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Abstract. We present linear-time algorithms to construct tree-like
Voronoi diagrams with disconnected regions after the sequence of their
faces along an enclosing boundary (or at infinity) is known. We focus
on the farthest-segment Voronoi diagram, however, our techniques are
also applicable to constructing the order-(k+1) subdivision within an
order-k Voronoi region of segments and updating a nearest-neighbor
Voronoi diagram of segments after deletion of one site. Although tree-
structured, these diagrams illustrate properties surprisingly different
from their counterparts for points. The sequence of their faces along
the relevant boundary forms a Davenport-Schinzel sequence of order ≥ 2.
Once this sequence is known, we show how to compute the corresponding
Voronoi diagram in linear time, expected or deterministic, augmenting
the existing linear-time frameworks for points in convex position with
the ability to handle non-point sites and multiple Voronoi faces.

1 Introduction

It is well known that the Voronoi diagram of points in convex position can be
computed in linear time, given the order of their convex hull [1]. Linear-time
constructions also exist for a class of related diagrams such as the farthest-point
Voronoi diagram, computing the medial axis of a convex polygon, and deleting
a point from the nearest-neighbor Voronoi diagram. In an abstract setting, a
Hamiltonian abstract Voronoi diagram can be computed in linear time [9], given
the order of Voronoi regions along an unbounded simple curve, which visits each
region exactly once and can intersect each bisector only once. This construction
has been extended recently to include forest structures [5] under similar condi-
tions where no region can have multiple faces within the domain enclosed by
the curve. The medial axis of a simple polygon can also be computed in linear
time [8]. It is therefore natural to ask what other types of Voronoi diagrams can
be constructed in linear time.

Classical variants of Voronoi diagrams such as higher-order Voronoi diagrams
for sites other than points, had surprisingly been ignored in the literature of
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computational geometry until recently [4,13]. Given a set S of n simple geo-
metric objects in the plane, called sites, the order-k Voronoi diagram of S is
a partitioning of the plane into regions such that every point within a region
has the same k nearest sites. For k = 1, this is the nearest-neighbor Voronoi
diagram and for k = n − 1 it is the farthest-site Voronoi diagram of S. Despite
similarities, these diagrams for non-point sites, e.g., line segments, illustrate fun-
damental structural differences from their counterparts for points, such as the
presence of disconnected regions (see also [2,6,10]). This had been a gap in the
computational geometry literature, until recently, as segment Voronoi diagrams
are fundamental to problems involving proximity among polygonal objects. This
paper contributes further in closing this gap. For more information on Voronoi
diagrams see the book of Aurenhammer et al. [3]. For application examples of
higher order segment Voronoi diagrams see, e.g., [11] and references therein.

In this paper we give linear-time algorithms (expected and deterministic)
for constructing tree-like Voronoi diagrams with disconnected regions, after the
sequence of their faces within an enclosing boundary (or at infinity) is known. We
focus on the farthest-segment Voronoi diagram, however, the same techniques
are applicable to constructing the order-(k+1) subdivision within a given order-k
segment Voronoi region, and updating in linear time the nearest-neighbor seg-
ment Voronoi diagram after the deletion of one site. Interestingly, the latter two
problems require computing initially two different tree-like diagrams. A major
difference from the respective problems for points is that the sequence of faces
along the relevant enclosing boundary forms a Davenport-Schinzel sequence of
order at least two,1 in contrast to the case of points, where no repetition can
exist. Repetition introduces several complications, including the fact that the
sequence of Voronoi faces along the relevant boundary for a subset of the origi-
nal segments, S′ ⊂ S, is not a subsequence of the respective sequence for S. In
addition, such a subsequence may not even correspond to a Voronoi diagram.
Thus, the intermediate diagrams computed by our algorithms are interesting
on their own right. They have the structural properties of the relevant segment
Voronoi diagram, however, they do not correspond to such a diagram nor are
they instances of abstract Voronoi diagrams.

The purpose of this paper is to extend the paradigm of the existing linear
constructions for tree-structured diagrams beyond the case of points in convex
position [1]. Our goal is to generalize fundamental techniques known for points
to more general objects so that the computation of their basic diagrams can
be unified, despite their structural differences. As a byproduct we also improve
the time complexity of the basic iterative approach to construct the order-k
segment Voronoi diagram to O(k2n + n log n) from the standard O(k2n log n)
[13], and also updating a nearest neighbor diagram after deletion of one site in
time proportional to the number of updates performed in the diagram.

1 Order-3 for the farthest-segment Voronoi diagram [2,12], order-4 for the order-k
segment Voronoi diagram (easy to derive from [13]), order-2 for disjoint segments or
the corresponding abstract Voronoi diagrams [10,13].
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2 Preliminaries and Definitions

Let S be a set of arbitrary line segments in R
2; segments in S may intersect or

touch at a single point. The distance between a point q and a line segment si

is d(q, si) = min{d(q, y) | y ∈ si}, where d(q, y) denotes the ordinary distance
between two points q, y in the L2 (or the Lp) metric. The bisector of two segments
si, sj ∈ S is b(si, sj) = {x ∈ R

2 | d(x, si) = d(x, sj)}. For disjoint segments,
b(si, sj) is an unbounded curve that consists of a constant number of pieces,
where each piece is a portion of an elementary bisector between the endpoints
and open portions of si, sj . If two segments intersect at point p, their bisector
consists of two such curves intersecting at p.

The farthest Voronoi region of a segment si is freg(si) = {x ∈ R
2 | d(x, si) >

d(x, sj), 1 ≤ j ≤ n, j �= i}. For disjoint line segments or line segments that
intersect but do not touch at endpoints, the order-k Voronoi region of a set
H, where H ⊂ S, |H| = k, and 1 ≤ k ≤ n − 1, is k-reg(H) = {x | ∀s ∈
H,∀t ∈ S \ H d(x, s) < d(x, t)}. For an extension of this definition to line
segments forming a planar straight-line graph, see [13]. Note, for k = n − 1,
freg(si) = k-reg(S \ {si}). The (non-empty) farthest (resp., order-k) Voronoi
regions of the segments in S, together with their bounding edges and vertices,
define a partition of the plane, called the farthest-segment Voronoi diagram,
denoted FVD(S), see Fig. 1(a) (resp., order-k Voronoi diagram). Any maximally
connected subset of a Voronoi region is called a face.
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Fig. 1. [12] (a) FVD(S), S = {s1, . . . , s5}; (b) its farthest hull; (c) Gmap(S)

A farthest Voronoi region freg(si) is non-empty and unbounded in direction
φ if and only if there exists an open halfplane, normal to φ, which intersects all
segments in S but si [2]. The line �, normal to φ, bounding such a halfplane, is
called a supporting line. The direction φ (normal to �) is referred to as the hull
direction of � and it is denoted by ν(�). An unbounded Voronoi edge separating
freg(si) and freg(sj) is a portion of b(p, q), where p, q are endpoints of si and
sj , such that the line through pq induces an open halfplane that intersects all
segments in S, except si, sj (and possibly except additional segments incident
to p, q). Segment pq is called a supporting segment ; the direction normal to it
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pointing to the inside of this halfplane is denoted by ν(pq) and is called the hull
direction of pq. A segment si ∈ S such that the line � through si is supporting,
is called a hull segment ; its hull direction is ν(si) = ν(�), normal to �. The
closed polygonal line obtained by following the supporting and hull segments in
the angular order of their hull directions is called the farthest hull. Figures 1(a)
and (b) illustrate a farthest-segment Voronoi diagram and its hull respectively.
In Fig. 1(b), supporting segments are shown in dashed lines, and hull segments
are shown in bold. Arrows indicate the hull directions of all supporting and hull
segments. For more information see [12].

The Gaussian map of FVD(S), denoted Gmap(S), (see Fig. 1(c)) provides a
correspondence between the faces of FVD(S) and a circle of directions K [12].
K can be assumed to be a unit circle, where each point x on K corresponds to
a direction as indicated by the radius of K at x. Each Voronoi face is mapped
to an arc on K, which represents the set of directions along which the face is
unbounded. An arc is delimited by two consecutive hull directions of supporting
segments. The Gmap(S) can be viewed as a cyclic sequence of consecutive arcs
on K, where each arc corresponds to one face of FVD(S). Two neighboring
arcs α, γ are separated by the hull direction ν(α, γ) of a supporting segment
pq (ν(α, γ) = ν(pq)); ν(α, γ) is the direction towards infinity of the relevant
portion of bisector b(p, q). The arc of a hull segment is called a segment arc
and consists of two sub-arcs separated by the hull direction ν of the segment,
where each sub-arc corresponds to an endpoint of the hull segment. An arc that
corresponds to a single endpoint of a segment is called a single-vertex arc. The
Gmap(S) can be computed in O(n log n) time (or output-sensitive O(n log h)
time, where h = |Gmap(S)|) [12].

The standard point-line duality transformation T offers a correspondence
between the faces of FVD(S) and envelopes of wedges [2]. A segment si = uv
corresponds to a lower wedge, defined by the lower envelope of T (u) and T (v)
(see, e.g., Fig. 5), and to an upper wedge defined as the area above the upper
envelope of T (u), T (v). Let E (resp., E′) be the boundary of the union of the
lower (resp., upper) wedges. The faces of FVD(S) correspond exactly to the edges
of E and E′ [2]. Let the upper and lower Gmap be the portion of Gmap(S) above
and below the horizontal diameter of K respectively.

There is a clear correspondence between E (resp., E′) and the upper (resp.,
lower) Gmap: the vertices of E are exactly the hull directions of supporting
segments on the upper Gmap and the apexes of wedges in E are exactly the
hull directions of hull segments [12]. In fact, any x-monotone path π in the
arrangement of upper (resp., lower) wedges can be transformed into a sequence
of arcs in the portion of K above (resp., below) its horizontal diameter. Each
edge of π, portion of T (u), corresponds to an arc on K for u, and each vertex of
π, which is an intersection point T (u) ∩ T (v), corresponds to the hull direction
ν(uv) of the supporting segment uv.

Throughout this paper, given an arc α, let sα denote the segment in S that
induces α.
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3 The Farthest Voronoi Diagram of a Sequence

Let G be a sequence of arcs on the circle of directions K, corresponding to a pair
of x-monotone paths in the dual space, one in the arrangement of upper (resp.
lower) wedges. No arcs in the sequence can overlap and no gaps are allowed. We
call G an arc sequence. Consecutive arcs of the same segment in G are assumed
unified into a single maximal arc.

In the following we define the farthest Voronoi diagram of such an arc
sequence G, FVD(G). For G = Gmap(S), FVD(G) = FVD(S). The diagrams
of such sequences appear as intermediate diagrams in the process of computing
FVD(S), however, they do not correspond to any type of segment Voronoi dia-
gram. We first define such a diagram and then present an arc deletion and arc
insertion operation, which constitute the basis for our algorithms.

Given an arc α ∈ G and a point x ∈ R
2, x �∈ sα, let r(x, sα) denote the ray

emanating from x in the direction −→px, where p is the point in sα closest to x (see
Fig. 2). We say that x is attainable from α if the direction of r(x, sα) is contained
in α. A point x in the interior of sα is attainable from α if ν(sα) is in α (i.e., if
α is a segment arc). An endpoint of sα is attainable from all its corresponding
arcs (see Sect. 2).

Let d(x, α) = d(x, sα), if x is attainable from α, and let d(x, α) = −∞, other-
wise. The locus of points attainable from arc α is called the attainable region of
α, R(α). Figure 2 illustrates the attainable regions of arcs α1, α2, and β, shaded.
Intuitively, an arc α exists only for points within its attainable region (i.e., α is
relevant exclusively within R(α) and it should not be considered outside).
Remark 1. For arcs α1, α2 ∈ G of the same segment sα, R(α1)∩R(α2)\{sα} = ∅.

Given two arcs α, β (sα �= sβ) we define their arc bisector by b(α, β) =
b(sα, sβ) ∩ R(α) ∩ R(β). If sα = sβ and α, β are consecutive, then b(α, β) =
R(α) ∩ R(β) is called the artificial bisector of α, β. The farthest Voronoi region
of an arc α is now defined in the ordinary way

freg(α) = {x ∈ R
2 | d(x, α) > d(x, γ),∀ arc γ ∈ G, γ �= α}.

The subdivision of the plane derived by the farthest regions of all arcs in G and
their boundaries, is called the farthest Voronoi diagram of G, denoted FVD(G).
The closure of freg(α) is denoted by freg(α).
Definition 1. Let T (G) = R

2 \ ∪α∈Gfreg(α). If all edges of T (G) are portions
of arc bisectors, then G, T (G), and FVD(G) are all called proper.

For a proper sequence, T (G) is simply the graph structure of FVD(G). The
diagrams and sequences produced by our algorithms are always proper. Note,
however, that for an arbitrary arc sequence, T (G) may contain boundaries
of attainable regions and even two-dimensional regions. Figure 3(a) illustrates
FVD(G) for a proper arc sequence G, which consists of three maximal arcs of
segments s1, s4, and s5 and is derived from Gmap(S) of Fig. 1. Ray r indicates
an artificial bisector between two consecutive arcs of s5 (which have been uni-
fied into a single maximal arc for s5). Figure 3(b) illustrates FVD(G′′), where
G′′ contains an additional arc β of segment s3 (G′′ = G ⊕ β).
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Fig. 3. FVD(G) for an arc sequence of Fig. 1;
(a) FVD(G); (b) FVD(G′′), G′′ = G ⊕ β.

Lemma 1. For a proper arc sequence G, T (G) is a tree.

Proof (Sketch). Since G is proper, all the edges of T (G) are portions of arc
bisectors. Let x be a point on T (G) along arc bisector b(α, β). We first prove that
the entire ray r(x, sα) must be enclosed in freg(α), i.e., regions are unbounded.
This is because no arc bisector involving α can bound r(x, sα) as we walk on
it starting at x, unless an arc δ suddenly becomes attainable because r(x, sα)
intersects R(δ) at point z and d(z, δ) > d(z, α); but then z ∈ T (G) without being
on an arc bisector, a contradiction. It remains to show that T (G) is connected.
If T (G) contained two different components, there would be a face of a segment
sα inducing two non consecutive arcs in G, α1 and α2. But then freg(α1) and
freg(α2) would be neighboring, contradicting Remark 1. 
�

An arc sequence G is called a subsequence of Gmap(S) if every arc of G
entirely contains a corresponding arc of Gmap(S) induced by the same segment.
The arcs in G are simply expanded versions of the arcs in Gmap(S). The arcs
in Gmap(S) as well as their expanded versions in G are called original arcs. A
sequence G′ is called an augmented subsequence of Gmap(S) if G′ contains at
least one arc of Gmap(S) for every segment with an arc in G′. An augmented
subsequence consists of original arcs, which are expanded versions of the arcs
in Gmap(S), and new arcs, which do not correspond to arcs of Gmap(S). An
augmented subsequence G′, which has the same original arcs as G, is said to be
corresponding to G. Note that in the dual space, G and G′ no longer correspond
to envelopes of wedges, but to x-monotone paths that contain portions of these
envelopes. The intermediate sequences of diagrams produced by our algorithms
are always augmented subsequences of Gmap(S).

3.1 Deletion and Insertion of Arcs

Throughout our algorithms we use a deletion and a re-insertion operation for
original arcs in sequences derived from Gmap(S). The deletion operation pro-
duces subsequences of Gmap(S) that are not necessarily proper. As a result,
the insertion operation introduces new arcs, creating augmented subsequences,
which are always proper. Let G�β (resp., G⊕β) denote the arc sequence derived
from G after deleting from it (resp., inserting to it) arc β.



410 E. Khramtcova and E. Papadopoulou

(d)

γ

α

β

(a) (c)(b)

α
β

γ
α γ

sα

sβ

r

pα

Fig. 4. Sequence αβγ, sα = sγ . (a) The dual wedges; (b) G; (c) G � {β}; (d) The
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Arc Deletion. A subsequence G is derived from Gmap(S) by deleting arcs. When
an arc β is deleted from G, the neighboring arcs α and γ expand over β (see
Fig. 4(a)–(c)). Either both α and γ expand (see Figs. 4 and 5(a) illustrating
segments in the dual space) or one expands while the other shrinks (see Fig. 5(b)).
During the expansion, α and γ may change from being a single-vertex arc to a
segment arc. Since α and γ are original, they both remain present in G�{β}, and
their common endpoint becomes ν(α, γ). Assuming sα �= sγ , ν(α, γ) corresponds
to bisector b(α, γ) as obtained from b(sα, sγ). If sα = sγ , we let α and γ expand
until they reach ν(sβ), i.e., ν(α, γ) = ν(sβ). If sα = sβ then α expands to cover
the entire β and ν(α, γ) = ν(β, γ).

Remark 2. The artificial bisector b(α, γ) (for sα = sγ) is (or contains) a ray
perpendicular to sβ , emanating from the relevant endpoint of sα and extending
away from sβ (see Fig. 4(d)).
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γα γα

β

γα
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β γα γα β γα

γ

(b)

Fig. 5. Deleting and re-inserting β in sequence αβγ. (a) α and γ enlarge; (b) γ enlarges,
α shrinks. From left to right: the initial sequence; after deleting β; after re-inserting β.

Arc Insertion. Let G′ be a proper augmented subsequence of Gmap(S) and let
β be an original arc, β �∈ G′. Let α, γ be two consecutive original arcs in G′, such
that β is between α, γ in Gmap(S). A number of new arcs may lie between α, γ
in G′. To insert β in G′ there are several cases to consider. The insertion of arc
β in G′ corresponds to inserting freg(β) in FVD(G′). Figure 5 illustrates in dual
space the deletion and re-insertion of an arc β in a sequence αβγ.

Basic cases are as follows (assuming for simplicity that α, γ are consecutive
in G′): (1) sα, sβ , and sγ are all distinct, and ν(α, γ) is in β. This is the standard
case, resulting in αβγ, see Fig. 5(a). (2) sα = sγ . Then β is inserted over ν(sβ) =
ν(α, γ), resulting in αβγ, and freg(β) is inserted over the artificial bisector b(α, γ)
in FVD(G′), see Fig. 3. (3) Arc γ (equiv. α), as it appears expanded in G′, entirely
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contains β, see Fig. 5(b) (note that α had shrunk during the deletion of β). Then
the insertion of β splits γ in two arcs resulting in αγ′βγ, where γ′ is a new arc.
In FVD(G′), freg(β) splits freg(γ) into freg(γ) and freg(γ′). (4) sα = sβ (equiv.
sβ = sγ). Then α is split by ν(α, β) and one part becomes β. Note that ν(α, β)
is determined when α and β became consecutive in a deletion operation, and
that α, β cannot be neighbors in Gmap(S).

If α and γ are not consecutive in G′, a number of new arcs may be traced to
find the actual entry point for β between α and γ. The insertion of β may delete
a series of such consecutive new arcs. Assuming that G′ is proper, it is not hard
to show that G′′ = G′ ⊕ β is also a proper augmented subsequence of Gmap(S).

αβ

sβ
sα

αβ

(a)

sα
sδ α

γ

β

δ

αβ

γ
δ

sβ = sδ

sα = sγ

(b)

α

γ
δ

rβ

sα

sδ
rβ

α

γ

δ
sα = sγ

(c)

Fig. 6. FVD(G) and G. (a) G = Gmap(S) for S = {sα, sβ}; (b) G = Gmap(S) for
S = {sα, sδ}; (c) G = αγδ = Gmap(S) � β where S = {sα, sδ}

Note that arc sequences defined by two segments are always proper. Figure 6
illustrates such sequences and their Voronoi diagrams. Figures 6(a) and (b) show
FVD(S) and Gmap(S) for two disjoint and intersecting segments respectively.
Figure 6(c) illustrates FVD(G) for G = Gmap(S)�β, where S is the same as in
Fig. 6(b). In the latter figure, arcs α and γ (sα = sγ) become neighbors inducing
one maximal arc αγ; region freg(αγ) is shown shaded; it is split into freg(α) and
freg(γ) by the artificial bisector b(α, γ) = rβ ∪ sα.

4 A Randomized Linear Construction

Wesketch an expected linear-time algorithm to computeFVD(S), givenGmap(S).
It is inspired by the simple two-phase randomized approach of [7] for points in con-
vex position and uses the concepts of Sect. 3. Let α1, α2, . . . , αh be a random per-
mutation of arcs in Gmap(S), and let Ai = {α1, α2, . . . , αi}, 1 ≤ i ≤ h, be the
set of the first i arcs in this order. Let t be the largest index such that α1, . . . , αt

consists of arcs of only two segments that form exactly two maximal arcs.
The algorithm proceeds in two phases. Phase 1 computes the subsequence Gi,

t ≤ i < h, where Gh = Gmap(S), and Gi is obtained from Gi+1 by deleting arc
αi+1 as described in Sect. 3. The two neighbors of αi+1 in Gi+1 are recorded as a
tentative re-entry point for αi+1 during phase 2. Note that both neighbors may
correspond to the same segment or the segment of one neighbor may coincide
with sαi+1 . In phase 2, the algorithm computes incrementally G′

i and FVD(G′
i),
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for t < i ≤ h, starting with FVD(G′
t), G′

t = Gt. G′
t is proper as it consists

of exactly two maximal arcs. G′
i+1 is obtained from G′

i by inserting back αi+1

(G′
i+1 = G′

i ⊕αi+1). During the re-entry of αi+1 a new arc may be created, thus,
G′

i+1 �= Gi+1. The entry point for αi+1 is either an unbounded bisector (regular
or artificial) or an arc σ that entirely contains αi+1. In the latter case, a new arc
is created. At the end of phase 2 we obtain FVD(G′

h) = FVD(S) (G′
h = Gh).

In the full paper we prove: (1) the complexity of G′
i is O(i) despite the new

arcs; (2) the expected number of new arcs traced in a step of phase 2 is constant.
Then using backwards analysis we can derive the following theorem.

Theorem 1. Given Gmap(S), the FVD(S) can be computed in expected O(h)
time, where h is the complexity of FVD(S).

5 A Deterministic Linear Divide-and-Conquer Algorithm

We now augment the framework of Aggarwal et al. [1] for points in convex
position with techniques from Sects. 3, 4, and derive a linear-time algorithm to
compute FVD(S), given Gmap(S). Let G be a subsequence of Gmap(S), and let
G′ be a corresponding proper augmented subsequence such that the complexity
of G′ is O(|G|), where |G| denotes the number of arcs of the sequence G. Our
algorithm follows the flow of [9], which in turn follows [1].

1. Unite consecutive arcs of the same segment in G into single maximal arcs.
2. Color each arc of G red or blue by applying the following two rules:

(a) For each 5-tuple F of consecutive arcs αβγδε in G, compute FVD(F ′)
as follows: start with the sequence γδ, and consecutively insert the arcs
β, ε, α (in this order) resulting in FVD(F ′). (F ′ is a possibly augmented
version of F .) In FVD(F ′), if freg(γ) does not neighbor any region of
segments sα and sε, color γ red; else color γ blue.

(b) For each series of consecutive blue arcs, color red every other arc, except
the last one.

3. Let B (blue) be the sequence obtained from G by deleting all the red arcs.
Recursively compute FVD(B′). (B′ is a possibly augmented version of B.)

4. Partition the red arcs into crimson and garnet : Re-color as crimson at least
a constant fraction of the red arcs, such that for any two crimson arcs, if they
were inserted in FVD(B′), their Voronoi regions would not touch.

5. Insert the crimson arcs one by one in FVD(B′) resulting in FVD(V ′).
6. Let Gr (garnet) be the sequence obtained from G by deleting all blue and

crimson arcs. Recursively compute FVD(Gr′).
7. Merge FVD(V ′) and FVD(Gr′) into FVD(G′) so that |G′| is O(|G|).
8. For any arcs united in Step 1, subdivide their regions in FVD(G′) into finer

parts by inserting the corresponding artificial bisectors.

The recursion ends when the number of maximal arcs in G is at most five.
Then FVD(G′) can be directly computed in O(1) time and also enhanced as
indicated in Step 8. If all arcs in G are of the same segment, no diagram is
generated but instead G is returned as a list of arcs. In this case, in Step 7, we
obtain FVD(G′) by inserting this list of arcs in FVD(V ′) one by one.
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Step 2. Rules 2a and 2b guarantee that no two consecutive arcs in G are red
and no three consecutive arcs in G are blue. The insertion order in Rule 2a
guarantees that γ neighbors at most one new arc.

Step 4. To choose the crimson arcs we apply the combinatorial lemma of [1] on
(a modified) T (B′). The lemma states that for a binary tree T with n leaves
embedded in R

2, if each leaf of T is associated with a subtree of T and if for
any two successive leaves these subtrees are disjoint, then in O(n) time we can
choose a set of leaves, whose number is at least a constant fraction of n and
whose subtrees are pairwise disjoint. We associate each red arc β in G with a
unique leaf of T (B′), which would be the entry point for β in FVD(B′). If the
insertion of β splits an arc of B′ in two, then we also add an artificial bisector to
T (B′) to serve as an entry point for β. The leaf in T (B′) associated with β is in
turn associated with the incident subtree of T (B′), which would be intersected
by freg(β), if β were inserted in FVD(B′). The modified T (B′) satisfies the
requirements of the combinatorial lemma, and has complexity proportional to
|B′| plus the number of red arcs |R|.
Step 7. We obtain G′ and FVD(G′) by merging FVD(V ′) and FVD(Gr′). To keep
the complexity of G′ within O(|G|), we merge the two diagrams while discarding
parts that are guaranteed to contain no original arcs. Merging is done in two
steps: (1) identify starting points for the merge curves between the two diagrams,
and (2) trace the merge curves. Here, we identify starting points only for the
merge curves that are related to original arcs. Skipping a merge curve has the
effect of discarding the portion of one diagram that is bounded by it. This can
be safely done because any portions of the diagram that are associated with only
new arcs can not appear in FVD(S). G′ contains all the original arcs of V ′ and
Gr′; furthermore, |G′| is O(|V ′| + |Gr′|). Since G′ contains all the original arcs
of G, it is an augmented subsequence of Gmap(S) corresponding to G. It is not
hard to prove that G′ is proper.

G′ is an augmented subsequence of Gmap(S) corresponding to G, and the
recursive algorithm starts with G = Gmap(S). Thus, at the end of the algorithm,
the resulting arc sequence must be G′ = Gmap(S) (easy to see in dual space).

Lemma 2. |G′| is O(|G|).

Proof. Let m = |G| and S(m) = |G′|. Since Step 4 is performed by applying
the combinatorial lemma of [1], |Gr| ≤ q|R|, where 0 < q < 1 and |R| is the
number of red arcs (|R| = |G| − |B|). Thus, (following [1,9]) there exist positive
constants q1 and q2, q1 + q2 < 1, such that |B| ≤ q1|G| and |Gr| ≤ q2|G|. At
Step 4, at most one new arc is generated for every crimson arc inserted in B′,
thus, |V ′| = S(q1m) + O(m). At Step 7, |G′| ≤ |V ′| + |Gr′| + O(m). Thus,
|G′| ≤ S(q1m) + S(q2m) + O(m). Hense, S(m) = O(m). 
�

Since the size of the augmented subsequences is always kept bounded, the
time complexity can be analyzed similarly to [1]. We conclude:

Theorem 2. Given Gmap(S), the FVD(S) can be computed in O(h) time,
where h is the combinatorial complexity of FVD(S).



414 E. Khramtcova and E. Papadopoulou

Concluding Remarks

Theorems 1 and 2 apply also to computing the order-(k+1) subdivision within
an order-k Voronoi region in time proportional to the complexity of the region’s
boundary. It also applies to updating a nearest-neighbor segment Voronoi dia-
gram after the deletion of one segment in time proportional to the number of
updates in the diagram. In this paper we considered line segments, however, the
presented techniques are not specific to them. For example, the constructions
can be easily adapted for the respective farthest abstract Voronoi diagram (to
be described in the full paper). Note that the farthest abstract Voronoi diagram
can be constructed in expected O(n log n) time by a randomized incremental
construction [10], which is not related to the randomized linear-time approach
in this paper.
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