasks
(compared to the machines), and different distributional assumptions on their
processing times. Our first result shows that VCG is O

(
lnn

ln lnn

)
–approximate in

the general case, without assuming identical tasks or even MHR distributions.
We then consider some additional assumptions under which VCG achieves a
constant approximation of the expected optimal makespan. In what follows,
an allocation where all machines have the same workload will be called fully
balanced.

Theorem 3. VCG is O
(

lnn
ln lnn

)
-approximate for the Bayesian scheduling prob-

lem with n identical machines.

As we will see later in Theorem 7, this result is in general tight. In order to prove
Theorem 3 we will make use of the following lemma:

Lemma 3. If VCG is ρ-approximate for the prior free scheduling problem with
identical machines on inputs for which the optimal allocation is fully balanced,
then VCG is ρ-approximate for the Bayesian scheduling problem where the
machines are a priori identical.

We are now ready to prove Theorem 3. Lemma 3 essentially reduces the
analysis of VCG for the Bayesian scheduling problem for identical machines to
that of a simple weighted balls-in-bins setting:

Proof (of Theorem 3). From Lemma 3, it is enough to analyze the performance of
VCG on input matrices where the processing time of each task is the same across
all machines and the optimal schedule is fully balanced. Without loss (by scaling)
it can be further assumed that the optimal makespan is exactly 1. Then, since
VCG is breaking ties uniformly at random, the problem is reduced to analyzing
the expected maximum (weighted) load when throwing m balls with weights
(w1, . . . , wm) = w (uniformly at random) into n bins, when

∑m
i=1 wi = n. Then,

by Theorem 1, that maximum load is upper bounded by the expected maximum
load of throwing n (unit weight) balls into n bins, because the n-dimensional
unit vector 1n majorizes w: 1n’s components sum up to n and also wj ≤ 1 for all
j ∈ [n] (due to the assumption that the optimal makespan is 1). By classic balls-
in-bins results (see e.g. [25,28]), the expected maximum load of any machine is
upper bounded by Θ

(
lnn

ln lnn

)
. ��

We now focus on the special but important case where both tasks and
machines are a priori identical:

Theorem 4. VCG is 2
(
1 + n lnn

m

)
-approximate for the Bayesian scheduling

problem with i.i.d. processing times drawn from a continuous MHR distribution.
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Proof. Let T be a random variable following the distribution from which the
execution times tij are drawn. Following the notation introduced in the Introduc-
tion, the workload of a machine i is given by the random variable Yi =

∑m
j=1 Yi,j .

Then, for the expected maximum makespan E[maxi Yi] and any real s > 0 it
holds that

es·E[maxi Yi] ≤ E[esmaxi Yi ] = E[max
i

esYi ] ≤
n∑

i=1

E[esYi ] =
n∑

i=1

m∏

j=1

E[esYi,j ]

= nE[esY1,1 ]m, (2)

where we have used Jensen’s inequality through the convexity of the exponential
function, and the fact that for a fixed machine i the random variables Yi,j ,
j = 1, . . . , m, are independent (the processing times are i.i.d. and VCG allocates
each task independently of the others). We now bound the term E[esY1,1 ]:

E[esY1,1 ] = E

[ ∞∑

r=0

(sY1,1)r

r!

]

= 1 +
∞∑

r=1

sr
E[Y r

1,1]
r!

= 1 +
1
n

∞∑

r=1

sr
E[T [1 : n]r]

r!

≤ 1 +
1
n

∞∑

r=1

srE[T [1 : n]]r,

where for the last inequality we have used the fact that the first order statistic of
an MHR distribution is also MHR (Lemma 1) and Lemma 2. Then, by choosing
s = s∗ ≡ 1

2·E[T [1:n]] we get that

E[es
∗Y1,1 ] = 1 +

1
n

∞∑

r=1

1
2r

≤ 1 +
1
n

,

and (2) yields

E[max
i

Yi] ≤ ln
(
nE[es

∗Y1,1 ]m
) 1

s∗

≤ 2 ln
(

n

(

1 +
1
n

)m)

E[T [1 : n]]

≤ 2 ln
(
nem/n

)
E[T [1 : n]]

= 2
(
ln n +

m

n

)
E[T [1 : n]]. (3)

But from Observation 1 we know that E[OPT] ≥ m
n E[T [1 : n]] for the case of

i.i.d. execution times, and the theorem follows. ��
Notice that Theorem 4 in particular implies that VCG achieves a small,

constant approximation ratio whenever the number of tasks is slightly more
than that of machines:

Corollary 1. VCG is 4-approximate for the Bayesian scheduling problem with
m ≥ n ln n i.i.d. tasks drawn from a continuous MHR distribution.
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The following theorem will help us analyze the performance of VCG for
the complementary case to that of Corollary 1, that is when the number of
tasks is m ≤ n ln n. Recall the notion of k-stretched distributions introduced in
Definition 1.

Theorem 5. VCG is 4 lnn
k(n) -approximate for the Bayesian scheduling problem

with m ≤ n ln n i.i.d. tasks drawn from a k-stretched MHR distribution.

In particular, we note that Theorem 5 yields a constant approximation ratio for
VCG for the important special cases where the processing times are drawn inde-
pendently from the uniform distribution on [0, 1] or any exponential distribution.
Indeed, the uniform distribution on [0, 1] as well as any exponential distribution
is ln-stretched. We get the following, complementing the results in Corollary 1:

Corollary 2. VCG is 4-approximate for the Bayesian scheduling problem with
i.i.d. processing times drawn from the uniform distribution on [0, 1] or an expo-
nential distribution.

We point out that the above corollary can not be generalized to hold for all
MHR distributions, as the lower bound in Theorem 7 implies. For example, it
is not very difficult to check that by taking ε → 0 and considering the uniform
distribution over [1, 1 + ε], no stretch factor k(n) = Ω(ln n) can be guaranteed.

For our final positive result, we present an improved constant bound on the
approximation ratio of VCG when we have many tasks:

Theorem 6. VCG is 1 +
√

2-approximate for the Bayesian scheduling problem
with m ≥ n2 tasks with i.i.d. processing times drawn from a continuous MHR
distribution.

Proof. We use Theorem 2 to bound the performance of VCG in this setting. In
order to do so, we first bound the expectation and the variance of the makespan
of a single machine. From (1), for the workload Yi of any machine i we have:

E[Yi] =
m∑

j=1

E[Yi,j ] =
1
n

∑

j

E[T [1 : n]] =
m

n
E[T [1 : n]].

To compute the variance of the makespan of machine i, we note that the random
variables Yi,j are independent with respect to j, for any fixed machine i and thus
we can get

Var[Yi] =
m∑

j=1

Var[Yi,j ] =
m∑

j=1

(
E[Y 2

i,j ] − E[Yi,j ]2
)

≤
m∑

j=1

E[Y 2
i,j ] =

m∑

j=1

E[a2
ijt

2
ij ] =

1
n

m∑

j=1

E[T [1 : n]2]

=
m

n
E[T [1 : n]2].
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We are now ready to use Theorem 2 and bound the expected maximum
makespan:

E[max
i

Yi] ≤ E[Y1] +
√

n − 1
√

Var[Y1]

≤ m

n
E[T [1 : n]] +

√
m

√

E[T [1 : n]2]

≤ m

n
E[T [1 : n]] +

√
2
√

mE[T [1 : n]]

≤ (1 +
√

2)
m

n
E[T [1 : n]]

≤ (1 +
√

2)E[OPT],

where the third inequality follows from Lemma 2 (and Lemma 1), for the fourth
inequality we use the assumption that m ≥ n2 and to complete the proof, the
last inequality uses a lower bound on E[OPT] from Observation 1. ��

4 Lower Bounds

In this section we prove some lower bounds on the performance of VCG under
different distributional assumptions on the processing times. In an attempt for a
clear comparison of VCG with the mechanisms that were previously considered
for the Bayesian scheduling problem (in [7]), we provide instances that lower
bound their performance as well.

Theorem 7. For any number of tasks, there exists an instance of the Bayesian
scheduling problem where VCG is not better than Ω

(
lnn

ln lnn

)
-approximate and

the processing times are drawn from machine-identical continuous MHR distri-
butions.

Notice that when the number of tasks equals that of the machines, i.e. m = n,
then the lower bound of Theorem 7 holds for an instance of i.i.d. distributions
and not just for identical machines. However, if we restrict our focus only on
discrete distributions, then we can strengthen that lower bound to hold for i.i.d.
distributions for essentially any number of tasks and not only for m = n:

Theorem 8. For any number of m = O(nen) tasks, there exists an instance
of the Bayesian scheduling problem where VCG is not better than Ω

(
lnn

ln lnn

)
-

approximate and the tasks have i.i.d. processing times drawn from a discrete
MHR distribution.

Proof. Consider an instance with n identical machines and m tasks where the
processing times tij are drawn from {0, 1} such that tij = 1 with probability
(

n
2m

) 1
n ≡ p and tij = 0 with probability 1 − p. Notice that this is a well-defined

distribution, since for all m ≥ n we have p < 1. Furthermore, it is easy to check
that this distribution is MHR; its hazard rate at 0 is Pr[tij=0]

Pr[tij≥0] = 1−p
1 = 1−p and

at 1 is Pr[tij=1]
Pr[tij≥1] = p

p = 1.
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Next, let M be the random variable denoting the number of tasks whose best
processing time in any machine is non-zero, that is

M = |{j | min
i

tij = 1}|.

Then M follows a binomial distribution with probability of success pn and m
trials, since the probability of a task having processing time 1 at all machines
(success) is pn, while there are m tasks in total. Given the definition for p, the
average number of tasks that will end up requiring a processing time of 1 at
any machine is E[M ] = mpn = n

2 . Also, we can derive that Pr [M > 3n] ≤ e−n

by using a Chernoff bound3. As we have argued before, we can use classical
results from balls-in-bins analysis to bound the performance of VCG. So, when
M ≤ 3n, we know that the expected maximum makespan (since each task has
processing time at least 1) will be Ω

(
lnn

ln lnn

)
. That event happens almost surely,

with probability 1 − e−n = 1 − o(1).
On the other hand, we next show that the mechanism that simply balances

the M “expensive” tasks across the machines (by allocating
⌈
M
n

⌉
of them to every

machine) achieves a constant maximum makespan, hence providing a constant
upper-bound on the optimal maximum makespan:

E[OPT] ≤ Pr [M ≤ 3n] · 3n

n
· 1 + Pr [M > 3n] ·

⌈m

n

⌉
· 1 ≤ 4 +

m

nen
= O(1).

��
Notice however that Theorem 8 still leaves open the possibility for continuous
MHR distributions to perform better (see also Theorem 6 and Corollary 1).

We finally conclude with a couple of simple observations, for the sake of
completeness. First, our initial requirement (see Sect. 2) for identical machines
(which is a standard one, see [7]) is crucial for guaranteeing any non-trivial
approximation ratios on the performance of VCG:

Observation 2. There exists an instance of the Bayesian scheduling problem
where VCG is not better than n-approximate even when the tasks are identically
distributed according to continuous MHR distributions.

We now present some lower bounds on the performance of the mechanisms
analyzed by Chawla et al. [7]. A definition of these mechanisms can be found in
the Introduction. The following demonstrates that the analysis of the approx-
imation ratio for the class of bounded overload mechanisms presented in [7] is
asymptotically tight:

Observation 3. For any number of m ≥ n tasks, there exists an instance of the
Bayesian scheduling problem where a bounded overload mechanism with parame-
ter c is not better than min{cm

n , n−1}-approximate and the processing times are
drawn from machine-identical continuous MHR distributions.
3 Here we use the following form, with β = 1+

√
5: for any β > 0, Pr [X ≥ (1 + β)μ] ≤

e
− β2

2+β
µ

for any binomial random variable with mean μ.
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The same instance can be used to bound the performance of the bounded
overload mechanism with parameter c that breaks ties uniformly at random as
well. Having sufficiently many tasks (m = Ω

(
n lnn
ln lnn

)
) implies that the mechanism

behaves almost like the VCG mechanism while allocating the unit-cost tasks,
assuming they are the first to be allocated. This gives a lower bound of Ω

(
lnn

ln lnn

)

on the approximation ratio of this mechanism as well.
Similar instances can provide lower bounds on the performance of the class

of sieve and bounded overload mechanisms with parameters c, β, and δ, even
for the case of i.i.d. processing times. To see this notice that if all tasks have
tij = 1 with probability 1 on any machine (T [1 : k] = 1 for any k), and we
choose threshold β < 1 as is done in [7] for the case m ≤ n ln n, then a sieve
and bounded overload mechanism with parameters c, β ≤ 1, and δ immediately
reduces to a bounded overload mechanism with parameter c on δn machines.
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Abstract. We study the computation of equilibria of two-strategy
anonymous games, via algorithms that may proceed via a sequence of
adaptive queries to the game’s payoff function, assumed to be unknown
initially. The general topic we consider is query complexity, that is, how
many queries are necessary or sufficient to compute an exact or approx-
imate Nash equilibrium.

We show that exact equilibria cannot be found via query-efficient
algorithms. We also give an example of a 2-strategy, 3-player anonymous
game that does not have any exact Nash equilibrium in rational numbers.
Our main result is a new randomized query-efficient algorithm that finds
a O(n−1/4)-approximate Nash equilibrium querying Õ(n3/2) payoffs and
runs in time Õ(n3/2). This improves on the running time of pre-existing
algorithms for approximate equilibria of anonymous games, and is the
first one to obtain an inverse polynomial approximation in poly-time. We
also show how this can be used to get an efficient PTAS. Furthermore,
we prove that Ω(n log n) payoffs must be queried in order to find any
ε-well-supported Nash equilibrium, even by randomized algorithms.

1 Preliminaries

This paper studies two-strategy anonymous games, in which a large number
of players n share two pure strategies, and the payoff to a player depends on
the number of players who use each strategy, but not their identities. Due to the
this property, these games have a polynomial-size representation. Daskalakis and
Papadimitriou [13] consider anonymous games and graphical games to be the
two most important classes of concisely-represented multi-player games. Anony-
mous games appear frequently in practice, for example in voting systems, traffic
routing, or auction settings. Although they have polynomial-sized representa-
tions, the representation may still be inconveniently large, making it desirable
to work with algorithms that do not require all the data on a particular game
of interest.

Query complexity is motivated in part by the observation that a game’s entire
payoff function may be syntactically cumbersome. It also leads to new results
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that distinguish the difficulty of alternative solution concepts. We assume that
an algorithm has black-box access to the payoff function, via queries that specify
an anonymized profile and return one or more of the players’ payoffs.

1.1 Definitions and Notation

Anonymous Games. A k-strategy anonymous game is a tuple (n, k,
{ui

j}i∈[n],j∈[k]) that consists of n players, k pure strategies per player, and a
utility function ui

j : {0, . . . , n − 1} −→ [0, 1] for each player i ∈ [n] (where we
use [n] to denote the set {1, . . . , n}) and every strategy j ∈ [k], whose input
is the number of other players who play strategy one if k = 2. The number of
payoffs stored by a 2-strategy game is 2n2 (generally, O(nk)). As indicated by
ui

j ’s codomain, we make a standard assumption that all payoffs are normalized
into the interval [0, 1].

For all i ∈ [n], let Xi be a random indicator variable being equal to one if and
only if player i plays strategy one. For 2-strategy games, a mixed strategy for
i is represented by the probability pi := E[Xi] that player i plays strategy one.
Let X−i :=

∑
�∈[n]\{i} X� be the sum of all the random variables but Xi. The

expected utility obtained by player i ∈ [n] for playing pure strategy j ∈ {1, 2}
against X−i is

E[ui
j(X−i)] :=

n−1∑

x=0

ui
j(x) · Pr[X−i = x].

If i is playing a mixed strategy (i.e., pi ∈ (0, 1)) her expected payoff sim-
ply consists of a weighted average, i.e., E[ui(X)] := pi · E[ui

1(X−i)] + (1 − pi) ·
E[ui

2(X−i)], where X := (Xi,X−i). It is known that E[ui
j(X−i)], which involves

computing the p.m.f. of X−i – a Poisson Binomial Distribution – can be com-
puted in polynomial time (see e.g., [13]).

Exact and Approximate Nash Equilibria. With the above notation, we say
that Xi is a best-response if and only if E[ui(X)] ≥ E[ui

j(X−i)] for all j ∈ {1, 2}.
A Nash equilibrium (NE) requires the players to be best-responding to each
other; therefore, the above best-response condition must hold for every i ∈ [n].
This can be also viewed as no player having an incentive to deviate from her
strategy. We consider a relaxation of NE, the notion of an ε-approximate Nash
equilibrium (ε-NE), where every player’s incentive to deviate is at most ε > 0.
We say that (Xi)i∈[n], which represents a mixed-strategy profile, constitutes an
ε-NE if for all i ∈ [n] and all j ∈ {1, 2},

E[ui(X)] + ε ≥ E[ui
j(X−i)].

This definition, however, does not prohibit allocating a small amount of proba-
bility to arbitrarily bad strategies. An ε-approximate well-supported Nash equi-
librium (ε-WSNE) addresses this issue by forcing every player to place a positive
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amount of probability solely on ε-approximate best-responses, i.e., (Xi)i∈[n] con-
stitutes an ε-WSNE if for all i ∈ [n],

E[ui
1(X−i)] + ε < E[ui

2(X−i)] =⇒ pi = 0, and

E[ui
2(X−i)] + ε < E[ui

1(X−i)] =⇒ pi = 1.

Although an ε-WSNE is also an ε-NE, the converse need not be true.

Query-Efficiency and Payoff Query Models. Our general interest is in
polynomial-time algorithms that find solutions of anonymous games, while check-
ing just a small fraction of the 2n2 payoffs of an n-player, 2-strategy game. The
basic kind of query is a single-payoff query which receives as input a player
i ∈ [n], a strategy j ∈ {1, 2}, and the number x ∈ {0, . . . , n − 1} of players
playing strategy one, and it returns the corresponding payoff ui

j(x). The query
complexity of an algorithm is the expected number of single-payoff queries that
it needs in the worst case. Hence, an algorithm is query-efficient if its query
complexity is o(n2).

A profile query (used in [15]) consists of an action profile (a1, . . . , an) ∈
{1, 2}n as input and outputs the payoffs that every player i obtains according
to that profile. Clearly, a profile query can be simulated using n single-payoff
queries. Finally, an all-players query consists of a pair (x, j) for x ∈ {0, . . . , n−1},
j ∈ {1, 2}, and the response to (x, j) consists of the values ui

j(x) for all i ∈ [n]. We
will consider the cost of a query to be equal to the number of payoffs it returns;
hence, a profile or an all-players query costs n single-payoff queries. We find that
an algorithm being constrained to utilize profile queries may incur a linear loss
in query-efficiency1. Therefore, we focus on single-payoff and all-players queries,
which better exploit the symmetries of anonymous games.

1.2 Related Work

In the last decade, there has been interest in the complexity of computing approx-
imate Nash equilibria. A main reason is the PPAD-completeness results for
computing an exact NE, for normal-form games [5,8] (the latter paper extends
the hardness also to an FPTAS), and recently also for anonymous games with 7
strategies [6]. The FIXP-completeness results of [14] for multiplayer games show
an algebraic obstacle to the task of writing down a useful description of an exact
equilibrium. On the other hand, there exists a subexponential-time algorithm
to find an ε-NE in normal-form games [20], and one important open question
regards the existence of a PTAS for bimatrix games.

Daskalakis and Papadimitriou proved that anonymous games admit a PTAS
and provided several improvements of its running time over the past few years.
Their first algorithm [9] concerns two-strategy games and is based upon the
quantization of the strategy space into nearby multiples of ε. This result was also
1 Due to space constraints, we defer this discussion to the full version of the paper

(http://arxiv.org/abs/1412.6455).

http://arxiv.org/abs/1412.6455
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extended to the multi-strategy case [10]. Daskalakis [7] subsequently gave an effi-
cient PTAS whose running time is poly(n) · (1/ε)O(1/ε2), which relies on a better
understanding of the structure of ε-equilibria in two-strategy anonymous games:
There exists an ε-WSNE where either a small number of the players – at most
O(1/ε3) – randomize and the others play pure strategies, or whoever randomizes
plays the same mixed strategy. Furthermore, Daskalakis and Papadimitriou [11]
proved a lower bound on the running time needed by any oblivious algorithm,
which lets the latter algorithm be essentially optimal. In the same article, they
show that the lower bound can be broken by utilizing a non-oblivious algorithm,
which has the currently best-known running time for finding an ε-equilibrium
in two-strategy anonymous games of O(poly(n) · (1/ε)O(log2(1/ε))). A complete
proof is in [12].

In Sect. 3 we present a bound for λ-Lipschitz games, in which λ is a parameter
limiting the rate at which ui

j(x) changes as x changes. Any λ-Lipschitz k-strategy
anonymous game is guaranteed to have an ε-approximate pure Nash equilibrium,
with ε = O(λk) [1,13]. The convergence rate to a Nash equilibrium of best-reply
dynamics in the context of two-strategy Lipschitz anonymous games is studied
by [2,19]. Moreover, Brandt et al. [4] showed that finding a pure equilibrium
in anonymous games is easy if the number of strategies is constant w.r.t. the
number of players n, and hard as soon as there is a linear dependence.

In the last two years, several researchers obtained bounds for the query com-
plexity for approximate equilibria in different game settings, which we briefly
survey. Fearnley et al. [15] presented the first series of results: they studied
bimatrix games, graphical games, and congestion games on graphs. Similar to
our negative result for exact equilibria of anonymous games, it was shown that
a Nash equilibrium in a bimatrix game with k strategies per player requires k2

queries, even in zero-sum games. However, more positive results arise if we move
to ε-approximate Nash equilibria. Approximate equilibria of bimatrix games were
studied in more detail in [16].

The query complexity of equilibria of n-player games – a setting where payoff
functions are exponentially-large – was analyzed in [3,17,18]. Hart and Nisan [18]
showed that exponentially many deterministic queries are required to find a 1

2 -
approximate correlated equilibrium (CE) and that any randomized algorithm
that finds an exact CE needs 2Ω(n) expected cost. Notice that lower bounds
on correlated equilibria automatically apply to Nash equilibria. Goldberg and
Roth [17] investigated in more detail the randomized query complexity of ε-
CE and of the more demanding ε-well-supported CE. Babichenko [3] proved an
exponential-in-n randomized lower bound for finding an ε-WSNE in n-player,
k-strategy games, for constant k = 104 and ε = 10−8. These exponential lower
bounds do not hold in anonymous games, which can be fully revealed with a
polynomial number of queries.

1.3 Our Results and Their Significance

Query-efficiency seems to serve as a criterion for distinguishing exact from
approximate equilibrium computation. It applies to games having exponentially-
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large representations [18], also for games having poly-sized representations (e.g.
bimatrix games [15]). Here we extend this finding to the important class of
anonymous games. We prove that even in two-strategy anonymous games, an
exact Nash equilibrium demands querying the payoff function exhaustively, even
with the most powerful query model (Theorem 1). Alongside this, we provide
an example of a three-player, two-strategy anonymous game whose unique Nash
equilibrium needs all players to randomize with an irrational amount of proba-
bility (Theorem 2), answering a question posed in [13]. These results motivate
our subsequent focus on approximate equilibria.

We exhibit a simple query-efficient algorithm that finds an approximate pure
Nash equilibrium in Lipschitz games (Algorithm 1; Theorem 3), which will be
used by our main algorithm for anonymous games.

Our main result (Theorem 4) is a new randomized approximation scheme2

for anonymous games that differs conceptually from previous ones and offers
new performance guarantees. It is query-efficient (using o(n2) queries) and has
improved computational efficiency. It is the first PTAS for anonymous games that
is polynomial in a setting where n and 1/ε are polynomially related. In particular,
its runtime is polynomial in n in a setting where 1/ε may grow in proportion to
n1/4 and also has an improved polynomial dependence on n for all ε ≥ n−1/4. In
more detail, for any ε ≥ n−1/4, the algorithm adaptively finds a O (ε)-NE with
Õ (

√
n) (where we use Õ(·) to hide polylogarithmic factors of the argument)

all-players queries (i.e., Õ
(
n3/2

)
single payoffs) and runs in time Õ

(
n3/2

)
. The

best-known algorithm of [13] runs in time O(poly(n) · (1/ε)O(log2(1/ε))), where
poly(n) ≥ O(n7).

In addition to this, we derive a randomized logarithmic lower bound on the
number of all-players queries needed to find any non-trivial ε-WSNE in two-
strategy anonymous games (Theorem 5).

2 Exact Nash Equilibria

We lower-bound the number of single-payoff queries (the least constrained query
model) needed to find an exact NE in an anonymous game. We exhibit games in
which any algorithm must query most of the payoffs in order to determine what
strategies form a NE. Difficult games are ones that only possess NE where Ω(n)
players must randomize.

Example 1. Let G be the following two-strategy, n-player anonymous game. Let
n be even, and let δ = 1/n2. Half of the players have a utility function as shown
by the top side (a) of Fig. 1, and the remaining half as at (b).

Theorem 1. A deterministic single-payoff query-algorithm may need to query
Ω(n2) payoffs in order to find an exact Nash equilibrium of an n-player, two-
strategy anonymous game.
2 To make Theorem 4 easier to read, we state it only for the best attainable approxima-

tion (i.e., n−1/4); however, it is possible to set parameters to get any approximation
ε ≥ n−1/4. For details, see the proof of Theorem 4.
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x 0 1 2 . . . n − 2 n − 1

ui
1(x) 1

2
− n

2
− 1

2
δ ui

1(0) − n
2

− 3
2

δ ui
1(1) − n

2
− 5

2
δ . . . ui

1(n − 3) + n
2

− 3
2

δ ui
1(n − 2) + n

2
− 1

2
δ

ui
2(x) 1

2
ui
1(0) ui

1(1) . . . ui
1(n − 3) ui

1(n − 2)

(a) Payoff table for “majority-seeking” player i
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(b) Payoff table for “minority-seeking” player i

Fig. 1. Majority-minority game G’s payoffs. There are n
2

majority-seeking players and
n
2

minority-seeking players. x denotes the number of players other than i who play 1.

The proof of Theorem 1 (in the full version of the paper) shows that in
any NE of G, at least n/2 players must use mixed strategies. Consequently the
distribution of the number of players using either strategy has support ≥ n/2,
so for a typical player it is necessary to check n/2 of his payoffs.

2.1 A Game Whose Solution Must Have Irrational Numbers

Daskalakis and Papadimitriou [13] note as an open problem, the question of
whether there is a 2-strategy anonymous game whose Nash equilibria require
players to mix with irrational probabilities. The following example shows that
such a game does indeed exist, even with just 3 players. In the context of this
paper, it is a further motivation for our focus on approximate rather than exact
Nash equilibria.

Example 2. Consider the following anonymous game represented in normal-form
in Fig. 2. It can be checked that the game satisfies the anonymity condition.
In the unique equilibrium, the row, the column, and the matrix players must
randomize respectively with probabilities

pr =
1
12

(
√

241 − 7), pc =
1
16

(
√

241 − 7), pm =
1
36

(23 −
√

241).

1 2

1 (1, 0, 1) (1, 1
2
, 0)

2 (0, 0, 0) ( 1
2
, 1
4
, 0)

1

1 2

1 (1, 0, 0) (0, 1
4
, 1
2
)

2 ( 1
2
, 1, 1

2
) (1, 0, 1)

2

Fig. 2. The three-player two-strategy anonymous game in normal form. A payoff tuple
(a, b, c) represents the row, the column, and the matrix players’ payoff, respectively.
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Theorem 2. There exists a three-player, two-strategy anonymous game that has
a unique Nash equilibrium where all the players must randomize with irrational
probabilities.

We show in the full version of the paper that Example 2 is a game that does
indeed satisfy the conditions of Theorem 2.

3 Lipschitz Games

Lipschitz games are anonymous games where every player’s utility function is
Lipschitz-continuous, in the sense that for all i ∈ [n], all j ∈ {1, 2}, and all
x, y ∈ {0, . . . , n − 1},

∣
∣ui

j(x) − ui
j(y)

∣
∣ ≤ λ |x − y|, where λ ≥ 0 is the Lipschitz

constant. For games satisfying a Lipschitz condition with a small value of λ, we
obtain a positive result (that we apply in the next section) for approximation
and query complexity.

Definition 1. Let (x ∈ {0, . . . , n − 1}, j ∈ {1, 2}) be the input for an all-
players query. For δ ≥ 0, a δ-accurate all-players query returns a tuple of values
(f1

j (x), . . . , fn
j (x)) such that for all i ∈ [n], |ui

j(x) − f i
j(x)| ≤ δ, i.e., they are

within an additive δ of the correct payoffs (u1
j (x), . . . , un

j (x)).

Theorem 3. Let G be an n-player, two-strategy λ-Lipschitz anonymous game.
Algorithm 1 finds a pure-strategy 3(λ + δ)-WSNE with 4 log n δ-accurate all-
players payoff queries.

The proof (in the full version of the paper) shows how a solution can be found
via a binary search on {0, . . . , n − 1}. Existence of pure approximate equilibria
is known already by [13] in the context of k-strategy games. Their proof reduces
the problem to finding a Brouwer fixed point. Theorem 3 is used in the next
section as part of an algorithm for general anonymous games.

4 General Two-Strategy Anonymous Games

First, we present our main result (Theorem 4). Next, we prove a lower bound
on the number of queries that any randomized algorithm needs to make to find
any ε-WSNE.

4.1 Upper Bound

Before going into technical lemmas, we provide an informal overview of the
algorithmic approach. Suppose we are to solve an n-player game G. The first
idea is to smooth every player’s utility function, so that it becomes λ-Lipschitz
continuous for some λ. We smooth a utility function by requiring every player
to use some amount of randomness. Specifically, for some small ζ we make every
player place probability either ζ or 1 − ζ onto strategy one. Consequently, the
expected payoff for player i is obtained by averaging her payoff values w.r.t. a sum
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of two binomial distributions, consisting of a discrete bell-shaped distribution
whose standard deviation is at least ζ

√
n.

We construct the smooth game Ḡ in the following manner. The payoff
received in Ḡ by player i when x other players are playing strategy one is given
by the expected payoff received in G by player i when x other players play one
with probability 1 − ζ and n − 1 − x other players play one with probability ζ.
This creates a λ-Lipschitz game Ḡ with λ = O (1/ζ

√
n).

Due to dealing with a two-strategy Lipschitz game, we can use the bisection
method of Algorithm 1. If we were allowed to query Ḡ directly, a logarithmic
number of all-players queries would suffice. Unfortunately, this is not the case;
thus, we need to simulate a query to Ḡ with a small number of queries to the
original game G. Those queries are randomly sampled from the mixed anonymous
profile above, and we take enough samples to ensure we get good estimates of
the payoffs in Ḡ with sufficiently high probability.

Thus, we are able to find an approximate pure Nash equilibrium of Ḡ with
Õ(

√
n) all-players queries. This equilibrium is mapped back to G by letting the

players who play strategy one in Ḡ, play it with probability 1 − ζ in G, and the
ones who play strategy two in Ḡ place probability ζ on strategy one in G. The
quality of the approximation is proportional to

(
ζ + (ζ

√
n)−1

)
.

Before presenting our main algorithm (Algorithm 2) and proving its efficiency,
we state the following lemmas (proven in the full version and used in the proof
of Theorem 4).

Lemma 1 [13]. Let X,Y be two random variables over {0, . . . , n} such that
‖X − Y ‖TV ≤ δ (where ‖X − Y ‖TV denotes the total variation distance between
X and Y , i.e., 1/2 · ∑n

x=0 |Pr[X = x] − Pr[Y = x]|). Let f : {0, . . . , n} −→ [0, 1].
Then,

n∑

x=0

f(x) · (Pr[X = x] − Pr[Y = x]) ≤ 2δ.

Lemma 2 (Simulation of a query to Ḡ (Algorithm 2)). Let δ, τ > 0.
Let X be the sum of n − 1 Bernoulli random variables representing a mixed
anonymous profile of an n-player game G. Suppose we want to estimate, with
additive error δ, the expected payoffs E[ui

j (X)] for all i ∈ [n], j ∈ {1, 2}. This
can be done with probability ≥ 1−τ using (1/2δ2)·log (4n/τ) all-players queries.

Lemma 3. Let X(j,n) :=
∑

i∈[n] Xi denote the sum of n independent 0-1 ran-
dom variables such that E[Xi] = 1 − ζ for all i ∈ [j], and E[Xi] = ζ for all
i ∈ [n] \ [j]. Then, for all j ∈ [n], we have that

∥
∥
∥X(j−1,n) − X(j,n)

∥
∥
∥
TV

≤ O

(
1

ζ
√

n

)

.

Definition 2. Let G = (n, 2, {ui
j}i∈[n],j∈{1,2}) be an anonymous game. For

ζ > 0, the ζ-smoothed version of G is a game Ḡ = (n, 2, {ūi
j}i∈[n],j∈{1,2}) defined

as follows. Let X
(x)
−i :=

∑
j �=i Xi denote the sum of n − 1 Bernoulli random vari-

ables where x of them have expectation equal to 1 − ζ, and the remaining ones
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have expectation equal to ζ. The payoff ūi
j(x) obtained by every player i ∈ [n]

for playing strategy j ∈ {1, 2} against x ∈ {0, . . . , n − 1} is

ūi
j(x) :=

n−1∑

y=0

ui
j(y) · Pr

[
X

(x)
−i = y

]
= E

[
ui

j

(
X

(x)
−i

)]
.

Theorem 4. Let G = (n, 2, {ui
j}i∈[n],j∈{1,2}) be an anonymous game. For ε

satisfying 1/ε = O(n1/4), Algorithm 2 can be used to find (with probability ≥ 3
4)

an ε-NE of G, using O(
√

n · log2 n) all-players queries (hence, O(n3/2 · log2 n)
single-payoff queries) in time O(n3/2 · log2 n).

Algorithm 1. Approximate NE Lipschitz
Data: δ-accurate query access to utility function ū of n-player λ-Lipschitz game

Ḡ.
Result: pure-strategy 3(δ + λ)-NE of Ḡ.
begin

Let BR1(i) be the number of players whose best response (as derived from
the δ-accurate queries) is 1 when i of the other players play 1 and n − 1 − i
of the other players play 2.
Define φ(i) = BR1(i) − i. // by construction, φ(0) ≥ 0

// and φ(n − 1) ≤ 0
If BR1(0) = 0, return all-1’s profile.
If BR1(n − 1) = n, return all-2’s profile.
Otherwise, // In this case, φ(0) > 0 and φ(n − 1) ≤ 0
Find, via binary search, x such that φ(x) > 0 and φ(x + 1) ≤ 0.
Construct pure profile p̄ as follows:

For each player i, if ūi
1(x) − ūi

2(x) > 2δ, let i play 1, and if
ūi
2(x) − ūi

1(x) > 2δ, let i play 2. (The ūi
j ’s are δ-accurate.) Remaining

players are allocated either 1 or 2, subject to the constraint that x or x + 1
players in total play 1.
return p̄.

end

Proof. Set ζ equal to ε and let Ḡ be the ζ-smoothed version of G. We claim that
Ḡ is a λ-Lipschitz game for λ = O

(
(ζ

√
n)−1

)
. Let X

(x)
−i be as in Definition 2. By

Lemma 3,
∥
∥
∥X

(x−1)
−i − X

(x)
−i

∥
∥
∥
TV

≤ O
(

1
ζ
√

n

)
for all x ∈ [n−1]. Then by Lemma 1,

we have
∣
∣ūi

j(x − 1) − ūi
j(x)

∣
∣ ≤ O

(
1

ζ
√

n

)

.

Theorem 3 shows that Algorithm 1 finds a pure-strategy 3(λ + δ)-WSNE
of Ḡ, using O(log n) δ-accurate all-players queries. Thus, Algorithm 1 finds a
O( 1

ζ
√

n
+ δ)-WSNE of Ḡ, where δ is the additive accuracy of queries.
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Algorithm 2. Approximate NE general
Data: ε; query access to utility function u of n-player anonymous game G;

parameters τ (failure probability), δ (accuracy of queries).
Result: O (ε)-NE of G.
begin

Set ζ = ε. Let Ḡ be the ζ-smoothed version of G, as in Definition 2.
// By Lemma 1 and Lemma 3 it follows that

// Ḡ is λ-Lipschitz for λ = O(1/ζ
√

n).
Apply Algorithm 1 to Ḡ, simulating each all-players δ-accurate query to Ḡ
using multiple queries according to Lemma 2.
Let p̄ be the obtained pure profile solution to Ḡ.
Construct p by replacing probabilities of 0 in p̄ with ζ and probabilities of 1
with 1 − ζ.
return p.

end

Despite not being allowed to query Ḡ directly, we can simulate any δ-accurate
query to Ḡ with a set of randomized all-players queries to G. This is done in
the body of Algorithm 2. By Lemma 2, for τ > 0, (1/2δ2) log(4n/τ) randomized
queries to G correctly simulate a δ-accurate query to Ḡ with probability ≥ 1−τ .

In total, the algorithm makes O
(
log n · (1/δ2) · log(n/τ)

)
all-players payoff

queries to G. With a union bound over the 4 log n simulated queries to Ḡ, this
works with probability 1 − 4τ log n.

Once we find this pure-strategy O
(

1
ζ
√

n
+ δ

)
-WSNE of Ḡ, the last part of

Algorithm 2 maps the pure output profile to a mixed one where whoever plays 1
in Ḡ places probability (1− ζ) on 1, and whoever plays 2 in Ḡ places probability
ζ on 1. It is easy to verify that the regret experienced by player i (that is, the
difference in payoff between i’s payoff and i’s best-response payoff) in G is at
most ζ more than the one she experiences in Ḡ.

The extra additive ζ to the regret of players means that we have an ε-NE of G
with ε = O(ζ+δ+ 1

ζ
√

n
). The query complexity thus is O(log n·(1/δ2)·log(n/τ)).

Setting δ = 1/ 4
√

n, ζ = 1/ 4
√

n, τ = 1/16 log n, we find an O(1/ 4
√

n)-Nash
equilibrium using O(

√
n · log2 n) all-players queries with probability at least

3/4. We remark that the above parameters can be chosen to satisfy any given
approximation guarantee ε ≥ n−1/4, i.e., simply find solutions to the equation
ε = ζ + δ + (ζ

√
n)−1. This allows for a family of algorithms parameterized by ε,

for ε ∈ [n−1/4, 1), thus an approximation scheme.
The runtime is equal to the number of single-payoff queries and can be calcu-

lated as follows. Calculating the value of φ(i) in Algorithm 1 takes O(n
√

n log n).
We make O(

√
n log n) queries to G to simulate one in Ḡ, and once we gather

all the information, we need an additional linear time to count the number of
players whose best response is 1. The fact that the above part is performed at
every step of the binary search implies a total running time of O(n3/2 · log2 n)
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for Algorithm 1. Algorithm 2 simply invokes Algorithm 1 and only needs linear
time to construct the profile p; thus, it runs in the same time. 	


4.2 Lower Bound

We use the minimax principle and thus define a distribution over instances that
will lead to the lower bound on query complexity, for any deterministic algo-
rithm. We specify a distribution over certain games that possess a unique pure
Nash equilibrium. The n players that participate in any of these games are
partitioned into log n groups, which are numbered from 1 to log n. Group i’s
equilibrium strategy depends on what all the previous groups {1, . . . , i− 1} play
at equilibrium. Hence, finding out what the last group should play leads to a
lower bound of Ω(log n) all-players queries.

Lemma 4. Let Gn be the class of n-player two-strategy anonymous games such
that ui

1(x) = 1 − ui
2(x) and ui

1(x) ∈ {0, 1}, for all i ∈ [n], x ∈ {0, . . . , n − 1}.
Then, there exists a distribution Dn over Gn such that every G drawn from Dn

has a unique (pure-strategy) ε-WSNE.

Theorem 5. Let Gn be defined as in Lemma 4. Then, for any ε ∈ [0, 1), any
randomized all-players query algorithm must make Ω(log n) queries to find an
ε-WSNE of Gn in the worst case.

5 Conclusions and Further Work

Our interest in the query complexity of anonymous games has resulted in an
algorithm that has an improved runtime-efficiency guarantee, although limited
to when the number of strategies k is equal to 2. Algorithm 2 (Theorem 4)
finds an ε-NE faster than the PTAS of [13], for any ε ≥ 1/ 4

√
n. In particular,

for ε = 1/ 4
√

n, their algorithm runs in subexponential time, while ours is just
Õ(n3/2); however, our ε-NE is not well-supported.

An immediate question is whether we can obtain sharper bounds on the query
complexity of two-strategy games. There are ways to potentially strengthen the
results. First, our lower bound holds for well-supported equilibria; it would be
interesting to know whether a logarithmic number of queries is also needed to
find an ε-NE for ε < 1

2 . We believe this is the case at least for small values
of ε. Second, the ε-NE found by our algorithm are not well-supported since all
players are forced to randomize. Is there a query-efficient algorithm that finds an
ε-WSNE? Third, we may think of generalizing the algorithm to the (constant)
k-strategy case by letting every player be obliged to place probability either ζ

k

or 1 − k−1
k ζ and obtain a similar smooth utility function. However, in this case

we cannot use a bisection algorithm to find a fixed point of the smooth game.
As a consequence, the query complexity might be strictly larger.
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Abstract. Recently, Frazier et al. proposed a natural model for crowd-
sourced exploration of different a priori unknown options: a princi-
pal is interested in the long-term welfare of a population of agents
who arrive one by one in a multi-armed bandit setting. However, each
agent is myopic, so in order to incentivize him to explore options with
better long-term prospects, the principal must offer the agent money.
Frazier et al. showed that a simple class of policies called time-expanded
are optimal in the worst case, and characterized their budget-reward
tradeoff. The previous work assumed that all agents are equally and uni-
formly susceptible to financial incentives. In reality, agents may have
different utility for money. We therefore extend the model of Frazier et
al. to allow agents that have heterogeneous and non-linear utilities for
money. The principal is informed of the agent’s tradeoff via a signal that
could be more or less informative.

Our main result is to show that a convex program can be used to
derive a signal-dependent time-expanded policy which achieves the best
possible Lagrangian reward in the worst case. The worst-case guarantee
is matched by so-called “Diamonds in the Rough” instances; the proof
that the guarantees match is based on showing that two different convex
programs have the same optimal solution for these specific instances.

Keywords: Multi-armed bandit problems · Mechanism design ·
Incentives

1 Introduction

The goal of mechanism design is to align incentives when different parties have
conflicting interests. In the VCG mechanism, the mechanism designer wants to
maximize social welfare whereas each bidder selfishly maximizes his own pay-
off. In revenue maximization, the objectives are even more directly opposed,
as any increase in the bidders’ surplus hurts the revenue for the auctioneer. In
all of these cases, it is the mechanism’s task to trade off between the differing
interests.

The phrase “trade off” is also frequently applied in the context of online
learning and the multi-armed bandit (MAB) problem, where the “exploration
c© Springer-Verlag Berlin Heidelberg 2015
E. Markakis and G. Schäfer (Eds.): WINE 2015, LNCS 9470, pp. 370–383, 2015.
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vs. exploitation tradeoff” is routinely referenced. However, in the traditional
view of a single principal making a sequence of decisions to maximize long-term
rewards, it is not clear what exactly is being traded off against what. Recent
work by Frazier et al. [4] makes this tradeoff more explicit, by juxtaposing a
principal (with a far-sighted goal of maximizing long-term rewards) with selfish
and myopic agents. Thus, the principal wants to “explore,” while the agents
want to “exploit.” In order to partially align the incentives, the principal can
offer the agents monetary payments for pulling particular arms.

The framework of Frazier et al. [4] is motivated by many real-world applica-
tions, all sharing the property that the principal is interested in the long-term
outcome of an exploration of different options, but cannot carry out the explo-
ration herself1. Perhaps the most obvious fit is that of an online retailer with
a large selection of similar products (e.g., cameras on amazon.com); in order to
learn which of these products are best (and ensure that future buyers purchase
the best product), the retailer needs to rely on customers to buy and review
the products. Each customer prefers to purchase the best product for himself
based on the current reviews, whereas the principal may want to obtain addi-
tional reviews for products that currently have few reviews, but may have the
potential of being high quality. Customers can be incentivized to purchase such
products by offering suitable discounts.

Frazier et al. [4] explore this tradeoff under the standard time-discounted
Bayesian2 multi-armed bandit model (described formally in Sect. 2). In each
round, each arm i has a known posterior reward distribution vi conditioned on
its history so far, and one arm is pulled based on the current state of the arms.
The principal’s goal is to maximize the total expected time-discounted reward
R =

∑∞
t=0 γt

E [vit
], where γ is the time discount factor. However, without incen-

tives, each selfish agent would pull the myopic arm i maximizing the immediate
expected reward E [vi]. When the principal offers payments ci for pulling arms
i, in [4], the agent’s utility for pulling arm i is E [vi] + ci, and a myopic agent
will choose the arm maximizing this sum.

Implicit in this model is the assumption that all agents have the same (one-
to-one) tradeoff between arm rewards and payments. In reality, different agents
might have different and non-linear tradeoffs between these two, due to a number
of causes. The most obvious is that an agent with a large money endowment may
not value additional payments as highly as an agent with less endowment; this
is generally the motivation for positing concave utility functions of money. In
the case of an online retailer, another obvious reason is that different customers
may intend to use the product for different amounts of time or with different
intensity, making the optimization of quality more or less important. Concretely,
a professional photographer may be much less willing to compromise on quality
in return for a discount than an amateur.

1 To avoid ambiguity, we consistently refer to the principal as female and the agents
as male.

2 Both Frazier et al. [4] and our work in fact consider a generalization in which each
arm constitutes an independent Markov chain with Martingale rewards.
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The main contribution of the present article is an extension of the model and
analysis of Frazier et al. [4] to incorporate non-uniform and non-linear tradeoffs
between rewards and money.

Related Work

The MAB problem was first proposed by Robbins [13] as a model for sequential
experiments design. Under the Bayesian model with time-discounted rewards,
the problem is solved optimally by the Gittins Index policy [7]; a further discus-
sion is given in [5,6,9,17].

An alternative objective of MAB problem, often pursued in the CS literature,
is regret-minimization, as initiated by Lai and Robbins [11] within a Bayesian
arm reward setting. Auer et al. [1,2] gave an algorithm with regret bound for
adversarial settings.

There is a rich literature that considers MAB problems when incentive issues
arise. A common model is that a principal has to hire workers to pull arms, and
both sides want to maximize their own utility. Singla and Krause [14] gave a
truthful posted price mechanism. In [10,12], the reward history is only known by
the principal, and she can incentivize workers by disclosing limited information
about the reward history to the worker. Ho et al. [8] used the MAB framework
as a tool to design optimal contracts for agents with moral hazard. Using the
technique of discretization, they achieved sublinear regret for the net utility
(reward minus payment) over the time horizon. For a review of more work in
the area, see the position paper [15].

2 Preliminaries

2.1 Multi-armed Bandits

In a multi-armed bandits (MAB) instance, we are given N arms, each of which
evolves independently as a known Markov chain whenever pulled. In each round3

t = 0, 1, 2, · · · , an algorithm can only pull one of the arms; the pulled arm will
generate a random reward and then transition to a new state randomly according
to the known Markov chain.

Formally, let vt,i be the random reward generated by arm i if it is pulled
at time t. Let S0,i be the initial state of the Markov chain of the i-th arm and
St,i the state of arm i in round t. The distribution of vt,i is determined by St,i.
Then, an MAB instance consists of N independent Markov chains and their
initial states S0 = (S0,i)N

i=1.
In this article, we are only interested in cases where the reward sequence for

any single arm forms a Martingale, i.e.,

E [E [vt+1,i | St+1,i] | St,i] = E [vt,i | St,i] .

3 We use the terms “round” and “time” interchangeably.



Incentivizing Exploration with Heterogeneous Value of Money 373

A policy A is an algorithm that decides which arm to pull in round t based on
the history of observations and the current state of all arms. Formally, a policy is
a (randomized) mapping A : (t,Ht,St) �→ it, where St = (St,i)N

i=1 is the vector
of arms’ states, Ht is the history up to time t, and it is the selected arm.

To evaluate the performance of a policy A, we use standard time-discounting
[7]. Let γ ∈ (0, 1) be the time discount factor that measures the relative impor-
tance between future rewards and present rewards. The total expected time-
discounted reward can be defined as R(γ)(A) = EA [

∑∞
t=0 γtvt,it

], where EA [ · ]
denotes the expectation conditioned on the policy A being followed and the
information it obtained, as in [4].

Given a time discount factor γ, we denote the optimal policy for that time
discount (and also — in a slight overload of notation — its total expected time-
discounted reward) by OPTγ . This can be accomplished by the well-known Git-
tins Index policy [7], which computes an index for each arm i based on the state
of the Markov chain, and then chooses the arm with largest index

We call the arm with the maximum immediate expected reward E [vt,i | St]
the myopic arm. A policy is called myopic if it pulls the myopic arm in each
round. The myopic policy only exploits with no exploration, so it is inferior to
the optimum policy in general, especially when the time-discount factor γ is
close to 1.

2.2 Selfish Agents

We label each agent by the time t when he arrives, and assume he has a monotone
and concave money utility function μt : R+ → R

+ mapping the payment he gets
to his corresponding utility. The special case where μt(x) = x was studied in [4].

In round t, the Markov chain state St and E [vt,i | St] are publicly known by
both the agent and the principal. When the principal offers a payment ct,i for
pulling arm i, incentivized by these extra payments ct,i, agent t now pulls the
arm maximizing his utility E [vt,i | St,i] + μt(ct,i). If arm it is pulled by agent t,
the principal’s reward from this pull is E [vt,it

| St,it
].

We assume a publicly known prior (whose cumulative distribution function
is denoted by F ) over the money utility function μ. When a new agent arrives,
his money utility function is drawn from F independently of prior draws.

2.3 Signaling Scheme

In the presence of uncertainty about each individual’s money utility function,
an important question is how much the principal knows about μt at the time
she chooses the payment vector ct = (ct,i)i to announce for the arm pulls. In
the worst case, the principal may know nothing about agent t as he arrives. In
that case, the payment vector ct can only depend on F . At the other extreme,
the principal may learn μt exactly. Reality will typically lie between these two
extreme cases. Both financial endowments and intended use can be partially
inferred from past searches and purchases in the case of an online retailer. This
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partial information will give the principal a more accurate estimate of the agent’s
money utility function than what could be learned from the prior distribution
F alone, allowing her to better engineer the incentives.

We model the notion of partial information using the standard economic
notion of an exogenous signaling scheme [16], which is given as input. When an
agent with money utility function μ arrives, a signal s ∈ Σ correlated to μ is
revealed to the principal according to the signaling scheme ϕ; Σ is called the
signal space, and we assume that it is countable.4

Formally, let ϕ(μ, s) be the probability that signal s is revealed when the
agent’s money utility function is μ. In this way, the signals are statistically
correlated with the money utility function μ, and thus each signal reveals partial
information about μ. After receiving the signal s, the principal updates her
posterior belief of the agent’s money utility function according to Bayes Law.

2.4 Linear Money Utility Functions

Justified by the following lemma (proved in the full version), for the rest of the
article, we focus on linear money utility functions.

Lemma 1. Given a distribution F over money utility functions, define a new
distribution F ′ as follows: if μ is the result of a draw, output μ′(x) = r · x,
where r = limx→∞

μ(x)
x . Then the same approximation ratio (defined later) can

be achieved for F and F ′, and this ratio is tight.

Lemma 1 shows that in a certain sense, linear functions μ constitute the worst
case for the principal.

Therefore, we will exclusively focus on the case of linear money utility func-
tions μt(x) = rt · x. We then identify the distribution F with a distribution over
the values rt, which we call the conversion ratio of agent t. For the remainder
of this article, all distributions and signals are assumed to be over conversion
ratios instead of money utility functions.

Now if the principal receives a signal s from a signaling scheme ϕ about the
agent’s conversion ratio r drawn from distribution with PDF5 f , she will update
her posterior belief of r:

fs(r) =
ϕ(r, s)f(r)

ps
, (1)

where fs(r) is the PDF of the posterior belief and ps =
∫ ∞
0

ϕ(r, s)f(r)dr is the
probability that signal s is observed. For each signal s ∈ Σ, let Fs be the CDF

4 When the signal space is uncountable, defining the posterior probability density
requires the use of Radon-Nikodym derivatives, and raises computational and repre-
sentational issues. In Sect. 6, we consider what is perhaps the most interesting special
case: that the signal reveals the precise value of r to the principal.

5 In Eq. (1), if the support of r is finite, f(r) can be replaced by the probability mass
function.
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of the corresponding posterior belief. As a special case, if the signaling scheme
reveals no information, then Fs = F .

Throughout, we focus on the case when the posterior distributions Fs satisfies
a condition called semi-regularity, which is defined as follows:

Definition 1 (Semi-Regularity). A distribution with CDF G is called semi-
regular if 1−x

G−1(x) is convex. (When G is not invertible, we define G−1(x) :=
sup{t ≥ 0 : G(t) ≤ x}.)

Semi-regularity is a generalization of a well-known condition called regularity,
defined as follows.

Definition 2 (Regularity). A distribution with CDF G is regular if G−1(x) ·
(1 − x) is concave.

Lemma 2. Let G be a CDF. If G−1(x)·(1−x) is concave, then 1−x
G−1(x) is convex.

In particular, regularity implies semi-regularity.

2.5 Policies with Selfish Agents and Partial Information

The previous definition we gave of a policy did not take information on the
agent’s type into account. In light of this additional information, we give a refined
definition. In addition to deciding on which arm to pull, a policy may decide on
the payment to offer the agents based on the partial information obtained from
signals. Formally, a policy is now a randomized mapping A : (t,Ht,St, st) �→ ct,
where st is the signal revealed in round t, and ct,i is the extra payment offered for
pulling arm i in round t. After ct is announced, the myopic agent with conversion
ratio r will pull the arm it that maximizes his own utility, causing that arm to
transition according to the underlying Markov chain.

The expected payment of the principal is also time-discounted by the same6

factor γ. When A is implemented, the total expected payment will be C(γ)(A) =
EA [

∑∞
t=0 γtct,it

].
The principal faces two conflicting objectives: (a) maximizing the total

expected time-discounted reward R(γ)(A); (b) minimizing the total expected
time-discounted payment C(γ)(A); There are two natural ways of combining the
two objectives: via a Lagrangian multiplier, or by optimizing one subject to a
constraint on the other.

In the Lagrangian objective, the principal wishes to maximize R(γ)(A) −
λC(γ)(A) for some constant λ ∈ (0, 1). Here, λ can also be regarded as the
conversion ratio for the principal herself. Alternatively, the principal may be
constrained by a budget b, and want to maximize R(γ)(A) subject to the con-
straint that C(γ)(A) ≤ b.

In this paper, we perform a worst-case analysis with respect to the MAB
instances in a similar way as [4], while keeping an exogenous signaling scheme ϕ
and the prior F fixed.
6 A natural justification for having the same discount factor is that after each round,

with probability 1 − γ, the game ends.



376 L. Han et al.

Definition 3. For the Lagrangian objective of the problem, a policy A has
approximation ratio α under the signaling scheme ϕ and prior F if for all MAB
instances7,

R(γ)(A) − λC(γ)(A) ≥ α · OPTγ . (2)

Likewise, for the budgeted version, a policy has approximation ratio α respect-
ing budget b if

R(γ)(A) ≥ α · OPTγ C(γ)(A) ≤ b · OPTγ . (3)

3 Our Results

Our first main theorem addresses the Lagrangian objective.

Theorem 1. Let γ be the time discount factor. Given a semi-regular prior
distribution F and signaling scheme ϕ, one can efficiently compute a policy
TES and p∗(ϕ) such that the Lagrangian reward of TES is a (1 − p∗(ϕ)γ)-
approximation to OPTγ . This bound is tight.

Our second main theorem is for the budgeted version.

Theorem 2. Given a semi-regular prior distribution F , signaling scheme ϕ
and budget constraint b, there exists a policy TES whose total expected time-
discounted reward is a minλ{1−p∗(ϕ)λ+λb}− ε approximation to OPTγ , while
spending at most bOPTγ in expectation. This bound is tight.

In a sense, these theorems quantify the power of the signaling scheme ϕ in a single
number 1−p∗(ϕ)γ, via the approximation guarantee that can be achieved using
ϕ. If this number is meaningful, more informative signaling schemes should allow
for better approximation ratios, which we address by the following theorem:

Theorem 3. Let ϕ and ϕ′ be two signaling schemes such that ϕ′ is a garbling
of ϕ. Then, 1 − p∗(ϕ)γ ≥ 1 − p∗(ϕ′)γ.

Here, garbling is defined as follows:

Definition 4. Let ϕ,ϕ′ be signaling schemes with respective signal spaces Σ,Σ′.
ϕ′ is a garbling of ϕ if for all conversion ratios r and signals s ∈ Σ, s′ ∈ Σ′:
fs,s′(r) = fs(r), where fs(r) is the PDF of the conversion ratio r conditioned on
signal s.

Due to limited space, we will only give a proof sketch for Theorem1 in Sects. 4
and 5. The complete proofs of all theorems and lemmas in the article can be found
in the full version.

7 Note that all R(γ)(A), C(γ)(A) and OPTγ depend on the MAB instance.
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4 Lower Bound: Time-Expanded Algorithm

In this section, we analyze time-expanded algorithms with a Lagrangian objec-
tive, in a generalization of the originally proposed notion of [4]. In a time-
expanded algorithm, the principal randomizes between offering the agents no
reward (having them play myopically), and offering the reward necessary to
incentivize the agent to play the arm i∗t according to a particular algorithm A.
In the presence of signals, the randomization probabilities for the different sig-
nals need to be chosen and optimized carefully, which is the main algorithmic
contribution in this section. On the other hand, notice that if the posterior dis-
tribution of the conversion ratio conditioned on the signal is continuous, then
the randomness in the user’s type can instead be used as a randomization device,
and the principal may be able to offer incentives deterministically.

More formally, Frazier et al. [4] define a time-expanded version TEp,A of a
policy A, parameterized by a probability p, as

TEp,A(t) :=
{A(Ŝt) if Zt = 1

argmaxi E [vt,i | St] , otherwise

where Zt is a Bernoulli(1 − p) variable. Ŝt is the arm status that couples the
execution of the time-expanded policy and the policy A, which we will formally
define later. When Zt = 1, with the uniform agents defined in [4], in order to
incentivize an agent to pull the non-myopic arm, the principal has to offer a
payment of maxi E [vt,i | St] − E

[
vt,i∗

t
| St

]
, where i∗t = A(Ŝt).

A time-expanded version of policy A with signaling scheme ϕ works as fol-
lows: at time t, conditioned on the received signal s, the principal probabilisti-
cally offers a payment of ct,i∗

t
if the agent t pulls the arm i∗t . Notice that only two

options might maximize the agent’s utility: pulling the myopic arm, or pulling
the arm i∗t and getting the payment. There is a direct correspondence between
the payment ct,i∗

t
and the probability qs that the agent chooses to pull the myopic

arm. We will describe this correspondence below.
First, though, we discuss which arm i∗t the principal is trying to incentivize

the agent to pull. As in [4], it is necessary for the analysis that the execution of
A and of its time-expanded version can be coupled. To achieve this, in order to
evaluate which arm should be pulled next by A, the principal must only take the
information obtained from the non-myopic pulls into consideration. Formally, we
define Ŝt as follows: Define the random variable

Zt :=
{

0 agent t pulls the myopic arm
1 otherwise

and Xt,i = 1 if arm i is pulled at time t and 0 otherwise. Notice that Zt is a
Bernoulli variable, and Prob[Zt = 0] depends on the received signal s and the
payment offered by the principal. Let Nt,i =

∑t−1
0 ZtXt,i be the number of non-

myopic pulls of arm i before time t. Using this notation, we define Ŝt,i to be the
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state of the Markov chain of arm i after the first8 Nt,i pulls in the execution
history of the time-expanded policy TEp,A, and Ŝt = (Ŝt,i)i.

Let Fs be the posterior CDF of the agent’s conversion ratio. For simplicity
of notation, define x = maxi E [vt,i | St] to be the expected reward of the myopic
arm and y = E

[
vt,i∗

t
| St

]
to be the expected reward of arm i∗t . If the principal

offers a payment of ct,i∗
t
, then agents with conversion ratio r < x−y

ct,i∗
t

will still

choose the myopic arm. Assuming that agents break ties in favor of the principal,
when r ≥ x−y

ct,i∗
t

, they will prefer to pull arm i∗t .

Conversely, in order to achieve a probability of qs for pulling the myopic
arm, the principal can choose a payment of ct,i∗

t
= inf{c|Fs(x−y

c ) ≤ qs}. If Fs is
continuous at x−y

ct,i∗
t

, the probability of myopic play (conditioned on the signal) is

exactly qs, and ct,i∗
t

is the smallest payment achieving this probability. If there
is a discontinuity at x−y

ct,i∗
t

, then for every ε > 0, the probability of myopic play

with payment ct,i∗
t
+ε is less than qs. In that case, the principal offers a payment

of ct,i∗
t

with probability 1−qs

1−Fs((x−y)/ct,i∗
t
) for pulling arm i∗t , and no payment

otherwise. Now, the probability of a myopic pull will again be exactly qs.
To express the payment more concisely, we write Fs

−1(qs) = sup{r|Fs(r) ≤
qs}. Then, the payment can be expressed as ct,i∗

t
= x−y

Fs
−1(qs)

. In particular, when
Fs is continuous, ct,i∗

t
will be offered deterministically; otherwise, the principal

randomizes.
In summary, we have shown a one-to-one mapping between desired proba-

bilities qs for myopic play, and payments (and possibly probabilities, in the case
of discontinuities) for achieving the qs. We write q = (qs)s∈Σ for the vector of
all probabilities. The unconditional (prior) probability of playing myopically is∑

s∈Σ psqs, and the expected payment (x − y) · ∑
s∈Σ ps

1−qs

Fs
−1(qs)

.
We can now summarize the argument above and give a formal definition of

the time-expanded version of policy A with signal scheme ϕ,

Definition 5. A policy TESq,A,ϕ is a time-expanded version of policy A with
signaling scheme ϕ, if at time t, after receiving the signal s about agent t’s con-
version ratio, the principal chooses (randomized) payments such that the myopic
arm is pulled with probability qs, and the arm i∗t = A(Ŝt) is pulled with proba-
bility 1 − qs.

This is achieved by offering, with probability 1−qs

1−sup{Fs(r)|Fs(r)≤qs} , a payment

of
maxi E[vt,i | St]−E

[
vt,i∗

t
| St

]

Fs
−1(qs)

for pulling arm i∗t .
Here, Fs(r) is the CDF of the posterior distribution of the agent’s conversion

ratio conditioned on signal s.

8 As in [4], in order to facilitate the analysis, this may include myopic and non-myopic
pulls of arm i. For instance, if arm 1 was pulled as non-myopic arm at times 1 and
6, and a myopic pull of arm 1 occurred at time 3, then we would use the state of
arm 1 after the pulls at times 1 and 3.
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In order to analyze the expected Lagrangian reward, we adopt a heuristic
that cancels the payment with the expected reward the principal gets from the
myopic pull, leaving the reward from non-myopic pull alone in the expectation.
Then we have the following lemma, which gives a sufficient condition on q that
allows us to obtain a good approximation ratio of the Lagrangian to the optimum
solely in terms of

∑
s psqs.

Lemma 3. Fix a signaling scheme ϕ. If
∑

s∈Σ psqs ≥ λ
∑

s∈Σ ps
1−qs

F −1
s (qs)

is

satisfied by q, for η = (1−p)γ
1−pγ , where p =

∑
s∈Σ psqs, the time-expanded pol-

icy TESq,OPTη,ϕ satisfies

R
(γ)
λ (TESq,OPTη,ϕ) ≥ (1 − pγ) · OPTγ . (4)

Lemma 3 suggests a natural heuristic for choosing the myopic probabilities q:
maximize the approximation ratio 1 − pγ by minimizing p subject to the condi-
tions of the lemma. The optimization of p can be carried out using the following
non-linear program. Surprisingly, this näıve heuristic, motivated predominantly
by the need to cancel out terms in the expected reward of a single round, actually
gives us the optimal approximation ratio.

minimize
∑

s∈Σ psqs

subject to
∑

s∈Σ psqs ≥ λ
∑

s∈Σ ps
1−qs

F −1
s (qs)

0 ≤ qs ≤ 1, for all s ∈ Σ.

(5)

First, notice that the optimization problem is feasible, because q = 1 is a
trivial solution. Whenever Fs is semi-regular, 1−x

F −1
s (x)

is convex. Therefore, the
feasibility region of the optimization problem (5) is convex, and the problem can
be solved efficiently [3].

Theorem 4. Given a signaling scheme ϕ, let q∗ be the optimal solution of
the convex program (5), and p∗ be the optimal value. Then, with η = (1−p∗)γ

1−p∗γ ,
TESq∗,OPTη,ϕ is a 1 − p∗γ approximation policy to OPTγ .

Notice in Theorem 4 that q can be determined without knowledge of the
specific MAB instance; only the signaling scheme and the prior distribution of
conversion ratios need to be known.

5 Upper Bound: Diamonds in the Rough

In this section, we show that the approximation ratio 1 − p∗γ is actually tight
when the distribution Fs is semi-regular, where p∗ is the value of convex program
(5). For simplicity, when q∗ is clear from the context, we let TES∗ denote the
policy TESq∗,OPTη,ϕ where η = (1−p∗)γ

1−p∗γ (as in Theorem 4). We will show that
on a class of MAB instances called Diamonds-in-the-rough [4], the optimal policy
with payments (defined below) can achieve only a (1 − p∗γ)-fraction of OPTγ .
Therefore, not only is the analysis of TES∗’s approximation ratio tight, but
TES∗ also has the optimal approximation ratio 1 − p∗γ.
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Definition 6. The Diamonds-in-the-rough MAB instance Δ(B, γ) is defined as
follows. Arm 1 has constant value 1 − γ. All other (essentially infinitely many)
arms have the following reward distribution:

1. With probability 1/M , the arm’s reward is a degenerate distribution of the
constant (1 − γ)B · M (good state);

2. With probability 1 − 1/M , the arm’s reward is a degenerate distribution of
the constant 0 (bad state).

Note that if B < 1, then arm 1 is the myopic arm.
Since Δ(B, γ) is uniquely determined by B and is just one single instance,

the optimal policy that maximizes the Lagrangian objective, i.e., R(γ)(A) −
λC(γ)(A), is well-defined9. We call the policy that maximizes the Lagrangian
objective the optimal policy with payments, and denote it by OPT

(γ)
λ (Δ(B, γ)).

We can solve for the optimal policy with payments using another convex
program, which we next derive. Suppose that the optimal policy with payments
has time-discounted Lagrangian objective V . In the first round, it only has two
options: (a) let the agent play myopically (i.e., pull the constant arm); (b) incen-
tivize him to play a non-constant arm.

If option (a) is chosen and the agent pulled the constant arm, then the
principal learns nothing and faces the same situation in the second round. So
conditioned on the constant arm being pulled, the principal will get 1 − γ + γV .
If option (b) is chosen and a non-constant arm was pulled, then with probability
1/M , the non-constant arm will be revealed to be in the good state, and the
principal does not need to pay any agent again, obtaining value (1 − γ)B ·
M

∑∞
i=0 γi = B · M ; with probability 1 − 1/M , the non-constant arm will be

revealed to be in the bad state, and the principal faces the same situation in
the second round, obtaining value γV . Recall that cs is the payment needed to
ensure that the myopic arm is played with probability at most qs when signal s
is revealed. To summarize, if we set the probabilities for myopic play to (qs)s∈Σ ,
then V satisfies the following equation:

V = (1− γ + γV )
∑

s∈Σ

psqs +
∑

s∈Σ

ps(1− qs)(
1
M

·B ·M +(1− 1
M

)γV −λcs). (6)

Solving for V while taking M → ∞, we get (1 − γ)V = (1 − γ)
∑

s∈Σ psqs +∑
s∈Σ ps(1 − qs)(B − λcs). As the difference between the expected rewards of

the myopic arm and the non-myopic arm is (1 − γ) − (1 − γ)B, we have cs =
(1−γ)(1−B)

Fs
−1(qs)

. The optimal policy with payments needs to choose the best myopic
probabilities, which is equivalent to:

maximize (1 − γ)
∑

s∈Σ psqs +
∑

s∈Σ ps(1 − qs)(B − λ (1−γ)(1−B)
Fs

−1(qs)
)

subject to 0 ≤ qs ≤ 1, for all s ∈ Σ.
(7)

9 This is in contrast to the case where the performance of a policy is evaluated on a
class of instances rather than single instance.
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Notice that the objective function of program (7) is concave, so the program
is convex. Let q̂ be the optimal solution to the program (7). Denote by A(q̂) the
policy determined by q̂. Recall that q∗ is the solution to the following convex
program:

minimize
∑

s∈Σ psqs

subject to
∑

s∈Σ psqs ≥ λ
∑

s∈Σ ps
1−qs

F −1
s (qs)

0 ≤ qs ≤ 1,∀s ∈ Σ.

(5)

Note that the q̂ are probabilities for choosing the myopic arm given by the
above program and depend on a specific MAB instance, i.e., Δ(B, γ). On the
other hand, q∗ is independent of any MAB instance and only depends on the
signaling scheme ϕ and F . Lemma 4 shows that for the right choice of B, q̂ and
q∗ actually coincide on the corresponding Diamonds-in-the-rough instance.

Lemma 4. There exists a B such that the myopic probabilities given by the
convex program (5) are equal to the myopic probabilities given by program (7).

Based on this lemma, we now have the main theorem.

Theorem 5. The policy TES∗, parameterized by q∗, has optimal approximation
ratio 1−p∗γ. In particular, there exists a worst-case MAB instance in which the
optimal policy with payments achieves exactly a Lagrangian reward of a (1−p∗γ)
fraction of the optimum.

6 Full Information Revelation

Our main positive results hold for the case of countable or finite signal spaces,
whereas uncountable signal spaces lead to technical challenges. However, one
important special case of uncountable signal spaces is more easily handled,
namely when the principal learns the exact conversion ratio r, i.e., s = r. We
show that in that case, r itself can be used as the sole randomization device,
leading to a threshold policy. In this section, we assume that the distribution F
is continuous (an assumption that was not needed in Sect. 4).

6.1 Optimal Time-Expanded Policy

Our first goal will be to show that the optimal time-expanded policy fixes a
threshold θ and only incentivizes agents whose conversion ratio lies above the
threshold. Then, an optimization over threshold policies is easy to carry out.

Definition 7. The threshold policy TPθ,A with threshold θ is defined as follows:
When an agent with conversion ratio r arrives, he is incentivized with suitable
payment to pull i∗t = A(Ŝt) if and only if r ≥ θ.

Lemma 5. Consider a single arm pull, and a value q ∈ [0, 1]. Among all policies
that have this arm pull be myopic with probability q, the one minimizing expected
cost is a threshold policy.
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Lemma 6. The Lagrangian objective of any time-expanded policy P of A is
(weakly) dominated by that of a threshold policy.

Based on Lemma 6, it suffices to study the optimal threshold policy, and
determine the correct threshold. We choose the threshold θ carefully to cancel
out the expected payment with the expected reward from myopic pulls, similar
to the argument in Sect. 4. This gives us a (1 − p∗γ) approximation ratio for the
Lagrangian objective as for the case of discrete signals, where p∗ = F (θ).

6.2 Upper Bound

As for discrete signals, we next give a “Diamond-in-the-Rough” instance Δ(B, γ)
on which the upper bound for any policy matches the approximation ratio of the
threshold policy. Consider the choice of the policy in the first round; it allows the
agent to play myopically with some probability q. By Lemma 5, the optimal way
to implement this probability q is to choose a threshold10 θ and offer incentives
to the agent if and only if r ≥ θ. Now, similar to Eq. (6), the corresponding
Lagrangian objective is

V =(1 − γ + γV )F (θ)

+
∫ ∞

θ

(
1
M

· B · M + (1 − 1
M

)γV − λ
(1 − γ)(1 − B)

r

)

dF (r).
(8)

Letting M → ∞ and solving Eq. (8), we obtain

(1 − γ)V = (1 − γ − B)F (θ) + B − λ(1 − γ)(1 − B)
∫ ∞

θ

dF (r)
r

. (9)

Taking a derivative of Eq. (9) with respect to θ suggests (note that the func-
tion may not be differentiable, so this is merely used as a tool to suggest a useful
choice) that if we set B to solve −λ(1−γ)(1−B) = (1−γ −B)θ∗, the threshold
policy with threshold θ∗ will be optimal for the instance Δ(B, γ) (proved in the
full version).

Thus, on this particular instance, the ratio achieved by our threshold policy
matches that of the best possible policy.
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Abstract. Bottleneck routing games are a well-studied model to inves-
tigate the impact of selfish behavior in communication networks. In this
model, each user selects a path in a network for routing their fixed
demand. The disutility of a used only depends on the most congested
link visited. We extend this model by allowing users to continuously
vary the demand rate at which data is sent along the chosen path. As
our main result we establish tight conditions for the existence of pure
strategy Nash equilibria.

1 Introduction

Banner and Orda [1] and independently Caragiannis et al. [4] introduced selfish
bottleneck routing games as a theoretical model of resource allocation in dis-
tributed communication networks. In these games, every user of the network
is associated with a non-negative demand that they want to send from their
source to the respective destination and their goal is to find a path that mini-
mizes the congestion of the most congested link. It has been argued by several
researchers (cf. [5,19,27]) that in the context of packet-switched communication
networks, the performance of a path is closer related to the most congested link
as compared to the classical sum-aggregation of costs (as in [18,28,33]). In par-
ticular, in the area of designing congestion control protocols (as alternatives to
the current TCP), there are several proposals (cf. [25,34,36,37]) that postulate
to replace the sum-aggregation of congestion costs with the max-aggregation,
primary, because the max-aggregation leads to favorable properties of protocols
in terms of their stability in presence of communication delays [36,38].

While the bottleneck model of [1,4] was an important step in terms of inte-
grating routing decisions with bottleneck objectives, it lacks one fundamental
tradeoff inherent in packet-switched communication networks: once a path is
selected, a user increases the sending rate in case of low congestion and decreases
it in case of high congestion.
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In this paper, we address this tradeoff by introducing bottleneck congestion
games with elastic demands, where users can continuously vary their demands.
Formally, there is a finite set of resources and a strategy of a player corresponds
to a tuple consisting of a subset of resources and a demand out of a prescribed
interval of feasible demands. For the case that the allowable subsets of a player
correspond to the set of routes connecting the player’s source node to their ter-
minal node, we obtain unsplittable bottleneck routings as in [1,4]. Resources
have player-specific cost functions that are non-decreasing and strictly convex.
Every user is associated with a non-decreasing strictly concave utility function
measuring the received utility from sending at a certain demand rate. The goal
of a user is to select both a subset of resources and a demand rate that maximizes
the utility (from the demand rate) minus the congestion cost on the most expen-
sive resource contained in the chosen resource set. Our model thus integrates as
a special case (i) single-path routing (which is up to date standard as splitting
packets over several routes leads to different packet inter-arrival times and syn-
chronization problems) and (ii) congestion control via data rate adaption based
on the maximum congestion experienced.

1.1 Our Results

As our main result we derive conditions for the cost functions so that the result-
ing bottleneck congestion game with elastic demands admits a pure Nash equi-
librium (PNE). Our condition requires that for every player the player-specific
resource cost functions are non-decreasing, strictly convex and equal up to
resource specific shifts in their argument. While monotonicity and convexity are
natural conditions, the last assumption seems limiting. We can show, however,
that without this assumption there are examples without any PNE, even for the
special case that all resource cost functions are not player-specific.1 Moreover,
we demonstrate that the our conditions on the resource cost functions are still
general enough to model M /M /1 functions that are frequently used to model
delays in communication networks.

We prove the existence result by devising an algorithm that computes a PNE.
The main idea of the algorithm is as follows. Assume we are given a strategy
profile with a fixed resource set (e.g., a path in the network setting) for every
player. We consider a series of decoupled games on each resource contained in
the set separately. Then, we compute an equilibrium for the decoupled game of
each resource and call the resulting vector of demands a distributed equilibrium.
Note that a distributed equilibrium is not a feasible strategy profile of the original
game as a player may now have different demands on different resources along the
chosen path. We then devise an algorithm that turns a distributed equilibrium
into a feasible strategy profile with the property that no player can improve by
changing the demand only. We call such a profile a demand equilibrium. Our
main algorithm then iteratively (i) computes demand equilibria, and (ii) if an
equilibrium is not reached yet, lets single players play a better and best response.

1 We defer this counterexample to the full version of this paper.
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We provide a lexicographical potential for this special dynamic and thus prove
that the algorithm terminates.

In the interest of space, we defer most of the proofs to the full version of this
paper.

1.2 Related Work

Bottleneck Routing. In bottleneck routing games with fixed demands strong
equilibria have been shown to exist [14], even for more general classes of cost
functions where the cost of a resource may depend on the sets of its users rather
than the aggregated demand. The complexity of computing PNE and strong
equilibria in these games was further investigated in [10]. For further works in
this area considering the price of anarchy of PNE as well as the worst-case quality
of strong equilibria we refer to [2,3,5,7,16,17].

In an independent line of research, Kukushkin [24] studied generalizations
of the congestion game model of Rosentahl [28] in which the sum-aggregation
is replaced by an arbitrary aggregation function. He proved that among the
aggregation functions for which a cost increase on one resource always leads
to an increased private cost for all of its users, sum-aggregation is the only
aggregation function that guarantees the existence of a pure Nash equilibrium.
Games with maximum-aggregation were also studied by Kukushkin [23], where
he proved that any bottleneck congestion game with non-decreasing cost admits
a strong equilibrium. Further related is our previous work [13], where we establish
the existence of an equilibrium for a class of aggregative location games. This
existence result implies the existence of a pure Nash equilibria for the present
model assuming that the allowable sets of resource of players contain singletons
only.

Combined Routing and Congestion Control. Integrated routing and congestion
control has been studied in [9,20,21,31,32], where the existence of an equilibrium
is proved by showing that it corresponds to an optimal solution of an associated
convex utility maximization problem. These models, however, require that every
user possibly splits the flow among up to an exponential number of paths. This
issue has been addressed in [6,26], where controllable route splitting at routers
is assumed which can effectively limit the resulting number of used routes. For
all the above models, however, the end-to-end applications may suffer in service
quality due to packet jitter caused by different path delays. Partly because of
this issue, the standard TCP/IP protocol suite still uses single path routing.
Also in contrast to our model, all these models assume that congestion feedback
is aggregated via the sum instead of the max operator.

Yang et al. [35] introduced the so-called MAXBAR-games where users select
a single path and adapt their sending rate. In their model, edges have fixed capac-
ities and users (synchronously) increase their rate until the capacity of an edge
is reached. After such an event all rates of users using this tight edge are fixed.
Yang et al. showed that these games possess a PNE, and that the price of anarchy
of pure Nash equilibria is n, where n is the number of players. Harks et al. [11]
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generalized the model of Yang et al. by allowing for more general ways of increas-
ing the rates of users. They derived the existence of strong equilibria for this more
general model.

Harks and Klimm [12] introduced congestion games with variable demands
that coincide with the present model except that the traditional sum-aggregation
of costs is used. They showed that only affine and certain exponential cost func-
tions lead to the existence of PNE. These results are in contrast to the results
obtained in this paper because here we prove that general player-specific convex
cost functions lead to PNE as long as they are equal up to resource specific shifts
in their argument.

2 The Model

Congestion Model. The games considered in this paper are based on a congestion
model defined as follows. Let R = {1, . . . , m} be a nonempty and finite set of
m ∈ N resources, and let N = {1, . . . , n} be a nonempty and finite set of n ∈ N

players. For every i ∈ N let Xi ⊂ 2R \ {∅} be a nonempty set of nonempty
subsets of resources available to player i. Whenever a player i uses the resources
in xi ∈ Xi, we say that the resources in xi are allocated to player i; we also call
xi an allocation of player i and we denote by x = (xi)i∈N the overall allocation
vector. For every player i and every resource r ∈ R we are given a player-specific
cost function ci,r : R≥0 → R≥0 that maps the aggregated demand on r to a
cost value for player i. We call the tuple M =

(
N,R, (Xi)i∈N , (ci,r)r∈R,i∈N

)
a

congestion model.

Bottleneck Congestion Games with Elastic Demands. In a bottleneck congestion
game with elastic demands, we are given a congestion model M and, for every
player i ∈ N , a utility function Ui : [σi, τi] → R≥0 where [σi, τi] ⊆ R≥0 with
σi ∈ R≥0, τi ∈ R≥0 ∪ {∞}, σi ≤ τi is the interval of feasible demands of
player i. We denote by d = (di)i∈N the overall demand vector. A bottleneck
congestion game with elastic demands is the maximization game G = (N, S, π)
with Si = Xi × [σi, τi] for all i ∈ N , where for s = (x, d) ∈ S we define

πi(s) := Ui(di) − max
r∈xi

{
ci,r

(
�r(x, d)

)}
for all i ∈ N.

Here, �r(s) = �r(x, d) =
∑

j∈N :r∈xj
dj is the load (or aggregated demand) of

resource r under strategy profile s = (x, d).
We impose the following assumptions on the utility and cost functions,

respectively.

Assumption 1 For every player i ∈ N , the utility function Ui : [σi, τi] → R≥0

is non-decreasing, differentiable and strictly concave.

Strict concavity of the utility function in the demand is justified by application-
specific characteristics such as the rate-control algorithm used in common con-
gestion control protocols, see [18,30].
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Assumption 2 For every resource r ∈ R and player i ∈ N , the cost function
ci,r : R≥0 → R≥0 is non-decreasing, differentiable and strictly convex.

Note that in many applications the considered cost functions are strictly con-
vex, e.g., the polynomial delay functions considered in transportation networks
(cf. [29]) and M /M /1 functions modeling queuing delays in telecommunication
networks (cf. [31]).

Assumption 3 There are functions ci : R≥0 → R≥0 for all i ∈ N and offsets
υr ∈ R≥0 for all r ∈ R such that for every i ∈ N and r ∈ R

ci,r(t) = ci(t + υr) for all t ≥ 0.

The above assumption implies that for every player, the maximum load
(including offsets) experienced on the chosen subset of resources determines
the bottleneck. While this assumption is certainly restrictive, we show in the
full version of this paper that without it, there are games without a PNE. We
remark that the important class of M /M /1 delay functions that are frequently
used to model queueing delays (cf. [8,22] and references therein) still satisfy
Assumption 3.

Observation 4 Player-specific M/M/1 functions of the form ci,r : [0, cr) →
R≥0 with ci,r(t) = ti

zr−t , zr > 0, ti ≥ 0 satisfy Assumption 3.2

Proof. Let zmax := maxr∈R{zr}. For resource-specific offsets defined as υr :=
zmax − zr ≥ 0 for all r ∈ R and player-specific functions ci(t) := ti/(zmax − t),
we then obtain

ci,r(t) =
ti

zr − t
=

ti
zmax − (t + υr)

= ci(t + υr)

for all r ∈ R and i ∈ N . ��
For a strategy profile s = (x, d) let

bi(s) = bi(x, d) = max
r∈xi

{
�r(x, d) + υr

}

denote the maximal load or bottleneck that player i experiences and denote by
b−1
i (x, d) the set of resources where player i experiences their bottleneck, i.e.,

b−1
i (s) = b−1

i (x, d) = arg max
r∈xi

{
�r(x, d) + υr

}
.

2 Technically, they do not satisfy Assumption 3 since their domain is only a subinterval
of the non-negative reals. This, however, is not an issue as the functions diverge to
∞ as they approach the right boundary of their domain, so that no player has an
incentive to raise its demand in a way that the load on a resource exceeds the domain
of its cost function.
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3 A Characterization of Pure Nash Equilibria

We now present a complete characterization of pure Nash equilibria in bottle-
neck congestion games. Our characterization relies on the notion of a demand
equilibrium which we define as a strategy profile with the property that no player
can increase their payoff by unilaterally changing her demand only.

Definition 5 (Demand Equilibrium). Let G be a bottleneck congestion game
with elastic demands. We call (x, d) a demand equilibrium if for all i ∈ N

πi(x, d) ≥ πi(x, d̃)

for all d̃ = (d−i, d̃i) with d̃i ∈ [σi, τi].

We obtain the following immediate necessary condition for a PNE.

Lemma 6. Every PNE of a bottleneck congestion game with elastic demands is
a demand equilibrium.

Before we proceed deriving optimality conditions for demand equilibria we
demonstrate that in general (i.e., without Assumption 3), the payoff functions
πi(x, d), i ∈ N are not necessarily differentiable with respect to di.

Example 7. Consider a game with one player i with utility function Ui and
two resources r1, r2 equipped with two affine cost functions cr1(t) = 1 + t and
cr2(t) = 2t for all t ∈ R≥0. The payoff to player i with resource allocation
x = xi = {r1, r2} is not differentiable with respect to di at di = 1. To see this,
first note that cr1(t) ≥ cr2(t) for all t ≤ 1 and cr1(t) ≤ cr2(t) for all t ≥ 1. We
then obtain

∂−πi(x, 1)
∂x

= lim
ε↑0

πi(x, 1 + ε) − πi(x, 1)
ε

= lim
ε↑0

Ui(1 + ε) − Ui(1) − cr1(1 + ε) + cr1(1)
ε

= U ′
i(1) − 1,

∂+πi(x, 1)
∂x

= lim
ε↓0

πi(x, 1 + ε) − πi(x, 1)
ε

= lim
ε↓0

Ui(1 + ε) − Ui(1) − cr2(1 + ε) + cr2(1)
ε

= U ′
i(1) − 2.

For cost functions that satisfy Assumption 3, however, we obtain the following
necessary condition for demand equilibria.

Lemma 8 Let (x, d) be a demand equilibrium. Then, for all i ∈ Nwith σi < τi

the following two conditions are satisfied:

1. di < τi ⇒ U ′
i(di) − c′

i

(
�r∗(x, d) + υr∗

) ≤ 0 for all r∗ ∈ b−1
i (x, d).

2. di > σi ⇒ U ′
i(di) − c′

i

(
�r∗(x, d) + υr∗

) ≥ 0 for all r∗ ∈ b−1
i (x, d).
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3.1 Sensitivity Analysis of Demand Equilibria

Let s = (x, d) be a demand equilibrium and let �−i
r (s) :=

∑
j∈N\{i} dj denote

the residual load of player i on some r ∈ R. Then, using that s is a demand
equilibrium, we obtain

di ∈ arg max
d′
i∈[σi,τi]

Ui(d′
i) − ci(�−i

r∗ (s) + υr∗ + d′
i) for all r∗ ∈ b−1

i (s).

In the following, we investigate how a demand equilibrium is adapted if the
residual load on a resource changes. This will be important later on in order to
understand the effect of switching sets of resource when changing the strategy
from some xi ∈ Xi to some yi ∈ Xi. Given some fixed residual load α on a
resource r, we analyze how the best-response demand function

di(α) := arg max
di∈[σi,τi]

U(di) − ci(α + di)

depends on α. As for all α ∈ R≥0 the function f(y) := Ui(y) − ci(α + y) is
strictly concave in y and limy→∞ f(y) = −∞, the above optimization problem
has a unique solution, hence, the best response demand function is well defined.

Lemma 9 (Individual Best Response Demands). Let α, β ∈ R≥0. Then,
the following two conditions are equivalent:

(i) α < β.
(ii) di(α) + α < di(β) + β.

We are now in position to derive a complete characterization of PNE.

Theorem 10. Let G be a bottleneck congestion game. A strategy profile s =
(x, d) is a PNE for G if and only if s is a demand equilibrium and

r ∈ b−1
i (s) ⇒ �−i

r (s) + υr ≤ maxt∈yi
�−i
t (s) + υt

for all i ∈ N and yi ∈ Xi.

Proof. “⇒”: By Lemma 6 we get that s must be a demand equilibrium. For the
second statement, assume there is a player i and yi ∈ Xi with �−i

r (s) + υr >
maxt∈yi

�−i
t (s)+υt. This implies that player i can increase their payoff by simply

deviating from strategy si = (xi, di) to s̃i = (yi, di).
“⇐”: Define s′ = (s−i, s

′
i) with s′

i = (yi, d
′
i) for some arbitrary yi ∈ Xi and

d′
i ∈ [σi, τi]. We obtain

πi(s′) = Ui(d′
i) − ci

(
maxt∈yi

{�−i
t (s′) + υt} + d′

i

)

≤ Ui(d′
i) − ci

(
�−i
r (s) + υr + d′

i

)

≤ Ui(di) − ci

(
�−i
r (s) + υr + di

)

= πi(s),

where the first inequality holds due to �−i
r (s) + υr ≤ maxt∈yi

�t(s) + υt and ci is
non-decreasing. The second inequality holds because s is a demand equilibrium
and therefore di is player i’s best response demand. ��
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4 Computing Demand Equilibria

Theorem 10 shows that for computing a PNE we must be able to compute a
demand equilibrium. In this section, we describe an algorithm that does exactly
this. For the algorithm we first need the notion of distributed equilibria defined
below.

4.1 Distributed Equilibria

Let G = (N, S, π) be a bottleneck congestion game, M ⊆ N , and let r be a
resource. We define the restriction of G on M and r, written G|(M,r) as the
bottleneck congestion game G|(M,r) = (M,S ′, π′) with S ′

i =
{{r}} × [σi, τi] for

all i ∈ M and π′
i(x, d) = Ui(di) − ci(�r(x, d) + υr).

Definition 11 (Distributed Equilibrium). Let G be a bottleneck congestion
game with elastic demands. For x ∈ X define Nr(x) := {i ∈ N : r ∈ xi}. A
non-negative vector d̃ = (d̃i,r)r∈R,i∈Nr(x) is called a distributed equilibrium, if
for all r ∈ R the strategy profile (d̃i,r)i∈Nr(x) is a PNE of G|(Nr(x),r).

Note that every restricted game G|(Nr(x),r) is a concave game on a compact
action space, thus, by Kakutani’s fixed point theorem [15] the existence of a
distributed equilibrium is guaranteed. Moreover, as we will show below, these
equilibria are in fact unique. For a distributed equilibrium d̃ with respect to
x ∈ X, we define �̃r(x, d̃) :=

∑
i∈Nr(x)

d̃i,r. We first need the following lemma.

Lemma 12. Let x, x′ ∈ X and let d̃ and d̃′ be two respective distributed equi-
librium demands. Then, d̃i,r ≤ d̃′

i,r′ for all r, r′ ∈ R with �̃r(x, d̃) + υr ≥
�̃r′(x′, d̃′) + υr′ and all i ∈ Nr(x) ∩ Nr′(x′).

Using this lemma, we obtain the following immediate corollary.

Corollary 13 (Uniqueness). Let x, x′ ∈ X and let d̃ and d̃′ be two respective
distributed equilibrium demands. Then, the following two statements hold:

1. �̃r(x, d̃) ≤ �̃r(x′, d̃′) for all r ∈ R with Nr(x) ⊆ Nr(x′).
2. �̃r(x, d̃) = �̃r(x′, d̃′) for all r ∈ R with Nr(x) = Nr(x′).

We now derive a corollary that will be useful later on. It states the intuitive
fact that when the feasible demand set of a player is fixed to a value not larger
than the demand for resource r is a particular distributed equilibrium, then
the total demand for r in after recomputing a distributed equilibrium may not
increase.

Corollary 14 (Demand Restriction). Let x ∈ X and let d̃ be a correspond-
ing distributed equilibrium demand. For i ∈ N and r ∈ xi, define a new game
G′ that differs only in the fact that τ ′

i = σ′
i ≤ d̃i,r. Then �̃r(x, d̃′) ≤ �̃r(x, d̃) for

each distributed equilibrium demand d̃′ of G′.
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Algorithm 1. Computation of a demand equilibrium
Input: Bottleneck congestion game with elastic demands G and x ∈ X
Output: Demand equilibrium (x, d) of G

1 initialize N ′ ← N, R′ ← R;
2 while R′ �= ∅ do

3 compute distributed equilibrium (d̃i,r)i∈N′,r∈R′ ;

4 choose an index-minimal r ∈ arg maxr∈R′
∑

i∈Nr(x)
d̃i,r + υr ;

5 dj ← d̃j,r; σj ← dj ; τj ← dj for all j ∈ N ′ ∩ Nr(x);
6 N ′ ← N ′ \ Nr(x); R′ ← R′ \ {r};

7 end

4.2 An Algorithm for Computing Demand Equilibria

We are now ready to propose an algorithm that takes as input an allocation
x ∈ X and computes a corresponding demand equilibrium (x, d) ∈ S. The
algorithm first computes a distributed equilibrium (x, d̃). Then, a resource r
with maximum load is chosen and the demand of each player i ∈ Nr(x) is
fixed to the demand d̃i,r. For the remaining players we recompute a distributed
equilibrium and reiterate. The formal description is given in Algorithm 1.

We shall show that Algorithm 1 indeed outputs a demand equilibrium.

Theorem 15. Algorithm 1 computes a demand equilibrium.

Proof. The demand vector d computed by Algorithm 1 satisfies di ∈ [σi, τi] for
all i ∈ N and is, thus, feasible. We proceed to show that (x, d) is a demand
equilibrium.

To this end, let us assume that R = {1, . . . , m}. Further, it is without loss
of generality to assume that the resources R are ordered such that for each
k ∈ {1, . . . , m} in the k-th iteration of the algorithm resource k is chosen in
line 4.

We proceed to show that �1(x, d) + υ1 ≥ · · · ≥ �m(x, d) + υm. To see this,
let k ∈ {1, . . . , m − 1} be arbitrary. For an iteration counter j ∈ {1, . . . , m},
we denote by d̃j the distributed equilibrium demand computed in line 3 of the
algorithm. As we choose in each iteration j a resource that maximizes �̃r(x, d̃j)+
υr, we obtain in particular �̃k(x, d̃k)+υk ≥ �̃k+1(x, d̃k)+υk+1. Lemma 12 implies
d̃k

i,k ≤ d̃k
i,k+1 for all i ∈ N with {k, k + 1} ⊆ xi. Corollary 14 gives the claimed

result.
We derive that for each player i the bottleneck is attained at the resource

r ∈ xi with minimal index. As the algorithm fixes the demand of each player i
the first time one of the resources used by player i is considered (line 5), the
demand vector d computed by Algorithm 1 is a demand equilibrium. ��
Remark 16. Note that for a given input G and x, Algorithm 1 computes the same
demand equilibrium (x, d). This follows since the distributed demand equilibria
are unique (see Corollary 13) and there is a fixed tie-breaking rule employed that
determines the order in which resources are fixed (as specified in line 3).
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Algorithm 2. Computation of a PNE
Input: Bottleneck congestion game with elastic demands G
Output: PNE (x, d) of G

1 (x, d′) ← arbitrary strategy profile;
2 while true do
3 Compute a demand equilibrium (x, d) by Algorithm 1; Phase I
4 if there is a player i with a better reply to (x, d) then Phase II
5 (yi, d

′
i) ← best reply of player i to (x, d);

6 (x, d′) ← (yi, x−i, d
′
i, d−i);

7 else
8 return (x, d);
9 end

10 end

5 An Algorithm for Computing PNE

We present an algorithm that computes a PNE. The algorithm starts with an
arbitrary strategy profile and computes a demand equilibrium. Then, whenever
there is a player that can improve, we let this player deviate (by Theorem 10 this
implies that the player’s resource set changes) and recompute a demand equi-
librium. The technically involved part is to show that the algorithm terminates.
In this section, we show the following theorem.

Theorem 17. Algorithm 2 computes terminates and computes a PNE.

Before we prove the above theorem, we derive several properties of intermediate
strategy profiles during the execution of the algorithm.

5.1 Analysis of the Algorithm

For a strategy profile s = (x, d), we consider bi(s) = maxr∈xi
{�r(s) + υr} and

b(s) = (bi(s))i∈N . We shall prove that b(s) strictly decreases with respect to
the sorted lexicographical order ≺lex that is defined as follows: For two vectors
u, v ∈ R

n
≥0 we say that u is sorted lexicographically smaller than v, written

u ≺lex v, if there is an index k ∈ {1, . . . , n} such that uπ(i) = vψ(i) for all
i < k and uπ(k) < vψ(k) where π and ψ are permutations that sort u and v non-
increasingly, i.e., uπ(1) ≥ uπ(2) ≥ · · · ≥ uπ(n) and vψ(1) ≥ vψ(2) ≥ · · · ≥ vψ(n).

We now derive a crucial lemma that relates two consecutive demand equilibria
s and s̄ (as computed in Phase I).

Lemma 18. Let (x, d) be a demand equilibrium computed (by Algorithm 1) in
Phase I of Algorithm2. Let s′

i = (x′
i, d

′
i) be a better and best reply of player i

and let s′ = (x′, d′), where x′ = (x′
i, x−i) and d′ = (d′

i, d−i). Denote by s̄ =
(x′

i, x−i, d̄) the demand equilibrium that is computed in Algorithm 1 in Phase I
in the following iteration. Then, b(s̄) ≺ b(s).
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Proof. We first derive the following statements relating b(s) with b(s̄):

(i) bi(s̄) < bi(s).
(ii) For all j ∈ N with bj(s) ≥ bi(s), it holds bj(s̄) ≤ bj(s).
(iii) For all j ∈ N with bj(s) < bi(s), it holds bj(s̄) < bi(s).

We start proving (i). Let r1 ∈ b−1
i (s) and r2 ∈ b−1

i (s′). We will first show that
�r1(s)+υr1 > �r2(s

′)+υr2 holds. Note that by using s′
i player i strictly improves,

thus, Theorem 10 implies �−i
r1

(s)+υr1 > �−i
r2

(s′)+υr2 , hence, we can use Lemma 9
to obtain (we define β := �−i

r1
(s) + υr1 and α := �−i

r2
(s′) + υr2):

�r1(s) + υr1 = �−i
r1

(s) + di(β) + υr1 > �−i
r2

(s′) + di(α) + υr2 = �r2(s
′) + υr2 .

We now claim that �r2(s
′)+υr2 ≥ �r2(s̄)+υr2 . Assume �r2(s

′)+υr2 < �r2(s̄)+υr2 .
Then there is j ∈ Nr2(s

′) with d̄j > d′
j . If j = i, we obtain

0 ≥ U ′
i(d

′
i) − c′

i(�r2(s
′) + υr2)

> U ′
i(d̄i) − c′

i(�r2(s̄) + υr2)
≥ 0,

a contradiction. If, j �= i, we have d̄j > d′
j = dj and also obtain

0 ≥ U ′
j(dj) − c′

j(�r2(s
′) + υr2)

> U ′
i(d̄j) − c′

j(�r2(s̄) + υr2)

≥ 0,

using that dj was a demand equilibrium for player j under s.
Now we prove (ii). Assume by contradiction that there is j ∈ N with bj(s) ≥

bi(s) and bj(s̄) > bj(s). Note that (using (i)) this implies

bi(s̄) < bi(s) ≤ bj(s) < bj(s̄).

From bi(s̄) < bj(s̄) we obtain

b−1
j (s̄) ∩ x′

i = ∅.

Let r1, . . . rm denote the order in which resources are fixed in Algorithm 1 (with
input s′). Let rk ∈ b−1

j (s̄) denote the index-minimal resource in b−1
j (s̄) that is

fixed in the k-th iteration. Note that by Theorem 15 we have

�r1(s̄) + υr1 ≥ · · · ≥ �rk(s̄) + υrk , (1)

thus, for all l ∈ {1, . . . , k} we have rl /∈ x′
i and, hence, Nrl(x′) ⊆ Nrl(x). If

rl /∈ xi for all l ∈ {1, . . . , k}, then, we have

�rl(s) + υrl = �rl(s̄) + υrl for all l ∈ {1, . . . , k},
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which contradicts bj(s̄) > bj(s). Thus, let g be the smallest index such that rg ∈
xi. This implies bi(s) ≥ �rg (s)+υrg . Note that by (1) we get bj(s̄) ≤ �rg (s̄)+υrg .
Using Nrg (x′) ⊂ Nrg (x) we further obtain by using Corollary 13

�rg (s) + υrg ≥ �rg (s̄) + υrg .

This is, however, a contradiction to

�rg (s̄) + υrg ≥ bj(s̄) > bj(s) ≥ bi(s) ≥ �rg (s) + υrg .

For (iii), assume there is j ∈ N with bj(s) < bi(s) and bj(s̄) > bi(s). The
last strict inequality implies again

b−1
j (s̄) ∩ x′

i = ∅,

and we get the same contradiction as in case (ii).
Now we have shown that (i) the i-th entry of b(s) strictly decreases for s̄, (ii)

all entries that are above bi(s) only decrease for s̄, and finally, (iii) all entries
that increase for s̄ (compared to the b-values under s) stay strictly below bi(s).
This implies b(s̄) ≺ b(s). ��

We are now in position to prove Theorem 17.

Proof (Proof of Theorem 17). Lemma 18 shows that the vector b(s) strictly
lexicographically decreases during the execution of Algorithm 2. Thus, since the
demand equilibrium computed by Algorithm 1 in Phase I of Algorithm 2 is always
the same, no vector x ∈ X is visited twice during the execution of Algorithm2,
and, hence, the algorithm terminates (as X contains only finitely many ele-
ments). ��
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Abstract. Novel algorithmic ideas for big data have not been accompa-
nied by advances in the way central memory is allocated to concurrently
running programs. Commonly, RAM is poorly managed since the pro-
grams’ trade offs between speed of execution and RAM consumption are
ignored. This trade off is, however, well known to the programmers. We
adopt mechanism design tools to truthfully elicit this (multidimensional)
information with the aim of designing more clever RAM allocation algo-
rithms. We introduce a novel paradigm wherein programs are bound to
overbidding declarations of their running times. We show the limitations
of this paradigm in the absence of transfers and prove how to leverage
waiting times, as a currency, to obtain optimal money burning mecha-
nisms for the makespan.

1 Introduction

With data volumes growing much faster than typical users’ computing infrastruc-
ture, the role of efficient algorithms for big data becomes crucial. While it might
be tempting to move all data to some huge commercial cloud service, legal
and logistic issues will often force users or companies to keep their valuable
data locally and either stick to their existing hardware or seek for a moderate
cost-effective upgrade. In this situation, users are often rather willing to slowly
run their programs concurrently on shared hardware and compete for resources
instead of submitting their programs to an offline queuing system where they
might experience unpredictable waiting times before their program is quickly
executed. As a consequence the accumulated input data will typically not com-
pletely fit in the main memory (RAM) of the computer system at hand but has
to reside on external storage like hard disks. External-memory (EM) algorithms
[12,17] are especially tuned for this setting. They optimize the data access pat-
terns and typically perform the better the more RAM they are assigned. How-
ever, there are huge differences: For example during a linear data scan, EM
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algorithms often can do with only a constant number of pages held in RAM,
whereas for EM merge-sort of n items, the number of phases is bounded by
O(logx n) where x denotes the number of pages that can be kept in RAM simul-
taneously: obviously, the larger x the faster the sorting, but one essentially has
to square x in order to halve the number of sorting phases.

In isolation, a typical EM algorithm prefers to take as much RAM as is
available. For example, prior to running a program from the EM algorithms
library STXXL [6] the default setting is to reserve a significant fraction of the
available RAM for its execution. With several programs competing for a shared
RAM the task becomes significantly harder, especially if these programs are not
cooperating. Already from the simple example discussed above it is clear that
assigning equally sized fixed shares of RAM to all programs will not necessarily
optimize overall performance. Therefore, a common operating systems’ solution
is to apply online paging algorithms like LRU that dynamically decide which
pages to keep in RAM. Unfortunately, even for a single program, online paging
algorithms do not know about the future request sequences and are therefore
prone to wrong decisions in the worst case [7].

We aim to use methods from Algorithmic Mechanism Design (AMD) in order
to reasonably solve the RAM assignment problem for concurrently running pro-
grams: In principle, the best knowledge about the trade offs between usable
RAM size and performance is with the designers/programmers of the individ-
ual algorithms. If they extend their programs with an interface in order to bid
for individual RAM sizes, an operating system could use these bids within an
appropriate mechanism in order to solve the RAM assignment problem for con-
currently running programs. The obvious advantage of this setting would be that
neither the users of programs (who are typically not the programmers) nor the
operating system need knowledge about the RAM-performance footprints of the
individual programs and yet obtain a reasonable RAM sharing. Of course the
RAM assignment mechanism must be designed to motivate truthful requests,
especially if the users do not have to pay money for the RAM their executed
programs occupy. In the absence of money, in fact, selfish programmers could
claim to need unreasonably large chunks of central memory for a “fast” execution
of their programs.

Our contribution. In this work, we focus on the design of truthful mechanisms
in the context of RAM allocation to programs, with the objective to minimize
the makespan. Specifically, we concentrate on a feasibility study for the case of
a single execution interval and ask the question of whether truthfulness can be
enforced, and at what cost, in the single-shot case.

Monitoring. In our model, each programmer, also termed agent or bidder in
this setting, controls one program/task, and has as a type a decreasing1 cost
function mapping an amount of allocated RAM to execution times. She declares

1 For simplicity, throughout the paper we use ‘decreasing’ with the meaning ‘non-
increasing’, and similarly we use ‘increasing’ instead of ‘non-decreasing’.
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to the RAM allocation mechanism a potentially different function as her cost.2

Ideally, truthfulness of bidders’ declarations should be guaranteed without the
use of monetary transfers since there is no easy way to charge the programmers.
However, very little can be done in mechanism design when money is out of
the picture, e.g., as noted above, nothing prevents programmers from exagger-
ating their RAM needs by overbidding their execution times. Therefore, we look
at a mechanism design framework wherein a bidder overbidding her execution
time (her cost in mechanism design terminology), ends up with this augmented
execution time (rather than her true execution time).3 So a bidder’s reported
cost will be interpreted by the mechanism as a lower bound to her execution
time: a bidder will be allowed to be slower than declared but not faster. This
assumption was part of the model defined by Nisan and Ronen in [13]4, and has
been later dubbed monitoring in [14]. We believe these mechanisms to make a
feasible assumption that can be implemented in some real-life scenarios (such as
the application that motivates us).

Monitoring and verification. Motivated by the recent advances in trading veri-
fication of bidders’ behavior with money in mechanism design for CAs [8,9], in
Sect. 4 we ask whether similar conclusions can be drawn in our scenario. Verifi-
cation, in this context, means that a bidder cannot underbid her execution time,
for otherwise the RAM would be preempted and the task would be aborted (see
preliminaries for a formal definition). We call a mechanism using monitoring and
verification, a mechanism with strong monitoring. We prove a quite interesting
dichotomy.5 To the algorithmic characterization of truthfulness, we pair the pos-
itive result that the optimum makespan can be computed truthfully when tasks
have known k-step cost functions (i.e., the values of the cost functions are known
to the mechanism but the discontinuity points are not) and the negative result
that no approximation of the optimal makespan can be returned by a truthful
mechanism when the k-step functions are unknown (i.e., value and discontinuity
points are both unknown) even for k = 1.

Monitoring and transfers. Given the limitations of mechanisms with strong mon-
itoring and no monetary transfers, in Sect. 5 we turn our attention to mechanisms
using (some form of) transfers. Since, as observed above, currency is not avail-
able in the setting at hand, we interpret transfers as waiting times and focus on
money burning mechanisms [10]. In details, the output of a mechanism will be
a RAM chunk size and a waiting time for each bidder so that the bidder will

2 When these functions have a “large” representation, oracle queries are used just like
in the Combinatorial Auctions (CA) literature [3], see preliminaries for a discussion.

3 This might be implemented by letting the mechanism hold back the results of the
computation whenever the program terminates before the reported time.

4 Specifically, Nisan and Ronen embedded the monitoring assumption in their ‘mech-
anisms with verification’, but here we use the term verification in a different sense.

5 Even though we depart from much of the recent literature (see, e.g., [8,14] and
references therein) on mechanisms with verification, which uses no monitoring, we
remark that using similar arguments, one can prove the same dichotomy also in that
weaker model.
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be able to run her task using the amount of RAM allocated by the mechanism
only after the waiting time. Since waiting times degrade the performance of the
system, the objective function of interest must take transfers in consideration.
In our case, the objective is the minimization of the maximum (over all bidders)
of the total cost, where the total cost of a bidder is defined as the sum of her
execution time and waiting time (transfer). This is a “money burning” version
of the makespan objective function. Here we drop the verification assumption
but keep the monitoring hypothesis, and call the mechanisms in this section
mechanisms with monitoring. As a warm-up, we consider the case that RAM
chunking is fixed and give a truthful mechanism with monitoring that returns
solutions minimizing the makespan (for the fixed chunking), and the total costs
of the tasks do not exceed the makespan. This mechanism is thus optimal not
only for the classical makespan minimization objective, but also for the money
burning objective function. We also show that its transfers (waiting times) are
minimal, for the given allocation. We complement this result by showing how
to maintain optimality, minimal transfers and truthfulness while computing the
RAM chunking that gives the minimum possible makespan.

Following the preliminaries in Sects. 2 and 3 provides a graph-theoretic char-
acterization of the algorithms that are truthful(ly implementable) in a mecha-
nism with monitoring. In Sects. 4 and 5 we present our results for mechanisms
with strong monitoring and no transfers, and for mechanisms with monitoring
and transfers, respectively. Some proofs are omitted due to space limitations.

Related work. This study connects to a number of research agendas in (A)MD.

Mechanisms with verification (i.e., strong monitoring in our terminology)
have been introduced in [13] for the problem of scheduling unrelated selfish
machines. A stream of work has looked instead at verification without monitor-
ing (i.e., assuming only no underbidding) in the presence of money [11,14,16]
and without [8,9]. Money burning mechanisms are studied in [10] for single-
parameter agents and utilitarian money burning objective functions. For multi-
unit auctions, [10] shows that the largest relative loss due to money burning is
logarithmic in the number of bidders. In contrast, we show that transfers do not
add any cost to the makespan.

An interesting hybrid between verification and money burning mechanisms is
[2], which considers exact but costly verification and seeks to maximize the social
welfare minus the verification cost for truthful auctions of indivisible goods.

Mechanisms for selfish jobs are also relevant. [1,4] consider truthful mecha-
nisms for selfish one-parameter tasks and makespan minimization on identical
machines, with different definitions for the tasks’ completion times, use of money,
and definition of verification. Coordination mechanisms [5] deal with selfish tasks
but focus on equilibrium approximation guarantee rather than truthfulness.

2 Preliminaries

We have one resource available in m copies and n selfish agents. Each selfish
agent has a decreasing cost function, also called type ti : [m]>0 → R>0, where
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[m]>0 denotes the set of positive integers not larger than m. For m′ ∈ [m]>0,
ti(m′) is the cost paid by agent i if she is allowed to use m′ copies of the resource.
The type ti is private knowledge of agent i. The set of all legal cost functions ti
is called the domain of agent i, and is denoted by Di.

Assuming that each agent has reported or bid a (true or false) cost function
bi ∈ Di, a mechanism determines an allocation (o1, . . . , on) of the m copies of
the resource to the n agents. The set O of all possible allocations contains tuples
(o1, . . . , on) such that oi ≥ 1 and

∑
i oi ≤ m. Furthermore, depending on (the

allocation and) the bi,’s, it may determine transfers to be paid by the agents.
In our model without money, transfers are realized as waiting times, and will be
denoted by w = (w1, . . . , wn). (When currency is involved, transfers are usually
called payments in literature.) In summary, a mechanism is a pair (f, w), where
f : D1 × . . . × Dn → O is an algorithm (also termed social choice function) that
maps agents’ costs to a feasible solution in O; and w : D1 × . . .×Dn → R

n
≥0 is a

function mapping cost vectors to transfers from each agent i to the mechanism.
A mechanism without transfers is simply a social choice function f as above;

sometimes, it is convenient to see a mechanism without transfers as a pair (f, w)
where w is a constant function of value 0.

Given a vector b = (bi,b−i) = (b1, . . . , bn) of reported cost functions, and
f(b) = (o1, . . . , on), we let fi(b) = oi denote the number of copies of the resource
that the function f assigns to agent i on input b. We assume no externalities,
that is, the cost of an agent depends only on her own received number of copies.
Therefore, bi(f(b)) = bi(fi(b)). For mechanism (f, w) (with or without trans-
fers) let cost

(f,w)
i (bi,b−i) denote the total cost (including transfer wi) of agent

i for the output computed by (f, w) on input (bi,b−i). Since the types ti are
private knowledge of the agents, they might find it profitable to bid bi �= ti. We
are interested in mechanisms for which truthtelling is a dominant strategy for
each agent.

Definition 1 (Truthful mechanisms). A mechanism (f, w) (with or without
transfers) is truthful if for any i, any bids b−i of the agents other than i, and
any bi ∈ Di, cost

(f,w)
i (ti,b−i) ≤ cost

(f,w)
i (bi,b−i).

Observe that the mechanisms we deal with, are not individually rational, in that
the agents have a positive cost, and therefore negative valuation for any outcome.
Also, not giving an agent any portion of the resource, is not a possible output for
the mechanism. Formally, we could elaborate on this (i.e., make the mechanism
individually rational), by assuming that an agent not performing her task incurs
an infinitely high cost.

Commonly, costi is defined as a linear combination of the transfer and the
agent’s true cost for the resource allocated by the algorithm. Here, we define a
novel mechanism design paradigm, called mechanisms with monitoring, wherein
this quasi-linear definition is maintained but costs paid by the agents for the
allocated resource are more strictly tied to their declarations. Intuitively, mon-
itoring means that those agents who are allocated a portion of the resource for
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that their reported cost was exaggerated (bi > ti), have to process their task
up to time bi instead of the true processing time ti.

Definition 2 (Mechanism with monitoring). In a mechanism with moni-
toring (f, w), the bid bi is a lower bound on agent i’s cost of using fi(bi,b−i),
so an agent is allowed to have a real cost higher than bi(f(b)) but not lower.
Formally, we have cost

(f,w)
i (bi,b−i) := wi(b) + max{ti(f(b)), bi(f(b))}.

This notion of monitoring is very much related to a concept introduced and
termed ‘mechanisms with verification’ by Nisan and Ronen in [13]. The idea is
that if costs are verifiable (e.g., they represent time) and if agents are monitored
and claim that the cost using resource fi(b) is bi(fi(b)), then either this is going
to be their actual cost (whenever bi(f(b)) ≥ ti(f(b))), or it can be verified that
this declaration is insincere since bi(f(b)) (which is smaller than ti(f(b))) is
not going to be enough for them to complete their work with the resource (e.g.,
execute a job). The latter case assumes implicitly that the resource is preempted
after bi(f(b)) time steps at which point the cost of the agent is simply ∞. In
other words, agents will never underbid in the model of [13]. Our mechanism with
monitoring model is much less restrictive and punitive for the agents as we allow
them to complete the job, i.e., we do not preempt resources. Moreover, unlike
[13], we do not tie transfers with observed costs but only with declarations.

However, for our partially negative results without transfers (Sect. 4), we
allow the mechanisms to even use both monitoring (for overbidding agents) and
verification (for underbidding agents), i.e., the resource is never provided longer
than bi(fi(b)) time for processing the task of i. Practically, in this model under-
bidding is excluded. We call a mechanism with monitoring that also uses this
verification for underbidding agents a mechanism with strong monitoring.

We say that a social choice function f is implementable with (strong) moni-
toring if there exists a suitable transfer function w such that (f, w) is a truthful
mechanism with (strong) monitoring. In this case, we say that w (strongly)
implements f . Given b, we say that w∗

i minimally implements f at b for agent
i if w∗

i (b) = minw implements f wi(b).
We consider mechanisms that run in time polynomial in n and log m; however,

the representation of the types might need time exponential in those parameters.
We therefore assume, as in the related literature, that types are accessed through
value or demand queries [3] depending on the algorithm at hand.

3 Graph-Theoretic Characterization of Truthful
Mechanisms with Monitoring

In this section we show how to adapt the cycle-monotonicity technique to design
truthful mechanisms with (strong) monitoring. The proofs are standard, and are
omitted in this short version.

The central tools we use are defined next. An edge (a, b) in the defined graphs
represents the option of bidding b instead of the true cost function a. The weight
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δa,b of the edge represents the difference of actual costs when bidding b instead
of a; thus when negative, its absolute value is a lower bound on the difference of
truthful payments.

Definition 3. Let f be a social choice function. For every i and b−i, the dec-
laration graph associated to f has a node for each type in Di and an addi-
tional source node called ω. The set of directed weighted edges is defined as
follows. For every a, b ∈ Di, a �= b, add an edge (a, b) of weight δa,b :=
max{a(f(b), b(f(b))} − a(f(a,b−i)); for any a ∈ Di, add an edge (ω, a) of
weight 0.

The verification graph associated to f is defined similarly but an edge (a, b)
belongs to the graph only if a(f(b,b−i)) ≤ b(f(b,b−i)).

Note that the declaration graph will be useful for proving truthfulness with
monitoring, and the verification graph can be used in case of strong monitoring.
Since in the latter case underbidding is not an option, no edge (a, b) has to be
considered if b(f(b,b−i)) < a(f(b,b−i)).

The next theorem states that, in order to check that a social choice func-
tion is implementable with (strong) monitoring and with transfers, it suffices
to check that all cycles of the associated graph(s) have a nonnegative weight.
For implementation without transfers, instead, it suffices to look at the sign of
every single edge. The argument is similar to that used for classical mechanisms
[15,18] and mechanisms with verification and no monitoring [8,16].

Theorem 1. A social choice function f is implementable with monitoring
(resp., strong monitoring) when agents bid from finite domains, if and only if, for
all i and declarations b−i, the declaration (resp., verification) graph associated
to f does not have negative weight cycles.

Moreover, f is implementable with monitoring (resp., strong monitoring)
without transfers if and only if, for all i and b−i, the declaration (resp., ver-
ification) graph associated to f does not have negative weight edges (the size of
the domains does not matter).

Given our interest in money burning mechanisms, we also prove here what form
minimal transfers have.

Theorem 2. Let f be a social choice function f implementable with monitoring
(resp., strong monitoring). For any b = (bi,b−i) and any i, the transfer function
that minimally implements f at b for agent i is w∗

i (b) = −SP(ω, bi), where
SP(ω, bi) is the length of the shortest path from ω to bi in the declaration (resp.,
verification) graph associated to f.

4 Mechanisms with Strong Monitoring and No Transfers

Here we give results on mechanisms with strong monitoring and no transfers.
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4.1 Algorithmic Characterization

We begin by characterizing the class of algorithms that are truthful with strong
monitoring in the case in which transfers are not allowed.

Theorem 3. An algorithm f is truthful with strong monitoring and no transfers
if and only if for all i, b−i, and a, b ∈ Di, a(f(b,b−i)) ≤ b(f(b,b−i)) implies
b(f(b,b−i)) ≥ a(f(a,b−i)).

4.2 Known k-step Tasks

We now provide the characterization for a specific family of domains for selfish
tasks.

Definition 4. The task (agent) i has a known k-step function domain if, for
some known c1i ≥ . . . ≥ ck

i and unknown r1i ≤ . . . ≤ rk−1
i (≤ rk

i = m), her type
satisfies

ti(m′) =
{

c1i if 0 < m′ < r1i
cj
i if rj−1

i ≤ m′ < rj
i , 1 < j ≤ k

.

The cost function of such a task is then completely determined by the threshold
values rj

i ; i.e., Di can be assumed to consist of vectors in [m]k>0.

A known k-step task is a task with a known k-step function domain. Below, with
a slight abuse of notation, a ∈ Di will both denote the (k-)tuple in Di and the
corresponding cost function. We define the property that characterizes truthful
algorithms f in this context. Subsequently, we show that this property is a quite
natural one, in the sense that for a large class of objective functions, the optimal
allocation fulfils it.

Definition 5. An algorithm f is k-step monotone if for any i, b−i, and a =
(rj

i )
k
j=1, b = (r̃j

i )
k
j=1 ∈ Di, with rj

i ≤ r̃j
i for all 1 ≤ j < k, fi(a,b−i) < rj

i implies
fi(b,b−i) < r̃j

i .

Lemma 1. An algorithm f is truthful with strong monitoring and no transfers
for known k-step tasks if and only if it is k-step monotone.

For a bid vector b and feasible solution o = (o1, . . . , on) ∈ O, let μ(b, o) be a
function increasing in every single cost bi(oi), e.g., for the makespan μ(b, o) =
maxi bi(oi). Define OPTμ as the social choice function that on input b returns
a solution minimizing μ using a tie-breaking rule independent of b.

Theorem 4. For any increasing cost function μ, OPTμ is k-step monotone.
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4.3 Unknown Single-Step Tasks and Limitations of Mechanisms
Without Transfers

Definition 6. The task (agent) i has an unknown single-step function domain
if her type satisfies

ti(m′) =
{

hi if m′ < ri

li if m′ ≥ ri
,

for some unknown hi > li and unknown ri. The cost function of such a task is
then completely determined by the triple (ri, hi, li); i.e., Di can be assumed to
consist of vectors in [m]>0 × R

2
>0.

An unknown single-step task is a selfish task with an unknown single-step func-
tion domain. Given a cost function a = (ar, ah, al) ∈ Di, ar will denote the
threshold in [m], and ah and al denote the high and low cost respectively.

Definition 7. An algorithm f is unknown single-step monotone if for any i,
b−i, and a, b ∈ Di, such that ar ≤ br, ah ≤ bh and al ≤ bl, fi(a,b−i) < ar

implies fi(b,b−i) < br.

The property above characterizes truthfulness when costs are not known:

Lemma 2. An algorithm f is truthful with strong monitoring and no transfers
for unknown single-step tasks if and only if it is unknown single-step monotone.

We now prove that these algorithms cannot return any reasonable approximation
of the makespan.

Theorem 5. For any α > 0, there is no algorithm without transfers that is
truthful with strong monitoring for unknown single-step tasks, and returns a
better than α-approximation of the optimal makespan.

Proof. Consider an instance with two unknown single-step tasks such that r1 =
r2 = r, l1 = l2 = 1, h1 = α(1+ δ) and h2 = 1+ δ for some δ > 0. Set r < m < 2r
so that only one task can get the RAM she needs to be fast. Any better than
α-approximate algorithm for the makespan will assign r to task 1 and some
ε > 0 to task 2. Consider now a new instance wherein task 2 modifies h2 as
h′
2 = α2(1 + δ). Since the algorithm is truthful then it must be unknown single-

step monotone thus implying that the outcome of the algorithm cannot assign
at least r to task 2, thus returning an α-approximation of the makespan (the
optimum would indeed allocate r to task 2 and some ε > 0 to task 1).

We next show that by introducing transfers – in terms of waiting time for using
the allocated RAM – we can indeed design better mechanisms for tasks with
general cost functions.
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5 Optimal Mechanisms with Monitoring Using Transfers

We begin with a general result. Quite interestingly, the next theorem shows that
given monitoring, there is a truthful PTAS for scheduling unrelated machines (at
least for finite domains), alternative to the compensation-and-bonus mechanism
of [13], that does not need verification to be truthful.

Theorem 6. For any social choice function f , there exists a transfer function w
such that (f, w) is truthful with monitoring when agents bid from finite domains.

For the applicability of the theorem, we need to bound and discretize the range
of the admitted cost functions ti, so we assume for the rest of the section that
the ti(m′) (and the bids bi(m′)) are integers from a given Interval [0, T ].

5.1 Optimal Mechanism for Makespan with Fixed Memory Chunks

Assume that n memory chunks of fixed size have to be allocated one-to-one
among n agents, each of whom has a task to process. We identify the memory
chunks with their sizes m1 ≤ m2 ≤ . . . ≤ mn in increasing order. Let ti(mj)
denote the (true) processing time of task i using a memory chunk of size mj .

We consider a greedy allocation rule called Best-Fit Procedure that allocates
the chunks in increasing order of size, as follows: m1 is allocated to the task
i with the minimum processing time given this amount of memory ti(m1) =
mink tk(m1); then iteratively, for every j = 2, . . . , n, mj is given to the remaining
agent with the smallest reported processing time with memory of size mj .

Best-Fit Allocation Procedure

Input: matrix of processing times t = (t1, t2, . . . , tn)

1. N ← [n]
2. for j = 1 . . . n do

(a) Let i = arg mini∈N ti(mj)
(b) Set fW

i (t) = mj

(c) N ← N \ {i}
3. Output fW = (fW

1 , ..., fW
n ).

We claim first, that without waiting times as transfers, this allocation rule is
optimal for the makespan objective (maximum processing time over all tasks).
Then we introduce waiting times wi as payments, so that the resulting mech-
anism is truthful, and the waiting times do not increase the makespan, so the
mechanism is both truthful and achieves optimal makespan.

Lemma 3. The Best-Fit procedure achieves optimal makespan among all bijec-
tive allocations of the n memory chunks to the n agents.
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The proof goes by induction on n, and is based on a standard exchange-argument
in a fixed optimal allocation turning it into the Best-Fit allocation while pre-
serving optimality. In particular, if the smallest chunk is allocated to task i in
Best-Fit, but to task k Opt, then exchanging the chunks between these two tasks
in Opt does not increase the makespan.

Next we show that this allocation rule can be implemented by a truthful
mechanism by using waiting times as payments by the agents. Given the alloca-
tion fW , these waiting times are defined to be smallest possible (for each agent)
such that in increasing order of chunk size the total costs (processing plus waiting
time) of the respective agents become increasing.

In the code below we complement the Best-Fit Procedure to a mechanism
by setting the waiting times wi. The mechanism takes as input the matrix b of
reported running times of the agents. Observe that cj stands for the maximum
processing time over chunks 1 to j after allocation step j. For bidder i, who gets
chunk mj , the payment in form of waiting time is wi = cj − bi(mj).

Best-Fit Mechanism

Input: matrix of reported processing times b = (b1, b2, . . . , bn)

1. N ← [n]
2. (c1, . . . , cn) ← (0, . . . , 0)
3. for j = 1 . . . n do

(a) Let i = arg mini∈N bi(mj)
(b) fW

i (b) ← mj

(c) N ← N \ {i}
(d) cj ← max{cj−1, bi(mj)}
(e) wi ← cj − bi(mj)

4. Output fW = (fW
1 , ..., fW

n ), and w = (w1, w2, . . . , wn).

Note that the total cost costi(b) of the agent who gets mj , is max{cj , ti(mj)} ≥
max{cj−1, ti(mj)} (here we use that the cost is always at least the true running
time), and it is exactly cj = max{cj−1, ti(mj)} if bi(mj) = ti(mj).

Theorem 7. The Best-Fit Mechanism is truthful.

Proof. Here we provide only a sketch of the proof. For some bidder i, let bi �= ti
be an advantageous false bid with the minimum number of indices j such that
bi(mj) �= ti(mj), and let � be the smallest such index.

There are two nontrivial cases to consider. First, when i receives m� by
bidding ti(m�) and does not receive m� when bidding bi(m�) > ti(m�). This
occurs when there is a bidder k with bid bi(m�) ≥ bk(m�) ≥ ti(m�), who
gets m�. The total cost of i when bidding ti would be max{c�−1, ti(m�)}. With
bid bi she gets a chunk with higher index, and her cost will be at least c� =
max{c�−1, bk(m�)} ≥ max{c�−1, ti(m�)} (where c� is meant with input bi).

Second, consider the case when i receives m� by bidding bi(m�) and does not
receive m� when bidding ti(m�) > bi(m�). Again, there must be a bid of some
agent k so that ti(m�) ≥ bk(m�) ≥ bi(m�). Now, if agent i bids bi, then her
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cost is max{c�−1, ti(m�)}. If she bids ti(m�) instead of bi(m�) then she receives a
(larger) chunk ms, for total cost of max{cs−1, ti(ms)}. However, it can be shown
that max{cs−1, ti(ms)} ≤ max{c�−1, ti(m�)}, implying that agent i could change
her bid for chunk � from bi(m�) to ti(m�).

Finally, we show that the waiting times used as transfers in the Best-Fit mecha-
nism have further appealing features apart from truthfulness. First, these waiting
times do not ruin the makespan-minimizing property of the mechanism; second,
these waiting times correspond to the transfers that minimally implement the
makespan minimizing allocation rule Best-Fit.6

Lemma 4. The Best-Fit mechanism achieves minimum makespan (for any
given input b).

Lemma 5. For fixed memory chunks m1,m2, . . . , mn, the payments wi = cj −
bi(mj) used in the Best-Fit mechanism correspond to the transfer functions that
minimally implement the Worst-Fit allocation rule fW .

5.2 Mechanism with Memory Chunking

In this section we treat the problem of optimally chunking a given total size
m ∈ N of memory into n chunks (m1,m2, . . . , mn) (s.t.

∑
j mj = m, and mj ∈

N), and then determining a one-to-one allocation of the chunks, with the goal
of minimizing the makespan over all chunkings and all bijections f : [n] →
{m1,m2, . . . , mn}. We call such a more complex algorithm a chunking algorithm,
which then can be implemented by a chunking mechanism. Unfortunately it turns
out that finding the optimal chunking, and applying the Best-Fit mechanism
with this given chunking does not yield a truthful chunking mechanism.

Theorem 8. For any algorithm that takes as input the (reported) cost functions
bi : [m] → N, then determines an optimal (makespan minimizing) chunking
(m1,m2, . . . , mn), and finally outputs the optimal allocation fW and transfers
w according to the Best-Fit mechanism with input (m1,m2, . . . , mn) and b, the
resulting chunking mechanism is not truthful.

Proof. Consider the following instance with n = 3 tasks, and total memory size
m = 6. Let the true cost-functions be t1(m′) = 1 for all m′ ≥ 1; t2(1) = 5, and
t2(m′) = 3 for m′ ≥ 2; finally, t3(m′) = 7 for m′ < 4, and t3 = 3 for m′ ≥ 4.
The optimal makespan is 5, achieved with the memory chunking (1, 1, 4). In
this optimal allocation task 2 has running time t2(1) = 5, and no waiting time.
However, if agent 2 bids b2(1) = 8, and b2(m′) = 3 for m′ ≥ 2, then (2, 2, 2)
becomes the optimal chunking with makespan 7, and task 2 has running time
max{t2(2), b2(2)} = 3 and no waiting time. Thus agent 2 has an incentive to
report false running times, so the mechanism is not truthful.

6 For the definition of ‘minimally implements’, see the Preliminaries.
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Nevertheless, we know from Theorem 6, that for any fixed optimal allocation
algorithm with memory chunking, there do exist transfers that yield a truth-
ful mechanism. Indeed, one such chunking mechanism is the following. Let
the chunking algorithm determine an optimal chunking and allocation with
makespan Mopt. A trivial truthful mechanism charges wi = Mopt − bi(mi) to
agent i who gets chunk mi, so that the total cost of each agent i becomes
costi = max{Mopt, ti(mi)}. (In fact, such mechanism is optimal and truthful
also in case of any fixed chunking.) There is a slightly better truthful pricing
rule, charging the above prices, except for agents who get a memory chunk of
minimum size; these agents do not have waiting times. This slight modification
of the transfer function may seem to be of little use. Observe though, that charg-
ing the makespan as total cost to every agent is a highly unrealistic solution,
because with this rule the total cost of an agent can become by an arbitrary
factor higher than her running time using any memory size. In contrast, in the
Best-Fit mechanism, the total cost cj of a truthful agent getting chunk mj is
either her own running time, or the running time of some task getting a smaller
chunk, so that agent i would have had a higher running time than cj with that
chunk. That is, for each task her total cost is within the range of running times
of this task.

We define a particular chunking mechanism that finds the optimal makespan
by binary search, and charges waiting times according to the above rule. Sub-
sequently, we show that the mechanism is truthful, and that the waiting times
correspond to the minimum transfers that implement this particular allocation
rule truthfully. Note however, that there might exist different optimal allocation
rules with smaller truthful payments.

Binary-Chunking Mechanism

Input: reported functions of processing times b = (b1, b2, . . . , bn), where
bi : [m] → [T ]

1. M ← 	T/2

2. do binary search for the optimum makespan Mopt

(a) for i = 1 to n do
find (with binary search) the minimum demand mi of agent i in order
to finish within M

(b) if
∑

i mi > m then set M higher
(c) else set M lower if possible, otherwise set Mopt = M

3. for i = 1 to n do
(a) fC

i (b) ← mi

(b) if mi = 1 then wi ← 0
(c) else wi ← Mopt − bi(mi)

4. Output fC = (fC
1 , ..., fC

n ), and w = (w1, w2, . . . , wn).

We note that the binary search for Mopt can also be carried out using demand
queries. In this case, subsequently the bi(mi) have to be queried as well (since
costi = Mopt−bi(mi)+bi(mi), there is no reason to report these non-truthfully).
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Theorem 9. The Binary-Chunking mechanism is truthful. The same holds for
any chunking mechanism with an optimal chunking algorithm, and with the pay-
ments of Binary-Chunking.

Theorem 10. The waiting times used in the Binary-Chunking mechanism are
the minimum transfers that make the allocation rule of Binary-Chunking truthful.

6 Conclusions

We have started our research from a rather practical problem in the context of
concurrent execution of memory-bound programs. Our first solutions presented
here, deal with the static case where an appropriate RAM distribution has to
be determined once, under the makespan objective.

From a more theoretical point of view, our work introduces an interesting
new model of mechanism design wherein studying money burning objective func-
tions is the right research challenge. In fact, we prove that all algorithms admit
transfers that make them truthful with monitoring and therefore, also in light of
the negative results in [10], this paradigm seems to be the right arena to study
the optimal trade off between quality of allocation and transfers introduced.

We believe that our results pave the way to a number of interesting open
questions, the main being the extent to which our positive results can be exported
to more general models allowing repeated allocation mechanisms and/or stronger
solution concepts (e.g., collusion-resistance for known coalitions). In our setting,
the minimization of the sum of the total costs of the agents (i.e., the original
utilitarian objective for money burning) needs to be explored.
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Abstract. One of the central questions in game theory deals with pre-
dicting the behavior of an agent. Here, we study the inverse of this
problem: given the agents’ equilibrium behavior, what are possible util-
ities that motivate this behavior? We consider this problem in arbitrary
normal-form games in which the utilities can be represented by a small
number of parameters, such as in graphical, congestion, and network
design games. In all such settings, we show how to efficiently, i.e. in
polynomial time, determine utilities consistent with a given correlated
equilibrium. However, inferring both utilities and structural elements
(e.g., the graph within a graphical game) is in general NP-hard. From a
theoretical perspective our results show that rationalizing an equilibrium
is computationally easier than computing it; from a practical perspective
a practitioner can use our algorithms to validate behavioral models.

1 Introduction

One of the central and earliest questions in game theory deals with predicting
the behavior of an agent. This question has led to the development of a wide
range of theories and solution concepts — such as the Nash equilibrium — which
determine the players’ actions from their utilities. These predictions in turn may
be used to inform economic analysis, improve artificial intelligence software, and
construct theories of human behavior.

Perhaps equally intriguing is the inverse of the above question: given the
observed behavior of players in a game, how can we infer the utilities that led to
this behavior? Surprisingly, this question has received much less attention, even
though it arises just as naturally as its more famous converse.

For instance, inferring or rationalizing player utilities ought to be an impor-
tant part of experimental protocols in the social sciences. An experimentalist
should test the validity of their model by verifying whether it admits any utilities
that are consistent with observed data. More ambitiously, the experimentalist
may wish to develop predictive techniques, in which one tries to forecast the
agents’ behavior from earlier observations, with utilities serving as an interme-
diary in this process.

Inferring utilities also has numerous engineering applications. In economics,
one could design mechanisms that adapt their rules after learning the utilities
of their users, in order for instance to maximize profits. In machine learning,
c© Springer-Verlag Berlin Heidelberg 2015
E. Markakis and G. Schäfer (Eds.): WINE 2015, LNCS 9470, pp. 413–427, 2015.
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algorithms that infer utilities in a single-agent reinforcement learning setting are
key tools for developing helicopter autopilots, and there exists ongoing research
on related algorithms in the multi-agent setting.

1.1 Our Contributions

Previous work on computational considerations for rationalizing equilibria has
mainly focused on specific types of games, such as matching [1] and network
formation games [2]. Here, we instead take a top-down approach and consider
the problem in an arbitrary normal-form game. Although our results hold gener-
ally, the problem becomes especially interesting when the normal-form game is
succinct, meaning that player utilities (which are normally exponentially-sized
objects) can be represented by a small number of parameters. A vast number of
games studied in the literature — including congestion, graphical, scheduling,
and network design games — have this property. Within large classes of succinct
games, we establish the following two main results:

– When the structure of a game (e.g. the graph in a graphical game) is known,
we can find utilities that rationalize the equilibrium using a small convex
program. This program is polynomial rather than exponential in the number
of players and their actions, and hence can be solved efficiently. We discuss
these results in Sect. 4.

– If the structure of a succinct game is unknown, inferring both utilities and
the correct game structure is NP-hard. We discuss these results in Sect. 5.

1.2 Related Work

Theoretical Computer Science. Kalyanaraman et al. studied the computational
complexity of rationalizing stable matchings [1], and network formation [2]. In
the latter case, they showed that game attributes that are local to a player
can be rationalized, while other, more global, attributes cannot; this mirrors our
observations on the hardness of inferring utilities versus inferring game structure.
The forward direction of our problem — computing an equilibrium from utili-
ties — is a central question within algorithmic game theory. Computing Nash
equilibria is intractable [3] even for 2 player games [4] (and therefore may be a
bad description of human behavior); correlated equilibria, however, are easy to
compute in succinct games [5] and can be found using simple iterative dynamics
[6,7]. Our results show that while a Nash equilibrium is hard to compute, it is
easy to rationalize. For correlated equilibria, both computing and rationalizing
it are feasible.

Economics. Literature on rationalizing agent behavior [8–10] far predates com-
putational concerns. The field of revealed preference [11] studies an agent who
buys different bundles of a good over time, thus revealing more information
about its utilities. These are characterized by sets of linear inequalities, which
become progressively more restrictive; we adopt this way of characterizing agent
utilities in our work as well, but in addition we prove that solving the problem
can be done in polynomial time.
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Econometrics. Recently, Nekipelov et al. [12] discussed inferring utilities of bid-
ders in online ad auctions, assuming bidders are using a no-regret algorithm for
bidding. While no-regret learning agents do converge to a correlated equilibrium,
the authors discuss a private-information game, rather than the full information
games we consider.

The identification literature in econometrics [13–15] is closely related to our
work. However, this literature does not entirely address many computational
concerns, e.g. it studies the rationalization problem in arbitrary normal-form
games in which utilities are exponentially-sized [15]. Our work instead highlights
the importance of succinct games and offers efficient algorithms for a large class
of such games. Moreover, rather than returning a single utility function, we
explicitly characterize the set of valid utilities, which can be interpreted as a
measure of the confidence of our prediction and thus may be useful for the
practitioner.

Inverse Reinforcement Learning. Algorithms that infer the payoff function of an
agent within a Markov decision process [16] are a key tool in building helicopter
autopilots [17]. Our work establishes an analogous theory for multi-agent set-
tings. In both cases, valid utilities are characterized via sets of linear inequalities.
Inverse reinforcement learning has also been used to successfully predict driver
behavior in a city [18,19]; unlike our work, these earlier methods do not directly
learn the utilities of the game playing agents.

Inverse Optimization. Game theory can be interpreted as multi-player optimiza-
tion, with different agents maximizing their individual objective functions. One
of the central results in inverse optimization shows that one can recover the
objective function of an optimization program from its solution by solving a
related linear program [20]. Our work considers the analogous inverse problem
for multiple players and solves it using a linear program as well.

2 Preliminaries

In a normal-form game G � [(Ai)n
i=1, (ui)n

i=1], a player i ∈ {1, 2, ..., n} has mi

actions Ai � {ai
1, a

i
2, ..., a

i
mi

} and utilities ui ∈ R
m, where m =

∏n
i=1 mi is the

cardinality of the joint-action space A � ×n
i=1Ai. An a ∈ A is called a joint

action of all the players and let a−i be a with the action of player i removed.
A mixed strategy of player i is a probability distribution pi ∈ R

mi over the set
of actions Ai. A correlated equilibrium (CE) of G is a probability distribution
p ∈ R

m over A that satisfies
∑

a−i

p(ai
j ,a−i)u(ai

j ,a−i) ≥
∑

a−i

p(ai
j ,a−i)u(ai

k,a−i) (1)

for each player i and each pair of actions ai
j , a

i
k. This equation captures the

idea that no player wants to unilaterally deviate from their equilibrium strategy.
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Correlated equilibria exist in every game, are easy to compute using a linear
program, and arise naturally from the repeated play of learning players [6,7].

A (mixed) Nash equilibrium is a correlated equilibrium p that is a product
distribution p(a) = p1(a1) × ... × pn(an), where the pi ∈ R

mi are mixed player
strategies. In a Nash equilibrium, each player chooses their own strategy (hence
the product form), while in a correlated equilibrium the players’ actions can be
viewed as coming from an outside mediator. A Nash equilibrium exists in every
game, but is hard to compute even in the 2-player setting [4].

3 Succinct Games

In general, the dimension m of player i’s utility ui is exponential in the number
of players: if each player has t actions, ui specifies a value for each of their tn

possible combinations. Therefore, we restrict our attention to games G that have
a special structure which allows the ui to be parametrized by a small number of
parameters v; such games are called succinct [5].

A classical example of a succinct game is a graphical game, in which there is
a graph H with a node for every player, and the utility of a player depends only
on itself and the players on incident nodes in H. If k be the number of neighbors
of i in H, then we only need to specify the utility of i for each combination of
actions of k +1 players (rather than n). For bounded-degree graphs, this greatly
reduces the number of parameters in the game. If the maximum degree in the
graph is k and each player has at most t actions, then the total number of utility
values per player is at most tk+1, which is independent of n.

Definition 1. A succinct game

G � [(Ai)n
i=1, (vi)n

i=1, (Fi)n
i=1]

is a tuple of sets of player actions Ai, parameters vi ∈ R
d, and functions Fi :

R
d × A → R that efficiently compute the utility ui(a) = Fi(vi,a) of a joint

action a.

We will further restrict our attention to succinct games in which the Fi have a
particular linear form. As we will soon show, almost every succinct game in the
literature is also linear. This definition will in turn enable a simple and unified
mathematical analysis across all succinct games.

Definition 2. A linear succinct game

G � [(Ai)n
i=1, (vi)n

i=1, (Oi)n
i=1]

is a succinct game in which the utilities ui are specified by ui = Oivi, where
Oi ∈ {0, 1}m×d is an outcome matrix mapping parameters into utilities. We
assume that the Oi have a compact representation and that each component of
Oivi can be computed efficiently.
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Note that a linear succinct game is a special case of Definition 1 with Fi(vi,a) =
(Oivi)a, which is the component of Oiv corresponding to a.

The outcome matrix Oi has an intuitive interpretation. We can think of a set
of d distinct outcomes Oi that can affect the utility of player i. The parameters
vi specify a utility vi(o) for each outcome o ∈ Oi. When a joint action a occurs,
it results in the realization of a subset Oi(a) � {o : (Oi)a,o = 1} of the outcomes,
specified by the positions of the non-zero entries of matrix Oi. The utility ui(a) =
(Oivi)a equals the sum of valuations of the realized outcomes:

ui(a) =
∑

o∈Oi(a)

vi(o).

Graphical games, which we discussed above, are an example of a succinct game
that is linear. In a graphical game with an associated graph H, outcomes cor-
respond to joint actions aN(i) = (a(k))k∈N(i) by i and its neighbors in H. A
joint-action a activates the single outcome o that is associated to a aN(i) in
which the actions are specified by a. The matrix Oi is defined as

(Oi)a,aN(i) =

{
1 if a,aN(i) agree on the actions of N(i)
0 otherwise.

3.1 Succinct Representations of Equilibria

Since there is an exponential number of joint actions, a correlated equilibrium p
(which is a distribution over joint actions) may require exponential space to write
down. To make sure that the input is polynomial in n, we require that p be rep-
resented as a polynomial mixture of product distributions (PMP) p =

∑K
k=1 qk,

where K is polynomial in n, qk(a) =
∏n

i=1 qik(ai) and qik is a distribution over
Ai. Correlated equilibria in the form of a PMP exist in every game and can be
computed efficiently [5]. A Nash equilibrium is already a product distribution,
so it is a PMP with K = 1.

The issue of representing equilibria also raises several practical questions,
the most important of which concerns how the p are estimated. In principle, we
allow the user to use any estimation strategy, such as recently proposed methods
based on the maximum entropy principle [18,19]. Note, however, that p can also
be a pure strategy equilibrium; we introduce below methods for rationalizing
several p at once, which implies that our method directly accepts sequences of
player actions as input. Another potential concern is that a correlated equilib-
rium may be only privately known by a mediator; this may indeed complicate the
estimation of such equilibria, but does not limit the applicability of our methods
to many other solution concepts, such as the Nash equilibrium. We present our
results in the context of correlated equilibria simply because it is the most gen-
eral solution concept that we can handle; in practice, however, our techniques
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are applicable to sequences of directly observed pure Nash equilibria within the
same game.

3.2 What It Means to Rationalize an Equilibrium

Finding utilities consistent with an equilibrium p amounts to finding ui that
satisfy Eq. 1 for each player i and for each pair of actions ai

j , a
i
k ∈ Ai. It is not

hard to show that Eq. 1 can be written in matrix form as

pT Cijkui ≥ 0, (2)

where Cijk is an m × m matrix that has the form

(Cijk)(arow,acol) =

⎧
⎪⎨

⎪⎩

−1 if arow = (aj ,acol
−i )

1 if arow = (ak,acol
−i )

0 otherwise.

This formulation exposes intriguing symmetry between the equilibrium distrib-
ution p and the utilities ui. By our earlier definitions, the utilities ui in a linear
succinct game can be written as ui = Oivi; this allows us to rewrite Eq. 2 as

pT CijkOivi ≥ 0. (3)

While Cijk and Oi are exponentially large in n, their product is not, so in Sect. 4
we show that we can compute this product efficiently, without constructing Cijk

and Oi explicitly. To do this we let Oi be represented by a small program that
for action profile a and outcome o returns (Oi)a,o. These small programs are
given in Sect. 4.2.

3.3 Non-Degeneracy Conditions

In general, inferring agent utilities is not a well-defined problem. For instance,
Eq. 1 is always satisfied by vi = 0 and remains invariant under scalar multipli-
cation αvi. To avoid such trivial solutions, we add an additional non-degeneracy
condition on the utilities.

Condition 1 (Non-degeneracy). A non-degenerate vector v ∈ R
d satisfies

∑d
k=1 vk = 1.

3.4 The Inverse Game Theory Problem

We are now ready to formalize two important inverse game theory problems.
In the first problem — Inverse-Utility — we observe L games between n
players; the structure of every game is known, but can vary. As a motivating
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example, consider n drivers that play a congestion game each day over a network
of roads and on certain days some roads may be closed. Alternatively, consider
L scheduling games where different subsets of machines are available on each
day. Our goal is to find valuations that rationalize the observed equilibria of all
the games at once.

Definition 3 (Inverse-Utilityproblem). Given:

1. A set of L partially observed succinct n-player games
Gl = [(Ail)n

i=1, · , (Oil)n
i=1], for l ∈ {1, 2, ..., L}.

2. A set of L correlated equilibria (pl)L
l=1.

Determine succinct utilities (vi)n
i=1 such that pl is a valid correlated equilibrium

in each Gl, in the sense that Eq. 3 holds for all i and for all ai
j , a

i
k ∈ Ail.

Alternatively, report that no such vi exist.

Recall that (Oil)n
i=1 have a compact representation (e.g. as small programs,

rather than the complete matrix), so that our input is polynomial in the number
of players and actions. In the second problem — Inverse-Game — the players
are again playing in L games, but this time both the utilities and the structure
of these games are unknown.

Definition 4 (Inverse-game problem). Given:

1. A set of L partially observed succinct n-player games Gl = [(Ail)n
i=1, · , · ],

for l ∈ {1, 2, ..., L}.
2. A set of L correlated equilibria (pl)m

l=1.
3. Candidate game structures (Sl)L

l=1, one Sl per game. Each Sl = (Slh)p
h=1 con-

tains p candidate structures. A structure Slh = (Olhi)n
i=1 specifies an outcome

matrix Olhi for each player i.

Determine succinct utilities (vi)n
i=1 and a structure S∗

l = (O∗
li)

n
i=1 ∈ Sl for each

game, such that pl is a correlated equilibrium in each [(Ail)n
i=1, (vi)n

i=1, (O
∗
li)

n
i=1],

in the sense that
pT

l CijkO∗
ilvi ≥ 0

holds for all i, l and for all ai
j , a

i
k ∈ Ail. Alternatively, report that no such vi

exist.

An example of this problem is when we observe L graphical games among
n players and each game has a different and unknown underlying graph chosen
among a set of candidates. We wish to infer both the common v and the graph of
each game. Finally, note again that our results also hold for pure Nash equilibria
as a special case.

4 Learning Utilities in Succinct Games

In this section, we show how to solve Inverse-Utility in most succinct games.
We start by looking at a general linear succinct game, and derive a simple con-
dition under which Inverse-Utility can be solved. Then we consider specific
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cases of games (e.g. graphical, congestion, network games), and show (1) that
they are succinct and linear, and (2) that they satisfy the previous condition.

4.1 General Linear Succinct Games

To solve Inverse-Utility, we need to find valuations vi that satisfy the equi-
librium condition (3) for every player i and every pair of actions ai

j , a
i
k. Notice

that if we can compute the product cT
ijk � pT CijkOi, then Eq. 3 reduces to a

simple linear constraint cT
ijkvi ≤ 0 for vi. However, the dimensions of Cijk and

Oi grow exponentially with n; in order to multiply these objects we must there-
fore exploit special problem structure. This structure exists in every game for
which the following simple condition holds.

Property 1 Let Ai(o) = {a : (Oi)a,o = 1} be the set of joint-actions that trigger
outcome o for player i. The equilibrium summation property holds if

∑

a−i:(ai
j ,a−i)∈Ai(o)

p(a−i) (4)

can be computed in polynomial time for any outcome o, product distribution p,
and action ai

j.
1

Informally, Property 1 states that the exact expected utility of players can
be computed efficiently. While this is not possible for any game, we establish
that this can be done for a large number of linear succinct games in Sect. 4.2.

Lemma 1. Let G be a linear succinct game and let p be a PMP correlated
equilibrium. Let cT

ijk � pT CijkOi be the constraint on vector vi in Eq. 3 for a
pair of actions ai

k, ai
j. If Property 1 holds, then the components of cT

ijkj can be
computed in polynomial time.

Proof. For greater clarity, we start with the formulation (1) of constraint (3):
∑

a−i

p(ai
j ,a−i)u(ai

j ,a−i) ≥
∑

a−i

p(ai
j ,a−i)u(ai

k,a−i) (5)

We derive from (5) an expression for each component of cijk.
Recall that we associate the components of vi with a set of outcomes Oi.

Let Oi(a) = {o : O(a,o} = 1} denote the set of outcomes that are triggered by a;
similarly, let A(o) = {a : (Oi)a,o = 1} be the set of joint-actions that trigger an

1 Property 1 is closely related to the polynomial expectation property (PEP) of [5]
which states that the expected utility of a player in a succinct game should be
efficiently computable for a product distribution. In fact, the arguments we will use
to show that this property holds are inspired by arguments for establishing the PEP.
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outcome o. The left-hand side of (5) can be rewritten as:
∑

a−i

p(ai
j ,a−i)ui(ai

j ,a−i) =
∑

a−i

p(ai
j ,a−i)

∑

o∈Oi(ai
j ,a−i)

vi(o)

=
∑

o∈Oi

∑

a−i:

(ai
j ,a−i)∈Ai(o)

p(ai
j ,a−i)vi(o)

=
∑

o∈Oi

vi(o)
∑

a−i:

(ai
j ,a−i)∈Ai(o)

p(ai
j ,a−i)

Similarly, the right-hand side of (5) can be rewritten as
∑

a−i

p(ai
j ,a−i)ui(ai

k,a−i) =
∑

o∈Oi

vi(o)
∑

a−i:

(ai
k,a−i)∈Ai(o)

p(ai
j ,a−i).

Substituting these two expressions into (5) and factoring out pi(ai
j) (recall that

p is a product distribution) allows us to rewrite (5) as:

∑

o∈Oi

vi(o)

⎡

⎢
⎢
⎣

∑

a−i:

(ai
j ,a−i)∈Ai(o)

p(a−i) −
∑

a−i:

(ai
k,a−i)∈Ai(o)

p(a−i)

⎤

⎥
⎥
⎦ ≥ 0.

Notice that the expression in brackets corresponds to the entries of the vector
cT

ijk. If p is a product distribution, then by Property 1, we can compute these
terms in polynomial time. If p is a correlated equilibrium with a PMP represen-
tation

∑K
k=1 qk, it is easy to see that by linearity of summation we can apply

Property 1 K times on each of the terms qk and sum the results. This establishes
the lemma. ��

Lemma 1 suggests solving Inverse-utility in a game G by means of the
following optimization problem.

minimize
n∑

i=1

f(vi) (6)

subject to cT
ijkvi ≥ 0 ∀i, j, k (7)

1T vi = 1 ∀i (8)

Constraint (7) ensures that p is a valid equilibrium; by Lemma 1, we can compute
the components of cijk if Property 1 holds in G. Constaint (8) ensures that the
vi are non-degenerate. The objective function (6) selects a set of vi out of the
polytope of all valid utilities. It is possible to incorporate into this program
additional prior knowledge on the form of the utilities or on the coupling of
valuations across players.
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The objective function f may also incorporate prior knowledge, or it can serve
as a regularizer. For instance, we may choose f(vi) = ||vi||1 to encourage sparsity
and make the vi more interpretable. We may also use f to avoid degenerate
vi’s; for instance, in graphical games, cT

ijk1 = 0 and constant vi’s are a valid
solution. We may avoid this by adding the v ≥ 0 constraint (this is w.l.o.g. when
cT

ijk1 = 0) and by choosing f(v) =
∑

o∈Oi
v(o) log v(o) to maximize entropy.

Note that to simply find a valid vi, we may set f(vi) = 0 and find a feasible
point via linear programming. Moreover, if we observe L games, we simply com-
bine the constraints cijk into one program. Formally, this establishes the main
lemma of this section:

Lemma 2. The Inverse-game problem can be solved efficiently in any game
where Property 1 holds. ��

4.2 Inferring Utilities in Popular Succinct Games

We now turn our attention to specific families of succinct games which represent
the majority of succinct games in the literature [5]. We show that these games
are linear and satisfy Property 1, so that Inverse-Utility can be solved using
the optimization problem (6).

Graphical Games. In graphical games [21], a graph H is defined over the set of
players; the utility of a player depends only on their actions and those of their
neighbors in the graph.

The outcomes for player i are associated to joint-actions aN(i) by i and its
neighbors N(i). A joint-action a triggers the outcome aN(i) specified by actions
of the players in N(i) in a. Formally,

(Oi)a,aN(i) =

{
1 if a,aN(i) agree on the actions of N(i)
0 otherwise.

It is easy to verify that graphical games possess Property 1. Indeed, for any
outcome o = aN(i) and action ai

j , and letting ak
N(i) be the action of player k in

aN(i), we have

∑

a−i:

(ai
j ,a−i)∈Ai(o)

p(a−i) =
∏

k∈N(i)
k �=i

pk(ak
N(i))

∏

k/∈N(i)
k �=i

∑

∈Ak

pk(ak)

=
∏

k∈N(i)
k �=i

pk(ak
N(i))

Polymatrix Games. In a polymatrix game [22], each player plays i in (n − 1)
simultaneous 2-player games against each of the other players, and utilities are
summed across all these games. Formally, each joint-action triggers n−1 different
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outcomes for player i, one for each pair of actions (ai, aj) and thus ui(a) =∑
j �=i vi(ai, aj). The associated outcome matrix is

(Oi)a,(ai,aj) =

{
1 if ai

j and ai
i are played withina

0 otherwise.

To establish Property 1, observe that when o = (ai, aj) is one of the outcomes
affecting the utility of player i, we have

∑

a−i:

(ai
j ,a−i)∈Ai(o)

p(a−i) =
∑

a−i:aj∈a−i

p(a−i) = pj(aj).

Hypergraphical Games. Hypergraphical games [5] generalize polymatrix games
to the case where the simultaneous games involve potentially more than two
players. Each instance of a hypergaphical game is associated with a hypergraph
H; the vertices of H correspond to players and a hyperedge e indicates that the
players connected by e play together in a subgame; the utility of player i is the
sum its utilities in all the subgames in which it participates.

The fact that hypergraphical games are linear and possess Property 1 follows
easily from our discussion of polymatrix and graphical games.

Congestion Games. In congestion games [23], players compete for a set of
resources E (e.g., roads in a city, modeled by edges in a graph); the players’
actions correspond to subsets ai ⊆ E of the resources. After all actions have
been played, each player i incurs a cost that equals the sum

∑
e∈ai de(le) of

delays de(�e) at each resource e, where �e(a) = |{i : e ∈ ai}| denotes the number
of players using that resource. In the example involving roads, delays indicate
how long it takes to traverse a road based on the congestion.

The outcomes for player i in congestion games are associated with a resource
e and the number L of players using that resource; we denote this by o = (e, L). A
joint action a activates the outcomes for the resources in ai that have �e(a) users.
The value v(o) of an outcome o = (e, L) corresponds to the delay experienced
on e. Formally, the outcome matrix for a congestion game has the form

(Oi)a,(e,L) =

{
1 if e ∈ ai and �e(a) = L

0 otherwise.

To establish Property 1, we need to show that the expression
∑

a−i:

(ai
j ,a−i)∈Ai(o)

p(a−i) =
∑

a−i:�(a−i)=L−1{e∈ai
j}

p(a−i)

can be computed for any outcome o = (e, L). Here, �(a−i) denotes the number
of players other than i using resource e and 1{e ∈ ai

j} equals one if e ∈ ai
j and

zero otherwise.
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The expression PL(e) �
∑

a−i:�(a−i)=L p(a−i) can be computed via dynamic
programming. Indeed, observe that PL(e) equals P [

∑
j �=i Bj(p, e) = L], where

Bj(p, e) is a Bernoulli random variable whose probability of being one corre-
sponds to the probability Pj,e �

∑
aj :e∈aj pj(aj) of player j selecting an action

that includes e. The probabilities Pj,e are of course easy to compute. From
the Pj,e it is easy to compute the PL(e) using dynamic programming via the
recursion:

PL(e) =
∑

j �=i

P [Bj(p, e) = 1 ∩ Bk(p, e) = 0 ∀k �= i, j] PL−1(e).

Facility Location and Network Design Games. In facility location games [24],
players choose one of multiple facility locations, each with a certain cost, and
the cost of each facility is then divided by all the players who build it. In network
design games [25], players choose paths in a graph to connect their terminals,
and the cost of each edge is shared among the players that use it.

These two game types are special cases of congestion games with particular
delay functions. These can be handled through additional linear constraints. The
earlier discussion for congestion games extends easily to this setting to establish
Property 1.

Scheduling Games. In a scheduling game [5,26], there are M machines and each
player i schedules a job on a machine ai; the job has a machine-dependent
running time t(m, i). The player then incurs a cost ti(a) =

∑
{j:aj=ai} t(ai, j)

that equals the sum of the running times of all tasks on its machine.
Player outcomes o = (m, j) are associated with a machine m and the task of

a player j. The outcome matrix Oi has the form

(Oi)a,(m,j) =

{
1 if m ∈ aiand m ∈ aj

0 otherwise.

Property 1 can be established by adapting the dynamic programing argument
used for congestion games. Note also that congestion games require adding the
constraint vi(m, k) = vj(m, k) for all i and j in optimization problem (6). We
summarize our results in the following theorem.

Theorem 1. The Inverse-Utility problem can be solved in polynomial time
for the classes of succinct games defined above. ��

5 Learning the Structure of Succinct Games

Unlike the Inverse-Utility problem, for which we have sweeping positive
results, the Inverse-game problem is generally hard to solve, even for pure-
strategy Nash equilibria. We show this under the following non-degeneracy con-
dition on player utilities.
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Condition 2 (Non-indifference) For each player i, there exist ai
j , a

i
k,a−i

such that ui(ai
j ,a−i) �= ui(ai

k,a−i), where ui = Oivi.

The interpretation of this condition is that for every action ai
j , there should

be another action ai
k that gives i a different utility for some a−i. If not, then

action j is effectively useless and can be excluded from the model without loss
of generality. This in a senses violates the pre-specified model, which selected
the action to be there in the first place.

Theorem 2. Assuming Condition 2, it is NP-Hard to solve Inverse-game in
the setting of graphical games. However, the corresponding instance of Inverse-
utility is easy to solve.

Proof (Sketch). We reduce from an instance of 3-sat. There are n+1 players in
each game j (for 1 ≤ j ≤ m) that are indexed by i = 0, .., n. Player 0 has only
one action: a(0). Every other player i ≥ 1 has 2 actions: a

(i)
T and a

(i)
F .

Every game j is associated with a clause Cj . Game j has an unknown under-
lying graph that is chosen in the set of graphs Sj = {Hj1,Hj2,Hj3}, where Hjk

is the graph consisting of only a single edge between player 0 and the player
associated with the variable that appears as the k-th literal in clause j. In other
words, in each game, only one of three possible players is connected to player 0
by an edge.

The utilities vi of each player i ≥ 1 are four-dimensional: they specify two
values vi(a

(i)
T ), vi(a

(i)
F ) when player i is not connected by an edge to player 0,

and two values vi(a
(i)
T ; a(0)), vi(a

(i)
F ; a(0)) when they are.

For every clause Cj , we also define an input equilibrium pj . Each pj is a pure
strategy Nash equilibrium and decomposes into a product pj =

∏n
i=1 pji. Since

player 0 has only one action, pj0 is defined trivially. When variable xi appears
in clause Cj , we define the probability of player i ≥ 1 playing action a

(i)
T as

pji

(
a(i) = a

(i)
T

)
=

{
1 if xi is positively in clause Cj

0 if xi is negated in clause Cj ,

and pji(a(i) = a
(i)
F ) = 1 − pji(a(i) = a

(i)
T ).

When variable xi does not appear in clause Cj , we set the strategy in one
such game j (chosen arbitrarily) to be pji(a(i) = a

(i)
T ) = 1, and in the remaining

games we set pji(a(i) = a
(i)
F ) = 1.

This completes the construction of the game. To complete the proof, it can
be shown that finding valid utilities in this game is equivalent to finding a correct
assignment; we do so in the full version of the paper. ��
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T.: The price of stability for network design with fair cost allocation. SIAM J.
Comput. 38(4), 1602–1623 (2008)

26. Fotakis, D.A., Kontogiannis, S.C., Koutsoupias, E., Mavronicolas, M., Spirakis,
P.G.: The structure and complexity of nash equilibria for a selfish routing game.
In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo,
R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)



Exchange Market Mechanisms without Money

Zeinab Abbassi1, Nima Haghpanah2, and Vahab Mirrokni3

1 Columbia University, New York, USA
zeinab@cs.columbia.edu
2 MIT, Cambridge, USA
nima@csail.mit.edu

3 Google Research, New York, USA
mirrokni@google.com

Consider a set of agents where each agent has some items to offer, and wishes
to receive some items from other agents. A mechanism specifies for each agent
a set of items that he gives away, and a set of item that he receives. Each agent
would like to receive as many items as possible from the items that he wishes,
that is, his utility is equal to the number of items that he receives and wishes.
However, he will have a large dis-utility if he gives away more items than what
he receives, because he considers such a trade to be unfair. To ensure voluntary
participation (also known as individual rationality), we require the mechanism
to avoid this. This problem is a generalization of the kidney exchange problem,
and is motivated by several barter exchange websites on the Internet.

We show that any individually rational exchange can be viewed as a collection
of directed cycles, in which each agent receives an item from the agent before
him, and gives an item to the agent after him. In addition to simplifying the
statement of the problem, this suggests that we can implement an exchange
by separately carrying out one-to-one trades among subsets of agents. In some
settings, carrying out cycle-exchanges of large size is undesirable or infeasible.
Therefore, we distinguish the restricted problem in which the number of agents
in each cycle is bounded above by some given constant k ≥ 2. The most natural
and commonly practiced cycles are of length 2 (i.e., swaps).

For the length-constrained variant of the problem, we rule out the existence of
a 1 − o(1)-approximate truthful mechanism for the length-constrained problem
for k ≥ 2. We show that no truthful deterministic or randomized mechanism
can achieve an approximation factor better than 3k+1

3k+2 or 3k+1.89
3k+2 , respectively.

We strengthen the hardness of the problem by proving that even without the
truthfulness requirement, the problem is APX-hard for any k. We present a 1

8 -
approximately optimal truthful mechanism for the problem with k = 2. The
mechanism visits pairs of agents in some fixed order, and considers adding a
subset of exchanges when visiting a pair. The order is chosen such that an agent
can not affect future exchanges involving the agent by misreporting.
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For the unconstrained version, and without the truthfulness constraint, we
present a class of polynomial-time algorithms solving the optimal exchange mar-
ket problem. The algorithms closely resemble algorithms for maximum flow and
circulation problems. An algorithm maintains a set of feasible exchanges, and
iteratively augments the current solution until the residual graph does not con-
tain any more cycles.
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Abstract. We study the dynamic pricing problem faced by a monop-
olist who sells a storable good – a good that can be stored for later
consumption. In this framework, the two major pricing mechanisms stud-
ied in the theoretic literature are the price-commitment and the threat
(no-commitment) mechanisms. We analyse and compare these mecha-
nisms in the setting where the good can be purchased in indivisible
atomic quantities and where demand is time-dependent. First, we show
that, given linear storage costs, the monopolist can compute an optimal
price-commitment strategy in polynomial time. Moreover, under such a
strategy, the consumers do not need to store units in order to antici-
pate price rises. Second we show that, under a threat mechanism rather
than a price-commitment mechanism, (i) prices can be lower, (ii) prof-
its can be higher, and (iii) consumer surplus can be higher. This result
is surprising, in that these three facts are in complete contrast to the
case of a monopolist for divisible storable goods [3]. Third, we quan-
tify exactly how much more profitable a threat mechanism can be with
respect to a price-commitment mechanism. Specifically, for a market with
N consumers, a threat mechanism can produce a multiplicative factor of
Ω(logN) more profits than a price-commitment mechanism, and this
bound is tight. Again, this result is slightly surprising. A special case
of this model, is the durable good monopolist model of Bagnoli et al.
[1]. For a durable good monopolist, it was recently shown ([2]) that the
profits of the price-commitment and the threat mechanisms are always
within an additive constant. Finally, we consider extensions to the case
where inventory storage costs are concave.

This paper is available at http://arxiv.org/abs/1509.07330
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A monopolist offers a product to a market of consumers with heterogeneous
quality preferences. Although initially uninformed about the product quality,
they learn by observing reviews of other consumers who have previously pur-
chased and experienced the product. Our goal is to analyze the social learning
mechanism and its effect on the seller’s pricing decision. We postulate a non-
Bayesian and fairly intuitive learning mechanism, where consumers assume that
all prior decisions were based on the same information, and, under this bounded
rationality assumption, consumers pick the maximum likelihood estimate (MLE)
of the quality level that would best explain the observed sequence of reviews.

First, we characterize the quality estimate resulting from the MLE procedure
and show that, under regularity conditions, it converges to the true product qual-
ity almost surely. Then, we derive a mean-field asymptotic approximation for the
learning dynamics and present the system of differential equations that govern
such dynamics. The solution gives a crisp characterization of the dependence of
the learning trajectory on the monopolist’s price. This approach is flexible and
applicable in other settings where the microstructure of the learning process is
different.

We then turn to the monopolist’s problem of choosing the static price that
optimizes her infinite horizon discounted revenues, and characterize the optimal
solution, which is unique and lies in the interval of two natural price points:
(a) the optimal price assuming that consumers do not learn and always make
purchase decisions based on their prior quality estimate; and (b) the optimal
price in a setting where consumers knew the true quality all along. Lastly, we give
the seller some degree of dynamic pricing capability, namely she can change her
price once, at a time of her choosing. We show that, in this case, the monopolist
may sacrifice short term revenues in order to influence the social learning process
in the desired direction and capitalize on that after changing the price.

A complete version is available at http://ssrn.com/abstract=1957924.
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The Stable Matching Linear Program
and an Approximate Rural Hospital Theorem

with Couples

Oliver Hinder

Stanford University, Stanford, CA, USA
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http://stanford.edu/∼ohinder/stability-and-lp/working-paper.pdf

Abstract. The deferred acceptance algorithm has been the most com-
monly studied tool for computing stable matchings. An alternate less-
studied approach is to use integer programming formulations and linear
programming relaxations to compute optimal stable matchings. Papers
in this area tend to focus on the simple ordinal preferences of the stable
marriage problem. This paper advocates the use of linear programming
for computing stable matchings with more general preferences: comple-
ments, substitutes and responsiveness, by presenting a series of qualita-
tive and computational results.

First, we show how linear programming relaxations can provide strong
qualitative insights by deriving a new approximate rural hospital theo-
rem. The standard rural hospital theorem, which states that every stable
outcome matches the same doctors and hospitals, is known to fail in the
presence of couples. We show that the total number of doctors and hos-
pitals that change from matched to unmatched, and vice versa, between
stable matchings is, at most, twice the number of couples. Next, we move
from qualitative to computational insights, by outlining sufficient condi-
tions for when our linear program returns a stable matchings. We show
solving the stable matching linear program will yield a stable matching (i)
for the doctor-optimal objective (or hospital-optimal), when agent prefer-
ences obey substitutes and the law of aggregate demand, and (ii) for any
objective, when agent preferences over sets of contracts are responsive.
Finally, we demonstrate the computational power of our linear program
via synthetic experiments for finding stable matchings in markets with
couples. Our linear program more frequently finds stable matchings than
a deferred acceptance algorithm that accommodates couples.

Keywords: Matching markets · Linear programming · Optimization ·
Stable matching
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We study cascading failures in networks and the incentives that agents have to
invest in costly protection. Agents are connected through a network and can fail
either intrinsically or as a result of the failure of a subset of their neighbors.
Each agent must decide on whether to make a costly investment in protection
against cascading failures. This investment can mean vaccination, investing in
computer security solutions or airport security equipment, to name a few impor-
tant examples.

We derive a mean-field equilibrium (MFE), where agents simply consider a
mean-field approximation of the cascading process when making their decision
of whether to invest in protection. We characterize the equilibrium and derive
conditions under which equilibrium strategies are monotone in degree (i.e., in
how connected an agent is on the network). We show that different kinds of
applications (e.g. vaccination, airport security) lead to very different equilib-
rium patterns of investments in protection. Indeed, the monotonicity is reversed
depending on whether the investment in protection insulates an agent against
the failure of his neighbors or just against his own intrinsic failure. The former
case defines a game of strategic substitutes in which some agents free-ride on
the investment in protection of others, while the latter case defines a game of
strategic complements in which agents pool their investments in protection. Risk
and welfare implications are discussed.

The mean-field model conveniently allows for comparative statics in terms
of the degree distribution and the effect of increasing the level of connectedness
on the incentives to invest in protection is discussed. The model also allows
us to study global effects (e.g. price feedback, congestion). We can therefore
analyze how the presence of both local and global network externalities affects
equilibrium behavior. We show that our results are robust to the introduction
of such global effects.

Full paper available at http://ssrn.com/abstract=2515968
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Multilateral Bargaining in Networks:
On the Prevalence of Inefficiencies

Joosung Lee
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Abstract. We introduce a noncooperative multilateral bargaining model
for network-restricted environments. In each period, a randomly selected
proposer makes an offer by choosing 1) a coalition, or bargaining part-
ners, among the neighbors in a given network and 2) monetary transfers
to each member in the coalition. If all the members in the coalition
accept the offer, then the proposer buys out their network connections
and controls the coalition thereafter. Otherwise, the offer dissolves. The
game repeats until the grand-coalition forms, after which the player who
controls the grand-coalition wins the unit surplus. All the players have
a common discount factor.

The main theorem characterizes a condition on network structures
for efficient equilibria. If the underlying network is either complete or
circular, an efficient stationary subgame perfect equilibrium exists for
all discount factors: all the players always try to reach an agreement as
soon as practicable and hence no strategic delay occurs. In any other net-
work, however, an efficient equilibrium is impossible if a discount factor
is greater than a certain threshold, as some players strategically delay
an agreement. We also provide an example of a Braess-like paradox, in
which the more links are available, the less links are actually used. Thus,
network improvements may decrease social welfare.

This paper, at least in two reasons, concentrates on unanimity-game
situations in which only a grand-coalition generates a surplus. First, ana-
lyzing unanimity games is enough to show the prevalence of inefficiencies.
If any of proper subcoalitions generates a partial surplus, an efficient
equilibrium is impossible even in complete networks for high discount
factors, as a companion paper1 shows. Second, in unanimity games we
can investigate the role of network structure on strategic delay control-
ling network-irrelevant factors.

Keywords: Noncooperative bargaining · Coalition formation · Network
restriction · Buyout · Braess’s Paradox

A full version of the paper is available at http://www.research.ed.ac.uk/portal/files/
21746313/NetworkBargaining.pdf
This paper is based on the second chapter of my Ph.D. dissertation submitted to the
Pennsylvania State University. I thank Kalyan Chatterjee, Ed Green, Jim Jordan,
Vijay Krishna, Shih En Lu, Neil Wallace, the three anonymous referees from WINE
2015 for helpful discussions and suggestions.

1 Lee, J. (2015): Bargaining and Buyout, working paper, available at http://www.
research.ed.ac.uk/portal/files/21741650/BargainingBuyout.pdf.
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Abstract. In many contexts we cannot design allocation rules that are
efficient, fair, and incentive-compatible in the strong sense of strate-
gyproofness. A well known exception is voting over a line of candidates
when individual preferences are single-peaked: the median peak defines
such a rule. Another instance is the division of a single non dispos-
able commodity (e.g., a workload) when preferences over one’s share are
single-peaked ([2]). We generalize these two models, and more. We show
that the three design goals above are compatible in any problem where
individual allocations are one-dimensional, preferences are single-peaked
(strictly convex), and the set of feasible allocation profiles is convex.

The general model. The finite set of agents is N . An allocation profile is
x = (xi)i∈N ∈ R

N ; it is feasible only if x ∈ X, a closed and convex subset of RN .
Agent i’s preferences over Xi, the i-th projection of X, are single-peaked with
peak pi. A peak-only rule f maps a profile of peaks p ∈ Π NXi into a feasible
allocation f(p) = x ∈ X. We use five axioms.

Efficiency of f means it always selects a Pareto optimal allocation. Strong-
GroupStrategyproofness (SGSP): when a subset of agents move jointly from
reporting their true peaks, either at least one of them is strictly worse off or
nobody’s welfare changes. We call any permutation σ : N → N leaving X
invariant a symmetry of X; we call x a symmetric allocation of X if x is invari-
ant by all symmetries of X. Symmetry (SYM) of f : if σ is a symmetry of X
then f(pσ) = f(p)σ. Envy-Freeness (EF): if permuting i and j is a symmetry of
X, then xi is between pi and xj . Fix a feasible allocation ω ∈ X; ω-Guarantee
(ω-G): xi is between pi and ωi.

Main Result. For any symmetric allocation ω ∈ X, there exists at least one
peak-only rule fω that is Efficient, SGSP, and meets SYM, EF, and ω-G. This
rule is also continuous if X is a polytope or is strictly convex of full dimension.

The proof is constructive. Our uniform gains rule fω equalizes benefits from
the benchmark allocation ω. For any p ∈ ΠNXi the rule picks fω(p) = x in
X ∩ [ω, p]: x is feasible and each xi is between ωi and pi. We choose x so that the
profile of individual benefits |xi −ωi|, reordered increasingly, is lexicographically
maximal in X ∩ [ω, p].

Full length paper: http://www.gla.ac.uk/media/media 409041 en.pdf
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This paper considers the classical social choice model with finitely many voters,
who have strict preferences over a finite set of m ≥ 2 alternatives. Fix 1 ≤ k ≤
m−1. A social choice correspondence assigns to each profile of preferences a set of
committees, where a committee is an ordered set of k alternatives. The aim of the
paper is to find a reasonable (anonymous, (Maskin) monotonic) method which
is nonmanipulable in the sense that for a given preference profile no coalition of
voters, by not voting truthfully, can ensure a committee preferred by all coalition
members to a sincere committee, i.e., a committee resulting from truthful voting.

The main results of the paper imply, that for two natural extensions of pref-
erences from alternatives to committees, this aim is achieved by so-called feasible
elimination procedures, first introduced in [2]. A feasible elimination procedure
depends on (positive integer) weights attached to the alternatives (e.g., by a
planner). Given a preference profile one first eliminates an alternative that is at
bottom at least as often as its weight, together with as many preferences. By
repeating this procedure a ranking of the alternatives is established, and the k
last surviving alternatives are chosen.

It is also shown that well-known methods like scoring rules or single-transfer-
able vote do not have this property.

An additional result of the paper is that establishing whether a given com-
mittee of size k can result from applying a feasible elimination procedure is
equivalent to finding a maximal matching in a specific bipartite graph, which
can be done in polynomial time, see [1]. For more background see [3,4]. For the
complete paper see [5].
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