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Abstract. The local minimum degree of a graph is the minimum degree
that can be reached by means of local complementation. For any n, there
exist graphs of order n which have a local minimum degree at least
0.189n, or at least 0.110n when restricted to bipartite graphs. Regard-
ing the upper bound, we show that the local minimum degree is at most
3
8
n+o(n) for general graphs and n

4
+o(n) for bipartite graphs, improving

the known n
2

upper bound. We also prove that the local minimum degree
is smaller than half of the vertex cover number (up to a logarithmic
term). The local minimum degree problem is NP-Complete and hard to
approximate. We show that this problem, even when restricted to bipar-
tite graphs, is in W[2] and FPT-equivalent to the EvenSet problem,
whose W[1]-hardness is a long standing open question. Finally, we show
that the local minimum degree is computed by a O∗(1.938n)-algorithm,
and a O∗(1.466n)-algorithm for the bipartite graphs.

1 Introduction

Notations. Given a graph G = (V,E), ∼G denotes the neighbourhood relation
of G i.e., ∀u, v ∈ V , u ∼G v ⇔ {u, v} ∈ E. We consider simple (∀u ∈ V, u �∼ u),
undirected (u ∼ v ⇔ v ∼ u) graphs. The set NG(u) = {v | u ∼G v} is the
neighbourhood of u and its size δG(u) = |NG(u)| is the degree of u. δ(G) =
minu∈V δG(u) is the minimum degree of G and τ(G) is the vertex cover number
i.e., the size of the smallest set S such that if u ∼ v, then u ∈ S or v ∈ S. For
any D ⊆ V , OddG(D) = Δu∈DNG(u) = {v ∈ V | |NG(v) ∩ D| = 1 mod 2} is
the odd-neighbourhood of D, where Δ denotes the symmetric difference.

Local Complementation. Local complementation of a graph with respect to
one of its vertices consists in complementing the neighbourhood of this vertex:

Definition 1. The local complementation of a graph G with respect to one of its
vertices u is the graph G�u such that v∼G�uw iff (v∼Gw) xor (u∼Gv ∧u∼Gw).

The local complementation is an involution (G � u � u = G). Two graphs are
LC-equivalent if there exists a sequence of local complementation transforming
one into the other: G ≡LC H ⇔ ∃u0, . . . uk, G � u0 . . . � uk = H.
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Local complementation has been introduced by Kotzig [20]. The study of this
quantity is motivated by several applications: Bouchet [4,5] and de Fraysseix [9]
used local complementation to give a characterization of circle graphs, and Oum
[22] links the notion of vertex minor of a graph to LC-equivalence. A noticeable
property of local complementation proved by Bouchet [2] is that LC-equivalence
of graphs can be decided in time polynomial in the order of the graphs.

Cut Rank. Local complementation is related to the cut-rank function1 [2,22]:
given a graph G and a bipartition (A, V \A) of its vertices, cutrkG(A) is the rank
of the linear map LA : 2A → 2V \A = X → OddG(X) ∩ (V \A). LA is linear with
respect to the symmetric difference: LA(XΔY ) = LA(X)ΔLA(Y ). The cut-rank
can equivalently be defined as the rank of the cut-matrix, a sub-matrix of the
adjacency matrix. Notice that for any A, cutrkG(A) = cutrkG(V \A).

LC-equivalent graphs have the same cutrank (cutrkG(·) = cutrkG�u(·)) [3],
however the converse which was conjectured in [2], has been disproved by
Fon deer Flaass [12]: the counterexample involves two isomorphic Petersen
graphs which have the same cut-rank but which are not LC-equivalent.

LU-equivalence. More recently, local complementation has emerged as a key
operation in the field of quantum information theory. The graph state formal-
ism consists in representing a quantum state using a graph (see [15] for details).
This powerful formalism provides a graphical representation of quantum entan-
glement: each vertex represent a quantum bit (qubit) and the edges represent
intuitively the entanglement between the qubits. Since entanglement is a non
local property, the strength of the entanglement can only decrease when local
operations are applied on the quantum state, and as a consequence the entangle-
ment is invariant by local reversible operations. In the field of quantum informa-
tion theory this intuition is captured by the LU-equivalence of quantum states:
two quantum states have the same entanglement if and only if they are LU-
equivalent i.e., there is a local unitary operation transforming one state into the
other. LU-equivalence of quantum states can be naturally lifted to graphs as
follows: two graphs are LU-equivalent if and only if the corresponding quantum
states are LU-equivalent. Van den Nest [27] proved that LC-equivalent graphs
are LU-equivalent. Moreover Hein et al. [15] proved that LU-equivalent graphs
have the same cutrank. Thus LU-equivalence is weaker than LC-equivalence but
stronger than the cut-rank equivalence. Using Fon der Flaass’s counterexam-
ple based on the Petersen graph, one can show that there exist pairs of graphs
which are not LU-equivalent but which have the same cutrank [15]. LC- and LU-
equivalences were conjectured to coincide [25]. Indeed, LC- and LU-equivalence
actually coincide for several families of graphs [26,28], however a counterexample
of order 27 has been discovered using computer assisted methods [19].

1 It was used by Bouchet [2] and others under the name connectivity function, and
coined the cut-rank by Oum [22].
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Local Minimum Degree. In this paper we will focus on the minimum degree
up to local complementation called local minimum degree:

Definition 2. Given a graph G, the local minimum degree of G is

δloc(G) = min
H≡LCG

δ(H)

The local minimum degree has been used to bound the rate of some quantum
codes obtained by graph concatenation [1]. This quantity has also been used to
characterise the complexity of preparation of graph states [16] which are used as a
resource in measurement-based quantum computation [24] (a model of quantum
computation which is very promising in terms of physical implementation), as
well as blind quantum computation [6] for instance. The local minimum degree
is also used to bound the optimal threshold that can be achieved by graph-based
quantum secret sharing [13,21].

The local minimum degree is related to the cut-rank function and the smallest
set of the form D ∪ OddG(D):

Property 1 [16]. Given a graph G = (V,E),

δloc(G) + 1 = min
∅⊂D⊆V

|D ∪ OddG(D)| = min{|A| : A ⊆ V ∧ cutrkG(A) < |A|}

The second equation provides a cut-rank characterisation of the local mini-
mum degree which implies that two graphs which have the same cut-rank have
the same local minimum degree. As a consequence, since LU-equivalent graphs
have the same cut-rank function, they have the same local minimum degree, too.
Thus the local minimum degree is invariant for the three closely related, albeit
distinct, classes of equivalence based respectively on local complementation, local
unitary operations, and cut-rank functions.

Bounds on the Local Minimum Degree. The local minimum degree has
been studied for several families of graphs: the local minimum degree of the
hypercube is at least logarithmic in the order of the hypercube [16]; the local
minimum degree of a Paley graph Pn of order n is at least

√
n. There is no

known specific upper bound on the local minimum degree of Paley graphs
except that not all Paley graphs can have a linear local minimum degree (i.e.,
δloc(Pn) = Θ(n)), and the existence of an infinite number of Paley graphs with a
linear local minimum degree would imply the Bazzi-Mitter conjecture on elliptic
curves [17,18].

There is no known explicit construction which leads to a local minimum
degree greater than the square root of the order of the graph, however using
probabilistic methods, it has been proven that there exist graphs of order n
which have a local minimum degree larger than 0.189n [18]. There are even
bipartite graphs with a linear local minimum degree: for any n there exists a
bipartite graph of order n and local minimum degree at least 0.110n [18].

Regarding the upper-bounds, Property 1 implies that the local minimum
degree is at most half of the order of the graph, since no set larger than half of the
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vertices can have a full cut-rank. In Sect. 2, we improve this upper bound, proving
that for any graph of order n, its local minimum degree is at most 3

8n + o(n),
and n

4 + o(n) for bipartite graphs. We also prove that the local minimum degree
is smaller than half of the vertex cover number (up to a logarithmic term).

Complexity of the Local Minimum Degree. One motivation for studying
the complexity of computing the local minimum degree comes from the problem
of producing graphs with a ‘large’ local minimum degree. Indeed, there is no
known explicit construction of graphs with a local minimum degree linear in the
order of the graph, but a random graph has such a ‘large’ local minimum degree
with high probability. So to produce a graph with a large local minimum degree,
one can pick a graph at random and then double check that the local minimum
degree is actually ‘large’. However, computing the local minimum degree is hard,
even for bipartite graphs: the associated decision problem is NP-Complete [18]
and hard to approximate [18].

In Sect. 3, we investigate the parameterized complexity of the local mini-
mum degree problem and its restriction to bipartite graphs. We show that both
problems are FPT-equivalent to the so-called EvenSet problem, implying their
W[2]-membership. However, it does not imply any hardness result since the
W[1]-hardness of EvenSet is long standing open question [11].

In Sect. 4, we introduce exponential algorithms for computing the local min-
imum degree, mainly based on the improved upper bounds. We show that
the local minimum degree of any graph of order n can be computed in time
O∗(1.938n) and more interestingly that the local minimum degree of bipartite
graphs can be computed in time O∗(1.466n).

2 Upperbounds on the Local Minimum Degree

For improving the known bounds on the local minimum degree, we use as a
routine the fact that in any bipartite graph G = (V1, V2, E), there exists a
non empty subset of V1 which oddly dominates at most |V2|

2(1−2−|V1|) vertices, so
roughly speaking as long as V1 is not too small with respect to V2 there is a non
empty subset of V1 which oddly dominates at most half of the vertices of V2.
This fact is a direct consequence of the so called Plotkin bound [23] on linear
codes:

Lemma 1. For any bipartite graph G = (V1, V2, E), there exists a non empty
set D ⊆ V1 s.t.

|OddG(D)| ≤ |V2|
2(1 − 2−|V1|)

Proof. C := {OddG(D) : D ⊆ V1} is a linear binary code of length n = |V2|
and rank k = |V1|, where OddG(D) is identified with its indicator vector in
V2. According to the Plotkin bound [23], the minimum distance d of C is at
most n/(2(1 − 2−k)), thus there exists a non empty set D ⊆ V1 such that
|OddG(D)| ≤ |V2|/(2(1 − 2−|V1|)). �
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The local minimum degree can be bounded by the vertex cover number as
follows:

Lemma 2. Given a graph G of order n and vertex cover number τ(G) > 0,

2δloc(G) ≤ τ(G) + log2(τ(G)) + 1

Proof. Let G = (V,E) be a graph of order n, and let S be an independent set
of size α = n − τ(G), and R ⊆ S a subset of size k to be fixed later. Let G′ =
(R, (V \S)∪R,E′) be a bipartite graph s.t. for any u ∈ R, NG′(u) = {u}∪NG(u).
Notice that there are two copies of R in G′, one on each side of the bipartite
graph: there is a matching between these two copies of R, the other edges of
G′ are those of G between R and V \ S. According to Lemma 1 there exists
D ⊆ R′ s.t

|OddG′(D)| ≤ |V | − |S| + |R|
2(1 − 2−|R|)

=
τ(G) + k

2(1 − 2−k)

The odd-neighbourhood of D in G′ is related to the odd-neighbourhood of D in
G as follows: OddG′(D) = Δu∈DNG′(u) = Δu∈D({u}∪NG(u)) = DΔOddG(D).
Thus |OddG′(D)| = |D ∪ OddG(D)|. As a consequence, δloc(G) + 1 ≤ τ(G)+k

2(1−2−k)
.

– If �log2(τ(G) + 1)� ≤ n − τ(G), then we fix k = �log2(τ(G) + 1)�:

δloc(G) + 1 ≤ τ(G) + �log2(τ(G) + 1)�
2(1 − 2−
log2(τ(G)+1)�)

<
1
2
(τ(G) + log2(τ(G))) + 1 (1)

To prove the second inequality of Eq. (1), let τ(G) = 2r + y with y < 2r.
Notice that �log2(τ(G) + 1)� = r + 1, thus

δloc(G) + 1 ≤ 2r + y + r + 1
2(1 − 2−r−1)

Moreover, standard calculation shows that 2r+y+r+1
1−2−r−1 < 2r+y+log2(2r+y)+2

when r > 0. Thus 2δloc(G)+2 < τ(G)+log2(τ(G))+2. When r = 0, τ(G) = 1,
thus G is a star (and possibly some isolated vertices), so 2δloc(G) ≤ 2 =
τ(G) + log2(τ(G)) + 1.

– If �log2(τ(G) + 1)� > n − τ(G), then it is enough to prove that 2δloc(G) ≤ n
since τ(G) + log2(τ(G)) + 1 ≥ τ(G) + �log2(τ(G) + 1)� > n. For any set S of
size �n

2 � + 1, cutrkG(S) < |S| since |V \ S| < |S|, thus according to property
1, δloc(G) < �n

2 � + 1 ≤ n/2. �

Remark 1. In Lemma 2, the condition τ(G) > 0 only excludes the empty graph
and is used to guarantee that the logarithm is well defined. The bound is tight
for star graphs: δloc(Sn) = 1 and τ(Sn) = 1. This is the only tight case and when
τ(G) > 1, the proof can be modified to prove the following statement where the
constant factor is removed: if τ(G) > 1, 2δloc(G) ≤ τ(G) + log2(τ(G)).

The vertex cover number-based bound on the local minimal degree leads to
an improved general upper bound for bipartite graphs:
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Theorem 1. For any bipartite graph G of order n > 0,

δloc(G) <
n

4
+ log2 n

Proof. If n ≤ 2, the property is satisfied. Otherwise, since G is bipartite τ(G) ≤
�n
2 �, so according to Lemma 2, δloc(G) ≤ 1

2 (τ(G) + log2(τ(G)) + 1) ≤ n
4 +

1
2 log2(n/2) + 1

2 ≤ n
4 + 1

2 log2 n < n
4 + log2 n. �

Contrary to the bipartite case, the bound involving the vertex cover number
does not lead to an improved upper bound for non-bipartite graphs. However, we
prove that the local minimum degree of a graph of order n is at most 3

8n + o(n)
exploiting the structure of the kernels of the linear maps associated with the
cuts of the graph:

Theorem 2. For any graph G of order n > 0,

δloc(G) <
3
8
n + log2 n

Proof. For any integer 0 < k < n/2, let S be a subset of �n/2� + k ver-
tices. Let L : S → V \ S be the map D → OddG(D) \ S which is lin-
ear for the symmetric difference, i.e. L(D1ΔD2) = L(D1)ΔL(D2). Notice
that for any D ∈ Ker(L), D ∪ Odd(D) ⊆ S. According to the rank nul-
lity theorem, dim(Ker(L)) ≥ 2k − 1. Let R ⊆ S be a basis for Ker(L). Let
G′ = (R,S × {1, 2, 3}, E′) be a bipartite graph s.t. for any D ∈ R,NG′(D) =
D×{1} ∪ OddG(D)×{2} ∪ (OddG(D)ΔD)×{3}: the neighbourhood of D in G′

is the disjoint union of D, OddG(D) and DΔOddG(D). Notice that |R| ≥ 2k −1
and |S × {1, 2, 3}| = 3(�n/2� + k), so according to Lemma 1, there exists a non
empty R0 ⊆ R such that |OddG′(R0)| ≤

⌊
3
2 . �n/2+k

1−2−2k+1

⌋
.

Let F := ΔD∈R0D. Since R is a basis and R0 �= ∅, F �= ∅. More-
over OddG′(R0) = ΔD∈R0NG′(D) = ΔD∈R0(D × {1} ∪ OddG(D) × {2} ∪
(OddG(D)ΔD) × {3}) = F × {1} ∪ OddG(F ) × {2} ∪ (FΔOddG(F )) × {3}.
Thus |OddG′(R0)| = |F | + |OddG(F )| + |FΔOdd(F )| = 2|F ∪ OddG(F )|. As a
consequence,

|F ∪ OddG(F )| ≤
⌊

1
2

⌊
3
2
.
�n/2� + k

1 − 21−2k

⌋⌋
(2)

We choose k=�4 log2(n)/3� to guarantee |F ∪ OddG(F )| ≤ 3
8n+ log2(n)+

O(1). More precisely, notice that |F ∪ OddG(F )|≤ 3
8 . n+2�4 log2(n)/3

1−2×2−2�4 log2(n)/3� ≤ 3
8 .

n+8 log2(n)/3

1−8.n−8/3 which is strictly smaller than 3
8n + log2 n + 1 when n > 60. For

2 < n ≤ 61, one can double check by direct calculation that the bound in
Eq. 2 is actually strictly smaller than 3

8n + log2(n) + 1. Thus for any n > 2,
minD �=∅ |D ∪ OddG(D)| < 3

8n + log2 n + 1, so δloc(G) < 3
8n + log2 n. Finally, it

is easy to check that δloc(G) < 3
8n + log2 n also holds for n ≤ 2. �

Remark 2. Choosing k = �log2(n)/2� in the proof of Theorem 2 gives an asymp-
totically slightly better bound: δloc(G) ≤ 3/8n + 3/4 log2(n) + O(1).
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3 Parameterized Complexity

The decision problem associated with the local minimum degree is known to be
NP-complete and hard to approximate: there exists no k-approximation algo-
rithm for this problem for any constant k unless P=NP [18]. In this section we
consider the parameterized complexity of this problem, and its bipartite version.
Please refer to [10] for an introduction to parameterized complexity.

Local Minimum Degree : Bipartite Local Minimum Degree :
input: A graph G input: A bipartite graph G
parameter: An integer k parameter: An integer k
question: Is δloc(G) ≤ k? question: Is δloc(G) ≤ k?

We show that both problems are FPT-equivalent to the EvenSet problem [11]:

EvenSet:
input: A bipartite graph G = (R,B,E)
parameter: An integer k
question: Is there a non empty D ⊆ R, such that |D| ≤ k and OddG(D) = ∅ i.e.,
every vertex in B has an even number of neighbours in D?

To prove the FPT-equivalence of these three problems, first we prove that
EvenSet is harder than Local Minimum Degree, and then that Bipartite

Local Minimum Degree is harder than EvenSet.

Theorem 3. EvenSet is FPT-reducible to Local Minimum Degree.

Proof. Given an instance (G, k) of Local Minimum Degree, let (G′, k′) be an
instance of EvenSet where:
G′ = (A1 ∪ A2,∪A3, A4 ∪ A5, E1 ∪ E2 ∪ E3), k′ = 2k+2

∀i ∈ [1, 5], Ai = {ai,u,∀u ∈ V (G)}
E1 = {(a1,u, a4,u),∀u ∈ V (G)},
E2 = {(ai,u, a5,u),∀i ∈ {2, 3},∀u ∈ V (G)}
E3 = {(a2,u, ai,v),∀i ∈ {4, 5},∀{u, v} ∈ E(G)}

In other words, G′ consists of 5 copies Ais of V (G), there is a matching between
A1 and A4, and between A3 and A5. Moreover, the subgraph induced by A2∪A4

is the bipartite double of G, whereas subgraph induced by A2 ∪A5 the bipartite
double of G augmented with a matching.

– If (G, k) is a positive instance of Local Minimum Degree with a non
empty D ⊆ V (G) such that |D ∪ OddG(D)| ≤ k+1. Let D′ = {a1,u | u ∈
OddG(D)} ∪ {a2,u | u ∈ D} ∪ {a3,u | u ∈ OddG(D)ΔD}, thus D′ is composed of
the copy of D in A2, the copy of OddG(D) in A1 and the copy of DΔOddG(D)
in A3. Notice that OddG′(D′) = ∅, and D′ �= ∅ since D �= ∅. Moreover |D′| =
|OddG(D)| + |D| + |DΔOddG(D)| = 2|D ∪ OddG(D)| ≤ 2k + 2 = k′. Thus D′

makes (G′, k′) a positive instance of EvenSet.
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– If (G′, k′) is a positive instance of EvenSet with a non empty D ⊆ A1∪A2∪A3

of size at most k′ such that OddG′(D) = ∅. For i ∈ [1, 3], let Di = {u ∈
V (G) | ai,u ∈ D}. Notice that D1 = OddG(D2) and D3 = OddG(D2)ΔD2.
D �= ∅ implies D2 �= ∅, moreover |D2 ∪ OddG(D2)| = 1

2 (|D2| + |OddG(D2)| +
|OddG(D2)ΔD2|) = 1

2 |D| ≤ 1
2k′ = k+1, so D2 makes (G, k) a positive instance

of Local Minimum Degree. �

Corollary 1. Local Minimum Degree is in W[2].

W[2]-membership of Local Minimum Degree is not surprising in the sense
that not only EvenSet but all similar problems of graph domination with parity
conditions are known to be in W[2] [8]. We refine this W[2]-membership by
proving that both Local Minimum Degree and Bipartite Local Minimum

Degree are FPT-equivalent to EvenSet. They form a peculiar subclass of W[2]
for which no hardness results are known: the W[1]-hardness of EvenSet is a long
standing open question in parameterized complexity [11]. This contrasts with the
subclass of problems FPT-equivalent to the W[1]-hard OddSet problem which
contains problems like Weak Odd Domination and Quantum Threshold

[7,14].

Theorem 4. Bipartite Local Minimum Degree is FPT-reducible to
EvenSet.

Proof. If (G=(R,B,E), k) is a positive instance of EvenSet, then it is also a
positive instance of Bipartite Local Minimum Degree. But if (G, k) is a
positive instance of Bipartite Local Minimum Degree, it may fail to be a
positive instance of EvenSet mainly for two reasons:

(i) A set D such that |D ∪ OddG(D)| ≤ k+1 may not be a subset of R
(ii) For solving EvenSet, one wants to guarantee that OddG(D) = ∅.

Regarding the first point, a gadget with a local minimum degree larger than
k+1 is attached to each vertex in B to guarantee that no vertex of B can occur
in a set D such that |D ∪ Odd(D)| ≤ k+1. Concretely we can use a Paley graph
Pq which vertices are {0, . . . , q − 1} for q = 1 mod 4 a power of prime, and (i, j)
is an edge iff ∃x, i − j = x2 mod q. The local minimal degree of a Paley graph is
at least square root of its order. However to keep the bipartiteness of the graph
we use the bipartite double of a Paley graph rather than a Paley graph. Indeed,
it is known that the local minimum degree of a bipartite double graph is as large
as the local minimum degree of the original graph (δloc(G⊕2) ≥ δloc(G) [17]).
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Regarding the second point, each vertex of B is duplicated k times in such
a way that for any D ⊆ R if a vertex v ∈ B is in the odd neighbourhood of D
than its k copies are also in the odd-neighbourhood which contradicts the fact
that |D ∪ Odd(D)| is at most k + 1.

Concretely, let q be a prime number such that q ≥ k2 + 1 and q = 1 mod 4,
let (G′, k) be an instance of Bipartite Local Minimum Degree such that
G′ = (R ∪ P ′, P , EG ∪ EPaley), where P = ∪b∈B,i∈[0,k]Pb,i, P ′ = ∪b∈B,i∈[0,k]P

′
b,i

Pb,i={pb,i,r,∀r∈[0, q − 1]}, P ′
b,i={p′

b,i,r,∀r∈[0, q − 1]} EPaley= ∪b∈B,i∈[0,k] E
(b,i)
Paley

and E
(b,i)
Paley={(pb,i,r, p

′
b,i,r′),∀r, r′∈[0,q − 1] s.t. ∃�∈[0, q − 1], �2=r−r′ mod q}.

– If (G, k) is a positive instance of EvenSet with D⊆E s.t. OddG(D)=∅ then
OddG′(D)=∅ so (G′, k) is a positive instance of Bipartite Local Minimum

Degree.
– If (G′, k) is a positive instance of Bipartite Local Minimum Degree with
D s.t. |D∪OddG′(D)| ≤ k+1. For any b ∈ B, i ∈ [0, k], let D′

b,i = D∩(Pb,i∪P ′
b,i),

in the subgraph induced by Pb,i ∪ P ′
b,i |D′ ∪ OddG′[Pb,i∪P ′

b,i]
(D)| ≤ k + 1, thus

D′
n,i = ∅ since δloc(Paleyk2+1) > k. So D ⊆ R. Moreover if there exists

pb,i,0 ∈ OddG′(D) then ∀j ∈ [0, k], pb,j,0 ∈ OddG′(D), so |D ∪OddG′(D)| > k+1,
so by contradiction OddG′(D)=∅. Thus (G, k) is a positive of EvenSet. �

Corollary 2. Bipartite Local Minimum Degree and Local Minimum

Degree are FPT-equivalent to EvenSet.

W[1]-hardness of EvenSet is a long standing open problem, the FPT-
equivalence with (Bipartite) Local Minimum Degree might give some
more insights and open new perspectives on the parameterized complexity of
EvenSet.

4 Exponential Algorithms

In this section we introduce exact exponential algorithms for computing the local
minimum degree of a graph.

Property 2. The local minimum degree of a graph of order n can be computed
in time O∗(1.938n).

Proof. Thanks to Property 1 and Theorem 2, δloc(G)+1= min{|A| : |A| ≤ 3
8n +

log2(n) ∧ cutrkG(A)<|A|}. The algorithm consists in enumerating all subsets of
at most 3

8n+ log2(n) vertices and computing its cut-rank. The cut-rank can be
computed in polynomial time, so the complexity of this algorithm is O∗(2H( 3

8 )n)
where H(x)= − x log2 x − (1−x) log2(1−x) is the binary entropy function. �

Regarding the bipartite case, enumerating all the subsets of size at most n
4 +

log2(n) leads to a O∗(1.755n) algorithm. This naive algorithm can be improved:

Theorem 5. The local minimum degree of a bipartite graph of order n can be
computed in time O∗(1.466n).
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Proof. We use the following property of bipartite graphs: given a bipartite graph
G = (V1, V2, E), δloc(G) + 1 = min∅⊂D⊆V1 or ∅⊂D⊆V2 |D ∪ OddG(D)|. Indeed, for
any D ⊆ V1 ∪ V2, both (D ∩ V1) ∪ OddG(D ∩ V1) and (D ∩ V2) ∪ OddG(D ∩ V2)
are subsets of D ∪ OddG(D). Let |V1| = αn and |V2| = (1 − α)n. We assume
w.l.o.g. that α ≤ 1/2. Since V1 is a vertex cover set, according to Lemma 2,
δloc(G) ≤ α

2 n+ log2(αn)
2 . Thus to compute the local miminum degree, it is enough

to enumerate all sets D of size at most α
2 n + log2(αn)

2 in both V1 and V2 and
to compute their odd neighbourhood – which can be done in time polynomial
in n. There are

( αn
α
2 n+

log2(αn)
2

)
+

( (1−α)n
α
2 n+

log2(αn)
2

)
= O∗(2(1−α)nH( α

2(1−α) )) sets to

enumerate. Notice that α → (1 − α)H( α
2(1−α) ) is maximal for α0 = 0.3885, and

2(1−α0)H(
α0

2(1−α0) ) = 1.46557. �

5 Conclusion

After having shown that the local minimum degree is smaller than half of the
vertex cover number (up to a logarithmic term), we have improved the best
known upper bound on the local minimum degree, proving that it is at most
3
8n + o(n) and n

4 + o(n) for bipartite graphs. Moreover, we have investigated
the parametrized complexity of the problem, showing its W[2]-membership and
its FPT-equivalence with the EvenSet problem, even when restricted to bipar-
tite graphs. Finally, we have introduced a O∗(1.938n)-algorithm – O∗(1.466n)-
algorithm for the bipartite graphs – for computing the local minimum degree.

This is noticeable that the bipartite case evolves quite similarly to the general
case: same parameterized complexity, and upper bound and algorithm slightly
better in the bipartite case. It would be interesting to investigate other families
of graphs, in particular those defined by excluded vertex minors, in order to
identify a family of graphs which local minimum is large but easy to compute
or to approximate.
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