
On a Generalization of Nemhauser
and Trotter’s Local Optimization Theorem

Mingyu Xiao(B)

School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu, China

myxiao@gmail.com

Abstract. The Nemhauser and Trotter’s theorem applies to the famous
Vertex Cover problem and can obtain a 2-approximation solution and
a problem kernel of 2k vertices. This theorem is a famous theorem in
combinatorial optimization and has been extensively studied. One way to
generalize this theorem is to extend the result to the Bounded-Degree
Vertex Deletion problem. For a fixed integer d ≥ 0, Bounded-
Degree Vertex Deletion asks to delete at most k vertices of the input
graph to make the maximum degree of the remaining graph at most d.
Vertex Cover is a special case that d = 0. Fellows, Guo, Moser and
Niedermeier proved a generalized theorem that implies an O(k)-vertex
kernel for Bounded-Degree Vertex Deletion for d = 0 and 1, and
for any ε > 0, an O(k1+ε)-vertex kernel for each d ≥ 2. In fact, it is
still left as an open problem whether Bounded-Degree Vertex Dele-
tion parameterized by k admits a linear-vertex kernel for each d ≥ 3. In
this paper, we refine the generalized Nemhauser and Trotter’s theorem.
Our result implies a linear-vertex kernel for Bounded-Degree Vertex
Deletion parameterized by k for each d ≥ 0.

1 Introduction

Vertex Cover, to find a minimum set of vertices in a graph such that each
edge in the graph is incident on at least one vertex in this set, is one of
the most fundamental problems in graph algorithms, graph theory, parameter-
ized algorithms, theories of NP-completeness and many others. Nemhauser and
Trotter [22] proved a famous theorem (NT-Theorem) for Vertex Cover.

Theorem 1 [NT − Theorem]. For an undirected graph G = (V,E) of n = |V |
vertices and m = |E| edges, there is an O(

√
nm)-time algorithm to compute two

disjoint vertex subsets C and I of G such that for any minimum vertex cover K ′

of the induced subgraph G[V \ (C ∪ I)], K ′ ∪ C is a minimum vertex cover of G
and

|K ′| ≥ |V \ (C ∪ I)|
2

.

M. Xiao—Supported by NFSC of China under the Grant 61370071.

c© Springer-Verlag Berlin Heidelberg 2015
K. Elbassioni and K. Makino (Eds.): ISAAC 2015, LNCS 9472, pp. 442–452, 2015.
DOI: 10.1007/978-3-662-48971-0 38

On a Generalization of Nemhauser and Trotter’s 443

This theorem provides a polynomial-time algorithm to reduce the size of the
input graph by possibly finding partial solution. It turns out that NT-Theorem
has great applications in approximation algorithms [5,17,19] and parameterized
algorithms [2,7]. We can see that V \ I is a 2-approximation solution and G[V \
(C ∪ I)] is a 2k-vertex kernel of the problem taking the size of the solution as
the parameter k. Lokshtanov et al. [21] also apply NT-Theorem to branching
algorithms for Vertex Cover and some other related problems. Due to NT-
Theorem’s practical usefulness and theoretical depth in graph theory, it has
attracted numerous further studies and follow-up work [2,4,9,14]. Bar-Yehuda,
Rawitz and Hermelin [4] extended NT-Theorem for a generalized vertex cover
problem, where edges are allowed not to be covered at a certain predetermined
penalty. Fellows, Guo, Moser and Niedermeier [14] extended NT-Theorem for
Bounded-Degree Vertex Deletion.

In this paper, we are interested in Bounded-Degree Vertex Deletion.
A d-degree deletion set of a graph G is a subset of vertices, whose deletion leaves
a graph of maximum degree at most d. For each fixed d, Bounded-Degree
Vertex Deletion is to find a d-degree deletion set of minimum size in an
input graph. Bounded-Degree Vertex Deletion and its “dual problem” to
find maximum s-plexes have applications in computational biology [8,14] and
social network analysis [3,24]. There is a substantial amount of theoretical work
on this problem [20,23,24], specially in parameterized complexity [6,8,14].

Since Vertex Cover is a special case of Bounded-Degree Vertex
Deletion, we are interested in finding a local optimization theorem similar to
NT-Theorem for Bounded-Degree Vertex Deletion. Fellows, Guo, Moser
and Niedermeier [14] made a great progress toward to this interesting problem
by giving the following theorem.

Theorem 2 [14]. For an undirected graph G = (V,E) of n = |V | vertices and
m = |E| edges, any constant ε > 0 and any integer d ≥ 0, there is an O(n4m)-
time algorithm to compute two disjoint vertex subsets C and I of G such that for
any minimum d-degree deletion set K ′ of the induced subgraph G[V \ (C ∪ I)],
K ′ ∪ C is a minimum d-degree deletion set of G, and

|K ′| ≥ |V \ (C ∪ I)|
d3 + 4d2 + 6d + 4

for d ≤ 1, and

|K ′|1+ε ≥ |V \ (C ∪ I)|
c

for d ≥ 2,

where c is a function of d and ε.

In this theorem, for d ≥ 2, the number of remaining vertices in V \ (C ∪ I)
is not bounded by a constant times of the solution size |K ′| of G[V \ (C ∪ I)].
This is a significant difference between this theorem and the NT-Theorem for
Vertex Cover. In terms of parameterized algorithms, Theorem 2 cannot get
a linear-vertex kernel for Parameterized Bounded-Degree Vertex Dele-
tion (with parameter k being the solution size) for each d ≥ 2. In fact, in

444 M. Xiao

an initial version [15] of Fellows, Guo, Moser and Niedermeier’s paper, a bet-
ter result was claimed, which can get a linear-vertex kernel for Parameter-
ized Bounded-Degree Vertex Deletion for each d ≥ 0. Unfortunately,
the proof in [15] is incomplete. We also note that Chen et al. [8] proved a 37k-
vertex kernel for Bounded-Degree Vertex Deletion for d = 2. However,
whether Bounded-Degree Vertex Deletion for each d ≥ 3 allows a linear-
vertex kernel is not known. In this paper, based on Fellows, Guo, Moser and
Niedermeier’s work [15], we close the above gap by proving the following theo-
rem for Bounded-Degree Vertex Deletion.

Theorem 3 [Our result]. For an undirected graph G = (V,E) of n = |V |
vertices and m = |E| edges and any integer d ≥ 0, there is an O(n5/2m)-time
algorithm to compute two disjoint vertex subsets C and I of G such that for any
minimum d-degree deletion set K ′ of the induced subgraph G[V \ (C ∪I)], K ′ ∪C
is a minimum d-degree deletion set of G and

|K ′| ≥ |V \ (C ∪ I)|
d3 + 4d2 + 5d + 3

.

From this version of the generalized Nemhauser and Trotter’s theorem, we
can get a (d3 + 4d2 + 5d + 3)k-vertex kernel for Bounded-Degree Vertex
Deletion parameterized by the size k of the solution, which is linear in k for
any constant d ≥ 0. There is no difference between the cases that d ≤ 1 and
d ≥ 2 anymore. For the special case that d = 0, our theorem specializes a 3k-
vertex kernel for Vertex Cover, while Theorem 2 provides a 4k-vertex kernel
and NT-Theorem provides a 2k-vertex kernel. For the special case that d = 1,
our theorem provides a 13k-vertex kernel and Theorem 2 provides a 15k-vertex
kernel. For the special case that d = 2, our theorem obtains a 37k-vertex kernel,
the same result obtained by Chen et al. [8].

Recently, Dell and van Melkebeek [12] showed that unless the polynomial-
time hierarchy collapses, Parameterized Bounded-Degree Vertex Dele-
tion does not have kernels consisting of O(k2−ε) edges for any constant ε > 0,
which implies that linear size would be the best possible bound on the number
of vertices in any kernel for this problem. It has also been proved by Fellows,
Guo, Moser and Niedermeier [14] that when d is not bounded, Parameterized
Bounded-Degree Vertex Deletion is W[2]-hard. Then unless FPT = W[2],
it is impossible to remove d from the size function of any kernel of this problem.
These two hardness results also imply that our result is ‘tight’ in some sense.

The framework of our algorithm follows that of Fellows, Guo, Moser and
Niedermeier’s algorithm [14]. But we still need some new and nontrivial ideas
to get our result. For the purpose of presentation, we will define a decomposi-
tion, called ‘d-bounded decomposition’ to prove Theorem3 and construct our
algorithms. This decomposition can be regarded as an extension of the crown
decomposition for Vertex Cover [1,10], but more sophisticated. To compute
C and I in Theorem 3, we will change to compute a proper d-bounded decompo-
sition. Some similar ideas in construction of crown decompositions as in Fellows,
Guo, Moser and Niedermeier’s algorithm for Theorem2 [14] are used to construct

On a Generalization of Nemhauser and Trotter’s 445

our decomposition. The detailed differences between our and previous algorithms
will be addressed in Sect. 4. Before introducing the decompositions, we first give
the notation system in this paper. Proofs of some lemmas are omitted due to
space limitation, which can be found in the full version of this paper.

2 Notation System

Let G = (V,E) stand for a simple undirected graph with a set V of n = |V |
vertices and a set E of m = |E| edges. For simplicity, we may denote a singleton
set {v} by v. For a vertex subset V ′, a vertex in V ′ is denoted by V ′-vertex. The
graph induced by V ′ is denoted by G[V ′]. We also use N(V ′) to denote the set
of vertices in V \V ′ adjacent to some vertices in V ′ and let N [V ′] = N(V ′)∪V ′.
The vertex set and edge set of a graph G′ are denoted by V (G′) and E(G′),
respectively. A bipartite graph with two parts of vertices A and B and edge set
EH is denoted by H = (A,B,EH).

For an integer d′ ≥ 1, a star with d′ +1 vertices is called a d′-star. For d′ > 1,
the unique vertex of degree > 1 in a d′-star is called the center of the star and all
other degree-1 vertices are called the leaves of the star. For a 1-star, any vertex
can be regarded as a center and the other vertex as a leaf. A star with a center
v is also called a star centered at v. For two disjoint vertex sets V1 and V2, a set
of stars is from V1 to V2 if the centers of the stars are in V1 and leaves are in
V2. A ≤d′-star is a star with at most d′ leaves. A d′-star packing (resp., ≤d′-star
packing) is a set of vertex-disjoint d′-stars (resp., ≤d′-stars). We will use α(G)
to denote the size of a minimum d-degree deletion set of a graph G.

3 The Decomposition Techniques

Crown decomposition is a powerful tool to obtain kernels for Vertex Cover.
This technique was firstly introduced in [1,10] and found to be very useful in
designing kernelization algorithms for Vertex Cover and related problems
[2,9,26].

Definition 1 [CrownDecomposition]. A crown decomposition of a graph G
is a partition of the vertex set of G into three sets I, C and J such that

(1) I is an independent set,
(2) there are no edges between I and J , and
(3) there is a matching M on the edges between I and C such that all vertices

in C are matched.

See Fig. 1(a) for an illustration for crown decompositions. In some references,
I �= ∅ is also required in the definition of crown decompositions. Here we allow
I = ∅ for the purpose of presentation. It is known that

Lemma 1 [1]. Let (I, C, J) be a crown decomposition of G. Then (I, C) satisfies
the local optimality condition in Theorem1, i.e., K ′ ∪ C is a minimum vertex
cover of G for any minimum vertex cover K ′ of the induced subgraph G[V \
(I ∪ C)].

446 M. Xiao

……

(b): A 3-bounded decomposition

…………

(a): A crown decomposition

Fig. 1. Decompositions

By this lemma, we can reduce the instance of Vertex Cover by removing
I ∪ C of a crown decomposition. There are some methods that find certain
crown decompositions of a graph and result in a linear-vertex kernel for Vertex
Cover [2].

In this paper, we will use d-bounded decomposition, which extends the defini-
tion of crown decompositions and Lemma 1. Let A and B be two disjoint vertex
subsets of a graph G. A full d′-star packing from A to B is a set of |A| vertex-
disjoint d′-stars with centers in A and leaves in B. The third item in Definition 1
means that there is a full 1-star packing from C to I. We define the following
decomposition.

Definition 2 [d−BoundedDecomposition]. A d-bounded decomposition of a
graph G = (V,E) is a partition of the vertex set of G into four sets I, C, T and
J such that

(1) any vertex in I ∪ T is of degree ≤ d in the induced subgraph G[V \ C],
(2) there are no edges between I and J , and
(3) there is a full (d + 1)-star packing from C to I.

An illustration for d-bounded decompositions is given in Fig. 1(b). We have
the following Lemma 2 for d-bounded decompositions. This lemma can be derived
from the lemmas in [14], although d-bounded decomposition is not formally
defined in [14].

Lemma 2. Let (I, C, T, J) be a d-bounded decomposition of G. Then (I, C) sat-
isfies the local optimality condition in Theorem3, i.e., K ′ ∪ C is a minimum
d-degree deletion set of G for any minimum d-degree deletion set K ′ of the
induced subgraph G[V \ (I ∪ C)].

By Lemma 2, we can reduce an instance by removing I ∪ C if the graph
has a d-bounded decomposition (I, C, T, J). This is the main idea how we get
Theorem 3 and kernels for our problem. Here arises a problem how to find a d-
bounded decomposition (I, C, T, J) of a graph such that I �= ∅ if it exists. First,
we give a simple observation.

Observation 1. Let R be a set of vertices v such that any vertex in N [v] is of
degree ≤ d. Then (I = R,C = ∅, T = N(R), J = V \ (I ∪ T)) is a d-bounded
decomposition of G.

On a Generalization of Nemhauser and Trotter’s 447

By Lemma 2 and Observation 1, we can reduce an instance by removing from
the graph the set B of vertices v such that any vertex in N [v] is of degree ≤ d.
We will introduce an algorithm that can find more d-bounded decompositions.

4 Algorithms

We first introduce an algorithm to find d-bounded decompositions of graphs,
based on which we can easily get an algorithm for the generalization of NT-
theorem in Theorem 3.

4.1 The Algorithm for Decompositions

First of all, we give the main idea of our algorithm to find a d-bounded decom-
position (I, C, T, J) of a graph G = (V,E). It contains three major phases.
Phase 1: find a partition (X,Y) of the vertex set V such that the maximum
degree in G[Y] is at most d.
Phase 2: find two subsets C ′ ⊆ X and I ′ ⊆ Y satisfying Basic Condition: there
is a full (d + 1)-star packing from C ′ to I ′ and there is no edge between I ′ and
X \ C ′.
Phase 3: iteratively move some vertices out of I ′ and some vertices out of C ′ to
make (I ′, C ′, T ′ = N(I ′)\C ′, J ′ = V \(I ′ ∪C ′ ∪T ′)) a d-bounded decomposition.

In fact, the first two phases of our algorithm are almost the same as that of
Fellows, Guo, Moser and Niedermeier’s algorithm [14]. However, in Phase 3, our
algorithm uses a different method to compute I ′ and C ′. This is critical for us
to get an improvement.

Phase 1. For Phase 1, we can find a maximal (d + 1)-star packing S and let
X = V (S). By the maximality of S, we know that X is a d-degree deletion set
and G[Y] has no vertex of degree > d. Then the partition (X,Y) satisfies the
condition in Phase 1. In order to obtain a good performance, our algorithm may
not use an arbitrary maximal (d + 1)-star packing S. When we obtain a new
(d + 1)-star packing S′ such that |S′| > |S| in our algorithm, we will update X
by letting X = V (S′).

Phase 2. After obtaining (X,Y) in Phase 1, our algorithm finds two special sets
C ′ ⊆ X and I ′ ⊆ Y in Phase 2. To find C ′ and I ′ satisfying Basic Condition, we
need to find a special ≤(d+1)-star packing from X to Y , which can be computed
by the algorithms for finding maximum matchings in bipartite graphs. Note that
the idea of computing ≤(d+1)-stars from X and Y has been used to solve some
other problems in references [11,16,25].

We consider the bipartite graph H = (X,Y,EH) with edge set EH being
the set of edges between X and Y in G, and are going to find a ≤(d + 1)-star
packing from X to Y in H. Note that a Y -vertex no adjacent to any vertex
in X will become a degree-0 vertex in H. We construct an auxiliary bipartite
graph H ′ = (X1 ∪ X2 ∪ . . . Xd+1, Y, E′

H), where each Xi (i = 1, 2, . . . , d + 1) is a
copy of X and a vertex vi ∈ Xi is adjacent to a vertex u ∈ Y if and only if the

448 M. Xiao

corresponding vertex v ∈ X is adjacent to u in H. For a vertex v ∈ X, we may
use vi to denote its corresponding vertex in Xi.

We find a maximum matching M ′ in H ′ by using a O(n1/2m)-time algo-
rithm [13,18]. Let M be the set of edges in H corresponding to the matching
M ′, i.e., an edge uv (u ∈ Y and v ∈ X) of H is in M if and only if uvi is
in M ′ for some vi corresponding to v. Edges in M are called marked and oth-
ers are called unmarked. Observe that since M ′ is a matching in H ′, we have
that |M | = |M ′|. The set of marked edges in H forms a ≤(d + 1)-star packing
S≤d+1. This is the ≤(d + 1)-star packing we are seeking for. It is also easy to
observe that

Lemma 3. Graph H has a ≤(d + 1)-star packing containing t edges if and only
if H ′ has a matching of size t.

Next, we analyze some properties of S≤d+1 and find C ′ and I ′ satisfying
Basic Condition based on these properties.

Let Sd+1 denote the set of (d + 1)-stars in S≤d+1. An X-vertex in a star
in Sd+1 is fully tagged. Then X ∩ V (Sd+1) is the set of fully tagged vertices. A
Y -vertex is untagged if it is adjacent to at least one vertex in X in H but not
contained in any star in S≤d+1. A path P in H that alternates between edges
not in M and edges in M is called an M -alternating path.

Lemma 4. If there is an M -alternating path P from an untagged vertex u ∈ Y
to a vertex v ∈ X in H, then v is fully tagged.

Next, we are going to set C ′ and I ′. If there is no untagged vertex, let C ′ = ∅.
Otherwise let C ′ be the set of X-vertices connected with at least one untagged
vertex by an M -alternating path in H. Let X ′ = X \ C ′. Let Y ′ be the set of
Y -vertices that is a leaf of a ≤(d + 1)-star in S≤d+1 that is centered at a vertex
in X ′, and I ′ = Y \ Y ′.

Lemma 5. The two sets C ′ and I ′ obtained above satisfy Basic Condition.

We describe the above progress to compute C ′ and I ′ as an algorithm
basic(G,X, Y) in Fig. 2, which will be used as a subalgorithm in our main
algorithm.

Lemma 6. Algorithm basic(G,X, Y) runs in O(n1/2m) time.

Note that all untagged vertices will be in I ′. So if the size of Y is large, for
example |Y | > (d + 1)|X|, we can guarantee that there is always some untagged
vertices and the set I ′ returned by basic(G,X, Y) is not an empty set.

Phase 3. After obtaining (C ′, I ′) from Phase 2, we look at the partition P =
(I ′, C ′, T ′ = N(I ′) \ C ′, J ′ = V \ (I ′ ∪ C ′ ∪ T ′)). Since there is no edge between
I ′ and X ′ = X \ C ′, we know that T ′ ⊆ Y and X ′ ⊆ J ′. Then there is no
edge between I ′ and J ′. The partition P satisfies Conditions (2) and (3) in
Definition 2 for d-bounded decompositions. Next, we consider Condition (1). Let
G∗ = G[V \C ′]. Any vertex in I ′ is of degree ≤ d in G∗, because G[Y] = G[V \X]
has maximum degree ≤ d and I ′-vertices are not adjacent to any vertex in X\C ′.

On a Generalization of Nemhauser and Trotter’s 449

Input: A graph G = (V,E) and a partition (X,Y) of the vertex set V .
Output: Two sets C ⊆ X and I ⊆ Y satisfying the Basic Condition.

1. Compute the bipartite graph H and the auxiliary bipartite graph H .
2. Compute a maximum matching M in H and the corresponding edge set M and

the ≤(d + 1)-star packing S≤d+1 in H.
3. Let C be ∅ if there is no untagged vertex, and the set of X-vertices connected

with at least one untagged vertex by an M -alternating path in H otherwise. Let
X ← X\C . Let Y be the set of Y -vertices each of which is a leaf of a ≤(d+1)-star
centered at a vertex in X and let I ← Y \ Y .

4. Return (C , I).

Fig. 2. Algorithm basic(G, X, Y)

Although T ′ = N(I ′) \ C ′ ⊆ Y , vertices in T ′ is possible to be of degree > d in
G∗. In fact, we only know that each vertex in T ′ is of degree ≤ d in G[Y]. But
in G∗, every T ′-vertex is adjacent to some vertices in X ′ = X \ C ′ and thus can
be of degree > d. So Condition (1) may not hold. We will move some vertices
out of C ′ and I ′ to make the decomposition satisfying Condition (1).

Let B be the set of T ′-vertices that are of degree > d in G∗. Note that any
vertex in B is adjacent to some vertices in X. We call vertices in NI′(B) =
N(B) ∩ I ′ bad vertices. Note that B is not an empty set if and only if NI′(B) is
not an empty set. If B = ∅, then Condition (1) holds directly. For the case that
B �= ∅, i.e., NI′(B) �= ∅, our idea is to update I ′ by removing NI′(B) out of I ′.
However, after moving some vertices out of I ′, there may not be a full (d+1)-star
packing from C ′ to I ′ anymore. So after moving NI′(B) out of I ′ we invoke the
algorithm basic(G[C ′ ∪ I ′], C ′, I ′) for Phase 2 on the subgraph G[C ′ ∪ I ′] to
find new C ′ and I ′, and then check whether there are new bad vertices or not.
We do these iteratively until we find a d-bounded decomposition, where no bad
vertex exists. In the returned d-bounded decomposition, I ′ and C ′ may become
empty. However, we can guarantee I ′ �= ∅ when the size of the graph satisfies
some conditions. We analyze this after describing the whole algorithm.

The Whole Algorithm for Decomposition. Our algorithm decomposition
(G) presented in Fig. 3 is to compute two subsets of vertices C and I of the input
graph G such that (I, C, T = N(I) \ C, J = V \ (I ∪ C ∪ T)) is a d-bounded
decomposition of G.

Steps 3, 4 and 6 in decomposition(G) are the same steps in basic(G,X, Y).
Here we add Step 5 into these steps, which is used to update the (d + 1)-star
packing S. In decomposition(G), Steps 1, 2 and 5 are corresponding to Phase 1,
Steps 3, 4 and 6 are corresponding to Phase 2, and Steps 7 and 8 are correspond-
ing to Phase 3. Note that Step 8 will also invoke basic(G,X, Y).

450 M. Xiao

Input: A graph G = (V,E).
Output: Two subsets of vertices C and I such that (I, C, T = N(I) \ C, J = V \ (I ∪
C ∪ T)) is a d-bounded decomposition.

1. Find a maximal (d + 1)-star packing S in G.
2. X ← V (S) and Y ← V \ X.
3. Compute the bipartite graph H and the auxiliary bipartite graph H .
4. Compute a maximum matching M in H and the corresponding edge set M and

the ≤(d + 1)-star packing S≤d+1 in H.
5. Let Sd+1 be the set of (d + 1)-stars in S≤d+1.

If {|Sd+1| > |S|},
then S ← Sd+1 and goto Step 2.

6. Let C be ∅ if there is no untagged vertex, and be the set of X-vertices connected
with at least one untagged vertex by an M -alternating path in H otherwise. Let
X ← X \ C . Let Y be the set of leaves of ≤(d + 1)-stars in S≤d+1 centered at
vertices in X and let I ← Y \ Y .

7. Compute the set NI (B) of bad vertices based on C and I .
8. If {NI (B) = ∅},

then I ← I \ NI (B), (C , I) ← basic(G[C ∪ I], C , I), and goto Step 7.
9. Return (C = C , I = I).

Fig. 3. Algorithm decomposition(G)

Lemma 7. The two vertex sets C and I returned by decomposition(G) make
(I, C, T = N(I) \ C, J = V \ (I ∪ C ∪ T)) a d-bounded decomposition.

We can prove the following two important lemmas.

Lemma 8. Algorithm decomposition(G) runs in O(n3/2m) time and returns
(C, I) such that (I, C, T, J) is a d-bounded decomposition of G, where T = N(I)\
C and J = V (G) \ (I ∪ C ∪ T).

Lemma 9. Algorithm decomposition(G) returns (C, I) such that

|V \ (C ∪ I)| ≤ (d3 + 4d2 + 5d + 3)α(G).

4.2 The Algorithm for Theorem3

Lemma 9 can get the size condition in Theorem 3 directly. We use the following
algorithm in Fig. 4 for Theorem 3.

From the second iteration of Step 2 in BDD(G), each execution of I ← I ∪ I ′

will include at least one new vertex to I. So decomposition(G[V \ (C ∪ I)]) will
be called for at most n + 1 times. Algorithm BDD(G) runs in O(n5/2m) time.
Furthermore, if decomposition(G′ = G[V \ (C ∪ I)]) returns two empty sets,
then by Lemma 9 we have |V (G′)| = |V (G′)\(C ∪I)| ≤ (d3+4d2+5d+3)α(G′).
These together with Lemmas 8 and 9 imply Theorem 3.

On a Generalization of Nemhauser and Trotter’s 451

Input: A graph G = (V,E).
Output: Two subsets of vertices C and I satisfying the conditions in Theorem 3.

1. C, I ← ∅.
2. Do { (C′, I ′) ← decomposition(G[V \ (C ∪ I)]), C ← C ∪ C′ and I ← I ∪ I ′ }

while I ′ �= ∅.
3. Return (C, I).

Fig. 4. Algorithm BDD(G)

5 Concluding Remarks

In this paper, we provide a refined version of the generalized Nemhauser-Trotter-
Theorem, which applies to Bounded-Degree Vertex Deletion and for any
d ≥ 0 can get a linear-vertex problem kernel for the problem parameterized by
the solution size. This is the first linear-vertex kernel for the case that d ≥ 3.
Our algorithms and proofs are based on extremal combinatorial arguments, while
the original NT-Theorem uses linear programming relaxations [22]. It seems no
way to generalize the linear programming relaxations used for the original NT-
Theorem to Bounded-Degree Vertex Deletion [14]. A crucial technique
in this paper is the d-bounded decomposition. To find such kinds of decomposi-
tions, we follow the ideas to find crown decompositions [2] and the algorithmic
strategy in [14]. However, we use more ticks and can finally obtain the linear
size condition.

As pointed out by Fellows et al. [14], the results for Bounded-Degree
Vertex Deletion in this paper can be modified for the problem of packing
stars. We believe that the new decomposition technique can be used to get local
optimization properties and kernels for more deletion and packing problems.

References

1. Abu-Khzam, F.N., Collins, R.L., Fellows, M.R., Langston, M.A., Suters, W.H.,
Symons, C.T.: Kernelization algorithms for the vertex cover problem: theory and
experiments. In: ALENEX 2004, pp. 62–69. ACM/SIAM (2004)

2. Abu-Khzam, F.N., Fellows, M.R., Langston, M.A., Suters, W.H.: Crown structures
for vertex cover kernelization. Theor. Comput. Syst. 41(3), 411–430 (2007)

3. Balasundaram, B., Butenko, S., Hicks, I.V.: Clique relaxations in social network
analysis: the maximum k-plex problem. Oper. Res. 59(1), 133–142 (2011)

4. Bar-Yehuda, R., Rawitz, D., Hermelin, D.: An extension of the Nemhauser & Trot-
ter theorem to generalized vertex cover with applications. SIAM J. Discrete Math.
24(1), 287–300 (2010)

5. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted
vertex cover problem. Ann. Discrete Math. 25, 27–45 (1985)

6. Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On bounded-degree ver-
tex deletion parameterized by treewidth. Discrete Appl. Math. 160(1–2), 53–60
(2012)

452 M. Xiao

7. Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further
improvements. J. Algorithms 41(2), 280–301 (2001)

8. Chen, Z.-Z., Fellows, M., Fu, B., Jiang, H., Liu, Y., Wang, L., Zhu, B.: A linear
kernel for co-path/cycle packing. In: Chen, B. (ed.) AAIM 2010. LNCS, vol. 6124,
pp. 90–102. Springer, Heidelberg (2010)

9. Chleb́ık, M., Chleb́ıková, J.: Crown reductions for the minimum weighted vertex
cover problem. Discrete Appl. Math. 156, 292–312 (2008)

10. Chor, B., Fellows, M., Juedes, D.W.: Linear kernels in linear time, or how to save
k colors in O(n2) steps. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG
2004. LNCS, vol. 3353, pp. 257–269. Springer, Heidelberg (2004)

11. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: An improved FPT
algorithm and a quadratic kernel for pathwidth one vertex deletion. Algorithmica
64(1), 170–188 (2012)

12. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. J. ACM 61(4), 23:1–23:27 (2014)

13. Even, S., Tarjan, R.E.: An O(n2.5) algorithm for maximum matching in general
graphs. In: FOCS 1975, pp. 100–112 (1975)

14. Fellows, M.R., Guo, J., Moser, H., Niedermeier, R.: A generalization of Nemhauser
and Trotter’s local optimization theorem. J. Comput. Syst. Sci. 77, 1141–1158
(2011)

15. Fellows, M.R., Guo, J., Moser, H., Niedermeier, R.: A generalization of Nemhauser
and Trotter’s local optimization theorem. In: STACS 2009, pp. 409–420. IBFI
Dagstuhl (2009)

16. Fomin, F.V., Lokshtanov, D., Misra, N., Philip, G., Saurabh, S.: Hitting forbidden
minors: approximation and kernelization. In: STACS 2011, pp. 189–200 (2011)

17. Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover
problems. SIAM J. Comput. 11(3), 555–556 (1982)

18. Hopcroft, J., Karp, R.M.: An O(n2.5) algorithm for maximum matching in bipartite
graphs. SIAM J. Comput. 2(4), 225–231 (1973)

19. Khuller, S.: The vertex cover problem. SIGACT News 33(2), 31–33 (2002)
20. Komusiewicz, C., Huffner, F., Moser, H., Niedermeier, R.: Isolation concepts for

efficiently enumerating dense subgraphs. Theoret. Comput. Sci. 410(38–40), 3640–
3654 (2009)

21. Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.:
Faster parameterized algorithms using linear programming. ACM T. Algorithms
11(2), 15 (2014)

22. Nemhauser, G.L., Trotter, L.E.: Vertex packings: structural properties and algo-
rithms. Math. Program. 8, 232–248 (1975)

23. Nishimura, N., Ragde, P., Thilikos, D.M.: Fast fixed-parameter tractable algo-
rithms for nontrivial generalizations of vertex cover. Discrete Appl. Math. 152(1–
3), 229–245 (2005)

24. Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept.
J. Math. Sociol. 6, 139–154 (1978)

25. Thomassé, S.: A 4k2 kernel for feedback vertex set. ACM T. Algorithms 6(2),
32:1–32:28 (2010)

26. Xiao, M.: A note on vertex cover in graphs with maximum degree 3. In: Thai,
M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 150–159. Springer,
Heidelberg (2010)

	On a Generalization of Nemhauser and Trotter's Local Optimization Theorem
	1 Introduction
	2 Notation System
	3 The Decomposition Techniques
	4 Algorithms
	4.1 The Algorithm for Decompositions
	4.2 The Algorithm for Theorem??

	5 Concluding Remarks
	References

