An Experience Sharing on e-Learning
Platform Upgrade

Janny C.C. Ng, Sze-Wing Leung(g), Dickson T.S. Chan,
Hades C.F. Tam, Benz C.L. Sze, and Ray K.C. Wong

School of Professional and Continuing Education,
The University of Hong Kong, Hong Kong SAR, China
{janny.ng, swleung}@hkuspace. hku. hk

Abstract. Since the introduction of learning management system (LMS), the
development of online learning has been changing rapidly in the past decades.
With the advancement of information technology, numerous LMSs, such as
WebCT, Blackboard and Moodle, had been developed. New features and
advanced versions of LMSs are frequently released each year. HKU School of
Professional and Continuing Education (HKU SPACE) adopted the first LMS,
namely “SOUL”, in order to enhance teaching and learning effectiveness since
1999. In view of enhancing the needs of a sophisticated online learning envi-
ronment, SOUL was revamped based on Moodle, an open source system, and a
new version named SOUL 2.0 was launched in 2011. After running for a few
years, a system upgrade was taken place in 2014 to cope with the latest Moodle
version 2.7, which mobile format is supported and improvements were made.
With various customized features implemented to the SOUL 2.0, a set of coding
standards was introduced by the development team to standardize the cus-
tomization of source codes. This paper shares the barriers that the team faced
during the upgrading process. It also illustrates how the coding standard and
effective workflow were implemented at development phase, and the way to
assure system coding and source data are migrated successfully.

Keywords: e-learning - Learning management system - Platform upgrade -
Moodle

1 Introduction

HKU SPACE is committed to provide high quality educational opportunities for the
communities since its establishment. Starting from 1999, the School adopted the
advance from technologies to provide better learning and teaching experience for
teachers and students by developing their in-house built learning management system,
SOUL. It was a Web 1.0 platform which was mainly for students to download material
and submit assignment files. The School started using an open source learning man-
agement system, Moodle version 2.1 to take the advantage of its Web 2.0 features of
being a pedagogical driven, cost-effective and community supported learning man-
agement system (LMS) solution [9] since 2011.

© Springer-Verlag Berlin Heidelberg 2015
J. Lam et al. (Eds.): ICTE 2015, CCIS 559, pp. 233-250, 2015.
DOI: 10.1007/978-3-662-48978-9_22

234 J.C.C. Ng et al.

With the revolution bloom on Web 2.0 in recent decades, a variety of e-learning
platforms have been introduced. In order to keep in pace with the technology and adapt
different learning styles, each of those platforms could release several software updates
and require frequent upgrading. While an e-learning platform always involves various
stakeholders, previous studies have argued that the entire campus could have to suffer a
disaster if an update procedure is not implemented with a thoughtful and thorough
action plan [15].

According to Moodle.org, two versions would be published per year where major
and minor updates would be applied to its LMS for adopting the updated technologies
such as mobile-friendly features, improving the system performance, fixing security
issues, etc. To take the advantages of the enhancements and new functions in latest
versions, upgrading e-learning platform from older to newer become the only option
for the higher educational institutes and is a challenge to the higher educational
organization undergoing the adoption of the upgraded LMS [6].

This paper introduces a case study of the upgrade processes of our e-learning
platform that comprise of complicated and huge amount of customization tasks and
enhancements. It also discusses the challenges, which include schedule management,
staff turnover, user involvement, launching preparations, etc., during the upgrade
process. Last but not least, this paper shares good practices for developing and
maintaining e-learning platforms. It is hoped that the case study and the experiences
shared by the team could act as a reference for any party who prepares to update an
e-learning platform, especially for major or critical updates.

2 Business Needs and Benefits on Platform Upgrade

Nah & Delgado [5] emphasized that ‘Business Plan and Vision’ and ‘Top Management
Support and Championship’ are critical for a project while Petherbridge and Chapman
[6] mentioned that planning on upgrading a LMS version to another requires sufficient
resources. With the support from the School, the LMS upgrade project team kick-off
the LMS upgrade by using the latest stable release of Moodle where many security
issues were fixed, new functions were developed, performance were greatly improved
and Moodle Mobile app was introduced after version 2.4. To upgrade a system, it
means adding new features or installing more recent software patches to the existing
LMS. It is definitely having many advantages to have a regularly upgrading on the
existing LMS. For instance, users are able to get access to new features, the latest
versions of software often has performance and functions improvement. Modern web
access features like “drag and drop”, refreshing part of the web page using AJAX and
jQuery support, revamping the assignment module and logging methodology, sup-
porting group assignment, adding book module into the core module, etc., are deployed
on Moodle in the recent releases. These features also enhance user experience, in other
words, improve the learning experience. In addition, we can save cost by updating
system regularly as outdated system may no longer be supported by the LMS provider
on bugs and security fixings.

Upgrades often include bug fixes and security patches. Therefore, staying on the
upgrade path makes future upgrades easier. This reason for upgrading sounds not so

An Experience Sharing on e-Learning Platform Upgrade 235

compelling but the truth is, if we are sticking with a particular system, it’s best to stay
relatively current. Otherwise, a future upgrade can be nearly impossible or ridiculously
expensive. Why? It is because most of the providers tend to stop providing support for
older versions when they launch new ones. They only write scripts that let adminis-
trators upgrade system from the previous one or two versions. If it is over six or tens
versions behind, there is no simple way to jump versions because the database or
programming structure may have big changes. Upgrading LMS is the least we can do
to keep pace and be proactive.

3 Planning for the LMS Upgrade in HKU SPACE

Open source system does not fit with standard models of software development [8].
With the nature of open source system, like Moodle, it provides a high flexibility for
higher education institutions to customize the functions easily to meet the operational
needs from their teachers and learners. We had hundreds of functions customized in
most of the modules in Moodle version 2.1 platform in order to satisfy the needs of our
stakeholders including students, teachers and programme staff. Due to the limited
resources and tight project schedule for launching the SOUL 2.0 in 2011, there was
lack of documentation on the code changes, hard to trace the coding due to the different
coding style used by the developers and the high staff turnover rate in team. It becomes
a big challenge for the project team to upgrade SOUL 2.0 to the latest version Moodle
version 2.7.

Having a good upgrade plan and upgrade procedures are keys for the success of the
project. To prepare a good upgrade plan for the system upgrade project, we have firstly
studied the release notes to understand the changes in Moodle before we started
planning the project and estimating the resource. Secondly, we had to design the
development environment such as the hardware, operation system upgrade and other
peripheral software upgrade. Then, we had to list all functions that we customized and
estimate the resource for revamping the customized functions with updated method-
ology and merge them to the upgrade platform.

In addition to the estimation for the development work, a well-designed workflow
for function testing and a clear procedure are also important for the upgrade process.
Although Moodle has provided some scripts for migrating data from one release to later
releases, we had made customizations not only on the functions but also on the
database, data migration to the latest releases becomes another big issue. A well
designed upgrade procedures and enough time for trial run exercise are musts for
ensuring the data integrality after the platform is upgraded. During the trial run exer-
cise, we identified different problems on data migration and developed customized
scripts to enhance the efficiency and accuracy of upgrade process, such as altering
fields in database, and updating the data content to be compatible with the updated
platform.

When all work are ready, some efforts are needed before the upgraded system goes
live, which is to backup data file, source code and database, and it can provide a fast
fallback procedure when data is corrupted during migrating to production. At the
project investigation and planning stage, the latest stable Moodle version was version

236 J.C.C. Ng et al.

2.6, the resource estimation and design were based on this version. After migrating
over 90 % of the customized functions from Moodle version 2.1 to version 2.6, the
Moodle version 2.7.1 stable version was released. With the use of project management
system, version control system and coding standard, we could easily further migrate the
customized functions to Moodle version 2.7.1. Besides, from the experiences gained
from trial run exercises and the well tested upgrade procedures, we migrated our
customized LMS from version 2.1 to version 2.7 within the estimated duration and the
upgraded system was successfully launched. In the following sections, we are going to
share experiences on maintaining and upgrading a Moodle platform.

4 Good Practices Used for Maintaining and Upgrading
a Moodle Platform

The development team of this project consists of one project manager, one main
software engineer, three part-time software engineers and several part-time helpers who
were employed for function testing. Within the limited time frame and hundreds of
customized functions, we need a very good organization of the project development.
One of the most important decisions to be made by the project manager is how to
properly staff the project, her major goal is to maximize value creation for a given
investment [1]. How to prioritize the function migration is the most important part. Use
of project management system and introducing coding standard to ensure the functions
handled by different developers reach the same standard, and also can be easily fol-
lowed by different developers. Moreover, how to ensure the functions and data are
migrated correctly, as well as how to get user involved during the upgrade process are
another important elements. These elements will be discussed in this section.

4.1 Effectively Use of Project Management System for Recording
and Tracking Progress of Tasks

Project management system is defined as a change management system and a collection
of documented procedures that records how the deliverables and documentation of
project were approved, changed and controlled. Project management system is also
defined as a series of actions added to the process of getting tasks done on projects by
working with project team members to achieve the project schedule, technical per-
formance objectives and goals [3]. To achieve the project goals and objectives, we need
to develop a project plan first. By complying with the project plan, we can identify the
tasks and achieve the goals easily. Project management also includes managing the
implementation of the definition, project planning, implementation, evaluation and
maintenance.

In our LMS upgrade project, we adopted a web-based software project management
tool, Trac. Trac is an issue tracking system for software development projects. It
provides an interface to subversion, an integrated Wiki and convenient reporting
facilities [12]. Trac allows wiki markup in issue descriptions and committed messages,
creates links and seamless references between bugs, tasks, change sets, files and wiki

An Experience Sharing on e-Learning Platform Upgrade 237

pages. Also, the timeline showing all current and past project events in order makes the
acquisition of an overview of the project and tracking progress very easy [2]; whilst the
roadmap shows the road ahead, lists the upcoming milestones. Trac helps the project
manager to keep close monitoring on each task and helps the developers to record the
progress of each task in order to work collaboratively among developers as well as
student helpers. It also allows the project manager to monitor the progress of the project
via roadmap function in the Trac system. Figure 1 shows the roadmap for SOUL 2.0
project.

" SOUL:zo —
Your Learning SIEaCeE
logged in 2= Logout | Frefersnces | Help/Guide | Abaut Trac
wiki Timein Brouse Saurce View Tickers New Ticket Search Calendar 2dmin G Tickes Tickes Calender
Roadmap

Milestone: 1.) Blocks

75%

Milestone: 2)) Modules

76%

Milestone: 3.) Core functions

82%

56%

Milestone: 5.) New functions

Fig. 1. The roadmap for SOUL 2.0 project

4.2 Improve Working Efficiency by Adopting a Version Control System

Crashing on coding development often happens in a collaboration project which has
more than one developer. To avoid it, the project team used a software called Git to
keep the version control of the source codes. Git is a distributed version control system,
it supports distributed and non-linear workflows. Working directory of Git recorded
complete history and full version tracking capabilities [14]. For example, there are a
few developers who produce and develop the source code, they may change, extend,
undo changes, and jump back to an older version, and they may need to modify the
same files, the Git will keep track of the files and keep the history as version to indicate
who made the change of the files.

238 J.C.C. Ng et al.

A strict branching model designed around the project release is defined as the Git
workflow. It does not add any new concepts and commands for the workflow, and it
uses a central repository as the communication hub for all developers and engineers. In
Git workflow, it is using historical branches structure of the project. Instead of the
single master branch, it uses two branches, the master branch and the develop branch,
to record the history or version of the project. The master branch saves or records the
official release history while the develop branch serves as an integration branch for
features.

Common conventions of Git workflow:

Branch off (development) = > Merge into : masterbranch = > Release branch
For example, at the beginning, there is a local repository as a clone of the Moodle
2.1 (from Moodle official site) repository and it may call the master branch, there are

many other branches of the bug fix on the master branch. Figure 2 shows the rela-
tionship between master branch and other branches of the bug fix.

Development Branchl ——
Branch —

” Branch2

Branch3

> Branch4

,,,

Fig. 2. The relationship between master branch, development branch and other branches

Figure 2 illustrates a simple relationship between branches. From the diagram, we
know that Branchl, Branch2 and Branch4 are using the development branch. The
Branch3 is basing from Branch?2 because it requires some modifications from Branch2.
And, once the Branch1, Branch2, Branch3 are completed and merged to master branch,
a new release, named Releasel.2, is launched to the production system. After that,
another modification by Branch4 is performed and merged to the master branch. With
using the version control system, we can easily identify the conflicts among the
branches and/or revert the merged branch(es) easily with several commands. It greatly
improves the working efficiency of the team.

An Experience Sharing on e-Learning Platform Upgrade 239

4.3 Use of Coding Standard Making Codes Handy and Traceable

In an open source collaborative project, we would face the problems such as the
turnover of technical staff, tracking the previous issues long ago and different pro-
grammers may have different coding styles, etc. Therefore, the upgrade project team
setup a coding standard for the developers to follow in order to prevent the problems.
Veranga [13] pointed out that implementing a coding standard on a project can make
the source code more comprehensive and easy for maintaining. Also, it can allow other
developers to trace the code easily. Below are the examples:

A. Modify a function or variable inside a class. For any code modification happens
inside a class, the following steps should apply:
(1) Change the original class name with prefix “cold_”,
(2) Create a new class to extend the class in step 1 just below the old class,
(3) Override any variables or methods in the new class.
Original code

<?php
class USER {
Sfunction get_user() {
return true;

}

}

Modification code

<?php
//John Doe: SOUL2_00123 (23-Dec-2014) — echo message before return @Start@
class cold_USER {
function get_user() {
return true;
/
}
class USER extends cold_USER {
function get_user() {
echo “Hello World”

return true;

/
/
//John Doe: SOUL2_00123 (23-Dec-2014) — echo message before return @End@

B. Modify a function not inside a class. For any function modifications not inside a
class, the following steps will apply:
(1) Rename original function with prefix “fold_",
(2) Create a new function using the original function name with prefix of four
spaces just below the old function.

240 J.C.C. Ng et al.

Original code

<?php
function get_user() {
return true;

}

Modification code

<?php
function fold_get_user() {
return true;
}
//John Doe: SOUL2_00123 (23-Dec-2014) — echo message before return @Start@
function get_user() {
echo “Hello World”;
return true;

}
//John Doe: SOUL2_00123 (23-Dec-2014) — echo message before return @ End@

C. Other modification handling. For any modifications not inside a class or function,
an inline modification will be used with comments.
Original code

<?php
echo “Helo Wold”;

Modification code

<?php
echo “Hello World”; //John Doe: SOUL2_00123 (23Dec-2014) — corrected typo words

4.4 Prioritize on the Function Migration to Fulfill the Needs
of Majority of Users

There are over hundreds of customized features built in the system in the older version.
With the lack of a well documentation on the customized modules and the staff
turnover problem, it is nearly impossible to migrate all customization made in version
2.1 to the newer version within a few months. Prioritizing the customized functions
migration by according to its importance therefore becomes an important task. It can
allow the project team to see clearly the most important task to be handled first, and
which can be on hold [4]. Besides the customizations made on the core libraries that we
should migrate first, the project team also decided that all customizations made on the
highly used functions would be migrated to the upgraded platform. To help

An Experience Sharing on e-Learning Platform Upgrade 241

understanding on the function usages among the active courses, a course function
usage statistic was generated. Table 1 shows that the most popular function is
uploading file resources to the course for student to download, followed by posting
announcement for the latest news of the course. There were several modules not being
used by any course, namely Lesson, Mindmap, Nanogong and Survey. These functions
would not be enabled in the upgraded system at the beginning of the system launch
until they are being well tested.

Table 1. Statistic on course usage of different module as at April 2013

Module name No. of courses used
File resource 2175
Announcement 1697
Event calendar 1000
Folder resource 775
Label 567
Assignment 544
Turnitin assignment | 490
URL 420
Grade book 203
Forum 89
Page 73
SCORM 57
Quiz 52
SWF 28
Questionnaire 24
VCLink 19
Choice 15
Glossary 14
Wiki 13
Workshop 12
Database 7
Group choice 3
Chat room 1
Lesson 0
Mindmap 0
Nanogong 0
Survey 0

4.5 A Clear Workflow for Development Deployment Can Improve
Working Efficiency

A clear workflow for the development deployment can make the project run more
effectively and efficiently. It helps complete the project in a timely manner, more

242 J.C.C. Ng et al.

consistently, safely and reliably. With adopting the Trac system, the project manager
would issue tickets in the Trac system and assign them to developers. The developers
would investigate and estimate the resource/time required for handling the assigned
tasks. After the project manager accepts the estimated resources, the deadline for the
development of those tasks would be set. The developers would first pull data from
development repository to their local development environment to make sure the latest
coding is being used. After handling the tasks and having well tested in local envi-
ronment, the developers would push to development server. The code would be
reviewed by a senior developer before merging to master branch, and then the functions
were tested by the helpers and reviewed by the project manager. The branches would
be deployed to a staging server periodically. The staging server is an environment
which simulated the production environment. All branches would be deployed to the

L1

PM creates a ticket in Trac
system for each task and
assign to a developer

|

Developer investigates and
estimates the development time
for this task

!

PM finalizes development time

estimation aul;\d ::;kdus date for Create a new licket to
is fix the problem

Developer pulls coding from
development branch lo local PC and
creates a new branch for this task

Ne
- - Cading ves
Result ok? e by Result ok?
¥ pet. developer

4 Task completed
PM doses the
ticket in Trac

Developer pushes system

branch to development

server Function testin
production sarver by

Cading Ne
review ok?

Release a new release
1o production server

Yes
Yes
Revert merged branch
Merge branch to master
branch in
devalopment server T Mo Result ok?
. = Keep in developmant
Function testin 0 i
” server and merge Function test in staging
dmlﬁpr‘:;gsmar by [Restkiok branches to staging server server by tester
by batch periodically

Fig. 3. Development deployment workflow

An Experience Sharing on e-Learning Platform Upgrade 243

staging site for final confirmation. If there is any problem found in staging server, the
merged braches would be reverted and the tickets would be assigned back to the
developers for further investigation and fixing. These procedures are not only used
during the system upgrade but also adopted in current system maintaining stage. The
only difference is that, after the testing has successfully passed in staging server, it
would launch to production site in a release. And, a final testing would be conducted in
the production site. Figure 3 shows the workflow of the development deployment
process.

4.6 Migration Planning to Reduce the Potential Risks of Error
During Upgrade

A successful upgrade project requires a migration plan. The migration plan addresses
issues associated with phasing out legacy systems and moving to the new system.
These issues include user interface compatibility, database compatibility, transition
support, system interface compatibility, and training. Also it involves tradeoffs between
cost, schedule, risk, and resources. The migration plan should identify prototyping
needs in system upgrade and which data are included in the migration process. Pro-
totypes can effectively test the potential solution, especially in cases where current
systems are complex and involve many users. The migration plan should identify
prototyping needs. At the same time, it should address the extent to which migration
considerations call for prototyping both to mitigate risks and to demonstrate
proof-of-concept to users. A prototype can be completed in weeks as opposed to

_i

Identi .
Plan migration migrati'gn !dentlfy) '
procedures prototyping wmgh d?tz is '
Legacy _,/’l needs migrate |
System '
Execute '
New migration '
System <\l Adjust time Verify content '
estimation and functions '
J

Fig. 4. Iterative migration cycle for system upgrade

244 J.C.C. Ng et al.

months of laborious specification. An effective prototype can also be used for col-
lecting comments from users on the new user interface and operational usage scenarios
before system implementation decisions are made. In addition to identify the proto-
typing needs on system upgrade, it is also important to understand what types of data is
migrated from the old system to the new one. Much of the data from the old server can
be migrated automatically using the update tools but some are not. For those data are
not convertible other tools or routine needs in order to achieve migration goals. Some
of them must even be migrated manually. This may consume more time to complete
task. Figure 4 shows the iterative migration cycle for upgrading a system.

4.7 Trial Run Migration Procedure to Reduce Risk and Simulate
the Real Situation

In a LMS, it stores lots of information and materials in complex format. Before
migration process begins, it is suggested to perform a pre-migration impact assessment
to verify the cost and likely outcome of the migration. Throughout the pre-migration
impact assessment, the procedures and potential risks can be identified. Besides, after
several trial runs on the migration procedure, it can provide far more accurate analysis
of resource requirements, the expected outage duration and help to refine the migration
procedures.

During the trial run exercises, we identified over 20 issues of data and function
migration problems. One of the critical issues was the server hardware requirement for
performing the data migration in our upgrade process. It takes a long time to migrate
the data, which have 10,000 courses and around 7,000 assignment submissions, with
using a Virtual Machine server with 16G RAM and 8 vCPU. The whole process was
improved by using a dedicated high performance server. Besides the hardware issue,
some of the problems were due to the change of data fields in database during the
function customizations in Moodle version 2.1. There were also some problems which
were not handled by the migration tools provided by Moodle especially the assignment
module and gradebook. Additional scripts were prepared for fixing those issues.

4.8 Time Estimation for the Upgrade Process to Ensure Accurate
Estimations and Monitor Any Possible Failure at Early Stage

The amount of time taking for performing the migration or upgrade process varies
based on how much data the LMS contains and how much customization LMS was
configured in the old system. It helps identify the potential risks on the whole process
of migration. Moreover, it allows us to obtain a more accurate time spent on each task
especially for the major tasks such as installation, configurations of LMS and its
plugins, customization of the new system, data migration, the upgrade process and any
manual configuration tasks, testing, etc.

It is important to identify the most time consuming tasks, which makes us easier to
determine whether the migration process is success or failure. For example, in trail run,
migration of student assignments takes around four hours (80 % of total). However, in

An Experience Sharing on e-Learning Platform Upgrade

Table 2. Upgraded procedures and the time estimation for each task

245

Task Description Estimated time
completion
Hr |[Min |Sec
Export database Export database contexts from Legacy system |0 10 5
Compress database Compress exported database 0 6 46
Transfer database SCP compressed database to staging server 0 2 17
Decompress Decompress database and prepare for import 0 3 0
database
Import database Import database to staging server 0 27 21
Fix data integrity o Fix assignments data migration problem 0 0 20
problem o Fix various database problems 0 0 9
o Drop unused tables 0 0 2
o Fix link problem on existing quiz 0 0 2
Git checkout to Upgrade platform to MOODLE 2.2.11+ 0 3 30
branch in stage 1
Remove activities Remove mindmap activity 0 1 30
Remove blocks Remove customized blocks: SOUL2 block, 0 3 0
cohort_control block, dndupload block,
support_tools block, system reminder block
Git checkout to Upgrade platform to MOODLE 2.6.4+ 0 33 30
branch in stage 2
Remove local plugin | Remove custlib, course_maintenance 0 1 40
Remove reports Remove large scale log and report (email log, |0 1 30
user tracking report)
Remove export Remove csv from grade export method 0 0 32
method
Backup database Backup the upgraded database as a staging |0 2 20
backup
Upgrade Upgrade all assignment (2.2) instance to 4 5 39
assignments assign instance
Restore database Restore tables for customized plugins and 0 2 0
blocks
Checkout Upgrade platform to MOODLE 2.7.1 0 4 35
DB_Stage3
Post upgrade DB fix | Add missing capabilities, load faq content, 0 2 0
SCORM settings, convert course format
Final configuration Enable CAS, edit CAS strings, mod enabler 0 3 0
Backup database Backup database for production database 0 2 20
server
Total: 5 57 8

246 J.C.C. Ng et al.

the migration it takes more than five hours, this gives administrator a signal that the
migration process may be failure. Table 2 is an example of the time estimation process.

4.9 Use of Checklist for Data Migration Verification and Functional Test
to Ensure Data and System Integrity During System Upgrade

A checklist with test cases was designed for verifying the data and functions migration.
The checklist aimed to evaluate whether the expected outcomes have been achieved.
During the trial run exercise, the data migrated was sampled checked and functions in
the upgraded platform were tested by the development team. Outstanding issues were
listed and fixings were applied to the upgrade scripts. Fine tune on the migration
procedures and checklist were also performed during each round of trial run exercise.
A sample of checklist used in the current task is shown in Fig. 5.

Assigoment File

Other remarks|

tin
d Checked URL Description | ™

example | 530114 | 101 | SO01-101-00 31)

Testerl | 823/14 | 38064 |CC $8.768-1201 (1) e | NA(otset) NA (notset) same same NA a7 47 NA

Testerl | 823/14 | 41143 | SEOL-118.04(32)

Testerl | 823/14 | 42380 | IT06-133-12(31)

NA

Tester] | 8/23/14 | 41743 | SE 3580500 (41) NA

Fig. 5. An extract of a checklist for data migration verification and functional test

4.10 Get User Involved and Conduct User Training to Maximize User
Capability and Experience on the New Platform

User involvement is one of the key factors of success of a computer system. Tait and
Vessey [10] found that system complexity and resource constraints have strong effects on
system success, either directly or indirectly through their influences on user involvement.
Rossum [7] also pointed out that it is the best practice for coordinating the users during the
migration process. A testing platform was setup for letting our users involve in verifying
migrated data and testing the functions in the upgraded platform. The testing site was built
with the final tested functions and the data was merged from the existing production
platform. After the functional test and data verification were performed by the devel-
opment team in the testing platform, users were invited to verify their course content in
the testing site as well as try out the functions before the system launch.

A survey was conducted after the user verified the migrated data and functions used
in their courses, 27 items related to data migration were asked for their checking and
confirmation. We received the response on 21 courses, the result is presented in
Table 3.

An Experience Sharing on e-Learning Platform Upgrade 247

Table 3. Verify data after data migration in upgraded platform

Question ‘ Yes (%)
I. Course materials
1. | All Announcements are migrated correctly 87.50 %
2. | All File resources are migrated correctly 86.67 %
3. | All Folder resources are migrated correctly 93.33 %
4. | All Label resources are migrated correctly 93.33 %
5. | All Page resources are migrated correctly 90.00 %
6. | All URL resources are migrated correctly 87.50 %
7. | All VClink resources are migrated correctly 87.50 %
II. Course Activities
All Assignment and Turnitin Assignment activities are migrated correctly | 90.91 %
.| All Chat activities are migrated correctly 83.33 %
10. | All Choice activities are migrated correctly 85.71 %
11. | All Group Choice activities are migrated correctly 83.33 %
12. | All Database activities are migrated correctly 80.00 %
13. | All Forum activities are migrated correctly 80.00 %
14. | All Glossary activities are migrated correctly 80.00 %
15. | All Offline grade item activities are migrated correctly 83.33 %
16. | All Lesson activities migrated correctly 66.67 %
17. | All Mindmap activities are migrated correctly 80.00 %
18. | All Questionnaire activities are migrated correctly 83.33 %
19. | All Quiz activities are migrated correctly 83.33 %
20. | All SCORM package activities are migrated correctly 80.00 %
21. | All Wiki activities are migrated correctly 66.67 %
22.| All Workshop activities are migrated correctly 60.00 %
II1. Others
23.| All graded items are migrated correctly 80.00 %
24. | All Blocks are migrated correctly 83.33 %
25. | All course layout are migrated correctly 85.71 %
26. | All participants are migrated correctly 85.71 %
27.| All Calendar events are migrated correctly 85.71 %

From the result above, most of the data migrations of the modules had been con-
firmed with over 80 percent correctly of them migrated to the new platform, except
Lesson, Wiki and Workshop activities. We found that user answered “No” in the survey
due to the fact that the course enrollment to the user was missing in the testing site. Since
no customizations were done on the Lesson, Wiki and Workshop and the utilization of
the functions were very low, we assumed the migrations were correct as well.

We also asked the users to try the new platform in the testing site, feedback was
collected afterwards. In Table 4 below, it was found that we received positive feedback
on the upgrade platform, functions and new interface. The server performance
improvement was not recognizable because of the scale of the testing site.

248 J.C.C. Ng et al.

Table 4. Comments on functions in SOUL 2.0 upgraded platform

New functions/enhancements ‘ Agree (%)
(a) Enhancement on Assignment and Turnitin Assignment function

1. | Allowing user to change from assignment submission type is useful 88.46 %
2. | Group assignment function is useful 78.85 %

3. | Improvement on the file upload by using drag and drop file uploading 86.27 %
interface is useful
4. | The interface of Turnitin Assignment is improved 72.73 %
(b) Enhancement on interface
5. | The interface is clear while the “Turn Editing On” function is on 88.46 %
6. | Allow user to edit the resources/activities name in the course main page is | 84.91 %
useful
7. | Combining the pull-down menu for Add a Resource and Add an Activity | 77.36 %
into one pull-down menu is a good improvement
8. |Itis a good improvement and tidy interface by collapsing most of the 69.23 %
common settings in setting page.
(c) Other enhancements

9. | More help information on different functions is provided 72.00 %
10. | New types of access restriction settings is useful 66.67 %
11. | The server performance is improved 55.10 %
(d) New functions

12. | I want to learn more about Rubric grading 50.00 %
13. | I want to learn more about Book recourse 50.00 %
14. | I want to learn more about Feedback activity 50.00 %
15. | I want to learn more about Badges function 38.30 %
16. | I want to learn more about Copy block function 46.81 %

From the survey results, we observed that users were not eager to learn the new
functions. We discussed and decided to focus on the enhancement of the existing
functions.

Torkzadeh & Van Dyke [11] examined the influence of training programs on
Internet self-efficacy and user attitudes toward computers and the results suggested that
training significantly influences Internet self-efficacy for individuals with ‘high’ or
‘low’ attitude towards computers. The team arranged a series of hands-on training
workshops before and after the system was launched. A total 153 participants took part
in the workshops. The workshops were recorded and uploaded to the platform for users
to review it at any time. Although the user interface of the upgraded platform is similar
to the original one, we believe sufficient training would help users adapt to the
upgraded platform more quickly. Ongoing training workshop will be arranged to help
new users to get familiar with the system, training on basic usage and specific functions
will be arranged separately.

An Experience Sharing on e-Learning Platform Upgrade 249

5 Conclusion

Implementation of a new learning management system is a rather easy task when
compared with upgrading an existing one. However, upgrading a learning management
system is an inevitable task in education institutes nowadays to strengthen their
teaching and learning support services. After a system has run for several years, per-
forming functions customization in the LMS and technical staff turnover are
unavoidable. These make it hard for the new developers to maintain and support, or
even upgrade the platform. In this paper, we shared good practices for maintaining the
existing platform and highlighted the important strategies on implementing the system
upgrade. This includes the use of project management system to keep tracing the task
development history, adopting a version control system for both collaborating devel-
opment work and storing versions, use of coding standard for improving not only the
quality of source code but also make the code more traceable, and defining a clear
development procedure. The preparation of migration plan, trial run of the migration
procedures, getting user involvement and providing users training before and after a
system go lives are also the key factors of success of a system upgrade project.

Our experience on SOUL 2.0 suggested that, implementing the project manage-
ment system, version control system and the coding standard would not only help us
monitor the changes on the functions easily, but also provide an easy way for system
upgrade. This can be evidenced by our experience on further upgrade of the system
from version 2.6 to version 2.7. We would conclude that the whole process of system
upgrade was shortened by 70 % with the suggested measures and upgrading the system
to the latest version should no longer be a panic task for the project team.

References

1. Boehm, B.W., Sullivan, K.J.: Software economics: a roadmap. In: Proceedings of the
Conference on The future of Software Engineering, pp. 319-343. ACM, May 2000

2. Brookins, M.: Benefits of Using Project Management Software (2015). Accessed from
http://smallbusiness.chron.com/benefits-using-project-management-software-2196.html

3. Ghioca, T.: Advantages and Benefits of Project Management Software, 8 February 2011.
Accessed from http://www.rationalplan.com/projectmanagementblog/advantages-and-
benefits-of-project-management-software/

4. Gosenheimer, C.: Project Prioritization. Office of Quality Improvement, University of
Wisconsin (2012)

5. Nah, F.H., Delgado, S.: Critical success factors for enterprise resource planning
implementation and upgrade. J. Comput. Inf. Syst. 46(5), 99 (2006)

6. Petherbridge, D., Chapman, D.: Upgrading or replacing your learning management system:
implications for student support. Online J. Distance Learn. Adm. 10(1) (2007)

7. Rossum, P.: Best Practices in Data Migration. Research and Services The Data Warehousing
Institute (2006)

8. Sandred, J.: Managing Open Source Projects: A Wiley Tech Brief, vol. 18. Wiley, New
York (2002)

http://smallbusiness.chron.com/benefits-using-project-management-software-2196.html
http://www.rationalplan.com/projectmanagementblog/advantages-and-benefits-of-project-management-software/
http://www.rationalplan.com/projectmanagementblog/advantages-and-benefits-of-project-management-software/

250

9.

10.

11.

12.

13.

14.

15.

J.C.C. Ng et al.

Sarker, M.O.F., Matthews, J., Gramp, J.: On optimal strategies for the development and
operation of Moodle in Higher Education Institutions. In: Moodle Research Conference,
pp. 5-13 (2013)

Tait, P., Vessey, 1.: The effect of user involvement on system success: a contingency
approach. MIS Q. 12, 91-108 (1988)

Torkzadeh, G., Van Dyke, T.P.: Effects of training on Internet self-efficacy and computer
user attitudes. Comput. Hum. Behav. 18(5), 479-494 (2002)

Trac: Welcome to the Trac Project, 4 March 2015. Accessed from http://trac.edgewall.org/
Veranga, L.: 10 Benefits of Using Coding Standards to Software Development Team, 22
January 2008. Accessed from http://www.articlesbase.com/programming-articles/10-
benefits-of-using-coding-standards-to-software-development-team-312610.html

Why Git? (2015). Accessed from http://www.git-tower.com/learn/git/ebook/command-line/
appendix/why-git

Xu, H.: Learning management system transformation. In: MWAIS 2014 Proceedings. Paper
11 (2014)

http://trac.edgewall.org/
http://www.articlesbase.com/programming-articles/10-benefits-of-using-coding-standards-to-software-development-team-312610.html
http://www.articlesbase.com/programming-articles/10-benefits-of-using-coding-standards-to-software-development-team-312610.html
http://www.git-tower.com/learn/git/ebook/command-line/appendix/why-git
http://www.git-tower.com/learn/git/ebook/command-line/appendix/why-git

	An Experience Sharing on e-Learning Platform Upgrade
	Abstract
	1 Introduction
	2 Business Needs and Benefits on Platform Upgrade
	3 Planning for the LMS Upgrade in HKU SPACE
	4 Good Practices Used for Maintaining and Upgrading a Moodle Platform
	4.1 Effectively Use of Project Management System for Recording and Tracking Progress of Tasks
	4.2 Improve Working Efficiency by Adopting a Version Control System
	4.3 Use of Coding Standard Making Codes Handy and Traceable
	4.4 Prioritize on the Function Migration to Fulfill the Needs of Majority of Users
	4.5 A Clear Workflow for Development Deployment Can Improve Working Efficiency
	4.6 Migration Planning to Reduce the Potential Risks of Error During Upgrade
	4.7 Trial Run Migration Procedure to Reduce Risk and Simulate the Real Situation
	4.8 Time Estimation for the Upgrade Process to Ensure Accurate Estimations and Monitor Any Possible Failure at Early Stage
	4.9 Use of Checklist for Data Migration Verification and Functional Test to Ensure Data and System Integrity During System Upgrade
	4.10 Get User Involved and Conduct User Training to Maximize User Capability and Experience on the New Platform

	5 Conclusion
	References

