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Abstract. Proper learning from positive samples is a basic ingredient
for designing secure steganographic systems for unknown covertext chan-
nels. In addition, security requirements imply that the hypothesis should
not contain false positives. We present such a learner for k-term DNF
formulas for the uniform distribution and a generalization to ¢-bounded
distributions. We briefly also describe how these results can be used to
design a secure stegosystem.

1 Introduction

Digital steganography is a fairly new field of modern computer science concerned
with camouflaging the presence of secret data in legal communications. In the
general setting, a sender, often called Alice or the steganographer wishes to send a
hidden message to a recipient via a public channel, which is completely monitored
by an adversary called Warden or steganalyst. Taking a “typical” document Alice
tries to embed a secret message in it such that a steganalyst cannot determine
whether the secret message is present or not. In particular, Warden should have
little chances to distinguish original documents, called coverdocuments, from
altered ones called stegodocuments. This implies in general that the distributions
of coverdocuments and stegodocuments have to be fairly close.

A crucial component when modeling steganography and steganalysis is the
knowledge of the parties involved about coverdocuments. Considering different
levels of knowledge, various models have been defined and studied. For example,
if both the steganographer and the steganalyst have perfect knowledge about the
distribution of coverdocuments and these documents satisfy certain conditions,
secure steganography can be modeled and investigated by means of informa-
tion and coding theory, whereas steganalysis can be done by applying statistical
detection theory. But, though well-understood, such models are quite artificial
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and far away from reality (for more discussion, see [9]). The other extreme is to
assume that the steganographer a priori has no knowledge whatsoever about typ-
ical documents and can only get information using a sampling oracle. Even if the
steganalyst has full knowledge assuming the existence of secure cryptographic
one-way functions, provably secure steganography is possible [7], but any secure
steganographic system requires an exponential number of samples with respect
to the message length [4]. Thus, steganography becomes highly inefficient.

To be closer to the real world, newer approaches to steganalysis and steganog-
raphy assume some reasonable partial knowledge about the type of covertext
channel. Then steganalysis can be formulated as a binary classification prob-
lem and examined using methods from machine learning. This line of research
has currently received much attention (see e.g. [6,10,17]). However, learning
approaches to steganography have not been studied systematically so far.

As in real applications of steganography we assume that Alice knows that
the coverdocument distribution belongs to some class of distributions — she can
choose the media where to embed into. Besides that, she can only use a sampling
oracle to get information about the actual coverdocument distribution. Then
the steganographic encoding can be stated as a two-stage problem (for a formal
definition of steganography see Sect. 4):

(1) Algorithmic learning of the concrete distribution of coverdocuments and
(2) Generating a stegodocument that encodes a given piece of message.

Hence, the essential difficulties in constructing efficient algorithms arise because
of two reasons. First, a standard PAC approach to model this situation typically
fails because of a fundamental difference: only positive samples are available.
Second, algorithms for random generation of combinatorial objects from a given
(typically uniform) distribution, see e.g. [8], cannot be applied directly since the
generated objects have to encode given messages.

Most recently Liskiewicz et al. [12] have obtained several promising results
in generating stegodocuments. They have considered three families of coverdoc-
ument channels described by monomials, by decision trees (DTs), and by DNF
formulas, respectively, assuming uniform distribution of documents. The learn-
ing complexity of the corresponding concept classes in the general case ranges
from low up to high (assuming RP # N P). For these families of channels effi-
cient generic algorithms have been constructed that for a given description of the
coverdocuments, suitably manipulate the documents to embed secret messages,
even against a steganalyst with full knowledge. This solves Problem (2) above
and allows secure steganography assuming the coverdocument distributions can
be learned properly, i.e. such that the learning algorithm outputs a monomial,
resp. a DT, or a DNF expression as its hypothesis, when learning from positive
data only.

Notice the importance of the proper learning here. For example, it is well
known that k-term DNF formulas can be learned efficiently from positive samples
with respect to k-CNF formulas, i.e. such that the learning algorithm outputs a k-
CNF formula for the concept represented by an unknown k-term DNF. However,
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such a k-CNF representation of coverdocuments is useless for stegodocuments
generation, because one would have to find satisfying assignments for k-CNF
formulas which cannot be done efficiently in general. Unlike monomials and k-
CNF formulas, the problem whether DTs and DNF-formulas can be learned
properly from positive samples in an efficient way, remains open even for simple
probability distributions like the uniform one. This paper gives an affirmative
answer to this question for k-term DNFs.

Learnability of k-term DNF: Known Results. For the notion of learnabil-
ity, we loosely follow the PAC model. In the standard setting (i.e. with positive
and negative samples) it is not feasible to learn k-term DNF formulas properly in
a distribution-free sense for fixed k > 2 unless RP = N P. Learning k-term DNF
concepts for k > 4 remains infeasible even if allowing as hypothesis f(k)-term
DNF, for f(k) < (2k — 3) [14]. For unrestricted DNF formulas, it is infeasible
to learn with respect to DNF hypothesis, even if the number of terms in the
hypotheses is arbitrary large [1]. Assuming that samples are drawn from specific
distributions over the learning domain but still allowing positive and negative
samples, the situation changes drastically. Flammini et al. [5] have shown that
k-term DNF formulas are learnable (properly) in polynomial time using posi-
tive and negative samples drawn from g-bounded distributions (the ratio of the
probabilities D(x)/D(y) for elements in the support does not exceed ¢ for some
number ¢ > 1). This class is a natural generalization of the uniform distribution.
If the number of terms of the DNFs may grow, from [19] we know that n-term
DNF formulas over the uniform distribution can be learned using a polynomial
number of samples in quasi-polynomial time. However, the hypothesis space has
to be extended to (n - t)-term DNF with ¢ depending on the sample complexity.
Concerning steganographic applications one has to learn DNF formulas prop-
erly and from positive samples only. The next serious complication is to exclude
false positives in order to achieve steganographic security. In the distribution free
setting, this learning task can efficiently be mastered for 1-term DNF (monomi-
als) [18]. But it becomes infeasible for k-term DNF, with & > 2, and log-term
as well as for unrestricted DNF formulas [13]. There is a positive result for
monotone DNF (MDNF) formulas over the uniform distribution. It is possible
to learn log-term MDNF formulas from positive samples only [15]. The class
of k-term MDNFs can even be learned over ¢-bounded distributions from pos-
itive samples [11,16]. Also, a method for positively learning 2-term DNF over
g-bounded distributions is known [5]. Most recently De et al. [3] have shown that
DNF formulas have efficient learning algorithms from uniformly distributed pos-
itive samples, but instead of a k-term DNF hypothesis the learner outputs a
sampler. This model seems to be unsuitable for embedding secret messages effi-
ciently, because it is unknown how coverdocuments can be modified to securely
embed a given message without knowing an adequate k-term DNF hypothesis.

Our Contribution. The main result of this paper is an efficient learner without
false positives for k-term DNF formulas from positive samples with hypothesis
space identical to the concept class for arbitrary fixed k over g-bounded distri-
butions. The major challenge already occurs for the uniform distribution: false
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positives cannot be tolerated at all. Our solution works in two phases. The learner
switches from k-term DNF to k-CNF representation in phase 1 and then back
in the second phase. In more details, in the first phase k-term DNF formulas
are learned using k-CNF formulas with very high accuracy and without false
positives using a first sequence of positive samples.

In phase 2, we construct a set of maximal monomials that should cover most
of the k-CNF formula generated. The number of candidates for these monomials
could be extremely large. Thus, we have to design a mechanism to select a
suitable subset. This subset will still contain many more than £ monomials.
Finally, we apply tests with a second sequence of positive samples to select a
subset of size at most k as final hypothesis.

As a negative result, we show that it is impossible to learn unrestricted DNF
formulas without false positives. For g-bounded distributions learning n-term
DNF formulas requires an exponential number of positive samples regardless of
the hypothesis space. An overview of the current state of knowledge concerning
DNF learning is given in Table 1.

Table 1. Positive and negative (unless RP = N P) results for learning DNF formulas
from positive samples over several distributions in polynomial time.

Concept class Distribution-free | Uniform/g-bounded
1-term DNF (monomials) | yes [18] yes [18]

2-term DNF no [13] ves [5]

k-term DNF no [13] yes (Theorem 1)
log-term DNF no [14] open

unrestricted DNF no [14] no (Theorem 2)

2 Preliminaries

Let us start with some basic definitions. In the following, n will always denote
the number of variables and X = {0,1}" the set of binary strings of length n.
For a distribution D over X let sp(D) = {z € X | D(x) > 0} denote the
support of D. For ¢ > 1 such a distribution is called g-bounded if max{D(z) |
z €sp(D)} < ¢ -min{D(z) |z € sp(D)}.

For a Boolean formula ¢ let sat(¢) := {& € X | p(z)} denote the set of
assignments that satisfy ¢; sat(yp) will also be called the support of p. A k-CNF
formula 1) is given by a conjunction of clauses each containing at most k literals.
We may assume that ¢ does not contain tautological clauses (having a variable
and its negation simultaneously). A k-term DNF formula ¢ is a disjunction of at
most k& monomials. ¢ is called non-redundant if it does not contain monomials M
such that removing M from ¢ does not change sat(yp), in particular there are no
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identical monomials (that means having the same set of literals) or trivial mono-
mials with empty support (containing a variable and its negation). A monomial
M will be called shorter than a monomial M’ if it consists of less literals than
M’; we call M larger than M’ if |sat(M)| > |sat(M’)|. In this paper we con-
sider the family of concept classes {sat(p) C X | ¢ is a k-term DNF formula}
and proper learning of the classes from positive examples, i.e. we require that a
learner seeing only satisfying assignments outputs a k-term DNF formula.

The reader is assumed to be familiar with the standard concepts of PAC
theory (see e.g. [18]). Below we present only the definition of learnability of a
concept C from positive examples. This can be modeled by the condition that the
underlying distribution D on X fulfills sp(D) = C. Allowing false positives makes
the problem trivial because the hypothesis H = X would make errors D(C' A H)
with weight 0. We therefore define: A learns C from positive samples without false
positives if for every pair (C, D) of a concept C' € C and distribution D € D that
fulfills sp(D) = C its hypothesis satisfies: H C C and Pr[D(C\H) >¢] < §. A
concept class C with a set D of g-bounded distributions can be learned efficiently
if a learner exists with running time bounded by a polynomial in (1/¢,1/4,n,q).

3 Learning k-term DNF from Positive Samples

Flammini et al. [5] have presented a method for learning a k-term DNF formula ¢
for g-bounded distributions. In a first phase candidate monomials are generated
from positive samples in such a way that all monomials of ¢ having enough
assignments actually occur. But there are generally more, and some of these
monomials may have assignments that do not belong to sat(y¢). Therefore, in
the second phase, combinations of at most k£ candidate monomials are tested
against a set of positive and negative samples. If such a combination fulfills a
specific error bound then it becomes the output. It has been shown that with
high probability this yields an approximate hypothesis.

In the following we will develop a generalization of this method that is capa-
ble of positively learning k-term DNF formulas. The learner gets only positive
samples and is not allowed to generate false positives.

Computing Maximal Monomials from CNF-Formulas. It is known how
to learn a k-term DNF formula ¢ without false positives by using as hypothesis
space k-CNF formulas. In this case ((2n)*+! —Ind) /e positive samples are needed
[2,14,18]. The learner starts with the conjunction of all possible non-tautological
clauses of length at most k, of which there are at most (2n)*+!. Then clauses
not satisfied by positive samples are deleted.

Our first innovation will construct candidate monomials for ¢ by learning
a k-CNF representation ¢ for ¢ and extracting monomials from v afterwards.
We choose monomials M with sat(M) C sat(v) as large as possible. Generally,
for k > 3 it is NP-hard to find a single satisfying assignment for a k-CNF
formula. But here we already know a number of satisfying assignments, namely
the positive samples used to create 1. For this purpose, we define a criterion for
potential candidate monomials generated from 1 and a sample = € sat(v)).
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Definition 1. Let ¢ be a Boolean formula and x € sat(y). A monomial M is
(¢, x)-maximal if z € sat(M) C sat(v)) and there is no submonomial of M with
this property (a submonomial is obtained by removing some literals from M ).

Algorithm 1 given below computes such maximal monomials. It starts with
the monomial M = 1 and adds literals until sat(M) C sat(v) is satisfied. We
may assume that every clause of ¢ does not contain any variable more than once.

Lemma 1. For a k-CNF formula ¢ and x € sat(y) Algorithm 1 computes a
(1, x)-mazimal monomial. Its runtime is bounded by a polynomial py(n). For
every (¢, x)-mazimal monomial M there exists a sequence of literals selected in
line 10 such that the algorithm outputs M.

Input: k-CNF formula ¢ without tautological clauses; assignment x € sat(v)
Output: some (9, x)-maximal monomial M
M «— 1; remove every literal from 1 that is not satisfied by x;
while true do
foreach clause K in i do
if there is exactly one literal ¢ in K then
M — (M AZL);
remove all clauses that contain £ from 1;
end
end
if v is empty then return M;
select an arbitrary literal £’ from 1);
remove £’ from every clause in 1;
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Algorithm 1. MaxMonomial (v, x)

The learner to be defined below needs several (1, z)-maximal monomials, but
at most 2¥ — 1 many. To get them one could perform a depth-first search over
those literals that are selected and then deleted from v until enough maximal
monomials have been found. However, different choices may lead to the same
monomial eventually. In order to be efficient we need a suitable mechanism to
prune the search tree. Our strategy and its analysis are quite involved; therefore,
the details will be presented in a full version of this paper.

Learning Candidate Monomials. Considering every maximal monomial for
each positive sample used to learn the k-CNF formula 1, one might get a very
large set of monomials. Thus, a new idea is needed to handle such a situation.
To obtain a bounded number of candidates to continue with we try to prune the
set of maximal monomials without losing too many satisfying assignments. To
this aim every monomial of the unknown k-term DNF formula ¢ that has a large
support should become a candidate monomial. On the other hand, monomials
with a small support might be removed without losing much accuracy.

Let us start by considering the number of maximal monomials in case the k-
CNF formula % is equivalent to the unknown k-term DNF formula . In general
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sat(v) may cover only parts of the satisfying region of a monomial in a scattered
way. Hence, there could exist many (v, z)-maximal monomials.

Definition 2. Let ¢ = My V ---V My be a non-redundant k-term DNF for-
mula, x € sat(p), and I = {i1,...,ip} € {1,...,k} be a non-empty set of
indices. A monomial My 4 is called (p, I, x)-mazimal if it is (@, x)-mazimal and
sat(Mr.) C sat(M; V---V M;,)) and after removing any M;, from the right
side this inclusion fails.

Lemma 2. For fized , I, and x, a (p, I, z)-mazimal monomial My , is unique.
Ify € sat(M;, V---V Mip) has a mazimal monomial My, then My, = Mg ;.

This implies that the number of different (p, I, x)-maximal monomials over
all z € sat(p) and nonempty I C {1,...,k} is bounded by 2¥ — 1. Next we
will derive a bound on the number of satisfying assignments for those maximal
monomials that intersect potentially scattered regions of ¢.

Lemma 3. Let ¢ = M7V ---V My be a non-redundant k-term DNF formula
with monomials M; ordered by increasing length. For d € W let o4 = M; V
-+« V M, be composed of all M; with |sat(M;)| > 2. For a Boolean formula
Xd with sat(xa) < sat(My41 V Myia V -+ V M) define ¥q = wa V Xd,
MU = M | Misa(vq,x) — maz. monom. forsomex € (sat(xaq) \ sat(pq))},
and & =\ yyepqr M. Then it holds |sat(&g)] < 20FF—1

These notions provide the foundation for the learner specified in Algorithm 2
giving the following result.

Theorem 1. For constant k, Algorithm 2 learns k-term DNF formulas without
false positives over gq-bounded distributions in polynomial time with respect to
(1/e,1/0,m,q) by drawing no more positive samples than

o(e,0,n,k,q) = et qk23%T ((2n)F* +1n(2/6)) + 4872 In (2’“2‘*‘2/6) .

Correctness Proof. We first show a bound on how much monomials may
overlap (their sat-regions have a nonempty intersection).

Lemma 4. Let ¢ = M1V ---V My be a non-redundant k-term DNF formula
and @; equal ¢ without M;. Then |sat(M;)\ sat(p;)| > |sat(M;)]- 27+,

Next, let us estimate how well a k-CNF formula 1) can reconstruct the original
monomials of the unknown k-term DNF .

Definition 3. Let g(p,q, k) := q 2¥|sat(p)|. For v > 0 call a monomial M; of
¢ y-large if [sat(M;)] = v g(p, q, k).

Lemma 5. Let ¢ = M;V---V My be a k-term DNF formula with monomials M;
and ¢ = K1 A---ANK), be a k-CNF formula with clauses K; and sat(y) C sat(p).
Let D be a q-bounded distribution with sp(D) = sat(yp) and let v > 0. If
D(sat(p) \ sat(y)) <~y then for every v-large M; it holds sat(M;) C sat(¢).
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Input: ¢,6, k, ¢, sampling oracle EX
Output: hypothesis ¢’
£1 «— € qil k! 27(3'““);
Ni e &7t ((2n)"! 4+ 1n(2/90));
draw Ni samples E = (e1,...,en, ) using EX;
learn k-CNF formula v using samples in F;
M — 0
for j «— 1 to N; do
let M, denote all (¢, e;)-maximal monomials and m; := min{| M|, 2" — 1};
generate an arbitrary subset M of M; of size my;
M — MU Mj;
end
reduce M to the (2¥ — 1)-shortest monomials;
Ny «— 48 ¢72 ln(2k2+2/6);
draw N samples S = (s1,...,Sn,) using EX;
foreach subset W of M of size at most k do
pw = VMeW M;
if pw misclassifies less than 3¢ N2 /4 samples of S then return ¢’ := pw ;
end
Algorithm 2. Learn-k-Term-DNF(e, d, k, q, EX)

Thus, if a CNF-formula 1 approximates a k-term DNF-formula ¢ quite well
then every monomial of ¢ with large support is completely covered by . Only
monomials with small support may give rise to errors in the approximation.

Now we show that the set of candidate monomials M constructed by Algo-
rithm 2 contains all large monomials.

Lemma 6. Let ¢ = My V ---V My be a non-redundant k-term DNF for-
mula. With probability at least 1 — 6/2, Algorithm 2 adds a monomial M],
with sat(M}) D sat(M;), to M for every (£122%)-large M;, where &1 =
e gLkl 9 (BktD)

Proof sketch. Let M; be an (£12%%)-large monomial. Assume that the algorithm
has learned a k-CNF formula ¢ with D(sat(y) \ sat(y)) < &1, which happens
with probability at least 1 — §/2. Then, using Lemmas 3, 4, and 5 one can show
that the sample sequence E contains at least one element e; € sat(A;), such
that no (y, e;)-maximal monomial intersects with potential scattered regions of
. Hence the number of (¢, e;)-maximal monomials can be bounded by Lemma 2
and some M/ with sat(M]) D sat(M;) will be added to M. All maximal mono-
mials that intersect with scattered regions have less assignments than M; by
Lemmas3 and 5. Thus M/ is among the 2¥ — 1 shortest monomials in M by
Lemma 2. a

From Lemma6 one can conclude the correctness of Algorithm 2. The learning
algorithm can be made applicable even if ¢ is unknown (see [5]).

A Negative Result. Verbeurgt [19] has developed a method for learning
poly(n)-term DNF over the uniform distribution from a polynomial number of
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positive and negative samples with a quasi-polynomial running time. In contrast,
we can show (proof omitted):

Theorem 2. For every q-bounded distribution D and every hypothesis space H,
learning n-term DNF formulas without false positives requires an exponential
number of positive samples drawn according to D for e < 1/q.

4 Learning Documents for Steganography

We start this section with a short review of basic definitions similar to [7]. Let
X denote the set of cover- or stegodocuments. A channel C is a mapping with
domain X* that for every sequence h of documents, called a history, defines a
probability distribution Cj on X.

A sampling oracle for C takes a history h as input and returns a random ele-
ment according to Cp. In order to generate a typical sequence of coverdocuments
c1,Ca, ... of C one starts with the empty history and asks the sampling oracle for
a first element cq, then with history h; = ¢y a second element cs is requested,
and so on. C is called supuniform if for every h, Cj is the uniform distribution
on sp(Cp).

A stegosystem for X is a pair of polynomial-time bounded probabilistic algo-
rithms S = [SE, SD] such that, for a security parameter &,

(1) the encoder SE having access to a sampling oracle for a channel C gets
as input a history h (elements that have already been generated by C), a
secret key K € {0,1}", and a message p € {0,1}"™ and returns a sequence of
stegodocuments s1, s, . . . that should look like typical elements of C starting
with history h (the length of this sequence may depend on x and m).

(2) The decoder SD takes as input a secret key K and a sequence of documents
S and returns a string p € {0,1}™.

The unreliability of S = [SE, SD] with respect to a channel C is given by
UnRels ¢ := maxy ye(o,1}m {PrKe{O?l}m[SD(K, SE(h, K, u)) # u]}

For security analysis we take as adversary a probabilistic machine W called a

(t,¢)-warden that can perform a chosen hiddentext attack:

e IV can access a sampling oracle for the channel C that in the following will be
called his reference oracle;

e W selects a history h and a message u and queries a challenge oracle CH which
is either SE(h, K, u) or C(h, i), where C(h, ) returns a sequence of random
elements of C with history h of the same length as SE(h, -, u);

e W runs in time t and can make up to { queries;

e with the help of the reference oracle C and the challenge oracle CH the warden
W CH tries to distinguish stego- from coverdocuments.

His advantage over random guessing is defined as the difference

Advsc(W) = ‘Keﬁ)ru»—, [Wc,SE(.,K,.) _ 1} Py {WC,C(.,.) _ 1} ‘
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For a given family F of channels C the strongest notion of security for a
stegosystem S is defined as InSecs 7 (t,{) := supgcrsupy Advs,c(W), where
W runs over all (¢, ()-wardens. Thus, if InSecs, 7 is small then for every channel
C of F no W — even those having perfect knowledge about C — can detect the
usage of S with significant advantage.

Now let us consider channels C over the document space X = {0,1}" such
that for every history h the support of C;, can be described by a k-term DNF
formula. These will be called k-term DNF channels. In [12] a polynomial-time
bounded embedding algorithm has been constructed that for a given string
w € {0,1}*, an arbitrary key K, and a k-term DNF formula ¢ with sufficiently
large support (depending on b) generates a document s € sat(y) that encodes w.
The distribution of these stegodocuments is uniform over sat(y) where the prob-
ability is taken over random choices of K and the internal randomization of
the algorithm. Assuming that the underlying k-term DNF channel C is known
exactly — this means for every h a k-term DNF formula for sp(Cp,) — one can use
this embedding procedure to construct an efficient stegosystem S for the family
F of all supuniform k-term DNF channels C. It has both small unreliability and
small insecurity.

Definition 4. Forn > 1 and an integer k > 1 let Fy, ;) be the set of all supuni-
form k-term DNF' channels C such that for every history h it holds |sp(Cp,)| > 27.

Let b denote the number of bits encoded per document and m = ¢ - b the
length of the secret message i to be embedded. Combining the embedding tech-
nique of [12] with the results of the previous section we can show:

Theorem 3. For the channel family Fy. ,, and given reliability parameters ,6 >
0 there ewists a stegosystem Sy that for every C € Fi, achieves the inse-
curity bound of S and the unreliability bound UnRels, ¢ < 2l + ) +

2em (k- 277/(1 — £)) 189/,

Trying to extend this result to g-bounded channels one faces the problem
that the corresponding distributions are not efficiently learnable — their support
can be learned, but not the individual probabilities which cannot even be speci-
fied in polynomial length in general. Thus, the stegoencoder cannot get complete
knowledge about the channel and the same should hold for the steganalyst — oth-
erwise he can easily detect any deviation from the channel distribution implying
that secure and efficient steganography would be impossible. The analysis for
this situation is given in a full version of this paper.

5 Conclusions

We have provided a polynomial-time algorithm for properly learning k-term
DNF formulas from positive samples only. Further, we have shown that unre-
stricted DNF formulas cannot be learned from positive samples without false
positives due to information theoretical reasons. Although the analogous learn-
ability problem for log-term DNF formulas remains still open, the negative result
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for unrestricted DNF formulas shows that this new method for learning k-term
DNF formulas is quite powerful.

Combining our learning algorithm with the embedding procedure of [12] we

are able to construct an efficient and provably secure stegosystem for a fam-
ily of channels that can be defined by k-term DNF formulas. This illustrates
that methods of algorithmic learning are important for steganography. Here,
however, both learning and embedding components are crucial. As an example,
the embedding problem for supports represented by efficiently learnable k-CNF
formulas seems to be infeasible.
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