
How to Select the Top k Elements
from Evolving Data?

Qin Huang1, Xingwu Liu1,2(B), Xiaoming Sun1, and Jialin Zhang1

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
{huangqin,liuxingwu,sunxiaoming,zhangjialin}@ict.ac.cn
2 State Key Laboratory of Software Development Environment,

Beihang University, Beijing, China

Abstract. In this paper we investigate the top-k-selection problem, i.e.
to determine and sort the top k elements, in the dynamic data model.
Here dynamic means that the underlying total order evolves over time,
and that the order can only be probed by pair-wise comparisons. It is
assumed that at each time step, only one pair of elements can be com-
pared. This assumption of restricted access is reasonable in the dynamic
model, especially for massive data set where it is impossible to access
all the data before the next change occurs. Previously only two special
cases were studied [1] in this model: selecting the element of a given rank,
and sorting all elements. This paper systematically deals with k ∈ [n].
Specifically, we identify the critical point k∗ such that the top-k-selection
problem can be solved error-free with probability 1 − o(1) if and only if
k = o(k∗). A lower bound of the error when k = Ω(k∗) is also determined,
which actually is tight under some conditions. In contrast, we show that
the top-k-set problem, which means finding the top k elements without
sorting them, can be solved error-free with probability 1 − o(1) for all
1 ≤ k ≤ n. Additionally, we consider some extensions of the dynamic
data model and show that most of these results still hold.

1 Introduction

Sorting, a fundamental primitive in algorithms, has been an active research topic
in computer science for decades. In the era of big data, it is the cornerstone of
numerous vital applications – Web search, online ads, and recommendation sys-
tems to name but a few. While sorting has been extensively studied, little is
known when the data is dynamic. Actually, dynamic data is common in prac-
tical applications: the linking topology of Web pages, the friendship network of
Facebook, the daily sales of Amazon, and so on, all keep changing. The basic
challenge in dealing with dynamic, massive data is that the access to the data
is too restricted to catch the changes.

The work is partially supported by National Natural Science Foundation of China
(61173009, 61170062, 61222202, 61433014, 61502449), State Key Laboratory of Soft-
ware Development Environment Open Fund (SKLSDE-2014KF-01), and the China
National Program for support of Top-notch Young Professionals.

c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 60–70, 2015.
DOI: 10.1007/978-3-662-48971-0 6

How to Select the Top k Elements from Evolving Data? 61

For example, it is impossible to get an exact snapshot of Web, and a third-
party vendor can query the Facebook network only via a rate-limited API. As
a result, this paper is devoted to studying the sorting problem on dynamic,
access-restricted data.

In the seminal paper [1], Anagnostopoulos et al. formulated a model for
dynamic data as follows. Given a set U of n elements, at every discrete time t,
there is an underlying total order πt on U . For every t ≥ 1, πt is obtained from
πt−1 by sequentially swapping α random pairs of consecutive elements, where α
is a constant number. The only way to probe πt is querying the relative rank of
ONE pair of elements in U at every time step. The goal is to learn about the
true order πt. Obviously, it is impossible to always exactly find out the orders, so
our objective is that at any time t, the algorithm estimates the correct answer
(or an approximate answer) with high probability. In this paper, “with high
probability” and “with probability 1 − o(1)” are used interchangeably.

Anagnostopoulos et al. [1] proved that the Kendall tau distance between
πt and π̃t, defined in Sect. 2 and denoted by KT(πt, π̃t), is lower-bounded by
Ω(n) with high probability at every t, where π̃t is the order estimated by any
algorithm. This lower bound is nearly tight, since they proposed an algorithm
with KT(πt, π̃t) = O(n ln lnn). Furthermore, they designed an algorithm that
with high probability, exactly identifies the element of a given rank.

Though elegant, this model is too restricted: the evolution is extremely slow
since α is constant, and is extremely local since only consecutive elements are
swapped. Hence, it is extended in this paper by allowing α to be a function of
n, and is called the consecutive-swapping model. We further generalize it to the
Gaussian-swapping model by relaxing the locality condition.

Inspired by [1], we study the general top-k-selection problem: at every time
t, figure out the top k elements and sort them, where k ∈ {1, 2, ...n}. Its two
extreme cases where k = n and k = 1 correspond to the sorting problem and the
selection problem in [1], respectively. The error-free solvability of the selection
problem suggests that the error in solving the top-k-selection problem may vanish
as k decreases, so it is natural to investigate the critical point where the error
vanishes and to find the optimal solution beyond the critical point. Another
motivation lies in the wide application of top-k-selection, also known as partial
sorting. It has been used in a variety of areas such as Web and multimedia
search systems and distributed systems, where massive data has to be dealt
with efficiently [2].

Additionally, we consider a closely related top-k-set problem: at every time t,
identify the set of the top k elements. The top-k-set problem is weaker in that it
does not require to sort the elements. In the static data setting, when a selection
algorithm identifies the kth element, it automatically determines the set of the
top k elements (see for example Knuth’s book [3]). However, this is not apparent
in the dynamic data model.

Our Contributions. The main results of this paper lie in two aspects in the
consecutive-swapping model. First, it is shown that the top-k-set problem can
be solved error-free with high probability for any 1 ≤ k ≤ n. Second and more

62 Q. Huang et al.

important, k∗ = Θ(
√

n
α) is proven to be the critical point of k for the top-k-

selection problem, which means that this problem can be solved error-free with
high probability if and only if k = o(k∗).

In addition, for k beyond k∗, we obtain tight lower bounds of KT(π̃t
k, πt

k),
the Kendall tau distance between the true order πt

k and the algorithmically
estimated order π̃t

k of the top k elements. Specifically, if k = Ω(
√

n
α), then for

any algorithm, KT(π̃t
k, πt

k) �= 0 with constant probability. When k = ω(
√

n) and
α = O(1), for any algorithm, KT(π̃t

k, πt
k) = Ω(k2

n) with high probability at every
t. These lower bounds can be reached by ONE algorithm with parameter k, (see
Algorithm 2), hence being tight.

The results of the top-k-selection problem in the consecutive-swapping model
are summarized in Table 1. Most of the results are also generalized to the Gaussian-
swapping model with constant α, as summarized in Table 2.

Table 1. Results in the consecutive-swapping model

k X � KT(π̃t
k, πt

k)

o(
√

n
α
) Pr(X = 0) = 1 − o(1)

Θ(
√

n
α
) Pr(X = 0) = Θ(1) = Pr(X > 0)

ω(
√

n
α
) Pr(X = O(k2α

n
)) = 1 − o(1)a

In a case, this upper bound of X is tight for
constant α. See Sect. 3

Table 2. Results in the Gaussian-swapping model

k X � KT(π̃t
k, πt

k)

o(
√

n
ln0.25 n

) Pr(X = 0) = 1 − o(1)

Θ(
√

n
ln0.25 n

) Pr(X = 0) = Θ(1)

ω(
√

n
ln0.25 n

) Pr(X = O(k2 ln n
n

)) = 1 − o(1)

Related Work. The sorting/selection problem has been actively investigated
for decades [2,4–6], but the study of this problem in dynamic data setting was
initiated very recently [1]. In [1], Anagnostopoulos et al. considered two special
cases of the top-k-selection problem, namely k = n and k = 1, in the consecutive-
swapping model with constant α. Their work has inspired the problem and the
data model in this paper. The theoretical results in [1] were experimentally
verified by Moreland [7] in 2014.

Dynamic data is also studied in the graph setting. [8] considered two clas-
sical graph connectivity problems (path connectivity and minimum spanning
trees) where the graph keeps changing over time and the algorithm, unaware of
the changes, probes the graph to maintain a path or spanning tree. Bahmani
et al. [9] designed an algorithm to approximately compute the PageRank of

How to Select the Top k Elements from Evolving Data? 63

evolving graphs, and Zhuang et al. [10] considered the influence maximization
problem in dynamic social networks. On the other hand, Labouseur et al. [11]
and Ren [12] dealt with the data structure and management issues, respectively,
enabling efficient query processing for dynamic graphs.

It is worth noting that our dynamic data model is essentially different from
noisy information model [13,14]. In computing with noisy information, the main
difficulty is brought about by misleading information. On the contrary, in our
model, the query results are correct, while the difficulty comes from the restricted
access to the dynamic data. The ground truth can be probed only by local
observation, so it is impossible to capture all changes in the data. The key issue
is to choose query strategies in order to approximate the real data with high
probability.

In the algorithm community, there are many other models dealing with
dynamic and uncertain data, from various points of view. However, none of them
captures the two crucial aspects of our dynamic data model: the underlying data
keeps changing, and the data exposes limited information to the algorithm by
probing. For example, data stream algorithms [15] deal with a stream of data,
typically with limited space, but the algorithms can observe the entire data that
has arrived; local algorithms on graphs [16,17] probe the underlying graphs by a
limited number of query, but typically the graphs are static; in online algorithms
[18], though the data comes over time and is processed without knowledge of the
future data, the algorithms know all the data up to now; the multi-armed-bandit
model [19] tends to optimize the total gain in a finite exploration-exploitation
process, while our framework concerns the performance of the algorithm at every
time step in an infinite process.

The rest of the paper is organized as follows. In Sect. 2, we provide the formal
definition of the models and formulate the problems. Section 3 is devoted to
solving the top-k-set problem and the top-k-selection problem in the consecutive-
swapping model. In Sect. 4, the problems are studied in the Gaussian-swapping
model. Section 5 concludes the paper. Due to the limitation of space, all proofs
of the theorems will be omitted.

2 Preliminaries

We now formalize our dynamic data model.
Let U = {u1, ..., un} be a set with n elements, and U be the set of all total

orders over U , that is, U = {π : U → [n] |∀i �= j, π(ui) �= π(uj)}, where
[n] � {1, 2, ...n}. For any π ∈ U and k ∈ [n], we define π−1(k) to be the kth
element and π(u) to be the rank of u relative to π. If π(u) < π(v), we say u >π v
or simply by u > v when π can be inferred from context.

In this paper, we consider the process where the order on U gradually changes
over time. Time is discretized into steps sequentially numbered by nonnegative
integers. At every time step t, there is an underlying total order πt on U . For
every t ≥ 1, πt is obtained from πt−1 by sequentially swapping α random pairs of

64 Q. Huang et al.

consecutive elements, where α is an integer function of n. This is our consecutive-
swapping model.

Now we introduce the Gaussian-swapping model whose defining feature is
that non-consecutive pairs can be swapped in the evolution. Specifically, for
every t ≥ 1, πt is still obtained from πt−1 by sequentially swapping α pairs of
elements. However, each pair (not necessarily consecutive) is selected as follows,
rather than uniformly randomly. First, d is sampled from a truncated Gaussian
distribution Pr(D = d) = βe

−d2
2 where β is the normalizing factor. Then, a pair

of elements whose ranks differ by d is chosen uniformly randomly from all such

pairs. Thus, the overall probability that a pair (u, v) gets swapped is βe
−d2
2

n−d ,
where d is the difference between the ranks of u and v, related to πt−1.

In either model, at any time step t, the changes of πt are unknown by the
algorithms running on the data. The only way to probe the underlying order
is by comparative queries. At any time t, given an arbitrary pair of elements
u, v ∈ U , an algorithm can query whether πt(u) > πt(v) or not. At most one
pair of elements can be queried at each time step.

Now we define I-sorting problem for any index set I ⊆ [n]: at each time step t,
find out all the elements whose ranks belong to I, and sort them according to πt.
The concept of I-sorting problem unifies both the sorting problem (|I| = n) and
the selection problem (|I| = 1). This paper mainly studies the top-k-selection
problem, a special case of the I-sorting problem with I = [k] for k ∈ [n]. For
convenience, in this paper we use notation πt

k to represent the true order on the
top k elements at time t. A closely-related problem, called the top-k-set problem,
is also studied. It requires to find out (πt)−1([k]) at each time t, without sorting
them.

We then define the performance metrics of the algorithms. In the top-k-set
problem, we want to maximize the probability that the output set is exactly the
same as the true set for sufficiently large t. In the top-k-selection problem, we
try to minimize the Kendall tau distance between the output order and the true
order on the top k elements, for sufficiently large t. Since an algorithm solving
the top-k-selection problem may output an order on a wrong set, we extend
the definition of Kendall tau distance to orders on different sets. Specifically,
given total orders σ on set V and δ on set W with |V | = |W |, their Kendall
tau distance is defined to be KT(σ, δ) = |{(x, y) ∈ V 2 : σ(x) < σ(y) and (x �∈
W or y �∈ W or δ(x) > δ(y))}|. Intuitively, it is the number of pairs that either
are not shared by W and V or are ordered inconsistently by the two total orders.

Throughout this paper, one building block of the algorithms is the ran-
domized quick-sort algorithm. We describe the randomized quick-sort algorithm
briefly. Given an array, it works as follows: (1) Uniformly randomly pick an ele-
ment, called a pivot, from the array. (2) Compare all elements with the pivot,
resulting in two sub-arrays: one consisting of all the elements smaller than the
pivot, and the other consisting of the other elements except the pivot. (3) Recur-
sively apply steps 1 and 2 to the two sub-arrays until all the sub-arrays are
singletons.

How to Select the Top k Elements from Evolving Data? 65

3 Consecutive-Swapping Model

In this section, we consider the top-k-set problem and the top-k-selection prob-
lem in the consecutive-swapping model. For the top-k-set problem, Sect. 3.1
shows an algorithm which is error-free with probability 1 − o(1) for arbitrary
k. Section 3.2 is devoted to the top-k-selection problem. It presents an algorithm
that is optimal when α is constant or k is small.

3.1 An Algorithm for the Top-k-set Problem

The basic idea is to repeatedly run quick-sort over the data U , extract the set
of the top k elements from the resulting order, and output this set during the
next run. But an issue should be addressed: since the running time of quick-sort
is Ω(n ln n) with high probability, the set of the top k elements will change with
high probability during the next run, leading to out-of-date outputs. Because
the rank of every element does not change too much during the next run of
quick-sort, a solution is to parallel sort a small subset of U that contains the top
k elements with high probability.

Algorithm 1. Top-k-set
Input: A set U of n elements
Output: T̃

1: Initialize π̃, L, C, π̃C , and T̃ arbitrarily
2: while (true) do
3: Execute in odd steps: /*QS1*/
4: π̃ ← quick sort(U)
5: L ← π̃−1([k − cα lnn]) and C ← π̃−1([k + cα lnn]) \ L /*The constant c will

be determined in the proof of Theorem 1*/
6: Execute in even steps: /*QS2*/
7: π̃C ← quick sort(C)

8: T̃ ← L
⋃

π̃−1
C ([cα lnn])

9: end while

Specifically, the algorithm Top-k-set consists of two interleaving procedures
(denoted by QS1 and QS2, respectively), each of which restarts once it termi-
nates. In the odd steps, QS1 calls quick-sort to sort U , preparing two sets L and
C. The set L consists of the elements that will remain among top k during the
next run of QS1 with high probability, while C contains the uncertain elements
that might be among top k in this period. Then, QS2 will sort the set C com-
puted by the last run of QS1 to produce the estimated set of top k elements. At
any time t, the output T̃t of the algorithm is the set T̃ computed by the previous
run of QS2.

Theorem 1 shows that Algorithm 1 is error-free with high probability.

66 Q. Huang et al.

Theorem 1. Assume that α = o(
√

n
lnn). For any k ∈ [n], Pr(T̃t = (πt)−1([k])) =

1 − o(1), where T̃t is the output of Algorithm1 at time t, πt is the true order on
U at time t, and t is sufficiently large.

The basic idea of the proof lies in two aspects. First, with high probability, the
estimated rank of every element with respect to π̃ is at most O(α ln n) away
from the true rank, implying that all the elements in L are among top k and
all top k elements are in L

⋃
C. Second, with high probability, the kth element

of U does not swap throughout sorting C, so the set of top k elements remains
unchanged and is exactly contained in T̃ . The detailed proof will be omitted.

3.2 An Algorithm for the Top-k-selection Problem

Now we present an algorithm to solve the top-k-selection problem. The basic
idea is to repeatedly run quick-sort over the data U , extracting a small subset
that includes all the elements that can be among top k during the next run. To
exactly identify the top k elements in order, the small set is sorted and the order
of the top k elements is produced accordingly. Like in designing the top-k-set
algorithm, there is also an issue to address: since sorting the small set takes time
Ω(k ln k), the order of the top k elements will soon become out of date. Again
note that with high probability the rank of each element does not change too
much during sorting the small set, so the order of the top k elements can be
regulated locally and keeps updated.

Specifically, Algorithm 2 consists of four interleaving procedures (QS1, QS2,
QS3, and Local-sort), each of which restarts once it terminates. At the (4t+1)-th
time steps, QS1 invokes a quick-sort on U , preparing a set C of size k+O(α ln n)
which with high probability, contains all the elements among top k during the
next run of QS1. At the (4t+2)-th time steps, QS2 calls another quick-sort on the
latest C computed by QS1, producing a set P of size k. With high probability,
the set P exactly consists of the top k elements of U during the next run of
QS2. At the (4t+3)-th time steps, the other quick-sort is invoked by QS3 on the
latest P computed by QS2, periodically updating the estimated order over P .
The resulting order is actually close to the true order over P during the next run
of QS3. Finally, at the (4t)-th time steps, an algorithm Local-sort is executed on
the total order over P that is produced by the last run of QS3, so as to locally
regulate the order. At any time t, the output π̃t

k of Algorithm 2 is the last π̃k

computed by Local-sort.
The main idea of Algorithm 3 (Local-sort) is to regulate the order over P

block by block. Since block-by-block processing takes linear time, the errors can
be corrected in time and few new errors will emerge during one run of Algo-
rithm3. Considering that the elements may move across blocks, it is necessary
to make the blocks overlap. Actually, for each j, the element of the lowest rank
in the j-th block is found, regarded as the j-th element of the final order, and
removed from the block. The rest elements of the j-th block, together with the
lowest-ranked element in P (according to the latest order produced by QS3)
that has not yet been processed, forms the (j + 1)-th block. The element of the

How to Select the Top k Elements from Evolving Data? 67

Algorithm 2. Top-k-selection
Input: A set U of n elements
Output: π̃k

1: Let t be the time
2: Initialize π̃, C, π̃C , P, π̃P , and π̃k arbitrarily
3: while (true) do
4: Execute in t ≡ 1(mod 4) steps /*QS1*/
5: π̃ ← quick sort(U)
6: C ← π̃−1([k + c′α lnn]) /*The constant c′ will be determined in the proof of

Theorem 2*/
7: Execute in t ≡ 2(mod 4) steps /*QS2*/
8: π̃C ← quick sort(C)
9: P ← π̃−1

C ([k])
10: Execute in t ≡ 3(mod 4) steps /*QS3*/
11: π̃P ← quick sort(P)
12: Execute in t ≡ 0(mod 4) steps /*Local-sort*/
13: π̃k ← Local-sort(P, π̃P , 4c+1) /*The constant c will be determined in the proof

of Theorem 2*/
14: end while

Algorithm 3. Local-sort
Input: A set P ; an order π over P ; an integer c
Output: π̃

1: m ← |P |
2: B1 ← π−1([c]) /* Define the first block */
3: π̃−1(1) ← Maximum-Find(B1)
4: j = 2
5: while (c + j − 1 ≤ m) do
6: Bj ← (Bj−1\π̃−1(j − 1))

⋃
π−1(c + j − 1) /* Define the j-th block */

7: π̃−1(j) ← Maximum-Find(Bj)
8: j = j + 1
9: end while
10: Be ← Bj−1 /*Deal with the final block*/
11: while |Be| ≥ 1 do
12: π̃−1(j) ← Maximum-Find(Be)
13: Be ← Be\π̃−1(j)
14: j = j + 1
15: end while

lowest rank in each block is found by calling Algorithm4, which repeatedly runs
sequential comparison. Both Algorithms 3 and 4 are self-explained, so detailed
explanation is omitted here.

Theorem 2. Assume α = o(
√

n
lnn) and k = O((n

α lnn)1−ε), where ε > 0. Let π̃t
k

be the output of Algorithm2 and πt
k be the true order over the top k elements at

time t. For sufficiently large t, we have that:

68 Q. Huang et al.

Algorithm 4. Maximum-Find
Input: B
Output: umax

1: umax ← B(1)
2: j = 2
3: while (j ≤ |B|) do
4: if umax < B(j) then
5: umax ← B(j)
6: end if
7: j = j + 1
8: end while

1. If k2α = o(n), Pr(KT(π̃t
k, πt

k) = 0) = 1 − o(1),
2. If k2α = Θ(n), Pr(KT(π̃t

k, πt
k) = 0) = Θ(1), and

3. If k2α = ω(n), Pr(KT(π̃t
k, πt

k) = O(k2α
n)) = 1 − o(1).

We sketch the basic idea of the proof. First, with high probability, the rank
of every element with respect to π̃ is at most O(α ln n) away from the true
rank, implying that all the top k elements are contained in C. Second, with
high probability, the kth element of U does not swap throughout sorting C, so
P is exactly the set of top k elements and the resulting rank of every element
deviates from the true rank by at most a constant. Third, due to the small
rank deviation of every element, the ordering can be corrected locally by sorting
blocks of constant length. The detailed proof will be omitted.

3.3 Lower Bounds for the Top-k-selection Problem

Now we analyze the lower bounds of the performance of any top-k-selection algo-
rithm. The lower bounds hold for both randomized and deterministic algorithms.

Let A be an arbitrary algorithm which takes our dynamic data as input and
outputs a total order π̃t

k on a subset of size k at every time step t. Let πt
k be

the true order on the top k elements. The following theorems characterize the
difference between π̃t

k and πt
k when k is large.

Theorem 3. Given k = Ω(
√

n
α) and α = o(n), Pr(KT(π̃t

k, πt
k) > 0) = Θ(1) for

every t > k.

The main idea of the proof is that with a constant probability, in any period
of Θ(

√
n
α), exactly one swap occurs among the top k elements and the swap is

not observed. The detailed proof will be omitted.

Theorem 4. Given k = ω(
√

n) and α = O(1), KT(π̃t
k, πt

k) = Ω(k2

n) in expecta-
tion and with probability 1 − o(1) for every t > k/8.

The basic idea of the proof is that with high probability, in any period of
Θ(k), Ω(k2

n) swaps occur among the top k elements and a majority of the swaps
are not observed. The detailed proof will be omitted.

How to Select the Top k Elements from Evolving Data? 69

From Theorems 2 and 3, we know that Θ(
√

n/α) is the critical point of k,
and it is impossible to generally improve Algorithm2 even if k = ω(

√
n/α). The

term critical point means the least upper bound of k such that top-k-selection
problem can be solved error-free with probability 1 − o(1).

4 Gaussian-Swapping Model

This section is devoted to extending the algorithms for the consecutive-swapping
model to the Gaussian-swapping model. We focus on the special case where α
is a constant, and still assume that at each time step only one pair of elements
can be compared.

Algorithms 1 and 2 can be slightly adapted to solve the top-k-set problem and
the top-k-selection problem in this model, respectively. Specifically, replacing
α in lines 5 and 8 of Algorithm1 with ln0.5 n, one gets Algorithm 5; likewise,
in Algorithm 2, replacing α in line 6 with ln0.5 n and 4c + 1 in lines 13 with
4c ln0.5 n+1, we get Algorithm 6. The following theorems state the performance
of these algorithms, and the proofs are omitted.

Theorem 5. For any k ∈ [n], we have Pr(T̃t = (πt)−1([k])) = 1 − o(1), where
T̃t is the output of Algorithm 5 at time t, πt is the true order at time t, and t is
sufficiently large.

Theorem 6. Assume that k = O((n
lnn)1−ε), where ε > 0. Let π̃t

k be the output
of Algorithm6 and πt

k be the true order over the top k elements at time t. For
sufficiently large t, we have:

1. If k = o(
√

n
ln0.25 n

), Pr(KT(π̃t
k, πt

k) = 0) = 1 − o(1),
2. If k = Θ(

√
n

ln0.25 n
), Pr(KT(π̃t

k, πt
k) = 0) = Θ(1), and

3. If k = ω(
√

n
ln0.25 n

), Pr(KT(π̃t
k, πt

k) = O(k2 lnn
n)) = 1 − o(1).

Except for the Gaussian distribution, d can also be determined by other
discrete distributions, for example, p(d) = β

dγ , where γ is a constant and β is a
normalizing factor. When γ is large enough (say, γ > 10), the results similar to
those in the Gaussian-swapping model can be obtained.

5 Conclusions

In this paper we identify the critical point k∗ such that the top-k-selection prob-
lem can be solved error-free with high probability if and only if k = o(k∗). A lower
bound of the error when k = Ω(k∗) is also determined, which actually is tight
under some condition. On the contrary, it is shown that the top-k-set problem
can be solved error-free with probability 1 − o(1), for all k ∈ [n]. These results
hold in the consecutive-swapping model and most of them can be extended to
the Gaussian-swapping model.

A number of problems remain open for the top-k-selection problem in the
consecutive-swapping model. For α = ω(1), we have not shown whether the

70 Q. Huang et al.

upper bound O(k2α
n) of error is tight when k = ω(

√
n
α). For α = O(1), there

exists a gap between k = n and k = O((n
lnn)1−ε), where the lower bound Ω(k2

n)
of error has not yet shown to be tight. We conjecture that these bounds are tight.

References

1. Anagnostopoulos, A., Kumar, R., Mahdian, M., Upfal, E.: Sort me if you can:
how to sort dynamic data. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp.
339–350. Springer, Heidelberg (2009)

2. Ilyas, I., Beskales, G., Soliman, M.: A survey of top-k query processing techniques
in relational database systems. ACM Comput. Surv. 40(4) (2008). Article 11

3. Knuth, D.E.: The Art of Computer Programming, vol. 3. Addison-Wesley, Boston
(1973)

4. Kislitsyn, S.S.: On the selection of the kth element of an ordered set by pairwise
comparison. Sibirskii Mat. Zhurnal 5, 557–564 (1964)

5. Blum, M., Floyd, R., Pratt, V., Rivest, R., Tarjan, R.: Time bounds for selection.
J. Comput. Syst. Sci. 7(4), 448–461 (1973)

6. Dor, D., Zwick, U.: Selecting the median. In: SODA 1995, pp. 28–37 (1995)
7. Moreland, A.: Dynamic Data: Model, Sorting, Selection. Technical report (2014)
8. Anagnostopoulos, A., Kumar, R., Mahdian, M., Upfal, E., Vandin, F.: Algorithms

on evolving graphs. In: 3rd Innovations in Theoretical Computer Science Confer-
ence (ITCS), pp. 149–160. ACM, New York (2012)

9. Bahmani, B., Kumar, R., Mahdian, M., Upfal, E.: Pagerank on an evolving graph.
In: 18th ACM International Conference on Knowledge Discovery and Data Mining
(SIGKDD), pp. 24–32. ACM (2012)

10. Zhuang, H., Sun, Y., Tang, J., Zhang J., Sun, X.: Influence maximization in
dynamic social networks. In: 13th IEEE International Conference on Data Mining
(ICDM), pp. 1313–1318. IEEE (2013)

11. Labouseur, A.G., Olsen, P.W., Hwang, J.H.: Scalable and robust management of
dynamic graph data. In: 1st International Workshop on Big Dynamic Distributed
Data (BD3@VLDB), pp. 43–48 (2013)

12. Ren, C.: Algorithms for evolving graph analysis. Doctoral dissertation. The Uni-
versity of Hong Kong (2014)

13. Ajtai, M., Feldman, V., Hassidim, A., Nelson, J.: Sorting and selection with impre-
cise comparisons. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 37–48. Springer,
Heidelberg (2009)

14. Feige, U., Raghavan, P., Peleg, D., Upfal, E.: Computing with noisy information.
SIAM J. Comput. 23(5), 1001–1018 (1994)

15. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: 21st ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS), pp. 1–16. ACM (2002)

16. Bressan, M., Peserico, E., Pretto, L.: Approximating PageRank locally with sub-
linear query complexity. ArXiv preprint (2014). arXiv:1404.1864

17. Fujiwara, Y., Nakatsuji, M., Shiokawa, H., Mishima, T., Onizuka, M.: Fast and
exact top-k algorithm for pagerank. In: 27th AAAI Conference on Artificial Intel-
ligence, pp. 1106–1112 (2013)

18. Albers, S.: Online algorithms: a survey. Math. Prog. 97(1–2), 3–26 (2003)
19. Kuleshov, V., Precup, D.: Algorithms for multi-armed bandit problems. ArXiv

preprint (2014). arXiv:1402.6028

http://arxiv.org/abs/1404.1864
http://arxiv.org/abs/1402.6028

	How to Select the Top k Elements from Evolving Data?
	1 Introduction
	2 Preliminaries
	3 Consecutive-Swapping Model
	3.1 An Algorithm for the Top-k-set Problem
	3.2 An Algorithm for the Top-k-selection Problem
	3.3 Lower Bounds for the Top-k-selection Problem

	4 Gaussian-Swapping Model
	5 Conclusions
	References

