
Multidimensional Range Selection

Timothy M. Chan and Gelin Zhou(B)

David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, Canada

{tmchan,g5zhou}@uwaterloo.ca

Abstract. We study the problem of supporting (orthogonal) range
selection queries over a set of n points in constant-dimensional space.
Under the standard word-RAM model with word size w = Ω(lg n),
we present data structures that occupy O(n · (lg n/ lg lg n)d−1) words
of space and support d-dimensional range selection queries using
O((lg n/ lg lg n)d) query time. This improves the best known data struc-
ture by a factor of lg lg n in query time. To develop our data struc-
tures, we generalize the “parallel counting” technique of Brodal, Gfeller,
Jørgensen, and Sanders (2011) for one-dimensional range selection to
higher dimensions.

As a byproduct, we design data structures to support d-dimensional
range counting queries within O(n · (lg n/ lg w + 1)d−2) words of space
and O((lg n/ lg w + 1)d−1) query time, for any word size w = Ω(lg n).
This improves the best known result of JaJa, Mortensen, and Shi (2004)
when lg w � lg lg n.

1 Introduction

Range searching is an important topic in data structures and computational
geometry. Recently, there has been growing interest in so-called “range aggregate
queries”, where instead of reporting or counting points inside a query range,
we want to compute some aggregate function over the weights of the points
inside the query range. In this paper, we study the version of the problem for
multidimensional orthogonal ranges (axis-aligned boxes), where the aggregate
function is the median, or more generally, the k-th smallest element.

More precisely, we can formulate the d-dimensional (orthogonal) range
selection problem as follows, by viewing the weights as an extra dimension.
The coordinates of each input point p are represented as a (d + 1)-tuple
(p1, p2, . . . , pd, pd+1). A query range is a d-dimensional rectangle R = [a1..b1] ×
[a2..b2]×· · ·× [ad..bd], and a range selection query asks for the point whose coor-
dinate in the (d + 1)-st dimension is the k-th smallest among all input points
contained in R × (−∞,∞).

The underlying model of computation in this paper is the standard word-
RAM model [4] with word size w = Ω(lg n). Under this model, bitwise and
arithmetic operations including multiplication can be performed over machine
words in O(1) time. Without loss of generality, coordinates of points are assumed

c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 83–92, 2015.
DOI: 10.1007/978-3-662-48971-0 8

84 T.M. Chan and G. Zhou

to fit in rank space [5]. Coordinates can be replaced with their ranks in the point
set, by increasing the query time by the cost of O(1) predecessor searches.

The one-dimensional case of the range selection problem has been well stud-
ied [2,3,7,8]. Krizanc et al. [8] proposed the problem, and their structures
required either super linear space or O(nε) query time for some constant ε > 0.
Brodal et al. [2] presented a linear space data structure with only O(lg n/ lg lg n)
query time, by a novel application of bit-level parallelism. As shown by Jørgensen
and Larsen [7], Brodal et al.’s linear space structure achieved optimal worst-
case query time for any data structure within O(n · polylog(n)) bits of space.
Jørgensen and Larsen [7] further designed an adaptive data structure for one-
dimensional range selection queries, which occupied linear space and required
only O(lg k/ lg lg n + lg lg n) query time to select the k-th smallest element in
the range. More recently, Chan and Wilkinson [3] reduced the query time to
O(lg k/ lg lg n + 1) using the same amount of space.1 Shallow cutting [9] played
a central role in designing these adaptive data structures.

For the case of higher dimensions, Brodal et al. [2] pointed out that a d-
dimensional range selection query could be reduced to O(lg n) d-dimensional
range counting queries. As shown by JaJa et al. [6], each d-dimensional range
counting query requires O((lg n/ lg lg n)d−1) query time. Thus the overall query
time for a d-dimensional range selection query would be O(lg n·(lg n/ lg lg n)d−1).
To the best of our knowledge, this is the only known result for multidimensional
range selection queries.

In this paper, we present data structures that support d-dimensional
range selection queries using O(n · (lg n/ lg lg n)d−1) words of space and
O((lg n/ lg lg n)d) query time, for any constant integer d ≥ 1. This improves
the straightforward solution by a factor of lg lg n in query time. To develop our
data structures, we generalize Brodal et al.’s “parallel counting” technique [2]
into higher dimensions. In the search for the k-th smallest point, we keep solv-
ing subproblems of finding the first non-negative integer in an increasing array,
where the length of an array is bounded above by O(lgε n) for some constant
0 < ε < 1. Instead of performing binary search on each of these subproblems,
we examine all integers in the array from the highest bits in a parallel fashion,
to speed up the search. These integers are not stored explicitly and have to be
retrieved at query time, where the retrievals are either multidimensional range
counting queries or multidimensional “parallel counting” queries.

Along the way, we also improve JaJa et al.’s work for range counting
queries [6] with some novel bit manipulation tricks, which may be of indepen-
dent interest. Our data structures support d-dimensional range counting queries
within O((lg n/ lg w + 1)d−1) query time and O(n · (lg n/ lg w + 1)d−2) words of
space, for any word size w = Ω(lg n). When w is lgω(1) n, this improves JaJa
et al.’s O((lg n/ lg lg n)d−1) query and O(n · (lg n/ lg lg n)d−2) space bounds [6].

The rest of this paper is organized as follows. Section 2 contains preliminaries.
Section 3 defines and solves a problem that abstracts the bottleneck of selection
1 The conference version claimed O(lg k/ lg w + 1) query time but it would require

non-standard word operations.

Multidimensional Range Selection 85

queries. In Sects. 4 and 5, we apply the “abstract” problem to range selection
queries and present our data structures.

2 Preliminaries

Let [a..b] denote the set of integers from a to b. For point p = (p1, p2, . . . , pd+1)
and each i ∈ [1..d+1], pi is referred to as the i-th coordinate of p. For two points
p = (p1, p2, . . . , pd+1) and q = (q1, q2, . . . , qd+1), p is said to be dominated by q if
pi ≤ qi for each i ∈ [1..d+1]. Let σ be a fixed parameter, which will be set to be
either �lgε n� or �wε� for constant 0 < ε < 1/d. A point p = (p1, p2, . . . , pd+1) is
said to be of type d′ if pi ∈ [1..σ] for each i ∈ [d′ +1..d+1], i.e., the last d−d′ +1
coordinates fit in a narrow range [1..σ]. A set of m points is said to be of type d′

if all these m points are of type d′ and the i-th coordinates of points are in rank
space for each i ∈ [1..d′], i.e., they are drawn from [1..m] and pairwise different.
The input point set is of type d + 1.

To exploit abilities of the word RAM, it is a standard technique to pack a
short list of sufficiently small integers into a machine word. We divide a word into
subwords of m bits, each storing the two’s complement representation of a signed
integer that ranges from −2m−1 to 2m−1 − 1. With this representation, a set of
operations can be performed in parallel to integers of the packed list in O(1) time,
provided that each of these integers in the input and the output fits in m bits:
One can add a constant integer to, subtract a constant integer from, or bit shift
all signed integers of a packed list. One can also add or subtract corresponding
integers of two packed lists. One can even find the first non-negative integer or
the last negative one in a packed list, given that multiplications are permitted [4].

3 The “Abstract” Problem

Let s, b, and t be parameters satisfying that (s + b + 2)t < w and b � s.
Intuitively, s denotes the “section size”, and b denotes the number of “carry
bits”. The j-th section of an integer x is defined to be 	x/2sj
 mod 2s.

Let A[1..t] be an increasing sequence of w-bit signed integers, with A[0] < 0.
The goal of our abstract problem is to find the smallest index i∗ > 0 so that
A[i∗ − 1] < 0 ≤ A[i∗]. However, the value of each A[i] is not given explicitly;
rather, each A[i] is decomposed into a sequence of signed integers A0[i], A1[i], . . .,
satisfying the properties that |Aj [i]| < 2s+b and A[i] =

∑
j≥0 Aj [i] · 2sj . (Note

that for b = 0, the decomposition corresponds to precisely the sections of an
integer, but the parameter b offers more flexibility, which will be needed in
our applications later.) We can only access the sequence A using the following
oracles:

– Given 1 ≤ i ≤ t, return A[i];
– Given j ≥ 0, return the concatenation of the binary representations of

(Aj [1], . . . , Aj [t]), stored in a single word in which the i-th subword is equal
to Aj [i]. (Because (s + b + 2)t < w, the result fits in a word.)

86 T.M. Chan and G. Zhou

We resist to solve this problem with binary search directly, which would
require O(lg t) time. Instead, we examine in a parallel manner the Aj [i]’s in
decreasing order of j. The following lemma shows how to achieve a query time
that is adaptive to the values of the A[i]’s.

Lemma 1. The “abstract” problem described in this section can be solved within
O(1 + 1

s · lg A[t]−A[1]
A[i∗]−A[i∗−1]) word operations and oracle calls.

Proof. Given an index p, we define Bp[i] =
∑

j≥p Aj [i] · 2s(j−p) for 1 ≤ i ≤ t.
Note that Bp[1], . . . , Bp[t] may not be in increasing order. However, as shown
below, Bp[i] · 2sp provides an approximation of A[i]:

∣
∣A[i] − Bp[i] · 2sp

∣
∣ ≤

∑

0≤j<p

2s+b · 2sj = 2s+b · 2sp − 1
2s − 1

< 2s+b · 2sp

2s−1
= 2sp+b+1. (1)

We maintain a range [� + 1..r] that contains i∗, as well as the concatenation
of the binary representations of (Bp[�], . . . , Bp[r]). We ensure the invariant that
for � ≤ i ≤ r, |Bp[i]| ≤ 2b+1 before each iteration. Thus (Bp[�], . . . , Bp[r]) can be
packed into a single word in which the i-th subword equals to Bp[i] for � ≤ i ≤ r,
and the remaining bits are 0.

At the beginning of the algorithm, we compute A[1] and A[t] with two oracle
calls, and set the initial value of p to be p0 = � 1

s · lg(A[t] − A[1])�. We also set
the initial value of � = 1 and r = t. Then for each i, |A[i]| ≤ A[t] − A[1] ≤ 2sp0 .
By Inequality 1,

|Bp0 [i] · 2sp0 | ≤ |A[i] − Bp0 [i] · 2sp0 | + |A[i]| < 2sp0+b+1 + 2sp0 .

This implies that |Bp0 [i]| ≤ 2b+1. In addition, we observe that

Bp0 [i] = Ap0 [i] + Ap0+1[i] · 2s + Ap0+2[i] · 22s + · · · ≡ Ap0 [i] (mod 2s).

We then have Bp0 [i] + 2b+1 = (Ap0 [i] + 2b+1) mod 2s since |Bp0 [i]| ≤ 2b+1 and
b � s. This formula allows us to initialize (Bp0 [1], ..., Bp0 [t]) using one oracle
call and O(1) word operations.

In each iteration of the algorithm, we decrement the value of p and compute
(Bp[�], . . . , Bp[r]) using the following equation:

(Bp[�], . . . , Bp[r]) = 2s · (Bp+1[�], . . . , Bp+1[r]) + (Ap[�], . . . , Ap[r]).

The computation requires O(1) word operations and one oracle call. Note that
for � ≤ i ≤ r, Bp[i] fits in a subword, because |Bp+1[i]| ≤ 2b+1 and |Bp[i]| ≤
2s+b+1 + 2s+b < 2s+b+2. We then find the largest index �′ in [�..r] with Bp[�′] ≤
−2b+1, and the smallest index r′ in [�..r] with Bp[r′] ≥ 2b+1. As described in
Sect. 2, �′ and r′ can be determined using O(1) word operations [4].

By Inequality 1, we have A[�′] < 0 and A[r′] > 0. Thus subranges [�..�′]
and [r′ + 1..r] can be discarded, and we know that i∗ is contained in [�′ + 1..r′].

Multidimensional Range Selection 87

We then evaluate A[�′ + 1] and A[r′ − 1] by two oracle calls. The algorithm
terminates if one of the following conditions holds: i∗ = �′ + 1 is returned if
A[�′ +1] > 0, or i∗ = r′ is returned if A[r′ −1] < 0. Otherwise, we reset � = �′ +1
and r = r′ − 1. Note that |Bp[�′ + 1]|, . . . , |Bp[r′ − 1]| ≤ 2b+1, so the invariant is
maintained, and we can continue on to the next iteration.

Now we analyze the running time of the algorithm. After each iteration before
termination,

A[i∗] − A[i∗ − 1] ≤ A[r] − A[�] < (B[r] − B[�]) · 2sp + 2 · 2sp+b+1

≤ 2 · 2b+1 · 2sp + 2 · 2sp+b+1 = 2sp+b+3.

Thus, p ≥ 1
s · [lg(A[i∗] − A[i∗ − 1]) − O(b)]. The algorithm requires O(1 + 1

s ·
lg A[t]−A[1]

A[i∗]−A[i∗−1]) oracle calls. �

4 Range Selection

In this section, we apply the above “abstract” problem to range selection queries.
We use t = �lgε n�, section size s = �(1/2) · lg1−ε n�, and b = Θ(lg lg n) for con-
stant 0 < ε < 1/d. We build a range tree over the (d+1)-st coordinates of points
with branching factor t. Thus, the height of the range tree is O(lg n/ lg lg n).
Each node v in the range tree represents a range [av..bv] and the set S(v) of
points whose (d + 1)-st coordinates are in [av..bv]. The leaf nodes in the range
tree each represent a single point.

To answer a given range selection query with query range R and rank k, we
repeatedly solve subqueries of the following form: given an internal node v and
its children v1, . . ., vt in the range tree, find the child vi∗ so that the desired
answer is contained in S(vi∗). To connect these subqueries with the “abstract”
problem, we set A[i] = N [i]−k, where N [i] is the number of points that fall into
R × [av1 ..bvi

]. We set Aj [i] = Nj [i] − kj , where N0[i], N1[i], . . . is a sequence to
be specified later that decomposes N [i], and kj is the j-th section of k.

To compute N [i] and the Nj [i]’s, we define the following two kinds of queries
over a point set S of type d with σ = �lgε n�, for which the support is summarized
in Lemma 2. The proof of Lemma 2 is deferred to Sect. 5.

– dominance counting queries: given a query point q = (q1, q2, . . . , qd+1), return
the number of points in S that are dominated by q;

– parallel counting queries: given a query (q1, q2, . . . , qd, j) for some j ≥ 0, return
the concatenation of (Cj [1], . . . , Cj [t]), where, for 1 ≤ i ≤ t, C0[i], C1[i], . . . is
a sequence that decomposes C[i], the answer to the dominance counting query
(q1, q2, . . . , qd, i).

Lemma 2. For any constant 0 < ε < 1/d, a point set S of size m ≤ n and type
d′ with σ = �lgε n� can be stored in O(m lg lg n · (lg n/ lg lg n)d′−1) bits of space,
so that (a) dominance counting queries and (b) parallel counting queries can be
answered in O((lg n/ lg lg n)d′−1) query time.

88 T.M. Chan and G. Zhou

To facilitate the use of Lemma 2, we transform each S(v) into a point set
D(v) of type d. For each point p ∈ S(v), we replace the first d coordinates of
p with their ranks in S(v), and replace pd+1 with the index of v’s child that
represents a set containing p.

Given a d-dimensional query range R, we can express it as additions and
subtractions of 2d = O(1) d-dimensional dominance ranges. Let these ranges be
z1, z2, . . . , z2d . Computing N [i] and A[i], which is essentially a (d+1)-dimensional
range counting query, can be reduced to dominance counting queries over D(v)
for ranges z1× [1..i], . . . , z2d × [1..i], and can be done by Lemma 2(a). Let N [i, z�]
be the result for z� × [1..i] for 1 ≤ � ≤ 2d. By Lemma 2(b) we can decompose
N [i, z�] into a sequence N0[i, z�], N1[i, z�], . . . In addition, (Nj [1, z�], . . . , Nj [t, z�])
can be computed for j ≥ 0. We define Nj [i] to be sum of Nj [i, z�] over all z�. Then
the sequence N0[i], N1[i], . . . decomposes N [i] and the sequence A0[i], A1[i], . . .
decomposes A[i], after increasing the parameter b by log(2d) = O(1).

Now we can finally support range selection queries. Starting with the root
node, we define and compute the oracles as described above. After determining
i∗, the query algorithm recurses on vi∗ after setting k = k − A[i∗ − 1]. We
repeatedly apply Lemma 1 until we reach a leaf node v, and av = bv is the answer.
The query algorithm requires solving O(lg n/ lg lg n) “abstract” problems. We
sum the cost of Lemma 1 over these O(lg n/ lg lg n) subproblems. Observe that
the sum of the logarithms of ratios in Lemma 1 is actually telescoping. The total
number of oracle calls is thus O(lg n/ lg lg n + 1

s · lg n) = O(lg n/ lg lg n), each
requiring O((lg n/ lg lg n)d−1) time. We conclude:

Theorem 1. Under the word RAM model with word size w = Ω(lg n), d-
dimensional range selection queries over a set of n points can be supported in
O((lg n/ lg lg n)d) query time and O(n · (lg n/ lg lg n)d−1) words of space.

5 Dominance Counting and Parallel Counting

Our method for dominance counting queries is similar to JaJa et al.’s work [6].
The major improvement is a novel algorithm to answer queries over a point set
of size �wdε� and type 1 with σ = �wε� for any constant 0 < ε < 1/d within O(1)
time and O(lg w) bits of space per point, which is presented in Lemma 4. This
algorithm does not require a global lookup table, so it is able to handle larger
word size w = ω(lg n).

Lemma 3. For any constant 0 < ε < 1/d, dominance counting queries over a
point set S of size m ≤ n and type 1 with σ = �wε� can be supported using
O(m lg w) bits of space and O(1) query time.

Proof. We sort all points of the point set in increasing order of the first coor-
dinates, and divide the list into blocks of size m1 = w2. Then we divide each
block into subblocks of size m2 = �wdε�. Each block/subblock is labeled with
the largest first coordinate over the points inside the block/subblock. For each
block β, we precompute a d-dimensional table Fβ in which, for 1 ≤ q2, . . . , qd+1 ≤

Multidimensional Range Selection 89

�wε�, the entry Fβ [q2, . . . , qd+1] stores the number of points in S that are dom-
inated by (label(β), q2, . . . , qd+1), where label(β) is the label of β. Similarly,
for each subblock β′ of β, we maintain a d-dimensional table gβ′ in which, for
1 ≤ q2, . . . , qd+1 ≤ �wε�, the entry Gβ′ [q2, . . . , qd+1] stores the number of points
inside β that are dominated by (label(β′), q2, . . . , qd+1).

Given a dominance counting query q = (q1, q2, . . . , qd+1), we find the right-
most block β whose label is no greater than q1. Then we find the rightmost
subblock β′ to the right of β whose label is no greater than q1. Without loss of
generality, we assume the existence of both β and β′. The other cases can be
handled similarly. Thus the answer to the given dominance counting query can
be expressed as Fβ [q2, . . . , qd+1]+Gβ′ [q2, . . . , qd+1]+h, where h is the number of
points in the subblock to the right of β′ that are dominated by the given query.

Later in Lemma 4, we will show the computation of h requires O(1) query
time and O(lg w) bits of space per point. Thus, the overall query time for domi-
nance counting queries over the point set of type 1 is O(1). Finally we analyze the
space cost. The tables for all blocks require O((m/m1)×wdε × lg m) = o(m) bits
of space in total. The tables for all subblocks require O((m/m2)×wdε × lg m1) =
O(m lg w) bits of space in total. Therefore the overall space cost is O(m lg w)
bits. �

Lemma 4. Dominance counting queries inside a subblock can be supported using
O(1) query time and O(lg w) bits of space per point.

Proof. We divide a machine word into chunks of size s1 = d · (�ε lg w� + 1) each.
Each chuck is further divided into d subchunks of size s2 = �ε lg w�+1 each. We
sort all points in increasing order of the first coordinates, and, for each point
in the point set, we store its second coordinate to its (d + 1)-st coordinate in
a chunk γ. For 1 ≤ � ≤ d, the (� + 1)-st coordinate will be stored in the �-th
subchunk of γ. Note that these coordinates each fit in the lowest �ε lg w� bits of
a subchunk. The highest bit of the same subchunk, which is referred to as the
flag bit, is set to be zero. Thus the space cost is s1 = O(lg w) bits per point.
Because each subblock consists of at most m2 points and m2 × s1 = o(w), the
chunks of all points in a subblock can fit in a single machine word.

Let q = (q1, q2, . . . , qd+1) be the query and β′ be the rightmost subblock that
intersects with q. We find the rank r of q1 over the points of β′, and copy the
chunks of the first r points of β′ into the first r chunks of a machine word A. This
requires only O(1) time since these chunks are stored consecutively in memory.
Then we store q2, q3, . . . , qd+1 duplicately in the first r chunks of another word B.
For each of these r chunks and each 1 ≤ � ≤ d, q�+1 is stored in the �-th subchunk
as the lowest �ε lg w� bits, and the flag bit of the subchunk is set to be 1. The
construction of B also requires O(1) time.

We then compute C = B − A, mask all bits of C to 0 except the flag bits of
the subchunks in each of the first r chunks, and right-shift C by s2 − 1 bits. It
is not hard to see that a point is dominated by q iff the value the corresponding
chunk represents is equal to (2ds2 − 1)/(2s2 − 1).

To count the occurrences of that value, we create another word D so that
each of the first r chunks represents (2ds2 − 1)/(2s2 − 1) + 2ds2−1. That is,

90 T.M. Chan and G. Zhou

the lowest bits of all subchunks and the flag bit of the d-th subchunk are set to
be 1 in each of the first r chunks, and the other bit are set to be 0. We compute
E = D − C, and mask all bits of E to 0 except the highest bits of the first r
chunks, i.e., the flag bits of the d-th subchunks. The highest bit of a chunk is 1
iff the corresponding point is dominated by q.

Finally we sum up the highest bits of the first r chunks. To achieve that, we
right-shift E by s1 − 1 bits, so that the highest bit of each chunk becomes the
lowest one. Then we multiply the shifted word by (2rs1 − 1)/(2s1 − 1) and the
value stored in the r-th chunk will be the sum we need, which is also the answer
to the query q. The whole algorithm requires O(1) time and no table lookup. �

Lemma 5. For any constant 0 < ε < 1/d, dominance counting queries over a
point set S of size m ≤ n and type d′ with σ = �wε� can be supported using
O(m lg w · (lg n/ lg w + 1)d′−1) bits of space and O((lg n/ lg w + 1)d′−1) query
time.

Proof. The base case in which d′ = 1 has been handled in Lemmas 3 and 4. We
only show how to reduce the case of d′ to that of d′ − 1. We build a range tree
over the d′-th coordinates of points with branching factor �wε�. The height of
the range tree is bounded above by O(lg n/ lg w + 1). Each node v in the range
tree represents a range [av..bv] and the set S(v) of points whose d′-th coordinates
are in [av..bv]. The leaf nodes in the range tree each represent a single point.

For each internal node v, we transform S(v) into a point set D(v) of type
d′ − 1. For any � < d′ and any point p ∈ S(v), its �-th coordinate p� is replaced
with the rank of p�, i.e., the number of points in S(v) whose �-th coordinates
are no greater than p�. In addition, the d′-th coordinate of p is replaced with an
integer in [1..t], which is the index of v’s child that represents a set containing p.
Queries over D(v) can be supported recursively.

Inside each internal node v, for each dimension 1 ≤ � ≤ d′ we write down
a sequence Sv,�[1..|S(v)|]. For each point p ∈ S(v), Sv,�[p�] is the integer that
replaced the d′-th coordinate of p. We represent these sequences using the suc-
cinct data structures of Belazzougui and Navarro [1]. These data structures use
O(|Sv,�| lg w) bits of space, and support ranki(Sv,�, p�) operations in O(1) time,
which count the occurrences of i’s in Sv,�[1..p�].

Let the given dominance counting query be q = (q1, q2, . . . , qd+1). Start-
ing with the root node, we traverse the range tree from top to bottom. Let
v be the root node and let v1, . . . , vt be the children of v from left to right.
We find the largest i so that bvi

≤ qd′ . Querying D(v) recursively with
(q1, . . . , qd′−1, i, qd′+1, qd+1), we can find the number of points in the first i chil-
dren of v that are dominated by q. Then we recursively query S(vi+1) with
q′ = (q′

1, q
′
2, . . . , q

′
d′ , qd′+1, . . . , qd+1), where q′

� = ranki+1(Sv,�, q�) for 1 ≤ � ≤ d′.
We return the sum of the answers found.

This range tree is of height O(lg n/ lg w + 1), and a dominance counting
query on a point set of type d′ is reduced to O(lg n/ lg w + 1) queries on points
sets of type d′ − 1. Thus we achieve the desired bounds for query time and
space cost. �

Multidimensional Range Selection 91

Remark. Lemma 5 is a stronger version of Lemma 2(a). By Lemma 5, one
can support d-dimensional range counting queries within O((lg n/ lg w + 1)d−1)
query time and O(n · (lg n/ lg w +1)d−2) words of space. This improves the data
structures of JaJa et al. [6] when w ≥ lgω(1) n.

Next we consider how to prove Lemma 2(b). Unlike the structures for domi-
nance counting queries with σ = �wε�, for parallel counting queries we can only
set σ = �lgε n�.
Lemma 6. For any constant 0 < ε < 1/d, parallel counting queries over a
point set S of size m ≤ n and type 1 with σ = �lgε n� can be supported using
O(m lg lg n) bits of space and O(1) query time. In addition, we also need global
lookup tables that occupy o(n) bits of space in total.

Proof. We sort all points of S in increasing order of the first coordinates. We
divide S into blocks of size n1 = �lg2 n�, and divide each block into subblocks
of size n2 = �lgdε n�. We still label each block/subblock with the largest first
coordinate over the points inside the block/subblock.

For each block β we maintain a table Dβ in which, for j ∈ [0..�(lg n)/s�]
and 1 ≤ q2, q3, . . . , qd ≤ �lgε n�, the entry Dβ [q2, q3, . . . , qd, j] stores the j-th
sections of f [1], f [2], . . . , f [�lgε n�], where f [i] is the number of points in S that
are dominated by (label(β), q2, . . . , qd, i). As described in Sect. 3, we store the
j-th section of each of these values in a subword of s + b + 2 bits, and pack
them into a single word. These table Dβ ’s occupy O(m/n1) × O(lg(d−1)ε n) ×
(�lg n/s� + 1) × O(lg n) = O(m/ lg1−dε n) = o(m) bits in total.

For each subblock β′ of β we maintain a table Eβ′ in which, for 1 ≤
q2, q3, . . . , qd ≤ �lgε n�, the entry Eβ′ [q2, q3, . . . , qd] stores the concatenation
of g[1], g[2], . . . , g[�lgε n�], where g[i] is the number of points inside β that
are dominated by (label(β′), q2, . . . , qd, i). Each g[i] can be represented in
�lg n1� = O(lg lg n) bits. The overall space cost for all the tables Eβ′ is
O(m/n2) × �lgdε n� × O(lg lg n) = O(m lg lg n) bits. We further precompute a
global lookup table X that, for each possible values of g[1], g[2], . . . , g[�lgε n�],
stores a word in which the i-th subword is equal to g[i]. Clearly the lookup table
X requires o(n) bits of space.

We can encode each subblock in O(m2 lg lg n) = O((lgdε n)·lg lg n) bits. Then
we precompute another global lookup table Y that, for any possible encoding
of a subblock β′ and any 1 ≤ q1, q2, . . . , qd ≤ �lgε n�, stores the concatenation
of h[1], h[2], . . . , h[�lgε n�], where h[i] is the number of points inside β′ that are
dominated by (q1, q2, . . . , qd, i). The table Y also requires o(n) bits of space since
there are only O(n1−δ) possible encodings of subblocks for some δ > 0.

Let (q1, q2, . . . , qd, j) be a parallel counting query. We find the rightmost
block β whose label is no greater than q1, and the rightmost block β′ to the
right of β whose label is no greater than q1. If j > 0, then we simply return
Dβ [q2, q3, . . . , qd, j]. If j = 0, then we further find the subblock β′′ to the right of
β′ and the rank r of q1 inside β′′. The answer is the sum of Dβ [q2, q3, . . . , qd, 0],
Eβ′ [q2, q3, . . . , qd], and Y [enc(β′′), q2, q3, . . . , qd], where enc(β′′) is the encoding
of β′′. Note that we need X to transform the entry of Eβ′ . The overall query
time is O(1). �

92 T.M. Chan and G. Zhou

Finally, following the same approach of the proof for Lemma 5 but using
branching factor �lgε n�, we can prove Lemma 2(b). Since the answer is expressed
as a sum of the j-th sections of K = O((lg n/ lg lg n)d′

) numbers, we need to set
b larger than lg K = Θ(lg lg n).

Acknowledgements. We thank the anonymous reviewers for their fruitful comments
and suggestions.

References

1. Belazzougui, D., Navarro, G.: Optimal lower and upper bounds for representing
sequences. ACM Trans. Algorithms (TALG) 11(4), 31:1–31:21 (2015). Article 31

2. Brodal, G.S., Gfeller, B., Jørgensen, A.G., Sanders, P.: Towards optimal range medi-
ans. Theor. Comput. Sci. 412(24), 2588–2601 (2011)

3. Chan, T.M., Wilkinson, B.T.: Adaptive and approximate orthogonal range counting.
In: SODA, pp. 241–251 (2013)

4. Fredman, M.L., Willard, D.E.: Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci. 47(3), 424–436 (1993)

5. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geom-
etry problems. In: STOC, pp. 135–143 (1984)

6. JáJá, J., Mortensen, C.W., Shi, Q.: Space-efficient and fast algorithms for multidi-
mensional dominance reporting and counting. In: Fleischer, R., Trippen, G. (eds.)
ISAAC 2004. LNCS, vol. 3341, pp. 558–568. Springer, Heidelberg (2004)

7. Jørgensen, A.G., Larsen, K.G.: Range selection and median: tight cell probe lower
bounds and adaptive data structures. In: SODA, pp. 805–813 (2011)

8. Krizanc, D., Morin, P., Smid, M.H.M.: Range mode and range median queries on
lists and trees. Nord. J. Comput. 12(1), 1–17 (2005)

9. Matousek, J.: Reporting points in halfspaces. Comput. Geom. 2, 169–186 (1992)

	Multidimensional Range Selection
	1 Introduction
	2 Preliminaries
	3 The ``Abstract'' Problem
	4 Range Selection
	5 Dominance Counting and Parallel Counting
	References

