
On the Succinct Representation of Unlabeled
Permutations

Hicham El-Zein(B), J. Ian Munro, and Siwei Yang

Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

{helzein,imunro,siwei.yang}@uwaterloo.ca

Abstract. We investigate the problem of succinctly representing an
arbitrary unlabeled permutation π, so that πk(i) can be computed
quickly for any i and any integer power k. We consider the problem
in several scenarios:
– Labeling schemes where we assign labels to elements and the query is

to be answered by just examining the labels of the queried elements:
we show that a label space of

∑n
i=1�n

i
� · i is necessary and sufficient.

In other words, 2 lg n bits of space are necessary and sufficient for
representing each of the labels.

– Succinct data structures for the problem where we assign labels to the
n elements from the label set {1, . . . , cn} where c ≥ 1: we show that
Θ(

√
n) bits are necessary and sufficient to represent the permutation.

Moreover, we support queries in such a structure in O(1) time in the
standard word-RAM model.

– Succinct data structures for the problem where we assign labels to the
n elements from the label set {1, . . . , cn1+ε} where c is a constant and
0 < ε < 1: we show that Θ(n(1−ε)/2) bits are necessary and sufficient
to represent the permutation. We can also support queries in such a
structure in O(1) time in the standard word-RAM model.

1 Introduction and Motivation

A permutation π is a bijection from the set {1, . . . , n} to itself. Given a permu-
tation π on an n element set, our problem is to preprocess the set, assigning a
unique label to each element, to obtain a data structure with minimum space
to support the following query: given a label i, determine πk(i) quickly. We
denote such queries by πk(). Moreover, we assume that k is bounded by some
polynomial function in n.

We are interested in succinct, or highly-space efficient data structures. Our
aim is to develop data structures whose size is within a constant factor of the
information theoretic lower bound. Designing succinct data structures is an area
of interest in theory and practice motivated by the need of storing large amount

This work was sponsored by the NSERC of Canada and the Canada Research Chairs
Program.

c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 49–59, 2015.
DOI: 10.1007/978-3-662-48971-0 5

50 H. El-Zein et al.

of data using the smallest space possible. For succinct representations of dictio-
naries, trees, arbitrary graphs, partially ordered sets and equivalence relations
see [1,3,5,6,11,12,14].

Permutations are fundamental in computer science and are studied exten-
sively. Several papers have looked into problems related to permutation gener-
ation [15], permuting in place [7] etc. Others have dealt with the problem of
space-efficient representation of restricted classes of permutations, like the per-
mutations representing the lexicographic order of the suffixes of a string [8,10],
or the so-called approximately min-wise independent permutations [2], which
are used for document similarity estimation. Since there are exactly n! permu-
tations, the number of bits required to represent a permutation of length n is
�lg(n!)� ∼ n lg n − n lg e + O(lg n)1 bits. Munro et al. [13] studied the space
efficient representation of general permutations where general powers can be
computed quickly. They gave a representation taking the optimal �lg(n!)�+o(n)
bits, and a representation taking ((1+ε)n lg n) bits where πk() can be computed
in constant time.

Our paper is the first to study the space-efficient representation of permuta-
tions where labels can be freely reassigned. This problem is similar to the problem
of representing unlabeled equivalence relations [5,11]. However, our problem dif-
fers from representing equivalence relations when the label space exceeds n. In
our case we must know the size of each cycle, while for equivalence relations it
is not necessary to know the exact size of the equivalence classes. Thus, as we
increase the label space we will not witness a drastic decrease in auxiliary stor-
age size. We study this problem in several scenarios; thus, showing the tradeoffs
between label space and auxiliary storage size for the stated problem. In Sect. 3,
we cover the scenario where queries are to be answered by just examining the
labels of the queried elements. We show that a label space of

∑n
i=1�n

i � · i is
necessary and sufficient. Then, we show that with a label space of n2 queries
can be answered in constant time. In Sect. 4, we cover the scenario where labels
can be assigned from the set {1, . . . , n}. We show that Θ(

√
n) bits are necessary

and sufficient to represent the permutation. We use the same data structure as
the main structure in [11]. However, we optimize it to achieve constant query
time while using only O(

√
n) bits; thus, solving an open problem from [11]. Note

that the details of this improvement are also found in the first author’s the-
sis [4]. Section 5 contains the main result of this paper. We cover the scenario
where labels can be assigned from the set {1, . . . , cn1+ε} where c is a constant
and 0 < ε < 1. We show that Θ(n(1−ε)/2) bits are necessary and sufficient to
represent the permutation, and we support queries in such a structure in O(1)
time in the standard word-RAM model.

Finally as an application to our new data structures, we give a representation
of a labeled permutation that takes s(n) + O(

√
n) bits and can answer πk() in

O(tf + ti) time, where s(n) denotes the number of bits required for a represen-
tation R to store a labeled permutation, and tf and ti are the time needed for
R to support π() and π−1(). This result improves Theorem 3.3 in [13].

1 We use lg n to denote log2 n.

On the Succinct Representation of Unlabeled Permutations 51

2 Definitions and Preliminaries

A permutation π is a bijection from the set {1, . . . , n} to itself, and we denote
its inverse bijection as π−1. We also extend the definition to arbitrary integer
power of π as follows:

πk(i) =

⎧
⎪⎨

⎪⎩

πk+1(π−1(i)) k < 0
i k = 0
πk−1(π(i)) k > 0

A permutation can be viewed as a set of disjoint cycles. Since we are working
with unlabeled permutations, we have the freedom to assign the labels in any
way. In all our labeling schemes, we give elements within the same cycle and
cycles of the same length consecutive labels. For example the elements of the
first cycle of length l will get labels from the interval [s, s + l − 1], such that
π(i) = i + 1 for i ∈ [s, s + l − 2] and π(s + l − 1) = s. The elements of the
second cycle of length l will get labels in the range [s + l, s + 2l − 1], and so
on. Thus given a label i and an integer k, to answer πk(i) it is sufficient to
compute l the length of the cycle that i belongs to, and s the smallest index of
an element that belongs to a cycle of length l. Now, it is not hard to verify that
πk(i) = s + rl + ((p + k)%l)2 where r = �(i − s)/l� and p = i − (s + rl).

Notice that the multiset formed by the cycles lengths of a given permutation
π over an n-element set will form an integer partition of the integer n. An integer
partition p of n is a multiset of positive integers that sum to n. We call these
positive integers the elements of p, and we denote by |p| this number of elements.
We say that an integer partition p of n dominates an integer partition q of m
where n > m if q is a subset of p. For example, the integer partition {5, 5, 10}
of 20 dominates the integer partition {5, 5} of 10, but not the integer partition
{4, 6} of 10. Given an integer partition p of n, we define a part q of size k to be
a collection of elements in p that sum to k. We say that an integer s fills q if
q contains �k/s� integers s and one integer k mod s. Furthermore, we say that
two parts intersect if they share at least one common element; otherwise, they
are non-intersecting. For example the integer partition {1, 4, 5} of 10 contains
the following parts: part {1} of size 1, part {4} of size 4, part {5} of size 5, part
{1, 4} of size 5, part {1, 5} of size 6, part {4, 5} of size 9 and part {1, 4, 5} of
size 10. We say that 5 fills the parts {5} and {4, 5} but not the part {1, 4, 5}.
The parts {4, 5} and {4} are intersecting, while the parts {4, 5} and {1} are
non-intersecting.

Finally, we give two observations that we will use repeatedly.

Observation 1. M not necessarily distinct integers m0, . . . ,mM−1 ordered such
that mi ≤ mi+1 in the range [0, N −1],can be represented in O(N +M) bits such
that the ith integer mi can be accessed in O(1) time.

2 We use % to denote the modulo operation.

52 H. El-Zein et al.

Observation 2. M positive integers m0, . . . ,mM−1 that sum to N can be repre-
sented in O(N +M) bits such that the ith integer mi can be accessed in O(1) time,
the partial sum

∑i
j=1 mj can be computed in O(1) time, and given an integer x we

can compute the biggest index i such that
∑i

j=1 mj ≤ x in O(1) time.

The proof of both observations is found in the appendix. Note that if we are
allowed to reorder the numbers in Observation 2, we can reduce the size of the
representation to O(

√
N) bits without compromising the constant runtime of

the stated operations.

3 Direct Labeling Scheme

In this section we cover the problem where queries are answered by computing
directly from the labels without using any auxiliary storage except for the value
of n. We show that a label space of

∑n
i=1�n

i � · i is necessary and sufficient to
represent the permutation. Moreover, we show that with a label space of n2 πk()
can be computed in constant time.

Theorem 3. Given a permutation π, a label space of
∑n

i=1�n
i � · i is necessary

and sufficient to represent the permutation.

For the proof of Theorem3 check the appendix. To answer queries in constant
time we extend the label space to n2. Then we assign labels from the set of
integers in the range [0, n − 1] for all the elements in cycles of length 1, and
labels from the set of integers in the range [n(i − 1) + (r − 1)i, n(i − 1) + ri − 1]
for the elements in the rth cycle of length i, where 1 ≤ r ≤ �n/i�. Given a label
x, to answer a query πk(x) find l = �x/n� + 1. Next, compute s = (l − 1)n,
r = �(x − s)/l� and p = x − (s + rl), then return s + rl + ((p + k)%l).

Theorem 4. Given a permutation π, we can assign to each of the elements a
label in the range of {1, . . . , n2} such that πk() can be computed in constant time
by looking only at the labels.

4 Succinct Data Structures with Label Space n

In this section we consider the scenario where the n elements are to be assigned
labels in the range 1 to n. The queries can be answered by looking at an auxiliary
data structure. Moreover, we have the freedom to assign the labels in any way.

Following [11], the information theoretic lower bound for the representation of
a permutation is the number of partitions of n, which by the Hardy-Ramanujan
formula [9] is asymptotically equivalent to 1

4n
√
3
eπ

√
2n
3 . Thus the information

theoretic lower bound for representing a permutation is Θ(
√

n) bits of space.
We will use the same data structure as the main structure in [11], however

we will optimize it to achieve constant query time while using only O(
√

n) bits.
Given π let k be the number of distinct cycle sizes in π. For i = 1 to k, let si

On the Succinct Representation of Unlabeled Permutations 53

be the distinct sizes of the cycles, and let ni be the number of cycles of size si.
Order the cycles in non-decreasing order by γi = sini so that for i = 1 to k − 1,
sini ≤ si+1ni+1. Notice that since

∑k

i=1
sini = n and sini ≥ i for i = 1, . . . , k, (1)

k is at most
√

2n. The primary data structure is made up of two sequences:

– the sequence δ that consists of δ1 = s1n1 and δi = sini − si−1ni−1, for
i = 2, . . . , k and

– the sequence n that consists of ni, for i = 1, . . . , k.

Elements of the two sequences are represented in binary. Since the length of
each element may vary, we store two other sequences that shadow the primary
sequences. The shadow sequences have a 1 at the starting point of each element
in the shadowed sequence and a 0 elsewhere. Also store a select structure on
the two shadow sequences in order to identify the 1s quickly. It is proved in [11]
these sequences can be stored in O(

√
n) bits.

The sequence δ gives an implicit ordering of the elements. Assign the first
s1n1 labels to the elements of the cycles with length s1, the elements of the next
n2 cycles are assigned the next s2n2 labels and so on.

Denote by the predecessor of an element x to be max{j | ∑j
i=1 sini < x}.

Store an array A, where A[i] = max{j | ∑j
t=1 stnt ≤ i(i + 1)/2}, for i = 1 to√

2n. Next, we prove a modified version of Lemma 2 in [11].

Lemma 1. The predecessor p(x) of an integer x in the sequence
∑i

t=1 stnt,
i = 1 to k is in the range [A[�√2x� − 1], A[�√2x� − 1] + 5].

Proof. Let i = �√2x� − 1. Without loss of generality assume that i ≥ 6, since
for x < 25 we can store p(x) explicitly in O(lg n) bits. Notice that

i(i + 1)/2 ≤ (
√

2x − 1)
√

2x/2 ≤ x

and

x ≤ √
2x(

√
2x + 1)/2 ≤ (i + 2)(i + 3)/2

For j = A[i] + 1,
∑j−1

t=1 stnt ≤ i(i + 1)/2, so j − 1 ≤ i and j ≤ i + 1.
Since

∑j
t=1 stnt > i(i + 1)/2, sjnj ≥ i(i + 1)/(2j) ≥ i/2. Hence,

∑j+5
t=1 stnt ≥

(i + 2)(i + 3)/2 ≥ x. ��
The actual value of p(x) can be obtained by checking at most six numbers.

Moreover, A can be stored using O(
√

n) bits using the method described in
Observation 1.

In the standard word-RAM model, computing
√

x is not a constant time
operation. The standard Newton’s iterative method uses O(lg lg n) operations.
Following [11], we can use a look-up to precomputed tables and finds

√
x in

54 H. El-Zein et al.

constant time. We use two tables, one when the number of bits up to the most
significant bit of x is odd, denoted by O, and one when the number of bits is even,
denoted by E. For i = 1, . . . , �√2n�, we store in E[i] the value of �

√
i2�lg i��,

and in O[i] the value of �
√

i2�lg i�−1�. E and O can be stored in O(
√

n) bits by
storing them using the method described in Observation 1.

Lemma 2. For i ≤ n, �√i� can be computed in constant time using a precom-
puted table of O(

√
n) bits.

For each i, where at least one of δi’s bits locations in δ is a multiple of (ε lg n),
store the partial sum value

∑i
j=1 (sjnj) and the value of sini. Moreover, for every

possible sequence of δ values δ1, δ2, . . . , δi of length (ε lg n) and its corresponding
shadow sequence, store in a table T the values i and

∑i
j=1 (

∑j
k=1 δk). To compute

∑i
j=1 (sjnj) for an arbitrary index i, find the biggest index k ≤ i that has it’s

partial sum value stored. Notice that
∑i

j=1 (sjnj) =
∑k

j=1 (sjnj)+(i−k)sknk +
∑i

j=k+1 (
∑i

l=k+1 δl). Since these values can be obtained using table lookup on T ,
we can compute the partial sum at an arbitrary index in constant time. Moreover,
we can compute the value of sini for an arbitrary index i by computing the partial
sum at i−1 and subtracting it from the partial sum at i. Finally, we can compute
si by computing sini and dividing it by ni. By choosing ε < 1/4, the size of T
becomes o(

√
n) bits.

Answering Queries: Given a label x, to compute πk(x) we first find the
predecessor p(x) of x by querying A and checking at most 6 different values.
Next we compute the partial sum value s =

∑p(x)−1
i=1 (nisi). Then, compute

r = �(x− s)/sp(x)� and p = x− (s+ rsp(x)), then return s+ rsp(x) +((p+k)%l).

Theorem 5. Given an unlabeled permutation of n elements, Θ(
√

n) bits are
necessary and sufficient for storing the permutation if each element is to be
given a unique label in the range {1, 2, . . . , n}. Moreover, πk() can be computed
in O(1) time in such a structure.

5 Succinct Data Structures with Label Space cn1+ε

In this section we consider the scenario where the n elements are to be assigned
labels in the range 1 to cn1+ε where c is a constant and 0 < ε < 1. As in Sect. 4
we assign an implicit ordering of the elements, and queries can be answered by
looking at an auxiliary data structure.

Given π, we divide the cycles in π into four different groups and handle each
group appropriately. For i = 1 to k3, let si be the distinct sizes of the cycles of
size ≤ n(1+ε)/2, and let ni be the number of cycles of size si. Without loss of
generality, assume that:

– γi = sini ≤ (
√

cn(1+ε)/2)/2 = η, for 1 ≤ i ≤ k1.
– si ≤ n(1−ε)/2 and γi > η, for k1 < i ≤ k2.

On the Succinct Representation of Unlabeled Permutations 55

– n(1−ε)/2 < si ≤ n(1+ε)/2 and γi > η, for k2 < i ≤ k3.

Let lk3+1, . . . , lk4 be the size of the cycles that are bigger than n(1+ε)/2. Note
that the li (i = k3 + 1 to k4) values are not necessarily unique.

Case 1: Reserve the first (cn1+ε)/4 labels to handle all possible cycle sizes when
γi ≤ η. Assign labels to the elements in the cycles that satisfy this criteria in a
similar method to the labeling scheme described in Theorem 4. To be more spe-
cific, we assign labels from the set of integers in the range [0, η − 1] for all the
elements in cycles of length 1, and assign labels from the set of integers in the
range [η(j −1), ηj −1] for all the elements in cycles of length j, where 2 ≤ j ≤ η.
This covers all the elements of the cycles of sizes s1, . . . , sk1 , and increases the
label space by at most η2 = (cn1+ε)/4. Let B1 = (cn1+ε)/4.

Case 2 (k1 + 1 ≤ i ≤ k2): Order the si values in increasing order. Make sure
that all cycles of size si, fill a part whose length is ciη a multiple of η. Notice that
(k2 −k1) < n/η since γi > η, so the label space will increase by at most n. Since
∑k2

i=k1+1(ci) ≤ (2n)/η = O(n(1−ε)/2), we can store the ci values in O(n(1−ε)/2)
bits using the method described in Observation 2. Moreover, we store a bit vector
ψ of size n(1−ε)/2 to identify the si values, and we store a select structure on
ψ to identify the 1s quickly. Assign labels in the range [B1, B1 + c(k1+1)η − 1]
to the elements in cycles of size s(k1+1), then assign the next c(k1+2)η labels to
elements in cycles of size s(k1+2), and so on. Let B2 = B1 +

∑k2
j=k1+1 cjη.

Case 3 (k2 + 1 ≤ i ≤ k3): Make sure that all cycles of size si, fill a part whose
length is ciη a multiple of η. As in case 2, store the ci values in O(n(1−ε)/2) bits
using the method described in Observation 2. To identify the si values: order
them in increasing order of ri = si%(16n(1−ε)/2/c) and store the ri values in
O(n(1−ε)/2) bits using the method described in Observation 1, then store the
value of qi = si/(16n(1−ε)/2/c) ≤ (cnε/16) in the label of each element that is in
a cycle of size si. Now si = qi(16n(1−ε)/2/c)+ri. Let β1 be equal to

∑k3
i=k2+1 ciη.

Assign labels in the range

[

B2 + qi2�lg(β1)� +
i−1∑

j=k2+1

cjη,B2 + qi2�lg(β1)� +
i∑

j=k2+1

cjη − 1
]

to the elements in the cycles of size si. The label space will increase by at most
(cnε/16)2�lg(β1)� +β1 ≤ (cn1+ε)/4+O(n). Let B3 = B2 + (cnε/16)2�lg(β1)� +β1.

Case 4 (k3 + 1 ≤ i ≤ k4): For the cycles of length li, make sure that each cycle
fills a part whose length is ciη a multiple of η. As in the previous cases, store
the ci values in O(n(1−ε)/2) bits using the method described in Observation 2.
To identify the li values: order them by ri = (li%η)%(8n(1−ε)/2/

√
c) and store

the ri values in O(n(1−ε)/2) bits using the method described in Observation 1,
then store the value of qi = (li%η)/(8n(1−ε)/2/

√
c) ≤ (cnε/16) in the label of

each element that is in a cycle of size li. Now li = qi(8n(1−ε)/2/
√

c)+ri+(ci−1)η.
Let β2 be equal to

∑k4
i=k3+1 ciη. Assign labels in the range

56 H. El-Zein et al.

[

B3 + qi2�lg(β2)� +
i−1∑

j=k3+1

cjη,B3 + qi2�lg(β2)� +
i∑

j=k3+1

cjη − 1
]

to the elements in the cycle of size li.

The total size of the structures used is O(n(1−ε)/2) bits, and the total address
space increased to at most (3cn1+ε)/4 + O(n) ≤ cn1+ε as required.

Answering Queries: Given a label x, to compute πk(x) we distinguish between
four different cases:

Case 1 x < B1: Compute the value of l = �x/η�+1, s = (l−1)η, r = �(x−s)/l�,
and p = x − (s + rl). Then, return s + rl + ((p + k)%l).

Case 2 B1 ≤ x < B2: Compute the value m = (x − B1)/η. Then get the
biggest index i such that

∑i
j=k1+1 cj ≤ m. This operation can be done in O(1)

time using the structure from Observation 2. Next, find l the index of the ith one
in ψ; l is the size of the cycle that x belongs to. Compute s = B1 +

∑i−1
j=k1+1 cjη,

r = �(x − s)/l�, and p = x − (s + rl). Then, return s + rl + ((p + k)%l).

Case 3 B2 ≤ x < B3: Compute the value m = ((x − B2)%β1)/η. Then
get the biggest index i such that

∑i
j=k2+1 cj ≤ m. Next calculate qi =

�(x − B2)/2�lg(β1)�� and l = qi(16n(1−ε)/2/c) + ri; l is the size of the cycle that
x belongs to. Compute s = B2 + qi2�lg(β1)� +

∑i−1
j=k2+1 cjη, r = �(x − s)/l�, and

p = x − (s + rl). Then, return s + rl + ((p + k)%l).

Case 4 B3 ≤ x: Compute the value m = ((x − B3)%β2)/η. Then get the biggest
index i such that

∑i
j=k3+1 cj ≤ m. Next calculate qi = �(x − B3)/2�lg(β2)�� and

l = qi(8n(1−ε)/2/
√

c) + ri + (ci − 1)η; l is the size of the cycle that x belongs to.
Compute s = B3+qi2�lg(β2)�+

∑i−1
j=k3+1 cjη, r = �(x−s)/l�, and p = x−(s+rl).

Then, return s + rl + ((p + k)%l).

All operations used take constant time, so πk(x) can be computed in O(1)
time.

Theorem 6. Given an unlabeled permutation of n elements, Θ(n(1−ε)/2) bits
are sufficient for storing the permutation if each element is to be given a unique
label in the range {1, . . . , cn1+ε} for any constant c > 1 and ε < 1. Moreover,
πk() can be computed in O(1) time in such a structure.

Note that ε doesn’t need to be a constant. By setting ε = α + β lg lg n/lg n
where α and β are constants, and 0 < α < 1 we get the following theorem:

Theorem 7. Given an unlabeled permutation of n elements, Θ(n(1−α)/2/lgβ/2 n)
bits are sufficient for storing the permutation if each element is to be given a unique
label in the range {1, . . . , cn1+α lgβ n} for any constant c, α, β where 0 < α < 1.
Moreover, πk() can be computed in O(1) time in such a structure.

On the Succinct Representation of Unlabeled Permutations 57

6 Lower Bounds

In this section we provide lower bounds on the auxiliary data size as the label
space increases.

6.1 Lower Bound for Auxiliary Data with Label Space cn

In [5] El-Zein et al. showed that for the problem of representing unlabeled equiv-
alence relations, increasing the label space by a constant factor causes the size
of the auxiliary data structure to decrease from O(

√
n) to O(lg n) bits.

In contrast to the problem of representing unlabeled equivalence relations, in
this section we show that for the problem of representing unlabeled permutations
increasing the label space by a constant factor will not affect the size of the
auxiliary data structure asymptotically.

For any integer c > 1, let Scn be the set of all partitions of �cn� and Sn the
set of all partitions of n. Without loss of generality assume that

√
n is an integer

that is divisible by c. While one partition of cn can dominate many partitions
of n, we argue that at least

(c
√

n√
n/c

)
/
(√

n√
n/c

)
partitions of cn are necessary to

dominate all partitions of n. Let S be the smallest set of partitions of cn that
dominates all the partitions of n. We claim that:

Lemma 3. |S| ≥ (c
√

n√
n/c

)
/
(√

n√
n/c

)
. The proof of Lemma 3 is found in the appen-

dix. The information theoretic lower bound for the space needed to represent a
permutation of size n once labels are assigned from the set {1, . . . , cn} is

lg(|S|) ≥ lg(
(

c
√

n√
n/c

)

/

(√
n√

n/c

)

)

∈ Ω(
√

n).

Theorem 8. Given an unlabeled permutation of n elements, Θ(
√

n) bits are
necessary and sufficient for storing the permutation if each element is to be
given a unique label in the range {1, . . . , cn} for any constant c > 1. Moreover,
πk() can be computed in O(1) time in such a structure.

6.2 Lower Bound for Auxiliary Data with Label Space cn1+ε

Using techniques that are similar to the techniques presented in the previous
subsection, we show that for the problem of representing unlabeled permutations
an auxiliary data structure of size O(n(1−ε)/2) bits is necessary when the label
space is cn1+ε, where c is any constant and 0 < ε < 1.

Denote by Scn1+ε the set of all partitions of cn1+ε and by Sn the set of
all partitions of n. We argue that at least

((c+1)n(1+ε)/2

n(1−ε)/2/(c+1)

)
/
(cn(1+ε)/2/(c+1)

n(1−ε)/2/(c+1)

)
are

necessary to dominate all partitions of n. Let S be the smallest set of partitions
of cn1+ε that dominates all partitions of n. We claim that:

58 H. El-Zein et al.

Lemma 4. |S| ≥ ((c+1)n(1+ε)/2

n(1−ε)/2/(c+1)

)
/
(cn(1+ε)/2/(c+1)

n(1−ε)/2/(c+1)

)
. The proof of Lemma 4 is

found in the appendix. The information theoretic lower bound for space to repre-
sent a permutation of size n once labels are assigned from the set {1, . . . , cn1+ε} is

lg(|S|) ≥ lg(
(

(c + 1)n(1+ε)/2

n(1−ε)/2/(c + 1)

)

/

(
cn(1+ε)/2/(c + 1)
n(1−ε)/2/(c + 1)

)

)

∈ Ω(n(1−ε)/2).

Theorem 9. Given an unlabeled permutation of n elements, Θ(n(1−ε)/2) bits
are necessary and sufficient for storing the permutation if each element is to
be given a unique label in the range {1, . . . , cn1+ε} for any constant c > 1 and
ε < 1. Moreover, πk() can be computed in O(1) time in such a structure.

7 Applications

As an application to our data structures, we give a representation of a labeled
permutation that takes s(n) + O(

√
n) bits and can answer πk() in O(tf + ti)

time, where s(n) denotes the number of bits required for a representation R to
store a labeled permutation, and tf and ti are the time needed for R to support
π() and π−1().

This result improves Theorem 3.3 in [13]: Suppose there is a representation R
taking s(n) bits to store an arbitrary permutation π on {1, . . . , n}, that supports
π() in time tf , and π−1() in time ti. Then there is a representation for an
arbitrary permutation on {1, . . . , n} taking s(n)+O(n lg n/ lg lg n) bits in which
πk() can be supported in tf + ti + O(1) time, and one taking s(n) + O(

√
n lg n)

bits in which πk() can be supported in tf + ti + O(lg lg n) time.

Theorem 10. Suppose there is a representation R taking s(n) bits to store an
arbitrary permutation π on {1, . . . , n}, that supports π() and π−1() in time tf
and ti. Then there is a representation for an arbitrary permutation on {1, . . . , n}
taking s(n) + O(

√
n) bits in which πk() can be supported in tf + ti + O(1) time.

Proof. Given π, treat it as an unlabeled permutation and build the data struc-
ture from Theorem 5 on it. Call this structure P . Notice that the bijection
between the labels generated by P and the real labels of π form a permuta-
tion. Store this permutation using the given scheme in a structure P ′. Now
πk(i) = π−1

P ′ (πk
P (π1

P ′(i))) can be computed in tf + ti + O(1) time, and the total
space used is s(n) + O(

√
n) bits. ��

8 Conclusion

We have provided a complete breakdown for the label space-auxiliary storage
size tradeoff for the problem of representing unlabeled permutations. As there is
a huge body of research in ‘labeling schemes’, investigation into such a tradeoff
for other problems maybe interesting. Moreover as an application to our new
data structures, we showed how to improve the general representation of permu-
tations. Given that permutations are fundamental in computer science, we feel
that our structures will find applications in many other scenarios.

On the Succinct Representation of Unlabeled Permutations 59

References

1. Barbay, J., Aleardi, L.C., He, M., Munro, J.I.: Succinct representation of labeled
graphs. Algorithmica 62(1–2), 224–257 (2012)

2. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent
permutations. J. Comput. Syst. Sci. 60(3), 630–659 (2000)

3. Brodnik, A., Munro, J.I.: Membership in constant time and almost-minimum space.
SIAM J. Comput. 28(5), 1627–1640 (1999)

4. El-Zein, H.: On the succinct representation of equivalence classes (2014)
5. El-Zein, H., Munro, J.I., Raman, V.: Tradeoff between label space and auxiliary

space for representation of equivalence classes. In: Ahn, H.-K., Shin, C.-S. (eds.)
ISAAC 2014. LNCS, vol. 8889, pp. 543–552. Springer, Heidelberg (2014)

6. Farzan, A., Munro, J.I.: Succinct representations of arbitrary graphs. In: Halperin,
D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 393–404. Springer,
Heidelberg (2008)

7. Fich, F.E., Munro, J.I., Poblete, P.V.: Permuting in place. SIAM J. Comput. 24(2),
266–278 (1995)

8. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM J. Comput. 35(2), 378–407 (2005)

9. Hardy, G.H., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proc.
London Math. Soc. 2(1), 75–115 (1918)

10. He, M., Munro, J.I., Rao, S.S.: A categorization theorem on suffix arrays with
applications to space efficient text indexes. In: Proceedings of ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pp. 23–32. SIAM (2005)

11. Lewenstein, M., Munro, J.I., Raman, V.: Succinct data structures for representing
equivalence classes. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013.
LNCS, vol. 8283, pp. 502–512. Springer, Heidelberg (2013)

12. Munro, J.I., Nicholson, P.K.: Succinct posets. In: Epstein, L., Ferragina, P. (eds.)
ESA 2012. LNCS, vol. 7501, pp. 743–754. Springer, Heidelberg (2012)

13. Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of permu-
tations and functions. Theoret. Comput. Sci. 438, 74–88 (2012)

14. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms
3(4) (2007). Article no 43

15. Sedgewick, R.: Permutation generation methods. ACM Comput. Surv. 9(2),
137–164 (1977)

	On the Succinct Representation of Unlabeled Permutations
	1 Introduction and Motivation
	2 Definitions and Preliminaries
	3 Direct Labeling Scheme
	4 Succinct Data Structures with Label Space n
	5 Succinct Data Structures with Label Space cn1+
	6 Lower Bounds
	6.1 Lower Bound for Auxiliary Data with Label Space cn
	6.2 Lower Bound for Auxiliary Data with Label Space cn1+

	7 Applications
	8 Conclusion
	References

