
An O(nε) Space and Polynomial Time
Algorithm for Reachability in Directed Layered

Planar Graphs

Diptarka Chakraborty(B) and Raghunath Tewari

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur, Kanpur, India

{diptarka,rtewari}@cse.iitk.ac.in

Abstract. Given a graph G and two vertices s and t in it, graph reach-
ability is the problem of checking whether there exists a path from s
to t in G. We show that reachability in directed layered planar graphs
can be decided in polynomial time and O(nε) space, for any ε > 0. The
previous best known space bound for this problem with polynomial time
was approximately O(

√
n) space [1].

Deciding graph reachability in SC is an important open question in
complexity theory and in this paper we make progress towards resolving
this question.

1 Introduction

Given a graph and two vertices s and t in it, the problem of determining whether
there is a path from s to t in the graph is known as the graph reachability prob-
lem. Graph reachability problem is an important question in complexity the-
ory. Particularly in the domain of space bounded computations, the reachability
problem in various classes of graphs characterize the complexity of different com-
plexity classes. The reachability problem in directed and undirected graphs, is
complete for the classes non-deterministic log-space (NL) and deterministic log-
space (L) respectively [2,3]. The latter follows due to a famous result by Reingold
who showed that undirected reachability is in L [3]. Various other restrictions of
reachability have been studied in the context of understanding the complexity of
other space bounded classes (see [4–6]). Wigderson gave a fairly comprehensive
survey that discusses the complexity of reachability in various computational
models [7].

The time complexity of directed reachability is fairly well understood. Stan-
dard graph traversal algorithms such as DFS and BFS solve this problem in linear
time. We also have a O(log2 n) space algorithm due to Savitch [8], however it
requires O(nlog n) time. The question, whether there exists a single algorithm
that decides reachability in polynomial time and polylogarithmic space is unre-
solved. In his survey, Wigderson asked whether it is possible to design a poly-
nomial time algorithm that uses only O(nε) space, for some constant ε < 1 [7].
This question is also still open. In 1992, Barnes, Buss, Ruzzo and Schieber made
c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 614–624, 2015.
DOI: 10.1007/978-3-662-48971-0 52

An O(nε) Space and Polynomial Time Algorithm 615

some progress on this problem and gave an algorithm for directed reachability
that requires polynomial time and O(n/2

√
log n) space [9].

Planar graphs are a natural topological restriction of general graphs consist-
ing of graphs that can be embedded on the surface of a plane such that no two
edges cross. Grid graphs are a subclass of planar graphs, where the vertices are
placed at the lattice points of a two dimensional grid and edges occur between
a vertex and its immediate adjacent horizontal or vertical neighbor.

Asano and Doerr provided a polynomial time algorithm to compute the short-
est path (hence can decide reachability) in grid graphs which uses O(n1/2+ε)
space, for any small constant ε > 0 [10]. Imai et al. extended this to give a
similar bound for reachability in planar graphs [1]. Their approach was to use
a space efficient method to design a separator for the planar graph and use
divide and conquer strategy. Note that although it is known that reachability in
grid graphs reduces to planar reachability in log space, however since this class
(polynomial time and O(n1/2+ε) space) is not closed under log space reductions,
planar reachability does not follow from grid graph reachability. Subsequently
the result of Imai et al. was extended to the class of high-genus and H-minor-
free graphs [11]. Recently Asano et al. gave a Õ(

√
n) space and polynomial time

algorithm for reachability in planar graphs, thus improving upon the previous
space bound [12]. More details on known results can be found in a recent survey
article [13].

In another line of work, Kannan et al. gave a O(nε) space and polynomial time
algorithm for solving reachability problem in unique path graphs [14]. Unique
path graphs are a generalization of strongly unambiguous graphs and reachability
problem in strongly unambiguous graphs is known to be in SC (polynomial
time and polylogarithmic space) [15,16]. Reachability in strongly unambiguous
graphs can also be decided by a O(log2 n/ log log n) space algorithm, however
this algorithm requires super polynomial time [17]. SC also contains the class
randomized log space or RL [18]. We refer the readers to a recent survey by
Allender [19] to further understand the results on the complexity of reachability
problem in UL and on certain special subclasses of directed graphs.

Our Contribution

We show that reachability in directed layered planar graphs can be decided in
polynomial time and O(nε) space for any constant ε > 0. A layered planar graph
is a planar graph where the vertex set is partitioned into layers (say L0 to Lm)
and every edge occurs between layers Li and Li+1 only. Our result significantly
improves upon the previous space bound due to [1,12] for layered planar graphs.

Theorem 1. For every ε > 0, there is a polynomial time and O(nε) space algo-
rithm that decides reachability in directed layered planar graphs.

Reachability in layered grid graphs (denoted as LGGR) is in UL which is
a subclass of NL [20]. Subsequently this result was extended to the class of
all planar graphs [21]. Allender et al. also gave some hardness results for the

616 D. Chakraborty and R. Tewari

reachability problem in certain subclasses of layered grid graphs. Specifically
they showed that, 1LGGR is hard for NC1 and 11LGGR is hard for TC0 [20].
Both these problems are however known to be contained in L though.

As a consequence of our result, it is easy to achieve the same time-space
upper-bound for the reachability problem in upward planar graphs. We say that
a graph is upward planar if it admits an upward planar drawing, i.e., a planar
drawing where the curve representing each edge should have the property that
every horizontal line intersects it in at most one point. In the domain of graph
drawing, it is an important topic to study the upward planar drawing of planar
DAGs [22,23]. It is NP-complete to determine whether a planar DAG with mul-
tiple sources and sinks has an upward planar drawing [24]. However, given an
upward planar drawing of a planar DAG, the reachability problem can easily be
reduced to reachability in a layered planar graph using only logarithmic amount
of space and thus admits the same time-space upper bound as of layered planar
graphs.

Firstly we argue that its enough to consider layered grid graphs (a subclass
of general grid graphs). We divide a given layered grid graph into a courser grid
structure along k horizontal and k vertical lines (see Fig. 1). We then design a
modified DFS strategy that makes queries to the smaller graphs defined by these
gridlines (we assume a solution in the smaller graphs by recursion) and visits
every reachable vertex from a given start vertex. The modified DFS stores the
highest visited vertex in each vertical line and the left most visited vertex in
each horizontal line. We use this information to avoid visiting a vertex multiple
number of times in our algorithm. We choose the number of horizontal and
vertical lines to divide the graph appropriately to ensure that the algorithm
runs in the required time and space bound.

The rest of the paper is organized as follows. In Sect. 2, we give some basic
definitions and notations that we use in this paper. We also state certain earlier
results that we use in this paper. In Sect. 3, we give a proof of Theorem 1.

2 Preliminaries

We will use the standard notations of graphs without defining them explicitly and
follow the standard model of computation to discuss the complexity measures
of the stated algorithms. In particular, we consider the computational model in
which an input appears on a read-only tape and the output is produced on a
write-only tape and we only consider an internal read-write tape in the measure
of space complexity. Throughout this paper, by log we mean logarithm to the
base 2. We denote the set {1, 2, · · · , n} by [n]. Given a graph G, let V (G) and
E(G) denote the set of vertices and the set of edges of G respectively.

Definition 1 (Layered Planar Graph). A planar graph G = (V,E) is
referred as layered planar if it is possible to represent V as a union of disjoint
partitions, V = V1 ∪ V2 ∪ · · · ∪ Vk, for some k > 0, and for any two consecutive
partitions Vi and Vi+1, there is a planar embedding of edges from the vertices of

An O(nε) Space and Polynomial Time Algorithm 617

Vi to that of Vi+1 and there is no edge between two vertices of non-consecutive
partitions.

Now let us define the notion of layered grid graph and also note that grid graphs
are by definition planar.

Definition 2 (Layered Grid Graph). A directed graph G is said to be a n×n
grid graph if it can be drawn on a square grid of size n × n and two vertices are
neighbors if their L1-distance is one. In a grid graph a edge can have four possible
directions, i.e., north, south, east and west, but if we are allowed to have only
two directions north and east, then we call it a layered grid graph.

We also use the following result of Allender et al. to simplify our proof [20].

Proposition 1 ([20]). Reachability problem in directed layered planar graphs
is log-space reducible to the reachability problem in layered grid graphs.

2.1 Class nSC and its properties

TISP(t(n), s(n)) denotes the class of languages decided by a deterministic
Turing machine that runs in O(t(n)) time and O(s(n)) space. Then, SC =
TISP(nO(1), (log n)O(1)). Expanding the class SC, we define the complexity class
nSC (short for near-SC) in the following definition.

Definition 3 (Complexity Class near-SC or nSC). For a fixed ε > 0, we
define nSCε := TISP(nO(1), nε). The complexity class nSC is defined as

nSC :=
⋂

ε>0

nSCε.

We next show that nSC is closed under log-space reductions. This is an impor-
tant property of the class nSC and will be used to prove Theorem 1. Although
the proof is quite standard, but for the sake of completeness we provide it here.

Theorem 2. If A ≤l B and B ∈ nSC, then A ∈ nSC.

Proof. Let us consider that a log-space computable function f be the reduction
from A to B. It is clear that for any x ∈ A such that |x| = n, |f(x)| ≤ nc,
for some constant c > 0. We can think that after applying the reduction, f(x)
appears in a separate write-once output tape and then we can solve f(x), which
is an instance of the language B and now the input length is at most nc. Now
take any ε > 0 and consider ε′ = ε

c > 0. B ∈ nSC implies that B ∈ nSCε′ and as
a consequence, A ∈ nSCε. This completes the proof.

3 Reachability in Layered Planar Graphs

In this section we prove Theorem 1. We show that the reachability problem in
layered grid graphs (denoted as LGGR) is in nSC (Theorem 3). Then by applying
Proposition 1 and Theorem 2 we have the proof of Theorem 1.

Theorem 3. LGGR ∈ nSC.

To establish Theorem 3 we define an auxiliary graph in Sect. 3.1 and give the
required algorithm in Sect. 3.2.

618 D. Chakraborty and R. Tewari

Lh(2)

Lh(3)

Lv(2) Lv(3)

G1 G2 G3

G4 G5 G6

G7 G8 G9

s

t

Lh(2)

Lh(3)

Lv(2) Lv(3)

Lv(2, 2)

Lh(2, 2)

s

t

D1

)b()a(

Fig. 1. (a) An example of layered grid graph G and its decomposition into blocks (b)
Corresponding auxiliary graph H

3.1 The Auxiliary Graph H

Let G be a n × n layered grid graph. We denote the vertices in G as (i, j),
where 0 ≤ i, j ≤ n and without loss of generality, we can assume that s = (0, 0)
and t = (n, n). Let k be a parameter that determines the number of pieces in
which we divide G. We will fix the value of k later to optimize the time and
space bounds. Assume without loss of generality that k divides n. Given G we
construct an auxiliary graph H as described below.

Divide G into k2 many blocks (will be defined shortly) of dimension n/k×n/k.
More formally, the vertex set of H is

V (H) := {(i, j) | i or j is a non-negative multiple of n/k.}

Note that V (H) ⊆ V (G). We consider k2 many blocks G1, G2, · · · , Gk2 , where a
vertex (i, j) ∈ V (Gl) if and only if i′ n

k ≤ i ≤ (i′ + 1)n
k and j′ n

k ≤ j ≤ (j′ + 1)n
k ,

for some integer i′ ≥ 0 and j′ ≥ 0 and the vertices for which any of the four
inequalities becomes equality, will be referred as boundary vertices. Moreover,
we have l = i′ · k + j′ + 1. E(Gl) is the set of edges in G induced by the vertex
set V (Gl).

For every i ∈ [k + 1], let Lh(i) and Lv(i) denote the set of vertices, Lh(i) :=
{(i′, j′)|j′ = (i − 1)n

k } and Lv(i) := {(i′, j′)|i′ = (i − 1)n
k }. When it is clear

from the context, we will also use Lh(i) and Lv(i) to refer to the corresponding
gridline in H. Observe that H has k + 1 vertical gridlines and k + 1 horizontal
gridlines.

For every pair of vertices u, v ∈ V (Gl)∩V (H) for some l, add the edge (u, v)
to E(H) if and only if there is a path from u to v in Gl, unless u, v ∈ Lv(i) or
u, v ∈ Lh(i) for some i. Also for every pair of vertices u, v ∈ V (Gl) for some
l, such that u = (i1, j1) and v = (i2, j2), where i1 = i2 = i′ n

k for some i′ and

An O(nε) Space and Polynomial Time Algorithm 619

j1 = j′ n
k , j2 = (j′ + 1)n

k for some j′, or j1 = j2 = j′ n
k for some j′ and i1 = i′ n

k ,
i2 = (i′ + 1)n

k for some i′, we add an edge between u and v in the set E(H) if
and only if there is a path from u to v in Gl and we call such vertices as corner
vertices.

Before proceeding further, let us introduce a few more notations that will be
used later. For j ∈ [k], let Lh(i, j) denote the set of vertices in Lh(i) in between
Lv(j) and Lv(j+1). Similarly we also define Lv(i, j) (see Fig. 1). For two vertices
x, y ∈ Lv(i), we say x ≺ y if x is below y in Lv(i). For two vertices x, y ∈ Lh(i),
we say x ≺ y if x is right of y in Lh(i). Note that we consider these two type of
orderings to ensure that for any x, y ∈ V (H) reachable from s in H, if x ≺ y,
then x will be traversed by our algorithm before y.

Lemma 1. There is a path from s to t in G if and only if there is path from s
to t in the auxiliary graph H.

Proof. As every edge (a, b) in H corresponds to a path from a to b in G, so
if-part is trivial to see. Now for the only-if-part, consider a path P from s to t in
G. P can be decomposed as P1P2 · · · Pr, such that Pi is a path from xi to xi+1,
where xi is the first vertex on P that belongs to V (Gl) and xi+1 be the last
vertex on P that also belongs to V (Gl), for some l and in a layered grid graph,
for such xi and xi+1, we have only following two possibilities:

1. xi and xi+1 belong to different horizontal or vertical gridlines; or
2. xi and xi+1 are two corner vertices.

Now by the construction H, for every i, there must be an edge (xi, xi+1) in
H for both the above cases and hence there is a path from s to t in H as well.
�

Now we consider the case when two vertices x, y ∈ V (H) belong to the same
vertical or horizontal gridlines.

Claim 1. Let x and y be two vertices contained in either Lv(i) or Lh(i) for
some i. Then deciding reachability between x and y in G can be done in log
space.

Proof. Let us consider that x, y ∈ Lv(i), for some i. As the graph G under
consideration is a layered grid graph, if there is a path between x and y, then
it must pass through all the vertices in Lv(i) that lies in between x and y.
Hence just by exploring the path starting from x through Lv(i), we can check
the reachability and it is easy to see that this can be done in log space, because
the only thing we need to remember is the current vertex in the path. Same
argument will also work when x, y ∈ Lh(i), for some i and this completes the
proof.
�

Now we argue on the upper bound of the length of any path in the auxiliary
graph H. The idea is to partition the set V (H) into 2k + 1 partitions in such
a way that any two consecutive vertices on a path in H lie on two different
partitions.

620 D. Chakraborty and R. Tewari

Lemma 2. Any path between s and t in H is of length 2k.

Proof. Let us first define the sets D0,D1, · · · ,D2k (e.g., shaded region in
Fig. 1(b) denotes D1), where

Dl := {(i, j)|(i′ − 1)
n

k
≤ i < i′

n

k
, (j′ − 1)

n

k
≤ j < j′ n

k
and i′ + j′ = l + 1}.

Now consider D′
l := Dl ∩ V (H) for 0 ≤ l ≤ 2k. Clearly, D′

0,D
′
1, · · · ,D′

2k induce
a partition on V (H). Now let us take any path s = x1x2 · · · xr = t, from s to t in
H, denoted as P . Observe that by the construction of H, for any two consecutive
vertices xi and xi+1 for some i, if xi ∈ D′

l for some l, then xi+1 ∈ D′
l+1 and

s ∈ D′
0, t ∈ D′

2k. As a consequence, r = 2k + 1 and hence length of the path P
is 2k.

3.2 Description of the Algorithm

We next give a modified version of DFS that starting at a given vertex, visits the
set of vertices reachable from that vertex in the graph H. At every vertex, the
traversal visits the set of outgoing edges from that vertex in counter-clockwise
order.

In our algorithm we maintain two arrays of size k + 1 each, say Av and Ah,
one for vertical and the other for horizontal gridlines respectively. For every
i ∈ [k + 1], Av(i) is the topmost visited vertex in Lv(i) and analogously Ah(i)
is the leftmost visited vertex in Lh(i). This choice is guided by the choice of
traversal of our algorithm. More precisely, we cycle through the outgoing edges
of a vertex in counter-clockwise order.

We perform a standard DFS-like procedure, using the tape space to simulate
a stack, say S. S keeps track of the path taken to the current vertex from the
starting vertex. By Lemma 2, the maximum length of a path in H is at most 2k.
Whenever we visit a vertex in a vertical gridline (say Lv(i)), we check whether
the vertex is lower than the i-th entry of Av. If so, we return to the parent vertex
and continue with its next child. Otherwise, we update the i-th entry of Av to
be the current vertex and proceed forward. Similarly when visit a horizontal
gridline (say Lh(i)), we check whether the current vertex is to the right of the
i-th entry of Ah. If so, we return to the parent vertex and continue with its next
child. Otherwise, we update the i-th entry of Ah to be the current vertex and
proceed. The reason for doing this is to avoid revisiting the subtree rooted at
the node of an already visited vertex.

Lemma 3. Let Gl be some block and let x and y be two vertices on the boundary
of Gl such that there is a path from x to y in G. Let x′ and y′ be two other
boundary vertices in Gl such that (i) there is a path from x′ to y′ in G and (ii)
x′ lies on one segment of the boundary of Gl between vertices x and y and y′

lies on the other segment of the boundary. Then there is a path in G from x to
y′ and from x′ to y. Hence, if (x, y) and (x′, y′) are present in E(H) then so are
(x, y′) and (x′, y).

An O(nε) Space and Polynomial Time Algorithm 621

Proof. Since G is a layered grid graph hence the paths x to y and x′ to y′ must
lie inside Gl. Also because of planarity, the paths must intersect at some vertex
in Gl. Now using this point of intersection, we can easily show the existence of
paths from x to y′ and from x′ to y.
�

Lemma 4 will prove the correctness of our algorithm.

Lemma 4. Let u and v be two vertices in H. Then starting at u our algorithm
visits v if and only if v is reachable from u in H.

Proof. It is easy to see that every vertex visited by the algorithm is reachable
from u since the algorithm proceeds along the edges of H.

By induction on the shortest path length to a vertex, we will show that if
a vertex is reachable from u then the algorithm visits that vertex. Let Bd(u)
be the set of vertices reachable from u that are at a distance d from u. Assume
that the algorithm visits every vertex in Bd−1(u). Let x be a vertex in Bd(u).
Without loss of generality assume that x is in Lv(i, j) for some i and j. A similar
argument can be given if x belongs to a horizontal gridline. Further, let x lie
on the right boundary of a block Gl. Let Wx = {w ∈ Bd−1(u)|(w, x) ∈ E(H)}.
Note that by the definition of H, all vertices in Wx lie on the bottom boundary
or on the left boundary of Gl.

Suppose the algorithm does not visit x. Since x is reachable from u via a
path of length d, therefore Wx is non empty. Let w be the first vertex added to
Wx by the algorithm. Then w is either in Lh(j), or in Lv(i − 1). Without loss
of generality assume w is in Lh(j). Let z be the value in Av(i) at this stage of
the algorithm (that is when w is the current vertex). Since x is not visited hence
x ≺ z. Also this implies that z was visited by the algorithm at an earlier stage
of the algorithm. Let w′ be the ancestor of z in the DFS tree such that w′ is
in Lh(j). There must exist such a vertex because z is above the j-th horizontal
gridline, that is Lh(j).

Suppose if w′ lies to the left of w then by the description of the algorithm, w
is visited before w′. Hence x is visited before z. On the other hand, suppose if w′

lies to the right of w. Clearly w′ cannot lie to the right of vertical gridline Lv(i)
since z is reachable from w′ and z is in Lv(i). Let w′′ be the vertex in Lh(j + 1)
such that w′′ lies in the tree path between w′ and z (See Fig. 2). Observe that
all four vertices lie on the boundary of Gl. Now by applying Lemma 3 to the
four vertices w, x, w′ and w′′ we conclude that there exists a path from w′ to x
as well. Since x ≺ z, x must have been visited before z from the vertex w′. In
both cases, we see that z cannot be Av(i) when w is the current vertex. Since z
was an arbitrary vertex such that x ≺ z, the lemma follows.
�

We next show Lemma 5 which will help us to achieve a polynomial bound
on the running time of the algorithm.

Lemma 5. Every vertex in the graph H is added to the set S at most once in
the algorithm.

622 D. Chakraborty and R. Tewari

Lh(j)

Lh(j + 1)

Lv(i − 1) Lv(i)

x

z

w w

w

Gl

Fig. 2. Crossing between two paths

Proof. Observe that a vertex u in Lv(i) is added to S only if Av(i) ≺ u, and once
u is added, Av(i) is set to u. Also during subsequent stages of the algorithm, if
Av(i) is set to v, then u ≺ v. Hence u ≺ Av(i). Therefore, u cannot be added to
S again.

We give a similar argument if u is in Lh(i). Suppose if u is in Lv(i) for some
i and Lh(j) for some j, then we add u only once to S. However we update both
Av(i) and Ah(j).
�

Our algorithm does not explicitly compute and store the graph H. Whenever
it is queried for an edge (x, y) in H, it recursively runs a reachability query in
the corresponding sub grid graph of G such that x is in the bottom left corner
and y is in the top right corner of that sub grid graph and produces an answer.
The base case is when a query is made to a grid graph of size k ×k. For the base
case, we run a standard DFS procedure on the k × k size graph.

In the algorithm, until S is non-empty, in every iteration either an element is
added or an element is removed from S. Hence by Lemma 5, the loop that check
whether S is non-empty, iterates at most 4nk times. Inside that loop, there is
another loop which cycles through all the neighbors of a vertex and hence iterates
for at most 2n/k times where each iteration makes a constant number of calls
to check the presence of an edge in an n/k × n/k sized grid. Let T (n) and S(n)
be the time and space required to decide reachability in a layered grid graph of
size n × n respectively. Then,

T (n) =

{
8n2(T (n/k) + O(1)) if n > k

O(k2) otherwise.

Hence, T (n) = O
(
n3 log n

log k

)
.

Since we do not store any query made to the smaller grids, therefore the
space required to check the presence of an edge in H can be reused. Av and Ah

are arrays of size k + 1 each. By Lemma 2, the number of elements in S at any
stage of the algorithm is bounded by 2k. Therefore,

An O(nε) Space and Polynomial Time Algorithm 623

S(n) =

{
S(n/k) + O(k log n) if n > k

O(k2) otherwise.

Hence, S(n) = O
(

k
log k log2 n + k2

)
.

Now given any constant ε > 0, if we set k = nε/2, then we get T (n) = O(n6/ε)
and S(n) = O(nε). This proves Theorem 3.

Acknowledgement. We thank N. V. Vinodchandran for his helpful suggestions and
comments. The first author would like to acknowledge the support of Research-I Foun-
dation and ACM-India/IARCS Travel Grants.

References

1. Imai, T., Nakagawa, K., Pavan, A., Vinodchandran, N., Watanabe, O.: An
O(n1/2+ε)-space and polynomial-time algorithm for directed planar reachability.
In: 2013 IEEE Conference on Computational Complexity (CCC), pp. 277–286
(2013)

2. Lewis, H.R., Papadimitriou, C.H.: Symmetric space-bounded computation. Theor.
Comput. Sci. 19, 161–187 (1982)

3. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 1–24 (2008)
4. Reingold, O., Trevisan, L., Vadhan, S.: Pseudorandom walks on regular digraphs

and the RL vs. L problem. In: Proceedings of the Thirty-Eighth Annual ACM
Symposium on Theory of Computing, STOC 2006, pp. 457–466. ACM, New York
(2006)

5. Chung, K.M., Reingold, O., Vadhan, S.: S-t connectivity on digraphs with a known
stationary distribution. ACM Trans. Algorithms 7(3), 30:1–30:21 (2011)

6. Lange, K.J.: An unambiguous class possessing a complete set. In: Proceedings of
the 14th Annual Symposium on Theoretical Aspects of Computer Science, STACS
1997, pp. 339–350 (1997)

7. Wigderson, A.: The complexity of graph connectivity. In: Havel, Ivan M., Koubek,
Václav (eds.) MFCS 1992. LNCS, vol. 629, pp. 112–132. Springer, Heidelberg
(1992)

8. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. Syst. Sci. 4, 177–192 (1970)

9. Barnes, G., Buss, J.F., Ruzzo, W.L., Schieber, B.: A sublinear space, polynomial
time algorithm for directed s-t connectivity. In: Proceedings of the Seventh Annual
Conference on Structure in Complexity Theory, pp. 27–33 (1992)

10. Asano, T., Doerr, B.: Memory-constrained algorithms for shortest path problem.
In: CCCG (2011)

11. Chakraborty, D., Pavan, A., Tewari, R., Vinodchandran, N.V., Yang, L.: New
time-space upperbounds for directed reachability in high-genus and H-minor-free
graphs. In: 34th International Conference on Foundation of Software Technology
and Theoretical Computer Science, FSTTCS 2014, December 15–17, 2014, New
Delhi, pp. 585–595 (2014)

624 D. Chakraborty and R. Tewari

12. Asano, T., Kirkpatrick, D.G., Nakagawa, K., Watanabe, O.: Õ(
√
n)-space and

polynomial-time algorithm for planar directed graph reachability. In: Proceedings
of the 39th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2014, Part II, Budapest, Hungary, August 25–29, 2014, pp. 45–56
(2014)

13. Vinodchandran, N.V.: Space complexity of the directed reachability problem over
surface-embedded graphs. Technical report TR14-008, I (2014)

14. Kannan, S., Khanna, S., Roy, S.: STCON in directed unique-path graphs. In:
Hariharan, R., Mukund, M., Vinay, V. (eds.) IARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science. Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 2, pp. 256–267. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2008)

15. Buntrock, G., Jenner, B., Lange, K.J., Rossmanith, P.: Unambiguity and fewness
for logarithmic space. In: Budach, L. (ed.) Fundamentals of Computation Theory.
Lecture Notes in Computer Science, vol. 529, pp. 168–179. Springer, Heidelberg
(1991)

16. Cook, S.: Deterministic CFL’s are accepted simultaneously in polynomial time and
log squared space. In: Proceedings of the Eleventh Annual ACM Symposium on
Theory of Computing, pp. 338–345. ACM (1979)

17. Allender, E., Lange, K.: RUSPACE(log n) ⊆ DSPACE (log2 n / log log n). Theor.
Comput. Syst. 31(5), 539–550 (1998)

18. Nisan, N.: RL ⊆ SC. In: Proceedings of the Twenty Fourth Annual ACM Sympo-
sium on Theory of Computing, pp. 619–623 (1995)

19. Allender, E.: Reachability problems: an update. In: Cooper, S.B., Löwe, B., Sorbi,
A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 25–27. Springer, Heidelberg (2007)

20. Allender, E., Barrington, D.A.M., Chakraborty, T., Datta, S., Roy, S.: Planar and
grid graph reachability problems. Theor. Comput. Syst. 45(4), 675–723 (2009)

21. Bourke, C., Tewari, R., Vinodchandran, N.V.: Directed planar reachability is in
unambiguous log-space. ACM Trans. Comput. Theor. 1(1), 1–17 (2009)

22. Di Battista, G., Tamassia, R.: Upward drawings of acyclic digraphs. In: Göttler,
H., Schneider, H.-J. (eds.) WG 1987. LNCS, vol. 314. Springer, Heidelberg (1988)

23. Battista, G.D., Liu, W., Rival, I.: Bipartite graphs, upward drawings, and planarity.
Inf. Process. Lett. 36(6), 317–322 (1990)

24. Garg, A., Tamassia, R.: Upward planarity testing. Order 12(2), 109–133 (1995).
http://dx.doi.org/10.1007/BF01108622

http://dx.doi.org/10.1007/BF01108622

	An O(n) Space and Polynomial Time Algorithm for Reachability in Directed Layered Planar Graphs
	1 Introduction
	2 Preliminaries
	2.1 Class nSC and its properties

	3 Reachability in Layered Planar Graphs
	3.1 The Auxiliary Graph H
	3.2 Description of the Algorithm

	References

