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Abstract. We propose an algorithm for finding a (1 + ε)-approximate
shortest path through a weighted 3D simplicial complex T . The weights
are integers from the range [1, W ] and the vertices have integral coordi-
nates. Let N be the largest vertex coordinate magnitude, and let n be
the number of tetrahedra in T . Let ρ be some arbitrary constant. Let
κ be the size of the largest connected component of tetrahedra whose
aspect ratios exceed ρ. There exists a constant C dependent on ρ but
independent of T such that if κ ≤ 1

C
log log n + O(1), the running time

of our algorithm is polynomial in n, 1/ε and log(NW ). If κ = O(1), the
running time reduces to O(nε−O(1)(log(NW ))O(1)).

Keywords: Weighted region · Shortest path · Approximation algorithm

1 Introduction

Finding shortest paths are classical geometric optimization problems (e.g. [4,10–
12,15]). In 2D, researchers have also studied cost models in applications that are
non-Lp metrics and anisotropic (e.g. [1,2,5–9,14,17]). In 3D, other than motion
planning, shortest path is a popular tool for simulating seismic raytracing in ray-
based tomography schemes for studying some geological properties (e.g. [13]).

The weighted region problem is a way to model the unequal difficulties in
traversing different regions [14]. In 3D, we are given a simplicial complex T of
n tetrahedra. These tetrahedra and their vertices, edges and triangles are called
the simplices of T . Given two simplices in T , either they are disjoint or their
intersection is another simplex in T . Every vertex has integral coordinates and
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let N denote the largest vertex coordinate magnitude. Each tetrahedron τ is
associated with an integral weight ωτ ∈ [1,W ]. For every edge or triangle, its
weight is equal to the minimum weight among the tetrahedra incident to that
edge or triangle. The cost of a path that lies in a simplex σ is equal to the path
length multiplied by ωσ. Given a path P in T , we denote its length by ‖P‖ and
its cost by cost(P ) =

∑
simplex σ ωσ‖P ∩ σ‖. The weighted region problem is to

find the least-cost path from a given source vertex to a given destination vertex.
The weighted region problem in 2D has been studied extensively. Fully poly-

nomial time approximation schemes are known [7,14]. There are also successful
discretization schemes whose running time is linear in the input size and depen-
dent on some geometric parameter of the polygonal domain [2,17]. In contrast,
only one algorithm for the weighted region problem in 3D has been proposed
(Aleksandrov et al. [3]). The authors [3] present a (1 + ε)-approximation algo-
rithm whose running time is O

(
Knε−2.5 log n

ε log3 1
ε

)
, where K is asymptotically

at least the cubic power of the maximum aspect ratio of the tetrahedra in the
worst case. (Aspect ratio is defined in Sect. 2.) It is an open problem whether an
FPTAS exists for the 3D weighted region problem.

Let ρ be an arbitrary constant independent of T . We call a tetrahedron
skinny if its aspect ratio exceeds ρ. Two skinny tetrahedra are connected if their
boundaries touch, and the transitive closure of this relation gives the connected
components of skinny tetrahedra. Let κ be the number of tetrahedra in the
largest connected component of skinny tetrahedra.

We present a (1 + ε)-approximation algorithm for the 3D weighted region
problem. It runs in O

(
22

O(κ)
nε−7 log2 W

ε log2 NW
ε

)
time. The hidden constant

in the exponent O(κ) is dependent on ρ but independent of T . Thus, there
exists a constant C dependent on ρ but independent of T such that if κ ≤
1
C log log n + O(1), the running time is polynomial in n, 1/ε and log(NW ). If
κ = O(1), the running time is linear in n. In comparison, the running time
in [3] has the advantage of being independent from N and W , but K can be
arbitrarily large even if there are only O(1) skinny tetrahedra. Putting the result
in [3] in our model, K is a function of N and n in the worst case, and K can be
Ω( 1

nN3 + 1).

2 Preliminaries

A path P in T consists of links and nodes. A link is a maximal segment that lies
in a simplex of T . Nodes are link endpoints. We assume that P does not bend
in the interior of any simplex because such a bend can be shortcut. So the nodes
of P lie at vertices, edges and triangles. Given two points x and y in this order
in P , we use P [x, y] to denote the subpath between them.

The simplex sequence of a path P is the ordered sequence Σ of vertices, edges
and triangles that intersect the interior of P from u to v. If P has the minimum
cost among all paths from u to v with simplex sequence Σ, we call P a locally
shortest path (with respect to Σ). The shortest path from u to v is the locally
shortest path with the minimum cost among all possible simplex sequences.
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Let B(x, r) denote a closed ball centered at a point x with radius r.
The aspect ratio of a tetrahedron τ is the ratio of the radius of the smallest

sphere that encloses τ to the radius of the largest sphere inscribed in τ . If the
aspect ratio is bounded by a constant, all angles of τ are bounded from below
and above by some constants. A tetrahedron is skinny if its aspect ratio exceeds
some arbitrary constant ρ fixed a priori. If a tetrahedron is not skinny, it is fat.

Two tetrahedra are connected if their boundaries touch. The equivalence
classes of the transitive closure of this relation are called connected components
of tetrahedra. Two tetrahedra are edge-connected if they share at least one edge.
The equivalence classes of the transitive closure of this relation are called edge-
connected components of tetrahedra. A cluster is a connected component of
skinny tetrahedra. Recall that every cluster has at most κ tetrahedra.

For every simplex σ in T , star(σ) denotes the set of tetrahedra that have σ
as a boundary simplex. Given a set K of simplices, |K| denotes the union of all
simplices in K and bd(K) denotes the set of simplices in the boundary of |K|.

For simplicity, we will show a 1 + O(ε) approximation ratio, which can be
reduced to 1 + ε by tuning some constants. Our algorithm discretizes T and
builds an edge-weighted graph G so that the shortest path in G is a 1 + O(ε)
approximation. This approach is also taken in [3]. However, in order to allow for
skinny tetrahedra, we discretize the fat tetrahedra only, and the edges in G rep-
resent approximate shortest paths that may not lie within a single tetrahedron.

Let {u, v} be a pair of vertices of G. If u and v lie in a cluster, we would ideally
connect them by an edge with weight equal to the shortest path cost between u
and v within the cluster. However, even if a simplex sequence is given, finding
the locally shortest path requires solving a nonlinear system derived using Snell’s
law. It is unclear how to do this exactly. Instead, we switch to convex distance
functions induced by convex polytopes with O(1/ε) vertices, so that the modified
metrics give 1+O(ε) approximations of the original metrics. Under the modified
metrics, the locally shortest path with respect to Σ can be obtained by linear
programming. We enumerate all possible simplex sequences to find the shortest
path cost within the cluster under the modified metrics.

3 Placement of Steiner Points

For every vertex v in T , the fat tetrahedra in star(v) may form multiple edge-
connected components and we call each a fat substar. For an edge or triangle σ,
there is at most one fat substar in star(σ).

Definition 1. Let x be a point in the union of vertices, edges and triangles of
T . Let σ be the simplex of lowest dimension containing x. For every fat substar
F of σ, define δF (x) to be the minimum distance from x to a simplex in bd(F )
that does not contain x. When σ is an edge or triangle, there is at most one fat
substar of σ and so we simplify the notation to δ(x).

Remark 1: For a vertex v of T , δF (v) is the distance between v and a triangle
opposite v in some tetrahedron τ ∈ F . Since the tetrahedra in F have bounded
aspect ratio and there are O(1) of them, δF (v) = Θ(‖e‖) for every edge e ∈ F .
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Remark 2: For a point x in the interior of an edge e, δ(x) is the distance
between x and an edge or triangle σ that bounds a fat tetrahedron incident to
e and shares only a vertex v with e. Also, δ(x) = Θ(‖vx‖).

For every vertex v of T and every fat substar F of v, define a vertex-ball
Bv,F = B(v, ε

3W δF (v)). Let Nv be the union of Bv,F ∩F over all fat substars F .
Let uv be an edge of a fat tetrahedron in T . We place Steiner points in uv

outside Nu and Nv as follows. Initialize B to be the union of the interiors of Nu

and Nv. Find the point p ∈ uv \B such that δ(p) is maximum. Make p a Steiner
point. Define an edge-ball Bp = B(p, ε

3δ(p)). Add the interior of Bp to B. Repeat
until uv \ B is empty. Finally, make the intersection point q between uv and the
boundary of Nu a Steiner point and introduce an edge-ball Bq = B(q, ε

3δ(q)).
Repeat the same for the intersection point between uv and the boundary of Nv.

As we will see below, the edge-balls centered at two consecutive Steiner points
strictly outside Nu and Nv overlap significantly. After placing Steiner points
strictly outside Nu and Nv, an extreme edge-ball may have a tiny overlap with
Nu or Nv. In this case, if x is a point on some triangle incident to uv such that x
lies close to this tiny overlap, then δ(x) can be arbitrarily small. This will cause
a problem in discretizing triangles. Thus, we place two more edge-balls at the
intersection points between uv and the boundaries of Nu and Nv.

Lemma 1. Let uv be an edge of a fat tetrahedron. The edge uv is covered by
the union of Nu, Nv, and the edge-balls centered at the Steiner points in uv. For
every consecutive pair of Steiner points p, q ∈ uv strictly outside Nu and Nv,
‖pq‖ ≥ ε

3 · max{δ(p), δ(q)}, and either p lies on the boundary of Bq or q lies on
the boundary of Bp. There are O

(
1
ε log W

ε

)
Steiner points in uv.

Proof. The construction ensures the coverage of uv. Assume that q was placed
after p. By construction, q is not inside B(p, ε

3δ(p)) and so ‖pq‖ ≥ ε
3δ(p). As q

is placed after p, δ(q) ≤ δ(p) and so ‖pq‖ ≥ ε
3δ(p) ≥ ε

3δ(q).
In the interior of uv, δ(x) increases linearly from a limit of zero at u and

then decreases linearly to a limit of zero at v. The placement of Steiner points
strictly outside Nu and Nv begins with the point p ∈ uv that maximizes δ(p).
Therefore, the point q ∈ uv that maximizes δ(q) outside the interiors of Nu, Nv,
and Bp must lie on the boundary of Bp. Repeating this argument establishes the
third property in the lemma.

Let F be the fat substar of u that contains uv. At the intersection point x
between uv and the boundary of Nu, δ(x) ≤ ‖ux‖ = ε

3W δF (u) = Θ( ε
W ‖uv‖)

by Remark 1. By Remark 2, δ(x) = Ω(min{‖ux‖, ‖vx‖}) = Ω(min{ ε
W ‖uv‖, (1 −

ε
W )‖uv‖}. So δ(x) = Θ( ε

W ‖uv‖). Similarly, at the intersection point x between
uv and the boundary of Nv, δ(x) = Θ

(
ε

W ‖uv‖
)
. The maximum value of δ(x)

in the interior of uv is at most 1
2‖uv‖. Let p, q ∈ uv be two consecutive Steiner

points strictly outside Nu and Nv such that δ(x) increases linearly from a limit
of zero from u to p and then to q. By Remark 2, δ(p) = Θ(‖pu‖). We have
shown that ‖pq‖ ≥ ε

3δ(p). By the linear increase in δ(·), we get δ(q) = (1 +
‖pq‖/‖pu‖)δ(p) ≥ (1+Θ(ε))δ(p). The next Steiner point after q is thus at distance
at least ε

3δ(q) ≥ ε
3 (1 + Θ(ε)) δ(p) from q. In other words, the distance between
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consecutive Steiner points strictly outside Nu and Nv increases repeatedly by at
least a factor 1+Θ(ε) from Ω( ε2

W ‖uv‖) at the boundary of Nu to O(ε‖uv‖) in the
interior of uv. The same holds for the sequence of Steiner points from Nv. Hence,
there are O

(
log1+Θ(ε)

W
ε

)
= O

(
1
ε log W

ε

)
Steiner points. ��

Lemma 2. Placing Steiner points on an edge takes O
(
1
ε log W

ε

)
time.

The placement of Steiner points in a triangle uvw of a fat tetrahedron is
slightly more involved. In the interior of uvw, the value of δ(x) is determined by
the triangles of at most two fat tetrahedra incident to uvw. Consider one triangle
t out of these candidates. Orient space so that uvw is horizontal. The graph of
the distance function from x to t is a plane that makes an angle arctan(sin θ)
with the horizontal, where θ is the dihedral angle between t and uvw (which is
bounded from below and above by some constants). The graph of δ(x) is thus
a lower envelope of planes. Moreover, this lower envelope H is supported by
exactly three planes induced by three triangles that share with uvw the edges
uv, vw and uw. Let � denote the longest edge length of uvw. The maximum
height of H is hmax = Θ(�) as the tetrahedra defining δ(x) have bounded aspect
ratios. For each point x in the interior of uvw that are close to and outside the
vertex-balls and edge-balls at the boundary of uvw, δ(x) ≥ cε2�/W for some
constant c > 0.1 Let H+ denote the portion of H at height hmin = cε2�/W 2

or above. We will place Steiner points in the projection of H+ in uvw. By the
geometry of H, a cross-section of H bounds a triangle that has the same angles
as uvw and projects to the interior of uvw.

Define h0 = hmax and for i ≥ 1, hi = hi−1/(1 + ε). Let Ai ⊂ uvw be the
triangular annulus that the portion of H between heights hi and hi+1 projects
to. Both the inner and outer boundaries of this annulus are similar to uvw. The
area of Ai is Θ((hi − hi+1)(hi + hi+1)) = Θ(εh2

i ). We place Steiner points in
each Ai as follows. Initialize B = ∅. Make an arbitrary point p ∈ Ai \B a Steiner
point. Define a triangle-ball Bp = B(p, ε

3δ(p)). Add the interior of Bp to B.
Repeat until Ai \ B is empty.

Lemma 3. Let uvw be a triangle of a fat tetrahedron. The triangle uvw is
covered by the union of Nu, Nv, Nw, and edge-balls and triangle-balls with centers
in uvw. There are O

(
1
ε2 log W

ε

)
Steiner points in uvw.

Proof. The construction ensures the coverage of uvw. We can show as in the
proof of Lemma 1 that ‖pq‖ ≥ ε

3 max{δ(p), δ(q)} for every pair of Steiner points p
and q placed in Ai. The value of δ(x) in Ai is between hi and hi+1. Therefore, if we
place disks of radii ε

6hi+1 centered at the Steiner points in Ai, the disks are dis-
joint. At least a constant fraction of each such disk lies inside Ai. Therefore, there
are O(εh2

i /(ε2h2
i+1)) = O(1/ε) Steiner points in Ai. As i increases, hi decreases

and approaches hmin = Θ(ε2hmax/W 2). Observe that hi = (1+ε)−ihmax. Hence,
(1 + ε)−ihmax ≥ hmin, which implies that i = O

(
log1+ε

W
ε

)
= O

(
1
ε log W

ε

)
. It

follows that there are O
(

1
ε2 log W

ε

)
Steiner points in uvw. ��

1 The smallest value of δ(x) occurs near the edge-ball centered at the intersection
point between uv and the boundary of Nu or the boundary of Nv.
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Lemma 4. Placing Steiner points in uvw takes O( 1
ε4 log W

ε ) time.

4 Steiner Graph and Snapping

The vertices of T and the Steiner points form the vertices of G. Before defining
the edges of G, we first define extended clusters. An extended cluster C∗ consists
of the skinny tetrahedra in a cluster C and the tetrahedra in contact with C.
The tetrahedra in C∗ \ C are fat, and therefore, there are O(κ) tetrahedra in
C∗. If a boundary simplex σ of C∗ is in contact with the boundary of C, then σ
must also be a boundary simplex of T .

There are two kinds of edges in G. Each edge of the first kind connects two
graph vertices x and y in the same extended cluster C∗. The edge weight is
1 + O(ε) times the shortest path cost in C∗ from x to y. We will show in Sect. 5
how to compute such an edge weight. Each edge of the second kind connects
two graph vertices in a vertex star free of skinny tetrahedra. The edge weight
is 1 + O(ε) times the shortest path cost in that vertex star, which can also be
computed by the method in Sect. 5. Notice that T is covered by the extended
clusters and vertex stars free of skinny tetrahedra. Due to the overlap among
extended clusters and vertex stars, we may construct multiple edges between
two graph vertices, and if so, we keep the edge between them with the lowest
weight.

Assuming that G has been computed, we prove below that a shortest path
in G is a (1 + O(ε))-approximate shortest path in T . We need three technical
lemmas (Lemmas 5, 6, and 7) that snap a path to vertices and Steiner points.

Lemma 5. Let v be a vertex of a fat tetrahedron. Let F be a fat substar of
v. Let x be a point in |F | such that ‖vx‖ ≥ δF (v)/2. Let P be a path such
that a subpath of P in |F | connects x to a point y ∈ Bv,F . We can convert
P [x, y] to a path Q from x to y so that Q ⊂ |F |, Q passes through v, and
cost(Q) ≤ (1 + O(ε)) · cost(P [x, y]).

Proof. Let x′ be the first entry point of P [x, y] into Bv,F . We replace P [x, y] by
P [x, x′]∪x′v ∪ vy. We have cost(x′v) ≤ W‖x′v‖ = ε

3δF (v) ≤ 2ε
3−2ε‖xx′‖ ≤ O(ε) ·

cost(P [x, x′]) ≤ O(ε) · cost(P [x, y]). Similarly, cost(vy) ≤ O(ε) · cost(P [x, y]). ��

Lemma 6. Let t be a triangle of a fat tetrahedron τ . Let p be a Steiner point
in the interior of t, and let Bp denote the triangle-ball centered at p. Let P be a
path such that a subpath of P in τ connects a point x in a boundary simplex of
τ other than t to a point y ∈ Bp ∩ t. We can convert P [x, y] to a path Q from x
to y so that Q ⊂ τ , Q passes through p, and cost(Q) ≤ (1 + O(ε)) · cost(P [x, y]).

Proof. P [x, y] ⊂ τ by assumption. Let x′ be the last entry point of P [x, y] into
Bp. Retrace P [x, x′] from x′ towards x until we hit a boundary simplex of τ
other than t for the first time at a point x̂. Note that δ(p) ≤ ‖px̂‖. We replace
P [x, y] by P [x, x′] ∪ x′p ∪ py. Figure 1 illustrates the three cases below.
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py
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τ
x

x

x̂

py

t

τ
x

x

x̂

py
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τ
x

x

x̂

x

Fig. 1. The path Q in cases 1, 2 and 3 in the proof of Lemma 6 from left to right.

Case 1: P [x̂, x′] is a segment whose interior lies in the interior of τ . We have
cost(x′p) = ε

3ωτδ(p) ≤ ε
3−εωτ‖x̂x′‖ ≤ O(ε) · cost(P [x, x′]) ≤ O(ε) · cost(P [x, y]).

Similarly, cost(py) ≤ ε
3ωtδ(p) ≤ ε

3ωτδ(p) ≤ O(ε) · cost(P [x, y]).

Case 2: P [x̂, x′] is a segment whose interior lies in the interior of t. Then the
interior of P [x̂, y] lies in the interior of t. We analyze the extra cost as in Case 1
with ωτ replaced by ωt.

Case 3: P [x̂, x′] consists of two segments x̂x′′ and x′′x′ whose interiors lie in the
interiors of τ and t, respectively. Then the interior of P [x′′, y] lies in the interior
of t. If ‖x̂x′′‖ ≥ 1

2‖x̂x′‖, then we adapt the analysis in Case 1 using the relation
δ(p) ≤ 6

3−ε‖x̂x′′‖. Otherwise, ‖x′′x′‖ ≥ 1
2‖x̂x′‖ and we adapt the analysis in

Case 2 using the relation δ(p) ≤ 6
3−ε‖x′′x′‖. ��

Lemma 7. Let e be an edge of a fat tetrahedron. Let F denote the fat substar
of e. Let p be a Steiner point in the interior of e, and let Bp denote the edge-
ball centered at p. Let x be a point in |F | such that ‖px‖ ≥ δ(p)/2. Let P be a
path such that a subpath of P in |F | connects x to a point y ∈ Bp ∩ t, where t
is a triangle in F incident to e. Suppose that y lies outside every triangle-ball
Bq where q ∈ t. Then, we can convert P [x, y] to a path Q from x to y so that
Q ⊂ |F |, Q passes through p, and cost(Q) ≤ (1 + O(ε)) · cost(P [x, y]).

Proof. Since y lies outside every triangle-ball Bq where q ∈ t, y is at distance
O( ε2

W 2 ‖e‖) from e. Let y′ be the closest point in e to y. Let x′ be the first entry

py

y

e
t

σ
x

a

Fig. 2. The resulting path Q in the proof of Lemma 7.
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point of P [x, y] into Bp. Retrace P [x, x′] from x′ towards x until we hit x or
a simplex in bd(F ) other than e for the first time. Let x̂ be the point where
retracing stops. Note that δ(p) ≤ 2‖px̂‖.

Let σ be the triangle or tetrahedron with the minimum weight among those
incident to e and visited by P [x̂, x′]. Suppose that P [x̂, x′] enters σ for the first
time at a point a.

We replace P [x, y] by P [x, a]∪ap∪py′∪yy′. Figure 2 illustrates the conversion.
First, cost(ap) = ωσ‖ap‖ ≤ ωσ‖ax′‖+ ε

3ωσδ(p) ≤ cost(P [a, x′])+ 2ε
3−2εωσ‖x̂x′‖ ≤

cost(P [a, x′]) + O(ε) · cost(P [x, x′]). Next, cost(py′) = ωe‖py′‖ ≤ ε
3ωσδ(p) ≤

2ε
3−2εωσ‖x̂x′‖ ≤ O(ε) · cost(P [x, x′]). Also, cost(yy′) ≤ W‖yy′‖ ≤ O(W · ε2

W 2 ‖e‖).
Recall that p is not inside the vertex-balls at the endpoints of e, and these vertex-
balls have radius Ω(ε‖e‖/W ). Therefore, δ(p) = Ω(ε‖e‖/W ) by Remark 2.
Hence, cost(yy′) ≤ O(ε) · δ(p) ≤ O(ε) · ‖x̂x′‖ ≤ O(ε) · cost(P [x, x′]). ��

Next, we convert a path P from vs to vd to a path Q such that the nodes
vs = ui1 , ui2 , ui3 , · · · , uim

= vd in Q are vertices of G, and for all j ≥ 1,
Q[uij

, uij+1 ] is contained in an extended cluster or a vertex star free of skinny
tetrahedra. Moreover, cost(Q) ≤ (1 + O(ε)) · cost(P ). Therefore, G gives a
1 + O(ε) approximation because G contains the edges {uij

, uij+1} with weight
(1 + O(ε)) · cost(Q[uij

, uij+1 ]).

Lemma 8. Let P be a path in T from vs to vd. We can convert P to a path Q
in T from vs to vd such that the nodes vs = ui1 , ui2 , ui3 , · · · , uim

= vd in Q are
vertices of G, and for all j ≥ 1, Q[uij

, uij+1 ] is contained in an extended cluster or
a vertex star free of skinny tetrahedra. Moreover, cost(Q) ≤ (1 + O(ε)) · cost(P ).

Proof. Let P0 denote a path from vs to vd in T .
Suppose that vs is disjoint from all clusters. If P0 does not leave star(vs),

then vd is a vertex in star(vs) and the lemma is trivially true. Assume that P0

leaves star(vs) for the first time at a point y. Then y lies in a boundary simplex
σ of star(vs) disjoint from vs. We modify P0[vs, y] by applying Lemmas 5, 6, or 7
to make a detour to a vertex or Steiner point p ∈ σ.

Suppose that vs is contained in a cluster C. Recall that C∗ denotes the
extended cluster corresponding to C. If P0 does not leave C∗, then vd is a vertex
in C∗ and there is nothing to prove. Assume that P0 leaves C∗ for the first time
at a point y. Let x be the point in the boundary of C that P0 leaves C for the
last time before reaching y. Let σ be the simplex of lowest dimension in bd(C∗)
that contains y. The simplex σ is disjoint from the boundary of C; otherwise,
σ would be a boundary simplex of T , meaning that P0 cannot leave C∗ at y,
a contradiction. We modify P0[x, y] by applying Lemmas 5, 6, or 7 to make a
detour to a vertex or Steiner point p ∈ σ.

Let P1 denote the path resulted from modifying P0. The extra cost of O(ε) ·
cost(P0[vs, y]) can be charged to P0[vs, y]. Then we work on P1[y, vd]. Recall
that y belongs to the boundary simplex σ of star(vs) or an extended cluster
containing vs, whichever case is applicable. We identify a vertex v as follows.
If σ is a vertex, let v = σ. If σ is an edge, let v be the closest endpoint of σ
to y. If σ is a triangle, let e be the closest edge of σ to y and then let v be
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the closest endpoint of e to y. Then, we repeat the previous analysis on v and
P1[y, vd]. That is, we check the exit of P1[y, vd] from star(v) or an extended
cluster containing v, whichever case is applicable. The vertex or Steiner point p
to which P0 was snapped belongs to σ and p is already a vertex of G. The next
application of Lemmas 5, 6, or 7 will convert P1[y, vd] to a path P2[y, vd] that
passes through a vertex or Steiner point q such that P2[p, q] lies in an extended
cluster or a vertex star free of skinny tetrahedra. The extra charge in converting
P1 to P2 can be charged to a subpath of P1[y, vd]. Repeating the argument proves
the lemma. ��

5 Processing Extended Clusters and Vertex Stars

Let Γ be a connected set of O(κ) tetrahedra. Let p and q be two points in the
union of vertices, edges, and triangles in Γ . We present an algorithm to compute
a (1 + O(ε))-approximate shortest path in Γ from p to q.

5.1 Locally Shortest Path

For every triangle t ∈ Γ , its unit disk is the Euclidean disk Dt that is centered
at the origin, lies on a plane parallel to t, and has radius 1/ωt. The travel cost
from a point x to a point y in t is λ if changing the radius of Dt + x to λ/ωt

puts y on the boundary of the shrunk or expanded disk. To approximate Dt,
we place Θ(1/

√
ε) points roughly uniformly on the boundary of Dt as follows.

Enclose Dt by a concentric unit square. Place points on the square boundary
at distance

√
ε apart. Project these points radially onto the boundary of Dt.

Let D∗
t denote the convex hull of the points on the boundary of Dt. One can

measure the travel cost from x to y by shrinking or expanding D∗
t +x instead. It

is easy to check that D∗
t ensures a 1+O(ε) approximation of the cost under Dt.

For every tetrahedron τ ∈ Γ , its unit ball Dτ is the Euclidean ball centered at
the origin with radius 1/ωτ . Similar to the 2D case, Dτ can be approximated by
a convex hull D∗

τ with O(1/ε) vertices. Computing D∗
t and D∗

τ for all triangles
and tetrahedra takes O

(
n
ε log 1

ε

)
time.

Let Σ = (σ1, σ2, · · · , σm) be a given simplex sequence. Let p and q be two
points in some tetrahedra incident to σ1 and σm, respectively. We show how
to compute the locally shortest path from p to q with respect to Σ by linear
programming. Consider the case that every σi is a triangle denoted by vi,1vi,2vi,3.
The case of some σi being vertices or edges can be handled similarly.

Let xix
′
i+1 be a possible path link where xi ∈ σi and x′

i+1 ∈ σi+1. Let τi

denote the tetrahedron bounded by σi and σi+1. Using barycentric coordinates,
the variable xi ∈ R

3 satisfies the constraint xi =
∑3

j=1 αi,jvi,j for some non-
negative variables αi,j ∈ R such that

∑3
j=1 αi,j = 1. Similarly, the variable

x′
i+1 ∈ R

3 satisfies x′
i+1 =

∑3
j=1 α′

i+1,jvi+1,j for some non-negative variables
α′

i+1,j ∈ R such that
∑3

j=1 α′
i+1,j = 1. For convenience, assume that v0,j = p and

vm+1,j = q for j ∈ [1, 3]. We need the facet g of D∗
τi

that contains the direction of
the vector x′

i+1−xi because the cost of xix
′
i+1 is equal to 〈x′

i+1−xi, ng〉/〈ng, ng〉,
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where 〈·, ·〉 denotes the inner product operator and ng denotes the vector that
goes from the origin to a point in the support plane of g such that ng ⊥ g. By the
convexity of D∗

τi
, the facet f of D∗

τi
that gives the largest 〈x′

i+1−xi, nf 〉/〈nf , nf 〉
is the correct facet g. Therefore, we introduce a variable zi ∈ R and require
zi ≥ 〈x′

i+1 −xi, nf 〉/〈nf , nf 〉 for every facet f of D∗
τi

. Part of the total path cost
is

∑m
i=0 zi. The minimization ensures that zi = 〈x′

i+1 − xi, ng〉/〈ng, ng〉 at the
end. We also allow for potential critical refraction at σi+1, i.e., allow for the link
x′

i+1xi+1 ⊂ σi+1. To capture the cost of x′
i+1xi+1, we introduce another variable

z′
i+1 and require z′

i+1 ≥ 〈xi+1 − x′
i+1, nf 〉/〈nf , nf 〉 for every edge f of D∗

σi+1
.

The objective is to minimize
∑m

i=0 zi +
∑m

i=1 z′
i.

There are Θ(mε−1) constraints and Θ(m) variables. The coefficients in the
constraints xi =

∑3
j=1 αi,jvi,j and x′

i =
∑3

j=1 α′
i,jvi,j have magnitudes N or less

because every coordinate of vi,j has magnitude at most N . Roughly speaking,
the vertex coordinates in D∗

τi
result from multiplying 1/ωτi

with the coordinates
of the grid vertices on the unit cube. The grid box side length is

√
ε. Therefore,

O
(
log W

ε

)
bits suffice for a vertex coordinate in D∗

τi
. For every facet f of D∗

τi
,

we first compute an outward normal νf of f by taking cross-product using the
vertices of f . The coordinates of νf thus require O(log W

ε ) bits. Let u be a vertex
of f . We solve the linear equation 〈 1

ανf , 1
ανf − u〉 = 0 for α ∈ R such that 1

ανf

lies on the support plane of f , i.e., nf = 1
ανf . Thus, α requires O(log W

ε ) bits and
so does nf . The same conclusion applies to the constraints 〈xi −x′

i, nf 〉/〈nf , nf 〉
for every edge f of D∗

σi
. In summary, the total number of bits to encode the

linear program is O
(
mε−1 log NW

ε

)
. The ellipsoid method [16] solves the above

linear program in O(m7ε−3 log2 NW
ε + m8ε−2 log2 NW

ε ) arithmetic operations.

5.2 Approximate Shortest Path

To compute the approximate shortest path in Γ from p to q, our strategy is to
enumerate all possible simplex sequences from p to q, use the method in Sect. 5.1
to compute a 1 + O(ε) approximation of the locally shortest path with respect
to each simplex sequence, and finally select the shortest one among these locally
shortest paths. The remaining questions are how long a simplex sequence and
how many simplex sequences we need to consider.

Consider a shortest path P in Γ from p to q. Let σ1, σ2, · · · be the simplices
in Γ in non-decreasing order of weights. We can assume that P ∩σ1 is connected.
Otherwise, we can shortcut P by joining the two connected components in P ∩σ1

by a line segment in σ1 without increasing the path cost. For a similar reason,
we can assume that P ∩ σ2 has at most two connected components. In general,
P ∩σi has at most 2i−1 connected components. This argument is best visualized
as arranging the connected components in a full binary tree with P ∩ σ1 at
the root, two nodes of P ∩ σ2 at the next level, and so on. It follows that the
simplex sequence is at most 2O(κ) long. Consequently, there are at most 22

O(κ)

simplex sequences. There are O(κ2

ε4 log2 W
ε ) pairs of vertices and Steiner points

in an extended cluster or vertex star free of skinny tetrahedra. We repeat the
approximate shortest path computation O(n · κ2

ε4 log2 W
ε ) times, invoking the
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result in Sect. 5.1 at most 22
O(κ)

times with m = 2O(κ) for each approximate
shortest path computation.

Theorem 1. Let ρ be an arbitrary constant. Let T be a simplicial complex of n
tetrahedra such that vertices have integral coordinates with magnitude at most N
and tetrahedra have integral weights in the range [1,W ]. Let κ be the number of
tetrahedra in the largest connected component of tetrahedra whose aspect ratios
exceed ρ. For all ε ∈ (0, 1) and for every pair of source and destination vertices
vs and vd in T , we can find a (1 + ε)-approximate shortest path in T from vs to
vd in O

(
22

O(κ)
nε−7 log2 W

ε log2 NW
ε

)
time.
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